Loading...
1/*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8#include <linux/module.h>
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/string.h>
12#include <linux/init.h>
13#include <linux/bootmem.h>
14#include <linux/mm.h>
15#include <linux/hugetlb.h>
16#include <linux/initrd.h>
17#include <linux/swap.h>
18#include <linux/pagemap.h>
19#include <linux/poison.h>
20#include <linux/fs.h>
21#include <linux/seq_file.h>
22#include <linux/kprobes.h>
23#include <linux/cache.h>
24#include <linux/sort.h>
25#include <linux/percpu.h>
26#include <linux/memblock.h>
27#include <linux/mmzone.h>
28#include <linux/gfp.h>
29
30#include <asm/head.h>
31#include <asm/system.h>
32#include <asm/page.h>
33#include <asm/pgalloc.h>
34#include <asm/pgtable.h>
35#include <asm/oplib.h>
36#include <asm/iommu.h>
37#include <asm/io.h>
38#include <asm/uaccess.h>
39#include <asm/mmu_context.h>
40#include <asm/tlbflush.h>
41#include <asm/dma.h>
42#include <asm/starfire.h>
43#include <asm/tlb.h>
44#include <asm/spitfire.h>
45#include <asm/sections.h>
46#include <asm/tsb.h>
47#include <asm/hypervisor.h>
48#include <asm/prom.h>
49#include <asm/mdesc.h>
50#include <asm/cpudata.h>
51#include <asm/irq.h>
52
53#include "init_64.h"
54
55unsigned long kern_linear_pte_xor[2] __read_mostly;
56
57/* A bitmap, one bit for every 256MB of physical memory. If the bit
58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60 */
61unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62
63#ifndef CONFIG_DEBUG_PAGEALLOC
64/* A special kernel TSB for 4MB and 256MB linear mappings.
65 * Space is allocated for this right after the trap table
66 * in arch/sparc64/kernel/head.S
67 */
68extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69#endif
70
71#define MAX_BANKS 32
72
73static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
74static int pavail_ents __devinitdata;
75
76static int cmp_p64(const void *a, const void *b)
77{
78 const struct linux_prom64_registers *x = a, *y = b;
79
80 if (x->phys_addr > y->phys_addr)
81 return 1;
82 if (x->phys_addr < y->phys_addr)
83 return -1;
84 return 0;
85}
86
87static void __init read_obp_memory(const char *property,
88 struct linux_prom64_registers *regs,
89 int *num_ents)
90{
91 phandle node = prom_finddevice("/memory");
92 int prop_size = prom_getproplen(node, property);
93 int ents, ret, i;
94
95 ents = prop_size / sizeof(struct linux_prom64_registers);
96 if (ents > MAX_BANKS) {
97 prom_printf("The machine has more %s property entries than "
98 "this kernel can support (%d).\n",
99 property, MAX_BANKS);
100 prom_halt();
101 }
102
103 ret = prom_getproperty(node, property, (char *) regs, prop_size);
104 if (ret == -1) {
105 prom_printf("Couldn't get %s property from /memory.\n");
106 prom_halt();
107 }
108
109 /* Sanitize what we got from the firmware, by page aligning
110 * everything.
111 */
112 for (i = 0; i < ents; i++) {
113 unsigned long base, size;
114
115 base = regs[i].phys_addr;
116 size = regs[i].reg_size;
117
118 size &= PAGE_MASK;
119 if (base & ~PAGE_MASK) {
120 unsigned long new_base = PAGE_ALIGN(base);
121
122 size -= new_base - base;
123 if ((long) size < 0L)
124 size = 0UL;
125 base = new_base;
126 }
127 if (size == 0UL) {
128 /* If it is empty, simply get rid of it.
129 * This simplifies the logic of the other
130 * functions that process these arrays.
131 */
132 memmove(®s[i], ®s[i + 1],
133 (ents - i - 1) * sizeof(regs[0]));
134 i--;
135 ents--;
136 continue;
137 }
138 regs[i].phys_addr = base;
139 regs[i].reg_size = size;
140 }
141
142 *num_ents = ents;
143
144 sort(regs, ents, sizeof(struct linux_prom64_registers),
145 cmp_p64, NULL);
146}
147
148unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
149 sizeof(unsigned long)];
150EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
151
152/* Kernel physical address base and size in bytes. */
153unsigned long kern_base __read_mostly;
154unsigned long kern_size __read_mostly;
155
156/* Initial ramdisk setup */
157extern unsigned long sparc_ramdisk_image64;
158extern unsigned int sparc_ramdisk_image;
159extern unsigned int sparc_ramdisk_size;
160
161struct page *mem_map_zero __read_mostly;
162EXPORT_SYMBOL(mem_map_zero);
163
164unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
165
166unsigned long sparc64_kern_pri_context __read_mostly;
167unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
168unsigned long sparc64_kern_sec_context __read_mostly;
169
170int num_kernel_image_mappings;
171
172#ifdef CONFIG_DEBUG_DCFLUSH
173atomic_t dcpage_flushes = ATOMIC_INIT(0);
174#ifdef CONFIG_SMP
175atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
176#endif
177#endif
178
179inline void flush_dcache_page_impl(struct page *page)
180{
181 BUG_ON(tlb_type == hypervisor);
182#ifdef CONFIG_DEBUG_DCFLUSH
183 atomic_inc(&dcpage_flushes);
184#endif
185
186#ifdef DCACHE_ALIASING_POSSIBLE
187 __flush_dcache_page(page_address(page),
188 ((tlb_type == spitfire) &&
189 page_mapping(page) != NULL));
190#else
191 if (page_mapping(page) != NULL &&
192 tlb_type == spitfire)
193 __flush_icache_page(__pa(page_address(page)));
194#endif
195}
196
197#define PG_dcache_dirty PG_arch_1
198#define PG_dcache_cpu_shift 32UL
199#define PG_dcache_cpu_mask \
200 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
201
202#define dcache_dirty_cpu(page) \
203 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
204
205static inline void set_dcache_dirty(struct page *page, int this_cpu)
206{
207 unsigned long mask = this_cpu;
208 unsigned long non_cpu_bits;
209
210 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
211 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
212
213 __asm__ __volatile__("1:\n\t"
214 "ldx [%2], %%g7\n\t"
215 "and %%g7, %1, %%g1\n\t"
216 "or %%g1, %0, %%g1\n\t"
217 "casx [%2], %%g7, %%g1\n\t"
218 "cmp %%g7, %%g1\n\t"
219 "bne,pn %%xcc, 1b\n\t"
220 " nop"
221 : /* no outputs */
222 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
223 : "g1", "g7");
224}
225
226static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
227{
228 unsigned long mask = (1UL << PG_dcache_dirty);
229
230 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
231 "1:\n\t"
232 "ldx [%2], %%g7\n\t"
233 "srlx %%g7, %4, %%g1\n\t"
234 "and %%g1, %3, %%g1\n\t"
235 "cmp %%g1, %0\n\t"
236 "bne,pn %%icc, 2f\n\t"
237 " andn %%g7, %1, %%g1\n\t"
238 "casx [%2], %%g7, %%g1\n\t"
239 "cmp %%g7, %%g1\n\t"
240 "bne,pn %%xcc, 1b\n\t"
241 " nop\n"
242 "2:"
243 : /* no outputs */
244 : "r" (cpu), "r" (mask), "r" (&page->flags),
245 "i" (PG_dcache_cpu_mask),
246 "i" (PG_dcache_cpu_shift)
247 : "g1", "g7");
248}
249
250static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
251{
252 unsigned long tsb_addr = (unsigned long) ent;
253
254 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
255 tsb_addr = __pa(tsb_addr);
256
257 __tsb_insert(tsb_addr, tag, pte);
258}
259
260unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
261unsigned long _PAGE_SZBITS __read_mostly;
262
263static void flush_dcache(unsigned long pfn)
264{
265 struct page *page;
266
267 page = pfn_to_page(pfn);
268 if (page) {
269 unsigned long pg_flags;
270
271 pg_flags = page->flags;
272 if (pg_flags & (1UL << PG_dcache_dirty)) {
273 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
274 PG_dcache_cpu_mask);
275 int this_cpu = get_cpu();
276
277 /* This is just to optimize away some function calls
278 * in the SMP case.
279 */
280 if (cpu == this_cpu)
281 flush_dcache_page_impl(page);
282 else
283 smp_flush_dcache_page_impl(page, cpu);
284
285 clear_dcache_dirty_cpu(page, cpu);
286
287 put_cpu();
288 }
289 }
290}
291
292void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
293{
294 struct mm_struct *mm;
295 struct tsb *tsb;
296 unsigned long tag, flags;
297 unsigned long tsb_index, tsb_hash_shift;
298 pte_t pte = *ptep;
299
300 if (tlb_type != hypervisor) {
301 unsigned long pfn = pte_pfn(pte);
302
303 if (pfn_valid(pfn))
304 flush_dcache(pfn);
305 }
306
307 mm = vma->vm_mm;
308
309 tsb_index = MM_TSB_BASE;
310 tsb_hash_shift = PAGE_SHIFT;
311
312 spin_lock_irqsave(&mm->context.lock, flags);
313
314#ifdef CONFIG_HUGETLB_PAGE
315 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
316 if ((tlb_type == hypervisor &&
317 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
318 (tlb_type != hypervisor &&
319 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
320 tsb_index = MM_TSB_HUGE;
321 tsb_hash_shift = HPAGE_SHIFT;
322 }
323 }
324#endif
325
326 tsb = mm->context.tsb_block[tsb_index].tsb;
327 tsb += ((address >> tsb_hash_shift) &
328 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
329 tag = (address >> 22UL);
330 tsb_insert(tsb, tag, pte_val(pte));
331
332 spin_unlock_irqrestore(&mm->context.lock, flags);
333}
334
335void flush_dcache_page(struct page *page)
336{
337 struct address_space *mapping;
338 int this_cpu;
339
340 if (tlb_type == hypervisor)
341 return;
342
343 /* Do not bother with the expensive D-cache flush if it
344 * is merely the zero page. The 'bigcore' testcase in GDB
345 * causes this case to run millions of times.
346 */
347 if (page == ZERO_PAGE(0))
348 return;
349
350 this_cpu = get_cpu();
351
352 mapping = page_mapping(page);
353 if (mapping && !mapping_mapped(mapping)) {
354 int dirty = test_bit(PG_dcache_dirty, &page->flags);
355 if (dirty) {
356 int dirty_cpu = dcache_dirty_cpu(page);
357
358 if (dirty_cpu == this_cpu)
359 goto out;
360 smp_flush_dcache_page_impl(page, dirty_cpu);
361 }
362 set_dcache_dirty(page, this_cpu);
363 } else {
364 /* We could delay the flush for the !page_mapping
365 * case too. But that case is for exec env/arg
366 * pages and those are %99 certainly going to get
367 * faulted into the tlb (and thus flushed) anyways.
368 */
369 flush_dcache_page_impl(page);
370 }
371
372out:
373 put_cpu();
374}
375EXPORT_SYMBOL(flush_dcache_page);
376
377void __kprobes flush_icache_range(unsigned long start, unsigned long end)
378{
379 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
380 if (tlb_type == spitfire) {
381 unsigned long kaddr;
382
383 /* This code only runs on Spitfire cpus so this is
384 * why we can assume _PAGE_PADDR_4U.
385 */
386 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
387 unsigned long paddr, mask = _PAGE_PADDR_4U;
388
389 if (kaddr >= PAGE_OFFSET)
390 paddr = kaddr & mask;
391 else {
392 pgd_t *pgdp = pgd_offset_k(kaddr);
393 pud_t *pudp = pud_offset(pgdp, kaddr);
394 pmd_t *pmdp = pmd_offset(pudp, kaddr);
395 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
396
397 paddr = pte_val(*ptep) & mask;
398 }
399 __flush_icache_page(paddr);
400 }
401 }
402}
403EXPORT_SYMBOL(flush_icache_range);
404
405void mmu_info(struct seq_file *m)
406{
407 if (tlb_type == cheetah)
408 seq_printf(m, "MMU Type\t: Cheetah\n");
409 else if (tlb_type == cheetah_plus)
410 seq_printf(m, "MMU Type\t: Cheetah+\n");
411 else if (tlb_type == spitfire)
412 seq_printf(m, "MMU Type\t: Spitfire\n");
413 else if (tlb_type == hypervisor)
414 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
415 else
416 seq_printf(m, "MMU Type\t: ???\n");
417
418#ifdef CONFIG_DEBUG_DCFLUSH
419 seq_printf(m, "DCPageFlushes\t: %d\n",
420 atomic_read(&dcpage_flushes));
421#ifdef CONFIG_SMP
422 seq_printf(m, "DCPageFlushesXC\t: %d\n",
423 atomic_read(&dcpage_flushes_xcall));
424#endif /* CONFIG_SMP */
425#endif /* CONFIG_DEBUG_DCFLUSH */
426}
427
428struct linux_prom_translation prom_trans[512] __read_mostly;
429unsigned int prom_trans_ents __read_mostly;
430
431unsigned long kern_locked_tte_data;
432
433/* The obp translations are saved based on 8k pagesize, since obp can
434 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
435 * HI_OBP_ADDRESS range are handled in ktlb.S.
436 */
437static inline int in_obp_range(unsigned long vaddr)
438{
439 return (vaddr >= LOW_OBP_ADDRESS &&
440 vaddr < HI_OBP_ADDRESS);
441}
442
443static int cmp_ptrans(const void *a, const void *b)
444{
445 const struct linux_prom_translation *x = a, *y = b;
446
447 if (x->virt > y->virt)
448 return 1;
449 if (x->virt < y->virt)
450 return -1;
451 return 0;
452}
453
454/* Read OBP translations property into 'prom_trans[]'. */
455static void __init read_obp_translations(void)
456{
457 int n, node, ents, first, last, i;
458
459 node = prom_finddevice("/virtual-memory");
460 n = prom_getproplen(node, "translations");
461 if (unlikely(n == 0 || n == -1)) {
462 prom_printf("prom_mappings: Couldn't get size.\n");
463 prom_halt();
464 }
465 if (unlikely(n > sizeof(prom_trans))) {
466 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
467 prom_halt();
468 }
469
470 if ((n = prom_getproperty(node, "translations",
471 (char *)&prom_trans[0],
472 sizeof(prom_trans))) == -1) {
473 prom_printf("prom_mappings: Couldn't get property.\n");
474 prom_halt();
475 }
476
477 n = n / sizeof(struct linux_prom_translation);
478
479 ents = n;
480
481 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
482 cmp_ptrans, NULL);
483
484 /* Now kick out all the non-OBP entries. */
485 for (i = 0; i < ents; i++) {
486 if (in_obp_range(prom_trans[i].virt))
487 break;
488 }
489 first = i;
490 for (; i < ents; i++) {
491 if (!in_obp_range(prom_trans[i].virt))
492 break;
493 }
494 last = i;
495
496 for (i = 0; i < (last - first); i++) {
497 struct linux_prom_translation *src = &prom_trans[i + first];
498 struct linux_prom_translation *dest = &prom_trans[i];
499
500 *dest = *src;
501 }
502 for (; i < ents; i++) {
503 struct linux_prom_translation *dest = &prom_trans[i];
504 dest->virt = dest->size = dest->data = 0x0UL;
505 }
506
507 prom_trans_ents = last - first;
508
509 if (tlb_type == spitfire) {
510 /* Clear diag TTE bits. */
511 for (i = 0; i < prom_trans_ents; i++)
512 prom_trans[i].data &= ~0x0003fe0000000000UL;
513 }
514
515 /* Force execute bit on. */
516 for (i = 0; i < prom_trans_ents; i++)
517 prom_trans[i].data |= (tlb_type == hypervisor ?
518 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
519}
520
521static void __init hypervisor_tlb_lock(unsigned long vaddr,
522 unsigned long pte,
523 unsigned long mmu)
524{
525 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
526
527 if (ret != 0) {
528 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
529 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
530 prom_halt();
531 }
532}
533
534static unsigned long kern_large_tte(unsigned long paddr);
535
536static void __init remap_kernel(void)
537{
538 unsigned long phys_page, tte_vaddr, tte_data;
539 int i, tlb_ent = sparc64_highest_locked_tlbent();
540
541 tte_vaddr = (unsigned long) KERNBASE;
542 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
543 tte_data = kern_large_tte(phys_page);
544
545 kern_locked_tte_data = tte_data;
546
547 /* Now lock us into the TLBs via Hypervisor or OBP. */
548 if (tlb_type == hypervisor) {
549 for (i = 0; i < num_kernel_image_mappings; i++) {
550 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
551 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
552 tte_vaddr += 0x400000;
553 tte_data += 0x400000;
554 }
555 } else {
556 for (i = 0; i < num_kernel_image_mappings; i++) {
557 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
558 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
559 tte_vaddr += 0x400000;
560 tte_data += 0x400000;
561 }
562 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
563 }
564 if (tlb_type == cheetah_plus) {
565 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
566 CTX_CHEETAH_PLUS_NUC);
567 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
568 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
569 }
570}
571
572
573static void __init inherit_prom_mappings(void)
574{
575 /* Now fixup OBP's idea about where we really are mapped. */
576 printk("Remapping the kernel... ");
577 remap_kernel();
578 printk("done.\n");
579}
580
581void prom_world(int enter)
582{
583 if (!enter)
584 set_fs((mm_segment_t) { get_thread_current_ds() });
585
586 __asm__ __volatile__("flushw");
587}
588
589void __flush_dcache_range(unsigned long start, unsigned long end)
590{
591 unsigned long va;
592
593 if (tlb_type == spitfire) {
594 int n = 0;
595
596 for (va = start; va < end; va += 32) {
597 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
598 if (++n >= 512)
599 break;
600 }
601 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
602 start = __pa(start);
603 end = __pa(end);
604 for (va = start; va < end; va += 32)
605 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
606 "membar #Sync"
607 : /* no outputs */
608 : "r" (va),
609 "i" (ASI_DCACHE_INVALIDATE));
610 }
611}
612EXPORT_SYMBOL(__flush_dcache_range);
613
614/* get_new_mmu_context() uses "cache + 1". */
615DEFINE_SPINLOCK(ctx_alloc_lock);
616unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
617#define MAX_CTX_NR (1UL << CTX_NR_BITS)
618#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
619DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
620
621/* Caller does TLB context flushing on local CPU if necessary.
622 * The caller also ensures that CTX_VALID(mm->context) is false.
623 *
624 * We must be careful about boundary cases so that we never
625 * let the user have CTX 0 (nucleus) or we ever use a CTX
626 * version of zero (and thus NO_CONTEXT would not be caught
627 * by version mis-match tests in mmu_context.h).
628 *
629 * Always invoked with interrupts disabled.
630 */
631void get_new_mmu_context(struct mm_struct *mm)
632{
633 unsigned long ctx, new_ctx;
634 unsigned long orig_pgsz_bits;
635 unsigned long flags;
636 int new_version;
637
638 spin_lock_irqsave(&ctx_alloc_lock, flags);
639 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
640 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
641 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
642 new_version = 0;
643 if (new_ctx >= (1 << CTX_NR_BITS)) {
644 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
645 if (new_ctx >= ctx) {
646 int i;
647 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
648 CTX_FIRST_VERSION;
649 if (new_ctx == 1)
650 new_ctx = CTX_FIRST_VERSION;
651
652 /* Don't call memset, for 16 entries that's just
653 * plain silly...
654 */
655 mmu_context_bmap[0] = 3;
656 mmu_context_bmap[1] = 0;
657 mmu_context_bmap[2] = 0;
658 mmu_context_bmap[3] = 0;
659 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
660 mmu_context_bmap[i + 0] = 0;
661 mmu_context_bmap[i + 1] = 0;
662 mmu_context_bmap[i + 2] = 0;
663 mmu_context_bmap[i + 3] = 0;
664 }
665 new_version = 1;
666 goto out;
667 }
668 }
669 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
670 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
671out:
672 tlb_context_cache = new_ctx;
673 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
674 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
675
676 if (unlikely(new_version))
677 smp_new_mmu_context_version();
678}
679
680static int numa_enabled = 1;
681static int numa_debug;
682
683static int __init early_numa(char *p)
684{
685 if (!p)
686 return 0;
687
688 if (strstr(p, "off"))
689 numa_enabled = 0;
690
691 if (strstr(p, "debug"))
692 numa_debug = 1;
693
694 return 0;
695}
696early_param("numa", early_numa);
697
698#define numadbg(f, a...) \
699do { if (numa_debug) \
700 printk(KERN_INFO f, ## a); \
701} while (0)
702
703static void __init find_ramdisk(unsigned long phys_base)
704{
705#ifdef CONFIG_BLK_DEV_INITRD
706 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
707 unsigned long ramdisk_image;
708
709 /* Older versions of the bootloader only supported a
710 * 32-bit physical address for the ramdisk image
711 * location, stored at sparc_ramdisk_image. Newer
712 * SILO versions set sparc_ramdisk_image to zero and
713 * provide a full 64-bit physical address at
714 * sparc_ramdisk_image64.
715 */
716 ramdisk_image = sparc_ramdisk_image;
717 if (!ramdisk_image)
718 ramdisk_image = sparc_ramdisk_image64;
719
720 /* Another bootloader quirk. The bootloader normalizes
721 * the physical address to KERNBASE, so we have to
722 * factor that back out and add in the lowest valid
723 * physical page address to get the true physical address.
724 */
725 ramdisk_image -= KERNBASE;
726 ramdisk_image += phys_base;
727
728 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
729 ramdisk_image, sparc_ramdisk_size);
730
731 initrd_start = ramdisk_image;
732 initrd_end = ramdisk_image + sparc_ramdisk_size;
733
734 memblock_reserve(initrd_start, sparc_ramdisk_size);
735
736 initrd_start += PAGE_OFFSET;
737 initrd_end += PAGE_OFFSET;
738 }
739#endif
740}
741
742struct node_mem_mask {
743 unsigned long mask;
744 unsigned long val;
745 unsigned long bootmem_paddr;
746};
747static struct node_mem_mask node_masks[MAX_NUMNODES];
748static int num_node_masks;
749
750int numa_cpu_lookup_table[NR_CPUS];
751cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
752
753#ifdef CONFIG_NEED_MULTIPLE_NODES
754
755struct mdesc_mblock {
756 u64 base;
757 u64 size;
758 u64 offset; /* RA-to-PA */
759};
760static struct mdesc_mblock *mblocks;
761static int num_mblocks;
762
763static unsigned long ra_to_pa(unsigned long addr)
764{
765 int i;
766
767 for (i = 0; i < num_mblocks; i++) {
768 struct mdesc_mblock *m = &mblocks[i];
769
770 if (addr >= m->base &&
771 addr < (m->base + m->size)) {
772 addr += m->offset;
773 break;
774 }
775 }
776 return addr;
777}
778
779static int find_node(unsigned long addr)
780{
781 int i;
782
783 addr = ra_to_pa(addr);
784 for (i = 0; i < num_node_masks; i++) {
785 struct node_mem_mask *p = &node_masks[i];
786
787 if ((addr & p->mask) == p->val)
788 return i;
789 }
790 return -1;
791}
792
793u64 memblock_nid_range(u64 start, u64 end, int *nid)
794{
795 *nid = find_node(start);
796 start += PAGE_SIZE;
797 while (start < end) {
798 int n = find_node(start);
799
800 if (n != *nid)
801 break;
802 start += PAGE_SIZE;
803 }
804
805 if (start > end)
806 start = end;
807
808 return start;
809}
810#else
811u64 memblock_nid_range(u64 start, u64 end, int *nid)
812{
813 *nid = 0;
814 return end;
815}
816#endif
817
818/* This must be invoked after performing all of the necessary
819 * add_active_range() calls for 'nid'. We need to be able to get
820 * correct data from get_pfn_range_for_nid().
821 */
822static void __init allocate_node_data(int nid)
823{
824 unsigned long paddr, num_pages, start_pfn, end_pfn;
825 struct pglist_data *p;
826
827#ifdef CONFIG_NEED_MULTIPLE_NODES
828 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
829 if (!paddr) {
830 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
831 prom_halt();
832 }
833 NODE_DATA(nid) = __va(paddr);
834 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
835
836 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
837#endif
838
839 p = NODE_DATA(nid);
840
841 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
842 p->node_start_pfn = start_pfn;
843 p->node_spanned_pages = end_pfn - start_pfn;
844
845 if (p->node_spanned_pages) {
846 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
847
848 paddr = memblock_alloc_try_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid);
849 if (!paddr) {
850 prom_printf("Cannot allocate bootmap for nid[%d]\n",
851 nid);
852 prom_halt();
853 }
854 node_masks[nid].bootmem_paddr = paddr;
855 }
856}
857
858static void init_node_masks_nonnuma(void)
859{
860 int i;
861
862 numadbg("Initializing tables for non-numa.\n");
863
864 node_masks[0].mask = node_masks[0].val = 0;
865 num_node_masks = 1;
866
867 for (i = 0; i < NR_CPUS; i++)
868 numa_cpu_lookup_table[i] = 0;
869
870 cpumask_setall(&numa_cpumask_lookup_table[0]);
871}
872
873#ifdef CONFIG_NEED_MULTIPLE_NODES
874struct pglist_data *node_data[MAX_NUMNODES];
875
876EXPORT_SYMBOL(numa_cpu_lookup_table);
877EXPORT_SYMBOL(numa_cpumask_lookup_table);
878EXPORT_SYMBOL(node_data);
879
880struct mdesc_mlgroup {
881 u64 node;
882 u64 latency;
883 u64 match;
884 u64 mask;
885};
886static struct mdesc_mlgroup *mlgroups;
887static int num_mlgroups;
888
889static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
890 u32 cfg_handle)
891{
892 u64 arc;
893
894 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
895 u64 target = mdesc_arc_target(md, arc);
896 const u64 *val;
897
898 val = mdesc_get_property(md, target,
899 "cfg-handle", NULL);
900 if (val && *val == cfg_handle)
901 return 0;
902 }
903 return -ENODEV;
904}
905
906static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
907 u32 cfg_handle)
908{
909 u64 arc, candidate, best_latency = ~(u64)0;
910
911 candidate = MDESC_NODE_NULL;
912 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
913 u64 target = mdesc_arc_target(md, arc);
914 const char *name = mdesc_node_name(md, target);
915 const u64 *val;
916
917 if (strcmp(name, "pio-latency-group"))
918 continue;
919
920 val = mdesc_get_property(md, target, "latency", NULL);
921 if (!val)
922 continue;
923
924 if (*val < best_latency) {
925 candidate = target;
926 best_latency = *val;
927 }
928 }
929
930 if (candidate == MDESC_NODE_NULL)
931 return -ENODEV;
932
933 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
934}
935
936int of_node_to_nid(struct device_node *dp)
937{
938 const struct linux_prom64_registers *regs;
939 struct mdesc_handle *md;
940 u32 cfg_handle;
941 int count, nid;
942 u64 grp;
943
944 /* This is the right thing to do on currently supported
945 * SUN4U NUMA platforms as well, as the PCI controller does
946 * not sit behind any particular memory controller.
947 */
948 if (!mlgroups)
949 return -1;
950
951 regs = of_get_property(dp, "reg", NULL);
952 if (!regs)
953 return -1;
954
955 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
956
957 md = mdesc_grab();
958
959 count = 0;
960 nid = -1;
961 mdesc_for_each_node_by_name(md, grp, "group") {
962 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
963 nid = count;
964 break;
965 }
966 count++;
967 }
968
969 mdesc_release(md);
970
971 return nid;
972}
973
974static void __init add_node_ranges(void)
975{
976 struct memblock_region *reg;
977
978 for_each_memblock(memory, reg) {
979 unsigned long size = reg->size;
980 unsigned long start, end;
981
982 start = reg->base;
983 end = start + size;
984 while (start < end) {
985 unsigned long this_end;
986 int nid;
987
988 this_end = memblock_nid_range(start, end, &nid);
989
990 numadbg("Adding active range nid[%d] "
991 "start[%lx] end[%lx]\n",
992 nid, start, this_end);
993
994 add_active_range(nid,
995 start >> PAGE_SHIFT,
996 this_end >> PAGE_SHIFT);
997
998 start = this_end;
999 }
1000 }
1001}
1002
1003static int __init grab_mlgroups(struct mdesc_handle *md)
1004{
1005 unsigned long paddr;
1006 int count = 0;
1007 u64 node;
1008
1009 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1010 count++;
1011 if (!count)
1012 return -ENOENT;
1013
1014 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1015 SMP_CACHE_BYTES);
1016 if (!paddr)
1017 return -ENOMEM;
1018
1019 mlgroups = __va(paddr);
1020 num_mlgroups = count;
1021
1022 count = 0;
1023 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1024 struct mdesc_mlgroup *m = &mlgroups[count++];
1025 const u64 *val;
1026
1027 m->node = node;
1028
1029 val = mdesc_get_property(md, node, "latency", NULL);
1030 m->latency = *val;
1031 val = mdesc_get_property(md, node, "address-match", NULL);
1032 m->match = *val;
1033 val = mdesc_get_property(md, node, "address-mask", NULL);
1034 m->mask = *val;
1035
1036 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1037 "match[%llx] mask[%llx]\n",
1038 count - 1, m->node, m->latency, m->match, m->mask);
1039 }
1040
1041 return 0;
1042}
1043
1044static int __init grab_mblocks(struct mdesc_handle *md)
1045{
1046 unsigned long paddr;
1047 int count = 0;
1048 u64 node;
1049
1050 mdesc_for_each_node_by_name(md, node, "mblock")
1051 count++;
1052 if (!count)
1053 return -ENOENT;
1054
1055 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1056 SMP_CACHE_BYTES);
1057 if (!paddr)
1058 return -ENOMEM;
1059
1060 mblocks = __va(paddr);
1061 num_mblocks = count;
1062
1063 count = 0;
1064 mdesc_for_each_node_by_name(md, node, "mblock") {
1065 struct mdesc_mblock *m = &mblocks[count++];
1066 const u64 *val;
1067
1068 val = mdesc_get_property(md, node, "base", NULL);
1069 m->base = *val;
1070 val = mdesc_get_property(md, node, "size", NULL);
1071 m->size = *val;
1072 val = mdesc_get_property(md, node,
1073 "address-congruence-offset", NULL);
1074 m->offset = *val;
1075
1076 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1077 count - 1, m->base, m->size, m->offset);
1078 }
1079
1080 return 0;
1081}
1082
1083static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1084 u64 grp, cpumask_t *mask)
1085{
1086 u64 arc;
1087
1088 cpumask_clear(mask);
1089
1090 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1091 u64 target = mdesc_arc_target(md, arc);
1092 const char *name = mdesc_node_name(md, target);
1093 const u64 *id;
1094
1095 if (strcmp(name, "cpu"))
1096 continue;
1097 id = mdesc_get_property(md, target, "id", NULL);
1098 if (*id < nr_cpu_ids)
1099 cpumask_set_cpu(*id, mask);
1100 }
1101}
1102
1103static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1104{
1105 int i;
1106
1107 for (i = 0; i < num_mlgroups; i++) {
1108 struct mdesc_mlgroup *m = &mlgroups[i];
1109 if (m->node == node)
1110 return m;
1111 }
1112 return NULL;
1113}
1114
1115static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1116 int index)
1117{
1118 struct mdesc_mlgroup *candidate = NULL;
1119 u64 arc, best_latency = ~(u64)0;
1120 struct node_mem_mask *n;
1121
1122 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1123 u64 target = mdesc_arc_target(md, arc);
1124 struct mdesc_mlgroup *m = find_mlgroup(target);
1125 if (!m)
1126 continue;
1127 if (m->latency < best_latency) {
1128 candidate = m;
1129 best_latency = m->latency;
1130 }
1131 }
1132 if (!candidate)
1133 return -ENOENT;
1134
1135 if (num_node_masks != index) {
1136 printk(KERN_ERR "Inconsistent NUMA state, "
1137 "index[%d] != num_node_masks[%d]\n",
1138 index, num_node_masks);
1139 return -EINVAL;
1140 }
1141
1142 n = &node_masks[num_node_masks++];
1143
1144 n->mask = candidate->mask;
1145 n->val = candidate->match;
1146
1147 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1148 index, n->mask, n->val, candidate->latency);
1149
1150 return 0;
1151}
1152
1153static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1154 int index)
1155{
1156 cpumask_t mask;
1157 int cpu;
1158
1159 numa_parse_mdesc_group_cpus(md, grp, &mask);
1160
1161 for_each_cpu(cpu, &mask)
1162 numa_cpu_lookup_table[cpu] = index;
1163 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1164
1165 if (numa_debug) {
1166 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1167 for_each_cpu(cpu, &mask)
1168 printk("%d ", cpu);
1169 printk("]\n");
1170 }
1171
1172 return numa_attach_mlgroup(md, grp, index);
1173}
1174
1175static int __init numa_parse_mdesc(void)
1176{
1177 struct mdesc_handle *md = mdesc_grab();
1178 int i, err, count;
1179 u64 node;
1180
1181 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1182 if (node == MDESC_NODE_NULL) {
1183 mdesc_release(md);
1184 return -ENOENT;
1185 }
1186
1187 err = grab_mblocks(md);
1188 if (err < 0)
1189 goto out;
1190
1191 err = grab_mlgroups(md);
1192 if (err < 0)
1193 goto out;
1194
1195 count = 0;
1196 mdesc_for_each_node_by_name(md, node, "group") {
1197 err = numa_parse_mdesc_group(md, node, count);
1198 if (err < 0)
1199 break;
1200 count++;
1201 }
1202
1203 add_node_ranges();
1204
1205 for (i = 0; i < num_node_masks; i++) {
1206 allocate_node_data(i);
1207 node_set_online(i);
1208 }
1209
1210 err = 0;
1211out:
1212 mdesc_release(md);
1213 return err;
1214}
1215
1216static int __init numa_parse_jbus(void)
1217{
1218 unsigned long cpu, index;
1219
1220 /* NUMA node id is encoded in bits 36 and higher, and there is
1221 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1222 */
1223 index = 0;
1224 for_each_present_cpu(cpu) {
1225 numa_cpu_lookup_table[cpu] = index;
1226 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1227 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1228 node_masks[index].val = cpu << 36UL;
1229
1230 index++;
1231 }
1232 num_node_masks = index;
1233
1234 add_node_ranges();
1235
1236 for (index = 0; index < num_node_masks; index++) {
1237 allocate_node_data(index);
1238 node_set_online(index);
1239 }
1240
1241 return 0;
1242}
1243
1244static int __init numa_parse_sun4u(void)
1245{
1246 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1247 unsigned long ver;
1248
1249 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1250 if ((ver >> 32UL) == __JALAPENO_ID ||
1251 (ver >> 32UL) == __SERRANO_ID)
1252 return numa_parse_jbus();
1253 }
1254 return -1;
1255}
1256
1257static int __init bootmem_init_numa(void)
1258{
1259 int err = -1;
1260
1261 numadbg("bootmem_init_numa()\n");
1262
1263 if (numa_enabled) {
1264 if (tlb_type == hypervisor)
1265 err = numa_parse_mdesc();
1266 else
1267 err = numa_parse_sun4u();
1268 }
1269 return err;
1270}
1271
1272#else
1273
1274static int bootmem_init_numa(void)
1275{
1276 return -1;
1277}
1278
1279#endif
1280
1281static void __init bootmem_init_nonnuma(void)
1282{
1283 unsigned long top_of_ram = memblock_end_of_DRAM();
1284 unsigned long total_ram = memblock_phys_mem_size();
1285 struct memblock_region *reg;
1286
1287 numadbg("bootmem_init_nonnuma()\n");
1288
1289 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1290 top_of_ram, total_ram);
1291 printk(KERN_INFO "Memory hole size: %ldMB\n",
1292 (top_of_ram - total_ram) >> 20);
1293
1294 init_node_masks_nonnuma();
1295
1296 for_each_memblock(memory, reg) {
1297 unsigned long start_pfn, end_pfn;
1298
1299 if (!reg->size)
1300 continue;
1301
1302 start_pfn = memblock_region_memory_base_pfn(reg);
1303 end_pfn = memblock_region_memory_end_pfn(reg);
1304 add_active_range(0, start_pfn, end_pfn);
1305 }
1306
1307 allocate_node_data(0);
1308
1309 node_set_online(0);
1310}
1311
1312static void __init reserve_range_in_node(int nid, unsigned long start,
1313 unsigned long end)
1314{
1315 numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1316 nid, start, end);
1317 while (start < end) {
1318 unsigned long this_end;
1319 int n;
1320
1321 this_end = memblock_nid_range(start, end, &n);
1322 if (n == nid) {
1323 numadbg(" MATCH reserving range [%lx:%lx]\n",
1324 start, this_end);
1325 reserve_bootmem_node(NODE_DATA(nid), start,
1326 (this_end - start), BOOTMEM_DEFAULT);
1327 } else
1328 numadbg(" NO MATCH, advancing start to %lx\n",
1329 this_end);
1330
1331 start = this_end;
1332 }
1333}
1334
1335static void __init trim_reserved_in_node(int nid)
1336{
1337 struct memblock_region *reg;
1338
1339 numadbg(" trim_reserved_in_node(%d)\n", nid);
1340
1341 for_each_memblock(reserved, reg)
1342 reserve_range_in_node(nid, reg->base, reg->base + reg->size);
1343}
1344
1345static void __init bootmem_init_one_node(int nid)
1346{
1347 struct pglist_data *p;
1348
1349 numadbg("bootmem_init_one_node(%d)\n", nid);
1350
1351 p = NODE_DATA(nid);
1352
1353 if (p->node_spanned_pages) {
1354 unsigned long paddr = node_masks[nid].bootmem_paddr;
1355 unsigned long end_pfn;
1356
1357 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1358
1359 numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
1360 nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1361
1362 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1363 p->node_start_pfn, end_pfn);
1364
1365 numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
1366 nid, end_pfn);
1367 free_bootmem_with_active_regions(nid, end_pfn);
1368
1369 trim_reserved_in_node(nid);
1370
1371 numadbg(" sparse_memory_present_with_active_regions(%d)\n",
1372 nid);
1373 sparse_memory_present_with_active_regions(nid);
1374 }
1375}
1376
1377static unsigned long __init bootmem_init(unsigned long phys_base)
1378{
1379 unsigned long end_pfn;
1380 int nid;
1381
1382 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1383 max_pfn = max_low_pfn = end_pfn;
1384 min_low_pfn = (phys_base >> PAGE_SHIFT);
1385
1386 if (bootmem_init_numa() < 0)
1387 bootmem_init_nonnuma();
1388
1389 /* XXX cpu notifier XXX */
1390
1391 for_each_online_node(nid)
1392 bootmem_init_one_node(nid);
1393
1394 sparse_init();
1395
1396 return end_pfn;
1397}
1398
1399static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1400static int pall_ents __initdata;
1401
1402#ifdef CONFIG_DEBUG_PAGEALLOC
1403static unsigned long __ref kernel_map_range(unsigned long pstart,
1404 unsigned long pend, pgprot_t prot)
1405{
1406 unsigned long vstart = PAGE_OFFSET + pstart;
1407 unsigned long vend = PAGE_OFFSET + pend;
1408 unsigned long alloc_bytes = 0UL;
1409
1410 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1411 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1412 vstart, vend);
1413 prom_halt();
1414 }
1415
1416 while (vstart < vend) {
1417 unsigned long this_end, paddr = __pa(vstart);
1418 pgd_t *pgd = pgd_offset_k(vstart);
1419 pud_t *pud;
1420 pmd_t *pmd;
1421 pte_t *pte;
1422
1423 pud = pud_offset(pgd, vstart);
1424 if (pud_none(*pud)) {
1425 pmd_t *new;
1426
1427 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1428 alloc_bytes += PAGE_SIZE;
1429 pud_populate(&init_mm, pud, new);
1430 }
1431
1432 pmd = pmd_offset(pud, vstart);
1433 if (!pmd_present(*pmd)) {
1434 pte_t *new;
1435
1436 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1437 alloc_bytes += PAGE_SIZE;
1438 pmd_populate_kernel(&init_mm, pmd, new);
1439 }
1440
1441 pte = pte_offset_kernel(pmd, vstart);
1442 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1443 if (this_end > vend)
1444 this_end = vend;
1445
1446 while (vstart < this_end) {
1447 pte_val(*pte) = (paddr | pgprot_val(prot));
1448
1449 vstart += PAGE_SIZE;
1450 paddr += PAGE_SIZE;
1451 pte++;
1452 }
1453 }
1454
1455 return alloc_bytes;
1456}
1457
1458extern unsigned int kvmap_linear_patch[1];
1459#endif /* CONFIG_DEBUG_PAGEALLOC */
1460
1461static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1462{
1463 const unsigned long shift_256MB = 28;
1464 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1465 const unsigned long size_256MB = (1UL << shift_256MB);
1466
1467 while (start < end) {
1468 long remains;
1469
1470 remains = end - start;
1471 if (remains < size_256MB)
1472 break;
1473
1474 if (start & mask_256MB) {
1475 start = (start + size_256MB) & ~mask_256MB;
1476 continue;
1477 }
1478
1479 while (remains >= size_256MB) {
1480 unsigned long index = start >> shift_256MB;
1481
1482 __set_bit(index, kpte_linear_bitmap);
1483
1484 start += size_256MB;
1485 remains -= size_256MB;
1486 }
1487 }
1488}
1489
1490static void __init init_kpte_bitmap(void)
1491{
1492 unsigned long i;
1493
1494 for (i = 0; i < pall_ents; i++) {
1495 unsigned long phys_start, phys_end;
1496
1497 phys_start = pall[i].phys_addr;
1498 phys_end = phys_start + pall[i].reg_size;
1499
1500 mark_kpte_bitmap(phys_start, phys_end);
1501 }
1502}
1503
1504static void __init kernel_physical_mapping_init(void)
1505{
1506#ifdef CONFIG_DEBUG_PAGEALLOC
1507 unsigned long i, mem_alloced = 0UL;
1508
1509 for (i = 0; i < pall_ents; i++) {
1510 unsigned long phys_start, phys_end;
1511
1512 phys_start = pall[i].phys_addr;
1513 phys_end = phys_start + pall[i].reg_size;
1514
1515 mem_alloced += kernel_map_range(phys_start, phys_end,
1516 PAGE_KERNEL);
1517 }
1518
1519 printk("Allocated %ld bytes for kernel page tables.\n",
1520 mem_alloced);
1521
1522 kvmap_linear_patch[0] = 0x01000000; /* nop */
1523 flushi(&kvmap_linear_patch[0]);
1524
1525 __flush_tlb_all();
1526#endif
1527}
1528
1529#ifdef CONFIG_DEBUG_PAGEALLOC
1530void kernel_map_pages(struct page *page, int numpages, int enable)
1531{
1532 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1533 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1534
1535 kernel_map_range(phys_start, phys_end,
1536 (enable ? PAGE_KERNEL : __pgprot(0)));
1537
1538 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1539 PAGE_OFFSET + phys_end);
1540
1541 /* we should perform an IPI and flush all tlbs,
1542 * but that can deadlock->flush only current cpu.
1543 */
1544 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1545 PAGE_OFFSET + phys_end);
1546}
1547#endif
1548
1549unsigned long __init find_ecache_flush_span(unsigned long size)
1550{
1551 int i;
1552
1553 for (i = 0; i < pavail_ents; i++) {
1554 if (pavail[i].reg_size >= size)
1555 return pavail[i].phys_addr;
1556 }
1557
1558 return ~0UL;
1559}
1560
1561static void __init tsb_phys_patch(void)
1562{
1563 struct tsb_ldquad_phys_patch_entry *pquad;
1564 struct tsb_phys_patch_entry *p;
1565
1566 pquad = &__tsb_ldquad_phys_patch;
1567 while (pquad < &__tsb_ldquad_phys_patch_end) {
1568 unsigned long addr = pquad->addr;
1569
1570 if (tlb_type == hypervisor)
1571 *(unsigned int *) addr = pquad->sun4v_insn;
1572 else
1573 *(unsigned int *) addr = pquad->sun4u_insn;
1574 wmb();
1575 __asm__ __volatile__("flush %0"
1576 : /* no outputs */
1577 : "r" (addr));
1578
1579 pquad++;
1580 }
1581
1582 p = &__tsb_phys_patch;
1583 while (p < &__tsb_phys_patch_end) {
1584 unsigned long addr = p->addr;
1585
1586 *(unsigned int *) addr = p->insn;
1587 wmb();
1588 __asm__ __volatile__("flush %0"
1589 : /* no outputs */
1590 : "r" (addr));
1591
1592 p++;
1593 }
1594}
1595
1596/* Don't mark as init, we give this to the Hypervisor. */
1597#ifndef CONFIG_DEBUG_PAGEALLOC
1598#define NUM_KTSB_DESCR 2
1599#else
1600#define NUM_KTSB_DESCR 1
1601#endif
1602static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1603extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1604
1605static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1606{
1607 pa >>= KTSB_PHYS_SHIFT;
1608
1609 while (start < end) {
1610 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1611
1612 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1613 __asm__ __volatile__("flush %0" : : "r" (ia));
1614
1615 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1616 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1617
1618 start++;
1619 }
1620}
1621
1622static void ktsb_phys_patch(void)
1623{
1624 extern unsigned int __swapper_tsb_phys_patch;
1625 extern unsigned int __swapper_tsb_phys_patch_end;
1626 unsigned long ktsb_pa;
1627
1628 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1629 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1630 &__swapper_tsb_phys_patch_end, ktsb_pa);
1631#ifndef CONFIG_DEBUG_PAGEALLOC
1632 {
1633 extern unsigned int __swapper_4m_tsb_phys_patch;
1634 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1635 ktsb_pa = (kern_base +
1636 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1637 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1638 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1639 }
1640#endif
1641}
1642
1643static void __init sun4v_ktsb_init(void)
1644{
1645 unsigned long ktsb_pa;
1646
1647 /* First KTSB for PAGE_SIZE mappings. */
1648 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1649
1650 switch (PAGE_SIZE) {
1651 case 8 * 1024:
1652 default:
1653 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1654 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1655 break;
1656
1657 case 64 * 1024:
1658 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1659 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1660 break;
1661
1662 case 512 * 1024:
1663 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1664 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1665 break;
1666
1667 case 4 * 1024 * 1024:
1668 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1669 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1670 break;
1671 }
1672
1673 ktsb_descr[0].assoc = 1;
1674 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1675 ktsb_descr[0].ctx_idx = 0;
1676 ktsb_descr[0].tsb_base = ktsb_pa;
1677 ktsb_descr[0].resv = 0;
1678
1679#ifndef CONFIG_DEBUG_PAGEALLOC
1680 /* Second KTSB for 4MB/256MB mappings. */
1681 ktsb_pa = (kern_base +
1682 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1683
1684 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1685 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1686 HV_PGSZ_MASK_256MB);
1687 ktsb_descr[1].assoc = 1;
1688 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1689 ktsb_descr[1].ctx_idx = 0;
1690 ktsb_descr[1].tsb_base = ktsb_pa;
1691 ktsb_descr[1].resv = 0;
1692#endif
1693}
1694
1695void __cpuinit sun4v_ktsb_register(void)
1696{
1697 unsigned long pa, ret;
1698
1699 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1700
1701 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1702 if (ret != 0) {
1703 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1704 "errors with %lx\n", pa, ret);
1705 prom_halt();
1706 }
1707}
1708
1709/* paging_init() sets up the page tables */
1710
1711static unsigned long last_valid_pfn;
1712pgd_t swapper_pg_dir[2048];
1713
1714static void sun4u_pgprot_init(void);
1715static void sun4v_pgprot_init(void);
1716
1717void __init paging_init(void)
1718{
1719 unsigned long end_pfn, shift, phys_base;
1720 unsigned long real_end, i;
1721
1722 /* These build time checkes make sure that the dcache_dirty_cpu()
1723 * page->flags usage will work.
1724 *
1725 * When a page gets marked as dcache-dirty, we store the
1726 * cpu number starting at bit 32 in the page->flags. Also,
1727 * functions like clear_dcache_dirty_cpu use the cpu mask
1728 * in 13-bit signed-immediate instruction fields.
1729 */
1730
1731 /*
1732 * Page flags must not reach into upper 32 bits that are used
1733 * for the cpu number
1734 */
1735 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1736
1737 /*
1738 * The bit fields placed in the high range must not reach below
1739 * the 32 bit boundary. Otherwise we cannot place the cpu field
1740 * at the 32 bit boundary.
1741 */
1742 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1743 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1744
1745 BUILD_BUG_ON(NR_CPUS > 4096);
1746
1747 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1748 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1749
1750 /* Invalidate both kernel TSBs. */
1751 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1752#ifndef CONFIG_DEBUG_PAGEALLOC
1753 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1754#endif
1755
1756 if (tlb_type == hypervisor)
1757 sun4v_pgprot_init();
1758 else
1759 sun4u_pgprot_init();
1760
1761 if (tlb_type == cheetah_plus ||
1762 tlb_type == hypervisor) {
1763 tsb_phys_patch();
1764 ktsb_phys_patch();
1765 }
1766
1767 if (tlb_type == hypervisor) {
1768 sun4v_patch_tlb_handlers();
1769 sun4v_ktsb_init();
1770 }
1771
1772 memblock_init();
1773
1774 /* Find available physical memory...
1775 *
1776 * Read it twice in order to work around a bug in openfirmware.
1777 * The call to grab this table itself can cause openfirmware to
1778 * allocate memory, which in turn can take away some space from
1779 * the list of available memory. Reading it twice makes sure
1780 * we really do get the final value.
1781 */
1782 read_obp_translations();
1783 read_obp_memory("reg", &pall[0], &pall_ents);
1784 read_obp_memory("available", &pavail[0], &pavail_ents);
1785 read_obp_memory("available", &pavail[0], &pavail_ents);
1786
1787 phys_base = 0xffffffffffffffffUL;
1788 for (i = 0; i < pavail_ents; i++) {
1789 phys_base = min(phys_base, pavail[i].phys_addr);
1790 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1791 }
1792
1793 memblock_reserve(kern_base, kern_size);
1794
1795 find_ramdisk(phys_base);
1796
1797 memblock_enforce_memory_limit(cmdline_memory_size);
1798
1799 memblock_analyze();
1800 memblock_dump_all();
1801
1802 set_bit(0, mmu_context_bmap);
1803
1804 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1805
1806 real_end = (unsigned long)_end;
1807 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1808 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1809 num_kernel_image_mappings);
1810
1811 /* Set kernel pgd to upper alias so physical page computations
1812 * work.
1813 */
1814 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1815
1816 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1817
1818 /* Now can init the kernel/bad page tables. */
1819 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1820 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1821
1822 inherit_prom_mappings();
1823
1824 init_kpte_bitmap();
1825
1826 /* Ok, we can use our TLB miss and window trap handlers safely. */
1827 setup_tba();
1828
1829 __flush_tlb_all();
1830
1831 if (tlb_type == hypervisor)
1832 sun4v_ktsb_register();
1833
1834 prom_build_devicetree();
1835 of_populate_present_mask();
1836#ifndef CONFIG_SMP
1837 of_fill_in_cpu_data();
1838#endif
1839
1840 if (tlb_type == hypervisor) {
1841 sun4v_mdesc_init();
1842 mdesc_populate_present_mask(cpu_all_mask);
1843#ifndef CONFIG_SMP
1844 mdesc_fill_in_cpu_data(cpu_all_mask);
1845#endif
1846 }
1847
1848 /* Once the OF device tree and MDESC have been setup, we know
1849 * the list of possible cpus. Therefore we can allocate the
1850 * IRQ stacks.
1851 */
1852 for_each_possible_cpu(i) {
1853 /* XXX Use node local allocations... XXX */
1854 softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1855 hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1856 }
1857
1858 /* Setup bootmem... */
1859 last_valid_pfn = end_pfn = bootmem_init(phys_base);
1860
1861#ifndef CONFIG_NEED_MULTIPLE_NODES
1862 max_mapnr = last_valid_pfn;
1863#endif
1864 kernel_physical_mapping_init();
1865
1866 {
1867 unsigned long max_zone_pfns[MAX_NR_ZONES];
1868
1869 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1870
1871 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1872
1873 free_area_init_nodes(max_zone_pfns);
1874 }
1875
1876 printk("Booting Linux...\n");
1877}
1878
1879int __devinit page_in_phys_avail(unsigned long paddr)
1880{
1881 int i;
1882
1883 paddr &= PAGE_MASK;
1884
1885 for (i = 0; i < pavail_ents; i++) {
1886 unsigned long start, end;
1887
1888 start = pavail[i].phys_addr;
1889 end = start + pavail[i].reg_size;
1890
1891 if (paddr >= start && paddr < end)
1892 return 1;
1893 }
1894 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1895 return 1;
1896#ifdef CONFIG_BLK_DEV_INITRD
1897 if (paddr >= __pa(initrd_start) &&
1898 paddr < __pa(PAGE_ALIGN(initrd_end)))
1899 return 1;
1900#endif
1901
1902 return 0;
1903}
1904
1905static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1906static int pavail_rescan_ents __initdata;
1907
1908/* Certain OBP calls, such as fetching "available" properties, can
1909 * claim physical memory. So, along with initializing the valid
1910 * address bitmap, what we do here is refetch the physical available
1911 * memory list again, and make sure it provides at least as much
1912 * memory as 'pavail' does.
1913 */
1914static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1915{
1916 int i;
1917
1918 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1919
1920 for (i = 0; i < pavail_ents; i++) {
1921 unsigned long old_start, old_end;
1922
1923 old_start = pavail[i].phys_addr;
1924 old_end = old_start + pavail[i].reg_size;
1925 while (old_start < old_end) {
1926 int n;
1927
1928 for (n = 0; n < pavail_rescan_ents; n++) {
1929 unsigned long new_start, new_end;
1930
1931 new_start = pavail_rescan[n].phys_addr;
1932 new_end = new_start +
1933 pavail_rescan[n].reg_size;
1934
1935 if (new_start <= old_start &&
1936 new_end >= (old_start + PAGE_SIZE)) {
1937 set_bit(old_start >> 22, bitmap);
1938 goto do_next_page;
1939 }
1940 }
1941
1942 prom_printf("mem_init: Lost memory in pavail\n");
1943 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1944 pavail[i].phys_addr,
1945 pavail[i].reg_size);
1946 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1947 pavail_rescan[i].phys_addr,
1948 pavail_rescan[i].reg_size);
1949 prom_printf("mem_init: Cannot continue, aborting.\n");
1950 prom_halt();
1951
1952 do_next_page:
1953 old_start += PAGE_SIZE;
1954 }
1955 }
1956}
1957
1958static void __init patch_tlb_miss_handler_bitmap(void)
1959{
1960 extern unsigned int valid_addr_bitmap_insn[];
1961 extern unsigned int valid_addr_bitmap_patch[];
1962
1963 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1964 mb();
1965 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1966 flushi(&valid_addr_bitmap_insn[0]);
1967}
1968
1969void __init mem_init(void)
1970{
1971 unsigned long codepages, datapages, initpages;
1972 unsigned long addr, last;
1973
1974 addr = PAGE_OFFSET + kern_base;
1975 last = PAGE_ALIGN(kern_size) + addr;
1976 while (addr < last) {
1977 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1978 addr += PAGE_SIZE;
1979 }
1980
1981 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1982 patch_tlb_miss_handler_bitmap();
1983
1984 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1985
1986#ifdef CONFIG_NEED_MULTIPLE_NODES
1987 {
1988 int i;
1989 for_each_online_node(i) {
1990 if (NODE_DATA(i)->node_spanned_pages != 0) {
1991 totalram_pages +=
1992 free_all_bootmem_node(NODE_DATA(i));
1993 }
1994 }
1995 }
1996#else
1997 totalram_pages = free_all_bootmem();
1998#endif
1999
2000 /* We subtract one to account for the mem_map_zero page
2001 * allocated below.
2002 */
2003 totalram_pages -= 1;
2004 num_physpages = totalram_pages;
2005
2006 /*
2007 * Set up the zero page, mark it reserved, so that page count
2008 * is not manipulated when freeing the page from user ptes.
2009 */
2010 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2011 if (mem_map_zero == NULL) {
2012 prom_printf("paging_init: Cannot alloc zero page.\n");
2013 prom_halt();
2014 }
2015 SetPageReserved(mem_map_zero);
2016
2017 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2018 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2019 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2020 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2021 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2022 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2023
2024 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2025 nr_free_pages() << (PAGE_SHIFT-10),
2026 codepages << (PAGE_SHIFT-10),
2027 datapages << (PAGE_SHIFT-10),
2028 initpages << (PAGE_SHIFT-10),
2029 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2030
2031 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2032 cheetah_ecache_flush_init();
2033}
2034
2035void free_initmem(void)
2036{
2037 unsigned long addr, initend;
2038 int do_free = 1;
2039
2040 /* If the physical memory maps were trimmed by kernel command
2041 * line options, don't even try freeing this initmem stuff up.
2042 * The kernel image could have been in the trimmed out region
2043 * and if so the freeing below will free invalid page structs.
2044 */
2045 if (cmdline_memory_size)
2046 do_free = 0;
2047
2048 /*
2049 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2050 */
2051 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2052 initend = (unsigned long)(__init_end) & PAGE_MASK;
2053 for (; addr < initend; addr += PAGE_SIZE) {
2054 unsigned long page;
2055 struct page *p;
2056
2057 page = (addr +
2058 ((unsigned long) __va(kern_base)) -
2059 ((unsigned long) KERNBASE));
2060 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2061
2062 if (do_free) {
2063 p = virt_to_page(page);
2064
2065 ClearPageReserved(p);
2066 init_page_count(p);
2067 __free_page(p);
2068 num_physpages++;
2069 totalram_pages++;
2070 }
2071 }
2072}
2073
2074#ifdef CONFIG_BLK_DEV_INITRD
2075void free_initrd_mem(unsigned long start, unsigned long end)
2076{
2077 if (start < end)
2078 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2079 for (; start < end; start += PAGE_SIZE) {
2080 struct page *p = virt_to_page(start);
2081
2082 ClearPageReserved(p);
2083 init_page_count(p);
2084 __free_page(p);
2085 num_physpages++;
2086 totalram_pages++;
2087 }
2088}
2089#endif
2090
2091#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2092#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2093#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2094#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2095#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2096#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2097
2098pgprot_t PAGE_KERNEL __read_mostly;
2099EXPORT_SYMBOL(PAGE_KERNEL);
2100
2101pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2102pgprot_t PAGE_COPY __read_mostly;
2103
2104pgprot_t PAGE_SHARED __read_mostly;
2105EXPORT_SYMBOL(PAGE_SHARED);
2106
2107unsigned long pg_iobits __read_mostly;
2108
2109unsigned long _PAGE_IE __read_mostly;
2110EXPORT_SYMBOL(_PAGE_IE);
2111
2112unsigned long _PAGE_E __read_mostly;
2113EXPORT_SYMBOL(_PAGE_E);
2114
2115unsigned long _PAGE_CACHE __read_mostly;
2116EXPORT_SYMBOL(_PAGE_CACHE);
2117
2118#ifdef CONFIG_SPARSEMEM_VMEMMAP
2119unsigned long vmemmap_table[VMEMMAP_SIZE];
2120
2121int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2122{
2123 unsigned long vstart = (unsigned long) start;
2124 unsigned long vend = (unsigned long) (start + nr);
2125 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2126 unsigned long phys_end = (vend - VMEMMAP_BASE);
2127 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2128 unsigned long end = VMEMMAP_ALIGN(phys_end);
2129 unsigned long pte_base;
2130
2131 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2132 _PAGE_CP_4U | _PAGE_CV_4U |
2133 _PAGE_P_4U | _PAGE_W_4U);
2134 if (tlb_type == hypervisor)
2135 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2136 _PAGE_CP_4V | _PAGE_CV_4V |
2137 _PAGE_P_4V | _PAGE_W_4V);
2138
2139 for (; addr < end; addr += VMEMMAP_CHUNK) {
2140 unsigned long *vmem_pp =
2141 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2142 void *block;
2143
2144 if (!(*vmem_pp & _PAGE_VALID)) {
2145 block = vmemmap_alloc_block(1UL << 22, node);
2146 if (!block)
2147 return -ENOMEM;
2148
2149 *vmem_pp = pte_base | __pa(block);
2150
2151 printk(KERN_INFO "[%p-%p] page_structs=%lu "
2152 "node=%d entry=%lu/%lu\n", start, block, nr,
2153 node,
2154 addr >> VMEMMAP_CHUNK_SHIFT,
2155 VMEMMAP_SIZE);
2156 }
2157 }
2158 return 0;
2159}
2160#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2161
2162static void prot_init_common(unsigned long page_none,
2163 unsigned long page_shared,
2164 unsigned long page_copy,
2165 unsigned long page_readonly,
2166 unsigned long page_exec_bit)
2167{
2168 PAGE_COPY = __pgprot(page_copy);
2169 PAGE_SHARED = __pgprot(page_shared);
2170
2171 protection_map[0x0] = __pgprot(page_none);
2172 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2173 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2174 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2175 protection_map[0x4] = __pgprot(page_readonly);
2176 protection_map[0x5] = __pgprot(page_readonly);
2177 protection_map[0x6] = __pgprot(page_copy);
2178 protection_map[0x7] = __pgprot(page_copy);
2179 protection_map[0x8] = __pgprot(page_none);
2180 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2181 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2182 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2183 protection_map[0xc] = __pgprot(page_readonly);
2184 protection_map[0xd] = __pgprot(page_readonly);
2185 protection_map[0xe] = __pgprot(page_shared);
2186 protection_map[0xf] = __pgprot(page_shared);
2187}
2188
2189static void __init sun4u_pgprot_init(void)
2190{
2191 unsigned long page_none, page_shared, page_copy, page_readonly;
2192 unsigned long page_exec_bit;
2193
2194 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2195 _PAGE_CACHE_4U | _PAGE_P_4U |
2196 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2197 _PAGE_EXEC_4U);
2198 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2199 _PAGE_CACHE_4U | _PAGE_P_4U |
2200 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2201 _PAGE_EXEC_4U | _PAGE_L_4U);
2202
2203 _PAGE_IE = _PAGE_IE_4U;
2204 _PAGE_E = _PAGE_E_4U;
2205 _PAGE_CACHE = _PAGE_CACHE_4U;
2206
2207 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2208 __ACCESS_BITS_4U | _PAGE_E_4U);
2209
2210#ifdef CONFIG_DEBUG_PAGEALLOC
2211 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2212 0xfffff80000000000UL;
2213#else
2214 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2215 0xfffff80000000000UL;
2216#endif
2217 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2218 _PAGE_P_4U | _PAGE_W_4U);
2219
2220 /* XXX Should use 256MB on Panther. XXX */
2221 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2222
2223 _PAGE_SZBITS = _PAGE_SZBITS_4U;
2224 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2225 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2226 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2227
2228
2229 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2230 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2231 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2232 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2233 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2234 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2235 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2236
2237 page_exec_bit = _PAGE_EXEC_4U;
2238
2239 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2240 page_exec_bit);
2241}
2242
2243static void __init sun4v_pgprot_init(void)
2244{
2245 unsigned long page_none, page_shared, page_copy, page_readonly;
2246 unsigned long page_exec_bit;
2247
2248 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2249 _PAGE_CACHE_4V | _PAGE_P_4V |
2250 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2251 _PAGE_EXEC_4V);
2252 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2253
2254 _PAGE_IE = _PAGE_IE_4V;
2255 _PAGE_E = _PAGE_E_4V;
2256 _PAGE_CACHE = _PAGE_CACHE_4V;
2257
2258#ifdef CONFIG_DEBUG_PAGEALLOC
2259 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2260 0xfffff80000000000UL;
2261#else
2262 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2263 0xfffff80000000000UL;
2264#endif
2265 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2266 _PAGE_P_4V | _PAGE_W_4V);
2267
2268#ifdef CONFIG_DEBUG_PAGEALLOC
2269 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2270 0xfffff80000000000UL;
2271#else
2272 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2273 0xfffff80000000000UL;
2274#endif
2275 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2276 _PAGE_P_4V | _PAGE_W_4V);
2277
2278 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2279 __ACCESS_BITS_4V | _PAGE_E_4V);
2280
2281 _PAGE_SZBITS = _PAGE_SZBITS_4V;
2282 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2283 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2284 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2285 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2286
2287 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2288 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2289 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2290 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2291 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2292 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2293 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2294
2295 page_exec_bit = _PAGE_EXEC_4V;
2296
2297 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2298 page_exec_bit);
2299}
2300
2301unsigned long pte_sz_bits(unsigned long sz)
2302{
2303 if (tlb_type == hypervisor) {
2304 switch (sz) {
2305 case 8 * 1024:
2306 default:
2307 return _PAGE_SZ8K_4V;
2308 case 64 * 1024:
2309 return _PAGE_SZ64K_4V;
2310 case 512 * 1024:
2311 return _PAGE_SZ512K_4V;
2312 case 4 * 1024 * 1024:
2313 return _PAGE_SZ4MB_4V;
2314 }
2315 } else {
2316 switch (sz) {
2317 case 8 * 1024:
2318 default:
2319 return _PAGE_SZ8K_4U;
2320 case 64 * 1024:
2321 return _PAGE_SZ64K_4U;
2322 case 512 * 1024:
2323 return _PAGE_SZ512K_4U;
2324 case 4 * 1024 * 1024:
2325 return _PAGE_SZ4MB_4U;
2326 }
2327 }
2328}
2329
2330pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2331{
2332 pte_t pte;
2333
2334 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2335 pte_val(pte) |= (((unsigned long)space) << 32);
2336 pte_val(pte) |= pte_sz_bits(page_size);
2337
2338 return pte;
2339}
2340
2341static unsigned long kern_large_tte(unsigned long paddr)
2342{
2343 unsigned long val;
2344
2345 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2346 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2347 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2348 if (tlb_type == hypervisor)
2349 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2350 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2351 _PAGE_EXEC_4V | _PAGE_W_4V);
2352
2353 return val | paddr;
2354}
2355
2356/* If not locked, zap it. */
2357void __flush_tlb_all(void)
2358{
2359 unsigned long pstate;
2360 int i;
2361
2362 __asm__ __volatile__("flushw\n\t"
2363 "rdpr %%pstate, %0\n\t"
2364 "wrpr %0, %1, %%pstate"
2365 : "=r" (pstate)
2366 : "i" (PSTATE_IE));
2367 if (tlb_type == hypervisor) {
2368 sun4v_mmu_demap_all();
2369 } else if (tlb_type == spitfire) {
2370 for (i = 0; i < 64; i++) {
2371 /* Spitfire Errata #32 workaround */
2372 /* NOTE: Always runs on spitfire, so no
2373 * cheetah+ page size encodings.
2374 */
2375 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2376 "flush %%g6"
2377 : /* No outputs */
2378 : "r" (0),
2379 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2380
2381 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2382 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2383 "membar #Sync"
2384 : /* no outputs */
2385 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2386 spitfire_put_dtlb_data(i, 0x0UL);
2387 }
2388
2389 /* Spitfire Errata #32 workaround */
2390 /* NOTE: Always runs on spitfire, so no
2391 * cheetah+ page size encodings.
2392 */
2393 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2394 "flush %%g6"
2395 : /* No outputs */
2396 : "r" (0),
2397 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2398
2399 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2400 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2401 "membar #Sync"
2402 : /* no outputs */
2403 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2404 spitfire_put_itlb_data(i, 0x0UL);
2405 }
2406 }
2407 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2408 cheetah_flush_dtlb_all();
2409 cheetah_flush_itlb_all();
2410 }
2411 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2412 : : "r" (pstate));
2413}
1/*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8#include <linux/module.h>
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/string.h>
12#include <linux/init.h>
13#include <linux/bootmem.h>
14#include <linux/mm.h>
15#include <linux/hugetlb.h>
16#include <linux/initrd.h>
17#include <linux/swap.h>
18#include <linux/pagemap.h>
19#include <linux/poison.h>
20#include <linux/fs.h>
21#include <linux/seq_file.h>
22#include <linux/kprobes.h>
23#include <linux/cache.h>
24#include <linux/sort.h>
25#include <linux/percpu.h>
26#include <linux/memblock.h>
27#include <linux/mmzone.h>
28#include <linux/gfp.h>
29
30#include <asm/head.h>
31#include <asm/page.h>
32#include <asm/pgalloc.h>
33#include <asm/pgtable.h>
34#include <asm/oplib.h>
35#include <asm/iommu.h>
36#include <asm/io.h>
37#include <asm/uaccess.h>
38#include <asm/mmu_context.h>
39#include <asm/tlbflush.h>
40#include <asm/dma.h>
41#include <asm/starfire.h>
42#include <asm/tlb.h>
43#include <asm/spitfire.h>
44#include <asm/sections.h>
45#include <asm/tsb.h>
46#include <asm/hypervisor.h>
47#include <asm/prom.h>
48#include <asm/mdesc.h>
49#include <asm/cpudata.h>
50#include <asm/irq.h>
51
52#include "init_64.h"
53
54unsigned long kern_linear_pte_xor[4] __read_mostly;
55
56/* A bitmap, two bits for every 256MB of physical memory. These two
57 * bits determine what page size we use for kernel linear
58 * translations. They form an index into kern_linear_pte_xor[]. The
59 * value in the indexed slot is XOR'd with the TLB miss virtual
60 * address to form the resulting TTE. The mapping is:
61 *
62 * 0 ==> 4MB
63 * 1 ==> 256MB
64 * 2 ==> 2GB
65 * 3 ==> 16GB
66 *
67 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
68 * support 2GB pages, and hopefully future cpus will support the 16GB
69 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
70 * if these larger page sizes are not supported by the cpu.
71 *
72 * It would be nice to determine this from the machine description
73 * 'cpu' properties, but we need to have this table setup before the
74 * MDESC is initialized.
75 */
76unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
77
78#ifndef CONFIG_DEBUG_PAGEALLOC
79/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
80 * Space is allocated for this right after the trap table in
81 * arch/sparc64/kernel/head.S
82 */
83extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
84#endif
85
86static unsigned long cpu_pgsz_mask;
87
88#define MAX_BANKS 32
89
90static struct linux_prom64_registers pavail[MAX_BANKS];
91static int pavail_ents;
92
93static int cmp_p64(const void *a, const void *b)
94{
95 const struct linux_prom64_registers *x = a, *y = b;
96
97 if (x->phys_addr > y->phys_addr)
98 return 1;
99 if (x->phys_addr < y->phys_addr)
100 return -1;
101 return 0;
102}
103
104static void __init read_obp_memory(const char *property,
105 struct linux_prom64_registers *regs,
106 int *num_ents)
107{
108 phandle node = prom_finddevice("/memory");
109 int prop_size = prom_getproplen(node, property);
110 int ents, ret, i;
111
112 ents = prop_size / sizeof(struct linux_prom64_registers);
113 if (ents > MAX_BANKS) {
114 prom_printf("The machine has more %s property entries than "
115 "this kernel can support (%d).\n",
116 property, MAX_BANKS);
117 prom_halt();
118 }
119
120 ret = prom_getproperty(node, property, (char *) regs, prop_size);
121 if (ret == -1) {
122 prom_printf("Couldn't get %s property from /memory.\n",
123 property);
124 prom_halt();
125 }
126
127 /* Sanitize what we got from the firmware, by page aligning
128 * everything.
129 */
130 for (i = 0; i < ents; i++) {
131 unsigned long base, size;
132
133 base = regs[i].phys_addr;
134 size = regs[i].reg_size;
135
136 size &= PAGE_MASK;
137 if (base & ~PAGE_MASK) {
138 unsigned long new_base = PAGE_ALIGN(base);
139
140 size -= new_base - base;
141 if ((long) size < 0L)
142 size = 0UL;
143 base = new_base;
144 }
145 if (size == 0UL) {
146 /* If it is empty, simply get rid of it.
147 * This simplifies the logic of the other
148 * functions that process these arrays.
149 */
150 memmove(®s[i], ®s[i + 1],
151 (ents - i - 1) * sizeof(regs[0]));
152 i--;
153 ents--;
154 continue;
155 }
156 regs[i].phys_addr = base;
157 regs[i].reg_size = size;
158 }
159
160 *num_ents = ents;
161
162 sort(regs, ents, sizeof(struct linux_prom64_registers),
163 cmp_p64, NULL);
164}
165
166unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
167 sizeof(unsigned long)];
168EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
169
170/* Kernel physical address base and size in bytes. */
171unsigned long kern_base __read_mostly;
172unsigned long kern_size __read_mostly;
173
174/* Initial ramdisk setup */
175extern unsigned long sparc_ramdisk_image64;
176extern unsigned int sparc_ramdisk_image;
177extern unsigned int sparc_ramdisk_size;
178
179struct page *mem_map_zero __read_mostly;
180EXPORT_SYMBOL(mem_map_zero);
181
182unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
183
184unsigned long sparc64_kern_pri_context __read_mostly;
185unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
186unsigned long sparc64_kern_sec_context __read_mostly;
187
188int num_kernel_image_mappings;
189
190#ifdef CONFIG_DEBUG_DCFLUSH
191atomic_t dcpage_flushes = ATOMIC_INIT(0);
192#ifdef CONFIG_SMP
193atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
194#endif
195#endif
196
197inline void flush_dcache_page_impl(struct page *page)
198{
199 BUG_ON(tlb_type == hypervisor);
200#ifdef CONFIG_DEBUG_DCFLUSH
201 atomic_inc(&dcpage_flushes);
202#endif
203
204#ifdef DCACHE_ALIASING_POSSIBLE
205 __flush_dcache_page(page_address(page),
206 ((tlb_type == spitfire) &&
207 page_mapping(page) != NULL));
208#else
209 if (page_mapping(page) != NULL &&
210 tlb_type == spitfire)
211 __flush_icache_page(__pa(page_address(page)));
212#endif
213}
214
215#define PG_dcache_dirty PG_arch_1
216#define PG_dcache_cpu_shift 32UL
217#define PG_dcache_cpu_mask \
218 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
219
220#define dcache_dirty_cpu(page) \
221 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
222
223static inline void set_dcache_dirty(struct page *page, int this_cpu)
224{
225 unsigned long mask = this_cpu;
226 unsigned long non_cpu_bits;
227
228 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
229 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
230
231 __asm__ __volatile__("1:\n\t"
232 "ldx [%2], %%g7\n\t"
233 "and %%g7, %1, %%g1\n\t"
234 "or %%g1, %0, %%g1\n\t"
235 "casx [%2], %%g7, %%g1\n\t"
236 "cmp %%g7, %%g1\n\t"
237 "bne,pn %%xcc, 1b\n\t"
238 " nop"
239 : /* no outputs */
240 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
241 : "g1", "g7");
242}
243
244static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
245{
246 unsigned long mask = (1UL << PG_dcache_dirty);
247
248 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
249 "1:\n\t"
250 "ldx [%2], %%g7\n\t"
251 "srlx %%g7, %4, %%g1\n\t"
252 "and %%g1, %3, %%g1\n\t"
253 "cmp %%g1, %0\n\t"
254 "bne,pn %%icc, 2f\n\t"
255 " andn %%g7, %1, %%g1\n\t"
256 "casx [%2], %%g7, %%g1\n\t"
257 "cmp %%g7, %%g1\n\t"
258 "bne,pn %%xcc, 1b\n\t"
259 " nop\n"
260 "2:"
261 : /* no outputs */
262 : "r" (cpu), "r" (mask), "r" (&page->flags),
263 "i" (PG_dcache_cpu_mask),
264 "i" (PG_dcache_cpu_shift)
265 : "g1", "g7");
266}
267
268static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
269{
270 unsigned long tsb_addr = (unsigned long) ent;
271
272 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
273 tsb_addr = __pa(tsb_addr);
274
275 __tsb_insert(tsb_addr, tag, pte);
276}
277
278unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
279
280static void flush_dcache(unsigned long pfn)
281{
282 struct page *page;
283
284 page = pfn_to_page(pfn);
285 if (page) {
286 unsigned long pg_flags;
287
288 pg_flags = page->flags;
289 if (pg_flags & (1UL << PG_dcache_dirty)) {
290 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
291 PG_dcache_cpu_mask);
292 int this_cpu = get_cpu();
293
294 /* This is just to optimize away some function calls
295 * in the SMP case.
296 */
297 if (cpu == this_cpu)
298 flush_dcache_page_impl(page);
299 else
300 smp_flush_dcache_page_impl(page, cpu);
301
302 clear_dcache_dirty_cpu(page, cpu);
303
304 put_cpu();
305 }
306 }
307}
308
309/* mm->context.lock must be held */
310static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
311 unsigned long tsb_hash_shift, unsigned long address,
312 unsigned long tte)
313{
314 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
315 unsigned long tag;
316
317 if (unlikely(!tsb))
318 return;
319
320 tsb += ((address >> tsb_hash_shift) &
321 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
322 tag = (address >> 22UL);
323 tsb_insert(tsb, tag, tte);
324}
325
326#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
327static inline bool is_hugetlb_pte(pte_t pte)
328{
329 if ((tlb_type == hypervisor &&
330 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
331 (tlb_type != hypervisor &&
332 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
333 return true;
334 return false;
335}
336#endif
337
338void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
339{
340 struct mm_struct *mm;
341 unsigned long flags;
342 pte_t pte = *ptep;
343
344 if (tlb_type != hypervisor) {
345 unsigned long pfn = pte_pfn(pte);
346
347 if (pfn_valid(pfn))
348 flush_dcache(pfn);
349 }
350
351 mm = vma->vm_mm;
352
353 spin_lock_irqsave(&mm->context.lock, flags);
354
355#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
356 if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
357 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
358 address, pte_val(pte));
359 else
360#endif
361 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
362 address, pte_val(pte));
363
364 spin_unlock_irqrestore(&mm->context.lock, flags);
365}
366
367void flush_dcache_page(struct page *page)
368{
369 struct address_space *mapping;
370 int this_cpu;
371
372 if (tlb_type == hypervisor)
373 return;
374
375 /* Do not bother with the expensive D-cache flush if it
376 * is merely the zero page. The 'bigcore' testcase in GDB
377 * causes this case to run millions of times.
378 */
379 if (page == ZERO_PAGE(0))
380 return;
381
382 this_cpu = get_cpu();
383
384 mapping = page_mapping(page);
385 if (mapping && !mapping_mapped(mapping)) {
386 int dirty = test_bit(PG_dcache_dirty, &page->flags);
387 if (dirty) {
388 int dirty_cpu = dcache_dirty_cpu(page);
389
390 if (dirty_cpu == this_cpu)
391 goto out;
392 smp_flush_dcache_page_impl(page, dirty_cpu);
393 }
394 set_dcache_dirty(page, this_cpu);
395 } else {
396 /* We could delay the flush for the !page_mapping
397 * case too. But that case is for exec env/arg
398 * pages and those are %99 certainly going to get
399 * faulted into the tlb (and thus flushed) anyways.
400 */
401 flush_dcache_page_impl(page);
402 }
403
404out:
405 put_cpu();
406}
407EXPORT_SYMBOL(flush_dcache_page);
408
409void __kprobes flush_icache_range(unsigned long start, unsigned long end)
410{
411 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
412 if (tlb_type == spitfire) {
413 unsigned long kaddr;
414
415 /* This code only runs on Spitfire cpus so this is
416 * why we can assume _PAGE_PADDR_4U.
417 */
418 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
419 unsigned long paddr, mask = _PAGE_PADDR_4U;
420
421 if (kaddr >= PAGE_OFFSET)
422 paddr = kaddr & mask;
423 else {
424 pgd_t *pgdp = pgd_offset_k(kaddr);
425 pud_t *pudp = pud_offset(pgdp, kaddr);
426 pmd_t *pmdp = pmd_offset(pudp, kaddr);
427 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
428
429 paddr = pte_val(*ptep) & mask;
430 }
431 __flush_icache_page(paddr);
432 }
433 }
434}
435EXPORT_SYMBOL(flush_icache_range);
436
437void mmu_info(struct seq_file *m)
438{
439 static const char *pgsz_strings[] = {
440 "8K", "64K", "512K", "4MB", "32MB",
441 "256MB", "2GB", "16GB",
442 };
443 int i, printed;
444
445 if (tlb_type == cheetah)
446 seq_printf(m, "MMU Type\t: Cheetah\n");
447 else if (tlb_type == cheetah_plus)
448 seq_printf(m, "MMU Type\t: Cheetah+\n");
449 else if (tlb_type == spitfire)
450 seq_printf(m, "MMU Type\t: Spitfire\n");
451 else if (tlb_type == hypervisor)
452 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
453 else
454 seq_printf(m, "MMU Type\t: ???\n");
455
456 seq_printf(m, "MMU PGSZs\t: ");
457 printed = 0;
458 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
459 if (cpu_pgsz_mask & (1UL << i)) {
460 seq_printf(m, "%s%s",
461 printed ? "," : "", pgsz_strings[i]);
462 printed++;
463 }
464 }
465 seq_putc(m, '\n');
466
467#ifdef CONFIG_DEBUG_DCFLUSH
468 seq_printf(m, "DCPageFlushes\t: %d\n",
469 atomic_read(&dcpage_flushes));
470#ifdef CONFIG_SMP
471 seq_printf(m, "DCPageFlushesXC\t: %d\n",
472 atomic_read(&dcpage_flushes_xcall));
473#endif /* CONFIG_SMP */
474#endif /* CONFIG_DEBUG_DCFLUSH */
475}
476
477struct linux_prom_translation prom_trans[512] __read_mostly;
478unsigned int prom_trans_ents __read_mostly;
479
480unsigned long kern_locked_tte_data;
481
482/* The obp translations are saved based on 8k pagesize, since obp can
483 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
484 * HI_OBP_ADDRESS range are handled in ktlb.S.
485 */
486static inline int in_obp_range(unsigned long vaddr)
487{
488 return (vaddr >= LOW_OBP_ADDRESS &&
489 vaddr < HI_OBP_ADDRESS);
490}
491
492static int cmp_ptrans(const void *a, const void *b)
493{
494 const struct linux_prom_translation *x = a, *y = b;
495
496 if (x->virt > y->virt)
497 return 1;
498 if (x->virt < y->virt)
499 return -1;
500 return 0;
501}
502
503/* Read OBP translations property into 'prom_trans[]'. */
504static void __init read_obp_translations(void)
505{
506 int n, node, ents, first, last, i;
507
508 node = prom_finddevice("/virtual-memory");
509 n = prom_getproplen(node, "translations");
510 if (unlikely(n == 0 || n == -1)) {
511 prom_printf("prom_mappings: Couldn't get size.\n");
512 prom_halt();
513 }
514 if (unlikely(n > sizeof(prom_trans))) {
515 prom_printf("prom_mappings: Size %d is too big.\n", n);
516 prom_halt();
517 }
518
519 if ((n = prom_getproperty(node, "translations",
520 (char *)&prom_trans[0],
521 sizeof(prom_trans))) == -1) {
522 prom_printf("prom_mappings: Couldn't get property.\n");
523 prom_halt();
524 }
525
526 n = n / sizeof(struct linux_prom_translation);
527
528 ents = n;
529
530 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
531 cmp_ptrans, NULL);
532
533 /* Now kick out all the non-OBP entries. */
534 for (i = 0; i < ents; i++) {
535 if (in_obp_range(prom_trans[i].virt))
536 break;
537 }
538 first = i;
539 for (; i < ents; i++) {
540 if (!in_obp_range(prom_trans[i].virt))
541 break;
542 }
543 last = i;
544
545 for (i = 0; i < (last - first); i++) {
546 struct linux_prom_translation *src = &prom_trans[i + first];
547 struct linux_prom_translation *dest = &prom_trans[i];
548
549 *dest = *src;
550 }
551 for (; i < ents; i++) {
552 struct linux_prom_translation *dest = &prom_trans[i];
553 dest->virt = dest->size = dest->data = 0x0UL;
554 }
555
556 prom_trans_ents = last - first;
557
558 if (tlb_type == spitfire) {
559 /* Clear diag TTE bits. */
560 for (i = 0; i < prom_trans_ents; i++)
561 prom_trans[i].data &= ~0x0003fe0000000000UL;
562 }
563
564 /* Force execute bit on. */
565 for (i = 0; i < prom_trans_ents; i++)
566 prom_trans[i].data |= (tlb_type == hypervisor ?
567 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
568}
569
570static void __init hypervisor_tlb_lock(unsigned long vaddr,
571 unsigned long pte,
572 unsigned long mmu)
573{
574 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
575
576 if (ret != 0) {
577 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
578 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
579 prom_halt();
580 }
581}
582
583static unsigned long kern_large_tte(unsigned long paddr);
584
585static void __init remap_kernel(void)
586{
587 unsigned long phys_page, tte_vaddr, tte_data;
588 int i, tlb_ent = sparc64_highest_locked_tlbent();
589
590 tte_vaddr = (unsigned long) KERNBASE;
591 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
592 tte_data = kern_large_tte(phys_page);
593
594 kern_locked_tte_data = tte_data;
595
596 /* Now lock us into the TLBs via Hypervisor or OBP. */
597 if (tlb_type == hypervisor) {
598 for (i = 0; i < num_kernel_image_mappings; i++) {
599 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
600 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
601 tte_vaddr += 0x400000;
602 tte_data += 0x400000;
603 }
604 } else {
605 for (i = 0; i < num_kernel_image_mappings; i++) {
606 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
607 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
608 tte_vaddr += 0x400000;
609 tte_data += 0x400000;
610 }
611 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
612 }
613 if (tlb_type == cheetah_plus) {
614 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
615 CTX_CHEETAH_PLUS_NUC);
616 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
617 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
618 }
619}
620
621
622static void __init inherit_prom_mappings(void)
623{
624 /* Now fixup OBP's idea about where we really are mapped. */
625 printk("Remapping the kernel... ");
626 remap_kernel();
627 printk("done.\n");
628}
629
630void prom_world(int enter)
631{
632 if (!enter)
633 set_fs(get_fs());
634
635 __asm__ __volatile__("flushw");
636}
637
638void __flush_dcache_range(unsigned long start, unsigned long end)
639{
640 unsigned long va;
641
642 if (tlb_type == spitfire) {
643 int n = 0;
644
645 for (va = start; va < end; va += 32) {
646 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
647 if (++n >= 512)
648 break;
649 }
650 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
651 start = __pa(start);
652 end = __pa(end);
653 for (va = start; va < end; va += 32)
654 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
655 "membar #Sync"
656 : /* no outputs */
657 : "r" (va),
658 "i" (ASI_DCACHE_INVALIDATE));
659 }
660}
661EXPORT_SYMBOL(__flush_dcache_range);
662
663/* get_new_mmu_context() uses "cache + 1". */
664DEFINE_SPINLOCK(ctx_alloc_lock);
665unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
666#define MAX_CTX_NR (1UL << CTX_NR_BITS)
667#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
668DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
669
670/* Caller does TLB context flushing on local CPU if necessary.
671 * The caller also ensures that CTX_VALID(mm->context) is false.
672 *
673 * We must be careful about boundary cases so that we never
674 * let the user have CTX 0 (nucleus) or we ever use a CTX
675 * version of zero (and thus NO_CONTEXT would not be caught
676 * by version mis-match tests in mmu_context.h).
677 *
678 * Always invoked with interrupts disabled.
679 */
680void get_new_mmu_context(struct mm_struct *mm)
681{
682 unsigned long ctx, new_ctx;
683 unsigned long orig_pgsz_bits;
684 int new_version;
685
686 spin_lock(&ctx_alloc_lock);
687 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
688 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
689 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
690 new_version = 0;
691 if (new_ctx >= (1 << CTX_NR_BITS)) {
692 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
693 if (new_ctx >= ctx) {
694 int i;
695 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
696 CTX_FIRST_VERSION;
697 if (new_ctx == 1)
698 new_ctx = CTX_FIRST_VERSION;
699
700 /* Don't call memset, for 16 entries that's just
701 * plain silly...
702 */
703 mmu_context_bmap[0] = 3;
704 mmu_context_bmap[1] = 0;
705 mmu_context_bmap[2] = 0;
706 mmu_context_bmap[3] = 0;
707 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
708 mmu_context_bmap[i + 0] = 0;
709 mmu_context_bmap[i + 1] = 0;
710 mmu_context_bmap[i + 2] = 0;
711 mmu_context_bmap[i + 3] = 0;
712 }
713 new_version = 1;
714 goto out;
715 }
716 }
717 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
718 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
719out:
720 tlb_context_cache = new_ctx;
721 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
722 spin_unlock(&ctx_alloc_lock);
723
724 if (unlikely(new_version))
725 smp_new_mmu_context_version();
726}
727
728static int numa_enabled = 1;
729static int numa_debug;
730
731static int __init early_numa(char *p)
732{
733 if (!p)
734 return 0;
735
736 if (strstr(p, "off"))
737 numa_enabled = 0;
738
739 if (strstr(p, "debug"))
740 numa_debug = 1;
741
742 return 0;
743}
744early_param("numa", early_numa);
745
746#define numadbg(f, a...) \
747do { if (numa_debug) \
748 printk(KERN_INFO f, ## a); \
749} while (0)
750
751static void __init find_ramdisk(unsigned long phys_base)
752{
753#ifdef CONFIG_BLK_DEV_INITRD
754 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
755 unsigned long ramdisk_image;
756
757 /* Older versions of the bootloader only supported a
758 * 32-bit physical address for the ramdisk image
759 * location, stored at sparc_ramdisk_image. Newer
760 * SILO versions set sparc_ramdisk_image to zero and
761 * provide a full 64-bit physical address at
762 * sparc_ramdisk_image64.
763 */
764 ramdisk_image = sparc_ramdisk_image;
765 if (!ramdisk_image)
766 ramdisk_image = sparc_ramdisk_image64;
767
768 /* Another bootloader quirk. The bootloader normalizes
769 * the physical address to KERNBASE, so we have to
770 * factor that back out and add in the lowest valid
771 * physical page address to get the true physical address.
772 */
773 ramdisk_image -= KERNBASE;
774 ramdisk_image += phys_base;
775
776 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
777 ramdisk_image, sparc_ramdisk_size);
778
779 initrd_start = ramdisk_image;
780 initrd_end = ramdisk_image + sparc_ramdisk_size;
781
782 memblock_reserve(initrd_start, sparc_ramdisk_size);
783
784 initrd_start += PAGE_OFFSET;
785 initrd_end += PAGE_OFFSET;
786 }
787#endif
788}
789
790struct node_mem_mask {
791 unsigned long mask;
792 unsigned long val;
793};
794static struct node_mem_mask node_masks[MAX_NUMNODES];
795static int num_node_masks;
796
797int numa_cpu_lookup_table[NR_CPUS];
798cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
799
800#ifdef CONFIG_NEED_MULTIPLE_NODES
801
802struct mdesc_mblock {
803 u64 base;
804 u64 size;
805 u64 offset; /* RA-to-PA */
806};
807static struct mdesc_mblock *mblocks;
808static int num_mblocks;
809
810static unsigned long ra_to_pa(unsigned long addr)
811{
812 int i;
813
814 for (i = 0; i < num_mblocks; i++) {
815 struct mdesc_mblock *m = &mblocks[i];
816
817 if (addr >= m->base &&
818 addr < (m->base + m->size)) {
819 addr += m->offset;
820 break;
821 }
822 }
823 return addr;
824}
825
826static int find_node(unsigned long addr)
827{
828 int i;
829
830 addr = ra_to_pa(addr);
831 for (i = 0; i < num_node_masks; i++) {
832 struct node_mem_mask *p = &node_masks[i];
833
834 if ((addr & p->mask) == p->val)
835 return i;
836 }
837 return -1;
838}
839
840static u64 memblock_nid_range(u64 start, u64 end, int *nid)
841{
842 *nid = find_node(start);
843 start += PAGE_SIZE;
844 while (start < end) {
845 int n = find_node(start);
846
847 if (n != *nid)
848 break;
849 start += PAGE_SIZE;
850 }
851
852 if (start > end)
853 start = end;
854
855 return start;
856}
857#endif
858
859/* This must be invoked after performing all of the necessary
860 * memblock_set_node() calls for 'nid'. We need to be able to get
861 * correct data from get_pfn_range_for_nid().
862 */
863static void __init allocate_node_data(int nid)
864{
865 struct pglist_data *p;
866 unsigned long start_pfn, end_pfn;
867#ifdef CONFIG_NEED_MULTIPLE_NODES
868 unsigned long paddr;
869
870 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
871 if (!paddr) {
872 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
873 prom_halt();
874 }
875 NODE_DATA(nid) = __va(paddr);
876 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
877
878 NODE_DATA(nid)->node_id = nid;
879#endif
880
881 p = NODE_DATA(nid);
882
883 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
884 p->node_start_pfn = start_pfn;
885 p->node_spanned_pages = end_pfn - start_pfn;
886}
887
888static void init_node_masks_nonnuma(void)
889{
890 int i;
891
892 numadbg("Initializing tables for non-numa.\n");
893
894 node_masks[0].mask = node_masks[0].val = 0;
895 num_node_masks = 1;
896
897 for (i = 0; i < NR_CPUS; i++)
898 numa_cpu_lookup_table[i] = 0;
899
900 cpumask_setall(&numa_cpumask_lookup_table[0]);
901}
902
903#ifdef CONFIG_NEED_MULTIPLE_NODES
904struct pglist_data *node_data[MAX_NUMNODES];
905
906EXPORT_SYMBOL(numa_cpu_lookup_table);
907EXPORT_SYMBOL(numa_cpumask_lookup_table);
908EXPORT_SYMBOL(node_data);
909
910struct mdesc_mlgroup {
911 u64 node;
912 u64 latency;
913 u64 match;
914 u64 mask;
915};
916static struct mdesc_mlgroup *mlgroups;
917static int num_mlgroups;
918
919static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
920 u32 cfg_handle)
921{
922 u64 arc;
923
924 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
925 u64 target = mdesc_arc_target(md, arc);
926 const u64 *val;
927
928 val = mdesc_get_property(md, target,
929 "cfg-handle", NULL);
930 if (val && *val == cfg_handle)
931 return 0;
932 }
933 return -ENODEV;
934}
935
936static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
937 u32 cfg_handle)
938{
939 u64 arc, candidate, best_latency = ~(u64)0;
940
941 candidate = MDESC_NODE_NULL;
942 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
943 u64 target = mdesc_arc_target(md, arc);
944 const char *name = mdesc_node_name(md, target);
945 const u64 *val;
946
947 if (strcmp(name, "pio-latency-group"))
948 continue;
949
950 val = mdesc_get_property(md, target, "latency", NULL);
951 if (!val)
952 continue;
953
954 if (*val < best_latency) {
955 candidate = target;
956 best_latency = *val;
957 }
958 }
959
960 if (candidate == MDESC_NODE_NULL)
961 return -ENODEV;
962
963 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
964}
965
966int of_node_to_nid(struct device_node *dp)
967{
968 const struct linux_prom64_registers *regs;
969 struct mdesc_handle *md;
970 u32 cfg_handle;
971 int count, nid;
972 u64 grp;
973
974 /* This is the right thing to do on currently supported
975 * SUN4U NUMA platforms as well, as the PCI controller does
976 * not sit behind any particular memory controller.
977 */
978 if (!mlgroups)
979 return -1;
980
981 regs = of_get_property(dp, "reg", NULL);
982 if (!regs)
983 return -1;
984
985 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
986
987 md = mdesc_grab();
988
989 count = 0;
990 nid = -1;
991 mdesc_for_each_node_by_name(md, grp, "group") {
992 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
993 nid = count;
994 break;
995 }
996 count++;
997 }
998
999 mdesc_release(md);
1000
1001 return nid;
1002}
1003
1004static void __init add_node_ranges(void)
1005{
1006 struct memblock_region *reg;
1007
1008 for_each_memblock(memory, reg) {
1009 unsigned long size = reg->size;
1010 unsigned long start, end;
1011
1012 start = reg->base;
1013 end = start + size;
1014 while (start < end) {
1015 unsigned long this_end;
1016 int nid;
1017
1018 this_end = memblock_nid_range(start, end, &nid);
1019
1020 numadbg("Setting memblock NUMA node nid[%d] "
1021 "start[%lx] end[%lx]\n",
1022 nid, start, this_end);
1023
1024 memblock_set_node(start, this_end - start,
1025 &memblock.memory, nid);
1026 start = this_end;
1027 }
1028 }
1029}
1030
1031static int __init grab_mlgroups(struct mdesc_handle *md)
1032{
1033 unsigned long paddr;
1034 int count = 0;
1035 u64 node;
1036
1037 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1038 count++;
1039 if (!count)
1040 return -ENOENT;
1041
1042 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1043 SMP_CACHE_BYTES);
1044 if (!paddr)
1045 return -ENOMEM;
1046
1047 mlgroups = __va(paddr);
1048 num_mlgroups = count;
1049
1050 count = 0;
1051 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1052 struct mdesc_mlgroup *m = &mlgroups[count++];
1053 const u64 *val;
1054
1055 m->node = node;
1056
1057 val = mdesc_get_property(md, node, "latency", NULL);
1058 m->latency = *val;
1059 val = mdesc_get_property(md, node, "address-match", NULL);
1060 m->match = *val;
1061 val = mdesc_get_property(md, node, "address-mask", NULL);
1062 m->mask = *val;
1063
1064 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1065 "match[%llx] mask[%llx]\n",
1066 count - 1, m->node, m->latency, m->match, m->mask);
1067 }
1068
1069 return 0;
1070}
1071
1072static int __init grab_mblocks(struct mdesc_handle *md)
1073{
1074 unsigned long paddr;
1075 int count = 0;
1076 u64 node;
1077
1078 mdesc_for_each_node_by_name(md, node, "mblock")
1079 count++;
1080 if (!count)
1081 return -ENOENT;
1082
1083 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1084 SMP_CACHE_BYTES);
1085 if (!paddr)
1086 return -ENOMEM;
1087
1088 mblocks = __va(paddr);
1089 num_mblocks = count;
1090
1091 count = 0;
1092 mdesc_for_each_node_by_name(md, node, "mblock") {
1093 struct mdesc_mblock *m = &mblocks[count++];
1094 const u64 *val;
1095
1096 val = mdesc_get_property(md, node, "base", NULL);
1097 m->base = *val;
1098 val = mdesc_get_property(md, node, "size", NULL);
1099 m->size = *val;
1100 val = mdesc_get_property(md, node,
1101 "address-congruence-offset", NULL);
1102
1103 /* The address-congruence-offset property is optional.
1104 * Explicity zero it be identifty this.
1105 */
1106 if (val)
1107 m->offset = *val;
1108 else
1109 m->offset = 0UL;
1110
1111 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1112 count - 1, m->base, m->size, m->offset);
1113 }
1114
1115 return 0;
1116}
1117
1118static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1119 u64 grp, cpumask_t *mask)
1120{
1121 u64 arc;
1122
1123 cpumask_clear(mask);
1124
1125 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1126 u64 target = mdesc_arc_target(md, arc);
1127 const char *name = mdesc_node_name(md, target);
1128 const u64 *id;
1129
1130 if (strcmp(name, "cpu"))
1131 continue;
1132 id = mdesc_get_property(md, target, "id", NULL);
1133 if (*id < nr_cpu_ids)
1134 cpumask_set_cpu(*id, mask);
1135 }
1136}
1137
1138static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1139{
1140 int i;
1141
1142 for (i = 0; i < num_mlgroups; i++) {
1143 struct mdesc_mlgroup *m = &mlgroups[i];
1144 if (m->node == node)
1145 return m;
1146 }
1147 return NULL;
1148}
1149
1150static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1151 int index)
1152{
1153 struct mdesc_mlgroup *candidate = NULL;
1154 u64 arc, best_latency = ~(u64)0;
1155 struct node_mem_mask *n;
1156
1157 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1158 u64 target = mdesc_arc_target(md, arc);
1159 struct mdesc_mlgroup *m = find_mlgroup(target);
1160 if (!m)
1161 continue;
1162 if (m->latency < best_latency) {
1163 candidate = m;
1164 best_latency = m->latency;
1165 }
1166 }
1167 if (!candidate)
1168 return -ENOENT;
1169
1170 if (num_node_masks != index) {
1171 printk(KERN_ERR "Inconsistent NUMA state, "
1172 "index[%d] != num_node_masks[%d]\n",
1173 index, num_node_masks);
1174 return -EINVAL;
1175 }
1176
1177 n = &node_masks[num_node_masks++];
1178
1179 n->mask = candidate->mask;
1180 n->val = candidate->match;
1181
1182 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1183 index, n->mask, n->val, candidate->latency);
1184
1185 return 0;
1186}
1187
1188static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1189 int index)
1190{
1191 cpumask_t mask;
1192 int cpu;
1193
1194 numa_parse_mdesc_group_cpus(md, grp, &mask);
1195
1196 for_each_cpu(cpu, &mask)
1197 numa_cpu_lookup_table[cpu] = index;
1198 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1199
1200 if (numa_debug) {
1201 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1202 for_each_cpu(cpu, &mask)
1203 printk("%d ", cpu);
1204 printk("]\n");
1205 }
1206
1207 return numa_attach_mlgroup(md, grp, index);
1208}
1209
1210static int __init numa_parse_mdesc(void)
1211{
1212 struct mdesc_handle *md = mdesc_grab();
1213 int i, err, count;
1214 u64 node;
1215
1216 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1217 if (node == MDESC_NODE_NULL) {
1218 mdesc_release(md);
1219 return -ENOENT;
1220 }
1221
1222 err = grab_mblocks(md);
1223 if (err < 0)
1224 goto out;
1225
1226 err = grab_mlgroups(md);
1227 if (err < 0)
1228 goto out;
1229
1230 count = 0;
1231 mdesc_for_each_node_by_name(md, node, "group") {
1232 err = numa_parse_mdesc_group(md, node, count);
1233 if (err < 0)
1234 break;
1235 count++;
1236 }
1237
1238 add_node_ranges();
1239
1240 for (i = 0; i < num_node_masks; i++) {
1241 allocate_node_data(i);
1242 node_set_online(i);
1243 }
1244
1245 err = 0;
1246out:
1247 mdesc_release(md);
1248 return err;
1249}
1250
1251static int __init numa_parse_jbus(void)
1252{
1253 unsigned long cpu, index;
1254
1255 /* NUMA node id is encoded in bits 36 and higher, and there is
1256 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1257 */
1258 index = 0;
1259 for_each_present_cpu(cpu) {
1260 numa_cpu_lookup_table[cpu] = index;
1261 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1262 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1263 node_masks[index].val = cpu << 36UL;
1264
1265 index++;
1266 }
1267 num_node_masks = index;
1268
1269 add_node_ranges();
1270
1271 for (index = 0; index < num_node_masks; index++) {
1272 allocate_node_data(index);
1273 node_set_online(index);
1274 }
1275
1276 return 0;
1277}
1278
1279static int __init numa_parse_sun4u(void)
1280{
1281 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1282 unsigned long ver;
1283
1284 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1285 if ((ver >> 32UL) == __JALAPENO_ID ||
1286 (ver >> 32UL) == __SERRANO_ID)
1287 return numa_parse_jbus();
1288 }
1289 return -1;
1290}
1291
1292static int __init bootmem_init_numa(void)
1293{
1294 int err = -1;
1295
1296 numadbg("bootmem_init_numa()\n");
1297
1298 if (numa_enabled) {
1299 if (tlb_type == hypervisor)
1300 err = numa_parse_mdesc();
1301 else
1302 err = numa_parse_sun4u();
1303 }
1304 return err;
1305}
1306
1307#else
1308
1309static int bootmem_init_numa(void)
1310{
1311 return -1;
1312}
1313
1314#endif
1315
1316static void __init bootmem_init_nonnuma(void)
1317{
1318 unsigned long top_of_ram = memblock_end_of_DRAM();
1319 unsigned long total_ram = memblock_phys_mem_size();
1320
1321 numadbg("bootmem_init_nonnuma()\n");
1322
1323 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1324 top_of_ram, total_ram);
1325 printk(KERN_INFO "Memory hole size: %ldMB\n",
1326 (top_of_ram - total_ram) >> 20);
1327
1328 init_node_masks_nonnuma();
1329 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1330 allocate_node_data(0);
1331 node_set_online(0);
1332}
1333
1334static unsigned long __init bootmem_init(unsigned long phys_base)
1335{
1336 unsigned long end_pfn;
1337
1338 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1339 max_pfn = max_low_pfn = end_pfn;
1340 min_low_pfn = (phys_base >> PAGE_SHIFT);
1341
1342 if (bootmem_init_numa() < 0)
1343 bootmem_init_nonnuma();
1344
1345 /* Dump memblock with node info. */
1346 memblock_dump_all();
1347
1348 /* XXX cpu notifier XXX */
1349
1350 sparse_memory_present_with_active_regions(MAX_NUMNODES);
1351 sparse_init();
1352
1353 return end_pfn;
1354}
1355
1356static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1357static int pall_ents __initdata;
1358
1359#ifdef CONFIG_DEBUG_PAGEALLOC
1360static unsigned long __ref kernel_map_range(unsigned long pstart,
1361 unsigned long pend, pgprot_t prot)
1362{
1363 unsigned long vstart = PAGE_OFFSET + pstart;
1364 unsigned long vend = PAGE_OFFSET + pend;
1365 unsigned long alloc_bytes = 0UL;
1366
1367 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1368 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1369 vstart, vend);
1370 prom_halt();
1371 }
1372
1373 while (vstart < vend) {
1374 unsigned long this_end, paddr = __pa(vstart);
1375 pgd_t *pgd = pgd_offset_k(vstart);
1376 pud_t *pud;
1377 pmd_t *pmd;
1378 pte_t *pte;
1379
1380 pud = pud_offset(pgd, vstart);
1381 if (pud_none(*pud)) {
1382 pmd_t *new;
1383
1384 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1385 alloc_bytes += PAGE_SIZE;
1386 pud_populate(&init_mm, pud, new);
1387 }
1388
1389 pmd = pmd_offset(pud, vstart);
1390 if (!pmd_present(*pmd)) {
1391 pte_t *new;
1392
1393 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1394 alloc_bytes += PAGE_SIZE;
1395 pmd_populate_kernel(&init_mm, pmd, new);
1396 }
1397
1398 pte = pte_offset_kernel(pmd, vstart);
1399 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1400 if (this_end > vend)
1401 this_end = vend;
1402
1403 while (vstart < this_end) {
1404 pte_val(*pte) = (paddr | pgprot_val(prot));
1405
1406 vstart += PAGE_SIZE;
1407 paddr += PAGE_SIZE;
1408 pte++;
1409 }
1410 }
1411
1412 return alloc_bytes;
1413}
1414
1415extern unsigned int kvmap_linear_patch[1];
1416#endif /* CONFIG_DEBUG_PAGEALLOC */
1417
1418static void __init kpte_set_val(unsigned long index, unsigned long val)
1419{
1420 unsigned long *ptr = kpte_linear_bitmap;
1421
1422 val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1423 ptr += (index / (BITS_PER_LONG / 2));
1424
1425 *ptr |= val;
1426}
1427
1428static const unsigned long kpte_shift_min = 28; /* 256MB */
1429static const unsigned long kpte_shift_max = 34; /* 16GB */
1430static const unsigned long kpte_shift_incr = 3;
1431
1432static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1433 unsigned long shift)
1434{
1435 unsigned long size = (1UL << shift);
1436 unsigned long mask = (size - 1UL);
1437 unsigned long remains = end - start;
1438 unsigned long val;
1439
1440 if (remains < size || (start & mask))
1441 return start;
1442
1443 /* VAL maps:
1444 *
1445 * shift 28 --> kern_linear_pte_xor index 1
1446 * shift 31 --> kern_linear_pte_xor index 2
1447 * shift 34 --> kern_linear_pte_xor index 3
1448 */
1449 val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1450
1451 remains &= ~mask;
1452 if (shift != kpte_shift_max)
1453 remains = size;
1454
1455 while (remains) {
1456 unsigned long index = start >> kpte_shift_min;
1457
1458 kpte_set_val(index, val);
1459
1460 start += 1UL << kpte_shift_min;
1461 remains -= 1UL << kpte_shift_min;
1462 }
1463
1464 return start;
1465}
1466
1467static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1468{
1469 unsigned long smallest_size, smallest_mask;
1470 unsigned long s;
1471
1472 smallest_size = (1UL << kpte_shift_min);
1473 smallest_mask = (smallest_size - 1UL);
1474
1475 while (start < end) {
1476 unsigned long orig_start = start;
1477
1478 for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1479 start = kpte_mark_using_shift(start, end, s);
1480
1481 if (start != orig_start)
1482 break;
1483 }
1484
1485 if (start == orig_start)
1486 start = (start + smallest_size) & ~smallest_mask;
1487 }
1488}
1489
1490static void __init init_kpte_bitmap(void)
1491{
1492 unsigned long i;
1493
1494 for (i = 0; i < pall_ents; i++) {
1495 unsigned long phys_start, phys_end;
1496
1497 phys_start = pall[i].phys_addr;
1498 phys_end = phys_start + pall[i].reg_size;
1499
1500 mark_kpte_bitmap(phys_start, phys_end);
1501 }
1502}
1503
1504static void __init kernel_physical_mapping_init(void)
1505{
1506#ifdef CONFIG_DEBUG_PAGEALLOC
1507 unsigned long i, mem_alloced = 0UL;
1508
1509 for (i = 0; i < pall_ents; i++) {
1510 unsigned long phys_start, phys_end;
1511
1512 phys_start = pall[i].phys_addr;
1513 phys_end = phys_start + pall[i].reg_size;
1514
1515 mem_alloced += kernel_map_range(phys_start, phys_end,
1516 PAGE_KERNEL);
1517 }
1518
1519 printk("Allocated %ld bytes for kernel page tables.\n",
1520 mem_alloced);
1521
1522 kvmap_linear_patch[0] = 0x01000000; /* nop */
1523 flushi(&kvmap_linear_patch[0]);
1524
1525 __flush_tlb_all();
1526#endif
1527}
1528
1529#ifdef CONFIG_DEBUG_PAGEALLOC
1530void kernel_map_pages(struct page *page, int numpages, int enable)
1531{
1532 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1533 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1534
1535 kernel_map_range(phys_start, phys_end,
1536 (enable ? PAGE_KERNEL : __pgprot(0)));
1537
1538 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1539 PAGE_OFFSET + phys_end);
1540
1541 /* we should perform an IPI and flush all tlbs,
1542 * but that can deadlock->flush only current cpu.
1543 */
1544 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1545 PAGE_OFFSET + phys_end);
1546}
1547#endif
1548
1549unsigned long __init find_ecache_flush_span(unsigned long size)
1550{
1551 int i;
1552
1553 for (i = 0; i < pavail_ents; i++) {
1554 if (pavail[i].reg_size >= size)
1555 return pavail[i].phys_addr;
1556 }
1557
1558 return ~0UL;
1559}
1560
1561unsigned long PAGE_OFFSET;
1562EXPORT_SYMBOL(PAGE_OFFSET);
1563
1564static void __init page_offset_shift_patch_one(unsigned int *insn, unsigned long phys_bits)
1565{
1566 unsigned long final_shift;
1567 unsigned int val = *insn;
1568 unsigned int cnt;
1569
1570 /* We are patching in ilog2(max_supported_phys_address), and
1571 * we are doing so in a manner similar to a relocation addend.
1572 * That is, we are adding the shift value to whatever value
1573 * is in the shift instruction count field already.
1574 */
1575 cnt = (val & 0x3f);
1576 val &= ~0x3f;
1577
1578 /* If we are trying to shift >= 64 bits, clear the destination
1579 * register. This can happen when phys_bits ends up being equal
1580 * to MAX_PHYS_ADDRESS_BITS.
1581 */
1582 final_shift = (cnt + (64 - phys_bits));
1583 if (final_shift >= 64) {
1584 unsigned int rd = (val >> 25) & 0x1f;
1585
1586 val = 0x80100000 | (rd << 25);
1587 } else {
1588 val |= final_shift;
1589 }
1590 *insn = val;
1591
1592 __asm__ __volatile__("flush %0"
1593 : /* no outputs */
1594 : "r" (insn));
1595}
1596
1597static void __init page_offset_shift_patch(unsigned long phys_bits)
1598{
1599 extern unsigned int __page_offset_shift_patch;
1600 extern unsigned int __page_offset_shift_patch_end;
1601 unsigned int *p;
1602
1603 p = &__page_offset_shift_patch;
1604 while (p < &__page_offset_shift_patch_end) {
1605 unsigned int *insn = (unsigned int *)(unsigned long)*p;
1606
1607 page_offset_shift_patch_one(insn, phys_bits);
1608
1609 p++;
1610 }
1611}
1612
1613static void __init setup_page_offset(void)
1614{
1615 unsigned long max_phys_bits = 40;
1616
1617 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1618 max_phys_bits = 42;
1619 } else if (tlb_type == hypervisor) {
1620 switch (sun4v_chip_type) {
1621 case SUN4V_CHIP_NIAGARA1:
1622 case SUN4V_CHIP_NIAGARA2:
1623 max_phys_bits = 39;
1624 break;
1625 case SUN4V_CHIP_NIAGARA3:
1626 max_phys_bits = 43;
1627 break;
1628 case SUN4V_CHIP_NIAGARA4:
1629 case SUN4V_CHIP_NIAGARA5:
1630 case SUN4V_CHIP_SPARC64X:
1631 default:
1632 max_phys_bits = 47;
1633 break;
1634 }
1635 }
1636
1637 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1638 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1639 max_phys_bits);
1640 prom_halt();
1641 }
1642
1643 PAGE_OFFSET = PAGE_OFFSET_BY_BITS(max_phys_bits);
1644
1645 pr_info("PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1646 PAGE_OFFSET, max_phys_bits);
1647
1648 page_offset_shift_patch(max_phys_bits);
1649}
1650
1651static void __init tsb_phys_patch(void)
1652{
1653 struct tsb_ldquad_phys_patch_entry *pquad;
1654 struct tsb_phys_patch_entry *p;
1655
1656 pquad = &__tsb_ldquad_phys_patch;
1657 while (pquad < &__tsb_ldquad_phys_patch_end) {
1658 unsigned long addr = pquad->addr;
1659
1660 if (tlb_type == hypervisor)
1661 *(unsigned int *) addr = pquad->sun4v_insn;
1662 else
1663 *(unsigned int *) addr = pquad->sun4u_insn;
1664 wmb();
1665 __asm__ __volatile__("flush %0"
1666 : /* no outputs */
1667 : "r" (addr));
1668
1669 pquad++;
1670 }
1671
1672 p = &__tsb_phys_patch;
1673 while (p < &__tsb_phys_patch_end) {
1674 unsigned long addr = p->addr;
1675
1676 *(unsigned int *) addr = p->insn;
1677 wmb();
1678 __asm__ __volatile__("flush %0"
1679 : /* no outputs */
1680 : "r" (addr));
1681
1682 p++;
1683 }
1684}
1685
1686/* Don't mark as init, we give this to the Hypervisor. */
1687#ifndef CONFIG_DEBUG_PAGEALLOC
1688#define NUM_KTSB_DESCR 2
1689#else
1690#define NUM_KTSB_DESCR 1
1691#endif
1692static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1693extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1694
1695static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1696{
1697 pa >>= KTSB_PHYS_SHIFT;
1698
1699 while (start < end) {
1700 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1701
1702 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1703 __asm__ __volatile__("flush %0" : : "r" (ia));
1704
1705 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1706 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1707
1708 start++;
1709 }
1710}
1711
1712static void ktsb_phys_patch(void)
1713{
1714 extern unsigned int __swapper_tsb_phys_patch;
1715 extern unsigned int __swapper_tsb_phys_patch_end;
1716 unsigned long ktsb_pa;
1717
1718 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1719 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1720 &__swapper_tsb_phys_patch_end, ktsb_pa);
1721#ifndef CONFIG_DEBUG_PAGEALLOC
1722 {
1723 extern unsigned int __swapper_4m_tsb_phys_patch;
1724 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1725 ktsb_pa = (kern_base +
1726 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1727 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1728 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1729 }
1730#endif
1731}
1732
1733static void __init sun4v_ktsb_init(void)
1734{
1735 unsigned long ktsb_pa;
1736
1737 /* First KTSB for PAGE_SIZE mappings. */
1738 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1739
1740 switch (PAGE_SIZE) {
1741 case 8 * 1024:
1742 default:
1743 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1744 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1745 break;
1746
1747 case 64 * 1024:
1748 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1749 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1750 break;
1751
1752 case 512 * 1024:
1753 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1754 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1755 break;
1756
1757 case 4 * 1024 * 1024:
1758 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1759 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1760 break;
1761 }
1762
1763 ktsb_descr[0].assoc = 1;
1764 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1765 ktsb_descr[0].ctx_idx = 0;
1766 ktsb_descr[0].tsb_base = ktsb_pa;
1767 ktsb_descr[0].resv = 0;
1768
1769#ifndef CONFIG_DEBUG_PAGEALLOC
1770 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
1771 ktsb_pa = (kern_base +
1772 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1773
1774 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1775 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1776 HV_PGSZ_MASK_256MB |
1777 HV_PGSZ_MASK_2GB |
1778 HV_PGSZ_MASK_16GB) &
1779 cpu_pgsz_mask);
1780 ktsb_descr[1].assoc = 1;
1781 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1782 ktsb_descr[1].ctx_idx = 0;
1783 ktsb_descr[1].tsb_base = ktsb_pa;
1784 ktsb_descr[1].resv = 0;
1785#endif
1786}
1787
1788void sun4v_ktsb_register(void)
1789{
1790 unsigned long pa, ret;
1791
1792 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1793
1794 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1795 if (ret != 0) {
1796 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1797 "errors with %lx\n", pa, ret);
1798 prom_halt();
1799 }
1800}
1801
1802static void __init sun4u_linear_pte_xor_finalize(void)
1803{
1804#ifndef CONFIG_DEBUG_PAGEALLOC
1805 /* This is where we would add Panther support for
1806 * 32MB and 256MB pages.
1807 */
1808#endif
1809}
1810
1811static void __init sun4v_linear_pte_xor_finalize(void)
1812{
1813#ifndef CONFIG_DEBUG_PAGEALLOC
1814 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1815 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1816 PAGE_OFFSET;
1817 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1818 _PAGE_P_4V | _PAGE_W_4V);
1819 } else {
1820 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1821 }
1822
1823 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1824 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1825 PAGE_OFFSET;
1826 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1827 _PAGE_P_4V | _PAGE_W_4V);
1828 } else {
1829 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1830 }
1831
1832 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1833 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1834 PAGE_OFFSET;
1835 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1836 _PAGE_P_4V | _PAGE_W_4V);
1837 } else {
1838 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1839 }
1840#endif
1841}
1842
1843/* paging_init() sets up the page tables */
1844
1845static unsigned long last_valid_pfn;
1846pgd_t swapper_pg_dir[PTRS_PER_PGD];
1847
1848static void sun4u_pgprot_init(void);
1849static void sun4v_pgprot_init(void);
1850
1851void __init paging_init(void)
1852{
1853 unsigned long end_pfn, shift, phys_base;
1854 unsigned long real_end, i;
1855 int node;
1856
1857 setup_page_offset();
1858
1859 /* These build time checkes make sure that the dcache_dirty_cpu()
1860 * page->flags usage will work.
1861 *
1862 * When a page gets marked as dcache-dirty, we store the
1863 * cpu number starting at bit 32 in the page->flags. Also,
1864 * functions like clear_dcache_dirty_cpu use the cpu mask
1865 * in 13-bit signed-immediate instruction fields.
1866 */
1867
1868 /*
1869 * Page flags must not reach into upper 32 bits that are used
1870 * for the cpu number
1871 */
1872 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1873
1874 /*
1875 * The bit fields placed in the high range must not reach below
1876 * the 32 bit boundary. Otherwise we cannot place the cpu field
1877 * at the 32 bit boundary.
1878 */
1879 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1880 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1881
1882 BUILD_BUG_ON(NR_CPUS > 4096);
1883
1884 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
1885 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1886
1887 /* Invalidate both kernel TSBs. */
1888 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1889#ifndef CONFIG_DEBUG_PAGEALLOC
1890 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1891#endif
1892
1893 if (tlb_type == hypervisor)
1894 sun4v_pgprot_init();
1895 else
1896 sun4u_pgprot_init();
1897
1898 if (tlb_type == cheetah_plus ||
1899 tlb_type == hypervisor) {
1900 tsb_phys_patch();
1901 ktsb_phys_patch();
1902 }
1903
1904 if (tlb_type == hypervisor)
1905 sun4v_patch_tlb_handlers();
1906
1907 /* Find available physical memory...
1908 *
1909 * Read it twice in order to work around a bug in openfirmware.
1910 * The call to grab this table itself can cause openfirmware to
1911 * allocate memory, which in turn can take away some space from
1912 * the list of available memory. Reading it twice makes sure
1913 * we really do get the final value.
1914 */
1915 read_obp_translations();
1916 read_obp_memory("reg", &pall[0], &pall_ents);
1917 read_obp_memory("available", &pavail[0], &pavail_ents);
1918 read_obp_memory("available", &pavail[0], &pavail_ents);
1919
1920 phys_base = 0xffffffffffffffffUL;
1921 for (i = 0; i < pavail_ents; i++) {
1922 phys_base = min(phys_base, pavail[i].phys_addr);
1923 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1924 }
1925
1926 memblock_reserve(kern_base, kern_size);
1927
1928 find_ramdisk(phys_base);
1929
1930 memblock_enforce_memory_limit(cmdline_memory_size);
1931
1932 memblock_allow_resize();
1933 memblock_dump_all();
1934
1935 set_bit(0, mmu_context_bmap);
1936
1937 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1938
1939 real_end = (unsigned long)_end;
1940 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
1941 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1942 num_kernel_image_mappings);
1943
1944 /* Set kernel pgd to upper alias so physical page computations
1945 * work.
1946 */
1947 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1948
1949 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1950
1951 /* Now can init the kernel/bad page tables. */
1952 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1953 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1954
1955 inherit_prom_mappings();
1956
1957 init_kpte_bitmap();
1958
1959 /* Ok, we can use our TLB miss and window trap handlers safely. */
1960 setup_tba();
1961
1962 __flush_tlb_all();
1963
1964 prom_build_devicetree();
1965 of_populate_present_mask();
1966#ifndef CONFIG_SMP
1967 of_fill_in_cpu_data();
1968#endif
1969
1970 if (tlb_type == hypervisor) {
1971 sun4v_mdesc_init();
1972 mdesc_populate_present_mask(cpu_all_mask);
1973#ifndef CONFIG_SMP
1974 mdesc_fill_in_cpu_data(cpu_all_mask);
1975#endif
1976 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
1977
1978 sun4v_linear_pte_xor_finalize();
1979
1980 sun4v_ktsb_init();
1981 sun4v_ktsb_register();
1982 } else {
1983 unsigned long impl, ver;
1984
1985 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1986 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
1987
1988 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
1989 impl = ((ver >> 32) & 0xffff);
1990 if (impl == PANTHER_IMPL)
1991 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
1992 HV_PGSZ_MASK_256MB);
1993
1994 sun4u_linear_pte_xor_finalize();
1995 }
1996
1997 /* Flush the TLBs and the 4M TSB so that the updated linear
1998 * pte XOR settings are realized for all mappings.
1999 */
2000 __flush_tlb_all();
2001#ifndef CONFIG_DEBUG_PAGEALLOC
2002 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2003#endif
2004 __flush_tlb_all();
2005
2006 /* Setup bootmem... */
2007 last_valid_pfn = end_pfn = bootmem_init(phys_base);
2008
2009 /* Once the OF device tree and MDESC have been setup, we know
2010 * the list of possible cpus. Therefore we can allocate the
2011 * IRQ stacks.
2012 */
2013 for_each_possible_cpu(i) {
2014 node = cpu_to_node(i);
2015
2016 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2017 THREAD_SIZE,
2018 THREAD_SIZE, 0);
2019 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2020 THREAD_SIZE,
2021 THREAD_SIZE, 0);
2022 }
2023
2024 kernel_physical_mapping_init();
2025
2026 {
2027 unsigned long max_zone_pfns[MAX_NR_ZONES];
2028
2029 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2030
2031 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2032
2033 free_area_init_nodes(max_zone_pfns);
2034 }
2035
2036 printk("Booting Linux...\n");
2037}
2038
2039int page_in_phys_avail(unsigned long paddr)
2040{
2041 int i;
2042
2043 paddr &= PAGE_MASK;
2044
2045 for (i = 0; i < pavail_ents; i++) {
2046 unsigned long start, end;
2047
2048 start = pavail[i].phys_addr;
2049 end = start + pavail[i].reg_size;
2050
2051 if (paddr >= start && paddr < end)
2052 return 1;
2053 }
2054 if (paddr >= kern_base && paddr < (kern_base + kern_size))
2055 return 1;
2056#ifdef CONFIG_BLK_DEV_INITRD
2057 if (paddr >= __pa(initrd_start) &&
2058 paddr < __pa(PAGE_ALIGN(initrd_end)))
2059 return 1;
2060#endif
2061
2062 return 0;
2063}
2064
2065static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
2066static int pavail_rescan_ents __initdata;
2067
2068/* Certain OBP calls, such as fetching "available" properties, can
2069 * claim physical memory. So, along with initializing the valid
2070 * address bitmap, what we do here is refetch the physical available
2071 * memory list again, and make sure it provides at least as much
2072 * memory as 'pavail' does.
2073 */
2074static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
2075{
2076 int i;
2077
2078 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
2079
2080 for (i = 0; i < pavail_ents; i++) {
2081 unsigned long old_start, old_end;
2082
2083 old_start = pavail[i].phys_addr;
2084 old_end = old_start + pavail[i].reg_size;
2085 while (old_start < old_end) {
2086 int n;
2087
2088 for (n = 0; n < pavail_rescan_ents; n++) {
2089 unsigned long new_start, new_end;
2090
2091 new_start = pavail_rescan[n].phys_addr;
2092 new_end = new_start +
2093 pavail_rescan[n].reg_size;
2094
2095 if (new_start <= old_start &&
2096 new_end >= (old_start + PAGE_SIZE)) {
2097 set_bit(old_start >> ILOG2_4MB, bitmap);
2098 goto do_next_page;
2099 }
2100 }
2101
2102 prom_printf("mem_init: Lost memory in pavail\n");
2103 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
2104 pavail[i].phys_addr,
2105 pavail[i].reg_size);
2106 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2107 pavail_rescan[i].phys_addr,
2108 pavail_rescan[i].reg_size);
2109 prom_printf("mem_init: Cannot continue, aborting.\n");
2110 prom_halt();
2111
2112 do_next_page:
2113 old_start += PAGE_SIZE;
2114 }
2115 }
2116}
2117
2118static void __init patch_tlb_miss_handler_bitmap(void)
2119{
2120 extern unsigned int valid_addr_bitmap_insn[];
2121 extern unsigned int valid_addr_bitmap_patch[];
2122
2123 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2124 mb();
2125 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2126 flushi(&valid_addr_bitmap_insn[0]);
2127}
2128
2129static void __init register_page_bootmem_info(void)
2130{
2131#ifdef CONFIG_NEED_MULTIPLE_NODES
2132 int i;
2133
2134 for_each_online_node(i)
2135 if (NODE_DATA(i)->node_spanned_pages)
2136 register_page_bootmem_info_node(NODE_DATA(i));
2137#endif
2138}
2139void __init mem_init(void)
2140{
2141 unsigned long addr, last;
2142
2143 addr = PAGE_OFFSET + kern_base;
2144 last = PAGE_ALIGN(kern_size) + addr;
2145 while (addr < last) {
2146 set_bit(__pa(addr) >> ILOG2_4MB, sparc64_valid_addr_bitmap);
2147 addr += PAGE_SIZE;
2148 }
2149
2150 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2151 patch_tlb_miss_handler_bitmap();
2152
2153 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2154
2155 register_page_bootmem_info();
2156 free_all_bootmem();
2157
2158 /*
2159 * Set up the zero page, mark it reserved, so that page count
2160 * is not manipulated when freeing the page from user ptes.
2161 */
2162 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2163 if (mem_map_zero == NULL) {
2164 prom_printf("paging_init: Cannot alloc zero page.\n");
2165 prom_halt();
2166 }
2167 mark_page_reserved(mem_map_zero);
2168
2169 mem_init_print_info(NULL);
2170
2171 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2172 cheetah_ecache_flush_init();
2173}
2174
2175void free_initmem(void)
2176{
2177 unsigned long addr, initend;
2178 int do_free = 1;
2179
2180 /* If the physical memory maps were trimmed by kernel command
2181 * line options, don't even try freeing this initmem stuff up.
2182 * The kernel image could have been in the trimmed out region
2183 * and if so the freeing below will free invalid page structs.
2184 */
2185 if (cmdline_memory_size)
2186 do_free = 0;
2187
2188 /*
2189 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2190 */
2191 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2192 initend = (unsigned long)(__init_end) & PAGE_MASK;
2193 for (; addr < initend; addr += PAGE_SIZE) {
2194 unsigned long page;
2195
2196 page = (addr +
2197 ((unsigned long) __va(kern_base)) -
2198 ((unsigned long) KERNBASE));
2199 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2200
2201 if (do_free)
2202 free_reserved_page(virt_to_page(page));
2203 }
2204}
2205
2206#ifdef CONFIG_BLK_DEV_INITRD
2207void free_initrd_mem(unsigned long start, unsigned long end)
2208{
2209 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2210 "initrd");
2211}
2212#endif
2213
2214#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2215#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2216#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2217#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2218#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2219#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2220
2221pgprot_t PAGE_KERNEL __read_mostly;
2222EXPORT_SYMBOL(PAGE_KERNEL);
2223
2224pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2225pgprot_t PAGE_COPY __read_mostly;
2226
2227pgprot_t PAGE_SHARED __read_mostly;
2228EXPORT_SYMBOL(PAGE_SHARED);
2229
2230unsigned long pg_iobits __read_mostly;
2231
2232unsigned long _PAGE_IE __read_mostly;
2233EXPORT_SYMBOL(_PAGE_IE);
2234
2235unsigned long _PAGE_E __read_mostly;
2236EXPORT_SYMBOL(_PAGE_E);
2237
2238unsigned long _PAGE_CACHE __read_mostly;
2239EXPORT_SYMBOL(_PAGE_CACHE);
2240
2241#ifdef CONFIG_SPARSEMEM_VMEMMAP
2242unsigned long vmemmap_table[VMEMMAP_SIZE];
2243
2244static long __meminitdata addr_start, addr_end;
2245static int __meminitdata node_start;
2246
2247int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2248 int node)
2249{
2250 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2251 unsigned long phys_end = (vend - VMEMMAP_BASE);
2252 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2253 unsigned long end = VMEMMAP_ALIGN(phys_end);
2254 unsigned long pte_base;
2255
2256 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2257 _PAGE_CP_4U | _PAGE_CV_4U |
2258 _PAGE_P_4U | _PAGE_W_4U);
2259 if (tlb_type == hypervisor)
2260 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2261 _PAGE_CP_4V | _PAGE_CV_4V |
2262 _PAGE_P_4V | _PAGE_W_4V);
2263
2264 for (; addr < end; addr += VMEMMAP_CHUNK) {
2265 unsigned long *vmem_pp =
2266 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2267 void *block;
2268
2269 if (!(*vmem_pp & _PAGE_VALID)) {
2270 block = vmemmap_alloc_block(1UL << ILOG2_4MB, node);
2271 if (!block)
2272 return -ENOMEM;
2273
2274 *vmem_pp = pte_base | __pa(block);
2275
2276 /* check to see if we have contiguous blocks */
2277 if (addr_end != addr || node_start != node) {
2278 if (addr_start)
2279 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2280 addr_start, addr_end-1, node_start);
2281 addr_start = addr;
2282 node_start = node;
2283 }
2284 addr_end = addr + VMEMMAP_CHUNK;
2285 }
2286 }
2287 return 0;
2288}
2289
2290void __meminit vmemmap_populate_print_last(void)
2291{
2292 if (addr_start) {
2293 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2294 addr_start, addr_end-1, node_start);
2295 addr_start = 0;
2296 addr_end = 0;
2297 node_start = 0;
2298 }
2299}
2300
2301void vmemmap_free(unsigned long start, unsigned long end)
2302{
2303}
2304
2305#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2306
2307static void prot_init_common(unsigned long page_none,
2308 unsigned long page_shared,
2309 unsigned long page_copy,
2310 unsigned long page_readonly,
2311 unsigned long page_exec_bit)
2312{
2313 PAGE_COPY = __pgprot(page_copy);
2314 PAGE_SHARED = __pgprot(page_shared);
2315
2316 protection_map[0x0] = __pgprot(page_none);
2317 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2318 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2319 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2320 protection_map[0x4] = __pgprot(page_readonly);
2321 protection_map[0x5] = __pgprot(page_readonly);
2322 protection_map[0x6] = __pgprot(page_copy);
2323 protection_map[0x7] = __pgprot(page_copy);
2324 protection_map[0x8] = __pgprot(page_none);
2325 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2326 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2327 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2328 protection_map[0xc] = __pgprot(page_readonly);
2329 protection_map[0xd] = __pgprot(page_readonly);
2330 protection_map[0xe] = __pgprot(page_shared);
2331 protection_map[0xf] = __pgprot(page_shared);
2332}
2333
2334static void __init sun4u_pgprot_init(void)
2335{
2336 unsigned long page_none, page_shared, page_copy, page_readonly;
2337 unsigned long page_exec_bit;
2338 int i;
2339
2340 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2341 _PAGE_CACHE_4U | _PAGE_P_4U |
2342 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2343 _PAGE_EXEC_4U);
2344 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2345 _PAGE_CACHE_4U | _PAGE_P_4U |
2346 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2347 _PAGE_EXEC_4U | _PAGE_L_4U);
2348
2349 _PAGE_IE = _PAGE_IE_4U;
2350 _PAGE_E = _PAGE_E_4U;
2351 _PAGE_CACHE = _PAGE_CACHE_4U;
2352
2353 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2354 __ACCESS_BITS_4U | _PAGE_E_4U);
2355
2356#ifdef CONFIG_DEBUG_PAGEALLOC
2357 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2358#else
2359 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2360 PAGE_OFFSET;
2361#endif
2362 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2363 _PAGE_P_4U | _PAGE_W_4U);
2364
2365 for (i = 1; i < 4; i++)
2366 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2367
2368 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2369 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2370 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2371
2372
2373 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2374 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2375 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2376 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2377 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2378 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2379 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2380
2381 page_exec_bit = _PAGE_EXEC_4U;
2382
2383 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2384 page_exec_bit);
2385}
2386
2387static void __init sun4v_pgprot_init(void)
2388{
2389 unsigned long page_none, page_shared, page_copy, page_readonly;
2390 unsigned long page_exec_bit;
2391 int i;
2392
2393 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2394 _PAGE_CACHE_4V | _PAGE_P_4V |
2395 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2396 _PAGE_EXEC_4V);
2397 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2398
2399 _PAGE_IE = _PAGE_IE_4V;
2400 _PAGE_E = _PAGE_E_4V;
2401 _PAGE_CACHE = _PAGE_CACHE_4V;
2402
2403#ifdef CONFIG_DEBUG_PAGEALLOC
2404 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2405#else
2406 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2407 PAGE_OFFSET;
2408#endif
2409 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2410 _PAGE_P_4V | _PAGE_W_4V);
2411
2412 for (i = 1; i < 4; i++)
2413 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2414
2415 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2416 __ACCESS_BITS_4V | _PAGE_E_4V);
2417
2418 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2419 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2420 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2421 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2422
2423 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2424 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2425 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2426 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2427 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2428 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2429 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2430
2431 page_exec_bit = _PAGE_EXEC_4V;
2432
2433 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2434 page_exec_bit);
2435}
2436
2437unsigned long pte_sz_bits(unsigned long sz)
2438{
2439 if (tlb_type == hypervisor) {
2440 switch (sz) {
2441 case 8 * 1024:
2442 default:
2443 return _PAGE_SZ8K_4V;
2444 case 64 * 1024:
2445 return _PAGE_SZ64K_4V;
2446 case 512 * 1024:
2447 return _PAGE_SZ512K_4V;
2448 case 4 * 1024 * 1024:
2449 return _PAGE_SZ4MB_4V;
2450 }
2451 } else {
2452 switch (sz) {
2453 case 8 * 1024:
2454 default:
2455 return _PAGE_SZ8K_4U;
2456 case 64 * 1024:
2457 return _PAGE_SZ64K_4U;
2458 case 512 * 1024:
2459 return _PAGE_SZ512K_4U;
2460 case 4 * 1024 * 1024:
2461 return _PAGE_SZ4MB_4U;
2462 }
2463 }
2464}
2465
2466pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2467{
2468 pte_t pte;
2469
2470 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2471 pte_val(pte) |= (((unsigned long)space) << 32);
2472 pte_val(pte) |= pte_sz_bits(page_size);
2473
2474 return pte;
2475}
2476
2477static unsigned long kern_large_tte(unsigned long paddr)
2478{
2479 unsigned long val;
2480
2481 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2482 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2483 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2484 if (tlb_type == hypervisor)
2485 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2486 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2487 _PAGE_EXEC_4V | _PAGE_W_4V);
2488
2489 return val | paddr;
2490}
2491
2492/* If not locked, zap it. */
2493void __flush_tlb_all(void)
2494{
2495 unsigned long pstate;
2496 int i;
2497
2498 __asm__ __volatile__("flushw\n\t"
2499 "rdpr %%pstate, %0\n\t"
2500 "wrpr %0, %1, %%pstate"
2501 : "=r" (pstate)
2502 : "i" (PSTATE_IE));
2503 if (tlb_type == hypervisor) {
2504 sun4v_mmu_demap_all();
2505 } else if (tlb_type == spitfire) {
2506 for (i = 0; i < 64; i++) {
2507 /* Spitfire Errata #32 workaround */
2508 /* NOTE: Always runs on spitfire, so no
2509 * cheetah+ page size encodings.
2510 */
2511 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2512 "flush %%g6"
2513 : /* No outputs */
2514 : "r" (0),
2515 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2516
2517 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2518 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2519 "membar #Sync"
2520 : /* no outputs */
2521 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2522 spitfire_put_dtlb_data(i, 0x0UL);
2523 }
2524
2525 /* Spitfire Errata #32 workaround */
2526 /* NOTE: Always runs on spitfire, so no
2527 * cheetah+ page size encodings.
2528 */
2529 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2530 "flush %%g6"
2531 : /* No outputs */
2532 : "r" (0),
2533 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2534
2535 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2536 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2537 "membar #Sync"
2538 : /* no outputs */
2539 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2540 spitfire_put_itlb_data(i, 0x0UL);
2541 }
2542 }
2543 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2544 cheetah_flush_dtlb_all();
2545 cheetah_flush_itlb_all();
2546 }
2547 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2548 : : "r" (pstate));
2549}
2550
2551pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2552 unsigned long address)
2553{
2554 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2555 __GFP_REPEAT | __GFP_ZERO);
2556 pte_t *pte = NULL;
2557
2558 if (page)
2559 pte = (pte_t *) page_address(page);
2560
2561 return pte;
2562}
2563
2564pgtable_t pte_alloc_one(struct mm_struct *mm,
2565 unsigned long address)
2566{
2567 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2568 __GFP_REPEAT | __GFP_ZERO);
2569 if (!page)
2570 return NULL;
2571 if (!pgtable_page_ctor(page)) {
2572 free_hot_cold_page(page, 0);
2573 return NULL;
2574 }
2575 return (pte_t *) page_address(page);
2576}
2577
2578void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2579{
2580 free_page((unsigned long)pte);
2581}
2582
2583static void __pte_free(pgtable_t pte)
2584{
2585 struct page *page = virt_to_page(pte);
2586
2587 pgtable_page_dtor(page);
2588 __free_page(page);
2589}
2590
2591void pte_free(struct mm_struct *mm, pgtable_t pte)
2592{
2593 __pte_free(pte);
2594}
2595
2596void pgtable_free(void *table, bool is_page)
2597{
2598 if (is_page)
2599 __pte_free(table);
2600 else
2601 kmem_cache_free(pgtable_cache, table);
2602}
2603
2604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2605void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2606 pmd_t *pmd)
2607{
2608 unsigned long pte, flags;
2609 struct mm_struct *mm;
2610 pmd_t entry = *pmd;
2611
2612 if (!pmd_large(entry) || !pmd_young(entry))
2613 return;
2614
2615 pte = pmd_val(entry);
2616
2617 /* We are fabricating 8MB pages using 4MB real hw pages. */
2618 pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2619
2620 mm = vma->vm_mm;
2621
2622 spin_lock_irqsave(&mm->context.lock, flags);
2623
2624 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2625 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2626 addr, pte);
2627
2628 spin_unlock_irqrestore(&mm->context.lock, flags);
2629}
2630#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2631
2632#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2633static void context_reload(void *__data)
2634{
2635 struct mm_struct *mm = __data;
2636
2637 if (mm == current->mm)
2638 load_secondary_context(mm);
2639}
2640
2641void hugetlb_setup(struct pt_regs *regs)
2642{
2643 struct mm_struct *mm = current->mm;
2644 struct tsb_config *tp;
2645
2646 if (in_atomic() || !mm) {
2647 const struct exception_table_entry *entry;
2648
2649 entry = search_exception_tables(regs->tpc);
2650 if (entry) {
2651 regs->tpc = entry->fixup;
2652 regs->tnpc = regs->tpc + 4;
2653 return;
2654 }
2655 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2656 die_if_kernel("HugeTSB in atomic", regs);
2657 }
2658
2659 tp = &mm->context.tsb_block[MM_TSB_HUGE];
2660 if (likely(tp->tsb == NULL))
2661 tsb_grow(mm, MM_TSB_HUGE, 0);
2662
2663 tsb_context_switch(mm);
2664 smp_tsb_sync(mm);
2665
2666 /* On UltraSPARC-III+ and later, configure the second half of
2667 * the Data-TLB for huge pages.
2668 */
2669 if (tlb_type == cheetah_plus) {
2670 unsigned long ctx;
2671
2672 spin_lock(&ctx_alloc_lock);
2673 ctx = mm->context.sparc64_ctx_val;
2674 ctx &= ~CTX_PGSZ_MASK;
2675 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2676 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2677
2678 if (ctx != mm->context.sparc64_ctx_val) {
2679 /* When changing the page size fields, we
2680 * must perform a context flush so that no
2681 * stale entries match. This flush must
2682 * occur with the original context register
2683 * settings.
2684 */
2685 do_flush_tlb_mm(mm);
2686
2687 /* Reload the context register of all processors
2688 * also executing in this address space.
2689 */
2690 mm->context.sparc64_ctx_val = ctx;
2691 on_each_cpu(context_reload, mm, 0);
2692 }
2693 spin_unlock(&ctx_alloc_lock);
2694 }
2695}
2696#endif