Loading...
1/*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8#include <linux/module.h>
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/string.h>
12#include <linux/init.h>
13#include <linux/bootmem.h>
14#include <linux/mm.h>
15#include <linux/hugetlb.h>
16#include <linux/initrd.h>
17#include <linux/swap.h>
18#include <linux/pagemap.h>
19#include <linux/poison.h>
20#include <linux/fs.h>
21#include <linux/seq_file.h>
22#include <linux/kprobes.h>
23#include <linux/cache.h>
24#include <linux/sort.h>
25#include <linux/percpu.h>
26#include <linux/memblock.h>
27#include <linux/mmzone.h>
28#include <linux/gfp.h>
29
30#include <asm/head.h>
31#include <asm/system.h>
32#include <asm/page.h>
33#include <asm/pgalloc.h>
34#include <asm/pgtable.h>
35#include <asm/oplib.h>
36#include <asm/iommu.h>
37#include <asm/io.h>
38#include <asm/uaccess.h>
39#include <asm/mmu_context.h>
40#include <asm/tlbflush.h>
41#include <asm/dma.h>
42#include <asm/starfire.h>
43#include <asm/tlb.h>
44#include <asm/spitfire.h>
45#include <asm/sections.h>
46#include <asm/tsb.h>
47#include <asm/hypervisor.h>
48#include <asm/prom.h>
49#include <asm/mdesc.h>
50#include <asm/cpudata.h>
51#include <asm/irq.h>
52
53#include "init_64.h"
54
55unsigned long kern_linear_pte_xor[2] __read_mostly;
56
57/* A bitmap, one bit for every 256MB of physical memory. If the bit
58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60 */
61unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62
63#ifndef CONFIG_DEBUG_PAGEALLOC
64/* A special kernel TSB for 4MB and 256MB linear mappings.
65 * Space is allocated for this right after the trap table
66 * in arch/sparc64/kernel/head.S
67 */
68extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69#endif
70
71#define MAX_BANKS 32
72
73static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
74static int pavail_ents __devinitdata;
75
76static int cmp_p64(const void *a, const void *b)
77{
78 const struct linux_prom64_registers *x = a, *y = b;
79
80 if (x->phys_addr > y->phys_addr)
81 return 1;
82 if (x->phys_addr < y->phys_addr)
83 return -1;
84 return 0;
85}
86
87static void __init read_obp_memory(const char *property,
88 struct linux_prom64_registers *regs,
89 int *num_ents)
90{
91 phandle node = prom_finddevice("/memory");
92 int prop_size = prom_getproplen(node, property);
93 int ents, ret, i;
94
95 ents = prop_size / sizeof(struct linux_prom64_registers);
96 if (ents > MAX_BANKS) {
97 prom_printf("The machine has more %s property entries than "
98 "this kernel can support (%d).\n",
99 property, MAX_BANKS);
100 prom_halt();
101 }
102
103 ret = prom_getproperty(node, property, (char *) regs, prop_size);
104 if (ret == -1) {
105 prom_printf("Couldn't get %s property from /memory.\n");
106 prom_halt();
107 }
108
109 /* Sanitize what we got from the firmware, by page aligning
110 * everything.
111 */
112 for (i = 0; i < ents; i++) {
113 unsigned long base, size;
114
115 base = regs[i].phys_addr;
116 size = regs[i].reg_size;
117
118 size &= PAGE_MASK;
119 if (base & ~PAGE_MASK) {
120 unsigned long new_base = PAGE_ALIGN(base);
121
122 size -= new_base - base;
123 if ((long) size < 0L)
124 size = 0UL;
125 base = new_base;
126 }
127 if (size == 0UL) {
128 /* If it is empty, simply get rid of it.
129 * This simplifies the logic of the other
130 * functions that process these arrays.
131 */
132 memmove(®s[i], ®s[i + 1],
133 (ents - i - 1) * sizeof(regs[0]));
134 i--;
135 ents--;
136 continue;
137 }
138 regs[i].phys_addr = base;
139 regs[i].reg_size = size;
140 }
141
142 *num_ents = ents;
143
144 sort(regs, ents, sizeof(struct linux_prom64_registers),
145 cmp_p64, NULL);
146}
147
148unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
149 sizeof(unsigned long)];
150EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
151
152/* Kernel physical address base and size in bytes. */
153unsigned long kern_base __read_mostly;
154unsigned long kern_size __read_mostly;
155
156/* Initial ramdisk setup */
157extern unsigned long sparc_ramdisk_image64;
158extern unsigned int sparc_ramdisk_image;
159extern unsigned int sparc_ramdisk_size;
160
161struct page *mem_map_zero __read_mostly;
162EXPORT_SYMBOL(mem_map_zero);
163
164unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
165
166unsigned long sparc64_kern_pri_context __read_mostly;
167unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
168unsigned long sparc64_kern_sec_context __read_mostly;
169
170int num_kernel_image_mappings;
171
172#ifdef CONFIG_DEBUG_DCFLUSH
173atomic_t dcpage_flushes = ATOMIC_INIT(0);
174#ifdef CONFIG_SMP
175atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
176#endif
177#endif
178
179inline void flush_dcache_page_impl(struct page *page)
180{
181 BUG_ON(tlb_type == hypervisor);
182#ifdef CONFIG_DEBUG_DCFLUSH
183 atomic_inc(&dcpage_flushes);
184#endif
185
186#ifdef DCACHE_ALIASING_POSSIBLE
187 __flush_dcache_page(page_address(page),
188 ((tlb_type == spitfire) &&
189 page_mapping(page) != NULL));
190#else
191 if (page_mapping(page) != NULL &&
192 tlb_type == spitfire)
193 __flush_icache_page(__pa(page_address(page)));
194#endif
195}
196
197#define PG_dcache_dirty PG_arch_1
198#define PG_dcache_cpu_shift 32UL
199#define PG_dcache_cpu_mask \
200 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
201
202#define dcache_dirty_cpu(page) \
203 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
204
205static inline void set_dcache_dirty(struct page *page, int this_cpu)
206{
207 unsigned long mask = this_cpu;
208 unsigned long non_cpu_bits;
209
210 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
211 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
212
213 __asm__ __volatile__("1:\n\t"
214 "ldx [%2], %%g7\n\t"
215 "and %%g7, %1, %%g1\n\t"
216 "or %%g1, %0, %%g1\n\t"
217 "casx [%2], %%g7, %%g1\n\t"
218 "cmp %%g7, %%g1\n\t"
219 "bne,pn %%xcc, 1b\n\t"
220 " nop"
221 : /* no outputs */
222 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
223 : "g1", "g7");
224}
225
226static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
227{
228 unsigned long mask = (1UL << PG_dcache_dirty);
229
230 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
231 "1:\n\t"
232 "ldx [%2], %%g7\n\t"
233 "srlx %%g7, %4, %%g1\n\t"
234 "and %%g1, %3, %%g1\n\t"
235 "cmp %%g1, %0\n\t"
236 "bne,pn %%icc, 2f\n\t"
237 " andn %%g7, %1, %%g1\n\t"
238 "casx [%2], %%g7, %%g1\n\t"
239 "cmp %%g7, %%g1\n\t"
240 "bne,pn %%xcc, 1b\n\t"
241 " nop\n"
242 "2:"
243 : /* no outputs */
244 : "r" (cpu), "r" (mask), "r" (&page->flags),
245 "i" (PG_dcache_cpu_mask),
246 "i" (PG_dcache_cpu_shift)
247 : "g1", "g7");
248}
249
250static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
251{
252 unsigned long tsb_addr = (unsigned long) ent;
253
254 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
255 tsb_addr = __pa(tsb_addr);
256
257 __tsb_insert(tsb_addr, tag, pte);
258}
259
260unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
261unsigned long _PAGE_SZBITS __read_mostly;
262
263static void flush_dcache(unsigned long pfn)
264{
265 struct page *page;
266
267 page = pfn_to_page(pfn);
268 if (page) {
269 unsigned long pg_flags;
270
271 pg_flags = page->flags;
272 if (pg_flags & (1UL << PG_dcache_dirty)) {
273 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
274 PG_dcache_cpu_mask);
275 int this_cpu = get_cpu();
276
277 /* This is just to optimize away some function calls
278 * in the SMP case.
279 */
280 if (cpu == this_cpu)
281 flush_dcache_page_impl(page);
282 else
283 smp_flush_dcache_page_impl(page, cpu);
284
285 clear_dcache_dirty_cpu(page, cpu);
286
287 put_cpu();
288 }
289 }
290}
291
292void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
293{
294 struct mm_struct *mm;
295 struct tsb *tsb;
296 unsigned long tag, flags;
297 unsigned long tsb_index, tsb_hash_shift;
298 pte_t pte = *ptep;
299
300 if (tlb_type != hypervisor) {
301 unsigned long pfn = pte_pfn(pte);
302
303 if (pfn_valid(pfn))
304 flush_dcache(pfn);
305 }
306
307 mm = vma->vm_mm;
308
309 tsb_index = MM_TSB_BASE;
310 tsb_hash_shift = PAGE_SHIFT;
311
312 spin_lock_irqsave(&mm->context.lock, flags);
313
314#ifdef CONFIG_HUGETLB_PAGE
315 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
316 if ((tlb_type == hypervisor &&
317 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
318 (tlb_type != hypervisor &&
319 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
320 tsb_index = MM_TSB_HUGE;
321 tsb_hash_shift = HPAGE_SHIFT;
322 }
323 }
324#endif
325
326 tsb = mm->context.tsb_block[tsb_index].tsb;
327 tsb += ((address >> tsb_hash_shift) &
328 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
329 tag = (address >> 22UL);
330 tsb_insert(tsb, tag, pte_val(pte));
331
332 spin_unlock_irqrestore(&mm->context.lock, flags);
333}
334
335void flush_dcache_page(struct page *page)
336{
337 struct address_space *mapping;
338 int this_cpu;
339
340 if (tlb_type == hypervisor)
341 return;
342
343 /* Do not bother with the expensive D-cache flush if it
344 * is merely the zero page. The 'bigcore' testcase in GDB
345 * causes this case to run millions of times.
346 */
347 if (page == ZERO_PAGE(0))
348 return;
349
350 this_cpu = get_cpu();
351
352 mapping = page_mapping(page);
353 if (mapping && !mapping_mapped(mapping)) {
354 int dirty = test_bit(PG_dcache_dirty, &page->flags);
355 if (dirty) {
356 int dirty_cpu = dcache_dirty_cpu(page);
357
358 if (dirty_cpu == this_cpu)
359 goto out;
360 smp_flush_dcache_page_impl(page, dirty_cpu);
361 }
362 set_dcache_dirty(page, this_cpu);
363 } else {
364 /* We could delay the flush for the !page_mapping
365 * case too. But that case is for exec env/arg
366 * pages and those are %99 certainly going to get
367 * faulted into the tlb (and thus flushed) anyways.
368 */
369 flush_dcache_page_impl(page);
370 }
371
372out:
373 put_cpu();
374}
375EXPORT_SYMBOL(flush_dcache_page);
376
377void __kprobes flush_icache_range(unsigned long start, unsigned long end)
378{
379 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
380 if (tlb_type == spitfire) {
381 unsigned long kaddr;
382
383 /* This code only runs on Spitfire cpus so this is
384 * why we can assume _PAGE_PADDR_4U.
385 */
386 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
387 unsigned long paddr, mask = _PAGE_PADDR_4U;
388
389 if (kaddr >= PAGE_OFFSET)
390 paddr = kaddr & mask;
391 else {
392 pgd_t *pgdp = pgd_offset_k(kaddr);
393 pud_t *pudp = pud_offset(pgdp, kaddr);
394 pmd_t *pmdp = pmd_offset(pudp, kaddr);
395 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
396
397 paddr = pte_val(*ptep) & mask;
398 }
399 __flush_icache_page(paddr);
400 }
401 }
402}
403EXPORT_SYMBOL(flush_icache_range);
404
405void mmu_info(struct seq_file *m)
406{
407 if (tlb_type == cheetah)
408 seq_printf(m, "MMU Type\t: Cheetah\n");
409 else if (tlb_type == cheetah_plus)
410 seq_printf(m, "MMU Type\t: Cheetah+\n");
411 else if (tlb_type == spitfire)
412 seq_printf(m, "MMU Type\t: Spitfire\n");
413 else if (tlb_type == hypervisor)
414 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
415 else
416 seq_printf(m, "MMU Type\t: ???\n");
417
418#ifdef CONFIG_DEBUG_DCFLUSH
419 seq_printf(m, "DCPageFlushes\t: %d\n",
420 atomic_read(&dcpage_flushes));
421#ifdef CONFIG_SMP
422 seq_printf(m, "DCPageFlushesXC\t: %d\n",
423 atomic_read(&dcpage_flushes_xcall));
424#endif /* CONFIG_SMP */
425#endif /* CONFIG_DEBUG_DCFLUSH */
426}
427
428struct linux_prom_translation prom_trans[512] __read_mostly;
429unsigned int prom_trans_ents __read_mostly;
430
431unsigned long kern_locked_tte_data;
432
433/* The obp translations are saved based on 8k pagesize, since obp can
434 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
435 * HI_OBP_ADDRESS range are handled in ktlb.S.
436 */
437static inline int in_obp_range(unsigned long vaddr)
438{
439 return (vaddr >= LOW_OBP_ADDRESS &&
440 vaddr < HI_OBP_ADDRESS);
441}
442
443static int cmp_ptrans(const void *a, const void *b)
444{
445 const struct linux_prom_translation *x = a, *y = b;
446
447 if (x->virt > y->virt)
448 return 1;
449 if (x->virt < y->virt)
450 return -1;
451 return 0;
452}
453
454/* Read OBP translations property into 'prom_trans[]'. */
455static void __init read_obp_translations(void)
456{
457 int n, node, ents, first, last, i;
458
459 node = prom_finddevice("/virtual-memory");
460 n = prom_getproplen(node, "translations");
461 if (unlikely(n == 0 || n == -1)) {
462 prom_printf("prom_mappings: Couldn't get size.\n");
463 prom_halt();
464 }
465 if (unlikely(n > sizeof(prom_trans))) {
466 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
467 prom_halt();
468 }
469
470 if ((n = prom_getproperty(node, "translations",
471 (char *)&prom_trans[0],
472 sizeof(prom_trans))) == -1) {
473 prom_printf("prom_mappings: Couldn't get property.\n");
474 prom_halt();
475 }
476
477 n = n / sizeof(struct linux_prom_translation);
478
479 ents = n;
480
481 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
482 cmp_ptrans, NULL);
483
484 /* Now kick out all the non-OBP entries. */
485 for (i = 0; i < ents; i++) {
486 if (in_obp_range(prom_trans[i].virt))
487 break;
488 }
489 first = i;
490 for (; i < ents; i++) {
491 if (!in_obp_range(prom_trans[i].virt))
492 break;
493 }
494 last = i;
495
496 for (i = 0; i < (last - first); i++) {
497 struct linux_prom_translation *src = &prom_trans[i + first];
498 struct linux_prom_translation *dest = &prom_trans[i];
499
500 *dest = *src;
501 }
502 for (; i < ents; i++) {
503 struct linux_prom_translation *dest = &prom_trans[i];
504 dest->virt = dest->size = dest->data = 0x0UL;
505 }
506
507 prom_trans_ents = last - first;
508
509 if (tlb_type == spitfire) {
510 /* Clear diag TTE bits. */
511 for (i = 0; i < prom_trans_ents; i++)
512 prom_trans[i].data &= ~0x0003fe0000000000UL;
513 }
514
515 /* Force execute bit on. */
516 for (i = 0; i < prom_trans_ents; i++)
517 prom_trans[i].data |= (tlb_type == hypervisor ?
518 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
519}
520
521static void __init hypervisor_tlb_lock(unsigned long vaddr,
522 unsigned long pte,
523 unsigned long mmu)
524{
525 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
526
527 if (ret != 0) {
528 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
529 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
530 prom_halt();
531 }
532}
533
534static unsigned long kern_large_tte(unsigned long paddr);
535
536static void __init remap_kernel(void)
537{
538 unsigned long phys_page, tte_vaddr, tte_data;
539 int i, tlb_ent = sparc64_highest_locked_tlbent();
540
541 tte_vaddr = (unsigned long) KERNBASE;
542 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
543 tte_data = kern_large_tte(phys_page);
544
545 kern_locked_tte_data = tte_data;
546
547 /* Now lock us into the TLBs via Hypervisor or OBP. */
548 if (tlb_type == hypervisor) {
549 for (i = 0; i < num_kernel_image_mappings; i++) {
550 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
551 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
552 tte_vaddr += 0x400000;
553 tte_data += 0x400000;
554 }
555 } else {
556 for (i = 0; i < num_kernel_image_mappings; i++) {
557 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
558 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
559 tte_vaddr += 0x400000;
560 tte_data += 0x400000;
561 }
562 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
563 }
564 if (tlb_type == cheetah_plus) {
565 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
566 CTX_CHEETAH_PLUS_NUC);
567 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
568 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
569 }
570}
571
572
573static void __init inherit_prom_mappings(void)
574{
575 /* Now fixup OBP's idea about where we really are mapped. */
576 printk("Remapping the kernel... ");
577 remap_kernel();
578 printk("done.\n");
579}
580
581void prom_world(int enter)
582{
583 if (!enter)
584 set_fs((mm_segment_t) { get_thread_current_ds() });
585
586 __asm__ __volatile__("flushw");
587}
588
589void __flush_dcache_range(unsigned long start, unsigned long end)
590{
591 unsigned long va;
592
593 if (tlb_type == spitfire) {
594 int n = 0;
595
596 for (va = start; va < end; va += 32) {
597 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
598 if (++n >= 512)
599 break;
600 }
601 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
602 start = __pa(start);
603 end = __pa(end);
604 for (va = start; va < end; va += 32)
605 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
606 "membar #Sync"
607 : /* no outputs */
608 : "r" (va),
609 "i" (ASI_DCACHE_INVALIDATE));
610 }
611}
612EXPORT_SYMBOL(__flush_dcache_range);
613
614/* get_new_mmu_context() uses "cache + 1". */
615DEFINE_SPINLOCK(ctx_alloc_lock);
616unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
617#define MAX_CTX_NR (1UL << CTX_NR_BITS)
618#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
619DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
620
621/* Caller does TLB context flushing on local CPU if necessary.
622 * The caller also ensures that CTX_VALID(mm->context) is false.
623 *
624 * We must be careful about boundary cases so that we never
625 * let the user have CTX 0 (nucleus) or we ever use a CTX
626 * version of zero (and thus NO_CONTEXT would not be caught
627 * by version mis-match tests in mmu_context.h).
628 *
629 * Always invoked with interrupts disabled.
630 */
631void get_new_mmu_context(struct mm_struct *mm)
632{
633 unsigned long ctx, new_ctx;
634 unsigned long orig_pgsz_bits;
635 unsigned long flags;
636 int new_version;
637
638 spin_lock_irqsave(&ctx_alloc_lock, flags);
639 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
640 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
641 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
642 new_version = 0;
643 if (new_ctx >= (1 << CTX_NR_BITS)) {
644 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
645 if (new_ctx >= ctx) {
646 int i;
647 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
648 CTX_FIRST_VERSION;
649 if (new_ctx == 1)
650 new_ctx = CTX_FIRST_VERSION;
651
652 /* Don't call memset, for 16 entries that's just
653 * plain silly...
654 */
655 mmu_context_bmap[0] = 3;
656 mmu_context_bmap[1] = 0;
657 mmu_context_bmap[2] = 0;
658 mmu_context_bmap[3] = 0;
659 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
660 mmu_context_bmap[i + 0] = 0;
661 mmu_context_bmap[i + 1] = 0;
662 mmu_context_bmap[i + 2] = 0;
663 mmu_context_bmap[i + 3] = 0;
664 }
665 new_version = 1;
666 goto out;
667 }
668 }
669 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
670 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
671out:
672 tlb_context_cache = new_ctx;
673 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
674 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
675
676 if (unlikely(new_version))
677 smp_new_mmu_context_version();
678}
679
680static int numa_enabled = 1;
681static int numa_debug;
682
683static int __init early_numa(char *p)
684{
685 if (!p)
686 return 0;
687
688 if (strstr(p, "off"))
689 numa_enabled = 0;
690
691 if (strstr(p, "debug"))
692 numa_debug = 1;
693
694 return 0;
695}
696early_param("numa", early_numa);
697
698#define numadbg(f, a...) \
699do { if (numa_debug) \
700 printk(KERN_INFO f, ## a); \
701} while (0)
702
703static void __init find_ramdisk(unsigned long phys_base)
704{
705#ifdef CONFIG_BLK_DEV_INITRD
706 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
707 unsigned long ramdisk_image;
708
709 /* Older versions of the bootloader only supported a
710 * 32-bit physical address for the ramdisk image
711 * location, stored at sparc_ramdisk_image. Newer
712 * SILO versions set sparc_ramdisk_image to zero and
713 * provide a full 64-bit physical address at
714 * sparc_ramdisk_image64.
715 */
716 ramdisk_image = sparc_ramdisk_image;
717 if (!ramdisk_image)
718 ramdisk_image = sparc_ramdisk_image64;
719
720 /* Another bootloader quirk. The bootloader normalizes
721 * the physical address to KERNBASE, so we have to
722 * factor that back out and add in the lowest valid
723 * physical page address to get the true physical address.
724 */
725 ramdisk_image -= KERNBASE;
726 ramdisk_image += phys_base;
727
728 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
729 ramdisk_image, sparc_ramdisk_size);
730
731 initrd_start = ramdisk_image;
732 initrd_end = ramdisk_image + sparc_ramdisk_size;
733
734 memblock_reserve(initrd_start, sparc_ramdisk_size);
735
736 initrd_start += PAGE_OFFSET;
737 initrd_end += PAGE_OFFSET;
738 }
739#endif
740}
741
742struct node_mem_mask {
743 unsigned long mask;
744 unsigned long val;
745 unsigned long bootmem_paddr;
746};
747static struct node_mem_mask node_masks[MAX_NUMNODES];
748static int num_node_masks;
749
750int numa_cpu_lookup_table[NR_CPUS];
751cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
752
753#ifdef CONFIG_NEED_MULTIPLE_NODES
754
755struct mdesc_mblock {
756 u64 base;
757 u64 size;
758 u64 offset; /* RA-to-PA */
759};
760static struct mdesc_mblock *mblocks;
761static int num_mblocks;
762
763static unsigned long ra_to_pa(unsigned long addr)
764{
765 int i;
766
767 for (i = 0; i < num_mblocks; i++) {
768 struct mdesc_mblock *m = &mblocks[i];
769
770 if (addr >= m->base &&
771 addr < (m->base + m->size)) {
772 addr += m->offset;
773 break;
774 }
775 }
776 return addr;
777}
778
779static int find_node(unsigned long addr)
780{
781 int i;
782
783 addr = ra_to_pa(addr);
784 for (i = 0; i < num_node_masks; i++) {
785 struct node_mem_mask *p = &node_masks[i];
786
787 if ((addr & p->mask) == p->val)
788 return i;
789 }
790 return -1;
791}
792
793u64 memblock_nid_range(u64 start, u64 end, int *nid)
794{
795 *nid = find_node(start);
796 start += PAGE_SIZE;
797 while (start < end) {
798 int n = find_node(start);
799
800 if (n != *nid)
801 break;
802 start += PAGE_SIZE;
803 }
804
805 if (start > end)
806 start = end;
807
808 return start;
809}
810#else
811u64 memblock_nid_range(u64 start, u64 end, int *nid)
812{
813 *nid = 0;
814 return end;
815}
816#endif
817
818/* This must be invoked after performing all of the necessary
819 * add_active_range() calls for 'nid'. We need to be able to get
820 * correct data from get_pfn_range_for_nid().
821 */
822static void __init allocate_node_data(int nid)
823{
824 unsigned long paddr, num_pages, start_pfn, end_pfn;
825 struct pglist_data *p;
826
827#ifdef CONFIG_NEED_MULTIPLE_NODES
828 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
829 if (!paddr) {
830 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
831 prom_halt();
832 }
833 NODE_DATA(nid) = __va(paddr);
834 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
835
836 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
837#endif
838
839 p = NODE_DATA(nid);
840
841 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
842 p->node_start_pfn = start_pfn;
843 p->node_spanned_pages = end_pfn - start_pfn;
844
845 if (p->node_spanned_pages) {
846 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
847
848 paddr = memblock_alloc_try_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid);
849 if (!paddr) {
850 prom_printf("Cannot allocate bootmap for nid[%d]\n",
851 nid);
852 prom_halt();
853 }
854 node_masks[nid].bootmem_paddr = paddr;
855 }
856}
857
858static void init_node_masks_nonnuma(void)
859{
860 int i;
861
862 numadbg("Initializing tables for non-numa.\n");
863
864 node_masks[0].mask = node_masks[0].val = 0;
865 num_node_masks = 1;
866
867 for (i = 0; i < NR_CPUS; i++)
868 numa_cpu_lookup_table[i] = 0;
869
870 cpumask_setall(&numa_cpumask_lookup_table[0]);
871}
872
873#ifdef CONFIG_NEED_MULTIPLE_NODES
874struct pglist_data *node_data[MAX_NUMNODES];
875
876EXPORT_SYMBOL(numa_cpu_lookup_table);
877EXPORT_SYMBOL(numa_cpumask_lookup_table);
878EXPORT_SYMBOL(node_data);
879
880struct mdesc_mlgroup {
881 u64 node;
882 u64 latency;
883 u64 match;
884 u64 mask;
885};
886static struct mdesc_mlgroup *mlgroups;
887static int num_mlgroups;
888
889static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
890 u32 cfg_handle)
891{
892 u64 arc;
893
894 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
895 u64 target = mdesc_arc_target(md, arc);
896 const u64 *val;
897
898 val = mdesc_get_property(md, target,
899 "cfg-handle", NULL);
900 if (val && *val == cfg_handle)
901 return 0;
902 }
903 return -ENODEV;
904}
905
906static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
907 u32 cfg_handle)
908{
909 u64 arc, candidate, best_latency = ~(u64)0;
910
911 candidate = MDESC_NODE_NULL;
912 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
913 u64 target = mdesc_arc_target(md, arc);
914 const char *name = mdesc_node_name(md, target);
915 const u64 *val;
916
917 if (strcmp(name, "pio-latency-group"))
918 continue;
919
920 val = mdesc_get_property(md, target, "latency", NULL);
921 if (!val)
922 continue;
923
924 if (*val < best_latency) {
925 candidate = target;
926 best_latency = *val;
927 }
928 }
929
930 if (candidate == MDESC_NODE_NULL)
931 return -ENODEV;
932
933 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
934}
935
936int of_node_to_nid(struct device_node *dp)
937{
938 const struct linux_prom64_registers *regs;
939 struct mdesc_handle *md;
940 u32 cfg_handle;
941 int count, nid;
942 u64 grp;
943
944 /* This is the right thing to do on currently supported
945 * SUN4U NUMA platforms as well, as the PCI controller does
946 * not sit behind any particular memory controller.
947 */
948 if (!mlgroups)
949 return -1;
950
951 regs = of_get_property(dp, "reg", NULL);
952 if (!regs)
953 return -1;
954
955 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
956
957 md = mdesc_grab();
958
959 count = 0;
960 nid = -1;
961 mdesc_for_each_node_by_name(md, grp, "group") {
962 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
963 nid = count;
964 break;
965 }
966 count++;
967 }
968
969 mdesc_release(md);
970
971 return nid;
972}
973
974static void __init add_node_ranges(void)
975{
976 struct memblock_region *reg;
977
978 for_each_memblock(memory, reg) {
979 unsigned long size = reg->size;
980 unsigned long start, end;
981
982 start = reg->base;
983 end = start + size;
984 while (start < end) {
985 unsigned long this_end;
986 int nid;
987
988 this_end = memblock_nid_range(start, end, &nid);
989
990 numadbg("Adding active range nid[%d] "
991 "start[%lx] end[%lx]\n",
992 nid, start, this_end);
993
994 add_active_range(nid,
995 start >> PAGE_SHIFT,
996 this_end >> PAGE_SHIFT);
997
998 start = this_end;
999 }
1000 }
1001}
1002
1003static int __init grab_mlgroups(struct mdesc_handle *md)
1004{
1005 unsigned long paddr;
1006 int count = 0;
1007 u64 node;
1008
1009 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1010 count++;
1011 if (!count)
1012 return -ENOENT;
1013
1014 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1015 SMP_CACHE_BYTES);
1016 if (!paddr)
1017 return -ENOMEM;
1018
1019 mlgroups = __va(paddr);
1020 num_mlgroups = count;
1021
1022 count = 0;
1023 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1024 struct mdesc_mlgroup *m = &mlgroups[count++];
1025 const u64 *val;
1026
1027 m->node = node;
1028
1029 val = mdesc_get_property(md, node, "latency", NULL);
1030 m->latency = *val;
1031 val = mdesc_get_property(md, node, "address-match", NULL);
1032 m->match = *val;
1033 val = mdesc_get_property(md, node, "address-mask", NULL);
1034 m->mask = *val;
1035
1036 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1037 "match[%llx] mask[%llx]\n",
1038 count - 1, m->node, m->latency, m->match, m->mask);
1039 }
1040
1041 return 0;
1042}
1043
1044static int __init grab_mblocks(struct mdesc_handle *md)
1045{
1046 unsigned long paddr;
1047 int count = 0;
1048 u64 node;
1049
1050 mdesc_for_each_node_by_name(md, node, "mblock")
1051 count++;
1052 if (!count)
1053 return -ENOENT;
1054
1055 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1056 SMP_CACHE_BYTES);
1057 if (!paddr)
1058 return -ENOMEM;
1059
1060 mblocks = __va(paddr);
1061 num_mblocks = count;
1062
1063 count = 0;
1064 mdesc_for_each_node_by_name(md, node, "mblock") {
1065 struct mdesc_mblock *m = &mblocks[count++];
1066 const u64 *val;
1067
1068 val = mdesc_get_property(md, node, "base", NULL);
1069 m->base = *val;
1070 val = mdesc_get_property(md, node, "size", NULL);
1071 m->size = *val;
1072 val = mdesc_get_property(md, node,
1073 "address-congruence-offset", NULL);
1074 m->offset = *val;
1075
1076 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1077 count - 1, m->base, m->size, m->offset);
1078 }
1079
1080 return 0;
1081}
1082
1083static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1084 u64 grp, cpumask_t *mask)
1085{
1086 u64 arc;
1087
1088 cpumask_clear(mask);
1089
1090 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1091 u64 target = mdesc_arc_target(md, arc);
1092 const char *name = mdesc_node_name(md, target);
1093 const u64 *id;
1094
1095 if (strcmp(name, "cpu"))
1096 continue;
1097 id = mdesc_get_property(md, target, "id", NULL);
1098 if (*id < nr_cpu_ids)
1099 cpumask_set_cpu(*id, mask);
1100 }
1101}
1102
1103static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1104{
1105 int i;
1106
1107 for (i = 0; i < num_mlgroups; i++) {
1108 struct mdesc_mlgroup *m = &mlgroups[i];
1109 if (m->node == node)
1110 return m;
1111 }
1112 return NULL;
1113}
1114
1115static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1116 int index)
1117{
1118 struct mdesc_mlgroup *candidate = NULL;
1119 u64 arc, best_latency = ~(u64)0;
1120 struct node_mem_mask *n;
1121
1122 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1123 u64 target = mdesc_arc_target(md, arc);
1124 struct mdesc_mlgroup *m = find_mlgroup(target);
1125 if (!m)
1126 continue;
1127 if (m->latency < best_latency) {
1128 candidate = m;
1129 best_latency = m->latency;
1130 }
1131 }
1132 if (!candidate)
1133 return -ENOENT;
1134
1135 if (num_node_masks != index) {
1136 printk(KERN_ERR "Inconsistent NUMA state, "
1137 "index[%d] != num_node_masks[%d]\n",
1138 index, num_node_masks);
1139 return -EINVAL;
1140 }
1141
1142 n = &node_masks[num_node_masks++];
1143
1144 n->mask = candidate->mask;
1145 n->val = candidate->match;
1146
1147 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1148 index, n->mask, n->val, candidate->latency);
1149
1150 return 0;
1151}
1152
1153static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1154 int index)
1155{
1156 cpumask_t mask;
1157 int cpu;
1158
1159 numa_parse_mdesc_group_cpus(md, grp, &mask);
1160
1161 for_each_cpu(cpu, &mask)
1162 numa_cpu_lookup_table[cpu] = index;
1163 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1164
1165 if (numa_debug) {
1166 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1167 for_each_cpu(cpu, &mask)
1168 printk("%d ", cpu);
1169 printk("]\n");
1170 }
1171
1172 return numa_attach_mlgroup(md, grp, index);
1173}
1174
1175static int __init numa_parse_mdesc(void)
1176{
1177 struct mdesc_handle *md = mdesc_grab();
1178 int i, err, count;
1179 u64 node;
1180
1181 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1182 if (node == MDESC_NODE_NULL) {
1183 mdesc_release(md);
1184 return -ENOENT;
1185 }
1186
1187 err = grab_mblocks(md);
1188 if (err < 0)
1189 goto out;
1190
1191 err = grab_mlgroups(md);
1192 if (err < 0)
1193 goto out;
1194
1195 count = 0;
1196 mdesc_for_each_node_by_name(md, node, "group") {
1197 err = numa_parse_mdesc_group(md, node, count);
1198 if (err < 0)
1199 break;
1200 count++;
1201 }
1202
1203 add_node_ranges();
1204
1205 for (i = 0; i < num_node_masks; i++) {
1206 allocate_node_data(i);
1207 node_set_online(i);
1208 }
1209
1210 err = 0;
1211out:
1212 mdesc_release(md);
1213 return err;
1214}
1215
1216static int __init numa_parse_jbus(void)
1217{
1218 unsigned long cpu, index;
1219
1220 /* NUMA node id is encoded in bits 36 and higher, and there is
1221 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1222 */
1223 index = 0;
1224 for_each_present_cpu(cpu) {
1225 numa_cpu_lookup_table[cpu] = index;
1226 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1227 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1228 node_masks[index].val = cpu << 36UL;
1229
1230 index++;
1231 }
1232 num_node_masks = index;
1233
1234 add_node_ranges();
1235
1236 for (index = 0; index < num_node_masks; index++) {
1237 allocate_node_data(index);
1238 node_set_online(index);
1239 }
1240
1241 return 0;
1242}
1243
1244static int __init numa_parse_sun4u(void)
1245{
1246 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1247 unsigned long ver;
1248
1249 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1250 if ((ver >> 32UL) == __JALAPENO_ID ||
1251 (ver >> 32UL) == __SERRANO_ID)
1252 return numa_parse_jbus();
1253 }
1254 return -1;
1255}
1256
1257static int __init bootmem_init_numa(void)
1258{
1259 int err = -1;
1260
1261 numadbg("bootmem_init_numa()\n");
1262
1263 if (numa_enabled) {
1264 if (tlb_type == hypervisor)
1265 err = numa_parse_mdesc();
1266 else
1267 err = numa_parse_sun4u();
1268 }
1269 return err;
1270}
1271
1272#else
1273
1274static int bootmem_init_numa(void)
1275{
1276 return -1;
1277}
1278
1279#endif
1280
1281static void __init bootmem_init_nonnuma(void)
1282{
1283 unsigned long top_of_ram = memblock_end_of_DRAM();
1284 unsigned long total_ram = memblock_phys_mem_size();
1285 struct memblock_region *reg;
1286
1287 numadbg("bootmem_init_nonnuma()\n");
1288
1289 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1290 top_of_ram, total_ram);
1291 printk(KERN_INFO "Memory hole size: %ldMB\n",
1292 (top_of_ram - total_ram) >> 20);
1293
1294 init_node_masks_nonnuma();
1295
1296 for_each_memblock(memory, reg) {
1297 unsigned long start_pfn, end_pfn;
1298
1299 if (!reg->size)
1300 continue;
1301
1302 start_pfn = memblock_region_memory_base_pfn(reg);
1303 end_pfn = memblock_region_memory_end_pfn(reg);
1304 add_active_range(0, start_pfn, end_pfn);
1305 }
1306
1307 allocate_node_data(0);
1308
1309 node_set_online(0);
1310}
1311
1312static void __init reserve_range_in_node(int nid, unsigned long start,
1313 unsigned long end)
1314{
1315 numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1316 nid, start, end);
1317 while (start < end) {
1318 unsigned long this_end;
1319 int n;
1320
1321 this_end = memblock_nid_range(start, end, &n);
1322 if (n == nid) {
1323 numadbg(" MATCH reserving range [%lx:%lx]\n",
1324 start, this_end);
1325 reserve_bootmem_node(NODE_DATA(nid), start,
1326 (this_end - start), BOOTMEM_DEFAULT);
1327 } else
1328 numadbg(" NO MATCH, advancing start to %lx\n",
1329 this_end);
1330
1331 start = this_end;
1332 }
1333}
1334
1335static void __init trim_reserved_in_node(int nid)
1336{
1337 struct memblock_region *reg;
1338
1339 numadbg(" trim_reserved_in_node(%d)\n", nid);
1340
1341 for_each_memblock(reserved, reg)
1342 reserve_range_in_node(nid, reg->base, reg->base + reg->size);
1343}
1344
1345static void __init bootmem_init_one_node(int nid)
1346{
1347 struct pglist_data *p;
1348
1349 numadbg("bootmem_init_one_node(%d)\n", nid);
1350
1351 p = NODE_DATA(nid);
1352
1353 if (p->node_spanned_pages) {
1354 unsigned long paddr = node_masks[nid].bootmem_paddr;
1355 unsigned long end_pfn;
1356
1357 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1358
1359 numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
1360 nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1361
1362 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1363 p->node_start_pfn, end_pfn);
1364
1365 numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
1366 nid, end_pfn);
1367 free_bootmem_with_active_regions(nid, end_pfn);
1368
1369 trim_reserved_in_node(nid);
1370
1371 numadbg(" sparse_memory_present_with_active_regions(%d)\n",
1372 nid);
1373 sparse_memory_present_with_active_regions(nid);
1374 }
1375}
1376
1377static unsigned long __init bootmem_init(unsigned long phys_base)
1378{
1379 unsigned long end_pfn;
1380 int nid;
1381
1382 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1383 max_pfn = max_low_pfn = end_pfn;
1384 min_low_pfn = (phys_base >> PAGE_SHIFT);
1385
1386 if (bootmem_init_numa() < 0)
1387 bootmem_init_nonnuma();
1388
1389 /* XXX cpu notifier XXX */
1390
1391 for_each_online_node(nid)
1392 bootmem_init_one_node(nid);
1393
1394 sparse_init();
1395
1396 return end_pfn;
1397}
1398
1399static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1400static int pall_ents __initdata;
1401
1402#ifdef CONFIG_DEBUG_PAGEALLOC
1403static unsigned long __ref kernel_map_range(unsigned long pstart,
1404 unsigned long pend, pgprot_t prot)
1405{
1406 unsigned long vstart = PAGE_OFFSET + pstart;
1407 unsigned long vend = PAGE_OFFSET + pend;
1408 unsigned long alloc_bytes = 0UL;
1409
1410 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1411 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1412 vstart, vend);
1413 prom_halt();
1414 }
1415
1416 while (vstart < vend) {
1417 unsigned long this_end, paddr = __pa(vstart);
1418 pgd_t *pgd = pgd_offset_k(vstart);
1419 pud_t *pud;
1420 pmd_t *pmd;
1421 pte_t *pte;
1422
1423 pud = pud_offset(pgd, vstart);
1424 if (pud_none(*pud)) {
1425 pmd_t *new;
1426
1427 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1428 alloc_bytes += PAGE_SIZE;
1429 pud_populate(&init_mm, pud, new);
1430 }
1431
1432 pmd = pmd_offset(pud, vstart);
1433 if (!pmd_present(*pmd)) {
1434 pte_t *new;
1435
1436 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1437 alloc_bytes += PAGE_SIZE;
1438 pmd_populate_kernel(&init_mm, pmd, new);
1439 }
1440
1441 pte = pte_offset_kernel(pmd, vstart);
1442 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1443 if (this_end > vend)
1444 this_end = vend;
1445
1446 while (vstart < this_end) {
1447 pte_val(*pte) = (paddr | pgprot_val(prot));
1448
1449 vstart += PAGE_SIZE;
1450 paddr += PAGE_SIZE;
1451 pte++;
1452 }
1453 }
1454
1455 return alloc_bytes;
1456}
1457
1458extern unsigned int kvmap_linear_patch[1];
1459#endif /* CONFIG_DEBUG_PAGEALLOC */
1460
1461static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1462{
1463 const unsigned long shift_256MB = 28;
1464 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1465 const unsigned long size_256MB = (1UL << shift_256MB);
1466
1467 while (start < end) {
1468 long remains;
1469
1470 remains = end - start;
1471 if (remains < size_256MB)
1472 break;
1473
1474 if (start & mask_256MB) {
1475 start = (start + size_256MB) & ~mask_256MB;
1476 continue;
1477 }
1478
1479 while (remains >= size_256MB) {
1480 unsigned long index = start >> shift_256MB;
1481
1482 __set_bit(index, kpte_linear_bitmap);
1483
1484 start += size_256MB;
1485 remains -= size_256MB;
1486 }
1487 }
1488}
1489
1490static void __init init_kpte_bitmap(void)
1491{
1492 unsigned long i;
1493
1494 for (i = 0; i < pall_ents; i++) {
1495 unsigned long phys_start, phys_end;
1496
1497 phys_start = pall[i].phys_addr;
1498 phys_end = phys_start + pall[i].reg_size;
1499
1500 mark_kpte_bitmap(phys_start, phys_end);
1501 }
1502}
1503
1504static void __init kernel_physical_mapping_init(void)
1505{
1506#ifdef CONFIG_DEBUG_PAGEALLOC
1507 unsigned long i, mem_alloced = 0UL;
1508
1509 for (i = 0; i < pall_ents; i++) {
1510 unsigned long phys_start, phys_end;
1511
1512 phys_start = pall[i].phys_addr;
1513 phys_end = phys_start + pall[i].reg_size;
1514
1515 mem_alloced += kernel_map_range(phys_start, phys_end,
1516 PAGE_KERNEL);
1517 }
1518
1519 printk("Allocated %ld bytes for kernel page tables.\n",
1520 mem_alloced);
1521
1522 kvmap_linear_patch[0] = 0x01000000; /* nop */
1523 flushi(&kvmap_linear_patch[0]);
1524
1525 __flush_tlb_all();
1526#endif
1527}
1528
1529#ifdef CONFIG_DEBUG_PAGEALLOC
1530void kernel_map_pages(struct page *page, int numpages, int enable)
1531{
1532 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1533 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1534
1535 kernel_map_range(phys_start, phys_end,
1536 (enable ? PAGE_KERNEL : __pgprot(0)));
1537
1538 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1539 PAGE_OFFSET + phys_end);
1540
1541 /* we should perform an IPI and flush all tlbs,
1542 * but that can deadlock->flush only current cpu.
1543 */
1544 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1545 PAGE_OFFSET + phys_end);
1546}
1547#endif
1548
1549unsigned long __init find_ecache_flush_span(unsigned long size)
1550{
1551 int i;
1552
1553 for (i = 0; i < pavail_ents; i++) {
1554 if (pavail[i].reg_size >= size)
1555 return pavail[i].phys_addr;
1556 }
1557
1558 return ~0UL;
1559}
1560
1561static void __init tsb_phys_patch(void)
1562{
1563 struct tsb_ldquad_phys_patch_entry *pquad;
1564 struct tsb_phys_patch_entry *p;
1565
1566 pquad = &__tsb_ldquad_phys_patch;
1567 while (pquad < &__tsb_ldquad_phys_patch_end) {
1568 unsigned long addr = pquad->addr;
1569
1570 if (tlb_type == hypervisor)
1571 *(unsigned int *) addr = pquad->sun4v_insn;
1572 else
1573 *(unsigned int *) addr = pquad->sun4u_insn;
1574 wmb();
1575 __asm__ __volatile__("flush %0"
1576 : /* no outputs */
1577 : "r" (addr));
1578
1579 pquad++;
1580 }
1581
1582 p = &__tsb_phys_patch;
1583 while (p < &__tsb_phys_patch_end) {
1584 unsigned long addr = p->addr;
1585
1586 *(unsigned int *) addr = p->insn;
1587 wmb();
1588 __asm__ __volatile__("flush %0"
1589 : /* no outputs */
1590 : "r" (addr));
1591
1592 p++;
1593 }
1594}
1595
1596/* Don't mark as init, we give this to the Hypervisor. */
1597#ifndef CONFIG_DEBUG_PAGEALLOC
1598#define NUM_KTSB_DESCR 2
1599#else
1600#define NUM_KTSB_DESCR 1
1601#endif
1602static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1603extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1604
1605static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1606{
1607 pa >>= KTSB_PHYS_SHIFT;
1608
1609 while (start < end) {
1610 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1611
1612 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1613 __asm__ __volatile__("flush %0" : : "r" (ia));
1614
1615 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1616 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1617
1618 start++;
1619 }
1620}
1621
1622static void ktsb_phys_patch(void)
1623{
1624 extern unsigned int __swapper_tsb_phys_patch;
1625 extern unsigned int __swapper_tsb_phys_patch_end;
1626 unsigned long ktsb_pa;
1627
1628 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1629 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1630 &__swapper_tsb_phys_patch_end, ktsb_pa);
1631#ifndef CONFIG_DEBUG_PAGEALLOC
1632 {
1633 extern unsigned int __swapper_4m_tsb_phys_patch;
1634 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1635 ktsb_pa = (kern_base +
1636 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1637 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1638 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1639 }
1640#endif
1641}
1642
1643static void __init sun4v_ktsb_init(void)
1644{
1645 unsigned long ktsb_pa;
1646
1647 /* First KTSB for PAGE_SIZE mappings. */
1648 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1649
1650 switch (PAGE_SIZE) {
1651 case 8 * 1024:
1652 default:
1653 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1654 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1655 break;
1656
1657 case 64 * 1024:
1658 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1659 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1660 break;
1661
1662 case 512 * 1024:
1663 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1664 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1665 break;
1666
1667 case 4 * 1024 * 1024:
1668 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1669 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1670 break;
1671 }
1672
1673 ktsb_descr[0].assoc = 1;
1674 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1675 ktsb_descr[0].ctx_idx = 0;
1676 ktsb_descr[0].tsb_base = ktsb_pa;
1677 ktsb_descr[0].resv = 0;
1678
1679#ifndef CONFIG_DEBUG_PAGEALLOC
1680 /* Second KTSB for 4MB/256MB mappings. */
1681 ktsb_pa = (kern_base +
1682 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1683
1684 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1685 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1686 HV_PGSZ_MASK_256MB);
1687 ktsb_descr[1].assoc = 1;
1688 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1689 ktsb_descr[1].ctx_idx = 0;
1690 ktsb_descr[1].tsb_base = ktsb_pa;
1691 ktsb_descr[1].resv = 0;
1692#endif
1693}
1694
1695void __cpuinit sun4v_ktsb_register(void)
1696{
1697 unsigned long pa, ret;
1698
1699 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1700
1701 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1702 if (ret != 0) {
1703 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1704 "errors with %lx\n", pa, ret);
1705 prom_halt();
1706 }
1707}
1708
1709/* paging_init() sets up the page tables */
1710
1711static unsigned long last_valid_pfn;
1712pgd_t swapper_pg_dir[2048];
1713
1714static void sun4u_pgprot_init(void);
1715static void sun4v_pgprot_init(void);
1716
1717void __init paging_init(void)
1718{
1719 unsigned long end_pfn, shift, phys_base;
1720 unsigned long real_end, i;
1721
1722 /* These build time checkes make sure that the dcache_dirty_cpu()
1723 * page->flags usage will work.
1724 *
1725 * When a page gets marked as dcache-dirty, we store the
1726 * cpu number starting at bit 32 in the page->flags. Also,
1727 * functions like clear_dcache_dirty_cpu use the cpu mask
1728 * in 13-bit signed-immediate instruction fields.
1729 */
1730
1731 /*
1732 * Page flags must not reach into upper 32 bits that are used
1733 * for the cpu number
1734 */
1735 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1736
1737 /*
1738 * The bit fields placed in the high range must not reach below
1739 * the 32 bit boundary. Otherwise we cannot place the cpu field
1740 * at the 32 bit boundary.
1741 */
1742 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1743 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1744
1745 BUILD_BUG_ON(NR_CPUS > 4096);
1746
1747 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1748 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1749
1750 /* Invalidate both kernel TSBs. */
1751 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1752#ifndef CONFIG_DEBUG_PAGEALLOC
1753 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1754#endif
1755
1756 if (tlb_type == hypervisor)
1757 sun4v_pgprot_init();
1758 else
1759 sun4u_pgprot_init();
1760
1761 if (tlb_type == cheetah_plus ||
1762 tlb_type == hypervisor) {
1763 tsb_phys_patch();
1764 ktsb_phys_patch();
1765 }
1766
1767 if (tlb_type == hypervisor) {
1768 sun4v_patch_tlb_handlers();
1769 sun4v_ktsb_init();
1770 }
1771
1772 memblock_init();
1773
1774 /* Find available physical memory...
1775 *
1776 * Read it twice in order to work around a bug in openfirmware.
1777 * The call to grab this table itself can cause openfirmware to
1778 * allocate memory, which in turn can take away some space from
1779 * the list of available memory. Reading it twice makes sure
1780 * we really do get the final value.
1781 */
1782 read_obp_translations();
1783 read_obp_memory("reg", &pall[0], &pall_ents);
1784 read_obp_memory("available", &pavail[0], &pavail_ents);
1785 read_obp_memory("available", &pavail[0], &pavail_ents);
1786
1787 phys_base = 0xffffffffffffffffUL;
1788 for (i = 0; i < pavail_ents; i++) {
1789 phys_base = min(phys_base, pavail[i].phys_addr);
1790 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1791 }
1792
1793 memblock_reserve(kern_base, kern_size);
1794
1795 find_ramdisk(phys_base);
1796
1797 memblock_enforce_memory_limit(cmdline_memory_size);
1798
1799 memblock_analyze();
1800 memblock_dump_all();
1801
1802 set_bit(0, mmu_context_bmap);
1803
1804 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1805
1806 real_end = (unsigned long)_end;
1807 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1808 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1809 num_kernel_image_mappings);
1810
1811 /* Set kernel pgd to upper alias so physical page computations
1812 * work.
1813 */
1814 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1815
1816 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1817
1818 /* Now can init the kernel/bad page tables. */
1819 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1820 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1821
1822 inherit_prom_mappings();
1823
1824 init_kpte_bitmap();
1825
1826 /* Ok, we can use our TLB miss and window trap handlers safely. */
1827 setup_tba();
1828
1829 __flush_tlb_all();
1830
1831 if (tlb_type == hypervisor)
1832 sun4v_ktsb_register();
1833
1834 prom_build_devicetree();
1835 of_populate_present_mask();
1836#ifndef CONFIG_SMP
1837 of_fill_in_cpu_data();
1838#endif
1839
1840 if (tlb_type == hypervisor) {
1841 sun4v_mdesc_init();
1842 mdesc_populate_present_mask(cpu_all_mask);
1843#ifndef CONFIG_SMP
1844 mdesc_fill_in_cpu_data(cpu_all_mask);
1845#endif
1846 }
1847
1848 /* Once the OF device tree and MDESC have been setup, we know
1849 * the list of possible cpus. Therefore we can allocate the
1850 * IRQ stacks.
1851 */
1852 for_each_possible_cpu(i) {
1853 /* XXX Use node local allocations... XXX */
1854 softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1855 hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1856 }
1857
1858 /* Setup bootmem... */
1859 last_valid_pfn = end_pfn = bootmem_init(phys_base);
1860
1861#ifndef CONFIG_NEED_MULTIPLE_NODES
1862 max_mapnr = last_valid_pfn;
1863#endif
1864 kernel_physical_mapping_init();
1865
1866 {
1867 unsigned long max_zone_pfns[MAX_NR_ZONES];
1868
1869 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1870
1871 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1872
1873 free_area_init_nodes(max_zone_pfns);
1874 }
1875
1876 printk("Booting Linux...\n");
1877}
1878
1879int __devinit page_in_phys_avail(unsigned long paddr)
1880{
1881 int i;
1882
1883 paddr &= PAGE_MASK;
1884
1885 for (i = 0; i < pavail_ents; i++) {
1886 unsigned long start, end;
1887
1888 start = pavail[i].phys_addr;
1889 end = start + pavail[i].reg_size;
1890
1891 if (paddr >= start && paddr < end)
1892 return 1;
1893 }
1894 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1895 return 1;
1896#ifdef CONFIG_BLK_DEV_INITRD
1897 if (paddr >= __pa(initrd_start) &&
1898 paddr < __pa(PAGE_ALIGN(initrd_end)))
1899 return 1;
1900#endif
1901
1902 return 0;
1903}
1904
1905static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1906static int pavail_rescan_ents __initdata;
1907
1908/* Certain OBP calls, such as fetching "available" properties, can
1909 * claim physical memory. So, along with initializing the valid
1910 * address bitmap, what we do here is refetch the physical available
1911 * memory list again, and make sure it provides at least as much
1912 * memory as 'pavail' does.
1913 */
1914static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1915{
1916 int i;
1917
1918 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1919
1920 for (i = 0; i < pavail_ents; i++) {
1921 unsigned long old_start, old_end;
1922
1923 old_start = pavail[i].phys_addr;
1924 old_end = old_start + pavail[i].reg_size;
1925 while (old_start < old_end) {
1926 int n;
1927
1928 for (n = 0; n < pavail_rescan_ents; n++) {
1929 unsigned long new_start, new_end;
1930
1931 new_start = pavail_rescan[n].phys_addr;
1932 new_end = new_start +
1933 pavail_rescan[n].reg_size;
1934
1935 if (new_start <= old_start &&
1936 new_end >= (old_start + PAGE_SIZE)) {
1937 set_bit(old_start >> 22, bitmap);
1938 goto do_next_page;
1939 }
1940 }
1941
1942 prom_printf("mem_init: Lost memory in pavail\n");
1943 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1944 pavail[i].phys_addr,
1945 pavail[i].reg_size);
1946 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1947 pavail_rescan[i].phys_addr,
1948 pavail_rescan[i].reg_size);
1949 prom_printf("mem_init: Cannot continue, aborting.\n");
1950 prom_halt();
1951
1952 do_next_page:
1953 old_start += PAGE_SIZE;
1954 }
1955 }
1956}
1957
1958static void __init patch_tlb_miss_handler_bitmap(void)
1959{
1960 extern unsigned int valid_addr_bitmap_insn[];
1961 extern unsigned int valid_addr_bitmap_patch[];
1962
1963 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1964 mb();
1965 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1966 flushi(&valid_addr_bitmap_insn[0]);
1967}
1968
1969void __init mem_init(void)
1970{
1971 unsigned long codepages, datapages, initpages;
1972 unsigned long addr, last;
1973
1974 addr = PAGE_OFFSET + kern_base;
1975 last = PAGE_ALIGN(kern_size) + addr;
1976 while (addr < last) {
1977 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1978 addr += PAGE_SIZE;
1979 }
1980
1981 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1982 patch_tlb_miss_handler_bitmap();
1983
1984 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1985
1986#ifdef CONFIG_NEED_MULTIPLE_NODES
1987 {
1988 int i;
1989 for_each_online_node(i) {
1990 if (NODE_DATA(i)->node_spanned_pages != 0) {
1991 totalram_pages +=
1992 free_all_bootmem_node(NODE_DATA(i));
1993 }
1994 }
1995 }
1996#else
1997 totalram_pages = free_all_bootmem();
1998#endif
1999
2000 /* We subtract one to account for the mem_map_zero page
2001 * allocated below.
2002 */
2003 totalram_pages -= 1;
2004 num_physpages = totalram_pages;
2005
2006 /*
2007 * Set up the zero page, mark it reserved, so that page count
2008 * is not manipulated when freeing the page from user ptes.
2009 */
2010 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2011 if (mem_map_zero == NULL) {
2012 prom_printf("paging_init: Cannot alloc zero page.\n");
2013 prom_halt();
2014 }
2015 SetPageReserved(mem_map_zero);
2016
2017 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2018 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2019 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2020 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2021 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2022 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2023
2024 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2025 nr_free_pages() << (PAGE_SHIFT-10),
2026 codepages << (PAGE_SHIFT-10),
2027 datapages << (PAGE_SHIFT-10),
2028 initpages << (PAGE_SHIFT-10),
2029 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2030
2031 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2032 cheetah_ecache_flush_init();
2033}
2034
2035void free_initmem(void)
2036{
2037 unsigned long addr, initend;
2038 int do_free = 1;
2039
2040 /* If the physical memory maps were trimmed by kernel command
2041 * line options, don't even try freeing this initmem stuff up.
2042 * The kernel image could have been in the trimmed out region
2043 * and if so the freeing below will free invalid page structs.
2044 */
2045 if (cmdline_memory_size)
2046 do_free = 0;
2047
2048 /*
2049 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2050 */
2051 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2052 initend = (unsigned long)(__init_end) & PAGE_MASK;
2053 for (; addr < initend; addr += PAGE_SIZE) {
2054 unsigned long page;
2055 struct page *p;
2056
2057 page = (addr +
2058 ((unsigned long) __va(kern_base)) -
2059 ((unsigned long) KERNBASE));
2060 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2061
2062 if (do_free) {
2063 p = virt_to_page(page);
2064
2065 ClearPageReserved(p);
2066 init_page_count(p);
2067 __free_page(p);
2068 num_physpages++;
2069 totalram_pages++;
2070 }
2071 }
2072}
2073
2074#ifdef CONFIG_BLK_DEV_INITRD
2075void free_initrd_mem(unsigned long start, unsigned long end)
2076{
2077 if (start < end)
2078 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2079 for (; start < end; start += PAGE_SIZE) {
2080 struct page *p = virt_to_page(start);
2081
2082 ClearPageReserved(p);
2083 init_page_count(p);
2084 __free_page(p);
2085 num_physpages++;
2086 totalram_pages++;
2087 }
2088}
2089#endif
2090
2091#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2092#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2093#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2094#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2095#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2096#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2097
2098pgprot_t PAGE_KERNEL __read_mostly;
2099EXPORT_SYMBOL(PAGE_KERNEL);
2100
2101pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2102pgprot_t PAGE_COPY __read_mostly;
2103
2104pgprot_t PAGE_SHARED __read_mostly;
2105EXPORT_SYMBOL(PAGE_SHARED);
2106
2107unsigned long pg_iobits __read_mostly;
2108
2109unsigned long _PAGE_IE __read_mostly;
2110EXPORT_SYMBOL(_PAGE_IE);
2111
2112unsigned long _PAGE_E __read_mostly;
2113EXPORT_SYMBOL(_PAGE_E);
2114
2115unsigned long _PAGE_CACHE __read_mostly;
2116EXPORT_SYMBOL(_PAGE_CACHE);
2117
2118#ifdef CONFIG_SPARSEMEM_VMEMMAP
2119unsigned long vmemmap_table[VMEMMAP_SIZE];
2120
2121int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2122{
2123 unsigned long vstart = (unsigned long) start;
2124 unsigned long vend = (unsigned long) (start + nr);
2125 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2126 unsigned long phys_end = (vend - VMEMMAP_BASE);
2127 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2128 unsigned long end = VMEMMAP_ALIGN(phys_end);
2129 unsigned long pte_base;
2130
2131 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2132 _PAGE_CP_4U | _PAGE_CV_4U |
2133 _PAGE_P_4U | _PAGE_W_4U);
2134 if (tlb_type == hypervisor)
2135 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2136 _PAGE_CP_4V | _PAGE_CV_4V |
2137 _PAGE_P_4V | _PAGE_W_4V);
2138
2139 for (; addr < end; addr += VMEMMAP_CHUNK) {
2140 unsigned long *vmem_pp =
2141 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2142 void *block;
2143
2144 if (!(*vmem_pp & _PAGE_VALID)) {
2145 block = vmemmap_alloc_block(1UL << 22, node);
2146 if (!block)
2147 return -ENOMEM;
2148
2149 *vmem_pp = pte_base | __pa(block);
2150
2151 printk(KERN_INFO "[%p-%p] page_structs=%lu "
2152 "node=%d entry=%lu/%lu\n", start, block, nr,
2153 node,
2154 addr >> VMEMMAP_CHUNK_SHIFT,
2155 VMEMMAP_SIZE);
2156 }
2157 }
2158 return 0;
2159}
2160#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2161
2162static void prot_init_common(unsigned long page_none,
2163 unsigned long page_shared,
2164 unsigned long page_copy,
2165 unsigned long page_readonly,
2166 unsigned long page_exec_bit)
2167{
2168 PAGE_COPY = __pgprot(page_copy);
2169 PAGE_SHARED = __pgprot(page_shared);
2170
2171 protection_map[0x0] = __pgprot(page_none);
2172 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2173 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2174 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2175 protection_map[0x4] = __pgprot(page_readonly);
2176 protection_map[0x5] = __pgprot(page_readonly);
2177 protection_map[0x6] = __pgprot(page_copy);
2178 protection_map[0x7] = __pgprot(page_copy);
2179 protection_map[0x8] = __pgprot(page_none);
2180 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2181 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2182 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2183 protection_map[0xc] = __pgprot(page_readonly);
2184 protection_map[0xd] = __pgprot(page_readonly);
2185 protection_map[0xe] = __pgprot(page_shared);
2186 protection_map[0xf] = __pgprot(page_shared);
2187}
2188
2189static void __init sun4u_pgprot_init(void)
2190{
2191 unsigned long page_none, page_shared, page_copy, page_readonly;
2192 unsigned long page_exec_bit;
2193
2194 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2195 _PAGE_CACHE_4U | _PAGE_P_4U |
2196 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2197 _PAGE_EXEC_4U);
2198 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2199 _PAGE_CACHE_4U | _PAGE_P_4U |
2200 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2201 _PAGE_EXEC_4U | _PAGE_L_4U);
2202
2203 _PAGE_IE = _PAGE_IE_4U;
2204 _PAGE_E = _PAGE_E_4U;
2205 _PAGE_CACHE = _PAGE_CACHE_4U;
2206
2207 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2208 __ACCESS_BITS_4U | _PAGE_E_4U);
2209
2210#ifdef CONFIG_DEBUG_PAGEALLOC
2211 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2212 0xfffff80000000000UL;
2213#else
2214 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2215 0xfffff80000000000UL;
2216#endif
2217 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2218 _PAGE_P_4U | _PAGE_W_4U);
2219
2220 /* XXX Should use 256MB on Panther. XXX */
2221 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2222
2223 _PAGE_SZBITS = _PAGE_SZBITS_4U;
2224 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2225 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2226 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2227
2228
2229 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2230 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2231 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2232 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2233 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2234 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2235 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2236
2237 page_exec_bit = _PAGE_EXEC_4U;
2238
2239 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2240 page_exec_bit);
2241}
2242
2243static void __init sun4v_pgprot_init(void)
2244{
2245 unsigned long page_none, page_shared, page_copy, page_readonly;
2246 unsigned long page_exec_bit;
2247
2248 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2249 _PAGE_CACHE_4V | _PAGE_P_4V |
2250 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2251 _PAGE_EXEC_4V);
2252 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2253
2254 _PAGE_IE = _PAGE_IE_4V;
2255 _PAGE_E = _PAGE_E_4V;
2256 _PAGE_CACHE = _PAGE_CACHE_4V;
2257
2258#ifdef CONFIG_DEBUG_PAGEALLOC
2259 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2260 0xfffff80000000000UL;
2261#else
2262 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2263 0xfffff80000000000UL;
2264#endif
2265 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2266 _PAGE_P_4V | _PAGE_W_4V);
2267
2268#ifdef CONFIG_DEBUG_PAGEALLOC
2269 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2270 0xfffff80000000000UL;
2271#else
2272 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2273 0xfffff80000000000UL;
2274#endif
2275 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2276 _PAGE_P_4V | _PAGE_W_4V);
2277
2278 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2279 __ACCESS_BITS_4V | _PAGE_E_4V);
2280
2281 _PAGE_SZBITS = _PAGE_SZBITS_4V;
2282 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2283 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2284 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2285 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2286
2287 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2288 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2289 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2290 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2291 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2292 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2293 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2294
2295 page_exec_bit = _PAGE_EXEC_4V;
2296
2297 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2298 page_exec_bit);
2299}
2300
2301unsigned long pte_sz_bits(unsigned long sz)
2302{
2303 if (tlb_type == hypervisor) {
2304 switch (sz) {
2305 case 8 * 1024:
2306 default:
2307 return _PAGE_SZ8K_4V;
2308 case 64 * 1024:
2309 return _PAGE_SZ64K_4V;
2310 case 512 * 1024:
2311 return _PAGE_SZ512K_4V;
2312 case 4 * 1024 * 1024:
2313 return _PAGE_SZ4MB_4V;
2314 }
2315 } else {
2316 switch (sz) {
2317 case 8 * 1024:
2318 default:
2319 return _PAGE_SZ8K_4U;
2320 case 64 * 1024:
2321 return _PAGE_SZ64K_4U;
2322 case 512 * 1024:
2323 return _PAGE_SZ512K_4U;
2324 case 4 * 1024 * 1024:
2325 return _PAGE_SZ4MB_4U;
2326 }
2327 }
2328}
2329
2330pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2331{
2332 pte_t pte;
2333
2334 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2335 pte_val(pte) |= (((unsigned long)space) << 32);
2336 pte_val(pte) |= pte_sz_bits(page_size);
2337
2338 return pte;
2339}
2340
2341static unsigned long kern_large_tte(unsigned long paddr)
2342{
2343 unsigned long val;
2344
2345 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2346 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2347 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2348 if (tlb_type == hypervisor)
2349 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2350 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2351 _PAGE_EXEC_4V | _PAGE_W_4V);
2352
2353 return val | paddr;
2354}
2355
2356/* If not locked, zap it. */
2357void __flush_tlb_all(void)
2358{
2359 unsigned long pstate;
2360 int i;
2361
2362 __asm__ __volatile__("flushw\n\t"
2363 "rdpr %%pstate, %0\n\t"
2364 "wrpr %0, %1, %%pstate"
2365 : "=r" (pstate)
2366 : "i" (PSTATE_IE));
2367 if (tlb_type == hypervisor) {
2368 sun4v_mmu_demap_all();
2369 } else if (tlb_type == spitfire) {
2370 for (i = 0; i < 64; i++) {
2371 /* Spitfire Errata #32 workaround */
2372 /* NOTE: Always runs on spitfire, so no
2373 * cheetah+ page size encodings.
2374 */
2375 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2376 "flush %%g6"
2377 : /* No outputs */
2378 : "r" (0),
2379 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2380
2381 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2382 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2383 "membar #Sync"
2384 : /* no outputs */
2385 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2386 spitfire_put_dtlb_data(i, 0x0UL);
2387 }
2388
2389 /* Spitfire Errata #32 workaround */
2390 /* NOTE: Always runs on spitfire, so no
2391 * cheetah+ page size encodings.
2392 */
2393 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2394 "flush %%g6"
2395 : /* No outputs */
2396 : "r" (0),
2397 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2398
2399 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2400 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2401 "membar #Sync"
2402 : /* no outputs */
2403 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2404 spitfire_put_itlb_data(i, 0x0UL);
2405 }
2406 }
2407 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2408 cheetah_flush_dtlb_all();
2409 cheetah_flush_itlb_all();
2410 }
2411 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2412 : : "r" (pstate));
2413}
1/*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8#include <linux/module.h>
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/string.h>
12#include <linux/init.h>
13#include <linux/bootmem.h>
14#include <linux/mm.h>
15#include <linux/hugetlb.h>
16#include <linux/initrd.h>
17#include <linux/swap.h>
18#include <linux/pagemap.h>
19#include <linux/poison.h>
20#include <linux/fs.h>
21#include <linux/seq_file.h>
22#include <linux/kprobes.h>
23#include <linux/cache.h>
24#include <linux/sort.h>
25#include <linux/percpu.h>
26#include <linux/memblock.h>
27#include <linux/mmzone.h>
28#include <linux/gfp.h>
29
30#include <asm/head.h>
31#include <asm/page.h>
32#include <asm/pgalloc.h>
33#include <asm/pgtable.h>
34#include <asm/oplib.h>
35#include <asm/iommu.h>
36#include <asm/io.h>
37#include <asm/uaccess.h>
38#include <asm/mmu_context.h>
39#include <asm/tlbflush.h>
40#include <asm/dma.h>
41#include <asm/starfire.h>
42#include <asm/tlb.h>
43#include <asm/spitfire.h>
44#include <asm/sections.h>
45#include <asm/tsb.h>
46#include <asm/hypervisor.h>
47#include <asm/prom.h>
48#include <asm/mdesc.h>
49#include <asm/cpudata.h>
50#include <asm/irq.h>
51
52#include "init_64.h"
53
54unsigned long kern_linear_pte_xor[2] __read_mostly;
55
56/* A bitmap, one bit for every 256MB of physical memory. If the bit
57 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
58 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
59 */
60unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
61
62#ifndef CONFIG_DEBUG_PAGEALLOC
63/* A special kernel TSB for 4MB and 256MB linear mappings.
64 * Space is allocated for this right after the trap table
65 * in arch/sparc64/kernel/head.S
66 */
67extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
68#endif
69
70#define MAX_BANKS 32
71
72static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
73static int pavail_ents __devinitdata;
74
75static int cmp_p64(const void *a, const void *b)
76{
77 const struct linux_prom64_registers *x = a, *y = b;
78
79 if (x->phys_addr > y->phys_addr)
80 return 1;
81 if (x->phys_addr < y->phys_addr)
82 return -1;
83 return 0;
84}
85
86static void __init read_obp_memory(const char *property,
87 struct linux_prom64_registers *regs,
88 int *num_ents)
89{
90 phandle node = prom_finddevice("/memory");
91 int prop_size = prom_getproplen(node, property);
92 int ents, ret, i;
93
94 ents = prop_size / sizeof(struct linux_prom64_registers);
95 if (ents > MAX_BANKS) {
96 prom_printf("The machine has more %s property entries than "
97 "this kernel can support (%d).\n",
98 property, MAX_BANKS);
99 prom_halt();
100 }
101
102 ret = prom_getproperty(node, property, (char *) regs, prop_size);
103 if (ret == -1) {
104 prom_printf("Couldn't get %s property from /memory.\n");
105 prom_halt();
106 }
107
108 /* Sanitize what we got from the firmware, by page aligning
109 * everything.
110 */
111 for (i = 0; i < ents; i++) {
112 unsigned long base, size;
113
114 base = regs[i].phys_addr;
115 size = regs[i].reg_size;
116
117 size &= PAGE_MASK;
118 if (base & ~PAGE_MASK) {
119 unsigned long new_base = PAGE_ALIGN(base);
120
121 size -= new_base - base;
122 if ((long) size < 0L)
123 size = 0UL;
124 base = new_base;
125 }
126 if (size == 0UL) {
127 /* If it is empty, simply get rid of it.
128 * This simplifies the logic of the other
129 * functions that process these arrays.
130 */
131 memmove(®s[i], ®s[i + 1],
132 (ents - i - 1) * sizeof(regs[0]));
133 i--;
134 ents--;
135 continue;
136 }
137 regs[i].phys_addr = base;
138 regs[i].reg_size = size;
139 }
140
141 *num_ents = ents;
142
143 sort(regs, ents, sizeof(struct linux_prom64_registers),
144 cmp_p64, NULL);
145}
146
147unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
148 sizeof(unsigned long)];
149EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
150
151/* Kernel physical address base and size in bytes. */
152unsigned long kern_base __read_mostly;
153unsigned long kern_size __read_mostly;
154
155/* Initial ramdisk setup */
156extern unsigned long sparc_ramdisk_image64;
157extern unsigned int sparc_ramdisk_image;
158extern unsigned int sparc_ramdisk_size;
159
160struct page *mem_map_zero __read_mostly;
161EXPORT_SYMBOL(mem_map_zero);
162
163unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
164
165unsigned long sparc64_kern_pri_context __read_mostly;
166unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
167unsigned long sparc64_kern_sec_context __read_mostly;
168
169int num_kernel_image_mappings;
170
171#ifdef CONFIG_DEBUG_DCFLUSH
172atomic_t dcpage_flushes = ATOMIC_INIT(0);
173#ifdef CONFIG_SMP
174atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
175#endif
176#endif
177
178inline void flush_dcache_page_impl(struct page *page)
179{
180 BUG_ON(tlb_type == hypervisor);
181#ifdef CONFIG_DEBUG_DCFLUSH
182 atomic_inc(&dcpage_flushes);
183#endif
184
185#ifdef DCACHE_ALIASING_POSSIBLE
186 __flush_dcache_page(page_address(page),
187 ((tlb_type == spitfire) &&
188 page_mapping(page) != NULL));
189#else
190 if (page_mapping(page) != NULL &&
191 tlb_type == spitfire)
192 __flush_icache_page(__pa(page_address(page)));
193#endif
194}
195
196#define PG_dcache_dirty PG_arch_1
197#define PG_dcache_cpu_shift 32UL
198#define PG_dcache_cpu_mask \
199 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
200
201#define dcache_dirty_cpu(page) \
202 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
203
204static inline void set_dcache_dirty(struct page *page, int this_cpu)
205{
206 unsigned long mask = this_cpu;
207 unsigned long non_cpu_bits;
208
209 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
210 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
211
212 __asm__ __volatile__("1:\n\t"
213 "ldx [%2], %%g7\n\t"
214 "and %%g7, %1, %%g1\n\t"
215 "or %%g1, %0, %%g1\n\t"
216 "casx [%2], %%g7, %%g1\n\t"
217 "cmp %%g7, %%g1\n\t"
218 "bne,pn %%xcc, 1b\n\t"
219 " nop"
220 : /* no outputs */
221 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
222 : "g1", "g7");
223}
224
225static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
226{
227 unsigned long mask = (1UL << PG_dcache_dirty);
228
229 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
230 "1:\n\t"
231 "ldx [%2], %%g7\n\t"
232 "srlx %%g7, %4, %%g1\n\t"
233 "and %%g1, %3, %%g1\n\t"
234 "cmp %%g1, %0\n\t"
235 "bne,pn %%icc, 2f\n\t"
236 " andn %%g7, %1, %%g1\n\t"
237 "casx [%2], %%g7, %%g1\n\t"
238 "cmp %%g7, %%g1\n\t"
239 "bne,pn %%xcc, 1b\n\t"
240 " nop\n"
241 "2:"
242 : /* no outputs */
243 : "r" (cpu), "r" (mask), "r" (&page->flags),
244 "i" (PG_dcache_cpu_mask),
245 "i" (PG_dcache_cpu_shift)
246 : "g1", "g7");
247}
248
249static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
250{
251 unsigned long tsb_addr = (unsigned long) ent;
252
253 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
254 tsb_addr = __pa(tsb_addr);
255
256 __tsb_insert(tsb_addr, tag, pte);
257}
258
259unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
260unsigned long _PAGE_SZBITS __read_mostly;
261
262static void flush_dcache(unsigned long pfn)
263{
264 struct page *page;
265
266 page = pfn_to_page(pfn);
267 if (page) {
268 unsigned long pg_flags;
269
270 pg_flags = page->flags;
271 if (pg_flags & (1UL << PG_dcache_dirty)) {
272 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
273 PG_dcache_cpu_mask);
274 int this_cpu = get_cpu();
275
276 /* This is just to optimize away some function calls
277 * in the SMP case.
278 */
279 if (cpu == this_cpu)
280 flush_dcache_page_impl(page);
281 else
282 smp_flush_dcache_page_impl(page, cpu);
283
284 clear_dcache_dirty_cpu(page, cpu);
285
286 put_cpu();
287 }
288 }
289}
290
291void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
292{
293 struct mm_struct *mm;
294 struct tsb *tsb;
295 unsigned long tag, flags;
296 unsigned long tsb_index, tsb_hash_shift;
297 pte_t pte = *ptep;
298
299 if (tlb_type != hypervisor) {
300 unsigned long pfn = pte_pfn(pte);
301
302 if (pfn_valid(pfn))
303 flush_dcache(pfn);
304 }
305
306 mm = vma->vm_mm;
307
308 tsb_index = MM_TSB_BASE;
309 tsb_hash_shift = PAGE_SHIFT;
310
311 spin_lock_irqsave(&mm->context.lock, flags);
312
313#ifdef CONFIG_HUGETLB_PAGE
314 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
315 if ((tlb_type == hypervisor &&
316 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
317 (tlb_type != hypervisor &&
318 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
319 tsb_index = MM_TSB_HUGE;
320 tsb_hash_shift = HPAGE_SHIFT;
321 }
322 }
323#endif
324
325 tsb = mm->context.tsb_block[tsb_index].tsb;
326 tsb += ((address >> tsb_hash_shift) &
327 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
328 tag = (address >> 22UL);
329 tsb_insert(tsb, tag, pte_val(pte));
330
331 spin_unlock_irqrestore(&mm->context.lock, flags);
332}
333
334void flush_dcache_page(struct page *page)
335{
336 struct address_space *mapping;
337 int this_cpu;
338
339 if (tlb_type == hypervisor)
340 return;
341
342 /* Do not bother with the expensive D-cache flush if it
343 * is merely the zero page. The 'bigcore' testcase in GDB
344 * causes this case to run millions of times.
345 */
346 if (page == ZERO_PAGE(0))
347 return;
348
349 this_cpu = get_cpu();
350
351 mapping = page_mapping(page);
352 if (mapping && !mapping_mapped(mapping)) {
353 int dirty = test_bit(PG_dcache_dirty, &page->flags);
354 if (dirty) {
355 int dirty_cpu = dcache_dirty_cpu(page);
356
357 if (dirty_cpu == this_cpu)
358 goto out;
359 smp_flush_dcache_page_impl(page, dirty_cpu);
360 }
361 set_dcache_dirty(page, this_cpu);
362 } else {
363 /* We could delay the flush for the !page_mapping
364 * case too. But that case is for exec env/arg
365 * pages and those are %99 certainly going to get
366 * faulted into the tlb (and thus flushed) anyways.
367 */
368 flush_dcache_page_impl(page);
369 }
370
371out:
372 put_cpu();
373}
374EXPORT_SYMBOL(flush_dcache_page);
375
376void __kprobes flush_icache_range(unsigned long start, unsigned long end)
377{
378 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
379 if (tlb_type == spitfire) {
380 unsigned long kaddr;
381
382 /* This code only runs on Spitfire cpus so this is
383 * why we can assume _PAGE_PADDR_4U.
384 */
385 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
386 unsigned long paddr, mask = _PAGE_PADDR_4U;
387
388 if (kaddr >= PAGE_OFFSET)
389 paddr = kaddr & mask;
390 else {
391 pgd_t *pgdp = pgd_offset_k(kaddr);
392 pud_t *pudp = pud_offset(pgdp, kaddr);
393 pmd_t *pmdp = pmd_offset(pudp, kaddr);
394 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
395
396 paddr = pte_val(*ptep) & mask;
397 }
398 __flush_icache_page(paddr);
399 }
400 }
401}
402EXPORT_SYMBOL(flush_icache_range);
403
404void mmu_info(struct seq_file *m)
405{
406 if (tlb_type == cheetah)
407 seq_printf(m, "MMU Type\t: Cheetah\n");
408 else if (tlb_type == cheetah_plus)
409 seq_printf(m, "MMU Type\t: Cheetah+\n");
410 else if (tlb_type == spitfire)
411 seq_printf(m, "MMU Type\t: Spitfire\n");
412 else if (tlb_type == hypervisor)
413 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
414 else
415 seq_printf(m, "MMU Type\t: ???\n");
416
417#ifdef CONFIG_DEBUG_DCFLUSH
418 seq_printf(m, "DCPageFlushes\t: %d\n",
419 atomic_read(&dcpage_flushes));
420#ifdef CONFIG_SMP
421 seq_printf(m, "DCPageFlushesXC\t: %d\n",
422 atomic_read(&dcpage_flushes_xcall));
423#endif /* CONFIG_SMP */
424#endif /* CONFIG_DEBUG_DCFLUSH */
425}
426
427struct linux_prom_translation prom_trans[512] __read_mostly;
428unsigned int prom_trans_ents __read_mostly;
429
430unsigned long kern_locked_tte_data;
431
432/* The obp translations are saved based on 8k pagesize, since obp can
433 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
434 * HI_OBP_ADDRESS range are handled in ktlb.S.
435 */
436static inline int in_obp_range(unsigned long vaddr)
437{
438 return (vaddr >= LOW_OBP_ADDRESS &&
439 vaddr < HI_OBP_ADDRESS);
440}
441
442static int cmp_ptrans(const void *a, const void *b)
443{
444 const struct linux_prom_translation *x = a, *y = b;
445
446 if (x->virt > y->virt)
447 return 1;
448 if (x->virt < y->virt)
449 return -1;
450 return 0;
451}
452
453/* Read OBP translations property into 'prom_trans[]'. */
454static void __init read_obp_translations(void)
455{
456 int n, node, ents, first, last, i;
457
458 node = prom_finddevice("/virtual-memory");
459 n = prom_getproplen(node, "translations");
460 if (unlikely(n == 0 || n == -1)) {
461 prom_printf("prom_mappings: Couldn't get size.\n");
462 prom_halt();
463 }
464 if (unlikely(n > sizeof(prom_trans))) {
465 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
466 prom_halt();
467 }
468
469 if ((n = prom_getproperty(node, "translations",
470 (char *)&prom_trans[0],
471 sizeof(prom_trans))) == -1) {
472 prom_printf("prom_mappings: Couldn't get property.\n");
473 prom_halt();
474 }
475
476 n = n / sizeof(struct linux_prom_translation);
477
478 ents = n;
479
480 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
481 cmp_ptrans, NULL);
482
483 /* Now kick out all the non-OBP entries. */
484 for (i = 0; i < ents; i++) {
485 if (in_obp_range(prom_trans[i].virt))
486 break;
487 }
488 first = i;
489 for (; i < ents; i++) {
490 if (!in_obp_range(prom_trans[i].virt))
491 break;
492 }
493 last = i;
494
495 for (i = 0; i < (last - first); i++) {
496 struct linux_prom_translation *src = &prom_trans[i + first];
497 struct linux_prom_translation *dest = &prom_trans[i];
498
499 *dest = *src;
500 }
501 for (; i < ents; i++) {
502 struct linux_prom_translation *dest = &prom_trans[i];
503 dest->virt = dest->size = dest->data = 0x0UL;
504 }
505
506 prom_trans_ents = last - first;
507
508 if (tlb_type == spitfire) {
509 /* Clear diag TTE bits. */
510 for (i = 0; i < prom_trans_ents; i++)
511 prom_trans[i].data &= ~0x0003fe0000000000UL;
512 }
513
514 /* Force execute bit on. */
515 for (i = 0; i < prom_trans_ents; i++)
516 prom_trans[i].data |= (tlb_type == hypervisor ?
517 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
518}
519
520static void __init hypervisor_tlb_lock(unsigned long vaddr,
521 unsigned long pte,
522 unsigned long mmu)
523{
524 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
525
526 if (ret != 0) {
527 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
528 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
529 prom_halt();
530 }
531}
532
533static unsigned long kern_large_tte(unsigned long paddr);
534
535static void __init remap_kernel(void)
536{
537 unsigned long phys_page, tte_vaddr, tte_data;
538 int i, tlb_ent = sparc64_highest_locked_tlbent();
539
540 tte_vaddr = (unsigned long) KERNBASE;
541 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
542 tte_data = kern_large_tte(phys_page);
543
544 kern_locked_tte_data = tte_data;
545
546 /* Now lock us into the TLBs via Hypervisor or OBP. */
547 if (tlb_type == hypervisor) {
548 for (i = 0; i < num_kernel_image_mappings; i++) {
549 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
550 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
551 tte_vaddr += 0x400000;
552 tte_data += 0x400000;
553 }
554 } else {
555 for (i = 0; i < num_kernel_image_mappings; i++) {
556 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
557 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
558 tte_vaddr += 0x400000;
559 tte_data += 0x400000;
560 }
561 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
562 }
563 if (tlb_type == cheetah_plus) {
564 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
565 CTX_CHEETAH_PLUS_NUC);
566 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
567 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
568 }
569}
570
571
572static void __init inherit_prom_mappings(void)
573{
574 /* Now fixup OBP's idea about where we really are mapped. */
575 printk("Remapping the kernel... ");
576 remap_kernel();
577 printk("done.\n");
578}
579
580void prom_world(int enter)
581{
582 if (!enter)
583 set_fs((mm_segment_t) { get_thread_current_ds() });
584
585 __asm__ __volatile__("flushw");
586}
587
588void __flush_dcache_range(unsigned long start, unsigned long end)
589{
590 unsigned long va;
591
592 if (tlb_type == spitfire) {
593 int n = 0;
594
595 for (va = start; va < end; va += 32) {
596 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
597 if (++n >= 512)
598 break;
599 }
600 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
601 start = __pa(start);
602 end = __pa(end);
603 for (va = start; va < end; va += 32)
604 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
605 "membar #Sync"
606 : /* no outputs */
607 : "r" (va),
608 "i" (ASI_DCACHE_INVALIDATE));
609 }
610}
611EXPORT_SYMBOL(__flush_dcache_range);
612
613/* get_new_mmu_context() uses "cache + 1". */
614DEFINE_SPINLOCK(ctx_alloc_lock);
615unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
616#define MAX_CTX_NR (1UL << CTX_NR_BITS)
617#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
618DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
619
620/* Caller does TLB context flushing on local CPU if necessary.
621 * The caller also ensures that CTX_VALID(mm->context) is false.
622 *
623 * We must be careful about boundary cases so that we never
624 * let the user have CTX 0 (nucleus) or we ever use a CTX
625 * version of zero (and thus NO_CONTEXT would not be caught
626 * by version mis-match tests in mmu_context.h).
627 *
628 * Always invoked with interrupts disabled.
629 */
630void get_new_mmu_context(struct mm_struct *mm)
631{
632 unsigned long ctx, new_ctx;
633 unsigned long orig_pgsz_bits;
634 unsigned long flags;
635 int new_version;
636
637 spin_lock_irqsave(&ctx_alloc_lock, flags);
638 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
639 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
640 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
641 new_version = 0;
642 if (new_ctx >= (1 << CTX_NR_BITS)) {
643 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
644 if (new_ctx >= ctx) {
645 int i;
646 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
647 CTX_FIRST_VERSION;
648 if (new_ctx == 1)
649 new_ctx = CTX_FIRST_VERSION;
650
651 /* Don't call memset, for 16 entries that's just
652 * plain silly...
653 */
654 mmu_context_bmap[0] = 3;
655 mmu_context_bmap[1] = 0;
656 mmu_context_bmap[2] = 0;
657 mmu_context_bmap[3] = 0;
658 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
659 mmu_context_bmap[i + 0] = 0;
660 mmu_context_bmap[i + 1] = 0;
661 mmu_context_bmap[i + 2] = 0;
662 mmu_context_bmap[i + 3] = 0;
663 }
664 new_version = 1;
665 goto out;
666 }
667 }
668 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
669 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
670out:
671 tlb_context_cache = new_ctx;
672 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
673 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
674
675 if (unlikely(new_version))
676 smp_new_mmu_context_version();
677}
678
679static int numa_enabled = 1;
680static int numa_debug;
681
682static int __init early_numa(char *p)
683{
684 if (!p)
685 return 0;
686
687 if (strstr(p, "off"))
688 numa_enabled = 0;
689
690 if (strstr(p, "debug"))
691 numa_debug = 1;
692
693 return 0;
694}
695early_param("numa", early_numa);
696
697#define numadbg(f, a...) \
698do { if (numa_debug) \
699 printk(KERN_INFO f, ## a); \
700} while (0)
701
702static void __init find_ramdisk(unsigned long phys_base)
703{
704#ifdef CONFIG_BLK_DEV_INITRD
705 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
706 unsigned long ramdisk_image;
707
708 /* Older versions of the bootloader only supported a
709 * 32-bit physical address for the ramdisk image
710 * location, stored at sparc_ramdisk_image. Newer
711 * SILO versions set sparc_ramdisk_image to zero and
712 * provide a full 64-bit physical address at
713 * sparc_ramdisk_image64.
714 */
715 ramdisk_image = sparc_ramdisk_image;
716 if (!ramdisk_image)
717 ramdisk_image = sparc_ramdisk_image64;
718
719 /* Another bootloader quirk. The bootloader normalizes
720 * the physical address to KERNBASE, so we have to
721 * factor that back out and add in the lowest valid
722 * physical page address to get the true physical address.
723 */
724 ramdisk_image -= KERNBASE;
725 ramdisk_image += phys_base;
726
727 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
728 ramdisk_image, sparc_ramdisk_size);
729
730 initrd_start = ramdisk_image;
731 initrd_end = ramdisk_image + sparc_ramdisk_size;
732
733 memblock_reserve(initrd_start, sparc_ramdisk_size);
734
735 initrd_start += PAGE_OFFSET;
736 initrd_end += PAGE_OFFSET;
737 }
738#endif
739}
740
741struct node_mem_mask {
742 unsigned long mask;
743 unsigned long val;
744};
745static struct node_mem_mask node_masks[MAX_NUMNODES];
746static int num_node_masks;
747
748int numa_cpu_lookup_table[NR_CPUS];
749cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
750
751#ifdef CONFIG_NEED_MULTIPLE_NODES
752
753struct mdesc_mblock {
754 u64 base;
755 u64 size;
756 u64 offset; /* RA-to-PA */
757};
758static struct mdesc_mblock *mblocks;
759static int num_mblocks;
760
761static unsigned long ra_to_pa(unsigned long addr)
762{
763 int i;
764
765 for (i = 0; i < num_mblocks; i++) {
766 struct mdesc_mblock *m = &mblocks[i];
767
768 if (addr >= m->base &&
769 addr < (m->base + m->size)) {
770 addr += m->offset;
771 break;
772 }
773 }
774 return addr;
775}
776
777static int find_node(unsigned long addr)
778{
779 int i;
780
781 addr = ra_to_pa(addr);
782 for (i = 0; i < num_node_masks; i++) {
783 struct node_mem_mask *p = &node_masks[i];
784
785 if ((addr & p->mask) == p->val)
786 return i;
787 }
788 return -1;
789}
790
791static u64 memblock_nid_range(u64 start, u64 end, int *nid)
792{
793 *nid = find_node(start);
794 start += PAGE_SIZE;
795 while (start < end) {
796 int n = find_node(start);
797
798 if (n != *nid)
799 break;
800 start += PAGE_SIZE;
801 }
802
803 if (start > end)
804 start = end;
805
806 return start;
807}
808#endif
809
810/* This must be invoked after performing all of the necessary
811 * memblock_set_node() calls for 'nid'. We need to be able to get
812 * correct data from get_pfn_range_for_nid().
813 */
814static void __init allocate_node_data(int nid)
815{
816 struct pglist_data *p;
817 unsigned long start_pfn, end_pfn;
818#ifdef CONFIG_NEED_MULTIPLE_NODES
819 unsigned long paddr;
820
821 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
822 if (!paddr) {
823 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
824 prom_halt();
825 }
826 NODE_DATA(nid) = __va(paddr);
827 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
828
829 NODE_DATA(nid)->node_id = nid;
830#endif
831
832 p = NODE_DATA(nid);
833
834 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
835 p->node_start_pfn = start_pfn;
836 p->node_spanned_pages = end_pfn - start_pfn;
837}
838
839static void init_node_masks_nonnuma(void)
840{
841 int i;
842
843 numadbg("Initializing tables for non-numa.\n");
844
845 node_masks[0].mask = node_masks[0].val = 0;
846 num_node_masks = 1;
847
848 for (i = 0; i < NR_CPUS; i++)
849 numa_cpu_lookup_table[i] = 0;
850
851 cpumask_setall(&numa_cpumask_lookup_table[0]);
852}
853
854#ifdef CONFIG_NEED_MULTIPLE_NODES
855struct pglist_data *node_data[MAX_NUMNODES];
856
857EXPORT_SYMBOL(numa_cpu_lookup_table);
858EXPORT_SYMBOL(numa_cpumask_lookup_table);
859EXPORT_SYMBOL(node_data);
860
861struct mdesc_mlgroup {
862 u64 node;
863 u64 latency;
864 u64 match;
865 u64 mask;
866};
867static struct mdesc_mlgroup *mlgroups;
868static int num_mlgroups;
869
870static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
871 u32 cfg_handle)
872{
873 u64 arc;
874
875 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
876 u64 target = mdesc_arc_target(md, arc);
877 const u64 *val;
878
879 val = mdesc_get_property(md, target,
880 "cfg-handle", NULL);
881 if (val && *val == cfg_handle)
882 return 0;
883 }
884 return -ENODEV;
885}
886
887static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
888 u32 cfg_handle)
889{
890 u64 arc, candidate, best_latency = ~(u64)0;
891
892 candidate = MDESC_NODE_NULL;
893 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
894 u64 target = mdesc_arc_target(md, arc);
895 const char *name = mdesc_node_name(md, target);
896 const u64 *val;
897
898 if (strcmp(name, "pio-latency-group"))
899 continue;
900
901 val = mdesc_get_property(md, target, "latency", NULL);
902 if (!val)
903 continue;
904
905 if (*val < best_latency) {
906 candidate = target;
907 best_latency = *val;
908 }
909 }
910
911 if (candidate == MDESC_NODE_NULL)
912 return -ENODEV;
913
914 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
915}
916
917int of_node_to_nid(struct device_node *dp)
918{
919 const struct linux_prom64_registers *regs;
920 struct mdesc_handle *md;
921 u32 cfg_handle;
922 int count, nid;
923 u64 grp;
924
925 /* This is the right thing to do on currently supported
926 * SUN4U NUMA platforms as well, as the PCI controller does
927 * not sit behind any particular memory controller.
928 */
929 if (!mlgroups)
930 return -1;
931
932 regs = of_get_property(dp, "reg", NULL);
933 if (!regs)
934 return -1;
935
936 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
937
938 md = mdesc_grab();
939
940 count = 0;
941 nid = -1;
942 mdesc_for_each_node_by_name(md, grp, "group") {
943 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
944 nid = count;
945 break;
946 }
947 count++;
948 }
949
950 mdesc_release(md);
951
952 return nid;
953}
954
955static void __init add_node_ranges(void)
956{
957 struct memblock_region *reg;
958
959 for_each_memblock(memory, reg) {
960 unsigned long size = reg->size;
961 unsigned long start, end;
962
963 start = reg->base;
964 end = start + size;
965 while (start < end) {
966 unsigned long this_end;
967 int nid;
968
969 this_end = memblock_nid_range(start, end, &nid);
970
971 numadbg("Setting memblock NUMA node nid[%d] "
972 "start[%lx] end[%lx]\n",
973 nid, start, this_end);
974
975 memblock_set_node(start, this_end - start, nid);
976 start = this_end;
977 }
978 }
979}
980
981static int __init grab_mlgroups(struct mdesc_handle *md)
982{
983 unsigned long paddr;
984 int count = 0;
985 u64 node;
986
987 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
988 count++;
989 if (!count)
990 return -ENOENT;
991
992 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
993 SMP_CACHE_BYTES);
994 if (!paddr)
995 return -ENOMEM;
996
997 mlgroups = __va(paddr);
998 num_mlgroups = count;
999
1000 count = 0;
1001 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1002 struct mdesc_mlgroup *m = &mlgroups[count++];
1003 const u64 *val;
1004
1005 m->node = node;
1006
1007 val = mdesc_get_property(md, node, "latency", NULL);
1008 m->latency = *val;
1009 val = mdesc_get_property(md, node, "address-match", NULL);
1010 m->match = *val;
1011 val = mdesc_get_property(md, node, "address-mask", NULL);
1012 m->mask = *val;
1013
1014 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1015 "match[%llx] mask[%llx]\n",
1016 count - 1, m->node, m->latency, m->match, m->mask);
1017 }
1018
1019 return 0;
1020}
1021
1022static int __init grab_mblocks(struct mdesc_handle *md)
1023{
1024 unsigned long paddr;
1025 int count = 0;
1026 u64 node;
1027
1028 mdesc_for_each_node_by_name(md, node, "mblock")
1029 count++;
1030 if (!count)
1031 return -ENOENT;
1032
1033 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1034 SMP_CACHE_BYTES);
1035 if (!paddr)
1036 return -ENOMEM;
1037
1038 mblocks = __va(paddr);
1039 num_mblocks = count;
1040
1041 count = 0;
1042 mdesc_for_each_node_by_name(md, node, "mblock") {
1043 struct mdesc_mblock *m = &mblocks[count++];
1044 const u64 *val;
1045
1046 val = mdesc_get_property(md, node, "base", NULL);
1047 m->base = *val;
1048 val = mdesc_get_property(md, node, "size", NULL);
1049 m->size = *val;
1050 val = mdesc_get_property(md, node,
1051 "address-congruence-offset", NULL);
1052 m->offset = *val;
1053
1054 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1055 count - 1, m->base, m->size, m->offset);
1056 }
1057
1058 return 0;
1059}
1060
1061static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1062 u64 grp, cpumask_t *mask)
1063{
1064 u64 arc;
1065
1066 cpumask_clear(mask);
1067
1068 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1069 u64 target = mdesc_arc_target(md, arc);
1070 const char *name = mdesc_node_name(md, target);
1071 const u64 *id;
1072
1073 if (strcmp(name, "cpu"))
1074 continue;
1075 id = mdesc_get_property(md, target, "id", NULL);
1076 if (*id < nr_cpu_ids)
1077 cpumask_set_cpu(*id, mask);
1078 }
1079}
1080
1081static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1082{
1083 int i;
1084
1085 for (i = 0; i < num_mlgroups; i++) {
1086 struct mdesc_mlgroup *m = &mlgroups[i];
1087 if (m->node == node)
1088 return m;
1089 }
1090 return NULL;
1091}
1092
1093static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1094 int index)
1095{
1096 struct mdesc_mlgroup *candidate = NULL;
1097 u64 arc, best_latency = ~(u64)0;
1098 struct node_mem_mask *n;
1099
1100 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1101 u64 target = mdesc_arc_target(md, arc);
1102 struct mdesc_mlgroup *m = find_mlgroup(target);
1103 if (!m)
1104 continue;
1105 if (m->latency < best_latency) {
1106 candidate = m;
1107 best_latency = m->latency;
1108 }
1109 }
1110 if (!candidate)
1111 return -ENOENT;
1112
1113 if (num_node_masks != index) {
1114 printk(KERN_ERR "Inconsistent NUMA state, "
1115 "index[%d] != num_node_masks[%d]\n",
1116 index, num_node_masks);
1117 return -EINVAL;
1118 }
1119
1120 n = &node_masks[num_node_masks++];
1121
1122 n->mask = candidate->mask;
1123 n->val = candidate->match;
1124
1125 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1126 index, n->mask, n->val, candidate->latency);
1127
1128 return 0;
1129}
1130
1131static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1132 int index)
1133{
1134 cpumask_t mask;
1135 int cpu;
1136
1137 numa_parse_mdesc_group_cpus(md, grp, &mask);
1138
1139 for_each_cpu(cpu, &mask)
1140 numa_cpu_lookup_table[cpu] = index;
1141 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1142
1143 if (numa_debug) {
1144 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1145 for_each_cpu(cpu, &mask)
1146 printk("%d ", cpu);
1147 printk("]\n");
1148 }
1149
1150 return numa_attach_mlgroup(md, grp, index);
1151}
1152
1153static int __init numa_parse_mdesc(void)
1154{
1155 struct mdesc_handle *md = mdesc_grab();
1156 int i, err, count;
1157 u64 node;
1158
1159 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1160 if (node == MDESC_NODE_NULL) {
1161 mdesc_release(md);
1162 return -ENOENT;
1163 }
1164
1165 err = grab_mblocks(md);
1166 if (err < 0)
1167 goto out;
1168
1169 err = grab_mlgroups(md);
1170 if (err < 0)
1171 goto out;
1172
1173 count = 0;
1174 mdesc_for_each_node_by_name(md, node, "group") {
1175 err = numa_parse_mdesc_group(md, node, count);
1176 if (err < 0)
1177 break;
1178 count++;
1179 }
1180
1181 add_node_ranges();
1182
1183 for (i = 0; i < num_node_masks; i++) {
1184 allocate_node_data(i);
1185 node_set_online(i);
1186 }
1187
1188 err = 0;
1189out:
1190 mdesc_release(md);
1191 return err;
1192}
1193
1194static int __init numa_parse_jbus(void)
1195{
1196 unsigned long cpu, index;
1197
1198 /* NUMA node id is encoded in bits 36 and higher, and there is
1199 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1200 */
1201 index = 0;
1202 for_each_present_cpu(cpu) {
1203 numa_cpu_lookup_table[cpu] = index;
1204 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1205 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1206 node_masks[index].val = cpu << 36UL;
1207
1208 index++;
1209 }
1210 num_node_masks = index;
1211
1212 add_node_ranges();
1213
1214 for (index = 0; index < num_node_masks; index++) {
1215 allocate_node_data(index);
1216 node_set_online(index);
1217 }
1218
1219 return 0;
1220}
1221
1222static int __init numa_parse_sun4u(void)
1223{
1224 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1225 unsigned long ver;
1226
1227 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1228 if ((ver >> 32UL) == __JALAPENO_ID ||
1229 (ver >> 32UL) == __SERRANO_ID)
1230 return numa_parse_jbus();
1231 }
1232 return -1;
1233}
1234
1235static int __init bootmem_init_numa(void)
1236{
1237 int err = -1;
1238
1239 numadbg("bootmem_init_numa()\n");
1240
1241 if (numa_enabled) {
1242 if (tlb_type == hypervisor)
1243 err = numa_parse_mdesc();
1244 else
1245 err = numa_parse_sun4u();
1246 }
1247 return err;
1248}
1249
1250#else
1251
1252static int bootmem_init_numa(void)
1253{
1254 return -1;
1255}
1256
1257#endif
1258
1259static void __init bootmem_init_nonnuma(void)
1260{
1261 unsigned long top_of_ram = memblock_end_of_DRAM();
1262 unsigned long total_ram = memblock_phys_mem_size();
1263
1264 numadbg("bootmem_init_nonnuma()\n");
1265
1266 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1267 top_of_ram, total_ram);
1268 printk(KERN_INFO "Memory hole size: %ldMB\n",
1269 (top_of_ram - total_ram) >> 20);
1270
1271 init_node_masks_nonnuma();
1272 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1273 allocate_node_data(0);
1274 node_set_online(0);
1275}
1276
1277static unsigned long __init bootmem_init(unsigned long phys_base)
1278{
1279 unsigned long end_pfn;
1280
1281 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1282 max_pfn = max_low_pfn = end_pfn;
1283 min_low_pfn = (phys_base >> PAGE_SHIFT);
1284
1285 if (bootmem_init_numa() < 0)
1286 bootmem_init_nonnuma();
1287
1288 /* Dump memblock with node info. */
1289 memblock_dump_all();
1290
1291 /* XXX cpu notifier XXX */
1292
1293 sparse_memory_present_with_active_regions(MAX_NUMNODES);
1294 sparse_init();
1295
1296 return end_pfn;
1297}
1298
1299static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1300static int pall_ents __initdata;
1301
1302#ifdef CONFIG_DEBUG_PAGEALLOC
1303static unsigned long __ref kernel_map_range(unsigned long pstart,
1304 unsigned long pend, pgprot_t prot)
1305{
1306 unsigned long vstart = PAGE_OFFSET + pstart;
1307 unsigned long vend = PAGE_OFFSET + pend;
1308 unsigned long alloc_bytes = 0UL;
1309
1310 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1311 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1312 vstart, vend);
1313 prom_halt();
1314 }
1315
1316 while (vstart < vend) {
1317 unsigned long this_end, paddr = __pa(vstart);
1318 pgd_t *pgd = pgd_offset_k(vstart);
1319 pud_t *pud;
1320 pmd_t *pmd;
1321 pte_t *pte;
1322
1323 pud = pud_offset(pgd, vstart);
1324 if (pud_none(*pud)) {
1325 pmd_t *new;
1326
1327 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1328 alloc_bytes += PAGE_SIZE;
1329 pud_populate(&init_mm, pud, new);
1330 }
1331
1332 pmd = pmd_offset(pud, vstart);
1333 if (!pmd_present(*pmd)) {
1334 pte_t *new;
1335
1336 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1337 alloc_bytes += PAGE_SIZE;
1338 pmd_populate_kernel(&init_mm, pmd, new);
1339 }
1340
1341 pte = pte_offset_kernel(pmd, vstart);
1342 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1343 if (this_end > vend)
1344 this_end = vend;
1345
1346 while (vstart < this_end) {
1347 pte_val(*pte) = (paddr | pgprot_val(prot));
1348
1349 vstart += PAGE_SIZE;
1350 paddr += PAGE_SIZE;
1351 pte++;
1352 }
1353 }
1354
1355 return alloc_bytes;
1356}
1357
1358extern unsigned int kvmap_linear_patch[1];
1359#endif /* CONFIG_DEBUG_PAGEALLOC */
1360
1361static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1362{
1363 const unsigned long shift_256MB = 28;
1364 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1365 const unsigned long size_256MB = (1UL << shift_256MB);
1366
1367 while (start < end) {
1368 long remains;
1369
1370 remains = end - start;
1371 if (remains < size_256MB)
1372 break;
1373
1374 if (start & mask_256MB) {
1375 start = (start + size_256MB) & ~mask_256MB;
1376 continue;
1377 }
1378
1379 while (remains >= size_256MB) {
1380 unsigned long index = start >> shift_256MB;
1381
1382 __set_bit(index, kpte_linear_bitmap);
1383
1384 start += size_256MB;
1385 remains -= size_256MB;
1386 }
1387 }
1388}
1389
1390static void __init init_kpte_bitmap(void)
1391{
1392 unsigned long i;
1393
1394 for (i = 0; i < pall_ents; i++) {
1395 unsigned long phys_start, phys_end;
1396
1397 phys_start = pall[i].phys_addr;
1398 phys_end = phys_start + pall[i].reg_size;
1399
1400 mark_kpte_bitmap(phys_start, phys_end);
1401 }
1402}
1403
1404static void __init kernel_physical_mapping_init(void)
1405{
1406#ifdef CONFIG_DEBUG_PAGEALLOC
1407 unsigned long i, mem_alloced = 0UL;
1408
1409 for (i = 0; i < pall_ents; i++) {
1410 unsigned long phys_start, phys_end;
1411
1412 phys_start = pall[i].phys_addr;
1413 phys_end = phys_start + pall[i].reg_size;
1414
1415 mem_alloced += kernel_map_range(phys_start, phys_end,
1416 PAGE_KERNEL);
1417 }
1418
1419 printk("Allocated %ld bytes for kernel page tables.\n",
1420 mem_alloced);
1421
1422 kvmap_linear_patch[0] = 0x01000000; /* nop */
1423 flushi(&kvmap_linear_patch[0]);
1424
1425 __flush_tlb_all();
1426#endif
1427}
1428
1429#ifdef CONFIG_DEBUG_PAGEALLOC
1430void kernel_map_pages(struct page *page, int numpages, int enable)
1431{
1432 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1433 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1434
1435 kernel_map_range(phys_start, phys_end,
1436 (enable ? PAGE_KERNEL : __pgprot(0)));
1437
1438 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1439 PAGE_OFFSET + phys_end);
1440
1441 /* we should perform an IPI and flush all tlbs,
1442 * but that can deadlock->flush only current cpu.
1443 */
1444 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1445 PAGE_OFFSET + phys_end);
1446}
1447#endif
1448
1449unsigned long __init find_ecache_flush_span(unsigned long size)
1450{
1451 int i;
1452
1453 for (i = 0; i < pavail_ents; i++) {
1454 if (pavail[i].reg_size >= size)
1455 return pavail[i].phys_addr;
1456 }
1457
1458 return ~0UL;
1459}
1460
1461static void __init tsb_phys_patch(void)
1462{
1463 struct tsb_ldquad_phys_patch_entry *pquad;
1464 struct tsb_phys_patch_entry *p;
1465
1466 pquad = &__tsb_ldquad_phys_patch;
1467 while (pquad < &__tsb_ldquad_phys_patch_end) {
1468 unsigned long addr = pquad->addr;
1469
1470 if (tlb_type == hypervisor)
1471 *(unsigned int *) addr = pquad->sun4v_insn;
1472 else
1473 *(unsigned int *) addr = pquad->sun4u_insn;
1474 wmb();
1475 __asm__ __volatile__("flush %0"
1476 : /* no outputs */
1477 : "r" (addr));
1478
1479 pquad++;
1480 }
1481
1482 p = &__tsb_phys_patch;
1483 while (p < &__tsb_phys_patch_end) {
1484 unsigned long addr = p->addr;
1485
1486 *(unsigned int *) addr = p->insn;
1487 wmb();
1488 __asm__ __volatile__("flush %0"
1489 : /* no outputs */
1490 : "r" (addr));
1491
1492 p++;
1493 }
1494}
1495
1496/* Don't mark as init, we give this to the Hypervisor. */
1497#ifndef CONFIG_DEBUG_PAGEALLOC
1498#define NUM_KTSB_DESCR 2
1499#else
1500#define NUM_KTSB_DESCR 1
1501#endif
1502static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1503extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1504
1505static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1506{
1507 pa >>= KTSB_PHYS_SHIFT;
1508
1509 while (start < end) {
1510 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1511
1512 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1513 __asm__ __volatile__("flush %0" : : "r" (ia));
1514
1515 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1516 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1517
1518 start++;
1519 }
1520}
1521
1522static void ktsb_phys_patch(void)
1523{
1524 extern unsigned int __swapper_tsb_phys_patch;
1525 extern unsigned int __swapper_tsb_phys_patch_end;
1526 unsigned long ktsb_pa;
1527
1528 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1529 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1530 &__swapper_tsb_phys_patch_end, ktsb_pa);
1531#ifndef CONFIG_DEBUG_PAGEALLOC
1532 {
1533 extern unsigned int __swapper_4m_tsb_phys_patch;
1534 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1535 ktsb_pa = (kern_base +
1536 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1537 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1538 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1539 }
1540#endif
1541}
1542
1543static void __init sun4v_ktsb_init(void)
1544{
1545 unsigned long ktsb_pa;
1546
1547 /* First KTSB for PAGE_SIZE mappings. */
1548 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1549
1550 switch (PAGE_SIZE) {
1551 case 8 * 1024:
1552 default:
1553 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1554 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1555 break;
1556
1557 case 64 * 1024:
1558 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1559 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1560 break;
1561
1562 case 512 * 1024:
1563 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1564 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1565 break;
1566
1567 case 4 * 1024 * 1024:
1568 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1569 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1570 break;
1571 }
1572
1573 ktsb_descr[0].assoc = 1;
1574 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1575 ktsb_descr[0].ctx_idx = 0;
1576 ktsb_descr[0].tsb_base = ktsb_pa;
1577 ktsb_descr[0].resv = 0;
1578
1579#ifndef CONFIG_DEBUG_PAGEALLOC
1580 /* Second KTSB for 4MB/256MB mappings. */
1581 ktsb_pa = (kern_base +
1582 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1583
1584 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1585 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1586 HV_PGSZ_MASK_256MB);
1587 ktsb_descr[1].assoc = 1;
1588 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1589 ktsb_descr[1].ctx_idx = 0;
1590 ktsb_descr[1].tsb_base = ktsb_pa;
1591 ktsb_descr[1].resv = 0;
1592#endif
1593}
1594
1595void __cpuinit sun4v_ktsb_register(void)
1596{
1597 unsigned long pa, ret;
1598
1599 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1600
1601 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1602 if (ret != 0) {
1603 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1604 "errors with %lx\n", pa, ret);
1605 prom_halt();
1606 }
1607}
1608
1609/* paging_init() sets up the page tables */
1610
1611static unsigned long last_valid_pfn;
1612pgd_t swapper_pg_dir[2048];
1613
1614static void sun4u_pgprot_init(void);
1615static void sun4v_pgprot_init(void);
1616
1617void __init paging_init(void)
1618{
1619 unsigned long end_pfn, shift, phys_base;
1620 unsigned long real_end, i;
1621 int node;
1622
1623 /* These build time checkes make sure that the dcache_dirty_cpu()
1624 * page->flags usage will work.
1625 *
1626 * When a page gets marked as dcache-dirty, we store the
1627 * cpu number starting at bit 32 in the page->flags. Also,
1628 * functions like clear_dcache_dirty_cpu use the cpu mask
1629 * in 13-bit signed-immediate instruction fields.
1630 */
1631
1632 /*
1633 * Page flags must not reach into upper 32 bits that are used
1634 * for the cpu number
1635 */
1636 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1637
1638 /*
1639 * The bit fields placed in the high range must not reach below
1640 * the 32 bit boundary. Otherwise we cannot place the cpu field
1641 * at the 32 bit boundary.
1642 */
1643 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1644 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1645
1646 BUILD_BUG_ON(NR_CPUS > 4096);
1647
1648 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1649 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1650
1651 /* Invalidate both kernel TSBs. */
1652 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1653#ifndef CONFIG_DEBUG_PAGEALLOC
1654 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1655#endif
1656
1657 if (tlb_type == hypervisor)
1658 sun4v_pgprot_init();
1659 else
1660 sun4u_pgprot_init();
1661
1662 if (tlb_type == cheetah_plus ||
1663 tlb_type == hypervisor) {
1664 tsb_phys_patch();
1665 ktsb_phys_patch();
1666 }
1667
1668 if (tlb_type == hypervisor) {
1669 sun4v_patch_tlb_handlers();
1670 sun4v_ktsb_init();
1671 }
1672
1673 /* Find available physical memory...
1674 *
1675 * Read it twice in order to work around a bug in openfirmware.
1676 * The call to grab this table itself can cause openfirmware to
1677 * allocate memory, which in turn can take away some space from
1678 * the list of available memory. Reading it twice makes sure
1679 * we really do get the final value.
1680 */
1681 read_obp_translations();
1682 read_obp_memory("reg", &pall[0], &pall_ents);
1683 read_obp_memory("available", &pavail[0], &pavail_ents);
1684 read_obp_memory("available", &pavail[0], &pavail_ents);
1685
1686 phys_base = 0xffffffffffffffffUL;
1687 for (i = 0; i < pavail_ents; i++) {
1688 phys_base = min(phys_base, pavail[i].phys_addr);
1689 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1690 }
1691
1692 memblock_reserve(kern_base, kern_size);
1693
1694 find_ramdisk(phys_base);
1695
1696 memblock_enforce_memory_limit(cmdline_memory_size);
1697
1698 memblock_allow_resize();
1699 memblock_dump_all();
1700
1701 set_bit(0, mmu_context_bmap);
1702
1703 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1704
1705 real_end = (unsigned long)_end;
1706 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1707 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1708 num_kernel_image_mappings);
1709
1710 /* Set kernel pgd to upper alias so physical page computations
1711 * work.
1712 */
1713 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1714
1715 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1716
1717 /* Now can init the kernel/bad page tables. */
1718 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1719 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1720
1721 inherit_prom_mappings();
1722
1723 init_kpte_bitmap();
1724
1725 /* Ok, we can use our TLB miss and window trap handlers safely. */
1726 setup_tba();
1727
1728 __flush_tlb_all();
1729
1730 if (tlb_type == hypervisor)
1731 sun4v_ktsb_register();
1732
1733 prom_build_devicetree();
1734 of_populate_present_mask();
1735#ifndef CONFIG_SMP
1736 of_fill_in_cpu_data();
1737#endif
1738
1739 if (tlb_type == hypervisor) {
1740 sun4v_mdesc_init();
1741 mdesc_populate_present_mask(cpu_all_mask);
1742#ifndef CONFIG_SMP
1743 mdesc_fill_in_cpu_data(cpu_all_mask);
1744#endif
1745 }
1746
1747 /* Setup bootmem... */
1748 last_valid_pfn = end_pfn = bootmem_init(phys_base);
1749
1750 /* Once the OF device tree and MDESC have been setup, we know
1751 * the list of possible cpus. Therefore we can allocate the
1752 * IRQ stacks.
1753 */
1754 for_each_possible_cpu(i) {
1755 node = cpu_to_node(i);
1756
1757 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1758 THREAD_SIZE,
1759 THREAD_SIZE, 0);
1760 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1761 THREAD_SIZE,
1762 THREAD_SIZE, 0);
1763 }
1764
1765 kernel_physical_mapping_init();
1766
1767 {
1768 unsigned long max_zone_pfns[MAX_NR_ZONES];
1769
1770 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1771
1772 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1773
1774 free_area_init_nodes(max_zone_pfns);
1775 }
1776
1777 printk("Booting Linux...\n");
1778}
1779
1780int __devinit page_in_phys_avail(unsigned long paddr)
1781{
1782 int i;
1783
1784 paddr &= PAGE_MASK;
1785
1786 for (i = 0; i < pavail_ents; i++) {
1787 unsigned long start, end;
1788
1789 start = pavail[i].phys_addr;
1790 end = start + pavail[i].reg_size;
1791
1792 if (paddr >= start && paddr < end)
1793 return 1;
1794 }
1795 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1796 return 1;
1797#ifdef CONFIG_BLK_DEV_INITRD
1798 if (paddr >= __pa(initrd_start) &&
1799 paddr < __pa(PAGE_ALIGN(initrd_end)))
1800 return 1;
1801#endif
1802
1803 return 0;
1804}
1805
1806static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1807static int pavail_rescan_ents __initdata;
1808
1809/* Certain OBP calls, such as fetching "available" properties, can
1810 * claim physical memory. So, along with initializing the valid
1811 * address bitmap, what we do here is refetch the physical available
1812 * memory list again, and make sure it provides at least as much
1813 * memory as 'pavail' does.
1814 */
1815static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1816{
1817 int i;
1818
1819 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1820
1821 for (i = 0; i < pavail_ents; i++) {
1822 unsigned long old_start, old_end;
1823
1824 old_start = pavail[i].phys_addr;
1825 old_end = old_start + pavail[i].reg_size;
1826 while (old_start < old_end) {
1827 int n;
1828
1829 for (n = 0; n < pavail_rescan_ents; n++) {
1830 unsigned long new_start, new_end;
1831
1832 new_start = pavail_rescan[n].phys_addr;
1833 new_end = new_start +
1834 pavail_rescan[n].reg_size;
1835
1836 if (new_start <= old_start &&
1837 new_end >= (old_start + PAGE_SIZE)) {
1838 set_bit(old_start >> 22, bitmap);
1839 goto do_next_page;
1840 }
1841 }
1842
1843 prom_printf("mem_init: Lost memory in pavail\n");
1844 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1845 pavail[i].phys_addr,
1846 pavail[i].reg_size);
1847 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1848 pavail_rescan[i].phys_addr,
1849 pavail_rescan[i].reg_size);
1850 prom_printf("mem_init: Cannot continue, aborting.\n");
1851 prom_halt();
1852
1853 do_next_page:
1854 old_start += PAGE_SIZE;
1855 }
1856 }
1857}
1858
1859static void __init patch_tlb_miss_handler_bitmap(void)
1860{
1861 extern unsigned int valid_addr_bitmap_insn[];
1862 extern unsigned int valid_addr_bitmap_patch[];
1863
1864 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1865 mb();
1866 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1867 flushi(&valid_addr_bitmap_insn[0]);
1868}
1869
1870void __init mem_init(void)
1871{
1872 unsigned long codepages, datapages, initpages;
1873 unsigned long addr, last;
1874
1875 addr = PAGE_OFFSET + kern_base;
1876 last = PAGE_ALIGN(kern_size) + addr;
1877 while (addr < last) {
1878 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1879 addr += PAGE_SIZE;
1880 }
1881
1882 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1883 patch_tlb_miss_handler_bitmap();
1884
1885 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1886
1887#ifdef CONFIG_NEED_MULTIPLE_NODES
1888 {
1889 int i;
1890 for_each_online_node(i) {
1891 if (NODE_DATA(i)->node_spanned_pages != 0) {
1892 totalram_pages +=
1893 free_all_bootmem_node(NODE_DATA(i));
1894 }
1895 }
1896 totalram_pages += free_low_memory_core_early(MAX_NUMNODES);
1897 }
1898#else
1899 totalram_pages = free_all_bootmem();
1900#endif
1901
1902 /* We subtract one to account for the mem_map_zero page
1903 * allocated below.
1904 */
1905 totalram_pages -= 1;
1906 num_physpages = totalram_pages;
1907
1908 /*
1909 * Set up the zero page, mark it reserved, so that page count
1910 * is not manipulated when freeing the page from user ptes.
1911 */
1912 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1913 if (mem_map_zero == NULL) {
1914 prom_printf("paging_init: Cannot alloc zero page.\n");
1915 prom_halt();
1916 }
1917 SetPageReserved(mem_map_zero);
1918
1919 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1920 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1921 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1922 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1923 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1924 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1925
1926 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1927 nr_free_pages() << (PAGE_SHIFT-10),
1928 codepages << (PAGE_SHIFT-10),
1929 datapages << (PAGE_SHIFT-10),
1930 initpages << (PAGE_SHIFT-10),
1931 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1932
1933 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1934 cheetah_ecache_flush_init();
1935}
1936
1937void free_initmem(void)
1938{
1939 unsigned long addr, initend;
1940 int do_free = 1;
1941
1942 /* If the physical memory maps were trimmed by kernel command
1943 * line options, don't even try freeing this initmem stuff up.
1944 * The kernel image could have been in the trimmed out region
1945 * and if so the freeing below will free invalid page structs.
1946 */
1947 if (cmdline_memory_size)
1948 do_free = 0;
1949
1950 /*
1951 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1952 */
1953 addr = PAGE_ALIGN((unsigned long)(__init_begin));
1954 initend = (unsigned long)(__init_end) & PAGE_MASK;
1955 for (; addr < initend; addr += PAGE_SIZE) {
1956 unsigned long page;
1957 struct page *p;
1958
1959 page = (addr +
1960 ((unsigned long) __va(kern_base)) -
1961 ((unsigned long) KERNBASE));
1962 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1963
1964 if (do_free) {
1965 p = virt_to_page(page);
1966
1967 ClearPageReserved(p);
1968 init_page_count(p);
1969 __free_page(p);
1970 num_physpages++;
1971 totalram_pages++;
1972 }
1973 }
1974}
1975
1976#ifdef CONFIG_BLK_DEV_INITRD
1977void free_initrd_mem(unsigned long start, unsigned long end)
1978{
1979 if (start < end)
1980 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1981 for (; start < end; start += PAGE_SIZE) {
1982 struct page *p = virt_to_page(start);
1983
1984 ClearPageReserved(p);
1985 init_page_count(p);
1986 __free_page(p);
1987 num_physpages++;
1988 totalram_pages++;
1989 }
1990}
1991#endif
1992
1993#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
1994#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
1995#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1996#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1997#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1998#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1999
2000pgprot_t PAGE_KERNEL __read_mostly;
2001EXPORT_SYMBOL(PAGE_KERNEL);
2002
2003pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2004pgprot_t PAGE_COPY __read_mostly;
2005
2006pgprot_t PAGE_SHARED __read_mostly;
2007EXPORT_SYMBOL(PAGE_SHARED);
2008
2009unsigned long pg_iobits __read_mostly;
2010
2011unsigned long _PAGE_IE __read_mostly;
2012EXPORT_SYMBOL(_PAGE_IE);
2013
2014unsigned long _PAGE_E __read_mostly;
2015EXPORT_SYMBOL(_PAGE_E);
2016
2017unsigned long _PAGE_CACHE __read_mostly;
2018EXPORT_SYMBOL(_PAGE_CACHE);
2019
2020#ifdef CONFIG_SPARSEMEM_VMEMMAP
2021unsigned long vmemmap_table[VMEMMAP_SIZE];
2022
2023int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2024{
2025 unsigned long vstart = (unsigned long) start;
2026 unsigned long vend = (unsigned long) (start + nr);
2027 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2028 unsigned long phys_end = (vend - VMEMMAP_BASE);
2029 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2030 unsigned long end = VMEMMAP_ALIGN(phys_end);
2031 unsigned long pte_base;
2032
2033 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2034 _PAGE_CP_4U | _PAGE_CV_4U |
2035 _PAGE_P_4U | _PAGE_W_4U);
2036 if (tlb_type == hypervisor)
2037 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2038 _PAGE_CP_4V | _PAGE_CV_4V |
2039 _PAGE_P_4V | _PAGE_W_4V);
2040
2041 for (; addr < end; addr += VMEMMAP_CHUNK) {
2042 unsigned long *vmem_pp =
2043 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2044 void *block;
2045
2046 if (!(*vmem_pp & _PAGE_VALID)) {
2047 block = vmemmap_alloc_block(1UL << 22, node);
2048 if (!block)
2049 return -ENOMEM;
2050
2051 *vmem_pp = pte_base | __pa(block);
2052
2053 printk(KERN_INFO "[%p-%p] page_structs=%lu "
2054 "node=%d entry=%lu/%lu\n", start, block, nr,
2055 node,
2056 addr >> VMEMMAP_CHUNK_SHIFT,
2057 VMEMMAP_SIZE);
2058 }
2059 }
2060 return 0;
2061}
2062#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2063
2064static void prot_init_common(unsigned long page_none,
2065 unsigned long page_shared,
2066 unsigned long page_copy,
2067 unsigned long page_readonly,
2068 unsigned long page_exec_bit)
2069{
2070 PAGE_COPY = __pgprot(page_copy);
2071 PAGE_SHARED = __pgprot(page_shared);
2072
2073 protection_map[0x0] = __pgprot(page_none);
2074 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2075 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2076 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2077 protection_map[0x4] = __pgprot(page_readonly);
2078 protection_map[0x5] = __pgprot(page_readonly);
2079 protection_map[0x6] = __pgprot(page_copy);
2080 protection_map[0x7] = __pgprot(page_copy);
2081 protection_map[0x8] = __pgprot(page_none);
2082 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2083 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2084 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2085 protection_map[0xc] = __pgprot(page_readonly);
2086 protection_map[0xd] = __pgprot(page_readonly);
2087 protection_map[0xe] = __pgprot(page_shared);
2088 protection_map[0xf] = __pgprot(page_shared);
2089}
2090
2091static void __init sun4u_pgprot_init(void)
2092{
2093 unsigned long page_none, page_shared, page_copy, page_readonly;
2094 unsigned long page_exec_bit;
2095
2096 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2097 _PAGE_CACHE_4U | _PAGE_P_4U |
2098 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2099 _PAGE_EXEC_4U);
2100 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2101 _PAGE_CACHE_4U | _PAGE_P_4U |
2102 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2103 _PAGE_EXEC_4U | _PAGE_L_4U);
2104
2105 _PAGE_IE = _PAGE_IE_4U;
2106 _PAGE_E = _PAGE_E_4U;
2107 _PAGE_CACHE = _PAGE_CACHE_4U;
2108
2109 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2110 __ACCESS_BITS_4U | _PAGE_E_4U);
2111
2112#ifdef CONFIG_DEBUG_PAGEALLOC
2113 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2114 0xfffff80000000000UL;
2115#else
2116 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2117 0xfffff80000000000UL;
2118#endif
2119 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2120 _PAGE_P_4U | _PAGE_W_4U);
2121
2122 /* XXX Should use 256MB on Panther. XXX */
2123 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2124
2125 _PAGE_SZBITS = _PAGE_SZBITS_4U;
2126 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2127 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2128 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2129
2130
2131 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2132 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2133 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2134 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2135 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2136 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2137 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2138
2139 page_exec_bit = _PAGE_EXEC_4U;
2140
2141 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2142 page_exec_bit);
2143}
2144
2145static void __init sun4v_pgprot_init(void)
2146{
2147 unsigned long page_none, page_shared, page_copy, page_readonly;
2148 unsigned long page_exec_bit;
2149
2150 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2151 _PAGE_CACHE_4V | _PAGE_P_4V |
2152 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2153 _PAGE_EXEC_4V);
2154 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2155
2156 _PAGE_IE = _PAGE_IE_4V;
2157 _PAGE_E = _PAGE_E_4V;
2158 _PAGE_CACHE = _PAGE_CACHE_4V;
2159
2160#ifdef CONFIG_DEBUG_PAGEALLOC
2161 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2162 0xfffff80000000000UL;
2163#else
2164 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2165 0xfffff80000000000UL;
2166#endif
2167 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2168 _PAGE_P_4V | _PAGE_W_4V);
2169
2170#ifdef CONFIG_DEBUG_PAGEALLOC
2171 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2172 0xfffff80000000000UL;
2173#else
2174 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2175 0xfffff80000000000UL;
2176#endif
2177 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2178 _PAGE_P_4V | _PAGE_W_4V);
2179
2180 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2181 __ACCESS_BITS_4V | _PAGE_E_4V);
2182
2183 _PAGE_SZBITS = _PAGE_SZBITS_4V;
2184 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2185 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2186 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2187 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2188
2189 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2190 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2191 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2192 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2193 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2194 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2195 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2196
2197 page_exec_bit = _PAGE_EXEC_4V;
2198
2199 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2200 page_exec_bit);
2201}
2202
2203unsigned long pte_sz_bits(unsigned long sz)
2204{
2205 if (tlb_type == hypervisor) {
2206 switch (sz) {
2207 case 8 * 1024:
2208 default:
2209 return _PAGE_SZ8K_4V;
2210 case 64 * 1024:
2211 return _PAGE_SZ64K_4V;
2212 case 512 * 1024:
2213 return _PAGE_SZ512K_4V;
2214 case 4 * 1024 * 1024:
2215 return _PAGE_SZ4MB_4V;
2216 }
2217 } else {
2218 switch (sz) {
2219 case 8 * 1024:
2220 default:
2221 return _PAGE_SZ8K_4U;
2222 case 64 * 1024:
2223 return _PAGE_SZ64K_4U;
2224 case 512 * 1024:
2225 return _PAGE_SZ512K_4U;
2226 case 4 * 1024 * 1024:
2227 return _PAGE_SZ4MB_4U;
2228 }
2229 }
2230}
2231
2232pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2233{
2234 pte_t pte;
2235
2236 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2237 pte_val(pte) |= (((unsigned long)space) << 32);
2238 pte_val(pte) |= pte_sz_bits(page_size);
2239
2240 return pte;
2241}
2242
2243static unsigned long kern_large_tte(unsigned long paddr)
2244{
2245 unsigned long val;
2246
2247 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2248 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2249 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2250 if (tlb_type == hypervisor)
2251 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2252 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2253 _PAGE_EXEC_4V | _PAGE_W_4V);
2254
2255 return val | paddr;
2256}
2257
2258/* If not locked, zap it. */
2259void __flush_tlb_all(void)
2260{
2261 unsigned long pstate;
2262 int i;
2263
2264 __asm__ __volatile__("flushw\n\t"
2265 "rdpr %%pstate, %0\n\t"
2266 "wrpr %0, %1, %%pstate"
2267 : "=r" (pstate)
2268 : "i" (PSTATE_IE));
2269 if (tlb_type == hypervisor) {
2270 sun4v_mmu_demap_all();
2271 } else if (tlb_type == spitfire) {
2272 for (i = 0; i < 64; i++) {
2273 /* Spitfire Errata #32 workaround */
2274 /* NOTE: Always runs on spitfire, so no
2275 * cheetah+ page size encodings.
2276 */
2277 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2278 "flush %%g6"
2279 : /* No outputs */
2280 : "r" (0),
2281 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2282
2283 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2284 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2285 "membar #Sync"
2286 : /* no outputs */
2287 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2288 spitfire_put_dtlb_data(i, 0x0UL);
2289 }
2290
2291 /* Spitfire Errata #32 workaround */
2292 /* NOTE: Always runs on spitfire, so no
2293 * cheetah+ page size encodings.
2294 */
2295 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2296 "flush %%g6"
2297 : /* No outputs */
2298 : "r" (0),
2299 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2300
2301 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2302 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2303 "membar #Sync"
2304 : /* no outputs */
2305 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2306 spitfire_put_itlb_data(i, 0x0UL);
2307 }
2308 }
2309 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2310 cheetah_flush_dtlb_all();
2311 cheetah_flush_itlb_all();
2312 }
2313 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2314 : : "r" (pstate));
2315}