Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  arch/sparc64/mm/init.c
   3 *
   4 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   5 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   6 */
   7 
   8#include <linux/module.h>
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/string.h>
  12#include <linux/init.h>
  13#include <linux/bootmem.h>
  14#include <linux/mm.h>
  15#include <linux/hugetlb.h>
  16#include <linux/initrd.h>
  17#include <linux/swap.h>
  18#include <linux/pagemap.h>
  19#include <linux/poison.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/kprobes.h>
  23#include <linux/cache.h>
  24#include <linux/sort.h>
 
  25#include <linux/percpu.h>
  26#include <linux/memblock.h>
  27#include <linux/mmzone.h>
  28#include <linux/gfp.h>
  29
  30#include <asm/head.h>
  31#include <asm/system.h>
  32#include <asm/page.h>
  33#include <asm/pgalloc.h>
  34#include <asm/pgtable.h>
  35#include <asm/oplib.h>
  36#include <asm/iommu.h>
  37#include <asm/io.h>
  38#include <asm/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/tlbflush.h>
  41#include <asm/dma.h>
  42#include <asm/starfire.h>
  43#include <asm/tlb.h>
  44#include <asm/spitfire.h>
  45#include <asm/sections.h>
  46#include <asm/tsb.h>
  47#include <asm/hypervisor.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/cpudata.h>
 
  51#include <asm/irq.h>
  52
  53#include "init_64.h"
  54
  55unsigned long kern_linear_pte_xor[2] __read_mostly;
 
  56
  57/* A bitmap, one bit for every 256MB of physical memory.  If the bit
  58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60 */
  61unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  62
  63#ifndef CONFIG_DEBUG_PAGEALLOC
  64/* A special kernel TSB for 4MB and 256MB linear mappings.
  65 * Space is allocated for this right after the trap table
  66 * in arch/sparc64/kernel/head.S
  67 */
  68extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  69#endif
 
 
 
 
 
  70
  71#define MAX_BANKS	32
 
  72
  73static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
  74static int pavail_ents __devinitdata;
  75
  76static int cmp_p64(const void *a, const void *b)
  77{
  78	const struct linux_prom64_registers *x = a, *y = b;
  79
  80	if (x->phys_addr > y->phys_addr)
  81		return 1;
  82	if (x->phys_addr < y->phys_addr)
  83		return -1;
  84	return 0;
  85}
  86
  87static void __init read_obp_memory(const char *property,
  88				   struct linux_prom64_registers *regs,
  89				   int *num_ents)
  90{
  91	phandle node = prom_finddevice("/memory");
  92	int prop_size = prom_getproplen(node, property);
  93	int ents, ret, i;
  94
  95	ents = prop_size / sizeof(struct linux_prom64_registers);
  96	if (ents > MAX_BANKS) {
  97		prom_printf("The machine has more %s property entries than "
  98			    "this kernel can support (%d).\n",
  99			    property, MAX_BANKS);
 100		prom_halt();
 101	}
 102
 103	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 104	if (ret == -1) {
 105		prom_printf("Couldn't get %s property from /memory.\n");
 
 106		prom_halt();
 107	}
 108
 109	/* Sanitize what we got from the firmware, by page aligning
 110	 * everything.
 111	 */
 112	for (i = 0; i < ents; i++) {
 113		unsigned long base, size;
 114
 115		base = regs[i].phys_addr;
 116		size = regs[i].reg_size;
 117
 118		size &= PAGE_MASK;
 119		if (base & ~PAGE_MASK) {
 120			unsigned long new_base = PAGE_ALIGN(base);
 121
 122			size -= new_base - base;
 123			if ((long) size < 0L)
 124				size = 0UL;
 125			base = new_base;
 126		}
 127		if (size == 0UL) {
 128			/* If it is empty, simply get rid of it.
 129			 * This simplifies the logic of the other
 130			 * functions that process these arrays.
 131			 */
 132			memmove(&regs[i], &regs[i + 1],
 133				(ents - i - 1) * sizeof(regs[0]));
 134			i--;
 135			ents--;
 136			continue;
 137		}
 138		regs[i].phys_addr = base;
 139		regs[i].reg_size = size;
 140	}
 141
 142	*num_ents = ents;
 143
 144	sort(regs, ents, sizeof(struct linux_prom64_registers),
 145	     cmp_p64, NULL);
 146}
 147
 148unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
 149					sizeof(unsigned long)];
 150EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
 151
 152/* Kernel physical address base and size in bytes.  */
 153unsigned long kern_base __read_mostly;
 154unsigned long kern_size __read_mostly;
 155
 156/* Initial ramdisk setup */
 157extern unsigned long sparc_ramdisk_image64;
 158extern unsigned int sparc_ramdisk_image;
 159extern unsigned int sparc_ramdisk_size;
 160
 161struct page *mem_map_zero __read_mostly;
 162EXPORT_SYMBOL(mem_map_zero);
 163
 164unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 165
 166unsigned long sparc64_kern_pri_context __read_mostly;
 167unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 168unsigned long sparc64_kern_sec_context __read_mostly;
 169
 170int num_kernel_image_mappings;
 171
 172#ifdef CONFIG_DEBUG_DCFLUSH
 173atomic_t dcpage_flushes = ATOMIC_INIT(0);
 174#ifdef CONFIG_SMP
 175atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 176#endif
 177#endif
 178
 179inline void flush_dcache_page_impl(struct page *page)
 180{
 181	BUG_ON(tlb_type == hypervisor);
 182#ifdef CONFIG_DEBUG_DCFLUSH
 183	atomic_inc(&dcpage_flushes);
 184#endif
 185
 186#ifdef DCACHE_ALIASING_POSSIBLE
 187	__flush_dcache_page(page_address(page),
 188			    ((tlb_type == spitfire) &&
 189			     page_mapping(page) != NULL));
 190#else
 191	if (page_mapping(page) != NULL &&
 192	    tlb_type == spitfire)
 193		__flush_icache_page(__pa(page_address(page)));
 194#endif
 195}
 196
 197#define PG_dcache_dirty		PG_arch_1
 198#define PG_dcache_cpu_shift	32UL
 199#define PG_dcache_cpu_mask	\
 200	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 201
 202#define dcache_dirty_cpu(page) \
 203	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 204
 205static inline void set_dcache_dirty(struct page *page, int this_cpu)
 206{
 207	unsigned long mask = this_cpu;
 208	unsigned long non_cpu_bits;
 209
 210	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 211	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 212
 213	__asm__ __volatile__("1:\n\t"
 214			     "ldx	[%2], %%g7\n\t"
 215			     "and	%%g7, %1, %%g1\n\t"
 216			     "or	%%g1, %0, %%g1\n\t"
 217			     "casx	[%2], %%g7, %%g1\n\t"
 218			     "cmp	%%g7, %%g1\n\t"
 219			     "bne,pn	%%xcc, 1b\n\t"
 220			     " nop"
 221			     : /* no outputs */
 222			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 223			     : "g1", "g7");
 224}
 225
 226static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 227{
 228	unsigned long mask = (1UL << PG_dcache_dirty);
 229
 230	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 231			     "1:\n\t"
 232			     "ldx	[%2], %%g7\n\t"
 233			     "srlx	%%g7, %4, %%g1\n\t"
 234			     "and	%%g1, %3, %%g1\n\t"
 235			     "cmp	%%g1, %0\n\t"
 236			     "bne,pn	%%icc, 2f\n\t"
 237			     " andn	%%g7, %1, %%g1\n\t"
 238			     "casx	[%2], %%g7, %%g1\n\t"
 239			     "cmp	%%g7, %%g1\n\t"
 240			     "bne,pn	%%xcc, 1b\n\t"
 241			     " nop\n"
 242			     "2:"
 243			     : /* no outputs */
 244			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 245			       "i" (PG_dcache_cpu_mask),
 246			       "i" (PG_dcache_cpu_shift)
 247			     : "g1", "g7");
 248}
 249
 250static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 251{
 252	unsigned long tsb_addr = (unsigned long) ent;
 253
 254	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 255		tsb_addr = __pa(tsb_addr);
 256
 257	__tsb_insert(tsb_addr, tag, pte);
 258}
 259
 260unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 261unsigned long _PAGE_SZBITS __read_mostly;
 262
 263static void flush_dcache(unsigned long pfn)
 264{
 265	struct page *page;
 266
 267	page = pfn_to_page(pfn);
 268	if (page) {
 269		unsigned long pg_flags;
 270
 271		pg_flags = page->flags;
 272		if (pg_flags & (1UL << PG_dcache_dirty)) {
 273			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 274				   PG_dcache_cpu_mask);
 275			int this_cpu = get_cpu();
 276
 277			/* This is just to optimize away some function calls
 278			 * in the SMP case.
 279			 */
 280			if (cpu == this_cpu)
 281				flush_dcache_page_impl(page);
 282			else
 283				smp_flush_dcache_page_impl(page, cpu);
 284
 285			clear_dcache_dirty_cpu(page, cpu);
 286
 287			put_cpu();
 288		}
 289	}
 290}
 291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 293{
 294	struct mm_struct *mm;
 295	struct tsb *tsb;
 296	unsigned long tag, flags;
 297	unsigned long tsb_index, tsb_hash_shift;
 298	pte_t pte = *ptep;
 299
 300	if (tlb_type != hypervisor) {
 301		unsigned long pfn = pte_pfn(pte);
 302
 303		if (pfn_valid(pfn))
 304			flush_dcache(pfn);
 305	}
 306
 307	mm = vma->vm_mm;
 308
 309	tsb_index = MM_TSB_BASE;
 310	tsb_hash_shift = PAGE_SHIFT;
 
 311
 312	spin_lock_irqsave(&mm->context.lock, flags);
 313
 314#ifdef CONFIG_HUGETLB_PAGE
 315	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
 316		if ((tlb_type == hypervisor &&
 317		     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
 318		    (tlb_type != hypervisor &&
 319		     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
 320			tsb_index = MM_TSB_HUGE;
 321			tsb_hash_shift = HPAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322		}
 323	}
 324#endif
 325
 326	tsb = mm->context.tsb_block[tsb_index].tsb;
 327	tsb += ((address >> tsb_hash_shift) &
 328		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 329	tag = (address >> 22UL);
 330	tsb_insert(tsb, tag, pte_val(pte));
 331
 332	spin_unlock_irqrestore(&mm->context.lock, flags);
 333}
 334
 335void flush_dcache_page(struct page *page)
 336{
 337	struct address_space *mapping;
 338	int this_cpu;
 339
 340	if (tlb_type == hypervisor)
 341		return;
 342
 343	/* Do not bother with the expensive D-cache flush if it
 344	 * is merely the zero page.  The 'bigcore' testcase in GDB
 345	 * causes this case to run millions of times.
 346	 */
 347	if (page == ZERO_PAGE(0))
 348		return;
 349
 350	this_cpu = get_cpu();
 351
 352	mapping = page_mapping(page);
 353	if (mapping && !mapping_mapped(mapping)) {
 354		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 355		if (dirty) {
 356			int dirty_cpu = dcache_dirty_cpu(page);
 357
 358			if (dirty_cpu == this_cpu)
 359				goto out;
 360			smp_flush_dcache_page_impl(page, dirty_cpu);
 361		}
 362		set_dcache_dirty(page, this_cpu);
 363	} else {
 364		/* We could delay the flush for the !page_mapping
 365		 * case too.  But that case is for exec env/arg
 366		 * pages and those are %99 certainly going to get
 367		 * faulted into the tlb (and thus flushed) anyways.
 368		 */
 369		flush_dcache_page_impl(page);
 370	}
 371
 372out:
 373	put_cpu();
 374}
 375EXPORT_SYMBOL(flush_dcache_page);
 376
 377void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 378{
 379	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 380	if (tlb_type == spitfire) {
 381		unsigned long kaddr;
 382
 383		/* This code only runs on Spitfire cpus so this is
 384		 * why we can assume _PAGE_PADDR_4U.
 385		 */
 386		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 387			unsigned long paddr, mask = _PAGE_PADDR_4U;
 388
 389			if (kaddr >= PAGE_OFFSET)
 390				paddr = kaddr & mask;
 391			else {
 392				pgd_t *pgdp = pgd_offset_k(kaddr);
 393				pud_t *pudp = pud_offset(pgdp, kaddr);
 394				pmd_t *pmdp = pmd_offset(pudp, kaddr);
 395				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 396
 397				paddr = pte_val(*ptep) & mask;
 398			}
 399			__flush_icache_page(paddr);
 400		}
 401	}
 402}
 403EXPORT_SYMBOL(flush_icache_range);
 404
 405void mmu_info(struct seq_file *m)
 406{
 
 
 
 
 
 
 407	if (tlb_type == cheetah)
 408		seq_printf(m, "MMU Type\t: Cheetah\n");
 409	else if (tlb_type == cheetah_plus)
 410		seq_printf(m, "MMU Type\t: Cheetah+\n");
 411	else if (tlb_type == spitfire)
 412		seq_printf(m, "MMU Type\t: Spitfire\n");
 413	else if (tlb_type == hypervisor)
 414		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 415	else
 416		seq_printf(m, "MMU Type\t: ???\n");
 417
 
 
 
 
 
 
 
 
 
 
 
 418#ifdef CONFIG_DEBUG_DCFLUSH
 419	seq_printf(m, "DCPageFlushes\t: %d\n",
 420		   atomic_read(&dcpage_flushes));
 421#ifdef CONFIG_SMP
 422	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 423		   atomic_read(&dcpage_flushes_xcall));
 424#endif /* CONFIG_SMP */
 425#endif /* CONFIG_DEBUG_DCFLUSH */
 426}
 427
 428struct linux_prom_translation prom_trans[512] __read_mostly;
 429unsigned int prom_trans_ents __read_mostly;
 430
 431unsigned long kern_locked_tte_data;
 432
 433/* The obp translations are saved based on 8k pagesize, since obp can
 434 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 435 * HI_OBP_ADDRESS range are handled in ktlb.S.
 436 */
 437static inline int in_obp_range(unsigned long vaddr)
 438{
 439	return (vaddr >= LOW_OBP_ADDRESS &&
 440		vaddr < HI_OBP_ADDRESS);
 441}
 442
 443static int cmp_ptrans(const void *a, const void *b)
 444{
 445	const struct linux_prom_translation *x = a, *y = b;
 446
 447	if (x->virt > y->virt)
 448		return 1;
 449	if (x->virt < y->virt)
 450		return -1;
 451	return 0;
 452}
 453
 454/* Read OBP translations property into 'prom_trans[]'.  */
 455static void __init read_obp_translations(void)
 456{
 457	int n, node, ents, first, last, i;
 458
 459	node = prom_finddevice("/virtual-memory");
 460	n = prom_getproplen(node, "translations");
 461	if (unlikely(n == 0 || n == -1)) {
 462		prom_printf("prom_mappings: Couldn't get size.\n");
 463		prom_halt();
 464	}
 465	if (unlikely(n > sizeof(prom_trans))) {
 466		prom_printf("prom_mappings: Size %Zd is too big.\n", n);
 467		prom_halt();
 468	}
 469
 470	if ((n = prom_getproperty(node, "translations",
 471				  (char *)&prom_trans[0],
 472				  sizeof(prom_trans))) == -1) {
 473		prom_printf("prom_mappings: Couldn't get property.\n");
 474		prom_halt();
 475	}
 476
 477	n = n / sizeof(struct linux_prom_translation);
 478
 479	ents = n;
 480
 481	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 482	     cmp_ptrans, NULL);
 483
 484	/* Now kick out all the non-OBP entries.  */
 485	for (i = 0; i < ents; i++) {
 486		if (in_obp_range(prom_trans[i].virt))
 487			break;
 488	}
 489	first = i;
 490	for (; i < ents; i++) {
 491		if (!in_obp_range(prom_trans[i].virt))
 492			break;
 493	}
 494	last = i;
 495
 496	for (i = 0; i < (last - first); i++) {
 497		struct linux_prom_translation *src = &prom_trans[i + first];
 498		struct linux_prom_translation *dest = &prom_trans[i];
 499
 500		*dest = *src;
 501	}
 502	for (; i < ents; i++) {
 503		struct linux_prom_translation *dest = &prom_trans[i];
 504		dest->virt = dest->size = dest->data = 0x0UL;
 505	}
 506
 507	prom_trans_ents = last - first;
 508
 509	if (tlb_type == spitfire) {
 510		/* Clear diag TTE bits. */
 511		for (i = 0; i < prom_trans_ents; i++)
 512			prom_trans[i].data &= ~0x0003fe0000000000UL;
 513	}
 514
 515	/* Force execute bit on.  */
 516	for (i = 0; i < prom_trans_ents; i++)
 517		prom_trans[i].data |= (tlb_type == hypervisor ?
 518				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 519}
 520
 521static void __init hypervisor_tlb_lock(unsigned long vaddr,
 522				       unsigned long pte,
 523				       unsigned long mmu)
 524{
 525	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 526
 527	if (ret != 0) {
 528		prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
 529			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 530		prom_halt();
 531	}
 532}
 533
 534static unsigned long kern_large_tte(unsigned long paddr);
 535
 536static void __init remap_kernel(void)
 537{
 538	unsigned long phys_page, tte_vaddr, tte_data;
 539	int i, tlb_ent = sparc64_highest_locked_tlbent();
 540
 541	tte_vaddr = (unsigned long) KERNBASE;
 542	phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
 543	tte_data = kern_large_tte(phys_page);
 544
 545	kern_locked_tte_data = tte_data;
 546
 547	/* Now lock us into the TLBs via Hypervisor or OBP. */
 548	if (tlb_type == hypervisor) {
 549		for (i = 0; i < num_kernel_image_mappings; i++) {
 550			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 551			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 552			tte_vaddr += 0x400000;
 553			tte_data += 0x400000;
 554		}
 555	} else {
 556		for (i = 0; i < num_kernel_image_mappings; i++) {
 557			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 558			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 559			tte_vaddr += 0x400000;
 560			tte_data += 0x400000;
 561		}
 562		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 563	}
 564	if (tlb_type == cheetah_plus) {
 565		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 566					    CTX_CHEETAH_PLUS_NUC);
 567		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 568		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 569	}
 570}
 571
 572
 573static void __init inherit_prom_mappings(void)
 574{
 575	/* Now fixup OBP's idea about where we really are mapped. */
 576	printk("Remapping the kernel... ");
 577	remap_kernel();
 578	printk("done.\n");
 579}
 580
 581void prom_world(int enter)
 582{
 583	if (!enter)
 584		set_fs((mm_segment_t) { get_thread_current_ds() });
 585
 586	__asm__ __volatile__("flushw");
 587}
 588
 589void __flush_dcache_range(unsigned long start, unsigned long end)
 590{
 591	unsigned long va;
 592
 593	if (tlb_type == spitfire) {
 594		int n = 0;
 595
 596		for (va = start; va < end; va += 32) {
 597			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 598			if (++n >= 512)
 599				break;
 600		}
 601	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 602		start = __pa(start);
 603		end = __pa(end);
 604		for (va = start; va < end; va += 32)
 605			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 606					     "membar #Sync"
 607					     : /* no outputs */
 608					     : "r" (va),
 609					       "i" (ASI_DCACHE_INVALIDATE));
 610	}
 611}
 612EXPORT_SYMBOL(__flush_dcache_range);
 613
 614/* get_new_mmu_context() uses "cache + 1".  */
 615DEFINE_SPINLOCK(ctx_alloc_lock);
 616unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
 617#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 618#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 619DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620
 621/* Caller does TLB context flushing on local CPU if necessary.
 622 * The caller also ensures that CTX_VALID(mm->context) is false.
 623 *
 624 * We must be careful about boundary cases so that we never
 625 * let the user have CTX 0 (nucleus) or we ever use a CTX
 626 * version of zero (and thus NO_CONTEXT would not be caught
 627 * by version mis-match tests in mmu_context.h).
 628 *
 629 * Always invoked with interrupts disabled.
 630 */
 631void get_new_mmu_context(struct mm_struct *mm)
 632{
 633	unsigned long ctx, new_ctx;
 634	unsigned long orig_pgsz_bits;
 635	unsigned long flags;
 636	int new_version;
 637
 638	spin_lock_irqsave(&ctx_alloc_lock, flags);
 
 
 
 
 639	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 640	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 641	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 642	new_version = 0;
 643	if (new_ctx >= (1 << CTX_NR_BITS)) {
 644		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 645		if (new_ctx >= ctx) {
 646			int i;
 647			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
 648				CTX_FIRST_VERSION;
 649			if (new_ctx == 1)
 650				new_ctx = CTX_FIRST_VERSION;
 651
 652			/* Don't call memset, for 16 entries that's just
 653			 * plain silly...
 654			 */
 655			mmu_context_bmap[0] = 3;
 656			mmu_context_bmap[1] = 0;
 657			mmu_context_bmap[2] = 0;
 658			mmu_context_bmap[3] = 0;
 659			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
 660				mmu_context_bmap[i + 0] = 0;
 661				mmu_context_bmap[i + 1] = 0;
 662				mmu_context_bmap[i + 2] = 0;
 663				mmu_context_bmap[i + 3] = 0;
 664			}
 665			new_version = 1;
 666			goto out;
 667		}
 668	}
 
 
 669	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 670	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 671out:
 672	tlb_context_cache = new_ctx;
 673	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 674	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
 675
 676	if (unlikely(new_version))
 677		smp_new_mmu_context_version();
 678}
 679
 680static int numa_enabled = 1;
 681static int numa_debug;
 682
 683static int __init early_numa(char *p)
 684{
 685	if (!p)
 686		return 0;
 687
 688	if (strstr(p, "off"))
 689		numa_enabled = 0;
 690
 691	if (strstr(p, "debug"))
 692		numa_debug = 1;
 693
 694	return 0;
 695}
 696early_param("numa", early_numa);
 697
 698#define numadbg(f, a...) \
 699do {	if (numa_debug) \
 700		printk(KERN_INFO f, ## a); \
 701} while (0)
 702
 703static void __init find_ramdisk(unsigned long phys_base)
 704{
 705#ifdef CONFIG_BLK_DEV_INITRD
 706	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 707		unsigned long ramdisk_image;
 708
 709		/* Older versions of the bootloader only supported a
 710		 * 32-bit physical address for the ramdisk image
 711		 * location, stored at sparc_ramdisk_image.  Newer
 712		 * SILO versions set sparc_ramdisk_image to zero and
 713		 * provide a full 64-bit physical address at
 714		 * sparc_ramdisk_image64.
 715		 */
 716		ramdisk_image = sparc_ramdisk_image;
 717		if (!ramdisk_image)
 718			ramdisk_image = sparc_ramdisk_image64;
 719
 720		/* Another bootloader quirk.  The bootloader normalizes
 721		 * the physical address to KERNBASE, so we have to
 722		 * factor that back out and add in the lowest valid
 723		 * physical page address to get the true physical address.
 724		 */
 725		ramdisk_image -= KERNBASE;
 726		ramdisk_image += phys_base;
 727
 728		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 729			ramdisk_image, sparc_ramdisk_size);
 730
 731		initrd_start = ramdisk_image;
 732		initrd_end = ramdisk_image + sparc_ramdisk_size;
 733
 734		memblock_reserve(initrd_start, sparc_ramdisk_size);
 735
 736		initrd_start += PAGE_OFFSET;
 737		initrd_end += PAGE_OFFSET;
 738	}
 739#endif
 740}
 741
 742struct node_mem_mask {
 743	unsigned long mask;
 744	unsigned long val;
 745	unsigned long bootmem_paddr;
 746};
 747static struct node_mem_mask node_masks[MAX_NUMNODES];
 748static int num_node_masks;
 749
 
 
 
 
 
 
 
 
 
 
 
 
 750int numa_cpu_lookup_table[NR_CPUS];
 751cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 752
 753#ifdef CONFIG_NEED_MULTIPLE_NODES
 754
 755struct mdesc_mblock {
 756	u64	base;
 757	u64	size;
 758	u64	offset; /* RA-to-PA */
 759};
 760static struct mdesc_mblock *mblocks;
 761static int num_mblocks;
 762
 763static unsigned long ra_to_pa(unsigned long addr)
 764{
 
 765	int i;
 766
 767	for (i = 0; i < num_mblocks; i++) {
 768		struct mdesc_mblock *m = &mblocks[i];
 769
 770		if (addr >= m->base &&
 771		    addr < (m->base + m->size)) {
 772			addr += m->offset;
 773			break;
 774		}
 775	}
 776	return addr;
 
 777}
 778
 779static int find_node(unsigned long addr)
 780{
 781	int i;
 782
 783	addr = ra_to_pa(addr);
 784	for (i = 0; i < num_node_masks; i++) {
 785		struct node_mem_mask *p = &node_masks[i];
 
 
 
 
 
 
 
 
 786
 787		if ((addr & p->mask) == p->val)
 788			return i;
 
 
 
 
 
 
 
 789	}
 790	return -1;
 
 
 791}
 792
 793u64 memblock_nid_range(u64 start, u64 end, int *nid)
 794{
 795	*nid = find_node(start);
 796	start += PAGE_SIZE;
 797	while (start < end) {
 798		int n = find_node(start);
 
 
 799
 800		if (n != *nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 801			break;
 802		start += PAGE_SIZE;
 803	}
 804
 805	if (start > end)
 806		start = end;
 
 
 
 
 807
 808	return start;
 809}
 810#else
 811u64 memblock_nid_range(u64 start, u64 end, int *nid)
 812{
 813	*nid = 0;
 814	return end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815}
 816#endif
 817
 818/* This must be invoked after performing all of the necessary
 819 * add_active_range() calls for 'nid'.  We need to be able to get
 820 * correct data from get_pfn_range_for_nid().
 821 */
 822static void __init allocate_node_data(int nid)
 823{
 824	unsigned long paddr, num_pages, start_pfn, end_pfn;
 825	struct pglist_data *p;
 826
 827#ifdef CONFIG_NEED_MULTIPLE_NODES
 828	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
 829	if (!paddr) {
 
 
 830		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
 831		prom_halt();
 832	}
 833	NODE_DATA(nid) = __va(paddr);
 834	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 835
 836	NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
 837#endif
 838
 839	p = NODE_DATA(nid);
 840
 841	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 842	p->node_start_pfn = start_pfn;
 843	p->node_spanned_pages = end_pfn - start_pfn;
 844
 845	if (p->node_spanned_pages) {
 846		num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
 847
 848		paddr = memblock_alloc_try_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid);
 849		if (!paddr) {
 850			prom_printf("Cannot allocate bootmap for nid[%d]\n",
 851				  nid);
 852			prom_halt();
 853		}
 854		node_masks[nid].bootmem_paddr = paddr;
 855	}
 856}
 857
 858static void init_node_masks_nonnuma(void)
 859{
 
 860	int i;
 
 861
 862	numadbg("Initializing tables for non-numa.\n");
 863
 864	node_masks[0].mask = node_masks[0].val = 0;
 
 865	num_node_masks = 1;
 866
 
 867	for (i = 0; i < NR_CPUS; i++)
 868		numa_cpu_lookup_table[i] = 0;
 869
 870	cpumask_setall(&numa_cpumask_lookup_table[0]);
 
 871}
 872
 873#ifdef CONFIG_NEED_MULTIPLE_NODES
 874struct pglist_data *node_data[MAX_NUMNODES];
 875
 876EXPORT_SYMBOL(numa_cpu_lookup_table);
 877EXPORT_SYMBOL(numa_cpumask_lookup_table);
 878EXPORT_SYMBOL(node_data);
 879
 880struct mdesc_mlgroup {
 881	u64	node;
 882	u64	latency;
 883	u64	match;
 884	u64	mask;
 885};
 886static struct mdesc_mlgroup *mlgroups;
 887static int num_mlgroups;
 888
 889static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
 890				   u32 cfg_handle)
 891{
 892	u64 arc;
 893
 894	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
 895		u64 target = mdesc_arc_target(md, arc);
 896		const u64 *val;
 897
 898		val = mdesc_get_property(md, target,
 899					 "cfg-handle", NULL);
 900		if (val && *val == cfg_handle)
 901			return 0;
 902	}
 903	return -ENODEV;
 904}
 905
 906static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
 907				    u32 cfg_handle)
 908{
 909	u64 arc, candidate, best_latency = ~(u64)0;
 910
 911	candidate = MDESC_NODE_NULL;
 912	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 913		u64 target = mdesc_arc_target(md, arc);
 914		const char *name = mdesc_node_name(md, target);
 915		const u64 *val;
 916
 917		if (strcmp(name, "pio-latency-group"))
 918			continue;
 919
 920		val = mdesc_get_property(md, target, "latency", NULL);
 921		if (!val)
 922			continue;
 923
 924		if (*val < best_latency) {
 925			candidate = target;
 926			best_latency = *val;
 927		}
 928	}
 929
 930	if (candidate == MDESC_NODE_NULL)
 931		return -ENODEV;
 932
 933	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
 934}
 935
 936int of_node_to_nid(struct device_node *dp)
 937{
 938	const struct linux_prom64_registers *regs;
 939	struct mdesc_handle *md;
 940	u32 cfg_handle;
 941	int count, nid;
 942	u64 grp;
 943
 944	/* This is the right thing to do on currently supported
 945	 * SUN4U NUMA platforms as well, as the PCI controller does
 946	 * not sit behind any particular memory controller.
 947	 */
 948	if (!mlgroups)
 949		return -1;
 950
 951	regs = of_get_property(dp, "reg", NULL);
 952	if (!regs)
 953		return -1;
 954
 955	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
 956
 957	md = mdesc_grab();
 958
 959	count = 0;
 960	nid = -1;
 961	mdesc_for_each_node_by_name(md, grp, "group") {
 962		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
 963			nid = count;
 964			break;
 965		}
 966		count++;
 967	}
 968
 969	mdesc_release(md);
 970
 971	return nid;
 972}
 973
 974static void __init add_node_ranges(void)
 975{
 976	struct memblock_region *reg;
 
 
 
 
 977
 978	for_each_memblock(memory, reg) {
 979		unsigned long size = reg->size;
 980		unsigned long start, end;
 981
 982		start = reg->base;
 983		end = start + size;
 984		while (start < end) {
 985			unsigned long this_end;
 986			int nid;
 987
 988			this_end = memblock_nid_range(start, end, &nid);
 989
 990			numadbg("Adding active range nid[%d] "
 991				"start[%lx] end[%lx]\n",
 992				nid, start, this_end);
 993
 994			add_active_range(nid,
 995					 start >> PAGE_SHIFT,
 996					 this_end >> PAGE_SHIFT);
 997
 998			start = this_end;
 999		}
1000	}
1001}
1002
1003static int __init grab_mlgroups(struct mdesc_handle *md)
1004{
1005	unsigned long paddr;
1006	int count = 0;
1007	u64 node;
1008
1009	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1010		count++;
1011	if (!count)
1012		return -ENOENT;
1013
1014	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1015			  SMP_CACHE_BYTES);
1016	if (!paddr)
1017		return -ENOMEM;
1018
1019	mlgroups = __va(paddr);
1020	num_mlgroups = count;
1021
1022	count = 0;
1023	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1024		struct mdesc_mlgroup *m = &mlgroups[count++];
1025		const u64 *val;
1026
1027		m->node = node;
1028
1029		val = mdesc_get_property(md, node, "latency", NULL);
1030		m->latency = *val;
1031		val = mdesc_get_property(md, node, "address-match", NULL);
1032		m->match = *val;
1033		val = mdesc_get_property(md, node, "address-mask", NULL);
1034		m->mask = *val;
1035
1036		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1037			"match[%llx] mask[%llx]\n",
1038			count - 1, m->node, m->latency, m->match, m->mask);
1039	}
1040
1041	return 0;
1042}
1043
1044static int __init grab_mblocks(struct mdesc_handle *md)
1045{
1046	unsigned long paddr;
1047	int count = 0;
1048	u64 node;
1049
1050	mdesc_for_each_node_by_name(md, node, "mblock")
1051		count++;
1052	if (!count)
1053		return -ENOENT;
1054
1055	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1056			  SMP_CACHE_BYTES);
1057	if (!paddr)
1058		return -ENOMEM;
1059
1060	mblocks = __va(paddr);
1061	num_mblocks = count;
1062
1063	count = 0;
1064	mdesc_for_each_node_by_name(md, node, "mblock") {
1065		struct mdesc_mblock *m = &mblocks[count++];
1066		const u64 *val;
1067
1068		val = mdesc_get_property(md, node, "base", NULL);
1069		m->base = *val;
1070		val = mdesc_get_property(md, node, "size", NULL);
1071		m->size = *val;
1072		val = mdesc_get_property(md, node,
1073					 "address-congruence-offset", NULL);
1074		m->offset = *val;
 
 
 
 
 
 
 
1075
1076		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1077			count - 1, m->base, m->size, m->offset);
1078	}
1079
1080	return 0;
1081}
1082
1083static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1084					       u64 grp, cpumask_t *mask)
1085{
1086	u64 arc;
1087
1088	cpumask_clear(mask);
1089
1090	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1091		u64 target = mdesc_arc_target(md, arc);
1092		const char *name = mdesc_node_name(md, target);
1093		const u64 *id;
1094
1095		if (strcmp(name, "cpu"))
1096			continue;
1097		id = mdesc_get_property(md, target, "id", NULL);
1098		if (*id < nr_cpu_ids)
1099			cpumask_set_cpu(*id, mask);
1100	}
1101}
1102
1103static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1104{
1105	int i;
1106
1107	for (i = 0; i < num_mlgroups; i++) {
1108		struct mdesc_mlgroup *m = &mlgroups[i];
1109		if (m->node == node)
1110			return m;
1111	}
1112	return NULL;
1113}
1114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1115static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1116				      int index)
1117{
1118	struct mdesc_mlgroup *candidate = NULL;
1119	u64 arc, best_latency = ~(u64)0;
1120	struct node_mem_mask *n;
1121
1122	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1123		u64 target = mdesc_arc_target(md, arc);
1124		struct mdesc_mlgroup *m = find_mlgroup(target);
1125		if (!m)
1126			continue;
1127		if (m->latency < best_latency) {
1128			candidate = m;
1129			best_latency = m->latency;
1130		}
1131	}
1132	if (!candidate)
1133		return -ENOENT;
1134
1135	if (num_node_masks != index) {
1136		printk(KERN_ERR "Inconsistent NUMA state, "
1137		       "index[%d] != num_node_masks[%d]\n",
1138		       index, num_node_masks);
1139		return -EINVAL;
1140	}
1141
1142	n = &node_masks[num_node_masks++];
1143
1144	n->mask = candidate->mask;
1145	n->val = candidate->match;
1146
1147	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1148		index, n->mask, n->val, candidate->latency);
1149
1150	return 0;
1151}
1152
1153static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1154					 int index)
1155{
1156	cpumask_t mask;
1157	int cpu;
1158
1159	numa_parse_mdesc_group_cpus(md, grp, &mask);
1160
1161	for_each_cpu(cpu, &mask)
1162		numa_cpu_lookup_table[cpu] = index;
1163	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1164
1165	if (numa_debug) {
1166		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1167		for_each_cpu(cpu, &mask)
1168			printk("%d ", cpu);
1169		printk("]\n");
1170	}
1171
1172	return numa_attach_mlgroup(md, grp, index);
1173}
1174
1175static int __init numa_parse_mdesc(void)
1176{
1177	struct mdesc_handle *md = mdesc_grab();
1178	int i, err, count;
1179	u64 node;
1180
1181	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1182	if (node == MDESC_NODE_NULL) {
1183		mdesc_release(md);
1184		return -ENOENT;
1185	}
1186
1187	err = grab_mblocks(md);
1188	if (err < 0)
1189		goto out;
1190
1191	err = grab_mlgroups(md);
1192	if (err < 0)
1193		goto out;
1194
1195	count = 0;
1196	mdesc_for_each_node_by_name(md, node, "group") {
1197		err = numa_parse_mdesc_group(md, node, count);
1198		if (err < 0)
1199			break;
1200		count++;
1201	}
1202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203	add_node_ranges();
1204
1205	for (i = 0; i < num_node_masks; i++) {
1206		allocate_node_data(i);
1207		node_set_online(i);
1208	}
1209
1210	err = 0;
1211out:
1212	mdesc_release(md);
1213	return err;
1214}
1215
1216static int __init numa_parse_jbus(void)
1217{
1218	unsigned long cpu, index;
1219
1220	/* NUMA node id is encoded in bits 36 and higher, and there is
1221	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1222	 */
1223	index = 0;
1224	for_each_present_cpu(cpu) {
1225		numa_cpu_lookup_table[cpu] = index;
1226		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1227		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1228		node_masks[index].val = cpu << 36UL;
1229
1230		index++;
1231	}
1232	num_node_masks = index;
1233
1234	add_node_ranges();
1235
1236	for (index = 0; index < num_node_masks; index++) {
1237		allocate_node_data(index);
1238		node_set_online(index);
1239	}
1240
1241	return 0;
1242}
1243
1244static int __init numa_parse_sun4u(void)
1245{
1246	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1247		unsigned long ver;
1248
1249		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1250		if ((ver >> 32UL) == __JALAPENO_ID ||
1251		    (ver >> 32UL) == __SERRANO_ID)
1252			return numa_parse_jbus();
1253	}
1254	return -1;
1255}
1256
1257static int __init bootmem_init_numa(void)
1258{
 
1259	int err = -1;
1260
1261	numadbg("bootmem_init_numa()\n");
1262
 
 
 
 
 
 
 
1263	if (numa_enabled) {
1264		if (tlb_type == hypervisor)
1265			err = numa_parse_mdesc();
1266		else
1267			err = numa_parse_sun4u();
1268	}
1269	return err;
1270}
1271
1272#else
1273
1274static int bootmem_init_numa(void)
1275{
1276	return -1;
1277}
1278
1279#endif
1280
1281static void __init bootmem_init_nonnuma(void)
1282{
1283	unsigned long top_of_ram = memblock_end_of_DRAM();
1284	unsigned long total_ram = memblock_phys_mem_size();
1285	struct memblock_region *reg;
1286
1287	numadbg("bootmem_init_nonnuma()\n");
1288
1289	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1290	       top_of_ram, total_ram);
1291	printk(KERN_INFO "Memory hole size: %ldMB\n",
1292	       (top_of_ram - total_ram) >> 20);
1293
1294	init_node_masks_nonnuma();
 
 
 
 
1295
1296	for_each_memblock(memory, reg) {
1297		unsigned long start_pfn, end_pfn;
 
1298
1299		if (!reg->size)
1300			continue;
 
1301
1302		start_pfn = memblock_region_memory_base_pfn(reg);
1303		end_pfn = memblock_region_memory_end_pfn(reg);
1304		add_active_range(0, start_pfn, end_pfn);
1305	}
1306
1307	allocate_node_data(0);
 
1308
1309	node_set_online(0);
 
 
 
 
1310}
1311
1312static void __init reserve_range_in_node(int nid, unsigned long start,
1313					 unsigned long end)
 
 
 
 
1314{
1315	numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1316		nid, start, end);
1317	while (start < end) {
1318		unsigned long this_end;
1319		int n;
 
 
 
1320
1321		this_end = memblock_nid_range(start, end, &n);
1322		if (n == nid) {
1323			numadbg("      MATCH reserving range [%lx:%lx]\n",
1324				start, this_end);
1325			reserve_bootmem_node(NODE_DATA(nid), start,
1326					     (this_end - start), BOOTMEM_DEFAULT);
1327		} else
1328			numadbg("      NO MATCH, advancing start to %lx\n",
1329				this_end);
1330
1331		start = this_end;
1332	}
1333}
1334
1335static void __init trim_reserved_in_node(int nid)
1336{
1337	struct memblock_region *reg;
1338
1339	numadbg("  trim_reserved_in_node(%d)\n", nid);
 
 
1340
1341	for_each_memblock(reserved, reg)
1342		reserve_range_in_node(nid, reg->base, reg->base + reg->size);
1343}
1344
1345static void __init bootmem_init_one_node(int nid)
1346{
1347	struct pglist_data *p;
1348
1349	numadbg("bootmem_init_one_node(%d)\n", nid);
 
1350
1351	p = NODE_DATA(nid);
 
 
1352
1353	if (p->node_spanned_pages) {
1354		unsigned long paddr = node_masks[nid].bootmem_paddr;
1355		unsigned long end_pfn;
1356
1357		end_pfn = p->node_start_pfn + p->node_spanned_pages;
 
 
1358
1359		numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1360			nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
 
1361
1362		init_bootmem_node(p, paddr >> PAGE_SHIFT,
1363				  p->node_start_pfn, end_pfn);
 
 
 
 
1364
1365		numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1366			nid, end_pfn);
1367		free_bootmem_with_active_regions(nid, end_pfn);
 
 
1368
1369		trim_reserved_in_node(nid);
 
1370
1371		numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1372			nid);
1373		sparse_memory_present_with_active_regions(nid);
 
 
 
 
 
 
 
1374	}
 
1375}
1376
1377static unsigned long __init bootmem_init(unsigned long phys_base)
 
1378{
1379	unsigned long end_pfn;
1380	int nid;
1381
1382	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1383	max_pfn = max_low_pfn = end_pfn;
1384	min_low_pfn = (phys_base >> PAGE_SHIFT);
1385
1386	if (bootmem_init_numa() < 0)
1387		bootmem_init_nonnuma();
 
 
 
 
 
1388
1389	/* XXX cpu notifier XXX */
 
 
 
 
1390
1391	for_each_online_node(nid)
1392		bootmem_init_one_node(nid);
1393
1394	sparse_init();
 
 
 
 
 
 
 
 
 
1395
1396	return end_pfn;
 
 
 
 
 
 
 
 
1397}
1398
1399static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1400static int pall_ents __initdata;
 
 
 
 
 
 
1401
1402#ifdef CONFIG_DEBUG_PAGEALLOC
1403static unsigned long __ref kernel_map_range(unsigned long pstart,
1404					    unsigned long pend, pgprot_t prot)
 
1405{
1406	unsigned long vstart = PAGE_OFFSET + pstart;
1407	unsigned long vend = PAGE_OFFSET + pend;
1408	unsigned long alloc_bytes = 0UL;
1409
1410	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1411		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1412			    vstart, vend);
1413		prom_halt();
1414	}
1415
1416	while (vstart < vend) {
1417		unsigned long this_end, paddr = __pa(vstart);
1418		pgd_t *pgd = pgd_offset_k(vstart);
 
1419		pud_t *pud;
1420		pmd_t *pmd;
1421		pte_t *pte;
1422
1423		pud = pud_offset(pgd, vstart);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424		if (pud_none(*pud)) {
1425			pmd_t *new;
1426
1427			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
 
 
 
 
 
 
 
1428			alloc_bytes += PAGE_SIZE;
1429			pud_populate(&init_mm, pud, new);
1430		}
1431
1432		pmd = pmd_offset(pud, vstart);
1433		if (!pmd_present(*pmd)) {
1434			pte_t *new;
1435
1436			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
 
 
 
 
 
 
 
1437			alloc_bytes += PAGE_SIZE;
1438			pmd_populate_kernel(&init_mm, pmd, new);
1439		}
1440
1441		pte = pte_offset_kernel(pmd, vstart);
1442		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1443		if (this_end > vend)
1444			this_end = vend;
1445
1446		while (vstart < this_end) {
1447			pte_val(*pte) = (paddr | pgprot_val(prot));
1448
1449			vstart += PAGE_SIZE;
1450			paddr += PAGE_SIZE;
1451			pte++;
1452		}
1453	}
1454
1455	return alloc_bytes;
1456}
1457
1458extern unsigned int kvmap_linear_patch[1];
1459#endif /* CONFIG_DEBUG_PAGEALLOC */
1460
1461static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1462{
1463	const unsigned long shift_256MB = 28;
1464	const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1465	const unsigned long size_256MB = (1UL << shift_256MB);
1466
1467	while (start < end) {
1468		long remains;
1469
1470		remains = end - start;
1471		if (remains < size_256MB)
1472			break;
1473
1474		if (start & mask_256MB) {
1475			start = (start + size_256MB) & ~mask_256MB;
1476			continue;
1477		}
1478
1479		while (remains >= size_256MB) {
1480			unsigned long index = start >> shift_256MB;
1481
1482			__set_bit(index, kpte_linear_bitmap);
1483
1484			start += size_256MB;
1485			remains -= size_256MB;
1486		}
1487	}
1488}
1489
1490static void __init init_kpte_bitmap(void)
1491{
1492	unsigned long i;
1493
1494	for (i = 0; i < pall_ents; i++) {
1495		unsigned long phys_start, phys_end;
1496
1497		phys_start = pall[i].phys_addr;
1498		phys_end = phys_start + pall[i].reg_size;
 
 
 
1499
1500		mark_kpte_bitmap(phys_start, phys_end);
1501	}
 
1502}
1503
 
 
1504static void __init kernel_physical_mapping_init(void)
1505{
1506#ifdef CONFIG_DEBUG_PAGEALLOC
1507	unsigned long i, mem_alloced = 0UL;
 
1508
 
 
 
1509	for (i = 0; i < pall_ents; i++) {
1510		unsigned long phys_start, phys_end;
1511
1512		phys_start = pall[i].phys_addr;
1513		phys_end = phys_start + pall[i].reg_size;
1514
1515		mem_alloced += kernel_map_range(phys_start, phys_end,
1516						PAGE_KERNEL);
1517	}
1518
1519	printk("Allocated %ld bytes for kernel page tables.\n",
1520	       mem_alloced);
1521
1522	kvmap_linear_patch[0] = 0x01000000; /* nop */
1523	flushi(&kvmap_linear_patch[0]);
1524
 
 
1525	__flush_tlb_all();
1526#endif
1527}
1528
1529#ifdef CONFIG_DEBUG_PAGEALLOC
1530void kernel_map_pages(struct page *page, int numpages, int enable)
1531{
1532	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1533	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1534
1535	kernel_map_range(phys_start, phys_end,
1536			 (enable ? PAGE_KERNEL : __pgprot(0)));
1537
1538	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1539			       PAGE_OFFSET + phys_end);
1540
1541	/* we should perform an IPI and flush all tlbs,
1542	 * but that can deadlock->flush only current cpu.
1543	 */
1544	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1545				 PAGE_OFFSET + phys_end);
1546}
1547#endif
1548
1549unsigned long __init find_ecache_flush_span(unsigned long size)
1550{
1551	int i;
1552
1553	for (i = 0; i < pavail_ents; i++) {
1554		if (pavail[i].reg_size >= size)
1555			return pavail[i].phys_addr;
1556	}
1557
1558	return ~0UL;
1559}
1560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1561static void __init tsb_phys_patch(void)
1562{
1563	struct tsb_ldquad_phys_patch_entry *pquad;
1564	struct tsb_phys_patch_entry *p;
1565
1566	pquad = &__tsb_ldquad_phys_patch;
1567	while (pquad < &__tsb_ldquad_phys_patch_end) {
1568		unsigned long addr = pquad->addr;
1569
1570		if (tlb_type == hypervisor)
1571			*(unsigned int *) addr = pquad->sun4v_insn;
1572		else
1573			*(unsigned int *) addr = pquad->sun4u_insn;
1574		wmb();
1575		__asm__ __volatile__("flush	%0"
1576				     : /* no outputs */
1577				     : "r" (addr));
1578
1579		pquad++;
1580	}
1581
1582	p = &__tsb_phys_patch;
1583	while (p < &__tsb_phys_patch_end) {
1584		unsigned long addr = p->addr;
1585
1586		*(unsigned int *) addr = p->insn;
1587		wmb();
1588		__asm__ __volatile__("flush	%0"
1589				     : /* no outputs */
1590				     : "r" (addr));
1591
1592		p++;
1593	}
1594}
1595
1596/* Don't mark as init, we give this to the Hypervisor.  */
1597#ifndef CONFIG_DEBUG_PAGEALLOC
1598#define NUM_KTSB_DESCR	2
1599#else
1600#define NUM_KTSB_DESCR	1
1601#endif
1602static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1603extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
 
 
 
 
 
 
 
 
 
 
 
 
1604
1605static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1606{
1607	pa >>= KTSB_PHYS_SHIFT;
 
 
 
1608
1609	while (start < end) {
1610		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1611
1612		ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1613		__asm__ __volatile__("flush	%0" : : "r" (ia));
1614
1615		ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1616		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1617
 
 
 
 
 
 
1618		start++;
1619	}
1620}
1621
1622static void ktsb_phys_patch(void)
1623{
1624	extern unsigned int __swapper_tsb_phys_patch;
1625	extern unsigned int __swapper_tsb_phys_patch_end;
1626	unsigned long ktsb_pa;
1627
1628	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1629	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1630			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1631#ifndef CONFIG_DEBUG_PAGEALLOC
1632	{
1633	extern unsigned int __swapper_4m_tsb_phys_patch;
1634	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1635	ktsb_pa = (kern_base +
1636		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1637	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1638			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1639	}
1640#endif
1641}
1642
1643static void __init sun4v_ktsb_init(void)
1644{
1645	unsigned long ktsb_pa;
1646
1647	/* First KTSB for PAGE_SIZE mappings.  */
1648	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1649
1650	switch (PAGE_SIZE) {
1651	case 8 * 1024:
1652	default:
1653		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1654		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1655		break;
1656
1657	case 64 * 1024:
1658		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1659		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1660		break;
1661
1662	case 512 * 1024:
1663		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1664		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1665		break;
1666
1667	case 4 * 1024 * 1024:
1668		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1669		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1670		break;
1671	}
1672
1673	ktsb_descr[0].assoc = 1;
1674	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1675	ktsb_descr[0].ctx_idx = 0;
1676	ktsb_descr[0].tsb_base = ktsb_pa;
1677	ktsb_descr[0].resv = 0;
1678
1679#ifndef CONFIG_DEBUG_PAGEALLOC
1680	/* Second KTSB for 4MB/256MB mappings.  */
1681	ktsb_pa = (kern_base +
1682		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1683
1684	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1685	ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1686				   HV_PGSZ_MASK_256MB);
 
 
 
1687	ktsb_descr[1].assoc = 1;
1688	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1689	ktsb_descr[1].ctx_idx = 0;
1690	ktsb_descr[1].tsb_base = ktsb_pa;
1691	ktsb_descr[1].resv = 0;
1692#endif
1693}
1694
1695void __cpuinit sun4v_ktsb_register(void)
1696{
1697	unsigned long pa, ret;
1698
1699	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1700
1701	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1702	if (ret != 0) {
1703		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1704			    "errors with %lx\n", pa, ret);
1705		prom_halt();
1706	}
1707}
1708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709/* paging_init() sets up the page tables */
1710
1711static unsigned long last_valid_pfn;
1712pgd_t swapper_pg_dir[2048];
1713
1714static void sun4u_pgprot_init(void);
1715static void sun4v_pgprot_init(void);
1716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1717void __init paging_init(void)
1718{
1719	unsigned long end_pfn, shift, phys_base;
1720	unsigned long real_end, i;
1721
 
 
1722	/* These build time checkes make sure that the dcache_dirty_cpu()
1723	 * page->flags usage will work.
1724	 *
1725	 * When a page gets marked as dcache-dirty, we store the
1726	 * cpu number starting at bit 32 in the page->flags.  Also,
1727	 * functions like clear_dcache_dirty_cpu use the cpu mask
1728	 * in 13-bit signed-immediate instruction fields.
1729	 */
1730
1731	/*
1732	 * Page flags must not reach into upper 32 bits that are used
1733	 * for the cpu number
1734	 */
1735	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1736
1737	/*
1738	 * The bit fields placed in the high range must not reach below
1739	 * the 32 bit boundary. Otherwise we cannot place the cpu field
1740	 * at the 32 bit boundary.
1741	 */
1742	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1743		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1744
1745	BUILD_BUG_ON(NR_CPUS > 4096);
1746
1747	kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1748	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1749
1750	/* Invalidate both kernel TSBs.  */
1751	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1752#ifndef CONFIG_DEBUG_PAGEALLOC
1753	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1754#endif
1755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756	if (tlb_type == hypervisor)
1757		sun4v_pgprot_init();
1758	else
1759		sun4u_pgprot_init();
1760
1761	if (tlb_type == cheetah_plus ||
1762	    tlb_type == hypervisor) {
1763		tsb_phys_patch();
1764		ktsb_phys_patch();
1765	}
1766
1767	if (tlb_type == hypervisor) {
1768		sun4v_patch_tlb_handlers();
1769		sun4v_ktsb_init();
1770	}
1771
1772	memblock_init();
1773
1774	/* Find available physical memory...
1775	 *
1776	 * Read it twice in order to work around a bug in openfirmware.
1777	 * The call to grab this table itself can cause openfirmware to
1778	 * allocate memory, which in turn can take away some space from
1779	 * the list of available memory.  Reading it twice makes sure
1780	 * we really do get the final value.
1781	 */
1782	read_obp_translations();
1783	read_obp_memory("reg", &pall[0], &pall_ents);
1784	read_obp_memory("available", &pavail[0], &pavail_ents);
1785	read_obp_memory("available", &pavail[0], &pavail_ents);
1786
1787	phys_base = 0xffffffffffffffffUL;
1788	for (i = 0; i < pavail_ents; i++) {
1789		phys_base = min(phys_base, pavail[i].phys_addr);
1790		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1791	}
1792
1793	memblock_reserve(kern_base, kern_size);
1794
1795	find_ramdisk(phys_base);
1796
1797	memblock_enforce_memory_limit(cmdline_memory_size);
 
1798
1799	memblock_analyze();
1800	memblock_dump_all();
1801
1802	set_bit(0, mmu_context_bmap);
1803
1804	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1805
1806	real_end = (unsigned long)_end;
1807	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1808	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1809	       num_kernel_image_mappings);
1810
1811	/* Set kernel pgd to upper alias so physical page computations
1812	 * work.
1813	 */
1814	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1815	
1816	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1817
1818	/* Now can init the kernel/bad page tables. */
1819	pud_set(pud_offset(&swapper_pg_dir[0], 0),
1820		swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1821	
1822	inherit_prom_mappings();
1823	
1824	init_kpte_bitmap();
1825
1826	/* Ok, we can use our TLB miss and window trap handlers safely.  */
1827	setup_tba();
1828
1829	__flush_tlb_all();
1830
1831	if (tlb_type == hypervisor)
1832		sun4v_ktsb_register();
1833
1834	prom_build_devicetree();
1835	of_populate_present_mask();
1836#ifndef CONFIG_SMP
1837	of_fill_in_cpu_data();
1838#endif
1839
1840	if (tlb_type == hypervisor) {
1841		sun4v_mdesc_init();
1842		mdesc_populate_present_mask(cpu_all_mask);
1843#ifndef CONFIG_SMP
1844		mdesc_fill_in_cpu_data(cpu_all_mask);
1845#endif
1846	}
 
 
 
 
 
 
 
 
 
 
1847
1848	/* Once the OF device tree and MDESC have been setup, we know
1849	 * the list of possible cpus.  Therefore we can allocate the
1850	 * IRQ stacks.
1851	 */
1852	for_each_possible_cpu(i) {
1853		/* XXX Use node local allocations... XXX */
1854		softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1855		hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1856	}
1857
 
 
 
 
 
 
 
 
 
1858	/* Setup bootmem... */
1859	last_valid_pfn = end_pfn = bootmem_init(phys_base);
1860
1861#ifndef CONFIG_NEED_MULTIPLE_NODES
1862	max_mapnr = last_valid_pfn;
1863#endif
1864	kernel_physical_mapping_init();
1865
1866	{
1867		unsigned long max_zone_pfns[MAX_NR_ZONES];
1868
1869		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1870
1871		max_zone_pfns[ZONE_NORMAL] = end_pfn;
1872
1873		free_area_init_nodes(max_zone_pfns);
1874	}
1875
1876	printk("Booting Linux...\n");
1877}
1878
1879int __devinit page_in_phys_avail(unsigned long paddr)
1880{
1881	int i;
1882
1883	paddr &= PAGE_MASK;
1884
1885	for (i = 0; i < pavail_ents; i++) {
1886		unsigned long start, end;
1887
1888		start = pavail[i].phys_addr;
1889		end = start + pavail[i].reg_size;
1890
1891		if (paddr >= start && paddr < end)
1892			return 1;
1893	}
1894	if (paddr >= kern_base && paddr < (kern_base + kern_size))
1895		return 1;
1896#ifdef CONFIG_BLK_DEV_INITRD
1897	if (paddr >= __pa(initrd_start) &&
1898	    paddr < __pa(PAGE_ALIGN(initrd_end)))
1899		return 1;
1900#endif
1901
1902	return 0;
1903}
1904
1905static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1906static int pavail_rescan_ents __initdata;
1907
1908/* Certain OBP calls, such as fetching "available" properties, can
1909 * claim physical memory.  So, along with initializing the valid
1910 * address bitmap, what we do here is refetch the physical available
1911 * memory list again, and make sure it provides at least as much
1912 * memory as 'pavail' does.
1913 */
1914static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1915{
 
1916	int i;
1917
1918	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1919
1920	for (i = 0; i < pavail_ents; i++) {
1921		unsigned long old_start, old_end;
1922
1923		old_start = pavail[i].phys_addr;
1924		old_end = old_start + pavail[i].reg_size;
1925		while (old_start < old_end) {
1926			int n;
1927
1928			for (n = 0; n < pavail_rescan_ents; n++) {
1929				unsigned long new_start, new_end;
1930
1931				new_start = pavail_rescan[n].phys_addr;
1932				new_end = new_start +
1933					pavail_rescan[n].reg_size;
1934
1935				if (new_start <= old_start &&
1936				    new_end >= (old_start + PAGE_SIZE)) {
1937					set_bit(old_start >> 22, bitmap);
1938					goto do_next_page;
1939				}
1940			}
1941
1942			prom_printf("mem_init: Lost memory in pavail\n");
1943			prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1944				    pavail[i].phys_addr,
1945				    pavail[i].reg_size);
1946			prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1947				    pavail_rescan[i].phys_addr,
1948				    pavail_rescan[i].reg_size);
1949			prom_printf("mem_init: Cannot continue, aborting.\n");
1950			prom_halt();
1951
1952		do_next_page:
1953			old_start += PAGE_SIZE;
1954		}
1955	}
1956}
1957
1958static void __init patch_tlb_miss_handler_bitmap(void)
1959{
1960	extern unsigned int valid_addr_bitmap_insn[];
1961	extern unsigned int valid_addr_bitmap_patch[];
1962
1963	valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1964	mb();
1965	valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1966	flushi(&valid_addr_bitmap_insn[0]);
1967}
1968
1969void __init mem_init(void)
1970{
1971	unsigned long codepages, datapages, initpages;
1972	unsigned long addr, last;
1973
1974	addr = PAGE_OFFSET + kern_base;
1975	last = PAGE_ALIGN(kern_size) + addr;
1976	while (addr < last) {
1977		set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1978		addr += PAGE_SIZE;
1979	}
1980
1981	setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1982	patch_tlb_miss_handler_bitmap();
1983
1984	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1985
1986#ifdef CONFIG_NEED_MULTIPLE_NODES
1987	{
1988		int i;
1989		for_each_online_node(i) {
1990			if (NODE_DATA(i)->node_spanned_pages != 0) {
1991				totalram_pages +=
1992					free_all_bootmem_node(NODE_DATA(i));
1993			}
1994		}
1995	}
1996#else
1997	totalram_pages = free_all_bootmem();
1998#endif
1999
2000	/* We subtract one to account for the mem_map_zero page
2001	 * allocated below.
 
 
 
2002	 */
2003	totalram_pages -= 1;
2004	num_physpages = totalram_pages;
2005
2006	/*
2007	 * Set up the zero page, mark it reserved, so that page count
2008	 * is not manipulated when freeing the page from user ptes.
2009	 */
2010	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2011	if (mem_map_zero == NULL) {
2012		prom_printf("paging_init: Cannot alloc zero page.\n");
2013		prom_halt();
2014	}
2015	SetPageReserved(mem_map_zero);
2016
2017	codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2018	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2019	datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2020	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2021	initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2022	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2023
2024	printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2025	       nr_free_pages() << (PAGE_SHIFT-10),
2026	       codepages << (PAGE_SHIFT-10),
2027	       datapages << (PAGE_SHIFT-10), 
2028	       initpages << (PAGE_SHIFT-10), 
2029	       PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2030
2031	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2032		cheetah_ecache_flush_init();
2033}
2034
2035void free_initmem(void)
2036{
2037	unsigned long addr, initend;
2038	int do_free = 1;
2039
2040	/* If the physical memory maps were trimmed by kernel command
2041	 * line options, don't even try freeing this initmem stuff up.
2042	 * The kernel image could have been in the trimmed out region
2043	 * and if so the freeing below will free invalid page structs.
2044	 */
2045	if (cmdline_memory_size)
2046		do_free = 0;
2047
2048	/*
2049	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2050	 */
2051	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2052	initend = (unsigned long)(__init_end) & PAGE_MASK;
2053	for (; addr < initend; addr += PAGE_SIZE) {
2054		unsigned long page;
2055		struct page *p;
2056
2057		page = (addr +
2058			((unsigned long) __va(kern_base)) -
2059			((unsigned long) KERNBASE));
2060		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2061
2062		if (do_free) {
2063			p = virt_to_page(page);
2064
2065			ClearPageReserved(p);
2066			init_page_count(p);
2067			__free_page(p);
2068			num_physpages++;
2069			totalram_pages++;
2070		}
2071	}
2072}
2073
2074#ifdef CONFIG_BLK_DEV_INITRD
2075void free_initrd_mem(unsigned long start, unsigned long end)
2076{
2077	if (start < end)
2078		printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2079	for (; start < end; start += PAGE_SIZE) {
2080		struct page *p = virt_to_page(start);
2081
2082		ClearPageReserved(p);
2083		init_page_count(p);
2084		__free_page(p);
2085		num_physpages++;
2086		totalram_pages++;
2087	}
2088}
2089#endif
2090
2091#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2092#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2093#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2094#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2095#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2096#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2097
2098pgprot_t PAGE_KERNEL __read_mostly;
2099EXPORT_SYMBOL(PAGE_KERNEL);
2100
2101pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2102pgprot_t PAGE_COPY __read_mostly;
2103
2104pgprot_t PAGE_SHARED __read_mostly;
2105EXPORT_SYMBOL(PAGE_SHARED);
2106
2107unsigned long pg_iobits __read_mostly;
2108
2109unsigned long _PAGE_IE __read_mostly;
2110EXPORT_SYMBOL(_PAGE_IE);
2111
2112unsigned long _PAGE_E __read_mostly;
2113EXPORT_SYMBOL(_PAGE_E);
2114
2115unsigned long _PAGE_CACHE __read_mostly;
2116EXPORT_SYMBOL(_PAGE_CACHE);
2117
2118#ifdef CONFIG_SPARSEMEM_VMEMMAP
2119unsigned long vmemmap_table[VMEMMAP_SIZE];
2120
2121int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2122{
2123	unsigned long vstart = (unsigned long) start;
2124	unsigned long vend = (unsigned long) (start + nr);
2125	unsigned long phys_start = (vstart - VMEMMAP_BASE);
2126	unsigned long phys_end = (vend - VMEMMAP_BASE);
2127	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2128	unsigned long end = VMEMMAP_ALIGN(phys_end);
2129	unsigned long pte_base;
2130
2131	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2132		    _PAGE_CP_4U | _PAGE_CV_4U |
2133		    _PAGE_P_4U | _PAGE_W_4U);
2134	if (tlb_type == hypervisor)
2135		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2136			    _PAGE_CP_4V | _PAGE_CV_4V |
2137			    _PAGE_P_4V | _PAGE_W_4V);
 
2138
2139	for (; addr < end; addr += VMEMMAP_CHUNK) {
2140		unsigned long *vmem_pp =
2141			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2142		void *block;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2143
2144		if (!(*vmem_pp & _PAGE_VALID)) {
2145			block = vmemmap_alloc_block(1UL << 22, node);
2146			if (!block)
2147				return -ENOMEM;
2148
2149			*vmem_pp = pte_base | __pa(block);
2150
2151			printk(KERN_INFO "[%p-%p] page_structs=%lu "
2152			       "node=%d entry=%lu/%lu\n", start, block, nr,
2153			       node,
2154			       addr >> VMEMMAP_CHUNK_SHIFT,
2155			       VMEMMAP_SIZE);
2156		}
2157	}
 
2158	return 0;
2159}
 
 
 
 
 
2160#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2161
2162static void prot_init_common(unsigned long page_none,
2163			     unsigned long page_shared,
2164			     unsigned long page_copy,
2165			     unsigned long page_readonly,
2166			     unsigned long page_exec_bit)
2167{
2168	PAGE_COPY = __pgprot(page_copy);
2169	PAGE_SHARED = __pgprot(page_shared);
2170
2171	protection_map[0x0] = __pgprot(page_none);
2172	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2173	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2174	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2175	protection_map[0x4] = __pgprot(page_readonly);
2176	protection_map[0x5] = __pgprot(page_readonly);
2177	protection_map[0x6] = __pgprot(page_copy);
2178	protection_map[0x7] = __pgprot(page_copy);
2179	protection_map[0x8] = __pgprot(page_none);
2180	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2181	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2182	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2183	protection_map[0xc] = __pgprot(page_readonly);
2184	protection_map[0xd] = __pgprot(page_readonly);
2185	protection_map[0xe] = __pgprot(page_shared);
2186	protection_map[0xf] = __pgprot(page_shared);
2187}
2188
2189static void __init sun4u_pgprot_init(void)
2190{
2191	unsigned long page_none, page_shared, page_copy, page_readonly;
2192	unsigned long page_exec_bit;
 
2193
2194	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2195				_PAGE_CACHE_4U | _PAGE_P_4U |
2196				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2197				_PAGE_EXEC_4U);
2198	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2199				       _PAGE_CACHE_4U | _PAGE_P_4U |
2200				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2201				       _PAGE_EXEC_4U | _PAGE_L_4U);
2202
2203	_PAGE_IE = _PAGE_IE_4U;
2204	_PAGE_E = _PAGE_E_4U;
2205	_PAGE_CACHE = _PAGE_CACHE_4U;
2206
2207	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2208		     __ACCESS_BITS_4U | _PAGE_E_4U);
2209
2210#ifdef CONFIG_DEBUG_PAGEALLOC
2211	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2212		0xfffff80000000000UL;
2213#else
2214	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2215		0xfffff80000000000UL;
2216#endif
2217	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2218				   _PAGE_P_4U | _PAGE_W_4U);
2219
2220	/* XXX Should use 256MB on Panther. XXX */
2221	kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2222
2223	_PAGE_SZBITS = _PAGE_SZBITS_4U;
2224	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2225			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2226			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2227
2228
2229	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2230	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2231		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2232	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2233		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2234	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2235			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2236
2237	page_exec_bit = _PAGE_EXEC_4U;
2238
2239	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2240			 page_exec_bit);
2241}
2242
2243static void __init sun4v_pgprot_init(void)
2244{
2245	unsigned long page_none, page_shared, page_copy, page_readonly;
2246	unsigned long page_exec_bit;
 
2247
2248	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2249				_PAGE_CACHE_4V | _PAGE_P_4V |
2250				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2251				_PAGE_EXEC_4V);
2252	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2253
2254	_PAGE_IE = _PAGE_IE_4V;
2255	_PAGE_E = _PAGE_E_4V;
2256	_PAGE_CACHE = _PAGE_CACHE_4V;
2257
2258#ifdef CONFIG_DEBUG_PAGEALLOC
2259	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2260		0xfffff80000000000UL;
2261#else
2262	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2263		0xfffff80000000000UL;
2264#endif
2265	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2266				   _PAGE_P_4V | _PAGE_W_4V);
2267
2268#ifdef CONFIG_DEBUG_PAGEALLOC
2269	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2270		0xfffff80000000000UL;
2271#else
2272	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2273		0xfffff80000000000UL;
2274#endif
2275	kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2276				   _PAGE_P_4V | _PAGE_W_4V);
2277
2278	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2279		     __ACCESS_BITS_4V | _PAGE_E_4V);
2280
2281	_PAGE_SZBITS = _PAGE_SZBITS_4V;
2282	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2283			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2284			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2285			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2286
2287	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2288	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2289		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2290	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2291		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2292	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2293			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2294
2295	page_exec_bit = _PAGE_EXEC_4V;
2296
2297	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2298			 page_exec_bit);
2299}
2300
2301unsigned long pte_sz_bits(unsigned long sz)
2302{
2303	if (tlb_type == hypervisor) {
2304		switch (sz) {
2305		case 8 * 1024:
2306		default:
2307			return _PAGE_SZ8K_4V;
2308		case 64 * 1024:
2309			return _PAGE_SZ64K_4V;
2310		case 512 * 1024:
2311			return _PAGE_SZ512K_4V;
2312		case 4 * 1024 * 1024:
2313			return _PAGE_SZ4MB_4V;
2314		}
2315	} else {
2316		switch (sz) {
2317		case 8 * 1024:
2318		default:
2319			return _PAGE_SZ8K_4U;
2320		case 64 * 1024:
2321			return _PAGE_SZ64K_4U;
2322		case 512 * 1024:
2323			return _PAGE_SZ512K_4U;
2324		case 4 * 1024 * 1024:
2325			return _PAGE_SZ4MB_4U;
2326		}
2327	}
2328}
2329
2330pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2331{
2332	pte_t pte;
2333
2334	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2335	pte_val(pte) |= (((unsigned long)space) << 32);
2336	pte_val(pte) |= pte_sz_bits(page_size);
2337
2338	return pte;
2339}
2340
2341static unsigned long kern_large_tte(unsigned long paddr)
2342{
2343	unsigned long val;
2344
2345	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2346	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2347	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2348	if (tlb_type == hypervisor)
2349		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2350		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2351		       _PAGE_EXEC_4V | _PAGE_W_4V);
2352
2353	return val | paddr;
2354}
2355
2356/* If not locked, zap it. */
2357void __flush_tlb_all(void)
2358{
2359	unsigned long pstate;
2360	int i;
2361
2362	__asm__ __volatile__("flushw\n\t"
2363			     "rdpr	%%pstate, %0\n\t"
2364			     "wrpr	%0, %1, %%pstate"
2365			     : "=r" (pstate)
2366			     : "i" (PSTATE_IE));
2367	if (tlb_type == hypervisor) {
2368		sun4v_mmu_demap_all();
2369	} else if (tlb_type == spitfire) {
2370		for (i = 0; i < 64; i++) {
2371			/* Spitfire Errata #32 workaround */
2372			/* NOTE: Always runs on spitfire, so no
2373			 *       cheetah+ page size encodings.
2374			 */
2375			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2376					     "flush	%%g6"
2377					     : /* No outputs */
2378					     : "r" (0),
2379					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2380
2381			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2382				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2383						     "membar #Sync"
2384						     : /* no outputs */
2385						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2386				spitfire_put_dtlb_data(i, 0x0UL);
2387			}
2388
2389			/* Spitfire Errata #32 workaround */
2390			/* NOTE: Always runs on spitfire, so no
2391			 *       cheetah+ page size encodings.
2392			 */
2393			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2394					     "flush	%%g6"
2395					     : /* No outputs */
2396					     : "r" (0),
2397					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2398
2399			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2400				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2401						     "membar #Sync"
2402						     : /* no outputs */
2403						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2404				spitfire_put_itlb_data(i, 0x0UL);
2405			}
2406		}
2407	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2408		cheetah_flush_dtlb_all();
2409		cheetah_flush_itlb_all();
2410	}
2411	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2412			     : : "r" (pstate));
2413}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  arch/sparc64/mm/init.c
   4 *
   5 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   6 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   7 */
   8 
   9#include <linux/extable.h>
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/string.h>
  13#include <linux/init.h>
  14#include <linux/memblock.h>
  15#include <linux/mm.h>
  16#include <linux/hugetlb.h>
  17#include <linux/initrd.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/poison.h>
  21#include <linux/fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/kprobes.h>
  24#include <linux/cache.h>
  25#include <linux/sort.h>
  26#include <linux/ioport.h>
  27#include <linux/percpu.h>
 
  28#include <linux/mmzone.h>
  29#include <linux/gfp.h>
  30
  31#include <asm/head.h>
 
  32#include <asm/page.h>
  33#include <asm/pgalloc.h>
 
  34#include <asm/oplib.h>
  35#include <asm/iommu.h>
  36#include <asm/io.h>
  37#include <linux/uaccess.h>
  38#include <asm/mmu_context.h>
  39#include <asm/tlbflush.h>
  40#include <asm/dma.h>
  41#include <asm/starfire.h>
  42#include <asm/tlb.h>
  43#include <asm/spitfire.h>
  44#include <asm/sections.h>
  45#include <asm/tsb.h>
  46#include <asm/hypervisor.h>
  47#include <asm/prom.h>
  48#include <asm/mdesc.h>
  49#include <asm/cpudata.h>
  50#include <asm/setup.h>
  51#include <asm/irq.h>
  52
  53#include "init_64.h"
  54
  55unsigned long kern_linear_pte_xor[4] __read_mostly;
  56static unsigned long page_cache4v_flag;
  57
  58/* A bitmap, two bits for every 256MB of physical memory.  These two
  59 * bits determine what page size we use for kernel linear
  60 * translations.  They form an index into kern_linear_pte_xor[].  The
  61 * value in the indexed slot is XOR'd with the TLB miss virtual
  62 * address to form the resulting TTE.  The mapping is:
  63 *
  64 *	0	==>	4MB
  65 *	1	==>	256MB
  66 *	2	==>	2GB
  67 *	3	==>	16GB
  68 *
  69 * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
  70 * support 2GB pages, and hopefully future cpus will support the 16GB
  71 * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
  72 * if these larger page sizes are not supported by the cpu.
  73 *
  74 * It would be nice to determine this from the machine description
  75 * 'cpu' properties, but we need to have this table setup before the
  76 * MDESC is initialized.
  77 */
 
  78
  79#ifndef CONFIG_DEBUG_PAGEALLOC
  80/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
  81 * Space is allocated for this right after the trap table in
  82 * arch/sparc64/kernel/head.S
  83 */
  84extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  85#endif
  86extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  87
  88static unsigned long cpu_pgsz_mask;
  89
  90#define MAX_BANKS	1024
  91
  92static struct linux_prom64_registers pavail[MAX_BANKS];
  93static int pavail_ents;
  94
  95u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
 
  96
  97static int cmp_p64(const void *a, const void *b)
  98{
  99	const struct linux_prom64_registers *x = a, *y = b;
 100
 101	if (x->phys_addr > y->phys_addr)
 102		return 1;
 103	if (x->phys_addr < y->phys_addr)
 104		return -1;
 105	return 0;
 106}
 107
 108static void __init read_obp_memory(const char *property,
 109				   struct linux_prom64_registers *regs,
 110				   int *num_ents)
 111{
 112	phandle node = prom_finddevice("/memory");
 113	int prop_size = prom_getproplen(node, property);
 114	int ents, ret, i;
 115
 116	ents = prop_size / sizeof(struct linux_prom64_registers);
 117	if (ents > MAX_BANKS) {
 118		prom_printf("The machine has more %s property entries than "
 119			    "this kernel can support (%d).\n",
 120			    property, MAX_BANKS);
 121		prom_halt();
 122	}
 123
 124	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 125	if (ret == -1) {
 126		prom_printf("Couldn't get %s property from /memory.\n",
 127				property);
 128		prom_halt();
 129	}
 130
 131	/* Sanitize what we got from the firmware, by page aligning
 132	 * everything.
 133	 */
 134	for (i = 0; i < ents; i++) {
 135		unsigned long base, size;
 136
 137		base = regs[i].phys_addr;
 138		size = regs[i].reg_size;
 139
 140		size &= PAGE_MASK;
 141		if (base & ~PAGE_MASK) {
 142			unsigned long new_base = PAGE_ALIGN(base);
 143
 144			size -= new_base - base;
 145			if ((long) size < 0L)
 146				size = 0UL;
 147			base = new_base;
 148		}
 149		if (size == 0UL) {
 150			/* If it is empty, simply get rid of it.
 151			 * This simplifies the logic of the other
 152			 * functions that process these arrays.
 153			 */
 154			memmove(&regs[i], &regs[i + 1],
 155				(ents - i - 1) * sizeof(regs[0]));
 156			i--;
 157			ents--;
 158			continue;
 159		}
 160		regs[i].phys_addr = base;
 161		regs[i].reg_size = size;
 162	}
 163
 164	*num_ents = ents;
 165
 166	sort(regs, ents, sizeof(struct linux_prom64_registers),
 167	     cmp_p64, NULL);
 168}
 169
 
 
 
 
 170/* Kernel physical address base and size in bytes.  */
 171unsigned long kern_base __read_mostly;
 172unsigned long kern_size __read_mostly;
 173
 174/* Initial ramdisk setup */
 175extern unsigned long sparc_ramdisk_image64;
 176extern unsigned int sparc_ramdisk_image;
 177extern unsigned int sparc_ramdisk_size;
 178
 179struct page *mem_map_zero __read_mostly;
 180EXPORT_SYMBOL(mem_map_zero);
 181
 182unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 183
 184unsigned long sparc64_kern_pri_context __read_mostly;
 185unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 186unsigned long sparc64_kern_sec_context __read_mostly;
 187
 188int num_kernel_image_mappings;
 189
 190#ifdef CONFIG_DEBUG_DCFLUSH
 191atomic_t dcpage_flushes = ATOMIC_INIT(0);
 192#ifdef CONFIG_SMP
 193atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 194#endif
 195#endif
 196
 197inline void flush_dcache_page_impl(struct page *page)
 198{
 199	BUG_ON(tlb_type == hypervisor);
 200#ifdef CONFIG_DEBUG_DCFLUSH
 201	atomic_inc(&dcpage_flushes);
 202#endif
 203
 204#ifdef DCACHE_ALIASING_POSSIBLE
 205	__flush_dcache_page(page_address(page),
 206			    ((tlb_type == spitfire) &&
 207			     page_mapping_file(page) != NULL));
 208#else
 209	if (page_mapping_file(page) != NULL &&
 210	    tlb_type == spitfire)
 211		__flush_icache_page(__pa(page_address(page)));
 212#endif
 213}
 214
 215#define PG_dcache_dirty		PG_arch_1
 216#define PG_dcache_cpu_shift	32UL
 217#define PG_dcache_cpu_mask	\
 218	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 219
 220#define dcache_dirty_cpu(page) \
 221	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 222
 223static inline void set_dcache_dirty(struct page *page, int this_cpu)
 224{
 225	unsigned long mask = this_cpu;
 226	unsigned long non_cpu_bits;
 227
 228	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 229	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 230
 231	__asm__ __volatile__("1:\n\t"
 232			     "ldx	[%2], %%g7\n\t"
 233			     "and	%%g7, %1, %%g1\n\t"
 234			     "or	%%g1, %0, %%g1\n\t"
 235			     "casx	[%2], %%g7, %%g1\n\t"
 236			     "cmp	%%g7, %%g1\n\t"
 237			     "bne,pn	%%xcc, 1b\n\t"
 238			     " nop"
 239			     : /* no outputs */
 240			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 241			     : "g1", "g7");
 242}
 243
 244static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 245{
 246	unsigned long mask = (1UL << PG_dcache_dirty);
 247
 248	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 249			     "1:\n\t"
 250			     "ldx	[%2], %%g7\n\t"
 251			     "srlx	%%g7, %4, %%g1\n\t"
 252			     "and	%%g1, %3, %%g1\n\t"
 253			     "cmp	%%g1, %0\n\t"
 254			     "bne,pn	%%icc, 2f\n\t"
 255			     " andn	%%g7, %1, %%g1\n\t"
 256			     "casx	[%2], %%g7, %%g1\n\t"
 257			     "cmp	%%g7, %%g1\n\t"
 258			     "bne,pn	%%xcc, 1b\n\t"
 259			     " nop\n"
 260			     "2:"
 261			     : /* no outputs */
 262			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 263			       "i" (PG_dcache_cpu_mask),
 264			       "i" (PG_dcache_cpu_shift)
 265			     : "g1", "g7");
 266}
 267
 268static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 269{
 270	unsigned long tsb_addr = (unsigned long) ent;
 271
 272	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 273		tsb_addr = __pa(tsb_addr);
 274
 275	__tsb_insert(tsb_addr, tag, pte);
 276}
 277
 278unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 
 279
 280static void flush_dcache(unsigned long pfn)
 281{
 282	struct page *page;
 283
 284	page = pfn_to_page(pfn);
 285	if (page) {
 286		unsigned long pg_flags;
 287
 288		pg_flags = page->flags;
 289		if (pg_flags & (1UL << PG_dcache_dirty)) {
 290			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 291				   PG_dcache_cpu_mask);
 292			int this_cpu = get_cpu();
 293
 294			/* This is just to optimize away some function calls
 295			 * in the SMP case.
 296			 */
 297			if (cpu == this_cpu)
 298				flush_dcache_page_impl(page);
 299			else
 300				smp_flush_dcache_page_impl(page, cpu);
 301
 302			clear_dcache_dirty_cpu(page, cpu);
 303
 304			put_cpu();
 305		}
 306	}
 307}
 308
 309/* mm->context.lock must be held */
 310static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
 311				    unsigned long tsb_hash_shift, unsigned long address,
 312				    unsigned long tte)
 313{
 314	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
 315	unsigned long tag;
 316
 317	if (unlikely(!tsb))
 318		return;
 319
 320	tsb += ((address >> tsb_hash_shift) &
 321		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 322	tag = (address >> 22UL);
 323	tsb_insert(tsb, tag, tte);
 324}
 325
 326#ifdef CONFIG_HUGETLB_PAGE
 327static int __init hugetlbpage_init(void)
 328{
 329	hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
 330	hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
 331	hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
 332	hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
 333
 334	return 0;
 335}
 336
 337arch_initcall(hugetlbpage_init);
 338
 339static void __init pud_huge_patch(void)
 340{
 341	struct pud_huge_patch_entry *p;
 342	unsigned long addr;
 343
 344	p = &__pud_huge_patch;
 345	addr = p->addr;
 346	*(unsigned int *)addr = p->insn;
 347
 348	__asm__ __volatile__("flush %0" : : "r" (addr));
 349}
 350
 351bool __init arch_hugetlb_valid_size(unsigned long size)
 352{
 353	unsigned int hugepage_shift = ilog2(size);
 354	unsigned short hv_pgsz_idx;
 355	unsigned int hv_pgsz_mask;
 356
 357	switch (hugepage_shift) {
 358	case HPAGE_16GB_SHIFT:
 359		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
 360		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
 361		pud_huge_patch();
 362		break;
 363	case HPAGE_2GB_SHIFT:
 364		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
 365		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
 366		break;
 367	case HPAGE_256MB_SHIFT:
 368		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
 369		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
 370		break;
 371	case HPAGE_SHIFT:
 372		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
 373		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
 374		break;
 375	case HPAGE_64K_SHIFT:
 376		hv_pgsz_mask = HV_PGSZ_MASK_64K;
 377		hv_pgsz_idx = HV_PGSZ_IDX_64K;
 378		break;
 379	default:
 380		hv_pgsz_mask = 0;
 381	}
 382
 383	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
 384		return false;
 385
 386	return true;
 387}
 388#endif	/* CONFIG_HUGETLB_PAGE */
 389
 390void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 391{
 392	struct mm_struct *mm;
 393	unsigned long flags;
 394	bool is_huge_tsb;
 
 395	pte_t pte = *ptep;
 396
 397	if (tlb_type != hypervisor) {
 398		unsigned long pfn = pte_pfn(pte);
 399
 400		if (pfn_valid(pfn))
 401			flush_dcache(pfn);
 402	}
 403
 404	mm = vma->vm_mm;
 405
 406	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
 407	if (!pte_accessible(mm, pte))
 408		return;
 409
 410	spin_lock_irqsave(&mm->context.lock, flags);
 411
 412	is_huge_tsb = false;
 413#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 414	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
 415		unsigned long hugepage_size = PAGE_SIZE;
 416
 417		if (is_vm_hugetlb_page(vma))
 418			hugepage_size = huge_page_size(hstate_vma(vma));
 419
 420		if (hugepage_size >= PUD_SIZE) {
 421			unsigned long mask = 0x1ffc00000UL;
 422
 423			/* Transfer bits [32:22] from address to resolve
 424			 * at 4M granularity.
 425			 */
 426			pte_val(pte) &= ~mask;
 427			pte_val(pte) |= (address & mask);
 428		} else if (hugepage_size >= PMD_SIZE) {
 429			/* We are fabricating 8MB pages using 4MB
 430			 * real hw pages.
 431			 */
 432			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
 433		}
 434
 435		if (hugepage_size >= PMD_SIZE) {
 436			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
 437				REAL_HPAGE_SHIFT, address, pte_val(pte));
 438			is_huge_tsb = true;
 439		}
 440	}
 441#endif
 442	if (!is_huge_tsb)
 443		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
 444					address, pte_val(pte));
 
 
 
 445
 446	spin_unlock_irqrestore(&mm->context.lock, flags);
 447}
 448
 449void flush_dcache_page(struct page *page)
 450{
 451	struct address_space *mapping;
 452	int this_cpu;
 453
 454	if (tlb_type == hypervisor)
 455		return;
 456
 457	/* Do not bother with the expensive D-cache flush if it
 458	 * is merely the zero page.  The 'bigcore' testcase in GDB
 459	 * causes this case to run millions of times.
 460	 */
 461	if (page == ZERO_PAGE(0))
 462		return;
 463
 464	this_cpu = get_cpu();
 465
 466	mapping = page_mapping_file(page);
 467	if (mapping && !mapping_mapped(mapping)) {
 468		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 469		if (dirty) {
 470			int dirty_cpu = dcache_dirty_cpu(page);
 471
 472			if (dirty_cpu == this_cpu)
 473				goto out;
 474			smp_flush_dcache_page_impl(page, dirty_cpu);
 475		}
 476		set_dcache_dirty(page, this_cpu);
 477	} else {
 478		/* We could delay the flush for the !page_mapping
 479		 * case too.  But that case is for exec env/arg
 480		 * pages and those are %99 certainly going to get
 481		 * faulted into the tlb (and thus flushed) anyways.
 482		 */
 483		flush_dcache_page_impl(page);
 484	}
 485
 486out:
 487	put_cpu();
 488}
 489EXPORT_SYMBOL(flush_dcache_page);
 490
 491void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 492{
 493	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 494	if (tlb_type == spitfire) {
 495		unsigned long kaddr;
 496
 497		/* This code only runs on Spitfire cpus so this is
 498		 * why we can assume _PAGE_PADDR_4U.
 499		 */
 500		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 501			unsigned long paddr, mask = _PAGE_PADDR_4U;
 502
 503			if (kaddr >= PAGE_OFFSET)
 504				paddr = kaddr & mask;
 505			else {
 506				pte_t *ptep = virt_to_kpte(kaddr);
 
 
 
 507
 508				paddr = pte_val(*ptep) & mask;
 509			}
 510			__flush_icache_page(paddr);
 511		}
 512	}
 513}
 514EXPORT_SYMBOL(flush_icache_range);
 515
 516void mmu_info(struct seq_file *m)
 517{
 518	static const char *pgsz_strings[] = {
 519		"8K", "64K", "512K", "4MB", "32MB",
 520		"256MB", "2GB", "16GB",
 521	};
 522	int i, printed;
 523
 524	if (tlb_type == cheetah)
 525		seq_printf(m, "MMU Type\t: Cheetah\n");
 526	else if (tlb_type == cheetah_plus)
 527		seq_printf(m, "MMU Type\t: Cheetah+\n");
 528	else if (tlb_type == spitfire)
 529		seq_printf(m, "MMU Type\t: Spitfire\n");
 530	else if (tlb_type == hypervisor)
 531		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 532	else
 533		seq_printf(m, "MMU Type\t: ???\n");
 534
 535	seq_printf(m, "MMU PGSZs\t: ");
 536	printed = 0;
 537	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
 538		if (cpu_pgsz_mask & (1UL << i)) {
 539			seq_printf(m, "%s%s",
 540				   printed ? "," : "", pgsz_strings[i]);
 541			printed++;
 542		}
 543	}
 544	seq_putc(m, '\n');
 545
 546#ifdef CONFIG_DEBUG_DCFLUSH
 547	seq_printf(m, "DCPageFlushes\t: %d\n",
 548		   atomic_read(&dcpage_flushes));
 549#ifdef CONFIG_SMP
 550	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 551		   atomic_read(&dcpage_flushes_xcall));
 552#endif /* CONFIG_SMP */
 553#endif /* CONFIG_DEBUG_DCFLUSH */
 554}
 555
 556struct linux_prom_translation prom_trans[512] __read_mostly;
 557unsigned int prom_trans_ents __read_mostly;
 558
 559unsigned long kern_locked_tte_data;
 560
 561/* The obp translations are saved based on 8k pagesize, since obp can
 562 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 563 * HI_OBP_ADDRESS range are handled in ktlb.S.
 564 */
 565static inline int in_obp_range(unsigned long vaddr)
 566{
 567	return (vaddr >= LOW_OBP_ADDRESS &&
 568		vaddr < HI_OBP_ADDRESS);
 569}
 570
 571static int cmp_ptrans(const void *a, const void *b)
 572{
 573	const struct linux_prom_translation *x = a, *y = b;
 574
 575	if (x->virt > y->virt)
 576		return 1;
 577	if (x->virt < y->virt)
 578		return -1;
 579	return 0;
 580}
 581
 582/* Read OBP translations property into 'prom_trans[]'.  */
 583static void __init read_obp_translations(void)
 584{
 585	int n, node, ents, first, last, i;
 586
 587	node = prom_finddevice("/virtual-memory");
 588	n = prom_getproplen(node, "translations");
 589	if (unlikely(n == 0 || n == -1)) {
 590		prom_printf("prom_mappings: Couldn't get size.\n");
 591		prom_halt();
 592	}
 593	if (unlikely(n > sizeof(prom_trans))) {
 594		prom_printf("prom_mappings: Size %d is too big.\n", n);
 595		prom_halt();
 596	}
 597
 598	if ((n = prom_getproperty(node, "translations",
 599				  (char *)&prom_trans[0],
 600				  sizeof(prom_trans))) == -1) {
 601		prom_printf("prom_mappings: Couldn't get property.\n");
 602		prom_halt();
 603	}
 604
 605	n = n / sizeof(struct linux_prom_translation);
 606
 607	ents = n;
 608
 609	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 610	     cmp_ptrans, NULL);
 611
 612	/* Now kick out all the non-OBP entries.  */
 613	for (i = 0; i < ents; i++) {
 614		if (in_obp_range(prom_trans[i].virt))
 615			break;
 616	}
 617	first = i;
 618	for (; i < ents; i++) {
 619		if (!in_obp_range(prom_trans[i].virt))
 620			break;
 621	}
 622	last = i;
 623
 624	for (i = 0; i < (last - first); i++) {
 625		struct linux_prom_translation *src = &prom_trans[i + first];
 626		struct linux_prom_translation *dest = &prom_trans[i];
 627
 628		*dest = *src;
 629	}
 630	for (; i < ents; i++) {
 631		struct linux_prom_translation *dest = &prom_trans[i];
 632		dest->virt = dest->size = dest->data = 0x0UL;
 633	}
 634
 635	prom_trans_ents = last - first;
 636
 637	if (tlb_type == spitfire) {
 638		/* Clear diag TTE bits. */
 639		for (i = 0; i < prom_trans_ents; i++)
 640			prom_trans[i].data &= ~0x0003fe0000000000UL;
 641	}
 642
 643	/* Force execute bit on.  */
 644	for (i = 0; i < prom_trans_ents; i++)
 645		prom_trans[i].data |= (tlb_type == hypervisor ?
 646				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 647}
 648
 649static void __init hypervisor_tlb_lock(unsigned long vaddr,
 650				       unsigned long pte,
 651				       unsigned long mmu)
 652{
 653	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 654
 655	if (ret != 0) {
 656		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
 657			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 658		prom_halt();
 659	}
 660}
 661
 662static unsigned long kern_large_tte(unsigned long paddr);
 663
 664static void __init remap_kernel(void)
 665{
 666	unsigned long phys_page, tte_vaddr, tte_data;
 667	int i, tlb_ent = sparc64_highest_locked_tlbent();
 668
 669	tte_vaddr = (unsigned long) KERNBASE;
 670	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
 671	tte_data = kern_large_tte(phys_page);
 672
 673	kern_locked_tte_data = tte_data;
 674
 675	/* Now lock us into the TLBs via Hypervisor or OBP. */
 676	if (tlb_type == hypervisor) {
 677		for (i = 0; i < num_kernel_image_mappings; i++) {
 678			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 679			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 680			tte_vaddr += 0x400000;
 681			tte_data += 0x400000;
 682		}
 683	} else {
 684		for (i = 0; i < num_kernel_image_mappings; i++) {
 685			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 686			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 687			tte_vaddr += 0x400000;
 688			tte_data += 0x400000;
 689		}
 690		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 691	}
 692	if (tlb_type == cheetah_plus) {
 693		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 694					    CTX_CHEETAH_PLUS_NUC);
 695		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 696		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 697	}
 698}
 699
 700
 701static void __init inherit_prom_mappings(void)
 702{
 703	/* Now fixup OBP's idea about where we really are mapped. */
 704	printk("Remapping the kernel... ");
 705	remap_kernel();
 706	printk("done.\n");
 707}
 708
 709void prom_world(int enter)
 710{
 711	if (!enter)
 712		set_fs(get_fs());
 713
 714	__asm__ __volatile__("flushw");
 715}
 716
 717void __flush_dcache_range(unsigned long start, unsigned long end)
 718{
 719	unsigned long va;
 720
 721	if (tlb_type == spitfire) {
 722		int n = 0;
 723
 724		for (va = start; va < end; va += 32) {
 725			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 726			if (++n >= 512)
 727				break;
 728		}
 729	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 730		start = __pa(start);
 731		end = __pa(end);
 732		for (va = start; va < end; va += 32)
 733			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 734					     "membar #Sync"
 735					     : /* no outputs */
 736					     : "r" (va),
 737					       "i" (ASI_DCACHE_INVALIDATE));
 738	}
 739}
 740EXPORT_SYMBOL(__flush_dcache_range);
 741
 742/* get_new_mmu_context() uses "cache + 1".  */
 743DEFINE_SPINLOCK(ctx_alloc_lock);
 744unsigned long tlb_context_cache = CTX_FIRST_VERSION;
 745#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 746#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 747DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 748DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
 749
 750static void mmu_context_wrap(void)
 751{
 752	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
 753	unsigned long new_ver, new_ctx, old_ctx;
 754	struct mm_struct *mm;
 755	int cpu;
 756
 757	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
 758
 759	/* Reserve kernel context */
 760	set_bit(0, mmu_context_bmap);
 761
 762	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
 763	if (unlikely(new_ver == 0))
 764		new_ver = CTX_FIRST_VERSION;
 765	tlb_context_cache = new_ver;
 766
 767	/*
 768	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
 769	 * are going to go through get_new_mmu_context() path.
 770	 */
 771	mb();
 772
 773	/*
 774	 * Updated versions to current on those CPUs that had valid secondary
 775	 * contexts
 776	 */
 777	for_each_online_cpu(cpu) {
 778		/*
 779		 * If a new mm is stored after we took this mm from the array,
 780		 * it will go into get_new_mmu_context() path, because we
 781		 * already bumped the version in tlb_context_cache.
 782		 */
 783		mm = per_cpu(per_cpu_secondary_mm, cpu);
 784
 785		if (unlikely(!mm || mm == &init_mm))
 786			continue;
 787
 788		old_ctx = mm->context.sparc64_ctx_val;
 789		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
 790			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
 791			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
 792			mm->context.sparc64_ctx_val = new_ctx;
 793		}
 794	}
 795}
 796
 797/* Caller does TLB context flushing on local CPU if necessary.
 798 * The caller also ensures that CTX_VALID(mm->context) is false.
 799 *
 800 * We must be careful about boundary cases so that we never
 801 * let the user have CTX 0 (nucleus) or we ever use a CTX
 802 * version of zero (and thus NO_CONTEXT would not be caught
 803 * by version mis-match tests in mmu_context.h).
 804 *
 805 * Always invoked with interrupts disabled.
 806 */
 807void get_new_mmu_context(struct mm_struct *mm)
 808{
 809	unsigned long ctx, new_ctx;
 810	unsigned long orig_pgsz_bits;
 
 
 811
 812	spin_lock(&ctx_alloc_lock);
 813retry:
 814	/* wrap might have happened, test again if our context became valid */
 815	if (unlikely(CTX_VALID(mm->context)))
 816		goto out;
 817	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 818	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 819	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 
 820	if (new_ctx >= (1 << CTX_NR_BITS)) {
 821		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 822		if (new_ctx >= ctx) {
 823			mmu_context_wrap();
 824			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825		}
 826	}
 827	if (mm->context.sparc64_ctx_val)
 828		cpumask_clear(mm_cpumask(mm));
 829	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 830	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 
 831	tlb_context_cache = new_ctx;
 832	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 833out:
 834	spin_unlock(&ctx_alloc_lock);
 
 
 835}
 836
 837static int numa_enabled = 1;
 838static int numa_debug;
 839
 840static int __init early_numa(char *p)
 841{
 842	if (!p)
 843		return 0;
 844
 845	if (strstr(p, "off"))
 846		numa_enabled = 0;
 847
 848	if (strstr(p, "debug"))
 849		numa_debug = 1;
 850
 851	return 0;
 852}
 853early_param("numa", early_numa);
 854
 855#define numadbg(f, a...) \
 856do {	if (numa_debug) \
 857		printk(KERN_INFO f, ## a); \
 858} while (0)
 859
 860static void __init find_ramdisk(unsigned long phys_base)
 861{
 862#ifdef CONFIG_BLK_DEV_INITRD
 863	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 864		unsigned long ramdisk_image;
 865
 866		/* Older versions of the bootloader only supported a
 867		 * 32-bit physical address for the ramdisk image
 868		 * location, stored at sparc_ramdisk_image.  Newer
 869		 * SILO versions set sparc_ramdisk_image to zero and
 870		 * provide a full 64-bit physical address at
 871		 * sparc_ramdisk_image64.
 872		 */
 873		ramdisk_image = sparc_ramdisk_image;
 874		if (!ramdisk_image)
 875			ramdisk_image = sparc_ramdisk_image64;
 876
 877		/* Another bootloader quirk.  The bootloader normalizes
 878		 * the physical address to KERNBASE, so we have to
 879		 * factor that back out and add in the lowest valid
 880		 * physical page address to get the true physical address.
 881		 */
 882		ramdisk_image -= KERNBASE;
 883		ramdisk_image += phys_base;
 884
 885		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 886			ramdisk_image, sparc_ramdisk_size);
 887
 888		initrd_start = ramdisk_image;
 889		initrd_end = ramdisk_image + sparc_ramdisk_size;
 890
 891		memblock_reserve(initrd_start, sparc_ramdisk_size);
 892
 893		initrd_start += PAGE_OFFSET;
 894		initrd_end += PAGE_OFFSET;
 895	}
 896#endif
 897}
 898
 899struct node_mem_mask {
 900	unsigned long mask;
 901	unsigned long match;
 
 902};
 903static struct node_mem_mask node_masks[MAX_NUMNODES];
 904static int num_node_masks;
 905
 906#ifdef CONFIG_NEED_MULTIPLE_NODES
 907
 908struct mdesc_mlgroup {
 909	u64	node;
 910	u64	latency;
 911	u64	match;
 912	u64	mask;
 913};
 914
 915static struct mdesc_mlgroup *mlgroups;
 916static int num_mlgroups;
 917
 918int numa_cpu_lookup_table[NR_CPUS];
 919cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 920
 
 
 921struct mdesc_mblock {
 922	u64	base;
 923	u64	size;
 924	u64	offset; /* RA-to-PA */
 925};
 926static struct mdesc_mblock *mblocks;
 927static int num_mblocks;
 928
 929static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
 930{
 931	struct mdesc_mblock *m = NULL;
 932	int i;
 933
 934	for (i = 0; i < num_mblocks; i++) {
 935		m = &mblocks[i];
 936
 937		if (addr >= m->base &&
 938		    addr < (m->base + m->size)) {
 
 939			break;
 940		}
 941	}
 942
 943	return m;
 944}
 945
 946static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
 947{
 948	int prev_nid, new_nid;
 949
 950	prev_nid = NUMA_NO_NODE;
 951	for ( ; start < end; start += PAGE_SIZE) {
 952		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
 953			struct node_mem_mask *p = &node_masks[new_nid];
 954
 955			if ((start & p->mask) == p->match) {
 956				if (prev_nid == NUMA_NO_NODE)
 957					prev_nid = new_nid;
 958				break;
 959			}
 960		}
 961
 962		if (new_nid == num_node_masks) {
 963			prev_nid = 0;
 964			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
 965				  start);
 966			break;
 967		}
 968
 969		if (prev_nid != new_nid)
 970			break;
 971	}
 972	*nid = prev_nid;
 973
 974	return start > end ? end : start;
 975}
 976
 977static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
 978{
 979	u64 ret_end, pa_start, m_mask, m_match, m_end;
 980	struct mdesc_mblock *mblock;
 981	int _nid, i;
 982
 983	if (tlb_type != hypervisor)
 984		return memblock_nid_range_sun4u(start, end, nid);
 985
 986	mblock = addr_to_mblock(start);
 987	if (!mblock) {
 988		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
 989			  start);
 990
 991		_nid = 0;
 992		ret_end = end;
 993		goto done;
 994	}
 995
 996	pa_start = start + mblock->offset;
 997	m_match = 0;
 998	m_mask = 0;
 999
1000	for (_nid = 0; _nid < num_node_masks; _nid++) {
1001		struct node_mem_mask *const m = &node_masks[_nid];
1002
1003		if ((pa_start & m->mask) == m->match) {
1004			m_match = m->match;
1005			m_mask = m->mask;
1006			break;
1007		}
1008	}
1009
1010	if (num_node_masks == _nid) {
1011		/* We could not find NUMA group, so default to 0, but lets
1012		 * search for latency group, so we could calculate the correct
1013		 * end address that we return
1014		 */
1015		_nid = 0;
1016
1017		for (i = 0; i < num_mlgroups; i++) {
1018			struct mdesc_mlgroup *const m = &mlgroups[i];
1019
1020			if ((pa_start & m->mask) == m->match) {
1021				m_match = m->match;
1022				m_mask = m->mask;
1023				break;
1024			}
1025		}
1026
1027		if (i == num_mlgroups) {
1028			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1029				  start);
1030
1031			ret_end = end;
1032			goto done;
1033		}
1034	}
1035
1036	/*
1037	 * Each latency group has match and mask, and each memory block has an
1038	 * offset.  An address belongs to a latency group if its address matches
1039	 * the following formula: ((addr + offset) & mask) == match
1040	 * It is, however, slow to check every single page if it matches a
1041	 * particular latency group. As optimization we calculate end value by
1042	 * using bit arithmetics.
1043	 */
1044	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1045	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1046	ret_end = m_end > end ? end : m_end;
1047
1048done:
1049	*nid = _nid;
1050	return ret_end;
1051}
1052#endif
1053
1054/* This must be invoked after performing all of the necessary
1055 * memblock_set_node() calls for 'nid'.  We need to be able to get
1056 * correct data from get_pfn_range_for_nid().
1057 */
1058static void __init allocate_node_data(int nid)
1059{
 
1060	struct pglist_data *p;
1061	unsigned long start_pfn, end_pfn;
1062#ifdef CONFIG_NEED_MULTIPLE_NODES
1063
1064	NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1065					     SMP_CACHE_BYTES, nid);
1066	if (!NODE_DATA(nid)) {
1067		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1068		prom_halt();
1069	}
 
 
1070
1071	NODE_DATA(nid)->node_id = nid;
1072#endif
1073
1074	p = NODE_DATA(nid);
1075
1076	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1077	p->node_start_pfn = start_pfn;
1078	p->node_spanned_pages = end_pfn - start_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
1079}
1080
1081static void init_node_masks_nonnuma(void)
1082{
1083#ifdef CONFIG_NEED_MULTIPLE_NODES
1084	int i;
1085#endif
1086
1087	numadbg("Initializing tables for non-numa.\n");
1088
1089	node_masks[0].mask = 0;
1090	node_masks[0].match = 0;
1091	num_node_masks = 1;
1092
1093#ifdef CONFIG_NEED_MULTIPLE_NODES
1094	for (i = 0; i < NR_CPUS; i++)
1095		numa_cpu_lookup_table[i] = 0;
1096
1097	cpumask_setall(&numa_cpumask_lookup_table[0]);
1098#endif
1099}
1100
1101#ifdef CONFIG_NEED_MULTIPLE_NODES
1102struct pglist_data *node_data[MAX_NUMNODES];
1103
1104EXPORT_SYMBOL(numa_cpu_lookup_table);
1105EXPORT_SYMBOL(numa_cpumask_lookup_table);
1106EXPORT_SYMBOL(node_data);
1107
 
 
 
 
 
 
 
 
 
1108static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1109				   u32 cfg_handle)
1110{
1111	u64 arc;
1112
1113	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1114		u64 target = mdesc_arc_target(md, arc);
1115		const u64 *val;
1116
1117		val = mdesc_get_property(md, target,
1118					 "cfg-handle", NULL);
1119		if (val && *val == cfg_handle)
1120			return 0;
1121	}
1122	return -ENODEV;
1123}
1124
1125static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1126				    u32 cfg_handle)
1127{
1128	u64 arc, candidate, best_latency = ~(u64)0;
1129
1130	candidate = MDESC_NODE_NULL;
1131	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1132		u64 target = mdesc_arc_target(md, arc);
1133		const char *name = mdesc_node_name(md, target);
1134		const u64 *val;
1135
1136		if (strcmp(name, "pio-latency-group"))
1137			continue;
1138
1139		val = mdesc_get_property(md, target, "latency", NULL);
1140		if (!val)
1141			continue;
1142
1143		if (*val < best_latency) {
1144			candidate = target;
1145			best_latency = *val;
1146		}
1147	}
1148
1149	if (candidate == MDESC_NODE_NULL)
1150		return -ENODEV;
1151
1152	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1153}
1154
1155int of_node_to_nid(struct device_node *dp)
1156{
1157	const struct linux_prom64_registers *regs;
1158	struct mdesc_handle *md;
1159	u32 cfg_handle;
1160	int count, nid;
1161	u64 grp;
1162
1163	/* This is the right thing to do on currently supported
1164	 * SUN4U NUMA platforms as well, as the PCI controller does
1165	 * not sit behind any particular memory controller.
1166	 */
1167	if (!mlgroups)
1168		return -1;
1169
1170	regs = of_get_property(dp, "reg", NULL);
1171	if (!regs)
1172		return -1;
1173
1174	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1175
1176	md = mdesc_grab();
1177
1178	count = 0;
1179	nid = NUMA_NO_NODE;
1180	mdesc_for_each_node_by_name(md, grp, "group") {
1181		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1182			nid = count;
1183			break;
1184		}
1185		count++;
1186	}
1187
1188	mdesc_release(md);
1189
1190	return nid;
1191}
1192
1193static void __init add_node_ranges(void)
1194{
1195	struct memblock_region *reg;
1196	unsigned long prev_max;
1197
1198memblock_resized:
1199	prev_max = memblock.memory.max;
1200
1201	for_each_memblock(memory, reg) {
1202		unsigned long size = reg->size;
1203		unsigned long start, end;
1204
1205		start = reg->base;
1206		end = start + size;
1207		while (start < end) {
1208			unsigned long this_end;
1209			int nid;
1210
1211			this_end = memblock_nid_range(start, end, &nid);
1212
1213			numadbg("Setting memblock NUMA node nid[%d] "
1214				"start[%lx] end[%lx]\n",
1215				nid, start, this_end);
1216
1217			memblock_set_node(start, this_end - start,
1218					  &memblock.memory, nid);
1219			if (memblock.memory.max != prev_max)
1220				goto memblock_resized;
1221			start = this_end;
1222		}
1223	}
1224}
1225
1226static int __init grab_mlgroups(struct mdesc_handle *md)
1227{
1228	unsigned long paddr;
1229	int count = 0;
1230	u64 node;
1231
1232	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1233		count++;
1234	if (!count)
1235		return -ENOENT;
1236
1237	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1238				    SMP_CACHE_BYTES);
1239	if (!paddr)
1240		return -ENOMEM;
1241
1242	mlgroups = __va(paddr);
1243	num_mlgroups = count;
1244
1245	count = 0;
1246	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1247		struct mdesc_mlgroup *m = &mlgroups[count++];
1248		const u64 *val;
1249
1250		m->node = node;
1251
1252		val = mdesc_get_property(md, node, "latency", NULL);
1253		m->latency = *val;
1254		val = mdesc_get_property(md, node, "address-match", NULL);
1255		m->match = *val;
1256		val = mdesc_get_property(md, node, "address-mask", NULL);
1257		m->mask = *val;
1258
1259		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1260			"match[%llx] mask[%llx]\n",
1261			count - 1, m->node, m->latency, m->match, m->mask);
1262	}
1263
1264	return 0;
1265}
1266
1267static int __init grab_mblocks(struct mdesc_handle *md)
1268{
1269	unsigned long paddr;
1270	int count = 0;
1271	u64 node;
1272
1273	mdesc_for_each_node_by_name(md, node, "mblock")
1274		count++;
1275	if (!count)
1276		return -ENOENT;
1277
1278	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1279				    SMP_CACHE_BYTES);
1280	if (!paddr)
1281		return -ENOMEM;
1282
1283	mblocks = __va(paddr);
1284	num_mblocks = count;
1285
1286	count = 0;
1287	mdesc_for_each_node_by_name(md, node, "mblock") {
1288		struct mdesc_mblock *m = &mblocks[count++];
1289		const u64 *val;
1290
1291		val = mdesc_get_property(md, node, "base", NULL);
1292		m->base = *val;
1293		val = mdesc_get_property(md, node, "size", NULL);
1294		m->size = *val;
1295		val = mdesc_get_property(md, node,
1296					 "address-congruence-offset", NULL);
1297
1298		/* The address-congruence-offset property is optional.
1299		 * Explicity zero it be identifty this.
1300		 */
1301		if (val)
1302			m->offset = *val;
1303		else
1304			m->offset = 0UL;
1305
1306		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1307			count - 1, m->base, m->size, m->offset);
1308	}
1309
1310	return 0;
1311}
1312
1313static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1314					       u64 grp, cpumask_t *mask)
1315{
1316	u64 arc;
1317
1318	cpumask_clear(mask);
1319
1320	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1321		u64 target = mdesc_arc_target(md, arc);
1322		const char *name = mdesc_node_name(md, target);
1323		const u64 *id;
1324
1325		if (strcmp(name, "cpu"))
1326			continue;
1327		id = mdesc_get_property(md, target, "id", NULL);
1328		if (*id < nr_cpu_ids)
1329			cpumask_set_cpu(*id, mask);
1330	}
1331}
1332
1333static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1334{
1335	int i;
1336
1337	for (i = 0; i < num_mlgroups; i++) {
1338		struct mdesc_mlgroup *m = &mlgroups[i];
1339		if (m->node == node)
1340			return m;
1341	}
1342	return NULL;
1343}
1344
1345int __node_distance(int from, int to)
1346{
1347	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1348		pr_warn("Returning default NUMA distance value for %d->%d\n",
1349			from, to);
1350		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1351	}
1352	return numa_latency[from][to];
1353}
1354EXPORT_SYMBOL(__node_distance);
1355
1356static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1357{
1358	int i;
1359
1360	for (i = 0; i < MAX_NUMNODES; i++) {
1361		struct node_mem_mask *n = &node_masks[i];
1362
1363		if ((grp->mask == n->mask) && (grp->match == n->match))
1364			break;
1365	}
1366	return i;
1367}
1368
1369static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1370						 u64 grp, int index)
1371{
1372	u64 arc;
1373
1374	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1375		int tnode;
1376		u64 target = mdesc_arc_target(md, arc);
1377		struct mdesc_mlgroup *m = find_mlgroup(target);
1378
1379		if (!m)
1380			continue;
1381		tnode = find_best_numa_node_for_mlgroup(m);
1382		if (tnode == MAX_NUMNODES)
1383			continue;
1384		numa_latency[index][tnode] = m->latency;
1385	}
1386}
1387
1388static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1389				      int index)
1390{
1391	struct mdesc_mlgroup *candidate = NULL;
1392	u64 arc, best_latency = ~(u64)0;
1393	struct node_mem_mask *n;
1394
1395	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1396		u64 target = mdesc_arc_target(md, arc);
1397		struct mdesc_mlgroup *m = find_mlgroup(target);
1398		if (!m)
1399			continue;
1400		if (m->latency < best_latency) {
1401			candidate = m;
1402			best_latency = m->latency;
1403		}
1404	}
1405	if (!candidate)
1406		return -ENOENT;
1407
1408	if (num_node_masks != index) {
1409		printk(KERN_ERR "Inconsistent NUMA state, "
1410		       "index[%d] != num_node_masks[%d]\n",
1411		       index, num_node_masks);
1412		return -EINVAL;
1413	}
1414
1415	n = &node_masks[num_node_masks++];
1416
1417	n->mask = candidate->mask;
1418	n->match = candidate->match;
1419
1420	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1421		index, n->mask, n->match, candidate->latency);
1422
1423	return 0;
1424}
1425
1426static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1427					 int index)
1428{
1429	cpumask_t mask;
1430	int cpu;
1431
1432	numa_parse_mdesc_group_cpus(md, grp, &mask);
1433
1434	for_each_cpu(cpu, &mask)
1435		numa_cpu_lookup_table[cpu] = index;
1436	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1437
1438	if (numa_debug) {
1439		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1440		for_each_cpu(cpu, &mask)
1441			printk("%d ", cpu);
1442		printk("]\n");
1443	}
1444
1445	return numa_attach_mlgroup(md, grp, index);
1446}
1447
1448static int __init numa_parse_mdesc(void)
1449{
1450	struct mdesc_handle *md = mdesc_grab();
1451	int i, j, err, count;
1452	u64 node;
1453
1454	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1455	if (node == MDESC_NODE_NULL) {
1456		mdesc_release(md);
1457		return -ENOENT;
1458	}
1459
1460	err = grab_mblocks(md);
1461	if (err < 0)
1462		goto out;
1463
1464	err = grab_mlgroups(md);
1465	if (err < 0)
1466		goto out;
1467
1468	count = 0;
1469	mdesc_for_each_node_by_name(md, node, "group") {
1470		err = numa_parse_mdesc_group(md, node, count);
1471		if (err < 0)
1472			break;
1473		count++;
1474	}
1475
1476	count = 0;
1477	mdesc_for_each_node_by_name(md, node, "group") {
1478		find_numa_latencies_for_group(md, node, count);
1479		count++;
1480	}
1481
1482	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1483	for (i = 0; i < MAX_NUMNODES; i++) {
1484		u64 self_latency = numa_latency[i][i];
1485
1486		for (j = 0; j < MAX_NUMNODES; j++) {
1487			numa_latency[i][j] =
1488				(numa_latency[i][j] * LOCAL_DISTANCE) /
1489				self_latency;
1490		}
1491	}
1492
1493	add_node_ranges();
1494
1495	for (i = 0; i < num_node_masks; i++) {
1496		allocate_node_data(i);
1497		node_set_online(i);
1498	}
1499
1500	err = 0;
1501out:
1502	mdesc_release(md);
1503	return err;
1504}
1505
1506static int __init numa_parse_jbus(void)
1507{
1508	unsigned long cpu, index;
1509
1510	/* NUMA node id is encoded in bits 36 and higher, and there is
1511	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1512	 */
1513	index = 0;
1514	for_each_present_cpu(cpu) {
1515		numa_cpu_lookup_table[cpu] = index;
1516		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1517		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1518		node_masks[index].match = cpu << 36UL;
1519
1520		index++;
1521	}
1522	num_node_masks = index;
1523
1524	add_node_ranges();
1525
1526	for (index = 0; index < num_node_masks; index++) {
1527		allocate_node_data(index);
1528		node_set_online(index);
1529	}
1530
1531	return 0;
1532}
1533
1534static int __init numa_parse_sun4u(void)
1535{
1536	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1537		unsigned long ver;
1538
1539		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1540		if ((ver >> 32UL) == __JALAPENO_ID ||
1541		    (ver >> 32UL) == __SERRANO_ID)
1542			return numa_parse_jbus();
1543	}
1544	return -1;
1545}
1546
1547static int __init bootmem_init_numa(void)
1548{
1549	int i, j;
1550	int err = -1;
1551
1552	numadbg("bootmem_init_numa()\n");
1553
1554	/* Some sane defaults for numa latency values */
1555	for (i = 0; i < MAX_NUMNODES; i++) {
1556		for (j = 0; j < MAX_NUMNODES; j++)
1557			numa_latency[i][j] = (i == j) ?
1558				LOCAL_DISTANCE : REMOTE_DISTANCE;
1559	}
1560
1561	if (numa_enabled) {
1562		if (tlb_type == hypervisor)
1563			err = numa_parse_mdesc();
1564		else
1565			err = numa_parse_sun4u();
1566	}
1567	return err;
1568}
1569
1570#else
1571
1572static int bootmem_init_numa(void)
1573{
1574	return -1;
1575}
1576
1577#endif
1578
1579static void __init bootmem_init_nonnuma(void)
1580{
1581	unsigned long top_of_ram = memblock_end_of_DRAM();
1582	unsigned long total_ram = memblock_phys_mem_size();
 
1583
1584	numadbg("bootmem_init_nonnuma()\n");
1585
1586	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1587	       top_of_ram, total_ram);
1588	printk(KERN_INFO "Memory hole size: %ldMB\n",
1589	       (top_of_ram - total_ram) >> 20);
1590
1591	init_node_masks_nonnuma();
1592	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1593	allocate_node_data(0);
1594	node_set_online(0);
1595}
1596
1597static unsigned long __init bootmem_init(unsigned long phys_base)
1598{
1599	unsigned long end_pfn;
1600
1601	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1602	max_pfn = max_low_pfn = end_pfn;
1603	min_low_pfn = (phys_base >> PAGE_SHIFT);
1604
1605	if (bootmem_init_numa() < 0)
1606		bootmem_init_nonnuma();
 
 
1607
1608	/* Dump memblock with node info. */
1609	memblock_dump_all();
1610
1611	/* XXX cpu notifier XXX */
1612
1613	sparse_init();
1614
1615	return end_pfn;
1616}
1617
1618static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1619static int pall_ents __initdata;
1620
1621static unsigned long max_phys_bits = 40;
1622
1623bool kern_addr_valid(unsigned long addr)
1624{
1625	pgd_t *pgd;
1626	p4d_t *p4d;
1627	pud_t *pud;
1628	pmd_t *pmd;
1629	pte_t *pte;
1630
1631	if ((long)addr < 0L) {
1632		unsigned long pa = __pa(addr);
1633
1634		if ((pa >> max_phys_bits) != 0UL)
1635			return false;
 
 
 
 
 
 
 
1636
1637		return pfn_valid(pa >> PAGE_SHIFT);
1638	}
 
1639
1640	if (addr >= (unsigned long) KERNBASE &&
1641	    addr < (unsigned long)&_end)
1642		return true;
1643
1644	pgd = pgd_offset_k(addr);
1645	if (pgd_none(*pgd))
1646		return false;
1647
1648	p4d = p4d_offset(pgd, addr);
1649	if (p4d_none(*p4d))
1650		return false;
1651
1652	pud = pud_offset(p4d, addr);
1653	if (pud_none(*pud))
1654		return false;
1655
1656	if (pud_large(*pud))
1657		return pfn_valid(pud_pfn(*pud));
1658
1659	pmd = pmd_offset(pud, addr);
1660	if (pmd_none(*pmd))
1661		return false;
1662
1663	if (pmd_large(*pmd))
1664		return pfn_valid(pmd_pfn(*pmd));
 
1665
1666	pte = pte_offset_kernel(pmd, addr);
1667	if (pte_none(*pte))
1668		return false;
1669
1670	return pfn_valid(pte_pfn(*pte));
1671}
1672EXPORT_SYMBOL(kern_addr_valid);
1673
1674static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1675					      unsigned long vend,
1676					      pud_t *pud)
1677{
1678	const unsigned long mask16gb = (1UL << 34) - 1UL;
1679	u64 pte_val = vstart;
1680
1681	/* Each PUD is 8GB */
1682	if ((vstart & mask16gb) ||
1683	    (vend - vstart <= mask16gb)) {
1684		pte_val ^= kern_linear_pte_xor[2];
1685		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1686
1687		return vstart + PUD_SIZE;
1688	}
1689
1690	pte_val ^= kern_linear_pte_xor[3];
1691	pte_val |= _PAGE_PUD_HUGE;
1692
1693	vend = vstart + mask16gb + 1UL;
1694	while (vstart < vend) {
1695		pud_val(*pud) = pte_val;
1696
1697		pte_val += PUD_SIZE;
1698		vstart += PUD_SIZE;
1699		pud++;
1700	}
1701	return vstart;
1702}
1703
1704static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1705				   bool guard)
1706{
1707	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1708		return true;
1709
1710	return false;
1711}
 
1712
1713static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1714					      unsigned long vend,
1715					      pmd_t *pmd)
1716{
1717	const unsigned long mask256mb = (1UL << 28) - 1UL;
1718	const unsigned long mask2gb = (1UL << 31) - 1UL;
1719	u64 pte_val = vstart;
1720
1721	/* Each PMD is 8MB */
1722	if ((vstart & mask256mb) ||
1723	    (vend - vstart <= mask256mb)) {
1724		pte_val ^= kern_linear_pte_xor[0];
1725		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1726
1727		return vstart + PMD_SIZE;
1728	}
1729
1730	if ((vstart & mask2gb) ||
1731	    (vend - vstart <= mask2gb)) {
1732		pte_val ^= kern_linear_pte_xor[1];
1733		pte_val |= _PAGE_PMD_HUGE;
1734		vend = vstart + mask256mb + 1UL;
1735	} else {
1736		pte_val ^= kern_linear_pte_xor[2];
1737		pte_val |= _PAGE_PMD_HUGE;
1738		vend = vstart + mask2gb + 1UL;
1739	}
1740
1741	while (vstart < vend) {
1742		pmd_val(*pmd) = pte_val;
1743
1744		pte_val += PMD_SIZE;
1745		vstart += PMD_SIZE;
1746		pmd++;
1747	}
1748
1749	return vstart;
1750}
1751
1752static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1753				   bool guard)
1754{
1755	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1756		return true;
1757
1758	return false;
1759}
1760
 
1761static unsigned long __ref kernel_map_range(unsigned long pstart,
1762					    unsigned long pend, pgprot_t prot,
1763					    bool use_huge)
1764{
1765	unsigned long vstart = PAGE_OFFSET + pstart;
1766	unsigned long vend = PAGE_OFFSET + pend;
1767	unsigned long alloc_bytes = 0UL;
1768
1769	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1770		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1771			    vstart, vend);
1772		prom_halt();
1773	}
1774
1775	while (vstart < vend) {
1776		unsigned long this_end, paddr = __pa(vstart);
1777		pgd_t *pgd = pgd_offset_k(vstart);
1778		p4d_t *p4d;
1779		pud_t *pud;
1780		pmd_t *pmd;
1781		pte_t *pte;
1782
1783		if (pgd_none(*pgd)) {
1784			pud_t *new;
1785
1786			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1787						  PAGE_SIZE);
1788			if (!new)
1789				goto err_alloc;
1790			alloc_bytes += PAGE_SIZE;
1791			pgd_populate(&init_mm, pgd, new);
1792		}
1793
1794		p4d = p4d_offset(pgd, vstart);
1795		if (p4d_none(*p4d)) {
1796			pud_t *new;
1797
1798			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1799						  PAGE_SIZE);
1800			if (!new)
1801				goto err_alloc;
1802			alloc_bytes += PAGE_SIZE;
1803			p4d_populate(&init_mm, p4d, new);
1804		}
1805
1806		pud = pud_offset(p4d, vstart);
1807		if (pud_none(*pud)) {
1808			pmd_t *new;
1809
1810			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1811				vstart = kernel_map_hugepud(vstart, vend, pud);
1812				continue;
1813			}
1814			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1815						  PAGE_SIZE);
1816			if (!new)
1817				goto err_alloc;
1818			alloc_bytes += PAGE_SIZE;
1819			pud_populate(&init_mm, pud, new);
1820		}
1821
1822		pmd = pmd_offset(pud, vstart);
1823		if (pmd_none(*pmd)) {
1824			pte_t *new;
1825
1826			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1827				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1828				continue;
1829			}
1830			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1831						  PAGE_SIZE);
1832			if (!new)
1833				goto err_alloc;
1834			alloc_bytes += PAGE_SIZE;
1835			pmd_populate_kernel(&init_mm, pmd, new);
1836		}
1837
1838		pte = pte_offset_kernel(pmd, vstart);
1839		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1840		if (this_end > vend)
1841			this_end = vend;
1842
1843		while (vstart < this_end) {
1844			pte_val(*pte) = (paddr | pgprot_val(prot));
1845
1846			vstart += PAGE_SIZE;
1847			paddr += PAGE_SIZE;
1848			pte++;
1849		}
1850	}
1851
1852	return alloc_bytes;
 
 
 
 
1853
1854err_alloc:
1855	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1856	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1857	return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1858}
1859
1860static void __init flush_all_kernel_tsbs(void)
1861{
1862	int i;
1863
1864	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1865		struct tsb *ent = &swapper_tsb[i];
1866
1867		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1868	}
1869#ifndef CONFIG_DEBUG_PAGEALLOC
1870	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1871		struct tsb *ent = &swapper_4m_tsb[i];
1872
1873		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1874	}
1875#endif
1876}
1877
1878extern unsigned int kvmap_linear_patch[1];
1879
1880static void __init kernel_physical_mapping_init(void)
1881{
 
1882	unsigned long i, mem_alloced = 0UL;
1883	bool use_huge = true;
1884
1885#ifdef CONFIG_DEBUG_PAGEALLOC
1886	use_huge = false;
1887#endif
1888	for (i = 0; i < pall_ents; i++) {
1889		unsigned long phys_start, phys_end;
1890
1891		phys_start = pall[i].phys_addr;
1892		phys_end = phys_start + pall[i].reg_size;
1893
1894		mem_alloced += kernel_map_range(phys_start, phys_end,
1895						PAGE_KERNEL, use_huge);
1896	}
1897
1898	printk("Allocated %ld bytes for kernel page tables.\n",
1899	       mem_alloced);
1900
1901	kvmap_linear_patch[0] = 0x01000000; /* nop */
1902	flushi(&kvmap_linear_patch[0]);
1903
1904	flush_all_kernel_tsbs();
1905
1906	__flush_tlb_all();
 
1907}
1908
1909#ifdef CONFIG_DEBUG_PAGEALLOC
1910void __kernel_map_pages(struct page *page, int numpages, int enable)
1911{
1912	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1913	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1914
1915	kernel_map_range(phys_start, phys_end,
1916			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1917
1918	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1919			       PAGE_OFFSET + phys_end);
1920
1921	/* we should perform an IPI and flush all tlbs,
1922	 * but that can deadlock->flush only current cpu.
1923	 */
1924	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1925				 PAGE_OFFSET + phys_end);
1926}
1927#endif
1928
1929unsigned long __init find_ecache_flush_span(unsigned long size)
1930{
1931	int i;
1932
1933	for (i = 0; i < pavail_ents; i++) {
1934		if (pavail[i].reg_size >= size)
1935			return pavail[i].phys_addr;
1936	}
1937
1938	return ~0UL;
1939}
1940
1941unsigned long PAGE_OFFSET;
1942EXPORT_SYMBOL(PAGE_OFFSET);
1943
1944unsigned long VMALLOC_END   = 0x0000010000000000UL;
1945EXPORT_SYMBOL(VMALLOC_END);
1946
1947unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1948unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1949
1950static void __init setup_page_offset(void)
1951{
1952	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1953		/* Cheetah/Panther support a full 64-bit virtual
1954		 * address, so we can use all that our page tables
1955		 * support.
1956		 */
1957		sparc64_va_hole_top =    0xfff0000000000000UL;
1958		sparc64_va_hole_bottom = 0x0010000000000000UL;
1959
1960		max_phys_bits = 42;
1961	} else if (tlb_type == hypervisor) {
1962		switch (sun4v_chip_type) {
1963		case SUN4V_CHIP_NIAGARA1:
1964		case SUN4V_CHIP_NIAGARA2:
1965			/* T1 and T2 support 48-bit virtual addresses.  */
1966			sparc64_va_hole_top =    0xffff800000000000UL;
1967			sparc64_va_hole_bottom = 0x0000800000000000UL;
1968
1969			max_phys_bits = 39;
1970			break;
1971		case SUN4V_CHIP_NIAGARA3:
1972			/* T3 supports 48-bit virtual addresses.  */
1973			sparc64_va_hole_top =    0xffff800000000000UL;
1974			sparc64_va_hole_bottom = 0x0000800000000000UL;
1975
1976			max_phys_bits = 43;
1977			break;
1978		case SUN4V_CHIP_NIAGARA4:
1979		case SUN4V_CHIP_NIAGARA5:
1980		case SUN4V_CHIP_SPARC64X:
1981		case SUN4V_CHIP_SPARC_M6:
1982			/* T4 and later support 52-bit virtual addresses.  */
1983			sparc64_va_hole_top =    0xfff8000000000000UL;
1984			sparc64_va_hole_bottom = 0x0008000000000000UL;
1985			max_phys_bits = 47;
1986			break;
1987		case SUN4V_CHIP_SPARC_M7:
1988		case SUN4V_CHIP_SPARC_SN:
1989			/* M7 and later support 52-bit virtual addresses.  */
1990			sparc64_va_hole_top =    0xfff8000000000000UL;
1991			sparc64_va_hole_bottom = 0x0008000000000000UL;
1992			max_phys_bits = 49;
1993			break;
1994		case SUN4V_CHIP_SPARC_M8:
1995		default:
1996			/* M8 and later support 54-bit virtual addresses.
1997			 * However, restricting M8 and above VA bits to 53
1998			 * as 4-level page table cannot support more than
1999			 * 53 VA bits.
2000			 */
2001			sparc64_va_hole_top =    0xfff0000000000000UL;
2002			sparc64_va_hole_bottom = 0x0010000000000000UL;
2003			max_phys_bits = 51;
2004			break;
2005		}
2006	}
2007
2008	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2009		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2010			    max_phys_bits);
2011		prom_halt();
2012	}
2013
2014	PAGE_OFFSET = sparc64_va_hole_top;
2015	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2016		       (sparc64_va_hole_bottom >> 2));
2017
2018	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2019		PAGE_OFFSET, max_phys_bits);
2020	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2021		VMALLOC_START, VMALLOC_END);
2022	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2023		VMEMMAP_BASE, VMEMMAP_BASE << 1);
2024}
2025
2026static void __init tsb_phys_patch(void)
2027{
2028	struct tsb_ldquad_phys_patch_entry *pquad;
2029	struct tsb_phys_patch_entry *p;
2030
2031	pquad = &__tsb_ldquad_phys_patch;
2032	while (pquad < &__tsb_ldquad_phys_patch_end) {
2033		unsigned long addr = pquad->addr;
2034
2035		if (tlb_type == hypervisor)
2036			*(unsigned int *) addr = pquad->sun4v_insn;
2037		else
2038			*(unsigned int *) addr = pquad->sun4u_insn;
2039		wmb();
2040		__asm__ __volatile__("flush	%0"
2041				     : /* no outputs */
2042				     : "r" (addr));
2043
2044		pquad++;
2045	}
2046
2047	p = &__tsb_phys_patch;
2048	while (p < &__tsb_phys_patch_end) {
2049		unsigned long addr = p->addr;
2050
2051		*(unsigned int *) addr = p->insn;
2052		wmb();
2053		__asm__ __volatile__("flush	%0"
2054				     : /* no outputs */
2055				     : "r" (addr));
2056
2057		p++;
2058	}
2059}
2060
2061/* Don't mark as init, we give this to the Hypervisor.  */
2062#ifndef CONFIG_DEBUG_PAGEALLOC
2063#define NUM_KTSB_DESCR	2
2064#else
2065#define NUM_KTSB_DESCR	1
2066#endif
2067static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2068
2069/* The swapper TSBs are loaded with a base sequence of:
2070 *
2071 *	sethi	%uhi(SYMBOL), REG1
2072 *	sethi	%hi(SYMBOL), REG2
2073 *	or	REG1, %ulo(SYMBOL), REG1
2074 *	or	REG2, %lo(SYMBOL), REG2
2075 *	sllx	REG1, 32, REG1
2076 *	or	REG1, REG2, REG1
2077 *
2078 * When we use physical addressing for the TSB accesses, we patch the
2079 * first four instructions in the above sequence.
2080 */
2081
2082static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2083{
2084	unsigned long high_bits, low_bits;
2085
2086	high_bits = (pa >> 32) & 0xffffffff;
2087	low_bits = (pa >> 0) & 0xffffffff;
2088
2089	while (start < end) {
2090		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2091
2092		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2093		__asm__ __volatile__("flush	%0" : : "r" (ia));
2094
2095		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2096		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2097
2098		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2099		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2100
2101		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2102		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2103
2104		start++;
2105	}
2106}
2107
2108static void ktsb_phys_patch(void)
2109{
2110	extern unsigned int __swapper_tsb_phys_patch;
2111	extern unsigned int __swapper_tsb_phys_patch_end;
2112	unsigned long ktsb_pa;
2113
2114	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2115	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2116			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2117#ifndef CONFIG_DEBUG_PAGEALLOC
2118	{
2119	extern unsigned int __swapper_4m_tsb_phys_patch;
2120	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2121	ktsb_pa = (kern_base +
2122		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2123	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2124			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2125	}
2126#endif
2127}
2128
2129static void __init sun4v_ktsb_init(void)
2130{
2131	unsigned long ktsb_pa;
2132
2133	/* First KTSB for PAGE_SIZE mappings.  */
2134	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2135
2136	switch (PAGE_SIZE) {
2137	case 8 * 1024:
2138	default:
2139		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2140		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2141		break;
2142
2143	case 64 * 1024:
2144		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2145		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2146		break;
2147
2148	case 512 * 1024:
2149		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2150		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2151		break;
2152
2153	case 4 * 1024 * 1024:
2154		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2155		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2156		break;
2157	}
2158
2159	ktsb_descr[0].assoc = 1;
2160	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2161	ktsb_descr[0].ctx_idx = 0;
2162	ktsb_descr[0].tsb_base = ktsb_pa;
2163	ktsb_descr[0].resv = 0;
2164
2165#ifndef CONFIG_DEBUG_PAGEALLOC
2166	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2167	ktsb_pa = (kern_base +
2168		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2169
2170	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2171	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2172				    HV_PGSZ_MASK_256MB |
2173				    HV_PGSZ_MASK_2GB |
2174				    HV_PGSZ_MASK_16GB) &
2175				   cpu_pgsz_mask);
2176	ktsb_descr[1].assoc = 1;
2177	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2178	ktsb_descr[1].ctx_idx = 0;
2179	ktsb_descr[1].tsb_base = ktsb_pa;
2180	ktsb_descr[1].resv = 0;
2181#endif
2182}
2183
2184void sun4v_ktsb_register(void)
2185{
2186	unsigned long pa, ret;
2187
2188	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2189
2190	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2191	if (ret != 0) {
2192		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2193			    "errors with %lx\n", pa, ret);
2194		prom_halt();
2195	}
2196}
2197
2198static void __init sun4u_linear_pte_xor_finalize(void)
2199{
2200#ifndef CONFIG_DEBUG_PAGEALLOC
2201	/* This is where we would add Panther support for
2202	 * 32MB and 256MB pages.
2203	 */
2204#endif
2205}
2206
2207static void __init sun4v_linear_pte_xor_finalize(void)
2208{
2209	unsigned long pagecv_flag;
2210
2211	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2212	 * enables MCD error. Do not set bit 9 on M7 processor.
2213	 */
2214	switch (sun4v_chip_type) {
2215	case SUN4V_CHIP_SPARC_M7:
2216	case SUN4V_CHIP_SPARC_M8:
2217	case SUN4V_CHIP_SPARC_SN:
2218		pagecv_flag = 0x00;
2219		break;
2220	default:
2221		pagecv_flag = _PAGE_CV_4V;
2222		break;
2223	}
2224#ifndef CONFIG_DEBUG_PAGEALLOC
2225	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2226		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2227			PAGE_OFFSET;
2228		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2229					   _PAGE_P_4V | _PAGE_W_4V);
2230	} else {
2231		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2232	}
2233
2234	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2235		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2236			PAGE_OFFSET;
2237		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2238					   _PAGE_P_4V | _PAGE_W_4V);
2239	} else {
2240		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2241	}
2242
2243	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2244		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2245			PAGE_OFFSET;
2246		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2247					   _PAGE_P_4V | _PAGE_W_4V);
2248	} else {
2249		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2250	}
2251#endif
2252}
2253
2254/* paging_init() sets up the page tables */
2255
2256static unsigned long last_valid_pfn;
 
2257
2258static void sun4u_pgprot_init(void);
2259static void sun4v_pgprot_init(void);
2260
2261#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2262#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2263#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2264#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2265#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2266#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2267
2268/* We need to exclude reserved regions. This exclusion will include
2269 * vmlinux and initrd. To be more precise the initrd size could be used to
2270 * compute a new lower limit because it is freed later during initialization.
2271 */
2272static void __init reduce_memory(phys_addr_t limit_ram)
2273{
2274	limit_ram += memblock_reserved_size();
2275	memblock_enforce_memory_limit(limit_ram);
2276}
2277
2278void __init paging_init(void)
2279{
2280	unsigned long end_pfn, shift, phys_base;
2281	unsigned long real_end, i;
2282
2283	setup_page_offset();
2284
2285	/* These build time checkes make sure that the dcache_dirty_cpu()
2286	 * page->flags usage will work.
2287	 *
2288	 * When a page gets marked as dcache-dirty, we store the
2289	 * cpu number starting at bit 32 in the page->flags.  Also,
2290	 * functions like clear_dcache_dirty_cpu use the cpu mask
2291	 * in 13-bit signed-immediate instruction fields.
2292	 */
2293
2294	/*
2295	 * Page flags must not reach into upper 32 bits that are used
2296	 * for the cpu number
2297	 */
2298	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2299
2300	/*
2301	 * The bit fields placed in the high range must not reach below
2302	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2303	 * at the 32 bit boundary.
2304	 */
2305	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2306		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2307
2308	BUILD_BUG_ON(NR_CPUS > 4096);
2309
2310	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2311	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2312
2313	/* Invalidate both kernel TSBs.  */
2314	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2315#ifndef CONFIG_DEBUG_PAGEALLOC
2316	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2317#endif
2318
2319	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2320	 * bit on M7 processor. This is a conflicting usage of the same
2321	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2322	 * Detection error on all pages and this will lead to problems
2323	 * later. Kernel does not run with MCD enabled and hence rest
2324	 * of the required steps to fully configure memory corruption
2325	 * detection are not taken. We need to ensure TTE.mcde is not
2326	 * set on M7 processor. Compute the value of cacheability
2327	 * flag for use later taking this into consideration.
2328	 */
2329	switch (sun4v_chip_type) {
2330	case SUN4V_CHIP_SPARC_M7:
2331	case SUN4V_CHIP_SPARC_M8:
2332	case SUN4V_CHIP_SPARC_SN:
2333		page_cache4v_flag = _PAGE_CP_4V;
2334		break;
2335	default:
2336		page_cache4v_flag = _PAGE_CACHE_4V;
2337		break;
2338	}
2339
2340	if (tlb_type == hypervisor)
2341		sun4v_pgprot_init();
2342	else
2343		sun4u_pgprot_init();
2344
2345	if (tlb_type == cheetah_plus ||
2346	    tlb_type == hypervisor) {
2347		tsb_phys_patch();
2348		ktsb_phys_patch();
2349	}
2350
2351	if (tlb_type == hypervisor)
2352		sun4v_patch_tlb_handlers();
 
 
 
 
2353
2354	/* Find available physical memory...
2355	 *
2356	 * Read it twice in order to work around a bug in openfirmware.
2357	 * The call to grab this table itself can cause openfirmware to
2358	 * allocate memory, which in turn can take away some space from
2359	 * the list of available memory.  Reading it twice makes sure
2360	 * we really do get the final value.
2361	 */
2362	read_obp_translations();
2363	read_obp_memory("reg", &pall[0], &pall_ents);
2364	read_obp_memory("available", &pavail[0], &pavail_ents);
2365	read_obp_memory("available", &pavail[0], &pavail_ents);
2366
2367	phys_base = 0xffffffffffffffffUL;
2368	for (i = 0; i < pavail_ents; i++) {
2369		phys_base = min(phys_base, pavail[i].phys_addr);
2370		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2371	}
2372
2373	memblock_reserve(kern_base, kern_size);
2374
2375	find_ramdisk(phys_base);
2376
2377	if (cmdline_memory_size)
2378		reduce_memory(cmdline_memory_size);
2379
2380	memblock_allow_resize();
2381	memblock_dump_all();
2382
2383	set_bit(0, mmu_context_bmap);
2384
2385	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2386
2387	real_end = (unsigned long)_end;
2388	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2389	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2390	       num_kernel_image_mappings);
2391
2392	/* Set kernel pgd to upper alias so physical page computations
2393	 * work.
2394	 */
2395	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2396	
2397	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2398
 
 
 
 
2399	inherit_prom_mappings();
2400	
 
 
2401	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2402	setup_tba();
2403
2404	__flush_tlb_all();
2405
 
 
 
2406	prom_build_devicetree();
2407	of_populate_present_mask();
2408#ifndef CONFIG_SMP
2409	of_fill_in_cpu_data();
2410#endif
2411
2412	if (tlb_type == hypervisor) {
2413		sun4v_mdesc_init();
2414		mdesc_populate_present_mask(cpu_all_mask);
2415#ifndef CONFIG_SMP
2416		mdesc_fill_in_cpu_data(cpu_all_mask);
2417#endif
2418		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2419
2420		sun4v_linear_pte_xor_finalize();
2421
2422		sun4v_ktsb_init();
2423		sun4v_ktsb_register();
2424	} else {
2425		unsigned long impl, ver;
2426
2427		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2428				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2429
2430		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2431		impl = ((ver >> 32) & 0xffff);
2432		if (impl == PANTHER_IMPL)
2433			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2434					  HV_PGSZ_MASK_256MB);
2435
2436		sun4u_linear_pte_xor_finalize();
 
2437	}
2438
2439	/* Flush the TLBs and the 4M TSB so that the updated linear
2440	 * pte XOR settings are realized for all mappings.
2441	 */
2442	__flush_tlb_all();
2443#ifndef CONFIG_DEBUG_PAGEALLOC
2444	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2445#endif
2446	__flush_tlb_all();
2447
2448	/* Setup bootmem... */
2449	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2450
 
 
 
2451	kernel_physical_mapping_init();
2452
2453	{
2454		unsigned long max_zone_pfns[MAX_NR_ZONES];
2455
2456		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2457
2458		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2459
2460		free_area_init(max_zone_pfns);
2461	}
2462
2463	printk("Booting Linux...\n");
2464}
2465
2466int page_in_phys_avail(unsigned long paddr)
2467{
2468	int i;
2469
2470	paddr &= PAGE_MASK;
2471
2472	for (i = 0; i < pavail_ents; i++) {
2473		unsigned long start, end;
2474
2475		start = pavail[i].phys_addr;
2476		end = start + pavail[i].reg_size;
2477
2478		if (paddr >= start && paddr < end)
2479			return 1;
2480	}
2481	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2482		return 1;
2483#ifdef CONFIG_BLK_DEV_INITRD
2484	if (paddr >= __pa(initrd_start) &&
2485	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2486		return 1;
2487#endif
2488
2489	return 0;
2490}
2491
2492static void __init register_page_bootmem_info(void)
 
 
 
 
 
 
 
 
 
2493{
2494#ifdef CONFIG_NEED_MULTIPLE_NODES
2495	int i;
2496
2497	for_each_online_node(i)
2498		if (NODE_DATA(i)->node_spanned_pages)
2499			register_page_bootmem_info_node(NODE_DATA(i));
2500#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2501}
 
2502void __init mem_init(void)
2503{
 
 
 
 
 
 
 
 
 
 
 
 
 
2504	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2505
2506	memblock_free_all();
 
 
 
 
 
 
 
 
 
 
 
 
2507
2508	/*
2509	 * Must be done after boot memory is put on freelist, because here we
2510	 * might set fields in deferred struct pages that have not yet been
2511	 * initialized, and memblock_free_all() initializes all the reserved
2512	 * deferred pages for us.
2513	 */
2514	register_page_bootmem_info();
 
2515
2516	/*
2517	 * Set up the zero page, mark it reserved, so that page count
2518	 * is not manipulated when freeing the page from user ptes.
2519	 */
2520	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2521	if (mem_map_zero == NULL) {
2522		prom_printf("paging_init: Cannot alloc zero page.\n");
2523		prom_halt();
2524	}
2525	mark_page_reserved(mem_map_zero);
2526
2527	mem_init_print_info(NULL);
 
 
 
 
 
 
 
 
 
 
 
 
2528
2529	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2530		cheetah_ecache_flush_init();
2531}
2532
2533void free_initmem(void)
2534{
2535	unsigned long addr, initend;
2536	int do_free = 1;
2537
2538	/* If the physical memory maps were trimmed by kernel command
2539	 * line options, don't even try freeing this initmem stuff up.
2540	 * The kernel image could have been in the trimmed out region
2541	 * and if so the freeing below will free invalid page structs.
2542	 */
2543	if (cmdline_memory_size)
2544		do_free = 0;
2545
2546	/*
2547	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2548	 */
2549	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2550	initend = (unsigned long)(__init_end) & PAGE_MASK;
2551	for (; addr < initend; addr += PAGE_SIZE) {
2552		unsigned long page;
 
2553
2554		page = (addr +
2555			((unsigned long) __va(kern_base)) -
2556			((unsigned long) KERNBASE));
2557		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2558
2559		if (do_free)
2560			free_reserved_page(virt_to_page(page));
 
 
 
 
 
 
 
2561	}
2562}
2563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2564pgprot_t PAGE_KERNEL __read_mostly;
2565EXPORT_SYMBOL(PAGE_KERNEL);
2566
2567pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2568pgprot_t PAGE_COPY __read_mostly;
2569
2570pgprot_t PAGE_SHARED __read_mostly;
2571EXPORT_SYMBOL(PAGE_SHARED);
2572
2573unsigned long pg_iobits __read_mostly;
2574
2575unsigned long _PAGE_IE __read_mostly;
2576EXPORT_SYMBOL(_PAGE_IE);
2577
2578unsigned long _PAGE_E __read_mostly;
2579EXPORT_SYMBOL(_PAGE_E);
2580
2581unsigned long _PAGE_CACHE __read_mostly;
2582EXPORT_SYMBOL(_PAGE_CACHE);
2583
2584#ifdef CONFIG_SPARSEMEM_VMEMMAP
2585int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2586			       int node, struct vmem_altmap *altmap)
 
2587{
 
 
 
 
 
 
2588	unsigned long pte_base;
2589
2590	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2591		    _PAGE_CP_4U | _PAGE_CV_4U |
2592		    _PAGE_P_4U | _PAGE_W_4U);
2593	if (tlb_type == hypervisor)
2594		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2595			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2596
2597	pte_base |= _PAGE_PMD_HUGE;
2598
2599	vstart = vstart & PMD_MASK;
2600	vend = ALIGN(vend, PMD_SIZE);
2601	for (; vstart < vend; vstart += PMD_SIZE) {
2602		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2603		unsigned long pte;
2604		p4d_t *p4d;
2605		pud_t *pud;
2606		pmd_t *pmd;
2607
2608		if (!pgd)
2609			return -ENOMEM;
2610
2611		p4d = vmemmap_p4d_populate(pgd, vstart, node);
2612		if (!p4d)
2613			return -ENOMEM;
2614
2615		pud = vmemmap_pud_populate(p4d, vstart, node);
2616		if (!pud)
2617			return -ENOMEM;
2618
2619		pmd = pmd_offset(pud, vstart);
2620		pte = pmd_val(*pmd);
2621		if (!(pte & _PAGE_VALID)) {
2622			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2623
 
 
2624			if (!block)
2625				return -ENOMEM;
2626
2627			pmd_val(*pmd) = pte_base | __pa(block);
 
 
 
 
 
 
2628		}
2629	}
2630
2631	return 0;
2632}
2633
2634void vmemmap_free(unsigned long start, unsigned long end,
2635		struct vmem_altmap *altmap)
2636{
2637}
2638#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2639
2640static void prot_init_common(unsigned long page_none,
2641			     unsigned long page_shared,
2642			     unsigned long page_copy,
2643			     unsigned long page_readonly,
2644			     unsigned long page_exec_bit)
2645{
2646	PAGE_COPY = __pgprot(page_copy);
2647	PAGE_SHARED = __pgprot(page_shared);
2648
2649	protection_map[0x0] = __pgprot(page_none);
2650	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2651	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2652	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2653	protection_map[0x4] = __pgprot(page_readonly);
2654	protection_map[0x5] = __pgprot(page_readonly);
2655	protection_map[0x6] = __pgprot(page_copy);
2656	protection_map[0x7] = __pgprot(page_copy);
2657	protection_map[0x8] = __pgprot(page_none);
2658	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2659	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2660	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2661	protection_map[0xc] = __pgprot(page_readonly);
2662	protection_map[0xd] = __pgprot(page_readonly);
2663	protection_map[0xe] = __pgprot(page_shared);
2664	protection_map[0xf] = __pgprot(page_shared);
2665}
2666
2667static void __init sun4u_pgprot_init(void)
2668{
2669	unsigned long page_none, page_shared, page_copy, page_readonly;
2670	unsigned long page_exec_bit;
2671	int i;
2672
2673	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2674				_PAGE_CACHE_4U | _PAGE_P_4U |
2675				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2676				_PAGE_EXEC_4U);
2677	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2678				       _PAGE_CACHE_4U | _PAGE_P_4U |
2679				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2680				       _PAGE_EXEC_4U | _PAGE_L_4U);
2681
2682	_PAGE_IE = _PAGE_IE_4U;
2683	_PAGE_E = _PAGE_E_4U;
2684	_PAGE_CACHE = _PAGE_CACHE_4U;
2685
2686	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2687		     __ACCESS_BITS_4U | _PAGE_E_4U);
2688
2689#ifdef CONFIG_DEBUG_PAGEALLOC
2690	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
 
2691#else
2692	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2693		PAGE_OFFSET;
2694#endif
2695	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2696				   _PAGE_P_4U | _PAGE_W_4U);
2697
2698	for (i = 1; i < 4; i++)
2699		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2700
 
2701	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2702			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2703			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2704
2705
2706	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2707	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2708		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2709	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2710		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2711	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2712			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2713
2714	page_exec_bit = _PAGE_EXEC_4U;
2715
2716	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2717			 page_exec_bit);
2718}
2719
2720static void __init sun4v_pgprot_init(void)
2721{
2722	unsigned long page_none, page_shared, page_copy, page_readonly;
2723	unsigned long page_exec_bit;
2724	int i;
2725
2726	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2727				page_cache4v_flag | _PAGE_P_4V |
2728				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2729				_PAGE_EXEC_4V);
2730	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2731
2732	_PAGE_IE = _PAGE_IE_4V;
2733	_PAGE_E = _PAGE_E_4V;
2734	_PAGE_CACHE = page_cache4v_flag;
2735
2736#ifdef CONFIG_DEBUG_PAGEALLOC
2737	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
 
2738#else
2739	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2740		PAGE_OFFSET;
2741#endif
2742	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2743				   _PAGE_W_4V);
2744
2745	for (i = 1; i < 4; i++)
2746		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
 
 
 
 
 
 
 
2747
2748	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2749		     __ACCESS_BITS_4V | _PAGE_E_4V);
2750
 
2751	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2752			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2753			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2754			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2755
2756	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2757	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2758		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2759	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2760		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2761	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2762			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2763
2764	page_exec_bit = _PAGE_EXEC_4V;
2765
2766	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2767			 page_exec_bit);
2768}
2769
2770unsigned long pte_sz_bits(unsigned long sz)
2771{
2772	if (tlb_type == hypervisor) {
2773		switch (sz) {
2774		case 8 * 1024:
2775		default:
2776			return _PAGE_SZ8K_4V;
2777		case 64 * 1024:
2778			return _PAGE_SZ64K_4V;
2779		case 512 * 1024:
2780			return _PAGE_SZ512K_4V;
2781		case 4 * 1024 * 1024:
2782			return _PAGE_SZ4MB_4V;
2783		}
2784	} else {
2785		switch (sz) {
2786		case 8 * 1024:
2787		default:
2788			return _PAGE_SZ8K_4U;
2789		case 64 * 1024:
2790			return _PAGE_SZ64K_4U;
2791		case 512 * 1024:
2792			return _PAGE_SZ512K_4U;
2793		case 4 * 1024 * 1024:
2794			return _PAGE_SZ4MB_4U;
2795		}
2796	}
2797}
2798
2799pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2800{
2801	pte_t pte;
2802
2803	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2804	pte_val(pte) |= (((unsigned long)space) << 32);
2805	pte_val(pte) |= pte_sz_bits(page_size);
2806
2807	return pte;
2808}
2809
2810static unsigned long kern_large_tte(unsigned long paddr)
2811{
2812	unsigned long val;
2813
2814	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2815	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2816	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2817	if (tlb_type == hypervisor)
2818		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2819		       page_cache4v_flag | _PAGE_P_4V |
2820		       _PAGE_EXEC_4V | _PAGE_W_4V);
2821
2822	return val | paddr;
2823}
2824
2825/* If not locked, zap it. */
2826void __flush_tlb_all(void)
2827{
2828	unsigned long pstate;
2829	int i;
2830
2831	__asm__ __volatile__("flushw\n\t"
2832			     "rdpr	%%pstate, %0\n\t"
2833			     "wrpr	%0, %1, %%pstate"
2834			     : "=r" (pstate)
2835			     : "i" (PSTATE_IE));
2836	if (tlb_type == hypervisor) {
2837		sun4v_mmu_demap_all();
2838	} else if (tlb_type == spitfire) {
2839		for (i = 0; i < 64; i++) {
2840			/* Spitfire Errata #32 workaround */
2841			/* NOTE: Always runs on spitfire, so no
2842			 *       cheetah+ page size encodings.
2843			 */
2844			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2845					     "flush	%%g6"
2846					     : /* No outputs */
2847					     : "r" (0),
2848					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2849
2850			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2851				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2852						     "membar #Sync"
2853						     : /* no outputs */
2854						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2855				spitfire_put_dtlb_data(i, 0x0UL);
2856			}
2857
2858			/* Spitfire Errata #32 workaround */
2859			/* NOTE: Always runs on spitfire, so no
2860			 *       cheetah+ page size encodings.
2861			 */
2862			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2863					     "flush	%%g6"
2864					     : /* No outputs */
2865					     : "r" (0),
2866					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2867
2868			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2869				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2870						     "membar #Sync"
2871						     : /* no outputs */
2872						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2873				spitfire_put_itlb_data(i, 0x0UL);
2874			}
2875		}
2876	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2877		cheetah_flush_dtlb_all();
2878		cheetah_flush_itlb_all();
2879	}
2880	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2881			     : : "r" (pstate));
2882}
2883
2884pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2885{
2886	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2887	pte_t *pte = NULL;
2888
2889	if (page)
2890		pte = (pte_t *) page_address(page);
2891
2892	return pte;
2893}
2894
2895pgtable_t pte_alloc_one(struct mm_struct *mm)
2896{
2897	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2898	if (!page)
2899		return NULL;
2900	if (!pgtable_pte_page_ctor(page)) {
2901		free_unref_page(page);
2902		return NULL;
2903	}
2904	return (pte_t *) page_address(page);
2905}
2906
2907void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2908{
2909	free_page((unsigned long)pte);
2910}
2911
2912static void __pte_free(pgtable_t pte)
2913{
2914	struct page *page = virt_to_page(pte);
2915
2916	pgtable_pte_page_dtor(page);
2917	__free_page(page);
2918}
2919
2920void pte_free(struct mm_struct *mm, pgtable_t pte)
2921{
2922	__pte_free(pte);
2923}
2924
2925void pgtable_free(void *table, bool is_page)
2926{
2927	if (is_page)
2928		__pte_free(table);
2929	else
2930		kmem_cache_free(pgtable_cache, table);
2931}
2932
2933#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2934void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2935			  pmd_t *pmd)
2936{
2937	unsigned long pte, flags;
2938	struct mm_struct *mm;
2939	pmd_t entry = *pmd;
2940
2941	if (!pmd_large(entry) || !pmd_young(entry))
2942		return;
2943
2944	pte = pmd_val(entry);
2945
2946	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2947	if (!(pte & _PAGE_VALID))
2948		return;
2949
2950	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2951	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2952
2953	mm = vma->vm_mm;
2954
2955	spin_lock_irqsave(&mm->context.lock, flags);
2956
2957	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2958		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2959					addr, pte);
2960
2961	spin_unlock_irqrestore(&mm->context.lock, flags);
2962}
2963#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2964
2965#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2966static void context_reload(void *__data)
2967{
2968	struct mm_struct *mm = __data;
2969
2970	if (mm == current->mm)
2971		load_secondary_context(mm);
2972}
2973
2974void hugetlb_setup(struct pt_regs *regs)
2975{
2976	struct mm_struct *mm = current->mm;
2977	struct tsb_config *tp;
2978
2979	if (faulthandler_disabled() || !mm) {
2980		const struct exception_table_entry *entry;
2981
2982		entry = search_exception_tables(regs->tpc);
2983		if (entry) {
2984			regs->tpc = entry->fixup;
2985			regs->tnpc = regs->tpc + 4;
2986			return;
2987		}
2988		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2989		die_if_kernel("HugeTSB in atomic", regs);
2990	}
2991
2992	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2993	if (likely(tp->tsb == NULL))
2994		tsb_grow(mm, MM_TSB_HUGE, 0);
2995
2996	tsb_context_switch(mm);
2997	smp_tsb_sync(mm);
2998
2999	/* On UltraSPARC-III+ and later, configure the second half of
3000	 * the Data-TLB for huge pages.
3001	 */
3002	if (tlb_type == cheetah_plus) {
3003		bool need_context_reload = false;
3004		unsigned long ctx;
3005
3006		spin_lock_irq(&ctx_alloc_lock);
3007		ctx = mm->context.sparc64_ctx_val;
3008		ctx &= ~CTX_PGSZ_MASK;
3009		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3010		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3011
3012		if (ctx != mm->context.sparc64_ctx_val) {
3013			/* When changing the page size fields, we
3014			 * must perform a context flush so that no
3015			 * stale entries match.  This flush must
3016			 * occur with the original context register
3017			 * settings.
3018			 */
3019			do_flush_tlb_mm(mm);
3020
3021			/* Reload the context register of all processors
3022			 * also executing in this address space.
3023			 */
3024			mm->context.sparc64_ctx_val = ctx;
3025			need_context_reload = true;
3026		}
3027		spin_unlock_irq(&ctx_alloc_lock);
3028
3029		if (need_context_reload)
3030			on_each_cpu(context_reload, mm, 0);
3031	}
3032}
3033#endif
3034
3035static struct resource code_resource = {
3036	.name	= "Kernel code",
3037	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3038};
3039
3040static struct resource data_resource = {
3041	.name	= "Kernel data",
3042	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3043};
3044
3045static struct resource bss_resource = {
3046	.name	= "Kernel bss",
3047	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3048};
3049
3050static inline resource_size_t compute_kern_paddr(void *addr)
3051{
3052	return (resource_size_t) (addr - KERNBASE + kern_base);
3053}
3054
3055static void __init kernel_lds_init(void)
3056{
3057	code_resource.start = compute_kern_paddr(_text);
3058	code_resource.end   = compute_kern_paddr(_etext - 1);
3059	data_resource.start = compute_kern_paddr(_etext);
3060	data_resource.end   = compute_kern_paddr(_edata - 1);
3061	bss_resource.start  = compute_kern_paddr(__bss_start);
3062	bss_resource.end    = compute_kern_paddr(_end - 1);
3063}
3064
3065static int __init report_memory(void)
3066{
3067	int i;
3068	struct resource *res;
3069
3070	kernel_lds_init();
3071
3072	for (i = 0; i < pavail_ents; i++) {
3073		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3074
3075		if (!res) {
3076			pr_warn("Failed to allocate source.\n");
3077			break;
3078		}
3079
3080		res->name = "System RAM";
3081		res->start = pavail[i].phys_addr;
3082		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3083		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3084
3085		if (insert_resource(&iomem_resource, res) < 0) {
3086			pr_warn("Resource insertion failed.\n");
3087			break;
3088		}
3089
3090		insert_resource(res, &code_resource);
3091		insert_resource(res, &data_resource);
3092		insert_resource(res, &bss_resource);
3093	}
3094
3095	return 0;
3096}
3097arch_initcall(report_memory);
3098
3099#ifdef CONFIG_SMP
3100#define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3101#else
3102#define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3103#endif
3104
3105void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3106{
3107	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3108		if (start < LOW_OBP_ADDRESS) {
3109			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3110			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3111		}
3112		if (end > HI_OBP_ADDRESS) {
3113			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3114			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3115		}
3116	} else {
3117		flush_tsb_kernel_range(start, end);
3118		do_flush_tlb_kernel_range(start, end);
3119	}
3120}
3121
3122void copy_user_highpage(struct page *to, struct page *from,
3123	unsigned long vaddr, struct vm_area_struct *vma)
3124{
3125	char *vfrom, *vto;
3126
3127	vfrom = kmap_atomic(from);
3128	vto = kmap_atomic(to);
3129	copy_user_page(vto, vfrom, vaddr, to);
3130	kunmap_atomic(vto);
3131	kunmap_atomic(vfrom);
3132
3133	/* If this page has ADI enabled, copy over any ADI tags
3134	 * as well
3135	 */
3136	if (vma->vm_flags & VM_SPARC_ADI) {
3137		unsigned long pfrom, pto, i, adi_tag;
3138
3139		pfrom = page_to_phys(from);
3140		pto = page_to_phys(to);
3141
3142		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3143			asm volatile("ldxa [%1] %2, %0\n\t"
3144					: "=r" (adi_tag)
3145					:  "r" (i), "i" (ASI_MCD_REAL));
3146			asm volatile("stxa %0, [%1] %2\n\t"
3147					:
3148					: "r" (adi_tag), "r" (pto),
3149					  "i" (ASI_MCD_REAL));
3150			pto += adi_blksize();
3151		}
3152		asm volatile("membar #Sync\n\t");
3153	}
3154}
3155EXPORT_SYMBOL(copy_user_highpage);
3156
3157void copy_highpage(struct page *to, struct page *from)
3158{
3159	char *vfrom, *vto;
3160
3161	vfrom = kmap_atomic(from);
3162	vto = kmap_atomic(to);
3163	copy_page(vto, vfrom);
3164	kunmap_atomic(vto);
3165	kunmap_atomic(vfrom);
3166
3167	/* If this platform is ADI enabled, copy any ADI tags
3168	 * as well
3169	 */
3170	if (adi_capable()) {
3171		unsigned long pfrom, pto, i, adi_tag;
3172
3173		pfrom = page_to_phys(from);
3174		pto = page_to_phys(to);
3175
3176		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3177			asm volatile("ldxa [%1] %2, %0\n\t"
3178					: "=r" (adi_tag)
3179					:  "r" (i), "i" (ASI_MCD_REAL));
3180			asm volatile("stxa %0, [%1] %2\n\t"
3181					:
3182					: "r" (adi_tag), "r" (pto),
3183					  "i" (ASI_MCD_REAL));
3184			pto += adi_blksize();
3185		}
3186		asm volatile("membar #Sync\n\t");
3187	}
3188}
3189EXPORT_SYMBOL(copy_highpage);