Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/module.h>
  13#include <linux/compiler.h>
 
  14#include <linux/fs.h>
 
  15#include <linux/uaccess.h>
  16#include <linux/aio.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
 
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/syscalls.h>
  33#include <linux/cpuset.h>
  34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
 
 
 
 
 
  37#include "internal.h"
  38
 
 
 
  39/*
  40 * FIXME: remove all knowledge of the buffer layer from the core VM
  41 */
  42#include <linux/buffer_head.h> /* for try_to_free_buffers */
  43
  44#include <asm/mman.h>
  45
  46/*
  47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  48 * though.
  49 *
  50 * Shared mappings now work. 15.8.1995  Bruno.
  51 *
  52 * finished 'unifying' the page and buffer cache and SMP-threaded the
  53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  54 *
  55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  56 */
  57
  58/*
  59 * Lock ordering:
  60 *
  61 *  ->i_mmap_mutex		(truncate_pagecache)
  62 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  63 *      ->swap_lock		(exclusive_swap_page, others)
  64 *        ->mapping->tree_lock
  65 *
  66 *  ->i_mutex
  67 *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
  68 *
  69 *  ->mmap_sem
  70 *    ->i_mmap_mutex
  71 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  72 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
  73 *
  74 *  ->mmap_sem
  75 *    ->lock_page		(access_process_vm)
  76 *
  77 *  ->i_mutex			(generic_file_buffered_write)
  78 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  79 *
  80 *  bdi->wb.list_lock
  81 *    sb_lock			(fs/fs-writeback.c)
  82 *    ->mapping->tree_lock	(__sync_single_inode)
  83 *
  84 *  ->i_mmap_mutex
  85 *    ->anon_vma.lock		(vma_adjust)
  86 *
  87 *  ->anon_vma.lock
  88 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  89 *
  90 *  ->page_table_lock or pte_lock
  91 *    ->swap_lock		(try_to_unmap_one)
  92 *    ->private_lock		(try_to_unmap_one)
  93 *    ->tree_lock		(try_to_unmap_one)
  94 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
  95 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
  96 *    ->private_lock		(page_remove_rmap->set_page_dirty)
  97 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
  98 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
  99 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 
 100 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 101 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 102 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 103 *
 104 *  (code doesn't rely on that order, so you could switch it around)
 105 *  ->tasklist_lock             (memory_failure, collect_procs_ao)
 106 *    ->i_mmap_mutex
 107 */
 108
 109/*
 110 * Delete a page from the page cache and free it. Caller has to make
 111 * sure the page is locked and that nobody else uses it - or that usage
 112 * is safe.  The caller must hold the mapping's tree_lock.
 113 */
 114void __delete_from_page_cache(struct page *page)
 115{
 116	struct address_space *mapping = page->mapping;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117
 118	/*
 119	 * if we're uptodate, flush out into the cleancache, otherwise
 120	 * invalidate any existing cleancache entries.  We can't leave
 121	 * stale data around in the cleancache once our page is gone
 122	 */
 123	if (PageUptodate(page) && PageMappedToDisk(page))
 124		cleancache_put_page(page);
 125	else
 126		cleancache_flush_page(mapping, page);
 127
 128	radix_tree_delete(&mapping->page_tree, page->index);
 129	page->mapping = NULL;
 130	/* Leave page->index set: truncation lookup relies upon it */
 131	mapping->nrpages--;
 132	__dec_zone_page_state(page, NR_FILE_PAGES);
 133	if (PageSwapBacked(page))
 134		__dec_zone_page_state(page, NR_SHMEM);
 135	BUG_ON(page_mapped(page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136
 137	/*
 138	 * Some filesystems seem to re-dirty the page even after
 139	 * the VM has canceled the dirty bit (eg ext3 journaling).
 
 140	 *
 141	 * Fix it up by doing a final dirty accounting check after
 142	 * having removed the page entirely.
 
 
 143	 */
 144	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
 145		dec_zone_page_state(page, NR_FILE_DIRTY);
 146		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147	}
 148}
 149
 150/**
 151 * delete_from_page_cache - delete page from page cache
 152 * @page: the page which the kernel is trying to remove from page cache
 153 *
 154 * This must be called only on pages that have been verified to be in the page
 155 * cache and locked.  It will never put the page into the free list, the caller
 156 * has a reference on the page.
 157 */
 158void delete_from_page_cache(struct page *page)
 159{
 160	struct address_space *mapping = page->mapping;
 161	void (*freepage)(struct page *);
 162
 163	BUG_ON(!PageLocked(page));
 
 
 
 164
 165	freepage = mapping->a_ops->freepage;
 166	spin_lock_irq(&mapping->tree_lock);
 167	__delete_from_page_cache(page);
 168	spin_unlock_irq(&mapping->tree_lock);
 169	mem_cgroup_uncharge_cache_page(page);
 170
 171	if (freepage)
 172		freepage(page);
 173	page_cache_release(page);
 174}
 175EXPORT_SYMBOL(delete_from_page_cache);
 176
 177static int sleep_on_page(void *word)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 178{
 179	io_schedule();
 180	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181}
 182
 183static int sleep_on_page_killable(void *word)
 184{
 185	sleep_on_page(word);
 186	return fatal_signal_pending(current) ? -EINTR : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187}
 188
 189/**
 190 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 191 * @mapping:	address space structure to write
 192 * @start:	offset in bytes where the range starts
 193 * @end:	offset in bytes where the range ends (inclusive)
 194 * @sync_mode:	enable synchronous operation
 195 *
 196 * Start writeback against all of a mapping's dirty pages that lie
 197 * within the byte offsets <start, end> inclusive.
 198 *
 199 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 200 * opposed to a regular memory cleansing writeback.  The difference between
 201 * these two operations is that if a dirty page/buffer is encountered, it must
 202 * be waited upon, and not just skipped over.
 
 
 203 */
 204int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 205				loff_t end, int sync_mode)
 206{
 207	int ret;
 208	struct writeback_control wbc = {
 209		.sync_mode = sync_mode,
 210		.nr_to_write = LONG_MAX,
 211		.range_start = start,
 212		.range_end = end,
 213	};
 214
 215	if (!mapping_cap_writeback_dirty(mapping))
 
 216		return 0;
 217
 
 218	ret = do_writepages(mapping, &wbc);
 
 219	return ret;
 220}
 221
 222static inline int __filemap_fdatawrite(struct address_space *mapping,
 223	int sync_mode)
 224{
 225	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 226}
 227
 228int filemap_fdatawrite(struct address_space *mapping)
 229{
 230	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 231}
 232EXPORT_SYMBOL(filemap_fdatawrite);
 233
 234int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 235				loff_t end)
 236{
 237	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 238}
 239EXPORT_SYMBOL(filemap_fdatawrite_range);
 240
 241/**
 242 * filemap_flush - mostly a non-blocking flush
 243 * @mapping:	target address_space
 244 *
 245 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 246 * purposes - I/O may not be started against all dirty pages.
 
 
 247 */
 248int filemap_flush(struct address_space *mapping)
 249{
 250	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 251}
 252EXPORT_SYMBOL(filemap_flush);
 253
 254/**
 255 * filemap_fdatawait_range - wait for writeback to complete
 256 * @mapping:		address space structure to wait for
 257 * @start_byte:		offset in bytes where the range starts
 258 * @end_byte:		offset in bytes where the range ends (inclusive)
 259 *
 260 * Walk the list of under-writeback pages of the given address space
 261 * in the given range and wait for all of them.
 
 
 
 262 */
 263int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 264			    loff_t end_byte)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265{
 266	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
 267	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
 268	struct pagevec pvec;
 269	int nr_pages;
 270	int ret = 0;
 271
 272	if (end_byte < start_byte)
 273		return 0;
 274
 275	pagevec_init(&pvec, 0);
 276	while ((index <= end) &&
 277			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 278			PAGECACHE_TAG_WRITEBACK,
 279			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 280		unsigned i;
 281
 
 
 
 
 
 282		for (i = 0; i < nr_pages; i++) {
 283			struct page *page = pvec.pages[i];
 284
 285			/* until radix tree lookup accepts end_index */
 286			if (page->index > end)
 287				continue;
 288
 289			wait_on_page_writeback(page);
 290			if (TestClearPageError(page))
 291				ret = -EIO;
 292		}
 293		pagevec_release(&pvec);
 294		cond_resched();
 295	}
 
 296
 297	/* Check for outstanding write errors */
 298	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 299		ret = -ENOSPC;
 300	if (test_and_clear_bit(AS_EIO, &mapping->flags))
 301		ret = -EIO;
 302
 303	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 304}
 305EXPORT_SYMBOL(filemap_fdatawait_range);
 306
 307/**
 308 * filemap_fdatawait - wait for all under-writeback pages to complete
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309 * @mapping: address space structure to wait for
 310 *
 311 * Walk the list of under-writeback pages of the given address space
 312 * and wait for all of them.
 
 
 
 
 
 
 
 313 */
 314int filemap_fdatawait(struct address_space *mapping)
 315{
 316	loff_t i_size = i_size_read(mapping->host);
 
 
 
 317
 318	if (i_size == 0)
 319		return 0;
 
 
 
 320
 321	return filemap_fdatawait_range(mapping, 0, i_size - 1);
 322}
 323EXPORT_SYMBOL(filemap_fdatawait);
 324
 325int filemap_write_and_wait(struct address_space *mapping)
 326{
 327	int err = 0;
 328
 329	if (mapping->nrpages) {
 330		err = filemap_fdatawrite(mapping);
 331		/*
 332		 * Even if the above returned error, the pages may be
 333		 * written partially (e.g. -ENOSPC), so we wait for it.
 334		 * But the -EIO is special case, it may indicate the worst
 335		 * thing (e.g. bug) happened, so we avoid waiting for it.
 336		 */
 337		if (err != -EIO) {
 338			int err2 = filemap_fdatawait(mapping);
 339			if (!err)
 340				err = err2;
 
 
 
 341		}
 
 
 342	}
 343	return err;
 344}
 345EXPORT_SYMBOL(filemap_write_and_wait);
 346
 347/**
 348 * filemap_write_and_wait_range - write out & wait on a file range
 349 * @mapping:	the address_space for the pages
 350 * @lstart:	offset in bytes where the range starts
 351 * @lend:	offset in bytes where the range ends (inclusive)
 352 *
 353 * Write out and wait upon file offsets lstart->lend, inclusive.
 354 *
 355 * Note that `lend' is inclusive (describes the last byte to be written) so
 356 * that this function can be used to write to the very end-of-file (end = -1).
 
 
 357 */
 358int filemap_write_and_wait_range(struct address_space *mapping,
 359				 loff_t lstart, loff_t lend)
 360{
 361	int err = 0;
 362
 363	if (mapping->nrpages) {
 364		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 365						 WB_SYNC_ALL);
 366		/* See comment of filemap_write_and_wait() */
 367		if (err != -EIO) {
 368			int err2 = filemap_fdatawait_range(mapping,
 369						lstart, lend);
 370			if (!err)
 371				err = err2;
 
 
 
 372		}
 
 
 373	}
 374	return err;
 375}
 376EXPORT_SYMBOL(filemap_write_and_wait_range);
 377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378/**
 379 * replace_page_cache_page - replace a pagecache page with a new one
 380 * @old:	page to be replaced
 381 * @new:	page to replace with
 382 * @gfp_mask:	allocation mode
 383 *
 384 * This function replaces a page in the pagecache with a new one.  On
 385 * success it acquires the pagecache reference for the new page and
 386 * drops it for the old page.  Both the old and new pages must be
 387 * locked.  This function does not add the new page to the LRU, the
 388 * caller must do that.
 389 *
 390 * The remove + add is atomic.  The only way this function can fail is
 391 * memory allocation failure.
 
 392 */
 393int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 394{
 395	int error;
 396	struct mem_cgroup *memcg = NULL;
 
 
 
 397
 398	VM_BUG_ON(!PageLocked(old));
 399	VM_BUG_ON(!PageLocked(new));
 400	VM_BUG_ON(new->mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 401
 402	/*
 403	 * This is not page migration, but prepare_migration and
 404	 * end_migration does enough work for charge replacement.
 405	 *
 406	 * In the longer term we probably want a specialized function
 407	 * for moving the charge from old to new in a more efficient
 408	 * manner.
 409	 */
 410	error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
 411	if (error)
 412		return error;
 413
 414	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 415	if (!error) {
 416		struct address_space *mapping = old->mapping;
 417		void (*freepage)(struct page *);
 
 
 
 
 
 
 418
 419		pgoff_t offset = old->index;
 420		freepage = mapping->a_ops->freepage;
 
 
 
 
 
 
 
 
 
 
 
 
 421
 422		page_cache_get(new);
 423		new->mapping = mapping;
 424		new->index = offset;
 425
 426		spin_lock_irq(&mapping->tree_lock);
 427		__delete_from_page_cache(old);
 428		error = radix_tree_insert(&mapping->page_tree, offset, new);
 429		BUG_ON(error);
 
 
 
 
 
 
 430		mapping->nrpages++;
 431		__inc_zone_page_state(new, NR_FILE_PAGES);
 432		if (PageSwapBacked(new))
 433			__inc_zone_page_state(new, NR_SHMEM);
 434		spin_unlock_irq(&mapping->tree_lock);
 435		radix_tree_preload_end();
 436		if (freepage)
 437			freepage(old);
 438		page_cache_release(old);
 439		mem_cgroup_end_migration(memcg, old, new, true);
 440	} else {
 441		mem_cgroup_end_migration(memcg, old, new, false);
 442	}
 443
 444	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445}
 446EXPORT_SYMBOL_GPL(replace_page_cache_page);
 447
 448/**
 449 * add_to_page_cache_locked - add a locked page to the pagecache
 450 * @page:	page to add
 451 * @mapping:	the page's address_space
 452 * @offset:	page index
 453 * @gfp_mask:	page allocation mode
 454 *
 455 * This function is used to add a page to the pagecache. It must be locked.
 456 * This function does not add the page to the LRU.  The caller must do that.
 
 
 457 */
 458int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 459		pgoff_t offset, gfp_t gfp_mask)
 460{
 461	int error;
 462
 463	VM_BUG_ON(!PageLocked(page));
 464	VM_BUG_ON(PageSwapBacked(page));
 465
 466	error = mem_cgroup_cache_charge(page, current->mm,
 467					gfp_mask & GFP_RECLAIM_MASK);
 468	if (error)
 469		goto out;
 470
 471	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 472	if (error == 0) {
 473		page_cache_get(page);
 474		page->mapping = mapping;
 475		page->index = offset;
 476
 477		spin_lock_irq(&mapping->tree_lock);
 478		error = radix_tree_insert(&mapping->page_tree, offset, page);
 479		if (likely(!error)) {
 480			mapping->nrpages++;
 481			__inc_zone_page_state(page, NR_FILE_PAGES);
 482			spin_unlock_irq(&mapping->tree_lock);
 483		} else {
 484			page->mapping = NULL;
 485			/* Leave page->index set: truncation relies upon it */
 486			spin_unlock_irq(&mapping->tree_lock);
 487			mem_cgroup_uncharge_cache_page(page);
 488			page_cache_release(page);
 489		}
 490		radix_tree_preload_end();
 491	} else
 492		mem_cgroup_uncharge_cache_page(page);
 493out:
 494	return error;
 495}
 496EXPORT_SYMBOL(add_to_page_cache_locked);
 497
 498int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 499				pgoff_t offset, gfp_t gfp_mask)
 500{
 
 501	int ret;
 502
 503	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
 504	if (ret == 0)
 505		lru_cache_add_file(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506	return ret;
 507}
 508EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 509
 510#ifdef CONFIG_NUMA
 511struct page *__page_cache_alloc(gfp_t gfp)
 512{
 513	int n;
 514	struct page *page;
 515
 516	if (cpuset_do_page_mem_spread()) {
 517		get_mems_allowed();
 518		n = cpuset_mem_spread_node();
 519		page = alloc_pages_exact_node(n, gfp, 0);
 520		put_mems_allowed();
 
 
 
 521		return page;
 522	}
 523	return alloc_pages(gfp, 0);
 524}
 525EXPORT_SYMBOL(__page_cache_alloc);
 526#endif
 527
 528/*
 529 * In order to wait for pages to become available there must be
 530 * waitqueues associated with pages. By using a hash table of
 531 * waitqueues where the bucket discipline is to maintain all
 532 * waiters on the same queue and wake all when any of the pages
 533 * become available, and for the woken contexts to check to be
 534 * sure the appropriate page became available, this saves space
 535 * at a cost of "thundering herd" phenomena during rare hash
 536 * collisions.
 537 */
 
 
 
 
 538static wait_queue_head_t *page_waitqueue(struct page *page)
 539{
 540	const struct zone *zone = page_zone(page);
 
 
 
 
 
 541
 542	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 
 
 
 543}
 544
 545static inline void wake_up_page(struct page *page, int bit)
 
 
 
 
 
 
 
 
 
 
 
 
 
 546{
 547	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548}
 549
 550void wait_on_page_bit(struct page *page, int bit_nr)
 551{
 552	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 
 553
 554	if (test_bit(bit_nr, &page->flags))
 555		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
 556							TASK_UNINTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 557}
 558EXPORT_SYMBOL(wait_on_page_bit);
 559
 560int wait_on_page_bit_killable(struct page *page, int bit_nr)
 561{
 562	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 
 563
 564	if (!test_bit(bit_nr, &page->flags))
 565		return 0;
 
 
 
 
 
 
 
 
 
 
 
 566
 567	return __wait_on_bit(page_waitqueue(page), &wait,
 568			     sleep_on_page_killable, TASK_KILLABLE);
 
 569}
 570
 571/**
 572 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 573 * @page: Page defining the wait queue of interest
 574 * @waiter: Waiter to add to the queue
 575 *
 576 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 577 */
 578void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 579{
 580	wait_queue_head_t *q = page_waitqueue(page);
 581	unsigned long flags;
 582
 583	spin_lock_irqsave(&q->lock, flags);
 584	__add_wait_queue(q, waiter);
 
 585	spin_unlock_irqrestore(&q->lock, flags);
 586}
 587EXPORT_SYMBOL_GPL(add_page_wait_queue);
 588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589/**
 590 * unlock_page - unlock a locked page
 591 * @page: the page
 592 *
 593 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 594 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 595 * mechananism between PageLocked pages and PageWriteback pages is shared.
 596 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 597 *
 598 * The mb is necessary to enforce ordering between the clear_bit and the read
 599 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 
 
 
 600 */
 601void unlock_page(struct page *page)
 602{
 603	VM_BUG_ON(!PageLocked(page));
 604	clear_bit_unlock(PG_locked, &page->flags);
 605	smp_mb__after_clear_bit();
 606	wake_up_page(page, PG_locked);
 
 607}
 608EXPORT_SYMBOL(unlock_page);
 609
 610/**
 611 * end_page_writeback - end writeback against a page
 612 * @page: the page
 613 */
 614void end_page_writeback(struct page *page)
 615{
 616	if (TestClearPageReclaim(page))
 
 
 
 
 
 
 
 
 617		rotate_reclaimable_page(page);
 
 618
 619	if (!test_clear_page_writeback(page))
 620		BUG();
 621
 622	smp_mb__after_clear_bit();
 623	wake_up_page(page, PG_writeback);
 624}
 625EXPORT_SYMBOL(end_page_writeback);
 626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627/**
 628 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 629 * @page: the page to lock
 630 */
 631void __lock_page(struct page *page)
 632{
 633	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 634
 635	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
 636							TASK_UNINTERRUPTIBLE);
 637}
 638EXPORT_SYMBOL(__lock_page);
 639
 640int __lock_page_killable(struct page *page)
 641{
 642	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 643
 644	return __wait_on_bit_lock(page_waitqueue(page), &wait,
 645					sleep_on_page_killable, TASK_KILLABLE);
 646}
 647EXPORT_SYMBOL_GPL(__lock_page_killable);
 648
 
 
 
 
 
 
 
 
 
 
 
 649int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 650			 unsigned int flags)
 651{
 652	if (flags & FAULT_FLAG_ALLOW_RETRY) {
 653		/*
 654		 * CAUTION! In this case, mmap_sem is not released
 655		 * even though return 0.
 656		 */
 657		if (flags & FAULT_FLAG_RETRY_NOWAIT)
 658			return 0;
 659
 660		up_read(&mm->mmap_sem);
 661		if (flags & FAULT_FLAG_KILLABLE)
 662			wait_on_page_locked_killable(page);
 663		else
 664			wait_on_page_locked(page);
 665		return 0;
 666	} else {
 667		if (flags & FAULT_FLAG_KILLABLE) {
 668			int ret;
 669
 670			ret = __lock_page_killable(page);
 671			if (ret) {
 672				up_read(&mm->mmap_sem);
 673				return 0;
 674			}
 675		} else
 676			__lock_page(page);
 677		return 1;
 678	}
 679}
 680
 681/**
 682 * find_get_page - find and get a page reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683 * @mapping: the address_space to search
 684 * @offset: the page index
 
 
 
 685 *
 686 * Is there a pagecache struct page at the given (mapping, offset) tuple?
 687 * If yes, increment its refcount and return it; if no, return NULL.
 
 
 688 */
 689struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
 690{
 691	void **pagep;
 692	struct page *page;
 693
 694	rcu_read_lock();
 695repeat:
 696	page = NULL;
 697	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
 698	if (pagep) {
 699		page = radix_tree_deref_slot(pagep);
 700		if (unlikely(!page))
 701			goto out;
 702		if (radix_tree_exception(page)) {
 703			if (radix_tree_deref_retry(page))
 704				goto repeat;
 705			/*
 706			 * Otherwise, shmem/tmpfs must be storing a swap entry
 707			 * here as an exceptional entry: so return it without
 708			 * attempting to raise page count.
 709			 */
 710			goto out;
 711		}
 712		if (!page_cache_get_speculative(page))
 713			goto repeat;
 714
 715		/*
 716		 * Has the page moved?
 717		 * This is part of the lockless pagecache protocol. See
 718		 * include/linux/pagemap.h for details.
 719		 */
 720		if (unlikely(page != *pagep)) {
 721			page_cache_release(page);
 722			goto repeat;
 723		}
 
 
 724	}
 
 725out:
 726	rcu_read_unlock();
 727
 728	return page;
 729}
 730EXPORT_SYMBOL(find_get_page);
 731
 732/**
 733 * find_lock_page - locate, pin and lock a pagecache page
 734 * @mapping: the address_space to search
 735 * @offset: the page index
 
 
 
 
 736 *
 737 * Locates the desired pagecache page, locks it, increments its reference
 738 * count and returns its address.
 739 *
 740 * Returns zero if the page was not present. find_lock_page() may sleep.
 
 
 741 */
 742struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
 743{
 744	struct page *page;
 745
 746repeat:
 747	page = find_get_page(mapping, offset);
 748	if (page && !radix_tree_exception(page)) {
 749		lock_page(page);
 750		/* Has the page been truncated? */
 751		if (unlikely(page->mapping != mapping)) {
 752			unlock_page(page);
 753			page_cache_release(page);
 754			goto repeat;
 755		}
 756		VM_BUG_ON(page->index != offset);
 757	}
 758	return page;
 759}
 760EXPORT_SYMBOL(find_lock_page);
 761
 762/**
 763 * find_or_create_page - locate or add a pagecache page
 764 * @mapping: the page's address_space
 765 * @index: the page's index into the mapping
 766 * @gfp_mask: page allocation mode
 
 
 
 
 
 767 *
 768 * Locates a page in the pagecache.  If the page is not present, a new page
 769 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
 770 * LRU list.  The returned page is locked and has its reference count
 771 * incremented.
 772 *
 773 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
 774 * allocation!
 
 
 
 
 
 
 
 775 *
 776 * find_or_create_page() returns the desired page's address, or zero on
 777 * memory exhaustion.
 
 
 
 
 778 */
 779struct page *find_or_create_page(struct address_space *mapping,
 780		pgoff_t index, gfp_t gfp_mask)
 781{
 782	struct page *page;
 783	int err;
 784repeat:
 785	page = find_lock_page(mapping, index);
 786	if (!page) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787		page = __page_cache_alloc(gfp_mask);
 788		if (!page)
 789			return NULL;
 790		/*
 791		 * We want a regular kernel memory (not highmem or DMA etc)
 792		 * allocation for the radix tree nodes, but we need to honour
 793		 * the context-specific requirements the caller has asked for.
 794		 * GFP_RECLAIM_MASK collects those requirements.
 795		 */
 796		err = add_to_page_cache_lru(page, mapping, index,
 797			(gfp_mask & GFP_RECLAIM_MASK));
 
 798		if (unlikely(err)) {
 799			page_cache_release(page);
 800			page = NULL;
 801			if (err == -EEXIST)
 802				goto repeat;
 803		}
 
 
 
 
 
 
 
 804	}
 
 805	return page;
 806}
 807EXPORT_SYMBOL(find_or_create_page);
 808
 809/**
 810 * find_get_pages - gang pagecache lookup
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811 * @mapping:	The address_space to search
 812 * @start:	The starting page index
 
 813 * @nr_pages:	The maximum number of pages
 814 * @pages:	Where the resulting pages are placed
 815 *
 816 * find_get_pages() will search for and return a group of up to
 817 * @nr_pages pages in the mapping.  The pages are placed at @pages.
 818 * find_get_pages() takes a reference against the returned pages.
 
 819 *
 820 * The search returns a group of mapping-contiguous pages with ascending
 821 * indexes.  There may be holes in the indices due to not-present pages.
 
 822 *
 823 * find_get_pages() returns the number of pages which were found.
 
 
 824 */
 825unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
 826			    unsigned int nr_pages, struct page **pages)
 
 827{
 828	unsigned int i;
 829	unsigned int ret;
 830	unsigned int nr_found, nr_skip;
 
 
 
 831
 832	rcu_read_lock();
 833restart:
 834	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
 835				(void ***)pages, NULL, start, nr_pages);
 836	ret = 0;
 837	nr_skip = 0;
 838	for (i = 0; i < nr_found; i++) {
 839		struct page *page;
 840repeat:
 841		page = radix_tree_deref_slot((void **)pages[i]);
 842		if (unlikely(!page))
 843			continue;
 844
 845		if (radix_tree_exception(page)) {
 846			if (radix_tree_deref_retry(page)) {
 847				/*
 848				 * Transient condition which can only trigger
 849				 * when entry at index 0 moves out of or back
 850				 * to root: none yet gotten, safe to restart.
 851				 */
 852				WARN_ON(start | i);
 853				goto restart;
 854			}
 855			/*
 856			 * Otherwise, shmem/tmpfs must be storing a swap entry
 857			 * here as an exceptional entry: so skip over it -
 858			 * we only reach this from invalidate_mapping_pages().
 859			 */
 860			nr_skip++;
 861			continue;
 862		}
 863
 864		if (!page_cache_get_speculative(page))
 865			goto repeat;
 866
 867		/* Has the page moved? */
 868		if (unlikely(page != *((void **)pages[i]))) {
 869			page_cache_release(page);
 870			goto repeat;
 
 
 
 
 871		}
 872
 873		pages[ret] = page;
 874		ret++;
 
 
 875	}
 876
 877	/*
 878	 * If all entries were removed before we could secure them,
 879	 * try again, because callers stop trying once 0 is returned.
 
 
 880	 */
 881	if (unlikely(!ret && nr_found > nr_skip))
 882		goto restart;
 
 
 
 883	rcu_read_unlock();
 
 884	return ret;
 885}
 886
 887/**
 888 * find_get_pages_contig - gang contiguous pagecache lookup
 889 * @mapping:	The address_space to search
 890 * @index:	The starting page index
 891 * @nr_pages:	The maximum number of pages
 892 * @pages:	Where the resulting pages are placed
 893 *
 894 * find_get_pages_contig() works exactly like find_get_pages(), except
 895 * that the returned number of pages are guaranteed to be contiguous.
 896 *
 897 * find_get_pages_contig() returns the number of pages which were found.
 898 */
 899unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
 900			       unsigned int nr_pages, struct page **pages)
 901{
 902	unsigned int i;
 903	unsigned int ret;
 904	unsigned int nr_found;
 
 
 
 905
 906	rcu_read_lock();
 907restart:
 908	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
 909				(void ***)pages, NULL, index, nr_pages);
 910	ret = 0;
 911	for (i = 0; i < nr_found; i++) {
 912		struct page *page;
 913repeat:
 914		page = radix_tree_deref_slot((void **)pages[i]);
 915		if (unlikely(!page))
 916			continue;
 917
 918		if (radix_tree_exception(page)) {
 919			if (radix_tree_deref_retry(page)) {
 920				/*
 921				 * Transient condition which can only trigger
 922				 * when entry at index 0 moves out of or back
 923				 * to root: none yet gotten, safe to restart.
 924				 */
 925				goto restart;
 926			}
 927			/*
 928			 * Otherwise, shmem/tmpfs must be storing a swap entry
 929			 * here as an exceptional entry: so stop looking for
 930			 * contiguous pages.
 931			 */
 932			break;
 933		}
 934
 935		if (!page_cache_get_speculative(page))
 936			goto repeat;
 937
 938		/* Has the page moved? */
 939		if (unlikely(page != *((void **)pages[i]))) {
 940			page_cache_release(page);
 941			goto repeat;
 942		}
 943
 944		/*
 945		 * must check mapping and index after taking the ref.
 946		 * otherwise we can get both false positives and false
 947		 * negatives, which is just confusing to the caller.
 948		 */
 949		if (page->mapping == NULL || page->index != index) {
 950			page_cache_release(page);
 951			break;
 952		}
 953
 954		pages[ret] = page;
 955		ret++;
 956		index++;
 957	}
 958	rcu_read_unlock();
 959	return ret;
 960}
 961EXPORT_SYMBOL(find_get_pages_contig);
 962
 963/**
 964 * find_get_pages_tag - find and return pages that match @tag
 965 * @mapping:	the address_space to search
 966 * @index:	the starting page index
 
 967 * @tag:	the tag index
 968 * @nr_pages:	the maximum number of pages
 969 * @pages:	where the resulting pages are placed
 970 *
 971 * Like find_get_pages, except we only return pages which are tagged with
 972 * @tag.   We update @index to index the next page for the traversal.
 
 
 973 */
 974unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
 975			int tag, unsigned int nr_pages, struct page **pages)
 
 976{
 977	unsigned int i;
 978	unsigned int ret;
 979	unsigned int nr_found;
 
 
 
 980
 981	rcu_read_lock();
 982restart:
 983	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
 984				(void ***)pages, *index, nr_pages, tag);
 985	ret = 0;
 986	for (i = 0; i < nr_found; i++) {
 987		struct page *page;
 988repeat:
 989		page = radix_tree_deref_slot((void **)pages[i]);
 990		if (unlikely(!page))
 991			continue;
 992
 993		if (radix_tree_exception(page)) {
 994			if (radix_tree_deref_retry(page)) {
 995				/*
 996				 * Transient condition which can only trigger
 997				 * when entry at index 0 moves out of or back
 998				 * to root: none yet gotten, safe to restart.
 999				 */
1000				goto restart;
1001			}
1002			/*
1003			 * This function is never used on a shmem/tmpfs
1004			 * mapping, so a swap entry won't be found here.
1005			 */
1006			BUG();
1007		}
1008
1009		if (!page_cache_get_speculative(page))
1010			goto repeat;
1011
1012		/* Has the page moved? */
1013		if (unlikely(page != *((void **)pages[i]))) {
1014			page_cache_release(page);
1015			goto repeat;
 
 
 
 
1016		}
1017
1018		pages[ret] = page;
1019		ret++;
 
 
1020	}
1021
1022	/*
1023	 * If all entries were removed before we could secure them,
1024	 * try again, because callers stop trying once 0 is returned.
 
 
1025	 */
1026	if (unlikely(!ret && nr_found))
1027		goto restart;
 
 
 
1028	rcu_read_unlock();
1029
1030	if (ret)
1031		*index = pages[ret - 1]->index + 1;
1032
1033	return ret;
1034}
1035EXPORT_SYMBOL(find_get_pages_tag);
1036
1037/**
1038 * grab_cache_page_nowait - returns locked page at given index in given cache
1039 * @mapping: target address_space
1040 * @index: the page index
1041 *
1042 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1043 * This is intended for speculative data generators, where the data can
1044 * be regenerated if the page couldn't be grabbed.  This routine should
1045 * be safe to call while holding the lock for another page.
1046 *
1047 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1048 * and deadlock against the caller's locked page.
1049 */
1050struct page *
1051grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1052{
1053	struct page *page = find_get_page(mapping, index);
1054
1055	if (page) {
1056		if (trylock_page(page))
1057			return page;
1058		page_cache_release(page);
1059		return NULL;
1060	}
1061	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1062	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1063		page_cache_release(page);
1064		page = NULL;
1065	}
1066	return page;
1067}
1068EXPORT_SYMBOL(grab_cache_page_nowait);
1069
1070/*
1071 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1072 * a _large_ part of the i/o request. Imagine the worst scenario:
1073 *
1074 *      ---R__________________________________________B__________
1075 *         ^ reading here                             ^ bad block(assume 4k)
1076 *
1077 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1078 * => failing the whole request => read(R) => read(R+1) =>
1079 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1080 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1081 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1082 *
1083 * It is going insane. Fix it by quickly scaling down the readahead size.
1084 */
1085static void shrink_readahead_size_eio(struct file *filp,
1086					struct file_ra_state *ra)
1087{
1088	ra->ra_pages /= 4;
1089}
1090
1091/**
1092 * do_generic_file_read - generic file read routine
1093 * @filp:	the file to read
1094 * @ppos:	current file position
1095 * @desc:	read_descriptor
1096 * @actor:	read method
1097 *
1098 * This is a generic file read routine, and uses the
1099 * mapping->a_ops->readpage() function for the actual low-level stuff.
1100 *
1101 * This is really ugly. But the goto's actually try to clarify some
1102 * of the logic when it comes to error handling etc.
 
 
 
 
1103 */
1104static void do_generic_file_read(struct file *filp, loff_t *ppos,
1105		read_descriptor_t *desc, read_actor_t actor)
1106{
 
1107	struct address_space *mapping = filp->f_mapping;
1108	struct inode *inode = mapping->host;
1109	struct file_ra_state *ra = &filp->f_ra;
 
1110	pgoff_t index;
1111	pgoff_t last_index;
1112	pgoff_t prev_index;
1113	unsigned long offset;      /* offset into pagecache page */
1114	unsigned int prev_offset;
1115	int error;
 
 
 
 
1116
1117	index = *ppos >> PAGE_CACHE_SHIFT;
1118	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1119	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1120	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1121	offset = *ppos & ~PAGE_CACHE_MASK;
1122
1123	for (;;) {
1124		struct page *page;
1125		pgoff_t end_index;
1126		loff_t isize;
1127		unsigned long nr, ret;
1128
1129		cond_resched();
1130find_page:
 
 
 
 
 
1131		page = find_get_page(mapping, index);
1132		if (!page) {
 
 
1133			page_cache_sync_readahead(mapping,
1134					ra, filp,
1135					index, last_index - index);
1136			page = find_get_page(mapping, index);
1137			if (unlikely(page == NULL))
1138				goto no_cached_page;
1139		}
1140		if (PageReadahead(page)) {
1141			page_cache_async_readahead(mapping,
1142					ra, filp, page,
1143					index, last_index - index);
1144		}
1145		if (!PageUptodate(page)) {
1146			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147					!mapping->a_ops->is_partially_uptodate)
1148				goto page_not_up_to_date;
 
 
 
1149			if (!trylock_page(page))
1150				goto page_not_up_to_date;
1151			/* Did it get truncated before we got the lock? */
1152			if (!page->mapping)
1153				goto page_not_up_to_date_locked;
1154			if (!mapping->a_ops->is_partially_uptodate(page,
1155								desc, offset))
1156				goto page_not_up_to_date_locked;
1157			unlock_page(page);
1158		}
1159page_ok:
1160		/*
1161		 * i_size must be checked after we know the page is Uptodate.
1162		 *
1163		 * Checking i_size after the check allows us to calculate
1164		 * the correct value for "nr", which means the zero-filled
1165		 * part of the page is not copied back to userspace (unless
1166		 * another truncate extends the file - this is desired though).
1167		 */
1168
1169		isize = i_size_read(inode);
1170		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1171		if (unlikely(!isize || index > end_index)) {
1172			page_cache_release(page);
1173			goto out;
1174		}
1175
1176		/* nr is the maximum number of bytes to copy from this page */
1177		nr = PAGE_CACHE_SIZE;
1178		if (index == end_index) {
1179			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1180			if (nr <= offset) {
1181				page_cache_release(page);
1182				goto out;
1183			}
1184		}
1185		nr = nr - offset;
1186
1187		/* If users can be writing to this page using arbitrary
1188		 * virtual addresses, take care about potential aliasing
1189		 * before reading the page on the kernel side.
1190		 */
1191		if (mapping_writably_mapped(mapping))
1192			flush_dcache_page(page);
1193
1194		/*
1195		 * When a sequential read accesses a page several times,
1196		 * only mark it as accessed the first time.
1197		 */
1198		if (prev_index != index || offset != prev_offset)
1199			mark_page_accessed(page);
1200		prev_index = index;
1201
1202		/*
1203		 * Ok, we have the page, and it's up-to-date, so
1204		 * now we can copy it to user space...
1205		 *
1206		 * The actor routine returns how many bytes were actually used..
1207		 * NOTE! This may not be the same as how much of a user buffer
1208		 * we filled up (we may be padding etc), so we can only update
1209		 * "pos" here (the actor routine has to update the user buffer
1210		 * pointers and the remaining count).
1211		 */
1212		ret = actor(desc, page, offset, nr);
 
1213		offset += ret;
1214		index += offset >> PAGE_CACHE_SHIFT;
1215		offset &= ~PAGE_CACHE_MASK;
1216		prev_offset = offset;
1217
1218		page_cache_release(page);
1219		if (ret == nr && desc->count)
1220			continue;
1221		goto out;
 
 
 
 
 
1222
1223page_not_up_to_date:
1224		/* Get exclusive access to the page ... */
1225		error = lock_page_killable(page);
1226		if (unlikely(error))
1227			goto readpage_error;
1228
1229page_not_up_to_date_locked:
1230		/* Did it get truncated before we got the lock? */
1231		if (!page->mapping) {
1232			unlock_page(page);
1233			page_cache_release(page);
1234			continue;
1235		}
1236
1237		/* Did somebody else fill it already? */
1238		if (PageUptodate(page)) {
1239			unlock_page(page);
1240			goto page_ok;
1241		}
1242
1243readpage:
1244		/*
1245		 * A previous I/O error may have been due to temporary
1246		 * failures, eg. multipath errors.
1247		 * PG_error will be set again if readpage fails.
1248		 */
1249		ClearPageError(page);
1250		/* Start the actual read. The read will unlock the page. */
1251		error = mapping->a_ops->readpage(filp, page);
1252
1253		if (unlikely(error)) {
1254			if (error == AOP_TRUNCATED_PAGE) {
1255				page_cache_release(page);
 
1256				goto find_page;
1257			}
1258			goto readpage_error;
1259		}
1260
1261		if (!PageUptodate(page)) {
1262			error = lock_page_killable(page);
1263			if (unlikely(error))
1264				goto readpage_error;
1265			if (!PageUptodate(page)) {
1266				if (page->mapping == NULL) {
1267					/*
1268					 * invalidate_mapping_pages got it
1269					 */
1270					unlock_page(page);
1271					page_cache_release(page);
1272					goto find_page;
1273				}
1274				unlock_page(page);
1275				shrink_readahead_size_eio(filp, ra);
1276				error = -EIO;
1277				goto readpage_error;
1278			}
1279			unlock_page(page);
1280		}
1281
1282		goto page_ok;
1283
1284readpage_error:
1285		/* UHHUH! A synchronous read error occurred. Report it */
1286		desc->error = error;
1287		page_cache_release(page);
1288		goto out;
1289
1290no_cached_page:
1291		/*
1292		 * Ok, it wasn't cached, so we need to create a new
1293		 * page..
1294		 */
1295		page = page_cache_alloc_cold(mapping);
1296		if (!page) {
1297			desc->error = -ENOMEM;
1298			goto out;
1299		}
1300		error = add_to_page_cache_lru(page, mapping,
1301						index, GFP_KERNEL);
1302		if (error) {
1303			page_cache_release(page);
1304			if (error == -EEXIST)
 
1305				goto find_page;
1306			desc->error = error;
1307			goto out;
1308		}
1309		goto readpage;
1310	}
1311
 
 
1312out:
1313	ra->prev_pos = prev_index;
1314	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1315	ra->prev_pos |= prev_offset;
1316
1317	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1318	file_accessed(filp);
 
1319}
1320
1321int file_read_actor(read_descriptor_t *desc, struct page *page,
1322			unsigned long offset, unsigned long size)
1323{
1324	char *kaddr;
1325	unsigned long left, count = desc->count;
1326
1327	if (size > count)
1328		size = count;
1329
1330	/*
1331	 * Faults on the destination of a read are common, so do it before
1332	 * taking the kmap.
1333	 */
1334	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1335		kaddr = kmap_atomic(page, KM_USER0);
1336		left = __copy_to_user_inatomic(desc->arg.buf,
1337						kaddr + offset, size);
1338		kunmap_atomic(kaddr, KM_USER0);
1339		if (left == 0)
1340			goto success;
1341	}
1342
1343	/* Do it the slow way */
1344	kaddr = kmap(page);
1345	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1346	kunmap(page);
1347
1348	if (left) {
1349		size -= left;
1350		desc->error = -EFAULT;
1351	}
1352success:
1353	desc->count = count - size;
1354	desc->written += size;
1355	desc->arg.buf += size;
1356	return size;
1357}
1358
1359/*
1360 * Performs necessary checks before doing a write
1361 * @iov:	io vector request
1362 * @nr_segs:	number of segments in the iovec
1363 * @count:	number of bytes to write
1364 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1365 *
1366 * Adjust number of segments and amount of bytes to write (nr_segs should be
1367 * properly initialized first). Returns appropriate error code that caller
1368 * should return or zero in case that write should be allowed.
1369 */
1370int generic_segment_checks(const struct iovec *iov,
1371			unsigned long *nr_segs, size_t *count, int access_flags)
1372{
1373	unsigned long   seg;
1374	size_t cnt = 0;
1375	for (seg = 0; seg < *nr_segs; seg++) {
1376		const struct iovec *iv = &iov[seg];
1377
1378		/*
1379		 * If any segment has a negative length, or the cumulative
1380		 * length ever wraps negative then return -EINVAL.
1381		 */
1382		cnt += iv->iov_len;
1383		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1384			return -EINVAL;
1385		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1386			continue;
1387		if (seg == 0)
1388			return -EFAULT;
1389		*nr_segs = seg;
1390		cnt -= iv->iov_len;	/* This segment is no good */
1391		break;
1392	}
1393	*count = cnt;
1394	return 0;
1395}
1396EXPORT_SYMBOL(generic_segment_checks);
1397
1398/**
1399 * generic_file_aio_read - generic filesystem read routine
1400 * @iocb:	kernel I/O control block
1401 * @iov:	io vector request
1402 * @nr_segs:	number of segments in the iovec
1403 * @pos:	current file position
1404 *
1405 * This is the "read()" routine for all filesystems
1406 * that can use the page cache directly.
 
 
 
1407 */
1408ssize_t
1409generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1410		unsigned long nr_segs, loff_t pos)
1411{
1412	struct file *filp = iocb->ki_filp;
1413	ssize_t retval;
1414	unsigned long seg = 0;
1415	size_t count;
1416	loff_t *ppos = &iocb->ki_pos;
1417	struct blk_plug plug;
1418
1419	count = 0;
1420	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1421	if (retval)
1422		return retval;
1423
1424	blk_start_plug(&plug);
1425
1426	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1427	if (filp->f_flags & O_DIRECT) {
1428		loff_t size;
1429		struct address_space *mapping;
1430		struct inode *inode;
1431
1432		mapping = filp->f_mapping;
1433		inode = mapping->host;
1434		if (!count)
1435			goto out; /* skip atime */
1436		size = i_size_read(inode);
1437		if (pos < size) {
1438			retval = filemap_write_and_wait_range(mapping, pos,
1439					pos + iov_length(iov, nr_segs) - 1);
1440			if (!retval) {
1441				retval = mapping->a_ops->direct_IO(READ, iocb,
1442							iov, pos, nr_segs);
1443			}
1444			if (retval > 0) {
1445				*ppos = pos + retval;
1446				count -= retval;
1447			}
1448
1449			/*
1450			 * Btrfs can have a short DIO read if we encounter
1451			 * compressed extents, so if there was an error, or if
1452			 * we've already read everything we wanted to, or if
1453			 * there was a short read because we hit EOF, go ahead
1454			 * and return.  Otherwise fallthrough to buffered io for
1455			 * the rest of the read.
1456			 */
1457			if (retval < 0 || !count || *ppos >= size) {
1458				file_accessed(filp);
1459				goto out;
1460			}
1461		}
1462	}
1463
1464	count = retval;
1465	for (seg = 0; seg < nr_segs; seg++) {
1466		read_descriptor_t desc;
1467		loff_t offset = 0;
1468
1469		/*
1470		 * If we did a short DIO read we need to skip the section of the
1471		 * iov that we've already read data into.
1472		 */
1473		if (count) {
1474			if (count > iov[seg].iov_len) {
1475				count -= iov[seg].iov_len;
1476				continue;
1477			}
1478			offset = count;
1479			count = 0;
1480		}
 
1481
1482		desc.written = 0;
1483		desc.arg.buf = iov[seg].iov_base + offset;
1484		desc.count = iov[seg].iov_len - offset;
1485		if (desc.count == 0)
1486			continue;
1487		desc.error = 0;
1488		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1489		retval += desc.written;
1490		if (desc.error) {
1491			retval = retval ?: desc.error;
1492			break;
1493		}
1494		if (desc.count > 0)
1495			break;
1496	}
 
 
1497out:
1498	blk_finish_plug(&plug);
1499	return retval;
1500}
1501EXPORT_SYMBOL(generic_file_aio_read);
1502
1503static ssize_t
1504do_readahead(struct address_space *mapping, struct file *filp,
1505	     pgoff_t index, unsigned long nr)
 
1506{
1507	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1508		return -EINVAL;
1509
1510	force_page_cache_readahead(mapping, filp, index, nr);
1511	return 0;
1512}
1513
1514SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1515{
1516	ssize_t ret;
1517	struct file *file;
1518
1519	ret = -EBADF;
1520	file = fget(fd);
1521	if (file) {
1522		if (file->f_mode & FMODE_READ) {
1523			struct address_space *mapping = file->f_mapping;
1524			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1525			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1526			unsigned long len = end - start + 1;
1527			ret = do_readahead(mapping, file, start, len);
1528		}
1529		fput(file);
1530	}
1531	return ret;
1532}
1533#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1534asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1535{
1536	return SYSC_readahead((int) fd, offset, (size_t) count);
1537}
1538SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1539#endif
1540
1541#ifdef CONFIG_MMU
1542/**
1543 * page_cache_read - adds requested page to the page cache if not already there
1544 * @file:	file to read
1545 * @offset:	page index
1546 *
1547 * This adds the requested page to the page cache if it isn't already there,
1548 * and schedules an I/O to read in its contents from disk.
 
 
1549 */
1550static int page_cache_read(struct file *file, pgoff_t offset)
 
1551{
1552	struct address_space *mapping = file->f_mapping;
1553	struct page *page; 
1554	int ret;
1555
1556	do {
1557		page = page_cache_alloc_cold(mapping);
1558		if (!page)
1559			return -ENOMEM;
1560
1561		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1562		if (ret == 0)
1563			ret = mapping->a_ops->readpage(file, page);
1564		else if (ret == -EEXIST)
1565			ret = 0; /* losing race to add is OK */
1566
1567		page_cache_release(page);
 
 
 
 
 
 
1568
1569	} while (ret == AOP_TRUNCATED_PAGE);
1570		
1571	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1572}
1573
1574#define MMAP_LOTSAMISS  (100)
1575
1576/*
1577 * Synchronous readahead happens when we don't even find
1578 * a page in the page cache at all.
 
 
 
1579 */
1580static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1581				   struct file_ra_state *ra,
1582				   struct file *file,
1583				   pgoff_t offset)
1584{
1585	unsigned long ra_pages;
 
1586	struct address_space *mapping = file->f_mapping;
 
 
1587
1588	/* If we don't want any read-ahead, don't bother */
1589	if (VM_RandomReadHint(vma))
1590		return;
1591	if (!ra->ra_pages)
1592		return;
1593
1594	if (VM_SequentialReadHint(vma)) {
 
1595		page_cache_sync_readahead(mapping, ra, file, offset,
1596					  ra->ra_pages);
1597		return;
1598	}
1599
1600	/* Avoid banging the cache line if not needed */
1601	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1602		ra->mmap_miss++;
1603
1604	/*
1605	 * Do we miss much more than hit in this file? If so,
1606	 * stop bothering with read-ahead. It will only hurt.
1607	 */
1608	if (ra->mmap_miss > MMAP_LOTSAMISS)
1609		return;
1610
1611	/*
1612	 * mmap read-around
1613	 */
1614	ra_pages = max_sane_readahead(ra->ra_pages);
1615	ra->start = max_t(long, 0, offset - ra_pages / 2);
1616	ra->size = ra_pages;
1617	ra->async_size = ra_pages / 4;
1618	ra_submit(ra, mapping, file);
 
1619}
1620
1621/*
1622 * Asynchronous readahead happens when we find the page and PG_readahead,
1623 * so we want to possibly extend the readahead further..
 
1624 */
1625static void do_async_mmap_readahead(struct vm_area_struct *vma,
1626				    struct file_ra_state *ra,
1627				    struct file *file,
1628				    struct page *page,
1629				    pgoff_t offset)
1630{
 
 
1631	struct address_space *mapping = file->f_mapping;
 
 
1632
1633	/* If we don't want any read-ahead, don't bother */
1634	if (VM_RandomReadHint(vma))
1635		return;
1636	if (ra->mmap_miss > 0)
1637		ra->mmap_miss--;
1638	if (PageReadahead(page))
 
1639		page_cache_async_readahead(mapping, ra, file,
1640					   page, offset, ra->ra_pages);
 
 
1641}
1642
1643/**
1644 * filemap_fault - read in file data for page fault handling
1645 * @vma:	vma in which the fault was taken
1646 * @vmf:	struct vm_fault containing details of the fault
1647 *
1648 * filemap_fault() is invoked via the vma operations vector for a
1649 * mapped memory region to read in file data during a page fault.
1650 *
1651 * The goto's are kind of ugly, but this streamlines the normal case of having
1652 * it in the page cache, and handles the special cases reasonably without
1653 * having a lot of duplicated code.
 
 
 
 
 
 
 
 
 
 
 
 
1654 */
1655int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1656{
1657	int error;
1658	struct file *file = vma->vm_file;
 
1659	struct address_space *mapping = file->f_mapping;
1660	struct file_ra_state *ra = &file->f_ra;
1661	struct inode *inode = mapping->host;
1662	pgoff_t offset = vmf->pgoff;
 
1663	struct page *page;
1664	pgoff_t size;
1665	int ret = 0;
1666
1667	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1668	if (offset >= size)
1669		return VM_FAULT_SIGBUS;
1670
1671	/*
1672	 * Do we have something in the page cache already?
1673	 */
1674	page = find_get_page(mapping, offset);
1675	if (likely(page)) {
1676		/*
1677		 * We found the page, so try async readahead before
1678		 * waiting for the lock.
1679		 */
1680		do_async_mmap_readahead(vma, ra, file, page, offset);
1681	} else {
1682		/* No page in the page cache at all */
1683		do_sync_mmap_readahead(vma, ra, file, offset);
1684		count_vm_event(PGMAJFAULT);
1685		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1686		ret = VM_FAULT_MAJOR;
 
1687retry_find:
1688		page = find_get_page(mapping, offset);
1689		if (!page)
1690			goto no_cached_page;
 
 
 
 
 
1691	}
1692
1693	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1694		page_cache_release(page);
1695		return ret | VM_FAULT_RETRY;
1696	}
1697
1698	/* Did it get truncated? */
1699	if (unlikely(page->mapping != mapping)) {
1700		unlock_page(page);
1701		put_page(page);
1702		goto retry_find;
1703	}
1704	VM_BUG_ON(page->index != offset);
1705
1706	/*
1707	 * We have a locked page in the page cache, now we need to check
1708	 * that it's up-to-date. If not, it is going to be due to an error.
1709	 */
1710	if (unlikely(!PageUptodate(page)))
1711		goto page_not_uptodate;
1712
1713	/*
 
 
 
 
 
 
 
 
 
 
1714	 * Found the page and have a reference on it.
1715	 * We must recheck i_size under page lock.
1716	 */
1717	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1718	if (unlikely(offset >= size)) {
1719		unlock_page(page);
1720		page_cache_release(page);
1721		return VM_FAULT_SIGBUS;
1722	}
1723
1724	vmf->page = page;
1725	return ret | VM_FAULT_LOCKED;
1726
1727no_cached_page:
1728	/*
1729	 * We're only likely to ever get here if MADV_RANDOM is in
1730	 * effect.
1731	 */
1732	error = page_cache_read(file, offset);
1733
1734	/*
1735	 * The page we want has now been added to the page cache.
1736	 * In the unlikely event that someone removed it in the
1737	 * meantime, we'll just come back here and read it again.
1738	 */
1739	if (error >= 0)
1740		goto retry_find;
1741
1742	/*
1743	 * An error return from page_cache_read can result if the
1744	 * system is low on memory, or a problem occurs while trying
1745	 * to schedule I/O.
1746	 */
1747	if (error == -ENOMEM)
1748		return VM_FAULT_OOM;
1749	return VM_FAULT_SIGBUS;
1750
1751page_not_uptodate:
1752	/*
1753	 * Umm, take care of errors if the page isn't up-to-date.
1754	 * Try to re-read it _once_. We do this synchronously,
1755	 * because there really aren't any performance issues here
1756	 * and we need to check for errors.
1757	 */
1758	ClearPageError(page);
 
1759	error = mapping->a_ops->readpage(file, page);
1760	if (!error) {
1761		wait_on_page_locked(page);
1762		if (!PageUptodate(page))
1763			error = -EIO;
1764	}
1765	page_cache_release(page);
 
 
1766
1767	if (!error || error == AOP_TRUNCATED_PAGE)
1768		goto retry_find;
1769
1770	/* Things didn't work out. Return zero to tell the mm layer so. */
1771	shrink_readahead_size_eio(file, ra);
1772	return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
1773}
1774EXPORT_SYMBOL(filemap_fault);
1775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1776const struct vm_operations_struct generic_file_vm_ops = {
1777	.fault		= filemap_fault,
 
 
1778};
1779
1780/* This is used for a general mmap of a disk file */
1781
1782int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1783{
1784	struct address_space *mapping = file->f_mapping;
1785
1786	if (!mapping->a_ops->readpage)
1787		return -ENOEXEC;
1788	file_accessed(file);
1789	vma->vm_ops = &generic_file_vm_ops;
1790	vma->vm_flags |= VM_CAN_NONLINEAR;
1791	return 0;
1792}
1793
1794/*
1795 * This is for filesystems which do not implement ->writepage.
1796 */
1797int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1798{
1799	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1800		return -EINVAL;
1801	return generic_file_mmap(file, vma);
1802}
1803#else
 
 
 
 
1804int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1805{
1806	return -ENOSYS;
1807}
1808int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1809{
1810	return -ENOSYS;
1811}
1812#endif /* CONFIG_MMU */
1813
 
1814EXPORT_SYMBOL(generic_file_mmap);
1815EXPORT_SYMBOL(generic_file_readonly_mmap);
1816
1817static struct page *__read_cache_page(struct address_space *mapping,
 
 
 
 
 
 
 
 
 
 
 
 
1818				pgoff_t index,
1819				int (*filler)(void *, struct page *),
1820				void *data,
1821				gfp_t gfp)
1822{
1823	struct page *page;
1824	int err;
1825repeat:
1826	page = find_get_page(mapping, index);
1827	if (!page) {
1828		page = __page_cache_alloc(gfp | __GFP_COLD);
1829		if (!page)
1830			return ERR_PTR(-ENOMEM);
1831		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1832		if (unlikely(err)) {
1833			page_cache_release(page);
1834			if (err == -EEXIST)
1835				goto repeat;
1836			/* Presumably ENOMEM for radix tree node */
1837			return ERR_PTR(err);
1838		}
1839		err = filler(data, page);
 
 
 
 
 
 
1840		if (err < 0) {
1841			page_cache_release(page);
1842			page = ERR_PTR(err);
1843		}
1844	}
1845	return page;
1846}
1847
1848static struct page *do_read_cache_page(struct address_space *mapping,
1849				pgoff_t index,
1850				int (*filler)(void *, struct page *),
1851				void *data,
1852				gfp_t gfp)
1853
1854{
1855	struct page *page;
1856	int err;
 
 
 
 
1857
1858retry:
1859	page = __read_cache_page(mapping, index, filler, data, gfp);
1860	if (IS_ERR(page))
1861		return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1862	if (PageUptodate(page))
1863		goto out;
1864
 
1865	lock_page(page);
 
 
1866	if (!page->mapping) {
1867		unlock_page(page);
1868		page_cache_release(page);
1869		goto retry;
1870	}
 
 
1871	if (PageUptodate(page)) {
1872		unlock_page(page);
1873		goto out;
1874	}
1875	err = filler(data, page);
1876	if (err < 0) {
1877		page_cache_release(page);
1878		return ERR_PTR(err);
1879	}
1880out:
1881	mark_page_accessed(page);
1882	return page;
1883}
1884
1885/**
1886 * read_cache_page_async - read into page cache, fill it if needed
1887 * @mapping:	the page's address_space
1888 * @index:	the page index
1889 * @filler:	function to perform the read
1890 * @data:	first arg to filler(data, page) function, often left as NULL
1891 *
1892 * Same as read_cache_page, but don't wait for page to become unlocked
1893 * after submitting it to the filler.
1894 *
1895 * Read into the page cache. If a page already exists, and PageUptodate() is
1896 * not set, try to fill the page but don't wait for it to become unlocked.
1897 *
1898 * If the page does not get brought uptodate, return -EIO.
 
 
1899 */
1900struct page *read_cache_page_async(struct address_space *mapping,
1901				pgoff_t index,
1902				int (*filler)(void *, struct page *),
1903				void *data)
1904{
1905	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1906}
1907EXPORT_SYMBOL(read_cache_page_async);
1908
1909static struct page *wait_on_page_read(struct page *page)
1910{
1911	if (!IS_ERR(page)) {
1912		wait_on_page_locked(page);
1913		if (!PageUptodate(page)) {
1914			page_cache_release(page);
1915			page = ERR_PTR(-EIO);
1916		}
1917	}
1918	return page;
1919}
 
1920
1921/**
1922 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1923 * @mapping:	the page's address_space
1924 * @index:	the page index
1925 * @gfp:	the page allocator flags to use if allocating
1926 *
1927 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1928 * any new page allocations done using the specified allocation flags. Note
1929 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1930 * expect to do this atomically or anything like that - but you can pass in
1931 * other page requirements.
1932 *
1933 * If the page does not get brought uptodate, return -EIO.
 
 
1934 */
1935struct page *read_cache_page_gfp(struct address_space *mapping,
1936				pgoff_t index,
1937				gfp_t gfp)
1938{
1939	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1940
1941	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1942}
1943EXPORT_SYMBOL(read_cache_page_gfp);
1944
1945/**
1946 * read_cache_page - read into page cache, fill it if needed
1947 * @mapping:	the page's address_space
1948 * @index:	the page index
1949 * @filler:	function to perform the read
1950 * @data:	first arg to filler(data, page) function, often left as NULL
1951 *
1952 * Read into the page cache. If a page already exists, and PageUptodate() is
1953 * not set, try to fill the page then wait for it to become unlocked.
1954 *
1955 * If the page does not get brought uptodate, return -EIO.
1956 */
1957struct page *read_cache_page(struct address_space *mapping,
1958				pgoff_t index,
1959				int (*filler)(void *, struct page *),
1960				void *data)
1961{
1962	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1963}
1964EXPORT_SYMBOL(read_cache_page);
1965
1966/*
1967 * The logic we want is
1968 *
1969 *	if suid or (sgid and xgrp)
1970 *		remove privs
1971 */
1972int should_remove_suid(struct dentry *dentry)
 
1973{
1974	mode_t mode = dentry->d_inode->i_mode;
1975	int kill = 0;
 
1976
1977	/* suid always must be killed */
1978	if (unlikely(mode & S_ISUID))
1979		kill = ATTR_KILL_SUID;
 
 
 
 
1980
1981	/*
1982	 * sgid without any exec bits is just a mandatory locking mark; leave
1983	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1984	 */
1985	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1986		kill |= ATTR_KILL_SGID;
1987
1988	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1989		return kill;
 
 
1990
1991	return 0;
1992}
1993EXPORT_SYMBOL(should_remove_suid);
1994
1995static int __remove_suid(struct dentry *dentry, int kill)
 
 
 
 
 
 
 
1996{
1997	struct iattr newattrs;
1998
1999	newattrs.ia_valid = ATTR_FORCE | kill;
2000	return notify_change(dentry, &newattrs);
2001}
2002
2003int file_remove_suid(struct file *file)
2004{
2005	struct dentry *dentry = file->f_path.dentry;
2006	struct inode *inode = dentry->d_inode;
2007	int killsuid;
2008	int killpriv;
2009	int error = 0;
2010
2011	/* Fast path for nothing security related */
2012	if (IS_NOSEC(inode))
2013		return 0;
2014
2015	killsuid = should_remove_suid(dentry);
2016	killpriv = security_inode_need_killpriv(dentry);
 
2017
2018	if (killpriv < 0)
2019		return killpriv;
2020	if (killpriv)
2021		error = security_inode_killpriv(dentry);
2022	if (!error && killsuid)
2023		error = __remove_suid(dentry, killsuid);
2024	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2025		inode->i_flags |= S_NOSEC;
2026
2027	return error;
2028}
2029EXPORT_SYMBOL(file_remove_suid);
2030
2031static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2032			const struct iovec *iov, size_t base, size_t bytes)
2033{
2034	size_t copied = 0, left = 0;
2035
2036	while (bytes) {
2037		char __user *buf = iov->iov_base + base;
2038		int copy = min(bytes, iov->iov_len - base);
2039
2040		base = 0;
2041		left = __copy_from_user_inatomic(vaddr, buf, copy);
2042		copied += copy;
2043		bytes -= copy;
2044		vaddr += copy;
2045		iov++;
2046
2047		if (unlikely(left))
2048			break;
2049	}
2050	return copied - left;
 
 
 
2051}
 
2052
2053/*
2054 * Copy as much as we can into the page and return the number of bytes which
2055 * were successfully copied.  If a fault is encountered then return the number of
2056 * bytes which were copied.
 
 
2057 */
2058size_t iov_iter_copy_from_user_atomic(struct page *page,
2059		struct iov_iter *i, unsigned long offset, size_t bytes)
2060{
2061	char *kaddr;
2062	size_t copied;
 
 
 
 
 
 
2063
2064	BUG_ON(!in_atomic());
2065	kaddr = kmap_atomic(page, KM_USER0);
2066	if (likely(i->nr_segs == 1)) {
2067		int left;
2068		char __user *buf = i->iov->iov_base + i->iov_offset;
2069		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2070		copied = bytes - left;
2071	} else {
2072		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2073						i->iov, i->iov_offset, bytes);
2074	}
2075	kunmap_atomic(kaddr, KM_USER0);
2076
2077	return copied;
2078}
2079EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2080
2081/*
2082 * This has the same sideeffects and return value as
2083 * iov_iter_copy_from_user_atomic().
2084 * The difference is that it attempts to resolve faults.
2085 * Page must not be locked.
2086 */
2087size_t iov_iter_copy_from_user(struct page *page,
2088		struct iov_iter *i, unsigned long offset, size_t bytes)
2089{
2090	char *kaddr;
2091	size_t copied;
 
 
2092
2093	kaddr = kmap(page);
2094	if (likely(i->nr_segs == 1)) {
2095		int left;
2096		char __user *buf = i->iov->iov_base + i->iov_offset;
2097		left = __copy_from_user(kaddr + offset, buf, bytes);
2098		copied = bytes - left;
 
 
 
 
 
 
 
2099	} else {
2100		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2101						i->iov, i->iov_offset, bytes);
 
2102	}
2103	kunmap(page);
2104	return copied;
2105}
2106EXPORT_SYMBOL(iov_iter_copy_from_user);
2107
2108void iov_iter_advance(struct iov_iter *i, size_t bytes)
2109{
2110	BUG_ON(i->count < bytes);
 
 
2111
2112	if (likely(i->nr_segs == 1)) {
2113		i->iov_offset += bytes;
2114		i->count -= bytes;
2115	} else {
2116		const struct iovec *iov = i->iov;
2117		size_t base = i->iov_offset;
2118
2119		/*
2120		 * The !iov->iov_len check ensures we skip over unlikely
2121		 * zero-length segments (without overruning the iovec).
2122		 */
2123		while (bytes || unlikely(i->count && !iov->iov_len)) {
2124			int copy;
2125
2126			copy = min(bytes, iov->iov_len - base);
2127			BUG_ON(!i->count || i->count < copy);
2128			i->count -= copy;
2129			bytes -= copy;
2130			base += copy;
2131			if (iov->iov_len == base) {
2132				iov++;
2133				base = 0;
2134			}
2135		}
2136		i->iov = iov;
2137		i->iov_offset = base;
2138	}
2139}
2140EXPORT_SYMBOL(iov_iter_advance);
2141
2142/*
2143 * Fault in the first iovec of the given iov_iter, to a maximum length
2144 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2145 * accessed (ie. because it is an invalid address).
2146 *
2147 * writev-intensive code may want this to prefault several iovecs -- that
2148 * would be possible (callers must not rely on the fact that _only_ the
2149 * first iovec will be faulted with the current implementation).
2150 */
2151int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2152{
2153	char __user *buf = i->iov->iov_base + i->iov_offset;
2154	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2155	return fault_in_pages_readable(buf, bytes);
2156}
2157EXPORT_SYMBOL(iov_iter_fault_in_readable);
2158
2159/*
2160 * Return the count of just the current iov_iter segment.
 
2161 */
2162size_t iov_iter_single_seg_count(struct iov_iter *i)
2163{
2164	const struct iovec *iov = i->iov;
2165	if (i->nr_segs == 1)
2166		return i->count;
2167	else
2168		return min(i->count, iov->iov_len - i->iov_offset);
 
 
 
 
 
 
 
 
 
 
2169}
2170EXPORT_SYMBOL(iov_iter_single_seg_count);
2171
2172/*
2173 * Performs necessary checks before doing a write
2174 *
2175 * Can adjust writing position or amount of bytes to write.
2176 * Returns appropriate error code that caller should return or
2177 * zero in case that write should be allowed.
2178 */
2179inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2180{
2181	struct inode *inode = file->f_mapping->host;
2182	unsigned long limit = rlimit(RLIMIT_FSIZE);
 
 
 
 
 
2183
2184        if (unlikely(*pos < 0))
2185                return -EINVAL;
 
2186
2187	if (!isblk) {
2188		/* FIXME: this is for backwards compatibility with 2.4 */
2189		if (file->f_flags & O_APPEND)
2190                        *pos = i_size_read(inode);
2191
2192		if (limit != RLIM_INFINITY) {
2193			if (*pos >= limit) {
2194				send_sig(SIGXFSZ, current, 0);
2195				return -EFBIG;
2196			}
2197			if (*count > limit - (typeof(limit))*pos) {
2198				*count = limit - (typeof(limit))*pos;
2199			}
2200		}
2201	}
2202
2203	/*
2204	 * LFS rule
2205	 */
2206	if (unlikely(*pos + *count > MAX_NON_LFS &&
2207				!(file->f_flags & O_LARGEFILE))) {
2208		if (*pos >= MAX_NON_LFS) {
2209			return -EFBIG;
2210		}
2211		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2212			*count = MAX_NON_LFS - (unsigned long)*pos;
2213		}
2214	}
2215
2216	/*
2217	 * Are we about to exceed the fs block limit ?
2218	 *
2219	 * If we have written data it becomes a short write.  If we have
2220	 * exceeded without writing data we send a signal and return EFBIG.
2221	 * Linus frestrict idea will clean these up nicely..
2222	 */
2223	if (likely(!isblk)) {
2224		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2225			if (*count || *pos > inode->i_sb->s_maxbytes) {
2226				return -EFBIG;
2227			}
2228			/* zero-length writes at ->s_maxbytes are OK */
2229		}
2230
2231		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2232			*count = inode->i_sb->s_maxbytes - *pos;
2233	} else {
2234#ifdef CONFIG_BLOCK
2235		loff_t isize;
2236		if (bdev_read_only(I_BDEV(inode)))
2237			return -EPERM;
2238		isize = i_size_read(inode);
2239		if (*pos >= isize) {
2240			if (*count || *pos > isize)
2241				return -ENOSPC;
2242		}
2243
2244		if (*pos + *count > isize)
2245			*count = isize - *pos;
2246#else
2247		return -EPERM;
2248#endif
2249	}
 
2250	return 0;
2251}
2252EXPORT_SYMBOL(generic_write_checks);
2253
2254int pagecache_write_begin(struct file *file, struct address_space *mapping,
2255				loff_t pos, unsigned len, unsigned flags,
2256				struct page **pagep, void **fsdata)
2257{
2258	const struct address_space_operations *aops = mapping->a_ops;
2259
2260	return aops->write_begin(file, mapping, pos, len, flags,
2261							pagep, fsdata);
2262}
2263EXPORT_SYMBOL(pagecache_write_begin);
2264
2265int pagecache_write_end(struct file *file, struct address_space *mapping,
2266				loff_t pos, unsigned len, unsigned copied,
2267				struct page *page, void *fsdata)
2268{
2269	const struct address_space_operations *aops = mapping->a_ops;
2270
2271	mark_page_accessed(page);
2272	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2273}
2274EXPORT_SYMBOL(pagecache_write_end);
2275
2276ssize_t
2277generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2278		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2279		size_t count, size_t ocount)
2280{
2281	struct file	*file = iocb->ki_filp;
2282	struct address_space *mapping = file->f_mapping;
2283	struct inode	*inode = mapping->host;
 
2284	ssize_t		written;
2285	size_t		write_len;
2286	pgoff_t		end;
2287
2288	if (count != ocount)
2289		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2290
2291	write_len = iov_length(iov, *nr_segs);
2292	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2293
2294	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2295	if (written)
2296		goto out;
 
 
 
 
 
2297
2298	/*
2299	 * After a write we want buffered reads to be sure to go to disk to get
2300	 * the new data.  We invalidate clean cached page from the region we're
2301	 * about to write.  We do this *before* the write so that we can return
2302	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2303	 */
2304	if (mapping->nrpages) {
2305		written = invalidate_inode_pages2_range(mapping,
2306					pos >> PAGE_CACHE_SHIFT, end);
2307		/*
2308		 * If a page can not be invalidated, return 0 to fall back
2309		 * to buffered write.
2310		 */
2311		if (written) {
2312			if (written == -EBUSY)
2313				return 0;
2314			goto out;
2315		}
2316	}
2317
2318	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2319
2320	/*
2321	 * Finally, try again to invalidate clean pages which might have been
2322	 * cached by non-direct readahead, or faulted in by get_user_pages()
2323	 * if the source of the write was an mmap'ed region of the file
2324	 * we're writing.  Either one is a pretty crazy thing to do,
2325	 * so we don't support it 100%.  If this invalidation
2326	 * fails, tough, the write still worked...
 
 
 
 
 
2327	 */
2328	if (mapping->nrpages) {
2329		invalidate_inode_pages2_range(mapping,
2330					      pos >> PAGE_CACHE_SHIFT, end);
2331	}
2332
2333	if (written > 0) {
2334		pos += written;
 
2335		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2336			i_size_write(inode, pos);
2337			mark_inode_dirty(inode);
2338		}
2339		*ppos = pos;
2340	}
 
2341out:
2342	return written;
2343}
2344EXPORT_SYMBOL(generic_file_direct_write);
2345
2346/*
2347 * Find or create a page at the given pagecache position. Return the locked
2348 * page. This function is specifically for buffered writes.
2349 */
2350struct page *grab_cache_page_write_begin(struct address_space *mapping,
2351					pgoff_t index, unsigned flags)
2352{
2353	int status;
2354	struct page *page;
2355	gfp_t gfp_notmask = 0;
 
2356	if (flags & AOP_FLAG_NOFS)
2357		gfp_notmask = __GFP_FS;
2358repeat:
2359	page = find_lock_page(mapping, index);
 
2360	if (page)
2361		goto found;
2362
2363	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2364	if (!page)
2365		return NULL;
2366	status = add_to_page_cache_lru(page, mapping, index,
2367						GFP_KERNEL & ~gfp_notmask);
2368	if (unlikely(status)) {
2369		page_cache_release(page);
2370		if (status == -EEXIST)
2371			goto repeat;
2372		return NULL;
2373	}
2374found:
2375	wait_on_page_writeback(page);
2376	return page;
2377}
2378EXPORT_SYMBOL(grab_cache_page_write_begin);
2379
2380static ssize_t generic_perform_write(struct file *file,
2381				struct iov_iter *i, loff_t pos)
2382{
2383	struct address_space *mapping = file->f_mapping;
2384	const struct address_space_operations *a_ops = mapping->a_ops;
2385	long status = 0;
2386	ssize_t written = 0;
2387	unsigned int flags = 0;
2388
2389	/*
2390	 * Copies from kernel address space cannot fail (NFSD is a big user).
2391	 */
2392	if (segment_eq(get_fs(), KERNEL_DS))
2393		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2394
2395	do {
2396		struct page *page;
2397		unsigned long offset;	/* Offset into pagecache page */
2398		unsigned long bytes;	/* Bytes to write to page */
2399		size_t copied;		/* Bytes copied from user */
2400		void *fsdata;
2401
2402		offset = (pos & (PAGE_CACHE_SIZE - 1));
2403		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2404						iov_iter_count(i));
2405
2406again:
2407
2408		/*
2409		 * Bring in the user page that we will copy from _first_.
2410		 * Otherwise there's a nasty deadlock on copying from the
2411		 * same page as we're writing to, without it being marked
2412		 * up-to-date.
2413		 *
2414		 * Not only is this an optimisation, but it is also required
2415		 * to check that the address is actually valid, when atomic
2416		 * usercopies are used, below.
2417		 */
2418		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2419			status = -EFAULT;
2420			break;
2421		}
2422
 
 
 
 
 
2423		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2424						&page, &fsdata);
2425		if (unlikely(status))
2426			break;
2427
2428		if (mapping_writably_mapped(mapping))
2429			flush_dcache_page(page);
2430
2431		pagefault_disable();
2432		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2433		pagefault_enable();
2434		flush_dcache_page(page);
2435
2436		mark_page_accessed(page);
2437		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2438						page, fsdata);
2439		if (unlikely(status < 0))
2440			break;
2441		copied = status;
2442
2443		cond_resched();
2444
2445		iov_iter_advance(i, copied);
2446		if (unlikely(copied == 0)) {
2447			/*
2448			 * If we were unable to copy any data at all, we must
2449			 * fall back to a single segment length write.
2450			 *
2451			 * If we didn't fallback here, we could livelock
2452			 * because not all segments in the iov can be copied at
2453			 * once without a pagefault.
2454			 */
2455			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2456						iov_iter_single_seg_count(i));
2457			goto again;
2458		}
2459		pos += copied;
2460		written += copied;
2461
2462		balance_dirty_pages_ratelimited(mapping);
2463
2464	} while (iov_iter_count(i));
2465
2466	return written ? written : status;
2467}
2468
2469ssize_t
2470generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2471		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2472		size_t count, ssize_t written)
2473{
2474	struct file *file = iocb->ki_filp;
2475	ssize_t status;
2476	struct iov_iter i;
2477
2478	iov_iter_init(&i, iov, nr_segs, count, written);
2479	status = generic_perform_write(file, &i, pos);
2480
2481	if (likely(status >= 0)) {
2482		written += status;
2483		*ppos = pos + status;
2484  	}
2485	
2486	return written ? written : status;
2487}
2488EXPORT_SYMBOL(generic_file_buffered_write);
2489
2490/**
2491 * __generic_file_aio_write - write data to a file
2492 * @iocb:	IO state structure (file, offset, etc.)
2493 * @iov:	vector with data to write
2494 * @nr_segs:	number of segments in the vector
2495 * @ppos:	position where to write
2496 *
2497 * This function does all the work needed for actually writing data to a
2498 * file. It does all basic checks, removes SUID from the file, updates
2499 * modification times and calls proper subroutines depending on whether we
2500 * do direct IO or a standard buffered write.
2501 *
2502 * It expects i_mutex to be grabbed unless we work on a block device or similar
2503 * object which does not need locking at all.
2504 *
2505 * This function does *not* take care of syncing data in case of O_SYNC write.
2506 * A caller has to handle it. This is mainly due to the fact that we want to
2507 * avoid syncing under i_mutex.
 
 
 
 
2508 */
2509ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2510				 unsigned long nr_segs, loff_t *ppos)
2511{
2512	struct file *file = iocb->ki_filp;
2513	struct address_space * mapping = file->f_mapping;
2514	size_t ocount;		/* original count */
2515	size_t count;		/* after file limit checks */
2516	struct inode 	*inode = mapping->host;
2517	loff_t		pos;
2518	ssize_t		written;
2519	ssize_t		err;
2520
2521	ocount = 0;
2522	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2523	if (err)
2524		return err;
2525
2526	count = ocount;
2527	pos = *ppos;
2528
2529	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2530
2531	/* We can write back this queue in page reclaim */
2532	current->backing_dev_info = mapping->backing_dev_info;
2533	written = 0;
2534
2535	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2536	if (err)
2537		goto out;
2538
2539	if (count == 0)
2540		goto out;
2541
2542	err = file_remove_suid(file);
2543	if (err)
2544		goto out;
2545
2546	file_update_time(file);
 
2547
2548	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2549	if (unlikely(file->f_flags & O_DIRECT)) {
2550		loff_t endbyte;
2551		ssize_t written_buffered;
2552
2553		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2554							ppos, count, ocount);
2555		if (written < 0 || written == count)
2556			goto out;
2557		/*
2558		 * direct-io write to a hole: fall through to buffered I/O
2559		 * for completing the rest of the request.
 
 
 
2560		 */
2561		pos += written;
2562		count -= written;
2563		written_buffered = generic_file_buffered_write(iocb, iov,
2564						nr_segs, pos, ppos, count,
2565						written);
2566		/*
2567		 * If generic_file_buffered_write() retuned a synchronous error
2568		 * then we want to return the number of bytes which were
2569		 * direct-written, or the error code if that was zero.  Note
2570		 * that this differs from normal direct-io semantics, which
2571		 * will return -EFOO even if some bytes were written.
2572		 */
2573		if (written_buffered < 0) {
2574			err = written_buffered;
2575			goto out;
2576		}
2577
2578		/*
2579		 * We need to ensure that the page cache pages are written to
2580		 * disk and invalidated to preserve the expected O_DIRECT
2581		 * semantics.
2582		 */
2583		endbyte = pos + written_buffered - written - 1;
2584		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2585		if (err == 0) {
2586			written = written_buffered;
 
2587			invalidate_mapping_pages(mapping,
2588						 pos >> PAGE_CACHE_SHIFT,
2589						 endbyte >> PAGE_CACHE_SHIFT);
2590		} else {
2591			/*
2592			 * We don't know how much we wrote, so just return
2593			 * the number of bytes which were direct-written
2594			 */
2595		}
2596	} else {
2597		written = generic_file_buffered_write(iocb, iov, nr_segs,
2598				pos, ppos, count, written);
 
2599	}
2600out:
2601	current->backing_dev_info = NULL;
2602	return written ? written : err;
2603}
2604EXPORT_SYMBOL(__generic_file_aio_write);
2605
2606/**
2607 * generic_file_aio_write - write data to a file
2608 * @iocb:	IO state structure
2609 * @iov:	vector with data to write
2610 * @nr_segs:	number of segments in the vector
2611 * @pos:	position in file where to write
2612 *
2613 * This is a wrapper around __generic_file_aio_write() to be used by most
2614 * filesystems. It takes care of syncing the file in case of O_SYNC file
2615 * and acquires i_mutex as needed.
 
 
 
 
2616 */
2617ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2618		unsigned long nr_segs, loff_t pos)
2619{
2620	struct file *file = iocb->ki_filp;
2621	struct inode *inode = file->f_mapping->host;
2622	struct blk_plug plug;
2623	ssize_t ret;
2624
2625	BUG_ON(iocb->ki_pos != pos);
 
 
 
 
2626
2627	mutex_lock(&inode->i_mutex);
2628	blk_start_plug(&plug);
2629	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2630	mutex_unlock(&inode->i_mutex);
2631
2632	if (ret > 0 || ret == -EIOCBQUEUED) {
2633		ssize_t err;
2634
2635		err = generic_write_sync(file, pos, ret);
2636		if (err < 0 && ret > 0)
2637			ret = err;
2638	}
2639	blk_finish_plug(&plug);
2640	return ret;
2641}
2642EXPORT_SYMBOL(generic_file_aio_write);
2643
2644/**
2645 * try_to_release_page() - release old fs-specific metadata on a page
2646 *
2647 * @page: the page which the kernel is trying to free
2648 * @gfp_mask: memory allocation flags (and I/O mode)
2649 *
2650 * The address_space is to try to release any data against the page
2651 * (presumably at page->private).  If the release was successful, return `1'.
2652 * Otherwise return zero.
2653 *
2654 * This may also be called if PG_fscache is set on a page, indicating that the
2655 * page is known to the local caching routines.
2656 *
2657 * The @gfp_mask argument specifies whether I/O may be performed to release
2658 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2659 *
 
2660 */
2661int try_to_release_page(struct page *page, gfp_t gfp_mask)
2662{
2663	struct address_space * const mapping = page->mapping;
2664
2665	BUG_ON(!PageLocked(page));
2666	if (PageWriteback(page))
2667		return 0;
2668
2669	if (mapping && mapping->a_ops->releasepage)
2670		return mapping->a_ops->releasepage(page, gfp_mask);
2671	return try_to_free_buffers(page);
2672}
2673
2674EXPORT_SYMBOL(try_to_release_page);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
 
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/mman.h>
  25#include <linux/pagemap.h>
  26#include <linux/file.h>
  27#include <linux/uio.h>
  28#include <linux/error-injection.h>
  29#include <linux/hash.h>
  30#include <linux/writeback.h>
  31#include <linux/backing-dev.h>
  32#include <linux/pagevec.h>
  33#include <linux/blkdev.h>
  34#include <linux/security.h>
 
  35#include <linux/cpuset.h>
  36#include <linux/hugetlb.h>
  37#include <linux/memcontrol.h>
  38#include <linux/cleancache.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include "internal.h"
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/filemap.h>
  48
  49/*
  50 * FIXME: remove all knowledge of the buffer layer from the core VM
  51 */
  52#include <linux/buffer_head.h> /* for try_to_free_buffers */
  53
  54#include <asm/mman.h>
  55
  56/*
  57 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  58 * though.
  59 *
  60 * Shared mappings now work. 15.8.1995  Bruno.
  61 *
  62 * finished 'unifying' the page and buffer cache and SMP-threaded the
  63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  64 *
  65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  66 */
  67
  68/*
  69 * Lock ordering:
  70 *
  71 *  ->i_mmap_rwsem		(truncate_pagecache)
  72 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  73 *      ->swap_lock		(exclusive_swap_page, others)
  74 *        ->i_pages lock
  75 *
  76 *  ->i_mutex
  77 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  78 *
  79 *  ->mmap_sem
  80 *    ->i_mmap_rwsem
  81 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  82 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  83 *
  84 *  ->mmap_sem
  85 *    ->lock_page		(access_process_vm)
  86 *
  87 *  ->i_mutex			(generic_perform_write)
  88 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  89 *
  90 *  bdi->wb.list_lock
  91 *    sb_lock			(fs/fs-writeback.c)
  92 *    ->i_pages lock		(__sync_single_inode)
  93 *
  94 *  ->i_mmap_rwsem
  95 *    ->anon_vma.lock		(vma_adjust)
  96 *
  97 *  ->anon_vma.lock
  98 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  99 *
 100 *  ->page_table_lock or pte_lock
 101 *    ->swap_lock		(try_to_unmap_one)
 102 *    ->private_lock		(try_to_unmap_one)
 103 *    ->i_pages lock		(try_to_unmap_one)
 104 *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
 105 *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
 106 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 107 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 108 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 109 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 110 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 111 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 112 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 113 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 114 *
 115 * ->i_mmap_rwsem
 116 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 
 117 */
 118
 119static void page_cache_delete(struct address_space *mapping,
 120				   struct page *page, void *shadow)
 
 
 
 
 121{
 122	XA_STATE(xas, &mapping->i_pages, page->index);
 123	unsigned int nr = 1;
 124
 125	mapping_set_update(&xas, mapping);
 126
 127	/* hugetlb pages are represented by a single entry in the xarray */
 128	if (!PageHuge(page)) {
 129		xas_set_order(&xas, page->index, compound_order(page));
 130		nr = compound_nr(page);
 131	}
 132
 133	VM_BUG_ON_PAGE(!PageLocked(page), page);
 134	VM_BUG_ON_PAGE(PageTail(page), page);
 135	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 136
 137	xas_store(&xas, shadow);
 138	xas_init_marks(&xas);
 139
 140	page->mapping = NULL;
 141	/* Leave page->index set: truncation lookup relies upon it */
 142
 143	if (shadow) {
 144		mapping->nrexceptional += nr;
 145		/*
 146		 * Make sure the nrexceptional update is committed before
 147		 * the nrpages update so that final truncate racing
 148		 * with reclaim does not see both counters 0 at the
 149		 * same time and miss a shadow entry.
 150		 */
 151		smp_wmb();
 152	}
 153	mapping->nrpages -= nr;
 154}
 155
 156static void unaccount_page_cache_page(struct address_space *mapping,
 157				      struct page *page)
 158{
 159	int nr;
 160
 161	/*
 162	 * if we're uptodate, flush out into the cleancache, otherwise
 163	 * invalidate any existing cleancache entries.  We can't leave
 164	 * stale data around in the cleancache once our page is gone
 165	 */
 166	if (PageUptodate(page) && PageMappedToDisk(page))
 167		cleancache_put_page(page);
 168	else
 169		cleancache_invalidate_page(mapping, page);
 170
 171	VM_BUG_ON_PAGE(PageTail(page), page);
 172	VM_BUG_ON_PAGE(page_mapped(page), page);
 173	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 174		int mapcount;
 175
 176		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 177			 current->comm, page_to_pfn(page));
 178		dump_page(page, "still mapped when deleted");
 179		dump_stack();
 180		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 181
 182		mapcount = page_mapcount(page);
 183		if (mapping_exiting(mapping) &&
 184		    page_count(page) >= mapcount + 2) {
 185			/*
 186			 * All vmas have already been torn down, so it's
 187			 * a good bet that actually the page is unmapped,
 188			 * and we'd prefer not to leak it: if we're wrong,
 189			 * some other bad page check should catch it later.
 190			 */
 191			page_mapcount_reset(page);
 192			page_ref_sub(page, mapcount);
 193		}
 194	}
 195
 196	/* hugetlb pages do not participate in page cache accounting. */
 197	if (PageHuge(page))
 198		return;
 199
 200	nr = hpage_nr_pages(page);
 201
 202	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 203	if (PageSwapBacked(page)) {
 204		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 205		if (PageTransHuge(page))
 206			__dec_node_page_state(page, NR_SHMEM_THPS);
 207	} else if (PageTransHuge(page)) {
 208		__dec_node_page_state(page, NR_FILE_THPS);
 209		filemap_nr_thps_dec(mapping);
 210	}
 211
 212	/*
 213	 * At this point page must be either written or cleaned by
 214	 * truncate.  Dirty page here signals a bug and loss of
 215	 * unwritten data.
 216	 *
 217	 * This fixes dirty accounting after removing the page entirely
 218	 * but leaves PageDirty set: it has no effect for truncated
 219	 * page and anyway will be cleared before returning page into
 220	 * buddy allocator.
 221	 */
 222	if (WARN_ON_ONCE(PageDirty(page)))
 223		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 224}
 225
 226/*
 227 * Delete a page from the page cache and free it. Caller has to make
 228 * sure the page is locked and that nobody else uses it - or that usage
 229 * is safe.  The caller must hold the i_pages lock.
 230 */
 231void __delete_from_page_cache(struct page *page, void *shadow)
 232{
 233	struct address_space *mapping = page->mapping;
 234
 235	trace_mm_filemap_delete_from_page_cache(page);
 236
 237	unaccount_page_cache_page(mapping, page);
 238	page_cache_delete(mapping, page, shadow);
 239}
 240
 241static void page_cache_free_page(struct address_space *mapping,
 242				struct page *page)
 243{
 244	void (*freepage)(struct page *);
 245
 246	freepage = mapping->a_ops->freepage;
 247	if (freepage)
 248		freepage(page);
 249
 250	if (PageTransHuge(page) && !PageHuge(page)) {
 251		page_ref_sub(page, HPAGE_PMD_NR);
 252		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 253	} else {
 254		put_page(page);
 255	}
 256}
 257
 258/**
 259 * delete_from_page_cache - delete page from page cache
 260 * @page: the page which the kernel is trying to remove from page cache
 261 *
 262 * This must be called only on pages that have been verified to be in the page
 263 * cache and locked.  It will never put the page into the free list, the caller
 264 * has a reference on the page.
 265 */
 266void delete_from_page_cache(struct page *page)
 267{
 268	struct address_space *mapping = page_mapping(page);
 269	unsigned long flags;
 270
 271	BUG_ON(!PageLocked(page));
 272	xa_lock_irqsave(&mapping->i_pages, flags);
 273	__delete_from_page_cache(page, NULL);
 274	xa_unlock_irqrestore(&mapping->i_pages, flags);
 275
 276	page_cache_free_page(mapping, page);
 
 
 
 
 
 
 
 
 277}
 278EXPORT_SYMBOL(delete_from_page_cache);
 279
 280/*
 281 * page_cache_delete_batch - delete several pages from page cache
 282 * @mapping: the mapping to which pages belong
 283 * @pvec: pagevec with pages to delete
 284 *
 285 * The function walks over mapping->i_pages and removes pages passed in @pvec
 286 * from the mapping. The function expects @pvec to be sorted by page index
 287 * and is optimised for it to be dense.
 288 * It tolerates holes in @pvec (mapping entries at those indices are not
 289 * modified). The function expects only THP head pages to be present in the
 290 * @pvec.
 291 *
 292 * The function expects the i_pages lock to be held.
 293 */
 294static void page_cache_delete_batch(struct address_space *mapping,
 295			     struct pagevec *pvec)
 296{
 297	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
 298	int total_pages = 0;
 299	int i = 0;
 300	struct page *page;
 301
 302	mapping_set_update(&xas, mapping);
 303	xas_for_each(&xas, page, ULONG_MAX) {
 304		if (i >= pagevec_count(pvec))
 305			break;
 306
 307		/* A swap/dax/shadow entry got inserted? Skip it. */
 308		if (xa_is_value(page))
 309			continue;
 310		/*
 311		 * A page got inserted in our range? Skip it. We have our
 312		 * pages locked so they are protected from being removed.
 313		 * If we see a page whose index is higher than ours, it
 314		 * means our page has been removed, which shouldn't be
 315		 * possible because we're holding the PageLock.
 316		 */
 317		if (page != pvec->pages[i]) {
 318			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
 319					page);
 320			continue;
 321		}
 322
 323		WARN_ON_ONCE(!PageLocked(page));
 324
 325		if (page->index == xas.xa_index)
 326			page->mapping = NULL;
 327		/* Leave page->index set: truncation lookup relies on it */
 328
 329		/*
 330		 * Move to the next page in the vector if this is a regular
 331		 * page or the index is of the last sub-page of this compound
 332		 * page.
 333		 */
 334		if (page->index + compound_nr(page) - 1 == xas.xa_index)
 335			i++;
 336		xas_store(&xas, NULL);
 337		total_pages++;
 338	}
 339	mapping->nrpages -= total_pages;
 340}
 341
 342void delete_from_page_cache_batch(struct address_space *mapping,
 343				  struct pagevec *pvec)
 344{
 345	int i;
 346	unsigned long flags;
 347
 348	if (!pagevec_count(pvec))
 349		return;
 350
 351	xa_lock_irqsave(&mapping->i_pages, flags);
 352	for (i = 0; i < pagevec_count(pvec); i++) {
 353		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 354
 355		unaccount_page_cache_page(mapping, pvec->pages[i]);
 356	}
 357	page_cache_delete_batch(mapping, pvec);
 358	xa_unlock_irqrestore(&mapping->i_pages, flags);
 359
 360	for (i = 0; i < pagevec_count(pvec); i++)
 361		page_cache_free_page(mapping, pvec->pages[i]);
 362}
 363
 364int filemap_check_errors(struct address_space *mapping)
 365{
 366	int ret = 0;
 367	/* Check for outstanding write errors */
 368	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 369	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 370		ret = -ENOSPC;
 371	if (test_bit(AS_EIO, &mapping->flags) &&
 372	    test_and_clear_bit(AS_EIO, &mapping->flags))
 373		ret = -EIO;
 374	return ret;
 375}
 376EXPORT_SYMBOL(filemap_check_errors);
 377
 378static int filemap_check_and_keep_errors(struct address_space *mapping)
 379{
 380	/* Check for outstanding write errors */
 381	if (test_bit(AS_EIO, &mapping->flags))
 382		return -EIO;
 383	if (test_bit(AS_ENOSPC, &mapping->flags))
 384		return -ENOSPC;
 385	return 0;
 386}
 387
 388/**
 389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 390 * @mapping:	address space structure to write
 391 * @start:	offset in bytes where the range starts
 392 * @end:	offset in bytes where the range ends (inclusive)
 393 * @sync_mode:	enable synchronous operation
 394 *
 395 * Start writeback against all of a mapping's dirty pages that lie
 396 * within the byte offsets <start, end> inclusive.
 397 *
 398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 399 * opposed to a regular memory cleansing writeback.  The difference between
 400 * these two operations is that if a dirty page/buffer is encountered, it must
 401 * be waited upon, and not just skipped over.
 402 *
 403 * Return: %0 on success, negative error code otherwise.
 404 */
 405int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 406				loff_t end, int sync_mode)
 407{
 408	int ret;
 409	struct writeback_control wbc = {
 410		.sync_mode = sync_mode,
 411		.nr_to_write = LONG_MAX,
 412		.range_start = start,
 413		.range_end = end,
 414	};
 415
 416	if (!mapping_cap_writeback_dirty(mapping) ||
 417	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 418		return 0;
 419
 420	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 421	ret = do_writepages(mapping, &wbc);
 422	wbc_detach_inode(&wbc);
 423	return ret;
 424}
 425
 426static inline int __filemap_fdatawrite(struct address_space *mapping,
 427	int sync_mode)
 428{
 429	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 430}
 431
 432int filemap_fdatawrite(struct address_space *mapping)
 433{
 434	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 435}
 436EXPORT_SYMBOL(filemap_fdatawrite);
 437
 438int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 439				loff_t end)
 440{
 441	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 442}
 443EXPORT_SYMBOL(filemap_fdatawrite_range);
 444
 445/**
 446 * filemap_flush - mostly a non-blocking flush
 447 * @mapping:	target address_space
 448 *
 449 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 450 * purposes - I/O may not be started against all dirty pages.
 451 *
 452 * Return: %0 on success, negative error code otherwise.
 453 */
 454int filemap_flush(struct address_space *mapping)
 455{
 456	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 457}
 458EXPORT_SYMBOL(filemap_flush);
 459
 460/**
 461 * filemap_range_has_page - check if a page exists in range.
 462 * @mapping:           address space within which to check
 463 * @start_byte:        offset in bytes where the range starts
 464 * @end_byte:          offset in bytes where the range ends (inclusive)
 465 *
 466 * Find at least one page in the range supplied, usually used to check if
 467 * direct writing in this range will trigger a writeback.
 468 *
 469 * Return: %true if at least one page exists in the specified range,
 470 * %false otherwise.
 471 */
 472bool filemap_range_has_page(struct address_space *mapping,
 473			   loff_t start_byte, loff_t end_byte)
 474{
 475	struct page *page;
 476	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 477	pgoff_t max = end_byte >> PAGE_SHIFT;
 478
 479	if (end_byte < start_byte)
 480		return false;
 481
 482	rcu_read_lock();
 483	for (;;) {
 484		page = xas_find(&xas, max);
 485		if (xas_retry(&xas, page))
 486			continue;
 487		/* Shadow entries don't count */
 488		if (xa_is_value(page))
 489			continue;
 490		/*
 491		 * We don't need to try to pin this page; we're about to
 492		 * release the RCU lock anyway.  It is enough to know that
 493		 * there was a page here recently.
 494		 */
 495		break;
 496	}
 497	rcu_read_unlock();
 498
 499	return page != NULL;
 500}
 501EXPORT_SYMBOL(filemap_range_has_page);
 502
 503static void __filemap_fdatawait_range(struct address_space *mapping,
 504				     loff_t start_byte, loff_t end_byte)
 505{
 506	pgoff_t index = start_byte >> PAGE_SHIFT;
 507	pgoff_t end = end_byte >> PAGE_SHIFT;
 508	struct pagevec pvec;
 509	int nr_pages;
 
 510
 511	if (end_byte < start_byte)
 512		return;
 513
 514	pagevec_init(&pvec);
 515	while (index <= end) {
 
 
 
 516		unsigned i;
 517
 518		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 519				end, PAGECACHE_TAG_WRITEBACK);
 520		if (!nr_pages)
 521			break;
 522
 523		for (i = 0; i < nr_pages; i++) {
 524			struct page *page = pvec.pages[i];
 525
 
 
 
 
 526			wait_on_page_writeback(page);
 527			ClearPageError(page);
 
 528		}
 529		pagevec_release(&pvec);
 530		cond_resched();
 531	}
 532}
 533
 534/**
 535 * filemap_fdatawait_range - wait for writeback to complete
 536 * @mapping:		address space structure to wait for
 537 * @start_byte:		offset in bytes where the range starts
 538 * @end_byte:		offset in bytes where the range ends (inclusive)
 539 *
 540 * Walk the list of under-writeback pages of the given address space
 541 * in the given range and wait for all of them.  Check error status of
 542 * the address space and return it.
 543 *
 544 * Since the error status of the address space is cleared by this function,
 545 * callers are responsible for checking the return value and handling and/or
 546 * reporting the error.
 547 *
 548 * Return: error status of the address space.
 549 */
 550int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 551			    loff_t end_byte)
 552{
 553	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 554	return filemap_check_errors(mapping);
 555}
 556EXPORT_SYMBOL(filemap_fdatawait_range);
 557
 558/**
 559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 560 * @mapping:		address space structure to wait for
 561 * @start_byte:		offset in bytes where the range starts
 562 * @end_byte:		offset in bytes where the range ends (inclusive)
 563 *
 564 * Walk the list of under-writeback pages of the given address space in the
 565 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 566 * this function does not clear error status of the address space.
 567 *
 568 * Use this function if callers don't handle errors themselves.  Expected
 569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 570 * fsfreeze(8)
 571 */
 572int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 573		loff_t start_byte, loff_t end_byte)
 574{
 575	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 576	return filemap_check_and_keep_errors(mapping);
 577}
 578EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 579
 580/**
 581 * file_fdatawait_range - wait for writeback to complete
 582 * @file:		file pointing to address space structure to wait for
 583 * @start_byte:		offset in bytes where the range starts
 584 * @end_byte:		offset in bytes where the range ends (inclusive)
 585 *
 586 * Walk the list of under-writeback pages of the address space that file
 587 * refers to, in the given range and wait for all of them.  Check error
 588 * status of the address space vs. the file->f_wb_err cursor and return it.
 589 *
 590 * Since the error status of the file is advanced by this function,
 591 * callers are responsible for checking the return value and handling and/or
 592 * reporting the error.
 593 *
 594 * Return: error status of the address space vs. the file->f_wb_err cursor.
 595 */
 596int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 597{
 598	struct address_space *mapping = file->f_mapping;
 599
 600	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 601	return file_check_and_advance_wb_err(file);
 602}
 603EXPORT_SYMBOL(file_fdatawait_range);
 604
 605/**
 606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 607 * @mapping: address space structure to wait for
 608 *
 609 * Walk the list of under-writeback pages of the given address space
 610 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 611 * does not clear error status of the address space.
 612 *
 613 * Use this function if callers don't handle errors themselves.  Expected
 614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 615 * fsfreeze(8)
 616 *
 617 * Return: error status of the address space.
 618 */
 619int filemap_fdatawait_keep_errors(struct address_space *mapping)
 620{
 621	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 622	return filemap_check_and_keep_errors(mapping);
 623}
 624EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 625
 626/* Returns true if writeback might be needed or already in progress. */
 627static bool mapping_needs_writeback(struct address_space *mapping)
 628{
 629	if (dax_mapping(mapping))
 630		return mapping->nrexceptional;
 631
 632	return mapping->nrpages;
 633}
 
 634
 635int filemap_write_and_wait(struct address_space *mapping)
 636{
 637	int err = 0;
 638
 639	if (mapping_needs_writeback(mapping)) {
 640		err = filemap_fdatawrite(mapping);
 641		/*
 642		 * Even if the above returned error, the pages may be
 643		 * written partially (e.g. -ENOSPC), so we wait for it.
 644		 * But the -EIO is special case, it may indicate the worst
 645		 * thing (e.g. bug) happened, so we avoid waiting for it.
 646		 */
 647		if (err != -EIO) {
 648			int err2 = filemap_fdatawait(mapping);
 649			if (!err)
 650				err = err2;
 651		} else {
 652			/* Clear any previously stored errors */
 653			filemap_check_errors(mapping);
 654		}
 655	} else {
 656		err = filemap_check_errors(mapping);
 657	}
 658	return err;
 659}
 660EXPORT_SYMBOL(filemap_write_and_wait);
 661
 662/**
 663 * filemap_write_and_wait_range - write out & wait on a file range
 664 * @mapping:	the address_space for the pages
 665 * @lstart:	offset in bytes where the range starts
 666 * @lend:	offset in bytes where the range ends (inclusive)
 667 *
 668 * Write out and wait upon file offsets lstart->lend, inclusive.
 669 *
 670 * Note that @lend is inclusive (describes the last byte to be written) so
 671 * that this function can be used to write to the very end-of-file (end = -1).
 672 *
 673 * Return: error status of the address space.
 674 */
 675int filemap_write_and_wait_range(struct address_space *mapping,
 676				 loff_t lstart, loff_t lend)
 677{
 678	int err = 0;
 679
 680	if (mapping_needs_writeback(mapping)) {
 681		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 682						 WB_SYNC_ALL);
 683		/* See comment of filemap_write_and_wait() */
 684		if (err != -EIO) {
 685			int err2 = filemap_fdatawait_range(mapping,
 686						lstart, lend);
 687			if (!err)
 688				err = err2;
 689		} else {
 690			/* Clear any previously stored errors */
 691			filemap_check_errors(mapping);
 692		}
 693	} else {
 694		err = filemap_check_errors(mapping);
 695	}
 696	return err;
 697}
 698EXPORT_SYMBOL(filemap_write_and_wait_range);
 699
 700void __filemap_set_wb_err(struct address_space *mapping, int err)
 701{
 702	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 703
 704	trace_filemap_set_wb_err(mapping, eseq);
 705}
 706EXPORT_SYMBOL(__filemap_set_wb_err);
 707
 708/**
 709 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 710 * 				   and advance wb_err to current one
 711 * @file: struct file on which the error is being reported
 712 *
 713 * When userland calls fsync (or something like nfsd does the equivalent), we
 714 * want to report any writeback errors that occurred since the last fsync (or
 715 * since the file was opened if there haven't been any).
 716 *
 717 * Grab the wb_err from the mapping. If it matches what we have in the file,
 718 * then just quickly return 0. The file is all caught up.
 719 *
 720 * If it doesn't match, then take the mapping value, set the "seen" flag in
 721 * it and try to swap it into place. If it works, or another task beat us
 722 * to it with the new value, then update the f_wb_err and return the error
 723 * portion. The error at this point must be reported via proper channels
 724 * (a'la fsync, or NFS COMMIT operation, etc.).
 725 *
 726 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 727 * value is protected by the f_lock since we must ensure that it reflects
 728 * the latest value swapped in for this file descriptor.
 729 *
 730 * Return: %0 on success, negative error code otherwise.
 731 */
 732int file_check_and_advance_wb_err(struct file *file)
 733{
 734	int err = 0;
 735	errseq_t old = READ_ONCE(file->f_wb_err);
 736	struct address_space *mapping = file->f_mapping;
 737
 738	/* Locklessly handle the common case where nothing has changed */
 739	if (errseq_check(&mapping->wb_err, old)) {
 740		/* Something changed, must use slow path */
 741		spin_lock(&file->f_lock);
 742		old = file->f_wb_err;
 743		err = errseq_check_and_advance(&mapping->wb_err,
 744						&file->f_wb_err);
 745		trace_file_check_and_advance_wb_err(file, old);
 746		spin_unlock(&file->f_lock);
 747	}
 748
 749	/*
 750	 * We're mostly using this function as a drop in replacement for
 751	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 752	 * that the legacy code would have had on these flags.
 753	 */
 754	clear_bit(AS_EIO, &mapping->flags);
 755	clear_bit(AS_ENOSPC, &mapping->flags);
 756	return err;
 757}
 758EXPORT_SYMBOL(file_check_and_advance_wb_err);
 759
 760/**
 761 * file_write_and_wait_range - write out & wait on a file range
 762 * @file:	file pointing to address_space with pages
 763 * @lstart:	offset in bytes where the range starts
 764 * @lend:	offset in bytes where the range ends (inclusive)
 765 *
 766 * Write out and wait upon file offsets lstart->lend, inclusive.
 767 *
 768 * Note that @lend is inclusive (describes the last byte to be written) so
 769 * that this function can be used to write to the very end-of-file (end = -1).
 770 *
 771 * After writing out and waiting on the data, we check and advance the
 772 * f_wb_err cursor to the latest value, and return any errors detected there.
 773 *
 774 * Return: %0 on success, negative error code otherwise.
 775 */
 776int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 777{
 778	int err = 0, err2;
 779	struct address_space *mapping = file->f_mapping;
 780
 781	if (mapping_needs_writeback(mapping)) {
 782		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 783						 WB_SYNC_ALL);
 784		/* See comment of filemap_write_and_wait() */
 785		if (err != -EIO)
 786			__filemap_fdatawait_range(mapping, lstart, lend);
 787	}
 788	err2 = file_check_and_advance_wb_err(file);
 789	if (!err)
 790		err = err2;
 791	return err;
 792}
 793EXPORT_SYMBOL(file_write_and_wait_range);
 794
 795/**
 796 * replace_page_cache_page - replace a pagecache page with a new one
 797 * @old:	page to be replaced
 798 * @new:	page to replace with
 799 * @gfp_mask:	allocation mode
 800 *
 801 * This function replaces a page in the pagecache with a new one.  On
 802 * success it acquires the pagecache reference for the new page and
 803 * drops it for the old page.  Both the old and new pages must be
 804 * locked.  This function does not add the new page to the LRU, the
 805 * caller must do that.
 806 *
 807 * The remove + add is atomic.  This function cannot fail.
 808 *
 809 * Return: %0
 810 */
 811int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 812{
 813	struct address_space *mapping = old->mapping;
 814	void (*freepage)(struct page *) = mapping->a_ops->freepage;
 815	pgoff_t offset = old->index;
 816	XA_STATE(xas, &mapping->i_pages, offset);
 817	unsigned long flags;
 818
 819	VM_BUG_ON_PAGE(!PageLocked(old), old);
 820	VM_BUG_ON_PAGE(!PageLocked(new), new);
 821	VM_BUG_ON_PAGE(new->mapping, new);
 822
 823	get_page(new);
 824	new->mapping = mapping;
 825	new->index = offset;
 826
 827	xas_lock_irqsave(&xas, flags);
 828	xas_store(&xas, new);
 829
 830	old->mapping = NULL;
 831	/* hugetlb pages do not participate in page cache accounting. */
 832	if (!PageHuge(old))
 833		__dec_node_page_state(new, NR_FILE_PAGES);
 834	if (!PageHuge(new))
 835		__inc_node_page_state(new, NR_FILE_PAGES);
 836	if (PageSwapBacked(old))
 837		__dec_node_page_state(new, NR_SHMEM);
 838	if (PageSwapBacked(new))
 839		__inc_node_page_state(new, NR_SHMEM);
 840	xas_unlock_irqrestore(&xas, flags);
 841	mem_cgroup_migrate(old, new);
 842	if (freepage)
 843		freepage(old);
 844	put_page(old);
 845
 846	return 0;
 847}
 848EXPORT_SYMBOL_GPL(replace_page_cache_page);
 
 
 
 
 
 
 
 
 849
 850static int __add_to_page_cache_locked(struct page *page,
 851				      struct address_space *mapping,
 852				      pgoff_t offset, gfp_t gfp_mask,
 853				      void **shadowp)
 854{
 855	XA_STATE(xas, &mapping->i_pages, offset);
 856	int huge = PageHuge(page);
 857	struct mem_cgroup *memcg;
 858	int error;
 859	void *old;
 860
 861	VM_BUG_ON_PAGE(!PageLocked(page), page);
 862	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 863	mapping_set_update(&xas, mapping);
 864
 865	if (!huge) {
 866		error = mem_cgroup_try_charge(page, current->mm,
 867					      gfp_mask, &memcg, false);
 868		if (error)
 869			return error;
 870	}
 871
 872	get_page(page);
 873	page->mapping = mapping;
 874	page->index = offset;
 875
 876	do {
 877		xas_lock_irq(&xas);
 878		old = xas_load(&xas);
 879		if (old && !xa_is_value(old))
 880			xas_set_err(&xas, -EEXIST);
 881		xas_store(&xas, page);
 882		if (xas_error(&xas))
 883			goto unlock;
 884
 885		if (xa_is_value(old)) {
 886			mapping->nrexceptional--;
 887			if (shadowp)
 888				*shadowp = old;
 889		}
 890		mapping->nrpages++;
 
 
 
 
 
 
 
 
 
 
 
 
 891
 892		/* hugetlb pages do not participate in page cache accounting */
 893		if (!huge)
 894			__inc_node_page_state(page, NR_FILE_PAGES);
 895unlock:
 896		xas_unlock_irq(&xas);
 897	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
 898
 899	if (xas_error(&xas))
 900		goto error;
 901
 902	if (!huge)
 903		mem_cgroup_commit_charge(page, memcg, false, false);
 904	trace_mm_filemap_add_to_page_cache(page);
 905	return 0;
 906error:
 907	page->mapping = NULL;
 908	/* Leave page->index set: truncation relies upon it */
 909	if (!huge)
 910		mem_cgroup_cancel_charge(page, memcg, false);
 911	put_page(page);
 912	return xas_error(&xas);
 913}
 914ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
 915
 916/**
 917 * add_to_page_cache_locked - add a locked page to the pagecache
 918 * @page:	page to add
 919 * @mapping:	the page's address_space
 920 * @offset:	page index
 921 * @gfp_mask:	page allocation mode
 922 *
 923 * This function is used to add a page to the pagecache. It must be locked.
 924 * This function does not add the page to the LRU.  The caller must do that.
 925 *
 926 * Return: %0 on success, negative error code otherwise.
 927 */
 928int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 929		pgoff_t offset, gfp_t gfp_mask)
 930{
 931	return __add_to_page_cache_locked(page, mapping, offset,
 932					  gfp_mask, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933}
 934EXPORT_SYMBOL(add_to_page_cache_locked);
 935
 936int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 937				pgoff_t offset, gfp_t gfp_mask)
 938{
 939	void *shadow = NULL;
 940	int ret;
 941
 942	__SetPageLocked(page);
 943	ret = __add_to_page_cache_locked(page, mapping, offset,
 944					 gfp_mask, &shadow);
 945	if (unlikely(ret))
 946		__ClearPageLocked(page);
 947	else {
 948		/*
 949		 * The page might have been evicted from cache only
 950		 * recently, in which case it should be activated like
 951		 * any other repeatedly accessed page.
 952		 * The exception is pages getting rewritten; evicting other
 953		 * data from the working set, only to cache data that will
 954		 * get overwritten with something else, is a waste of memory.
 955		 */
 956		WARN_ON_ONCE(PageActive(page));
 957		if (!(gfp_mask & __GFP_WRITE) && shadow)
 958			workingset_refault(page, shadow);
 959		lru_cache_add(page);
 960	}
 961	return ret;
 962}
 963EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 964
 965#ifdef CONFIG_NUMA
 966struct page *__page_cache_alloc(gfp_t gfp)
 967{
 968	int n;
 969	struct page *page;
 970
 971	if (cpuset_do_page_mem_spread()) {
 972		unsigned int cpuset_mems_cookie;
 973		do {
 974			cpuset_mems_cookie = read_mems_allowed_begin();
 975			n = cpuset_mem_spread_node();
 976			page = __alloc_pages_node(n, gfp, 0);
 977		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 978
 979		return page;
 980	}
 981	return alloc_pages(gfp, 0);
 982}
 983EXPORT_SYMBOL(__page_cache_alloc);
 984#endif
 985
 986/*
 987 * In order to wait for pages to become available there must be
 988 * waitqueues associated with pages. By using a hash table of
 989 * waitqueues where the bucket discipline is to maintain all
 990 * waiters on the same queue and wake all when any of the pages
 991 * become available, and for the woken contexts to check to be
 992 * sure the appropriate page became available, this saves space
 993 * at a cost of "thundering herd" phenomena during rare hash
 994 * collisions.
 995 */
 996#define PAGE_WAIT_TABLE_BITS 8
 997#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 998static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 999
1000static wait_queue_head_t *page_waitqueue(struct page *page)
1001{
1002	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1003}
1004
1005void __init pagecache_init(void)
1006{
1007	int i;
1008
1009	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1010		init_waitqueue_head(&page_wait_table[i]);
1011
1012	page_writeback_init();
1013}
1014
1015/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1016struct wait_page_key {
1017	struct page *page;
1018	int bit_nr;
1019	int page_match;
1020};
1021
1022struct wait_page_queue {
1023	struct page *page;
1024	int bit_nr;
1025	wait_queue_entry_t wait;
1026};
1027
1028static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1029{
1030	struct wait_page_key *key = arg;
1031	struct wait_page_queue *wait_page
1032		= container_of(wait, struct wait_page_queue, wait);
1033
1034	if (wait_page->page != key->page)
1035	       return 0;
1036	key->page_match = 1;
1037
1038	if (wait_page->bit_nr != key->bit_nr)
1039		return 0;
1040
1041	/*
1042	 * Stop walking if it's locked.
1043	 * Is this safe if put_and_wait_on_page_locked() is in use?
1044	 * Yes: the waker must hold a reference to this page, and if PG_locked
1045	 * has now already been set by another task, that task must also hold
1046	 * a reference to the *same usage* of this page; so there is no need
1047	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1048	 */
1049	if (test_bit(key->bit_nr, &key->page->flags))
1050		return -1;
1051
1052	return autoremove_wake_function(wait, mode, sync, key);
1053}
1054
1055static void wake_up_page_bit(struct page *page, int bit_nr)
1056{
1057	wait_queue_head_t *q = page_waitqueue(page);
1058	struct wait_page_key key;
1059	unsigned long flags;
1060	wait_queue_entry_t bookmark;
1061
1062	key.page = page;
1063	key.bit_nr = bit_nr;
1064	key.page_match = 0;
1065
1066	bookmark.flags = 0;
1067	bookmark.private = NULL;
1068	bookmark.func = NULL;
1069	INIT_LIST_HEAD(&bookmark.entry);
1070
1071	spin_lock_irqsave(&q->lock, flags);
1072	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1073
1074	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1075		/*
1076		 * Take a breather from holding the lock,
1077		 * allow pages that finish wake up asynchronously
1078		 * to acquire the lock and remove themselves
1079		 * from wait queue
1080		 */
1081		spin_unlock_irqrestore(&q->lock, flags);
1082		cpu_relax();
1083		spin_lock_irqsave(&q->lock, flags);
1084		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1085	}
1086
1087	/*
1088	 * It is possible for other pages to have collided on the waitqueue
1089	 * hash, so in that case check for a page match. That prevents a long-
1090	 * term waiter
1091	 *
1092	 * It is still possible to miss a case here, when we woke page waiters
1093	 * and removed them from the waitqueue, but there are still other
1094	 * page waiters.
1095	 */
1096	if (!waitqueue_active(q) || !key.page_match) {
1097		ClearPageWaiters(page);
1098		/*
1099		 * It's possible to miss clearing Waiters here, when we woke
1100		 * our page waiters, but the hashed waitqueue has waiters for
1101		 * other pages on it.
1102		 *
1103		 * That's okay, it's a rare case. The next waker will clear it.
1104		 */
1105	}
1106	spin_unlock_irqrestore(&q->lock, flags);
1107}
1108
1109static void wake_up_page(struct page *page, int bit)
1110{
1111	if (!PageWaiters(page))
1112		return;
1113	wake_up_page_bit(page, bit);
1114}
1115
1116/*
1117 * A choice of three behaviors for wait_on_page_bit_common():
1118 */
1119enum behavior {
1120	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1121			 * __lock_page() waiting on then setting PG_locked.
1122			 */
1123	SHARED,		/* Hold ref to page and check the bit when woken, like
1124			 * wait_on_page_writeback() waiting on PG_writeback.
1125			 */
1126	DROP,		/* Drop ref to page before wait, no check when woken,
1127			 * like put_and_wait_on_page_locked() on PG_locked.
1128			 */
1129};
1130
1131static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1132	struct page *page, int bit_nr, int state, enum behavior behavior)
1133{
1134	struct wait_page_queue wait_page;
1135	wait_queue_entry_t *wait = &wait_page.wait;
1136	bool bit_is_set;
1137	bool thrashing = false;
1138	bool delayacct = false;
1139	unsigned long pflags;
1140	int ret = 0;
1141
1142	if (bit_nr == PG_locked &&
1143	    !PageUptodate(page) && PageWorkingset(page)) {
1144		if (!PageSwapBacked(page)) {
1145			delayacct_thrashing_start();
1146			delayacct = true;
1147		}
1148		psi_memstall_enter(&pflags);
1149		thrashing = true;
1150	}
1151
1152	init_wait(wait);
1153	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1154	wait->func = wake_page_function;
1155	wait_page.page = page;
1156	wait_page.bit_nr = bit_nr;
1157
1158	for (;;) {
1159		spin_lock_irq(&q->lock);
1160
1161		if (likely(list_empty(&wait->entry))) {
1162			__add_wait_queue_entry_tail(q, wait);
1163			SetPageWaiters(page);
1164		}
1165
1166		set_current_state(state);
1167
1168		spin_unlock_irq(&q->lock);
1169
1170		bit_is_set = test_bit(bit_nr, &page->flags);
1171		if (behavior == DROP)
1172			put_page(page);
1173
1174		if (likely(bit_is_set))
1175			io_schedule();
1176
1177		if (behavior == EXCLUSIVE) {
1178			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1179				break;
1180		} else if (behavior == SHARED) {
1181			if (!test_bit(bit_nr, &page->flags))
1182				break;
1183		}
1184
1185		if (signal_pending_state(state, current)) {
1186			ret = -EINTR;
1187			break;
1188		}
1189
1190		if (behavior == DROP) {
1191			/*
1192			 * We can no longer safely access page->flags:
1193			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1194			 * there is a risk of waiting forever on a page reused
1195			 * for something that keeps it locked indefinitely.
1196			 * But best check for -EINTR above before breaking.
1197			 */
1198			break;
1199		}
1200	}
1201
1202	finish_wait(q, wait);
1203
1204	if (thrashing) {
1205		if (delayacct)
1206			delayacct_thrashing_end();
1207		psi_memstall_leave(&pflags);
1208	}
1209
1210	/*
1211	 * A signal could leave PageWaiters set. Clearing it here if
1212	 * !waitqueue_active would be possible (by open-coding finish_wait),
1213	 * but still fail to catch it in the case of wait hash collision. We
1214	 * already can fail to clear wait hash collision cases, so don't
1215	 * bother with signals either.
1216	 */
1217
1218	return ret;
1219}
1220
1221void wait_on_page_bit(struct page *page, int bit_nr)
1222{
1223	wait_queue_head_t *q = page_waitqueue(page);
1224	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1225}
1226EXPORT_SYMBOL(wait_on_page_bit);
1227
1228int wait_on_page_bit_killable(struct page *page, int bit_nr)
1229{
1230	wait_queue_head_t *q = page_waitqueue(page);
1231	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1232}
1233EXPORT_SYMBOL(wait_on_page_bit_killable);
1234
1235/**
1236 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1237 * @page: The page to wait for.
1238 *
1239 * The caller should hold a reference on @page.  They expect the page to
1240 * become unlocked relatively soon, but do not wish to hold up migration
1241 * (for example) by holding the reference while waiting for the page to
1242 * come unlocked.  After this function returns, the caller should not
1243 * dereference @page.
1244 */
1245void put_and_wait_on_page_locked(struct page *page)
1246{
1247	wait_queue_head_t *q;
1248
1249	page = compound_head(page);
1250	q = page_waitqueue(page);
1251	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1252}
1253
1254/**
1255 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1256 * @page: Page defining the wait queue of interest
1257 * @waiter: Waiter to add to the queue
1258 *
1259 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1260 */
1261void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1262{
1263	wait_queue_head_t *q = page_waitqueue(page);
1264	unsigned long flags;
1265
1266	spin_lock_irqsave(&q->lock, flags);
1267	__add_wait_queue_entry_tail(q, waiter);
1268	SetPageWaiters(page);
1269	spin_unlock_irqrestore(&q->lock, flags);
1270}
1271EXPORT_SYMBOL_GPL(add_page_wait_queue);
1272
1273#ifndef clear_bit_unlock_is_negative_byte
1274
1275/*
1276 * PG_waiters is the high bit in the same byte as PG_lock.
1277 *
1278 * On x86 (and on many other architectures), we can clear PG_lock and
1279 * test the sign bit at the same time. But if the architecture does
1280 * not support that special operation, we just do this all by hand
1281 * instead.
1282 *
1283 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1284 * being cleared, but a memory barrier should be unneccssary since it is
1285 * in the same byte as PG_locked.
1286 */
1287static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1288{
1289	clear_bit_unlock(nr, mem);
1290	/* smp_mb__after_atomic(); */
1291	return test_bit(PG_waiters, mem);
1292}
1293
1294#endif
1295
1296/**
1297 * unlock_page - unlock a locked page
1298 * @page: the page
1299 *
1300 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1301 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1302 * mechanism between PageLocked pages and PageWriteback pages is shared.
1303 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1304 *
1305 * Note that this depends on PG_waiters being the sign bit in the byte
1306 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1307 * clear the PG_locked bit and test PG_waiters at the same time fairly
1308 * portably (architectures that do LL/SC can test any bit, while x86 can
1309 * test the sign bit).
1310 */
1311void unlock_page(struct page *page)
1312{
1313	BUILD_BUG_ON(PG_waiters != 7);
1314	page = compound_head(page);
1315	VM_BUG_ON_PAGE(!PageLocked(page), page);
1316	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1317		wake_up_page_bit(page, PG_locked);
1318}
1319EXPORT_SYMBOL(unlock_page);
1320
1321/**
1322 * end_page_writeback - end writeback against a page
1323 * @page: the page
1324 */
1325void end_page_writeback(struct page *page)
1326{
1327	/*
1328	 * TestClearPageReclaim could be used here but it is an atomic
1329	 * operation and overkill in this particular case. Failing to
1330	 * shuffle a page marked for immediate reclaim is too mild to
1331	 * justify taking an atomic operation penalty at the end of
1332	 * ever page writeback.
1333	 */
1334	if (PageReclaim(page)) {
1335		ClearPageReclaim(page);
1336		rotate_reclaimable_page(page);
1337	}
1338
1339	if (!test_clear_page_writeback(page))
1340		BUG();
1341
1342	smp_mb__after_atomic();
1343	wake_up_page(page, PG_writeback);
1344}
1345EXPORT_SYMBOL(end_page_writeback);
1346
1347/*
1348 * After completing I/O on a page, call this routine to update the page
1349 * flags appropriately
1350 */
1351void page_endio(struct page *page, bool is_write, int err)
1352{
1353	if (!is_write) {
1354		if (!err) {
1355			SetPageUptodate(page);
1356		} else {
1357			ClearPageUptodate(page);
1358			SetPageError(page);
1359		}
1360		unlock_page(page);
1361	} else {
1362		if (err) {
1363			struct address_space *mapping;
1364
1365			SetPageError(page);
1366			mapping = page_mapping(page);
1367			if (mapping)
1368				mapping_set_error(mapping, err);
1369		}
1370		end_page_writeback(page);
1371	}
1372}
1373EXPORT_SYMBOL_GPL(page_endio);
1374
1375/**
1376 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1377 * @__page: the page to lock
1378 */
1379void __lock_page(struct page *__page)
1380{
1381	struct page *page = compound_head(__page);
1382	wait_queue_head_t *q = page_waitqueue(page);
1383	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1384				EXCLUSIVE);
1385}
1386EXPORT_SYMBOL(__lock_page);
1387
1388int __lock_page_killable(struct page *__page)
1389{
1390	struct page *page = compound_head(__page);
1391	wait_queue_head_t *q = page_waitqueue(page);
1392	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1393					EXCLUSIVE);
1394}
1395EXPORT_SYMBOL_GPL(__lock_page_killable);
1396
1397/*
1398 * Return values:
1399 * 1 - page is locked; mmap_sem is still held.
1400 * 0 - page is not locked.
1401 *     mmap_sem has been released (up_read()), unless flags had both
1402 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1403 *     which case mmap_sem is still held.
1404 *
1405 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1406 * with the page locked and the mmap_sem unperturbed.
1407 */
1408int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1409			 unsigned int flags)
1410{
1411	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1412		/*
1413		 * CAUTION! In this case, mmap_sem is not released
1414		 * even though return 0.
1415		 */
1416		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1417			return 0;
1418
1419		up_read(&mm->mmap_sem);
1420		if (flags & FAULT_FLAG_KILLABLE)
1421			wait_on_page_locked_killable(page);
1422		else
1423			wait_on_page_locked(page);
1424		return 0;
1425	} else {
1426		if (flags & FAULT_FLAG_KILLABLE) {
1427			int ret;
1428
1429			ret = __lock_page_killable(page);
1430			if (ret) {
1431				up_read(&mm->mmap_sem);
1432				return 0;
1433			}
1434		} else
1435			__lock_page(page);
1436		return 1;
1437	}
1438}
1439
1440/**
1441 * page_cache_next_miss() - Find the next gap in the page cache.
1442 * @mapping: Mapping.
1443 * @index: Index.
1444 * @max_scan: Maximum range to search.
1445 *
1446 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1447 * gap with the lowest index.
1448 *
1449 * This function may be called under the rcu_read_lock.  However, this will
1450 * not atomically search a snapshot of the cache at a single point in time.
1451 * For example, if a gap is created at index 5, then subsequently a gap is
1452 * created at index 10, page_cache_next_miss covering both indices may
1453 * return 10 if called under the rcu_read_lock.
1454 *
1455 * Return: The index of the gap if found, otherwise an index outside the
1456 * range specified (in which case 'return - index >= max_scan' will be true).
1457 * In the rare case of index wrap-around, 0 will be returned.
1458 */
1459pgoff_t page_cache_next_miss(struct address_space *mapping,
1460			     pgoff_t index, unsigned long max_scan)
1461{
1462	XA_STATE(xas, &mapping->i_pages, index);
1463
1464	while (max_scan--) {
1465		void *entry = xas_next(&xas);
1466		if (!entry || xa_is_value(entry))
1467			break;
1468		if (xas.xa_index == 0)
1469			break;
1470	}
1471
1472	return xas.xa_index;
1473}
1474EXPORT_SYMBOL(page_cache_next_miss);
1475
1476/**
1477 * page_cache_prev_miss() - Find the previous gap in the page cache.
1478 * @mapping: Mapping.
1479 * @index: Index.
1480 * @max_scan: Maximum range to search.
1481 *
1482 * Search the range [max(index - max_scan + 1, 0), index] for the
1483 * gap with the highest index.
1484 *
1485 * This function may be called under the rcu_read_lock.  However, this will
1486 * not atomically search a snapshot of the cache at a single point in time.
1487 * For example, if a gap is created at index 10, then subsequently a gap is
1488 * created at index 5, page_cache_prev_miss() covering both indices may
1489 * return 5 if called under the rcu_read_lock.
1490 *
1491 * Return: The index of the gap if found, otherwise an index outside the
1492 * range specified (in which case 'index - return >= max_scan' will be true).
1493 * In the rare case of wrap-around, ULONG_MAX will be returned.
1494 */
1495pgoff_t page_cache_prev_miss(struct address_space *mapping,
1496			     pgoff_t index, unsigned long max_scan)
1497{
1498	XA_STATE(xas, &mapping->i_pages, index);
1499
1500	while (max_scan--) {
1501		void *entry = xas_prev(&xas);
1502		if (!entry || xa_is_value(entry))
1503			break;
1504		if (xas.xa_index == ULONG_MAX)
1505			break;
1506	}
1507
1508	return xas.xa_index;
1509}
1510EXPORT_SYMBOL(page_cache_prev_miss);
1511
1512/**
1513 * find_get_entry - find and get a page cache entry
1514 * @mapping: the address_space to search
1515 * @offset: the page cache index
1516 *
1517 * Looks up the page cache slot at @mapping & @offset.  If there is a
1518 * page cache page, it is returned with an increased refcount.
1519 *
1520 * If the slot holds a shadow entry of a previously evicted page, or a
1521 * swap entry from shmem/tmpfs, it is returned.
1522 *
1523 * Return: the found page or shadow entry, %NULL if nothing is found.
1524 */
1525struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1526{
1527	XA_STATE(xas, &mapping->i_pages, offset);
1528	struct page *page;
1529
1530	rcu_read_lock();
1531repeat:
1532	xas_reset(&xas);
1533	page = xas_load(&xas);
1534	if (xas_retry(&xas, page))
1535		goto repeat;
1536	/*
1537	 * A shadow entry of a recently evicted page, or a swap entry from
1538	 * shmem/tmpfs.  Return it without attempting to raise page count.
1539	 */
1540	if (!page || xa_is_value(page))
1541		goto out;
 
 
 
 
 
 
 
 
1542
1543	if (!page_cache_get_speculative(page))
1544		goto repeat;
1545
1546	/*
1547	 * Has the page moved or been split?
1548	 * This is part of the lockless pagecache protocol. See
1549	 * include/linux/pagemap.h for details.
1550	 */
1551	if (unlikely(page != xas_reload(&xas))) {
1552		put_page(page);
1553		goto repeat;
1554	}
1555	page = find_subpage(page, offset);
1556out:
1557	rcu_read_unlock();
1558
1559	return page;
1560}
1561EXPORT_SYMBOL(find_get_entry);
1562
1563/**
1564 * find_lock_entry - locate, pin and lock a page cache entry
1565 * @mapping: the address_space to search
1566 * @offset: the page cache index
1567 *
1568 * Looks up the page cache slot at @mapping & @offset.  If there is a
1569 * page cache page, it is returned locked and with an increased
1570 * refcount.
1571 *
1572 * If the slot holds a shadow entry of a previously evicted page, or a
1573 * swap entry from shmem/tmpfs, it is returned.
1574 *
1575 * find_lock_entry() may sleep.
1576 *
1577 * Return: the found page or shadow entry, %NULL if nothing is found.
1578 */
1579struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1580{
1581	struct page *page;
1582
1583repeat:
1584	page = find_get_entry(mapping, offset);
1585	if (page && !xa_is_value(page)) {
1586		lock_page(page);
1587		/* Has the page been truncated? */
1588		if (unlikely(page_mapping(page) != mapping)) {
1589			unlock_page(page);
1590			put_page(page);
1591			goto repeat;
1592		}
1593		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1594	}
1595	return page;
1596}
1597EXPORT_SYMBOL(find_lock_entry);
1598
1599/**
1600 * pagecache_get_page - find and get a page reference
1601 * @mapping: the address_space to search
1602 * @offset: the page index
1603 * @fgp_flags: PCG flags
1604 * @gfp_mask: gfp mask to use for the page cache data page allocation
1605 *
1606 * Looks up the page cache slot at @mapping & @offset.
1607 *
1608 * PCG flags modify how the page is returned.
1609 *
1610 * @fgp_flags can be:
 
 
 
1611 *
1612 * - FGP_ACCESSED: the page will be marked accessed
1613 * - FGP_LOCK: Page is return locked
1614 * - FGP_CREAT: If page is not present then a new page is allocated using
1615 *   @gfp_mask and added to the page cache and the VM's LRU
1616 *   list. The page is returned locked and with an increased
1617 *   refcount.
1618 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1619 *   its own locking dance if the page is already in cache, or unlock the page
1620 *   before returning if we had to add the page to pagecache.
1621 *
1622 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1623 * if the GFP flags specified for FGP_CREAT are atomic.
1624 *
1625 * If there is a page cache page, it is returned with an increased refcount.
1626 *
1627 * Return: the found page or %NULL otherwise.
1628 */
1629struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1630	int fgp_flags, gfp_t gfp_mask)
1631{
1632	struct page *page;
1633
1634repeat:
1635	page = find_get_entry(mapping, offset);
1636	if (xa_is_value(page))
1637		page = NULL;
1638	if (!page)
1639		goto no_page;
1640
1641	if (fgp_flags & FGP_LOCK) {
1642		if (fgp_flags & FGP_NOWAIT) {
1643			if (!trylock_page(page)) {
1644				put_page(page);
1645				return NULL;
1646			}
1647		} else {
1648			lock_page(page);
1649		}
1650
1651		/* Has the page been truncated? */
1652		if (unlikely(compound_head(page)->mapping != mapping)) {
1653			unlock_page(page);
1654			put_page(page);
1655			goto repeat;
1656		}
1657		VM_BUG_ON_PAGE(page->index != offset, page);
1658	}
1659
1660	if (fgp_flags & FGP_ACCESSED)
1661		mark_page_accessed(page);
1662
1663no_page:
1664	if (!page && (fgp_flags & FGP_CREAT)) {
1665		int err;
1666		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1667			gfp_mask |= __GFP_WRITE;
1668		if (fgp_flags & FGP_NOFS)
1669			gfp_mask &= ~__GFP_FS;
1670
1671		page = __page_cache_alloc(gfp_mask);
1672		if (!page)
1673			return NULL;
1674
1675		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1676			fgp_flags |= FGP_LOCK;
1677
1678		/* Init accessed so avoid atomic mark_page_accessed later */
1679		if (fgp_flags & FGP_ACCESSED)
1680			__SetPageReferenced(page);
1681
1682		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1683		if (unlikely(err)) {
1684			put_page(page);
1685			page = NULL;
1686			if (err == -EEXIST)
1687				goto repeat;
1688		}
1689
1690		/*
1691		 * add_to_page_cache_lru locks the page, and for mmap we expect
1692		 * an unlocked page.
1693		 */
1694		if (page && (fgp_flags & FGP_FOR_MMAP))
1695			unlock_page(page);
1696	}
1697
1698	return page;
1699}
1700EXPORT_SYMBOL(pagecache_get_page);
1701
1702/**
1703 * find_get_entries - gang pagecache lookup
1704 * @mapping:	The address_space to search
1705 * @start:	The starting page cache index
1706 * @nr_entries:	The maximum number of entries
1707 * @entries:	Where the resulting entries are placed
1708 * @indices:	The cache indices corresponding to the entries in @entries
1709 *
1710 * find_get_entries() will search for and return a group of up to
1711 * @nr_entries entries in the mapping.  The entries are placed at
1712 * @entries.  find_get_entries() takes a reference against any actual
1713 * pages it returns.
1714 *
1715 * The search returns a group of mapping-contiguous page cache entries
1716 * with ascending indexes.  There may be holes in the indices due to
1717 * not-present pages.
1718 *
1719 * Any shadow entries of evicted pages, or swap entries from
1720 * shmem/tmpfs, are included in the returned array.
1721 *
1722 * Return: the number of pages and shadow entries which were found.
1723 */
1724unsigned find_get_entries(struct address_space *mapping,
1725			  pgoff_t start, unsigned int nr_entries,
1726			  struct page **entries, pgoff_t *indices)
1727{
1728	XA_STATE(xas, &mapping->i_pages, start);
1729	struct page *page;
1730	unsigned int ret = 0;
1731
1732	if (!nr_entries)
1733		return 0;
1734
1735	rcu_read_lock();
1736	xas_for_each(&xas, page, ULONG_MAX) {
1737		if (xas_retry(&xas, page))
1738			continue;
1739		/*
1740		 * A shadow entry of a recently evicted page, a swap
1741		 * entry from shmem/tmpfs or a DAX entry.  Return it
1742		 * without attempting to raise page count.
1743		 */
1744		if (xa_is_value(page))
1745			goto export;
1746
1747		if (!page_cache_get_speculative(page))
1748			goto retry;
1749
1750		/* Has the page moved or been split? */
1751		if (unlikely(page != xas_reload(&xas)))
1752			goto put_page;
1753		page = find_subpage(page, xas.xa_index);
1754
1755export:
1756		indices[ret] = xas.xa_index;
1757		entries[ret] = page;
1758		if (++ret == nr_entries)
1759			break;
1760		continue;
1761put_page:
1762		put_page(page);
1763retry:
1764		xas_reset(&xas);
1765	}
1766	rcu_read_unlock();
1767	return ret;
1768}
1769
1770/**
1771 * find_get_pages_range - gang pagecache lookup
1772 * @mapping:	The address_space to search
1773 * @start:	The starting page index
1774 * @end:	The final page index (inclusive)
1775 * @nr_pages:	The maximum number of pages
1776 * @pages:	Where the resulting pages are placed
1777 *
1778 * find_get_pages_range() will search for and return a group of up to @nr_pages
1779 * pages in the mapping starting at index @start and up to index @end
1780 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1781 * a reference against the returned pages.
1782 *
1783 * The search returns a group of mapping-contiguous pages with ascending
1784 * indexes.  There may be holes in the indices due to not-present pages.
1785 * We also update @start to index the next page for the traversal.
1786 *
1787 * Return: the number of pages which were found. If this number is
1788 * smaller than @nr_pages, the end of specified range has been
1789 * reached.
1790 */
1791unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1792			      pgoff_t end, unsigned int nr_pages,
1793			      struct page **pages)
1794{
1795	XA_STATE(xas, &mapping->i_pages, *start);
1796	struct page *page;
1797	unsigned ret = 0;
1798
1799	if (unlikely(!nr_pages))
1800		return 0;
1801
1802	rcu_read_lock();
1803	xas_for_each(&xas, page, end) {
1804		if (xas_retry(&xas, page))
 
 
 
 
 
 
 
 
1805			continue;
1806		/* Skip over shadow, swap and DAX entries */
1807		if (xa_is_value(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808			continue;
 
1809
1810		if (!page_cache_get_speculative(page))
1811			goto retry;
1812
1813		/* Has the page moved or been split? */
1814		if (unlikely(page != xas_reload(&xas)))
1815			goto put_page;
1816
1817		pages[ret] = find_subpage(page, xas.xa_index);
1818		if (++ret == nr_pages) {
1819			*start = xas.xa_index + 1;
1820			goto out;
1821		}
1822		continue;
1823put_page:
1824		put_page(page);
1825retry:
1826		xas_reset(&xas);
1827	}
1828
1829	/*
1830	 * We come here when there is no page beyond @end. We take care to not
1831	 * overflow the index @start as it confuses some of the callers. This
1832	 * breaks the iteration when there is a page at index -1 but that is
1833	 * already broken anyway.
1834	 */
1835	if (end == (pgoff_t)-1)
1836		*start = (pgoff_t)-1;
1837	else
1838		*start = end + 1;
1839out:
1840	rcu_read_unlock();
1841
1842	return ret;
1843}
1844
1845/**
1846 * find_get_pages_contig - gang contiguous pagecache lookup
1847 * @mapping:	The address_space to search
1848 * @index:	The starting page index
1849 * @nr_pages:	The maximum number of pages
1850 * @pages:	Where the resulting pages are placed
1851 *
1852 * find_get_pages_contig() works exactly like find_get_pages(), except
1853 * that the returned number of pages are guaranteed to be contiguous.
1854 *
1855 * Return: the number of pages which were found.
1856 */
1857unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1858			       unsigned int nr_pages, struct page **pages)
1859{
1860	XA_STATE(xas, &mapping->i_pages, index);
1861	struct page *page;
1862	unsigned int ret = 0;
1863
1864	if (unlikely(!nr_pages))
1865		return 0;
1866
1867	rcu_read_lock();
1868	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1869		if (xas_retry(&xas, page))
 
 
 
 
 
 
 
1870			continue;
1871		/*
1872		 * If the entry has been swapped out, we can stop looking.
1873		 * No current caller is looking for DAX entries.
1874		 */
1875		if (xa_is_value(page))
 
 
 
 
 
 
 
 
 
 
1876			break;
 
1877
1878		if (!page_cache_get_speculative(page))
1879			goto retry;
1880
1881		/* Has the page moved or been split? */
1882		if (unlikely(page != xas_reload(&xas)))
1883			goto put_page;
 
 
1884
1885		pages[ret] = find_subpage(page, xas.xa_index);
1886		if (++ret == nr_pages)
 
 
 
 
 
1887			break;
1888		continue;
1889put_page:
1890		put_page(page);
1891retry:
1892		xas_reset(&xas);
1893	}
1894	rcu_read_unlock();
1895	return ret;
1896}
1897EXPORT_SYMBOL(find_get_pages_contig);
1898
1899/**
1900 * find_get_pages_range_tag - find and return pages in given range matching @tag
1901 * @mapping:	the address_space to search
1902 * @index:	the starting page index
1903 * @end:	The final page index (inclusive)
1904 * @tag:	the tag index
1905 * @nr_pages:	the maximum number of pages
1906 * @pages:	where the resulting pages are placed
1907 *
1908 * Like find_get_pages, except we only return pages which are tagged with
1909 * @tag.   We update @index to index the next page for the traversal.
1910 *
1911 * Return: the number of pages which were found.
1912 */
1913unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1914			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1915			struct page **pages)
1916{
1917	XA_STATE(xas, &mapping->i_pages, *index);
1918	struct page *page;
1919	unsigned ret = 0;
1920
1921	if (unlikely(!nr_pages))
1922		return 0;
1923
1924	rcu_read_lock();
1925	xas_for_each_marked(&xas, page, end, tag) {
1926		if (xas_retry(&xas, page))
1927			continue;
1928		/*
1929		 * Shadow entries should never be tagged, but this iteration
1930		 * is lockless so there is a window for page reclaim to evict
1931		 * a page we saw tagged.  Skip over it.
1932		 */
1933		if (xa_is_value(page))
1934			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1935
1936		if (!page_cache_get_speculative(page))
1937			goto retry;
1938
1939		/* Has the page moved or been split? */
1940		if (unlikely(page != xas_reload(&xas)))
1941			goto put_page;
1942
1943		pages[ret] = find_subpage(page, xas.xa_index);
1944		if (++ret == nr_pages) {
1945			*index = xas.xa_index + 1;
1946			goto out;
1947		}
1948		continue;
1949put_page:
1950		put_page(page);
1951retry:
1952		xas_reset(&xas);
1953	}
1954
1955	/*
1956	 * We come here when we got to @end. We take care to not overflow the
1957	 * index @index as it confuses some of the callers. This breaks the
1958	 * iteration when there is a page at index -1 but that is already
1959	 * broken anyway.
1960	 */
1961	if (end == (pgoff_t)-1)
1962		*index = (pgoff_t)-1;
1963	else
1964		*index = end + 1;
1965out:
1966	rcu_read_unlock();
1967
 
 
 
1968	return ret;
1969}
1970EXPORT_SYMBOL(find_get_pages_range_tag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971
1972/*
1973 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1974 * a _large_ part of the i/o request. Imagine the worst scenario:
1975 *
1976 *      ---R__________________________________________B__________
1977 *         ^ reading here                             ^ bad block(assume 4k)
1978 *
1979 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1980 * => failing the whole request => read(R) => read(R+1) =>
1981 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1982 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1983 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1984 *
1985 * It is going insane. Fix it by quickly scaling down the readahead size.
1986 */
1987static void shrink_readahead_size_eio(struct file *filp,
1988					struct file_ra_state *ra)
1989{
1990	ra->ra_pages /= 4;
1991}
1992
1993/**
1994 * generic_file_buffered_read - generic file read routine
1995 * @iocb:	the iocb to read
1996 * @iter:	data destination
1997 * @written:	already copied
 
1998 *
1999 * This is a generic file read routine, and uses the
2000 * mapping->a_ops->readpage() function for the actual low-level stuff.
2001 *
2002 * This is really ugly. But the goto's actually try to clarify some
2003 * of the logic when it comes to error handling etc.
2004 *
2005 * Return:
2006 * * total number of bytes copied, including those the were already @written
2007 * * negative error code if nothing was copied
2008 */
2009static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2010		struct iov_iter *iter, ssize_t written)
2011{
2012	struct file *filp = iocb->ki_filp;
2013	struct address_space *mapping = filp->f_mapping;
2014	struct inode *inode = mapping->host;
2015	struct file_ra_state *ra = &filp->f_ra;
2016	loff_t *ppos = &iocb->ki_pos;
2017	pgoff_t index;
2018	pgoff_t last_index;
2019	pgoff_t prev_index;
2020	unsigned long offset;      /* offset into pagecache page */
2021	unsigned int prev_offset;
2022	int error = 0;
2023
2024	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2025		return 0;
2026	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2027
2028	index = *ppos >> PAGE_SHIFT;
2029	prev_index = ra->prev_pos >> PAGE_SHIFT;
2030	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2031	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2032	offset = *ppos & ~PAGE_MASK;
2033
2034	for (;;) {
2035		struct page *page;
2036		pgoff_t end_index;
2037		loff_t isize;
2038		unsigned long nr, ret;
2039
2040		cond_resched();
2041find_page:
2042		if (fatal_signal_pending(current)) {
2043			error = -EINTR;
2044			goto out;
2045		}
2046
2047		page = find_get_page(mapping, index);
2048		if (!page) {
2049			if (iocb->ki_flags & IOCB_NOWAIT)
2050				goto would_block;
2051			page_cache_sync_readahead(mapping,
2052					ra, filp,
2053					index, last_index - index);
2054			page = find_get_page(mapping, index);
2055			if (unlikely(page == NULL))
2056				goto no_cached_page;
2057		}
2058		if (PageReadahead(page)) {
2059			page_cache_async_readahead(mapping,
2060					ra, filp, page,
2061					index, last_index - index);
2062		}
2063		if (!PageUptodate(page)) {
2064			if (iocb->ki_flags & IOCB_NOWAIT) {
2065				put_page(page);
2066				goto would_block;
2067			}
2068
2069			/*
2070			 * See comment in do_read_cache_page on why
2071			 * wait_on_page_locked is used to avoid unnecessarily
2072			 * serialisations and why it's safe.
2073			 */
2074			error = wait_on_page_locked_killable(page);
2075			if (unlikely(error))
2076				goto readpage_error;
2077			if (PageUptodate(page))
2078				goto page_ok;
2079
2080			if (inode->i_blkbits == PAGE_SHIFT ||
2081					!mapping->a_ops->is_partially_uptodate)
2082				goto page_not_up_to_date;
2083			/* pipes can't handle partially uptodate pages */
2084			if (unlikely(iov_iter_is_pipe(iter)))
2085				goto page_not_up_to_date;
2086			if (!trylock_page(page))
2087				goto page_not_up_to_date;
2088			/* Did it get truncated before we got the lock? */
2089			if (!page->mapping)
2090				goto page_not_up_to_date_locked;
2091			if (!mapping->a_ops->is_partially_uptodate(page,
2092							offset, iter->count))
2093				goto page_not_up_to_date_locked;
2094			unlock_page(page);
2095		}
2096page_ok:
2097		/*
2098		 * i_size must be checked after we know the page is Uptodate.
2099		 *
2100		 * Checking i_size after the check allows us to calculate
2101		 * the correct value for "nr", which means the zero-filled
2102		 * part of the page is not copied back to userspace (unless
2103		 * another truncate extends the file - this is desired though).
2104		 */
2105
2106		isize = i_size_read(inode);
2107		end_index = (isize - 1) >> PAGE_SHIFT;
2108		if (unlikely(!isize || index > end_index)) {
2109			put_page(page);
2110			goto out;
2111		}
2112
2113		/* nr is the maximum number of bytes to copy from this page */
2114		nr = PAGE_SIZE;
2115		if (index == end_index) {
2116			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2117			if (nr <= offset) {
2118				put_page(page);
2119				goto out;
2120			}
2121		}
2122		nr = nr - offset;
2123
2124		/* If users can be writing to this page using arbitrary
2125		 * virtual addresses, take care about potential aliasing
2126		 * before reading the page on the kernel side.
2127		 */
2128		if (mapping_writably_mapped(mapping))
2129			flush_dcache_page(page);
2130
2131		/*
2132		 * When a sequential read accesses a page several times,
2133		 * only mark it as accessed the first time.
2134		 */
2135		if (prev_index != index || offset != prev_offset)
2136			mark_page_accessed(page);
2137		prev_index = index;
2138
2139		/*
2140		 * Ok, we have the page, and it's up-to-date, so
2141		 * now we can copy it to user space...
 
 
 
 
 
 
2142		 */
2143
2144		ret = copy_page_to_iter(page, offset, nr, iter);
2145		offset += ret;
2146		index += offset >> PAGE_SHIFT;
2147		offset &= ~PAGE_MASK;
2148		prev_offset = offset;
2149
2150		put_page(page);
2151		written += ret;
2152		if (!iov_iter_count(iter))
2153			goto out;
2154		if (ret < nr) {
2155			error = -EFAULT;
2156			goto out;
2157		}
2158		continue;
2159
2160page_not_up_to_date:
2161		/* Get exclusive access to the page ... */
2162		error = lock_page_killable(page);
2163		if (unlikely(error))
2164			goto readpage_error;
2165
2166page_not_up_to_date_locked:
2167		/* Did it get truncated before we got the lock? */
2168		if (!page->mapping) {
2169			unlock_page(page);
2170			put_page(page);
2171			continue;
2172		}
2173
2174		/* Did somebody else fill it already? */
2175		if (PageUptodate(page)) {
2176			unlock_page(page);
2177			goto page_ok;
2178		}
2179
2180readpage:
2181		/*
2182		 * A previous I/O error may have been due to temporary
2183		 * failures, eg. multipath errors.
2184		 * PG_error will be set again if readpage fails.
2185		 */
2186		ClearPageError(page);
2187		/* Start the actual read. The read will unlock the page. */
2188		error = mapping->a_ops->readpage(filp, page);
2189
2190		if (unlikely(error)) {
2191			if (error == AOP_TRUNCATED_PAGE) {
2192				put_page(page);
2193				error = 0;
2194				goto find_page;
2195			}
2196			goto readpage_error;
2197		}
2198
2199		if (!PageUptodate(page)) {
2200			error = lock_page_killable(page);
2201			if (unlikely(error))
2202				goto readpage_error;
2203			if (!PageUptodate(page)) {
2204				if (page->mapping == NULL) {
2205					/*
2206					 * invalidate_mapping_pages got it
2207					 */
2208					unlock_page(page);
2209					put_page(page);
2210					goto find_page;
2211				}
2212				unlock_page(page);
2213				shrink_readahead_size_eio(filp, ra);
2214				error = -EIO;
2215				goto readpage_error;
2216			}
2217			unlock_page(page);
2218		}
2219
2220		goto page_ok;
2221
2222readpage_error:
2223		/* UHHUH! A synchronous read error occurred. Report it */
2224		put_page(page);
 
2225		goto out;
2226
2227no_cached_page:
2228		/*
2229		 * Ok, it wasn't cached, so we need to create a new
2230		 * page..
2231		 */
2232		page = page_cache_alloc(mapping);
2233		if (!page) {
2234			error = -ENOMEM;
2235			goto out;
2236		}
2237		error = add_to_page_cache_lru(page, mapping, index,
2238				mapping_gfp_constraint(mapping, GFP_KERNEL));
2239		if (error) {
2240			put_page(page);
2241			if (error == -EEXIST) {
2242				error = 0;
2243				goto find_page;
2244			}
2245			goto out;
2246		}
2247		goto readpage;
2248	}
2249
2250would_block:
2251	error = -EAGAIN;
2252out:
2253	ra->prev_pos = prev_index;
2254	ra->prev_pos <<= PAGE_SHIFT;
2255	ra->prev_pos |= prev_offset;
2256
2257	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2258	file_accessed(filp);
2259	return written ? written : error;
2260}
2261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2262/**
2263 * generic_file_read_iter - generic filesystem read routine
2264 * @iocb:	kernel I/O control block
2265 * @iter:	destination for the data read
 
 
2266 *
2267 * This is the "read_iter()" routine for all filesystems
2268 * that can use the page cache directly.
2269 * Return:
2270 * * number of bytes copied, even for partial reads
2271 * * negative error code if nothing was read
2272 */
2273ssize_t
2274generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
 
2275{
2276	size_t count = iov_iter_count(iter);
2277	ssize_t retval = 0;
 
 
 
 
2278
2279	if (!count)
2280		goto out; /* skip atime */
 
 
2281
2282	if (iocb->ki_flags & IOCB_DIRECT) {
2283		struct file *file = iocb->ki_filp;
2284		struct address_space *mapping = file->f_mapping;
2285		struct inode *inode = mapping->host;
2286		loff_t size;
 
 
2287
 
 
 
 
2288		size = i_size_read(inode);
2289		if (iocb->ki_flags & IOCB_NOWAIT) {
2290			if (filemap_range_has_page(mapping, iocb->ki_pos,
2291						   iocb->ki_pos + count - 1))
2292				return -EAGAIN;
2293		} else {
2294			retval = filemap_write_and_wait_range(mapping,
2295						iocb->ki_pos,
2296					        iocb->ki_pos + count - 1);
2297			if (retval < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
2298				goto out;
 
2299		}
 
2300
2301		file_accessed(file);
 
 
 
2302
2303		retval = mapping->a_ops->direct_IO(iocb, iter);
2304		if (retval >= 0) {
2305			iocb->ki_pos += retval;
2306			count -= retval;
 
 
 
 
 
 
 
2307		}
2308		iov_iter_revert(iter, count - iov_iter_count(iter));
2309
2310		/*
2311		 * Btrfs can have a short DIO read if we encounter
2312		 * compressed extents, so if there was an error, or if
2313		 * we've already read everything we wanted to, or if
2314		 * there was a short read because we hit EOF, go ahead
2315		 * and return.  Otherwise fallthrough to buffered io for
2316		 * the rest of the read.  Buffered reads will not work for
2317		 * DAX files, so don't bother trying.
2318		 */
2319		if (retval < 0 || !count || iocb->ki_pos >= size ||
2320		    IS_DAX(inode))
2321			goto out;
 
 
2322	}
2323
2324	retval = generic_file_buffered_read(iocb, iter, retval);
2325out:
 
2326	return retval;
2327}
2328EXPORT_SYMBOL(generic_file_read_iter);
2329
2330#ifdef CONFIG_MMU
2331#define MMAP_LOTSAMISS  (100)
2332static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2333					     struct file *fpin)
2334{
2335	int flags = vmf->flags;
 
 
 
 
 
2336
2337	if (fpin)
2338		return fpin;
 
 
2339
2340	/*
2341	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2342	 * anything, so we only pin the file and drop the mmap_sem if only
2343	 * FAULT_FLAG_ALLOW_RETRY is set.
2344	 */
2345	if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2346	    FAULT_FLAG_ALLOW_RETRY) {
2347		fpin = get_file(vmf->vma->vm_file);
2348		up_read(&vmf->vma->vm_mm->mmap_sem);
 
 
2349	}
2350	return fpin;
 
 
 
 
 
2351}
 
 
2352
2353/*
2354 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2355 * @vmf - the vm_fault for this fault.
2356 * @page - the page to lock.
2357 * @fpin - the pointer to the file we may pin (or is already pinned).
2358 *
2359 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2360 * It differs in that it actually returns the page locked if it returns 1 and 0
2361 * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
2362 * will point to the pinned file and needs to be fput()'ed at a later point.
2363 */
2364static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2365				     struct file **fpin)
2366{
2367	if (trylock_page(page))
2368		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
2369
2370	/*
2371	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2372	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2373	 * is supposed to work. We have way too many special cases..
2374	 */
2375	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2376		return 0;
2377
2378	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2379	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2380		if (__lock_page_killable(page)) {
2381			/*
2382			 * We didn't have the right flags to drop the mmap_sem,
2383			 * but all fault_handlers only check for fatal signals
2384			 * if we return VM_FAULT_RETRY, so we need to drop the
2385			 * mmap_sem here and return 0 if we don't have a fpin.
2386			 */
2387			if (*fpin == NULL)
2388				up_read(&vmf->vma->vm_mm->mmap_sem);
2389			return 0;
2390		}
2391	} else
2392		__lock_page(page);
2393	return 1;
2394}
2395
 
2396
2397/*
2398 * Synchronous readahead happens when we don't even find a page in the page
2399 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2400 * to drop the mmap sem we return the file that was pinned in order for us to do
2401 * that.  If we didn't pin a file then we return NULL.  The file that is
2402 * returned needs to be fput()'ed when we're done with it.
2403 */
2404static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
 
 
 
2405{
2406	struct file *file = vmf->vma->vm_file;
2407	struct file_ra_state *ra = &file->f_ra;
2408	struct address_space *mapping = file->f_mapping;
2409	struct file *fpin = NULL;
2410	pgoff_t offset = vmf->pgoff;
2411
2412	/* If we don't want any read-ahead, don't bother */
2413	if (vmf->vma->vm_flags & VM_RAND_READ)
2414		return fpin;
2415	if (!ra->ra_pages)
2416		return fpin;
2417
2418	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2419		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2420		page_cache_sync_readahead(mapping, ra, file, offset,
2421					  ra->ra_pages);
2422		return fpin;
2423	}
2424
2425	/* Avoid banging the cache line if not needed */
2426	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2427		ra->mmap_miss++;
2428
2429	/*
2430	 * Do we miss much more than hit in this file? If so,
2431	 * stop bothering with read-ahead. It will only hurt.
2432	 */
2433	if (ra->mmap_miss > MMAP_LOTSAMISS)
2434		return fpin;
2435
2436	/*
2437	 * mmap read-around
2438	 */
2439	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2440	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2441	ra->size = ra->ra_pages;
2442	ra->async_size = ra->ra_pages / 4;
2443	ra_submit(ra, mapping, file);
2444	return fpin;
2445}
2446
2447/*
2448 * Asynchronous readahead happens when we find the page and PG_readahead,
2449 * so we want to possibly extend the readahead further.  We return the file that
2450 * was pinned if we have to drop the mmap_sem in order to do IO.
2451 */
2452static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2453					    struct page *page)
 
 
 
2454{
2455	struct file *file = vmf->vma->vm_file;
2456	struct file_ra_state *ra = &file->f_ra;
2457	struct address_space *mapping = file->f_mapping;
2458	struct file *fpin = NULL;
2459	pgoff_t offset = vmf->pgoff;
2460
2461	/* If we don't want any read-ahead, don't bother */
2462	if (vmf->vma->vm_flags & VM_RAND_READ)
2463		return fpin;
2464	if (ra->mmap_miss > 0)
2465		ra->mmap_miss--;
2466	if (PageReadahead(page)) {
2467		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2468		page_cache_async_readahead(mapping, ra, file,
2469					   page, offset, ra->ra_pages);
2470	}
2471	return fpin;
2472}
2473
2474/**
2475 * filemap_fault - read in file data for page fault handling
 
2476 * @vmf:	struct vm_fault containing details of the fault
2477 *
2478 * filemap_fault() is invoked via the vma operations vector for a
2479 * mapped memory region to read in file data during a page fault.
2480 *
2481 * The goto's are kind of ugly, but this streamlines the normal case of having
2482 * it in the page cache, and handles the special cases reasonably without
2483 * having a lot of duplicated code.
2484 *
2485 * vma->vm_mm->mmap_sem must be held on entry.
2486 *
2487 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2488 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2489 *
2490 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2491 * has not been released.
2492 *
2493 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2494 *
2495 * Return: bitwise-OR of %VM_FAULT_ codes.
2496 */
2497vm_fault_t filemap_fault(struct vm_fault *vmf)
2498{
2499	int error;
2500	struct file *file = vmf->vma->vm_file;
2501	struct file *fpin = NULL;
2502	struct address_space *mapping = file->f_mapping;
2503	struct file_ra_state *ra = &file->f_ra;
2504	struct inode *inode = mapping->host;
2505	pgoff_t offset = vmf->pgoff;
2506	pgoff_t max_off;
2507	struct page *page;
2508	vm_fault_t ret = 0;
 
2509
2510	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2511	if (unlikely(offset >= max_off))
2512		return VM_FAULT_SIGBUS;
2513
2514	/*
2515	 * Do we have something in the page cache already?
2516	 */
2517	page = find_get_page(mapping, offset);
2518	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2519		/*
2520		 * We found the page, so try async readahead before
2521		 * waiting for the lock.
2522		 */
2523		fpin = do_async_mmap_readahead(vmf, page);
2524	} else if (!page) {
2525		/* No page in the page cache at all */
 
2526		count_vm_event(PGMAJFAULT);
2527		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2528		ret = VM_FAULT_MAJOR;
2529		fpin = do_sync_mmap_readahead(vmf);
2530retry_find:
2531		page = pagecache_get_page(mapping, offset,
2532					  FGP_CREAT|FGP_FOR_MMAP,
2533					  vmf->gfp_mask);
2534		if (!page) {
2535			if (fpin)
2536				goto out_retry;
2537			return vmf_error(-ENOMEM);
2538		}
2539	}
2540
2541	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2542		goto out_retry;
 
 
2543
2544	/* Did it get truncated? */
2545	if (unlikely(compound_head(page)->mapping != mapping)) {
2546		unlock_page(page);
2547		put_page(page);
2548		goto retry_find;
2549	}
2550	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2551
2552	/*
2553	 * We have a locked page in the page cache, now we need to check
2554	 * that it's up-to-date. If not, it is going to be due to an error.
2555	 */
2556	if (unlikely(!PageUptodate(page)))
2557		goto page_not_uptodate;
2558
2559	/*
2560	 * We've made it this far and we had to drop our mmap_sem, now is the
2561	 * time to return to the upper layer and have it re-find the vma and
2562	 * redo the fault.
2563	 */
2564	if (fpin) {
2565		unlock_page(page);
2566		goto out_retry;
2567	}
2568
2569	/*
2570	 * Found the page and have a reference on it.
2571	 * We must recheck i_size under page lock.
2572	 */
2573	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2574	if (unlikely(offset >= max_off)) {
2575		unlock_page(page);
2576		put_page(page);
2577		return VM_FAULT_SIGBUS;
2578	}
2579
2580	vmf->page = page;
2581	return ret | VM_FAULT_LOCKED;
2582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2583page_not_uptodate:
2584	/*
2585	 * Umm, take care of errors if the page isn't up-to-date.
2586	 * Try to re-read it _once_. We do this synchronously,
2587	 * because there really aren't any performance issues here
2588	 * and we need to check for errors.
2589	 */
2590	ClearPageError(page);
2591	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2592	error = mapping->a_ops->readpage(file, page);
2593	if (!error) {
2594		wait_on_page_locked(page);
2595		if (!PageUptodate(page))
2596			error = -EIO;
2597	}
2598	if (fpin)
2599		goto out_retry;
2600	put_page(page);
2601
2602	if (!error || error == AOP_TRUNCATED_PAGE)
2603		goto retry_find;
2604
2605	/* Things didn't work out. Return zero to tell the mm layer so. */
2606	shrink_readahead_size_eio(file, ra);
2607	return VM_FAULT_SIGBUS;
2608
2609out_retry:
2610	/*
2611	 * We dropped the mmap_sem, we need to return to the fault handler to
2612	 * re-find the vma and come back and find our hopefully still populated
2613	 * page.
2614	 */
2615	if (page)
2616		put_page(page);
2617	if (fpin)
2618		fput(fpin);
2619	return ret | VM_FAULT_RETRY;
2620}
2621EXPORT_SYMBOL(filemap_fault);
2622
2623void filemap_map_pages(struct vm_fault *vmf,
2624		pgoff_t start_pgoff, pgoff_t end_pgoff)
2625{
2626	struct file *file = vmf->vma->vm_file;
2627	struct address_space *mapping = file->f_mapping;
2628	pgoff_t last_pgoff = start_pgoff;
2629	unsigned long max_idx;
2630	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2631	struct page *page;
2632
2633	rcu_read_lock();
2634	xas_for_each(&xas, page, end_pgoff) {
2635		if (xas_retry(&xas, page))
2636			continue;
2637		if (xa_is_value(page))
2638			goto next;
2639
2640		/*
2641		 * Check for a locked page first, as a speculative
2642		 * reference may adversely influence page migration.
2643		 */
2644		if (PageLocked(page))
2645			goto next;
2646		if (!page_cache_get_speculative(page))
2647			goto next;
2648
2649		/* Has the page moved or been split? */
2650		if (unlikely(page != xas_reload(&xas)))
2651			goto skip;
2652		page = find_subpage(page, xas.xa_index);
2653
2654		if (!PageUptodate(page) ||
2655				PageReadahead(page) ||
2656				PageHWPoison(page))
2657			goto skip;
2658		if (!trylock_page(page))
2659			goto skip;
2660
2661		if (page->mapping != mapping || !PageUptodate(page))
2662			goto unlock;
2663
2664		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2665		if (page->index >= max_idx)
2666			goto unlock;
2667
2668		if (file->f_ra.mmap_miss > 0)
2669			file->f_ra.mmap_miss--;
2670
2671		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2672		if (vmf->pte)
2673			vmf->pte += xas.xa_index - last_pgoff;
2674		last_pgoff = xas.xa_index;
2675		if (alloc_set_pte(vmf, NULL, page))
2676			goto unlock;
2677		unlock_page(page);
2678		goto next;
2679unlock:
2680		unlock_page(page);
2681skip:
2682		put_page(page);
2683next:
2684		/* Huge page is mapped? No need to proceed. */
2685		if (pmd_trans_huge(*vmf->pmd))
2686			break;
2687	}
2688	rcu_read_unlock();
2689}
2690EXPORT_SYMBOL(filemap_map_pages);
2691
2692vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2693{
2694	struct page *page = vmf->page;
2695	struct inode *inode = file_inode(vmf->vma->vm_file);
2696	vm_fault_t ret = VM_FAULT_LOCKED;
2697
2698	sb_start_pagefault(inode->i_sb);
2699	file_update_time(vmf->vma->vm_file);
2700	lock_page(page);
2701	if (page->mapping != inode->i_mapping) {
2702		unlock_page(page);
2703		ret = VM_FAULT_NOPAGE;
2704		goto out;
2705	}
2706	/*
2707	 * We mark the page dirty already here so that when freeze is in
2708	 * progress, we are guaranteed that writeback during freezing will
2709	 * see the dirty page and writeprotect it again.
2710	 */
2711	set_page_dirty(page);
2712	wait_for_stable_page(page);
2713out:
2714	sb_end_pagefault(inode->i_sb);
2715	return ret;
2716}
2717
2718const struct vm_operations_struct generic_file_vm_ops = {
2719	.fault		= filemap_fault,
2720	.map_pages	= filemap_map_pages,
2721	.page_mkwrite	= filemap_page_mkwrite,
2722};
2723
2724/* This is used for a general mmap of a disk file */
2725
2726int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2727{
2728	struct address_space *mapping = file->f_mapping;
2729
2730	if (!mapping->a_ops->readpage)
2731		return -ENOEXEC;
2732	file_accessed(file);
2733	vma->vm_ops = &generic_file_vm_ops;
 
2734	return 0;
2735}
2736
2737/*
2738 * This is for filesystems which do not implement ->writepage.
2739 */
2740int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2741{
2742	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2743		return -EINVAL;
2744	return generic_file_mmap(file, vma);
2745}
2746#else
2747vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2748{
2749	return VM_FAULT_SIGBUS;
2750}
2751int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2752{
2753	return -ENOSYS;
2754}
2755int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2756{
2757	return -ENOSYS;
2758}
2759#endif /* CONFIG_MMU */
2760
2761EXPORT_SYMBOL(filemap_page_mkwrite);
2762EXPORT_SYMBOL(generic_file_mmap);
2763EXPORT_SYMBOL(generic_file_readonly_mmap);
2764
2765static struct page *wait_on_page_read(struct page *page)
2766{
2767	if (!IS_ERR(page)) {
2768		wait_on_page_locked(page);
2769		if (!PageUptodate(page)) {
2770			put_page(page);
2771			page = ERR_PTR(-EIO);
2772		}
2773	}
2774	return page;
2775}
2776
2777static struct page *do_read_cache_page(struct address_space *mapping,
2778				pgoff_t index,
2779				int (*filler)(void *, struct page *),
2780				void *data,
2781				gfp_t gfp)
2782{
2783	struct page *page;
2784	int err;
2785repeat:
2786	page = find_get_page(mapping, index);
2787	if (!page) {
2788		page = __page_cache_alloc(gfp);
2789		if (!page)
2790			return ERR_PTR(-ENOMEM);
2791		err = add_to_page_cache_lru(page, mapping, index, gfp);
2792		if (unlikely(err)) {
2793			put_page(page);
2794			if (err == -EEXIST)
2795				goto repeat;
2796			/* Presumably ENOMEM for xarray node */
2797			return ERR_PTR(err);
2798		}
2799
2800filler:
2801		if (filler)
2802			err = filler(data, page);
2803		else
2804			err = mapping->a_ops->readpage(data, page);
2805
2806		if (err < 0) {
2807			put_page(page);
2808			return ERR_PTR(err);
2809		}
 
 
 
 
 
 
 
 
 
2810
2811		page = wait_on_page_read(page);
2812		if (IS_ERR(page))
2813			return page;
2814		goto out;
2815	}
2816	if (PageUptodate(page))
2817		goto out;
2818
2819	/*
2820	 * Page is not up to date and may be locked due one of the following
2821	 * case a: Page is being filled and the page lock is held
2822	 * case b: Read/write error clearing the page uptodate status
2823	 * case c: Truncation in progress (page locked)
2824	 * case d: Reclaim in progress
2825	 *
2826	 * Case a, the page will be up to date when the page is unlocked.
2827	 *    There is no need to serialise on the page lock here as the page
2828	 *    is pinned so the lock gives no additional protection. Even if the
2829	 *    the page is truncated, the data is still valid if PageUptodate as
2830	 *    it's a race vs truncate race.
2831	 * Case b, the page will not be up to date
2832	 * Case c, the page may be truncated but in itself, the data may still
2833	 *    be valid after IO completes as it's a read vs truncate race. The
2834	 *    operation must restart if the page is not uptodate on unlock but
2835	 *    otherwise serialising on page lock to stabilise the mapping gives
2836	 *    no additional guarantees to the caller as the page lock is
2837	 *    released before return.
2838	 * Case d, similar to truncation. If reclaim holds the page lock, it
2839	 *    will be a race with remove_mapping that determines if the mapping
2840	 *    is valid on unlock but otherwise the data is valid and there is
2841	 *    no need to serialise with page lock.
2842	 *
2843	 * As the page lock gives no additional guarantee, we optimistically
2844	 * wait on the page to be unlocked and check if it's up to date and
2845	 * use the page if it is. Otherwise, the page lock is required to
2846	 * distinguish between the different cases. The motivation is that we
2847	 * avoid spurious serialisations and wakeups when multiple processes
2848	 * wait on the same page for IO to complete.
2849	 */
2850	wait_on_page_locked(page);
2851	if (PageUptodate(page))
2852		goto out;
2853
2854	/* Distinguish between all the cases under the safety of the lock */
2855	lock_page(page);
2856
2857	/* Case c or d, restart the operation */
2858	if (!page->mapping) {
2859		unlock_page(page);
2860		put_page(page);
2861		goto repeat;
2862	}
2863
2864	/* Someone else locked and filled the page in a very small window */
2865	if (PageUptodate(page)) {
2866		unlock_page(page);
2867		goto out;
2868	}
2869	goto filler;
2870
 
 
 
2871out:
2872	mark_page_accessed(page);
2873	return page;
2874}
2875
2876/**
2877 * read_cache_page - read into page cache, fill it if needed
2878 * @mapping:	the page's address_space
2879 * @index:	the page index
2880 * @filler:	function to perform the read
2881 * @data:	first arg to filler(data, page) function, often left as NULL
2882 *
 
 
 
2883 * Read into the page cache. If a page already exists, and PageUptodate() is
2884 * not set, try to fill the page and wait for it to become unlocked.
2885 *
2886 * If the page does not get brought uptodate, return -EIO.
2887 *
2888 * Return: up to date page on success, ERR_PTR() on failure.
2889 */
2890struct page *read_cache_page(struct address_space *mapping,
2891				pgoff_t index,
2892				int (*filler)(void *, struct page *),
2893				void *data)
2894{
2895	return do_read_cache_page(mapping, index, filler, data,
2896			mapping_gfp_mask(mapping));
 
 
 
 
 
 
 
 
 
 
 
 
2897}
2898EXPORT_SYMBOL(read_cache_page);
2899
2900/**
2901 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2902 * @mapping:	the page's address_space
2903 * @index:	the page index
2904 * @gfp:	the page allocator flags to use if allocating
2905 *
2906 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2907 * any new page allocations done using the specified allocation flags.
 
 
 
2908 *
2909 * If the page does not get brought uptodate, return -EIO.
2910 *
2911 * Return: up to date page on success, ERR_PTR() on failure.
2912 */
2913struct page *read_cache_page_gfp(struct address_space *mapping,
2914				pgoff_t index,
2915				gfp_t gfp)
2916{
2917	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
 
 
2918}
2919EXPORT_SYMBOL(read_cache_page_gfp);
2920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2921/*
2922 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2923 * LFS limits.  If pos is under the limit it becomes a short access.  If it
2924 * exceeds the limit we return -EFBIG.
 
2925 */
2926static int generic_write_check_limits(struct file *file, loff_t pos,
2927				      loff_t *count)
2928{
2929	struct inode *inode = file->f_mapping->host;
2930	loff_t max_size = inode->i_sb->s_maxbytes;
2931	loff_t limit = rlimit(RLIMIT_FSIZE);
2932
2933	if (limit != RLIM_INFINITY) {
2934		if (pos >= limit) {
2935			send_sig(SIGXFSZ, current, 0);
2936			return -EFBIG;
2937		}
2938		*count = min(*count, limit - pos);
2939	}
2940
2941	if (!(file->f_flags & O_LARGEFILE))
2942		max_size = MAX_NON_LFS;
 
 
 
 
2943
2944	if (unlikely(pos >= max_size))
2945		return -EFBIG;
2946
2947	*count = min(*count, max_size - pos);
2948
2949	return 0;
2950}
 
2951
2952/*
2953 * Performs necessary checks before doing a write
2954 *
2955 * Can adjust writing position or amount of bytes to write.
2956 * Returns appropriate error code that caller should return or
2957 * zero in case that write should be allowed.
2958 */
2959inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2960{
2961	struct file *file = iocb->ki_filp;
2962	struct inode *inode = file->f_mapping->host;
2963	loff_t count;
2964	int ret;
 
2965
2966	if (IS_SWAPFILE(inode))
2967		return -ETXTBSY;
 
 
 
 
 
2968
2969	if (!iov_iter_count(from))
 
2970		return 0;
2971
2972	/* FIXME: this is for backwards compatibility with 2.4 */
2973	if (iocb->ki_flags & IOCB_APPEND)
2974		iocb->ki_pos = i_size_read(inode);
2975
2976	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2977		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2978
2979	count = iov_iter_count(from);
2980	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2981	if (ret)
2982		return ret;
2983
2984	iov_iter_truncate(from, count);
2985	return iov_iter_count(from);
2986}
2987EXPORT_SYMBOL(generic_write_checks);
2988
2989/*
2990 * Performs necessary checks before doing a clone.
2991 *
2992 * Can adjust amount of bytes to clone via @req_count argument.
2993 * Returns appropriate error code that caller should return or
2994 * zero in case the clone should be allowed.
2995 */
2996int generic_remap_checks(struct file *file_in, loff_t pos_in,
2997			 struct file *file_out, loff_t pos_out,
2998			 loff_t *req_count, unsigned int remap_flags)
2999{
3000	struct inode *inode_in = file_in->f_mapping->host;
3001	struct inode *inode_out = file_out->f_mapping->host;
3002	uint64_t count = *req_count;
3003	uint64_t bcount;
3004	loff_t size_in, size_out;
3005	loff_t bs = inode_out->i_sb->s_blocksize;
3006	int ret;
3007
3008	/* The start of both ranges must be aligned to an fs block. */
3009	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3010		return -EINVAL;
 
 
 
 
 
 
 
 
 
3011
3012	/* Ensure offsets don't wrap. */
3013	if (pos_in + count < pos_in || pos_out + count < pos_out)
3014		return -EINVAL;
3015
3016	size_in = i_size_read(inode_in);
3017	size_out = i_size_read(inode_out);
3018
3019	/* Dedupe requires both ranges to be within EOF. */
3020	if ((remap_flags & REMAP_FILE_DEDUP) &&
3021	    (pos_in >= size_in || pos_in + count > size_in ||
3022	     pos_out >= size_out || pos_out + count > size_out))
3023		return -EINVAL;
3024
3025	/* Ensure the infile range is within the infile. */
3026	if (pos_in >= size_in)
3027		return -EINVAL;
3028	count = min(count, size_in - (uint64_t)pos_in);
3029
3030	ret = generic_write_check_limits(file_out, pos_out, &count);
3031	if (ret)
3032		return ret;
3033
3034	/*
3035	 * If the user wanted us to link to the infile's EOF, round up to the
3036	 * next block boundary for this check.
3037	 *
3038	 * Otherwise, make sure the count is also block-aligned, having
3039	 * already confirmed the starting offsets' block alignment.
3040	 */
3041	if (pos_in + count == size_in) {
3042		bcount = ALIGN(size_in, bs) - pos_in;
3043	} else {
3044		if (!IS_ALIGNED(count, bs))
3045			count = ALIGN_DOWN(count, bs);
3046		bcount = count;
3047	}
 
 
 
 
3048
3049	/* Don't allow overlapped cloning within the same file. */
3050	if (inode_in == inode_out &&
3051	    pos_out + bcount > pos_in &&
3052	    pos_out < pos_in + bcount)
3053		return -EINVAL;
3054
3055	/*
3056	 * We shortened the request but the caller can't deal with that, so
3057	 * bounce the request back to userspace.
3058	 */
3059	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3060		return -EINVAL;
3061
3062	*req_count = count;
3063	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3064}
 
3065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3066
3067/*
3068 * Performs common checks before doing a file copy/clone
3069 * from @file_in to @file_out.
3070 */
3071int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3072{
3073	struct inode *inode_in = file_inode(file_in);
3074	struct inode *inode_out = file_inode(file_out);
3075
3076	/* Don't copy dirs, pipes, sockets... */
3077	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3078		return -EISDIR;
3079	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3080		return -EINVAL;
3081
3082	if (!(file_in->f_mode & FMODE_READ) ||
3083	    !(file_out->f_mode & FMODE_WRITE) ||
3084	    (file_out->f_flags & O_APPEND))
3085		return -EBADF;
3086
3087	return 0;
3088}
 
3089
3090/*
3091 * Performs necessary checks before doing a file copy
3092 *
3093 * Can adjust amount of bytes to copy via @req_count argument.
3094 * Returns appropriate error code that caller should return or
3095 * zero in case the copy should be allowed.
3096 */
3097int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3098			     struct file *file_out, loff_t pos_out,
3099			     size_t *req_count, unsigned int flags)
3100{
3101	struct inode *inode_in = file_inode(file_in);
3102	struct inode *inode_out = file_inode(file_out);
3103	uint64_t count = *req_count;
3104	loff_t size_in;
3105	int ret;
3106
3107	ret = generic_file_rw_checks(file_in, file_out);
3108	if (ret)
3109		return ret;
3110
3111	/* Don't touch certain kinds of inodes */
3112	if (IS_IMMUTABLE(inode_out))
3113		return -EPERM;
 
 
 
 
 
 
 
 
 
 
 
 
3114
3115	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3116		return -ETXTBSY;
 
 
 
 
 
 
 
 
 
 
3117
3118	/* Ensure offsets don't wrap. */
3119	if (pos_in + count < pos_in || pos_out + count < pos_out)
3120		return -EOVERFLOW;
3121
3122	/* Shorten the copy to EOF */
3123	size_in = i_size_read(inode_in);
3124	if (pos_in >= size_in)
3125		count = 0;
3126	else
3127		count = min(count, size_in - (uint64_t)pos_in);
 
 
 
 
3128
3129	ret = generic_write_check_limits(file_out, pos_out, &count);
3130	if (ret)
3131		return ret;
 
 
 
 
 
 
 
 
 
3132
3133	/* Don't allow overlapped copying within the same file. */
3134	if (inode_in == inode_out &&
3135	    pos_out + count > pos_in &&
3136	    pos_out < pos_in + count)
3137		return -EINVAL;
3138
3139	*req_count = count;
3140	return 0;
3141}
 
3142
3143int pagecache_write_begin(struct file *file, struct address_space *mapping,
3144				loff_t pos, unsigned len, unsigned flags,
3145				struct page **pagep, void **fsdata)
3146{
3147	const struct address_space_operations *aops = mapping->a_ops;
3148
3149	return aops->write_begin(file, mapping, pos, len, flags,
3150							pagep, fsdata);
3151}
3152EXPORT_SYMBOL(pagecache_write_begin);
3153
3154int pagecache_write_end(struct file *file, struct address_space *mapping,
3155				loff_t pos, unsigned len, unsigned copied,
3156				struct page *page, void *fsdata)
3157{
3158	const struct address_space_operations *aops = mapping->a_ops;
3159
 
3160	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3161}
3162EXPORT_SYMBOL(pagecache_write_end);
3163
3164ssize_t
3165generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
 
 
3166{
3167	struct file	*file = iocb->ki_filp;
3168	struct address_space *mapping = file->f_mapping;
3169	struct inode	*inode = mapping->host;
3170	loff_t		pos = iocb->ki_pos;
3171	ssize_t		written;
3172	size_t		write_len;
3173	pgoff_t		end;
3174
3175	write_len = iov_iter_count(from);
3176	end = (pos + write_len - 1) >> PAGE_SHIFT;
3177
3178	if (iocb->ki_flags & IOCB_NOWAIT) {
3179		/* If there are pages to writeback, return */
3180		if (filemap_range_has_page(inode->i_mapping, pos,
3181					   pos + write_len - 1))
3182			return -EAGAIN;
3183	} else {
3184		written = filemap_write_and_wait_range(mapping, pos,
3185							pos + write_len - 1);
3186		if (written)
3187			goto out;
3188	}
3189
3190	/*
3191	 * After a write we want buffered reads to be sure to go to disk to get
3192	 * the new data.  We invalidate clean cached page from the region we're
3193	 * about to write.  We do this *before* the write so that we can return
3194	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3195	 */
3196	written = invalidate_inode_pages2_range(mapping,
3197					pos >> PAGE_SHIFT, end);
3198	/*
3199	 * If a page can not be invalidated, return 0 to fall back
3200	 * to buffered write.
3201	 */
3202	if (written) {
3203		if (written == -EBUSY)
3204			return 0;
3205		goto out;
 
 
3206	}
3207
3208	written = mapping->a_ops->direct_IO(iocb, from);
3209
3210	/*
3211	 * Finally, try again to invalidate clean pages which might have been
3212	 * cached by non-direct readahead, or faulted in by get_user_pages()
3213	 * if the source of the write was an mmap'ed region of the file
3214	 * we're writing.  Either one is a pretty crazy thing to do,
3215	 * so we don't support it 100%.  If this invalidation
3216	 * fails, tough, the write still worked...
3217	 *
3218	 * Most of the time we do not need this since dio_complete() will do
3219	 * the invalidation for us. However there are some file systems that
3220	 * do not end up with dio_complete() being called, so let's not break
3221	 * them by removing it completely
3222	 */
3223	if (mapping->nrpages)
3224		invalidate_inode_pages2_range(mapping,
3225					pos >> PAGE_SHIFT, end);
 
3226
3227	if (written > 0) {
3228		pos += written;
3229		write_len -= written;
3230		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3231			i_size_write(inode, pos);
3232			mark_inode_dirty(inode);
3233		}
3234		iocb->ki_pos = pos;
3235	}
3236	iov_iter_revert(from, write_len - iov_iter_count(from));
3237out:
3238	return written;
3239}
3240EXPORT_SYMBOL(generic_file_direct_write);
3241
3242/*
3243 * Find or create a page at the given pagecache position. Return the locked
3244 * page. This function is specifically for buffered writes.
3245 */
3246struct page *grab_cache_page_write_begin(struct address_space *mapping,
3247					pgoff_t index, unsigned flags)
3248{
 
3249	struct page *page;
3250	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3251
3252	if (flags & AOP_FLAG_NOFS)
3253		fgp_flags |= FGP_NOFS;
3254
3255	page = pagecache_get_page(mapping, index, fgp_flags,
3256			mapping_gfp_mask(mapping));
3257	if (page)
3258		wait_for_stable_page(page);
3259
 
 
 
 
 
 
 
 
 
 
 
 
 
3260	return page;
3261}
3262EXPORT_SYMBOL(grab_cache_page_write_begin);
3263
3264ssize_t generic_perform_write(struct file *file,
3265				struct iov_iter *i, loff_t pos)
3266{
3267	struct address_space *mapping = file->f_mapping;
3268	const struct address_space_operations *a_ops = mapping->a_ops;
3269	long status = 0;
3270	ssize_t written = 0;
3271	unsigned int flags = 0;
3272
 
 
 
 
 
 
3273	do {
3274		struct page *page;
3275		unsigned long offset;	/* Offset into pagecache page */
3276		unsigned long bytes;	/* Bytes to write to page */
3277		size_t copied;		/* Bytes copied from user */
3278		void *fsdata;
3279
3280		offset = (pos & (PAGE_SIZE - 1));
3281		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3282						iov_iter_count(i));
3283
3284again:
 
3285		/*
3286		 * Bring in the user page that we will copy from _first_.
3287		 * Otherwise there's a nasty deadlock on copying from the
3288		 * same page as we're writing to, without it being marked
3289		 * up-to-date.
3290		 *
3291		 * Not only is this an optimisation, but it is also required
3292		 * to check that the address is actually valid, when atomic
3293		 * usercopies are used, below.
3294		 */
3295		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3296			status = -EFAULT;
3297			break;
3298		}
3299
3300		if (fatal_signal_pending(current)) {
3301			status = -EINTR;
3302			break;
3303		}
3304
3305		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3306						&page, &fsdata);
3307		if (unlikely(status < 0))
3308			break;
3309
3310		if (mapping_writably_mapped(mapping))
3311			flush_dcache_page(page);
3312
 
3313		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
 
3314		flush_dcache_page(page);
3315
 
3316		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3317						page, fsdata);
3318		if (unlikely(status < 0))
3319			break;
3320		copied = status;
3321
3322		cond_resched();
3323
3324		iov_iter_advance(i, copied);
3325		if (unlikely(copied == 0)) {
3326			/*
3327			 * If we were unable to copy any data at all, we must
3328			 * fall back to a single segment length write.
3329			 *
3330			 * If we didn't fallback here, we could livelock
3331			 * because not all segments in the iov can be copied at
3332			 * once without a pagefault.
3333			 */
3334			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3335						iov_iter_single_seg_count(i));
3336			goto again;
3337		}
3338		pos += copied;
3339		written += copied;
3340
3341		balance_dirty_pages_ratelimited(mapping);
 
3342	} while (iov_iter_count(i));
3343
3344	return written ? written : status;
3345}
3346EXPORT_SYMBOL(generic_perform_write);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3347
3348/**
3349 * __generic_file_write_iter - write data to a file
3350 * @iocb:	IO state structure (file, offset, etc.)
3351 * @from:	iov_iter with data to write
 
 
3352 *
3353 * This function does all the work needed for actually writing data to a
3354 * file. It does all basic checks, removes SUID from the file, updates
3355 * modification times and calls proper subroutines depending on whether we
3356 * do direct IO or a standard buffered write.
3357 *
3358 * It expects i_mutex to be grabbed unless we work on a block device or similar
3359 * object which does not need locking at all.
3360 *
3361 * This function does *not* take care of syncing data in case of O_SYNC write.
3362 * A caller has to handle it. This is mainly due to the fact that we want to
3363 * avoid syncing under i_mutex.
3364 *
3365 * Return:
3366 * * number of bytes written, even for truncated writes
3367 * * negative error code if no data has been written at all
3368 */
3369ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
3370{
3371	struct file *file = iocb->ki_filp;
3372	struct address_space * mapping = file->f_mapping;
 
 
3373	struct inode 	*inode = mapping->host;
3374	ssize_t		written = 0;
 
3375	ssize_t		err;
3376	ssize_t		status;
 
 
 
 
 
 
 
 
 
3377
3378	/* We can write back this queue in page reclaim */
3379	current->backing_dev_info = inode_to_bdi(inode);
3380	err = file_remove_privs(file);
 
 
3381	if (err)
3382		goto out;
3383
3384	err = file_update_time(file);
 
 
 
3385	if (err)
3386		goto out;
3387
3388	if (iocb->ki_flags & IOCB_DIRECT) {
3389		loff_t pos, endbyte;
3390
3391		written = generic_file_direct_write(iocb, from);
 
 
 
 
 
 
 
 
3392		/*
3393		 * If the write stopped short of completing, fall back to
3394		 * buffered writes.  Some filesystems do this for writes to
3395		 * holes, for example.  For DAX files, a buffered write will
3396		 * not succeed (even if it did, DAX does not handle dirty
3397		 * page-cache pages correctly).
3398		 */
3399		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3400			goto out;
3401
3402		status = generic_perform_write(file, from, pos = iocb->ki_pos);
 
3403		/*
3404		 * If generic_perform_write() returned a synchronous error
3405		 * then we want to return the number of bytes which were
3406		 * direct-written, or the error code if that was zero.  Note
3407		 * that this differs from normal direct-io semantics, which
3408		 * will return -EFOO even if some bytes were written.
3409		 */
3410		if (unlikely(status < 0)) {
3411			err = status;
3412			goto out;
3413		}
 
3414		/*
3415		 * We need to ensure that the page cache pages are written to
3416		 * disk and invalidated to preserve the expected O_DIRECT
3417		 * semantics.
3418		 */
3419		endbyte = pos + status - 1;
3420		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3421		if (err == 0) {
3422			iocb->ki_pos = endbyte + 1;
3423			written += status;
3424			invalidate_mapping_pages(mapping,
3425						 pos >> PAGE_SHIFT,
3426						 endbyte >> PAGE_SHIFT);
3427		} else {
3428			/*
3429			 * We don't know how much we wrote, so just return
3430			 * the number of bytes which were direct-written
3431			 */
3432		}
3433	} else {
3434		written = generic_perform_write(file, from, iocb->ki_pos);
3435		if (likely(written > 0))
3436			iocb->ki_pos += written;
3437	}
3438out:
3439	current->backing_dev_info = NULL;
3440	return written ? written : err;
3441}
3442EXPORT_SYMBOL(__generic_file_write_iter);
3443
3444/**
3445 * generic_file_write_iter - write data to a file
3446 * @iocb:	IO state structure
3447 * @from:	iov_iter with data to write
 
 
3448 *
3449 * This is a wrapper around __generic_file_write_iter() to be used by most
3450 * filesystems. It takes care of syncing the file in case of O_SYNC file
3451 * and acquires i_mutex as needed.
3452 * Return:
3453 * * negative error code if no data has been written at all of
3454 *   vfs_fsync_range() failed for a synchronous write
3455 * * number of bytes written, even for truncated writes
3456 */
3457ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
3458{
3459	struct file *file = iocb->ki_filp;
3460	struct inode *inode = file->f_mapping->host;
 
3461	ssize_t ret;
3462
3463	inode_lock(inode);
3464	ret = generic_write_checks(iocb, from);
3465	if (ret > 0)
3466		ret = __generic_file_write_iter(iocb, from);
3467	inode_unlock(inode);
3468
3469	if (ret > 0)
3470		ret = generic_write_sync(iocb, ret);
 
 
 
 
 
 
 
 
 
 
 
3471	return ret;
3472}
3473EXPORT_SYMBOL(generic_file_write_iter);
3474
3475/**
3476 * try_to_release_page() - release old fs-specific metadata on a page
3477 *
3478 * @page: the page which the kernel is trying to free
3479 * @gfp_mask: memory allocation flags (and I/O mode)
3480 *
3481 * The address_space is to try to release any data against the page
3482 * (presumably at page->private).
 
3483 *
3484 * This may also be called if PG_fscache is set on a page, indicating that the
3485 * page is known to the local caching routines.
3486 *
3487 * The @gfp_mask argument specifies whether I/O may be performed to release
3488 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3489 *
3490 * Return: %1 if the release was successful, otherwise return zero.
3491 */
3492int try_to_release_page(struct page *page, gfp_t gfp_mask)
3493{
3494	struct address_space * const mapping = page->mapping;
3495
3496	BUG_ON(!PageLocked(page));
3497	if (PageWriteback(page))
3498		return 0;
3499
3500	if (mapping && mapping->a_ops->releasepage)
3501		return mapping->a_ops->releasepage(page, gfp_mask);
3502	return try_to_free_buffers(page);
3503}
3504
3505EXPORT_SYMBOL(try_to_release_page);