Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/module.h>
  13#include <linux/compiler.h>
  14#include <linux/fs.h>
  15#include <linux/uaccess.h>
  16#include <linux/aio.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/syscalls.h>
  33#include <linux/cpuset.h>
  34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
 
  37#include "internal.h"
  38
 
 
 
  39/*
  40 * FIXME: remove all knowledge of the buffer layer from the core VM
  41 */
  42#include <linux/buffer_head.h> /* for try_to_free_buffers */
  43
  44#include <asm/mman.h>
  45
  46/*
  47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  48 * though.
  49 *
  50 * Shared mappings now work. 15.8.1995  Bruno.
  51 *
  52 * finished 'unifying' the page and buffer cache and SMP-threaded the
  53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  54 *
  55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  56 */
  57
  58/*
  59 * Lock ordering:
  60 *
  61 *  ->i_mmap_mutex		(truncate_pagecache)
  62 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  63 *      ->swap_lock		(exclusive_swap_page, others)
  64 *        ->mapping->tree_lock
  65 *
  66 *  ->i_mutex
  67 *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
  68 *
  69 *  ->mmap_sem
  70 *    ->i_mmap_mutex
  71 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  72 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
  73 *
  74 *  ->mmap_sem
  75 *    ->lock_page		(access_process_vm)
  76 *
  77 *  ->i_mutex			(generic_file_buffered_write)
  78 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  79 *
  80 *  bdi->wb.list_lock
  81 *    sb_lock			(fs/fs-writeback.c)
  82 *    ->mapping->tree_lock	(__sync_single_inode)
  83 *
  84 *  ->i_mmap_mutex
  85 *    ->anon_vma.lock		(vma_adjust)
  86 *
  87 *  ->anon_vma.lock
  88 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  89 *
  90 *  ->page_table_lock or pte_lock
  91 *    ->swap_lock		(try_to_unmap_one)
  92 *    ->private_lock		(try_to_unmap_one)
  93 *    ->tree_lock		(try_to_unmap_one)
  94 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
  95 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
  96 *    ->private_lock		(page_remove_rmap->set_page_dirty)
  97 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
  98 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
  99 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 100 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 101 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 102 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 103 *
 104 *  (code doesn't rely on that order, so you could switch it around)
 105 *  ->tasklist_lock             (memory_failure, collect_procs_ao)
 106 *    ->i_mmap_mutex
 107 */
 108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109/*
 110 * Delete a page from the page cache and free it. Caller has to make
 111 * sure the page is locked and that nobody else uses it - or that usage
 112 * is safe.  The caller must hold the mapping's tree_lock.
 113 */
 114void __delete_from_page_cache(struct page *page)
 115{
 116	struct address_space *mapping = page->mapping;
 117
 
 118	/*
 119	 * if we're uptodate, flush out into the cleancache, otherwise
 120	 * invalidate any existing cleancache entries.  We can't leave
 121	 * stale data around in the cleancache once our page is gone
 122	 */
 123	if (PageUptodate(page) && PageMappedToDisk(page))
 124		cleancache_put_page(page);
 125	else
 126		cleancache_flush_page(mapping, page);
 
 
 127
 128	radix_tree_delete(&mapping->page_tree, page->index);
 129	page->mapping = NULL;
 130	/* Leave page->index set: truncation lookup relies upon it */
 131	mapping->nrpages--;
 132	__dec_zone_page_state(page, NR_FILE_PAGES);
 133	if (PageSwapBacked(page))
 134		__dec_zone_page_state(page, NR_SHMEM);
 135	BUG_ON(page_mapped(page));
 136
 137	/*
 138	 * Some filesystems seem to re-dirty the page even after
 139	 * the VM has canceled the dirty bit (eg ext3 journaling).
 140	 *
 141	 * Fix it up by doing a final dirty accounting check after
 142	 * having removed the page entirely.
 143	 */
 144	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
 145		dec_zone_page_state(page, NR_FILE_DIRTY);
 146		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
 147	}
 148}
 149
 150/**
 151 * delete_from_page_cache - delete page from page cache
 152 * @page: the page which the kernel is trying to remove from page cache
 153 *
 154 * This must be called only on pages that have been verified to be in the page
 155 * cache and locked.  It will never put the page into the free list, the caller
 156 * has a reference on the page.
 157 */
 158void delete_from_page_cache(struct page *page)
 159{
 160	struct address_space *mapping = page->mapping;
 161	void (*freepage)(struct page *);
 162
 163	BUG_ON(!PageLocked(page));
 164
 165	freepage = mapping->a_ops->freepage;
 166	spin_lock_irq(&mapping->tree_lock);
 167	__delete_from_page_cache(page);
 168	spin_unlock_irq(&mapping->tree_lock);
 169	mem_cgroup_uncharge_cache_page(page);
 170
 171	if (freepage)
 172		freepage(page);
 173	page_cache_release(page);
 174}
 175EXPORT_SYMBOL(delete_from_page_cache);
 176
 177static int sleep_on_page(void *word)
 178{
 179	io_schedule();
 180	return 0;
 181}
 182
 183static int sleep_on_page_killable(void *word)
 184{
 185	sleep_on_page(word);
 186	return fatal_signal_pending(current) ? -EINTR : 0;
 187}
 188
 
 
 
 
 
 
 
 
 
 
 
 
 
 189/**
 190 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 191 * @mapping:	address space structure to write
 192 * @start:	offset in bytes where the range starts
 193 * @end:	offset in bytes where the range ends (inclusive)
 194 * @sync_mode:	enable synchronous operation
 195 *
 196 * Start writeback against all of a mapping's dirty pages that lie
 197 * within the byte offsets <start, end> inclusive.
 198 *
 199 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 200 * opposed to a regular memory cleansing writeback.  The difference between
 201 * these two operations is that if a dirty page/buffer is encountered, it must
 202 * be waited upon, and not just skipped over.
 203 */
 204int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 205				loff_t end, int sync_mode)
 206{
 207	int ret;
 208	struct writeback_control wbc = {
 209		.sync_mode = sync_mode,
 210		.nr_to_write = LONG_MAX,
 211		.range_start = start,
 212		.range_end = end,
 213	};
 214
 215	if (!mapping_cap_writeback_dirty(mapping))
 216		return 0;
 217
 218	ret = do_writepages(mapping, &wbc);
 219	return ret;
 220}
 221
 222static inline int __filemap_fdatawrite(struct address_space *mapping,
 223	int sync_mode)
 224{
 225	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 226}
 227
 228int filemap_fdatawrite(struct address_space *mapping)
 229{
 230	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 231}
 232EXPORT_SYMBOL(filemap_fdatawrite);
 233
 234int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 235				loff_t end)
 236{
 237	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 238}
 239EXPORT_SYMBOL(filemap_fdatawrite_range);
 240
 241/**
 242 * filemap_flush - mostly a non-blocking flush
 243 * @mapping:	target address_space
 244 *
 245 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 246 * purposes - I/O may not be started against all dirty pages.
 247 */
 248int filemap_flush(struct address_space *mapping)
 249{
 250	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 251}
 252EXPORT_SYMBOL(filemap_flush);
 253
 254/**
 255 * filemap_fdatawait_range - wait for writeback to complete
 256 * @mapping:		address space structure to wait for
 257 * @start_byte:		offset in bytes where the range starts
 258 * @end_byte:		offset in bytes where the range ends (inclusive)
 259 *
 260 * Walk the list of under-writeback pages of the given address space
 261 * in the given range and wait for all of them.
 262 */
 263int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 264			    loff_t end_byte)
 265{
 266	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
 267	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
 268	struct pagevec pvec;
 269	int nr_pages;
 270	int ret = 0;
 271
 272	if (end_byte < start_byte)
 273		return 0;
 274
 275	pagevec_init(&pvec, 0);
 276	while ((index <= end) &&
 277			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 278			PAGECACHE_TAG_WRITEBACK,
 279			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 280		unsigned i;
 281
 282		for (i = 0; i < nr_pages; i++) {
 283			struct page *page = pvec.pages[i];
 284
 285			/* until radix tree lookup accepts end_index */
 286			if (page->index > end)
 287				continue;
 288
 289			wait_on_page_writeback(page);
 290			if (TestClearPageError(page))
 291				ret = -EIO;
 292		}
 293		pagevec_release(&pvec);
 294		cond_resched();
 295	}
 296
 297	/* Check for outstanding write errors */
 298	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 299		ret = -ENOSPC;
 300	if (test_and_clear_bit(AS_EIO, &mapping->flags))
 301		ret = -EIO;
 302
 303	return ret;
 304}
 305EXPORT_SYMBOL(filemap_fdatawait_range);
 306
 307/**
 308 * filemap_fdatawait - wait for all under-writeback pages to complete
 309 * @mapping: address space structure to wait for
 310 *
 311 * Walk the list of under-writeback pages of the given address space
 312 * and wait for all of them.
 313 */
 314int filemap_fdatawait(struct address_space *mapping)
 315{
 316	loff_t i_size = i_size_read(mapping->host);
 317
 318	if (i_size == 0)
 319		return 0;
 320
 321	return filemap_fdatawait_range(mapping, 0, i_size - 1);
 322}
 323EXPORT_SYMBOL(filemap_fdatawait);
 324
 325int filemap_write_and_wait(struct address_space *mapping)
 326{
 327	int err = 0;
 328
 329	if (mapping->nrpages) {
 330		err = filemap_fdatawrite(mapping);
 331		/*
 332		 * Even if the above returned error, the pages may be
 333		 * written partially (e.g. -ENOSPC), so we wait for it.
 334		 * But the -EIO is special case, it may indicate the worst
 335		 * thing (e.g. bug) happened, so we avoid waiting for it.
 336		 */
 337		if (err != -EIO) {
 338			int err2 = filemap_fdatawait(mapping);
 339			if (!err)
 340				err = err2;
 341		}
 
 
 342	}
 343	return err;
 344}
 345EXPORT_SYMBOL(filemap_write_and_wait);
 346
 347/**
 348 * filemap_write_and_wait_range - write out & wait on a file range
 349 * @mapping:	the address_space for the pages
 350 * @lstart:	offset in bytes where the range starts
 351 * @lend:	offset in bytes where the range ends (inclusive)
 352 *
 353 * Write out and wait upon file offsets lstart->lend, inclusive.
 354 *
 355 * Note that `lend' is inclusive (describes the last byte to be written) so
 356 * that this function can be used to write to the very end-of-file (end = -1).
 357 */
 358int filemap_write_and_wait_range(struct address_space *mapping,
 359				 loff_t lstart, loff_t lend)
 360{
 361	int err = 0;
 362
 363	if (mapping->nrpages) {
 364		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 365						 WB_SYNC_ALL);
 366		/* See comment of filemap_write_and_wait() */
 367		if (err != -EIO) {
 368			int err2 = filemap_fdatawait_range(mapping,
 369						lstart, lend);
 370			if (!err)
 371				err = err2;
 372		}
 
 
 373	}
 374	return err;
 375}
 376EXPORT_SYMBOL(filemap_write_and_wait_range);
 377
 378/**
 379 * replace_page_cache_page - replace a pagecache page with a new one
 380 * @old:	page to be replaced
 381 * @new:	page to replace with
 382 * @gfp_mask:	allocation mode
 383 *
 384 * This function replaces a page in the pagecache with a new one.  On
 385 * success it acquires the pagecache reference for the new page and
 386 * drops it for the old page.  Both the old and new pages must be
 387 * locked.  This function does not add the new page to the LRU, the
 388 * caller must do that.
 389 *
 390 * The remove + add is atomic.  The only way this function can fail is
 391 * memory allocation failure.
 392 */
 393int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 394{
 395	int error;
 396	struct mem_cgroup *memcg = NULL;
 397
 398	VM_BUG_ON(!PageLocked(old));
 399	VM_BUG_ON(!PageLocked(new));
 400	VM_BUG_ON(new->mapping);
 401
 402	/*
 403	 * This is not page migration, but prepare_migration and
 404	 * end_migration does enough work for charge replacement.
 405	 *
 406	 * In the longer term we probably want a specialized function
 407	 * for moving the charge from old to new in a more efficient
 408	 * manner.
 409	 */
 410	error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
 411	if (error)
 412		return error;
 413
 414	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 415	if (!error) {
 416		struct address_space *mapping = old->mapping;
 417		void (*freepage)(struct page *);
 418
 419		pgoff_t offset = old->index;
 420		freepage = mapping->a_ops->freepage;
 421
 422		page_cache_get(new);
 423		new->mapping = mapping;
 424		new->index = offset;
 425
 426		spin_lock_irq(&mapping->tree_lock);
 427		__delete_from_page_cache(old);
 428		error = radix_tree_insert(&mapping->page_tree, offset, new);
 429		BUG_ON(error);
 430		mapping->nrpages++;
 431		__inc_zone_page_state(new, NR_FILE_PAGES);
 432		if (PageSwapBacked(new))
 433			__inc_zone_page_state(new, NR_SHMEM);
 434		spin_unlock_irq(&mapping->tree_lock);
 
 
 435		radix_tree_preload_end();
 436		if (freepage)
 437			freepage(old);
 438		page_cache_release(old);
 439		mem_cgroup_end_migration(memcg, old, new, true);
 440	} else {
 441		mem_cgroup_end_migration(memcg, old, new, false);
 442	}
 443
 444	return error;
 445}
 446EXPORT_SYMBOL_GPL(replace_page_cache_page);
 447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448/**
 449 * add_to_page_cache_locked - add a locked page to the pagecache
 450 * @page:	page to add
 451 * @mapping:	the page's address_space
 452 * @offset:	page index
 453 * @gfp_mask:	page allocation mode
 454 *
 455 * This function is used to add a page to the pagecache. It must be locked.
 456 * This function does not add the page to the LRU.  The caller must do that.
 457 */
 458int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 459		pgoff_t offset, gfp_t gfp_mask)
 460{
 461	int error;
 462
 463	VM_BUG_ON(!PageLocked(page));
 464	VM_BUG_ON(PageSwapBacked(page));
 465
 466	error = mem_cgroup_cache_charge(page, current->mm,
 467					gfp_mask & GFP_RECLAIM_MASK);
 468	if (error)
 469		goto out;
 470
 471	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 472	if (error == 0) {
 473		page_cache_get(page);
 474		page->mapping = mapping;
 475		page->index = offset;
 476
 477		spin_lock_irq(&mapping->tree_lock);
 478		error = radix_tree_insert(&mapping->page_tree, offset, page);
 479		if (likely(!error)) {
 480			mapping->nrpages++;
 481			__inc_zone_page_state(page, NR_FILE_PAGES);
 482			spin_unlock_irq(&mapping->tree_lock);
 483		} else {
 484			page->mapping = NULL;
 485			/* Leave page->index set: truncation relies upon it */
 486			spin_unlock_irq(&mapping->tree_lock);
 487			mem_cgroup_uncharge_cache_page(page);
 488			page_cache_release(page);
 489		}
 490		radix_tree_preload_end();
 491	} else
 492		mem_cgroup_uncharge_cache_page(page);
 493out:
 494	return error;
 495}
 496EXPORT_SYMBOL(add_to_page_cache_locked);
 497
 498int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 499				pgoff_t offset, gfp_t gfp_mask)
 500{
 
 501	int ret;
 502
 503	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
 504	if (ret == 0)
 505		lru_cache_add_file(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506	return ret;
 507}
 508EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 509
 510#ifdef CONFIG_NUMA
 511struct page *__page_cache_alloc(gfp_t gfp)
 512{
 513	int n;
 514	struct page *page;
 515
 516	if (cpuset_do_page_mem_spread()) {
 517		get_mems_allowed();
 518		n = cpuset_mem_spread_node();
 519		page = alloc_pages_exact_node(n, gfp, 0);
 520		put_mems_allowed();
 
 
 
 521		return page;
 522	}
 523	return alloc_pages(gfp, 0);
 524}
 525EXPORT_SYMBOL(__page_cache_alloc);
 526#endif
 527
 528/*
 529 * In order to wait for pages to become available there must be
 530 * waitqueues associated with pages. By using a hash table of
 531 * waitqueues where the bucket discipline is to maintain all
 532 * waiters on the same queue and wake all when any of the pages
 533 * become available, and for the woken contexts to check to be
 534 * sure the appropriate page became available, this saves space
 535 * at a cost of "thundering herd" phenomena during rare hash
 536 * collisions.
 537 */
 538static wait_queue_head_t *page_waitqueue(struct page *page)
 539{
 540	const struct zone *zone = page_zone(page);
 541
 542	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 543}
 544
 545static inline void wake_up_page(struct page *page, int bit)
 546{
 547	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
 548}
 549
 550void wait_on_page_bit(struct page *page, int bit_nr)
 551{
 552	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 553
 554	if (test_bit(bit_nr, &page->flags))
 555		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
 556							TASK_UNINTERRUPTIBLE);
 557}
 558EXPORT_SYMBOL(wait_on_page_bit);
 559
 560int wait_on_page_bit_killable(struct page *page, int bit_nr)
 561{
 562	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 563
 564	if (!test_bit(bit_nr, &page->flags))
 565		return 0;
 566
 567	return __wait_on_bit(page_waitqueue(page), &wait,
 568			     sleep_on_page_killable, TASK_KILLABLE);
 569}
 570
 571/**
 572 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 573 * @page: Page defining the wait queue of interest
 574 * @waiter: Waiter to add to the queue
 575 *
 576 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 577 */
 578void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 579{
 580	wait_queue_head_t *q = page_waitqueue(page);
 581	unsigned long flags;
 582
 583	spin_lock_irqsave(&q->lock, flags);
 584	__add_wait_queue(q, waiter);
 585	spin_unlock_irqrestore(&q->lock, flags);
 586}
 587EXPORT_SYMBOL_GPL(add_page_wait_queue);
 588
 589/**
 590 * unlock_page - unlock a locked page
 591 * @page: the page
 592 *
 593 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 594 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 595 * mechananism between PageLocked pages and PageWriteback pages is shared.
 596 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 597 *
 598 * The mb is necessary to enforce ordering between the clear_bit and the read
 599 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 600 */
 601void unlock_page(struct page *page)
 602{
 603	VM_BUG_ON(!PageLocked(page));
 604	clear_bit_unlock(PG_locked, &page->flags);
 605	smp_mb__after_clear_bit();
 606	wake_up_page(page, PG_locked);
 607}
 608EXPORT_SYMBOL(unlock_page);
 609
 610/**
 611 * end_page_writeback - end writeback against a page
 612 * @page: the page
 613 */
 614void end_page_writeback(struct page *page)
 615{
 616	if (TestClearPageReclaim(page))
 617		rotate_reclaimable_page(page);
 618
 619	if (!test_clear_page_writeback(page))
 620		BUG();
 621
 622	smp_mb__after_clear_bit();
 623	wake_up_page(page, PG_writeback);
 624}
 625EXPORT_SYMBOL(end_page_writeback);
 626
 627/**
 628 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 629 * @page: the page to lock
 630 */
 631void __lock_page(struct page *page)
 632{
 633	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 634
 635	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
 636							TASK_UNINTERRUPTIBLE);
 637}
 638EXPORT_SYMBOL(__lock_page);
 639
 640int __lock_page_killable(struct page *page)
 641{
 642	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 643
 644	return __wait_on_bit_lock(page_waitqueue(page), &wait,
 645					sleep_on_page_killable, TASK_KILLABLE);
 646}
 647EXPORT_SYMBOL_GPL(__lock_page_killable);
 648
 649int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 650			 unsigned int flags)
 651{
 652	if (flags & FAULT_FLAG_ALLOW_RETRY) {
 653		/*
 654		 * CAUTION! In this case, mmap_sem is not released
 655		 * even though return 0.
 656		 */
 657		if (flags & FAULT_FLAG_RETRY_NOWAIT)
 658			return 0;
 659
 660		up_read(&mm->mmap_sem);
 661		if (flags & FAULT_FLAG_KILLABLE)
 662			wait_on_page_locked_killable(page);
 663		else
 664			wait_on_page_locked(page);
 665		return 0;
 666	} else {
 667		if (flags & FAULT_FLAG_KILLABLE) {
 668			int ret;
 669
 670			ret = __lock_page_killable(page);
 671			if (ret) {
 672				up_read(&mm->mmap_sem);
 673				return 0;
 674			}
 675		} else
 676			__lock_page(page);
 677		return 1;
 678	}
 679}
 680
 681/**
 682 * find_get_page - find and get a page reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683 * @mapping: the address_space to search
 684 * @offset: the page index
 
 
 
 685 *
 686 * Is there a pagecache struct page at the given (mapping, offset) tuple?
 687 * If yes, increment its refcount and return it; if no, return NULL.
 
 
 688 */
 689struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
 690{
 691	void **pagep;
 692	struct page *page;
 693
 694	rcu_read_lock();
 695repeat:
 696	page = NULL;
 697	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
 698	if (pagep) {
 699		page = radix_tree_deref_slot(pagep);
 700		if (unlikely(!page))
 701			goto out;
 702		if (radix_tree_exception(page)) {
 703			if (radix_tree_deref_retry(page))
 704				goto repeat;
 705			/*
 706			 * Otherwise, shmem/tmpfs must be storing a swap entry
 707			 * here as an exceptional entry: so return it without
 708			 * attempting to raise page count.
 709			 */
 710			goto out;
 711		}
 712		if (!page_cache_get_speculative(page))
 713			goto repeat;
 714
 715		/*
 716		 * Has the page moved?
 717		 * This is part of the lockless pagecache protocol. See
 718		 * include/linux/pagemap.h for details.
 719		 */
 720		if (unlikely(page != *pagep)) {
 721			page_cache_release(page);
 722			goto repeat;
 723		}
 724	}
 725out:
 726	rcu_read_unlock();
 727
 728	return page;
 729}
 730EXPORT_SYMBOL(find_get_page);
 731
 732/**
 733 * find_lock_page - locate, pin and lock a pagecache page
 734 * @mapping: the address_space to search
 735 * @offset: the page index
 736 *
 737 * Locates the desired pagecache page, locks it, increments its reference
 738 * count and returns its address.
 739 *
 740 * Returns zero if the page was not present. find_lock_page() may sleep.
 741 */
 742struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743{
 744	struct page *page;
 745
 746repeat:
 747	page = find_get_page(mapping, offset);
 748	if (page && !radix_tree_exception(page)) {
 749		lock_page(page);
 750		/* Has the page been truncated? */
 751		if (unlikely(page->mapping != mapping)) {
 752			unlock_page(page);
 753			page_cache_release(page);
 754			goto repeat;
 755		}
 756		VM_BUG_ON(page->index != offset);
 757	}
 758	return page;
 759}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760EXPORT_SYMBOL(find_lock_page);
 761
 762/**
 763 * find_or_create_page - locate or add a pagecache page
 764 * @mapping: the page's address_space
 765 * @index: the page's index into the mapping
 766 * @gfp_mask: page allocation mode
 767 *
 768 * Locates a page in the pagecache.  If the page is not present, a new page
 769 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
 770 * LRU list.  The returned page is locked and has its reference count
 771 * incremented.
 
 
 
 772 *
 773 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
 774 * allocation!
 775 *
 776 * find_or_create_page() returns the desired page's address, or zero on
 777 * memory exhaustion.
 778 */
 779struct page *find_or_create_page(struct address_space *mapping,
 780		pgoff_t index, gfp_t gfp_mask)
 781{
 782	struct page *page;
 783	int err;
 784repeat:
 785	page = find_lock_page(mapping, index);
 786	if (!page) {
 787		page = __page_cache_alloc(gfp_mask);
 788		if (!page)
 789			return NULL;
 790		/*
 791		 * We want a regular kernel memory (not highmem or DMA etc)
 792		 * allocation for the radix tree nodes, but we need to honour
 793		 * the context-specific requirements the caller has asked for.
 794		 * GFP_RECLAIM_MASK collects those requirements.
 795		 */
 796		err = add_to_page_cache_lru(page, mapping, index,
 797			(gfp_mask & GFP_RECLAIM_MASK));
 798		if (unlikely(err)) {
 799			page_cache_release(page);
 800			page = NULL;
 801			if (err == -EEXIST)
 802				goto repeat;
 803		}
 804	}
 805	return page;
 806}
 807EXPORT_SYMBOL(find_or_create_page);
 808
 809/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810 * find_get_pages - gang pagecache lookup
 811 * @mapping:	The address_space to search
 812 * @start:	The starting page index
 813 * @nr_pages:	The maximum number of pages
 814 * @pages:	Where the resulting pages are placed
 815 *
 816 * find_get_pages() will search for and return a group of up to
 817 * @nr_pages pages in the mapping.  The pages are placed at @pages.
 818 * find_get_pages() takes a reference against the returned pages.
 819 *
 820 * The search returns a group of mapping-contiguous pages with ascending
 821 * indexes.  There may be holes in the indices due to not-present pages.
 822 *
 823 * find_get_pages() returns the number of pages which were found.
 824 */
 825unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
 826			    unsigned int nr_pages, struct page **pages)
 827{
 828	unsigned int i;
 829	unsigned int ret;
 830	unsigned int nr_found, nr_skip;
 
 
 
 831
 832	rcu_read_lock();
 833restart:
 834	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
 835				(void ***)pages, NULL, start, nr_pages);
 836	ret = 0;
 837	nr_skip = 0;
 838	for (i = 0; i < nr_found; i++) {
 839		struct page *page;
 840repeat:
 841		page = radix_tree_deref_slot((void **)pages[i]);
 842		if (unlikely(!page))
 843			continue;
 844
 845		if (radix_tree_exception(page)) {
 846			if (radix_tree_deref_retry(page)) {
 847				/*
 848				 * Transient condition which can only trigger
 849				 * when entry at index 0 moves out of or back
 850				 * to root: none yet gotten, safe to restart.
 851				 */
 852				WARN_ON(start | i);
 853				goto restart;
 854			}
 855			/*
 856			 * Otherwise, shmem/tmpfs must be storing a swap entry
 857			 * here as an exceptional entry: so skip over it -
 858			 * we only reach this from invalidate_mapping_pages().
 859			 */
 860			nr_skip++;
 861			continue;
 862		}
 863
 864		if (!page_cache_get_speculative(page))
 865			goto repeat;
 866
 867		/* Has the page moved? */
 868		if (unlikely(page != *((void **)pages[i]))) {
 869			page_cache_release(page);
 870			goto repeat;
 871		}
 872
 873		pages[ret] = page;
 874		ret++;
 
 875	}
 876
 877	/*
 878	 * If all entries were removed before we could secure them,
 879	 * try again, because callers stop trying once 0 is returned.
 880	 */
 881	if (unlikely(!ret && nr_found > nr_skip))
 882		goto restart;
 883	rcu_read_unlock();
 884	return ret;
 885}
 886
 887/**
 888 * find_get_pages_contig - gang contiguous pagecache lookup
 889 * @mapping:	The address_space to search
 890 * @index:	The starting page index
 891 * @nr_pages:	The maximum number of pages
 892 * @pages:	Where the resulting pages are placed
 893 *
 894 * find_get_pages_contig() works exactly like find_get_pages(), except
 895 * that the returned number of pages are guaranteed to be contiguous.
 896 *
 897 * find_get_pages_contig() returns the number of pages which were found.
 898 */
 899unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
 900			       unsigned int nr_pages, struct page **pages)
 901{
 902	unsigned int i;
 903	unsigned int ret;
 904	unsigned int nr_found;
 
 
 
 905
 906	rcu_read_lock();
 907restart:
 908	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
 909				(void ***)pages, NULL, index, nr_pages);
 910	ret = 0;
 911	for (i = 0; i < nr_found; i++) {
 912		struct page *page;
 913repeat:
 914		page = radix_tree_deref_slot((void **)pages[i]);
 
 915		if (unlikely(!page))
 916			continue;
 917
 918		if (radix_tree_exception(page)) {
 919			if (radix_tree_deref_retry(page)) {
 920				/*
 921				 * Transient condition which can only trigger
 922				 * when entry at index 0 moves out of or back
 923				 * to root: none yet gotten, safe to restart.
 924				 */
 925				goto restart;
 926			}
 927			/*
 928			 * Otherwise, shmem/tmpfs must be storing a swap entry
 929			 * here as an exceptional entry: so stop looking for
 930			 * contiguous pages.
 931			 */
 932			break;
 933		}
 934
 935		if (!page_cache_get_speculative(page))
 936			goto repeat;
 937
 938		/* Has the page moved? */
 939		if (unlikely(page != *((void **)pages[i]))) {
 940			page_cache_release(page);
 941			goto repeat;
 942		}
 943
 944		/*
 945		 * must check mapping and index after taking the ref.
 946		 * otherwise we can get both false positives and false
 947		 * negatives, which is just confusing to the caller.
 948		 */
 949		if (page->mapping == NULL || page->index != index) {
 950			page_cache_release(page);
 951			break;
 952		}
 953
 954		pages[ret] = page;
 955		ret++;
 956		index++;
 957	}
 958	rcu_read_unlock();
 959	return ret;
 960}
 961EXPORT_SYMBOL(find_get_pages_contig);
 962
 963/**
 964 * find_get_pages_tag - find and return pages that match @tag
 965 * @mapping:	the address_space to search
 966 * @index:	the starting page index
 967 * @tag:	the tag index
 968 * @nr_pages:	the maximum number of pages
 969 * @pages:	where the resulting pages are placed
 970 *
 971 * Like find_get_pages, except we only return pages which are tagged with
 972 * @tag.   We update @index to index the next page for the traversal.
 973 */
 974unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
 975			int tag, unsigned int nr_pages, struct page **pages)
 976{
 977	unsigned int i;
 978	unsigned int ret;
 979	unsigned int nr_found;
 
 
 
 980
 981	rcu_read_lock();
 982restart:
 983	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
 984				(void ***)pages, *index, nr_pages, tag);
 985	ret = 0;
 986	for (i = 0; i < nr_found; i++) {
 987		struct page *page;
 988repeat:
 989		page = radix_tree_deref_slot((void **)pages[i]);
 990		if (unlikely(!page))
 991			continue;
 992
 993		if (radix_tree_exception(page)) {
 994			if (radix_tree_deref_retry(page)) {
 995				/*
 996				 * Transient condition which can only trigger
 997				 * when entry at index 0 moves out of or back
 998				 * to root: none yet gotten, safe to restart.
 999				 */
1000				goto restart;
1001			}
1002			/*
1003			 * This function is never used on a shmem/tmpfs
1004			 * mapping, so a swap entry won't be found here.
 
 
 
 
 
 
 
1005			 */
1006			BUG();
1007		}
1008
1009		if (!page_cache_get_speculative(page))
1010			goto repeat;
1011
1012		/* Has the page moved? */
1013		if (unlikely(page != *((void **)pages[i]))) {
1014			page_cache_release(page);
1015			goto repeat;
1016		}
1017
1018		pages[ret] = page;
1019		ret++;
 
1020	}
1021
1022	/*
1023	 * If all entries were removed before we could secure them,
1024	 * try again, because callers stop trying once 0 is returned.
1025	 */
1026	if (unlikely(!ret && nr_found))
1027		goto restart;
1028	rcu_read_unlock();
1029
1030	if (ret)
1031		*index = pages[ret - 1]->index + 1;
1032
1033	return ret;
1034}
1035EXPORT_SYMBOL(find_get_pages_tag);
1036
1037/**
1038 * grab_cache_page_nowait - returns locked page at given index in given cache
1039 * @mapping: target address_space
1040 * @index: the page index
1041 *
1042 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1043 * This is intended for speculative data generators, where the data can
1044 * be regenerated if the page couldn't be grabbed.  This routine should
1045 * be safe to call while holding the lock for another page.
1046 *
1047 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1048 * and deadlock against the caller's locked page.
1049 */
1050struct page *
1051grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1052{
1053	struct page *page = find_get_page(mapping, index);
1054
1055	if (page) {
1056		if (trylock_page(page))
1057			return page;
1058		page_cache_release(page);
1059		return NULL;
1060	}
1061	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1062	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1063		page_cache_release(page);
1064		page = NULL;
1065	}
1066	return page;
1067}
1068EXPORT_SYMBOL(grab_cache_page_nowait);
1069
1070/*
1071 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1072 * a _large_ part of the i/o request. Imagine the worst scenario:
1073 *
1074 *      ---R__________________________________________B__________
1075 *         ^ reading here                             ^ bad block(assume 4k)
1076 *
1077 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1078 * => failing the whole request => read(R) => read(R+1) =>
1079 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1080 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1081 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1082 *
1083 * It is going insane. Fix it by quickly scaling down the readahead size.
1084 */
1085static void shrink_readahead_size_eio(struct file *filp,
1086					struct file_ra_state *ra)
1087{
1088	ra->ra_pages /= 4;
1089}
1090
1091/**
1092 * do_generic_file_read - generic file read routine
1093 * @filp:	the file to read
1094 * @ppos:	current file position
1095 * @desc:	read_descriptor
1096 * @actor:	read method
1097 *
1098 * This is a generic file read routine, and uses the
1099 * mapping->a_ops->readpage() function for the actual low-level stuff.
1100 *
1101 * This is really ugly. But the goto's actually try to clarify some
1102 * of the logic when it comes to error handling etc.
1103 */
1104static void do_generic_file_read(struct file *filp, loff_t *ppos,
1105		read_descriptor_t *desc, read_actor_t actor)
1106{
1107	struct address_space *mapping = filp->f_mapping;
1108	struct inode *inode = mapping->host;
1109	struct file_ra_state *ra = &filp->f_ra;
1110	pgoff_t index;
1111	pgoff_t last_index;
1112	pgoff_t prev_index;
1113	unsigned long offset;      /* offset into pagecache page */
1114	unsigned int prev_offset;
1115	int error;
1116
1117	index = *ppos >> PAGE_CACHE_SHIFT;
1118	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1119	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1120	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1121	offset = *ppos & ~PAGE_CACHE_MASK;
1122
1123	for (;;) {
1124		struct page *page;
1125		pgoff_t end_index;
1126		loff_t isize;
1127		unsigned long nr, ret;
1128
1129		cond_resched();
1130find_page:
1131		page = find_get_page(mapping, index);
1132		if (!page) {
1133			page_cache_sync_readahead(mapping,
1134					ra, filp,
1135					index, last_index - index);
1136			page = find_get_page(mapping, index);
1137			if (unlikely(page == NULL))
1138				goto no_cached_page;
1139		}
1140		if (PageReadahead(page)) {
1141			page_cache_async_readahead(mapping,
1142					ra, filp, page,
1143					index, last_index - index);
1144		}
1145		if (!PageUptodate(page)) {
1146			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1147					!mapping->a_ops->is_partially_uptodate)
1148				goto page_not_up_to_date;
1149			if (!trylock_page(page))
1150				goto page_not_up_to_date;
1151			/* Did it get truncated before we got the lock? */
1152			if (!page->mapping)
1153				goto page_not_up_to_date_locked;
1154			if (!mapping->a_ops->is_partially_uptodate(page,
1155								desc, offset))
1156				goto page_not_up_to_date_locked;
1157			unlock_page(page);
1158		}
1159page_ok:
1160		/*
1161		 * i_size must be checked after we know the page is Uptodate.
1162		 *
1163		 * Checking i_size after the check allows us to calculate
1164		 * the correct value for "nr", which means the zero-filled
1165		 * part of the page is not copied back to userspace (unless
1166		 * another truncate extends the file - this is desired though).
1167		 */
1168
1169		isize = i_size_read(inode);
1170		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1171		if (unlikely(!isize || index > end_index)) {
1172			page_cache_release(page);
1173			goto out;
1174		}
1175
1176		/* nr is the maximum number of bytes to copy from this page */
1177		nr = PAGE_CACHE_SIZE;
1178		if (index == end_index) {
1179			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1180			if (nr <= offset) {
1181				page_cache_release(page);
1182				goto out;
1183			}
1184		}
1185		nr = nr - offset;
1186
1187		/* If users can be writing to this page using arbitrary
1188		 * virtual addresses, take care about potential aliasing
1189		 * before reading the page on the kernel side.
1190		 */
1191		if (mapping_writably_mapped(mapping))
1192			flush_dcache_page(page);
1193
1194		/*
1195		 * When a sequential read accesses a page several times,
1196		 * only mark it as accessed the first time.
1197		 */
1198		if (prev_index != index || offset != prev_offset)
1199			mark_page_accessed(page);
1200		prev_index = index;
1201
1202		/*
1203		 * Ok, we have the page, and it's up-to-date, so
1204		 * now we can copy it to user space...
1205		 *
1206		 * The actor routine returns how many bytes were actually used..
1207		 * NOTE! This may not be the same as how much of a user buffer
1208		 * we filled up (we may be padding etc), so we can only update
1209		 * "pos" here (the actor routine has to update the user buffer
1210		 * pointers and the remaining count).
1211		 */
1212		ret = actor(desc, page, offset, nr);
 
1213		offset += ret;
1214		index += offset >> PAGE_CACHE_SHIFT;
1215		offset &= ~PAGE_CACHE_MASK;
1216		prev_offset = offset;
1217
1218		page_cache_release(page);
1219		if (ret == nr && desc->count)
1220			continue;
1221		goto out;
 
 
 
 
 
1222
1223page_not_up_to_date:
1224		/* Get exclusive access to the page ... */
1225		error = lock_page_killable(page);
1226		if (unlikely(error))
1227			goto readpage_error;
1228
1229page_not_up_to_date_locked:
1230		/* Did it get truncated before we got the lock? */
1231		if (!page->mapping) {
1232			unlock_page(page);
1233			page_cache_release(page);
1234			continue;
1235		}
1236
1237		/* Did somebody else fill it already? */
1238		if (PageUptodate(page)) {
1239			unlock_page(page);
1240			goto page_ok;
1241		}
1242
1243readpage:
1244		/*
1245		 * A previous I/O error may have been due to temporary
1246		 * failures, eg. multipath errors.
1247		 * PG_error will be set again if readpage fails.
1248		 */
1249		ClearPageError(page);
1250		/* Start the actual read. The read will unlock the page. */
1251		error = mapping->a_ops->readpage(filp, page);
1252
1253		if (unlikely(error)) {
1254			if (error == AOP_TRUNCATED_PAGE) {
1255				page_cache_release(page);
 
1256				goto find_page;
1257			}
1258			goto readpage_error;
1259		}
1260
1261		if (!PageUptodate(page)) {
1262			error = lock_page_killable(page);
1263			if (unlikely(error))
1264				goto readpage_error;
1265			if (!PageUptodate(page)) {
1266				if (page->mapping == NULL) {
1267					/*
1268					 * invalidate_mapping_pages got it
1269					 */
1270					unlock_page(page);
1271					page_cache_release(page);
1272					goto find_page;
1273				}
1274				unlock_page(page);
1275				shrink_readahead_size_eio(filp, ra);
1276				error = -EIO;
1277				goto readpage_error;
1278			}
1279			unlock_page(page);
1280		}
1281
1282		goto page_ok;
1283
1284readpage_error:
1285		/* UHHUH! A synchronous read error occurred. Report it */
1286		desc->error = error;
1287		page_cache_release(page);
1288		goto out;
1289
1290no_cached_page:
1291		/*
1292		 * Ok, it wasn't cached, so we need to create a new
1293		 * page..
1294		 */
1295		page = page_cache_alloc_cold(mapping);
1296		if (!page) {
1297			desc->error = -ENOMEM;
1298			goto out;
1299		}
1300		error = add_to_page_cache_lru(page, mapping,
1301						index, GFP_KERNEL);
1302		if (error) {
1303			page_cache_release(page);
1304			if (error == -EEXIST)
 
1305				goto find_page;
1306			desc->error = error;
1307			goto out;
1308		}
1309		goto readpage;
1310	}
1311
1312out:
1313	ra->prev_pos = prev_index;
1314	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1315	ra->prev_pos |= prev_offset;
1316
1317	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1318	file_accessed(filp);
1319}
1320
1321int file_read_actor(read_descriptor_t *desc, struct page *page,
1322			unsigned long offset, unsigned long size)
1323{
1324	char *kaddr;
1325	unsigned long left, count = desc->count;
1326
1327	if (size > count)
1328		size = count;
1329
1330	/*
1331	 * Faults on the destination of a read are common, so do it before
1332	 * taking the kmap.
1333	 */
1334	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1335		kaddr = kmap_atomic(page, KM_USER0);
1336		left = __copy_to_user_inatomic(desc->arg.buf,
1337						kaddr + offset, size);
1338		kunmap_atomic(kaddr, KM_USER0);
1339		if (left == 0)
1340			goto success;
1341	}
1342
1343	/* Do it the slow way */
1344	kaddr = kmap(page);
1345	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1346	kunmap(page);
1347
1348	if (left) {
1349		size -= left;
1350		desc->error = -EFAULT;
1351	}
1352success:
1353	desc->count = count - size;
1354	desc->written += size;
1355	desc->arg.buf += size;
1356	return size;
1357}
1358
1359/*
1360 * Performs necessary checks before doing a write
1361 * @iov:	io vector request
1362 * @nr_segs:	number of segments in the iovec
1363 * @count:	number of bytes to write
1364 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1365 *
1366 * Adjust number of segments and amount of bytes to write (nr_segs should be
1367 * properly initialized first). Returns appropriate error code that caller
1368 * should return or zero in case that write should be allowed.
1369 */
1370int generic_segment_checks(const struct iovec *iov,
1371			unsigned long *nr_segs, size_t *count, int access_flags)
1372{
1373	unsigned long   seg;
1374	size_t cnt = 0;
1375	for (seg = 0; seg < *nr_segs; seg++) {
1376		const struct iovec *iv = &iov[seg];
1377
1378		/*
1379		 * If any segment has a negative length, or the cumulative
1380		 * length ever wraps negative then return -EINVAL.
1381		 */
1382		cnt += iv->iov_len;
1383		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1384			return -EINVAL;
1385		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1386			continue;
1387		if (seg == 0)
1388			return -EFAULT;
1389		*nr_segs = seg;
1390		cnt -= iv->iov_len;	/* This segment is no good */
1391		break;
1392	}
1393	*count = cnt;
1394	return 0;
1395}
1396EXPORT_SYMBOL(generic_segment_checks);
1397
1398/**
1399 * generic_file_aio_read - generic filesystem read routine
1400 * @iocb:	kernel I/O control block
1401 * @iov:	io vector request
1402 * @nr_segs:	number of segments in the iovec
1403 * @pos:	current file position
1404 *
1405 * This is the "read()" routine for all filesystems
1406 * that can use the page cache directly.
1407 */
1408ssize_t
1409generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1410		unsigned long nr_segs, loff_t pos)
1411{
1412	struct file *filp = iocb->ki_filp;
1413	ssize_t retval;
1414	unsigned long seg = 0;
1415	size_t count;
1416	loff_t *ppos = &iocb->ki_pos;
1417	struct blk_plug plug;
1418
1419	count = 0;
1420	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1421	if (retval)
1422		return retval;
1423
1424	blk_start_plug(&plug);
1425
1426	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1427	if (filp->f_flags & O_DIRECT) {
1428		loff_t size;
1429		struct address_space *mapping;
1430		struct inode *inode;
1431
1432		mapping = filp->f_mapping;
1433		inode = mapping->host;
1434		if (!count)
1435			goto out; /* skip atime */
1436		size = i_size_read(inode);
1437		if (pos < size) {
1438			retval = filemap_write_and_wait_range(mapping, pos,
1439					pos + iov_length(iov, nr_segs) - 1);
1440			if (!retval) {
1441				retval = mapping->a_ops->direct_IO(READ, iocb,
1442							iov, pos, nr_segs);
1443			}
1444			if (retval > 0) {
1445				*ppos = pos + retval;
1446				count -= retval;
1447			}
1448
1449			/*
1450			 * Btrfs can have a short DIO read if we encounter
1451			 * compressed extents, so if there was an error, or if
1452			 * we've already read everything we wanted to, or if
1453			 * there was a short read because we hit EOF, go ahead
1454			 * and return.  Otherwise fallthrough to buffered io for
1455			 * the rest of the read.
1456			 */
1457			if (retval < 0 || !count || *ppos >= size) {
1458				file_accessed(filp);
1459				goto out;
1460			}
1461		}
1462	}
1463
1464	count = retval;
1465	for (seg = 0; seg < nr_segs; seg++) {
1466		read_descriptor_t desc;
1467		loff_t offset = 0;
1468
1469		/*
1470		 * If we did a short DIO read we need to skip the section of the
1471		 * iov that we've already read data into.
1472		 */
1473		if (count) {
1474			if (count > iov[seg].iov_len) {
1475				count -= iov[seg].iov_len;
1476				continue;
1477			}
1478			offset = count;
1479			count = 0;
1480		}
1481
1482		desc.written = 0;
1483		desc.arg.buf = iov[seg].iov_base + offset;
1484		desc.count = iov[seg].iov_len - offset;
1485		if (desc.count == 0)
1486			continue;
1487		desc.error = 0;
1488		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1489		retval += desc.written;
1490		if (desc.error) {
1491			retval = retval ?: desc.error;
1492			break;
1493		}
1494		if (desc.count > 0)
1495			break;
1496	}
 
 
1497out:
1498	blk_finish_plug(&plug);
1499	return retval;
1500}
1501EXPORT_SYMBOL(generic_file_aio_read);
1502
1503static ssize_t
1504do_readahead(struct address_space *mapping, struct file *filp,
1505	     pgoff_t index, unsigned long nr)
1506{
1507	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1508		return -EINVAL;
1509
1510	force_page_cache_readahead(mapping, filp, index, nr);
1511	return 0;
1512}
1513
1514SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1515{
1516	ssize_t ret;
1517	struct file *file;
1518
1519	ret = -EBADF;
1520	file = fget(fd);
1521	if (file) {
1522		if (file->f_mode & FMODE_READ) {
1523			struct address_space *mapping = file->f_mapping;
1524			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1525			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1526			unsigned long len = end - start + 1;
1527			ret = do_readahead(mapping, file, start, len);
1528		}
1529		fput(file);
1530	}
1531	return ret;
1532}
1533#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1534asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1535{
1536	return SYSC_readahead((int) fd, offset, (size_t) count);
1537}
1538SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1539#endif
1540
1541#ifdef CONFIG_MMU
1542/**
1543 * page_cache_read - adds requested page to the page cache if not already there
1544 * @file:	file to read
1545 * @offset:	page index
1546 *
1547 * This adds the requested page to the page cache if it isn't already there,
1548 * and schedules an I/O to read in its contents from disk.
1549 */
1550static int page_cache_read(struct file *file, pgoff_t offset)
1551{
1552	struct address_space *mapping = file->f_mapping;
1553	struct page *page; 
1554	int ret;
1555
1556	do {
1557		page = page_cache_alloc_cold(mapping);
1558		if (!page)
1559			return -ENOMEM;
1560
1561		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1562		if (ret == 0)
1563			ret = mapping->a_ops->readpage(file, page);
1564		else if (ret == -EEXIST)
1565			ret = 0; /* losing race to add is OK */
1566
1567		page_cache_release(page);
1568
1569	} while (ret == AOP_TRUNCATED_PAGE);
1570		
1571	return ret;
1572}
1573
1574#define MMAP_LOTSAMISS  (100)
1575
1576/*
1577 * Synchronous readahead happens when we don't even find
1578 * a page in the page cache at all.
1579 */
1580static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1581				   struct file_ra_state *ra,
1582				   struct file *file,
1583				   pgoff_t offset)
1584{
1585	unsigned long ra_pages;
1586	struct address_space *mapping = file->f_mapping;
1587
1588	/* If we don't want any read-ahead, don't bother */
1589	if (VM_RandomReadHint(vma))
1590		return;
1591	if (!ra->ra_pages)
1592		return;
1593
1594	if (VM_SequentialReadHint(vma)) {
1595		page_cache_sync_readahead(mapping, ra, file, offset,
1596					  ra->ra_pages);
1597		return;
1598	}
1599
1600	/* Avoid banging the cache line if not needed */
1601	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1602		ra->mmap_miss++;
1603
1604	/*
1605	 * Do we miss much more than hit in this file? If so,
1606	 * stop bothering with read-ahead. It will only hurt.
1607	 */
1608	if (ra->mmap_miss > MMAP_LOTSAMISS)
1609		return;
1610
1611	/*
1612	 * mmap read-around
1613	 */
1614	ra_pages = max_sane_readahead(ra->ra_pages);
1615	ra->start = max_t(long, 0, offset - ra_pages / 2);
1616	ra->size = ra_pages;
1617	ra->async_size = ra_pages / 4;
1618	ra_submit(ra, mapping, file);
1619}
1620
1621/*
1622 * Asynchronous readahead happens when we find the page and PG_readahead,
1623 * so we want to possibly extend the readahead further..
1624 */
1625static void do_async_mmap_readahead(struct vm_area_struct *vma,
1626				    struct file_ra_state *ra,
1627				    struct file *file,
1628				    struct page *page,
1629				    pgoff_t offset)
1630{
1631	struct address_space *mapping = file->f_mapping;
1632
1633	/* If we don't want any read-ahead, don't bother */
1634	if (VM_RandomReadHint(vma))
1635		return;
1636	if (ra->mmap_miss > 0)
1637		ra->mmap_miss--;
1638	if (PageReadahead(page))
1639		page_cache_async_readahead(mapping, ra, file,
1640					   page, offset, ra->ra_pages);
1641}
1642
1643/**
1644 * filemap_fault - read in file data for page fault handling
1645 * @vma:	vma in which the fault was taken
1646 * @vmf:	struct vm_fault containing details of the fault
1647 *
1648 * filemap_fault() is invoked via the vma operations vector for a
1649 * mapped memory region to read in file data during a page fault.
1650 *
1651 * The goto's are kind of ugly, but this streamlines the normal case of having
1652 * it in the page cache, and handles the special cases reasonably without
1653 * having a lot of duplicated code.
1654 */
1655int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1656{
1657	int error;
1658	struct file *file = vma->vm_file;
1659	struct address_space *mapping = file->f_mapping;
1660	struct file_ra_state *ra = &file->f_ra;
1661	struct inode *inode = mapping->host;
1662	pgoff_t offset = vmf->pgoff;
1663	struct page *page;
1664	pgoff_t size;
1665	int ret = 0;
1666
1667	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1668	if (offset >= size)
1669		return VM_FAULT_SIGBUS;
1670
1671	/*
1672	 * Do we have something in the page cache already?
1673	 */
1674	page = find_get_page(mapping, offset);
1675	if (likely(page)) {
1676		/*
1677		 * We found the page, so try async readahead before
1678		 * waiting for the lock.
1679		 */
1680		do_async_mmap_readahead(vma, ra, file, page, offset);
1681	} else {
1682		/* No page in the page cache at all */
1683		do_sync_mmap_readahead(vma, ra, file, offset);
1684		count_vm_event(PGMAJFAULT);
1685		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1686		ret = VM_FAULT_MAJOR;
1687retry_find:
1688		page = find_get_page(mapping, offset);
1689		if (!page)
1690			goto no_cached_page;
1691	}
1692
1693	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1694		page_cache_release(page);
1695		return ret | VM_FAULT_RETRY;
1696	}
1697
1698	/* Did it get truncated? */
1699	if (unlikely(page->mapping != mapping)) {
1700		unlock_page(page);
1701		put_page(page);
1702		goto retry_find;
1703	}
1704	VM_BUG_ON(page->index != offset);
1705
1706	/*
1707	 * We have a locked page in the page cache, now we need to check
1708	 * that it's up-to-date. If not, it is going to be due to an error.
1709	 */
1710	if (unlikely(!PageUptodate(page)))
1711		goto page_not_uptodate;
1712
1713	/*
1714	 * Found the page and have a reference on it.
1715	 * We must recheck i_size under page lock.
1716	 */
1717	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1718	if (unlikely(offset >= size)) {
1719		unlock_page(page);
1720		page_cache_release(page);
1721		return VM_FAULT_SIGBUS;
1722	}
1723
1724	vmf->page = page;
1725	return ret | VM_FAULT_LOCKED;
1726
1727no_cached_page:
1728	/*
1729	 * We're only likely to ever get here if MADV_RANDOM is in
1730	 * effect.
1731	 */
1732	error = page_cache_read(file, offset);
1733
1734	/*
1735	 * The page we want has now been added to the page cache.
1736	 * In the unlikely event that someone removed it in the
1737	 * meantime, we'll just come back here and read it again.
1738	 */
1739	if (error >= 0)
1740		goto retry_find;
1741
1742	/*
1743	 * An error return from page_cache_read can result if the
1744	 * system is low on memory, or a problem occurs while trying
1745	 * to schedule I/O.
1746	 */
1747	if (error == -ENOMEM)
1748		return VM_FAULT_OOM;
1749	return VM_FAULT_SIGBUS;
1750
1751page_not_uptodate:
1752	/*
1753	 * Umm, take care of errors if the page isn't up-to-date.
1754	 * Try to re-read it _once_. We do this synchronously,
1755	 * because there really aren't any performance issues here
1756	 * and we need to check for errors.
1757	 */
1758	ClearPageError(page);
1759	error = mapping->a_ops->readpage(file, page);
1760	if (!error) {
1761		wait_on_page_locked(page);
1762		if (!PageUptodate(page))
1763			error = -EIO;
1764	}
1765	page_cache_release(page);
1766
1767	if (!error || error == AOP_TRUNCATED_PAGE)
1768		goto retry_find;
1769
1770	/* Things didn't work out. Return zero to tell the mm layer so. */
1771	shrink_readahead_size_eio(file, ra);
1772	return VM_FAULT_SIGBUS;
1773}
1774EXPORT_SYMBOL(filemap_fault);
1775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1776const struct vm_operations_struct generic_file_vm_ops = {
1777	.fault		= filemap_fault,
 
 
 
1778};
1779
1780/* This is used for a general mmap of a disk file */
1781
1782int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1783{
1784	struct address_space *mapping = file->f_mapping;
1785
1786	if (!mapping->a_ops->readpage)
1787		return -ENOEXEC;
1788	file_accessed(file);
1789	vma->vm_ops = &generic_file_vm_ops;
1790	vma->vm_flags |= VM_CAN_NONLINEAR;
1791	return 0;
1792}
1793
1794/*
1795 * This is for filesystems which do not implement ->writepage.
1796 */
1797int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1798{
1799	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1800		return -EINVAL;
1801	return generic_file_mmap(file, vma);
1802}
1803#else
1804int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1805{
1806	return -ENOSYS;
1807}
1808int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1809{
1810	return -ENOSYS;
1811}
1812#endif /* CONFIG_MMU */
1813
1814EXPORT_SYMBOL(generic_file_mmap);
1815EXPORT_SYMBOL(generic_file_readonly_mmap);
1816
 
 
 
 
 
 
 
 
 
 
 
 
1817static struct page *__read_cache_page(struct address_space *mapping,
1818				pgoff_t index,
1819				int (*filler)(void *, struct page *),
1820				void *data,
1821				gfp_t gfp)
1822{
1823	struct page *page;
1824	int err;
1825repeat:
1826	page = find_get_page(mapping, index);
1827	if (!page) {
1828		page = __page_cache_alloc(gfp | __GFP_COLD);
1829		if (!page)
1830			return ERR_PTR(-ENOMEM);
1831		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1832		if (unlikely(err)) {
1833			page_cache_release(page);
1834			if (err == -EEXIST)
1835				goto repeat;
1836			/* Presumably ENOMEM for radix tree node */
1837			return ERR_PTR(err);
1838		}
1839		err = filler(data, page);
1840		if (err < 0) {
1841			page_cache_release(page);
1842			page = ERR_PTR(err);
 
 
1843		}
1844	}
1845	return page;
1846}
1847
1848static struct page *do_read_cache_page(struct address_space *mapping,
1849				pgoff_t index,
1850				int (*filler)(void *, struct page *),
1851				void *data,
1852				gfp_t gfp)
1853
1854{
1855	struct page *page;
1856	int err;
1857
1858retry:
1859	page = __read_cache_page(mapping, index, filler, data, gfp);
1860	if (IS_ERR(page))
1861		return page;
1862	if (PageUptodate(page))
1863		goto out;
1864
1865	lock_page(page);
1866	if (!page->mapping) {
1867		unlock_page(page);
1868		page_cache_release(page);
1869		goto retry;
1870	}
1871	if (PageUptodate(page)) {
1872		unlock_page(page);
1873		goto out;
1874	}
1875	err = filler(data, page);
1876	if (err < 0) {
1877		page_cache_release(page);
1878		return ERR_PTR(err);
 
 
 
 
1879	}
1880out:
1881	mark_page_accessed(page);
1882	return page;
1883}
1884
1885/**
1886 * read_cache_page_async - read into page cache, fill it if needed
1887 * @mapping:	the page's address_space
1888 * @index:	the page index
1889 * @filler:	function to perform the read
1890 * @data:	first arg to filler(data, page) function, often left as NULL
1891 *
1892 * Same as read_cache_page, but don't wait for page to become unlocked
1893 * after submitting it to the filler.
1894 *
1895 * Read into the page cache. If a page already exists, and PageUptodate() is
1896 * not set, try to fill the page but don't wait for it to become unlocked.
1897 *
1898 * If the page does not get brought uptodate, return -EIO.
1899 */
1900struct page *read_cache_page_async(struct address_space *mapping,
1901				pgoff_t index,
1902				int (*filler)(void *, struct page *),
1903				void *data)
1904{
1905	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1906}
1907EXPORT_SYMBOL(read_cache_page_async);
1908
1909static struct page *wait_on_page_read(struct page *page)
1910{
1911	if (!IS_ERR(page)) {
1912		wait_on_page_locked(page);
1913		if (!PageUptodate(page)) {
1914			page_cache_release(page);
1915			page = ERR_PTR(-EIO);
1916		}
1917	}
1918	return page;
1919}
1920
1921/**
1922 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1923 * @mapping:	the page's address_space
1924 * @index:	the page index
1925 * @gfp:	the page allocator flags to use if allocating
1926 *
1927 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1928 * any new page allocations done using the specified allocation flags. Note
1929 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1930 * expect to do this atomically or anything like that - but you can pass in
1931 * other page requirements.
1932 *
1933 * If the page does not get brought uptodate, return -EIO.
1934 */
1935struct page *read_cache_page_gfp(struct address_space *mapping,
1936				pgoff_t index,
1937				gfp_t gfp)
1938{
1939	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1940
1941	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1942}
1943EXPORT_SYMBOL(read_cache_page_gfp);
1944
1945/**
1946 * read_cache_page - read into page cache, fill it if needed
1947 * @mapping:	the page's address_space
1948 * @index:	the page index
1949 * @filler:	function to perform the read
1950 * @data:	first arg to filler(data, page) function, often left as NULL
1951 *
1952 * Read into the page cache. If a page already exists, and PageUptodate() is
1953 * not set, try to fill the page then wait for it to become unlocked.
1954 *
1955 * If the page does not get brought uptodate, return -EIO.
1956 */
1957struct page *read_cache_page(struct address_space *mapping,
1958				pgoff_t index,
1959				int (*filler)(void *, struct page *),
1960				void *data)
1961{
1962	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1963}
1964EXPORT_SYMBOL(read_cache_page);
1965
1966/*
1967 * The logic we want is
1968 *
1969 *	if suid or (sgid and xgrp)
1970 *		remove privs
1971 */
1972int should_remove_suid(struct dentry *dentry)
1973{
1974	mode_t mode = dentry->d_inode->i_mode;
1975	int kill = 0;
1976
1977	/* suid always must be killed */
1978	if (unlikely(mode & S_ISUID))
1979		kill = ATTR_KILL_SUID;
1980
1981	/*
1982	 * sgid without any exec bits is just a mandatory locking mark; leave
1983	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1984	 */
1985	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1986		kill |= ATTR_KILL_SGID;
1987
1988	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1989		return kill;
1990
1991	return 0;
1992}
1993EXPORT_SYMBOL(should_remove_suid);
1994
1995static int __remove_suid(struct dentry *dentry, int kill)
1996{
1997	struct iattr newattrs;
1998
1999	newattrs.ia_valid = ATTR_FORCE | kill;
2000	return notify_change(dentry, &newattrs);
2001}
2002
2003int file_remove_suid(struct file *file)
2004{
2005	struct dentry *dentry = file->f_path.dentry;
2006	struct inode *inode = dentry->d_inode;
2007	int killsuid;
2008	int killpriv;
2009	int error = 0;
2010
2011	/* Fast path for nothing security related */
2012	if (IS_NOSEC(inode))
2013		return 0;
2014
2015	killsuid = should_remove_suid(dentry);
2016	killpriv = security_inode_need_killpriv(dentry);
2017
2018	if (killpriv < 0)
2019		return killpriv;
2020	if (killpriv)
2021		error = security_inode_killpriv(dentry);
2022	if (!error && killsuid)
2023		error = __remove_suid(dentry, killsuid);
2024	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2025		inode->i_flags |= S_NOSEC;
2026
2027	return error;
2028}
2029EXPORT_SYMBOL(file_remove_suid);
2030
2031static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2032			const struct iovec *iov, size_t base, size_t bytes)
2033{
2034	size_t copied = 0, left = 0;
2035
2036	while (bytes) {
2037		char __user *buf = iov->iov_base + base;
2038		int copy = min(bytes, iov->iov_len - base);
2039
2040		base = 0;
2041		left = __copy_from_user_inatomic(vaddr, buf, copy);
2042		copied += copy;
2043		bytes -= copy;
2044		vaddr += copy;
2045		iov++;
2046
2047		if (unlikely(left))
2048			break;
2049	}
2050	return copied - left;
2051}
2052
2053/*
2054 * Copy as much as we can into the page and return the number of bytes which
2055 * were successfully copied.  If a fault is encountered then return the number of
2056 * bytes which were copied.
2057 */
2058size_t iov_iter_copy_from_user_atomic(struct page *page,
2059		struct iov_iter *i, unsigned long offset, size_t bytes)
2060{
2061	char *kaddr;
2062	size_t copied;
2063
2064	BUG_ON(!in_atomic());
2065	kaddr = kmap_atomic(page, KM_USER0);
2066	if (likely(i->nr_segs == 1)) {
2067		int left;
2068		char __user *buf = i->iov->iov_base + i->iov_offset;
2069		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2070		copied = bytes - left;
2071	} else {
2072		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2073						i->iov, i->iov_offset, bytes);
2074	}
2075	kunmap_atomic(kaddr, KM_USER0);
2076
2077	return copied;
2078}
2079EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2080
2081/*
2082 * This has the same sideeffects and return value as
2083 * iov_iter_copy_from_user_atomic().
2084 * The difference is that it attempts to resolve faults.
2085 * Page must not be locked.
2086 */
2087size_t iov_iter_copy_from_user(struct page *page,
2088		struct iov_iter *i, unsigned long offset, size_t bytes)
2089{
2090	char *kaddr;
2091	size_t copied;
2092
2093	kaddr = kmap(page);
2094	if (likely(i->nr_segs == 1)) {
2095		int left;
2096		char __user *buf = i->iov->iov_base + i->iov_offset;
2097		left = __copy_from_user(kaddr + offset, buf, bytes);
2098		copied = bytes - left;
2099	} else {
2100		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2101						i->iov, i->iov_offset, bytes);
2102	}
2103	kunmap(page);
2104	return copied;
2105}
2106EXPORT_SYMBOL(iov_iter_copy_from_user);
2107
2108void iov_iter_advance(struct iov_iter *i, size_t bytes)
2109{
2110	BUG_ON(i->count < bytes);
2111
2112	if (likely(i->nr_segs == 1)) {
2113		i->iov_offset += bytes;
2114		i->count -= bytes;
2115	} else {
2116		const struct iovec *iov = i->iov;
2117		size_t base = i->iov_offset;
2118
2119		/*
2120		 * The !iov->iov_len check ensures we skip over unlikely
2121		 * zero-length segments (without overruning the iovec).
2122		 */
2123		while (bytes || unlikely(i->count && !iov->iov_len)) {
2124			int copy;
2125
2126			copy = min(bytes, iov->iov_len - base);
2127			BUG_ON(!i->count || i->count < copy);
2128			i->count -= copy;
2129			bytes -= copy;
2130			base += copy;
2131			if (iov->iov_len == base) {
2132				iov++;
2133				base = 0;
2134			}
2135		}
2136		i->iov = iov;
2137		i->iov_offset = base;
2138	}
2139}
2140EXPORT_SYMBOL(iov_iter_advance);
2141
2142/*
2143 * Fault in the first iovec of the given iov_iter, to a maximum length
2144 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2145 * accessed (ie. because it is an invalid address).
2146 *
2147 * writev-intensive code may want this to prefault several iovecs -- that
2148 * would be possible (callers must not rely on the fact that _only_ the
2149 * first iovec will be faulted with the current implementation).
2150 */
2151int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2152{
2153	char __user *buf = i->iov->iov_base + i->iov_offset;
2154	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2155	return fault_in_pages_readable(buf, bytes);
2156}
2157EXPORT_SYMBOL(iov_iter_fault_in_readable);
2158
2159/*
2160 * Return the count of just the current iov_iter segment.
2161 */
2162size_t iov_iter_single_seg_count(struct iov_iter *i)
2163{
2164	const struct iovec *iov = i->iov;
2165	if (i->nr_segs == 1)
2166		return i->count;
2167	else
2168		return min(i->count, iov->iov_len - i->iov_offset);
2169}
2170EXPORT_SYMBOL(iov_iter_single_seg_count);
2171
2172/*
2173 * Performs necessary checks before doing a write
2174 *
2175 * Can adjust writing position or amount of bytes to write.
2176 * Returns appropriate error code that caller should return or
2177 * zero in case that write should be allowed.
2178 */
2179inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2180{
2181	struct inode *inode = file->f_mapping->host;
2182	unsigned long limit = rlimit(RLIMIT_FSIZE);
2183
2184        if (unlikely(*pos < 0))
2185                return -EINVAL;
2186
2187	if (!isblk) {
2188		/* FIXME: this is for backwards compatibility with 2.4 */
2189		if (file->f_flags & O_APPEND)
2190                        *pos = i_size_read(inode);
2191
2192		if (limit != RLIM_INFINITY) {
2193			if (*pos >= limit) {
2194				send_sig(SIGXFSZ, current, 0);
2195				return -EFBIG;
2196			}
2197			if (*count > limit - (typeof(limit))*pos) {
2198				*count = limit - (typeof(limit))*pos;
2199			}
2200		}
2201	}
2202
2203	/*
2204	 * LFS rule
2205	 */
2206	if (unlikely(*pos + *count > MAX_NON_LFS &&
2207				!(file->f_flags & O_LARGEFILE))) {
2208		if (*pos >= MAX_NON_LFS) {
2209			return -EFBIG;
2210		}
2211		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2212			*count = MAX_NON_LFS - (unsigned long)*pos;
2213		}
2214	}
2215
2216	/*
2217	 * Are we about to exceed the fs block limit ?
2218	 *
2219	 * If we have written data it becomes a short write.  If we have
2220	 * exceeded without writing data we send a signal and return EFBIG.
2221	 * Linus frestrict idea will clean these up nicely..
2222	 */
2223	if (likely(!isblk)) {
2224		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2225			if (*count || *pos > inode->i_sb->s_maxbytes) {
2226				return -EFBIG;
2227			}
2228			/* zero-length writes at ->s_maxbytes are OK */
2229		}
2230
2231		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2232			*count = inode->i_sb->s_maxbytes - *pos;
2233	} else {
2234#ifdef CONFIG_BLOCK
2235		loff_t isize;
2236		if (bdev_read_only(I_BDEV(inode)))
2237			return -EPERM;
2238		isize = i_size_read(inode);
2239		if (*pos >= isize) {
2240			if (*count || *pos > isize)
2241				return -ENOSPC;
2242		}
2243
2244		if (*pos + *count > isize)
2245			*count = isize - *pos;
2246#else
2247		return -EPERM;
2248#endif
2249	}
2250	return 0;
2251}
2252EXPORT_SYMBOL(generic_write_checks);
2253
2254int pagecache_write_begin(struct file *file, struct address_space *mapping,
2255				loff_t pos, unsigned len, unsigned flags,
2256				struct page **pagep, void **fsdata)
2257{
2258	const struct address_space_operations *aops = mapping->a_ops;
2259
2260	return aops->write_begin(file, mapping, pos, len, flags,
2261							pagep, fsdata);
2262}
2263EXPORT_SYMBOL(pagecache_write_begin);
2264
2265int pagecache_write_end(struct file *file, struct address_space *mapping,
2266				loff_t pos, unsigned len, unsigned copied,
2267				struct page *page, void *fsdata)
2268{
2269	const struct address_space_operations *aops = mapping->a_ops;
2270
2271	mark_page_accessed(page);
2272	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2273}
2274EXPORT_SYMBOL(pagecache_write_end);
2275
2276ssize_t
2277generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2278		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2279		size_t count, size_t ocount)
2280{
2281	struct file	*file = iocb->ki_filp;
2282	struct address_space *mapping = file->f_mapping;
2283	struct inode	*inode = mapping->host;
2284	ssize_t		written;
2285	size_t		write_len;
2286	pgoff_t		end;
2287
2288	if (count != ocount)
2289		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2290
2291	write_len = iov_length(iov, *nr_segs);
2292	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2293
2294	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2295	if (written)
2296		goto out;
2297
2298	/*
2299	 * After a write we want buffered reads to be sure to go to disk to get
2300	 * the new data.  We invalidate clean cached page from the region we're
2301	 * about to write.  We do this *before* the write so that we can return
2302	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2303	 */
2304	if (mapping->nrpages) {
2305		written = invalidate_inode_pages2_range(mapping,
2306					pos >> PAGE_CACHE_SHIFT, end);
2307		/*
2308		 * If a page can not be invalidated, return 0 to fall back
2309		 * to buffered write.
2310		 */
2311		if (written) {
2312			if (written == -EBUSY)
2313				return 0;
2314			goto out;
2315		}
2316	}
2317
2318	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2319
2320	/*
2321	 * Finally, try again to invalidate clean pages which might have been
2322	 * cached by non-direct readahead, or faulted in by get_user_pages()
2323	 * if the source of the write was an mmap'ed region of the file
2324	 * we're writing.  Either one is a pretty crazy thing to do,
2325	 * so we don't support it 100%.  If this invalidation
2326	 * fails, tough, the write still worked...
2327	 */
2328	if (mapping->nrpages) {
2329		invalidate_inode_pages2_range(mapping,
2330					      pos >> PAGE_CACHE_SHIFT, end);
2331	}
2332
2333	if (written > 0) {
2334		pos += written;
2335		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2336			i_size_write(inode, pos);
2337			mark_inode_dirty(inode);
2338		}
2339		*ppos = pos;
2340	}
2341out:
2342	return written;
2343}
2344EXPORT_SYMBOL(generic_file_direct_write);
2345
2346/*
2347 * Find or create a page at the given pagecache position. Return the locked
2348 * page. This function is specifically for buffered writes.
2349 */
2350struct page *grab_cache_page_write_begin(struct address_space *mapping,
2351					pgoff_t index, unsigned flags)
2352{
2353	int status;
 
2354	struct page *page;
2355	gfp_t gfp_notmask = 0;
 
 
 
 
2356	if (flags & AOP_FLAG_NOFS)
2357		gfp_notmask = __GFP_FS;
2358repeat:
2359	page = find_lock_page(mapping, index);
2360	if (page)
2361		goto found;
2362
2363	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2364	if (!page)
2365		return NULL;
2366	status = add_to_page_cache_lru(page, mapping, index,
2367						GFP_KERNEL & ~gfp_notmask);
2368	if (unlikely(status)) {
2369		page_cache_release(page);
2370		if (status == -EEXIST)
2371			goto repeat;
2372		return NULL;
2373	}
2374found:
2375	wait_on_page_writeback(page);
2376	return page;
2377}
2378EXPORT_SYMBOL(grab_cache_page_write_begin);
2379
2380static ssize_t generic_perform_write(struct file *file,
2381				struct iov_iter *i, loff_t pos)
2382{
2383	struct address_space *mapping = file->f_mapping;
2384	const struct address_space_operations *a_ops = mapping->a_ops;
2385	long status = 0;
2386	ssize_t written = 0;
2387	unsigned int flags = 0;
2388
2389	/*
2390	 * Copies from kernel address space cannot fail (NFSD is a big user).
2391	 */
2392	if (segment_eq(get_fs(), KERNEL_DS))
2393		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2394
2395	do {
2396		struct page *page;
2397		unsigned long offset;	/* Offset into pagecache page */
2398		unsigned long bytes;	/* Bytes to write to page */
2399		size_t copied;		/* Bytes copied from user */
2400		void *fsdata;
2401
2402		offset = (pos & (PAGE_CACHE_SIZE - 1));
2403		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2404						iov_iter_count(i));
2405
2406again:
2407
2408		/*
2409		 * Bring in the user page that we will copy from _first_.
2410		 * Otherwise there's a nasty deadlock on copying from the
2411		 * same page as we're writing to, without it being marked
2412		 * up-to-date.
2413		 *
2414		 * Not only is this an optimisation, but it is also required
2415		 * to check that the address is actually valid, when atomic
2416		 * usercopies are used, below.
2417		 */
2418		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2419			status = -EFAULT;
2420			break;
2421		}
2422
2423		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2424						&page, &fsdata);
2425		if (unlikely(status))
2426			break;
2427
2428		if (mapping_writably_mapped(mapping))
2429			flush_dcache_page(page);
2430
2431		pagefault_disable();
2432		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2433		pagefault_enable();
2434		flush_dcache_page(page);
2435
2436		mark_page_accessed(page);
2437		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2438						page, fsdata);
2439		if (unlikely(status < 0))
2440			break;
2441		copied = status;
2442
2443		cond_resched();
2444
2445		iov_iter_advance(i, copied);
2446		if (unlikely(copied == 0)) {
2447			/*
2448			 * If we were unable to copy any data at all, we must
2449			 * fall back to a single segment length write.
2450			 *
2451			 * If we didn't fallback here, we could livelock
2452			 * because not all segments in the iov can be copied at
2453			 * once without a pagefault.
2454			 */
2455			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2456						iov_iter_single_seg_count(i));
2457			goto again;
2458		}
2459		pos += copied;
2460		written += copied;
2461
2462		balance_dirty_pages_ratelimited(mapping);
2463
 
 
 
2464	} while (iov_iter_count(i));
2465
2466	return written ? written : status;
2467}
2468
2469ssize_t
2470generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2471		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2472		size_t count, ssize_t written)
2473{
2474	struct file *file = iocb->ki_filp;
2475	ssize_t status;
2476	struct iov_iter i;
2477
2478	iov_iter_init(&i, iov, nr_segs, count, written);
2479	status = generic_perform_write(file, &i, pos);
2480
2481	if (likely(status >= 0)) {
2482		written += status;
2483		*ppos = pos + status;
2484  	}
2485	
2486	return written ? written : status;
2487}
2488EXPORT_SYMBOL(generic_file_buffered_write);
2489
2490/**
2491 * __generic_file_aio_write - write data to a file
2492 * @iocb:	IO state structure (file, offset, etc.)
2493 * @iov:	vector with data to write
2494 * @nr_segs:	number of segments in the vector
2495 * @ppos:	position where to write
2496 *
2497 * This function does all the work needed for actually writing data to a
2498 * file. It does all basic checks, removes SUID from the file, updates
2499 * modification times and calls proper subroutines depending on whether we
2500 * do direct IO or a standard buffered write.
2501 *
2502 * It expects i_mutex to be grabbed unless we work on a block device or similar
2503 * object which does not need locking at all.
2504 *
2505 * This function does *not* take care of syncing data in case of O_SYNC write.
2506 * A caller has to handle it. This is mainly due to the fact that we want to
2507 * avoid syncing under i_mutex.
2508 */
2509ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2510				 unsigned long nr_segs, loff_t *ppos)
2511{
2512	struct file *file = iocb->ki_filp;
2513	struct address_space * mapping = file->f_mapping;
2514	size_t ocount;		/* original count */
2515	size_t count;		/* after file limit checks */
2516	struct inode 	*inode = mapping->host;
2517	loff_t		pos;
2518	ssize_t		written;
2519	ssize_t		err;
 
 
2520
2521	ocount = 0;
2522	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2523	if (err)
2524		return err;
2525
2526	count = ocount;
2527	pos = *ppos;
2528
2529	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2530
2531	/* We can write back this queue in page reclaim */
2532	current->backing_dev_info = mapping->backing_dev_info;
2533	written = 0;
2534
2535	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2536	if (err)
2537		goto out;
2538
2539	if (count == 0)
2540		goto out;
2541
2542	err = file_remove_suid(file);
2543	if (err)
2544		goto out;
2545
2546	file_update_time(file);
 
 
 
 
2547
2548	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2549	if (unlikely(file->f_flags & O_DIRECT)) {
2550		loff_t endbyte;
2551		ssize_t written_buffered;
2552
2553		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2554							ppos, count, ocount);
2555		if (written < 0 || written == count)
2556			goto out;
 
 
2557		/*
2558		 * direct-io write to a hole: fall through to buffered I/O
2559		 * for completing the rest of the request.
2560		 */
2561		pos += written;
2562		count -= written;
2563		written_buffered = generic_file_buffered_write(iocb, iov,
2564						nr_segs, pos, ppos, count,
2565						written);
2566		/*
2567		 * If generic_file_buffered_write() retuned a synchronous error
2568		 * then we want to return the number of bytes which were
2569		 * direct-written, or the error code if that was zero.  Note
2570		 * that this differs from normal direct-io semantics, which
2571		 * will return -EFOO even if some bytes were written.
2572		 */
2573		if (written_buffered < 0) {
2574			err = written_buffered;
2575			goto out;
2576		}
2577
2578		/*
2579		 * We need to ensure that the page cache pages are written to
2580		 * disk and invalidated to preserve the expected O_DIRECT
2581		 * semantics.
2582		 */
2583		endbyte = pos + written_buffered - written - 1;
2584		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2585		if (err == 0) {
2586			written = written_buffered;
2587			invalidate_mapping_pages(mapping,
2588						 pos >> PAGE_CACHE_SHIFT,
2589						 endbyte >> PAGE_CACHE_SHIFT);
2590		} else {
2591			/*
2592			 * We don't know how much we wrote, so just return
2593			 * the number of bytes which were direct-written
2594			 */
2595		}
2596	} else {
2597		written = generic_file_buffered_write(iocb, iov, nr_segs,
2598				pos, ppos, count, written);
 
2599	}
2600out:
2601	current->backing_dev_info = NULL;
2602	return written ? written : err;
2603}
2604EXPORT_SYMBOL(__generic_file_aio_write);
2605
2606/**
2607 * generic_file_aio_write - write data to a file
2608 * @iocb:	IO state structure
2609 * @iov:	vector with data to write
2610 * @nr_segs:	number of segments in the vector
2611 * @pos:	position in file where to write
2612 *
2613 * This is a wrapper around __generic_file_aio_write() to be used by most
2614 * filesystems. It takes care of syncing the file in case of O_SYNC file
2615 * and acquires i_mutex as needed.
2616 */
2617ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2618		unsigned long nr_segs, loff_t pos)
2619{
2620	struct file *file = iocb->ki_filp;
2621	struct inode *inode = file->f_mapping->host;
2622	struct blk_plug plug;
2623	ssize_t ret;
2624
2625	BUG_ON(iocb->ki_pos != pos);
2626
2627	mutex_lock(&inode->i_mutex);
2628	blk_start_plug(&plug);
2629	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2630	mutex_unlock(&inode->i_mutex);
2631
2632	if (ret > 0 || ret == -EIOCBQUEUED) {
2633		ssize_t err;
2634
2635		err = generic_write_sync(file, pos, ret);
2636		if (err < 0 && ret > 0)
2637			ret = err;
2638	}
2639	blk_finish_plug(&plug);
2640	return ret;
2641}
2642EXPORT_SYMBOL(generic_file_aio_write);
2643
2644/**
2645 * try_to_release_page() - release old fs-specific metadata on a page
2646 *
2647 * @page: the page which the kernel is trying to free
2648 * @gfp_mask: memory allocation flags (and I/O mode)
2649 *
2650 * The address_space is to try to release any data against the page
2651 * (presumably at page->private).  If the release was successful, return `1'.
2652 * Otherwise return zero.
2653 *
2654 * This may also be called if PG_fscache is set on a page, indicating that the
2655 * page is known to the local caching routines.
2656 *
2657 * The @gfp_mask argument specifies whether I/O may be performed to release
2658 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2659 *
2660 */
2661int try_to_release_page(struct page *page, gfp_t gfp_mask)
2662{
2663	struct address_space * const mapping = page->mapping;
2664
2665	BUG_ON(!PageLocked(page));
2666	if (PageWriteback(page))
2667		return 0;
2668
2669	if (mapping && mapping->a_ops->releasepage)
2670		return mapping->a_ops->releasepage(page, gfp_mask);
2671	return try_to_free_buffers(page);
2672}
2673
2674EXPORT_SYMBOL(try_to_release_page);
v3.15
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/fs.h>
  15#include <linux/uaccess.h>
  16#include <linux/aio.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
 
  32#include <linux/cpuset.h>
  33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  34#include <linux/memcontrol.h>
  35#include <linux/cleancache.h>
  36#include <linux/rmap.h>
  37#include "internal.h"
  38
  39#define CREATE_TRACE_POINTS
  40#include <trace/events/filemap.h>
  41
  42/*
  43 * FIXME: remove all knowledge of the buffer layer from the core VM
  44 */
  45#include <linux/buffer_head.h> /* for try_to_free_buffers */
  46
  47#include <asm/mman.h>
  48
  49/*
  50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  51 * though.
  52 *
  53 * Shared mappings now work. 15.8.1995  Bruno.
  54 *
  55 * finished 'unifying' the page and buffer cache and SMP-threaded the
  56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  57 *
  58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  59 */
  60
  61/*
  62 * Lock ordering:
  63 *
  64 *  ->i_mmap_mutex		(truncate_pagecache)
  65 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  66 *      ->swap_lock		(exclusive_swap_page, others)
  67 *        ->mapping->tree_lock
  68 *
  69 *  ->i_mutex
  70 *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
  71 *
  72 *  ->mmap_sem
  73 *    ->i_mmap_mutex
  74 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  75 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
  76 *
  77 *  ->mmap_sem
  78 *    ->lock_page		(access_process_vm)
  79 *
  80 *  ->i_mutex			(generic_perform_write)
  81 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  82 *
  83 *  bdi->wb.list_lock
  84 *    sb_lock			(fs/fs-writeback.c)
  85 *    ->mapping->tree_lock	(__sync_single_inode)
  86 *
  87 *  ->i_mmap_mutex
  88 *    ->anon_vma.lock		(vma_adjust)
  89 *
  90 *  ->anon_vma.lock
  91 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  92 *
  93 *  ->page_table_lock or pte_lock
  94 *    ->swap_lock		(try_to_unmap_one)
  95 *    ->private_lock		(try_to_unmap_one)
  96 *    ->tree_lock		(try_to_unmap_one)
  97 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
  98 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
  99 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 100 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
 101 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 102 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 103 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 104 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 105 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 106 *
 107 * ->i_mmap_mutex
 108 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 
 109 */
 110
 111static void page_cache_tree_delete(struct address_space *mapping,
 112				   struct page *page, void *shadow)
 113{
 114	struct radix_tree_node *node;
 115	unsigned long index;
 116	unsigned int offset;
 117	unsigned int tag;
 118	void **slot;
 119
 120	VM_BUG_ON(!PageLocked(page));
 121
 122	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
 123
 124	if (shadow) {
 125		mapping->nrshadows++;
 126		/*
 127		 * Make sure the nrshadows update is committed before
 128		 * the nrpages update so that final truncate racing
 129		 * with reclaim does not see both counters 0 at the
 130		 * same time and miss a shadow entry.
 131		 */
 132		smp_wmb();
 133	}
 134	mapping->nrpages--;
 135
 136	if (!node) {
 137		/* Clear direct pointer tags in root node */
 138		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
 139		radix_tree_replace_slot(slot, shadow);
 140		return;
 141	}
 142
 143	/* Clear tree tags for the removed page */
 144	index = page->index;
 145	offset = index & RADIX_TREE_MAP_MASK;
 146	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 147		if (test_bit(offset, node->tags[tag]))
 148			radix_tree_tag_clear(&mapping->page_tree, index, tag);
 149	}
 150
 151	/* Delete page, swap shadow entry */
 152	radix_tree_replace_slot(slot, shadow);
 153	workingset_node_pages_dec(node);
 154	if (shadow)
 155		workingset_node_shadows_inc(node);
 156	else
 157		if (__radix_tree_delete_node(&mapping->page_tree, node))
 158			return;
 159
 160	/*
 161	 * Track node that only contains shadow entries.
 162	 *
 163	 * Avoid acquiring the list_lru lock if already tracked.  The
 164	 * list_empty() test is safe as node->private_list is
 165	 * protected by mapping->tree_lock.
 166	 */
 167	if (!workingset_node_pages(node) &&
 168	    list_empty(&node->private_list)) {
 169		node->private_data = mapping;
 170		list_lru_add(&workingset_shadow_nodes, &node->private_list);
 171	}
 172}
 173
 174/*
 175 * Delete a page from the page cache and free it. Caller has to make
 176 * sure the page is locked and that nobody else uses it - or that usage
 177 * is safe.  The caller must hold the mapping's tree_lock.
 178 */
 179void __delete_from_page_cache(struct page *page, void *shadow)
 180{
 181	struct address_space *mapping = page->mapping;
 182
 183	trace_mm_filemap_delete_from_page_cache(page);
 184	/*
 185	 * if we're uptodate, flush out into the cleancache, otherwise
 186	 * invalidate any existing cleancache entries.  We can't leave
 187	 * stale data around in the cleancache once our page is gone
 188	 */
 189	if (PageUptodate(page) && PageMappedToDisk(page))
 190		cleancache_put_page(page);
 191	else
 192		cleancache_invalidate_page(mapping, page);
 193
 194	page_cache_tree_delete(mapping, page, shadow);
 195
 
 196	page->mapping = NULL;
 197	/* Leave page->index set: truncation lookup relies upon it */
 198
 199	__dec_zone_page_state(page, NR_FILE_PAGES);
 200	if (PageSwapBacked(page))
 201		__dec_zone_page_state(page, NR_SHMEM);
 202	BUG_ON(page_mapped(page));
 203
 204	/*
 205	 * Some filesystems seem to re-dirty the page even after
 206	 * the VM has canceled the dirty bit (eg ext3 journaling).
 207	 *
 208	 * Fix it up by doing a final dirty accounting check after
 209	 * having removed the page entirely.
 210	 */
 211	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
 212		dec_zone_page_state(page, NR_FILE_DIRTY);
 213		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
 214	}
 215}
 216
 217/**
 218 * delete_from_page_cache - delete page from page cache
 219 * @page: the page which the kernel is trying to remove from page cache
 220 *
 221 * This must be called only on pages that have been verified to be in the page
 222 * cache and locked.  It will never put the page into the free list, the caller
 223 * has a reference on the page.
 224 */
 225void delete_from_page_cache(struct page *page)
 226{
 227	struct address_space *mapping = page->mapping;
 228	void (*freepage)(struct page *);
 229
 230	BUG_ON(!PageLocked(page));
 231
 232	freepage = mapping->a_ops->freepage;
 233	spin_lock_irq(&mapping->tree_lock);
 234	__delete_from_page_cache(page, NULL);
 235	spin_unlock_irq(&mapping->tree_lock);
 236	mem_cgroup_uncharge_cache_page(page);
 237
 238	if (freepage)
 239		freepage(page);
 240	page_cache_release(page);
 241}
 242EXPORT_SYMBOL(delete_from_page_cache);
 243
 244static int sleep_on_page(void *word)
 245{
 246	io_schedule();
 247	return 0;
 248}
 249
 250static int sleep_on_page_killable(void *word)
 251{
 252	sleep_on_page(word);
 253	return fatal_signal_pending(current) ? -EINTR : 0;
 254}
 255
 256static int filemap_check_errors(struct address_space *mapping)
 257{
 258	int ret = 0;
 259	/* Check for outstanding write errors */
 260	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 261	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 262		ret = -ENOSPC;
 263	if (test_bit(AS_EIO, &mapping->flags) &&
 264	    test_and_clear_bit(AS_EIO, &mapping->flags))
 265		ret = -EIO;
 266	return ret;
 267}
 268
 269/**
 270 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 271 * @mapping:	address space structure to write
 272 * @start:	offset in bytes where the range starts
 273 * @end:	offset in bytes where the range ends (inclusive)
 274 * @sync_mode:	enable synchronous operation
 275 *
 276 * Start writeback against all of a mapping's dirty pages that lie
 277 * within the byte offsets <start, end> inclusive.
 278 *
 279 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 280 * opposed to a regular memory cleansing writeback.  The difference between
 281 * these two operations is that if a dirty page/buffer is encountered, it must
 282 * be waited upon, and not just skipped over.
 283 */
 284int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 285				loff_t end, int sync_mode)
 286{
 287	int ret;
 288	struct writeback_control wbc = {
 289		.sync_mode = sync_mode,
 290		.nr_to_write = LONG_MAX,
 291		.range_start = start,
 292		.range_end = end,
 293	};
 294
 295	if (!mapping_cap_writeback_dirty(mapping))
 296		return 0;
 297
 298	ret = do_writepages(mapping, &wbc);
 299	return ret;
 300}
 301
 302static inline int __filemap_fdatawrite(struct address_space *mapping,
 303	int sync_mode)
 304{
 305	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 306}
 307
 308int filemap_fdatawrite(struct address_space *mapping)
 309{
 310	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 311}
 312EXPORT_SYMBOL(filemap_fdatawrite);
 313
 314int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 315				loff_t end)
 316{
 317	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 318}
 319EXPORT_SYMBOL(filemap_fdatawrite_range);
 320
 321/**
 322 * filemap_flush - mostly a non-blocking flush
 323 * @mapping:	target address_space
 324 *
 325 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 326 * purposes - I/O may not be started against all dirty pages.
 327 */
 328int filemap_flush(struct address_space *mapping)
 329{
 330	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 331}
 332EXPORT_SYMBOL(filemap_flush);
 333
 334/**
 335 * filemap_fdatawait_range - wait for writeback to complete
 336 * @mapping:		address space structure to wait for
 337 * @start_byte:		offset in bytes where the range starts
 338 * @end_byte:		offset in bytes where the range ends (inclusive)
 339 *
 340 * Walk the list of under-writeback pages of the given address space
 341 * in the given range and wait for all of them.
 342 */
 343int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 344			    loff_t end_byte)
 345{
 346	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
 347	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
 348	struct pagevec pvec;
 349	int nr_pages;
 350	int ret2, ret = 0;
 351
 352	if (end_byte < start_byte)
 353		goto out;
 354
 355	pagevec_init(&pvec, 0);
 356	while ((index <= end) &&
 357			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 358			PAGECACHE_TAG_WRITEBACK,
 359			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 360		unsigned i;
 361
 362		for (i = 0; i < nr_pages; i++) {
 363			struct page *page = pvec.pages[i];
 364
 365			/* until radix tree lookup accepts end_index */
 366			if (page->index > end)
 367				continue;
 368
 369			wait_on_page_writeback(page);
 370			if (TestClearPageError(page))
 371				ret = -EIO;
 372		}
 373		pagevec_release(&pvec);
 374		cond_resched();
 375	}
 376out:
 377	ret2 = filemap_check_errors(mapping);
 378	if (!ret)
 379		ret = ret2;
 
 
 380
 381	return ret;
 382}
 383EXPORT_SYMBOL(filemap_fdatawait_range);
 384
 385/**
 386 * filemap_fdatawait - wait for all under-writeback pages to complete
 387 * @mapping: address space structure to wait for
 388 *
 389 * Walk the list of under-writeback pages of the given address space
 390 * and wait for all of them.
 391 */
 392int filemap_fdatawait(struct address_space *mapping)
 393{
 394	loff_t i_size = i_size_read(mapping->host);
 395
 396	if (i_size == 0)
 397		return 0;
 398
 399	return filemap_fdatawait_range(mapping, 0, i_size - 1);
 400}
 401EXPORT_SYMBOL(filemap_fdatawait);
 402
 403int filemap_write_and_wait(struct address_space *mapping)
 404{
 405	int err = 0;
 406
 407	if (mapping->nrpages) {
 408		err = filemap_fdatawrite(mapping);
 409		/*
 410		 * Even if the above returned error, the pages may be
 411		 * written partially (e.g. -ENOSPC), so we wait for it.
 412		 * But the -EIO is special case, it may indicate the worst
 413		 * thing (e.g. bug) happened, so we avoid waiting for it.
 414		 */
 415		if (err != -EIO) {
 416			int err2 = filemap_fdatawait(mapping);
 417			if (!err)
 418				err = err2;
 419		}
 420	} else {
 421		err = filemap_check_errors(mapping);
 422	}
 423	return err;
 424}
 425EXPORT_SYMBOL(filemap_write_and_wait);
 426
 427/**
 428 * filemap_write_and_wait_range - write out & wait on a file range
 429 * @mapping:	the address_space for the pages
 430 * @lstart:	offset in bytes where the range starts
 431 * @lend:	offset in bytes where the range ends (inclusive)
 432 *
 433 * Write out and wait upon file offsets lstart->lend, inclusive.
 434 *
 435 * Note that `lend' is inclusive (describes the last byte to be written) so
 436 * that this function can be used to write to the very end-of-file (end = -1).
 437 */
 438int filemap_write_and_wait_range(struct address_space *mapping,
 439				 loff_t lstart, loff_t lend)
 440{
 441	int err = 0;
 442
 443	if (mapping->nrpages) {
 444		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 445						 WB_SYNC_ALL);
 446		/* See comment of filemap_write_and_wait() */
 447		if (err != -EIO) {
 448			int err2 = filemap_fdatawait_range(mapping,
 449						lstart, lend);
 450			if (!err)
 451				err = err2;
 452		}
 453	} else {
 454		err = filemap_check_errors(mapping);
 455	}
 456	return err;
 457}
 458EXPORT_SYMBOL(filemap_write_and_wait_range);
 459
 460/**
 461 * replace_page_cache_page - replace a pagecache page with a new one
 462 * @old:	page to be replaced
 463 * @new:	page to replace with
 464 * @gfp_mask:	allocation mode
 465 *
 466 * This function replaces a page in the pagecache with a new one.  On
 467 * success it acquires the pagecache reference for the new page and
 468 * drops it for the old page.  Both the old and new pages must be
 469 * locked.  This function does not add the new page to the LRU, the
 470 * caller must do that.
 471 *
 472 * The remove + add is atomic.  The only way this function can fail is
 473 * memory allocation failure.
 474 */
 475int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 476{
 477	int error;
 
 478
 479	VM_BUG_ON_PAGE(!PageLocked(old), old);
 480	VM_BUG_ON_PAGE(!PageLocked(new), new);
 481	VM_BUG_ON_PAGE(new->mapping, new);
 
 
 
 
 
 
 
 
 
 
 
 
 482
 483	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 484	if (!error) {
 485		struct address_space *mapping = old->mapping;
 486		void (*freepage)(struct page *);
 487
 488		pgoff_t offset = old->index;
 489		freepage = mapping->a_ops->freepage;
 490
 491		page_cache_get(new);
 492		new->mapping = mapping;
 493		new->index = offset;
 494
 495		spin_lock_irq(&mapping->tree_lock);
 496		__delete_from_page_cache(old, NULL);
 497		error = radix_tree_insert(&mapping->page_tree, offset, new);
 498		BUG_ON(error);
 499		mapping->nrpages++;
 500		__inc_zone_page_state(new, NR_FILE_PAGES);
 501		if (PageSwapBacked(new))
 502			__inc_zone_page_state(new, NR_SHMEM);
 503		spin_unlock_irq(&mapping->tree_lock);
 504		/* mem_cgroup codes must not be called under tree_lock */
 505		mem_cgroup_replace_page_cache(old, new);
 506		radix_tree_preload_end();
 507		if (freepage)
 508			freepage(old);
 509		page_cache_release(old);
 
 
 
 510	}
 511
 512	return error;
 513}
 514EXPORT_SYMBOL_GPL(replace_page_cache_page);
 515
 516static int page_cache_tree_insert(struct address_space *mapping,
 517				  struct page *page, void **shadowp)
 518{
 519	struct radix_tree_node *node;
 520	void **slot;
 521	int error;
 522
 523	error = __radix_tree_create(&mapping->page_tree, page->index,
 524				    &node, &slot);
 525	if (error)
 526		return error;
 527	if (*slot) {
 528		void *p;
 529
 530		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 531		if (!radix_tree_exceptional_entry(p))
 532			return -EEXIST;
 533		if (shadowp)
 534			*shadowp = p;
 535		mapping->nrshadows--;
 536		if (node)
 537			workingset_node_shadows_dec(node);
 538	}
 539	radix_tree_replace_slot(slot, page);
 540	mapping->nrpages++;
 541	if (node) {
 542		workingset_node_pages_inc(node);
 543		/*
 544		 * Don't track node that contains actual pages.
 545		 *
 546		 * Avoid acquiring the list_lru lock if already
 547		 * untracked.  The list_empty() test is safe as
 548		 * node->private_list is protected by
 549		 * mapping->tree_lock.
 550		 */
 551		if (!list_empty(&node->private_list))
 552			list_lru_del(&workingset_shadow_nodes,
 553				     &node->private_list);
 554	}
 555	return 0;
 556}
 557
 558static int __add_to_page_cache_locked(struct page *page,
 559				      struct address_space *mapping,
 560				      pgoff_t offset, gfp_t gfp_mask,
 561				      void **shadowp)
 562{
 563	int error;
 564
 565	VM_BUG_ON_PAGE(!PageLocked(page), page);
 566	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 567
 568	error = mem_cgroup_charge_file(page, current->mm,
 569					gfp_mask & GFP_RECLAIM_MASK);
 570	if (error)
 571		return error;
 572
 573	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
 574	if (error) {
 575		mem_cgroup_uncharge_cache_page(page);
 576		return error;
 577	}
 578
 579	page_cache_get(page);
 580	page->mapping = mapping;
 581	page->index = offset;
 582
 583	spin_lock_irq(&mapping->tree_lock);
 584	error = page_cache_tree_insert(mapping, page, shadowp);
 585	radix_tree_preload_end();
 586	if (unlikely(error))
 587		goto err_insert;
 588	__inc_zone_page_state(page, NR_FILE_PAGES);
 589	spin_unlock_irq(&mapping->tree_lock);
 590	trace_mm_filemap_add_to_page_cache(page);
 591	return 0;
 592err_insert:
 593	page->mapping = NULL;
 594	/* Leave page->index set: truncation relies upon it */
 595	spin_unlock_irq(&mapping->tree_lock);
 596	mem_cgroup_uncharge_cache_page(page);
 597	page_cache_release(page);
 598	return error;
 599}
 600
 601/**
 602 * add_to_page_cache_locked - add a locked page to the pagecache
 603 * @page:	page to add
 604 * @mapping:	the page's address_space
 605 * @offset:	page index
 606 * @gfp_mask:	page allocation mode
 607 *
 608 * This function is used to add a page to the pagecache. It must be locked.
 609 * This function does not add the page to the LRU.  The caller must do that.
 610 */
 611int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 612		pgoff_t offset, gfp_t gfp_mask)
 613{
 614	return __add_to_page_cache_locked(page, mapping, offset,
 615					  gfp_mask, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616}
 617EXPORT_SYMBOL(add_to_page_cache_locked);
 618
 619int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 620				pgoff_t offset, gfp_t gfp_mask)
 621{
 622	void *shadow = NULL;
 623	int ret;
 624
 625	__set_page_locked(page);
 626	ret = __add_to_page_cache_locked(page, mapping, offset,
 627					 gfp_mask, &shadow);
 628	if (unlikely(ret))
 629		__clear_page_locked(page);
 630	else {
 631		/*
 632		 * The page might have been evicted from cache only
 633		 * recently, in which case it should be activated like
 634		 * any other repeatedly accessed page.
 635		 */
 636		if (shadow && workingset_refault(shadow)) {
 637			SetPageActive(page);
 638			workingset_activation(page);
 639		} else
 640			ClearPageActive(page);
 641		lru_cache_add(page);
 642	}
 643	return ret;
 644}
 645EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 646
 647#ifdef CONFIG_NUMA
 648struct page *__page_cache_alloc(gfp_t gfp)
 649{
 650	int n;
 651	struct page *page;
 652
 653	if (cpuset_do_page_mem_spread()) {
 654		unsigned int cpuset_mems_cookie;
 655		do {
 656			cpuset_mems_cookie = read_mems_allowed_begin();
 657			n = cpuset_mem_spread_node();
 658			page = alloc_pages_exact_node(n, gfp, 0);
 659		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 660
 661		return page;
 662	}
 663	return alloc_pages(gfp, 0);
 664}
 665EXPORT_SYMBOL(__page_cache_alloc);
 666#endif
 667
 668/*
 669 * In order to wait for pages to become available there must be
 670 * waitqueues associated with pages. By using a hash table of
 671 * waitqueues where the bucket discipline is to maintain all
 672 * waiters on the same queue and wake all when any of the pages
 673 * become available, and for the woken contexts to check to be
 674 * sure the appropriate page became available, this saves space
 675 * at a cost of "thundering herd" phenomena during rare hash
 676 * collisions.
 677 */
 678static wait_queue_head_t *page_waitqueue(struct page *page)
 679{
 680	const struct zone *zone = page_zone(page);
 681
 682	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 683}
 684
 685static inline void wake_up_page(struct page *page, int bit)
 686{
 687	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
 688}
 689
 690void wait_on_page_bit(struct page *page, int bit_nr)
 691{
 692	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 693
 694	if (test_bit(bit_nr, &page->flags))
 695		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
 696							TASK_UNINTERRUPTIBLE);
 697}
 698EXPORT_SYMBOL(wait_on_page_bit);
 699
 700int wait_on_page_bit_killable(struct page *page, int bit_nr)
 701{
 702	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 703
 704	if (!test_bit(bit_nr, &page->flags))
 705		return 0;
 706
 707	return __wait_on_bit(page_waitqueue(page), &wait,
 708			     sleep_on_page_killable, TASK_KILLABLE);
 709}
 710
 711/**
 712 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 713 * @page: Page defining the wait queue of interest
 714 * @waiter: Waiter to add to the queue
 715 *
 716 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 717 */
 718void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 719{
 720	wait_queue_head_t *q = page_waitqueue(page);
 721	unsigned long flags;
 722
 723	spin_lock_irqsave(&q->lock, flags);
 724	__add_wait_queue(q, waiter);
 725	spin_unlock_irqrestore(&q->lock, flags);
 726}
 727EXPORT_SYMBOL_GPL(add_page_wait_queue);
 728
 729/**
 730 * unlock_page - unlock a locked page
 731 * @page: the page
 732 *
 733 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 734 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 735 * mechananism between PageLocked pages and PageWriteback pages is shared.
 736 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 737 *
 738 * The mb is necessary to enforce ordering between the clear_bit and the read
 739 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 740 */
 741void unlock_page(struct page *page)
 742{
 743	VM_BUG_ON_PAGE(!PageLocked(page), page);
 744	clear_bit_unlock(PG_locked, &page->flags);
 745	smp_mb__after_clear_bit();
 746	wake_up_page(page, PG_locked);
 747}
 748EXPORT_SYMBOL(unlock_page);
 749
 750/**
 751 * end_page_writeback - end writeback against a page
 752 * @page: the page
 753 */
 754void end_page_writeback(struct page *page)
 755{
 756	if (TestClearPageReclaim(page))
 757		rotate_reclaimable_page(page);
 758
 759	if (!test_clear_page_writeback(page))
 760		BUG();
 761
 762	smp_mb__after_clear_bit();
 763	wake_up_page(page, PG_writeback);
 764}
 765EXPORT_SYMBOL(end_page_writeback);
 766
 767/**
 768 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 769 * @page: the page to lock
 770 */
 771void __lock_page(struct page *page)
 772{
 773	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 774
 775	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
 776							TASK_UNINTERRUPTIBLE);
 777}
 778EXPORT_SYMBOL(__lock_page);
 779
 780int __lock_page_killable(struct page *page)
 781{
 782	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 783
 784	return __wait_on_bit_lock(page_waitqueue(page), &wait,
 785					sleep_on_page_killable, TASK_KILLABLE);
 786}
 787EXPORT_SYMBOL_GPL(__lock_page_killable);
 788
 789int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 790			 unsigned int flags)
 791{
 792	if (flags & FAULT_FLAG_ALLOW_RETRY) {
 793		/*
 794		 * CAUTION! In this case, mmap_sem is not released
 795		 * even though return 0.
 796		 */
 797		if (flags & FAULT_FLAG_RETRY_NOWAIT)
 798			return 0;
 799
 800		up_read(&mm->mmap_sem);
 801		if (flags & FAULT_FLAG_KILLABLE)
 802			wait_on_page_locked_killable(page);
 803		else
 804			wait_on_page_locked(page);
 805		return 0;
 806	} else {
 807		if (flags & FAULT_FLAG_KILLABLE) {
 808			int ret;
 809
 810			ret = __lock_page_killable(page);
 811			if (ret) {
 812				up_read(&mm->mmap_sem);
 813				return 0;
 814			}
 815		} else
 816			__lock_page(page);
 817		return 1;
 818	}
 819}
 820
 821/**
 822 * page_cache_next_hole - find the next hole (not-present entry)
 823 * @mapping: mapping
 824 * @index: index
 825 * @max_scan: maximum range to search
 826 *
 827 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
 828 * lowest indexed hole.
 829 *
 830 * Returns: the index of the hole if found, otherwise returns an index
 831 * outside of the set specified (in which case 'return - index >=
 832 * max_scan' will be true). In rare cases of index wrap-around, 0 will
 833 * be returned.
 834 *
 835 * page_cache_next_hole may be called under rcu_read_lock. However,
 836 * like radix_tree_gang_lookup, this will not atomically search a
 837 * snapshot of the tree at a single point in time. For example, if a
 838 * hole is created at index 5, then subsequently a hole is created at
 839 * index 10, page_cache_next_hole covering both indexes may return 10
 840 * if called under rcu_read_lock.
 841 */
 842pgoff_t page_cache_next_hole(struct address_space *mapping,
 843			     pgoff_t index, unsigned long max_scan)
 844{
 845	unsigned long i;
 846
 847	for (i = 0; i < max_scan; i++) {
 848		struct page *page;
 849
 850		page = radix_tree_lookup(&mapping->page_tree, index);
 851		if (!page || radix_tree_exceptional_entry(page))
 852			break;
 853		index++;
 854		if (index == 0)
 855			break;
 856	}
 857
 858	return index;
 859}
 860EXPORT_SYMBOL(page_cache_next_hole);
 861
 862/**
 863 * page_cache_prev_hole - find the prev hole (not-present entry)
 864 * @mapping: mapping
 865 * @index: index
 866 * @max_scan: maximum range to search
 867 *
 868 * Search backwards in the range [max(index-max_scan+1, 0), index] for
 869 * the first hole.
 870 *
 871 * Returns: the index of the hole if found, otherwise returns an index
 872 * outside of the set specified (in which case 'index - return >=
 873 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
 874 * will be returned.
 875 *
 876 * page_cache_prev_hole may be called under rcu_read_lock. However,
 877 * like radix_tree_gang_lookup, this will not atomically search a
 878 * snapshot of the tree at a single point in time. For example, if a
 879 * hole is created at index 10, then subsequently a hole is created at
 880 * index 5, page_cache_prev_hole covering both indexes may return 5 if
 881 * called under rcu_read_lock.
 882 */
 883pgoff_t page_cache_prev_hole(struct address_space *mapping,
 884			     pgoff_t index, unsigned long max_scan)
 885{
 886	unsigned long i;
 887
 888	for (i = 0; i < max_scan; i++) {
 889		struct page *page;
 890
 891		page = radix_tree_lookup(&mapping->page_tree, index);
 892		if (!page || radix_tree_exceptional_entry(page))
 893			break;
 894		index--;
 895		if (index == ULONG_MAX)
 896			break;
 897	}
 898
 899	return index;
 900}
 901EXPORT_SYMBOL(page_cache_prev_hole);
 902
 903/**
 904 * find_get_entry - find and get a page cache entry
 905 * @mapping: the address_space to search
 906 * @offset: the page cache index
 907 *
 908 * Looks up the page cache slot at @mapping & @offset.  If there is a
 909 * page cache page, it is returned with an increased refcount.
 910 *
 911 * If the slot holds a shadow entry of a previously evicted page, or a
 912 * swap entry from shmem/tmpfs, it is returned.
 913 *
 914 * Otherwise, %NULL is returned.
 915 */
 916struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
 917{
 918	void **pagep;
 919	struct page *page;
 920
 921	rcu_read_lock();
 922repeat:
 923	page = NULL;
 924	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
 925	if (pagep) {
 926		page = radix_tree_deref_slot(pagep);
 927		if (unlikely(!page))
 928			goto out;
 929		if (radix_tree_exception(page)) {
 930			if (radix_tree_deref_retry(page))
 931				goto repeat;
 932			/*
 933			 * A shadow entry of a recently evicted page,
 934			 * or a swap entry from shmem/tmpfs.  Return
 935			 * it without attempting to raise page count.
 936			 */
 937			goto out;
 938		}
 939		if (!page_cache_get_speculative(page))
 940			goto repeat;
 941
 942		/*
 943		 * Has the page moved?
 944		 * This is part of the lockless pagecache protocol. See
 945		 * include/linux/pagemap.h for details.
 946		 */
 947		if (unlikely(page != *pagep)) {
 948			page_cache_release(page);
 949			goto repeat;
 950		}
 951	}
 952out:
 953	rcu_read_unlock();
 954
 955	return page;
 956}
 957EXPORT_SYMBOL(find_get_entry);
 958
 959/**
 960 * find_get_page - find and get a page reference
 961 * @mapping: the address_space to search
 962 * @offset: the page index
 963 *
 964 * Looks up the page cache slot at @mapping & @offset.  If there is a
 965 * page cache page, it is returned with an increased refcount.
 966 *
 967 * Otherwise, %NULL is returned.
 968 */
 969struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
 970{
 971	struct page *page = find_get_entry(mapping, offset);
 972
 973	if (radix_tree_exceptional_entry(page))
 974		page = NULL;
 975	return page;
 976}
 977EXPORT_SYMBOL(find_get_page);
 978
 979/**
 980 * find_lock_entry - locate, pin and lock a page cache entry
 981 * @mapping: the address_space to search
 982 * @offset: the page cache index
 983 *
 984 * Looks up the page cache slot at @mapping & @offset.  If there is a
 985 * page cache page, it is returned locked and with an increased
 986 * refcount.
 987 *
 988 * If the slot holds a shadow entry of a previously evicted page, or a
 989 * swap entry from shmem/tmpfs, it is returned.
 990 *
 991 * Otherwise, %NULL is returned.
 992 *
 993 * find_lock_entry() may sleep.
 994 */
 995struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
 996{
 997	struct page *page;
 998
 999repeat:
1000	page = find_get_entry(mapping, offset);
1001	if (page && !radix_tree_exception(page)) {
1002		lock_page(page);
1003		/* Has the page been truncated? */
1004		if (unlikely(page->mapping != mapping)) {
1005			unlock_page(page);
1006			page_cache_release(page);
1007			goto repeat;
1008		}
1009		VM_BUG_ON_PAGE(page->index != offset, page);
1010	}
1011	return page;
1012}
1013EXPORT_SYMBOL(find_lock_entry);
1014
1015/**
1016 * find_lock_page - locate, pin and lock a pagecache page
1017 * @mapping: the address_space to search
1018 * @offset: the page index
1019 *
1020 * Looks up the page cache slot at @mapping & @offset.  If there is a
1021 * page cache page, it is returned locked and with an increased
1022 * refcount.
1023 *
1024 * Otherwise, %NULL is returned.
1025 *
1026 * find_lock_page() may sleep.
1027 */
1028struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1029{
1030	struct page *page = find_lock_entry(mapping, offset);
1031
1032	if (radix_tree_exceptional_entry(page))
1033		page = NULL;
1034	return page;
1035}
1036EXPORT_SYMBOL(find_lock_page);
1037
1038/**
1039 * find_or_create_page - locate or add a pagecache page
1040 * @mapping: the page's address_space
1041 * @index: the page's index into the mapping
1042 * @gfp_mask: page allocation mode
1043 *
1044 * Looks up the page cache slot at @mapping & @offset.  If there is a
1045 * page cache page, it is returned locked and with an increased
1046 * refcount.
1047 *
1048 * If the page is not present, a new page is allocated using @gfp_mask
1049 * and added to the page cache and the VM's LRU list.  The page is
1050 * returned locked and with an increased refcount.
1051 *
1052 * On memory exhaustion, %NULL is returned.
 
1053 *
1054 * find_or_create_page() may sleep, even if @gfp_flags specifies an
1055 * atomic allocation!
1056 */
1057struct page *find_or_create_page(struct address_space *mapping,
1058		pgoff_t index, gfp_t gfp_mask)
1059{
1060	struct page *page;
1061	int err;
1062repeat:
1063	page = find_lock_page(mapping, index);
1064	if (!page) {
1065		page = __page_cache_alloc(gfp_mask);
1066		if (!page)
1067			return NULL;
1068		/*
1069		 * We want a regular kernel memory (not highmem or DMA etc)
1070		 * allocation for the radix tree nodes, but we need to honour
1071		 * the context-specific requirements the caller has asked for.
1072		 * GFP_RECLAIM_MASK collects those requirements.
1073		 */
1074		err = add_to_page_cache_lru(page, mapping, index,
1075			(gfp_mask & GFP_RECLAIM_MASK));
1076		if (unlikely(err)) {
1077			page_cache_release(page);
1078			page = NULL;
1079			if (err == -EEXIST)
1080				goto repeat;
1081		}
1082	}
1083	return page;
1084}
1085EXPORT_SYMBOL(find_or_create_page);
1086
1087/**
1088 * find_get_entries - gang pagecache lookup
1089 * @mapping:	The address_space to search
1090 * @start:	The starting page cache index
1091 * @nr_entries:	The maximum number of entries
1092 * @entries:	Where the resulting entries are placed
1093 * @indices:	The cache indices corresponding to the entries in @entries
1094 *
1095 * find_get_entries() will search for and return a group of up to
1096 * @nr_entries entries in the mapping.  The entries are placed at
1097 * @entries.  find_get_entries() takes a reference against any actual
1098 * pages it returns.
1099 *
1100 * The search returns a group of mapping-contiguous page cache entries
1101 * with ascending indexes.  There may be holes in the indices due to
1102 * not-present pages.
1103 *
1104 * Any shadow entries of evicted pages, or swap entries from
1105 * shmem/tmpfs, are included in the returned array.
1106 *
1107 * find_get_entries() returns the number of pages and shadow entries
1108 * which were found.
1109 */
1110unsigned find_get_entries(struct address_space *mapping,
1111			  pgoff_t start, unsigned int nr_entries,
1112			  struct page **entries, pgoff_t *indices)
1113{
1114	void **slot;
1115	unsigned int ret = 0;
1116	struct radix_tree_iter iter;
1117
1118	if (!nr_entries)
1119		return 0;
1120
1121	rcu_read_lock();
1122restart:
1123	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1124		struct page *page;
1125repeat:
1126		page = radix_tree_deref_slot(slot);
1127		if (unlikely(!page))
1128			continue;
1129		if (radix_tree_exception(page)) {
1130			if (radix_tree_deref_retry(page))
1131				goto restart;
1132			/*
1133			 * A shadow entry of a recently evicted page,
1134			 * or a swap entry from shmem/tmpfs.  Return
1135			 * it without attempting to raise page count.
1136			 */
1137			goto export;
1138		}
1139		if (!page_cache_get_speculative(page))
1140			goto repeat;
1141
1142		/* Has the page moved? */
1143		if (unlikely(page != *slot)) {
1144			page_cache_release(page);
1145			goto repeat;
1146		}
1147export:
1148		indices[ret] = iter.index;
1149		entries[ret] = page;
1150		if (++ret == nr_entries)
1151			break;
1152	}
1153	rcu_read_unlock();
1154	return ret;
1155}
1156
1157/**
1158 * find_get_pages - gang pagecache lookup
1159 * @mapping:	The address_space to search
1160 * @start:	The starting page index
1161 * @nr_pages:	The maximum number of pages
1162 * @pages:	Where the resulting pages are placed
1163 *
1164 * find_get_pages() will search for and return a group of up to
1165 * @nr_pages pages in the mapping.  The pages are placed at @pages.
1166 * find_get_pages() takes a reference against the returned pages.
1167 *
1168 * The search returns a group of mapping-contiguous pages with ascending
1169 * indexes.  There may be holes in the indices due to not-present pages.
1170 *
1171 * find_get_pages() returns the number of pages which were found.
1172 */
1173unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1174			    unsigned int nr_pages, struct page **pages)
1175{
1176	struct radix_tree_iter iter;
1177	void **slot;
1178	unsigned ret = 0;
1179
1180	if (unlikely(!nr_pages))
1181		return 0;
1182
1183	rcu_read_lock();
1184restart:
1185	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
 
 
 
 
1186		struct page *page;
1187repeat:
1188		page = radix_tree_deref_slot(slot);
1189		if (unlikely(!page))
1190			continue;
1191
1192		if (radix_tree_exception(page)) {
1193			if (radix_tree_deref_retry(page)) {
1194				/*
1195				 * Transient condition which can only trigger
1196				 * when entry at index 0 moves out of or back
1197				 * to root: none yet gotten, safe to restart.
1198				 */
1199				WARN_ON(iter.index);
1200				goto restart;
1201			}
1202			/*
1203			 * A shadow entry of a recently evicted page,
1204			 * or a swap entry from shmem/tmpfs.  Skip
1205			 * over it.
1206			 */
 
1207			continue;
1208		}
1209
1210		if (!page_cache_get_speculative(page))
1211			goto repeat;
1212
1213		/* Has the page moved? */
1214		if (unlikely(page != *slot)) {
1215			page_cache_release(page);
1216			goto repeat;
1217		}
1218
1219		pages[ret] = page;
1220		if (++ret == nr_pages)
1221			break;
1222	}
1223
 
 
 
 
 
 
1224	rcu_read_unlock();
1225	return ret;
1226}
1227
1228/**
1229 * find_get_pages_contig - gang contiguous pagecache lookup
1230 * @mapping:	The address_space to search
1231 * @index:	The starting page index
1232 * @nr_pages:	The maximum number of pages
1233 * @pages:	Where the resulting pages are placed
1234 *
1235 * find_get_pages_contig() works exactly like find_get_pages(), except
1236 * that the returned number of pages are guaranteed to be contiguous.
1237 *
1238 * find_get_pages_contig() returns the number of pages which were found.
1239 */
1240unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1241			       unsigned int nr_pages, struct page **pages)
1242{
1243	struct radix_tree_iter iter;
1244	void **slot;
1245	unsigned int ret = 0;
1246
1247	if (unlikely(!nr_pages))
1248		return 0;
1249
1250	rcu_read_lock();
1251restart:
1252	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
 
 
 
1253		struct page *page;
1254repeat:
1255		page = radix_tree_deref_slot(slot);
1256		/* The hole, there no reason to continue */
1257		if (unlikely(!page))
1258			break;
1259
1260		if (radix_tree_exception(page)) {
1261			if (radix_tree_deref_retry(page)) {
1262				/*
1263				 * Transient condition which can only trigger
1264				 * when entry at index 0 moves out of or back
1265				 * to root: none yet gotten, safe to restart.
1266				 */
1267				goto restart;
1268			}
1269			/*
1270			 * A shadow entry of a recently evicted page,
1271			 * or a swap entry from shmem/tmpfs.  Stop
1272			 * looking for contiguous pages.
1273			 */
1274			break;
1275		}
1276
1277		if (!page_cache_get_speculative(page))
1278			goto repeat;
1279
1280		/* Has the page moved? */
1281		if (unlikely(page != *slot)) {
1282			page_cache_release(page);
1283			goto repeat;
1284		}
1285
1286		/*
1287		 * must check mapping and index after taking the ref.
1288		 * otherwise we can get both false positives and false
1289		 * negatives, which is just confusing to the caller.
1290		 */
1291		if (page->mapping == NULL || page->index != iter.index) {
1292			page_cache_release(page);
1293			break;
1294		}
1295
1296		pages[ret] = page;
1297		if (++ret == nr_pages)
1298			break;
1299	}
1300	rcu_read_unlock();
1301	return ret;
1302}
1303EXPORT_SYMBOL(find_get_pages_contig);
1304
1305/**
1306 * find_get_pages_tag - find and return pages that match @tag
1307 * @mapping:	the address_space to search
1308 * @index:	the starting page index
1309 * @tag:	the tag index
1310 * @nr_pages:	the maximum number of pages
1311 * @pages:	where the resulting pages are placed
1312 *
1313 * Like find_get_pages, except we only return pages which are tagged with
1314 * @tag.   We update @index to index the next page for the traversal.
1315 */
1316unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1317			int tag, unsigned int nr_pages, struct page **pages)
1318{
1319	struct radix_tree_iter iter;
1320	void **slot;
1321	unsigned ret = 0;
1322
1323	if (unlikely(!nr_pages))
1324		return 0;
1325
1326	rcu_read_lock();
1327restart:
1328	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1329				   &iter, *index, tag) {
 
 
1330		struct page *page;
1331repeat:
1332		page = radix_tree_deref_slot(slot);
1333		if (unlikely(!page))
1334			continue;
1335
1336		if (radix_tree_exception(page)) {
1337			if (radix_tree_deref_retry(page)) {
1338				/*
1339				 * Transient condition which can only trigger
1340				 * when entry at index 0 moves out of or back
1341				 * to root: none yet gotten, safe to restart.
1342				 */
1343				goto restart;
1344			}
1345			/*
1346			 * A shadow entry of a recently evicted page.
1347			 *
1348			 * Those entries should never be tagged, but
1349			 * this tree walk is lockless and the tags are
1350			 * looked up in bulk, one radix tree node at a
1351			 * time, so there is a sizable window for page
1352			 * reclaim to evict a page we saw tagged.
1353			 *
1354			 * Skip over it.
1355			 */
1356			continue;
1357		}
1358
1359		if (!page_cache_get_speculative(page))
1360			goto repeat;
1361
1362		/* Has the page moved? */
1363		if (unlikely(page != *slot)) {
1364			page_cache_release(page);
1365			goto repeat;
1366		}
1367
1368		pages[ret] = page;
1369		if (++ret == nr_pages)
1370			break;
1371	}
1372
 
 
 
 
 
 
1373	rcu_read_unlock();
1374
1375	if (ret)
1376		*index = pages[ret - 1]->index + 1;
1377
1378	return ret;
1379}
1380EXPORT_SYMBOL(find_get_pages_tag);
1381
1382/**
1383 * grab_cache_page_nowait - returns locked page at given index in given cache
1384 * @mapping: target address_space
1385 * @index: the page index
1386 *
1387 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1388 * This is intended for speculative data generators, where the data can
1389 * be regenerated if the page couldn't be grabbed.  This routine should
1390 * be safe to call while holding the lock for another page.
1391 *
1392 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1393 * and deadlock against the caller's locked page.
1394 */
1395struct page *
1396grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1397{
1398	struct page *page = find_get_page(mapping, index);
1399
1400	if (page) {
1401		if (trylock_page(page))
1402			return page;
1403		page_cache_release(page);
1404		return NULL;
1405	}
1406	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1407	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1408		page_cache_release(page);
1409		page = NULL;
1410	}
1411	return page;
1412}
1413EXPORT_SYMBOL(grab_cache_page_nowait);
1414
1415/*
1416 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1417 * a _large_ part of the i/o request. Imagine the worst scenario:
1418 *
1419 *      ---R__________________________________________B__________
1420 *         ^ reading here                             ^ bad block(assume 4k)
1421 *
1422 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1423 * => failing the whole request => read(R) => read(R+1) =>
1424 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1425 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1426 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1427 *
1428 * It is going insane. Fix it by quickly scaling down the readahead size.
1429 */
1430static void shrink_readahead_size_eio(struct file *filp,
1431					struct file_ra_state *ra)
1432{
1433	ra->ra_pages /= 4;
1434}
1435
1436/**
1437 * do_generic_file_read - generic file read routine
1438 * @filp:	the file to read
1439 * @ppos:	current file position
1440 * @iter:	data destination
1441 * @written:	already copied
1442 *
1443 * This is a generic file read routine, and uses the
1444 * mapping->a_ops->readpage() function for the actual low-level stuff.
1445 *
1446 * This is really ugly. But the goto's actually try to clarify some
1447 * of the logic when it comes to error handling etc.
1448 */
1449static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1450		struct iov_iter *iter, ssize_t written)
1451{
1452	struct address_space *mapping = filp->f_mapping;
1453	struct inode *inode = mapping->host;
1454	struct file_ra_state *ra = &filp->f_ra;
1455	pgoff_t index;
1456	pgoff_t last_index;
1457	pgoff_t prev_index;
1458	unsigned long offset;      /* offset into pagecache page */
1459	unsigned int prev_offset;
1460	int error = 0;
1461
1462	index = *ppos >> PAGE_CACHE_SHIFT;
1463	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1464	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1465	last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1466	offset = *ppos & ~PAGE_CACHE_MASK;
1467
1468	for (;;) {
1469		struct page *page;
1470		pgoff_t end_index;
1471		loff_t isize;
1472		unsigned long nr, ret;
1473
1474		cond_resched();
1475find_page:
1476		page = find_get_page(mapping, index);
1477		if (!page) {
1478			page_cache_sync_readahead(mapping,
1479					ra, filp,
1480					index, last_index - index);
1481			page = find_get_page(mapping, index);
1482			if (unlikely(page == NULL))
1483				goto no_cached_page;
1484		}
1485		if (PageReadahead(page)) {
1486			page_cache_async_readahead(mapping,
1487					ra, filp, page,
1488					index, last_index - index);
1489		}
1490		if (!PageUptodate(page)) {
1491			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1492					!mapping->a_ops->is_partially_uptodate)
1493				goto page_not_up_to_date;
1494			if (!trylock_page(page))
1495				goto page_not_up_to_date;
1496			/* Did it get truncated before we got the lock? */
1497			if (!page->mapping)
1498				goto page_not_up_to_date_locked;
1499			if (!mapping->a_ops->is_partially_uptodate(page,
1500							offset, iter->count))
1501				goto page_not_up_to_date_locked;
1502			unlock_page(page);
1503		}
1504page_ok:
1505		/*
1506		 * i_size must be checked after we know the page is Uptodate.
1507		 *
1508		 * Checking i_size after the check allows us to calculate
1509		 * the correct value for "nr", which means the zero-filled
1510		 * part of the page is not copied back to userspace (unless
1511		 * another truncate extends the file - this is desired though).
1512		 */
1513
1514		isize = i_size_read(inode);
1515		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1516		if (unlikely(!isize || index > end_index)) {
1517			page_cache_release(page);
1518			goto out;
1519		}
1520
1521		/* nr is the maximum number of bytes to copy from this page */
1522		nr = PAGE_CACHE_SIZE;
1523		if (index == end_index) {
1524			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1525			if (nr <= offset) {
1526				page_cache_release(page);
1527				goto out;
1528			}
1529		}
1530		nr = nr - offset;
1531
1532		/* If users can be writing to this page using arbitrary
1533		 * virtual addresses, take care about potential aliasing
1534		 * before reading the page on the kernel side.
1535		 */
1536		if (mapping_writably_mapped(mapping))
1537			flush_dcache_page(page);
1538
1539		/*
1540		 * When a sequential read accesses a page several times,
1541		 * only mark it as accessed the first time.
1542		 */
1543		if (prev_index != index || offset != prev_offset)
1544			mark_page_accessed(page);
1545		prev_index = index;
1546
1547		/*
1548		 * Ok, we have the page, and it's up-to-date, so
1549		 * now we can copy it to user space...
 
 
 
 
 
 
1550		 */
1551
1552		ret = copy_page_to_iter(page, offset, nr, iter);
1553		offset += ret;
1554		index += offset >> PAGE_CACHE_SHIFT;
1555		offset &= ~PAGE_CACHE_MASK;
1556		prev_offset = offset;
1557
1558		page_cache_release(page);
1559		written += ret;
1560		if (!iov_iter_count(iter))
1561			goto out;
1562		if (ret < nr) {
1563			error = -EFAULT;
1564			goto out;
1565		}
1566		continue;
1567
1568page_not_up_to_date:
1569		/* Get exclusive access to the page ... */
1570		error = lock_page_killable(page);
1571		if (unlikely(error))
1572			goto readpage_error;
1573
1574page_not_up_to_date_locked:
1575		/* Did it get truncated before we got the lock? */
1576		if (!page->mapping) {
1577			unlock_page(page);
1578			page_cache_release(page);
1579			continue;
1580		}
1581
1582		/* Did somebody else fill it already? */
1583		if (PageUptodate(page)) {
1584			unlock_page(page);
1585			goto page_ok;
1586		}
1587
1588readpage:
1589		/*
1590		 * A previous I/O error may have been due to temporary
1591		 * failures, eg. multipath errors.
1592		 * PG_error will be set again if readpage fails.
1593		 */
1594		ClearPageError(page);
1595		/* Start the actual read. The read will unlock the page. */
1596		error = mapping->a_ops->readpage(filp, page);
1597
1598		if (unlikely(error)) {
1599			if (error == AOP_TRUNCATED_PAGE) {
1600				page_cache_release(page);
1601				error = 0;
1602				goto find_page;
1603			}
1604			goto readpage_error;
1605		}
1606
1607		if (!PageUptodate(page)) {
1608			error = lock_page_killable(page);
1609			if (unlikely(error))
1610				goto readpage_error;
1611			if (!PageUptodate(page)) {
1612				if (page->mapping == NULL) {
1613					/*
1614					 * invalidate_mapping_pages got it
1615					 */
1616					unlock_page(page);
1617					page_cache_release(page);
1618					goto find_page;
1619				}
1620				unlock_page(page);
1621				shrink_readahead_size_eio(filp, ra);
1622				error = -EIO;
1623				goto readpage_error;
1624			}
1625			unlock_page(page);
1626		}
1627
1628		goto page_ok;
1629
1630readpage_error:
1631		/* UHHUH! A synchronous read error occurred. Report it */
 
1632		page_cache_release(page);
1633		goto out;
1634
1635no_cached_page:
1636		/*
1637		 * Ok, it wasn't cached, so we need to create a new
1638		 * page..
1639		 */
1640		page = page_cache_alloc_cold(mapping);
1641		if (!page) {
1642			error = -ENOMEM;
1643			goto out;
1644		}
1645		error = add_to_page_cache_lru(page, mapping,
1646						index, GFP_KERNEL);
1647		if (error) {
1648			page_cache_release(page);
1649			if (error == -EEXIST) {
1650				error = 0;
1651				goto find_page;
1652			}
1653			goto out;
1654		}
1655		goto readpage;
1656	}
1657
1658out:
1659	ra->prev_pos = prev_index;
1660	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1661	ra->prev_pos |= prev_offset;
1662
1663	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1664	file_accessed(filp);
1665	return written ? written : error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666}
1667
1668/*
1669 * Performs necessary checks before doing a write
1670 * @iov:	io vector request
1671 * @nr_segs:	number of segments in the iovec
1672 * @count:	number of bytes to write
1673 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1674 *
1675 * Adjust number of segments and amount of bytes to write (nr_segs should be
1676 * properly initialized first). Returns appropriate error code that caller
1677 * should return or zero in case that write should be allowed.
1678 */
1679int generic_segment_checks(const struct iovec *iov,
1680			unsigned long *nr_segs, size_t *count, int access_flags)
1681{
1682	unsigned long   seg;
1683	size_t cnt = 0;
1684	for (seg = 0; seg < *nr_segs; seg++) {
1685		const struct iovec *iv = &iov[seg];
1686
1687		/*
1688		 * If any segment has a negative length, or the cumulative
1689		 * length ever wraps negative then return -EINVAL.
1690		 */
1691		cnt += iv->iov_len;
1692		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1693			return -EINVAL;
1694		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1695			continue;
1696		if (seg == 0)
1697			return -EFAULT;
1698		*nr_segs = seg;
1699		cnt -= iv->iov_len;	/* This segment is no good */
1700		break;
1701	}
1702	*count = cnt;
1703	return 0;
1704}
1705EXPORT_SYMBOL(generic_segment_checks);
1706
1707/**
1708 * generic_file_aio_read - generic filesystem read routine
1709 * @iocb:	kernel I/O control block
1710 * @iov:	io vector request
1711 * @nr_segs:	number of segments in the iovec
1712 * @pos:	current file position
1713 *
1714 * This is the "read()" routine for all filesystems
1715 * that can use the page cache directly.
1716 */
1717ssize_t
1718generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1719		unsigned long nr_segs, loff_t pos)
1720{
1721	struct file *filp = iocb->ki_filp;
1722	ssize_t retval;
 
1723	size_t count;
1724	loff_t *ppos = &iocb->ki_pos;
1725	struct iov_iter i;
1726
1727	count = 0;
1728	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1729	if (retval)
1730		return retval;
1731	iov_iter_init(&i, iov, nr_segs, count, 0);
 
1732
1733	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1734	if (filp->f_flags & O_DIRECT) {
1735		loff_t size;
1736		struct address_space *mapping;
1737		struct inode *inode;
1738
1739		mapping = filp->f_mapping;
1740		inode = mapping->host;
1741		if (!count)
1742			goto out; /* skip atime */
1743		size = i_size_read(inode);
1744		retval = filemap_write_and_wait_range(mapping, pos,
 
1745					pos + iov_length(iov, nr_segs) - 1);
1746		if (!retval) {
1747			retval = mapping->a_ops->direct_IO(READ, iocb,
1748							   iov, pos, nr_segs);
1749		}
1750		if (retval > 0) {
1751			*ppos = pos + retval;
1752			count -= retval;
 
 
1753			/*
1754			 * If we did a short DIO read we need to skip the
1755			 * section of the iov that we've already read data into.
 
 
 
 
1756			 */
1757			iov_iter_advance(&i, retval);
 
 
 
1758		}
 
 
 
 
 
 
1759
1760		/*
1761		 * Btrfs can have a short DIO read if we encounter
1762		 * compressed extents, so if there was an error, or if
1763		 * we've already read everything we wanted to, or if
1764		 * there was a short read because we hit EOF, go ahead
1765		 * and return.  Otherwise fallthrough to buffered io for
1766		 * the rest of the read.
1767		 */
1768		if (retval < 0 || !count || *ppos >= size) {
1769			file_accessed(filp);
1770			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
1771		}
 
 
1772	}
1773
1774	retval = do_generic_file_read(filp, ppos, &i, retval);
1775out:
 
1776	return retval;
1777}
1778EXPORT_SYMBOL(generic_file_aio_read);
1779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1780#ifdef CONFIG_MMU
1781/**
1782 * page_cache_read - adds requested page to the page cache if not already there
1783 * @file:	file to read
1784 * @offset:	page index
1785 *
1786 * This adds the requested page to the page cache if it isn't already there,
1787 * and schedules an I/O to read in its contents from disk.
1788 */
1789static int page_cache_read(struct file *file, pgoff_t offset)
1790{
1791	struct address_space *mapping = file->f_mapping;
1792	struct page *page; 
1793	int ret;
1794
1795	do {
1796		page = page_cache_alloc_cold(mapping);
1797		if (!page)
1798			return -ENOMEM;
1799
1800		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1801		if (ret == 0)
1802			ret = mapping->a_ops->readpage(file, page);
1803		else if (ret == -EEXIST)
1804			ret = 0; /* losing race to add is OK */
1805
1806		page_cache_release(page);
1807
1808	} while (ret == AOP_TRUNCATED_PAGE);
1809		
1810	return ret;
1811}
1812
1813#define MMAP_LOTSAMISS  (100)
1814
1815/*
1816 * Synchronous readahead happens when we don't even find
1817 * a page in the page cache at all.
1818 */
1819static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1820				   struct file_ra_state *ra,
1821				   struct file *file,
1822				   pgoff_t offset)
1823{
1824	unsigned long ra_pages;
1825	struct address_space *mapping = file->f_mapping;
1826
1827	/* If we don't want any read-ahead, don't bother */
1828	if (vma->vm_flags & VM_RAND_READ)
1829		return;
1830	if (!ra->ra_pages)
1831		return;
1832
1833	if (vma->vm_flags & VM_SEQ_READ) {
1834		page_cache_sync_readahead(mapping, ra, file, offset,
1835					  ra->ra_pages);
1836		return;
1837	}
1838
1839	/* Avoid banging the cache line if not needed */
1840	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1841		ra->mmap_miss++;
1842
1843	/*
1844	 * Do we miss much more than hit in this file? If so,
1845	 * stop bothering with read-ahead. It will only hurt.
1846	 */
1847	if (ra->mmap_miss > MMAP_LOTSAMISS)
1848		return;
1849
1850	/*
1851	 * mmap read-around
1852	 */
1853	ra_pages = max_sane_readahead(ra->ra_pages);
1854	ra->start = max_t(long, 0, offset - ra_pages / 2);
1855	ra->size = ra_pages;
1856	ra->async_size = ra_pages / 4;
1857	ra_submit(ra, mapping, file);
1858}
1859
1860/*
1861 * Asynchronous readahead happens when we find the page and PG_readahead,
1862 * so we want to possibly extend the readahead further..
1863 */
1864static void do_async_mmap_readahead(struct vm_area_struct *vma,
1865				    struct file_ra_state *ra,
1866				    struct file *file,
1867				    struct page *page,
1868				    pgoff_t offset)
1869{
1870	struct address_space *mapping = file->f_mapping;
1871
1872	/* If we don't want any read-ahead, don't bother */
1873	if (vma->vm_flags & VM_RAND_READ)
1874		return;
1875	if (ra->mmap_miss > 0)
1876		ra->mmap_miss--;
1877	if (PageReadahead(page))
1878		page_cache_async_readahead(mapping, ra, file,
1879					   page, offset, ra->ra_pages);
1880}
1881
1882/**
1883 * filemap_fault - read in file data for page fault handling
1884 * @vma:	vma in which the fault was taken
1885 * @vmf:	struct vm_fault containing details of the fault
1886 *
1887 * filemap_fault() is invoked via the vma operations vector for a
1888 * mapped memory region to read in file data during a page fault.
1889 *
1890 * The goto's are kind of ugly, but this streamlines the normal case of having
1891 * it in the page cache, and handles the special cases reasonably without
1892 * having a lot of duplicated code.
1893 */
1894int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1895{
1896	int error;
1897	struct file *file = vma->vm_file;
1898	struct address_space *mapping = file->f_mapping;
1899	struct file_ra_state *ra = &file->f_ra;
1900	struct inode *inode = mapping->host;
1901	pgoff_t offset = vmf->pgoff;
1902	struct page *page;
1903	loff_t size;
1904	int ret = 0;
1905
1906	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1907	if (offset >= size >> PAGE_CACHE_SHIFT)
1908		return VM_FAULT_SIGBUS;
1909
1910	/*
1911	 * Do we have something in the page cache already?
1912	 */
1913	page = find_get_page(mapping, offset);
1914	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1915		/*
1916		 * We found the page, so try async readahead before
1917		 * waiting for the lock.
1918		 */
1919		do_async_mmap_readahead(vma, ra, file, page, offset);
1920	} else if (!page) {
1921		/* No page in the page cache at all */
1922		do_sync_mmap_readahead(vma, ra, file, offset);
1923		count_vm_event(PGMAJFAULT);
1924		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1925		ret = VM_FAULT_MAJOR;
1926retry_find:
1927		page = find_get_page(mapping, offset);
1928		if (!page)
1929			goto no_cached_page;
1930	}
1931
1932	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1933		page_cache_release(page);
1934		return ret | VM_FAULT_RETRY;
1935	}
1936
1937	/* Did it get truncated? */
1938	if (unlikely(page->mapping != mapping)) {
1939		unlock_page(page);
1940		put_page(page);
1941		goto retry_find;
1942	}
1943	VM_BUG_ON_PAGE(page->index != offset, page);
1944
1945	/*
1946	 * We have a locked page in the page cache, now we need to check
1947	 * that it's up-to-date. If not, it is going to be due to an error.
1948	 */
1949	if (unlikely(!PageUptodate(page)))
1950		goto page_not_uptodate;
1951
1952	/*
1953	 * Found the page and have a reference on it.
1954	 * We must recheck i_size under page lock.
1955	 */
1956	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1957	if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1958		unlock_page(page);
1959		page_cache_release(page);
1960		return VM_FAULT_SIGBUS;
1961	}
1962
1963	vmf->page = page;
1964	return ret | VM_FAULT_LOCKED;
1965
1966no_cached_page:
1967	/*
1968	 * We're only likely to ever get here if MADV_RANDOM is in
1969	 * effect.
1970	 */
1971	error = page_cache_read(file, offset);
1972
1973	/*
1974	 * The page we want has now been added to the page cache.
1975	 * In the unlikely event that someone removed it in the
1976	 * meantime, we'll just come back here and read it again.
1977	 */
1978	if (error >= 0)
1979		goto retry_find;
1980
1981	/*
1982	 * An error return from page_cache_read can result if the
1983	 * system is low on memory, or a problem occurs while trying
1984	 * to schedule I/O.
1985	 */
1986	if (error == -ENOMEM)
1987		return VM_FAULT_OOM;
1988	return VM_FAULT_SIGBUS;
1989
1990page_not_uptodate:
1991	/*
1992	 * Umm, take care of errors if the page isn't up-to-date.
1993	 * Try to re-read it _once_. We do this synchronously,
1994	 * because there really aren't any performance issues here
1995	 * and we need to check for errors.
1996	 */
1997	ClearPageError(page);
1998	error = mapping->a_ops->readpage(file, page);
1999	if (!error) {
2000		wait_on_page_locked(page);
2001		if (!PageUptodate(page))
2002			error = -EIO;
2003	}
2004	page_cache_release(page);
2005
2006	if (!error || error == AOP_TRUNCATED_PAGE)
2007		goto retry_find;
2008
2009	/* Things didn't work out. Return zero to tell the mm layer so. */
2010	shrink_readahead_size_eio(file, ra);
2011	return VM_FAULT_SIGBUS;
2012}
2013EXPORT_SYMBOL(filemap_fault);
2014
2015void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2016{
2017	struct radix_tree_iter iter;
2018	void **slot;
2019	struct file *file = vma->vm_file;
2020	struct address_space *mapping = file->f_mapping;
2021	loff_t size;
2022	struct page *page;
2023	unsigned long address = (unsigned long) vmf->virtual_address;
2024	unsigned long addr;
2025	pte_t *pte;
2026
2027	rcu_read_lock();
2028	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2029		if (iter.index > vmf->max_pgoff)
2030			break;
2031repeat:
2032		page = radix_tree_deref_slot(slot);
2033		if (unlikely(!page))
2034			goto next;
2035		if (radix_tree_exception(page)) {
2036			if (radix_tree_deref_retry(page))
2037				break;
2038			else
2039				goto next;
2040		}
2041
2042		if (!page_cache_get_speculative(page))
2043			goto repeat;
2044
2045		/* Has the page moved? */
2046		if (unlikely(page != *slot)) {
2047			page_cache_release(page);
2048			goto repeat;
2049		}
2050
2051		if (!PageUptodate(page) ||
2052				PageReadahead(page) ||
2053				PageHWPoison(page))
2054			goto skip;
2055		if (!trylock_page(page))
2056			goto skip;
2057
2058		if (page->mapping != mapping || !PageUptodate(page))
2059			goto unlock;
2060
2061		size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2062		if (page->index >= size >> PAGE_CACHE_SHIFT)
2063			goto unlock;
2064
2065		pte = vmf->pte + page->index - vmf->pgoff;
2066		if (!pte_none(*pte))
2067			goto unlock;
2068
2069		if (file->f_ra.mmap_miss > 0)
2070			file->f_ra.mmap_miss--;
2071		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2072		do_set_pte(vma, addr, page, pte, false, false);
2073		unlock_page(page);
2074		goto next;
2075unlock:
2076		unlock_page(page);
2077skip:
2078		page_cache_release(page);
2079next:
2080		if (iter.index == vmf->max_pgoff)
2081			break;
2082	}
2083	rcu_read_unlock();
2084}
2085EXPORT_SYMBOL(filemap_map_pages);
2086
2087int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2088{
2089	struct page *page = vmf->page;
2090	struct inode *inode = file_inode(vma->vm_file);
2091	int ret = VM_FAULT_LOCKED;
2092
2093	sb_start_pagefault(inode->i_sb);
2094	file_update_time(vma->vm_file);
2095	lock_page(page);
2096	if (page->mapping != inode->i_mapping) {
2097		unlock_page(page);
2098		ret = VM_FAULT_NOPAGE;
2099		goto out;
2100	}
2101	/*
2102	 * We mark the page dirty already here so that when freeze is in
2103	 * progress, we are guaranteed that writeback during freezing will
2104	 * see the dirty page and writeprotect it again.
2105	 */
2106	set_page_dirty(page);
2107	wait_for_stable_page(page);
2108out:
2109	sb_end_pagefault(inode->i_sb);
2110	return ret;
2111}
2112EXPORT_SYMBOL(filemap_page_mkwrite);
2113
2114const struct vm_operations_struct generic_file_vm_ops = {
2115	.fault		= filemap_fault,
2116	.map_pages	= filemap_map_pages,
2117	.page_mkwrite	= filemap_page_mkwrite,
2118	.remap_pages	= generic_file_remap_pages,
2119};
2120
2121/* This is used for a general mmap of a disk file */
2122
2123int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2124{
2125	struct address_space *mapping = file->f_mapping;
2126
2127	if (!mapping->a_ops->readpage)
2128		return -ENOEXEC;
2129	file_accessed(file);
2130	vma->vm_ops = &generic_file_vm_ops;
 
2131	return 0;
2132}
2133
2134/*
2135 * This is for filesystems which do not implement ->writepage.
2136 */
2137int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2138{
2139	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2140		return -EINVAL;
2141	return generic_file_mmap(file, vma);
2142}
2143#else
2144int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2145{
2146	return -ENOSYS;
2147}
2148int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2149{
2150	return -ENOSYS;
2151}
2152#endif /* CONFIG_MMU */
2153
2154EXPORT_SYMBOL(generic_file_mmap);
2155EXPORT_SYMBOL(generic_file_readonly_mmap);
2156
2157static struct page *wait_on_page_read(struct page *page)
2158{
2159	if (!IS_ERR(page)) {
2160		wait_on_page_locked(page);
2161		if (!PageUptodate(page)) {
2162			page_cache_release(page);
2163			page = ERR_PTR(-EIO);
2164		}
2165	}
2166	return page;
2167}
2168
2169static struct page *__read_cache_page(struct address_space *mapping,
2170				pgoff_t index,
2171				int (*filler)(void *, struct page *),
2172				void *data,
2173				gfp_t gfp)
2174{
2175	struct page *page;
2176	int err;
2177repeat:
2178	page = find_get_page(mapping, index);
2179	if (!page) {
2180		page = __page_cache_alloc(gfp | __GFP_COLD);
2181		if (!page)
2182			return ERR_PTR(-ENOMEM);
2183		err = add_to_page_cache_lru(page, mapping, index, gfp);
2184		if (unlikely(err)) {
2185			page_cache_release(page);
2186			if (err == -EEXIST)
2187				goto repeat;
2188			/* Presumably ENOMEM for radix tree node */
2189			return ERR_PTR(err);
2190		}
2191		err = filler(data, page);
2192		if (err < 0) {
2193			page_cache_release(page);
2194			page = ERR_PTR(err);
2195		} else {
2196			page = wait_on_page_read(page);
2197		}
2198	}
2199	return page;
2200}
2201
2202static struct page *do_read_cache_page(struct address_space *mapping,
2203				pgoff_t index,
2204				int (*filler)(void *, struct page *),
2205				void *data,
2206				gfp_t gfp)
2207
2208{
2209	struct page *page;
2210	int err;
2211
2212retry:
2213	page = __read_cache_page(mapping, index, filler, data, gfp);
2214	if (IS_ERR(page))
2215		return page;
2216	if (PageUptodate(page))
2217		goto out;
2218
2219	lock_page(page);
2220	if (!page->mapping) {
2221		unlock_page(page);
2222		page_cache_release(page);
2223		goto retry;
2224	}
2225	if (PageUptodate(page)) {
2226		unlock_page(page);
2227		goto out;
2228	}
2229	err = filler(data, page);
2230	if (err < 0) {
2231		page_cache_release(page);
2232		return ERR_PTR(err);
2233	} else {
2234		page = wait_on_page_read(page);
2235		if (IS_ERR(page))
2236			return page;
2237	}
2238out:
2239	mark_page_accessed(page);
2240	return page;
2241}
2242
2243/**
2244 * read_cache_page - read into page cache, fill it if needed
2245 * @mapping:	the page's address_space
2246 * @index:	the page index
2247 * @filler:	function to perform the read
2248 * @data:	first arg to filler(data, page) function, often left as NULL
2249 *
 
 
 
2250 * Read into the page cache. If a page already exists, and PageUptodate() is
2251 * not set, try to fill the page and wait for it to become unlocked.
2252 *
2253 * If the page does not get brought uptodate, return -EIO.
2254 */
2255struct page *read_cache_page(struct address_space *mapping,
2256				pgoff_t index,
2257				int (*filler)(void *, struct page *),
2258				void *data)
2259{
2260	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2261}
2262EXPORT_SYMBOL(read_cache_page);
 
 
 
 
 
 
 
 
 
 
 
 
2263
2264/**
2265 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2266 * @mapping:	the page's address_space
2267 * @index:	the page index
2268 * @gfp:	the page allocator flags to use if allocating
2269 *
2270 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2271 * any new page allocations done using the specified allocation flags.
 
 
 
2272 *
2273 * If the page does not get brought uptodate, return -EIO.
2274 */
2275struct page *read_cache_page_gfp(struct address_space *mapping,
2276				pgoff_t index,
2277				gfp_t gfp)
2278{
2279	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2280
2281	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2282}
2283EXPORT_SYMBOL(read_cache_page_gfp);
2284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2285/*
2286 * Performs necessary checks before doing a write
2287 *
2288 * Can adjust writing position or amount of bytes to write.
2289 * Returns appropriate error code that caller should return or
2290 * zero in case that write should be allowed.
2291 */
2292inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2293{
2294	struct inode *inode = file->f_mapping->host;
2295	unsigned long limit = rlimit(RLIMIT_FSIZE);
2296
2297        if (unlikely(*pos < 0))
2298                return -EINVAL;
2299
2300	if (!isblk) {
2301		/* FIXME: this is for backwards compatibility with 2.4 */
2302		if (file->f_flags & O_APPEND)
2303                        *pos = i_size_read(inode);
2304
2305		if (limit != RLIM_INFINITY) {
2306			if (*pos >= limit) {
2307				send_sig(SIGXFSZ, current, 0);
2308				return -EFBIG;
2309			}
2310			if (*count > limit - (typeof(limit))*pos) {
2311				*count = limit - (typeof(limit))*pos;
2312			}
2313		}
2314	}
2315
2316	/*
2317	 * LFS rule
2318	 */
2319	if (unlikely(*pos + *count > MAX_NON_LFS &&
2320				!(file->f_flags & O_LARGEFILE))) {
2321		if (*pos >= MAX_NON_LFS) {
2322			return -EFBIG;
2323		}
2324		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2325			*count = MAX_NON_LFS - (unsigned long)*pos;
2326		}
2327	}
2328
2329	/*
2330	 * Are we about to exceed the fs block limit ?
2331	 *
2332	 * If we have written data it becomes a short write.  If we have
2333	 * exceeded without writing data we send a signal and return EFBIG.
2334	 * Linus frestrict idea will clean these up nicely..
2335	 */
2336	if (likely(!isblk)) {
2337		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2338			if (*count || *pos > inode->i_sb->s_maxbytes) {
2339				return -EFBIG;
2340			}
2341			/* zero-length writes at ->s_maxbytes are OK */
2342		}
2343
2344		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2345			*count = inode->i_sb->s_maxbytes - *pos;
2346	} else {
2347#ifdef CONFIG_BLOCK
2348		loff_t isize;
2349		if (bdev_read_only(I_BDEV(inode)))
2350			return -EPERM;
2351		isize = i_size_read(inode);
2352		if (*pos >= isize) {
2353			if (*count || *pos > isize)
2354				return -ENOSPC;
2355		}
2356
2357		if (*pos + *count > isize)
2358			*count = isize - *pos;
2359#else
2360		return -EPERM;
2361#endif
2362	}
2363	return 0;
2364}
2365EXPORT_SYMBOL(generic_write_checks);
2366
2367int pagecache_write_begin(struct file *file, struct address_space *mapping,
2368				loff_t pos, unsigned len, unsigned flags,
2369				struct page **pagep, void **fsdata)
2370{
2371	const struct address_space_operations *aops = mapping->a_ops;
2372
2373	return aops->write_begin(file, mapping, pos, len, flags,
2374							pagep, fsdata);
2375}
2376EXPORT_SYMBOL(pagecache_write_begin);
2377
2378int pagecache_write_end(struct file *file, struct address_space *mapping,
2379				loff_t pos, unsigned len, unsigned copied,
2380				struct page *page, void *fsdata)
2381{
2382	const struct address_space_operations *aops = mapping->a_ops;
2383
2384	mark_page_accessed(page);
2385	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2386}
2387EXPORT_SYMBOL(pagecache_write_end);
2388
2389ssize_t
2390generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2391		unsigned long *nr_segs, loff_t pos,
2392		size_t count, size_t ocount)
2393{
2394	struct file	*file = iocb->ki_filp;
2395	struct address_space *mapping = file->f_mapping;
2396	struct inode	*inode = mapping->host;
2397	ssize_t		written;
2398	size_t		write_len;
2399	pgoff_t		end;
2400
2401	if (count != ocount)
2402		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2403
2404	write_len = iov_length(iov, *nr_segs);
2405	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2406
2407	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2408	if (written)
2409		goto out;
2410
2411	/*
2412	 * After a write we want buffered reads to be sure to go to disk to get
2413	 * the new data.  We invalidate clean cached page from the region we're
2414	 * about to write.  We do this *before* the write so that we can return
2415	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2416	 */
2417	if (mapping->nrpages) {
2418		written = invalidate_inode_pages2_range(mapping,
2419					pos >> PAGE_CACHE_SHIFT, end);
2420		/*
2421		 * If a page can not be invalidated, return 0 to fall back
2422		 * to buffered write.
2423		 */
2424		if (written) {
2425			if (written == -EBUSY)
2426				return 0;
2427			goto out;
2428		}
2429	}
2430
2431	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2432
2433	/*
2434	 * Finally, try again to invalidate clean pages which might have been
2435	 * cached by non-direct readahead, or faulted in by get_user_pages()
2436	 * if the source of the write was an mmap'ed region of the file
2437	 * we're writing.  Either one is a pretty crazy thing to do,
2438	 * so we don't support it 100%.  If this invalidation
2439	 * fails, tough, the write still worked...
2440	 */
2441	if (mapping->nrpages) {
2442		invalidate_inode_pages2_range(mapping,
2443					      pos >> PAGE_CACHE_SHIFT, end);
2444	}
2445
2446	if (written > 0) {
2447		pos += written;
2448		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2449			i_size_write(inode, pos);
2450			mark_inode_dirty(inode);
2451		}
2452		iocb->ki_pos = pos;
2453	}
2454out:
2455	return written;
2456}
2457EXPORT_SYMBOL(generic_file_direct_write);
2458
2459/*
2460 * Find or create a page at the given pagecache position. Return the locked
2461 * page. This function is specifically for buffered writes.
2462 */
2463struct page *grab_cache_page_write_begin(struct address_space *mapping,
2464					pgoff_t index, unsigned flags)
2465{
2466	int status;
2467	gfp_t gfp_mask;
2468	struct page *page;
2469	gfp_t gfp_notmask = 0;
2470
2471	gfp_mask = mapping_gfp_mask(mapping);
2472	if (mapping_cap_account_dirty(mapping))
2473		gfp_mask |= __GFP_WRITE;
2474	if (flags & AOP_FLAG_NOFS)
2475		gfp_notmask = __GFP_FS;
2476repeat:
2477	page = find_lock_page(mapping, index);
2478	if (page)
2479		goto found;
2480
2481	page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2482	if (!page)
2483		return NULL;
2484	status = add_to_page_cache_lru(page, mapping, index,
2485						GFP_KERNEL & ~gfp_notmask);
2486	if (unlikely(status)) {
2487		page_cache_release(page);
2488		if (status == -EEXIST)
2489			goto repeat;
2490		return NULL;
2491	}
2492found:
2493	wait_for_stable_page(page);
2494	return page;
2495}
2496EXPORT_SYMBOL(grab_cache_page_write_begin);
2497
2498ssize_t generic_perform_write(struct file *file,
2499				struct iov_iter *i, loff_t pos)
2500{
2501	struct address_space *mapping = file->f_mapping;
2502	const struct address_space_operations *a_ops = mapping->a_ops;
2503	long status = 0;
2504	ssize_t written = 0;
2505	unsigned int flags = 0;
2506
2507	/*
2508	 * Copies from kernel address space cannot fail (NFSD is a big user).
2509	 */
2510	if (segment_eq(get_fs(), KERNEL_DS))
2511		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2512
2513	do {
2514		struct page *page;
2515		unsigned long offset;	/* Offset into pagecache page */
2516		unsigned long bytes;	/* Bytes to write to page */
2517		size_t copied;		/* Bytes copied from user */
2518		void *fsdata;
2519
2520		offset = (pos & (PAGE_CACHE_SIZE - 1));
2521		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2522						iov_iter_count(i));
2523
2524again:
 
2525		/*
2526		 * Bring in the user page that we will copy from _first_.
2527		 * Otherwise there's a nasty deadlock on copying from the
2528		 * same page as we're writing to, without it being marked
2529		 * up-to-date.
2530		 *
2531		 * Not only is this an optimisation, but it is also required
2532		 * to check that the address is actually valid, when atomic
2533		 * usercopies are used, below.
2534		 */
2535		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2536			status = -EFAULT;
2537			break;
2538		}
2539
2540		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2541						&page, &fsdata);
2542		if (unlikely(status))
2543			break;
2544
2545		if (mapping_writably_mapped(mapping))
2546			flush_dcache_page(page);
2547
 
2548		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
 
2549		flush_dcache_page(page);
2550
2551		mark_page_accessed(page);
2552		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2553						page, fsdata);
2554		if (unlikely(status < 0))
2555			break;
2556		copied = status;
2557
2558		cond_resched();
2559
2560		iov_iter_advance(i, copied);
2561		if (unlikely(copied == 0)) {
2562			/*
2563			 * If we were unable to copy any data at all, we must
2564			 * fall back to a single segment length write.
2565			 *
2566			 * If we didn't fallback here, we could livelock
2567			 * because not all segments in the iov can be copied at
2568			 * once without a pagefault.
2569			 */
2570			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2571						iov_iter_single_seg_count(i));
2572			goto again;
2573		}
2574		pos += copied;
2575		written += copied;
2576
2577		balance_dirty_pages_ratelimited(mapping);
2578		if (fatal_signal_pending(current)) {
2579			status = -EINTR;
2580			break;
2581		}
2582	} while (iov_iter_count(i));
2583
2584	return written ? written : status;
2585}
2586EXPORT_SYMBOL(generic_perform_write);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2587
2588/**
2589 * __generic_file_aio_write - write data to a file
2590 * @iocb:	IO state structure (file, offset, etc.)
2591 * @iov:	vector with data to write
2592 * @nr_segs:	number of segments in the vector
 
2593 *
2594 * This function does all the work needed for actually writing data to a
2595 * file. It does all basic checks, removes SUID from the file, updates
2596 * modification times and calls proper subroutines depending on whether we
2597 * do direct IO or a standard buffered write.
2598 *
2599 * It expects i_mutex to be grabbed unless we work on a block device or similar
2600 * object which does not need locking at all.
2601 *
2602 * This function does *not* take care of syncing data in case of O_SYNC write.
2603 * A caller has to handle it. This is mainly due to the fact that we want to
2604 * avoid syncing under i_mutex.
2605 */
2606ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2607				 unsigned long nr_segs)
2608{
2609	struct file *file = iocb->ki_filp;
2610	struct address_space * mapping = file->f_mapping;
2611	size_t ocount;		/* original count */
2612	size_t count;		/* after file limit checks */
2613	struct inode 	*inode = mapping->host;
2614	loff_t		pos = iocb->ki_pos;
2615	ssize_t		written = 0;
2616	ssize_t		err;
2617	ssize_t		status;
2618	struct iov_iter from;
2619
2620	ocount = 0;
2621	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2622	if (err)
2623		return err;
2624
2625	count = ocount;
 
 
 
2626
2627	/* We can write back this queue in page reclaim */
2628	current->backing_dev_info = mapping->backing_dev_info;
 
 
2629	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2630	if (err)
2631		goto out;
2632
2633	if (count == 0)
2634		goto out;
2635
2636	err = file_remove_suid(file);
2637	if (err)
2638		goto out;
2639
2640	err = file_update_time(file);
2641	if (err)
2642		goto out;
2643
2644	iov_iter_init(&from, iov, nr_segs, count, 0);
2645
2646	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2647	if (unlikely(file->f_flags & O_DIRECT)) {
2648		loff_t endbyte;
 
2649
2650		written = generic_file_direct_write(iocb, iov, &from.nr_segs, pos,
2651							count, ocount);
2652		if (written < 0 || written == count)
2653			goto out;
2654		iov_iter_advance(&from, written);
2655
2656		/*
2657		 * direct-io write to a hole: fall through to buffered I/O
2658		 * for completing the rest of the request.
2659		 */
2660		pos += written;
2661		count -= written;
2662
2663		status = generic_perform_write(file, &from, pos);
 
2664		/*
2665		 * If generic_perform_write() returned a synchronous error
2666		 * then we want to return the number of bytes which were
2667		 * direct-written, or the error code if that was zero.  Note
2668		 * that this differs from normal direct-io semantics, which
2669		 * will return -EFOO even if some bytes were written.
2670		 */
2671		if (unlikely(status < 0) && !written) {
2672			err = status;
2673			goto out;
2674		}
2675		iocb->ki_pos = pos + status;
2676		/*
2677		 * We need to ensure that the page cache pages are written to
2678		 * disk and invalidated to preserve the expected O_DIRECT
2679		 * semantics.
2680		 */
2681		endbyte = pos + status - 1;
2682		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2683		if (err == 0) {
2684			written += status;
2685			invalidate_mapping_pages(mapping,
2686						 pos >> PAGE_CACHE_SHIFT,
2687						 endbyte >> PAGE_CACHE_SHIFT);
2688		} else {
2689			/*
2690			 * We don't know how much we wrote, so just return
2691			 * the number of bytes which were direct-written
2692			 */
2693		}
2694	} else {
2695		written = generic_perform_write(file, &from, pos);
2696		if (likely(written >= 0))
2697			iocb->ki_pos = pos + written;
2698	}
2699out:
2700	current->backing_dev_info = NULL;
2701	return written ? written : err;
2702}
2703EXPORT_SYMBOL(__generic_file_aio_write);
2704
2705/**
2706 * generic_file_aio_write - write data to a file
2707 * @iocb:	IO state structure
2708 * @iov:	vector with data to write
2709 * @nr_segs:	number of segments in the vector
2710 * @pos:	position in file where to write
2711 *
2712 * This is a wrapper around __generic_file_aio_write() to be used by most
2713 * filesystems. It takes care of syncing the file in case of O_SYNC file
2714 * and acquires i_mutex as needed.
2715 */
2716ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2717		unsigned long nr_segs, loff_t pos)
2718{
2719	struct file *file = iocb->ki_filp;
2720	struct inode *inode = file->f_mapping->host;
 
2721	ssize_t ret;
2722
2723	BUG_ON(iocb->ki_pos != pos);
2724
2725	mutex_lock(&inode->i_mutex);
2726	ret = __generic_file_aio_write(iocb, iov, nr_segs);
 
2727	mutex_unlock(&inode->i_mutex);
2728
2729	if (ret > 0) {
2730		ssize_t err;
2731
2732		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2733		if (err < 0)
2734			ret = err;
2735	}
 
2736	return ret;
2737}
2738EXPORT_SYMBOL(generic_file_aio_write);
2739
2740/**
2741 * try_to_release_page() - release old fs-specific metadata on a page
2742 *
2743 * @page: the page which the kernel is trying to free
2744 * @gfp_mask: memory allocation flags (and I/O mode)
2745 *
2746 * The address_space is to try to release any data against the page
2747 * (presumably at page->private).  If the release was successful, return `1'.
2748 * Otherwise return zero.
2749 *
2750 * This may also be called if PG_fscache is set on a page, indicating that the
2751 * page is known to the local caching routines.
2752 *
2753 * The @gfp_mask argument specifies whether I/O may be performed to release
2754 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2755 *
2756 */
2757int try_to_release_page(struct page *page, gfp_t gfp_mask)
2758{
2759	struct address_space * const mapping = page->mapping;
2760
2761	BUG_ON(!PageLocked(page));
2762	if (PageWriteback(page))
2763		return 0;
2764
2765	if (mapping && mapping->a_ops->releasepage)
2766		return mapping->a_ops->releasepage(page, gfp_mask);
2767	return try_to_free_buffers(page);
2768}
2769
2770EXPORT_SYMBOL(try_to_release_page);