Loading...
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/compiler.h>
14#include <linux/fs.h>
15#include <linux/uaccess.h>
16#include <linux/aio.h>
17#include <linux/capability.h>
18#include <linux/kernel_stat.h>
19#include <linux/gfp.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
33#include <linux/cpuset.h>
34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35#include <linux/memcontrol.h>
36#include <linux/cleancache.h>
37#include "internal.h"
38
39/*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42#include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44#include <asm/mman.h>
45
46/*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58/*
59 * Lock ordering:
60 *
61 * ->i_mmap_mutex (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
65 *
66 * ->i_mutex
67 * ->i_mmap_mutex (truncate->unmap_mapping_range)
68 *
69 * ->mmap_sem
70 * ->i_mmap_mutex
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
79 *
80 * bdi->wb.list_lock
81 * sb_lock (fs/fs-writeback.c)
82 * ->mapping->tree_lock (__sync_single_inode)
83 *
84 * ->i_mmap_mutex
85 * ->anon_vma.lock (vma_adjust)
86 *
87 * ->anon_vma.lock
88 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
89 *
90 * ->page_table_lock or pte_lock
91 * ->swap_lock (try_to_unmap_one)
92 * ->private_lock (try_to_unmap_one)
93 * ->tree_lock (try_to_unmap_one)
94 * ->zone.lru_lock (follow_page->mark_page_accessed)
95 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
96 * ->private_lock (page_remove_rmap->set_page_dirty)
97 * ->tree_lock (page_remove_rmap->set_page_dirty)
98 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
99 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
100 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
101 * ->inode->i_lock (zap_pte_range->set_page_dirty)
102 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
103 *
104 * (code doesn't rely on that order, so you could switch it around)
105 * ->tasklist_lock (memory_failure, collect_procs_ao)
106 * ->i_mmap_mutex
107 */
108
109/*
110 * Delete a page from the page cache and free it. Caller has to make
111 * sure the page is locked and that nobody else uses it - or that usage
112 * is safe. The caller must hold the mapping's tree_lock.
113 */
114void __delete_from_page_cache(struct page *page)
115{
116 struct address_space *mapping = page->mapping;
117
118 /*
119 * if we're uptodate, flush out into the cleancache, otherwise
120 * invalidate any existing cleancache entries. We can't leave
121 * stale data around in the cleancache once our page is gone
122 */
123 if (PageUptodate(page) && PageMappedToDisk(page))
124 cleancache_put_page(page);
125 else
126 cleancache_flush_page(mapping, page);
127
128 radix_tree_delete(&mapping->page_tree, page->index);
129 page->mapping = NULL;
130 /* Leave page->index set: truncation lookup relies upon it */
131 mapping->nrpages--;
132 __dec_zone_page_state(page, NR_FILE_PAGES);
133 if (PageSwapBacked(page))
134 __dec_zone_page_state(page, NR_SHMEM);
135 BUG_ON(page_mapped(page));
136
137 /*
138 * Some filesystems seem to re-dirty the page even after
139 * the VM has canceled the dirty bit (eg ext3 journaling).
140 *
141 * Fix it up by doing a final dirty accounting check after
142 * having removed the page entirely.
143 */
144 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
145 dec_zone_page_state(page, NR_FILE_DIRTY);
146 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
147 }
148}
149
150/**
151 * delete_from_page_cache - delete page from page cache
152 * @page: the page which the kernel is trying to remove from page cache
153 *
154 * This must be called only on pages that have been verified to be in the page
155 * cache and locked. It will never put the page into the free list, the caller
156 * has a reference on the page.
157 */
158void delete_from_page_cache(struct page *page)
159{
160 struct address_space *mapping = page->mapping;
161 void (*freepage)(struct page *);
162
163 BUG_ON(!PageLocked(page));
164
165 freepage = mapping->a_ops->freepage;
166 spin_lock_irq(&mapping->tree_lock);
167 __delete_from_page_cache(page);
168 spin_unlock_irq(&mapping->tree_lock);
169 mem_cgroup_uncharge_cache_page(page);
170
171 if (freepage)
172 freepage(page);
173 page_cache_release(page);
174}
175EXPORT_SYMBOL(delete_from_page_cache);
176
177static int sleep_on_page(void *word)
178{
179 io_schedule();
180 return 0;
181}
182
183static int sleep_on_page_killable(void *word)
184{
185 sleep_on_page(word);
186 return fatal_signal_pending(current) ? -EINTR : 0;
187}
188
189/**
190 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
191 * @mapping: address space structure to write
192 * @start: offset in bytes where the range starts
193 * @end: offset in bytes where the range ends (inclusive)
194 * @sync_mode: enable synchronous operation
195 *
196 * Start writeback against all of a mapping's dirty pages that lie
197 * within the byte offsets <start, end> inclusive.
198 *
199 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
200 * opposed to a regular memory cleansing writeback. The difference between
201 * these two operations is that if a dirty page/buffer is encountered, it must
202 * be waited upon, and not just skipped over.
203 */
204int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
205 loff_t end, int sync_mode)
206{
207 int ret;
208 struct writeback_control wbc = {
209 .sync_mode = sync_mode,
210 .nr_to_write = LONG_MAX,
211 .range_start = start,
212 .range_end = end,
213 };
214
215 if (!mapping_cap_writeback_dirty(mapping))
216 return 0;
217
218 ret = do_writepages(mapping, &wbc);
219 return ret;
220}
221
222static inline int __filemap_fdatawrite(struct address_space *mapping,
223 int sync_mode)
224{
225 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
226}
227
228int filemap_fdatawrite(struct address_space *mapping)
229{
230 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
231}
232EXPORT_SYMBOL(filemap_fdatawrite);
233
234int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
235 loff_t end)
236{
237 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
238}
239EXPORT_SYMBOL(filemap_fdatawrite_range);
240
241/**
242 * filemap_flush - mostly a non-blocking flush
243 * @mapping: target address_space
244 *
245 * This is a mostly non-blocking flush. Not suitable for data-integrity
246 * purposes - I/O may not be started against all dirty pages.
247 */
248int filemap_flush(struct address_space *mapping)
249{
250 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
251}
252EXPORT_SYMBOL(filemap_flush);
253
254/**
255 * filemap_fdatawait_range - wait for writeback to complete
256 * @mapping: address space structure to wait for
257 * @start_byte: offset in bytes where the range starts
258 * @end_byte: offset in bytes where the range ends (inclusive)
259 *
260 * Walk the list of under-writeback pages of the given address space
261 * in the given range and wait for all of them.
262 */
263int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
264 loff_t end_byte)
265{
266 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
267 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
268 struct pagevec pvec;
269 int nr_pages;
270 int ret = 0;
271
272 if (end_byte < start_byte)
273 return 0;
274
275 pagevec_init(&pvec, 0);
276 while ((index <= end) &&
277 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
278 PAGECACHE_TAG_WRITEBACK,
279 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
280 unsigned i;
281
282 for (i = 0; i < nr_pages; i++) {
283 struct page *page = pvec.pages[i];
284
285 /* until radix tree lookup accepts end_index */
286 if (page->index > end)
287 continue;
288
289 wait_on_page_writeback(page);
290 if (TestClearPageError(page))
291 ret = -EIO;
292 }
293 pagevec_release(&pvec);
294 cond_resched();
295 }
296
297 /* Check for outstanding write errors */
298 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
299 ret = -ENOSPC;
300 if (test_and_clear_bit(AS_EIO, &mapping->flags))
301 ret = -EIO;
302
303 return ret;
304}
305EXPORT_SYMBOL(filemap_fdatawait_range);
306
307/**
308 * filemap_fdatawait - wait for all under-writeback pages to complete
309 * @mapping: address space structure to wait for
310 *
311 * Walk the list of under-writeback pages of the given address space
312 * and wait for all of them.
313 */
314int filemap_fdatawait(struct address_space *mapping)
315{
316 loff_t i_size = i_size_read(mapping->host);
317
318 if (i_size == 0)
319 return 0;
320
321 return filemap_fdatawait_range(mapping, 0, i_size - 1);
322}
323EXPORT_SYMBOL(filemap_fdatawait);
324
325int filemap_write_and_wait(struct address_space *mapping)
326{
327 int err = 0;
328
329 if (mapping->nrpages) {
330 err = filemap_fdatawrite(mapping);
331 /*
332 * Even if the above returned error, the pages may be
333 * written partially (e.g. -ENOSPC), so we wait for it.
334 * But the -EIO is special case, it may indicate the worst
335 * thing (e.g. bug) happened, so we avoid waiting for it.
336 */
337 if (err != -EIO) {
338 int err2 = filemap_fdatawait(mapping);
339 if (!err)
340 err = err2;
341 }
342 }
343 return err;
344}
345EXPORT_SYMBOL(filemap_write_and_wait);
346
347/**
348 * filemap_write_and_wait_range - write out & wait on a file range
349 * @mapping: the address_space for the pages
350 * @lstart: offset in bytes where the range starts
351 * @lend: offset in bytes where the range ends (inclusive)
352 *
353 * Write out and wait upon file offsets lstart->lend, inclusive.
354 *
355 * Note that `lend' is inclusive (describes the last byte to be written) so
356 * that this function can be used to write to the very end-of-file (end = -1).
357 */
358int filemap_write_and_wait_range(struct address_space *mapping,
359 loff_t lstart, loff_t lend)
360{
361 int err = 0;
362
363 if (mapping->nrpages) {
364 err = __filemap_fdatawrite_range(mapping, lstart, lend,
365 WB_SYNC_ALL);
366 /* See comment of filemap_write_and_wait() */
367 if (err != -EIO) {
368 int err2 = filemap_fdatawait_range(mapping,
369 lstart, lend);
370 if (!err)
371 err = err2;
372 }
373 }
374 return err;
375}
376EXPORT_SYMBOL(filemap_write_and_wait_range);
377
378/**
379 * replace_page_cache_page - replace a pagecache page with a new one
380 * @old: page to be replaced
381 * @new: page to replace with
382 * @gfp_mask: allocation mode
383 *
384 * This function replaces a page in the pagecache with a new one. On
385 * success it acquires the pagecache reference for the new page and
386 * drops it for the old page. Both the old and new pages must be
387 * locked. This function does not add the new page to the LRU, the
388 * caller must do that.
389 *
390 * The remove + add is atomic. The only way this function can fail is
391 * memory allocation failure.
392 */
393int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
394{
395 int error;
396 struct mem_cgroup *memcg = NULL;
397
398 VM_BUG_ON(!PageLocked(old));
399 VM_BUG_ON(!PageLocked(new));
400 VM_BUG_ON(new->mapping);
401
402 /*
403 * This is not page migration, but prepare_migration and
404 * end_migration does enough work for charge replacement.
405 *
406 * In the longer term we probably want a specialized function
407 * for moving the charge from old to new in a more efficient
408 * manner.
409 */
410 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
411 if (error)
412 return error;
413
414 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
415 if (!error) {
416 struct address_space *mapping = old->mapping;
417 void (*freepage)(struct page *);
418
419 pgoff_t offset = old->index;
420 freepage = mapping->a_ops->freepage;
421
422 page_cache_get(new);
423 new->mapping = mapping;
424 new->index = offset;
425
426 spin_lock_irq(&mapping->tree_lock);
427 __delete_from_page_cache(old);
428 error = radix_tree_insert(&mapping->page_tree, offset, new);
429 BUG_ON(error);
430 mapping->nrpages++;
431 __inc_zone_page_state(new, NR_FILE_PAGES);
432 if (PageSwapBacked(new))
433 __inc_zone_page_state(new, NR_SHMEM);
434 spin_unlock_irq(&mapping->tree_lock);
435 radix_tree_preload_end();
436 if (freepage)
437 freepage(old);
438 page_cache_release(old);
439 mem_cgroup_end_migration(memcg, old, new, true);
440 } else {
441 mem_cgroup_end_migration(memcg, old, new, false);
442 }
443
444 return error;
445}
446EXPORT_SYMBOL_GPL(replace_page_cache_page);
447
448/**
449 * add_to_page_cache_locked - add a locked page to the pagecache
450 * @page: page to add
451 * @mapping: the page's address_space
452 * @offset: page index
453 * @gfp_mask: page allocation mode
454 *
455 * This function is used to add a page to the pagecache. It must be locked.
456 * This function does not add the page to the LRU. The caller must do that.
457 */
458int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
459 pgoff_t offset, gfp_t gfp_mask)
460{
461 int error;
462
463 VM_BUG_ON(!PageLocked(page));
464 VM_BUG_ON(PageSwapBacked(page));
465
466 error = mem_cgroup_cache_charge(page, current->mm,
467 gfp_mask & GFP_RECLAIM_MASK);
468 if (error)
469 goto out;
470
471 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472 if (error == 0) {
473 page_cache_get(page);
474 page->mapping = mapping;
475 page->index = offset;
476
477 spin_lock_irq(&mapping->tree_lock);
478 error = radix_tree_insert(&mapping->page_tree, offset, page);
479 if (likely(!error)) {
480 mapping->nrpages++;
481 __inc_zone_page_state(page, NR_FILE_PAGES);
482 spin_unlock_irq(&mapping->tree_lock);
483 } else {
484 page->mapping = NULL;
485 /* Leave page->index set: truncation relies upon it */
486 spin_unlock_irq(&mapping->tree_lock);
487 mem_cgroup_uncharge_cache_page(page);
488 page_cache_release(page);
489 }
490 radix_tree_preload_end();
491 } else
492 mem_cgroup_uncharge_cache_page(page);
493out:
494 return error;
495}
496EXPORT_SYMBOL(add_to_page_cache_locked);
497
498int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
499 pgoff_t offset, gfp_t gfp_mask)
500{
501 int ret;
502
503 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
504 if (ret == 0)
505 lru_cache_add_file(page);
506 return ret;
507}
508EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
509
510#ifdef CONFIG_NUMA
511struct page *__page_cache_alloc(gfp_t gfp)
512{
513 int n;
514 struct page *page;
515
516 if (cpuset_do_page_mem_spread()) {
517 get_mems_allowed();
518 n = cpuset_mem_spread_node();
519 page = alloc_pages_exact_node(n, gfp, 0);
520 put_mems_allowed();
521 return page;
522 }
523 return alloc_pages(gfp, 0);
524}
525EXPORT_SYMBOL(__page_cache_alloc);
526#endif
527
528/*
529 * In order to wait for pages to become available there must be
530 * waitqueues associated with pages. By using a hash table of
531 * waitqueues where the bucket discipline is to maintain all
532 * waiters on the same queue and wake all when any of the pages
533 * become available, and for the woken contexts to check to be
534 * sure the appropriate page became available, this saves space
535 * at a cost of "thundering herd" phenomena during rare hash
536 * collisions.
537 */
538static wait_queue_head_t *page_waitqueue(struct page *page)
539{
540 const struct zone *zone = page_zone(page);
541
542 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
543}
544
545static inline void wake_up_page(struct page *page, int bit)
546{
547 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
548}
549
550void wait_on_page_bit(struct page *page, int bit_nr)
551{
552 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
553
554 if (test_bit(bit_nr, &page->flags))
555 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
556 TASK_UNINTERRUPTIBLE);
557}
558EXPORT_SYMBOL(wait_on_page_bit);
559
560int wait_on_page_bit_killable(struct page *page, int bit_nr)
561{
562 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
563
564 if (!test_bit(bit_nr, &page->flags))
565 return 0;
566
567 return __wait_on_bit(page_waitqueue(page), &wait,
568 sleep_on_page_killable, TASK_KILLABLE);
569}
570
571/**
572 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
573 * @page: Page defining the wait queue of interest
574 * @waiter: Waiter to add to the queue
575 *
576 * Add an arbitrary @waiter to the wait queue for the nominated @page.
577 */
578void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
579{
580 wait_queue_head_t *q = page_waitqueue(page);
581 unsigned long flags;
582
583 spin_lock_irqsave(&q->lock, flags);
584 __add_wait_queue(q, waiter);
585 spin_unlock_irqrestore(&q->lock, flags);
586}
587EXPORT_SYMBOL_GPL(add_page_wait_queue);
588
589/**
590 * unlock_page - unlock a locked page
591 * @page: the page
592 *
593 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
594 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
595 * mechananism between PageLocked pages and PageWriteback pages is shared.
596 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
597 *
598 * The mb is necessary to enforce ordering between the clear_bit and the read
599 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
600 */
601void unlock_page(struct page *page)
602{
603 VM_BUG_ON(!PageLocked(page));
604 clear_bit_unlock(PG_locked, &page->flags);
605 smp_mb__after_clear_bit();
606 wake_up_page(page, PG_locked);
607}
608EXPORT_SYMBOL(unlock_page);
609
610/**
611 * end_page_writeback - end writeback against a page
612 * @page: the page
613 */
614void end_page_writeback(struct page *page)
615{
616 if (TestClearPageReclaim(page))
617 rotate_reclaimable_page(page);
618
619 if (!test_clear_page_writeback(page))
620 BUG();
621
622 smp_mb__after_clear_bit();
623 wake_up_page(page, PG_writeback);
624}
625EXPORT_SYMBOL(end_page_writeback);
626
627/**
628 * __lock_page - get a lock on the page, assuming we need to sleep to get it
629 * @page: the page to lock
630 */
631void __lock_page(struct page *page)
632{
633 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
634
635 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
636 TASK_UNINTERRUPTIBLE);
637}
638EXPORT_SYMBOL(__lock_page);
639
640int __lock_page_killable(struct page *page)
641{
642 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
643
644 return __wait_on_bit_lock(page_waitqueue(page), &wait,
645 sleep_on_page_killable, TASK_KILLABLE);
646}
647EXPORT_SYMBOL_GPL(__lock_page_killable);
648
649int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
650 unsigned int flags)
651{
652 if (flags & FAULT_FLAG_ALLOW_RETRY) {
653 /*
654 * CAUTION! In this case, mmap_sem is not released
655 * even though return 0.
656 */
657 if (flags & FAULT_FLAG_RETRY_NOWAIT)
658 return 0;
659
660 up_read(&mm->mmap_sem);
661 if (flags & FAULT_FLAG_KILLABLE)
662 wait_on_page_locked_killable(page);
663 else
664 wait_on_page_locked(page);
665 return 0;
666 } else {
667 if (flags & FAULT_FLAG_KILLABLE) {
668 int ret;
669
670 ret = __lock_page_killable(page);
671 if (ret) {
672 up_read(&mm->mmap_sem);
673 return 0;
674 }
675 } else
676 __lock_page(page);
677 return 1;
678 }
679}
680
681/**
682 * find_get_page - find and get a page reference
683 * @mapping: the address_space to search
684 * @offset: the page index
685 *
686 * Is there a pagecache struct page at the given (mapping, offset) tuple?
687 * If yes, increment its refcount and return it; if no, return NULL.
688 */
689struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
690{
691 void **pagep;
692 struct page *page;
693
694 rcu_read_lock();
695repeat:
696 page = NULL;
697 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
698 if (pagep) {
699 page = radix_tree_deref_slot(pagep);
700 if (unlikely(!page))
701 goto out;
702 if (radix_tree_exception(page)) {
703 if (radix_tree_deref_retry(page))
704 goto repeat;
705 /*
706 * Otherwise, shmem/tmpfs must be storing a swap entry
707 * here as an exceptional entry: so return it without
708 * attempting to raise page count.
709 */
710 goto out;
711 }
712 if (!page_cache_get_speculative(page))
713 goto repeat;
714
715 /*
716 * Has the page moved?
717 * This is part of the lockless pagecache protocol. See
718 * include/linux/pagemap.h for details.
719 */
720 if (unlikely(page != *pagep)) {
721 page_cache_release(page);
722 goto repeat;
723 }
724 }
725out:
726 rcu_read_unlock();
727
728 return page;
729}
730EXPORT_SYMBOL(find_get_page);
731
732/**
733 * find_lock_page - locate, pin and lock a pagecache page
734 * @mapping: the address_space to search
735 * @offset: the page index
736 *
737 * Locates the desired pagecache page, locks it, increments its reference
738 * count and returns its address.
739 *
740 * Returns zero if the page was not present. find_lock_page() may sleep.
741 */
742struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
743{
744 struct page *page;
745
746repeat:
747 page = find_get_page(mapping, offset);
748 if (page && !radix_tree_exception(page)) {
749 lock_page(page);
750 /* Has the page been truncated? */
751 if (unlikely(page->mapping != mapping)) {
752 unlock_page(page);
753 page_cache_release(page);
754 goto repeat;
755 }
756 VM_BUG_ON(page->index != offset);
757 }
758 return page;
759}
760EXPORT_SYMBOL(find_lock_page);
761
762/**
763 * find_or_create_page - locate or add a pagecache page
764 * @mapping: the page's address_space
765 * @index: the page's index into the mapping
766 * @gfp_mask: page allocation mode
767 *
768 * Locates a page in the pagecache. If the page is not present, a new page
769 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
770 * LRU list. The returned page is locked and has its reference count
771 * incremented.
772 *
773 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
774 * allocation!
775 *
776 * find_or_create_page() returns the desired page's address, or zero on
777 * memory exhaustion.
778 */
779struct page *find_or_create_page(struct address_space *mapping,
780 pgoff_t index, gfp_t gfp_mask)
781{
782 struct page *page;
783 int err;
784repeat:
785 page = find_lock_page(mapping, index);
786 if (!page) {
787 page = __page_cache_alloc(gfp_mask);
788 if (!page)
789 return NULL;
790 /*
791 * We want a regular kernel memory (not highmem or DMA etc)
792 * allocation for the radix tree nodes, but we need to honour
793 * the context-specific requirements the caller has asked for.
794 * GFP_RECLAIM_MASK collects those requirements.
795 */
796 err = add_to_page_cache_lru(page, mapping, index,
797 (gfp_mask & GFP_RECLAIM_MASK));
798 if (unlikely(err)) {
799 page_cache_release(page);
800 page = NULL;
801 if (err == -EEXIST)
802 goto repeat;
803 }
804 }
805 return page;
806}
807EXPORT_SYMBOL(find_or_create_page);
808
809/**
810 * find_get_pages - gang pagecache lookup
811 * @mapping: The address_space to search
812 * @start: The starting page index
813 * @nr_pages: The maximum number of pages
814 * @pages: Where the resulting pages are placed
815 *
816 * find_get_pages() will search for and return a group of up to
817 * @nr_pages pages in the mapping. The pages are placed at @pages.
818 * find_get_pages() takes a reference against the returned pages.
819 *
820 * The search returns a group of mapping-contiguous pages with ascending
821 * indexes. There may be holes in the indices due to not-present pages.
822 *
823 * find_get_pages() returns the number of pages which were found.
824 */
825unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
826 unsigned int nr_pages, struct page **pages)
827{
828 unsigned int i;
829 unsigned int ret;
830 unsigned int nr_found, nr_skip;
831
832 rcu_read_lock();
833restart:
834 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
835 (void ***)pages, NULL, start, nr_pages);
836 ret = 0;
837 nr_skip = 0;
838 for (i = 0; i < nr_found; i++) {
839 struct page *page;
840repeat:
841 page = radix_tree_deref_slot((void **)pages[i]);
842 if (unlikely(!page))
843 continue;
844
845 if (radix_tree_exception(page)) {
846 if (radix_tree_deref_retry(page)) {
847 /*
848 * Transient condition which can only trigger
849 * when entry at index 0 moves out of or back
850 * to root: none yet gotten, safe to restart.
851 */
852 WARN_ON(start | i);
853 goto restart;
854 }
855 /*
856 * Otherwise, shmem/tmpfs must be storing a swap entry
857 * here as an exceptional entry: so skip over it -
858 * we only reach this from invalidate_mapping_pages().
859 */
860 nr_skip++;
861 continue;
862 }
863
864 if (!page_cache_get_speculative(page))
865 goto repeat;
866
867 /* Has the page moved? */
868 if (unlikely(page != *((void **)pages[i]))) {
869 page_cache_release(page);
870 goto repeat;
871 }
872
873 pages[ret] = page;
874 ret++;
875 }
876
877 /*
878 * If all entries were removed before we could secure them,
879 * try again, because callers stop trying once 0 is returned.
880 */
881 if (unlikely(!ret && nr_found > nr_skip))
882 goto restart;
883 rcu_read_unlock();
884 return ret;
885}
886
887/**
888 * find_get_pages_contig - gang contiguous pagecache lookup
889 * @mapping: The address_space to search
890 * @index: The starting page index
891 * @nr_pages: The maximum number of pages
892 * @pages: Where the resulting pages are placed
893 *
894 * find_get_pages_contig() works exactly like find_get_pages(), except
895 * that the returned number of pages are guaranteed to be contiguous.
896 *
897 * find_get_pages_contig() returns the number of pages which were found.
898 */
899unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
900 unsigned int nr_pages, struct page **pages)
901{
902 unsigned int i;
903 unsigned int ret;
904 unsigned int nr_found;
905
906 rcu_read_lock();
907restart:
908 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
909 (void ***)pages, NULL, index, nr_pages);
910 ret = 0;
911 for (i = 0; i < nr_found; i++) {
912 struct page *page;
913repeat:
914 page = radix_tree_deref_slot((void **)pages[i]);
915 if (unlikely(!page))
916 continue;
917
918 if (radix_tree_exception(page)) {
919 if (radix_tree_deref_retry(page)) {
920 /*
921 * Transient condition which can only trigger
922 * when entry at index 0 moves out of or back
923 * to root: none yet gotten, safe to restart.
924 */
925 goto restart;
926 }
927 /*
928 * Otherwise, shmem/tmpfs must be storing a swap entry
929 * here as an exceptional entry: so stop looking for
930 * contiguous pages.
931 */
932 break;
933 }
934
935 if (!page_cache_get_speculative(page))
936 goto repeat;
937
938 /* Has the page moved? */
939 if (unlikely(page != *((void **)pages[i]))) {
940 page_cache_release(page);
941 goto repeat;
942 }
943
944 /*
945 * must check mapping and index after taking the ref.
946 * otherwise we can get both false positives and false
947 * negatives, which is just confusing to the caller.
948 */
949 if (page->mapping == NULL || page->index != index) {
950 page_cache_release(page);
951 break;
952 }
953
954 pages[ret] = page;
955 ret++;
956 index++;
957 }
958 rcu_read_unlock();
959 return ret;
960}
961EXPORT_SYMBOL(find_get_pages_contig);
962
963/**
964 * find_get_pages_tag - find and return pages that match @tag
965 * @mapping: the address_space to search
966 * @index: the starting page index
967 * @tag: the tag index
968 * @nr_pages: the maximum number of pages
969 * @pages: where the resulting pages are placed
970 *
971 * Like find_get_pages, except we only return pages which are tagged with
972 * @tag. We update @index to index the next page for the traversal.
973 */
974unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
975 int tag, unsigned int nr_pages, struct page **pages)
976{
977 unsigned int i;
978 unsigned int ret;
979 unsigned int nr_found;
980
981 rcu_read_lock();
982restart:
983 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
984 (void ***)pages, *index, nr_pages, tag);
985 ret = 0;
986 for (i = 0; i < nr_found; i++) {
987 struct page *page;
988repeat:
989 page = radix_tree_deref_slot((void **)pages[i]);
990 if (unlikely(!page))
991 continue;
992
993 if (radix_tree_exception(page)) {
994 if (radix_tree_deref_retry(page)) {
995 /*
996 * Transient condition which can only trigger
997 * when entry at index 0 moves out of or back
998 * to root: none yet gotten, safe to restart.
999 */
1000 goto restart;
1001 }
1002 /*
1003 * This function is never used on a shmem/tmpfs
1004 * mapping, so a swap entry won't be found here.
1005 */
1006 BUG();
1007 }
1008
1009 if (!page_cache_get_speculative(page))
1010 goto repeat;
1011
1012 /* Has the page moved? */
1013 if (unlikely(page != *((void **)pages[i]))) {
1014 page_cache_release(page);
1015 goto repeat;
1016 }
1017
1018 pages[ret] = page;
1019 ret++;
1020 }
1021
1022 /*
1023 * If all entries were removed before we could secure them,
1024 * try again, because callers stop trying once 0 is returned.
1025 */
1026 if (unlikely(!ret && nr_found))
1027 goto restart;
1028 rcu_read_unlock();
1029
1030 if (ret)
1031 *index = pages[ret - 1]->index + 1;
1032
1033 return ret;
1034}
1035EXPORT_SYMBOL(find_get_pages_tag);
1036
1037/**
1038 * grab_cache_page_nowait - returns locked page at given index in given cache
1039 * @mapping: target address_space
1040 * @index: the page index
1041 *
1042 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1043 * This is intended for speculative data generators, where the data can
1044 * be regenerated if the page couldn't be grabbed. This routine should
1045 * be safe to call while holding the lock for another page.
1046 *
1047 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1048 * and deadlock against the caller's locked page.
1049 */
1050struct page *
1051grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1052{
1053 struct page *page = find_get_page(mapping, index);
1054
1055 if (page) {
1056 if (trylock_page(page))
1057 return page;
1058 page_cache_release(page);
1059 return NULL;
1060 }
1061 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1062 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1063 page_cache_release(page);
1064 page = NULL;
1065 }
1066 return page;
1067}
1068EXPORT_SYMBOL(grab_cache_page_nowait);
1069
1070/*
1071 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1072 * a _large_ part of the i/o request. Imagine the worst scenario:
1073 *
1074 * ---R__________________________________________B__________
1075 * ^ reading here ^ bad block(assume 4k)
1076 *
1077 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1078 * => failing the whole request => read(R) => read(R+1) =>
1079 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1080 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1081 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1082 *
1083 * It is going insane. Fix it by quickly scaling down the readahead size.
1084 */
1085static void shrink_readahead_size_eio(struct file *filp,
1086 struct file_ra_state *ra)
1087{
1088 ra->ra_pages /= 4;
1089}
1090
1091/**
1092 * do_generic_file_read - generic file read routine
1093 * @filp: the file to read
1094 * @ppos: current file position
1095 * @desc: read_descriptor
1096 * @actor: read method
1097 *
1098 * This is a generic file read routine, and uses the
1099 * mapping->a_ops->readpage() function for the actual low-level stuff.
1100 *
1101 * This is really ugly. But the goto's actually try to clarify some
1102 * of the logic when it comes to error handling etc.
1103 */
1104static void do_generic_file_read(struct file *filp, loff_t *ppos,
1105 read_descriptor_t *desc, read_actor_t actor)
1106{
1107 struct address_space *mapping = filp->f_mapping;
1108 struct inode *inode = mapping->host;
1109 struct file_ra_state *ra = &filp->f_ra;
1110 pgoff_t index;
1111 pgoff_t last_index;
1112 pgoff_t prev_index;
1113 unsigned long offset; /* offset into pagecache page */
1114 unsigned int prev_offset;
1115 int error;
1116
1117 index = *ppos >> PAGE_CACHE_SHIFT;
1118 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1119 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1120 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1121 offset = *ppos & ~PAGE_CACHE_MASK;
1122
1123 for (;;) {
1124 struct page *page;
1125 pgoff_t end_index;
1126 loff_t isize;
1127 unsigned long nr, ret;
1128
1129 cond_resched();
1130find_page:
1131 page = find_get_page(mapping, index);
1132 if (!page) {
1133 page_cache_sync_readahead(mapping,
1134 ra, filp,
1135 index, last_index - index);
1136 page = find_get_page(mapping, index);
1137 if (unlikely(page == NULL))
1138 goto no_cached_page;
1139 }
1140 if (PageReadahead(page)) {
1141 page_cache_async_readahead(mapping,
1142 ra, filp, page,
1143 index, last_index - index);
1144 }
1145 if (!PageUptodate(page)) {
1146 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1147 !mapping->a_ops->is_partially_uptodate)
1148 goto page_not_up_to_date;
1149 if (!trylock_page(page))
1150 goto page_not_up_to_date;
1151 /* Did it get truncated before we got the lock? */
1152 if (!page->mapping)
1153 goto page_not_up_to_date_locked;
1154 if (!mapping->a_ops->is_partially_uptodate(page,
1155 desc, offset))
1156 goto page_not_up_to_date_locked;
1157 unlock_page(page);
1158 }
1159page_ok:
1160 /*
1161 * i_size must be checked after we know the page is Uptodate.
1162 *
1163 * Checking i_size after the check allows us to calculate
1164 * the correct value for "nr", which means the zero-filled
1165 * part of the page is not copied back to userspace (unless
1166 * another truncate extends the file - this is desired though).
1167 */
1168
1169 isize = i_size_read(inode);
1170 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1171 if (unlikely(!isize || index > end_index)) {
1172 page_cache_release(page);
1173 goto out;
1174 }
1175
1176 /* nr is the maximum number of bytes to copy from this page */
1177 nr = PAGE_CACHE_SIZE;
1178 if (index == end_index) {
1179 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1180 if (nr <= offset) {
1181 page_cache_release(page);
1182 goto out;
1183 }
1184 }
1185 nr = nr - offset;
1186
1187 /* If users can be writing to this page using arbitrary
1188 * virtual addresses, take care about potential aliasing
1189 * before reading the page on the kernel side.
1190 */
1191 if (mapping_writably_mapped(mapping))
1192 flush_dcache_page(page);
1193
1194 /*
1195 * When a sequential read accesses a page several times,
1196 * only mark it as accessed the first time.
1197 */
1198 if (prev_index != index || offset != prev_offset)
1199 mark_page_accessed(page);
1200 prev_index = index;
1201
1202 /*
1203 * Ok, we have the page, and it's up-to-date, so
1204 * now we can copy it to user space...
1205 *
1206 * The actor routine returns how many bytes were actually used..
1207 * NOTE! This may not be the same as how much of a user buffer
1208 * we filled up (we may be padding etc), so we can only update
1209 * "pos" here (the actor routine has to update the user buffer
1210 * pointers and the remaining count).
1211 */
1212 ret = actor(desc, page, offset, nr);
1213 offset += ret;
1214 index += offset >> PAGE_CACHE_SHIFT;
1215 offset &= ~PAGE_CACHE_MASK;
1216 prev_offset = offset;
1217
1218 page_cache_release(page);
1219 if (ret == nr && desc->count)
1220 continue;
1221 goto out;
1222
1223page_not_up_to_date:
1224 /* Get exclusive access to the page ... */
1225 error = lock_page_killable(page);
1226 if (unlikely(error))
1227 goto readpage_error;
1228
1229page_not_up_to_date_locked:
1230 /* Did it get truncated before we got the lock? */
1231 if (!page->mapping) {
1232 unlock_page(page);
1233 page_cache_release(page);
1234 continue;
1235 }
1236
1237 /* Did somebody else fill it already? */
1238 if (PageUptodate(page)) {
1239 unlock_page(page);
1240 goto page_ok;
1241 }
1242
1243readpage:
1244 /*
1245 * A previous I/O error may have been due to temporary
1246 * failures, eg. multipath errors.
1247 * PG_error will be set again if readpage fails.
1248 */
1249 ClearPageError(page);
1250 /* Start the actual read. The read will unlock the page. */
1251 error = mapping->a_ops->readpage(filp, page);
1252
1253 if (unlikely(error)) {
1254 if (error == AOP_TRUNCATED_PAGE) {
1255 page_cache_release(page);
1256 goto find_page;
1257 }
1258 goto readpage_error;
1259 }
1260
1261 if (!PageUptodate(page)) {
1262 error = lock_page_killable(page);
1263 if (unlikely(error))
1264 goto readpage_error;
1265 if (!PageUptodate(page)) {
1266 if (page->mapping == NULL) {
1267 /*
1268 * invalidate_mapping_pages got it
1269 */
1270 unlock_page(page);
1271 page_cache_release(page);
1272 goto find_page;
1273 }
1274 unlock_page(page);
1275 shrink_readahead_size_eio(filp, ra);
1276 error = -EIO;
1277 goto readpage_error;
1278 }
1279 unlock_page(page);
1280 }
1281
1282 goto page_ok;
1283
1284readpage_error:
1285 /* UHHUH! A synchronous read error occurred. Report it */
1286 desc->error = error;
1287 page_cache_release(page);
1288 goto out;
1289
1290no_cached_page:
1291 /*
1292 * Ok, it wasn't cached, so we need to create a new
1293 * page..
1294 */
1295 page = page_cache_alloc_cold(mapping);
1296 if (!page) {
1297 desc->error = -ENOMEM;
1298 goto out;
1299 }
1300 error = add_to_page_cache_lru(page, mapping,
1301 index, GFP_KERNEL);
1302 if (error) {
1303 page_cache_release(page);
1304 if (error == -EEXIST)
1305 goto find_page;
1306 desc->error = error;
1307 goto out;
1308 }
1309 goto readpage;
1310 }
1311
1312out:
1313 ra->prev_pos = prev_index;
1314 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1315 ra->prev_pos |= prev_offset;
1316
1317 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1318 file_accessed(filp);
1319}
1320
1321int file_read_actor(read_descriptor_t *desc, struct page *page,
1322 unsigned long offset, unsigned long size)
1323{
1324 char *kaddr;
1325 unsigned long left, count = desc->count;
1326
1327 if (size > count)
1328 size = count;
1329
1330 /*
1331 * Faults on the destination of a read are common, so do it before
1332 * taking the kmap.
1333 */
1334 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1335 kaddr = kmap_atomic(page, KM_USER0);
1336 left = __copy_to_user_inatomic(desc->arg.buf,
1337 kaddr + offset, size);
1338 kunmap_atomic(kaddr, KM_USER0);
1339 if (left == 0)
1340 goto success;
1341 }
1342
1343 /* Do it the slow way */
1344 kaddr = kmap(page);
1345 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1346 kunmap(page);
1347
1348 if (left) {
1349 size -= left;
1350 desc->error = -EFAULT;
1351 }
1352success:
1353 desc->count = count - size;
1354 desc->written += size;
1355 desc->arg.buf += size;
1356 return size;
1357}
1358
1359/*
1360 * Performs necessary checks before doing a write
1361 * @iov: io vector request
1362 * @nr_segs: number of segments in the iovec
1363 * @count: number of bytes to write
1364 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1365 *
1366 * Adjust number of segments and amount of bytes to write (nr_segs should be
1367 * properly initialized first). Returns appropriate error code that caller
1368 * should return or zero in case that write should be allowed.
1369 */
1370int generic_segment_checks(const struct iovec *iov,
1371 unsigned long *nr_segs, size_t *count, int access_flags)
1372{
1373 unsigned long seg;
1374 size_t cnt = 0;
1375 for (seg = 0; seg < *nr_segs; seg++) {
1376 const struct iovec *iv = &iov[seg];
1377
1378 /*
1379 * If any segment has a negative length, or the cumulative
1380 * length ever wraps negative then return -EINVAL.
1381 */
1382 cnt += iv->iov_len;
1383 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1384 return -EINVAL;
1385 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1386 continue;
1387 if (seg == 0)
1388 return -EFAULT;
1389 *nr_segs = seg;
1390 cnt -= iv->iov_len; /* This segment is no good */
1391 break;
1392 }
1393 *count = cnt;
1394 return 0;
1395}
1396EXPORT_SYMBOL(generic_segment_checks);
1397
1398/**
1399 * generic_file_aio_read - generic filesystem read routine
1400 * @iocb: kernel I/O control block
1401 * @iov: io vector request
1402 * @nr_segs: number of segments in the iovec
1403 * @pos: current file position
1404 *
1405 * This is the "read()" routine for all filesystems
1406 * that can use the page cache directly.
1407 */
1408ssize_t
1409generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1410 unsigned long nr_segs, loff_t pos)
1411{
1412 struct file *filp = iocb->ki_filp;
1413 ssize_t retval;
1414 unsigned long seg = 0;
1415 size_t count;
1416 loff_t *ppos = &iocb->ki_pos;
1417 struct blk_plug plug;
1418
1419 count = 0;
1420 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1421 if (retval)
1422 return retval;
1423
1424 blk_start_plug(&plug);
1425
1426 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1427 if (filp->f_flags & O_DIRECT) {
1428 loff_t size;
1429 struct address_space *mapping;
1430 struct inode *inode;
1431
1432 mapping = filp->f_mapping;
1433 inode = mapping->host;
1434 if (!count)
1435 goto out; /* skip atime */
1436 size = i_size_read(inode);
1437 if (pos < size) {
1438 retval = filemap_write_and_wait_range(mapping, pos,
1439 pos + iov_length(iov, nr_segs) - 1);
1440 if (!retval) {
1441 retval = mapping->a_ops->direct_IO(READ, iocb,
1442 iov, pos, nr_segs);
1443 }
1444 if (retval > 0) {
1445 *ppos = pos + retval;
1446 count -= retval;
1447 }
1448
1449 /*
1450 * Btrfs can have a short DIO read if we encounter
1451 * compressed extents, so if there was an error, or if
1452 * we've already read everything we wanted to, or if
1453 * there was a short read because we hit EOF, go ahead
1454 * and return. Otherwise fallthrough to buffered io for
1455 * the rest of the read.
1456 */
1457 if (retval < 0 || !count || *ppos >= size) {
1458 file_accessed(filp);
1459 goto out;
1460 }
1461 }
1462 }
1463
1464 count = retval;
1465 for (seg = 0; seg < nr_segs; seg++) {
1466 read_descriptor_t desc;
1467 loff_t offset = 0;
1468
1469 /*
1470 * If we did a short DIO read we need to skip the section of the
1471 * iov that we've already read data into.
1472 */
1473 if (count) {
1474 if (count > iov[seg].iov_len) {
1475 count -= iov[seg].iov_len;
1476 continue;
1477 }
1478 offset = count;
1479 count = 0;
1480 }
1481
1482 desc.written = 0;
1483 desc.arg.buf = iov[seg].iov_base + offset;
1484 desc.count = iov[seg].iov_len - offset;
1485 if (desc.count == 0)
1486 continue;
1487 desc.error = 0;
1488 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1489 retval += desc.written;
1490 if (desc.error) {
1491 retval = retval ?: desc.error;
1492 break;
1493 }
1494 if (desc.count > 0)
1495 break;
1496 }
1497out:
1498 blk_finish_plug(&plug);
1499 return retval;
1500}
1501EXPORT_SYMBOL(generic_file_aio_read);
1502
1503static ssize_t
1504do_readahead(struct address_space *mapping, struct file *filp,
1505 pgoff_t index, unsigned long nr)
1506{
1507 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1508 return -EINVAL;
1509
1510 force_page_cache_readahead(mapping, filp, index, nr);
1511 return 0;
1512}
1513
1514SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1515{
1516 ssize_t ret;
1517 struct file *file;
1518
1519 ret = -EBADF;
1520 file = fget(fd);
1521 if (file) {
1522 if (file->f_mode & FMODE_READ) {
1523 struct address_space *mapping = file->f_mapping;
1524 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1525 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1526 unsigned long len = end - start + 1;
1527 ret = do_readahead(mapping, file, start, len);
1528 }
1529 fput(file);
1530 }
1531 return ret;
1532}
1533#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1534asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1535{
1536 return SYSC_readahead((int) fd, offset, (size_t) count);
1537}
1538SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1539#endif
1540
1541#ifdef CONFIG_MMU
1542/**
1543 * page_cache_read - adds requested page to the page cache if not already there
1544 * @file: file to read
1545 * @offset: page index
1546 *
1547 * This adds the requested page to the page cache if it isn't already there,
1548 * and schedules an I/O to read in its contents from disk.
1549 */
1550static int page_cache_read(struct file *file, pgoff_t offset)
1551{
1552 struct address_space *mapping = file->f_mapping;
1553 struct page *page;
1554 int ret;
1555
1556 do {
1557 page = page_cache_alloc_cold(mapping);
1558 if (!page)
1559 return -ENOMEM;
1560
1561 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1562 if (ret == 0)
1563 ret = mapping->a_ops->readpage(file, page);
1564 else if (ret == -EEXIST)
1565 ret = 0; /* losing race to add is OK */
1566
1567 page_cache_release(page);
1568
1569 } while (ret == AOP_TRUNCATED_PAGE);
1570
1571 return ret;
1572}
1573
1574#define MMAP_LOTSAMISS (100)
1575
1576/*
1577 * Synchronous readahead happens when we don't even find
1578 * a page in the page cache at all.
1579 */
1580static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1581 struct file_ra_state *ra,
1582 struct file *file,
1583 pgoff_t offset)
1584{
1585 unsigned long ra_pages;
1586 struct address_space *mapping = file->f_mapping;
1587
1588 /* If we don't want any read-ahead, don't bother */
1589 if (VM_RandomReadHint(vma))
1590 return;
1591 if (!ra->ra_pages)
1592 return;
1593
1594 if (VM_SequentialReadHint(vma)) {
1595 page_cache_sync_readahead(mapping, ra, file, offset,
1596 ra->ra_pages);
1597 return;
1598 }
1599
1600 /* Avoid banging the cache line if not needed */
1601 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1602 ra->mmap_miss++;
1603
1604 /*
1605 * Do we miss much more than hit in this file? If so,
1606 * stop bothering with read-ahead. It will only hurt.
1607 */
1608 if (ra->mmap_miss > MMAP_LOTSAMISS)
1609 return;
1610
1611 /*
1612 * mmap read-around
1613 */
1614 ra_pages = max_sane_readahead(ra->ra_pages);
1615 ra->start = max_t(long, 0, offset - ra_pages / 2);
1616 ra->size = ra_pages;
1617 ra->async_size = ra_pages / 4;
1618 ra_submit(ra, mapping, file);
1619}
1620
1621/*
1622 * Asynchronous readahead happens when we find the page and PG_readahead,
1623 * so we want to possibly extend the readahead further..
1624 */
1625static void do_async_mmap_readahead(struct vm_area_struct *vma,
1626 struct file_ra_state *ra,
1627 struct file *file,
1628 struct page *page,
1629 pgoff_t offset)
1630{
1631 struct address_space *mapping = file->f_mapping;
1632
1633 /* If we don't want any read-ahead, don't bother */
1634 if (VM_RandomReadHint(vma))
1635 return;
1636 if (ra->mmap_miss > 0)
1637 ra->mmap_miss--;
1638 if (PageReadahead(page))
1639 page_cache_async_readahead(mapping, ra, file,
1640 page, offset, ra->ra_pages);
1641}
1642
1643/**
1644 * filemap_fault - read in file data for page fault handling
1645 * @vma: vma in which the fault was taken
1646 * @vmf: struct vm_fault containing details of the fault
1647 *
1648 * filemap_fault() is invoked via the vma operations vector for a
1649 * mapped memory region to read in file data during a page fault.
1650 *
1651 * The goto's are kind of ugly, but this streamlines the normal case of having
1652 * it in the page cache, and handles the special cases reasonably without
1653 * having a lot of duplicated code.
1654 */
1655int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1656{
1657 int error;
1658 struct file *file = vma->vm_file;
1659 struct address_space *mapping = file->f_mapping;
1660 struct file_ra_state *ra = &file->f_ra;
1661 struct inode *inode = mapping->host;
1662 pgoff_t offset = vmf->pgoff;
1663 struct page *page;
1664 pgoff_t size;
1665 int ret = 0;
1666
1667 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1668 if (offset >= size)
1669 return VM_FAULT_SIGBUS;
1670
1671 /*
1672 * Do we have something in the page cache already?
1673 */
1674 page = find_get_page(mapping, offset);
1675 if (likely(page)) {
1676 /*
1677 * We found the page, so try async readahead before
1678 * waiting for the lock.
1679 */
1680 do_async_mmap_readahead(vma, ra, file, page, offset);
1681 } else {
1682 /* No page in the page cache at all */
1683 do_sync_mmap_readahead(vma, ra, file, offset);
1684 count_vm_event(PGMAJFAULT);
1685 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1686 ret = VM_FAULT_MAJOR;
1687retry_find:
1688 page = find_get_page(mapping, offset);
1689 if (!page)
1690 goto no_cached_page;
1691 }
1692
1693 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1694 page_cache_release(page);
1695 return ret | VM_FAULT_RETRY;
1696 }
1697
1698 /* Did it get truncated? */
1699 if (unlikely(page->mapping != mapping)) {
1700 unlock_page(page);
1701 put_page(page);
1702 goto retry_find;
1703 }
1704 VM_BUG_ON(page->index != offset);
1705
1706 /*
1707 * We have a locked page in the page cache, now we need to check
1708 * that it's up-to-date. If not, it is going to be due to an error.
1709 */
1710 if (unlikely(!PageUptodate(page)))
1711 goto page_not_uptodate;
1712
1713 /*
1714 * Found the page and have a reference on it.
1715 * We must recheck i_size under page lock.
1716 */
1717 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1718 if (unlikely(offset >= size)) {
1719 unlock_page(page);
1720 page_cache_release(page);
1721 return VM_FAULT_SIGBUS;
1722 }
1723
1724 vmf->page = page;
1725 return ret | VM_FAULT_LOCKED;
1726
1727no_cached_page:
1728 /*
1729 * We're only likely to ever get here if MADV_RANDOM is in
1730 * effect.
1731 */
1732 error = page_cache_read(file, offset);
1733
1734 /*
1735 * The page we want has now been added to the page cache.
1736 * In the unlikely event that someone removed it in the
1737 * meantime, we'll just come back here and read it again.
1738 */
1739 if (error >= 0)
1740 goto retry_find;
1741
1742 /*
1743 * An error return from page_cache_read can result if the
1744 * system is low on memory, or a problem occurs while trying
1745 * to schedule I/O.
1746 */
1747 if (error == -ENOMEM)
1748 return VM_FAULT_OOM;
1749 return VM_FAULT_SIGBUS;
1750
1751page_not_uptodate:
1752 /*
1753 * Umm, take care of errors if the page isn't up-to-date.
1754 * Try to re-read it _once_. We do this synchronously,
1755 * because there really aren't any performance issues here
1756 * and we need to check for errors.
1757 */
1758 ClearPageError(page);
1759 error = mapping->a_ops->readpage(file, page);
1760 if (!error) {
1761 wait_on_page_locked(page);
1762 if (!PageUptodate(page))
1763 error = -EIO;
1764 }
1765 page_cache_release(page);
1766
1767 if (!error || error == AOP_TRUNCATED_PAGE)
1768 goto retry_find;
1769
1770 /* Things didn't work out. Return zero to tell the mm layer so. */
1771 shrink_readahead_size_eio(file, ra);
1772 return VM_FAULT_SIGBUS;
1773}
1774EXPORT_SYMBOL(filemap_fault);
1775
1776const struct vm_operations_struct generic_file_vm_ops = {
1777 .fault = filemap_fault,
1778};
1779
1780/* This is used for a general mmap of a disk file */
1781
1782int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1783{
1784 struct address_space *mapping = file->f_mapping;
1785
1786 if (!mapping->a_ops->readpage)
1787 return -ENOEXEC;
1788 file_accessed(file);
1789 vma->vm_ops = &generic_file_vm_ops;
1790 vma->vm_flags |= VM_CAN_NONLINEAR;
1791 return 0;
1792}
1793
1794/*
1795 * This is for filesystems which do not implement ->writepage.
1796 */
1797int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1798{
1799 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1800 return -EINVAL;
1801 return generic_file_mmap(file, vma);
1802}
1803#else
1804int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1805{
1806 return -ENOSYS;
1807}
1808int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1809{
1810 return -ENOSYS;
1811}
1812#endif /* CONFIG_MMU */
1813
1814EXPORT_SYMBOL(generic_file_mmap);
1815EXPORT_SYMBOL(generic_file_readonly_mmap);
1816
1817static struct page *__read_cache_page(struct address_space *mapping,
1818 pgoff_t index,
1819 int (*filler)(void *, struct page *),
1820 void *data,
1821 gfp_t gfp)
1822{
1823 struct page *page;
1824 int err;
1825repeat:
1826 page = find_get_page(mapping, index);
1827 if (!page) {
1828 page = __page_cache_alloc(gfp | __GFP_COLD);
1829 if (!page)
1830 return ERR_PTR(-ENOMEM);
1831 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1832 if (unlikely(err)) {
1833 page_cache_release(page);
1834 if (err == -EEXIST)
1835 goto repeat;
1836 /* Presumably ENOMEM for radix tree node */
1837 return ERR_PTR(err);
1838 }
1839 err = filler(data, page);
1840 if (err < 0) {
1841 page_cache_release(page);
1842 page = ERR_PTR(err);
1843 }
1844 }
1845 return page;
1846}
1847
1848static struct page *do_read_cache_page(struct address_space *mapping,
1849 pgoff_t index,
1850 int (*filler)(void *, struct page *),
1851 void *data,
1852 gfp_t gfp)
1853
1854{
1855 struct page *page;
1856 int err;
1857
1858retry:
1859 page = __read_cache_page(mapping, index, filler, data, gfp);
1860 if (IS_ERR(page))
1861 return page;
1862 if (PageUptodate(page))
1863 goto out;
1864
1865 lock_page(page);
1866 if (!page->mapping) {
1867 unlock_page(page);
1868 page_cache_release(page);
1869 goto retry;
1870 }
1871 if (PageUptodate(page)) {
1872 unlock_page(page);
1873 goto out;
1874 }
1875 err = filler(data, page);
1876 if (err < 0) {
1877 page_cache_release(page);
1878 return ERR_PTR(err);
1879 }
1880out:
1881 mark_page_accessed(page);
1882 return page;
1883}
1884
1885/**
1886 * read_cache_page_async - read into page cache, fill it if needed
1887 * @mapping: the page's address_space
1888 * @index: the page index
1889 * @filler: function to perform the read
1890 * @data: first arg to filler(data, page) function, often left as NULL
1891 *
1892 * Same as read_cache_page, but don't wait for page to become unlocked
1893 * after submitting it to the filler.
1894 *
1895 * Read into the page cache. If a page already exists, and PageUptodate() is
1896 * not set, try to fill the page but don't wait for it to become unlocked.
1897 *
1898 * If the page does not get brought uptodate, return -EIO.
1899 */
1900struct page *read_cache_page_async(struct address_space *mapping,
1901 pgoff_t index,
1902 int (*filler)(void *, struct page *),
1903 void *data)
1904{
1905 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1906}
1907EXPORT_SYMBOL(read_cache_page_async);
1908
1909static struct page *wait_on_page_read(struct page *page)
1910{
1911 if (!IS_ERR(page)) {
1912 wait_on_page_locked(page);
1913 if (!PageUptodate(page)) {
1914 page_cache_release(page);
1915 page = ERR_PTR(-EIO);
1916 }
1917 }
1918 return page;
1919}
1920
1921/**
1922 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1923 * @mapping: the page's address_space
1924 * @index: the page index
1925 * @gfp: the page allocator flags to use if allocating
1926 *
1927 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1928 * any new page allocations done using the specified allocation flags. Note
1929 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1930 * expect to do this atomically or anything like that - but you can pass in
1931 * other page requirements.
1932 *
1933 * If the page does not get brought uptodate, return -EIO.
1934 */
1935struct page *read_cache_page_gfp(struct address_space *mapping,
1936 pgoff_t index,
1937 gfp_t gfp)
1938{
1939 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1940
1941 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1942}
1943EXPORT_SYMBOL(read_cache_page_gfp);
1944
1945/**
1946 * read_cache_page - read into page cache, fill it if needed
1947 * @mapping: the page's address_space
1948 * @index: the page index
1949 * @filler: function to perform the read
1950 * @data: first arg to filler(data, page) function, often left as NULL
1951 *
1952 * Read into the page cache. If a page already exists, and PageUptodate() is
1953 * not set, try to fill the page then wait for it to become unlocked.
1954 *
1955 * If the page does not get brought uptodate, return -EIO.
1956 */
1957struct page *read_cache_page(struct address_space *mapping,
1958 pgoff_t index,
1959 int (*filler)(void *, struct page *),
1960 void *data)
1961{
1962 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1963}
1964EXPORT_SYMBOL(read_cache_page);
1965
1966/*
1967 * The logic we want is
1968 *
1969 * if suid or (sgid and xgrp)
1970 * remove privs
1971 */
1972int should_remove_suid(struct dentry *dentry)
1973{
1974 mode_t mode = dentry->d_inode->i_mode;
1975 int kill = 0;
1976
1977 /* suid always must be killed */
1978 if (unlikely(mode & S_ISUID))
1979 kill = ATTR_KILL_SUID;
1980
1981 /*
1982 * sgid without any exec bits is just a mandatory locking mark; leave
1983 * it alone. If some exec bits are set, it's a real sgid; kill it.
1984 */
1985 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1986 kill |= ATTR_KILL_SGID;
1987
1988 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1989 return kill;
1990
1991 return 0;
1992}
1993EXPORT_SYMBOL(should_remove_suid);
1994
1995static int __remove_suid(struct dentry *dentry, int kill)
1996{
1997 struct iattr newattrs;
1998
1999 newattrs.ia_valid = ATTR_FORCE | kill;
2000 return notify_change(dentry, &newattrs);
2001}
2002
2003int file_remove_suid(struct file *file)
2004{
2005 struct dentry *dentry = file->f_path.dentry;
2006 struct inode *inode = dentry->d_inode;
2007 int killsuid;
2008 int killpriv;
2009 int error = 0;
2010
2011 /* Fast path for nothing security related */
2012 if (IS_NOSEC(inode))
2013 return 0;
2014
2015 killsuid = should_remove_suid(dentry);
2016 killpriv = security_inode_need_killpriv(dentry);
2017
2018 if (killpriv < 0)
2019 return killpriv;
2020 if (killpriv)
2021 error = security_inode_killpriv(dentry);
2022 if (!error && killsuid)
2023 error = __remove_suid(dentry, killsuid);
2024 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2025 inode->i_flags |= S_NOSEC;
2026
2027 return error;
2028}
2029EXPORT_SYMBOL(file_remove_suid);
2030
2031static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2032 const struct iovec *iov, size_t base, size_t bytes)
2033{
2034 size_t copied = 0, left = 0;
2035
2036 while (bytes) {
2037 char __user *buf = iov->iov_base + base;
2038 int copy = min(bytes, iov->iov_len - base);
2039
2040 base = 0;
2041 left = __copy_from_user_inatomic(vaddr, buf, copy);
2042 copied += copy;
2043 bytes -= copy;
2044 vaddr += copy;
2045 iov++;
2046
2047 if (unlikely(left))
2048 break;
2049 }
2050 return copied - left;
2051}
2052
2053/*
2054 * Copy as much as we can into the page and return the number of bytes which
2055 * were successfully copied. If a fault is encountered then return the number of
2056 * bytes which were copied.
2057 */
2058size_t iov_iter_copy_from_user_atomic(struct page *page,
2059 struct iov_iter *i, unsigned long offset, size_t bytes)
2060{
2061 char *kaddr;
2062 size_t copied;
2063
2064 BUG_ON(!in_atomic());
2065 kaddr = kmap_atomic(page, KM_USER0);
2066 if (likely(i->nr_segs == 1)) {
2067 int left;
2068 char __user *buf = i->iov->iov_base + i->iov_offset;
2069 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2070 copied = bytes - left;
2071 } else {
2072 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2073 i->iov, i->iov_offset, bytes);
2074 }
2075 kunmap_atomic(kaddr, KM_USER0);
2076
2077 return copied;
2078}
2079EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2080
2081/*
2082 * This has the same sideeffects and return value as
2083 * iov_iter_copy_from_user_atomic().
2084 * The difference is that it attempts to resolve faults.
2085 * Page must not be locked.
2086 */
2087size_t iov_iter_copy_from_user(struct page *page,
2088 struct iov_iter *i, unsigned long offset, size_t bytes)
2089{
2090 char *kaddr;
2091 size_t copied;
2092
2093 kaddr = kmap(page);
2094 if (likely(i->nr_segs == 1)) {
2095 int left;
2096 char __user *buf = i->iov->iov_base + i->iov_offset;
2097 left = __copy_from_user(kaddr + offset, buf, bytes);
2098 copied = bytes - left;
2099 } else {
2100 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2101 i->iov, i->iov_offset, bytes);
2102 }
2103 kunmap(page);
2104 return copied;
2105}
2106EXPORT_SYMBOL(iov_iter_copy_from_user);
2107
2108void iov_iter_advance(struct iov_iter *i, size_t bytes)
2109{
2110 BUG_ON(i->count < bytes);
2111
2112 if (likely(i->nr_segs == 1)) {
2113 i->iov_offset += bytes;
2114 i->count -= bytes;
2115 } else {
2116 const struct iovec *iov = i->iov;
2117 size_t base = i->iov_offset;
2118
2119 /*
2120 * The !iov->iov_len check ensures we skip over unlikely
2121 * zero-length segments (without overruning the iovec).
2122 */
2123 while (bytes || unlikely(i->count && !iov->iov_len)) {
2124 int copy;
2125
2126 copy = min(bytes, iov->iov_len - base);
2127 BUG_ON(!i->count || i->count < copy);
2128 i->count -= copy;
2129 bytes -= copy;
2130 base += copy;
2131 if (iov->iov_len == base) {
2132 iov++;
2133 base = 0;
2134 }
2135 }
2136 i->iov = iov;
2137 i->iov_offset = base;
2138 }
2139}
2140EXPORT_SYMBOL(iov_iter_advance);
2141
2142/*
2143 * Fault in the first iovec of the given iov_iter, to a maximum length
2144 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2145 * accessed (ie. because it is an invalid address).
2146 *
2147 * writev-intensive code may want this to prefault several iovecs -- that
2148 * would be possible (callers must not rely on the fact that _only_ the
2149 * first iovec will be faulted with the current implementation).
2150 */
2151int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2152{
2153 char __user *buf = i->iov->iov_base + i->iov_offset;
2154 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2155 return fault_in_pages_readable(buf, bytes);
2156}
2157EXPORT_SYMBOL(iov_iter_fault_in_readable);
2158
2159/*
2160 * Return the count of just the current iov_iter segment.
2161 */
2162size_t iov_iter_single_seg_count(struct iov_iter *i)
2163{
2164 const struct iovec *iov = i->iov;
2165 if (i->nr_segs == 1)
2166 return i->count;
2167 else
2168 return min(i->count, iov->iov_len - i->iov_offset);
2169}
2170EXPORT_SYMBOL(iov_iter_single_seg_count);
2171
2172/*
2173 * Performs necessary checks before doing a write
2174 *
2175 * Can adjust writing position or amount of bytes to write.
2176 * Returns appropriate error code that caller should return or
2177 * zero in case that write should be allowed.
2178 */
2179inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2180{
2181 struct inode *inode = file->f_mapping->host;
2182 unsigned long limit = rlimit(RLIMIT_FSIZE);
2183
2184 if (unlikely(*pos < 0))
2185 return -EINVAL;
2186
2187 if (!isblk) {
2188 /* FIXME: this is for backwards compatibility with 2.4 */
2189 if (file->f_flags & O_APPEND)
2190 *pos = i_size_read(inode);
2191
2192 if (limit != RLIM_INFINITY) {
2193 if (*pos >= limit) {
2194 send_sig(SIGXFSZ, current, 0);
2195 return -EFBIG;
2196 }
2197 if (*count > limit - (typeof(limit))*pos) {
2198 *count = limit - (typeof(limit))*pos;
2199 }
2200 }
2201 }
2202
2203 /*
2204 * LFS rule
2205 */
2206 if (unlikely(*pos + *count > MAX_NON_LFS &&
2207 !(file->f_flags & O_LARGEFILE))) {
2208 if (*pos >= MAX_NON_LFS) {
2209 return -EFBIG;
2210 }
2211 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2212 *count = MAX_NON_LFS - (unsigned long)*pos;
2213 }
2214 }
2215
2216 /*
2217 * Are we about to exceed the fs block limit ?
2218 *
2219 * If we have written data it becomes a short write. If we have
2220 * exceeded without writing data we send a signal and return EFBIG.
2221 * Linus frestrict idea will clean these up nicely..
2222 */
2223 if (likely(!isblk)) {
2224 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2225 if (*count || *pos > inode->i_sb->s_maxbytes) {
2226 return -EFBIG;
2227 }
2228 /* zero-length writes at ->s_maxbytes are OK */
2229 }
2230
2231 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2232 *count = inode->i_sb->s_maxbytes - *pos;
2233 } else {
2234#ifdef CONFIG_BLOCK
2235 loff_t isize;
2236 if (bdev_read_only(I_BDEV(inode)))
2237 return -EPERM;
2238 isize = i_size_read(inode);
2239 if (*pos >= isize) {
2240 if (*count || *pos > isize)
2241 return -ENOSPC;
2242 }
2243
2244 if (*pos + *count > isize)
2245 *count = isize - *pos;
2246#else
2247 return -EPERM;
2248#endif
2249 }
2250 return 0;
2251}
2252EXPORT_SYMBOL(generic_write_checks);
2253
2254int pagecache_write_begin(struct file *file, struct address_space *mapping,
2255 loff_t pos, unsigned len, unsigned flags,
2256 struct page **pagep, void **fsdata)
2257{
2258 const struct address_space_operations *aops = mapping->a_ops;
2259
2260 return aops->write_begin(file, mapping, pos, len, flags,
2261 pagep, fsdata);
2262}
2263EXPORT_SYMBOL(pagecache_write_begin);
2264
2265int pagecache_write_end(struct file *file, struct address_space *mapping,
2266 loff_t pos, unsigned len, unsigned copied,
2267 struct page *page, void *fsdata)
2268{
2269 const struct address_space_operations *aops = mapping->a_ops;
2270
2271 mark_page_accessed(page);
2272 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2273}
2274EXPORT_SYMBOL(pagecache_write_end);
2275
2276ssize_t
2277generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2278 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2279 size_t count, size_t ocount)
2280{
2281 struct file *file = iocb->ki_filp;
2282 struct address_space *mapping = file->f_mapping;
2283 struct inode *inode = mapping->host;
2284 ssize_t written;
2285 size_t write_len;
2286 pgoff_t end;
2287
2288 if (count != ocount)
2289 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2290
2291 write_len = iov_length(iov, *nr_segs);
2292 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2293
2294 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2295 if (written)
2296 goto out;
2297
2298 /*
2299 * After a write we want buffered reads to be sure to go to disk to get
2300 * the new data. We invalidate clean cached page from the region we're
2301 * about to write. We do this *before* the write so that we can return
2302 * without clobbering -EIOCBQUEUED from ->direct_IO().
2303 */
2304 if (mapping->nrpages) {
2305 written = invalidate_inode_pages2_range(mapping,
2306 pos >> PAGE_CACHE_SHIFT, end);
2307 /*
2308 * If a page can not be invalidated, return 0 to fall back
2309 * to buffered write.
2310 */
2311 if (written) {
2312 if (written == -EBUSY)
2313 return 0;
2314 goto out;
2315 }
2316 }
2317
2318 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2319
2320 /*
2321 * Finally, try again to invalidate clean pages which might have been
2322 * cached by non-direct readahead, or faulted in by get_user_pages()
2323 * if the source of the write was an mmap'ed region of the file
2324 * we're writing. Either one is a pretty crazy thing to do,
2325 * so we don't support it 100%. If this invalidation
2326 * fails, tough, the write still worked...
2327 */
2328 if (mapping->nrpages) {
2329 invalidate_inode_pages2_range(mapping,
2330 pos >> PAGE_CACHE_SHIFT, end);
2331 }
2332
2333 if (written > 0) {
2334 pos += written;
2335 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2336 i_size_write(inode, pos);
2337 mark_inode_dirty(inode);
2338 }
2339 *ppos = pos;
2340 }
2341out:
2342 return written;
2343}
2344EXPORT_SYMBOL(generic_file_direct_write);
2345
2346/*
2347 * Find or create a page at the given pagecache position. Return the locked
2348 * page. This function is specifically for buffered writes.
2349 */
2350struct page *grab_cache_page_write_begin(struct address_space *mapping,
2351 pgoff_t index, unsigned flags)
2352{
2353 int status;
2354 struct page *page;
2355 gfp_t gfp_notmask = 0;
2356 if (flags & AOP_FLAG_NOFS)
2357 gfp_notmask = __GFP_FS;
2358repeat:
2359 page = find_lock_page(mapping, index);
2360 if (page)
2361 goto found;
2362
2363 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2364 if (!page)
2365 return NULL;
2366 status = add_to_page_cache_lru(page, mapping, index,
2367 GFP_KERNEL & ~gfp_notmask);
2368 if (unlikely(status)) {
2369 page_cache_release(page);
2370 if (status == -EEXIST)
2371 goto repeat;
2372 return NULL;
2373 }
2374found:
2375 wait_on_page_writeback(page);
2376 return page;
2377}
2378EXPORT_SYMBOL(grab_cache_page_write_begin);
2379
2380static ssize_t generic_perform_write(struct file *file,
2381 struct iov_iter *i, loff_t pos)
2382{
2383 struct address_space *mapping = file->f_mapping;
2384 const struct address_space_operations *a_ops = mapping->a_ops;
2385 long status = 0;
2386 ssize_t written = 0;
2387 unsigned int flags = 0;
2388
2389 /*
2390 * Copies from kernel address space cannot fail (NFSD is a big user).
2391 */
2392 if (segment_eq(get_fs(), KERNEL_DS))
2393 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2394
2395 do {
2396 struct page *page;
2397 unsigned long offset; /* Offset into pagecache page */
2398 unsigned long bytes; /* Bytes to write to page */
2399 size_t copied; /* Bytes copied from user */
2400 void *fsdata;
2401
2402 offset = (pos & (PAGE_CACHE_SIZE - 1));
2403 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2404 iov_iter_count(i));
2405
2406again:
2407
2408 /*
2409 * Bring in the user page that we will copy from _first_.
2410 * Otherwise there's a nasty deadlock on copying from the
2411 * same page as we're writing to, without it being marked
2412 * up-to-date.
2413 *
2414 * Not only is this an optimisation, but it is also required
2415 * to check that the address is actually valid, when atomic
2416 * usercopies are used, below.
2417 */
2418 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2419 status = -EFAULT;
2420 break;
2421 }
2422
2423 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2424 &page, &fsdata);
2425 if (unlikely(status))
2426 break;
2427
2428 if (mapping_writably_mapped(mapping))
2429 flush_dcache_page(page);
2430
2431 pagefault_disable();
2432 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2433 pagefault_enable();
2434 flush_dcache_page(page);
2435
2436 mark_page_accessed(page);
2437 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2438 page, fsdata);
2439 if (unlikely(status < 0))
2440 break;
2441 copied = status;
2442
2443 cond_resched();
2444
2445 iov_iter_advance(i, copied);
2446 if (unlikely(copied == 0)) {
2447 /*
2448 * If we were unable to copy any data at all, we must
2449 * fall back to a single segment length write.
2450 *
2451 * If we didn't fallback here, we could livelock
2452 * because not all segments in the iov can be copied at
2453 * once without a pagefault.
2454 */
2455 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2456 iov_iter_single_seg_count(i));
2457 goto again;
2458 }
2459 pos += copied;
2460 written += copied;
2461
2462 balance_dirty_pages_ratelimited(mapping);
2463
2464 } while (iov_iter_count(i));
2465
2466 return written ? written : status;
2467}
2468
2469ssize_t
2470generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2471 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2472 size_t count, ssize_t written)
2473{
2474 struct file *file = iocb->ki_filp;
2475 ssize_t status;
2476 struct iov_iter i;
2477
2478 iov_iter_init(&i, iov, nr_segs, count, written);
2479 status = generic_perform_write(file, &i, pos);
2480
2481 if (likely(status >= 0)) {
2482 written += status;
2483 *ppos = pos + status;
2484 }
2485
2486 return written ? written : status;
2487}
2488EXPORT_SYMBOL(generic_file_buffered_write);
2489
2490/**
2491 * __generic_file_aio_write - write data to a file
2492 * @iocb: IO state structure (file, offset, etc.)
2493 * @iov: vector with data to write
2494 * @nr_segs: number of segments in the vector
2495 * @ppos: position where to write
2496 *
2497 * This function does all the work needed for actually writing data to a
2498 * file. It does all basic checks, removes SUID from the file, updates
2499 * modification times and calls proper subroutines depending on whether we
2500 * do direct IO or a standard buffered write.
2501 *
2502 * It expects i_mutex to be grabbed unless we work on a block device or similar
2503 * object which does not need locking at all.
2504 *
2505 * This function does *not* take care of syncing data in case of O_SYNC write.
2506 * A caller has to handle it. This is mainly due to the fact that we want to
2507 * avoid syncing under i_mutex.
2508 */
2509ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2510 unsigned long nr_segs, loff_t *ppos)
2511{
2512 struct file *file = iocb->ki_filp;
2513 struct address_space * mapping = file->f_mapping;
2514 size_t ocount; /* original count */
2515 size_t count; /* after file limit checks */
2516 struct inode *inode = mapping->host;
2517 loff_t pos;
2518 ssize_t written;
2519 ssize_t err;
2520
2521 ocount = 0;
2522 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2523 if (err)
2524 return err;
2525
2526 count = ocount;
2527 pos = *ppos;
2528
2529 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2530
2531 /* We can write back this queue in page reclaim */
2532 current->backing_dev_info = mapping->backing_dev_info;
2533 written = 0;
2534
2535 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2536 if (err)
2537 goto out;
2538
2539 if (count == 0)
2540 goto out;
2541
2542 err = file_remove_suid(file);
2543 if (err)
2544 goto out;
2545
2546 file_update_time(file);
2547
2548 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2549 if (unlikely(file->f_flags & O_DIRECT)) {
2550 loff_t endbyte;
2551 ssize_t written_buffered;
2552
2553 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2554 ppos, count, ocount);
2555 if (written < 0 || written == count)
2556 goto out;
2557 /*
2558 * direct-io write to a hole: fall through to buffered I/O
2559 * for completing the rest of the request.
2560 */
2561 pos += written;
2562 count -= written;
2563 written_buffered = generic_file_buffered_write(iocb, iov,
2564 nr_segs, pos, ppos, count,
2565 written);
2566 /*
2567 * If generic_file_buffered_write() retuned a synchronous error
2568 * then we want to return the number of bytes which were
2569 * direct-written, or the error code if that was zero. Note
2570 * that this differs from normal direct-io semantics, which
2571 * will return -EFOO even if some bytes were written.
2572 */
2573 if (written_buffered < 0) {
2574 err = written_buffered;
2575 goto out;
2576 }
2577
2578 /*
2579 * We need to ensure that the page cache pages are written to
2580 * disk and invalidated to preserve the expected O_DIRECT
2581 * semantics.
2582 */
2583 endbyte = pos + written_buffered - written - 1;
2584 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2585 if (err == 0) {
2586 written = written_buffered;
2587 invalidate_mapping_pages(mapping,
2588 pos >> PAGE_CACHE_SHIFT,
2589 endbyte >> PAGE_CACHE_SHIFT);
2590 } else {
2591 /*
2592 * We don't know how much we wrote, so just return
2593 * the number of bytes which were direct-written
2594 */
2595 }
2596 } else {
2597 written = generic_file_buffered_write(iocb, iov, nr_segs,
2598 pos, ppos, count, written);
2599 }
2600out:
2601 current->backing_dev_info = NULL;
2602 return written ? written : err;
2603}
2604EXPORT_SYMBOL(__generic_file_aio_write);
2605
2606/**
2607 * generic_file_aio_write - write data to a file
2608 * @iocb: IO state structure
2609 * @iov: vector with data to write
2610 * @nr_segs: number of segments in the vector
2611 * @pos: position in file where to write
2612 *
2613 * This is a wrapper around __generic_file_aio_write() to be used by most
2614 * filesystems. It takes care of syncing the file in case of O_SYNC file
2615 * and acquires i_mutex as needed.
2616 */
2617ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2618 unsigned long nr_segs, loff_t pos)
2619{
2620 struct file *file = iocb->ki_filp;
2621 struct inode *inode = file->f_mapping->host;
2622 struct blk_plug plug;
2623 ssize_t ret;
2624
2625 BUG_ON(iocb->ki_pos != pos);
2626
2627 mutex_lock(&inode->i_mutex);
2628 blk_start_plug(&plug);
2629 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2630 mutex_unlock(&inode->i_mutex);
2631
2632 if (ret > 0 || ret == -EIOCBQUEUED) {
2633 ssize_t err;
2634
2635 err = generic_write_sync(file, pos, ret);
2636 if (err < 0 && ret > 0)
2637 ret = err;
2638 }
2639 blk_finish_plug(&plug);
2640 return ret;
2641}
2642EXPORT_SYMBOL(generic_file_aio_write);
2643
2644/**
2645 * try_to_release_page() - release old fs-specific metadata on a page
2646 *
2647 * @page: the page which the kernel is trying to free
2648 * @gfp_mask: memory allocation flags (and I/O mode)
2649 *
2650 * The address_space is to try to release any data against the page
2651 * (presumably at page->private). If the release was successful, return `1'.
2652 * Otherwise return zero.
2653 *
2654 * This may also be called if PG_fscache is set on a page, indicating that the
2655 * page is known to the local caching routines.
2656 *
2657 * The @gfp_mask argument specifies whether I/O may be performed to release
2658 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2659 *
2660 */
2661int try_to_release_page(struct page *page, gfp_t gfp_mask)
2662{
2663 struct address_space * const mapping = page->mapping;
2664
2665 BUG_ON(!PageLocked(page));
2666 if (PageWriteback(page))
2667 return 0;
2668
2669 if (mapping && mapping->a_ops->releasepage)
2670 return mapping->a_ops->releasepage(page, gfp_mask);
2671 return try_to_free_buffers(page);
2672}
2673
2674EXPORT_SYMBOL(try_to_release_page);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13#include <linux/export.h>
14#include <linux/compiler.h>
15#include <linux/dax.h>
16#include <linux/fs.h>
17#include <linux/sched/signal.h>
18#include <linux/uaccess.h>
19#include <linux/capability.h>
20#include <linux/kernel_stat.h>
21#include <linux/gfp.h>
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/syscalls.h>
26#include <linux/mman.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/uio.h>
30#include <linux/error-injection.h>
31#include <linux/hash.h>
32#include <linux/writeback.h>
33#include <linux/backing-dev.h>
34#include <linux/pagevec.h>
35#include <linux/security.h>
36#include <linux/cpuset.h>
37#include <linux/hugetlb.h>
38#include <linux/memcontrol.h>
39#include <linux/shmem_fs.h>
40#include <linux/rmap.h>
41#include <linux/delayacct.h>
42#include <linux/psi.h>
43#include <linux/ramfs.h>
44#include <linux/page_idle.h>
45#include <linux/migrate.h>
46#include <linux/pipe_fs_i.h>
47#include <linux/splice.h>
48#include <linux/rcupdate_wait.h>
49#include <asm/pgalloc.h>
50#include <asm/tlbflush.h>
51#include "internal.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/filemap.h>
55
56/*
57 * FIXME: remove all knowledge of the buffer layer from the core VM
58 */
59#include <linux/buffer_head.h> /* for try_to_free_buffers */
60
61#include <asm/mman.h>
62
63#include "swap.h"
64
65/*
66 * Shared mappings implemented 30.11.1994. It's not fully working yet,
67 * though.
68 *
69 * Shared mappings now work. 15.8.1995 Bruno.
70 *
71 * finished 'unifying' the page and buffer cache and SMP-threaded the
72 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
73 *
74 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
75 */
76
77/*
78 * Lock ordering:
79 *
80 * ->i_mmap_rwsem (truncate_pagecache)
81 * ->private_lock (__free_pte->block_dirty_folio)
82 * ->swap_lock (exclusive_swap_page, others)
83 * ->i_pages lock
84 *
85 * ->i_rwsem
86 * ->invalidate_lock (acquired by fs in truncate path)
87 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
88 *
89 * ->mmap_lock
90 * ->i_mmap_rwsem
91 * ->page_table_lock or pte_lock (various, mainly in memory.c)
92 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
93 *
94 * ->mmap_lock
95 * ->invalidate_lock (filemap_fault)
96 * ->lock_page (filemap_fault, access_process_vm)
97 *
98 * ->i_rwsem (generic_perform_write)
99 * ->mmap_lock (fault_in_readable->do_page_fault)
100 *
101 * bdi->wb.list_lock
102 * sb_lock (fs/fs-writeback.c)
103 * ->i_pages lock (__sync_single_inode)
104 *
105 * ->i_mmap_rwsem
106 * ->anon_vma.lock (vma_merge)
107 *
108 * ->anon_vma.lock
109 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
110 *
111 * ->page_table_lock or pte_lock
112 * ->swap_lock (try_to_unmap_one)
113 * ->private_lock (try_to_unmap_one)
114 * ->i_pages lock (try_to_unmap_one)
115 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
116 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
117 * ->private_lock (folio_remove_rmap_pte->set_page_dirty)
118 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
119 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
120 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
121 * ->memcg->move_lock (folio_remove_rmap_pte->folio_memcg_lock)
122 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
123 * ->inode->i_lock (zap_pte_range->set_page_dirty)
124 * ->private_lock (zap_pte_range->block_dirty_folio)
125 */
126
127static void mapping_set_update(struct xa_state *xas,
128 struct address_space *mapping)
129{
130 if (dax_mapping(mapping) || shmem_mapping(mapping))
131 return;
132 xas_set_update(xas, workingset_update_node);
133 xas_set_lru(xas, &shadow_nodes);
134}
135
136static void page_cache_delete(struct address_space *mapping,
137 struct folio *folio, void *shadow)
138{
139 XA_STATE(xas, &mapping->i_pages, folio->index);
140 long nr = 1;
141
142 mapping_set_update(&xas, mapping);
143
144 xas_set_order(&xas, folio->index, folio_order(folio));
145 nr = folio_nr_pages(folio);
146
147 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
148
149 xas_store(&xas, shadow);
150 xas_init_marks(&xas);
151
152 folio->mapping = NULL;
153 /* Leave page->index set: truncation lookup relies upon it */
154 mapping->nrpages -= nr;
155}
156
157static void filemap_unaccount_folio(struct address_space *mapping,
158 struct folio *folio)
159{
160 long nr;
161
162 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
163 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
164 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
165 current->comm, folio_pfn(folio));
166 dump_page(&folio->page, "still mapped when deleted");
167 dump_stack();
168 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
169
170 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
171 int mapcount = page_mapcount(&folio->page);
172
173 if (folio_ref_count(folio) >= mapcount + 2) {
174 /*
175 * All vmas have already been torn down, so it's
176 * a good bet that actually the page is unmapped
177 * and we'd rather not leak it: if we're wrong,
178 * another bad page check should catch it later.
179 */
180 page_mapcount_reset(&folio->page);
181 folio_ref_sub(folio, mapcount);
182 }
183 }
184 }
185
186 /* hugetlb folios do not participate in page cache accounting. */
187 if (folio_test_hugetlb(folio))
188 return;
189
190 nr = folio_nr_pages(folio);
191
192 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
193 if (folio_test_swapbacked(folio)) {
194 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
195 if (folio_test_pmd_mappable(folio))
196 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
197 } else if (folio_test_pmd_mappable(folio)) {
198 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
199 filemap_nr_thps_dec(mapping);
200 }
201
202 /*
203 * At this point folio must be either written or cleaned by
204 * truncate. Dirty folio here signals a bug and loss of
205 * unwritten data - on ordinary filesystems.
206 *
207 * But it's harmless on in-memory filesystems like tmpfs; and can
208 * occur when a driver which did get_user_pages() sets page dirty
209 * before putting it, while the inode is being finally evicted.
210 *
211 * Below fixes dirty accounting after removing the folio entirely
212 * but leaves the dirty flag set: it has no effect for truncated
213 * folio and anyway will be cleared before returning folio to
214 * buddy allocator.
215 */
216 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
217 mapping_can_writeback(mapping)))
218 folio_account_cleaned(folio, inode_to_wb(mapping->host));
219}
220
221/*
222 * Delete a page from the page cache and free it. Caller has to make
223 * sure the page is locked and that nobody else uses it - or that usage
224 * is safe. The caller must hold the i_pages lock.
225 */
226void __filemap_remove_folio(struct folio *folio, void *shadow)
227{
228 struct address_space *mapping = folio->mapping;
229
230 trace_mm_filemap_delete_from_page_cache(folio);
231 filemap_unaccount_folio(mapping, folio);
232 page_cache_delete(mapping, folio, shadow);
233}
234
235void filemap_free_folio(struct address_space *mapping, struct folio *folio)
236{
237 void (*free_folio)(struct folio *);
238 int refs = 1;
239
240 free_folio = mapping->a_ops->free_folio;
241 if (free_folio)
242 free_folio(folio);
243
244 if (folio_test_large(folio))
245 refs = folio_nr_pages(folio);
246 folio_put_refs(folio, refs);
247}
248
249/**
250 * filemap_remove_folio - Remove folio from page cache.
251 * @folio: The folio.
252 *
253 * This must be called only on folios that are locked and have been
254 * verified to be in the page cache. It will never put the folio into
255 * the free list because the caller has a reference on the page.
256 */
257void filemap_remove_folio(struct folio *folio)
258{
259 struct address_space *mapping = folio->mapping;
260
261 BUG_ON(!folio_test_locked(folio));
262 spin_lock(&mapping->host->i_lock);
263 xa_lock_irq(&mapping->i_pages);
264 __filemap_remove_folio(folio, NULL);
265 xa_unlock_irq(&mapping->i_pages);
266 if (mapping_shrinkable(mapping))
267 inode_add_lru(mapping->host);
268 spin_unlock(&mapping->host->i_lock);
269
270 filemap_free_folio(mapping, folio);
271}
272
273/*
274 * page_cache_delete_batch - delete several folios from page cache
275 * @mapping: the mapping to which folios belong
276 * @fbatch: batch of folios to delete
277 *
278 * The function walks over mapping->i_pages and removes folios passed in
279 * @fbatch from the mapping. The function expects @fbatch to be sorted
280 * by page index and is optimised for it to be dense.
281 * It tolerates holes in @fbatch (mapping entries at those indices are not
282 * modified).
283 *
284 * The function expects the i_pages lock to be held.
285 */
286static void page_cache_delete_batch(struct address_space *mapping,
287 struct folio_batch *fbatch)
288{
289 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
290 long total_pages = 0;
291 int i = 0;
292 struct folio *folio;
293
294 mapping_set_update(&xas, mapping);
295 xas_for_each(&xas, folio, ULONG_MAX) {
296 if (i >= folio_batch_count(fbatch))
297 break;
298
299 /* A swap/dax/shadow entry got inserted? Skip it. */
300 if (xa_is_value(folio))
301 continue;
302 /*
303 * A page got inserted in our range? Skip it. We have our
304 * pages locked so they are protected from being removed.
305 * If we see a page whose index is higher than ours, it
306 * means our page has been removed, which shouldn't be
307 * possible because we're holding the PageLock.
308 */
309 if (folio != fbatch->folios[i]) {
310 VM_BUG_ON_FOLIO(folio->index >
311 fbatch->folios[i]->index, folio);
312 continue;
313 }
314
315 WARN_ON_ONCE(!folio_test_locked(folio));
316
317 folio->mapping = NULL;
318 /* Leave folio->index set: truncation lookup relies on it */
319
320 i++;
321 xas_store(&xas, NULL);
322 total_pages += folio_nr_pages(folio);
323 }
324 mapping->nrpages -= total_pages;
325}
326
327void delete_from_page_cache_batch(struct address_space *mapping,
328 struct folio_batch *fbatch)
329{
330 int i;
331
332 if (!folio_batch_count(fbatch))
333 return;
334
335 spin_lock(&mapping->host->i_lock);
336 xa_lock_irq(&mapping->i_pages);
337 for (i = 0; i < folio_batch_count(fbatch); i++) {
338 struct folio *folio = fbatch->folios[i];
339
340 trace_mm_filemap_delete_from_page_cache(folio);
341 filemap_unaccount_folio(mapping, folio);
342 }
343 page_cache_delete_batch(mapping, fbatch);
344 xa_unlock_irq(&mapping->i_pages);
345 if (mapping_shrinkable(mapping))
346 inode_add_lru(mapping->host);
347 spin_unlock(&mapping->host->i_lock);
348
349 for (i = 0; i < folio_batch_count(fbatch); i++)
350 filemap_free_folio(mapping, fbatch->folios[i]);
351}
352
353int filemap_check_errors(struct address_space *mapping)
354{
355 int ret = 0;
356 /* Check for outstanding write errors */
357 if (test_bit(AS_ENOSPC, &mapping->flags) &&
358 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
359 ret = -ENOSPC;
360 if (test_bit(AS_EIO, &mapping->flags) &&
361 test_and_clear_bit(AS_EIO, &mapping->flags))
362 ret = -EIO;
363 return ret;
364}
365EXPORT_SYMBOL(filemap_check_errors);
366
367static int filemap_check_and_keep_errors(struct address_space *mapping)
368{
369 /* Check for outstanding write errors */
370 if (test_bit(AS_EIO, &mapping->flags))
371 return -EIO;
372 if (test_bit(AS_ENOSPC, &mapping->flags))
373 return -ENOSPC;
374 return 0;
375}
376
377/**
378 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
379 * @mapping: address space structure to write
380 * @wbc: the writeback_control controlling the writeout
381 *
382 * Call writepages on the mapping using the provided wbc to control the
383 * writeout.
384 *
385 * Return: %0 on success, negative error code otherwise.
386 */
387int filemap_fdatawrite_wbc(struct address_space *mapping,
388 struct writeback_control *wbc)
389{
390 int ret;
391
392 if (!mapping_can_writeback(mapping) ||
393 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
394 return 0;
395
396 wbc_attach_fdatawrite_inode(wbc, mapping->host);
397 ret = do_writepages(mapping, wbc);
398 wbc_detach_inode(wbc);
399 return ret;
400}
401EXPORT_SYMBOL(filemap_fdatawrite_wbc);
402
403/**
404 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
405 * @mapping: address space structure to write
406 * @start: offset in bytes where the range starts
407 * @end: offset in bytes where the range ends (inclusive)
408 * @sync_mode: enable synchronous operation
409 *
410 * Start writeback against all of a mapping's dirty pages that lie
411 * within the byte offsets <start, end> inclusive.
412 *
413 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
414 * opposed to a regular memory cleansing writeback. The difference between
415 * these two operations is that if a dirty page/buffer is encountered, it must
416 * be waited upon, and not just skipped over.
417 *
418 * Return: %0 on success, negative error code otherwise.
419 */
420int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
421 loff_t end, int sync_mode)
422{
423 struct writeback_control wbc = {
424 .sync_mode = sync_mode,
425 .nr_to_write = LONG_MAX,
426 .range_start = start,
427 .range_end = end,
428 };
429
430 return filemap_fdatawrite_wbc(mapping, &wbc);
431}
432
433static inline int __filemap_fdatawrite(struct address_space *mapping,
434 int sync_mode)
435{
436 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
437}
438
439int filemap_fdatawrite(struct address_space *mapping)
440{
441 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
442}
443EXPORT_SYMBOL(filemap_fdatawrite);
444
445int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
446 loff_t end)
447{
448 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
449}
450EXPORT_SYMBOL(filemap_fdatawrite_range);
451
452/**
453 * filemap_flush - mostly a non-blocking flush
454 * @mapping: target address_space
455 *
456 * This is a mostly non-blocking flush. Not suitable for data-integrity
457 * purposes - I/O may not be started against all dirty pages.
458 *
459 * Return: %0 on success, negative error code otherwise.
460 */
461int filemap_flush(struct address_space *mapping)
462{
463 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
464}
465EXPORT_SYMBOL(filemap_flush);
466
467/**
468 * filemap_range_has_page - check if a page exists in range.
469 * @mapping: address space within which to check
470 * @start_byte: offset in bytes where the range starts
471 * @end_byte: offset in bytes where the range ends (inclusive)
472 *
473 * Find at least one page in the range supplied, usually used to check if
474 * direct writing in this range will trigger a writeback.
475 *
476 * Return: %true if at least one page exists in the specified range,
477 * %false otherwise.
478 */
479bool filemap_range_has_page(struct address_space *mapping,
480 loff_t start_byte, loff_t end_byte)
481{
482 struct folio *folio;
483 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
484 pgoff_t max = end_byte >> PAGE_SHIFT;
485
486 if (end_byte < start_byte)
487 return false;
488
489 rcu_read_lock();
490 for (;;) {
491 folio = xas_find(&xas, max);
492 if (xas_retry(&xas, folio))
493 continue;
494 /* Shadow entries don't count */
495 if (xa_is_value(folio))
496 continue;
497 /*
498 * We don't need to try to pin this page; we're about to
499 * release the RCU lock anyway. It is enough to know that
500 * there was a page here recently.
501 */
502 break;
503 }
504 rcu_read_unlock();
505
506 return folio != NULL;
507}
508EXPORT_SYMBOL(filemap_range_has_page);
509
510static void __filemap_fdatawait_range(struct address_space *mapping,
511 loff_t start_byte, loff_t end_byte)
512{
513 pgoff_t index = start_byte >> PAGE_SHIFT;
514 pgoff_t end = end_byte >> PAGE_SHIFT;
515 struct folio_batch fbatch;
516 unsigned nr_folios;
517
518 folio_batch_init(&fbatch);
519
520 while (index <= end) {
521 unsigned i;
522
523 nr_folios = filemap_get_folios_tag(mapping, &index, end,
524 PAGECACHE_TAG_WRITEBACK, &fbatch);
525
526 if (!nr_folios)
527 break;
528
529 for (i = 0; i < nr_folios; i++) {
530 struct folio *folio = fbatch.folios[i];
531
532 folio_wait_writeback(folio);
533 folio_clear_error(folio);
534 }
535 folio_batch_release(&fbatch);
536 cond_resched();
537 }
538}
539
540/**
541 * filemap_fdatawait_range - wait for writeback to complete
542 * @mapping: address space structure to wait for
543 * @start_byte: offset in bytes where the range starts
544 * @end_byte: offset in bytes where the range ends (inclusive)
545 *
546 * Walk the list of under-writeback pages of the given address space
547 * in the given range and wait for all of them. Check error status of
548 * the address space and return it.
549 *
550 * Since the error status of the address space is cleared by this function,
551 * callers are responsible for checking the return value and handling and/or
552 * reporting the error.
553 *
554 * Return: error status of the address space.
555 */
556int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557 loff_t end_byte)
558{
559 __filemap_fdatawait_range(mapping, start_byte, end_byte);
560 return filemap_check_errors(mapping);
561}
562EXPORT_SYMBOL(filemap_fdatawait_range);
563
564/**
565 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
566 * @mapping: address space structure to wait for
567 * @start_byte: offset in bytes where the range starts
568 * @end_byte: offset in bytes where the range ends (inclusive)
569 *
570 * Walk the list of under-writeback pages of the given address space in the
571 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
572 * this function does not clear error status of the address space.
573 *
574 * Use this function if callers don't handle errors themselves. Expected
575 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
576 * fsfreeze(8)
577 */
578int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
579 loff_t start_byte, loff_t end_byte)
580{
581 __filemap_fdatawait_range(mapping, start_byte, end_byte);
582 return filemap_check_and_keep_errors(mapping);
583}
584EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
585
586/**
587 * file_fdatawait_range - wait for writeback to complete
588 * @file: file pointing to address space structure to wait for
589 * @start_byte: offset in bytes where the range starts
590 * @end_byte: offset in bytes where the range ends (inclusive)
591 *
592 * Walk the list of under-writeback pages of the address space that file
593 * refers to, in the given range and wait for all of them. Check error
594 * status of the address space vs. the file->f_wb_err cursor and return it.
595 *
596 * Since the error status of the file is advanced by this function,
597 * callers are responsible for checking the return value and handling and/or
598 * reporting the error.
599 *
600 * Return: error status of the address space vs. the file->f_wb_err cursor.
601 */
602int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
603{
604 struct address_space *mapping = file->f_mapping;
605
606 __filemap_fdatawait_range(mapping, start_byte, end_byte);
607 return file_check_and_advance_wb_err(file);
608}
609EXPORT_SYMBOL(file_fdatawait_range);
610
611/**
612 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
613 * @mapping: address space structure to wait for
614 *
615 * Walk the list of under-writeback pages of the given address space
616 * and wait for all of them. Unlike filemap_fdatawait(), this function
617 * does not clear error status of the address space.
618 *
619 * Use this function if callers don't handle errors themselves. Expected
620 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
621 * fsfreeze(8)
622 *
623 * Return: error status of the address space.
624 */
625int filemap_fdatawait_keep_errors(struct address_space *mapping)
626{
627 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
628 return filemap_check_and_keep_errors(mapping);
629}
630EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
631
632/* Returns true if writeback might be needed or already in progress. */
633static bool mapping_needs_writeback(struct address_space *mapping)
634{
635 return mapping->nrpages;
636}
637
638bool filemap_range_has_writeback(struct address_space *mapping,
639 loff_t start_byte, loff_t end_byte)
640{
641 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
642 pgoff_t max = end_byte >> PAGE_SHIFT;
643 struct folio *folio;
644
645 if (end_byte < start_byte)
646 return false;
647
648 rcu_read_lock();
649 xas_for_each(&xas, folio, max) {
650 if (xas_retry(&xas, folio))
651 continue;
652 if (xa_is_value(folio))
653 continue;
654 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
655 folio_test_writeback(folio))
656 break;
657 }
658 rcu_read_unlock();
659 return folio != NULL;
660}
661EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
662
663/**
664 * filemap_write_and_wait_range - write out & wait on a file range
665 * @mapping: the address_space for the pages
666 * @lstart: offset in bytes where the range starts
667 * @lend: offset in bytes where the range ends (inclusive)
668 *
669 * Write out and wait upon file offsets lstart->lend, inclusive.
670 *
671 * Note that @lend is inclusive (describes the last byte to be written) so
672 * that this function can be used to write to the very end-of-file (end = -1).
673 *
674 * Return: error status of the address space.
675 */
676int filemap_write_and_wait_range(struct address_space *mapping,
677 loff_t lstart, loff_t lend)
678{
679 int err = 0, err2;
680
681 if (lend < lstart)
682 return 0;
683
684 if (mapping_needs_writeback(mapping)) {
685 err = __filemap_fdatawrite_range(mapping, lstart, lend,
686 WB_SYNC_ALL);
687 /*
688 * Even if the above returned error, the pages may be
689 * written partially (e.g. -ENOSPC), so we wait for it.
690 * But the -EIO is special case, it may indicate the worst
691 * thing (e.g. bug) happened, so we avoid waiting for it.
692 */
693 if (err != -EIO)
694 __filemap_fdatawait_range(mapping, lstart, lend);
695 }
696 err2 = filemap_check_errors(mapping);
697 if (!err)
698 err = err2;
699 return err;
700}
701EXPORT_SYMBOL(filemap_write_and_wait_range);
702
703void __filemap_set_wb_err(struct address_space *mapping, int err)
704{
705 errseq_t eseq = errseq_set(&mapping->wb_err, err);
706
707 trace_filemap_set_wb_err(mapping, eseq);
708}
709EXPORT_SYMBOL(__filemap_set_wb_err);
710
711/**
712 * file_check_and_advance_wb_err - report wb error (if any) that was previously
713 * and advance wb_err to current one
714 * @file: struct file on which the error is being reported
715 *
716 * When userland calls fsync (or something like nfsd does the equivalent), we
717 * want to report any writeback errors that occurred since the last fsync (or
718 * since the file was opened if there haven't been any).
719 *
720 * Grab the wb_err from the mapping. If it matches what we have in the file,
721 * then just quickly return 0. The file is all caught up.
722 *
723 * If it doesn't match, then take the mapping value, set the "seen" flag in
724 * it and try to swap it into place. If it works, or another task beat us
725 * to it with the new value, then update the f_wb_err and return the error
726 * portion. The error at this point must be reported via proper channels
727 * (a'la fsync, or NFS COMMIT operation, etc.).
728 *
729 * While we handle mapping->wb_err with atomic operations, the f_wb_err
730 * value is protected by the f_lock since we must ensure that it reflects
731 * the latest value swapped in for this file descriptor.
732 *
733 * Return: %0 on success, negative error code otherwise.
734 */
735int file_check_and_advance_wb_err(struct file *file)
736{
737 int err = 0;
738 errseq_t old = READ_ONCE(file->f_wb_err);
739 struct address_space *mapping = file->f_mapping;
740
741 /* Locklessly handle the common case where nothing has changed */
742 if (errseq_check(&mapping->wb_err, old)) {
743 /* Something changed, must use slow path */
744 spin_lock(&file->f_lock);
745 old = file->f_wb_err;
746 err = errseq_check_and_advance(&mapping->wb_err,
747 &file->f_wb_err);
748 trace_file_check_and_advance_wb_err(file, old);
749 spin_unlock(&file->f_lock);
750 }
751
752 /*
753 * We're mostly using this function as a drop in replacement for
754 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
755 * that the legacy code would have had on these flags.
756 */
757 clear_bit(AS_EIO, &mapping->flags);
758 clear_bit(AS_ENOSPC, &mapping->flags);
759 return err;
760}
761EXPORT_SYMBOL(file_check_and_advance_wb_err);
762
763/**
764 * file_write_and_wait_range - write out & wait on a file range
765 * @file: file pointing to address_space with pages
766 * @lstart: offset in bytes where the range starts
767 * @lend: offset in bytes where the range ends (inclusive)
768 *
769 * Write out and wait upon file offsets lstart->lend, inclusive.
770 *
771 * Note that @lend is inclusive (describes the last byte to be written) so
772 * that this function can be used to write to the very end-of-file (end = -1).
773 *
774 * After writing out and waiting on the data, we check and advance the
775 * f_wb_err cursor to the latest value, and return any errors detected there.
776 *
777 * Return: %0 on success, negative error code otherwise.
778 */
779int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
780{
781 int err = 0, err2;
782 struct address_space *mapping = file->f_mapping;
783
784 if (lend < lstart)
785 return 0;
786
787 if (mapping_needs_writeback(mapping)) {
788 err = __filemap_fdatawrite_range(mapping, lstart, lend,
789 WB_SYNC_ALL);
790 /* See comment of filemap_write_and_wait() */
791 if (err != -EIO)
792 __filemap_fdatawait_range(mapping, lstart, lend);
793 }
794 err2 = file_check_and_advance_wb_err(file);
795 if (!err)
796 err = err2;
797 return err;
798}
799EXPORT_SYMBOL(file_write_and_wait_range);
800
801/**
802 * replace_page_cache_folio - replace a pagecache folio with a new one
803 * @old: folio to be replaced
804 * @new: folio to replace with
805 *
806 * This function replaces a folio in the pagecache with a new one. On
807 * success it acquires the pagecache reference for the new folio and
808 * drops it for the old folio. Both the old and new folios must be
809 * locked. This function does not add the new folio to the LRU, the
810 * caller must do that.
811 *
812 * The remove + add is atomic. This function cannot fail.
813 */
814void replace_page_cache_folio(struct folio *old, struct folio *new)
815{
816 struct address_space *mapping = old->mapping;
817 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
818 pgoff_t offset = old->index;
819 XA_STATE(xas, &mapping->i_pages, offset);
820
821 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
822 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
823 VM_BUG_ON_FOLIO(new->mapping, new);
824
825 folio_get(new);
826 new->mapping = mapping;
827 new->index = offset;
828
829 mem_cgroup_replace_folio(old, new);
830
831 xas_lock_irq(&xas);
832 xas_store(&xas, new);
833
834 old->mapping = NULL;
835 /* hugetlb pages do not participate in page cache accounting. */
836 if (!folio_test_hugetlb(old))
837 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
838 if (!folio_test_hugetlb(new))
839 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
840 if (folio_test_swapbacked(old))
841 __lruvec_stat_sub_folio(old, NR_SHMEM);
842 if (folio_test_swapbacked(new))
843 __lruvec_stat_add_folio(new, NR_SHMEM);
844 xas_unlock_irq(&xas);
845 if (free_folio)
846 free_folio(old);
847 folio_put(old);
848}
849EXPORT_SYMBOL_GPL(replace_page_cache_folio);
850
851noinline int __filemap_add_folio(struct address_space *mapping,
852 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
853{
854 XA_STATE(xas, &mapping->i_pages, index);
855 bool huge = folio_test_hugetlb(folio);
856 bool charged = false;
857 long nr = 1;
858
859 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
860 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
861 mapping_set_update(&xas, mapping);
862
863 if (!huge) {
864 int error = mem_cgroup_charge(folio, NULL, gfp);
865 if (error)
866 return error;
867 charged = true;
868 }
869
870 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
871 xas_set_order(&xas, index, folio_order(folio));
872 nr = folio_nr_pages(folio);
873
874 gfp &= GFP_RECLAIM_MASK;
875 folio_ref_add(folio, nr);
876 folio->mapping = mapping;
877 folio->index = xas.xa_index;
878
879 do {
880 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
881 void *entry, *old = NULL;
882
883 if (order > folio_order(folio))
884 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
885 order, gfp);
886 xas_lock_irq(&xas);
887 xas_for_each_conflict(&xas, entry) {
888 old = entry;
889 if (!xa_is_value(entry)) {
890 xas_set_err(&xas, -EEXIST);
891 goto unlock;
892 }
893 }
894
895 if (old) {
896 if (shadowp)
897 *shadowp = old;
898 /* entry may have been split before we acquired lock */
899 order = xa_get_order(xas.xa, xas.xa_index);
900 if (order > folio_order(folio)) {
901 /* How to handle large swap entries? */
902 BUG_ON(shmem_mapping(mapping));
903 xas_split(&xas, old, order);
904 xas_reset(&xas);
905 }
906 }
907
908 xas_store(&xas, folio);
909 if (xas_error(&xas))
910 goto unlock;
911
912 mapping->nrpages += nr;
913
914 /* hugetlb pages do not participate in page cache accounting */
915 if (!huge) {
916 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
917 if (folio_test_pmd_mappable(folio))
918 __lruvec_stat_mod_folio(folio,
919 NR_FILE_THPS, nr);
920 }
921unlock:
922 xas_unlock_irq(&xas);
923 } while (xas_nomem(&xas, gfp));
924
925 if (xas_error(&xas))
926 goto error;
927
928 trace_mm_filemap_add_to_page_cache(folio);
929 return 0;
930error:
931 if (charged)
932 mem_cgroup_uncharge(folio);
933 folio->mapping = NULL;
934 /* Leave page->index set: truncation relies upon it */
935 folio_put_refs(folio, nr);
936 return xas_error(&xas);
937}
938ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
939
940int filemap_add_folio(struct address_space *mapping, struct folio *folio,
941 pgoff_t index, gfp_t gfp)
942{
943 void *shadow = NULL;
944 int ret;
945
946 __folio_set_locked(folio);
947 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
948 if (unlikely(ret))
949 __folio_clear_locked(folio);
950 else {
951 /*
952 * The folio might have been evicted from cache only
953 * recently, in which case it should be activated like
954 * any other repeatedly accessed folio.
955 * The exception is folios getting rewritten; evicting other
956 * data from the working set, only to cache data that will
957 * get overwritten with something else, is a waste of memory.
958 */
959 WARN_ON_ONCE(folio_test_active(folio));
960 if (!(gfp & __GFP_WRITE) && shadow)
961 workingset_refault(folio, shadow);
962 folio_add_lru(folio);
963 }
964 return ret;
965}
966EXPORT_SYMBOL_GPL(filemap_add_folio);
967
968#ifdef CONFIG_NUMA
969struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
970{
971 int n;
972 struct folio *folio;
973
974 if (cpuset_do_page_mem_spread()) {
975 unsigned int cpuset_mems_cookie;
976 do {
977 cpuset_mems_cookie = read_mems_allowed_begin();
978 n = cpuset_mem_spread_node();
979 folio = __folio_alloc_node(gfp, order, n);
980 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
981
982 return folio;
983 }
984 return folio_alloc(gfp, order);
985}
986EXPORT_SYMBOL(filemap_alloc_folio);
987#endif
988
989/*
990 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
991 *
992 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
993 *
994 * @mapping1: the first mapping to lock
995 * @mapping2: the second mapping to lock
996 */
997void filemap_invalidate_lock_two(struct address_space *mapping1,
998 struct address_space *mapping2)
999{
1000 if (mapping1 > mapping2)
1001 swap(mapping1, mapping2);
1002 if (mapping1)
1003 down_write(&mapping1->invalidate_lock);
1004 if (mapping2 && mapping1 != mapping2)
1005 down_write_nested(&mapping2->invalidate_lock, 1);
1006}
1007EXPORT_SYMBOL(filemap_invalidate_lock_two);
1008
1009/*
1010 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1011 *
1012 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1013 *
1014 * @mapping1: the first mapping to unlock
1015 * @mapping2: the second mapping to unlock
1016 */
1017void filemap_invalidate_unlock_two(struct address_space *mapping1,
1018 struct address_space *mapping2)
1019{
1020 if (mapping1)
1021 up_write(&mapping1->invalidate_lock);
1022 if (mapping2 && mapping1 != mapping2)
1023 up_write(&mapping2->invalidate_lock);
1024}
1025EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1026
1027/*
1028 * In order to wait for pages to become available there must be
1029 * waitqueues associated with pages. By using a hash table of
1030 * waitqueues where the bucket discipline is to maintain all
1031 * waiters on the same queue and wake all when any of the pages
1032 * become available, and for the woken contexts to check to be
1033 * sure the appropriate page became available, this saves space
1034 * at a cost of "thundering herd" phenomena during rare hash
1035 * collisions.
1036 */
1037#define PAGE_WAIT_TABLE_BITS 8
1038#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1039static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1040
1041static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1042{
1043 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1044}
1045
1046void __init pagecache_init(void)
1047{
1048 int i;
1049
1050 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1051 init_waitqueue_head(&folio_wait_table[i]);
1052
1053 page_writeback_init();
1054}
1055
1056/*
1057 * The page wait code treats the "wait->flags" somewhat unusually, because
1058 * we have multiple different kinds of waits, not just the usual "exclusive"
1059 * one.
1060 *
1061 * We have:
1062 *
1063 * (a) no special bits set:
1064 *
1065 * We're just waiting for the bit to be released, and when a waker
1066 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1067 * and remove it from the wait queue.
1068 *
1069 * Simple and straightforward.
1070 *
1071 * (b) WQ_FLAG_EXCLUSIVE:
1072 *
1073 * The waiter is waiting to get the lock, and only one waiter should
1074 * be woken up to avoid any thundering herd behavior. We'll set the
1075 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1076 *
1077 * This is the traditional exclusive wait.
1078 *
1079 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1080 *
1081 * The waiter is waiting to get the bit, and additionally wants the
1082 * lock to be transferred to it for fair lock behavior. If the lock
1083 * cannot be taken, we stop walking the wait queue without waking
1084 * the waiter.
1085 *
1086 * This is the "fair lock handoff" case, and in addition to setting
1087 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1088 * that it now has the lock.
1089 */
1090static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1091{
1092 unsigned int flags;
1093 struct wait_page_key *key = arg;
1094 struct wait_page_queue *wait_page
1095 = container_of(wait, struct wait_page_queue, wait);
1096
1097 if (!wake_page_match(wait_page, key))
1098 return 0;
1099
1100 /*
1101 * If it's a lock handoff wait, we get the bit for it, and
1102 * stop walking (and do not wake it up) if we can't.
1103 */
1104 flags = wait->flags;
1105 if (flags & WQ_FLAG_EXCLUSIVE) {
1106 if (test_bit(key->bit_nr, &key->folio->flags))
1107 return -1;
1108 if (flags & WQ_FLAG_CUSTOM) {
1109 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1110 return -1;
1111 flags |= WQ_FLAG_DONE;
1112 }
1113 }
1114
1115 /*
1116 * We are holding the wait-queue lock, but the waiter that
1117 * is waiting for this will be checking the flags without
1118 * any locking.
1119 *
1120 * So update the flags atomically, and wake up the waiter
1121 * afterwards to avoid any races. This store-release pairs
1122 * with the load-acquire in folio_wait_bit_common().
1123 */
1124 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1125 wake_up_state(wait->private, mode);
1126
1127 /*
1128 * Ok, we have successfully done what we're waiting for,
1129 * and we can unconditionally remove the wait entry.
1130 *
1131 * Note that this pairs with the "finish_wait()" in the
1132 * waiter, and has to be the absolute last thing we do.
1133 * After this list_del_init(&wait->entry) the wait entry
1134 * might be de-allocated and the process might even have
1135 * exited.
1136 */
1137 list_del_init_careful(&wait->entry);
1138 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1139}
1140
1141static void folio_wake_bit(struct folio *folio, int bit_nr)
1142{
1143 wait_queue_head_t *q = folio_waitqueue(folio);
1144 struct wait_page_key key;
1145 unsigned long flags;
1146
1147 key.folio = folio;
1148 key.bit_nr = bit_nr;
1149 key.page_match = 0;
1150
1151 spin_lock_irqsave(&q->lock, flags);
1152 __wake_up_locked_key(q, TASK_NORMAL, &key);
1153
1154 /*
1155 * It's possible to miss clearing waiters here, when we woke our page
1156 * waiters, but the hashed waitqueue has waiters for other pages on it.
1157 * That's okay, it's a rare case. The next waker will clear it.
1158 *
1159 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1160 * other), the flag may be cleared in the course of freeing the page;
1161 * but that is not required for correctness.
1162 */
1163 if (!waitqueue_active(q) || !key.page_match)
1164 folio_clear_waiters(folio);
1165
1166 spin_unlock_irqrestore(&q->lock, flags);
1167}
1168
1169/*
1170 * A choice of three behaviors for folio_wait_bit_common():
1171 */
1172enum behavior {
1173 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1174 * __folio_lock() waiting on then setting PG_locked.
1175 */
1176 SHARED, /* Hold ref to page and check the bit when woken, like
1177 * folio_wait_writeback() waiting on PG_writeback.
1178 */
1179 DROP, /* Drop ref to page before wait, no check when woken,
1180 * like folio_put_wait_locked() on PG_locked.
1181 */
1182};
1183
1184/*
1185 * Attempt to check (or get) the folio flag, and mark us done
1186 * if successful.
1187 */
1188static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1189 struct wait_queue_entry *wait)
1190{
1191 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1192 if (test_and_set_bit(bit_nr, &folio->flags))
1193 return false;
1194 } else if (test_bit(bit_nr, &folio->flags))
1195 return false;
1196
1197 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1198 return true;
1199}
1200
1201/* How many times do we accept lock stealing from under a waiter? */
1202int sysctl_page_lock_unfairness = 5;
1203
1204static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1205 int state, enum behavior behavior)
1206{
1207 wait_queue_head_t *q = folio_waitqueue(folio);
1208 int unfairness = sysctl_page_lock_unfairness;
1209 struct wait_page_queue wait_page;
1210 wait_queue_entry_t *wait = &wait_page.wait;
1211 bool thrashing = false;
1212 unsigned long pflags;
1213 bool in_thrashing;
1214
1215 if (bit_nr == PG_locked &&
1216 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1217 delayacct_thrashing_start(&in_thrashing);
1218 psi_memstall_enter(&pflags);
1219 thrashing = true;
1220 }
1221
1222 init_wait(wait);
1223 wait->func = wake_page_function;
1224 wait_page.folio = folio;
1225 wait_page.bit_nr = bit_nr;
1226
1227repeat:
1228 wait->flags = 0;
1229 if (behavior == EXCLUSIVE) {
1230 wait->flags = WQ_FLAG_EXCLUSIVE;
1231 if (--unfairness < 0)
1232 wait->flags |= WQ_FLAG_CUSTOM;
1233 }
1234
1235 /*
1236 * Do one last check whether we can get the
1237 * page bit synchronously.
1238 *
1239 * Do the folio_set_waiters() marking before that
1240 * to let any waker we _just_ missed know they
1241 * need to wake us up (otherwise they'll never
1242 * even go to the slow case that looks at the
1243 * page queue), and add ourselves to the wait
1244 * queue if we need to sleep.
1245 *
1246 * This part needs to be done under the queue
1247 * lock to avoid races.
1248 */
1249 spin_lock_irq(&q->lock);
1250 folio_set_waiters(folio);
1251 if (!folio_trylock_flag(folio, bit_nr, wait))
1252 __add_wait_queue_entry_tail(q, wait);
1253 spin_unlock_irq(&q->lock);
1254
1255 /*
1256 * From now on, all the logic will be based on
1257 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1258 * see whether the page bit testing has already
1259 * been done by the wake function.
1260 *
1261 * We can drop our reference to the folio.
1262 */
1263 if (behavior == DROP)
1264 folio_put(folio);
1265
1266 /*
1267 * Note that until the "finish_wait()", or until
1268 * we see the WQ_FLAG_WOKEN flag, we need to
1269 * be very careful with the 'wait->flags', because
1270 * we may race with a waker that sets them.
1271 */
1272 for (;;) {
1273 unsigned int flags;
1274
1275 set_current_state(state);
1276
1277 /* Loop until we've been woken or interrupted */
1278 flags = smp_load_acquire(&wait->flags);
1279 if (!(flags & WQ_FLAG_WOKEN)) {
1280 if (signal_pending_state(state, current))
1281 break;
1282
1283 io_schedule();
1284 continue;
1285 }
1286
1287 /* If we were non-exclusive, we're done */
1288 if (behavior != EXCLUSIVE)
1289 break;
1290
1291 /* If the waker got the lock for us, we're done */
1292 if (flags & WQ_FLAG_DONE)
1293 break;
1294
1295 /*
1296 * Otherwise, if we're getting the lock, we need to
1297 * try to get it ourselves.
1298 *
1299 * And if that fails, we'll have to retry this all.
1300 */
1301 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1302 goto repeat;
1303
1304 wait->flags |= WQ_FLAG_DONE;
1305 break;
1306 }
1307
1308 /*
1309 * If a signal happened, this 'finish_wait()' may remove the last
1310 * waiter from the wait-queues, but the folio waiters bit will remain
1311 * set. That's ok. The next wakeup will take care of it, and trying
1312 * to do it here would be difficult and prone to races.
1313 */
1314 finish_wait(q, wait);
1315
1316 if (thrashing) {
1317 delayacct_thrashing_end(&in_thrashing);
1318 psi_memstall_leave(&pflags);
1319 }
1320
1321 /*
1322 * NOTE! The wait->flags weren't stable until we've done the
1323 * 'finish_wait()', and we could have exited the loop above due
1324 * to a signal, and had a wakeup event happen after the signal
1325 * test but before the 'finish_wait()'.
1326 *
1327 * So only after the finish_wait() can we reliably determine
1328 * if we got woken up or not, so we can now figure out the final
1329 * return value based on that state without races.
1330 *
1331 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1332 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1333 */
1334 if (behavior == EXCLUSIVE)
1335 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1336
1337 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1338}
1339
1340#ifdef CONFIG_MIGRATION
1341/**
1342 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1343 * @entry: migration swap entry.
1344 * @ptl: already locked ptl. This function will drop the lock.
1345 *
1346 * Wait for a migration entry referencing the given page to be removed. This is
1347 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1348 * this can be called without taking a reference on the page. Instead this
1349 * should be called while holding the ptl for the migration entry referencing
1350 * the page.
1351 *
1352 * Returns after unlocking the ptl.
1353 *
1354 * This follows the same logic as folio_wait_bit_common() so see the comments
1355 * there.
1356 */
1357void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1358 __releases(ptl)
1359{
1360 struct wait_page_queue wait_page;
1361 wait_queue_entry_t *wait = &wait_page.wait;
1362 bool thrashing = false;
1363 unsigned long pflags;
1364 bool in_thrashing;
1365 wait_queue_head_t *q;
1366 struct folio *folio = pfn_swap_entry_folio(entry);
1367
1368 q = folio_waitqueue(folio);
1369 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1370 delayacct_thrashing_start(&in_thrashing);
1371 psi_memstall_enter(&pflags);
1372 thrashing = true;
1373 }
1374
1375 init_wait(wait);
1376 wait->func = wake_page_function;
1377 wait_page.folio = folio;
1378 wait_page.bit_nr = PG_locked;
1379 wait->flags = 0;
1380
1381 spin_lock_irq(&q->lock);
1382 folio_set_waiters(folio);
1383 if (!folio_trylock_flag(folio, PG_locked, wait))
1384 __add_wait_queue_entry_tail(q, wait);
1385 spin_unlock_irq(&q->lock);
1386
1387 /*
1388 * If a migration entry exists for the page the migration path must hold
1389 * a valid reference to the page, and it must take the ptl to remove the
1390 * migration entry. So the page is valid until the ptl is dropped.
1391 */
1392 spin_unlock(ptl);
1393
1394 for (;;) {
1395 unsigned int flags;
1396
1397 set_current_state(TASK_UNINTERRUPTIBLE);
1398
1399 /* Loop until we've been woken or interrupted */
1400 flags = smp_load_acquire(&wait->flags);
1401 if (!(flags & WQ_FLAG_WOKEN)) {
1402 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1403 break;
1404
1405 io_schedule();
1406 continue;
1407 }
1408 break;
1409 }
1410
1411 finish_wait(q, wait);
1412
1413 if (thrashing) {
1414 delayacct_thrashing_end(&in_thrashing);
1415 psi_memstall_leave(&pflags);
1416 }
1417}
1418#endif
1419
1420void folio_wait_bit(struct folio *folio, int bit_nr)
1421{
1422 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1423}
1424EXPORT_SYMBOL(folio_wait_bit);
1425
1426int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1427{
1428 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1429}
1430EXPORT_SYMBOL(folio_wait_bit_killable);
1431
1432/**
1433 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1434 * @folio: The folio to wait for.
1435 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1436 *
1437 * The caller should hold a reference on @folio. They expect the page to
1438 * become unlocked relatively soon, but do not wish to hold up migration
1439 * (for example) by holding the reference while waiting for the folio to
1440 * come unlocked. After this function returns, the caller should not
1441 * dereference @folio.
1442 *
1443 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1444 */
1445static int folio_put_wait_locked(struct folio *folio, int state)
1446{
1447 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1448}
1449
1450/**
1451 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1452 * @folio: Folio defining the wait queue of interest
1453 * @waiter: Waiter to add to the queue
1454 *
1455 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1456 */
1457void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1458{
1459 wait_queue_head_t *q = folio_waitqueue(folio);
1460 unsigned long flags;
1461
1462 spin_lock_irqsave(&q->lock, flags);
1463 __add_wait_queue_entry_tail(q, waiter);
1464 folio_set_waiters(folio);
1465 spin_unlock_irqrestore(&q->lock, flags);
1466}
1467EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1468
1469/**
1470 * folio_unlock - Unlock a locked folio.
1471 * @folio: The folio.
1472 *
1473 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1474 *
1475 * Context: May be called from interrupt or process context. May not be
1476 * called from NMI context.
1477 */
1478void folio_unlock(struct folio *folio)
1479{
1480 /* Bit 7 allows x86 to check the byte's sign bit */
1481 BUILD_BUG_ON(PG_waiters != 7);
1482 BUILD_BUG_ON(PG_locked > 7);
1483 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1484 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1485 folio_wake_bit(folio, PG_locked);
1486}
1487EXPORT_SYMBOL(folio_unlock);
1488
1489/**
1490 * folio_end_read - End read on a folio.
1491 * @folio: The folio.
1492 * @success: True if all reads completed successfully.
1493 *
1494 * When all reads against a folio have completed, filesystems should
1495 * call this function to let the pagecache know that no more reads
1496 * are outstanding. This will unlock the folio and wake up any thread
1497 * sleeping on the lock. The folio will also be marked uptodate if all
1498 * reads succeeded.
1499 *
1500 * Context: May be called from interrupt or process context. May not be
1501 * called from NMI context.
1502 */
1503void folio_end_read(struct folio *folio, bool success)
1504{
1505 unsigned long mask = 1 << PG_locked;
1506
1507 /* Must be in bottom byte for x86 to work */
1508 BUILD_BUG_ON(PG_uptodate > 7);
1509 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1510 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1511
1512 if (likely(success))
1513 mask |= 1 << PG_uptodate;
1514 if (folio_xor_flags_has_waiters(folio, mask))
1515 folio_wake_bit(folio, PG_locked);
1516}
1517EXPORT_SYMBOL(folio_end_read);
1518
1519/**
1520 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1521 * @folio: The folio.
1522 *
1523 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1524 * it. The folio reference held for PG_private_2 being set is released.
1525 *
1526 * This is, for example, used when a netfs folio is being written to a local
1527 * disk cache, thereby allowing writes to the cache for the same folio to be
1528 * serialised.
1529 */
1530void folio_end_private_2(struct folio *folio)
1531{
1532 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1533 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1534 folio_wake_bit(folio, PG_private_2);
1535 folio_put(folio);
1536}
1537EXPORT_SYMBOL(folio_end_private_2);
1538
1539/**
1540 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1541 * @folio: The folio to wait on.
1542 *
1543 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1544 */
1545void folio_wait_private_2(struct folio *folio)
1546{
1547 while (folio_test_private_2(folio))
1548 folio_wait_bit(folio, PG_private_2);
1549}
1550EXPORT_SYMBOL(folio_wait_private_2);
1551
1552/**
1553 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1554 * @folio: The folio to wait on.
1555 *
1556 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1557 * fatal signal is received by the calling task.
1558 *
1559 * Return:
1560 * - 0 if successful.
1561 * - -EINTR if a fatal signal was encountered.
1562 */
1563int folio_wait_private_2_killable(struct folio *folio)
1564{
1565 int ret = 0;
1566
1567 while (folio_test_private_2(folio)) {
1568 ret = folio_wait_bit_killable(folio, PG_private_2);
1569 if (ret < 0)
1570 break;
1571 }
1572
1573 return ret;
1574}
1575EXPORT_SYMBOL(folio_wait_private_2_killable);
1576
1577/**
1578 * folio_end_writeback - End writeback against a folio.
1579 * @folio: The folio.
1580 *
1581 * The folio must actually be under writeback.
1582 *
1583 * Context: May be called from process or interrupt context.
1584 */
1585void folio_end_writeback(struct folio *folio)
1586{
1587 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1588
1589 /*
1590 * folio_test_clear_reclaim() could be used here but it is an
1591 * atomic operation and overkill in this particular case. Failing
1592 * to shuffle a folio marked for immediate reclaim is too mild
1593 * a gain to justify taking an atomic operation penalty at the
1594 * end of every folio writeback.
1595 */
1596 if (folio_test_reclaim(folio)) {
1597 folio_clear_reclaim(folio);
1598 folio_rotate_reclaimable(folio);
1599 }
1600
1601 /*
1602 * Writeback does not hold a folio reference of its own, relying
1603 * on truncation to wait for the clearing of PG_writeback.
1604 * But here we must make sure that the folio is not freed and
1605 * reused before the folio_wake_bit().
1606 */
1607 folio_get(folio);
1608 if (__folio_end_writeback(folio))
1609 folio_wake_bit(folio, PG_writeback);
1610 acct_reclaim_writeback(folio);
1611 folio_put(folio);
1612}
1613EXPORT_SYMBOL(folio_end_writeback);
1614
1615/**
1616 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1617 * @folio: The folio to lock
1618 */
1619void __folio_lock(struct folio *folio)
1620{
1621 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1622 EXCLUSIVE);
1623}
1624EXPORT_SYMBOL(__folio_lock);
1625
1626int __folio_lock_killable(struct folio *folio)
1627{
1628 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1629 EXCLUSIVE);
1630}
1631EXPORT_SYMBOL_GPL(__folio_lock_killable);
1632
1633static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1634{
1635 struct wait_queue_head *q = folio_waitqueue(folio);
1636 int ret;
1637
1638 wait->folio = folio;
1639 wait->bit_nr = PG_locked;
1640
1641 spin_lock_irq(&q->lock);
1642 __add_wait_queue_entry_tail(q, &wait->wait);
1643 folio_set_waiters(folio);
1644 ret = !folio_trylock(folio);
1645 /*
1646 * If we were successful now, we know we're still on the
1647 * waitqueue as we're still under the lock. This means it's
1648 * safe to remove and return success, we know the callback
1649 * isn't going to trigger.
1650 */
1651 if (!ret)
1652 __remove_wait_queue(q, &wait->wait);
1653 else
1654 ret = -EIOCBQUEUED;
1655 spin_unlock_irq(&q->lock);
1656 return ret;
1657}
1658
1659/*
1660 * Return values:
1661 * 0 - folio is locked.
1662 * non-zero - folio is not locked.
1663 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1664 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1665 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1666 *
1667 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1668 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1669 */
1670vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1671{
1672 unsigned int flags = vmf->flags;
1673
1674 if (fault_flag_allow_retry_first(flags)) {
1675 /*
1676 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1677 * released even though returning VM_FAULT_RETRY.
1678 */
1679 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1680 return VM_FAULT_RETRY;
1681
1682 release_fault_lock(vmf);
1683 if (flags & FAULT_FLAG_KILLABLE)
1684 folio_wait_locked_killable(folio);
1685 else
1686 folio_wait_locked(folio);
1687 return VM_FAULT_RETRY;
1688 }
1689 if (flags & FAULT_FLAG_KILLABLE) {
1690 bool ret;
1691
1692 ret = __folio_lock_killable(folio);
1693 if (ret) {
1694 release_fault_lock(vmf);
1695 return VM_FAULT_RETRY;
1696 }
1697 } else {
1698 __folio_lock(folio);
1699 }
1700
1701 return 0;
1702}
1703
1704/**
1705 * page_cache_next_miss() - Find the next gap in the page cache.
1706 * @mapping: Mapping.
1707 * @index: Index.
1708 * @max_scan: Maximum range to search.
1709 *
1710 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1711 * gap with the lowest index.
1712 *
1713 * This function may be called under the rcu_read_lock. However, this will
1714 * not atomically search a snapshot of the cache at a single point in time.
1715 * For example, if a gap is created at index 5, then subsequently a gap is
1716 * created at index 10, page_cache_next_miss covering both indices may
1717 * return 10 if called under the rcu_read_lock.
1718 *
1719 * Return: The index of the gap if found, otherwise an index outside the
1720 * range specified (in which case 'return - index >= max_scan' will be true).
1721 * In the rare case of index wrap-around, 0 will be returned.
1722 */
1723pgoff_t page_cache_next_miss(struct address_space *mapping,
1724 pgoff_t index, unsigned long max_scan)
1725{
1726 XA_STATE(xas, &mapping->i_pages, index);
1727
1728 while (max_scan--) {
1729 void *entry = xas_next(&xas);
1730 if (!entry || xa_is_value(entry))
1731 break;
1732 if (xas.xa_index == 0)
1733 break;
1734 }
1735
1736 return xas.xa_index;
1737}
1738EXPORT_SYMBOL(page_cache_next_miss);
1739
1740/**
1741 * page_cache_prev_miss() - Find the previous gap in the page cache.
1742 * @mapping: Mapping.
1743 * @index: Index.
1744 * @max_scan: Maximum range to search.
1745 *
1746 * Search the range [max(index - max_scan + 1, 0), index] for the
1747 * gap with the highest index.
1748 *
1749 * This function may be called under the rcu_read_lock. However, this will
1750 * not atomically search a snapshot of the cache at a single point in time.
1751 * For example, if a gap is created at index 10, then subsequently a gap is
1752 * created at index 5, page_cache_prev_miss() covering both indices may
1753 * return 5 if called under the rcu_read_lock.
1754 *
1755 * Return: The index of the gap if found, otherwise an index outside the
1756 * range specified (in which case 'index - return >= max_scan' will be true).
1757 * In the rare case of wrap-around, ULONG_MAX will be returned.
1758 */
1759pgoff_t page_cache_prev_miss(struct address_space *mapping,
1760 pgoff_t index, unsigned long max_scan)
1761{
1762 XA_STATE(xas, &mapping->i_pages, index);
1763
1764 while (max_scan--) {
1765 void *entry = xas_prev(&xas);
1766 if (!entry || xa_is_value(entry))
1767 break;
1768 if (xas.xa_index == ULONG_MAX)
1769 break;
1770 }
1771
1772 return xas.xa_index;
1773}
1774EXPORT_SYMBOL(page_cache_prev_miss);
1775
1776/*
1777 * Lockless page cache protocol:
1778 * On the lookup side:
1779 * 1. Load the folio from i_pages
1780 * 2. Increment the refcount if it's not zero
1781 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1782 *
1783 * On the removal side:
1784 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1785 * B. Remove the page from i_pages
1786 * C. Return the page to the page allocator
1787 *
1788 * This means that any page may have its reference count temporarily
1789 * increased by a speculative page cache (or fast GUP) lookup as it can
1790 * be allocated by another user before the RCU grace period expires.
1791 * Because the refcount temporarily acquired here may end up being the
1792 * last refcount on the page, any page allocation must be freeable by
1793 * folio_put().
1794 */
1795
1796/*
1797 * filemap_get_entry - Get a page cache entry.
1798 * @mapping: the address_space to search
1799 * @index: The page cache index.
1800 *
1801 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1802 * it is returned with an increased refcount. If it is a shadow entry
1803 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1804 * it is returned without further action.
1805 *
1806 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1807 */
1808void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1809{
1810 XA_STATE(xas, &mapping->i_pages, index);
1811 struct folio *folio;
1812
1813 rcu_read_lock();
1814repeat:
1815 xas_reset(&xas);
1816 folio = xas_load(&xas);
1817 if (xas_retry(&xas, folio))
1818 goto repeat;
1819 /*
1820 * A shadow entry of a recently evicted page, or a swap entry from
1821 * shmem/tmpfs. Return it without attempting to raise page count.
1822 */
1823 if (!folio || xa_is_value(folio))
1824 goto out;
1825
1826 if (!folio_try_get_rcu(folio))
1827 goto repeat;
1828
1829 if (unlikely(folio != xas_reload(&xas))) {
1830 folio_put(folio);
1831 goto repeat;
1832 }
1833out:
1834 rcu_read_unlock();
1835
1836 return folio;
1837}
1838
1839/**
1840 * __filemap_get_folio - Find and get a reference to a folio.
1841 * @mapping: The address_space to search.
1842 * @index: The page index.
1843 * @fgp_flags: %FGP flags modify how the folio is returned.
1844 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1845 *
1846 * Looks up the page cache entry at @mapping & @index.
1847 *
1848 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1849 * if the %GFP flags specified for %FGP_CREAT are atomic.
1850 *
1851 * If this function returns a folio, it is returned with an increased refcount.
1852 *
1853 * Return: The found folio or an ERR_PTR() otherwise.
1854 */
1855struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1856 fgf_t fgp_flags, gfp_t gfp)
1857{
1858 struct folio *folio;
1859
1860repeat:
1861 folio = filemap_get_entry(mapping, index);
1862 if (xa_is_value(folio))
1863 folio = NULL;
1864 if (!folio)
1865 goto no_page;
1866
1867 if (fgp_flags & FGP_LOCK) {
1868 if (fgp_flags & FGP_NOWAIT) {
1869 if (!folio_trylock(folio)) {
1870 folio_put(folio);
1871 return ERR_PTR(-EAGAIN);
1872 }
1873 } else {
1874 folio_lock(folio);
1875 }
1876
1877 /* Has the page been truncated? */
1878 if (unlikely(folio->mapping != mapping)) {
1879 folio_unlock(folio);
1880 folio_put(folio);
1881 goto repeat;
1882 }
1883 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1884 }
1885
1886 if (fgp_flags & FGP_ACCESSED)
1887 folio_mark_accessed(folio);
1888 else if (fgp_flags & FGP_WRITE) {
1889 /* Clear idle flag for buffer write */
1890 if (folio_test_idle(folio))
1891 folio_clear_idle(folio);
1892 }
1893
1894 if (fgp_flags & FGP_STABLE)
1895 folio_wait_stable(folio);
1896no_page:
1897 if (!folio && (fgp_flags & FGP_CREAT)) {
1898 unsigned order = FGF_GET_ORDER(fgp_flags);
1899 int err;
1900
1901 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1902 gfp |= __GFP_WRITE;
1903 if (fgp_flags & FGP_NOFS)
1904 gfp &= ~__GFP_FS;
1905 if (fgp_flags & FGP_NOWAIT) {
1906 gfp &= ~GFP_KERNEL;
1907 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1908 }
1909 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1910 fgp_flags |= FGP_LOCK;
1911
1912 if (!mapping_large_folio_support(mapping))
1913 order = 0;
1914 if (order > MAX_PAGECACHE_ORDER)
1915 order = MAX_PAGECACHE_ORDER;
1916 /* If we're not aligned, allocate a smaller folio */
1917 if (index & ((1UL << order) - 1))
1918 order = __ffs(index);
1919
1920 do {
1921 gfp_t alloc_gfp = gfp;
1922
1923 err = -ENOMEM;
1924 if (order > 0)
1925 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1926 folio = filemap_alloc_folio(alloc_gfp, order);
1927 if (!folio)
1928 continue;
1929
1930 /* Init accessed so avoid atomic mark_page_accessed later */
1931 if (fgp_flags & FGP_ACCESSED)
1932 __folio_set_referenced(folio);
1933
1934 err = filemap_add_folio(mapping, folio, index, gfp);
1935 if (!err)
1936 break;
1937 folio_put(folio);
1938 folio = NULL;
1939 } while (order-- > 0);
1940
1941 if (err == -EEXIST)
1942 goto repeat;
1943 if (err)
1944 return ERR_PTR(err);
1945 /*
1946 * filemap_add_folio locks the page, and for mmap
1947 * we expect an unlocked page.
1948 */
1949 if (folio && (fgp_flags & FGP_FOR_MMAP))
1950 folio_unlock(folio);
1951 }
1952
1953 if (!folio)
1954 return ERR_PTR(-ENOENT);
1955 return folio;
1956}
1957EXPORT_SYMBOL(__filemap_get_folio);
1958
1959static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1960 xa_mark_t mark)
1961{
1962 struct folio *folio;
1963
1964retry:
1965 if (mark == XA_PRESENT)
1966 folio = xas_find(xas, max);
1967 else
1968 folio = xas_find_marked(xas, max, mark);
1969
1970 if (xas_retry(xas, folio))
1971 goto retry;
1972 /*
1973 * A shadow entry of a recently evicted page, a swap
1974 * entry from shmem/tmpfs or a DAX entry. Return it
1975 * without attempting to raise page count.
1976 */
1977 if (!folio || xa_is_value(folio))
1978 return folio;
1979
1980 if (!folio_try_get_rcu(folio))
1981 goto reset;
1982
1983 if (unlikely(folio != xas_reload(xas))) {
1984 folio_put(folio);
1985 goto reset;
1986 }
1987
1988 return folio;
1989reset:
1990 xas_reset(xas);
1991 goto retry;
1992}
1993
1994/**
1995 * find_get_entries - gang pagecache lookup
1996 * @mapping: The address_space to search
1997 * @start: The starting page cache index
1998 * @end: The final page index (inclusive).
1999 * @fbatch: Where the resulting entries are placed.
2000 * @indices: The cache indices corresponding to the entries in @entries
2001 *
2002 * find_get_entries() will search for and return a batch of entries in
2003 * the mapping. The entries are placed in @fbatch. find_get_entries()
2004 * takes a reference on any actual folios it returns.
2005 *
2006 * The entries have ascending indexes. The indices may not be consecutive
2007 * due to not-present entries or large folios.
2008 *
2009 * Any shadow entries of evicted folios, or swap entries from
2010 * shmem/tmpfs, are included in the returned array.
2011 *
2012 * Return: The number of entries which were found.
2013 */
2014unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2015 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2016{
2017 XA_STATE(xas, &mapping->i_pages, *start);
2018 struct folio *folio;
2019
2020 rcu_read_lock();
2021 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2022 indices[fbatch->nr] = xas.xa_index;
2023 if (!folio_batch_add(fbatch, folio))
2024 break;
2025 }
2026 rcu_read_unlock();
2027
2028 if (folio_batch_count(fbatch)) {
2029 unsigned long nr = 1;
2030 int idx = folio_batch_count(fbatch) - 1;
2031
2032 folio = fbatch->folios[idx];
2033 if (!xa_is_value(folio))
2034 nr = folio_nr_pages(folio);
2035 *start = indices[idx] + nr;
2036 }
2037 return folio_batch_count(fbatch);
2038}
2039
2040/**
2041 * find_lock_entries - Find a batch of pagecache entries.
2042 * @mapping: The address_space to search.
2043 * @start: The starting page cache index.
2044 * @end: The final page index (inclusive).
2045 * @fbatch: Where the resulting entries are placed.
2046 * @indices: The cache indices of the entries in @fbatch.
2047 *
2048 * find_lock_entries() will return a batch of entries from @mapping.
2049 * Swap, shadow and DAX entries are included. Folios are returned
2050 * locked and with an incremented refcount. Folios which are locked
2051 * by somebody else or under writeback are skipped. Folios which are
2052 * partially outside the range are not returned.
2053 *
2054 * The entries have ascending indexes. The indices may not be consecutive
2055 * due to not-present entries, large folios, folios which could not be
2056 * locked or folios under writeback.
2057 *
2058 * Return: The number of entries which were found.
2059 */
2060unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2061 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2062{
2063 XA_STATE(xas, &mapping->i_pages, *start);
2064 struct folio *folio;
2065
2066 rcu_read_lock();
2067 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2068 if (!xa_is_value(folio)) {
2069 if (folio->index < *start)
2070 goto put;
2071 if (folio_next_index(folio) - 1 > end)
2072 goto put;
2073 if (!folio_trylock(folio))
2074 goto put;
2075 if (folio->mapping != mapping ||
2076 folio_test_writeback(folio))
2077 goto unlock;
2078 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2079 folio);
2080 }
2081 indices[fbatch->nr] = xas.xa_index;
2082 if (!folio_batch_add(fbatch, folio))
2083 break;
2084 continue;
2085unlock:
2086 folio_unlock(folio);
2087put:
2088 folio_put(folio);
2089 }
2090 rcu_read_unlock();
2091
2092 if (folio_batch_count(fbatch)) {
2093 unsigned long nr = 1;
2094 int idx = folio_batch_count(fbatch) - 1;
2095
2096 folio = fbatch->folios[idx];
2097 if (!xa_is_value(folio))
2098 nr = folio_nr_pages(folio);
2099 *start = indices[idx] + nr;
2100 }
2101 return folio_batch_count(fbatch);
2102}
2103
2104/**
2105 * filemap_get_folios - Get a batch of folios
2106 * @mapping: The address_space to search
2107 * @start: The starting page index
2108 * @end: The final page index (inclusive)
2109 * @fbatch: The batch to fill.
2110 *
2111 * Search for and return a batch of folios in the mapping starting at
2112 * index @start and up to index @end (inclusive). The folios are returned
2113 * in @fbatch with an elevated reference count.
2114 *
2115 * Return: The number of folios which were found.
2116 * We also update @start to index the next folio for the traversal.
2117 */
2118unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2119 pgoff_t end, struct folio_batch *fbatch)
2120{
2121 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2122}
2123EXPORT_SYMBOL(filemap_get_folios);
2124
2125/**
2126 * filemap_get_folios_contig - Get a batch of contiguous folios
2127 * @mapping: The address_space to search
2128 * @start: The starting page index
2129 * @end: The final page index (inclusive)
2130 * @fbatch: The batch to fill
2131 *
2132 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2133 * except the returned folios are guaranteed to be contiguous. This may
2134 * not return all contiguous folios if the batch gets filled up.
2135 *
2136 * Return: The number of folios found.
2137 * Also update @start to be positioned for traversal of the next folio.
2138 */
2139
2140unsigned filemap_get_folios_contig(struct address_space *mapping,
2141 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2142{
2143 XA_STATE(xas, &mapping->i_pages, *start);
2144 unsigned long nr;
2145 struct folio *folio;
2146
2147 rcu_read_lock();
2148
2149 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2150 folio = xas_next(&xas)) {
2151 if (xas_retry(&xas, folio))
2152 continue;
2153 /*
2154 * If the entry has been swapped out, we can stop looking.
2155 * No current caller is looking for DAX entries.
2156 */
2157 if (xa_is_value(folio))
2158 goto update_start;
2159
2160 if (!folio_try_get_rcu(folio))
2161 goto retry;
2162
2163 if (unlikely(folio != xas_reload(&xas)))
2164 goto put_folio;
2165
2166 if (!folio_batch_add(fbatch, folio)) {
2167 nr = folio_nr_pages(folio);
2168 *start = folio->index + nr;
2169 goto out;
2170 }
2171 continue;
2172put_folio:
2173 folio_put(folio);
2174
2175retry:
2176 xas_reset(&xas);
2177 }
2178
2179update_start:
2180 nr = folio_batch_count(fbatch);
2181
2182 if (nr) {
2183 folio = fbatch->folios[nr - 1];
2184 *start = folio_next_index(folio);
2185 }
2186out:
2187 rcu_read_unlock();
2188 return folio_batch_count(fbatch);
2189}
2190EXPORT_SYMBOL(filemap_get_folios_contig);
2191
2192/**
2193 * filemap_get_folios_tag - Get a batch of folios matching @tag
2194 * @mapping: The address_space to search
2195 * @start: The starting page index
2196 * @end: The final page index (inclusive)
2197 * @tag: The tag index
2198 * @fbatch: The batch to fill
2199 *
2200 * The first folio may start before @start; if it does, it will contain
2201 * @start. The final folio may extend beyond @end; if it does, it will
2202 * contain @end. The folios have ascending indices. There may be gaps
2203 * between the folios if there are indices which have no folio in the
2204 * page cache. If folios are added to or removed from the page cache
2205 * while this is running, they may or may not be found by this call.
2206 * Only returns folios that are tagged with @tag.
2207 *
2208 * Return: The number of folios found.
2209 * Also update @start to index the next folio for traversal.
2210 */
2211unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2212 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2213{
2214 XA_STATE(xas, &mapping->i_pages, *start);
2215 struct folio *folio;
2216
2217 rcu_read_lock();
2218 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2219 /*
2220 * Shadow entries should never be tagged, but this iteration
2221 * is lockless so there is a window for page reclaim to evict
2222 * a page we saw tagged. Skip over it.
2223 */
2224 if (xa_is_value(folio))
2225 continue;
2226 if (!folio_batch_add(fbatch, folio)) {
2227 unsigned long nr = folio_nr_pages(folio);
2228 *start = folio->index + nr;
2229 goto out;
2230 }
2231 }
2232 /*
2233 * We come here when there is no page beyond @end. We take care to not
2234 * overflow the index @start as it confuses some of the callers. This
2235 * breaks the iteration when there is a page at index -1 but that is
2236 * already broke anyway.
2237 */
2238 if (end == (pgoff_t)-1)
2239 *start = (pgoff_t)-1;
2240 else
2241 *start = end + 1;
2242out:
2243 rcu_read_unlock();
2244
2245 return folio_batch_count(fbatch);
2246}
2247EXPORT_SYMBOL(filemap_get_folios_tag);
2248
2249/*
2250 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2251 * a _large_ part of the i/o request. Imagine the worst scenario:
2252 *
2253 * ---R__________________________________________B__________
2254 * ^ reading here ^ bad block(assume 4k)
2255 *
2256 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2257 * => failing the whole request => read(R) => read(R+1) =>
2258 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2259 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2260 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2261 *
2262 * It is going insane. Fix it by quickly scaling down the readahead size.
2263 */
2264static void shrink_readahead_size_eio(struct file_ra_state *ra)
2265{
2266 ra->ra_pages /= 4;
2267}
2268
2269/*
2270 * filemap_get_read_batch - Get a batch of folios for read
2271 *
2272 * Get a batch of folios which represent a contiguous range of bytes in
2273 * the file. No exceptional entries will be returned. If @index is in
2274 * the middle of a folio, the entire folio will be returned. The last
2275 * folio in the batch may have the readahead flag set or the uptodate flag
2276 * clear so that the caller can take the appropriate action.
2277 */
2278static void filemap_get_read_batch(struct address_space *mapping,
2279 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2280{
2281 XA_STATE(xas, &mapping->i_pages, index);
2282 struct folio *folio;
2283
2284 rcu_read_lock();
2285 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2286 if (xas_retry(&xas, folio))
2287 continue;
2288 if (xas.xa_index > max || xa_is_value(folio))
2289 break;
2290 if (xa_is_sibling(folio))
2291 break;
2292 if (!folio_try_get_rcu(folio))
2293 goto retry;
2294
2295 if (unlikely(folio != xas_reload(&xas)))
2296 goto put_folio;
2297
2298 if (!folio_batch_add(fbatch, folio))
2299 break;
2300 if (!folio_test_uptodate(folio))
2301 break;
2302 if (folio_test_readahead(folio))
2303 break;
2304 xas_advance(&xas, folio_next_index(folio) - 1);
2305 continue;
2306put_folio:
2307 folio_put(folio);
2308retry:
2309 xas_reset(&xas);
2310 }
2311 rcu_read_unlock();
2312}
2313
2314static int filemap_read_folio(struct file *file, filler_t filler,
2315 struct folio *folio)
2316{
2317 bool workingset = folio_test_workingset(folio);
2318 unsigned long pflags;
2319 int error;
2320
2321 /*
2322 * A previous I/O error may have been due to temporary failures,
2323 * eg. multipath errors. PG_error will be set again if read_folio
2324 * fails.
2325 */
2326 folio_clear_error(folio);
2327
2328 /* Start the actual read. The read will unlock the page. */
2329 if (unlikely(workingset))
2330 psi_memstall_enter(&pflags);
2331 error = filler(file, folio);
2332 if (unlikely(workingset))
2333 psi_memstall_leave(&pflags);
2334 if (error)
2335 return error;
2336
2337 error = folio_wait_locked_killable(folio);
2338 if (error)
2339 return error;
2340 if (folio_test_uptodate(folio))
2341 return 0;
2342 if (file)
2343 shrink_readahead_size_eio(&file->f_ra);
2344 return -EIO;
2345}
2346
2347static bool filemap_range_uptodate(struct address_space *mapping,
2348 loff_t pos, size_t count, struct folio *folio,
2349 bool need_uptodate)
2350{
2351 if (folio_test_uptodate(folio))
2352 return true;
2353 /* pipes can't handle partially uptodate pages */
2354 if (need_uptodate)
2355 return false;
2356 if (!mapping->a_ops->is_partially_uptodate)
2357 return false;
2358 if (mapping->host->i_blkbits >= folio_shift(folio))
2359 return false;
2360
2361 if (folio_pos(folio) > pos) {
2362 count -= folio_pos(folio) - pos;
2363 pos = 0;
2364 } else {
2365 pos -= folio_pos(folio);
2366 }
2367
2368 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2369}
2370
2371static int filemap_update_page(struct kiocb *iocb,
2372 struct address_space *mapping, size_t count,
2373 struct folio *folio, bool need_uptodate)
2374{
2375 int error;
2376
2377 if (iocb->ki_flags & IOCB_NOWAIT) {
2378 if (!filemap_invalidate_trylock_shared(mapping))
2379 return -EAGAIN;
2380 } else {
2381 filemap_invalidate_lock_shared(mapping);
2382 }
2383
2384 if (!folio_trylock(folio)) {
2385 error = -EAGAIN;
2386 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2387 goto unlock_mapping;
2388 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2389 filemap_invalidate_unlock_shared(mapping);
2390 /*
2391 * This is where we usually end up waiting for a
2392 * previously submitted readahead to finish.
2393 */
2394 folio_put_wait_locked(folio, TASK_KILLABLE);
2395 return AOP_TRUNCATED_PAGE;
2396 }
2397 error = __folio_lock_async(folio, iocb->ki_waitq);
2398 if (error)
2399 goto unlock_mapping;
2400 }
2401
2402 error = AOP_TRUNCATED_PAGE;
2403 if (!folio->mapping)
2404 goto unlock;
2405
2406 error = 0;
2407 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2408 need_uptodate))
2409 goto unlock;
2410
2411 error = -EAGAIN;
2412 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2413 goto unlock;
2414
2415 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2416 folio);
2417 goto unlock_mapping;
2418unlock:
2419 folio_unlock(folio);
2420unlock_mapping:
2421 filemap_invalidate_unlock_shared(mapping);
2422 if (error == AOP_TRUNCATED_PAGE)
2423 folio_put(folio);
2424 return error;
2425}
2426
2427static int filemap_create_folio(struct file *file,
2428 struct address_space *mapping, pgoff_t index,
2429 struct folio_batch *fbatch)
2430{
2431 struct folio *folio;
2432 int error;
2433
2434 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2435 if (!folio)
2436 return -ENOMEM;
2437
2438 /*
2439 * Protect against truncate / hole punch. Grabbing invalidate_lock
2440 * here assures we cannot instantiate and bring uptodate new
2441 * pagecache folios after evicting page cache during truncate
2442 * and before actually freeing blocks. Note that we could
2443 * release invalidate_lock after inserting the folio into
2444 * the page cache as the locked folio would then be enough to
2445 * synchronize with hole punching. But there are code paths
2446 * such as filemap_update_page() filling in partially uptodate
2447 * pages or ->readahead() that need to hold invalidate_lock
2448 * while mapping blocks for IO so let's hold the lock here as
2449 * well to keep locking rules simple.
2450 */
2451 filemap_invalidate_lock_shared(mapping);
2452 error = filemap_add_folio(mapping, folio, index,
2453 mapping_gfp_constraint(mapping, GFP_KERNEL));
2454 if (error == -EEXIST)
2455 error = AOP_TRUNCATED_PAGE;
2456 if (error)
2457 goto error;
2458
2459 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2460 if (error)
2461 goto error;
2462
2463 filemap_invalidate_unlock_shared(mapping);
2464 folio_batch_add(fbatch, folio);
2465 return 0;
2466error:
2467 filemap_invalidate_unlock_shared(mapping);
2468 folio_put(folio);
2469 return error;
2470}
2471
2472static int filemap_readahead(struct kiocb *iocb, struct file *file,
2473 struct address_space *mapping, struct folio *folio,
2474 pgoff_t last_index)
2475{
2476 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2477
2478 if (iocb->ki_flags & IOCB_NOIO)
2479 return -EAGAIN;
2480 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2481 return 0;
2482}
2483
2484static int filemap_get_pages(struct kiocb *iocb, size_t count,
2485 struct folio_batch *fbatch, bool need_uptodate)
2486{
2487 struct file *filp = iocb->ki_filp;
2488 struct address_space *mapping = filp->f_mapping;
2489 struct file_ra_state *ra = &filp->f_ra;
2490 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2491 pgoff_t last_index;
2492 struct folio *folio;
2493 int err = 0;
2494
2495 /* "last_index" is the index of the page beyond the end of the read */
2496 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2497retry:
2498 if (fatal_signal_pending(current))
2499 return -EINTR;
2500
2501 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2502 if (!folio_batch_count(fbatch)) {
2503 if (iocb->ki_flags & IOCB_NOIO)
2504 return -EAGAIN;
2505 page_cache_sync_readahead(mapping, ra, filp, index,
2506 last_index - index);
2507 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2508 }
2509 if (!folio_batch_count(fbatch)) {
2510 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2511 return -EAGAIN;
2512 err = filemap_create_folio(filp, mapping,
2513 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2514 if (err == AOP_TRUNCATED_PAGE)
2515 goto retry;
2516 return err;
2517 }
2518
2519 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2520 if (folio_test_readahead(folio)) {
2521 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2522 if (err)
2523 goto err;
2524 }
2525 if (!folio_test_uptodate(folio)) {
2526 if ((iocb->ki_flags & IOCB_WAITQ) &&
2527 folio_batch_count(fbatch) > 1)
2528 iocb->ki_flags |= IOCB_NOWAIT;
2529 err = filemap_update_page(iocb, mapping, count, folio,
2530 need_uptodate);
2531 if (err)
2532 goto err;
2533 }
2534
2535 return 0;
2536err:
2537 if (err < 0)
2538 folio_put(folio);
2539 if (likely(--fbatch->nr))
2540 return 0;
2541 if (err == AOP_TRUNCATED_PAGE)
2542 goto retry;
2543 return err;
2544}
2545
2546static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2547{
2548 unsigned int shift = folio_shift(folio);
2549
2550 return (pos1 >> shift == pos2 >> shift);
2551}
2552
2553/**
2554 * filemap_read - Read data from the page cache.
2555 * @iocb: The iocb to read.
2556 * @iter: Destination for the data.
2557 * @already_read: Number of bytes already read by the caller.
2558 *
2559 * Copies data from the page cache. If the data is not currently present,
2560 * uses the readahead and read_folio address_space operations to fetch it.
2561 *
2562 * Return: Total number of bytes copied, including those already read by
2563 * the caller. If an error happens before any bytes are copied, returns
2564 * a negative error number.
2565 */
2566ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2567 ssize_t already_read)
2568{
2569 struct file *filp = iocb->ki_filp;
2570 struct file_ra_state *ra = &filp->f_ra;
2571 struct address_space *mapping = filp->f_mapping;
2572 struct inode *inode = mapping->host;
2573 struct folio_batch fbatch;
2574 int i, error = 0;
2575 bool writably_mapped;
2576 loff_t isize, end_offset;
2577 loff_t last_pos = ra->prev_pos;
2578
2579 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2580 return 0;
2581 if (unlikely(!iov_iter_count(iter)))
2582 return 0;
2583
2584 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2585 folio_batch_init(&fbatch);
2586
2587 do {
2588 cond_resched();
2589
2590 /*
2591 * If we've already successfully copied some data, then we
2592 * can no longer safely return -EIOCBQUEUED. Hence mark
2593 * an async read NOWAIT at that point.
2594 */
2595 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2596 iocb->ki_flags |= IOCB_NOWAIT;
2597
2598 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2599 break;
2600
2601 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2602 if (error < 0)
2603 break;
2604
2605 /*
2606 * i_size must be checked after we know the pages are Uptodate.
2607 *
2608 * Checking i_size after the check allows us to calculate
2609 * the correct value for "nr", which means the zero-filled
2610 * part of the page is not copied back to userspace (unless
2611 * another truncate extends the file - this is desired though).
2612 */
2613 isize = i_size_read(inode);
2614 if (unlikely(iocb->ki_pos >= isize))
2615 goto put_folios;
2616 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2617
2618 /*
2619 * Once we start copying data, we don't want to be touching any
2620 * cachelines that might be contended:
2621 */
2622 writably_mapped = mapping_writably_mapped(mapping);
2623
2624 /*
2625 * When a read accesses the same folio several times, only
2626 * mark it as accessed the first time.
2627 */
2628 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2629 fbatch.folios[0]))
2630 folio_mark_accessed(fbatch.folios[0]);
2631
2632 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2633 struct folio *folio = fbatch.folios[i];
2634 size_t fsize = folio_size(folio);
2635 size_t offset = iocb->ki_pos & (fsize - 1);
2636 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2637 fsize - offset);
2638 size_t copied;
2639
2640 if (end_offset < folio_pos(folio))
2641 break;
2642 if (i > 0)
2643 folio_mark_accessed(folio);
2644 /*
2645 * If users can be writing to this folio using arbitrary
2646 * virtual addresses, take care of potential aliasing
2647 * before reading the folio on the kernel side.
2648 */
2649 if (writably_mapped)
2650 flush_dcache_folio(folio);
2651
2652 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2653
2654 already_read += copied;
2655 iocb->ki_pos += copied;
2656 last_pos = iocb->ki_pos;
2657
2658 if (copied < bytes) {
2659 error = -EFAULT;
2660 break;
2661 }
2662 }
2663put_folios:
2664 for (i = 0; i < folio_batch_count(&fbatch); i++)
2665 folio_put(fbatch.folios[i]);
2666 folio_batch_init(&fbatch);
2667 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2668
2669 file_accessed(filp);
2670 ra->prev_pos = last_pos;
2671 return already_read ? already_read : error;
2672}
2673EXPORT_SYMBOL_GPL(filemap_read);
2674
2675int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2676{
2677 struct address_space *mapping = iocb->ki_filp->f_mapping;
2678 loff_t pos = iocb->ki_pos;
2679 loff_t end = pos + count - 1;
2680
2681 if (iocb->ki_flags & IOCB_NOWAIT) {
2682 if (filemap_range_needs_writeback(mapping, pos, end))
2683 return -EAGAIN;
2684 return 0;
2685 }
2686
2687 return filemap_write_and_wait_range(mapping, pos, end);
2688}
2689EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2690
2691int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2692{
2693 struct address_space *mapping = iocb->ki_filp->f_mapping;
2694 loff_t pos = iocb->ki_pos;
2695 loff_t end = pos + count - 1;
2696 int ret;
2697
2698 if (iocb->ki_flags & IOCB_NOWAIT) {
2699 /* we could block if there are any pages in the range */
2700 if (filemap_range_has_page(mapping, pos, end))
2701 return -EAGAIN;
2702 } else {
2703 ret = filemap_write_and_wait_range(mapping, pos, end);
2704 if (ret)
2705 return ret;
2706 }
2707
2708 /*
2709 * After a write we want buffered reads to be sure to go to disk to get
2710 * the new data. We invalidate clean cached page from the region we're
2711 * about to write. We do this *before* the write so that we can return
2712 * without clobbering -EIOCBQUEUED from ->direct_IO().
2713 */
2714 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2715 end >> PAGE_SHIFT);
2716}
2717EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2718
2719/**
2720 * generic_file_read_iter - generic filesystem read routine
2721 * @iocb: kernel I/O control block
2722 * @iter: destination for the data read
2723 *
2724 * This is the "read_iter()" routine for all filesystems
2725 * that can use the page cache directly.
2726 *
2727 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2728 * be returned when no data can be read without waiting for I/O requests
2729 * to complete; it doesn't prevent readahead.
2730 *
2731 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2732 * requests shall be made for the read or for readahead. When no data
2733 * can be read, -EAGAIN shall be returned. When readahead would be
2734 * triggered, a partial, possibly empty read shall be returned.
2735 *
2736 * Return:
2737 * * number of bytes copied, even for partial reads
2738 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2739 */
2740ssize_t
2741generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2742{
2743 size_t count = iov_iter_count(iter);
2744 ssize_t retval = 0;
2745
2746 if (!count)
2747 return 0; /* skip atime */
2748
2749 if (iocb->ki_flags & IOCB_DIRECT) {
2750 struct file *file = iocb->ki_filp;
2751 struct address_space *mapping = file->f_mapping;
2752 struct inode *inode = mapping->host;
2753
2754 retval = kiocb_write_and_wait(iocb, count);
2755 if (retval < 0)
2756 return retval;
2757 file_accessed(file);
2758
2759 retval = mapping->a_ops->direct_IO(iocb, iter);
2760 if (retval >= 0) {
2761 iocb->ki_pos += retval;
2762 count -= retval;
2763 }
2764 if (retval != -EIOCBQUEUED)
2765 iov_iter_revert(iter, count - iov_iter_count(iter));
2766
2767 /*
2768 * Btrfs can have a short DIO read if we encounter
2769 * compressed extents, so if there was an error, or if
2770 * we've already read everything we wanted to, or if
2771 * there was a short read because we hit EOF, go ahead
2772 * and return. Otherwise fallthrough to buffered io for
2773 * the rest of the read. Buffered reads will not work for
2774 * DAX files, so don't bother trying.
2775 */
2776 if (retval < 0 || !count || IS_DAX(inode))
2777 return retval;
2778 if (iocb->ki_pos >= i_size_read(inode))
2779 return retval;
2780 }
2781
2782 return filemap_read(iocb, iter, retval);
2783}
2784EXPORT_SYMBOL(generic_file_read_iter);
2785
2786/*
2787 * Splice subpages from a folio into a pipe.
2788 */
2789size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2790 struct folio *folio, loff_t fpos, size_t size)
2791{
2792 struct page *page;
2793 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2794
2795 page = folio_page(folio, offset / PAGE_SIZE);
2796 size = min(size, folio_size(folio) - offset);
2797 offset %= PAGE_SIZE;
2798
2799 while (spliced < size &&
2800 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2801 struct pipe_buffer *buf = pipe_head_buf(pipe);
2802 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2803
2804 *buf = (struct pipe_buffer) {
2805 .ops = &page_cache_pipe_buf_ops,
2806 .page = page,
2807 .offset = offset,
2808 .len = part,
2809 };
2810 folio_get(folio);
2811 pipe->head++;
2812 page++;
2813 spliced += part;
2814 offset = 0;
2815 }
2816
2817 return spliced;
2818}
2819
2820/**
2821 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2822 * @in: The file to read from
2823 * @ppos: Pointer to the file position to read from
2824 * @pipe: The pipe to splice into
2825 * @len: The amount to splice
2826 * @flags: The SPLICE_F_* flags
2827 *
2828 * This function gets folios from a file's pagecache and splices them into the
2829 * pipe. Readahead will be called as necessary to fill more folios. This may
2830 * be used for blockdevs also.
2831 *
2832 * Return: On success, the number of bytes read will be returned and *@ppos
2833 * will be updated if appropriate; 0 will be returned if there is no more data
2834 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2835 * other negative error code will be returned on error. A short read may occur
2836 * if the pipe has insufficient space, we reach the end of the data or we hit a
2837 * hole.
2838 */
2839ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2840 struct pipe_inode_info *pipe,
2841 size_t len, unsigned int flags)
2842{
2843 struct folio_batch fbatch;
2844 struct kiocb iocb;
2845 size_t total_spliced = 0, used, npages;
2846 loff_t isize, end_offset;
2847 bool writably_mapped;
2848 int i, error = 0;
2849
2850 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2851 return 0;
2852
2853 init_sync_kiocb(&iocb, in);
2854 iocb.ki_pos = *ppos;
2855
2856 /* Work out how much data we can actually add into the pipe */
2857 used = pipe_occupancy(pipe->head, pipe->tail);
2858 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2859 len = min_t(size_t, len, npages * PAGE_SIZE);
2860
2861 folio_batch_init(&fbatch);
2862
2863 do {
2864 cond_resched();
2865
2866 if (*ppos >= i_size_read(in->f_mapping->host))
2867 break;
2868
2869 iocb.ki_pos = *ppos;
2870 error = filemap_get_pages(&iocb, len, &fbatch, true);
2871 if (error < 0)
2872 break;
2873
2874 /*
2875 * i_size must be checked after we know the pages are Uptodate.
2876 *
2877 * Checking i_size after the check allows us to calculate
2878 * the correct value for "nr", which means the zero-filled
2879 * part of the page is not copied back to userspace (unless
2880 * another truncate extends the file - this is desired though).
2881 */
2882 isize = i_size_read(in->f_mapping->host);
2883 if (unlikely(*ppos >= isize))
2884 break;
2885 end_offset = min_t(loff_t, isize, *ppos + len);
2886
2887 /*
2888 * Once we start copying data, we don't want to be touching any
2889 * cachelines that might be contended:
2890 */
2891 writably_mapped = mapping_writably_mapped(in->f_mapping);
2892
2893 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2894 struct folio *folio = fbatch.folios[i];
2895 size_t n;
2896
2897 if (folio_pos(folio) >= end_offset)
2898 goto out;
2899 folio_mark_accessed(folio);
2900
2901 /*
2902 * If users can be writing to this folio using arbitrary
2903 * virtual addresses, take care of potential aliasing
2904 * before reading the folio on the kernel side.
2905 */
2906 if (writably_mapped)
2907 flush_dcache_folio(folio);
2908
2909 n = min_t(loff_t, len, isize - *ppos);
2910 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2911 if (!n)
2912 goto out;
2913 len -= n;
2914 total_spliced += n;
2915 *ppos += n;
2916 in->f_ra.prev_pos = *ppos;
2917 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2918 goto out;
2919 }
2920
2921 folio_batch_release(&fbatch);
2922 } while (len);
2923
2924out:
2925 folio_batch_release(&fbatch);
2926 file_accessed(in);
2927
2928 return total_spliced ? total_spliced : error;
2929}
2930EXPORT_SYMBOL(filemap_splice_read);
2931
2932static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2933 struct address_space *mapping, struct folio *folio,
2934 loff_t start, loff_t end, bool seek_data)
2935{
2936 const struct address_space_operations *ops = mapping->a_ops;
2937 size_t offset, bsz = i_blocksize(mapping->host);
2938
2939 if (xa_is_value(folio) || folio_test_uptodate(folio))
2940 return seek_data ? start : end;
2941 if (!ops->is_partially_uptodate)
2942 return seek_data ? end : start;
2943
2944 xas_pause(xas);
2945 rcu_read_unlock();
2946 folio_lock(folio);
2947 if (unlikely(folio->mapping != mapping))
2948 goto unlock;
2949
2950 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2951
2952 do {
2953 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2954 seek_data)
2955 break;
2956 start = (start + bsz) & ~(bsz - 1);
2957 offset += bsz;
2958 } while (offset < folio_size(folio));
2959unlock:
2960 folio_unlock(folio);
2961 rcu_read_lock();
2962 return start;
2963}
2964
2965static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2966{
2967 if (xa_is_value(folio))
2968 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2969 return folio_size(folio);
2970}
2971
2972/**
2973 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2974 * @mapping: Address space to search.
2975 * @start: First byte to consider.
2976 * @end: Limit of search (exclusive).
2977 * @whence: Either SEEK_HOLE or SEEK_DATA.
2978 *
2979 * If the page cache knows which blocks contain holes and which blocks
2980 * contain data, your filesystem can use this function to implement
2981 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2982 * entirely memory-based such as tmpfs, and filesystems which support
2983 * unwritten extents.
2984 *
2985 * Return: The requested offset on success, or -ENXIO if @whence specifies
2986 * SEEK_DATA and there is no data after @start. There is an implicit hole
2987 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2988 * and @end contain data.
2989 */
2990loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2991 loff_t end, int whence)
2992{
2993 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2994 pgoff_t max = (end - 1) >> PAGE_SHIFT;
2995 bool seek_data = (whence == SEEK_DATA);
2996 struct folio *folio;
2997
2998 if (end <= start)
2999 return -ENXIO;
3000
3001 rcu_read_lock();
3002 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3003 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3004 size_t seek_size;
3005
3006 if (start < pos) {
3007 if (!seek_data)
3008 goto unlock;
3009 start = pos;
3010 }
3011
3012 seek_size = seek_folio_size(&xas, folio);
3013 pos = round_up((u64)pos + 1, seek_size);
3014 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3015 seek_data);
3016 if (start < pos)
3017 goto unlock;
3018 if (start >= end)
3019 break;
3020 if (seek_size > PAGE_SIZE)
3021 xas_set(&xas, pos >> PAGE_SHIFT);
3022 if (!xa_is_value(folio))
3023 folio_put(folio);
3024 }
3025 if (seek_data)
3026 start = -ENXIO;
3027unlock:
3028 rcu_read_unlock();
3029 if (folio && !xa_is_value(folio))
3030 folio_put(folio);
3031 if (start > end)
3032 return end;
3033 return start;
3034}
3035
3036#ifdef CONFIG_MMU
3037#define MMAP_LOTSAMISS (100)
3038/*
3039 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3040 * @vmf - the vm_fault for this fault.
3041 * @folio - the folio to lock.
3042 * @fpin - the pointer to the file we may pin (or is already pinned).
3043 *
3044 * This works similar to lock_folio_or_retry in that it can drop the
3045 * mmap_lock. It differs in that it actually returns the folio locked
3046 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3047 * to drop the mmap_lock then fpin will point to the pinned file and
3048 * needs to be fput()'ed at a later point.
3049 */
3050static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3051 struct file **fpin)
3052{
3053 if (folio_trylock(folio))
3054 return 1;
3055
3056 /*
3057 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3058 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3059 * is supposed to work. We have way too many special cases..
3060 */
3061 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3062 return 0;
3063
3064 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3065 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3066 if (__folio_lock_killable(folio)) {
3067 /*
3068 * We didn't have the right flags to drop the
3069 * fault lock, but all fault_handlers only check
3070 * for fatal signals if we return VM_FAULT_RETRY,
3071 * so we need to drop the fault lock here and
3072 * return 0 if we don't have a fpin.
3073 */
3074 if (*fpin == NULL)
3075 release_fault_lock(vmf);
3076 return 0;
3077 }
3078 } else
3079 __folio_lock(folio);
3080
3081 return 1;
3082}
3083
3084/*
3085 * Synchronous readahead happens when we don't even find a page in the page
3086 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3087 * to drop the mmap sem we return the file that was pinned in order for us to do
3088 * that. If we didn't pin a file then we return NULL. The file that is
3089 * returned needs to be fput()'ed when we're done with it.
3090 */
3091static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3092{
3093 struct file *file = vmf->vma->vm_file;
3094 struct file_ra_state *ra = &file->f_ra;
3095 struct address_space *mapping = file->f_mapping;
3096 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3097 struct file *fpin = NULL;
3098 unsigned long vm_flags = vmf->vma->vm_flags;
3099 unsigned int mmap_miss;
3100
3101#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3102 /* Use the readahead code, even if readahead is disabled */
3103 if (vm_flags & VM_HUGEPAGE) {
3104 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3105 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3106 ra->size = HPAGE_PMD_NR;
3107 /*
3108 * Fetch two PMD folios, so we get the chance to actually
3109 * readahead, unless we've been told not to.
3110 */
3111 if (!(vm_flags & VM_RAND_READ))
3112 ra->size *= 2;
3113 ra->async_size = HPAGE_PMD_NR;
3114 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3115 return fpin;
3116 }
3117#endif
3118
3119 /* If we don't want any read-ahead, don't bother */
3120 if (vm_flags & VM_RAND_READ)
3121 return fpin;
3122 if (!ra->ra_pages)
3123 return fpin;
3124
3125 if (vm_flags & VM_SEQ_READ) {
3126 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3127 page_cache_sync_ra(&ractl, ra->ra_pages);
3128 return fpin;
3129 }
3130
3131 /* Avoid banging the cache line if not needed */
3132 mmap_miss = READ_ONCE(ra->mmap_miss);
3133 if (mmap_miss < MMAP_LOTSAMISS * 10)
3134 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3135
3136 /*
3137 * Do we miss much more than hit in this file? If so,
3138 * stop bothering with read-ahead. It will only hurt.
3139 */
3140 if (mmap_miss > MMAP_LOTSAMISS)
3141 return fpin;
3142
3143 /*
3144 * mmap read-around
3145 */
3146 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3147 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3148 ra->size = ra->ra_pages;
3149 ra->async_size = ra->ra_pages / 4;
3150 ractl._index = ra->start;
3151 page_cache_ra_order(&ractl, ra, 0);
3152 return fpin;
3153}
3154
3155/*
3156 * Asynchronous readahead happens when we find the page and PG_readahead,
3157 * so we want to possibly extend the readahead further. We return the file that
3158 * was pinned if we have to drop the mmap_lock in order to do IO.
3159 */
3160static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3161 struct folio *folio)
3162{
3163 struct file *file = vmf->vma->vm_file;
3164 struct file_ra_state *ra = &file->f_ra;
3165 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3166 struct file *fpin = NULL;
3167 unsigned int mmap_miss;
3168
3169 /* If we don't want any read-ahead, don't bother */
3170 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3171 return fpin;
3172
3173 mmap_miss = READ_ONCE(ra->mmap_miss);
3174 if (mmap_miss)
3175 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3176
3177 if (folio_test_readahead(folio)) {
3178 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3179 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3180 }
3181 return fpin;
3182}
3183
3184static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3185{
3186 struct vm_area_struct *vma = vmf->vma;
3187 vm_fault_t ret = 0;
3188 pte_t *ptep;
3189
3190 /*
3191 * We might have COW'ed a pagecache folio and might now have an mlocked
3192 * anon folio mapped. The original pagecache folio is not mlocked and
3193 * might have been evicted. During a read+clear/modify/write update of
3194 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3195 * temporarily clear the PTE under PT lock and might detect it here as
3196 * "none" when not holding the PT lock.
3197 *
3198 * Not rechecking the PTE under PT lock could result in an unexpected
3199 * major fault in an mlock'ed region. Recheck only for this special
3200 * scenario while holding the PT lock, to not degrade non-mlocked
3201 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3202 * the number of times we hold PT lock.
3203 */
3204 if (!(vma->vm_flags & VM_LOCKED))
3205 return 0;
3206
3207 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3208 return 0;
3209
3210 ptep = pte_offset_map(vmf->pmd, vmf->address);
3211 if (unlikely(!ptep))
3212 return VM_FAULT_NOPAGE;
3213
3214 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3215 ret = VM_FAULT_NOPAGE;
3216 } else {
3217 spin_lock(vmf->ptl);
3218 if (unlikely(!pte_none(ptep_get(ptep))))
3219 ret = VM_FAULT_NOPAGE;
3220 spin_unlock(vmf->ptl);
3221 }
3222 pte_unmap(ptep);
3223 return ret;
3224}
3225
3226/**
3227 * filemap_fault - read in file data for page fault handling
3228 * @vmf: struct vm_fault containing details of the fault
3229 *
3230 * filemap_fault() is invoked via the vma operations vector for a
3231 * mapped memory region to read in file data during a page fault.
3232 *
3233 * The goto's are kind of ugly, but this streamlines the normal case of having
3234 * it in the page cache, and handles the special cases reasonably without
3235 * having a lot of duplicated code.
3236 *
3237 * vma->vm_mm->mmap_lock must be held on entry.
3238 *
3239 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3240 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3241 *
3242 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3243 * has not been released.
3244 *
3245 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3246 *
3247 * Return: bitwise-OR of %VM_FAULT_ codes.
3248 */
3249vm_fault_t filemap_fault(struct vm_fault *vmf)
3250{
3251 int error;
3252 struct file *file = vmf->vma->vm_file;
3253 struct file *fpin = NULL;
3254 struct address_space *mapping = file->f_mapping;
3255 struct inode *inode = mapping->host;
3256 pgoff_t max_idx, index = vmf->pgoff;
3257 struct folio *folio;
3258 vm_fault_t ret = 0;
3259 bool mapping_locked = false;
3260
3261 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3262 if (unlikely(index >= max_idx))
3263 return VM_FAULT_SIGBUS;
3264
3265 /*
3266 * Do we have something in the page cache already?
3267 */
3268 folio = filemap_get_folio(mapping, index);
3269 if (likely(!IS_ERR(folio))) {
3270 /*
3271 * We found the page, so try async readahead before waiting for
3272 * the lock.
3273 */
3274 if (!(vmf->flags & FAULT_FLAG_TRIED))
3275 fpin = do_async_mmap_readahead(vmf, folio);
3276 if (unlikely(!folio_test_uptodate(folio))) {
3277 filemap_invalidate_lock_shared(mapping);
3278 mapping_locked = true;
3279 }
3280 } else {
3281 ret = filemap_fault_recheck_pte_none(vmf);
3282 if (unlikely(ret))
3283 return ret;
3284
3285 /* No page in the page cache at all */
3286 count_vm_event(PGMAJFAULT);
3287 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3288 ret = VM_FAULT_MAJOR;
3289 fpin = do_sync_mmap_readahead(vmf);
3290retry_find:
3291 /*
3292 * See comment in filemap_create_folio() why we need
3293 * invalidate_lock
3294 */
3295 if (!mapping_locked) {
3296 filemap_invalidate_lock_shared(mapping);
3297 mapping_locked = true;
3298 }
3299 folio = __filemap_get_folio(mapping, index,
3300 FGP_CREAT|FGP_FOR_MMAP,
3301 vmf->gfp_mask);
3302 if (IS_ERR(folio)) {
3303 if (fpin)
3304 goto out_retry;
3305 filemap_invalidate_unlock_shared(mapping);
3306 return VM_FAULT_OOM;
3307 }
3308 }
3309
3310 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3311 goto out_retry;
3312
3313 /* Did it get truncated? */
3314 if (unlikely(folio->mapping != mapping)) {
3315 folio_unlock(folio);
3316 folio_put(folio);
3317 goto retry_find;
3318 }
3319 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3320
3321 /*
3322 * We have a locked folio in the page cache, now we need to check
3323 * that it's up-to-date. If not, it is going to be due to an error,
3324 * or because readahead was otherwise unable to retrieve it.
3325 */
3326 if (unlikely(!folio_test_uptodate(folio))) {
3327 /*
3328 * If the invalidate lock is not held, the folio was in cache
3329 * and uptodate and now it is not. Strange but possible since we
3330 * didn't hold the page lock all the time. Let's drop
3331 * everything, get the invalidate lock and try again.
3332 */
3333 if (!mapping_locked) {
3334 folio_unlock(folio);
3335 folio_put(folio);
3336 goto retry_find;
3337 }
3338
3339 /*
3340 * OK, the folio is really not uptodate. This can be because the
3341 * VMA has the VM_RAND_READ flag set, or because an error
3342 * arose. Let's read it in directly.
3343 */
3344 goto page_not_uptodate;
3345 }
3346
3347 /*
3348 * We've made it this far and we had to drop our mmap_lock, now is the
3349 * time to return to the upper layer and have it re-find the vma and
3350 * redo the fault.
3351 */
3352 if (fpin) {
3353 folio_unlock(folio);
3354 goto out_retry;
3355 }
3356 if (mapping_locked)
3357 filemap_invalidate_unlock_shared(mapping);
3358
3359 /*
3360 * Found the page and have a reference on it.
3361 * We must recheck i_size under page lock.
3362 */
3363 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3364 if (unlikely(index >= max_idx)) {
3365 folio_unlock(folio);
3366 folio_put(folio);
3367 return VM_FAULT_SIGBUS;
3368 }
3369
3370 vmf->page = folio_file_page(folio, index);
3371 return ret | VM_FAULT_LOCKED;
3372
3373page_not_uptodate:
3374 /*
3375 * Umm, take care of errors if the page isn't up-to-date.
3376 * Try to re-read it _once_. We do this synchronously,
3377 * because there really aren't any performance issues here
3378 * and we need to check for errors.
3379 */
3380 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3381 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3382 if (fpin)
3383 goto out_retry;
3384 folio_put(folio);
3385
3386 if (!error || error == AOP_TRUNCATED_PAGE)
3387 goto retry_find;
3388 filemap_invalidate_unlock_shared(mapping);
3389
3390 return VM_FAULT_SIGBUS;
3391
3392out_retry:
3393 /*
3394 * We dropped the mmap_lock, we need to return to the fault handler to
3395 * re-find the vma and come back and find our hopefully still populated
3396 * page.
3397 */
3398 if (!IS_ERR(folio))
3399 folio_put(folio);
3400 if (mapping_locked)
3401 filemap_invalidate_unlock_shared(mapping);
3402 if (fpin)
3403 fput(fpin);
3404 return ret | VM_FAULT_RETRY;
3405}
3406EXPORT_SYMBOL(filemap_fault);
3407
3408static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3409 pgoff_t start)
3410{
3411 struct mm_struct *mm = vmf->vma->vm_mm;
3412
3413 /* Huge page is mapped? No need to proceed. */
3414 if (pmd_trans_huge(*vmf->pmd)) {
3415 folio_unlock(folio);
3416 folio_put(folio);
3417 return true;
3418 }
3419
3420 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3421 struct page *page = folio_file_page(folio, start);
3422 vm_fault_t ret = do_set_pmd(vmf, page);
3423 if (!ret) {
3424 /* The page is mapped successfully, reference consumed. */
3425 folio_unlock(folio);
3426 return true;
3427 }
3428 }
3429
3430 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3431 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3432
3433 return false;
3434}
3435
3436static struct folio *next_uptodate_folio(struct xa_state *xas,
3437 struct address_space *mapping, pgoff_t end_pgoff)
3438{
3439 struct folio *folio = xas_next_entry(xas, end_pgoff);
3440 unsigned long max_idx;
3441
3442 do {
3443 if (!folio)
3444 return NULL;
3445 if (xas_retry(xas, folio))
3446 continue;
3447 if (xa_is_value(folio))
3448 continue;
3449 if (folio_test_locked(folio))
3450 continue;
3451 if (!folio_try_get_rcu(folio))
3452 continue;
3453 /* Has the page moved or been split? */
3454 if (unlikely(folio != xas_reload(xas)))
3455 goto skip;
3456 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3457 goto skip;
3458 if (!folio_trylock(folio))
3459 goto skip;
3460 if (folio->mapping != mapping)
3461 goto unlock;
3462 if (!folio_test_uptodate(folio))
3463 goto unlock;
3464 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3465 if (xas->xa_index >= max_idx)
3466 goto unlock;
3467 return folio;
3468unlock:
3469 folio_unlock(folio);
3470skip:
3471 folio_put(folio);
3472 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3473
3474 return NULL;
3475}
3476
3477/*
3478 * Map page range [start_page, start_page + nr_pages) of folio.
3479 * start_page is gotten from start by folio_page(folio, start)
3480 */
3481static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3482 struct folio *folio, unsigned long start,
3483 unsigned long addr, unsigned int nr_pages,
3484 unsigned int *mmap_miss)
3485{
3486 vm_fault_t ret = 0;
3487 struct page *page = folio_page(folio, start);
3488 unsigned int count = 0;
3489 pte_t *old_ptep = vmf->pte;
3490
3491 do {
3492 if (PageHWPoison(page + count))
3493 goto skip;
3494
3495 (*mmap_miss)++;
3496
3497 /*
3498 * NOTE: If there're PTE markers, we'll leave them to be
3499 * handled in the specific fault path, and it'll prohibit the
3500 * fault-around logic.
3501 */
3502 if (!pte_none(ptep_get(&vmf->pte[count])))
3503 goto skip;
3504
3505 count++;
3506 continue;
3507skip:
3508 if (count) {
3509 set_pte_range(vmf, folio, page, count, addr);
3510 folio_ref_add(folio, count);
3511 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3512 ret = VM_FAULT_NOPAGE;
3513 }
3514
3515 count++;
3516 page += count;
3517 vmf->pte += count;
3518 addr += count * PAGE_SIZE;
3519 count = 0;
3520 } while (--nr_pages > 0);
3521
3522 if (count) {
3523 set_pte_range(vmf, folio, page, count, addr);
3524 folio_ref_add(folio, count);
3525 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3526 ret = VM_FAULT_NOPAGE;
3527 }
3528
3529 vmf->pte = old_ptep;
3530
3531 return ret;
3532}
3533
3534static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3535 struct folio *folio, unsigned long addr,
3536 unsigned int *mmap_miss)
3537{
3538 vm_fault_t ret = 0;
3539 struct page *page = &folio->page;
3540
3541 if (PageHWPoison(page))
3542 return ret;
3543
3544 (*mmap_miss)++;
3545
3546 /*
3547 * NOTE: If there're PTE markers, we'll leave them to be
3548 * handled in the specific fault path, and it'll prohibit
3549 * the fault-around logic.
3550 */
3551 if (!pte_none(ptep_get(vmf->pte)))
3552 return ret;
3553
3554 if (vmf->address == addr)
3555 ret = VM_FAULT_NOPAGE;
3556
3557 set_pte_range(vmf, folio, page, 1, addr);
3558 folio_ref_inc(folio);
3559
3560 return ret;
3561}
3562
3563vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3564 pgoff_t start_pgoff, pgoff_t end_pgoff)
3565{
3566 struct vm_area_struct *vma = vmf->vma;
3567 struct file *file = vma->vm_file;
3568 struct address_space *mapping = file->f_mapping;
3569 pgoff_t last_pgoff = start_pgoff;
3570 unsigned long addr;
3571 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3572 struct folio *folio;
3573 vm_fault_t ret = 0;
3574 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3575
3576 rcu_read_lock();
3577 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3578 if (!folio)
3579 goto out;
3580
3581 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3582 ret = VM_FAULT_NOPAGE;
3583 goto out;
3584 }
3585
3586 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3587 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3588 if (!vmf->pte) {
3589 folio_unlock(folio);
3590 folio_put(folio);
3591 goto out;
3592 }
3593 do {
3594 unsigned long end;
3595
3596 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3597 vmf->pte += xas.xa_index - last_pgoff;
3598 last_pgoff = xas.xa_index;
3599 end = folio_next_index(folio) - 1;
3600 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3601
3602 if (!folio_test_large(folio))
3603 ret |= filemap_map_order0_folio(vmf,
3604 folio, addr, &mmap_miss);
3605 else
3606 ret |= filemap_map_folio_range(vmf, folio,
3607 xas.xa_index - folio->index, addr,
3608 nr_pages, &mmap_miss);
3609
3610 folio_unlock(folio);
3611 folio_put(folio);
3612 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3613 pte_unmap_unlock(vmf->pte, vmf->ptl);
3614out:
3615 rcu_read_unlock();
3616
3617 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3618 if (mmap_miss >= mmap_miss_saved)
3619 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3620 else
3621 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3622
3623 return ret;
3624}
3625EXPORT_SYMBOL(filemap_map_pages);
3626
3627vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3628{
3629 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3630 struct folio *folio = page_folio(vmf->page);
3631 vm_fault_t ret = VM_FAULT_LOCKED;
3632
3633 sb_start_pagefault(mapping->host->i_sb);
3634 file_update_time(vmf->vma->vm_file);
3635 folio_lock(folio);
3636 if (folio->mapping != mapping) {
3637 folio_unlock(folio);
3638 ret = VM_FAULT_NOPAGE;
3639 goto out;
3640 }
3641 /*
3642 * We mark the folio dirty already here so that when freeze is in
3643 * progress, we are guaranteed that writeback during freezing will
3644 * see the dirty folio and writeprotect it again.
3645 */
3646 folio_mark_dirty(folio);
3647 folio_wait_stable(folio);
3648out:
3649 sb_end_pagefault(mapping->host->i_sb);
3650 return ret;
3651}
3652
3653const struct vm_operations_struct generic_file_vm_ops = {
3654 .fault = filemap_fault,
3655 .map_pages = filemap_map_pages,
3656 .page_mkwrite = filemap_page_mkwrite,
3657};
3658
3659/* This is used for a general mmap of a disk file */
3660
3661int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3662{
3663 struct address_space *mapping = file->f_mapping;
3664
3665 if (!mapping->a_ops->read_folio)
3666 return -ENOEXEC;
3667 file_accessed(file);
3668 vma->vm_ops = &generic_file_vm_ops;
3669 return 0;
3670}
3671
3672/*
3673 * This is for filesystems which do not implement ->writepage.
3674 */
3675int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3676{
3677 if (vma_is_shared_maywrite(vma))
3678 return -EINVAL;
3679 return generic_file_mmap(file, vma);
3680}
3681#else
3682vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3683{
3684 return VM_FAULT_SIGBUS;
3685}
3686int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3687{
3688 return -ENOSYS;
3689}
3690int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3691{
3692 return -ENOSYS;
3693}
3694#endif /* CONFIG_MMU */
3695
3696EXPORT_SYMBOL(filemap_page_mkwrite);
3697EXPORT_SYMBOL(generic_file_mmap);
3698EXPORT_SYMBOL(generic_file_readonly_mmap);
3699
3700static struct folio *do_read_cache_folio(struct address_space *mapping,
3701 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3702{
3703 struct folio *folio;
3704 int err;
3705
3706 if (!filler)
3707 filler = mapping->a_ops->read_folio;
3708repeat:
3709 folio = filemap_get_folio(mapping, index);
3710 if (IS_ERR(folio)) {
3711 folio = filemap_alloc_folio(gfp, 0);
3712 if (!folio)
3713 return ERR_PTR(-ENOMEM);
3714 err = filemap_add_folio(mapping, folio, index, gfp);
3715 if (unlikely(err)) {
3716 folio_put(folio);
3717 if (err == -EEXIST)
3718 goto repeat;
3719 /* Presumably ENOMEM for xarray node */
3720 return ERR_PTR(err);
3721 }
3722
3723 goto filler;
3724 }
3725 if (folio_test_uptodate(folio))
3726 goto out;
3727
3728 if (!folio_trylock(folio)) {
3729 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3730 goto repeat;
3731 }
3732
3733 /* Folio was truncated from mapping */
3734 if (!folio->mapping) {
3735 folio_unlock(folio);
3736 folio_put(folio);
3737 goto repeat;
3738 }
3739
3740 /* Someone else locked and filled the page in a very small window */
3741 if (folio_test_uptodate(folio)) {
3742 folio_unlock(folio);
3743 goto out;
3744 }
3745
3746filler:
3747 err = filemap_read_folio(file, filler, folio);
3748 if (err) {
3749 folio_put(folio);
3750 if (err == AOP_TRUNCATED_PAGE)
3751 goto repeat;
3752 return ERR_PTR(err);
3753 }
3754
3755out:
3756 folio_mark_accessed(folio);
3757 return folio;
3758}
3759
3760/**
3761 * read_cache_folio - Read into page cache, fill it if needed.
3762 * @mapping: The address_space to read from.
3763 * @index: The index to read.
3764 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3765 * @file: Passed to filler function, may be NULL if not required.
3766 *
3767 * Read one page into the page cache. If it succeeds, the folio returned
3768 * will contain @index, but it may not be the first page of the folio.
3769 *
3770 * If the filler function returns an error, it will be returned to the
3771 * caller.
3772 *
3773 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3774 * Return: An uptodate folio on success, ERR_PTR() on failure.
3775 */
3776struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3777 filler_t filler, struct file *file)
3778{
3779 return do_read_cache_folio(mapping, index, filler, file,
3780 mapping_gfp_mask(mapping));
3781}
3782EXPORT_SYMBOL(read_cache_folio);
3783
3784/**
3785 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3786 * @mapping: The address_space for the folio.
3787 * @index: The index that the allocated folio will contain.
3788 * @gfp: The page allocator flags to use if allocating.
3789 *
3790 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3791 * any new memory allocations done using the specified allocation flags.
3792 *
3793 * The most likely error from this function is EIO, but ENOMEM is
3794 * possible and so is EINTR. If ->read_folio returns another error,
3795 * that will be returned to the caller.
3796 *
3797 * The function expects mapping->invalidate_lock to be already held.
3798 *
3799 * Return: Uptodate folio on success, ERR_PTR() on failure.
3800 */
3801struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3802 pgoff_t index, gfp_t gfp)
3803{
3804 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3805}
3806EXPORT_SYMBOL(mapping_read_folio_gfp);
3807
3808static struct page *do_read_cache_page(struct address_space *mapping,
3809 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3810{
3811 struct folio *folio;
3812
3813 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3814 if (IS_ERR(folio))
3815 return &folio->page;
3816 return folio_file_page(folio, index);
3817}
3818
3819struct page *read_cache_page(struct address_space *mapping,
3820 pgoff_t index, filler_t *filler, struct file *file)
3821{
3822 return do_read_cache_page(mapping, index, filler, file,
3823 mapping_gfp_mask(mapping));
3824}
3825EXPORT_SYMBOL(read_cache_page);
3826
3827/**
3828 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3829 * @mapping: the page's address_space
3830 * @index: the page index
3831 * @gfp: the page allocator flags to use if allocating
3832 *
3833 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3834 * any new page allocations done using the specified allocation flags.
3835 *
3836 * If the page does not get brought uptodate, return -EIO.
3837 *
3838 * The function expects mapping->invalidate_lock to be already held.
3839 *
3840 * Return: up to date page on success, ERR_PTR() on failure.
3841 */
3842struct page *read_cache_page_gfp(struct address_space *mapping,
3843 pgoff_t index,
3844 gfp_t gfp)
3845{
3846 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3847}
3848EXPORT_SYMBOL(read_cache_page_gfp);
3849
3850/*
3851 * Warn about a page cache invalidation failure during a direct I/O write.
3852 */
3853static void dio_warn_stale_pagecache(struct file *filp)
3854{
3855 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3856 char pathname[128];
3857 char *path;
3858
3859 errseq_set(&filp->f_mapping->wb_err, -EIO);
3860 if (__ratelimit(&_rs)) {
3861 path = file_path(filp, pathname, sizeof(pathname));
3862 if (IS_ERR(path))
3863 path = "(unknown)";
3864 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3865 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3866 current->comm);
3867 }
3868}
3869
3870void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3871{
3872 struct address_space *mapping = iocb->ki_filp->f_mapping;
3873
3874 if (mapping->nrpages &&
3875 invalidate_inode_pages2_range(mapping,
3876 iocb->ki_pos >> PAGE_SHIFT,
3877 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3878 dio_warn_stale_pagecache(iocb->ki_filp);
3879}
3880
3881ssize_t
3882generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3883{
3884 struct address_space *mapping = iocb->ki_filp->f_mapping;
3885 size_t write_len = iov_iter_count(from);
3886 ssize_t written;
3887
3888 /*
3889 * If a page can not be invalidated, return 0 to fall back
3890 * to buffered write.
3891 */
3892 written = kiocb_invalidate_pages(iocb, write_len);
3893 if (written) {
3894 if (written == -EBUSY)
3895 return 0;
3896 return written;
3897 }
3898
3899 written = mapping->a_ops->direct_IO(iocb, from);
3900
3901 /*
3902 * Finally, try again to invalidate clean pages which might have been
3903 * cached by non-direct readahead, or faulted in by get_user_pages()
3904 * if the source of the write was an mmap'ed region of the file
3905 * we're writing. Either one is a pretty crazy thing to do,
3906 * so we don't support it 100%. If this invalidation
3907 * fails, tough, the write still worked...
3908 *
3909 * Most of the time we do not need this since dio_complete() will do
3910 * the invalidation for us. However there are some file systems that
3911 * do not end up with dio_complete() being called, so let's not break
3912 * them by removing it completely.
3913 *
3914 * Noticeable example is a blkdev_direct_IO().
3915 *
3916 * Skip invalidation for async writes or if mapping has no pages.
3917 */
3918 if (written > 0) {
3919 struct inode *inode = mapping->host;
3920 loff_t pos = iocb->ki_pos;
3921
3922 kiocb_invalidate_post_direct_write(iocb, written);
3923 pos += written;
3924 write_len -= written;
3925 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3926 i_size_write(inode, pos);
3927 mark_inode_dirty(inode);
3928 }
3929 iocb->ki_pos = pos;
3930 }
3931 if (written != -EIOCBQUEUED)
3932 iov_iter_revert(from, write_len - iov_iter_count(from));
3933 return written;
3934}
3935EXPORT_SYMBOL(generic_file_direct_write);
3936
3937ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3938{
3939 struct file *file = iocb->ki_filp;
3940 loff_t pos = iocb->ki_pos;
3941 struct address_space *mapping = file->f_mapping;
3942 const struct address_space_operations *a_ops = mapping->a_ops;
3943 long status = 0;
3944 ssize_t written = 0;
3945
3946 do {
3947 struct page *page;
3948 unsigned long offset; /* Offset into pagecache page */
3949 unsigned long bytes; /* Bytes to write to page */
3950 size_t copied; /* Bytes copied from user */
3951 void *fsdata = NULL;
3952
3953 offset = (pos & (PAGE_SIZE - 1));
3954 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3955 iov_iter_count(i));
3956
3957again:
3958 /*
3959 * Bring in the user page that we will copy from _first_.
3960 * Otherwise there's a nasty deadlock on copying from the
3961 * same page as we're writing to, without it being marked
3962 * up-to-date.
3963 */
3964 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3965 status = -EFAULT;
3966 break;
3967 }
3968
3969 if (fatal_signal_pending(current)) {
3970 status = -EINTR;
3971 break;
3972 }
3973
3974 status = a_ops->write_begin(file, mapping, pos, bytes,
3975 &page, &fsdata);
3976 if (unlikely(status < 0))
3977 break;
3978
3979 if (mapping_writably_mapped(mapping))
3980 flush_dcache_page(page);
3981
3982 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3983 flush_dcache_page(page);
3984
3985 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3986 page, fsdata);
3987 if (unlikely(status != copied)) {
3988 iov_iter_revert(i, copied - max(status, 0L));
3989 if (unlikely(status < 0))
3990 break;
3991 }
3992 cond_resched();
3993
3994 if (unlikely(status == 0)) {
3995 /*
3996 * A short copy made ->write_end() reject the
3997 * thing entirely. Might be memory poisoning
3998 * halfway through, might be a race with munmap,
3999 * might be severe memory pressure.
4000 */
4001 if (copied)
4002 bytes = copied;
4003 goto again;
4004 }
4005 pos += status;
4006 written += status;
4007
4008 balance_dirty_pages_ratelimited(mapping);
4009 } while (iov_iter_count(i));
4010
4011 if (!written)
4012 return status;
4013 iocb->ki_pos += written;
4014 return written;
4015}
4016EXPORT_SYMBOL(generic_perform_write);
4017
4018/**
4019 * __generic_file_write_iter - write data to a file
4020 * @iocb: IO state structure (file, offset, etc.)
4021 * @from: iov_iter with data to write
4022 *
4023 * This function does all the work needed for actually writing data to a
4024 * file. It does all basic checks, removes SUID from the file, updates
4025 * modification times and calls proper subroutines depending on whether we
4026 * do direct IO or a standard buffered write.
4027 *
4028 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4029 * object which does not need locking at all.
4030 *
4031 * This function does *not* take care of syncing data in case of O_SYNC write.
4032 * A caller has to handle it. This is mainly due to the fact that we want to
4033 * avoid syncing under i_rwsem.
4034 *
4035 * Return:
4036 * * number of bytes written, even for truncated writes
4037 * * negative error code if no data has been written at all
4038 */
4039ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4040{
4041 struct file *file = iocb->ki_filp;
4042 struct address_space *mapping = file->f_mapping;
4043 struct inode *inode = mapping->host;
4044 ssize_t ret;
4045
4046 ret = file_remove_privs(file);
4047 if (ret)
4048 return ret;
4049
4050 ret = file_update_time(file);
4051 if (ret)
4052 return ret;
4053
4054 if (iocb->ki_flags & IOCB_DIRECT) {
4055 ret = generic_file_direct_write(iocb, from);
4056 /*
4057 * If the write stopped short of completing, fall back to
4058 * buffered writes. Some filesystems do this for writes to
4059 * holes, for example. For DAX files, a buffered write will
4060 * not succeed (even if it did, DAX does not handle dirty
4061 * page-cache pages correctly).
4062 */
4063 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4064 return ret;
4065 return direct_write_fallback(iocb, from, ret,
4066 generic_perform_write(iocb, from));
4067 }
4068
4069 return generic_perform_write(iocb, from);
4070}
4071EXPORT_SYMBOL(__generic_file_write_iter);
4072
4073/**
4074 * generic_file_write_iter - write data to a file
4075 * @iocb: IO state structure
4076 * @from: iov_iter with data to write
4077 *
4078 * This is a wrapper around __generic_file_write_iter() to be used by most
4079 * filesystems. It takes care of syncing the file in case of O_SYNC file
4080 * and acquires i_rwsem as needed.
4081 * Return:
4082 * * negative error code if no data has been written at all of
4083 * vfs_fsync_range() failed for a synchronous write
4084 * * number of bytes written, even for truncated writes
4085 */
4086ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4087{
4088 struct file *file = iocb->ki_filp;
4089 struct inode *inode = file->f_mapping->host;
4090 ssize_t ret;
4091
4092 inode_lock(inode);
4093 ret = generic_write_checks(iocb, from);
4094 if (ret > 0)
4095 ret = __generic_file_write_iter(iocb, from);
4096 inode_unlock(inode);
4097
4098 if (ret > 0)
4099 ret = generic_write_sync(iocb, ret);
4100 return ret;
4101}
4102EXPORT_SYMBOL(generic_file_write_iter);
4103
4104/**
4105 * filemap_release_folio() - Release fs-specific metadata on a folio.
4106 * @folio: The folio which the kernel is trying to free.
4107 * @gfp: Memory allocation flags (and I/O mode).
4108 *
4109 * The address_space is trying to release any data attached to a folio
4110 * (presumably at folio->private).
4111 *
4112 * This will also be called if the private_2 flag is set on a page,
4113 * indicating that the folio has other metadata associated with it.
4114 *
4115 * The @gfp argument specifies whether I/O may be performed to release
4116 * this page (__GFP_IO), and whether the call may block
4117 * (__GFP_RECLAIM & __GFP_FS).
4118 *
4119 * Return: %true if the release was successful, otherwise %false.
4120 */
4121bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4122{
4123 struct address_space * const mapping = folio->mapping;
4124
4125 BUG_ON(!folio_test_locked(folio));
4126 if (!folio_needs_release(folio))
4127 return true;
4128 if (folio_test_writeback(folio))
4129 return false;
4130
4131 if (mapping && mapping->a_ops->release_folio)
4132 return mapping->a_ops->release_folio(folio, gfp);
4133 return try_to_free_buffers(folio);
4134}
4135EXPORT_SYMBOL(filemap_release_folio);
4136
4137#ifdef CONFIG_CACHESTAT_SYSCALL
4138/**
4139 * filemap_cachestat() - compute the page cache statistics of a mapping
4140 * @mapping: The mapping to compute the statistics for.
4141 * @first_index: The starting page cache index.
4142 * @last_index: The final page index (inclusive).
4143 * @cs: the cachestat struct to write the result to.
4144 *
4145 * This will query the page cache statistics of a mapping in the
4146 * page range of [first_index, last_index] (inclusive). The statistics
4147 * queried include: number of dirty pages, number of pages marked for
4148 * writeback, and the number of (recently) evicted pages.
4149 */
4150static void filemap_cachestat(struct address_space *mapping,
4151 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4152{
4153 XA_STATE(xas, &mapping->i_pages, first_index);
4154 struct folio *folio;
4155
4156 rcu_read_lock();
4157 xas_for_each(&xas, folio, last_index) {
4158 int order;
4159 unsigned long nr_pages;
4160 pgoff_t folio_first_index, folio_last_index;
4161
4162 /*
4163 * Don't deref the folio. It is not pinned, and might
4164 * get freed (and reused) underneath us.
4165 *
4166 * We *could* pin it, but that would be expensive for
4167 * what should be a fast and lightweight syscall.
4168 *
4169 * Instead, derive all information of interest from
4170 * the rcu-protected xarray.
4171 */
4172
4173 if (xas_retry(&xas, folio))
4174 continue;
4175
4176 order = xa_get_order(xas.xa, xas.xa_index);
4177 nr_pages = 1 << order;
4178 folio_first_index = round_down(xas.xa_index, 1 << order);
4179 folio_last_index = folio_first_index + nr_pages - 1;
4180
4181 /* Folios might straddle the range boundaries, only count covered pages */
4182 if (folio_first_index < first_index)
4183 nr_pages -= first_index - folio_first_index;
4184
4185 if (folio_last_index > last_index)
4186 nr_pages -= folio_last_index - last_index;
4187
4188 if (xa_is_value(folio)) {
4189 /* page is evicted */
4190 void *shadow = (void *)folio;
4191 bool workingset; /* not used */
4192
4193 cs->nr_evicted += nr_pages;
4194
4195#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4196 if (shmem_mapping(mapping)) {
4197 /* shmem file - in swap cache */
4198 swp_entry_t swp = radix_to_swp_entry(folio);
4199
4200 /* swapin error results in poisoned entry */
4201 if (non_swap_entry(swp))
4202 goto resched;
4203
4204 /*
4205 * Getting a swap entry from the shmem
4206 * inode means we beat
4207 * shmem_unuse(). rcu_read_lock()
4208 * ensures swapoff waits for us before
4209 * freeing the swapper space. However,
4210 * we can race with swapping and
4211 * invalidation, so there might not be
4212 * a shadow in the swapcache (yet).
4213 */
4214 shadow = get_shadow_from_swap_cache(swp);
4215 if (!shadow)
4216 goto resched;
4217 }
4218#endif
4219 if (workingset_test_recent(shadow, true, &workingset))
4220 cs->nr_recently_evicted += nr_pages;
4221
4222 goto resched;
4223 }
4224
4225 /* page is in cache */
4226 cs->nr_cache += nr_pages;
4227
4228 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4229 cs->nr_dirty += nr_pages;
4230
4231 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4232 cs->nr_writeback += nr_pages;
4233
4234resched:
4235 if (need_resched()) {
4236 xas_pause(&xas);
4237 cond_resched_rcu();
4238 }
4239 }
4240 rcu_read_unlock();
4241}
4242
4243/*
4244 * The cachestat(2) system call.
4245 *
4246 * cachestat() returns the page cache statistics of a file in the
4247 * bytes range specified by `off` and `len`: number of cached pages,
4248 * number of dirty pages, number of pages marked for writeback,
4249 * number of evicted pages, and number of recently evicted pages.
4250 *
4251 * An evicted page is a page that is previously in the page cache
4252 * but has been evicted since. A page is recently evicted if its last
4253 * eviction was recent enough that its reentry to the cache would
4254 * indicate that it is actively being used by the system, and that
4255 * there is memory pressure on the system.
4256 *
4257 * `off` and `len` must be non-negative integers. If `len` > 0,
4258 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4259 * we will query in the range from `off` to the end of the file.
4260 *
4261 * The `flags` argument is unused for now, but is included for future
4262 * extensibility. User should pass 0 (i.e no flag specified).
4263 *
4264 * Currently, hugetlbfs is not supported.
4265 *
4266 * Because the status of a page can change after cachestat() checks it
4267 * but before it returns to the application, the returned values may
4268 * contain stale information.
4269 *
4270 * return values:
4271 * zero - success
4272 * -EFAULT - cstat or cstat_range points to an illegal address
4273 * -EINVAL - invalid flags
4274 * -EBADF - invalid file descriptor
4275 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4276 */
4277SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4278 struct cachestat_range __user *, cstat_range,
4279 struct cachestat __user *, cstat, unsigned int, flags)
4280{
4281 struct fd f = fdget(fd);
4282 struct address_space *mapping;
4283 struct cachestat_range csr;
4284 struct cachestat cs;
4285 pgoff_t first_index, last_index;
4286
4287 if (!f.file)
4288 return -EBADF;
4289
4290 if (copy_from_user(&csr, cstat_range,
4291 sizeof(struct cachestat_range))) {
4292 fdput(f);
4293 return -EFAULT;
4294 }
4295
4296 /* hugetlbfs is not supported */
4297 if (is_file_hugepages(f.file)) {
4298 fdput(f);
4299 return -EOPNOTSUPP;
4300 }
4301
4302 if (flags != 0) {
4303 fdput(f);
4304 return -EINVAL;
4305 }
4306
4307 first_index = csr.off >> PAGE_SHIFT;
4308 last_index =
4309 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4310 memset(&cs, 0, sizeof(struct cachestat));
4311 mapping = f.file->f_mapping;
4312 filemap_cachestat(mapping, first_index, last_index, &cs);
4313 fdput(f);
4314
4315 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4316 return -EFAULT;
4317
4318 return 0;
4319}
4320#endif /* CONFIG_CACHESTAT_SYSCALL */