Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/module.h>
  13#include <linux/compiler.h>
 
  14#include <linux/fs.h>
  15#include <linux/uaccess.h>
  16#include <linux/aio.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/syscalls.h>
  33#include <linux/cpuset.h>
  34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
 
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
 
  37#include "internal.h"
  38
 
 
 
  39/*
  40 * FIXME: remove all knowledge of the buffer layer from the core VM
  41 */
  42#include <linux/buffer_head.h> /* for try_to_free_buffers */
  43
  44#include <asm/mman.h>
  45
  46/*
  47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  48 * though.
  49 *
  50 * Shared mappings now work. 15.8.1995  Bruno.
  51 *
  52 * finished 'unifying' the page and buffer cache and SMP-threaded the
  53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  54 *
  55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  56 */
  57
  58/*
  59 * Lock ordering:
  60 *
  61 *  ->i_mmap_mutex		(truncate_pagecache)
  62 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  63 *      ->swap_lock		(exclusive_swap_page, others)
  64 *        ->mapping->tree_lock
  65 *
  66 *  ->i_mutex
  67 *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
  68 *
  69 *  ->mmap_sem
  70 *    ->i_mmap_mutex
  71 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  72 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
  73 *
  74 *  ->mmap_sem
  75 *    ->lock_page		(access_process_vm)
  76 *
  77 *  ->i_mutex			(generic_file_buffered_write)
  78 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  79 *
  80 *  bdi->wb.list_lock
  81 *    sb_lock			(fs/fs-writeback.c)
  82 *    ->mapping->tree_lock	(__sync_single_inode)
  83 *
  84 *  ->i_mmap_mutex
  85 *    ->anon_vma.lock		(vma_adjust)
  86 *
  87 *  ->anon_vma.lock
  88 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  89 *
  90 *  ->page_table_lock or pte_lock
  91 *    ->swap_lock		(try_to_unmap_one)
  92 *    ->private_lock		(try_to_unmap_one)
  93 *    ->tree_lock		(try_to_unmap_one)
  94 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
  95 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
  96 *    ->private_lock		(page_remove_rmap->set_page_dirty)
  97 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
  98 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
  99 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 
 100 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 101 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 102 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 103 *
 104 *  (code doesn't rely on that order, so you could switch it around)
 105 *  ->tasklist_lock             (memory_failure, collect_procs_ao)
 106 *    ->i_mmap_mutex
 107 */
 108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109/*
 110 * Delete a page from the page cache and free it. Caller has to make
 111 * sure the page is locked and that nobody else uses it - or that usage
 112 * is safe.  The caller must hold the mapping's tree_lock.
 113 */
 114void __delete_from_page_cache(struct page *page)
 115{
 116	struct address_space *mapping = page->mapping;
 
 117
 
 118	/*
 119	 * if we're uptodate, flush out into the cleancache, otherwise
 120	 * invalidate any existing cleancache entries.  We can't leave
 121	 * stale data around in the cleancache once our page is gone
 122	 */
 123	if (PageUptodate(page) && PageMappedToDisk(page))
 124		cleancache_put_page(page);
 125	else
 126		cleancache_flush_page(mapping, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127
 128	radix_tree_delete(&mapping->page_tree, page->index);
 129	page->mapping = NULL;
 130	/* Leave page->index set: truncation lookup relies upon it */
 131	mapping->nrpages--;
 132	__dec_zone_page_state(page, NR_FILE_PAGES);
 133	if (PageSwapBacked(page))
 134		__dec_zone_page_state(page, NR_SHMEM);
 135	BUG_ON(page_mapped(page));
 
 
 
 
 
 
 136
 137	/*
 138	 * Some filesystems seem to re-dirty the page even after
 139	 * the VM has canceled the dirty bit (eg ext3 journaling).
 140	 *
 141	 * Fix it up by doing a final dirty accounting check after
 142	 * having removed the page entirely.
 
 143	 */
 144	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
 145		dec_zone_page_state(page, NR_FILE_DIRTY);
 146		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
 147	}
 148}
 149
 150/**
 151 * delete_from_page_cache - delete page from page cache
 152 * @page: the page which the kernel is trying to remove from page cache
 153 *
 154 * This must be called only on pages that have been verified to be in the page
 155 * cache and locked.  It will never put the page into the free list, the caller
 156 * has a reference on the page.
 157 */
 158void delete_from_page_cache(struct page *page)
 159{
 160	struct address_space *mapping = page->mapping;
 
 161	void (*freepage)(struct page *);
 162
 163	BUG_ON(!PageLocked(page));
 164
 165	freepage = mapping->a_ops->freepage;
 166	spin_lock_irq(&mapping->tree_lock);
 167	__delete_from_page_cache(page);
 168	spin_unlock_irq(&mapping->tree_lock);
 169	mem_cgroup_uncharge_cache_page(page);
 170
 171	if (freepage)
 172		freepage(page);
 173	page_cache_release(page);
 174}
 175EXPORT_SYMBOL(delete_from_page_cache);
 176
 177static int sleep_on_page(void *word)
 178{
 179	io_schedule();
 180	return 0;
 
 
 181}
 
 182
 183static int sleep_on_page_killable(void *word)
 184{
 185	sleep_on_page(word);
 186	return fatal_signal_pending(current) ? -EINTR : 0;
 
 
 
 
 
 
 
 187}
 
 188
 189/**
 190 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 191 * @mapping:	address space structure to write
 192 * @start:	offset in bytes where the range starts
 193 * @end:	offset in bytes where the range ends (inclusive)
 194 * @sync_mode:	enable synchronous operation
 195 *
 196 * Start writeback against all of a mapping's dirty pages that lie
 197 * within the byte offsets <start, end> inclusive.
 198 *
 199 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 200 * opposed to a regular memory cleansing writeback.  The difference between
 201 * these two operations is that if a dirty page/buffer is encountered, it must
 202 * be waited upon, and not just skipped over.
 203 */
 204int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 205				loff_t end, int sync_mode)
 206{
 207	int ret;
 208	struct writeback_control wbc = {
 209		.sync_mode = sync_mode,
 210		.nr_to_write = LONG_MAX,
 211		.range_start = start,
 212		.range_end = end,
 213	};
 214
 215	if (!mapping_cap_writeback_dirty(mapping))
 216		return 0;
 217
 
 218	ret = do_writepages(mapping, &wbc);
 
 219	return ret;
 220}
 221
 222static inline int __filemap_fdatawrite(struct address_space *mapping,
 223	int sync_mode)
 224{
 225	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 226}
 227
 228int filemap_fdatawrite(struct address_space *mapping)
 229{
 230	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 231}
 232EXPORT_SYMBOL(filemap_fdatawrite);
 233
 234int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 235				loff_t end)
 236{
 237	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 238}
 239EXPORT_SYMBOL(filemap_fdatawrite_range);
 240
 241/**
 242 * filemap_flush - mostly a non-blocking flush
 243 * @mapping:	target address_space
 244 *
 245 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 246 * purposes - I/O may not be started against all dirty pages.
 247 */
 248int filemap_flush(struct address_space *mapping)
 249{
 250	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 251}
 252EXPORT_SYMBOL(filemap_flush);
 253
 254/**
 255 * filemap_fdatawait_range - wait for writeback to complete
 256 * @mapping:		address space structure to wait for
 257 * @start_byte:		offset in bytes where the range starts
 258 * @end_byte:		offset in bytes where the range ends (inclusive)
 259 *
 260 * Walk the list of under-writeback pages of the given address space
 261 * in the given range and wait for all of them.
 262 */
 263int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 264			    loff_t end_byte)
 265{
 266	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
 267	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
 268	struct pagevec pvec;
 269	int nr_pages;
 270	int ret = 0;
 271
 272	if (end_byte < start_byte)
 273		return 0;
 274
 275	pagevec_init(&pvec, 0);
 276	while ((index <= end) &&
 277			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 278			PAGECACHE_TAG_WRITEBACK,
 279			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 280		unsigned i;
 281
 282		for (i = 0; i < nr_pages; i++) {
 283			struct page *page = pvec.pages[i];
 284
 285			/* until radix tree lookup accepts end_index */
 286			if (page->index > end)
 287				continue;
 288
 289			wait_on_page_writeback(page);
 290			if (TestClearPageError(page))
 291				ret = -EIO;
 292		}
 293		pagevec_release(&pvec);
 294		cond_resched();
 295	}
 
 
 
 296
 297	/* Check for outstanding write errors */
 298	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 299		ret = -ENOSPC;
 300	if (test_and_clear_bit(AS_EIO, &mapping->flags))
 301		ret = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302
 303	return ret;
 304}
 305EXPORT_SYMBOL(filemap_fdatawait_range);
 306
 307/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308 * filemap_fdatawait - wait for all under-writeback pages to complete
 309 * @mapping: address space structure to wait for
 310 *
 311 * Walk the list of under-writeback pages of the given address space
 312 * and wait for all of them.
 
 
 
 
 
 313 */
 314int filemap_fdatawait(struct address_space *mapping)
 315{
 316	loff_t i_size = i_size_read(mapping->host);
 317
 318	if (i_size == 0)
 319		return 0;
 320
 321	return filemap_fdatawait_range(mapping, 0, i_size - 1);
 322}
 323EXPORT_SYMBOL(filemap_fdatawait);
 324
 325int filemap_write_and_wait(struct address_space *mapping)
 326{
 327	int err = 0;
 328
 329	if (mapping->nrpages) {
 
 330		err = filemap_fdatawrite(mapping);
 331		/*
 332		 * Even if the above returned error, the pages may be
 333		 * written partially (e.g. -ENOSPC), so we wait for it.
 334		 * But the -EIO is special case, it may indicate the worst
 335		 * thing (e.g. bug) happened, so we avoid waiting for it.
 336		 */
 337		if (err != -EIO) {
 338			int err2 = filemap_fdatawait(mapping);
 339			if (!err)
 340				err = err2;
 341		}
 
 
 342	}
 343	return err;
 344}
 345EXPORT_SYMBOL(filemap_write_and_wait);
 346
 347/**
 348 * filemap_write_and_wait_range - write out & wait on a file range
 349 * @mapping:	the address_space for the pages
 350 * @lstart:	offset in bytes where the range starts
 351 * @lend:	offset in bytes where the range ends (inclusive)
 352 *
 353 * Write out and wait upon file offsets lstart->lend, inclusive.
 354 *
 355 * Note that `lend' is inclusive (describes the last byte to be written) so
 356 * that this function can be used to write to the very end-of-file (end = -1).
 357 */
 358int filemap_write_and_wait_range(struct address_space *mapping,
 359				 loff_t lstart, loff_t lend)
 360{
 361	int err = 0;
 362
 363	if (mapping->nrpages) {
 
 364		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 365						 WB_SYNC_ALL);
 366		/* See comment of filemap_write_and_wait() */
 367		if (err != -EIO) {
 368			int err2 = filemap_fdatawait_range(mapping,
 369						lstart, lend);
 370			if (!err)
 371				err = err2;
 372		}
 
 
 373	}
 374	return err;
 375}
 376EXPORT_SYMBOL(filemap_write_and_wait_range);
 377
 378/**
 379 * replace_page_cache_page - replace a pagecache page with a new one
 380 * @old:	page to be replaced
 381 * @new:	page to replace with
 382 * @gfp_mask:	allocation mode
 383 *
 384 * This function replaces a page in the pagecache with a new one.  On
 385 * success it acquires the pagecache reference for the new page and
 386 * drops it for the old page.  Both the old and new pages must be
 387 * locked.  This function does not add the new page to the LRU, the
 388 * caller must do that.
 389 *
 390 * The remove + add is atomic.  The only way this function can fail is
 391 * memory allocation failure.
 392 */
 393int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 394{
 395	int error;
 396	struct mem_cgroup *memcg = NULL;
 397
 398	VM_BUG_ON(!PageLocked(old));
 399	VM_BUG_ON(!PageLocked(new));
 400	VM_BUG_ON(new->mapping);
 401
 402	/*
 403	 * This is not page migration, but prepare_migration and
 404	 * end_migration does enough work for charge replacement.
 405	 *
 406	 * In the longer term we probably want a specialized function
 407	 * for moving the charge from old to new in a more efficient
 408	 * manner.
 409	 */
 410	error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
 411	if (error)
 412		return error;
 413
 414	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 415	if (!error) {
 416		struct address_space *mapping = old->mapping;
 417		void (*freepage)(struct page *);
 
 418
 419		pgoff_t offset = old->index;
 420		freepage = mapping->a_ops->freepage;
 421
 422		page_cache_get(new);
 423		new->mapping = mapping;
 424		new->index = offset;
 425
 426		spin_lock_irq(&mapping->tree_lock);
 427		__delete_from_page_cache(old);
 428		error = radix_tree_insert(&mapping->page_tree, offset, new);
 429		BUG_ON(error);
 430		mapping->nrpages++;
 431		__inc_zone_page_state(new, NR_FILE_PAGES);
 
 
 
 
 432		if (PageSwapBacked(new))
 433			__inc_zone_page_state(new, NR_SHMEM);
 434		spin_unlock_irq(&mapping->tree_lock);
 
 435		radix_tree_preload_end();
 436		if (freepage)
 437			freepage(old);
 438		page_cache_release(old);
 439		mem_cgroup_end_migration(memcg, old, new, true);
 440	} else {
 441		mem_cgroup_end_migration(memcg, old, new, false);
 442	}
 443
 444	return error;
 445}
 446EXPORT_SYMBOL_GPL(replace_page_cache_page);
 447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448/**
 449 * add_to_page_cache_locked - add a locked page to the pagecache
 450 * @page:	page to add
 451 * @mapping:	the page's address_space
 452 * @offset:	page index
 453 * @gfp_mask:	page allocation mode
 454 *
 455 * This function is used to add a page to the pagecache. It must be locked.
 456 * This function does not add the page to the LRU.  The caller must do that.
 457 */
 458int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 459		pgoff_t offset, gfp_t gfp_mask)
 460{
 461	int error;
 462
 463	VM_BUG_ON(!PageLocked(page));
 464	VM_BUG_ON(PageSwapBacked(page));
 465
 466	error = mem_cgroup_cache_charge(page, current->mm,
 467					gfp_mask & GFP_RECLAIM_MASK);
 468	if (error)
 469		goto out;
 470
 471	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 472	if (error == 0) {
 473		page_cache_get(page);
 474		page->mapping = mapping;
 475		page->index = offset;
 476
 477		spin_lock_irq(&mapping->tree_lock);
 478		error = radix_tree_insert(&mapping->page_tree, offset, page);
 479		if (likely(!error)) {
 480			mapping->nrpages++;
 481			__inc_zone_page_state(page, NR_FILE_PAGES);
 482			spin_unlock_irq(&mapping->tree_lock);
 483		} else {
 484			page->mapping = NULL;
 485			/* Leave page->index set: truncation relies upon it */
 486			spin_unlock_irq(&mapping->tree_lock);
 487			mem_cgroup_uncharge_cache_page(page);
 488			page_cache_release(page);
 489		}
 490		radix_tree_preload_end();
 491	} else
 492		mem_cgroup_uncharge_cache_page(page);
 493out:
 494	return error;
 495}
 496EXPORT_SYMBOL(add_to_page_cache_locked);
 497
 498int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 499				pgoff_t offset, gfp_t gfp_mask)
 500{
 
 501	int ret;
 502
 503	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
 504	if (ret == 0)
 505		lru_cache_add_file(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506	return ret;
 507}
 508EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 509
 510#ifdef CONFIG_NUMA
 511struct page *__page_cache_alloc(gfp_t gfp)
 512{
 513	int n;
 514	struct page *page;
 515
 516	if (cpuset_do_page_mem_spread()) {
 517		get_mems_allowed();
 518		n = cpuset_mem_spread_node();
 519		page = alloc_pages_exact_node(n, gfp, 0);
 520		put_mems_allowed();
 
 
 
 521		return page;
 522	}
 523	return alloc_pages(gfp, 0);
 524}
 525EXPORT_SYMBOL(__page_cache_alloc);
 526#endif
 527
 528/*
 529 * In order to wait for pages to become available there must be
 530 * waitqueues associated with pages. By using a hash table of
 531 * waitqueues where the bucket discipline is to maintain all
 532 * waiters on the same queue and wake all when any of the pages
 533 * become available, and for the woken contexts to check to be
 534 * sure the appropriate page became available, this saves space
 535 * at a cost of "thundering herd" phenomena during rare hash
 536 * collisions.
 537 */
 
 
 
 
 538static wait_queue_head_t *page_waitqueue(struct page *page)
 539{
 540	const struct zone *zone = page_zone(page);
 
 541
 542	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 
 
 
 
 
 
 
 543}
 544
 545static inline void wake_up_page(struct page *page, int bit)
 
 
 
 
 
 
 
 
 
 
 
 
 546{
 547	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 548}
 549
 550void wait_on_page_bit(struct page *page, int bit_nr)
 551{
 552	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 
 
 
 
 553
 554	if (test_bit(bit_nr, &page->flags))
 555		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
 556							TASK_UNINTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 557}
 558EXPORT_SYMBOL(wait_on_page_bit);
 559
 560int wait_on_page_bit_killable(struct page *page, int bit_nr)
 
 561{
 562	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 563
 564	if (!test_bit(bit_nr, &page->flags))
 565		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567	return __wait_on_bit(page_waitqueue(page), &wait,
 568			     sleep_on_page_killable, TASK_KILLABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569}
 570
 571/**
 572 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 573 * @page: Page defining the wait queue of interest
 574 * @waiter: Waiter to add to the queue
 575 *
 576 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 577 */
 578void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 579{
 580	wait_queue_head_t *q = page_waitqueue(page);
 581	unsigned long flags;
 582
 583	spin_lock_irqsave(&q->lock, flags);
 584	__add_wait_queue(q, waiter);
 
 585	spin_unlock_irqrestore(&q->lock, flags);
 586}
 587EXPORT_SYMBOL_GPL(add_page_wait_queue);
 588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589/**
 590 * unlock_page - unlock a locked page
 591 * @page: the page
 592 *
 593 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 594 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 595 * mechananism between PageLocked pages and PageWriteback pages is shared.
 596 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 597 *
 598 * The mb is necessary to enforce ordering between the clear_bit and the read
 599 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 
 
 
 600 */
 601void unlock_page(struct page *page)
 602{
 603	VM_BUG_ON(!PageLocked(page));
 604	clear_bit_unlock(PG_locked, &page->flags);
 605	smp_mb__after_clear_bit();
 606	wake_up_page(page, PG_locked);
 
 607}
 608EXPORT_SYMBOL(unlock_page);
 609
 610/**
 611 * end_page_writeback - end writeback against a page
 612 * @page: the page
 613 */
 614void end_page_writeback(struct page *page)
 615{
 616	if (TestClearPageReclaim(page))
 
 
 
 
 
 
 
 
 617		rotate_reclaimable_page(page);
 
 618
 619	if (!test_clear_page_writeback(page))
 620		BUG();
 621
 622	smp_mb__after_clear_bit();
 623	wake_up_page(page, PG_writeback);
 624}
 625EXPORT_SYMBOL(end_page_writeback);
 626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627/**
 628 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 629 * @page: the page to lock
 630 */
 631void __lock_page(struct page *page)
 632{
 633	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 634
 635	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
 636							TASK_UNINTERRUPTIBLE);
 637}
 638EXPORT_SYMBOL(__lock_page);
 639
 640int __lock_page_killable(struct page *page)
 641{
 642	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 643
 644	return __wait_on_bit_lock(page_waitqueue(page), &wait,
 645					sleep_on_page_killable, TASK_KILLABLE);
 646}
 647EXPORT_SYMBOL_GPL(__lock_page_killable);
 648
 
 
 
 
 
 
 
 
 
 
 
 649int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 650			 unsigned int flags)
 651{
 652	if (flags & FAULT_FLAG_ALLOW_RETRY) {
 653		/*
 654		 * CAUTION! In this case, mmap_sem is not released
 655		 * even though return 0.
 656		 */
 657		if (flags & FAULT_FLAG_RETRY_NOWAIT)
 658			return 0;
 659
 660		up_read(&mm->mmap_sem);
 661		if (flags & FAULT_FLAG_KILLABLE)
 662			wait_on_page_locked_killable(page);
 663		else
 664			wait_on_page_locked(page);
 665		return 0;
 666	} else {
 667		if (flags & FAULT_FLAG_KILLABLE) {
 668			int ret;
 669
 670			ret = __lock_page_killable(page);
 671			if (ret) {
 672				up_read(&mm->mmap_sem);
 673				return 0;
 674			}
 675		} else
 676			__lock_page(page);
 677		return 1;
 678	}
 679}
 680
 681/**
 682 * find_get_page - find and get a page reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683 * @mapping: the address_space to search
 684 * @offset: the page index
 
 
 
 
 
 
 685 *
 686 * Is there a pagecache struct page at the given (mapping, offset) tuple?
 687 * If yes, increment its refcount and return it; if no, return NULL.
 688 */
 689struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
 690{
 691	void **pagep;
 692	struct page *page;
 693
 694	rcu_read_lock();
 695repeat:
 696	page = NULL;
 697	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
 698	if (pagep) {
 699		page = radix_tree_deref_slot(pagep);
 700		if (unlikely(!page))
 701			goto out;
 702		if (radix_tree_exception(page)) {
 703			if (radix_tree_deref_retry(page))
 704				goto repeat;
 705			/*
 706			 * Otherwise, shmem/tmpfs must be storing a swap entry
 707			 * here as an exceptional entry: so return it without
 708			 * attempting to raise page count.
 709			 */
 710			goto out;
 711		}
 712		if (!page_cache_get_speculative(page))
 
 
 713			goto repeat;
 714
 
 
 
 
 
 
 715		/*
 716		 * Has the page moved?
 717		 * This is part of the lockless pagecache protocol. See
 718		 * include/linux/pagemap.h for details.
 719		 */
 720		if (unlikely(page != *pagep)) {
 721			page_cache_release(page);
 722			goto repeat;
 723		}
 724	}
 725out:
 726	rcu_read_unlock();
 727
 728	return page;
 729}
 730EXPORT_SYMBOL(find_get_page);
 731
 732/**
 733 * find_lock_page - locate, pin and lock a pagecache page
 734 * @mapping: the address_space to search
 735 * @offset: the page index
 
 
 
 
 
 
 
 736 *
 737 * Locates the desired pagecache page, locks it, increments its reference
 738 * count and returns its address.
 739 *
 740 * Returns zero if the page was not present. find_lock_page() may sleep.
 741 */
 742struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
 743{
 744	struct page *page;
 745
 746repeat:
 747	page = find_get_page(mapping, offset);
 748	if (page && !radix_tree_exception(page)) {
 749		lock_page(page);
 750		/* Has the page been truncated? */
 751		if (unlikely(page->mapping != mapping)) {
 752			unlock_page(page);
 753			page_cache_release(page);
 754			goto repeat;
 755		}
 756		VM_BUG_ON(page->index != offset);
 757	}
 758	return page;
 759}
 760EXPORT_SYMBOL(find_lock_page);
 761
 762/**
 763 * find_or_create_page - locate or add a pagecache page
 764 * @mapping: the page's address_space
 765 * @index: the page's index into the mapping
 766 * @gfp_mask: page allocation mode
 
 
 
 
 
 767 *
 768 * Locates a page in the pagecache.  If the page is not present, a new page
 769 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
 770 * LRU list.  The returned page is locked and has its reference count
 771 * incremented.
 
 
 772 *
 773 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
 774 * allocation!
 775 *
 776 * find_or_create_page() returns the desired page's address, or zero on
 777 * memory exhaustion.
 778 */
 779struct page *find_or_create_page(struct address_space *mapping,
 780		pgoff_t index, gfp_t gfp_mask)
 781{
 782	struct page *page;
 783	int err;
 784repeat:
 785	page = find_lock_page(mapping, index);
 786	if (!page) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787		page = __page_cache_alloc(gfp_mask);
 788		if (!page)
 789			return NULL;
 790		/*
 791		 * We want a regular kernel memory (not highmem or DMA etc)
 792		 * allocation for the radix tree nodes, but we need to honour
 793		 * the context-specific requirements the caller has asked for.
 794		 * GFP_RECLAIM_MASK collects those requirements.
 795		 */
 796		err = add_to_page_cache_lru(page, mapping, index,
 797			(gfp_mask & GFP_RECLAIM_MASK));
 
 
 798		if (unlikely(err)) {
 799			page_cache_release(page);
 800			page = NULL;
 801			if (err == -EEXIST)
 802				goto repeat;
 803		}
 804	}
 
 805	return page;
 806}
 807EXPORT_SYMBOL(find_or_create_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808
 809/**
 810 * find_get_pages - gang pagecache lookup
 811 * @mapping:	The address_space to search
 812 * @start:	The starting page index
 813 * @nr_pages:	The maximum number of pages
 814 * @pages:	Where the resulting pages are placed
 815 *
 816 * find_get_pages() will search for and return a group of up to
 817 * @nr_pages pages in the mapping.  The pages are placed at @pages.
 818 * find_get_pages() takes a reference against the returned pages.
 819 *
 820 * The search returns a group of mapping-contiguous pages with ascending
 821 * indexes.  There may be holes in the indices due to not-present pages.
 822 *
 823 * find_get_pages() returns the number of pages which were found.
 824 */
 825unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
 826			    unsigned int nr_pages, struct page **pages)
 827{
 828	unsigned int i;
 829	unsigned int ret;
 830	unsigned int nr_found, nr_skip;
 
 
 
 831
 832	rcu_read_lock();
 833restart:
 834	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
 835				(void ***)pages, NULL, start, nr_pages);
 836	ret = 0;
 837	nr_skip = 0;
 838	for (i = 0; i < nr_found; i++) {
 839		struct page *page;
 840repeat:
 841		page = radix_tree_deref_slot((void **)pages[i]);
 842		if (unlikely(!page))
 843			continue;
 844
 845		if (radix_tree_exception(page)) {
 846			if (radix_tree_deref_retry(page)) {
 847				/*
 848				 * Transient condition which can only trigger
 849				 * when entry at index 0 moves out of or back
 850				 * to root: none yet gotten, safe to restart.
 851				 */
 852				WARN_ON(start | i);
 853				goto restart;
 854			}
 855			/*
 856			 * Otherwise, shmem/tmpfs must be storing a swap entry
 857			 * here as an exceptional entry: so skip over it -
 858			 * we only reach this from invalidate_mapping_pages().
 859			 */
 860			nr_skip++;
 861			continue;
 862		}
 863
 864		if (!page_cache_get_speculative(page))
 
 865			goto repeat;
 866
 
 
 
 
 
 
 867		/* Has the page moved? */
 868		if (unlikely(page != *((void **)pages[i]))) {
 869			page_cache_release(page);
 870			goto repeat;
 871		}
 872
 873		pages[ret] = page;
 874		ret++;
 
 875	}
 876
 877	/*
 878	 * If all entries were removed before we could secure them,
 879	 * try again, because callers stop trying once 0 is returned.
 880	 */
 881	if (unlikely(!ret && nr_found > nr_skip))
 882		goto restart;
 883	rcu_read_unlock();
 884	return ret;
 885}
 886
 887/**
 888 * find_get_pages_contig - gang contiguous pagecache lookup
 889 * @mapping:	The address_space to search
 890 * @index:	The starting page index
 891 * @nr_pages:	The maximum number of pages
 892 * @pages:	Where the resulting pages are placed
 893 *
 894 * find_get_pages_contig() works exactly like find_get_pages(), except
 895 * that the returned number of pages are guaranteed to be contiguous.
 896 *
 897 * find_get_pages_contig() returns the number of pages which were found.
 898 */
 899unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
 900			       unsigned int nr_pages, struct page **pages)
 901{
 902	unsigned int i;
 903	unsigned int ret;
 904	unsigned int nr_found;
 
 
 
 905
 906	rcu_read_lock();
 907restart:
 908	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
 909				(void ***)pages, NULL, index, nr_pages);
 910	ret = 0;
 911	for (i = 0; i < nr_found; i++) {
 912		struct page *page;
 913repeat:
 914		page = radix_tree_deref_slot((void **)pages[i]);
 
 915		if (unlikely(!page))
 916			continue;
 917
 918		if (radix_tree_exception(page)) {
 919			if (radix_tree_deref_retry(page)) {
 920				/*
 921				 * Transient condition which can only trigger
 922				 * when entry at index 0 moves out of or back
 923				 * to root: none yet gotten, safe to restart.
 924				 */
 925				goto restart;
 926			}
 927			/*
 928			 * Otherwise, shmem/tmpfs must be storing a swap entry
 929			 * here as an exceptional entry: so stop looking for
 930			 * contiguous pages.
 931			 */
 932			break;
 933		}
 934
 935		if (!page_cache_get_speculative(page))
 
 936			goto repeat;
 937
 
 
 
 
 
 
 938		/* Has the page moved? */
 939		if (unlikely(page != *((void **)pages[i]))) {
 940			page_cache_release(page);
 941			goto repeat;
 942		}
 943
 944		/*
 945		 * must check mapping and index after taking the ref.
 946		 * otherwise we can get both false positives and false
 947		 * negatives, which is just confusing to the caller.
 948		 */
 949		if (page->mapping == NULL || page->index != index) {
 950			page_cache_release(page);
 951			break;
 952		}
 953
 954		pages[ret] = page;
 955		ret++;
 956		index++;
 957	}
 958	rcu_read_unlock();
 959	return ret;
 960}
 961EXPORT_SYMBOL(find_get_pages_contig);
 962
 963/**
 964 * find_get_pages_tag - find and return pages that match @tag
 965 * @mapping:	the address_space to search
 966 * @index:	the starting page index
 967 * @tag:	the tag index
 968 * @nr_pages:	the maximum number of pages
 969 * @pages:	where the resulting pages are placed
 970 *
 971 * Like find_get_pages, except we only return pages which are tagged with
 972 * @tag.   We update @index to index the next page for the traversal.
 973 */
 974unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
 975			int tag, unsigned int nr_pages, struct page **pages)
 976{
 977	unsigned int i;
 978	unsigned int ret;
 979	unsigned int nr_found;
 
 
 
 980
 981	rcu_read_lock();
 982restart:
 983	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
 984				(void ***)pages, *index, nr_pages, tag);
 985	ret = 0;
 986	for (i = 0; i < nr_found; i++) {
 987		struct page *page;
 988repeat:
 989		page = radix_tree_deref_slot((void **)pages[i]);
 990		if (unlikely(!page))
 991			continue;
 992
 993		if (radix_tree_exception(page)) {
 994			if (radix_tree_deref_retry(page)) {
 995				/*
 996				 * Transient condition which can only trigger
 997				 * when entry at index 0 moves out of or back
 998				 * to root: none yet gotten, safe to restart.
 999				 */
1000				goto restart;
1001			}
1002			/*
1003			 * This function is never used on a shmem/tmpfs
1004			 * mapping, so a swap entry won't be found here.
 
 
 
 
 
 
 
1005			 */
1006			BUG();
1007		}
1008
1009		if (!page_cache_get_speculative(page))
 
 
 
 
 
 
1010			goto repeat;
 
1011
1012		/* Has the page moved? */
1013		if (unlikely(page != *((void **)pages[i]))) {
1014			page_cache_release(page);
1015			goto repeat;
1016		}
1017
1018		pages[ret] = page;
1019		ret++;
 
1020	}
1021
1022	/*
1023	 * If all entries were removed before we could secure them,
1024	 * try again, because callers stop trying once 0 is returned.
1025	 */
1026	if (unlikely(!ret && nr_found))
1027		goto restart;
1028	rcu_read_unlock();
1029
1030	if (ret)
1031		*index = pages[ret - 1]->index + 1;
1032
1033	return ret;
1034}
1035EXPORT_SYMBOL(find_get_pages_tag);
1036
1037/**
1038 * grab_cache_page_nowait - returns locked page at given index in given cache
1039 * @mapping: target address_space
1040 * @index: the page index
1041 *
1042 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1043 * This is intended for speculative data generators, where the data can
1044 * be regenerated if the page couldn't be grabbed.  This routine should
1045 * be safe to call while holding the lock for another page.
1046 *
1047 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1048 * and deadlock against the caller's locked page.
1049 */
1050struct page *
1051grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1052{
1053	struct page *page = find_get_page(mapping, index);
 
 
1054
1055	if (page) {
1056		if (trylock_page(page))
1057			return page;
1058		page_cache_release(page);
1059		return NULL;
1060	}
1061	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1062	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1063		page_cache_release(page);
1064		page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1065	}
1066	return page;
 
1067}
1068EXPORT_SYMBOL(grab_cache_page_nowait);
1069
1070/*
1071 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1072 * a _large_ part of the i/o request. Imagine the worst scenario:
1073 *
1074 *      ---R__________________________________________B__________
1075 *         ^ reading here                             ^ bad block(assume 4k)
1076 *
1077 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1078 * => failing the whole request => read(R) => read(R+1) =>
1079 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1080 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1081 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1082 *
1083 * It is going insane. Fix it by quickly scaling down the readahead size.
1084 */
1085static void shrink_readahead_size_eio(struct file *filp,
1086					struct file_ra_state *ra)
1087{
1088	ra->ra_pages /= 4;
1089}
1090
1091/**
1092 * do_generic_file_read - generic file read routine
1093 * @filp:	the file to read
1094 * @ppos:	current file position
1095 * @desc:	read_descriptor
1096 * @actor:	read method
1097 *
1098 * This is a generic file read routine, and uses the
1099 * mapping->a_ops->readpage() function for the actual low-level stuff.
1100 *
1101 * This is really ugly. But the goto's actually try to clarify some
1102 * of the logic when it comes to error handling etc.
1103 */
1104static void do_generic_file_read(struct file *filp, loff_t *ppos,
1105		read_descriptor_t *desc, read_actor_t actor)
1106{
1107	struct address_space *mapping = filp->f_mapping;
1108	struct inode *inode = mapping->host;
1109	struct file_ra_state *ra = &filp->f_ra;
1110	pgoff_t index;
1111	pgoff_t last_index;
1112	pgoff_t prev_index;
1113	unsigned long offset;      /* offset into pagecache page */
1114	unsigned int prev_offset;
1115	int error;
1116
1117	index = *ppos >> PAGE_CACHE_SHIFT;
1118	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1119	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1120	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1121	offset = *ppos & ~PAGE_CACHE_MASK;
 
 
 
 
1122
1123	for (;;) {
1124		struct page *page;
1125		pgoff_t end_index;
1126		loff_t isize;
1127		unsigned long nr, ret;
1128
1129		cond_resched();
1130find_page:
 
 
 
 
 
1131		page = find_get_page(mapping, index);
1132		if (!page) {
1133			page_cache_sync_readahead(mapping,
1134					ra, filp,
1135					index, last_index - index);
1136			page = find_get_page(mapping, index);
1137			if (unlikely(page == NULL))
1138				goto no_cached_page;
1139		}
1140		if (PageReadahead(page)) {
1141			page_cache_async_readahead(mapping,
1142					ra, filp, page,
1143					index, last_index - index);
1144		}
1145		if (!PageUptodate(page)) {
1146			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
 
 
 
 
 
 
 
 
 
 
 
1147					!mapping->a_ops->is_partially_uptodate)
1148				goto page_not_up_to_date;
 
 
 
1149			if (!trylock_page(page))
1150				goto page_not_up_to_date;
1151			/* Did it get truncated before we got the lock? */
1152			if (!page->mapping)
1153				goto page_not_up_to_date_locked;
1154			if (!mapping->a_ops->is_partially_uptodate(page,
1155								desc, offset))
1156				goto page_not_up_to_date_locked;
1157			unlock_page(page);
1158		}
1159page_ok:
1160		/*
1161		 * i_size must be checked after we know the page is Uptodate.
1162		 *
1163		 * Checking i_size after the check allows us to calculate
1164		 * the correct value for "nr", which means the zero-filled
1165		 * part of the page is not copied back to userspace (unless
1166		 * another truncate extends the file - this is desired though).
1167		 */
1168
1169		isize = i_size_read(inode);
1170		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1171		if (unlikely(!isize || index > end_index)) {
1172			page_cache_release(page);
1173			goto out;
1174		}
1175
1176		/* nr is the maximum number of bytes to copy from this page */
1177		nr = PAGE_CACHE_SIZE;
1178		if (index == end_index) {
1179			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1180			if (nr <= offset) {
1181				page_cache_release(page);
1182				goto out;
1183			}
1184		}
1185		nr = nr - offset;
1186
1187		/* If users can be writing to this page using arbitrary
1188		 * virtual addresses, take care about potential aliasing
1189		 * before reading the page on the kernel side.
1190		 */
1191		if (mapping_writably_mapped(mapping))
1192			flush_dcache_page(page);
1193
1194		/*
1195		 * When a sequential read accesses a page several times,
1196		 * only mark it as accessed the first time.
1197		 */
1198		if (prev_index != index || offset != prev_offset)
1199			mark_page_accessed(page);
1200		prev_index = index;
1201
1202		/*
1203		 * Ok, we have the page, and it's up-to-date, so
1204		 * now we can copy it to user space...
1205		 *
1206		 * The actor routine returns how many bytes were actually used..
1207		 * NOTE! This may not be the same as how much of a user buffer
1208		 * we filled up (we may be padding etc), so we can only update
1209		 * "pos" here (the actor routine has to update the user buffer
1210		 * pointers and the remaining count).
1211		 */
1212		ret = actor(desc, page, offset, nr);
 
1213		offset += ret;
1214		index += offset >> PAGE_CACHE_SHIFT;
1215		offset &= ~PAGE_CACHE_MASK;
1216		prev_offset = offset;
1217
1218		page_cache_release(page);
1219		if (ret == nr && desc->count)
1220			continue;
1221		goto out;
 
 
 
 
 
1222
1223page_not_up_to_date:
1224		/* Get exclusive access to the page ... */
1225		error = lock_page_killable(page);
1226		if (unlikely(error))
1227			goto readpage_error;
1228
1229page_not_up_to_date_locked:
1230		/* Did it get truncated before we got the lock? */
1231		if (!page->mapping) {
1232			unlock_page(page);
1233			page_cache_release(page);
1234			continue;
1235		}
1236
1237		/* Did somebody else fill it already? */
1238		if (PageUptodate(page)) {
1239			unlock_page(page);
1240			goto page_ok;
1241		}
1242
1243readpage:
1244		/*
1245		 * A previous I/O error may have been due to temporary
1246		 * failures, eg. multipath errors.
1247		 * PG_error will be set again if readpage fails.
1248		 */
1249		ClearPageError(page);
1250		/* Start the actual read. The read will unlock the page. */
1251		error = mapping->a_ops->readpage(filp, page);
1252
1253		if (unlikely(error)) {
1254			if (error == AOP_TRUNCATED_PAGE) {
1255				page_cache_release(page);
 
1256				goto find_page;
1257			}
1258			goto readpage_error;
1259		}
1260
1261		if (!PageUptodate(page)) {
1262			error = lock_page_killable(page);
1263			if (unlikely(error))
1264				goto readpage_error;
1265			if (!PageUptodate(page)) {
1266				if (page->mapping == NULL) {
1267					/*
1268					 * invalidate_mapping_pages got it
1269					 */
1270					unlock_page(page);
1271					page_cache_release(page);
1272					goto find_page;
1273				}
1274				unlock_page(page);
1275				shrink_readahead_size_eio(filp, ra);
1276				error = -EIO;
1277				goto readpage_error;
1278			}
1279			unlock_page(page);
1280		}
1281
1282		goto page_ok;
1283
1284readpage_error:
1285		/* UHHUH! A synchronous read error occurred. Report it */
1286		desc->error = error;
1287		page_cache_release(page);
1288		goto out;
1289
1290no_cached_page:
1291		/*
1292		 * Ok, it wasn't cached, so we need to create a new
1293		 * page..
1294		 */
1295		page = page_cache_alloc_cold(mapping);
1296		if (!page) {
1297			desc->error = -ENOMEM;
1298			goto out;
1299		}
1300		error = add_to_page_cache_lru(page, mapping,
1301						index, GFP_KERNEL);
1302		if (error) {
1303			page_cache_release(page);
1304			if (error == -EEXIST)
 
1305				goto find_page;
1306			desc->error = error;
1307			goto out;
1308		}
1309		goto readpage;
1310	}
1311
1312out:
1313	ra->prev_pos = prev_index;
1314	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1315	ra->prev_pos |= prev_offset;
1316
1317	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1318	file_accessed(filp);
 
1319}
1320
1321int file_read_actor(read_descriptor_t *desc, struct page *page,
1322			unsigned long offset, unsigned long size)
1323{
1324	char *kaddr;
1325	unsigned long left, count = desc->count;
1326
1327	if (size > count)
1328		size = count;
1329
1330	/*
1331	 * Faults on the destination of a read are common, so do it before
1332	 * taking the kmap.
1333	 */
1334	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1335		kaddr = kmap_atomic(page, KM_USER0);
1336		left = __copy_to_user_inatomic(desc->arg.buf,
1337						kaddr + offset, size);
1338		kunmap_atomic(kaddr, KM_USER0);
1339		if (left == 0)
1340			goto success;
1341	}
1342
1343	/* Do it the slow way */
1344	kaddr = kmap(page);
1345	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1346	kunmap(page);
1347
1348	if (left) {
1349		size -= left;
1350		desc->error = -EFAULT;
1351	}
1352success:
1353	desc->count = count - size;
1354	desc->written += size;
1355	desc->arg.buf += size;
1356	return size;
1357}
1358
1359/*
1360 * Performs necessary checks before doing a write
1361 * @iov:	io vector request
1362 * @nr_segs:	number of segments in the iovec
1363 * @count:	number of bytes to write
1364 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1365 *
1366 * Adjust number of segments and amount of bytes to write (nr_segs should be
1367 * properly initialized first). Returns appropriate error code that caller
1368 * should return or zero in case that write should be allowed.
1369 */
1370int generic_segment_checks(const struct iovec *iov,
1371			unsigned long *nr_segs, size_t *count, int access_flags)
1372{
1373	unsigned long   seg;
1374	size_t cnt = 0;
1375	for (seg = 0; seg < *nr_segs; seg++) {
1376		const struct iovec *iv = &iov[seg];
1377
1378		/*
1379		 * If any segment has a negative length, or the cumulative
1380		 * length ever wraps negative then return -EINVAL.
1381		 */
1382		cnt += iv->iov_len;
1383		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1384			return -EINVAL;
1385		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1386			continue;
1387		if (seg == 0)
1388			return -EFAULT;
1389		*nr_segs = seg;
1390		cnt -= iv->iov_len;	/* This segment is no good */
1391		break;
1392	}
1393	*count = cnt;
1394	return 0;
1395}
1396EXPORT_SYMBOL(generic_segment_checks);
1397
1398/**
1399 * generic_file_aio_read - generic filesystem read routine
1400 * @iocb:	kernel I/O control block
1401 * @iov:	io vector request
1402 * @nr_segs:	number of segments in the iovec
1403 * @pos:	current file position
1404 *
1405 * This is the "read()" routine for all filesystems
1406 * that can use the page cache directly.
1407 */
1408ssize_t
1409generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1410		unsigned long nr_segs, loff_t pos)
1411{
1412	struct file *filp = iocb->ki_filp;
1413	ssize_t retval;
1414	unsigned long seg = 0;
1415	size_t count;
1416	loff_t *ppos = &iocb->ki_pos;
1417	struct blk_plug plug;
1418
1419	count = 0;
1420	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1421	if (retval)
1422		return retval;
1423
1424	blk_start_plug(&plug);
 
1425
1426	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1427	if (filp->f_flags & O_DIRECT) {
 
 
1428		loff_t size;
1429		struct address_space *mapping;
1430		struct inode *inode;
1431
1432		mapping = filp->f_mapping;
1433		inode = mapping->host;
1434		if (!count)
1435			goto out; /* skip atime */
1436		size = i_size_read(inode);
1437		if (pos < size) {
1438			retval = filemap_write_and_wait_range(mapping, pos,
1439					pos + iov_length(iov, nr_segs) - 1);
1440			if (!retval) {
1441				retval = mapping->a_ops->direct_IO(READ, iocb,
1442							iov, pos, nr_segs);
1443			}
1444			if (retval > 0) {
1445				*ppos = pos + retval;
1446				count -= retval;
1447			}
1448
1449			/*
1450			 * Btrfs can have a short DIO read if we encounter
1451			 * compressed extents, so if there was an error, or if
1452			 * we've already read everything we wanted to, or if
1453			 * there was a short read because we hit EOF, go ahead
1454			 * and return.  Otherwise fallthrough to buffered io for
1455			 * the rest of the read.
1456			 */
1457			if (retval < 0 || !count || *ppos >= size) {
1458				file_accessed(filp);
1459				goto out;
1460			}
1461		}
1462	}
1463
1464	count = retval;
1465	for (seg = 0; seg < nr_segs; seg++) {
1466		read_descriptor_t desc;
1467		loff_t offset = 0;
 
1468
1469		/*
1470		 * If we did a short DIO read we need to skip the section of the
1471		 * iov that we've already read data into.
 
 
 
 
 
1472		 */
1473		if (count) {
1474			if (count > iov[seg].iov_len) {
1475				count -= iov[seg].iov_len;
1476				continue;
1477			}
1478			offset = count;
1479			count = 0;
1480		}
1481
1482		desc.written = 0;
1483		desc.arg.buf = iov[seg].iov_base + offset;
1484		desc.count = iov[seg].iov_len - offset;
1485		if (desc.count == 0)
1486			continue;
1487		desc.error = 0;
1488		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1489		retval += desc.written;
1490		if (desc.error) {
1491			retval = retval ?: desc.error;
1492			break;
1493		}
1494		if (desc.count > 0)
1495			break;
1496	}
 
 
1497out:
1498	blk_finish_plug(&plug);
1499	return retval;
1500}
1501EXPORT_SYMBOL(generic_file_aio_read);
1502
1503static ssize_t
1504do_readahead(struct address_space *mapping, struct file *filp,
1505	     pgoff_t index, unsigned long nr)
1506{
1507	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1508		return -EINVAL;
1509
1510	force_page_cache_readahead(mapping, filp, index, nr);
1511	return 0;
1512}
1513
1514SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1515{
1516	ssize_t ret;
1517	struct file *file;
1518
1519	ret = -EBADF;
1520	file = fget(fd);
1521	if (file) {
1522		if (file->f_mode & FMODE_READ) {
1523			struct address_space *mapping = file->f_mapping;
1524			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1525			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1526			unsigned long len = end - start + 1;
1527			ret = do_readahead(mapping, file, start, len);
1528		}
1529		fput(file);
1530	}
1531	return ret;
1532}
1533#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1534asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1535{
1536	return SYSC_readahead((int) fd, offset, (size_t) count);
1537}
1538SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1539#endif
1540
1541#ifdef CONFIG_MMU
1542/**
1543 * page_cache_read - adds requested page to the page cache if not already there
1544 * @file:	file to read
1545 * @offset:	page index
 
1546 *
1547 * This adds the requested page to the page cache if it isn't already there,
1548 * and schedules an I/O to read in its contents from disk.
1549 */
1550static int page_cache_read(struct file *file, pgoff_t offset)
1551{
1552	struct address_space *mapping = file->f_mapping;
1553	struct page *page; 
1554	int ret;
1555
1556	do {
1557		page = page_cache_alloc_cold(mapping);
1558		if (!page)
1559			return -ENOMEM;
1560
1561		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1562		if (ret == 0)
1563			ret = mapping->a_ops->readpage(file, page);
1564		else if (ret == -EEXIST)
1565			ret = 0; /* losing race to add is OK */
1566
1567		page_cache_release(page);
1568
1569	} while (ret == AOP_TRUNCATED_PAGE);
1570		
1571	return ret;
1572}
1573
1574#define MMAP_LOTSAMISS  (100)
1575
1576/*
1577 * Synchronous readahead happens when we don't even find
1578 * a page in the page cache at all.
1579 */
1580static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1581				   struct file_ra_state *ra,
1582				   struct file *file,
1583				   pgoff_t offset)
1584{
1585	unsigned long ra_pages;
1586	struct address_space *mapping = file->f_mapping;
1587
1588	/* If we don't want any read-ahead, don't bother */
1589	if (VM_RandomReadHint(vma))
1590		return;
1591	if (!ra->ra_pages)
1592		return;
1593
1594	if (VM_SequentialReadHint(vma)) {
1595		page_cache_sync_readahead(mapping, ra, file, offset,
1596					  ra->ra_pages);
1597		return;
1598	}
1599
1600	/* Avoid banging the cache line if not needed */
1601	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1602		ra->mmap_miss++;
1603
1604	/*
1605	 * Do we miss much more than hit in this file? If so,
1606	 * stop bothering with read-ahead. It will only hurt.
1607	 */
1608	if (ra->mmap_miss > MMAP_LOTSAMISS)
1609		return;
1610
1611	/*
1612	 * mmap read-around
1613	 */
1614	ra_pages = max_sane_readahead(ra->ra_pages);
1615	ra->start = max_t(long, 0, offset - ra_pages / 2);
1616	ra->size = ra_pages;
1617	ra->async_size = ra_pages / 4;
1618	ra_submit(ra, mapping, file);
1619}
1620
1621/*
1622 * Asynchronous readahead happens when we find the page and PG_readahead,
1623 * so we want to possibly extend the readahead further..
1624 */
1625static void do_async_mmap_readahead(struct vm_area_struct *vma,
1626				    struct file_ra_state *ra,
1627				    struct file *file,
1628				    struct page *page,
1629				    pgoff_t offset)
1630{
1631	struct address_space *mapping = file->f_mapping;
1632
1633	/* If we don't want any read-ahead, don't bother */
1634	if (VM_RandomReadHint(vma))
1635		return;
1636	if (ra->mmap_miss > 0)
1637		ra->mmap_miss--;
1638	if (PageReadahead(page))
1639		page_cache_async_readahead(mapping, ra, file,
1640					   page, offset, ra->ra_pages);
1641}
1642
1643/**
1644 * filemap_fault - read in file data for page fault handling
1645 * @vma:	vma in which the fault was taken
1646 * @vmf:	struct vm_fault containing details of the fault
1647 *
1648 * filemap_fault() is invoked via the vma operations vector for a
1649 * mapped memory region to read in file data during a page fault.
1650 *
1651 * The goto's are kind of ugly, but this streamlines the normal case of having
1652 * it in the page cache, and handles the special cases reasonably without
1653 * having a lot of duplicated code.
 
 
 
 
 
 
 
 
 
 
 
 
1654 */
1655int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1656{
1657	int error;
1658	struct file *file = vma->vm_file;
1659	struct address_space *mapping = file->f_mapping;
1660	struct file_ra_state *ra = &file->f_ra;
1661	struct inode *inode = mapping->host;
1662	pgoff_t offset = vmf->pgoff;
1663	struct page *page;
1664	pgoff_t size;
1665	int ret = 0;
1666
1667	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1668	if (offset >= size)
1669		return VM_FAULT_SIGBUS;
1670
1671	/*
1672	 * Do we have something in the page cache already?
1673	 */
1674	page = find_get_page(mapping, offset);
1675	if (likely(page)) {
1676		/*
1677		 * We found the page, so try async readahead before
1678		 * waiting for the lock.
1679		 */
1680		do_async_mmap_readahead(vma, ra, file, page, offset);
1681	} else {
1682		/* No page in the page cache at all */
1683		do_sync_mmap_readahead(vma, ra, file, offset);
1684		count_vm_event(PGMAJFAULT);
1685		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1686		ret = VM_FAULT_MAJOR;
1687retry_find:
1688		page = find_get_page(mapping, offset);
1689		if (!page)
1690			goto no_cached_page;
1691	}
1692
1693	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1694		page_cache_release(page);
1695		return ret | VM_FAULT_RETRY;
1696	}
1697
1698	/* Did it get truncated? */
1699	if (unlikely(page->mapping != mapping)) {
1700		unlock_page(page);
1701		put_page(page);
1702		goto retry_find;
1703	}
1704	VM_BUG_ON(page->index != offset);
1705
1706	/*
1707	 * We have a locked page in the page cache, now we need to check
1708	 * that it's up-to-date. If not, it is going to be due to an error.
1709	 */
1710	if (unlikely(!PageUptodate(page)))
1711		goto page_not_uptodate;
1712
1713	/*
1714	 * Found the page and have a reference on it.
1715	 * We must recheck i_size under page lock.
1716	 */
1717	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1718	if (unlikely(offset >= size)) {
1719		unlock_page(page);
1720		page_cache_release(page);
1721		return VM_FAULT_SIGBUS;
1722	}
1723
1724	vmf->page = page;
1725	return ret | VM_FAULT_LOCKED;
1726
1727no_cached_page:
1728	/*
1729	 * We're only likely to ever get here if MADV_RANDOM is in
1730	 * effect.
1731	 */
1732	error = page_cache_read(file, offset);
1733
1734	/*
1735	 * The page we want has now been added to the page cache.
1736	 * In the unlikely event that someone removed it in the
1737	 * meantime, we'll just come back here and read it again.
1738	 */
1739	if (error >= 0)
1740		goto retry_find;
1741
1742	/*
1743	 * An error return from page_cache_read can result if the
1744	 * system is low on memory, or a problem occurs while trying
1745	 * to schedule I/O.
1746	 */
1747	if (error == -ENOMEM)
1748		return VM_FAULT_OOM;
1749	return VM_FAULT_SIGBUS;
1750
1751page_not_uptodate:
1752	/*
1753	 * Umm, take care of errors if the page isn't up-to-date.
1754	 * Try to re-read it _once_. We do this synchronously,
1755	 * because there really aren't any performance issues here
1756	 * and we need to check for errors.
1757	 */
1758	ClearPageError(page);
1759	error = mapping->a_ops->readpage(file, page);
1760	if (!error) {
1761		wait_on_page_locked(page);
1762		if (!PageUptodate(page))
1763			error = -EIO;
1764	}
1765	page_cache_release(page);
1766
1767	if (!error || error == AOP_TRUNCATED_PAGE)
1768		goto retry_find;
1769
1770	/* Things didn't work out. Return zero to tell the mm layer so. */
1771	shrink_readahead_size_eio(file, ra);
1772	return VM_FAULT_SIGBUS;
1773}
1774EXPORT_SYMBOL(filemap_fault);
1775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1776const struct vm_operations_struct generic_file_vm_ops = {
1777	.fault		= filemap_fault,
 
 
1778};
1779
1780/* This is used for a general mmap of a disk file */
1781
1782int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1783{
1784	struct address_space *mapping = file->f_mapping;
1785
1786	if (!mapping->a_ops->readpage)
1787		return -ENOEXEC;
1788	file_accessed(file);
1789	vma->vm_ops = &generic_file_vm_ops;
1790	vma->vm_flags |= VM_CAN_NONLINEAR;
1791	return 0;
1792}
1793
1794/*
1795 * This is for filesystems which do not implement ->writepage.
1796 */
1797int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1798{
1799	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1800		return -EINVAL;
1801	return generic_file_mmap(file, vma);
1802}
1803#else
1804int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1805{
1806	return -ENOSYS;
1807}
1808int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1809{
1810	return -ENOSYS;
1811}
1812#endif /* CONFIG_MMU */
1813
1814EXPORT_SYMBOL(generic_file_mmap);
1815EXPORT_SYMBOL(generic_file_readonly_mmap);
1816
1817static struct page *__read_cache_page(struct address_space *mapping,
 
 
 
 
 
 
 
 
 
 
 
 
1818				pgoff_t index,
1819				int (*filler)(void *, struct page *),
1820				void *data,
1821				gfp_t gfp)
1822{
1823	struct page *page;
1824	int err;
1825repeat:
1826	page = find_get_page(mapping, index);
1827	if (!page) {
1828		page = __page_cache_alloc(gfp | __GFP_COLD);
1829		if (!page)
1830			return ERR_PTR(-ENOMEM);
1831		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1832		if (unlikely(err)) {
1833			page_cache_release(page);
1834			if (err == -EEXIST)
1835				goto repeat;
1836			/* Presumably ENOMEM for radix tree node */
1837			return ERR_PTR(err);
1838		}
 
 
1839		err = filler(data, page);
1840		if (err < 0) {
1841			page_cache_release(page);
1842			page = ERR_PTR(err);
1843		}
1844	}
1845	return page;
1846}
1847
1848static struct page *do_read_cache_page(struct address_space *mapping,
1849				pgoff_t index,
1850				int (*filler)(void *, struct page *),
1851				void *data,
1852				gfp_t gfp)
1853
1854{
1855	struct page *page;
1856	int err;
 
 
 
 
1857
1858retry:
1859	page = __read_cache_page(mapping, index, filler, data, gfp);
1860	if (IS_ERR(page))
1861		return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1862	if (PageUptodate(page))
1863		goto out;
1864
 
1865	lock_page(page);
 
 
1866	if (!page->mapping) {
1867		unlock_page(page);
1868		page_cache_release(page);
1869		goto retry;
1870	}
 
 
1871	if (PageUptodate(page)) {
1872		unlock_page(page);
1873		goto out;
1874	}
1875	err = filler(data, page);
1876	if (err < 0) {
1877		page_cache_release(page);
1878		return ERR_PTR(err);
1879	}
1880out:
1881	mark_page_accessed(page);
1882	return page;
1883}
1884
1885/**
1886 * read_cache_page_async - read into page cache, fill it if needed
1887 * @mapping:	the page's address_space
1888 * @index:	the page index
1889 * @filler:	function to perform the read
1890 * @data:	first arg to filler(data, page) function, often left as NULL
1891 *
1892 * Same as read_cache_page, but don't wait for page to become unlocked
1893 * after submitting it to the filler.
1894 *
1895 * Read into the page cache. If a page already exists, and PageUptodate() is
1896 * not set, try to fill the page but don't wait for it to become unlocked.
1897 *
1898 * If the page does not get brought uptodate, return -EIO.
1899 */
1900struct page *read_cache_page_async(struct address_space *mapping,
1901				pgoff_t index,
1902				int (*filler)(void *, struct page *),
1903				void *data)
1904{
1905	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1906}
1907EXPORT_SYMBOL(read_cache_page_async);
1908
1909static struct page *wait_on_page_read(struct page *page)
1910{
1911	if (!IS_ERR(page)) {
1912		wait_on_page_locked(page);
1913		if (!PageUptodate(page)) {
1914			page_cache_release(page);
1915			page = ERR_PTR(-EIO);
1916		}
1917	}
1918	return page;
1919}
1920
1921/**
1922 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1923 * @mapping:	the page's address_space
1924 * @index:	the page index
1925 * @gfp:	the page allocator flags to use if allocating
1926 *
1927 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1928 * any new page allocations done using the specified allocation flags. Note
1929 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1930 * expect to do this atomically or anything like that - but you can pass in
1931 * other page requirements.
1932 *
1933 * If the page does not get brought uptodate, return -EIO.
1934 */
1935struct page *read_cache_page_gfp(struct address_space *mapping,
1936				pgoff_t index,
1937				gfp_t gfp)
1938{
1939	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1940
1941	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1942}
1943EXPORT_SYMBOL(read_cache_page_gfp);
1944
1945/**
1946 * read_cache_page - read into page cache, fill it if needed
1947 * @mapping:	the page's address_space
1948 * @index:	the page index
1949 * @filler:	function to perform the read
1950 * @data:	first arg to filler(data, page) function, often left as NULL
1951 *
1952 * Read into the page cache. If a page already exists, and PageUptodate() is
1953 * not set, try to fill the page then wait for it to become unlocked.
1954 *
1955 * If the page does not get brought uptodate, return -EIO.
1956 */
1957struct page *read_cache_page(struct address_space *mapping,
1958				pgoff_t index,
1959				int (*filler)(void *, struct page *),
1960				void *data)
1961{
1962	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1963}
1964EXPORT_SYMBOL(read_cache_page);
1965
1966/*
1967 * The logic we want is
1968 *
1969 *	if suid or (sgid and xgrp)
1970 *		remove privs
1971 */
1972int should_remove_suid(struct dentry *dentry)
1973{
1974	mode_t mode = dentry->d_inode->i_mode;
1975	int kill = 0;
1976
1977	/* suid always must be killed */
1978	if (unlikely(mode & S_ISUID))
1979		kill = ATTR_KILL_SUID;
1980
1981	/*
1982	 * sgid without any exec bits is just a mandatory locking mark; leave
1983	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1984	 */
1985	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1986		kill |= ATTR_KILL_SGID;
1987
1988	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1989		return kill;
1990
1991	return 0;
1992}
1993EXPORT_SYMBOL(should_remove_suid);
1994
1995static int __remove_suid(struct dentry *dentry, int kill)
1996{
1997	struct iattr newattrs;
1998
1999	newattrs.ia_valid = ATTR_FORCE | kill;
2000	return notify_change(dentry, &newattrs);
2001}
2002
2003int file_remove_suid(struct file *file)
2004{
2005	struct dentry *dentry = file->f_path.dentry;
2006	struct inode *inode = dentry->d_inode;
2007	int killsuid;
2008	int killpriv;
2009	int error = 0;
2010
2011	/* Fast path for nothing security related */
2012	if (IS_NOSEC(inode))
2013		return 0;
2014
2015	killsuid = should_remove_suid(dentry);
2016	killpriv = security_inode_need_killpriv(dentry);
2017
2018	if (killpriv < 0)
2019		return killpriv;
2020	if (killpriv)
2021		error = security_inode_killpriv(dentry);
2022	if (!error && killsuid)
2023		error = __remove_suid(dentry, killsuid);
2024	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2025		inode->i_flags |= S_NOSEC;
2026
2027	return error;
2028}
2029EXPORT_SYMBOL(file_remove_suid);
2030
2031static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2032			const struct iovec *iov, size_t base, size_t bytes)
2033{
2034	size_t copied = 0, left = 0;
2035
2036	while (bytes) {
2037		char __user *buf = iov->iov_base + base;
2038		int copy = min(bytes, iov->iov_len - base);
2039
2040		base = 0;
2041		left = __copy_from_user_inatomic(vaddr, buf, copy);
2042		copied += copy;
2043		bytes -= copy;
2044		vaddr += copy;
2045		iov++;
2046
2047		if (unlikely(left))
2048			break;
2049	}
2050	return copied - left;
2051}
2052
2053/*
2054 * Copy as much as we can into the page and return the number of bytes which
2055 * were successfully copied.  If a fault is encountered then return the number of
2056 * bytes which were copied.
2057 */
2058size_t iov_iter_copy_from_user_atomic(struct page *page,
2059		struct iov_iter *i, unsigned long offset, size_t bytes)
2060{
2061	char *kaddr;
2062	size_t copied;
2063
2064	BUG_ON(!in_atomic());
2065	kaddr = kmap_atomic(page, KM_USER0);
2066	if (likely(i->nr_segs == 1)) {
2067		int left;
2068		char __user *buf = i->iov->iov_base + i->iov_offset;
2069		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2070		copied = bytes - left;
2071	} else {
2072		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2073						i->iov, i->iov_offset, bytes);
2074	}
2075	kunmap_atomic(kaddr, KM_USER0);
2076
2077	return copied;
2078}
2079EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2080
2081/*
2082 * This has the same sideeffects and return value as
2083 * iov_iter_copy_from_user_atomic().
2084 * The difference is that it attempts to resolve faults.
2085 * Page must not be locked.
2086 */
2087size_t iov_iter_copy_from_user(struct page *page,
2088		struct iov_iter *i, unsigned long offset, size_t bytes)
2089{
2090	char *kaddr;
2091	size_t copied;
2092
2093	kaddr = kmap(page);
2094	if (likely(i->nr_segs == 1)) {
2095		int left;
2096		char __user *buf = i->iov->iov_base + i->iov_offset;
2097		left = __copy_from_user(kaddr + offset, buf, bytes);
2098		copied = bytes - left;
2099	} else {
2100		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2101						i->iov, i->iov_offset, bytes);
2102	}
2103	kunmap(page);
2104	return copied;
2105}
2106EXPORT_SYMBOL(iov_iter_copy_from_user);
2107
2108void iov_iter_advance(struct iov_iter *i, size_t bytes)
2109{
2110	BUG_ON(i->count < bytes);
2111
2112	if (likely(i->nr_segs == 1)) {
2113		i->iov_offset += bytes;
2114		i->count -= bytes;
2115	} else {
2116		const struct iovec *iov = i->iov;
2117		size_t base = i->iov_offset;
2118
2119		/*
2120		 * The !iov->iov_len check ensures we skip over unlikely
2121		 * zero-length segments (without overruning the iovec).
2122		 */
2123		while (bytes || unlikely(i->count && !iov->iov_len)) {
2124			int copy;
2125
2126			copy = min(bytes, iov->iov_len - base);
2127			BUG_ON(!i->count || i->count < copy);
2128			i->count -= copy;
2129			bytes -= copy;
2130			base += copy;
2131			if (iov->iov_len == base) {
2132				iov++;
2133				base = 0;
2134			}
2135		}
2136		i->iov = iov;
2137		i->iov_offset = base;
2138	}
2139}
2140EXPORT_SYMBOL(iov_iter_advance);
2141
2142/*
2143 * Fault in the first iovec of the given iov_iter, to a maximum length
2144 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2145 * accessed (ie. because it is an invalid address).
2146 *
2147 * writev-intensive code may want this to prefault several iovecs -- that
2148 * would be possible (callers must not rely on the fact that _only_ the
2149 * first iovec will be faulted with the current implementation).
2150 */
2151int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2152{
2153	char __user *buf = i->iov->iov_base + i->iov_offset;
2154	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2155	return fault_in_pages_readable(buf, bytes);
2156}
2157EXPORT_SYMBOL(iov_iter_fault_in_readable);
2158
2159/*
2160 * Return the count of just the current iov_iter segment.
2161 */
2162size_t iov_iter_single_seg_count(struct iov_iter *i)
2163{
2164	const struct iovec *iov = i->iov;
2165	if (i->nr_segs == 1)
2166		return i->count;
2167	else
2168		return min(i->count, iov->iov_len - i->iov_offset);
2169}
2170EXPORT_SYMBOL(iov_iter_single_seg_count);
2171
2172/*
2173 * Performs necessary checks before doing a write
2174 *
2175 * Can adjust writing position or amount of bytes to write.
2176 * Returns appropriate error code that caller should return or
2177 * zero in case that write should be allowed.
2178 */
2179inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2180{
 
2181	struct inode *inode = file->f_mapping->host;
2182	unsigned long limit = rlimit(RLIMIT_FSIZE);
 
2183
2184        if (unlikely(*pos < 0))
2185                return -EINVAL;
2186
2187	if (!isblk) {
2188		/* FIXME: this is for backwards compatibility with 2.4 */
2189		if (file->f_flags & O_APPEND)
2190                        *pos = i_size_read(inode);
2191
2192		if (limit != RLIM_INFINITY) {
2193			if (*pos >= limit) {
2194				send_sig(SIGXFSZ, current, 0);
2195				return -EFBIG;
2196			}
2197			if (*count > limit - (typeof(limit))*pos) {
2198				*count = limit - (typeof(limit))*pos;
2199			}
2200		}
 
2201	}
2202
2203	/*
2204	 * LFS rule
2205	 */
2206	if (unlikely(*pos + *count > MAX_NON_LFS &&
2207				!(file->f_flags & O_LARGEFILE))) {
2208		if (*pos >= MAX_NON_LFS) {
2209			return -EFBIG;
2210		}
2211		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2212			*count = MAX_NON_LFS - (unsigned long)*pos;
2213		}
2214	}
2215
2216	/*
2217	 * Are we about to exceed the fs block limit ?
2218	 *
2219	 * If we have written data it becomes a short write.  If we have
2220	 * exceeded without writing data we send a signal and return EFBIG.
2221	 * Linus frestrict idea will clean these up nicely..
2222	 */
2223	if (likely(!isblk)) {
2224		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2225			if (*count || *pos > inode->i_sb->s_maxbytes) {
2226				return -EFBIG;
2227			}
2228			/* zero-length writes at ->s_maxbytes are OK */
2229		}
2230
2231		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2232			*count = inode->i_sb->s_maxbytes - *pos;
2233	} else {
2234#ifdef CONFIG_BLOCK
2235		loff_t isize;
2236		if (bdev_read_only(I_BDEV(inode)))
2237			return -EPERM;
2238		isize = i_size_read(inode);
2239		if (*pos >= isize) {
2240			if (*count || *pos > isize)
2241				return -ENOSPC;
2242		}
2243
2244		if (*pos + *count > isize)
2245			*count = isize - *pos;
2246#else
2247		return -EPERM;
2248#endif
2249	}
2250	return 0;
2251}
2252EXPORT_SYMBOL(generic_write_checks);
2253
2254int pagecache_write_begin(struct file *file, struct address_space *mapping,
2255				loff_t pos, unsigned len, unsigned flags,
2256				struct page **pagep, void **fsdata)
2257{
2258	const struct address_space_operations *aops = mapping->a_ops;
2259
2260	return aops->write_begin(file, mapping, pos, len, flags,
2261							pagep, fsdata);
2262}
2263EXPORT_SYMBOL(pagecache_write_begin);
2264
2265int pagecache_write_end(struct file *file, struct address_space *mapping,
2266				loff_t pos, unsigned len, unsigned copied,
2267				struct page *page, void *fsdata)
2268{
2269	const struct address_space_operations *aops = mapping->a_ops;
2270
2271	mark_page_accessed(page);
2272	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2273}
2274EXPORT_SYMBOL(pagecache_write_end);
2275
2276ssize_t
2277generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2278		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2279		size_t count, size_t ocount)
2280{
2281	struct file	*file = iocb->ki_filp;
2282	struct address_space *mapping = file->f_mapping;
2283	struct inode	*inode = mapping->host;
 
2284	ssize_t		written;
2285	size_t		write_len;
2286	pgoff_t		end;
 
2287
2288	if (count != ocount)
2289		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2290
2291	write_len = iov_length(iov, *nr_segs);
2292	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2293
2294	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2295	if (written)
2296		goto out;
2297
2298	/*
2299	 * After a write we want buffered reads to be sure to go to disk to get
2300	 * the new data.  We invalidate clean cached page from the region we're
2301	 * about to write.  We do this *before* the write so that we can return
2302	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2303	 */
2304	if (mapping->nrpages) {
2305		written = invalidate_inode_pages2_range(mapping,
2306					pos >> PAGE_CACHE_SHIFT, end);
2307		/*
2308		 * If a page can not be invalidated, return 0 to fall back
2309		 * to buffered write.
2310		 */
2311		if (written) {
2312			if (written == -EBUSY)
2313				return 0;
2314			goto out;
2315		}
2316	}
2317
2318	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
 
2319
2320	/*
2321	 * Finally, try again to invalidate clean pages which might have been
2322	 * cached by non-direct readahead, or faulted in by get_user_pages()
2323	 * if the source of the write was an mmap'ed region of the file
2324	 * we're writing.  Either one is a pretty crazy thing to do,
2325	 * so we don't support it 100%.  If this invalidation
2326	 * fails, tough, the write still worked...
2327	 */
2328	if (mapping->nrpages) {
2329		invalidate_inode_pages2_range(mapping,
2330					      pos >> PAGE_CACHE_SHIFT, end);
2331	}
2332
2333	if (written > 0) {
2334		pos += written;
 
2335		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2336			i_size_write(inode, pos);
2337			mark_inode_dirty(inode);
2338		}
2339		*ppos = pos;
2340	}
2341out:
2342	return written;
2343}
2344EXPORT_SYMBOL(generic_file_direct_write);
2345
2346/*
2347 * Find or create a page at the given pagecache position. Return the locked
2348 * page. This function is specifically for buffered writes.
2349 */
2350struct page *grab_cache_page_write_begin(struct address_space *mapping,
2351					pgoff_t index, unsigned flags)
2352{
2353	int status;
2354	struct page *page;
2355	gfp_t gfp_notmask = 0;
 
2356	if (flags & AOP_FLAG_NOFS)
2357		gfp_notmask = __GFP_FS;
2358repeat:
2359	page = find_lock_page(mapping, index);
 
2360	if (page)
2361		goto found;
2362
2363	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2364	if (!page)
2365		return NULL;
2366	status = add_to_page_cache_lru(page, mapping, index,
2367						GFP_KERNEL & ~gfp_notmask);
2368	if (unlikely(status)) {
2369		page_cache_release(page);
2370		if (status == -EEXIST)
2371			goto repeat;
2372		return NULL;
2373	}
2374found:
2375	wait_on_page_writeback(page);
2376	return page;
2377}
2378EXPORT_SYMBOL(grab_cache_page_write_begin);
2379
2380static ssize_t generic_perform_write(struct file *file,
2381				struct iov_iter *i, loff_t pos)
2382{
2383	struct address_space *mapping = file->f_mapping;
2384	const struct address_space_operations *a_ops = mapping->a_ops;
2385	long status = 0;
2386	ssize_t written = 0;
2387	unsigned int flags = 0;
2388
2389	/*
2390	 * Copies from kernel address space cannot fail (NFSD is a big user).
2391	 */
2392	if (segment_eq(get_fs(), KERNEL_DS))
2393		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2394
2395	do {
2396		struct page *page;
2397		unsigned long offset;	/* Offset into pagecache page */
2398		unsigned long bytes;	/* Bytes to write to page */
2399		size_t copied;		/* Bytes copied from user */
2400		void *fsdata;
2401
2402		offset = (pos & (PAGE_CACHE_SIZE - 1));
2403		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2404						iov_iter_count(i));
2405
2406again:
2407
2408		/*
2409		 * Bring in the user page that we will copy from _first_.
2410		 * Otherwise there's a nasty deadlock on copying from the
2411		 * same page as we're writing to, without it being marked
2412		 * up-to-date.
2413		 *
2414		 * Not only is this an optimisation, but it is also required
2415		 * to check that the address is actually valid, when atomic
2416		 * usercopies are used, below.
2417		 */
2418		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2419			status = -EFAULT;
2420			break;
2421		}
2422
 
 
 
 
 
2423		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2424						&page, &fsdata);
2425		if (unlikely(status))
2426			break;
2427
2428		if (mapping_writably_mapped(mapping))
2429			flush_dcache_page(page);
2430
2431		pagefault_disable();
2432		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2433		pagefault_enable();
2434		flush_dcache_page(page);
2435
2436		mark_page_accessed(page);
2437		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2438						page, fsdata);
2439		if (unlikely(status < 0))
2440			break;
2441		copied = status;
2442
2443		cond_resched();
2444
2445		iov_iter_advance(i, copied);
2446		if (unlikely(copied == 0)) {
2447			/*
2448			 * If we were unable to copy any data at all, we must
2449			 * fall back to a single segment length write.
2450			 *
2451			 * If we didn't fallback here, we could livelock
2452			 * because not all segments in the iov can be copied at
2453			 * once without a pagefault.
2454			 */
2455			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2456						iov_iter_single_seg_count(i));
2457			goto again;
2458		}
2459		pos += copied;
2460		written += copied;
2461
2462		balance_dirty_pages_ratelimited(mapping);
2463
2464	} while (iov_iter_count(i));
2465
2466	return written ? written : status;
2467}
2468
2469ssize_t
2470generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2471		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2472		size_t count, ssize_t written)
2473{
2474	struct file *file = iocb->ki_filp;
2475	ssize_t status;
2476	struct iov_iter i;
2477
2478	iov_iter_init(&i, iov, nr_segs, count, written);
2479	status = generic_perform_write(file, &i, pos);
2480
2481	if (likely(status >= 0)) {
2482		written += status;
2483		*ppos = pos + status;
2484  	}
2485	
2486	return written ? written : status;
2487}
2488EXPORT_SYMBOL(generic_file_buffered_write);
2489
2490/**
2491 * __generic_file_aio_write - write data to a file
2492 * @iocb:	IO state structure (file, offset, etc.)
2493 * @iov:	vector with data to write
2494 * @nr_segs:	number of segments in the vector
2495 * @ppos:	position where to write
2496 *
2497 * This function does all the work needed for actually writing data to a
2498 * file. It does all basic checks, removes SUID from the file, updates
2499 * modification times and calls proper subroutines depending on whether we
2500 * do direct IO or a standard buffered write.
2501 *
2502 * It expects i_mutex to be grabbed unless we work on a block device or similar
2503 * object which does not need locking at all.
2504 *
2505 * This function does *not* take care of syncing data in case of O_SYNC write.
2506 * A caller has to handle it. This is mainly due to the fact that we want to
2507 * avoid syncing under i_mutex.
2508 */
2509ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2510				 unsigned long nr_segs, loff_t *ppos)
2511{
2512	struct file *file = iocb->ki_filp;
2513	struct address_space * mapping = file->f_mapping;
2514	size_t ocount;		/* original count */
2515	size_t count;		/* after file limit checks */
2516	struct inode 	*inode = mapping->host;
2517	loff_t		pos;
2518	ssize_t		written;
2519	ssize_t		err;
2520
2521	ocount = 0;
2522	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2523	if (err)
2524		return err;
2525
2526	count = ocount;
2527	pos = *ppos;
2528
2529	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2530
2531	/* We can write back this queue in page reclaim */
2532	current->backing_dev_info = mapping->backing_dev_info;
2533	written = 0;
2534
2535	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2536	if (err)
2537		goto out;
2538
2539	if (count == 0)
2540		goto out;
2541
2542	err = file_remove_suid(file);
2543	if (err)
2544		goto out;
2545
2546	file_update_time(file);
 
2547
2548	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2549	if (unlikely(file->f_flags & O_DIRECT)) {
2550		loff_t endbyte;
2551		ssize_t written_buffered;
2552
2553		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2554							ppos, count, ocount);
2555		if (written < 0 || written == count)
2556			goto out;
2557		/*
2558		 * direct-io write to a hole: fall through to buffered I/O
2559		 * for completing the rest of the request.
 
 
 
2560		 */
2561		pos += written;
2562		count -= written;
2563		written_buffered = generic_file_buffered_write(iocb, iov,
2564						nr_segs, pos, ppos, count,
2565						written);
2566		/*
2567		 * If generic_file_buffered_write() retuned a synchronous error
2568		 * then we want to return the number of bytes which were
2569		 * direct-written, or the error code if that was zero.  Note
2570		 * that this differs from normal direct-io semantics, which
2571		 * will return -EFOO even if some bytes were written.
2572		 */
2573		if (written_buffered < 0) {
2574			err = written_buffered;
2575			goto out;
2576		}
2577
2578		/*
2579		 * We need to ensure that the page cache pages are written to
2580		 * disk and invalidated to preserve the expected O_DIRECT
2581		 * semantics.
2582		 */
2583		endbyte = pos + written_buffered - written - 1;
2584		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2585		if (err == 0) {
2586			written = written_buffered;
 
2587			invalidate_mapping_pages(mapping,
2588						 pos >> PAGE_CACHE_SHIFT,
2589						 endbyte >> PAGE_CACHE_SHIFT);
2590		} else {
2591			/*
2592			 * We don't know how much we wrote, so just return
2593			 * the number of bytes which were direct-written
2594			 */
2595		}
2596	} else {
2597		written = generic_file_buffered_write(iocb, iov, nr_segs,
2598				pos, ppos, count, written);
 
2599	}
2600out:
2601	current->backing_dev_info = NULL;
2602	return written ? written : err;
2603}
2604EXPORT_SYMBOL(__generic_file_aio_write);
2605
2606/**
2607 * generic_file_aio_write - write data to a file
2608 * @iocb:	IO state structure
2609 * @iov:	vector with data to write
2610 * @nr_segs:	number of segments in the vector
2611 * @pos:	position in file where to write
2612 *
2613 * This is a wrapper around __generic_file_aio_write() to be used by most
2614 * filesystems. It takes care of syncing the file in case of O_SYNC file
2615 * and acquires i_mutex as needed.
2616 */
2617ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2618		unsigned long nr_segs, loff_t pos)
2619{
2620	struct file *file = iocb->ki_filp;
2621	struct inode *inode = file->f_mapping->host;
2622	struct blk_plug plug;
2623	ssize_t ret;
2624
2625	BUG_ON(iocb->ki_pos != pos);
2626
2627	mutex_lock(&inode->i_mutex);
2628	blk_start_plug(&plug);
2629	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2630	mutex_unlock(&inode->i_mutex);
2631
2632	if (ret > 0 || ret == -EIOCBQUEUED) {
2633		ssize_t err;
2634
2635		err = generic_write_sync(file, pos, ret);
2636		if (err < 0 && ret > 0)
2637			ret = err;
2638	}
2639	blk_finish_plug(&plug);
2640	return ret;
2641}
2642EXPORT_SYMBOL(generic_file_aio_write);
2643
2644/**
2645 * try_to_release_page() - release old fs-specific metadata on a page
2646 *
2647 * @page: the page which the kernel is trying to free
2648 * @gfp_mask: memory allocation flags (and I/O mode)
2649 *
2650 * The address_space is to try to release any data against the page
2651 * (presumably at page->private).  If the release was successful, return `1'.
2652 * Otherwise return zero.
2653 *
2654 * This may also be called if PG_fscache is set on a page, indicating that the
2655 * page is known to the local caching routines.
2656 *
2657 * The @gfp_mask argument specifies whether I/O may be performed to release
2658 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2659 *
2660 */
2661int try_to_release_page(struct page *page, gfp_t gfp_mask)
2662{
2663	struct address_space * const mapping = page->mapping;
2664
2665	BUG_ON(!PageLocked(page));
2666	if (PageWriteback(page))
2667		return 0;
2668
2669	if (mapping && mapping->a_ops->releasepage)
2670		return mapping->a_ops->releasepage(page, gfp_mask);
2671	return try_to_free_buffers(page);
2672}
2673
2674EXPORT_SYMBOL(try_to_release_page);
v4.10.11
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
  16#include <linux/uaccess.h>
 
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
 
  32#include <linux/cpuset.h>
  33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  34#include <linux/hugetlb.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
  37#include <linux/rmap.h>
  38#include "internal.h"
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/filemap.h>
  42
  43/*
  44 * FIXME: remove all knowledge of the buffer layer from the core VM
  45 */
  46#include <linux/buffer_head.h> /* for try_to_free_buffers */
  47
  48#include <asm/mman.h>
  49
  50/*
  51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  52 * though.
  53 *
  54 * Shared mappings now work. 15.8.1995  Bruno.
  55 *
  56 * finished 'unifying' the page and buffer cache and SMP-threaded the
  57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  58 *
  59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  60 */
  61
  62/*
  63 * Lock ordering:
  64 *
  65 *  ->i_mmap_rwsem		(truncate_pagecache)
  66 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  67 *      ->swap_lock		(exclusive_swap_page, others)
  68 *        ->mapping->tree_lock
  69 *
  70 *  ->i_mutex
  71 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  72 *
  73 *  ->mmap_sem
  74 *    ->i_mmap_rwsem
  75 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  76 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
  77 *
  78 *  ->mmap_sem
  79 *    ->lock_page		(access_process_vm)
  80 *
  81 *  ->i_mutex			(generic_perform_write)
  82 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  83 *
  84 *  bdi->wb.list_lock
  85 *    sb_lock			(fs/fs-writeback.c)
  86 *    ->mapping->tree_lock	(__sync_single_inode)
  87 *
  88 *  ->i_mmap_rwsem
  89 *    ->anon_vma.lock		(vma_adjust)
  90 *
  91 *  ->anon_vma.lock
  92 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  93 *
  94 *  ->page_table_lock or pte_lock
  95 *    ->swap_lock		(try_to_unmap_one)
  96 *    ->private_lock		(try_to_unmap_one)
  97 *    ->tree_lock		(try_to_unmap_one)
  98 *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
  99 *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
 100 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 101 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
 102 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 103 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 104 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 105 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 106 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 107 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 108 *
 109 * ->i_mmap_rwsem
 110 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 
 111 */
 112
 113static int page_cache_tree_insert(struct address_space *mapping,
 114				  struct page *page, void **shadowp)
 115{
 116	struct radix_tree_node *node;
 117	void **slot;
 118	int error;
 119
 120	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
 121				    &node, &slot);
 122	if (error)
 123		return error;
 124	if (*slot) {
 125		void *p;
 126
 127		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 128		if (!radix_tree_exceptional_entry(p))
 129			return -EEXIST;
 130
 131		mapping->nrexceptional--;
 132		if (!dax_mapping(mapping)) {
 133			if (shadowp)
 134				*shadowp = p;
 135		} else {
 136			/* DAX can replace empty locked entry with a hole */
 137			WARN_ON_ONCE(p !=
 138				dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
 139			/* Wakeup waiters for exceptional entry lock */
 140			dax_wake_mapping_entry_waiter(mapping, page->index, p,
 141						      true);
 142		}
 143	}
 144	__radix_tree_replace(&mapping->page_tree, node, slot, page,
 145			     workingset_update_node, mapping);
 146	mapping->nrpages++;
 147	return 0;
 148}
 149
 150static void page_cache_tree_delete(struct address_space *mapping,
 151				   struct page *page, void *shadow)
 152{
 153	int i, nr;
 154
 155	/* hugetlb pages are represented by one entry in the radix tree */
 156	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
 157
 158	VM_BUG_ON_PAGE(!PageLocked(page), page);
 159	VM_BUG_ON_PAGE(PageTail(page), page);
 160	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 161
 162	for (i = 0; i < nr; i++) {
 163		struct radix_tree_node *node;
 164		void **slot;
 165
 166		__radix_tree_lookup(&mapping->page_tree, page->index + i,
 167				    &node, &slot);
 168
 169		VM_BUG_ON_PAGE(!node && nr != 1, page);
 170
 171		radix_tree_clear_tags(&mapping->page_tree, node, slot);
 172		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
 173				     workingset_update_node, mapping);
 174	}
 175
 176	if (shadow) {
 177		mapping->nrexceptional += nr;
 178		/*
 179		 * Make sure the nrexceptional update is committed before
 180		 * the nrpages update so that final truncate racing
 181		 * with reclaim does not see both counters 0 at the
 182		 * same time and miss a shadow entry.
 183		 */
 184		smp_wmb();
 185	}
 186	mapping->nrpages -= nr;
 187}
 188
 189/*
 190 * Delete a page from the page cache and free it. Caller has to make
 191 * sure the page is locked and that nobody else uses it - or that usage
 192 * is safe.  The caller must hold the mapping's tree_lock.
 193 */
 194void __delete_from_page_cache(struct page *page, void *shadow)
 195{
 196	struct address_space *mapping = page->mapping;
 197	int nr = hpage_nr_pages(page);
 198
 199	trace_mm_filemap_delete_from_page_cache(page);
 200	/*
 201	 * if we're uptodate, flush out into the cleancache, otherwise
 202	 * invalidate any existing cleancache entries.  We can't leave
 203	 * stale data around in the cleancache once our page is gone
 204	 */
 205	if (PageUptodate(page) && PageMappedToDisk(page))
 206		cleancache_put_page(page);
 207	else
 208		cleancache_invalidate_page(mapping, page);
 209
 210	VM_BUG_ON_PAGE(PageTail(page), page);
 211	VM_BUG_ON_PAGE(page_mapped(page), page);
 212	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 213		int mapcount;
 214
 215		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 216			 current->comm, page_to_pfn(page));
 217		dump_page(page, "still mapped when deleted");
 218		dump_stack();
 219		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 220
 221		mapcount = page_mapcount(page);
 222		if (mapping_exiting(mapping) &&
 223		    page_count(page) >= mapcount + 2) {
 224			/*
 225			 * All vmas have already been torn down, so it's
 226			 * a good bet that actually the page is unmapped,
 227			 * and we'd prefer not to leak it: if we're wrong,
 228			 * some other bad page check should catch it later.
 229			 */
 230			page_mapcount_reset(page);
 231			page_ref_sub(page, mapcount);
 232		}
 233	}
 234
 235	page_cache_tree_delete(mapping, page, shadow);
 236
 
 237	page->mapping = NULL;
 238	/* Leave page->index set: truncation lookup relies upon it */
 239
 240	/* hugetlb pages do not participate in page cache accounting. */
 241	if (!PageHuge(page))
 242		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 243	if (PageSwapBacked(page)) {
 244		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 245		if (PageTransHuge(page))
 246			__dec_node_page_state(page, NR_SHMEM_THPS);
 247	} else {
 248		VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
 249	}
 250
 251	/*
 252	 * At this point page must be either written or cleaned by truncate.
 253	 * Dirty page here signals a bug and loss of unwritten data.
 254	 *
 255	 * This fixes dirty accounting after removing the page entirely but
 256	 * leaves PageDirty set: it has no effect for truncated page and
 257	 * anyway will be cleared before returning page into buddy allocator.
 258	 */
 259	if (WARN_ON_ONCE(PageDirty(page)))
 260		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 
 
 261}
 262
 263/**
 264 * delete_from_page_cache - delete page from page cache
 265 * @page: the page which the kernel is trying to remove from page cache
 266 *
 267 * This must be called only on pages that have been verified to be in the page
 268 * cache and locked.  It will never put the page into the free list, the caller
 269 * has a reference on the page.
 270 */
 271void delete_from_page_cache(struct page *page)
 272{
 273	struct address_space *mapping = page_mapping(page);
 274	unsigned long flags;
 275	void (*freepage)(struct page *);
 276
 277	BUG_ON(!PageLocked(page));
 278
 279	freepage = mapping->a_ops->freepage;
 280
 281	spin_lock_irqsave(&mapping->tree_lock, flags);
 282	__delete_from_page_cache(page, NULL);
 283	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 284
 285	if (freepage)
 286		freepage(page);
 
 
 
 287
 288	if (PageTransHuge(page) && !PageHuge(page)) {
 289		page_ref_sub(page, HPAGE_PMD_NR);
 290		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 291	} else {
 292		put_page(page);
 293	}
 294}
 295EXPORT_SYMBOL(delete_from_page_cache);
 296
 297int filemap_check_errors(struct address_space *mapping)
 298{
 299	int ret = 0;
 300	/* Check for outstanding write errors */
 301	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 302	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 303		ret = -ENOSPC;
 304	if (test_bit(AS_EIO, &mapping->flags) &&
 305	    test_and_clear_bit(AS_EIO, &mapping->flags))
 306		ret = -EIO;
 307	return ret;
 308}
 309EXPORT_SYMBOL(filemap_check_errors);
 310
 311/**
 312 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 313 * @mapping:	address space structure to write
 314 * @start:	offset in bytes where the range starts
 315 * @end:	offset in bytes where the range ends (inclusive)
 316 * @sync_mode:	enable synchronous operation
 317 *
 318 * Start writeback against all of a mapping's dirty pages that lie
 319 * within the byte offsets <start, end> inclusive.
 320 *
 321 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 322 * opposed to a regular memory cleansing writeback.  The difference between
 323 * these two operations is that if a dirty page/buffer is encountered, it must
 324 * be waited upon, and not just skipped over.
 325 */
 326int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 327				loff_t end, int sync_mode)
 328{
 329	int ret;
 330	struct writeback_control wbc = {
 331		.sync_mode = sync_mode,
 332		.nr_to_write = LONG_MAX,
 333		.range_start = start,
 334		.range_end = end,
 335	};
 336
 337	if (!mapping_cap_writeback_dirty(mapping))
 338		return 0;
 339
 340	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 341	ret = do_writepages(mapping, &wbc);
 342	wbc_detach_inode(&wbc);
 343	return ret;
 344}
 345
 346static inline int __filemap_fdatawrite(struct address_space *mapping,
 347	int sync_mode)
 348{
 349	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 350}
 351
 352int filemap_fdatawrite(struct address_space *mapping)
 353{
 354	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 355}
 356EXPORT_SYMBOL(filemap_fdatawrite);
 357
 358int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 359				loff_t end)
 360{
 361	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 362}
 363EXPORT_SYMBOL(filemap_fdatawrite_range);
 364
 365/**
 366 * filemap_flush - mostly a non-blocking flush
 367 * @mapping:	target address_space
 368 *
 369 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 370 * purposes - I/O may not be started against all dirty pages.
 371 */
 372int filemap_flush(struct address_space *mapping)
 373{
 374	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 375}
 376EXPORT_SYMBOL(filemap_flush);
 377
 378static int __filemap_fdatawait_range(struct address_space *mapping,
 379				     loff_t start_byte, loff_t end_byte)
 
 
 
 
 
 
 
 
 
 380{
 381	pgoff_t index = start_byte >> PAGE_SHIFT;
 382	pgoff_t end = end_byte >> PAGE_SHIFT;
 383	struct pagevec pvec;
 384	int nr_pages;
 385	int ret = 0;
 386
 387	if (end_byte < start_byte)
 388		goto out;
 389
 390	pagevec_init(&pvec, 0);
 391	while ((index <= end) &&
 392			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 393			PAGECACHE_TAG_WRITEBACK,
 394			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 395		unsigned i;
 396
 397		for (i = 0; i < nr_pages; i++) {
 398			struct page *page = pvec.pages[i];
 399
 400			/* until radix tree lookup accepts end_index */
 401			if (page->index > end)
 402				continue;
 403
 404			wait_on_page_writeback(page);
 405			if (TestClearPageError(page))
 406				ret = -EIO;
 407		}
 408		pagevec_release(&pvec);
 409		cond_resched();
 410	}
 411out:
 412	return ret;
 413}
 414
 415/**
 416 * filemap_fdatawait_range - wait for writeback to complete
 417 * @mapping:		address space structure to wait for
 418 * @start_byte:		offset in bytes where the range starts
 419 * @end_byte:		offset in bytes where the range ends (inclusive)
 420 *
 421 * Walk the list of under-writeback pages of the given address space
 422 * in the given range and wait for all of them.  Check error status of
 423 * the address space and return it.
 424 *
 425 * Since the error status of the address space is cleared by this function,
 426 * callers are responsible for checking the return value and handling and/or
 427 * reporting the error.
 428 */
 429int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 430			    loff_t end_byte)
 431{
 432	int ret, ret2;
 433
 434	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
 435	ret2 = filemap_check_errors(mapping);
 436	if (!ret)
 437		ret = ret2;
 438
 439	return ret;
 440}
 441EXPORT_SYMBOL(filemap_fdatawait_range);
 442
 443/**
 444 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 445 * @mapping: address space structure to wait for
 446 *
 447 * Walk the list of under-writeback pages of the given address space
 448 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 449 * does not clear error status of the address space.
 450 *
 451 * Use this function if callers don't handle errors themselves.  Expected
 452 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 453 * fsfreeze(8)
 454 */
 455void filemap_fdatawait_keep_errors(struct address_space *mapping)
 456{
 457	loff_t i_size = i_size_read(mapping->host);
 458
 459	if (i_size == 0)
 460		return;
 461
 462	__filemap_fdatawait_range(mapping, 0, i_size - 1);
 463}
 464
 465/**
 466 * filemap_fdatawait - wait for all under-writeback pages to complete
 467 * @mapping: address space structure to wait for
 468 *
 469 * Walk the list of under-writeback pages of the given address space
 470 * and wait for all of them.  Check error status of the address space
 471 * and return it.
 472 *
 473 * Since the error status of the address space is cleared by this function,
 474 * callers are responsible for checking the return value and handling and/or
 475 * reporting the error.
 476 */
 477int filemap_fdatawait(struct address_space *mapping)
 478{
 479	loff_t i_size = i_size_read(mapping->host);
 480
 481	if (i_size == 0)
 482		return 0;
 483
 484	return filemap_fdatawait_range(mapping, 0, i_size - 1);
 485}
 486EXPORT_SYMBOL(filemap_fdatawait);
 487
 488int filemap_write_and_wait(struct address_space *mapping)
 489{
 490	int err = 0;
 491
 492	if ((!dax_mapping(mapping) && mapping->nrpages) ||
 493	    (dax_mapping(mapping) && mapping->nrexceptional)) {
 494		err = filemap_fdatawrite(mapping);
 495		/*
 496		 * Even if the above returned error, the pages may be
 497		 * written partially (e.g. -ENOSPC), so we wait for it.
 498		 * But the -EIO is special case, it may indicate the worst
 499		 * thing (e.g. bug) happened, so we avoid waiting for it.
 500		 */
 501		if (err != -EIO) {
 502			int err2 = filemap_fdatawait(mapping);
 503			if (!err)
 504				err = err2;
 505		}
 506	} else {
 507		err = filemap_check_errors(mapping);
 508	}
 509	return err;
 510}
 511EXPORT_SYMBOL(filemap_write_and_wait);
 512
 513/**
 514 * filemap_write_and_wait_range - write out & wait on a file range
 515 * @mapping:	the address_space for the pages
 516 * @lstart:	offset in bytes where the range starts
 517 * @lend:	offset in bytes where the range ends (inclusive)
 518 *
 519 * Write out and wait upon file offsets lstart->lend, inclusive.
 520 *
 521 * Note that `lend' is inclusive (describes the last byte to be written) so
 522 * that this function can be used to write to the very end-of-file (end = -1).
 523 */
 524int filemap_write_and_wait_range(struct address_space *mapping,
 525				 loff_t lstart, loff_t lend)
 526{
 527	int err = 0;
 528
 529	if ((!dax_mapping(mapping) && mapping->nrpages) ||
 530	    (dax_mapping(mapping) && mapping->nrexceptional)) {
 531		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 532						 WB_SYNC_ALL);
 533		/* See comment of filemap_write_and_wait() */
 534		if (err != -EIO) {
 535			int err2 = filemap_fdatawait_range(mapping,
 536						lstart, lend);
 537			if (!err)
 538				err = err2;
 539		}
 540	} else {
 541		err = filemap_check_errors(mapping);
 542	}
 543	return err;
 544}
 545EXPORT_SYMBOL(filemap_write_and_wait_range);
 546
 547/**
 548 * replace_page_cache_page - replace a pagecache page with a new one
 549 * @old:	page to be replaced
 550 * @new:	page to replace with
 551 * @gfp_mask:	allocation mode
 552 *
 553 * This function replaces a page in the pagecache with a new one.  On
 554 * success it acquires the pagecache reference for the new page and
 555 * drops it for the old page.  Both the old and new pages must be
 556 * locked.  This function does not add the new page to the LRU, the
 557 * caller must do that.
 558 *
 559 * The remove + add is atomic.  The only way this function can fail is
 560 * memory allocation failure.
 561 */
 562int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 563{
 564	int error;
 
 
 
 
 
 565
 566	VM_BUG_ON_PAGE(!PageLocked(old), old);
 567	VM_BUG_ON_PAGE(!PageLocked(new), new);
 568	VM_BUG_ON_PAGE(new->mapping, new);
 
 
 
 
 
 
 
 
 569
 570	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 571	if (!error) {
 572		struct address_space *mapping = old->mapping;
 573		void (*freepage)(struct page *);
 574		unsigned long flags;
 575
 576		pgoff_t offset = old->index;
 577		freepage = mapping->a_ops->freepage;
 578
 579		get_page(new);
 580		new->mapping = mapping;
 581		new->index = offset;
 582
 583		spin_lock_irqsave(&mapping->tree_lock, flags);
 584		__delete_from_page_cache(old, NULL);
 585		error = page_cache_tree_insert(mapping, new, NULL);
 586		BUG_ON(error);
 587
 588		/*
 589		 * hugetlb pages do not participate in page cache accounting.
 590		 */
 591		if (!PageHuge(new))
 592			__inc_node_page_state(new, NR_FILE_PAGES);
 593		if (PageSwapBacked(new))
 594			__inc_node_page_state(new, NR_SHMEM);
 595		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 596		mem_cgroup_migrate(old, new);
 597		radix_tree_preload_end();
 598		if (freepage)
 599			freepage(old);
 600		put_page(old);
 
 
 
 601	}
 602
 603	return error;
 604}
 605EXPORT_SYMBOL_GPL(replace_page_cache_page);
 606
 607static int __add_to_page_cache_locked(struct page *page,
 608				      struct address_space *mapping,
 609				      pgoff_t offset, gfp_t gfp_mask,
 610				      void **shadowp)
 611{
 612	int huge = PageHuge(page);
 613	struct mem_cgroup *memcg;
 614	int error;
 615
 616	VM_BUG_ON_PAGE(!PageLocked(page), page);
 617	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 618
 619	if (!huge) {
 620		error = mem_cgroup_try_charge(page, current->mm,
 621					      gfp_mask, &memcg, false);
 622		if (error)
 623			return error;
 624	}
 625
 626	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
 627	if (error) {
 628		if (!huge)
 629			mem_cgroup_cancel_charge(page, memcg, false);
 630		return error;
 631	}
 632
 633	get_page(page);
 634	page->mapping = mapping;
 635	page->index = offset;
 636
 637	spin_lock_irq(&mapping->tree_lock);
 638	error = page_cache_tree_insert(mapping, page, shadowp);
 639	radix_tree_preload_end();
 640	if (unlikely(error))
 641		goto err_insert;
 642
 643	/* hugetlb pages do not participate in page cache accounting. */
 644	if (!huge)
 645		__inc_node_page_state(page, NR_FILE_PAGES);
 646	spin_unlock_irq(&mapping->tree_lock);
 647	if (!huge)
 648		mem_cgroup_commit_charge(page, memcg, false, false);
 649	trace_mm_filemap_add_to_page_cache(page);
 650	return 0;
 651err_insert:
 652	page->mapping = NULL;
 653	/* Leave page->index set: truncation relies upon it */
 654	spin_unlock_irq(&mapping->tree_lock);
 655	if (!huge)
 656		mem_cgroup_cancel_charge(page, memcg, false);
 657	put_page(page);
 658	return error;
 659}
 660
 661/**
 662 * add_to_page_cache_locked - add a locked page to the pagecache
 663 * @page:	page to add
 664 * @mapping:	the page's address_space
 665 * @offset:	page index
 666 * @gfp_mask:	page allocation mode
 667 *
 668 * This function is used to add a page to the pagecache. It must be locked.
 669 * This function does not add the page to the LRU.  The caller must do that.
 670 */
 671int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 672		pgoff_t offset, gfp_t gfp_mask)
 673{
 674	return __add_to_page_cache_locked(page, mapping, offset,
 675					  gfp_mask, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 676}
 677EXPORT_SYMBOL(add_to_page_cache_locked);
 678
 679int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 680				pgoff_t offset, gfp_t gfp_mask)
 681{
 682	void *shadow = NULL;
 683	int ret;
 684
 685	__SetPageLocked(page);
 686	ret = __add_to_page_cache_locked(page, mapping, offset,
 687					 gfp_mask, &shadow);
 688	if (unlikely(ret))
 689		__ClearPageLocked(page);
 690	else {
 691		/*
 692		 * The page might have been evicted from cache only
 693		 * recently, in which case it should be activated like
 694		 * any other repeatedly accessed page.
 695		 * The exception is pages getting rewritten; evicting other
 696		 * data from the working set, only to cache data that will
 697		 * get overwritten with something else, is a waste of memory.
 698		 */
 699		if (!(gfp_mask & __GFP_WRITE) &&
 700		    shadow && workingset_refault(shadow)) {
 701			SetPageActive(page);
 702			workingset_activation(page);
 703		} else
 704			ClearPageActive(page);
 705		lru_cache_add(page);
 706	}
 707	return ret;
 708}
 709EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 710
 711#ifdef CONFIG_NUMA
 712struct page *__page_cache_alloc(gfp_t gfp)
 713{
 714	int n;
 715	struct page *page;
 716
 717	if (cpuset_do_page_mem_spread()) {
 718		unsigned int cpuset_mems_cookie;
 719		do {
 720			cpuset_mems_cookie = read_mems_allowed_begin();
 721			n = cpuset_mem_spread_node();
 722			page = __alloc_pages_node(n, gfp, 0);
 723		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 724
 725		return page;
 726	}
 727	return alloc_pages(gfp, 0);
 728}
 729EXPORT_SYMBOL(__page_cache_alloc);
 730#endif
 731
 732/*
 733 * In order to wait for pages to become available there must be
 734 * waitqueues associated with pages. By using a hash table of
 735 * waitqueues where the bucket discipline is to maintain all
 736 * waiters on the same queue and wake all when any of the pages
 737 * become available, and for the woken contexts to check to be
 738 * sure the appropriate page became available, this saves space
 739 * at a cost of "thundering herd" phenomena during rare hash
 740 * collisions.
 741 */
 742#define PAGE_WAIT_TABLE_BITS 8
 743#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 744static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 745
 746static wait_queue_head_t *page_waitqueue(struct page *page)
 747{
 748	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 749}
 750
 751void __init pagecache_init(void)
 752{
 753	int i;
 754
 755	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 756		init_waitqueue_head(&page_wait_table[i]);
 757
 758	page_writeback_init();
 759}
 760
 761struct wait_page_key {
 762	struct page *page;
 763	int bit_nr;
 764	int page_match;
 765};
 766
 767struct wait_page_queue {
 768	struct page *page;
 769	int bit_nr;
 770	wait_queue_t wait;
 771};
 772
 773static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
 774{
 775	struct wait_page_key *key = arg;
 776	struct wait_page_queue *wait_page
 777		= container_of(wait, struct wait_page_queue, wait);
 778
 779	if (wait_page->page != key->page)
 780	       return 0;
 781	key->page_match = 1;
 782
 783	if (wait_page->bit_nr != key->bit_nr)
 784		return 0;
 785	if (test_bit(key->bit_nr, &key->page->flags))
 786		return 0;
 787
 788	return autoremove_wake_function(wait, mode, sync, key);
 789}
 790
 791void wake_up_page_bit(struct page *page, int bit_nr)
 792{
 793	wait_queue_head_t *q = page_waitqueue(page);
 794	struct wait_page_key key;
 795	unsigned long flags;
 796
 797	key.page = page;
 798	key.bit_nr = bit_nr;
 799	key.page_match = 0;
 800
 801	spin_lock_irqsave(&q->lock, flags);
 802	__wake_up_locked_key(q, TASK_NORMAL, &key);
 803	/*
 804	 * It is possible for other pages to have collided on the waitqueue
 805	 * hash, so in that case check for a page match. That prevents a long-
 806	 * term waiter
 807	 *
 808	 * It is still possible to miss a case here, when we woke page waiters
 809	 * and removed them from the waitqueue, but there are still other
 810	 * page waiters.
 811	 */
 812	if (!waitqueue_active(q) || !key.page_match) {
 813		ClearPageWaiters(page);
 814		/*
 815		 * It's possible to miss clearing Waiters here, when we woke
 816		 * our page waiters, but the hashed waitqueue has waiters for
 817		 * other pages on it.
 818		 *
 819		 * That's okay, it's a rare case. The next waker will clear it.
 820		 */
 821	}
 822	spin_unlock_irqrestore(&q->lock, flags);
 823}
 824EXPORT_SYMBOL(wake_up_page_bit);
 825
 826static inline int wait_on_page_bit_common(wait_queue_head_t *q,
 827		struct page *page, int bit_nr, int state, bool lock)
 828{
 829	struct wait_page_queue wait_page;
 830	wait_queue_t *wait = &wait_page.wait;
 831	int ret = 0;
 832
 833	init_wait(wait);
 834	wait->func = wake_page_function;
 835	wait_page.page = page;
 836	wait_page.bit_nr = bit_nr;
 837
 838	for (;;) {
 839		spin_lock_irq(&q->lock);
 840
 841		if (likely(list_empty(&wait->task_list))) {
 842			if (lock)
 843				__add_wait_queue_tail_exclusive(q, wait);
 844			else
 845				__add_wait_queue(q, wait);
 846			SetPageWaiters(page);
 847		}
 848
 849		set_current_state(state);
 850
 851		spin_unlock_irq(&q->lock);
 852
 853		if (likely(test_bit(bit_nr, &page->flags))) {
 854			io_schedule();
 855			if (unlikely(signal_pending_state(state, current))) {
 856				ret = -EINTR;
 857				break;
 858			}
 859		}
 860
 861		if (lock) {
 862			if (!test_and_set_bit_lock(bit_nr, &page->flags))
 863				break;
 864		} else {
 865			if (!test_bit(bit_nr, &page->flags))
 866				break;
 867		}
 868	}
 869
 870	finish_wait(q, wait);
 871
 872	/*
 873	 * A signal could leave PageWaiters set. Clearing it here if
 874	 * !waitqueue_active would be possible (by open-coding finish_wait),
 875	 * but still fail to catch it in the case of wait hash collision. We
 876	 * already can fail to clear wait hash collision cases, so don't
 877	 * bother with signals either.
 878	 */
 879
 880	return ret;
 881}
 882
 883void wait_on_page_bit(struct page *page, int bit_nr)
 884{
 885	wait_queue_head_t *q = page_waitqueue(page);
 886	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
 887}
 888EXPORT_SYMBOL(wait_on_page_bit);
 889
 890int wait_on_page_bit_killable(struct page *page, int bit_nr)
 891{
 892	wait_queue_head_t *q = page_waitqueue(page);
 893	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
 894}
 895
 896/**
 897 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 898 * @page: Page defining the wait queue of interest
 899 * @waiter: Waiter to add to the queue
 900 *
 901 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 902 */
 903void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 904{
 905	wait_queue_head_t *q = page_waitqueue(page);
 906	unsigned long flags;
 907
 908	spin_lock_irqsave(&q->lock, flags);
 909	__add_wait_queue(q, waiter);
 910	SetPageWaiters(page);
 911	spin_unlock_irqrestore(&q->lock, flags);
 912}
 913EXPORT_SYMBOL_GPL(add_page_wait_queue);
 914
 915#ifndef clear_bit_unlock_is_negative_byte
 916
 917/*
 918 * PG_waiters is the high bit in the same byte as PG_lock.
 919 *
 920 * On x86 (and on many other architectures), we can clear PG_lock and
 921 * test the sign bit at the same time. But if the architecture does
 922 * not support that special operation, we just do this all by hand
 923 * instead.
 924 *
 925 * The read of PG_waiters has to be after (or concurrently with) PG_locked
 926 * being cleared, but a memory barrier should be unneccssary since it is
 927 * in the same byte as PG_locked.
 928 */
 929static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
 930{
 931	clear_bit_unlock(nr, mem);
 932	/* smp_mb__after_atomic(); */
 933	return test_bit(PG_waiters, mem);
 934}
 935
 936#endif
 937
 938/**
 939 * unlock_page - unlock a locked page
 940 * @page: the page
 941 *
 942 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 943 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 944 * mechanism between PageLocked pages and PageWriteback pages is shared.
 945 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 946 *
 947 * Note that this depends on PG_waiters being the sign bit in the byte
 948 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 949 * clear the PG_locked bit and test PG_waiters at the same time fairly
 950 * portably (architectures that do LL/SC can test any bit, while x86 can
 951 * test the sign bit).
 952 */
 953void unlock_page(struct page *page)
 954{
 955	BUILD_BUG_ON(PG_waiters != 7);
 956	page = compound_head(page);
 957	VM_BUG_ON_PAGE(!PageLocked(page), page);
 958	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
 959		wake_up_page_bit(page, PG_locked);
 960}
 961EXPORT_SYMBOL(unlock_page);
 962
 963/**
 964 * end_page_writeback - end writeback against a page
 965 * @page: the page
 966 */
 967void end_page_writeback(struct page *page)
 968{
 969	/*
 970	 * TestClearPageReclaim could be used here but it is an atomic
 971	 * operation and overkill in this particular case. Failing to
 972	 * shuffle a page marked for immediate reclaim is too mild to
 973	 * justify taking an atomic operation penalty at the end of
 974	 * ever page writeback.
 975	 */
 976	if (PageReclaim(page)) {
 977		ClearPageReclaim(page);
 978		rotate_reclaimable_page(page);
 979	}
 980
 981	if (!test_clear_page_writeback(page))
 982		BUG();
 983
 984	smp_mb__after_atomic();
 985	wake_up_page(page, PG_writeback);
 986}
 987EXPORT_SYMBOL(end_page_writeback);
 988
 989/*
 990 * After completing I/O on a page, call this routine to update the page
 991 * flags appropriately
 992 */
 993void page_endio(struct page *page, bool is_write, int err)
 994{
 995	if (!is_write) {
 996		if (!err) {
 997			SetPageUptodate(page);
 998		} else {
 999			ClearPageUptodate(page);
1000			SetPageError(page);
1001		}
1002		unlock_page(page);
1003	} else {
1004		if (err) {
1005			struct address_space *mapping;
1006
1007			SetPageError(page);
1008			mapping = page_mapping(page);
1009			if (mapping)
1010				mapping_set_error(mapping, err);
1011		}
1012		end_page_writeback(page);
1013	}
1014}
1015EXPORT_SYMBOL_GPL(page_endio);
1016
1017/**
1018 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1019 * @page: the page to lock
1020 */
1021void __lock_page(struct page *__page)
1022{
1023	struct page *page = compound_head(__page);
1024	wait_queue_head_t *q = page_waitqueue(page);
1025	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
 
1026}
1027EXPORT_SYMBOL(__lock_page);
1028
1029int __lock_page_killable(struct page *__page)
1030{
1031	struct page *page = compound_head(__page);
1032	wait_queue_head_t *q = page_waitqueue(page);
1033	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
 
1034}
1035EXPORT_SYMBOL_GPL(__lock_page_killable);
1036
1037/*
1038 * Return values:
1039 * 1 - page is locked; mmap_sem is still held.
1040 * 0 - page is not locked.
1041 *     mmap_sem has been released (up_read()), unless flags had both
1042 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1043 *     which case mmap_sem is still held.
1044 *
1045 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1046 * with the page locked and the mmap_sem unperturbed.
1047 */
1048int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1049			 unsigned int flags)
1050{
1051	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1052		/*
1053		 * CAUTION! In this case, mmap_sem is not released
1054		 * even though return 0.
1055		 */
1056		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1057			return 0;
1058
1059		up_read(&mm->mmap_sem);
1060		if (flags & FAULT_FLAG_KILLABLE)
1061			wait_on_page_locked_killable(page);
1062		else
1063			wait_on_page_locked(page);
1064		return 0;
1065	} else {
1066		if (flags & FAULT_FLAG_KILLABLE) {
1067			int ret;
1068
1069			ret = __lock_page_killable(page);
1070			if (ret) {
1071				up_read(&mm->mmap_sem);
1072				return 0;
1073			}
1074		} else
1075			__lock_page(page);
1076		return 1;
1077	}
1078}
1079
1080/**
1081 * page_cache_next_hole - find the next hole (not-present entry)
1082 * @mapping: mapping
1083 * @index: index
1084 * @max_scan: maximum range to search
1085 *
1086 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1087 * lowest indexed hole.
1088 *
1089 * Returns: the index of the hole if found, otherwise returns an index
1090 * outside of the set specified (in which case 'return - index >=
1091 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1092 * be returned.
1093 *
1094 * page_cache_next_hole may be called under rcu_read_lock. However,
1095 * like radix_tree_gang_lookup, this will not atomically search a
1096 * snapshot of the tree at a single point in time. For example, if a
1097 * hole is created at index 5, then subsequently a hole is created at
1098 * index 10, page_cache_next_hole covering both indexes may return 10
1099 * if called under rcu_read_lock.
1100 */
1101pgoff_t page_cache_next_hole(struct address_space *mapping,
1102			     pgoff_t index, unsigned long max_scan)
1103{
1104	unsigned long i;
1105
1106	for (i = 0; i < max_scan; i++) {
1107		struct page *page;
1108
1109		page = radix_tree_lookup(&mapping->page_tree, index);
1110		if (!page || radix_tree_exceptional_entry(page))
1111			break;
1112		index++;
1113		if (index == 0)
1114			break;
1115	}
1116
1117	return index;
1118}
1119EXPORT_SYMBOL(page_cache_next_hole);
1120
1121/**
1122 * page_cache_prev_hole - find the prev hole (not-present entry)
1123 * @mapping: mapping
1124 * @index: index
1125 * @max_scan: maximum range to search
1126 *
1127 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1128 * the first hole.
1129 *
1130 * Returns: the index of the hole if found, otherwise returns an index
1131 * outside of the set specified (in which case 'index - return >=
1132 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1133 * will be returned.
1134 *
1135 * page_cache_prev_hole may be called under rcu_read_lock. However,
1136 * like radix_tree_gang_lookup, this will not atomically search a
1137 * snapshot of the tree at a single point in time. For example, if a
1138 * hole is created at index 10, then subsequently a hole is created at
1139 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1140 * called under rcu_read_lock.
1141 */
1142pgoff_t page_cache_prev_hole(struct address_space *mapping,
1143			     pgoff_t index, unsigned long max_scan)
1144{
1145	unsigned long i;
1146
1147	for (i = 0; i < max_scan; i++) {
1148		struct page *page;
1149
1150		page = radix_tree_lookup(&mapping->page_tree, index);
1151		if (!page || radix_tree_exceptional_entry(page))
1152			break;
1153		index--;
1154		if (index == ULONG_MAX)
1155			break;
1156	}
1157
1158	return index;
1159}
1160EXPORT_SYMBOL(page_cache_prev_hole);
1161
1162/**
1163 * find_get_entry - find and get a page cache entry
1164 * @mapping: the address_space to search
1165 * @offset: the page cache index
1166 *
1167 * Looks up the page cache slot at @mapping & @offset.  If there is a
1168 * page cache page, it is returned with an increased refcount.
1169 *
1170 * If the slot holds a shadow entry of a previously evicted page, or a
1171 * swap entry from shmem/tmpfs, it is returned.
1172 *
1173 * Otherwise, %NULL is returned.
 
1174 */
1175struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1176{
1177	void **pagep;
1178	struct page *head, *page;
1179
1180	rcu_read_lock();
1181repeat:
1182	page = NULL;
1183	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1184	if (pagep) {
1185		page = radix_tree_deref_slot(pagep);
1186		if (unlikely(!page))
1187			goto out;
1188		if (radix_tree_exception(page)) {
1189			if (radix_tree_deref_retry(page))
1190				goto repeat;
1191			/*
1192			 * A shadow entry of a recently evicted page,
1193			 * or a swap entry from shmem/tmpfs.  Return
1194			 * it without attempting to raise page count.
1195			 */
1196			goto out;
1197		}
1198
1199		head = compound_head(page);
1200		if (!page_cache_get_speculative(head))
1201			goto repeat;
1202
1203		/* The page was split under us? */
1204		if (compound_head(page) != head) {
1205			put_page(head);
1206			goto repeat;
1207		}
1208
1209		/*
1210		 * Has the page moved?
1211		 * This is part of the lockless pagecache protocol. See
1212		 * include/linux/pagemap.h for details.
1213		 */
1214		if (unlikely(page != *pagep)) {
1215			put_page(head);
1216			goto repeat;
1217		}
1218	}
1219out:
1220	rcu_read_unlock();
1221
1222	return page;
1223}
1224EXPORT_SYMBOL(find_get_entry);
1225
1226/**
1227 * find_lock_entry - locate, pin and lock a page cache entry
1228 * @mapping: the address_space to search
1229 * @offset: the page cache index
1230 *
1231 * Looks up the page cache slot at @mapping & @offset.  If there is a
1232 * page cache page, it is returned locked and with an increased
1233 * refcount.
1234 *
1235 * If the slot holds a shadow entry of a previously evicted page, or a
1236 * swap entry from shmem/tmpfs, it is returned.
1237 *
1238 * Otherwise, %NULL is returned.
 
1239 *
1240 * find_lock_entry() may sleep.
1241 */
1242struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1243{
1244	struct page *page;
1245
1246repeat:
1247	page = find_get_entry(mapping, offset);
1248	if (page && !radix_tree_exception(page)) {
1249		lock_page(page);
1250		/* Has the page been truncated? */
1251		if (unlikely(page_mapping(page) != mapping)) {
1252			unlock_page(page);
1253			put_page(page);
1254			goto repeat;
1255		}
1256		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1257	}
1258	return page;
1259}
1260EXPORT_SYMBOL(find_lock_entry);
1261
1262/**
1263 * pagecache_get_page - find and get a page reference
1264 * @mapping: the address_space to search
1265 * @offset: the page index
1266 * @fgp_flags: PCG flags
1267 * @gfp_mask: gfp mask to use for the page cache data page allocation
1268 *
1269 * Looks up the page cache slot at @mapping & @offset.
1270 *
1271 * PCG flags modify how the page is returned.
1272 *
1273 * FGP_ACCESSED: the page will be marked accessed
1274 * FGP_LOCK: Page is return locked
1275 * FGP_CREAT: If page is not present then a new page is allocated using
1276 *		@gfp_mask and added to the page cache and the VM's LRU
1277 *		list. The page is returned locked and with an increased
1278 *		refcount. Otherwise, %NULL is returned.
1279 *
1280 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1281 * if the GFP flags specified for FGP_CREAT are atomic.
1282 *
1283 * If there is a page cache page, it is returned with an increased refcount.
 
1284 */
1285struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1286	int fgp_flags, gfp_t gfp_mask)
1287{
1288	struct page *page;
1289
1290repeat:
1291	page = find_get_entry(mapping, offset);
1292	if (radix_tree_exceptional_entry(page))
1293		page = NULL;
1294	if (!page)
1295		goto no_page;
1296
1297	if (fgp_flags & FGP_LOCK) {
1298		if (fgp_flags & FGP_NOWAIT) {
1299			if (!trylock_page(page)) {
1300				put_page(page);
1301				return NULL;
1302			}
1303		} else {
1304			lock_page(page);
1305		}
1306
1307		/* Has the page been truncated? */
1308		if (unlikely(page->mapping != mapping)) {
1309			unlock_page(page);
1310			put_page(page);
1311			goto repeat;
1312		}
1313		VM_BUG_ON_PAGE(page->index != offset, page);
1314	}
1315
1316	if (page && (fgp_flags & FGP_ACCESSED))
1317		mark_page_accessed(page);
1318
1319no_page:
1320	if (!page && (fgp_flags & FGP_CREAT)) {
1321		int err;
1322		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1323			gfp_mask |= __GFP_WRITE;
1324		if (fgp_flags & FGP_NOFS)
1325			gfp_mask &= ~__GFP_FS;
1326
1327		page = __page_cache_alloc(gfp_mask);
1328		if (!page)
1329			return NULL;
1330
1331		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1332			fgp_flags |= FGP_LOCK;
1333
1334		/* Init accessed so avoid atomic mark_page_accessed later */
1335		if (fgp_flags & FGP_ACCESSED)
1336			__SetPageReferenced(page);
1337
1338		err = add_to_page_cache_lru(page, mapping, offset,
1339				gfp_mask & GFP_RECLAIM_MASK);
1340		if (unlikely(err)) {
1341			put_page(page);
1342			page = NULL;
1343			if (err == -EEXIST)
1344				goto repeat;
1345		}
1346	}
1347
1348	return page;
1349}
1350EXPORT_SYMBOL(pagecache_get_page);
1351
1352/**
1353 * find_get_entries - gang pagecache lookup
1354 * @mapping:	The address_space to search
1355 * @start:	The starting page cache index
1356 * @nr_entries:	The maximum number of entries
1357 * @entries:	Where the resulting entries are placed
1358 * @indices:	The cache indices corresponding to the entries in @entries
1359 *
1360 * find_get_entries() will search for and return a group of up to
1361 * @nr_entries entries in the mapping.  The entries are placed at
1362 * @entries.  find_get_entries() takes a reference against any actual
1363 * pages it returns.
1364 *
1365 * The search returns a group of mapping-contiguous page cache entries
1366 * with ascending indexes.  There may be holes in the indices due to
1367 * not-present pages.
1368 *
1369 * Any shadow entries of evicted pages, or swap entries from
1370 * shmem/tmpfs, are included in the returned array.
1371 *
1372 * find_get_entries() returns the number of pages and shadow entries
1373 * which were found.
1374 */
1375unsigned find_get_entries(struct address_space *mapping,
1376			  pgoff_t start, unsigned int nr_entries,
1377			  struct page **entries, pgoff_t *indices)
1378{
1379	void **slot;
1380	unsigned int ret = 0;
1381	struct radix_tree_iter iter;
1382
1383	if (!nr_entries)
1384		return 0;
1385
1386	rcu_read_lock();
1387	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1388		struct page *head, *page;
1389repeat:
1390		page = radix_tree_deref_slot(slot);
1391		if (unlikely(!page))
1392			continue;
1393		if (radix_tree_exception(page)) {
1394			if (radix_tree_deref_retry(page)) {
1395				slot = radix_tree_iter_retry(&iter);
1396				continue;
1397			}
1398			/*
1399			 * A shadow entry of a recently evicted page, a swap
1400			 * entry from shmem/tmpfs or a DAX entry.  Return it
1401			 * without attempting to raise page count.
1402			 */
1403			goto export;
1404		}
1405
1406		head = compound_head(page);
1407		if (!page_cache_get_speculative(head))
1408			goto repeat;
1409
1410		/* The page was split under us? */
1411		if (compound_head(page) != head) {
1412			put_page(head);
1413			goto repeat;
1414		}
1415
1416		/* Has the page moved? */
1417		if (unlikely(page != *slot)) {
1418			put_page(head);
1419			goto repeat;
1420		}
1421export:
1422		indices[ret] = iter.index;
1423		entries[ret] = page;
1424		if (++ret == nr_entries)
1425			break;
1426	}
1427	rcu_read_unlock();
1428	return ret;
1429}
1430
1431/**
1432 * find_get_pages - gang pagecache lookup
1433 * @mapping:	The address_space to search
1434 * @start:	The starting page index
1435 * @nr_pages:	The maximum number of pages
1436 * @pages:	Where the resulting pages are placed
1437 *
1438 * find_get_pages() will search for and return a group of up to
1439 * @nr_pages pages in the mapping.  The pages are placed at @pages.
1440 * find_get_pages() takes a reference against the returned pages.
1441 *
1442 * The search returns a group of mapping-contiguous pages with ascending
1443 * indexes.  There may be holes in the indices due to not-present pages.
1444 *
1445 * find_get_pages() returns the number of pages which were found.
1446 */
1447unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1448			    unsigned int nr_pages, struct page **pages)
1449{
1450	struct radix_tree_iter iter;
1451	void **slot;
1452	unsigned ret = 0;
1453
1454	if (unlikely(!nr_pages))
1455		return 0;
1456
1457	rcu_read_lock();
1458	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1459		struct page *head, *page;
 
 
 
 
 
1460repeat:
1461		page = radix_tree_deref_slot(slot);
1462		if (unlikely(!page))
1463			continue;
1464
1465		if (radix_tree_exception(page)) {
1466			if (radix_tree_deref_retry(page)) {
1467				slot = radix_tree_iter_retry(&iter);
1468				continue;
 
 
 
 
 
1469			}
1470			/*
1471			 * A shadow entry of a recently evicted page,
1472			 * or a swap entry from shmem/tmpfs.  Skip
1473			 * over it.
1474			 */
 
1475			continue;
1476		}
1477
1478		head = compound_head(page);
1479		if (!page_cache_get_speculative(head))
1480			goto repeat;
1481
1482		/* The page was split under us? */
1483		if (compound_head(page) != head) {
1484			put_page(head);
1485			goto repeat;
1486		}
1487
1488		/* Has the page moved? */
1489		if (unlikely(page != *slot)) {
1490			put_page(head);
1491			goto repeat;
1492		}
1493
1494		pages[ret] = page;
1495		if (++ret == nr_pages)
1496			break;
1497	}
1498
 
 
 
 
 
 
1499	rcu_read_unlock();
1500	return ret;
1501}
1502
1503/**
1504 * find_get_pages_contig - gang contiguous pagecache lookup
1505 * @mapping:	The address_space to search
1506 * @index:	The starting page index
1507 * @nr_pages:	The maximum number of pages
1508 * @pages:	Where the resulting pages are placed
1509 *
1510 * find_get_pages_contig() works exactly like find_get_pages(), except
1511 * that the returned number of pages are guaranteed to be contiguous.
1512 *
1513 * find_get_pages_contig() returns the number of pages which were found.
1514 */
1515unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1516			       unsigned int nr_pages, struct page **pages)
1517{
1518	struct radix_tree_iter iter;
1519	void **slot;
1520	unsigned int ret = 0;
1521
1522	if (unlikely(!nr_pages))
1523		return 0;
1524
1525	rcu_read_lock();
1526	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1527		struct page *head, *page;
 
 
 
 
1528repeat:
1529		page = radix_tree_deref_slot(slot);
1530		/* The hole, there no reason to continue */
1531		if (unlikely(!page))
1532			break;
1533
1534		if (radix_tree_exception(page)) {
1535			if (radix_tree_deref_retry(page)) {
1536				slot = radix_tree_iter_retry(&iter);
1537				continue;
 
 
 
 
1538			}
1539			/*
1540			 * A shadow entry of a recently evicted page,
1541			 * or a swap entry from shmem/tmpfs.  Stop
1542			 * looking for contiguous pages.
1543			 */
1544			break;
1545		}
1546
1547		head = compound_head(page);
1548		if (!page_cache_get_speculative(head))
1549			goto repeat;
1550
1551		/* The page was split under us? */
1552		if (compound_head(page) != head) {
1553			put_page(head);
1554			goto repeat;
1555		}
1556
1557		/* Has the page moved? */
1558		if (unlikely(page != *slot)) {
1559			put_page(head);
1560			goto repeat;
1561		}
1562
1563		/*
1564		 * must check mapping and index after taking the ref.
1565		 * otherwise we can get both false positives and false
1566		 * negatives, which is just confusing to the caller.
1567		 */
1568		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1569			put_page(page);
1570			break;
1571		}
1572
1573		pages[ret] = page;
1574		if (++ret == nr_pages)
1575			break;
1576	}
1577	rcu_read_unlock();
1578	return ret;
1579}
1580EXPORT_SYMBOL(find_get_pages_contig);
1581
1582/**
1583 * find_get_pages_tag - find and return pages that match @tag
1584 * @mapping:	the address_space to search
1585 * @index:	the starting page index
1586 * @tag:	the tag index
1587 * @nr_pages:	the maximum number of pages
1588 * @pages:	where the resulting pages are placed
1589 *
1590 * Like find_get_pages, except we only return pages which are tagged with
1591 * @tag.   We update @index to index the next page for the traversal.
1592 */
1593unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1594			int tag, unsigned int nr_pages, struct page **pages)
1595{
1596	struct radix_tree_iter iter;
1597	void **slot;
1598	unsigned ret = 0;
1599
1600	if (unlikely(!nr_pages))
1601		return 0;
1602
1603	rcu_read_lock();
1604	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1605				   &iter, *index, tag) {
1606		struct page *head, *page;
 
 
 
1607repeat:
1608		page = radix_tree_deref_slot(slot);
1609		if (unlikely(!page))
1610			continue;
1611
1612		if (radix_tree_exception(page)) {
1613			if (radix_tree_deref_retry(page)) {
1614				slot = radix_tree_iter_retry(&iter);
1615				continue;
 
 
 
 
1616			}
1617			/*
1618			 * A shadow entry of a recently evicted page.
1619			 *
1620			 * Those entries should never be tagged, but
1621			 * this tree walk is lockless and the tags are
1622			 * looked up in bulk, one radix tree node at a
1623			 * time, so there is a sizable window for page
1624			 * reclaim to evict a page we saw tagged.
1625			 *
1626			 * Skip over it.
1627			 */
1628			continue;
1629		}
1630
1631		head = compound_head(page);
1632		if (!page_cache_get_speculative(head))
1633			goto repeat;
1634
1635		/* The page was split under us? */
1636		if (compound_head(page) != head) {
1637			put_page(head);
1638			goto repeat;
1639		}
1640
1641		/* Has the page moved? */
1642		if (unlikely(page != *slot)) {
1643			put_page(head);
1644			goto repeat;
1645		}
1646
1647		pages[ret] = page;
1648		if (++ret == nr_pages)
1649			break;
1650	}
1651
 
 
 
 
 
 
1652	rcu_read_unlock();
1653
1654	if (ret)
1655		*index = pages[ret - 1]->index + 1;
1656
1657	return ret;
1658}
1659EXPORT_SYMBOL(find_get_pages_tag);
1660
1661/**
1662 * find_get_entries_tag - find and return entries that match @tag
1663 * @mapping:	the address_space to search
1664 * @start:	the starting page cache index
1665 * @tag:	the tag index
1666 * @nr_entries:	the maximum number of entries
1667 * @entries:	where the resulting entries are placed
1668 * @indices:	the cache indices corresponding to the entries in @entries
1669 *
1670 * Like find_get_entries, except we only return entries which are tagged with
1671 * @tag.
1672 */
1673unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1674			int tag, unsigned int nr_entries,
1675			struct page **entries, pgoff_t *indices)
1676{
1677	void **slot;
1678	unsigned int ret = 0;
1679	struct radix_tree_iter iter;
1680
1681	if (!nr_entries)
1682		return 0;
1683
1684	rcu_read_lock();
1685	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1686				   &iter, start, tag) {
1687		struct page *head, *page;
1688repeat:
1689		page = radix_tree_deref_slot(slot);
1690		if (unlikely(!page))
1691			continue;
1692		if (radix_tree_exception(page)) {
1693			if (radix_tree_deref_retry(page)) {
1694				slot = radix_tree_iter_retry(&iter);
1695				continue;
1696			}
1697
1698			/*
1699			 * A shadow entry of a recently evicted page, a swap
1700			 * entry from shmem/tmpfs or a DAX entry.  Return it
1701			 * without attempting to raise page count.
1702			 */
1703			goto export;
1704		}
1705
1706		head = compound_head(page);
1707		if (!page_cache_get_speculative(head))
1708			goto repeat;
1709
1710		/* The page was split under us? */
1711		if (compound_head(page) != head) {
1712			put_page(head);
1713			goto repeat;
1714		}
1715
1716		/* Has the page moved? */
1717		if (unlikely(page != *slot)) {
1718			put_page(head);
1719			goto repeat;
1720		}
1721export:
1722		indices[ret] = iter.index;
1723		entries[ret] = page;
1724		if (++ret == nr_entries)
1725			break;
1726	}
1727	rcu_read_unlock();
1728	return ret;
1729}
1730EXPORT_SYMBOL(find_get_entries_tag);
1731
1732/*
1733 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1734 * a _large_ part of the i/o request. Imagine the worst scenario:
1735 *
1736 *      ---R__________________________________________B__________
1737 *         ^ reading here                             ^ bad block(assume 4k)
1738 *
1739 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1740 * => failing the whole request => read(R) => read(R+1) =>
1741 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1742 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1743 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1744 *
1745 * It is going insane. Fix it by quickly scaling down the readahead size.
1746 */
1747static void shrink_readahead_size_eio(struct file *filp,
1748					struct file_ra_state *ra)
1749{
1750	ra->ra_pages /= 4;
1751}
1752
1753/**
1754 * do_generic_file_read - generic file read routine
1755 * @filp:	the file to read
1756 * @ppos:	current file position
1757 * @iter:	data destination
1758 * @written:	already copied
1759 *
1760 * This is a generic file read routine, and uses the
1761 * mapping->a_ops->readpage() function for the actual low-level stuff.
1762 *
1763 * This is really ugly. But the goto's actually try to clarify some
1764 * of the logic when it comes to error handling etc.
1765 */
1766static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1767		struct iov_iter *iter, ssize_t written)
1768{
1769	struct address_space *mapping = filp->f_mapping;
1770	struct inode *inode = mapping->host;
1771	struct file_ra_state *ra = &filp->f_ra;
1772	pgoff_t index;
1773	pgoff_t last_index;
1774	pgoff_t prev_index;
1775	unsigned long offset;      /* offset into pagecache page */
1776	unsigned int prev_offset;
1777	int error = 0;
1778
1779	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1780		return 0;
1781	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1782
1783	index = *ppos >> PAGE_SHIFT;
1784	prev_index = ra->prev_pos >> PAGE_SHIFT;
1785	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1786	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1787	offset = *ppos & ~PAGE_MASK;
1788
1789	for (;;) {
1790		struct page *page;
1791		pgoff_t end_index;
1792		loff_t isize;
1793		unsigned long nr, ret;
1794
1795		cond_resched();
1796find_page:
1797		if (fatal_signal_pending(current)) {
1798			error = -EINTR;
1799			goto out;
1800		}
1801
1802		page = find_get_page(mapping, index);
1803		if (!page) {
1804			page_cache_sync_readahead(mapping,
1805					ra, filp,
1806					index, last_index - index);
1807			page = find_get_page(mapping, index);
1808			if (unlikely(page == NULL))
1809				goto no_cached_page;
1810		}
1811		if (PageReadahead(page)) {
1812			page_cache_async_readahead(mapping,
1813					ra, filp, page,
1814					index, last_index - index);
1815		}
1816		if (!PageUptodate(page)) {
1817			/*
1818			 * See comment in do_read_cache_page on why
1819			 * wait_on_page_locked is used to avoid unnecessarily
1820			 * serialisations and why it's safe.
1821			 */
1822			error = wait_on_page_locked_killable(page);
1823			if (unlikely(error))
1824				goto readpage_error;
1825			if (PageUptodate(page))
1826				goto page_ok;
1827
1828			if (inode->i_blkbits == PAGE_SHIFT ||
1829					!mapping->a_ops->is_partially_uptodate)
1830				goto page_not_up_to_date;
1831			/* pipes can't handle partially uptodate pages */
1832			if (unlikely(iter->type & ITER_PIPE))
1833				goto page_not_up_to_date;
1834			if (!trylock_page(page))
1835				goto page_not_up_to_date;
1836			/* Did it get truncated before we got the lock? */
1837			if (!page->mapping)
1838				goto page_not_up_to_date_locked;
1839			if (!mapping->a_ops->is_partially_uptodate(page,
1840							offset, iter->count))
1841				goto page_not_up_to_date_locked;
1842			unlock_page(page);
1843		}
1844page_ok:
1845		/*
1846		 * i_size must be checked after we know the page is Uptodate.
1847		 *
1848		 * Checking i_size after the check allows us to calculate
1849		 * the correct value for "nr", which means the zero-filled
1850		 * part of the page is not copied back to userspace (unless
1851		 * another truncate extends the file - this is desired though).
1852		 */
1853
1854		isize = i_size_read(inode);
1855		end_index = (isize - 1) >> PAGE_SHIFT;
1856		if (unlikely(!isize || index > end_index)) {
1857			put_page(page);
1858			goto out;
1859		}
1860
1861		/* nr is the maximum number of bytes to copy from this page */
1862		nr = PAGE_SIZE;
1863		if (index == end_index) {
1864			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1865			if (nr <= offset) {
1866				put_page(page);
1867				goto out;
1868			}
1869		}
1870		nr = nr - offset;
1871
1872		/* If users can be writing to this page using arbitrary
1873		 * virtual addresses, take care about potential aliasing
1874		 * before reading the page on the kernel side.
1875		 */
1876		if (mapping_writably_mapped(mapping))
1877			flush_dcache_page(page);
1878
1879		/*
1880		 * When a sequential read accesses a page several times,
1881		 * only mark it as accessed the first time.
1882		 */
1883		if (prev_index != index || offset != prev_offset)
1884			mark_page_accessed(page);
1885		prev_index = index;
1886
1887		/*
1888		 * Ok, we have the page, and it's up-to-date, so
1889		 * now we can copy it to user space...
 
 
 
 
 
 
1890		 */
1891
1892		ret = copy_page_to_iter(page, offset, nr, iter);
1893		offset += ret;
1894		index += offset >> PAGE_SHIFT;
1895		offset &= ~PAGE_MASK;
1896		prev_offset = offset;
1897
1898		put_page(page);
1899		written += ret;
1900		if (!iov_iter_count(iter))
1901			goto out;
1902		if (ret < nr) {
1903			error = -EFAULT;
1904			goto out;
1905		}
1906		continue;
1907
1908page_not_up_to_date:
1909		/* Get exclusive access to the page ... */
1910		error = lock_page_killable(page);
1911		if (unlikely(error))
1912			goto readpage_error;
1913
1914page_not_up_to_date_locked:
1915		/* Did it get truncated before we got the lock? */
1916		if (!page->mapping) {
1917			unlock_page(page);
1918			put_page(page);
1919			continue;
1920		}
1921
1922		/* Did somebody else fill it already? */
1923		if (PageUptodate(page)) {
1924			unlock_page(page);
1925			goto page_ok;
1926		}
1927
1928readpage:
1929		/*
1930		 * A previous I/O error may have been due to temporary
1931		 * failures, eg. multipath errors.
1932		 * PG_error will be set again if readpage fails.
1933		 */
1934		ClearPageError(page);
1935		/* Start the actual read. The read will unlock the page. */
1936		error = mapping->a_ops->readpage(filp, page);
1937
1938		if (unlikely(error)) {
1939			if (error == AOP_TRUNCATED_PAGE) {
1940				put_page(page);
1941				error = 0;
1942				goto find_page;
1943			}
1944			goto readpage_error;
1945		}
1946
1947		if (!PageUptodate(page)) {
1948			error = lock_page_killable(page);
1949			if (unlikely(error))
1950				goto readpage_error;
1951			if (!PageUptodate(page)) {
1952				if (page->mapping == NULL) {
1953					/*
1954					 * invalidate_mapping_pages got it
1955					 */
1956					unlock_page(page);
1957					put_page(page);
1958					goto find_page;
1959				}
1960				unlock_page(page);
1961				shrink_readahead_size_eio(filp, ra);
1962				error = -EIO;
1963				goto readpage_error;
1964			}
1965			unlock_page(page);
1966		}
1967
1968		goto page_ok;
1969
1970readpage_error:
1971		/* UHHUH! A synchronous read error occurred. Report it */
1972		put_page(page);
 
1973		goto out;
1974
1975no_cached_page:
1976		/*
1977		 * Ok, it wasn't cached, so we need to create a new
1978		 * page..
1979		 */
1980		page = page_cache_alloc_cold(mapping);
1981		if (!page) {
1982			error = -ENOMEM;
1983			goto out;
1984		}
1985		error = add_to_page_cache_lru(page, mapping, index,
1986				mapping_gfp_constraint(mapping, GFP_KERNEL));
1987		if (error) {
1988			put_page(page);
1989			if (error == -EEXIST) {
1990				error = 0;
1991				goto find_page;
1992			}
1993			goto out;
1994		}
1995		goto readpage;
1996	}
1997
1998out:
1999	ra->prev_pos = prev_index;
2000	ra->prev_pos <<= PAGE_SHIFT;
2001	ra->prev_pos |= prev_offset;
2002
2003	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2004	file_accessed(filp);
2005	return written ? written : error;
2006}
2007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2008/**
2009 * generic_file_read_iter - generic filesystem read routine
2010 * @iocb:	kernel I/O control block
2011 * @iter:	destination for the data read
 
 
2012 *
2013 * This is the "read_iter()" routine for all filesystems
2014 * that can use the page cache directly.
2015 */
2016ssize_t
2017generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
 
2018{
2019	struct file *file = iocb->ki_filp;
2020	ssize_t retval = 0;
2021	size_t count = iov_iter_count(iter);
 
 
 
 
 
 
 
 
2022
2023	if (!count)
2024		goto out; /* skip atime */
2025
2026	if (iocb->ki_flags & IOCB_DIRECT) {
2027		struct address_space *mapping = file->f_mapping;
2028		struct inode *inode = mapping->host;
2029		struct iov_iter data = *iter;
2030		loff_t size;
 
 
2031
 
 
 
 
2032		size = i_size_read(inode);
2033		retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2034					iocb->ki_pos + count - 1);
2035		if (retval < 0)
2036			goto out;
 
 
 
 
 
 
 
2037
2038		file_accessed(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
2039
2040		retval = mapping->a_ops->direct_IO(iocb, &data);
2041		if (retval >= 0) {
2042			iocb->ki_pos += retval;
2043			iov_iter_advance(iter, retval);
2044		}
2045
2046		/*
2047		 * Btrfs can have a short DIO read if we encounter
2048		 * compressed extents, so if there was an error, or if
2049		 * we've already read everything we wanted to, or if
2050		 * there was a short read because we hit EOF, go ahead
2051		 * and return.  Otherwise fallthrough to buffered io for
2052		 * the rest of the read.  Buffered reads will not work for
2053		 * DAX files, so don't bother trying.
2054		 */
2055		if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
2056		    IS_DAX(inode))
2057			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2058	}
2059
2060	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2061out:
 
2062	return retval;
2063}
2064EXPORT_SYMBOL(generic_file_read_iter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2065
2066#ifdef CONFIG_MMU
2067/**
2068 * page_cache_read - adds requested page to the page cache if not already there
2069 * @file:	file to read
2070 * @offset:	page index
2071 * @gfp_mask:	memory allocation flags
2072 *
2073 * This adds the requested page to the page cache if it isn't already there,
2074 * and schedules an I/O to read in its contents from disk.
2075 */
2076static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2077{
2078	struct address_space *mapping = file->f_mapping;
2079	struct page *page;
2080	int ret;
2081
2082	do {
2083		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2084		if (!page)
2085			return -ENOMEM;
2086
2087		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2088		if (ret == 0)
2089			ret = mapping->a_ops->readpage(file, page);
2090		else if (ret == -EEXIST)
2091			ret = 0; /* losing race to add is OK */
2092
2093		put_page(page);
2094
2095	} while (ret == AOP_TRUNCATED_PAGE);
2096
2097	return ret;
2098}
2099
2100#define MMAP_LOTSAMISS  (100)
2101
2102/*
2103 * Synchronous readahead happens when we don't even find
2104 * a page in the page cache at all.
2105 */
2106static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2107				   struct file_ra_state *ra,
2108				   struct file *file,
2109				   pgoff_t offset)
2110{
 
2111	struct address_space *mapping = file->f_mapping;
2112
2113	/* If we don't want any read-ahead, don't bother */
2114	if (vma->vm_flags & VM_RAND_READ)
2115		return;
2116	if (!ra->ra_pages)
2117		return;
2118
2119	if (vma->vm_flags & VM_SEQ_READ) {
2120		page_cache_sync_readahead(mapping, ra, file, offset,
2121					  ra->ra_pages);
2122		return;
2123	}
2124
2125	/* Avoid banging the cache line if not needed */
2126	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2127		ra->mmap_miss++;
2128
2129	/*
2130	 * Do we miss much more than hit in this file? If so,
2131	 * stop bothering with read-ahead. It will only hurt.
2132	 */
2133	if (ra->mmap_miss > MMAP_LOTSAMISS)
2134		return;
2135
2136	/*
2137	 * mmap read-around
2138	 */
2139	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2140	ra->size = ra->ra_pages;
2141	ra->async_size = ra->ra_pages / 4;
 
2142	ra_submit(ra, mapping, file);
2143}
2144
2145/*
2146 * Asynchronous readahead happens when we find the page and PG_readahead,
2147 * so we want to possibly extend the readahead further..
2148 */
2149static void do_async_mmap_readahead(struct vm_area_struct *vma,
2150				    struct file_ra_state *ra,
2151				    struct file *file,
2152				    struct page *page,
2153				    pgoff_t offset)
2154{
2155	struct address_space *mapping = file->f_mapping;
2156
2157	/* If we don't want any read-ahead, don't bother */
2158	if (vma->vm_flags & VM_RAND_READ)
2159		return;
2160	if (ra->mmap_miss > 0)
2161		ra->mmap_miss--;
2162	if (PageReadahead(page))
2163		page_cache_async_readahead(mapping, ra, file,
2164					   page, offset, ra->ra_pages);
2165}
2166
2167/**
2168 * filemap_fault - read in file data for page fault handling
2169 * @vma:	vma in which the fault was taken
2170 * @vmf:	struct vm_fault containing details of the fault
2171 *
2172 * filemap_fault() is invoked via the vma operations vector for a
2173 * mapped memory region to read in file data during a page fault.
2174 *
2175 * The goto's are kind of ugly, but this streamlines the normal case of having
2176 * it in the page cache, and handles the special cases reasonably without
2177 * having a lot of duplicated code.
2178 *
2179 * vma->vm_mm->mmap_sem must be held on entry.
2180 *
2181 * If our return value has VM_FAULT_RETRY set, it's because
2182 * lock_page_or_retry() returned 0.
2183 * The mmap_sem has usually been released in this case.
2184 * See __lock_page_or_retry() for the exception.
2185 *
2186 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2187 * has not been released.
2188 *
2189 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2190 */
2191int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2192{
2193	int error;
2194	struct file *file = vma->vm_file;
2195	struct address_space *mapping = file->f_mapping;
2196	struct file_ra_state *ra = &file->f_ra;
2197	struct inode *inode = mapping->host;
2198	pgoff_t offset = vmf->pgoff;
2199	struct page *page;
2200	loff_t size;
2201	int ret = 0;
2202
2203	size = round_up(i_size_read(inode), PAGE_SIZE);
2204	if (offset >= size >> PAGE_SHIFT)
2205		return VM_FAULT_SIGBUS;
2206
2207	/*
2208	 * Do we have something in the page cache already?
2209	 */
2210	page = find_get_page(mapping, offset);
2211	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2212		/*
2213		 * We found the page, so try async readahead before
2214		 * waiting for the lock.
2215		 */
2216		do_async_mmap_readahead(vma, ra, file, page, offset);
2217	} else if (!page) {
2218		/* No page in the page cache at all */
2219		do_sync_mmap_readahead(vma, ra, file, offset);
2220		count_vm_event(PGMAJFAULT);
2221		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2222		ret = VM_FAULT_MAJOR;
2223retry_find:
2224		page = find_get_page(mapping, offset);
2225		if (!page)
2226			goto no_cached_page;
2227	}
2228
2229	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2230		put_page(page);
2231		return ret | VM_FAULT_RETRY;
2232	}
2233
2234	/* Did it get truncated? */
2235	if (unlikely(page->mapping != mapping)) {
2236		unlock_page(page);
2237		put_page(page);
2238		goto retry_find;
2239	}
2240	VM_BUG_ON_PAGE(page->index != offset, page);
2241
2242	/*
2243	 * We have a locked page in the page cache, now we need to check
2244	 * that it's up-to-date. If not, it is going to be due to an error.
2245	 */
2246	if (unlikely(!PageUptodate(page)))
2247		goto page_not_uptodate;
2248
2249	/*
2250	 * Found the page and have a reference on it.
2251	 * We must recheck i_size under page lock.
2252	 */
2253	size = round_up(i_size_read(inode), PAGE_SIZE);
2254	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2255		unlock_page(page);
2256		put_page(page);
2257		return VM_FAULT_SIGBUS;
2258	}
2259
2260	vmf->page = page;
2261	return ret | VM_FAULT_LOCKED;
2262
2263no_cached_page:
2264	/*
2265	 * We're only likely to ever get here if MADV_RANDOM is in
2266	 * effect.
2267	 */
2268	error = page_cache_read(file, offset, vmf->gfp_mask);
2269
2270	/*
2271	 * The page we want has now been added to the page cache.
2272	 * In the unlikely event that someone removed it in the
2273	 * meantime, we'll just come back here and read it again.
2274	 */
2275	if (error >= 0)
2276		goto retry_find;
2277
2278	/*
2279	 * An error return from page_cache_read can result if the
2280	 * system is low on memory, or a problem occurs while trying
2281	 * to schedule I/O.
2282	 */
2283	if (error == -ENOMEM)
2284		return VM_FAULT_OOM;
2285	return VM_FAULT_SIGBUS;
2286
2287page_not_uptodate:
2288	/*
2289	 * Umm, take care of errors if the page isn't up-to-date.
2290	 * Try to re-read it _once_. We do this synchronously,
2291	 * because there really aren't any performance issues here
2292	 * and we need to check for errors.
2293	 */
2294	ClearPageError(page);
2295	error = mapping->a_ops->readpage(file, page);
2296	if (!error) {
2297		wait_on_page_locked(page);
2298		if (!PageUptodate(page))
2299			error = -EIO;
2300	}
2301	put_page(page);
2302
2303	if (!error || error == AOP_TRUNCATED_PAGE)
2304		goto retry_find;
2305
2306	/* Things didn't work out. Return zero to tell the mm layer so. */
2307	shrink_readahead_size_eio(file, ra);
2308	return VM_FAULT_SIGBUS;
2309}
2310EXPORT_SYMBOL(filemap_fault);
2311
2312void filemap_map_pages(struct vm_fault *vmf,
2313		pgoff_t start_pgoff, pgoff_t end_pgoff)
2314{
2315	struct radix_tree_iter iter;
2316	void **slot;
2317	struct file *file = vmf->vma->vm_file;
2318	struct address_space *mapping = file->f_mapping;
2319	pgoff_t last_pgoff = start_pgoff;
2320	loff_t size;
2321	struct page *head, *page;
2322
2323	rcu_read_lock();
2324	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2325			start_pgoff) {
2326		if (iter.index > end_pgoff)
2327			break;
2328repeat:
2329		page = radix_tree_deref_slot(slot);
2330		if (unlikely(!page))
2331			goto next;
2332		if (radix_tree_exception(page)) {
2333			if (radix_tree_deref_retry(page)) {
2334				slot = radix_tree_iter_retry(&iter);
2335				continue;
2336			}
2337			goto next;
2338		}
2339
2340		head = compound_head(page);
2341		if (!page_cache_get_speculative(head))
2342			goto repeat;
2343
2344		/* The page was split under us? */
2345		if (compound_head(page) != head) {
2346			put_page(head);
2347			goto repeat;
2348		}
2349
2350		/* Has the page moved? */
2351		if (unlikely(page != *slot)) {
2352			put_page(head);
2353			goto repeat;
2354		}
2355
2356		if (!PageUptodate(page) ||
2357				PageReadahead(page) ||
2358				PageHWPoison(page))
2359			goto skip;
2360		if (!trylock_page(page))
2361			goto skip;
2362
2363		if (page->mapping != mapping || !PageUptodate(page))
2364			goto unlock;
2365
2366		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2367		if (page->index >= size >> PAGE_SHIFT)
2368			goto unlock;
2369
2370		if (file->f_ra.mmap_miss > 0)
2371			file->f_ra.mmap_miss--;
2372
2373		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2374		if (vmf->pte)
2375			vmf->pte += iter.index - last_pgoff;
2376		last_pgoff = iter.index;
2377		if (alloc_set_pte(vmf, NULL, page))
2378			goto unlock;
2379		unlock_page(page);
2380		goto next;
2381unlock:
2382		unlock_page(page);
2383skip:
2384		put_page(page);
2385next:
2386		/* Huge page is mapped? No need to proceed. */
2387		if (pmd_trans_huge(*vmf->pmd))
2388			break;
2389		if (iter.index == end_pgoff)
2390			break;
2391	}
2392	rcu_read_unlock();
2393}
2394EXPORT_SYMBOL(filemap_map_pages);
2395
2396int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2397{
2398	struct page *page = vmf->page;
2399	struct inode *inode = file_inode(vma->vm_file);
2400	int ret = VM_FAULT_LOCKED;
2401
2402	sb_start_pagefault(inode->i_sb);
2403	file_update_time(vma->vm_file);
2404	lock_page(page);
2405	if (page->mapping != inode->i_mapping) {
2406		unlock_page(page);
2407		ret = VM_FAULT_NOPAGE;
2408		goto out;
2409	}
2410	/*
2411	 * We mark the page dirty already here so that when freeze is in
2412	 * progress, we are guaranteed that writeback during freezing will
2413	 * see the dirty page and writeprotect it again.
2414	 */
2415	set_page_dirty(page);
2416	wait_for_stable_page(page);
2417out:
2418	sb_end_pagefault(inode->i_sb);
2419	return ret;
2420}
2421EXPORT_SYMBOL(filemap_page_mkwrite);
2422
2423const struct vm_operations_struct generic_file_vm_ops = {
2424	.fault		= filemap_fault,
2425	.map_pages	= filemap_map_pages,
2426	.page_mkwrite	= filemap_page_mkwrite,
2427};
2428
2429/* This is used for a general mmap of a disk file */
2430
2431int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2432{
2433	struct address_space *mapping = file->f_mapping;
2434
2435	if (!mapping->a_ops->readpage)
2436		return -ENOEXEC;
2437	file_accessed(file);
2438	vma->vm_ops = &generic_file_vm_ops;
 
2439	return 0;
2440}
2441
2442/*
2443 * This is for filesystems which do not implement ->writepage.
2444 */
2445int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2446{
2447	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2448		return -EINVAL;
2449	return generic_file_mmap(file, vma);
2450}
2451#else
2452int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2453{
2454	return -ENOSYS;
2455}
2456int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2457{
2458	return -ENOSYS;
2459}
2460#endif /* CONFIG_MMU */
2461
2462EXPORT_SYMBOL(generic_file_mmap);
2463EXPORT_SYMBOL(generic_file_readonly_mmap);
2464
2465static struct page *wait_on_page_read(struct page *page)
2466{
2467	if (!IS_ERR(page)) {
2468		wait_on_page_locked(page);
2469		if (!PageUptodate(page)) {
2470			put_page(page);
2471			page = ERR_PTR(-EIO);
2472		}
2473	}
2474	return page;
2475}
2476
2477static struct page *do_read_cache_page(struct address_space *mapping,
2478				pgoff_t index,
2479				int (*filler)(void *, struct page *),
2480				void *data,
2481				gfp_t gfp)
2482{
2483	struct page *page;
2484	int err;
2485repeat:
2486	page = find_get_page(mapping, index);
2487	if (!page) {
2488		page = __page_cache_alloc(gfp | __GFP_COLD);
2489		if (!page)
2490			return ERR_PTR(-ENOMEM);
2491		err = add_to_page_cache_lru(page, mapping, index, gfp);
2492		if (unlikely(err)) {
2493			put_page(page);
2494			if (err == -EEXIST)
2495				goto repeat;
2496			/* Presumably ENOMEM for radix tree node */
2497			return ERR_PTR(err);
2498		}
2499
2500filler:
2501		err = filler(data, page);
2502		if (err < 0) {
2503			put_page(page);
2504			return ERR_PTR(err);
2505		}
 
 
 
 
 
 
 
 
 
2506
2507		page = wait_on_page_read(page);
2508		if (IS_ERR(page))
2509			return page;
2510		goto out;
2511	}
2512	if (PageUptodate(page))
2513		goto out;
2514
2515	/*
2516	 * Page is not up to date and may be locked due one of the following
2517	 * case a: Page is being filled and the page lock is held
2518	 * case b: Read/write error clearing the page uptodate status
2519	 * case c: Truncation in progress (page locked)
2520	 * case d: Reclaim in progress
2521	 *
2522	 * Case a, the page will be up to date when the page is unlocked.
2523	 *    There is no need to serialise on the page lock here as the page
2524	 *    is pinned so the lock gives no additional protection. Even if the
2525	 *    the page is truncated, the data is still valid if PageUptodate as
2526	 *    it's a race vs truncate race.
2527	 * Case b, the page will not be up to date
2528	 * Case c, the page may be truncated but in itself, the data may still
2529	 *    be valid after IO completes as it's a read vs truncate race. The
2530	 *    operation must restart if the page is not uptodate on unlock but
2531	 *    otherwise serialising on page lock to stabilise the mapping gives
2532	 *    no additional guarantees to the caller as the page lock is
2533	 *    released before return.
2534	 * Case d, similar to truncation. If reclaim holds the page lock, it
2535	 *    will be a race with remove_mapping that determines if the mapping
2536	 *    is valid on unlock but otherwise the data is valid and there is
2537	 *    no need to serialise with page lock.
2538	 *
2539	 * As the page lock gives no additional guarantee, we optimistically
2540	 * wait on the page to be unlocked and check if it's up to date and
2541	 * use the page if it is. Otherwise, the page lock is required to
2542	 * distinguish between the different cases. The motivation is that we
2543	 * avoid spurious serialisations and wakeups when multiple processes
2544	 * wait on the same page for IO to complete.
2545	 */
2546	wait_on_page_locked(page);
2547	if (PageUptodate(page))
2548		goto out;
2549
2550	/* Distinguish between all the cases under the safety of the lock */
2551	lock_page(page);
2552
2553	/* Case c or d, restart the operation */
2554	if (!page->mapping) {
2555		unlock_page(page);
2556		put_page(page);
2557		goto repeat;
2558	}
2559
2560	/* Someone else locked and filled the page in a very small window */
2561	if (PageUptodate(page)) {
2562		unlock_page(page);
2563		goto out;
2564	}
2565	goto filler;
2566
 
 
 
2567out:
2568	mark_page_accessed(page);
2569	return page;
2570}
2571
2572/**
2573 * read_cache_page - read into page cache, fill it if needed
2574 * @mapping:	the page's address_space
2575 * @index:	the page index
2576 * @filler:	function to perform the read
2577 * @data:	first arg to filler(data, page) function, often left as NULL
2578 *
 
 
 
2579 * Read into the page cache. If a page already exists, and PageUptodate() is
2580 * not set, try to fill the page and wait for it to become unlocked.
2581 *
2582 * If the page does not get brought uptodate, return -EIO.
2583 */
2584struct page *read_cache_page(struct address_space *mapping,
2585				pgoff_t index,
2586				int (*filler)(void *, struct page *),
2587				void *data)
2588{
2589	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2590}
2591EXPORT_SYMBOL(read_cache_page);
 
 
 
 
 
 
 
 
 
 
 
 
2592
2593/**
2594 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2595 * @mapping:	the page's address_space
2596 * @index:	the page index
2597 * @gfp:	the page allocator flags to use if allocating
2598 *
2599 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2600 * any new page allocations done using the specified allocation flags.
 
 
 
2601 *
2602 * If the page does not get brought uptodate, return -EIO.
2603 */
2604struct page *read_cache_page_gfp(struct address_space *mapping,
2605				pgoff_t index,
2606				gfp_t gfp)
2607{
2608	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2609
2610	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2611}
2612EXPORT_SYMBOL(read_cache_page_gfp);
2613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2614/*
2615 * Performs necessary checks before doing a write
2616 *
2617 * Can adjust writing position or amount of bytes to write.
2618 * Returns appropriate error code that caller should return or
2619 * zero in case that write should be allowed.
2620 */
2621inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2622{
2623	struct file *file = iocb->ki_filp;
2624	struct inode *inode = file->f_mapping->host;
2625	unsigned long limit = rlimit(RLIMIT_FSIZE);
2626	loff_t pos;
2627
2628	if (!iov_iter_count(from))
2629		return 0;
2630
2631	/* FIXME: this is for backwards compatibility with 2.4 */
2632	if (iocb->ki_flags & IOCB_APPEND)
2633		iocb->ki_pos = i_size_read(inode);
2634
2635	pos = iocb->ki_pos;
2636
2637	if (limit != RLIM_INFINITY) {
2638		if (iocb->ki_pos >= limit) {
2639			send_sig(SIGXFSZ, current, 0);
2640			return -EFBIG;
 
 
 
2641		}
2642		iov_iter_truncate(from, limit - (unsigned long)pos);
2643	}
2644
2645	/*
2646	 * LFS rule
2647	 */
2648	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2649				!(file->f_flags & O_LARGEFILE))) {
2650		if (pos >= MAX_NON_LFS)
2651			return -EFBIG;
2652		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
 
 
 
2653	}
2654
2655	/*
2656	 * Are we about to exceed the fs block limit ?
2657	 *
2658	 * If we have written data it becomes a short write.  If we have
2659	 * exceeded without writing data we send a signal and return EFBIG.
2660	 * Linus frestrict idea will clean these up nicely..
2661	 */
2662	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2663		return -EFBIG;
 
 
 
 
 
2664
2665	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2666	return iov_iter_count(from);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2667}
2668EXPORT_SYMBOL(generic_write_checks);
2669
2670int pagecache_write_begin(struct file *file, struct address_space *mapping,
2671				loff_t pos, unsigned len, unsigned flags,
2672				struct page **pagep, void **fsdata)
2673{
2674	const struct address_space_operations *aops = mapping->a_ops;
2675
2676	return aops->write_begin(file, mapping, pos, len, flags,
2677							pagep, fsdata);
2678}
2679EXPORT_SYMBOL(pagecache_write_begin);
2680
2681int pagecache_write_end(struct file *file, struct address_space *mapping,
2682				loff_t pos, unsigned len, unsigned copied,
2683				struct page *page, void *fsdata)
2684{
2685	const struct address_space_operations *aops = mapping->a_ops;
2686
 
2687	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2688}
2689EXPORT_SYMBOL(pagecache_write_end);
2690
2691ssize_t
2692generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
 
 
2693{
2694	struct file	*file = iocb->ki_filp;
2695	struct address_space *mapping = file->f_mapping;
2696	struct inode	*inode = mapping->host;
2697	loff_t		pos = iocb->ki_pos;
2698	ssize_t		written;
2699	size_t		write_len;
2700	pgoff_t		end;
2701	struct iov_iter data;
2702
2703	write_len = iov_iter_count(from);
2704	end = (pos + write_len - 1) >> PAGE_SHIFT;
 
 
 
2705
2706	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2707	if (written)
2708		goto out;
2709
2710	/*
2711	 * After a write we want buffered reads to be sure to go to disk to get
2712	 * the new data.  We invalidate clean cached page from the region we're
2713	 * about to write.  We do this *before* the write so that we can return
2714	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2715	 */
2716	if (mapping->nrpages) {
2717		written = invalidate_inode_pages2_range(mapping,
2718					pos >> PAGE_SHIFT, end);
2719		/*
2720		 * If a page can not be invalidated, return 0 to fall back
2721		 * to buffered write.
2722		 */
2723		if (written) {
2724			if (written == -EBUSY)
2725				return 0;
2726			goto out;
2727		}
2728	}
2729
2730	data = *from;
2731	written = mapping->a_ops->direct_IO(iocb, &data);
2732
2733	/*
2734	 * Finally, try again to invalidate clean pages which might have been
2735	 * cached by non-direct readahead, or faulted in by get_user_pages()
2736	 * if the source of the write was an mmap'ed region of the file
2737	 * we're writing.  Either one is a pretty crazy thing to do,
2738	 * so we don't support it 100%.  If this invalidation
2739	 * fails, tough, the write still worked...
2740	 */
2741	if (mapping->nrpages) {
2742		invalidate_inode_pages2_range(mapping,
2743					      pos >> PAGE_SHIFT, end);
2744	}
2745
2746	if (written > 0) {
2747		pos += written;
2748		iov_iter_advance(from, written);
2749		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2750			i_size_write(inode, pos);
2751			mark_inode_dirty(inode);
2752		}
2753		iocb->ki_pos = pos;
2754	}
2755out:
2756	return written;
2757}
2758EXPORT_SYMBOL(generic_file_direct_write);
2759
2760/*
2761 * Find or create a page at the given pagecache position. Return the locked
2762 * page. This function is specifically for buffered writes.
2763 */
2764struct page *grab_cache_page_write_begin(struct address_space *mapping,
2765					pgoff_t index, unsigned flags)
2766{
 
2767	struct page *page;
2768	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2769
2770	if (flags & AOP_FLAG_NOFS)
2771		fgp_flags |= FGP_NOFS;
2772
2773	page = pagecache_get_page(mapping, index, fgp_flags,
2774			mapping_gfp_mask(mapping));
2775	if (page)
2776		wait_for_stable_page(page);
2777
 
 
 
 
 
 
 
 
 
 
 
 
 
2778	return page;
2779}
2780EXPORT_SYMBOL(grab_cache_page_write_begin);
2781
2782ssize_t generic_perform_write(struct file *file,
2783				struct iov_iter *i, loff_t pos)
2784{
2785	struct address_space *mapping = file->f_mapping;
2786	const struct address_space_operations *a_ops = mapping->a_ops;
2787	long status = 0;
2788	ssize_t written = 0;
2789	unsigned int flags = 0;
2790
2791	/*
2792	 * Copies from kernel address space cannot fail (NFSD is a big user).
2793	 */
2794	if (!iter_is_iovec(i))
2795		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2796
2797	do {
2798		struct page *page;
2799		unsigned long offset;	/* Offset into pagecache page */
2800		unsigned long bytes;	/* Bytes to write to page */
2801		size_t copied;		/* Bytes copied from user */
2802		void *fsdata;
2803
2804		offset = (pos & (PAGE_SIZE - 1));
2805		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2806						iov_iter_count(i));
2807
2808again:
 
2809		/*
2810		 * Bring in the user page that we will copy from _first_.
2811		 * Otherwise there's a nasty deadlock on copying from the
2812		 * same page as we're writing to, without it being marked
2813		 * up-to-date.
2814		 *
2815		 * Not only is this an optimisation, but it is also required
2816		 * to check that the address is actually valid, when atomic
2817		 * usercopies are used, below.
2818		 */
2819		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2820			status = -EFAULT;
2821			break;
2822		}
2823
2824		if (fatal_signal_pending(current)) {
2825			status = -EINTR;
2826			break;
2827		}
2828
2829		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2830						&page, &fsdata);
2831		if (unlikely(status < 0))
2832			break;
2833
2834		if (mapping_writably_mapped(mapping))
2835			flush_dcache_page(page);
2836
 
2837		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
 
2838		flush_dcache_page(page);
2839
 
2840		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2841						page, fsdata);
2842		if (unlikely(status < 0))
2843			break;
2844		copied = status;
2845
2846		cond_resched();
2847
2848		iov_iter_advance(i, copied);
2849		if (unlikely(copied == 0)) {
2850			/*
2851			 * If we were unable to copy any data at all, we must
2852			 * fall back to a single segment length write.
2853			 *
2854			 * If we didn't fallback here, we could livelock
2855			 * because not all segments in the iov can be copied at
2856			 * once without a pagefault.
2857			 */
2858			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2859						iov_iter_single_seg_count(i));
2860			goto again;
2861		}
2862		pos += copied;
2863		written += copied;
2864
2865		balance_dirty_pages_ratelimited(mapping);
 
2866	} while (iov_iter_count(i));
2867
2868	return written ? written : status;
2869}
2870EXPORT_SYMBOL(generic_perform_write);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2871
2872/**
2873 * __generic_file_write_iter - write data to a file
2874 * @iocb:	IO state structure (file, offset, etc.)
2875 * @from:	iov_iter with data to write
 
 
2876 *
2877 * This function does all the work needed for actually writing data to a
2878 * file. It does all basic checks, removes SUID from the file, updates
2879 * modification times and calls proper subroutines depending on whether we
2880 * do direct IO or a standard buffered write.
2881 *
2882 * It expects i_mutex to be grabbed unless we work on a block device or similar
2883 * object which does not need locking at all.
2884 *
2885 * This function does *not* take care of syncing data in case of O_SYNC write.
2886 * A caller has to handle it. This is mainly due to the fact that we want to
2887 * avoid syncing under i_mutex.
2888 */
2889ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
2890{
2891	struct file *file = iocb->ki_filp;
2892	struct address_space * mapping = file->f_mapping;
 
 
2893	struct inode 	*inode = mapping->host;
2894	ssize_t		written = 0;
 
2895	ssize_t		err;
2896	ssize_t		status;
 
 
 
 
 
 
 
 
 
2897
2898	/* We can write back this queue in page reclaim */
2899	current->backing_dev_info = inode_to_bdi(inode);
2900	err = file_remove_privs(file);
 
 
2901	if (err)
2902		goto out;
2903
2904	err = file_update_time(file);
 
 
 
2905	if (err)
2906		goto out;
2907
2908	if (iocb->ki_flags & IOCB_DIRECT) {
2909		loff_t pos, endbyte;
2910
2911		written = generic_file_direct_write(iocb, from);
 
 
 
 
 
 
 
 
2912		/*
2913		 * If the write stopped short of completing, fall back to
2914		 * buffered writes.  Some filesystems do this for writes to
2915		 * holes, for example.  For DAX files, a buffered write will
2916		 * not succeed (even if it did, DAX does not handle dirty
2917		 * page-cache pages correctly).
2918		 */
2919		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2920			goto out;
2921
2922		status = generic_perform_write(file, from, pos = iocb->ki_pos);
 
2923		/*
2924		 * If generic_perform_write() returned a synchronous error
2925		 * then we want to return the number of bytes which were
2926		 * direct-written, or the error code if that was zero.  Note
2927		 * that this differs from normal direct-io semantics, which
2928		 * will return -EFOO even if some bytes were written.
2929		 */
2930		if (unlikely(status < 0)) {
2931			err = status;
2932			goto out;
2933		}
 
2934		/*
2935		 * We need to ensure that the page cache pages are written to
2936		 * disk and invalidated to preserve the expected O_DIRECT
2937		 * semantics.
2938		 */
2939		endbyte = pos + status - 1;
2940		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2941		if (err == 0) {
2942			iocb->ki_pos = endbyte + 1;
2943			written += status;
2944			invalidate_mapping_pages(mapping,
2945						 pos >> PAGE_SHIFT,
2946						 endbyte >> PAGE_SHIFT);
2947		} else {
2948			/*
2949			 * We don't know how much we wrote, so just return
2950			 * the number of bytes which were direct-written
2951			 */
2952		}
2953	} else {
2954		written = generic_perform_write(file, from, iocb->ki_pos);
2955		if (likely(written > 0))
2956			iocb->ki_pos += written;
2957	}
2958out:
2959	current->backing_dev_info = NULL;
2960	return written ? written : err;
2961}
2962EXPORT_SYMBOL(__generic_file_write_iter);
2963
2964/**
2965 * generic_file_write_iter - write data to a file
2966 * @iocb:	IO state structure
2967 * @from:	iov_iter with data to write
 
 
2968 *
2969 * This is a wrapper around __generic_file_write_iter() to be used by most
2970 * filesystems. It takes care of syncing the file in case of O_SYNC file
2971 * and acquires i_mutex as needed.
2972 */
2973ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
2974{
2975	struct file *file = iocb->ki_filp;
2976	struct inode *inode = file->f_mapping->host;
 
2977	ssize_t ret;
2978
2979	inode_lock(inode);
2980	ret = generic_write_checks(iocb, from);
2981	if (ret > 0)
2982		ret = __generic_file_write_iter(iocb, from);
2983	inode_unlock(inode);
 
2984
2985	if (ret > 0)
2986		ret = generic_write_sync(iocb, ret);
 
 
 
 
 
 
2987	return ret;
2988}
2989EXPORT_SYMBOL(generic_file_write_iter);
2990
2991/**
2992 * try_to_release_page() - release old fs-specific metadata on a page
2993 *
2994 * @page: the page which the kernel is trying to free
2995 * @gfp_mask: memory allocation flags (and I/O mode)
2996 *
2997 * The address_space is to try to release any data against the page
2998 * (presumably at page->private).  If the release was successful, return `1'.
2999 * Otherwise return zero.
3000 *
3001 * This may also be called if PG_fscache is set on a page, indicating that the
3002 * page is known to the local caching routines.
3003 *
3004 * The @gfp_mask argument specifies whether I/O may be performed to release
3005 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3006 *
3007 */
3008int try_to_release_page(struct page *page, gfp_t gfp_mask)
3009{
3010	struct address_space * const mapping = page->mapping;
3011
3012	BUG_ON(!PageLocked(page));
3013	if (PageWriteback(page))
3014		return 0;
3015
3016	if (mapping && mapping->a_ops->releasepage)
3017		return mapping->a_ops->releasepage(page, gfp_mask);
3018	return try_to_free_buffers(page);
3019}
3020
3021EXPORT_SYMBOL(try_to_release_page);