Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  arch/sparc64/mm/init.c
   3 *
   4 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   5 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   6 */
   7 
   8#include <linux/module.h>
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/string.h>
  12#include <linux/init.h>
  13#include <linux/bootmem.h>
  14#include <linux/mm.h>
  15#include <linux/hugetlb.h>
  16#include <linux/initrd.h>
  17#include <linux/swap.h>
  18#include <linux/pagemap.h>
  19#include <linux/poison.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/kprobes.h>
  23#include <linux/cache.h>
  24#include <linux/sort.h>
  25#include <linux/percpu.h>
  26#include <linux/memblock.h>
  27#include <linux/mmzone.h>
  28#include <linux/gfp.h>
  29
  30#include <asm/head.h>
  31#include <asm/system.h>
  32#include <asm/page.h>
  33#include <asm/pgalloc.h>
  34#include <asm/pgtable.h>
  35#include <asm/oplib.h>
  36#include <asm/iommu.h>
  37#include <asm/io.h>
  38#include <asm/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/tlbflush.h>
  41#include <asm/dma.h>
  42#include <asm/starfire.h>
  43#include <asm/tlb.h>
  44#include <asm/spitfire.h>
  45#include <asm/sections.h>
  46#include <asm/tsb.h>
  47#include <asm/hypervisor.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/cpudata.h>
  51#include <asm/irq.h>
  52
  53#include "init_64.h"
  54
  55unsigned long kern_linear_pte_xor[2] __read_mostly;
  56
  57/* A bitmap, one bit for every 256MB of physical memory.  If the bit
  58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60 */
  61unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  62
  63#ifndef CONFIG_DEBUG_PAGEALLOC
  64/* A special kernel TSB for 4MB and 256MB linear mappings.
  65 * Space is allocated for this right after the trap table
  66 * in arch/sparc64/kernel/head.S
  67 */
  68extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  69#endif
  70
 
 
  71#define MAX_BANKS	32
  72
  73static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
  74static int pavail_ents __devinitdata;
  75
  76static int cmp_p64(const void *a, const void *b)
  77{
  78	const struct linux_prom64_registers *x = a, *y = b;
  79
  80	if (x->phys_addr > y->phys_addr)
  81		return 1;
  82	if (x->phys_addr < y->phys_addr)
  83		return -1;
  84	return 0;
  85}
  86
  87static void __init read_obp_memory(const char *property,
  88				   struct linux_prom64_registers *regs,
  89				   int *num_ents)
  90{
  91	phandle node = prom_finddevice("/memory");
  92	int prop_size = prom_getproplen(node, property);
  93	int ents, ret, i;
  94
  95	ents = prop_size / sizeof(struct linux_prom64_registers);
  96	if (ents > MAX_BANKS) {
  97		prom_printf("The machine has more %s property entries than "
  98			    "this kernel can support (%d).\n",
  99			    property, MAX_BANKS);
 100		prom_halt();
 101	}
 102
 103	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 104	if (ret == -1) {
 105		prom_printf("Couldn't get %s property from /memory.\n");
 
 106		prom_halt();
 107	}
 108
 109	/* Sanitize what we got from the firmware, by page aligning
 110	 * everything.
 111	 */
 112	for (i = 0; i < ents; i++) {
 113		unsigned long base, size;
 114
 115		base = regs[i].phys_addr;
 116		size = regs[i].reg_size;
 117
 118		size &= PAGE_MASK;
 119		if (base & ~PAGE_MASK) {
 120			unsigned long new_base = PAGE_ALIGN(base);
 121
 122			size -= new_base - base;
 123			if ((long) size < 0L)
 124				size = 0UL;
 125			base = new_base;
 126		}
 127		if (size == 0UL) {
 128			/* If it is empty, simply get rid of it.
 129			 * This simplifies the logic of the other
 130			 * functions that process these arrays.
 131			 */
 132			memmove(&regs[i], &regs[i + 1],
 133				(ents - i - 1) * sizeof(regs[0]));
 134			i--;
 135			ents--;
 136			continue;
 137		}
 138		regs[i].phys_addr = base;
 139		regs[i].reg_size = size;
 140	}
 141
 142	*num_ents = ents;
 143
 144	sort(regs, ents, sizeof(struct linux_prom64_registers),
 145	     cmp_p64, NULL);
 146}
 147
 148unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
 149					sizeof(unsigned long)];
 150EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
 151
 152/* Kernel physical address base and size in bytes.  */
 153unsigned long kern_base __read_mostly;
 154unsigned long kern_size __read_mostly;
 155
 156/* Initial ramdisk setup */
 157extern unsigned long sparc_ramdisk_image64;
 158extern unsigned int sparc_ramdisk_image;
 159extern unsigned int sparc_ramdisk_size;
 160
 161struct page *mem_map_zero __read_mostly;
 162EXPORT_SYMBOL(mem_map_zero);
 163
 164unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 165
 166unsigned long sparc64_kern_pri_context __read_mostly;
 167unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 168unsigned long sparc64_kern_sec_context __read_mostly;
 169
 170int num_kernel_image_mappings;
 171
 172#ifdef CONFIG_DEBUG_DCFLUSH
 173atomic_t dcpage_flushes = ATOMIC_INIT(0);
 174#ifdef CONFIG_SMP
 175atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 176#endif
 177#endif
 178
 179inline void flush_dcache_page_impl(struct page *page)
 180{
 181	BUG_ON(tlb_type == hypervisor);
 182#ifdef CONFIG_DEBUG_DCFLUSH
 183	atomic_inc(&dcpage_flushes);
 184#endif
 185
 186#ifdef DCACHE_ALIASING_POSSIBLE
 187	__flush_dcache_page(page_address(page),
 188			    ((tlb_type == spitfire) &&
 189			     page_mapping(page) != NULL));
 190#else
 191	if (page_mapping(page) != NULL &&
 192	    tlb_type == spitfire)
 193		__flush_icache_page(__pa(page_address(page)));
 194#endif
 195}
 196
 197#define PG_dcache_dirty		PG_arch_1
 198#define PG_dcache_cpu_shift	32UL
 199#define PG_dcache_cpu_mask	\
 200	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 201
 202#define dcache_dirty_cpu(page) \
 203	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 204
 205static inline void set_dcache_dirty(struct page *page, int this_cpu)
 206{
 207	unsigned long mask = this_cpu;
 208	unsigned long non_cpu_bits;
 209
 210	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 211	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 212
 213	__asm__ __volatile__("1:\n\t"
 214			     "ldx	[%2], %%g7\n\t"
 215			     "and	%%g7, %1, %%g1\n\t"
 216			     "or	%%g1, %0, %%g1\n\t"
 217			     "casx	[%2], %%g7, %%g1\n\t"
 218			     "cmp	%%g7, %%g1\n\t"
 219			     "bne,pn	%%xcc, 1b\n\t"
 220			     " nop"
 221			     : /* no outputs */
 222			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 223			     : "g1", "g7");
 224}
 225
 226static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 227{
 228	unsigned long mask = (1UL << PG_dcache_dirty);
 229
 230	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 231			     "1:\n\t"
 232			     "ldx	[%2], %%g7\n\t"
 233			     "srlx	%%g7, %4, %%g1\n\t"
 234			     "and	%%g1, %3, %%g1\n\t"
 235			     "cmp	%%g1, %0\n\t"
 236			     "bne,pn	%%icc, 2f\n\t"
 237			     " andn	%%g7, %1, %%g1\n\t"
 238			     "casx	[%2], %%g7, %%g1\n\t"
 239			     "cmp	%%g7, %%g1\n\t"
 240			     "bne,pn	%%xcc, 1b\n\t"
 241			     " nop\n"
 242			     "2:"
 243			     : /* no outputs */
 244			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 245			       "i" (PG_dcache_cpu_mask),
 246			       "i" (PG_dcache_cpu_shift)
 247			     : "g1", "g7");
 248}
 249
 250static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 251{
 252	unsigned long tsb_addr = (unsigned long) ent;
 253
 254	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 255		tsb_addr = __pa(tsb_addr);
 256
 257	__tsb_insert(tsb_addr, tag, pte);
 258}
 259
 260unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 261unsigned long _PAGE_SZBITS __read_mostly;
 262
 263static void flush_dcache(unsigned long pfn)
 264{
 265	struct page *page;
 266
 267	page = pfn_to_page(pfn);
 268	if (page) {
 269		unsigned long pg_flags;
 270
 271		pg_flags = page->flags;
 272		if (pg_flags & (1UL << PG_dcache_dirty)) {
 273			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 274				   PG_dcache_cpu_mask);
 275			int this_cpu = get_cpu();
 276
 277			/* This is just to optimize away some function calls
 278			 * in the SMP case.
 279			 */
 280			if (cpu == this_cpu)
 281				flush_dcache_page_impl(page);
 282			else
 283				smp_flush_dcache_page_impl(page, cpu);
 284
 285			clear_dcache_dirty_cpu(page, cpu);
 286
 287			put_cpu();
 288		}
 289	}
 290}
 291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 293{
 294	struct mm_struct *mm;
 295	struct tsb *tsb;
 296	unsigned long tag, flags;
 297	unsigned long tsb_index, tsb_hash_shift;
 298	pte_t pte = *ptep;
 299
 300	if (tlb_type != hypervisor) {
 301		unsigned long pfn = pte_pfn(pte);
 302
 303		if (pfn_valid(pfn))
 304			flush_dcache(pfn);
 305	}
 306
 307	mm = vma->vm_mm;
 308
 309	tsb_index = MM_TSB_BASE;
 310	tsb_hash_shift = PAGE_SHIFT;
 311
 312	spin_lock_irqsave(&mm->context.lock, flags);
 313
 314#ifdef CONFIG_HUGETLB_PAGE
 315	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
 316		if ((tlb_type == hypervisor &&
 317		     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
 318		    (tlb_type != hypervisor &&
 319		     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
 320			tsb_index = MM_TSB_HUGE;
 321			tsb_hash_shift = HPAGE_SHIFT;
 322		}
 323	}
 324#endif
 325
 326	tsb = mm->context.tsb_block[tsb_index].tsb;
 327	tsb += ((address >> tsb_hash_shift) &
 328		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 329	tag = (address >> 22UL);
 330	tsb_insert(tsb, tag, pte_val(pte));
 331
 332	spin_unlock_irqrestore(&mm->context.lock, flags);
 333}
 334
 335void flush_dcache_page(struct page *page)
 336{
 337	struct address_space *mapping;
 338	int this_cpu;
 339
 340	if (tlb_type == hypervisor)
 341		return;
 342
 343	/* Do not bother with the expensive D-cache flush if it
 344	 * is merely the zero page.  The 'bigcore' testcase in GDB
 345	 * causes this case to run millions of times.
 346	 */
 347	if (page == ZERO_PAGE(0))
 348		return;
 349
 350	this_cpu = get_cpu();
 351
 352	mapping = page_mapping(page);
 353	if (mapping && !mapping_mapped(mapping)) {
 354		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 355		if (dirty) {
 356			int dirty_cpu = dcache_dirty_cpu(page);
 357
 358			if (dirty_cpu == this_cpu)
 359				goto out;
 360			smp_flush_dcache_page_impl(page, dirty_cpu);
 361		}
 362		set_dcache_dirty(page, this_cpu);
 363	} else {
 364		/* We could delay the flush for the !page_mapping
 365		 * case too.  But that case is for exec env/arg
 366		 * pages and those are %99 certainly going to get
 367		 * faulted into the tlb (and thus flushed) anyways.
 368		 */
 369		flush_dcache_page_impl(page);
 370	}
 371
 372out:
 373	put_cpu();
 374}
 375EXPORT_SYMBOL(flush_dcache_page);
 376
 377void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 378{
 379	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 380	if (tlb_type == spitfire) {
 381		unsigned long kaddr;
 382
 383		/* This code only runs on Spitfire cpus so this is
 384		 * why we can assume _PAGE_PADDR_4U.
 385		 */
 386		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 387			unsigned long paddr, mask = _PAGE_PADDR_4U;
 388
 389			if (kaddr >= PAGE_OFFSET)
 390				paddr = kaddr & mask;
 391			else {
 392				pgd_t *pgdp = pgd_offset_k(kaddr);
 393				pud_t *pudp = pud_offset(pgdp, kaddr);
 394				pmd_t *pmdp = pmd_offset(pudp, kaddr);
 395				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 396
 397				paddr = pte_val(*ptep) & mask;
 398			}
 399			__flush_icache_page(paddr);
 400		}
 401	}
 402}
 403EXPORT_SYMBOL(flush_icache_range);
 404
 405void mmu_info(struct seq_file *m)
 406{
 
 
 
 
 
 
 407	if (tlb_type == cheetah)
 408		seq_printf(m, "MMU Type\t: Cheetah\n");
 409	else if (tlb_type == cheetah_plus)
 410		seq_printf(m, "MMU Type\t: Cheetah+\n");
 411	else if (tlb_type == spitfire)
 412		seq_printf(m, "MMU Type\t: Spitfire\n");
 413	else if (tlb_type == hypervisor)
 414		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 415	else
 416		seq_printf(m, "MMU Type\t: ???\n");
 417
 
 
 
 
 
 
 
 
 
 
 
 418#ifdef CONFIG_DEBUG_DCFLUSH
 419	seq_printf(m, "DCPageFlushes\t: %d\n",
 420		   atomic_read(&dcpage_flushes));
 421#ifdef CONFIG_SMP
 422	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 423		   atomic_read(&dcpage_flushes_xcall));
 424#endif /* CONFIG_SMP */
 425#endif /* CONFIG_DEBUG_DCFLUSH */
 426}
 427
 428struct linux_prom_translation prom_trans[512] __read_mostly;
 429unsigned int prom_trans_ents __read_mostly;
 430
 431unsigned long kern_locked_tte_data;
 432
 433/* The obp translations are saved based on 8k pagesize, since obp can
 434 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 435 * HI_OBP_ADDRESS range are handled in ktlb.S.
 436 */
 437static inline int in_obp_range(unsigned long vaddr)
 438{
 439	return (vaddr >= LOW_OBP_ADDRESS &&
 440		vaddr < HI_OBP_ADDRESS);
 441}
 442
 443static int cmp_ptrans(const void *a, const void *b)
 444{
 445	const struct linux_prom_translation *x = a, *y = b;
 446
 447	if (x->virt > y->virt)
 448		return 1;
 449	if (x->virt < y->virt)
 450		return -1;
 451	return 0;
 452}
 453
 454/* Read OBP translations property into 'prom_trans[]'.  */
 455static void __init read_obp_translations(void)
 456{
 457	int n, node, ents, first, last, i;
 458
 459	node = prom_finddevice("/virtual-memory");
 460	n = prom_getproplen(node, "translations");
 461	if (unlikely(n == 0 || n == -1)) {
 462		prom_printf("prom_mappings: Couldn't get size.\n");
 463		prom_halt();
 464	}
 465	if (unlikely(n > sizeof(prom_trans))) {
 466		prom_printf("prom_mappings: Size %Zd is too big.\n", n);
 467		prom_halt();
 468	}
 469
 470	if ((n = prom_getproperty(node, "translations",
 471				  (char *)&prom_trans[0],
 472				  sizeof(prom_trans))) == -1) {
 473		prom_printf("prom_mappings: Couldn't get property.\n");
 474		prom_halt();
 475	}
 476
 477	n = n / sizeof(struct linux_prom_translation);
 478
 479	ents = n;
 480
 481	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 482	     cmp_ptrans, NULL);
 483
 484	/* Now kick out all the non-OBP entries.  */
 485	for (i = 0; i < ents; i++) {
 486		if (in_obp_range(prom_trans[i].virt))
 487			break;
 488	}
 489	first = i;
 490	for (; i < ents; i++) {
 491		if (!in_obp_range(prom_trans[i].virt))
 492			break;
 493	}
 494	last = i;
 495
 496	for (i = 0; i < (last - first); i++) {
 497		struct linux_prom_translation *src = &prom_trans[i + first];
 498		struct linux_prom_translation *dest = &prom_trans[i];
 499
 500		*dest = *src;
 501	}
 502	for (; i < ents; i++) {
 503		struct linux_prom_translation *dest = &prom_trans[i];
 504		dest->virt = dest->size = dest->data = 0x0UL;
 505	}
 506
 507	prom_trans_ents = last - first;
 508
 509	if (tlb_type == spitfire) {
 510		/* Clear diag TTE bits. */
 511		for (i = 0; i < prom_trans_ents; i++)
 512			prom_trans[i].data &= ~0x0003fe0000000000UL;
 513	}
 514
 515	/* Force execute bit on.  */
 516	for (i = 0; i < prom_trans_ents; i++)
 517		prom_trans[i].data |= (tlb_type == hypervisor ?
 518				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 519}
 520
 521static void __init hypervisor_tlb_lock(unsigned long vaddr,
 522				       unsigned long pte,
 523				       unsigned long mmu)
 524{
 525	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 526
 527	if (ret != 0) {
 528		prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
 529			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 530		prom_halt();
 531	}
 532}
 533
 534static unsigned long kern_large_tte(unsigned long paddr);
 535
 536static void __init remap_kernel(void)
 537{
 538	unsigned long phys_page, tte_vaddr, tte_data;
 539	int i, tlb_ent = sparc64_highest_locked_tlbent();
 540
 541	tte_vaddr = (unsigned long) KERNBASE;
 542	phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
 543	tte_data = kern_large_tte(phys_page);
 544
 545	kern_locked_tte_data = tte_data;
 546
 547	/* Now lock us into the TLBs via Hypervisor or OBP. */
 548	if (tlb_type == hypervisor) {
 549		for (i = 0; i < num_kernel_image_mappings; i++) {
 550			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 551			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 552			tte_vaddr += 0x400000;
 553			tte_data += 0x400000;
 554		}
 555	} else {
 556		for (i = 0; i < num_kernel_image_mappings; i++) {
 557			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 558			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 559			tte_vaddr += 0x400000;
 560			tte_data += 0x400000;
 561		}
 562		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 563	}
 564	if (tlb_type == cheetah_plus) {
 565		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 566					    CTX_CHEETAH_PLUS_NUC);
 567		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 568		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 569	}
 570}
 571
 572
 573static void __init inherit_prom_mappings(void)
 574{
 575	/* Now fixup OBP's idea about where we really are mapped. */
 576	printk("Remapping the kernel... ");
 577	remap_kernel();
 578	printk("done.\n");
 579}
 580
 581void prom_world(int enter)
 582{
 583	if (!enter)
 584		set_fs((mm_segment_t) { get_thread_current_ds() });
 585
 586	__asm__ __volatile__("flushw");
 587}
 588
 589void __flush_dcache_range(unsigned long start, unsigned long end)
 590{
 591	unsigned long va;
 592
 593	if (tlb_type == spitfire) {
 594		int n = 0;
 595
 596		for (va = start; va < end; va += 32) {
 597			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 598			if (++n >= 512)
 599				break;
 600		}
 601	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 602		start = __pa(start);
 603		end = __pa(end);
 604		for (va = start; va < end; va += 32)
 605			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 606					     "membar #Sync"
 607					     : /* no outputs */
 608					     : "r" (va),
 609					       "i" (ASI_DCACHE_INVALIDATE));
 610	}
 611}
 612EXPORT_SYMBOL(__flush_dcache_range);
 613
 614/* get_new_mmu_context() uses "cache + 1".  */
 615DEFINE_SPINLOCK(ctx_alloc_lock);
 616unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
 617#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 618#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 619DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 620
 621/* Caller does TLB context flushing on local CPU if necessary.
 622 * The caller also ensures that CTX_VALID(mm->context) is false.
 623 *
 624 * We must be careful about boundary cases so that we never
 625 * let the user have CTX 0 (nucleus) or we ever use a CTX
 626 * version of zero (and thus NO_CONTEXT would not be caught
 627 * by version mis-match tests in mmu_context.h).
 628 *
 629 * Always invoked with interrupts disabled.
 630 */
 631void get_new_mmu_context(struct mm_struct *mm)
 632{
 633	unsigned long ctx, new_ctx;
 634	unsigned long orig_pgsz_bits;
 635	unsigned long flags;
 636	int new_version;
 637
 638	spin_lock_irqsave(&ctx_alloc_lock, flags);
 639	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 640	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 641	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 642	new_version = 0;
 643	if (new_ctx >= (1 << CTX_NR_BITS)) {
 644		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 645		if (new_ctx >= ctx) {
 646			int i;
 647			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
 648				CTX_FIRST_VERSION;
 649			if (new_ctx == 1)
 650				new_ctx = CTX_FIRST_VERSION;
 651
 652			/* Don't call memset, for 16 entries that's just
 653			 * plain silly...
 654			 */
 655			mmu_context_bmap[0] = 3;
 656			mmu_context_bmap[1] = 0;
 657			mmu_context_bmap[2] = 0;
 658			mmu_context_bmap[3] = 0;
 659			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
 660				mmu_context_bmap[i + 0] = 0;
 661				mmu_context_bmap[i + 1] = 0;
 662				mmu_context_bmap[i + 2] = 0;
 663				mmu_context_bmap[i + 3] = 0;
 664			}
 665			new_version = 1;
 666			goto out;
 667		}
 668	}
 669	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 670	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 671out:
 672	tlb_context_cache = new_ctx;
 673	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 674	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
 675
 676	if (unlikely(new_version))
 677		smp_new_mmu_context_version();
 678}
 679
 680static int numa_enabled = 1;
 681static int numa_debug;
 682
 683static int __init early_numa(char *p)
 684{
 685	if (!p)
 686		return 0;
 687
 688	if (strstr(p, "off"))
 689		numa_enabled = 0;
 690
 691	if (strstr(p, "debug"))
 692		numa_debug = 1;
 693
 694	return 0;
 695}
 696early_param("numa", early_numa);
 697
 698#define numadbg(f, a...) \
 699do {	if (numa_debug) \
 700		printk(KERN_INFO f, ## a); \
 701} while (0)
 702
 703static void __init find_ramdisk(unsigned long phys_base)
 704{
 705#ifdef CONFIG_BLK_DEV_INITRD
 706	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 707		unsigned long ramdisk_image;
 708
 709		/* Older versions of the bootloader only supported a
 710		 * 32-bit physical address for the ramdisk image
 711		 * location, stored at sparc_ramdisk_image.  Newer
 712		 * SILO versions set sparc_ramdisk_image to zero and
 713		 * provide a full 64-bit physical address at
 714		 * sparc_ramdisk_image64.
 715		 */
 716		ramdisk_image = sparc_ramdisk_image;
 717		if (!ramdisk_image)
 718			ramdisk_image = sparc_ramdisk_image64;
 719
 720		/* Another bootloader quirk.  The bootloader normalizes
 721		 * the physical address to KERNBASE, so we have to
 722		 * factor that back out and add in the lowest valid
 723		 * physical page address to get the true physical address.
 724		 */
 725		ramdisk_image -= KERNBASE;
 726		ramdisk_image += phys_base;
 727
 728		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 729			ramdisk_image, sparc_ramdisk_size);
 730
 731		initrd_start = ramdisk_image;
 732		initrd_end = ramdisk_image + sparc_ramdisk_size;
 733
 734		memblock_reserve(initrd_start, sparc_ramdisk_size);
 735
 736		initrd_start += PAGE_OFFSET;
 737		initrd_end += PAGE_OFFSET;
 738	}
 739#endif
 740}
 741
 742struct node_mem_mask {
 743	unsigned long mask;
 744	unsigned long val;
 745	unsigned long bootmem_paddr;
 746};
 747static struct node_mem_mask node_masks[MAX_NUMNODES];
 748static int num_node_masks;
 749
 750int numa_cpu_lookup_table[NR_CPUS];
 751cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 752
 753#ifdef CONFIG_NEED_MULTIPLE_NODES
 754
 755struct mdesc_mblock {
 756	u64	base;
 757	u64	size;
 758	u64	offset; /* RA-to-PA */
 759};
 760static struct mdesc_mblock *mblocks;
 761static int num_mblocks;
 762
 763static unsigned long ra_to_pa(unsigned long addr)
 764{
 765	int i;
 766
 767	for (i = 0; i < num_mblocks; i++) {
 768		struct mdesc_mblock *m = &mblocks[i];
 769
 770		if (addr >= m->base &&
 771		    addr < (m->base + m->size)) {
 772			addr += m->offset;
 773			break;
 774		}
 775	}
 776	return addr;
 777}
 778
 779static int find_node(unsigned long addr)
 780{
 781	int i;
 782
 783	addr = ra_to_pa(addr);
 784	for (i = 0; i < num_node_masks; i++) {
 785		struct node_mem_mask *p = &node_masks[i];
 786
 787		if ((addr & p->mask) == p->val)
 788			return i;
 789	}
 790	return -1;
 791}
 792
 793u64 memblock_nid_range(u64 start, u64 end, int *nid)
 794{
 795	*nid = find_node(start);
 796	start += PAGE_SIZE;
 797	while (start < end) {
 798		int n = find_node(start);
 799
 800		if (n != *nid)
 801			break;
 802		start += PAGE_SIZE;
 803	}
 804
 805	if (start > end)
 806		start = end;
 807
 808	return start;
 809}
 810#else
 811u64 memblock_nid_range(u64 start, u64 end, int *nid)
 812{
 813	*nid = 0;
 814	return end;
 815}
 816#endif
 817
 818/* This must be invoked after performing all of the necessary
 819 * add_active_range() calls for 'nid'.  We need to be able to get
 820 * correct data from get_pfn_range_for_nid().
 821 */
 822static void __init allocate_node_data(int nid)
 823{
 824	unsigned long paddr, num_pages, start_pfn, end_pfn;
 825	struct pglist_data *p;
 826
 827#ifdef CONFIG_NEED_MULTIPLE_NODES
 
 
 828	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
 829	if (!paddr) {
 830		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
 831		prom_halt();
 832	}
 833	NODE_DATA(nid) = __va(paddr);
 834	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 835
 836	NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
 837#endif
 838
 839	p = NODE_DATA(nid);
 840
 841	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 842	p->node_start_pfn = start_pfn;
 843	p->node_spanned_pages = end_pfn - start_pfn;
 844
 845	if (p->node_spanned_pages) {
 846		num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
 847
 848		paddr = memblock_alloc_try_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid);
 849		if (!paddr) {
 850			prom_printf("Cannot allocate bootmap for nid[%d]\n",
 851				  nid);
 852			prom_halt();
 853		}
 854		node_masks[nid].bootmem_paddr = paddr;
 855	}
 856}
 857
 858static void init_node_masks_nonnuma(void)
 859{
 860	int i;
 861
 862	numadbg("Initializing tables for non-numa.\n");
 863
 864	node_masks[0].mask = node_masks[0].val = 0;
 865	num_node_masks = 1;
 866
 867	for (i = 0; i < NR_CPUS; i++)
 868		numa_cpu_lookup_table[i] = 0;
 869
 870	cpumask_setall(&numa_cpumask_lookup_table[0]);
 871}
 872
 873#ifdef CONFIG_NEED_MULTIPLE_NODES
 874struct pglist_data *node_data[MAX_NUMNODES];
 875
 876EXPORT_SYMBOL(numa_cpu_lookup_table);
 877EXPORT_SYMBOL(numa_cpumask_lookup_table);
 878EXPORT_SYMBOL(node_data);
 879
 880struct mdesc_mlgroup {
 881	u64	node;
 882	u64	latency;
 883	u64	match;
 884	u64	mask;
 885};
 886static struct mdesc_mlgroup *mlgroups;
 887static int num_mlgroups;
 888
 889static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
 890				   u32 cfg_handle)
 891{
 892	u64 arc;
 893
 894	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
 895		u64 target = mdesc_arc_target(md, arc);
 896		const u64 *val;
 897
 898		val = mdesc_get_property(md, target,
 899					 "cfg-handle", NULL);
 900		if (val && *val == cfg_handle)
 901			return 0;
 902	}
 903	return -ENODEV;
 904}
 905
 906static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
 907				    u32 cfg_handle)
 908{
 909	u64 arc, candidate, best_latency = ~(u64)0;
 910
 911	candidate = MDESC_NODE_NULL;
 912	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 913		u64 target = mdesc_arc_target(md, arc);
 914		const char *name = mdesc_node_name(md, target);
 915		const u64 *val;
 916
 917		if (strcmp(name, "pio-latency-group"))
 918			continue;
 919
 920		val = mdesc_get_property(md, target, "latency", NULL);
 921		if (!val)
 922			continue;
 923
 924		if (*val < best_latency) {
 925			candidate = target;
 926			best_latency = *val;
 927		}
 928	}
 929
 930	if (candidate == MDESC_NODE_NULL)
 931		return -ENODEV;
 932
 933	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
 934}
 935
 936int of_node_to_nid(struct device_node *dp)
 937{
 938	const struct linux_prom64_registers *regs;
 939	struct mdesc_handle *md;
 940	u32 cfg_handle;
 941	int count, nid;
 942	u64 grp;
 943
 944	/* This is the right thing to do on currently supported
 945	 * SUN4U NUMA platforms as well, as the PCI controller does
 946	 * not sit behind any particular memory controller.
 947	 */
 948	if (!mlgroups)
 949		return -1;
 950
 951	regs = of_get_property(dp, "reg", NULL);
 952	if (!regs)
 953		return -1;
 954
 955	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
 956
 957	md = mdesc_grab();
 958
 959	count = 0;
 960	nid = -1;
 961	mdesc_for_each_node_by_name(md, grp, "group") {
 962		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
 963			nid = count;
 964			break;
 965		}
 966		count++;
 967	}
 968
 969	mdesc_release(md);
 970
 971	return nid;
 972}
 973
 974static void __init add_node_ranges(void)
 975{
 976	struct memblock_region *reg;
 977
 978	for_each_memblock(memory, reg) {
 979		unsigned long size = reg->size;
 980		unsigned long start, end;
 981
 982		start = reg->base;
 983		end = start + size;
 984		while (start < end) {
 985			unsigned long this_end;
 986			int nid;
 987
 988			this_end = memblock_nid_range(start, end, &nid);
 989
 990			numadbg("Adding active range nid[%d] "
 991				"start[%lx] end[%lx]\n",
 992				nid, start, this_end);
 993
 994			add_active_range(nid,
 995					 start >> PAGE_SHIFT,
 996					 this_end >> PAGE_SHIFT);
 997
 998			start = this_end;
 999		}
1000	}
1001}
1002
1003static int __init grab_mlgroups(struct mdesc_handle *md)
1004{
1005	unsigned long paddr;
1006	int count = 0;
1007	u64 node;
1008
1009	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1010		count++;
1011	if (!count)
1012		return -ENOENT;
1013
1014	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1015			  SMP_CACHE_BYTES);
1016	if (!paddr)
1017		return -ENOMEM;
1018
1019	mlgroups = __va(paddr);
1020	num_mlgroups = count;
1021
1022	count = 0;
1023	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1024		struct mdesc_mlgroup *m = &mlgroups[count++];
1025		const u64 *val;
1026
1027		m->node = node;
1028
1029		val = mdesc_get_property(md, node, "latency", NULL);
1030		m->latency = *val;
1031		val = mdesc_get_property(md, node, "address-match", NULL);
1032		m->match = *val;
1033		val = mdesc_get_property(md, node, "address-mask", NULL);
1034		m->mask = *val;
1035
1036		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1037			"match[%llx] mask[%llx]\n",
1038			count - 1, m->node, m->latency, m->match, m->mask);
1039	}
1040
1041	return 0;
1042}
1043
1044static int __init grab_mblocks(struct mdesc_handle *md)
1045{
1046	unsigned long paddr;
1047	int count = 0;
1048	u64 node;
1049
1050	mdesc_for_each_node_by_name(md, node, "mblock")
1051		count++;
1052	if (!count)
1053		return -ENOENT;
1054
1055	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1056			  SMP_CACHE_BYTES);
1057	if (!paddr)
1058		return -ENOMEM;
1059
1060	mblocks = __va(paddr);
1061	num_mblocks = count;
1062
1063	count = 0;
1064	mdesc_for_each_node_by_name(md, node, "mblock") {
1065		struct mdesc_mblock *m = &mblocks[count++];
1066		const u64 *val;
1067
1068		val = mdesc_get_property(md, node, "base", NULL);
1069		m->base = *val;
1070		val = mdesc_get_property(md, node, "size", NULL);
1071		m->size = *val;
1072		val = mdesc_get_property(md, node,
1073					 "address-congruence-offset", NULL);
1074		m->offset = *val;
 
 
 
 
 
 
 
1075
1076		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1077			count - 1, m->base, m->size, m->offset);
1078	}
1079
1080	return 0;
1081}
1082
1083static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1084					       u64 grp, cpumask_t *mask)
1085{
1086	u64 arc;
1087
1088	cpumask_clear(mask);
1089
1090	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1091		u64 target = mdesc_arc_target(md, arc);
1092		const char *name = mdesc_node_name(md, target);
1093		const u64 *id;
1094
1095		if (strcmp(name, "cpu"))
1096			continue;
1097		id = mdesc_get_property(md, target, "id", NULL);
1098		if (*id < nr_cpu_ids)
1099			cpumask_set_cpu(*id, mask);
1100	}
1101}
1102
1103static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1104{
1105	int i;
1106
1107	for (i = 0; i < num_mlgroups; i++) {
1108		struct mdesc_mlgroup *m = &mlgroups[i];
1109		if (m->node == node)
1110			return m;
1111	}
1112	return NULL;
1113}
1114
1115static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1116				      int index)
1117{
1118	struct mdesc_mlgroup *candidate = NULL;
1119	u64 arc, best_latency = ~(u64)0;
1120	struct node_mem_mask *n;
1121
1122	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1123		u64 target = mdesc_arc_target(md, arc);
1124		struct mdesc_mlgroup *m = find_mlgroup(target);
1125		if (!m)
1126			continue;
1127		if (m->latency < best_latency) {
1128			candidate = m;
1129			best_latency = m->latency;
1130		}
1131	}
1132	if (!candidate)
1133		return -ENOENT;
1134
1135	if (num_node_masks != index) {
1136		printk(KERN_ERR "Inconsistent NUMA state, "
1137		       "index[%d] != num_node_masks[%d]\n",
1138		       index, num_node_masks);
1139		return -EINVAL;
1140	}
1141
1142	n = &node_masks[num_node_masks++];
1143
1144	n->mask = candidate->mask;
1145	n->val = candidate->match;
1146
1147	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1148		index, n->mask, n->val, candidate->latency);
1149
1150	return 0;
1151}
1152
1153static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1154					 int index)
1155{
1156	cpumask_t mask;
1157	int cpu;
1158
1159	numa_parse_mdesc_group_cpus(md, grp, &mask);
1160
1161	for_each_cpu(cpu, &mask)
1162		numa_cpu_lookup_table[cpu] = index;
1163	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1164
1165	if (numa_debug) {
1166		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1167		for_each_cpu(cpu, &mask)
1168			printk("%d ", cpu);
1169		printk("]\n");
1170	}
1171
1172	return numa_attach_mlgroup(md, grp, index);
1173}
1174
1175static int __init numa_parse_mdesc(void)
1176{
1177	struct mdesc_handle *md = mdesc_grab();
1178	int i, err, count;
1179	u64 node;
1180
1181	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1182	if (node == MDESC_NODE_NULL) {
1183		mdesc_release(md);
1184		return -ENOENT;
1185	}
1186
1187	err = grab_mblocks(md);
1188	if (err < 0)
1189		goto out;
1190
1191	err = grab_mlgroups(md);
1192	if (err < 0)
1193		goto out;
1194
1195	count = 0;
1196	mdesc_for_each_node_by_name(md, node, "group") {
1197		err = numa_parse_mdesc_group(md, node, count);
1198		if (err < 0)
1199			break;
1200		count++;
1201	}
1202
1203	add_node_ranges();
1204
1205	for (i = 0; i < num_node_masks; i++) {
1206		allocate_node_data(i);
1207		node_set_online(i);
1208	}
1209
1210	err = 0;
1211out:
1212	mdesc_release(md);
1213	return err;
1214}
1215
1216static int __init numa_parse_jbus(void)
1217{
1218	unsigned long cpu, index;
1219
1220	/* NUMA node id is encoded in bits 36 and higher, and there is
1221	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1222	 */
1223	index = 0;
1224	for_each_present_cpu(cpu) {
1225		numa_cpu_lookup_table[cpu] = index;
1226		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1227		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1228		node_masks[index].val = cpu << 36UL;
1229
1230		index++;
1231	}
1232	num_node_masks = index;
1233
1234	add_node_ranges();
1235
1236	for (index = 0; index < num_node_masks; index++) {
1237		allocate_node_data(index);
1238		node_set_online(index);
1239	}
1240
1241	return 0;
1242}
1243
1244static int __init numa_parse_sun4u(void)
1245{
1246	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1247		unsigned long ver;
1248
1249		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1250		if ((ver >> 32UL) == __JALAPENO_ID ||
1251		    (ver >> 32UL) == __SERRANO_ID)
1252			return numa_parse_jbus();
1253	}
1254	return -1;
1255}
1256
1257static int __init bootmem_init_numa(void)
1258{
1259	int err = -1;
1260
1261	numadbg("bootmem_init_numa()\n");
1262
1263	if (numa_enabled) {
1264		if (tlb_type == hypervisor)
1265			err = numa_parse_mdesc();
1266		else
1267			err = numa_parse_sun4u();
1268	}
1269	return err;
1270}
1271
1272#else
1273
1274static int bootmem_init_numa(void)
1275{
1276	return -1;
1277}
1278
1279#endif
1280
1281static void __init bootmem_init_nonnuma(void)
1282{
1283	unsigned long top_of_ram = memblock_end_of_DRAM();
1284	unsigned long total_ram = memblock_phys_mem_size();
1285	struct memblock_region *reg;
1286
1287	numadbg("bootmem_init_nonnuma()\n");
1288
1289	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1290	       top_of_ram, total_ram);
1291	printk(KERN_INFO "Memory hole size: %ldMB\n",
1292	       (top_of_ram - total_ram) >> 20);
1293
1294	init_node_masks_nonnuma();
1295
1296	for_each_memblock(memory, reg) {
1297		unsigned long start_pfn, end_pfn;
1298
1299		if (!reg->size)
1300			continue;
1301
1302		start_pfn = memblock_region_memory_base_pfn(reg);
1303		end_pfn = memblock_region_memory_end_pfn(reg);
1304		add_active_range(0, start_pfn, end_pfn);
1305	}
1306
1307	allocate_node_data(0);
1308
1309	node_set_online(0);
1310}
1311
1312static void __init reserve_range_in_node(int nid, unsigned long start,
1313					 unsigned long end)
1314{
1315	numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1316		nid, start, end);
1317	while (start < end) {
1318		unsigned long this_end;
1319		int n;
1320
1321		this_end = memblock_nid_range(start, end, &n);
1322		if (n == nid) {
1323			numadbg("      MATCH reserving range [%lx:%lx]\n",
1324				start, this_end);
1325			reserve_bootmem_node(NODE_DATA(nid), start,
1326					     (this_end - start), BOOTMEM_DEFAULT);
1327		} else
1328			numadbg("      NO MATCH, advancing start to %lx\n",
1329				this_end);
1330
1331		start = this_end;
1332	}
1333}
1334
1335static void __init trim_reserved_in_node(int nid)
1336{
1337	struct memblock_region *reg;
1338
1339	numadbg("  trim_reserved_in_node(%d)\n", nid);
1340
1341	for_each_memblock(reserved, reg)
1342		reserve_range_in_node(nid, reg->base, reg->base + reg->size);
1343}
1344
1345static void __init bootmem_init_one_node(int nid)
1346{
1347	struct pglist_data *p;
1348
1349	numadbg("bootmem_init_one_node(%d)\n", nid);
1350
1351	p = NODE_DATA(nid);
1352
1353	if (p->node_spanned_pages) {
1354		unsigned long paddr = node_masks[nid].bootmem_paddr;
1355		unsigned long end_pfn;
1356
1357		end_pfn = p->node_start_pfn + p->node_spanned_pages;
1358
1359		numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1360			nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1361
1362		init_bootmem_node(p, paddr >> PAGE_SHIFT,
1363				  p->node_start_pfn, end_pfn);
1364
1365		numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1366			nid, end_pfn);
1367		free_bootmem_with_active_regions(nid, end_pfn);
1368
1369		trim_reserved_in_node(nid);
1370
1371		numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1372			nid);
1373		sparse_memory_present_with_active_regions(nid);
1374	}
1375}
1376
1377static unsigned long __init bootmem_init(unsigned long phys_base)
1378{
1379	unsigned long end_pfn;
1380	int nid;
1381
1382	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1383	max_pfn = max_low_pfn = end_pfn;
1384	min_low_pfn = (phys_base >> PAGE_SHIFT);
1385
1386	if (bootmem_init_numa() < 0)
1387		bootmem_init_nonnuma();
1388
1389	/* XXX cpu notifier XXX */
 
1390
1391	for_each_online_node(nid)
1392		bootmem_init_one_node(nid);
1393
 
1394	sparse_init();
1395
1396	return end_pfn;
1397}
1398
1399static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1400static int pall_ents __initdata;
1401
1402#ifdef CONFIG_DEBUG_PAGEALLOC
1403static unsigned long __ref kernel_map_range(unsigned long pstart,
1404					    unsigned long pend, pgprot_t prot)
1405{
1406	unsigned long vstart = PAGE_OFFSET + pstart;
1407	unsigned long vend = PAGE_OFFSET + pend;
1408	unsigned long alloc_bytes = 0UL;
1409
1410	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1411		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1412			    vstart, vend);
1413		prom_halt();
1414	}
1415
1416	while (vstart < vend) {
1417		unsigned long this_end, paddr = __pa(vstart);
1418		pgd_t *pgd = pgd_offset_k(vstart);
1419		pud_t *pud;
1420		pmd_t *pmd;
1421		pte_t *pte;
1422
1423		pud = pud_offset(pgd, vstart);
1424		if (pud_none(*pud)) {
1425			pmd_t *new;
1426
1427			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1428			alloc_bytes += PAGE_SIZE;
1429			pud_populate(&init_mm, pud, new);
1430		}
1431
1432		pmd = pmd_offset(pud, vstart);
1433		if (!pmd_present(*pmd)) {
1434			pte_t *new;
1435
1436			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1437			alloc_bytes += PAGE_SIZE;
1438			pmd_populate_kernel(&init_mm, pmd, new);
1439		}
1440
1441		pte = pte_offset_kernel(pmd, vstart);
1442		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1443		if (this_end > vend)
1444			this_end = vend;
1445
1446		while (vstart < this_end) {
1447			pte_val(*pte) = (paddr | pgprot_val(prot));
1448
1449			vstart += PAGE_SIZE;
1450			paddr += PAGE_SIZE;
1451			pte++;
1452		}
1453	}
1454
1455	return alloc_bytes;
1456}
1457
1458extern unsigned int kvmap_linear_patch[1];
1459#endif /* CONFIG_DEBUG_PAGEALLOC */
1460
1461static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1462{
1463	const unsigned long shift_256MB = 28;
1464	const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1465	const unsigned long size_256MB = (1UL << shift_256MB);
1466
1467	while (start < end) {
1468		long remains;
1469
1470		remains = end - start;
1471		if (remains < size_256MB)
1472			break;
1473
1474		if (start & mask_256MB) {
1475			start = (start + size_256MB) & ~mask_256MB;
1476			continue;
1477		}
1478
1479		while (remains >= size_256MB) {
1480			unsigned long index = start >> shift_256MB;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1481
1482			__set_bit(index, kpte_linear_bitmap);
 
1483
1484			start += size_256MB;
1485			remains -= size_256MB;
1486		}
 
 
 
1487	}
1488}
1489
1490static void __init init_kpte_bitmap(void)
1491{
1492	unsigned long i;
1493
1494	for (i = 0; i < pall_ents; i++) {
1495		unsigned long phys_start, phys_end;
1496
1497		phys_start = pall[i].phys_addr;
1498		phys_end = phys_start + pall[i].reg_size;
1499
1500		mark_kpte_bitmap(phys_start, phys_end);
1501	}
1502}
1503
1504static void __init kernel_physical_mapping_init(void)
1505{
1506#ifdef CONFIG_DEBUG_PAGEALLOC
1507	unsigned long i, mem_alloced = 0UL;
1508
1509	for (i = 0; i < pall_ents; i++) {
1510		unsigned long phys_start, phys_end;
1511
1512		phys_start = pall[i].phys_addr;
1513		phys_end = phys_start + pall[i].reg_size;
1514
1515		mem_alloced += kernel_map_range(phys_start, phys_end,
1516						PAGE_KERNEL);
1517	}
1518
1519	printk("Allocated %ld bytes for kernel page tables.\n",
1520	       mem_alloced);
1521
1522	kvmap_linear_patch[0] = 0x01000000; /* nop */
1523	flushi(&kvmap_linear_patch[0]);
1524
1525	__flush_tlb_all();
1526#endif
1527}
1528
1529#ifdef CONFIG_DEBUG_PAGEALLOC
1530void kernel_map_pages(struct page *page, int numpages, int enable)
1531{
1532	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1533	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1534
1535	kernel_map_range(phys_start, phys_end,
1536			 (enable ? PAGE_KERNEL : __pgprot(0)));
1537
1538	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1539			       PAGE_OFFSET + phys_end);
1540
1541	/* we should perform an IPI and flush all tlbs,
1542	 * but that can deadlock->flush only current cpu.
1543	 */
1544	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1545				 PAGE_OFFSET + phys_end);
1546}
1547#endif
1548
1549unsigned long __init find_ecache_flush_span(unsigned long size)
1550{
1551	int i;
1552
1553	for (i = 0; i < pavail_ents; i++) {
1554		if (pavail[i].reg_size >= size)
1555			return pavail[i].phys_addr;
1556	}
1557
1558	return ~0UL;
1559}
1560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1561static void __init tsb_phys_patch(void)
1562{
1563	struct tsb_ldquad_phys_patch_entry *pquad;
1564	struct tsb_phys_patch_entry *p;
1565
1566	pquad = &__tsb_ldquad_phys_patch;
1567	while (pquad < &__tsb_ldquad_phys_patch_end) {
1568		unsigned long addr = pquad->addr;
1569
1570		if (tlb_type == hypervisor)
1571			*(unsigned int *) addr = pquad->sun4v_insn;
1572		else
1573			*(unsigned int *) addr = pquad->sun4u_insn;
1574		wmb();
1575		__asm__ __volatile__("flush	%0"
1576				     : /* no outputs */
1577				     : "r" (addr));
1578
1579		pquad++;
1580	}
1581
1582	p = &__tsb_phys_patch;
1583	while (p < &__tsb_phys_patch_end) {
1584		unsigned long addr = p->addr;
1585
1586		*(unsigned int *) addr = p->insn;
1587		wmb();
1588		__asm__ __volatile__("flush	%0"
1589				     : /* no outputs */
1590				     : "r" (addr));
1591
1592		p++;
1593	}
1594}
1595
1596/* Don't mark as init, we give this to the Hypervisor.  */
1597#ifndef CONFIG_DEBUG_PAGEALLOC
1598#define NUM_KTSB_DESCR	2
1599#else
1600#define NUM_KTSB_DESCR	1
1601#endif
1602static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1603extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1604
1605static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1606{
1607	pa >>= KTSB_PHYS_SHIFT;
1608
1609	while (start < end) {
1610		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1611
1612		ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1613		__asm__ __volatile__("flush	%0" : : "r" (ia));
1614
1615		ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1616		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1617
1618		start++;
1619	}
1620}
1621
1622static void ktsb_phys_patch(void)
1623{
1624	extern unsigned int __swapper_tsb_phys_patch;
1625	extern unsigned int __swapper_tsb_phys_patch_end;
1626	unsigned long ktsb_pa;
1627
1628	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1629	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1630			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1631#ifndef CONFIG_DEBUG_PAGEALLOC
1632	{
1633	extern unsigned int __swapper_4m_tsb_phys_patch;
1634	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1635	ktsb_pa = (kern_base +
1636		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1637	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1638			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1639	}
1640#endif
1641}
1642
1643static void __init sun4v_ktsb_init(void)
1644{
1645	unsigned long ktsb_pa;
1646
1647	/* First KTSB for PAGE_SIZE mappings.  */
1648	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1649
1650	switch (PAGE_SIZE) {
1651	case 8 * 1024:
1652	default:
1653		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1654		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1655		break;
1656
1657	case 64 * 1024:
1658		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1659		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1660		break;
1661
1662	case 512 * 1024:
1663		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1664		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1665		break;
1666
1667	case 4 * 1024 * 1024:
1668		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1669		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1670		break;
1671	}
1672
1673	ktsb_descr[0].assoc = 1;
1674	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1675	ktsb_descr[0].ctx_idx = 0;
1676	ktsb_descr[0].tsb_base = ktsb_pa;
1677	ktsb_descr[0].resv = 0;
1678
1679#ifndef CONFIG_DEBUG_PAGEALLOC
1680	/* Second KTSB for 4MB/256MB mappings.  */
1681	ktsb_pa = (kern_base +
1682		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1683
1684	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1685	ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1686				   HV_PGSZ_MASK_256MB);
 
 
 
1687	ktsb_descr[1].assoc = 1;
1688	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1689	ktsb_descr[1].ctx_idx = 0;
1690	ktsb_descr[1].tsb_base = ktsb_pa;
1691	ktsb_descr[1].resv = 0;
1692#endif
1693}
1694
1695void __cpuinit sun4v_ktsb_register(void)
1696{
1697	unsigned long pa, ret;
1698
1699	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1700
1701	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1702	if (ret != 0) {
1703		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1704			    "errors with %lx\n", pa, ret);
1705		prom_halt();
1706	}
1707}
1708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709/* paging_init() sets up the page tables */
1710
1711static unsigned long last_valid_pfn;
1712pgd_t swapper_pg_dir[2048];
1713
1714static void sun4u_pgprot_init(void);
1715static void sun4v_pgprot_init(void);
1716
1717void __init paging_init(void)
1718{
1719	unsigned long end_pfn, shift, phys_base;
1720	unsigned long real_end, i;
 
 
 
1721
1722	/* These build time checkes make sure that the dcache_dirty_cpu()
1723	 * page->flags usage will work.
1724	 *
1725	 * When a page gets marked as dcache-dirty, we store the
1726	 * cpu number starting at bit 32 in the page->flags.  Also,
1727	 * functions like clear_dcache_dirty_cpu use the cpu mask
1728	 * in 13-bit signed-immediate instruction fields.
1729	 */
1730
1731	/*
1732	 * Page flags must not reach into upper 32 bits that are used
1733	 * for the cpu number
1734	 */
1735	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1736
1737	/*
1738	 * The bit fields placed in the high range must not reach below
1739	 * the 32 bit boundary. Otherwise we cannot place the cpu field
1740	 * at the 32 bit boundary.
1741	 */
1742	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1743		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1744
1745	BUILD_BUG_ON(NR_CPUS > 4096);
1746
1747	kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1748	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1749
1750	/* Invalidate both kernel TSBs.  */
1751	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1752#ifndef CONFIG_DEBUG_PAGEALLOC
1753	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1754#endif
1755
1756	if (tlb_type == hypervisor)
1757		sun4v_pgprot_init();
1758	else
1759		sun4u_pgprot_init();
1760
1761	if (tlb_type == cheetah_plus ||
1762	    tlb_type == hypervisor) {
1763		tsb_phys_patch();
1764		ktsb_phys_patch();
1765	}
1766
1767	if (tlb_type == hypervisor) {
1768		sun4v_patch_tlb_handlers();
1769		sun4v_ktsb_init();
1770	}
1771
1772	memblock_init();
1773
1774	/* Find available physical memory...
1775	 *
1776	 * Read it twice in order to work around a bug in openfirmware.
1777	 * The call to grab this table itself can cause openfirmware to
1778	 * allocate memory, which in turn can take away some space from
1779	 * the list of available memory.  Reading it twice makes sure
1780	 * we really do get the final value.
1781	 */
1782	read_obp_translations();
1783	read_obp_memory("reg", &pall[0], &pall_ents);
1784	read_obp_memory("available", &pavail[0], &pavail_ents);
1785	read_obp_memory("available", &pavail[0], &pavail_ents);
1786
1787	phys_base = 0xffffffffffffffffUL;
1788	for (i = 0; i < pavail_ents; i++) {
1789		phys_base = min(phys_base, pavail[i].phys_addr);
1790		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1791	}
1792
1793	memblock_reserve(kern_base, kern_size);
1794
1795	find_ramdisk(phys_base);
1796
1797	memblock_enforce_memory_limit(cmdline_memory_size);
1798
1799	memblock_analyze();
1800	memblock_dump_all();
1801
1802	set_bit(0, mmu_context_bmap);
1803
1804	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1805
1806	real_end = (unsigned long)_end;
1807	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1808	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1809	       num_kernel_image_mappings);
1810
1811	/* Set kernel pgd to upper alias so physical page computations
1812	 * work.
1813	 */
1814	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1815	
1816	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1817
1818	/* Now can init the kernel/bad page tables. */
1819	pud_set(pud_offset(&swapper_pg_dir[0], 0),
1820		swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1821	
1822	inherit_prom_mappings();
1823	
1824	init_kpte_bitmap();
1825
1826	/* Ok, we can use our TLB miss and window trap handlers safely.  */
1827	setup_tba();
1828
1829	__flush_tlb_all();
1830
1831	if (tlb_type == hypervisor)
1832		sun4v_ktsb_register();
1833
1834	prom_build_devicetree();
1835	of_populate_present_mask();
1836#ifndef CONFIG_SMP
1837	of_fill_in_cpu_data();
1838#endif
1839
1840	if (tlb_type == hypervisor) {
1841		sun4v_mdesc_init();
1842		mdesc_populate_present_mask(cpu_all_mask);
1843#ifndef CONFIG_SMP
1844		mdesc_fill_in_cpu_data(cpu_all_mask);
1845#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1846	}
1847
 
 
 
 
 
 
 
 
 
 
 
 
1848	/* Once the OF device tree and MDESC have been setup, we know
1849	 * the list of possible cpus.  Therefore we can allocate the
1850	 * IRQ stacks.
1851	 */
1852	for_each_possible_cpu(i) {
1853		/* XXX Use node local allocations... XXX */
1854		softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1855		hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1856	}
1857
1858	/* Setup bootmem... */
1859	last_valid_pfn = end_pfn = bootmem_init(phys_base);
 
 
 
 
 
1860
1861#ifndef CONFIG_NEED_MULTIPLE_NODES
1862	max_mapnr = last_valid_pfn;
1863#endif
1864	kernel_physical_mapping_init();
1865
1866	{
1867		unsigned long max_zone_pfns[MAX_NR_ZONES];
1868
1869		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1870
1871		max_zone_pfns[ZONE_NORMAL] = end_pfn;
1872
1873		free_area_init_nodes(max_zone_pfns);
1874	}
1875
1876	printk("Booting Linux...\n");
1877}
1878
1879int __devinit page_in_phys_avail(unsigned long paddr)
1880{
1881	int i;
1882
1883	paddr &= PAGE_MASK;
1884
1885	for (i = 0; i < pavail_ents; i++) {
1886		unsigned long start, end;
1887
1888		start = pavail[i].phys_addr;
1889		end = start + pavail[i].reg_size;
1890
1891		if (paddr >= start && paddr < end)
1892			return 1;
1893	}
1894	if (paddr >= kern_base && paddr < (kern_base + kern_size))
1895		return 1;
1896#ifdef CONFIG_BLK_DEV_INITRD
1897	if (paddr >= __pa(initrd_start) &&
1898	    paddr < __pa(PAGE_ALIGN(initrd_end)))
1899		return 1;
1900#endif
1901
1902	return 0;
1903}
1904
1905static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1906static int pavail_rescan_ents __initdata;
1907
1908/* Certain OBP calls, such as fetching "available" properties, can
1909 * claim physical memory.  So, along with initializing the valid
1910 * address bitmap, what we do here is refetch the physical available
1911 * memory list again, and make sure it provides at least as much
1912 * memory as 'pavail' does.
1913 */
1914static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1915{
1916	int i;
1917
1918	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1919
1920	for (i = 0; i < pavail_ents; i++) {
1921		unsigned long old_start, old_end;
1922
1923		old_start = pavail[i].phys_addr;
1924		old_end = old_start + pavail[i].reg_size;
1925		while (old_start < old_end) {
1926			int n;
1927
1928			for (n = 0; n < pavail_rescan_ents; n++) {
1929				unsigned long new_start, new_end;
1930
1931				new_start = pavail_rescan[n].phys_addr;
1932				new_end = new_start +
1933					pavail_rescan[n].reg_size;
1934
1935				if (new_start <= old_start &&
1936				    new_end >= (old_start + PAGE_SIZE)) {
1937					set_bit(old_start >> 22, bitmap);
1938					goto do_next_page;
1939				}
1940			}
1941
1942			prom_printf("mem_init: Lost memory in pavail\n");
1943			prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1944				    pavail[i].phys_addr,
1945				    pavail[i].reg_size);
1946			prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1947				    pavail_rescan[i].phys_addr,
1948				    pavail_rescan[i].reg_size);
1949			prom_printf("mem_init: Cannot continue, aborting.\n");
1950			prom_halt();
1951
1952		do_next_page:
1953			old_start += PAGE_SIZE;
1954		}
1955	}
1956}
1957
1958static void __init patch_tlb_miss_handler_bitmap(void)
1959{
1960	extern unsigned int valid_addr_bitmap_insn[];
1961	extern unsigned int valid_addr_bitmap_patch[];
1962
1963	valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1964	mb();
1965	valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1966	flushi(&valid_addr_bitmap_insn[0]);
1967}
1968
 
 
 
 
 
 
 
 
 
 
1969void __init mem_init(void)
1970{
1971	unsigned long codepages, datapages, initpages;
1972	unsigned long addr, last;
1973
1974	addr = PAGE_OFFSET + kern_base;
1975	last = PAGE_ALIGN(kern_size) + addr;
1976	while (addr < last) {
1977		set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1978		addr += PAGE_SIZE;
1979	}
1980
1981	setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1982	patch_tlb_miss_handler_bitmap();
1983
1984	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1985
1986#ifdef CONFIG_NEED_MULTIPLE_NODES
1987	{
1988		int i;
1989		for_each_online_node(i) {
1990			if (NODE_DATA(i)->node_spanned_pages != 0) {
1991				totalram_pages +=
1992					free_all_bootmem_node(NODE_DATA(i));
1993			}
1994		}
1995	}
1996#else
1997	totalram_pages = free_all_bootmem();
1998#endif
1999
2000	/* We subtract one to account for the mem_map_zero page
2001	 * allocated below.
2002	 */
2003	totalram_pages -= 1;
2004	num_physpages = totalram_pages;
2005
2006	/*
2007	 * Set up the zero page, mark it reserved, so that page count
2008	 * is not manipulated when freeing the page from user ptes.
2009	 */
2010	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2011	if (mem_map_zero == NULL) {
2012		prom_printf("paging_init: Cannot alloc zero page.\n");
2013		prom_halt();
2014	}
2015	SetPageReserved(mem_map_zero);
2016
2017	codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2018	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2019	datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2020	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2021	initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2022	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2023
2024	printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2025	       nr_free_pages() << (PAGE_SHIFT-10),
2026	       codepages << (PAGE_SHIFT-10),
2027	       datapages << (PAGE_SHIFT-10), 
2028	       initpages << (PAGE_SHIFT-10), 
2029	       PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2030
2031	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2032		cheetah_ecache_flush_init();
2033}
2034
2035void free_initmem(void)
2036{
2037	unsigned long addr, initend;
2038	int do_free = 1;
2039
2040	/* If the physical memory maps were trimmed by kernel command
2041	 * line options, don't even try freeing this initmem stuff up.
2042	 * The kernel image could have been in the trimmed out region
2043	 * and if so the freeing below will free invalid page structs.
2044	 */
2045	if (cmdline_memory_size)
2046		do_free = 0;
2047
2048	/*
2049	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2050	 */
2051	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2052	initend = (unsigned long)(__init_end) & PAGE_MASK;
2053	for (; addr < initend; addr += PAGE_SIZE) {
2054		unsigned long page;
2055		struct page *p;
2056
2057		page = (addr +
2058			((unsigned long) __va(kern_base)) -
2059			((unsigned long) KERNBASE));
2060		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2061
2062		if (do_free) {
2063			p = virt_to_page(page);
2064
2065			ClearPageReserved(p);
2066			init_page_count(p);
2067			__free_page(p);
2068			num_physpages++;
2069			totalram_pages++;
2070		}
2071	}
2072}
2073
2074#ifdef CONFIG_BLK_DEV_INITRD
2075void free_initrd_mem(unsigned long start, unsigned long end)
2076{
2077	if (start < end)
2078		printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2079	for (; start < end; start += PAGE_SIZE) {
2080		struct page *p = virt_to_page(start);
2081
2082		ClearPageReserved(p);
2083		init_page_count(p);
2084		__free_page(p);
2085		num_physpages++;
2086		totalram_pages++;
2087	}
2088}
2089#endif
2090
2091#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2092#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2093#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2094#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2095#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2096#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2097
2098pgprot_t PAGE_KERNEL __read_mostly;
2099EXPORT_SYMBOL(PAGE_KERNEL);
2100
2101pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2102pgprot_t PAGE_COPY __read_mostly;
2103
2104pgprot_t PAGE_SHARED __read_mostly;
2105EXPORT_SYMBOL(PAGE_SHARED);
2106
2107unsigned long pg_iobits __read_mostly;
2108
2109unsigned long _PAGE_IE __read_mostly;
2110EXPORT_SYMBOL(_PAGE_IE);
2111
2112unsigned long _PAGE_E __read_mostly;
2113EXPORT_SYMBOL(_PAGE_E);
2114
2115unsigned long _PAGE_CACHE __read_mostly;
2116EXPORT_SYMBOL(_PAGE_CACHE);
2117
2118#ifdef CONFIG_SPARSEMEM_VMEMMAP
2119unsigned long vmemmap_table[VMEMMAP_SIZE];
2120
2121int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
 
 
 
 
2122{
2123	unsigned long vstart = (unsigned long) start;
2124	unsigned long vend = (unsigned long) (start + nr);
2125	unsigned long phys_start = (vstart - VMEMMAP_BASE);
2126	unsigned long phys_end = (vend - VMEMMAP_BASE);
2127	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2128	unsigned long end = VMEMMAP_ALIGN(phys_end);
2129	unsigned long pte_base;
2130
2131	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2132		    _PAGE_CP_4U | _PAGE_CV_4U |
2133		    _PAGE_P_4U | _PAGE_W_4U);
2134	if (tlb_type == hypervisor)
2135		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2136			    _PAGE_CP_4V | _PAGE_CV_4V |
2137			    _PAGE_P_4V | _PAGE_W_4V);
2138
2139	for (; addr < end; addr += VMEMMAP_CHUNK) {
2140		unsigned long *vmem_pp =
2141			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2142		void *block;
2143
2144		if (!(*vmem_pp & _PAGE_VALID)) {
2145			block = vmemmap_alloc_block(1UL << 22, node);
2146			if (!block)
2147				return -ENOMEM;
2148
2149			*vmem_pp = pte_base | __pa(block);
2150
2151			printk(KERN_INFO "[%p-%p] page_structs=%lu "
2152			       "node=%d entry=%lu/%lu\n", start, block, nr,
2153			       node,
2154			       addr >> VMEMMAP_CHUNK_SHIFT,
2155			       VMEMMAP_SIZE);
 
 
 
 
2156		}
2157	}
2158	return 0;
2159}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2160#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2161
2162static void prot_init_common(unsigned long page_none,
2163			     unsigned long page_shared,
2164			     unsigned long page_copy,
2165			     unsigned long page_readonly,
2166			     unsigned long page_exec_bit)
2167{
2168	PAGE_COPY = __pgprot(page_copy);
2169	PAGE_SHARED = __pgprot(page_shared);
2170
2171	protection_map[0x0] = __pgprot(page_none);
2172	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2173	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2174	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2175	protection_map[0x4] = __pgprot(page_readonly);
2176	protection_map[0x5] = __pgprot(page_readonly);
2177	protection_map[0x6] = __pgprot(page_copy);
2178	protection_map[0x7] = __pgprot(page_copy);
2179	protection_map[0x8] = __pgprot(page_none);
2180	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2181	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2182	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2183	protection_map[0xc] = __pgprot(page_readonly);
2184	protection_map[0xd] = __pgprot(page_readonly);
2185	protection_map[0xe] = __pgprot(page_shared);
2186	protection_map[0xf] = __pgprot(page_shared);
2187}
2188
2189static void __init sun4u_pgprot_init(void)
2190{
2191	unsigned long page_none, page_shared, page_copy, page_readonly;
2192	unsigned long page_exec_bit;
 
2193
2194	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2195				_PAGE_CACHE_4U | _PAGE_P_4U |
2196				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2197				_PAGE_EXEC_4U);
2198	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2199				       _PAGE_CACHE_4U | _PAGE_P_4U |
2200				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2201				       _PAGE_EXEC_4U | _PAGE_L_4U);
2202
2203	_PAGE_IE = _PAGE_IE_4U;
2204	_PAGE_E = _PAGE_E_4U;
2205	_PAGE_CACHE = _PAGE_CACHE_4U;
2206
2207	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2208		     __ACCESS_BITS_4U | _PAGE_E_4U);
2209
2210#ifdef CONFIG_DEBUG_PAGEALLOC
2211	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2212		0xfffff80000000000UL;
2213#else
2214	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2215		0xfffff80000000000UL;
2216#endif
2217	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2218				   _PAGE_P_4U | _PAGE_W_4U);
2219
2220	/* XXX Should use 256MB on Panther. XXX */
2221	kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2222
2223	_PAGE_SZBITS = _PAGE_SZBITS_4U;
2224	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2225			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2226			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2227
2228
2229	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2230	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2231		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2232	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2233		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2234	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2235			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2236
2237	page_exec_bit = _PAGE_EXEC_4U;
2238
2239	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2240			 page_exec_bit);
2241}
2242
2243static void __init sun4v_pgprot_init(void)
2244{
2245	unsigned long page_none, page_shared, page_copy, page_readonly;
2246	unsigned long page_exec_bit;
 
2247
2248	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2249				_PAGE_CACHE_4V | _PAGE_P_4V |
2250				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2251				_PAGE_EXEC_4V);
2252	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2253
2254	_PAGE_IE = _PAGE_IE_4V;
2255	_PAGE_E = _PAGE_E_4V;
2256	_PAGE_CACHE = _PAGE_CACHE_4V;
2257
2258#ifdef CONFIG_DEBUG_PAGEALLOC
2259	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2260		0xfffff80000000000UL;
2261#else
2262	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2263		0xfffff80000000000UL;
2264#endif
2265	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2266				   _PAGE_P_4V | _PAGE_W_4V);
2267
2268#ifdef CONFIG_DEBUG_PAGEALLOC
2269	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2270		0xfffff80000000000UL;
2271#else
2272	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2273		0xfffff80000000000UL;
2274#endif
2275	kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2276				   _PAGE_P_4V | _PAGE_W_4V);
2277
2278	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2279		     __ACCESS_BITS_4V | _PAGE_E_4V);
2280
2281	_PAGE_SZBITS = _PAGE_SZBITS_4V;
2282	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2283			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2284			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2285			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2286
2287	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2288	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2289		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2290	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2291		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2292	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2293			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2294
2295	page_exec_bit = _PAGE_EXEC_4V;
2296
2297	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2298			 page_exec_bit);
2299}
2300
2301unsigned long pte_sz_bits(unsigned long sz)
2302{
2303	if (tlb_type == hypervisor) {
2304		switch (sz) {
2305		case 8 * 1024:
2306		default:
2307			return _PAGE_SZ8K_4V;
2308		case 64 * 1024:
2309			return _PAGE_SZ64K_4V;
2310		case 512 * 1024:
2311			return _PAGE_SZ512K_4V;
2312		case 4 * 1024 * 1024:
2313			return _PAGE_SZ4MB_4V;
2314		}
2315	} else {
2316		switch (sz) {
2317		case 8 * 1024:
2318		default:
2319			return _PAGE_SZ8K_4U;
2320		case 64 * 1024:
2321			return _PAGE_SZ64K_4U;
2322		case 512 * 1024:
2323			return _PAGE_SZ512K_4U;
2324		case 4 * 1024 * 1024:
2325			return _PAGE_SZ4MB_4U;
2326		}
2327	}
2328}
2329
2330pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2331{
2332	pte_t pte;
2333
2334	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2335	pte_val(pte) |= (((unsigned long)space) << 32);
2336	pte_val(pte) |= pte_sz_bits(page_size);
2337
2338	return pte;
2339}
2340
2341static unsigned long kern_large_tte(unsigned long paddr)
2342{
2343	unsigned long val;
2344
2345	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2346	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2347	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2348	if (tlb_type == hypervisor)
2349		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2350		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2351		       _PAGE_EXEC_4V | _PAGE_W_4V);
2352
2353	return val | paddr;
2354}
2355
2356/* If not locked, zap it. */
2357void __flush_tlb_all(void)
2358{
2359	unsigned long pstate;
2360	int i;
2361
2362	__asm__ __volatile__("flushw\n\t"
2363			     "rdpr	%%pstate, %0\n\t"
2364			     "wrpr	%0, %1, %%pstate"
2365			     : "=r" (pstate)
2366			     : "i" (PSTATE_IE));
2367	if (tlb_type == hypervisor) {
2368		sun4v_mmu_demap_all();
2369	} else if (tlb_type == spitfire) {
2370		for (i = 0; i < 64; i++) {
2371			/* Spitfire Errata #32 workaround */
2372			/* NOTE: Always runs on spitfire, so no
2373			 *       cheetah+ page size encodings.
2374			 */
2375			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2376					     "flush	%%g6"
2377					     : /* No outputs */
2378					     : "r" (0),
2379					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2380
2381			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2382				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2383						     "membar #Sync"
2384						     : /* no outputs */
2385						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2386				spitfire_put_dtlb_data(i, 0x0UL);
2387			}
2388
2389			/* Spitfire Errata #32 workaround */
2390			/* NOTE: Always runs on spitfire, so no
2391			 *       cheetah+ page size encodings.
2392			 */
2393			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2394					     "flush	%%g6"
2395					     : /* No outputs */
2396					     : "r" (0),
2397					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2398
2399			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2400				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2401						     "membar #Sync"
2402						     : /* no outputs */
2403						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2404				spitfire_put_itlb_data(i, 0x0UL);
2405			}
2406		}
2407	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2408		cheetah_flush_dtlb_all();
2409		cheetah_flush_itlb_all();
2410	}
2411	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2412			     : : "r" (pstate));
2413}
v3.15
   1/*
   2 *  arch/sparc64/mm/init.c
   3 *
   4 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   5 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   6 */
   7 
   8#include <linux/module.h>
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/string.h>
  12#include <linux/init.h>
  13#include <linux/bootmem.h>
  14#include <linux/mm.h>
  15#include <linux/hugetlb.h>
  16#include <linux/initrd.h>
  17#include <linux/swap.h>
  18#include <linux/pagemap.h>
  19#include <linux/poison.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/kprobes.h>
  23#include <linux/cache.h>
  24#include <linux/sort.h>
  25#include <linux/percpu.h>
  26#include <linux/memblock.h>
  27#include <linux/mmzone.h>
  28#include <linux/gfp.h>
  29
  30#include <asm/head.h>
 
  31#include <asm/page.h>
  32#include <asm/pgalloc.h>
  33#include <asm/pgtable.h>
  34#include <asm/oplib.h>
  35#include <asm/iommu.h>
  36#include <asm/io.h>
  37#include <asm/uaccess.h>
  38#include <asm/mmu_context.h>
  39#include <asm/tlbflush.h>
  40#include <asm/dma.h>
  41#include <asm/starfire.h>
  42#include <asm/tlb.h>
  43#include <asm/spitfire.h>
  44#include <asm/sections.h>
  45#include <asm/tsb.h>
  46#include <asm/hypervisor.h>
  47#include <asm/prom.h>
  48#include <asm/mdesc.h>
  49#include <asm/cpudata.h>
  50#include <asm/irq.h>
  51
  52#include "init_64.h"
  53
  54unsigned long kern_linear_pte_xor[4] __read_mostly;
  55
  56/* A bitmap, two bits for every 256MB of physical memory.  These two
  57 * bits determine what page size we use for kernel linear
  58 * translations.  They form an index into kern_linear_pte_xor[].  The
  59 * value in the indexed slot is XOR'd with the TLB miss virtual
  60 * address to form the resulting TTE.  The mapping is:
  61 *
  62 *	0	==>	4MB
  63 *	1	==>	256MB
  64 *	2	==>	2GB
  65 *	3	==>	16GB
  66 *
  67 * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
  68 * support 2GB pages, and hopefully future cpus will support the 16GB
  69 * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
  70 * if these larger page sizes are not supported by the cpu.
  71 *
  72 * It would be nice to determine this from the machine description
  73 * 'cpu' properties, but we need to have this table setup before the
  74 * MDESC is initialized.
  75 */
  76unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  77
  78#ifndef CONFIG_DEBUG_PAGEALLOC
  79/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
  80 * Space is allocated for this right after the trap table in
  81 * arch/sparc64/kernel/head.S
  82 */
  83extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  84#endif
  85
  86static unsigned long cpu_pgsz_mask;
  87
  88#define MAX_BANKS	32
  89
  90static struct linux_prom64_registers pavail[MAX_BANKS];
  91static int pavail_ents;
  92
  93static int cmp_p64(const void *a, const void *b)
  94{
  95	const struct linux_prom64_registers *x = a, *y = b;
  96
  97	if (x->phys_addr > y->phys_addr)
  98		return 1;
  99	if (x->phys_addr < y->phys_addr)
 100		return -1;
 101	return 0;
 102}
 103
 104static void __init read_obp_memory(const char *property,
 105				   struct linux_prom64_registers *regs,
 106				   int *num_ents)
 107{
 108	phandle node = prom_finddevice("/memory");
 109	int prop_size = prom_getproplen(node, property);
 110	int ents, ret, i;
 111
 112	ents = prop_size / sizeof(struct linux_prom64_registers);
 113	if (ents > MAX_BANKS) {
 114		prom_printf("The machine has more %s property entries than "
 115			    "this kernel can support (%d).\n",
 116			    property, MAX_BANKS);
 117		prom_halt();
 118	}
 119
 120	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 121	if (ret == -1) {
 122		prom_printf("Couldn't get %s property from /memory.\n",
 123				property);
 124		prom_halt();
 125	}
 126
 127	/* Sanitize what we got from the firmware, by page aligning
 128	 * everything.
 129	 */
 130	for (i = 0; i < ents; i++) {
 131		unsigned long base, size;
 132
 133		base = regs[i].phys_addr;
 134		size = regs[i].reg_size;
 135
 136		size &= PAGE_MASK;
 137		if (base & ~PAGE_MASK) {
 138			unsigned long new_base = PAGE_ALIGN(base);
 139
 140			size -= new_base - base;
 141			if ((long) size < 0L)
 142				size = 0UL;
 143			base = new_base;
 144		}
 145		if (size == 0UL) {
 146			/* If it is empty, simply get rid of it.
 147			 * This simplifies the logic of the other
 148			 * functions that process these arrays.
 149			 */
 150			memmove(&regs[i], &regs[i + 1],
 151				(ents - i - 1) * sizeof(regs[0]));
 152			i--;
 153			ents--;
 154			continue;
 155		}
 156		regs[i].phys_addr = base;
 157		regs[i].reg_size = size;
 158	}
 159
 160	*num_ents = ents;
 161
 162	sort(regs, ents, sizeof(struct linux_prom64_registers),
 163	     cmp_p64, NULL);
 164}
 165
 166unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
 167					sizeof(unsigned long)];
 168EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
 169
 170/* Kernel physical address base and size in bytes.  */
 171unsigned long kern_base __read_mostly;
 172unsigned long kern_size __read_mostly;
 173
 174/* Initial ramdisk setup */
 175extern unsigned long sparc_ramdisk_image64;
 176extern unsigned int sparc_ramdisk_image;
 177extern unsigned int sparc_ramdisk_size;
 178
 179struct page *mem_map_zero __read_mostly;
 180EXPORT_SYMBOL(mem_map_zero);
 181
 182unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 183
 184unsigned long sparc64_kern_pri_context __read_mostly;
 185unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 186unsigned long sparc64_kern_sec_context __read_mostly;
 187
 188int num_kernel_image_mappings;
 189
 190#ifdef CONFIG_DEBUG_DCFLUSH
 191atomic_t dcpage_flushes = ATOMIC_INIT(0);
 192#ifdef CONFIG_SMP
 193atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 194#endif
 195#endif
 196
 197inline void flush_dcache_page_impl(struct page *page)
 198{
 199	BUG_ON(tlb_type == hypervisor);
 200#ifdef CONFIG_DEBUG_DCFLUSH
 201	atomic_inc(&dcpage_flushes);
 202#endif
 203
 204#ifdef DCACHE_ALIASING_POSSIBLE
 205	__flush_dcache_page(page_address(page),
 206			    ((tlb_type == spitfire) &&
 207			     page_mapping(page) != NULL));
 208#else
 209	if (page_mapping(page) != NULL &&
 210	    tlb_type == spitfire)
 211		__flush_icache_page(__pa(page_address(page)));
 212#endif
 213}
 214
 215#define PG_dcache_dirty		PG_arch_1
 216#define PG_dcache_cpu_shift	32UL
 217#define PG_dcache_cpu_mask	\
 218	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 219
 220#define dcache_dirty_cpu(page) \
 221	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 222
 223static inline void set_dcache_dirty(struct page *page, int this_cpu)
 224{
 225	unsigned long mask = this_cpu;
 226	unsigned long non_cpu_bits;
 227
 228	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 229	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 230
 231	__asm__ __volatile__("1:\n\t"
 232			     "ldx	[%2], %%g7\n\t"
 233			     "and	%%g7, %1, %%g1\n\t"
 234			     "or	%%g1, %0, %%g1\n\t"
 235			     "casx	[%2], %%g7, %%g1\n\t"
 236			     "cmp	%%g7, %%g1\n\t"
 237			     "bne,pn	%%xcc, 1b\n\t"
 238			     " nop"
 239			     : /* no outputs */
 240			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 241			     : "g1", "g7");
 242}
 243
 244static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 245{
 246	unsigned long mask = (1UL << PG_dcache_dirty);
 247
 248	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 249			     "1:\n\t"
 250			     "ldx	[%2], %%g7\n\t"
 251			     "srlx	%%g7, %4, %%g1\n\t"
 252			     "and	%%g1, %3, %%g1\n\t"
 253			     "cmp	%%g1, %0\n\t"
 254			     "bne,pn	%%icc, 2f\n\t"
 255			     " andn	%%g7, %1, %%g1\n\t"
 256			     "casx	[%2], %%g7, %%g1\n\t"
 257			     "cmp	%%g7, %%g1\n\t"
 258			     "bne,pn	%%xcc, 1b\n\t"
 259			     " nop\n"
 260			     "2:"
 261			     : /* no outputs */
 262			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 263			       "i" (PG_dcache_cpu_mask),
 264			       "i" (PG_dcache_cpu_shift)
 265			     : "g1", "g7");
 266}
 267
 268static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 269{
 270	unsigned long tsb_addr = (unsigned long) ent;
 271
 272	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 273		tsb_addr = __pa(tsb_addr);
 274
 275	__tsb_insert(tsb_addr, tag, pte);
 276}
 277
 278unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 
 279
 280static void flush_dcache(unsigned long pfn)
 281{
 282	struct page *page;
 283
 284	page = pfn_to_page(pfn);
 285	if (page) {
 286		unsigned long pg_flags;
 287
 288		pg_flags = page->flags;
 289		if (pg_flags & (1UL << PG_dcache_dirty)) {
 290			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 291				   PG_dcache_cpu_mask);
 292			int this_cpu = get_cpu();
 293
 294			/* This is just to optimize away some function calls
 295			 * in the SMP case.
 296			 */
 297			if (cpu == this_cpu)
 298				flush_dcache_page_impl(page);
 299			else
 300				smp_flush_dcache_page_impl(page, cpu);
 301
 302			clear_dcache_dirty_cpu(page, cpu);
 303
 304			put_cpu();
 305		}
 306	}
 307}
 308
 309/* mm->context.lock must be held */
 310static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
 311				    unsigned long tsb_hash_shift, unsigned long address,
 312				    unsigned long tte)
 313{
 314	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
 315	unsigned long tag;
 316
 317	if (unlikely(!tsb))
 318		return;
 319
 320	tsb += ((address >> tsb_hash_shift) &
 321		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 322	tag = (address >> 22UL);
 323	tsb_insert(tsb, tag, tte);
 324}
 325
 326#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 327static inline bool is_hugetlb_pte(pte_t pte)
 328{
 329	if ((tlb_type == hypervisor &&
 330	     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
 331	    (tlb_type != hypervisor &&
 332	     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
 333		return true;
 334	return false;
 335}
 336#endif
 337
 338void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 339{
 340	struct mm_struct *mm;
 341	unsigned long flags;
 
 
 342	pte_t pte = *ptep;
 343
 344	if (tlb_type != hypervisor) {
 345		unsigned long pfn = pte_pfn(pte);
 346
 347		if (pfn_valid(pfn))
 348			flush_dcache(pfn);
 349	}
 350
 351	mm = vma->vm_mm;
 352
 
 
 
 353	spin_lock_irqsave(&mm->context.lock, flags);
 354
 355#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 356	if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
 357		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
 358					address, pte_val(pte));
 359	else
 
 
 
 
 
 360#endif
 361		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
 362					address, pte_val(pte));
 
 
 
 
 363
 364	spin_unlock_irqrestore(&mm->context.lock, flags);
 365}
 366
 367void flush_dcache_page(struct page *page)
 368{
 369	struct address_space *mapping;
 370	int this_cpu;
 371
 372	if (tlb_type == hypervisor)
 373		return;
 374
 375	/* Do not bother with the expensive D-cache flush if it
 376	 * is merely the zero page.  The 'bigcore' testcase in GDB
 377	 * causes this case to run millions of times.
 378	 */
 379	if (page == ZERO_PAGE(0))
 380		return;
 381
 382	this_cpu = get_cpu();
 383
 384	mapping = page_mapping(page);
 385	if (mapping && !mapping_mapped(mapping)) {
 386		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 387		if (dirty) {
 388			int dirty_cpu = dcache_dirty_cpu(page);
 389
 390			if (dirty_cpu == this_cpu)
 391				goto out;
 392			smp_flush_dcache_page_impl(page, dirty_cpu);
 393		}
 394		set_dcache_dirty(page, this_cpu);
 395	} else {
 396		/* We could delay the flush for the !page_mapping
 397		 * case too.  But that case is for exec env/arg
 398		 * pages and those are %99 certainly going to get
 399		 * faulted into the tlb (and thus flushed) anyways.
 400		 */
 401		flush_dcache_page_impl(page);
 402	}
 403
 404out:
 405	put_cpu();
 406}
 407EXPORT_SYMBOL(flush_dcache_page);
 408
 409void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 410{
 411	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 412	if (tlb_type == spitfire) {
 413		unsigned long kaddr;
 414
 415		/* This code only runs on Spitfire cpus so this is
 416		 * why we can assume _PAGE_PADDR_4U.
 417		 */
 418		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 419			unsigned long paddr, mask = _PAGE_PADDR_4U;
 420
 421			if (kaddr >= PAGE_OFFSET)
 422				paddr = kaddr & mask;
 423			else {
 424				pgd_t *pgdp = pgd_offset_k(kaddr);
 425				pud_t *pudp = pud_offset(pgdp, kaddr);
 426				pmd_t *pmdp = pmd_offset(pudp, kaddr);
 427				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 428
 429				paddr = pte_val(*ptep) & mask;
 430			}
 431			__flush_icache_page(paddr);
 432		}
 433	}
 434}
 435EXPORT_SYMBOL(flush_icache_range);
 436
 437void mmu_info(struct seq_file *m)
 438{
 439	static const char *pgsz_strings[] = {
 440		"8K", "64K", "512K", "4MB", "32MB",
 441		"256MB", "2GB", "16GB",
 442	};
 443	int i, printed;
 444
 445	if (tlb_type == cheetah)
 446		seq_printf(m, "MMU Type\t: Cheetah\n");
 447	else if (tlb_type == cheetah_plus)
 448		seq_printf(m, "MMU Type\t: Cheetah+\n");
 449	else if (tlb_type == spitfire)
 450		seq_printf(m, "MMU Type\t: Spitfire\n");
 451	else if (tlb_type == hypervisor)
 452		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 453	else
 454		seq_printf(m, "MMU Type\t: ???\n");
 455
 456	seq_printf(m, "MMU PGSZs\t: ");
 457	printed = 0;
 458	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
 459		if (cpu_pgsz_mask & (1UL << i)) {
 460			seq_printf(m, "%s%s",
 461				   printed ? "," : "", pgsz_strings[i]);
 462			printed++;
 463		}
 464	}
 465	seq_putc(m, '\n');
 466
 467#ifdef CONFIG_DEBUG_DCFLUSH
 468	seq_printf(m, "DCPageFlushes\t: %d\n",
 469		   atomic_read(&dcpage_flushes));
 470#ifdef CONFIG_SMP
 471	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 472		   atomic_read(&dcpage_flushes_xcall));
 473#endif /* CONFIG_SMP */
 474#endif /* CONFIG_DEBUG_DCFLUSH */
 475}
 476
 477struct linux_prom_translation prom_trans[512] __read_mostly;
 478unsigned int prom_trans_ents __read_mostly;
 479
 480unsigned long kern_locked_tte_data;
 481
 482/* The obp translations are saved based on 8k pagesize, since obp can
 483 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 484 * HI_OBP_ADDRESS range are handled in ktlb.S.
 485 */
 486static inline int in_obp_range(unsigned long vaddr)
 487{
 488	return (vaddr >= LOW_OBP_ADDRESS &&
 489		vaddr < HI_OBP_ADDRESS);
 490}
 491
 492static int cmp_ptrans(const void *a, const void *b)
 493{
 494	const struct linux_prom_translation *x = a, *y = b;
 495
 496	if (x->virt > y->virt)
 497		return 1;
 498	if (x->virt < y->virt)
 499		return -1;
 500	return 0;
 501}
 502
 503/* Read OBP translations property into 'prom_trans[]'.  */
 504static void __init read_obp_translations(void)
 505{
 506	int n, node, ents, first, last, i;
 507
 508	node = prom_finddevice("/virtual-memory");
 509	n = prom_getproplen(node, "translations");
 510	if (unlikely(n == 0 || n == -1)) {
 511		prom_printf("prom_mappings: Couldn't get size.\n");
 512		prom_halt();
 513	}
 514	if (unlikely(n > sizeof(prom_trans))) {
 515		prom_printf("prom_mappings: Size %d is too big.\n", n);
 516		prom_halt();
 517	}
 518
 519	if ((n = prom_getproperty(node, "translations",
 520				  (char *)&prom_trans[0],
 521				  sizeof(prom_trans))) == -1) {
 522		prom_printf("prom_mappings: Couldn't get property.\n");
 523		prom_halt();
 524	}
 525
 526	n = n / sizeof(struct linux_prom_translation);
 527
 528	ents = n;
 529
 530	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 531	     cmp_ptrans, NULL);
 532
 533	/* Now kick out all the non-OBP entries.  */
 534	for (i = 0; i < ents; i++) {
 535		if (in_obp_range(prom_trans[i].virt))
 536			break;
 537	}
 538	first = i;
 539	for (; i < ents; i++) {
 540		if (!in_obp_range(prom_trans[i].virt))
 541			break;
 542	}
 543	last = i;
 544
 545	for (i = 0; i < (last - first); i++) {
 546		struct linux_prom_translation *src = &prom_trans[i + first];
 547		struct linux_prom_translation *dest = &prom_trans[i];
 548
 549		*dest = *src;
 550	}
 551	for (; i < ents; i++) {
 552		struct linux_prom_translation *dest = &prom_trans[i];
 553		dest->virt = dest->size = dest->data = 0x0UL;
 554	}
 555
 556	prom_trans_ents = last - first;
 557
 558	if (tlb_type == spitfire) {
 559		/* Clear diag TTE bits. */
 560		for (i = 0; i < prom_trans_ents; i++)
 561			prom_trans[i].data &= ~0x0003fe0000000000UL;
 562	}
 563
 564	/* Force execute bit on.  */
 565	for (i = 0; i < prom_trans_ents; i++)
 566		prom_trans[i].data |= (tlb_type == hypervisor ?
 567				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 568}
 569
 570static void __init hypervisor_tlb_lock(unsigned long vaddr,
 571				       unsigned long pte,
 572				       unsigned long mmu)
 573{
 574	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 575
 576	if (ret != 0) {
 577		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
 578			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 579		prom_halt();
 580	}
 581}
 582
 583static unsigned long kern_large_tte(unsigned long paddr);
 584
 585static void __init remap_kernel(void)
 586{
 587	unsigned long phys_page, tte_vaddr, tte_data;
 588	int i, tlb_ent = sparc64_highest_locked_tlbent();
 589
 590	tte_vaddr = (unsigned long) KERNBASE;
 591	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
 592	tte_data = kern_large_tte(phys_page);
 593
 594	kern_locked_tte_data = tte_data;
 595
 596	/* Now lock us into the TLBs via Hypervisor or OBP. */
 597	if (tlb_type == hypervisor) {
 598		for (i = 0; i < num_kernel_image_mappings; i++) {
 599			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 600			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 601			tte_vaddr += 0x400000;
 602			tte_data += 0x400000;
 603		}
 604	} else {
 605		for (i = 0; i < num_kernel_image_mappings; i++) {
 606			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 607			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 608			tte_vaddr += 0x400000;
 609			tte_data += 0x400000;
 610		}
 611		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 612	}
 613	if (tlb_type == cheetah_plus) {
 614		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 615					    CTX_CHEETAH_PLUS_NUC);
 616		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 617		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 618	}
 619}
 620
 621
 622static void __init inherit_prom_mappings(void)
 623{
 624	/* Now fixup OBP's idea about where we really are mapped. */
 625	printk("Remapping the kernel... ");
 626	remap_kernel();
 627	printk("done.\n");
 628}
 629
 630void prom_world(int enter)
 631{
 632	if (!enter)
 633		set_fs(get_fs());
 634
 635	__asm__ __volatile__("flushw");
 636}
 637
 638void __flush_dcache_range(unsigned long start, unsigned long end)
 639{
 640	unsigned long va;
 641
 642	if (tlb_type == spitfire) {
 643		int n = 0;
 644
 645		for (va = start; va < end; va += 32) {
 646			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 647			if (++n >= 512)
 648				break;
 649		}
 650	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 651		start = __pa(start);
 652		end = __pa(end);
 653		for (va = start; va < end; va += 32)
 654			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 655					     "membar #Sync"
 656					     : /* no outputs */
 657					     : "r" (va),
 658					       "i" (ASI_DCACHE_INVALIDATE));
 659	}
 660}
 661EXPORT_SYMBOL(__flush_dcache_range);
 662
 663/* get_new_mmu_context() uses "cache + 1".  */
 664DEFINE_SPINLOCK(ctx_alloc_lock);
 665unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
 666#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 667#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 668DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 669
 670/* Caller does TLB context flushing on local CPU if necessary.
 671 * The caller also ensures that CTX_VALID(mm->context) is false.
 672 *
 673 * We must be careful about boundary cases so that we never
 674 * let the user have CTX 0 (nucleus) or we ever use a CTX
 675 * version of zero (and thus NO_CONTEXT would not be caught
 676 * by version mis-match tests in mmu_context.h).
 677 *
 678 * Always invoked with interrupts disabled.
 679 */
 680void get_new_mmu_context(struct mm_struct *mm)
 681{
 682	unsigned long ctx, new_ctx;
 683	unsigned long orig_pgsz_bits;
 
 684	int new_version;
 685
 686	spin_lock(&ctx_alloc_lock);
 687	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 688	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 689	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 690	new_version = 0;
 691	if (new_ctx >= (1 << CTX_NR_BITS)) {
 692		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 693		if (new_ctx >= ctx) {
 694			int i;
 695			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
 696				CTX_FIRST_VERSION;
 697			if (new_ctx == 1)
 698				new_ctx = CTX_FIRST_VERSION;
 699
 700			/* Don't call memset, for 16 entries that's just
 701			 * plain silly...
 702			 */
 703			mmu_context_bmap[0] = 3;
 704			mmu_context_bmap[1] = 0;
 705			mmu_context_bmap[2] = 0;
 706			mmu_context_bmap[3] = 0;
 707			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
 708				mmu_context_bmap[i + 0] = 0;
 709				mmu_context_bmap[i + 1] = 0;
 710				mmu_context_bmap[i + 2] = 0;
 711				mmu_context_bmap[i + 3] = 0;
 712			}
 713			new_version = 1;
 714			goto out;
 715		}
 716	}
 717	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 718	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 719out:
 720	tlb_context_cache = new_ctx;
 721	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 722	spin_unlock(&ctx_alloc_lock);
 723
 724	if (unlikely(new_version))
 725		smp_new_mmu_context_version();
 726}
 727
 728static int numa_enabled = 1;
 729static int numa_debug;
 730
 731static int __init early_numa(char *p)
 732{
 733	if (!p)
 734		return 0;
 735
 736	if (strstr(p, "off"))
 737		numa_enabled = 0;
 738
 739	if (strstr(p, "debug"))
 740		numa_debug = 1;
 741
 742	return 0;
 743}
 744early_param("numa", early_numa);
 745
 746#define numadbg(f, a...) \
 747do {	if (numa_debug) \
 748		printk(KERN_INFO f, ## a); \
 749} while (0)
 750
 751static void __init find_ramdisk(unsigned long phys_base)
 752{
 753#ifdef CONFIG_BLK_DEV_INITRD
 754	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 755		unsigned long ramdisk_image;
 756
 757		/* Older versions of the bootloader only supported a
 758		 * 32-bit physical address for the ramdisk image
 759		 * location, stored at sparc_ramdisk_image.  Newer
 760		 * SILO versions set sparc_ramdisk_image to zero and
 761		 * provide a full 64-bit physical address at
 762		 * sparc_ramdisk_image64.
 763		 */
 764		ramdisk_image = sparc_ramdisk_image;
 765		if (!ramdisk_image)
 766			ramdisk_image = sparc_ramdisk_image64;
 767
 768		/* Another bootloader quirk.  The bootloader normalizes
 769		 * the physical address to KERNBASE, so we have to
 770		 * factor that back out and add in the lowest valid
 771		 * physical page address to get the true physical address.
 772		 */
 773		ramdisk_image -= KERNBASE;
 774		ramdisk_image += phys_base;
 775
 776		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 777			ramdisk_image, sparc_ramdisk_size);
 778
 779		initrd_start = ramdisk_image;
 780		initrd_end = ramdisk_image + sparc_ramdisk_size;
 781
 782		memblock_reserve(initrd_start, sparc_ramdisk_size);
 783
 784		initrd_start += PAGE_OFFSET;
 785		initrd_end += PAGE_OFFSET;
 786	}
 787#endif
 788}
 789
 790struct node_mem_mask {
 791	unsigned long mask;
 792	unsigned long val;
 
 793};
 794static struct node_mem_mask node_masks[MAX_NUMNODES];
 795static int num_node_masks;
 796
 797int numa_cpu_lookup_table[NR_CPUS];
 798cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 799
 800#ifdef CONFIG_NEED_MULTIPLE_NODES
 801
 802struct mdesc_mblock {
 803	u64	base;
 804	u64	size;
 805	u64	offset; /* RA-to-PA */
 806};
 807static struct mdesc_mblock *mblocks;
 808static int num_mblocks;
 809
 810static unsigned long ra_to_pa(unsigned long addr)
 811{
 812	int i;
 813
 814	for (i = 0; i < num_mblocks; i++) {
 815		struct mdesc_mblock *m = &mblocks[i];
 816
 817		if (addr >= m->base &&
 818		    addr < (m->base + m->size)) {
 819			addr += m->offset;
 820			break;
 821		}
 822	}
 823	return addr;
 824}
 825
 826static int find_node(unsigned long addr)
 827{
 828	int i;
 829
 830	addr = ra_to_pa(addr);
 831	for (i = 0; i < num_node_masks; i++) {
 832		struct node_mem_mask *p = &node_masks[i];
 833
 834		if ((addr & p->mask) == p->val)
 835			return i;
 836	}
 837	return -1;
 838}
 839
 840static u64 memblock_nid_range(u64 start, u64 end, int *nid)
 841{
 842	*nid = find_node(start);
 843	start += PAGE_SIZE;
 844	while (start < end) {
 845		int n = find_node(start);
 846
 847		if (n != *nid)
 848			break;
 849		start += PAGE_SIZE;
 850	}
 851
 852	if (start > end)
 853		start = end;
 854
 855	return start;
 856}
 
 
 
 
 
 
 857#endif
 858
 859/* This must be invoked after performing all of the necessary
 860 * memblock_set_node() calls for 'nid'.  We need to be able to get
 861 * correct data from get_pfn_range_for_nid().
 862 */
 863static void __init allocate_node_data(int nid)
 864{
 
 865	struct pglist_data *p;
 866	unsigned long start_pfn, end_pfn;
 867#ifdef CONFIG_NEED_MULTIPLE_NODES
 868	unsigned long paddr;
 869
 870	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
 871	if (!paddr) {
 872		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
 873		prom_halt();
 874	}
 875	NODE_DATA(nid) = __va(paddr);
 876	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 877
 878	NODE_DATA(nid)->node_id = nid;
 879#endif
 880
 881	p = NODE_DATA(nid);
 882
 883	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 884	p->node_start_pfn = start_pfn;
 885	p->node_spanned_pages = end_pfn - start_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 886}
 887
 888static void init_node_masks_nonnuma(void)
 889{
 890	int i;
 891
 892	numadbg("Initializing tables for non-numa.\n");
 893
 894	node_masks[0].mask = node_masks[0].val = 0;
 895	num_node_masks = 1;
 896
 897	for (i = 0; i < NR_CPUS; i++)
 898		numa_cpu_lookup_table[i] = 0;
 899
 900	cpumask_setall(&numa_cpumask_lookup_table[0]);
 901}
 902
 903#ifdef CONFIG_NEED_MULTIPLE_NODES
 904struct pglist_data *node_data[MAX_NUMNODES];
 905
 906EXPORT_SYMBOL(numa_cpu_lookup_table);
 907EXPORT_SYMBOL(numa_cpumask_lookup_table);
 908EXPORT_SYMBOL(node_data);
 909
 910struct mdesc_mlgroup {
 911	u64	node;
 912	u64	latency;
 913	u64	match;
 914	u64	mask;
 915};
 916static struct mdesc_mlgroup *mlgroups;
 917static int num_mlgroups;
 918
 919static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
 920				   u32 cfg_handle)
 921{
 922	u64 arc;
 923
 924	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
 925		u64 target = mdesc_arc_target(md, arc);
 926		const u64 *val;
 927
 928		val = mdesc_get_property(md, target,
 929					 "cfg-handle", NULL);
 930		if (val && *val == cfg_handle)
 931			return 0;
 932	}
 933	return -ENODEV;
 934}
 935
 936static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
 937				    u32 cfg_handle)
 938{
 939	u64 arc, candidate, best_latency = ~(u64)0;
 940
 941	candidate = MDESC_NODE_NULL;
 942	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 943		u64 target = mdesc_arc_target(md, arc);
 944		const char *name = mdesc_node_name(md, target);
 945		const u64 *val;
 946
 947		if (strcmp(name, "pio-latency-group"))
 948			continue;
 949
 950		val = mdesc_get_property(md, target, "latency", NULL);
 951		if (!val)
 952			continue;
 953
 954		if (*val < best_latency) {
 955			candidate = target;
 956			best_latency = *val;
 957		}
 958	}
 959
 960	if (candidate == MDESC_NODE_NULL)
 961		return -ENODEV;
 962
 963	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
 964}
 965
 966int of_node_to_nid(struct device_node *dp)
 967{
 968	const struct linux_prom64_registers *regs;
 969	struct mdesc_handle *md;
 970	u32 cfg_handle;
 971	int count, nid;
 972	u64 grp;
 973
 974	/* This is the right thing to do on currently supported
 975	 * SUN4U NUMA platforms as well, as the PCI controller does
 976	 * not sit behind any particular memory controller.
 977	 */
 978	if (!mlgroups)
 979		return -1;
 980
 981	regs = of_get_property(dp, "reg", NULL);
 982	if (!regs)
 983		return -1;
 984
 985	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
 986
 987	md = mdesc_grab();
 988
 989	count = 0;
 990	nid = -1;
 991	mdesc_for_each_node_by_name(md, grp, "group") {
 992		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
 993			nid = count;
 994			break;
 995		}
 996		count++;
 997	}
 998
 999	mdesc_release(md);
1000
1001	return nid;
1002}
1003
1004static void __init add_node_ranges(void)
1005{
1006	struct memblock_region *reg;
1007
1008	for_each_memblock(memory, reg) {
1009		unsigned long size = reg->size;
1010		unsigned long start, end;
1011
1012		start = reg->base;
1013		end = start + size;
1014		while (start < end) {
1015			unsigned long this_end;
1016			int nid;
1017
1018			this_end = memblock_nid_range(start, end, &nid);
1019
1020			numadbg("Setting memblock NUMA node nid[%d] "
1021				"start[%lx] end[%lx]\n",
1022				nid, start, this_end);
1023
1024			memblock_set_node(start, this_end - start,
1025					  &memblock.memory, nid);
 
 
1026			start = this_end;
1027		}
1028	}
1029}
1030
1031static int __init grab_mlgroups(struct mdesc_handle *md)
1032{
1033	unsigned long paddr;
1034	int count = 0;
1035	u64 node;
1036
1037	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1038		count++;
1039	if (!count)
1040		return -ENOENT;
1041
1042	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1043			  SMP_CACHE_BYTES);
1044	if (!paddr)
1045		return -ENOMEM;
1046
1047	mlgroups = __va(paddr);
1048	num_mlgroups = count;
1049
1050	count = 0;
1051	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1052		struct mdesc_mlgroup *m = &mlgroups[count++];
1053		const u64 *val;
1054
1055		m->node = node;
1056
1057		val = mdesc_get_property(md, node, "latency", NULL);
1058		m->latency = *val;
1059		val = mdesc_get_property(md, node, "address-match", NULL);
1060		m->match = *val;
1061		val = mdesc_get_property(md, node, "address-mask", NULL);
1062		m->mask = *val;
1063
1064		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1065			"match[%llx] mask[%llx]\n",
1066			count - 1, m->node, m->latency, m->match, m->mask);
1067	}
1068
1069	return 0;
1070}
1071
1072static int __init grab_mblocks(struct mdesc_handle *md)
1073{
1074	unsigned long paddr;
1075	int count = 0;
1076	u64 node;
1077
1078	mdesc_for_each_node_by_name(md, node, "mblock")
1079		count++;
1080	if (!count)
1081		return -ENOENT;
1082
1083	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1084			  SMP_CACHE_BYTES);
1085	if (!paddr)
1086		return -ENOMEM;
1087
1088	mblocks = __va(paddr);
1089	num_mblocks = count;
1090
1091	count = 0;
1092	mdesc_for_each_node_by_name(md, node, "mblock") {
1093		struct mdesc_mblock *m = &mblocks[count++];
1094		const u64 *val;
1095
1096		val = mdesc_get_property(md, node, "base", NULL);
1097		m->base = *val;
1098		val = mdesc_get_property(md, node, "size", NULL);
1099		m->size = *val;
1100		val = mdesc_get_property(md, node,
1101					 "address-congruence-offset", NULL);
1102
1103		/* The address-congruence-offset property is optional.
1104		 * Explicity zero it be identifty this.
1105		 */
1106		if (val)
1107			m->offset = *val;
1108		else
1109			m->offset = 0UL;
1110
1111		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1112			count - 1, m->base, m->size, m->offset);
1113	}
1114
1115	return 0;
1116}
1117
1118static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1119					       u64 grp, cpumask_t *mask)
1120{
1121	u64 arc;
1122
1123	cpumask_clear(mask);
1124
1125	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1126		u64 target = mdesc_arc_target(md, arc);
1127		const char *name = mdesc_node_name(md, target);
1128		const u64 *id;
1129
1130		if (strcmp(name, "cpu"))
1131			continue;
1132		id = mdesc_get_property(md, target, "id", NULL);
1133		if (*id < nr_cpu_ids)
1134			cpumask_set_cpu(*id, mask);
1135	}
1136}
1137
1138static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1139{
1140	int i;
1141
1142	for (i = 0; i < num_mlgroups; i++) {
1143		struct mdesc_mlgroup *m = &mlgroups[i];
1144		if (m->node == node)
1145			return m;
1146	}
1147	return NULL;
1148}
1149
1150static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1151				      int index)
1152{
1153	struct mdesc_mlgroup *candidate = NULL;
1154	u64 arc, best_latency = ~(u64)0;
1155	struct node_mem_mask *n;
1156
1157	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1158		u64 target = mdesc_arc_target(md, arc);
1159		struct mdesc_mlgroup *m = find_mlgroup(target);
1160		if (!m)
1161			continue;
1162		if (m->latency < best_latency) {
1163			candidate = m;
1164			best_latency = m->latency;
1165		}
1166	}
1167	if (!candidate)
1168		return -ENOENT;
1169
1170	if (num_node_masks != index) {
1171		printk(KERN_ERR "Inconsistent NUMA state, "
1172		       "index[%d] != num_node_masks[%d]\n",
1173		       index, num_node_masks);
1174		return -EINVAL;
1175	}
1176
1177	n = &node_masks[num_node_masks++];
1178
1179	n->mask = candidate->mask;
1180	n->val = candidate->match;
1181
1182	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1183		index, n->mask, n->val, candidate->latency);
1184
1185	return 0;
1186}
1187
1188static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1189					 int index)
1190{
1191	cpumask_t mask;
1192	int cpu;
1193
1194	numa_parse_mdesc_group_cpus(md, grp, &mask);
1195
1196	for_each_cpu(cpu, &mask)
1197		numa_cpu_lookup_table[cpu] = index;
1198	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1199
1200	if (numa_debug) {
1201		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1202		for_each_cpu(cpu, &mask)
1203			printk("%d ", cpu);
1204		printk("]\n");
1205	}
1206
1207	return numa_attach_mlgroup(md, grp, index);
1208}
1209
1210static int __init numa_parse_mdesc(void)
1211{
1212	struct mdesc_handle *md = mdesc_grab();
1213	int i, err, count;
1214	u64 node;
1215
1216	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1217	if (node == MDESC_NODE_NULL) {
1218		mdesc_release(md);
1219		return -ENOENT;
1220	}
1221
1222	err = grab_mblocks(md);
1223	if (err < 0)
1224		goto out;
1225
1226	err = grab_mlgroups(md);
1227	if (err < 0)
1228		goto out;
1229
1230	count = 0;
1231	mdesc_for_each_node_by_name(md, node, "group") {
1232		err = numa_parse_mdesc_group(md, node, count);
1233		if (err < 0)
1234			break;
1235		count++;
1236	}
1237
1238	add_node_ranges();
1239
1240	for (i = 0; i < num_node_masks; i++) {
1241		allocate_node_data(i);
1242		node_set_online(i);
1243	}
1244
1245	err = 0;
1246out:
1247	mdesc_release(md);
1248	return err;
1249}
1250
1251static int __init numa_parse_jbus(void)
1252{
1253	unsigned long cpu, index;
1254
1255	/* NUMA node id is encoded in bits 36 and higher, and there is
1256	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1257	 */
1258	index = 0;
1259	for_each_present_cpu(cpu) {
1260		numa_cpu_lookup_table[cpu] = index;
1261		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1262		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1263		node_masks[index].val = cpu << 36UL;
1264
1265		index++;
1266	}
1267	num_node_masks = index;
1268
1269	add_node_ranges();
1270
1271	for (index = 0; index < num_node_masks; index++) {
1272		allocate_node_data(index);
1273		node_set_online(index);
1274	}
1275
1276	return 0;
1277}
1278
1279static int __init numa_parse_sun4u(void)
1280{
1281	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1282		unsigned long ver;
1283
1284		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1285		if ((ver >> 32UL) == __JALAPENO_ID ||
1286		    (ver >> 32UL) == __SERRANO_ID)
1287			return numa_parse_jbus();
1288	}
1289	return -1;
1290}
1291
1292static int __init bootmem_init_numa(void)
1293{
1294	int err = -1;
1295
1296	numadbg("bootmem_init_numa()\n");
1297
1298	if (numa_enabled) {
1299		if (tlb_type == hypervisor)
1300			err = numa_parse_mdesc();
1301		else
1302			err = numa_parse_sun4u();
1303	}
1304	return err;
1305}
1306
1307#else
1308
1309static int bootmem_init_numa(void)
1310{
1311	return -1;
1312}
1313
1314#endif
1315
1316static void __init bootmem_init_nonnuma(void)
1317{
1318	unsigned long top_of_ram = memblock_end_of_DRAM();
1319	unsigned long total_ram = memblock_phys_mem_size();
 
1320
1321	numadbg("bootmem_init_nonnuma()\n");
1322
1323	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1324	       top_of_ram, total_ram);
1325	printk(KERN_INFO "Memory hole size: %ldMB\n",
1326	       (top_of_ram - total_ram) >> 20);
1327
1328	init_node_masks_nonnuma();
1329	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
 
 
 
 
 
 
 
 
 
 
 
1330	allocate_node_data(0);
 
1331	node_set_online(0);
1332}
1333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334static unsigned long __init bootmem_init(unsigned long phys_base)
1335{
1336	unsigned long end_pfn;
 
1337
1338	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1339	max_pfn = max_low_pfn = end_pfn;
1340	min_low_pfn = (phys_base >> PAGE_SHIFT);
1341
1342	if (bootmem_init_numa() < 0)
1343		bootmem_init_nonnuma();
1344
1345	/* Dump memblock with node info. */
1346	memblock_dump_all();
1347
1348	/* XXX cpu notifier XXX */
 
1349
1350	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1351	sparse_init();
1352
1353	return end_pfn;
1354}
1355
1356static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1357static int pall_ents __initdata;
1358
1359#ifdef CONFIG_DEBUG_PAGEALLOC
1360static unsigned long __ref kernel_map_range(unsigned long pstart,
1361					    unsigned long pend, pgprot_t prot)
1362{
1363	unsigned long vstart = PAGE_OFFSET + pstart;
1364	unsigned long vend = PAGE_OFFSET + pend;
1365	unsigned long alloc_bytes = 0UL;
1366
1367	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1368		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1369			    vstart, vend);
1370		prom_halt();
1371	}
1372
1373	while (vstart < vend) {
1374		unsigned long this_end, paddr = __pa(vstart);
1375		pgd_t *pgd = pgd_offset_k(vstart);
1376		pud_t *pud;
1377		pmd_t *pmd;
1378		pte_t *pte;
1379
1380		pud = pud_offset(pgd, vstart);
1381		if (pud_none(*pud)) {
1382			pmd_t *new;
1383
1384			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1385			alloc_bytes += PAGE_SIZE;
1386			pud_populate(&init_mm, pud, new);
1387		}
1388
1389		pmd = pmd_offset(pud, vstart);
1390		if (!pmd_present(*pmd)) {
1391			pte_t *new;
1392
1393			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1394			alloc_bytes += PAGE_SIZE;
1395			pmd_populate_kernel(&init_mm, pmd, new);
1396		}
1397
1398		pte = pte_offset_kernel(pmd, vstart);
1399		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1400		if (this_end > vend)
1401			this_end = vend;
1402
1403		while (vstart < this_end) {
1404			pte_val(*pte) = (paddr | pgprot_val(prot));
1405
1406			vstart += PAGE_SIZE;
1407			paddr += PAGE_SIZE;
1408			pte++;
1409		}
1410	}
1411
1412	return alloc_bytes;
1413}
1414
1415extern unsigned int kvmap_linear_patch[1];
1416#endif /* CONFIG_DEBUG_PAGEALLOC */
1417
1418static void __init kpte_set_val(unsigned long index, unsigned long val)
1419{
1420	unsigned long *ptr = kpte_linear_bitmap;
 
 
1421
1422	val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1423	ptr += (index / (BITS_PER_LONG / 2));
1424
1425	*ptr |= val;
1426}
 
1427
1428static const unsigned long kpte_shift_min = 28; /* 256MB */
1429static const unsigned long kpte_shift_max = 34; /* 16GB */
1430static const unsigned long kpte_shift_incr = 3;
 
1431
1432static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1433					   unsigned long shift)
1434{
1435	unsigned long size = (1UL << shift);
1436	unsigned long mask = (size - 1UL);
1437	unsigned long remains = end - start;
1438	unsigned long val;
1439
1440	if (remains < size || (start & mask))
1441		return start;
1442
1443	/* VAL maps:
1444	 *
1445	 *	shift 28 --> kern_linear_pte_xor index 1
1446	 *	shift 31 --> kern_linear_pte_xor index 2
1447	 *	shift 34 --> kern_linear_pte_xor index 3
1448	 */
1449	val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1450
1451	remains &= ~mask;
1452	if (shift != kpte_shift_max)
1453		remains = size;
1454
1455	while (remains) {
1456		unsigned long index = start >> kpte_shift_min;
1457
1458		kpte_set_val(index, val);
1459
1460		start += 1UL << kpte_shift_min;
1461		remains -= 1UL << kpte_shift_min;
1462	}
1463
1464	return start;
1465}
1466
1467static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1468{
1469	unsigned long smallest_size, smallest_mask;
1470	unsigned long s;
1471
1472	smallest_size = (1UL << kpte_shift_min);
1473	smallest_mask = (smallest_size - 1UL);
1474
1475	while (start < end) {
1476		unsigned long orig_start = start;
1477
1478		for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1479			start = kpte_mark_using_shift(start, end, s);
1480
1481			if (start != orig_start)
1482				break;
1483		}
1484
1485		if (start == orig_start)
1486			start = (start + smallest_size) & ~smallest_mask;
1487	}
1488}
1489
1490static void __init init_kpte_bitmap(void)
1491{
1492	unsigned long i;
1493
1494	for (i = 0; i < pall_ents; i++) {
1495		unsigned long phys_start, phys_end;
1496
1497		phys_start = pall[i].phys_addr;
1498		phys_end = phys_start + pall[i].reg_size;
1499
1500		mark_kpte_bitmap(phys_start, phys_end);
1501	}
1502}
1503
1504static void __init kernel_physical_mapping_init(void)
1505{
1506#ifdef CONFIG_DEBUG_PAGEALLOC
1507	unsigned long i, mem_alloced = 0UL;
1508
1509	for (i = 0; i < pall_ents; i++) {
1510		unsigned long phys_start, phys_end;
1511
1512		phys_start = pall[i].phys_addr;
1513		phys_end = phys_start + pall[i].reg_size;
1514
1515		mem_alloced += kernel_map_range(phys_start, phys_end,
1516						PAGE_KERNEL);
1517	}
1518
1519	printk("Allocated %ld bytes for kernel page tables.\n",
1520	       mem_alloced);
1521
1522	kvmap_linear_patch[0] = 0x01000000; /* nop */
1523	flushi(&kvmap_linear_patch[0]);
1524
1525	__flush_tlb_all();
1526#endif
1527}
1528
1529#ifdef CONFIG_DEBUG_PAGEALLOC
1530void kernel_map_pages(struct page *page, int numpages, int enable)
1531{
1532	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1533	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1534
1535	kernel_map_range(phys_start, phys_end,
1536			 (enable ? PAGE_KERNEL : __pgprot(0)));
1537
1538	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1539			       PAGE_OFFSET + phys_end);
1540
1541	/* we should perform an IPI and flush all tlbs,
1542	 * but that can deadlock->flush only current cpu.
1543	 */
1544	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1545				 PAGE_OFFSET + phys_end);
1546}
1547#endif
1548
1549unsigned long __init find_ecache_flush_span(unsigned long size)
1550{
1551	int i;
1552
1553	for (i = 0; i < pavail_ents; i++) {
1554		if (pavail[i].reg_size >= size)
1555			return pavail[i].phys_addr;
1556	}
1557
1558	return ~0UL;
1559}
1560
1561unsigned long PAGE_OFFSET;
1562EXPORT_SYMBOL(PAGE_OFFSET);
1563
1564static void __init page_offset_shift_patch_one(unsigned int *insn, unsigned long phys_bits)
1565{
1566	unsigned long final_shift;
1567	unsigned int val = *insn;
1568	unsigned int cnt;
1569
1570	/* We are patching in ilog2(max_supported_phys_address), and
1571	 * we are doing so in a manner similar to a relocation addend.
1572	 * That is, we are adding the shift value to whatever value
1573	 * is in the shift instruction count field already.
1574	 */
1575	cnt = (val & 0x3f);
1576	val &= ~0x3f;
1577
1578	/* If we are trying to shift >= 64 bits, clear the destination
1579	 * register.  This can happen when phys_bits ends up being equal
1580	 * to MAX_PHYS_ADDRESS_BITS.
1581	 */
1582	final_shift = (cnt + (64 - phys_bits));
1583	if (final_shift >= 64) {
1584		unsigned int rd = (val >> 25) & 0x1f;
1585
1586		val = 0x80100000 | (rd << 25);
1587	} else {
1588		val |= final_shift;
1589	}
1590	*insn = val;
1591
1592	__asm__ __volatile__("flush	%0"
1593			     : /* no outputs */
1594			     : "r" (insn));
1595}
1596
1597static void __init page_offset_shift_patch(unsigned long phys_bits)
1598{
1599	extern unsigned int __page_offset_shift_patch;
1600	extern unsigned int __page_offset_shift_patch_end;
1601	unsigned int *p;
1602
1603	p = &__page_offset_shift_patch;
1604	while (p < &__page_offset_shift_patch_end) {
1605		unsigned int *insn = (unsigned int *)(unsigned long)*p;
1606
1607		page_offset_shift_patch_one(insn, phys_bits);
1608
1609		p++;
1610	}
1611}
1612
1613static void __init setup_page_offset(void)
1614{
1615	unsigned long max_phys_bits = 40;
1616
1617	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1618		max_phys_bits = 42;
1619	} else if (tlb_type == hypervisor) {
1620		switch (sun4v_chip_type) {
1621		case SUN4V_CHIP_NIAGARA1:
1622		case SUN4V_CHIP_NIAGARA2:
1623			max_phys_bits = 39;
1624			break;
1625		case SUN4V_CHIP_NIAGARA3:
1626			max_phys_bits = 43;
1627			break;
1628		case SUN4V_CHIP_NIAGARA4:
1629		case SUN4V_CHIP_NIAGARA5:
1630		case SUN4V_CHIP_SPARC64X:
1631		default:
1632			max_phys_bits = 47;
1633			break;
1634		}
1635	}
1636
1637	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1638		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1639			    max_phys_bits);
1640		prom_halt();
1641	}
1642
1643	PAGE_OFFSET = PAGE_OFFSET_BY_BITS(max_phys_bits);
1644
1645	pr_info("PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1646		PAGE_OFFSET, max_phys_bits);
1647
1648	page_offset_shift_patch(max_phys_bits);
1649}
1650
1651static void __init tsb_phys_patch(void)
1652{
1653	struct tsb_ldquad_phys_patch_entry *pquad;
1654	struct tsb_phys_patch_entry *p;
1655
1656	pquad = &__tsb_ldquad_phys_patch;
1657	while (pquad < &__tsb_ldquad_phys_patch_end) {
1658		unsigned long addr = pquad->addr;
1659
1660		if (tlb_type == hypervisor)
1661			*(unsigned int *) addr = pquad->sun4v_insn;
1662		else
1663			*(unsigned int *) addr = pquad->sun4u_insn;
1664		wmb();
1665		__asm__ __volatile__("flush	%0"
1666				     : /* no outputs */
1667				     : "r" (addr));
1668
1669		pquad++;
1670	}
1671
1672	p = &__tsb_phys_patch;
1673	while (p < &__tsb_phys_patch_end) {
1674		unsigned long addr = p->addr;
1675
1676		*(unsigned int *) addr = p->insn;
1677		wmb();
1678		__asm__ __volatile__("flush	%0"
1679				     : /* no outputs */
1680				     : "r" (addr));
1681
1682		p++;
1683	}
1684}
1685
1686/* Don't mark as init, we give this to the Hypervisor.  */
1687#ifndef CONFIG_DEBUG_PAGEALLOC
1688#define NUM_KTSB_DESCR	2
1689#else
1690#define NUM_KTSB_DESCR	1
1691#endif
1692static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1693extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1694
1695static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1696{
1697	pa >>= KTSB_PHYS_SHIFT;
1698
1699	while (start < end) {
1700		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1701
1702		ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1703		__asm__ __volatile__("flush	%0" : : "r" (ia));
1704
1705		ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1706		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1707
1708		start++;
1709	}
1710}
1711
1712static void ktsb_phys_patch(void)
1713{
1714	extern unsigned int __swapper_tsb_phys_patch;
1715	extern unsigned int __swapper_tsb_phys_patch_end;
1716	unsigned long ktsb_pa;
1717
1718	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1719	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1720			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1721#ifndef CONFIG_DEBUG_PAGEALLOC
1722	{
1723	extern unsigned int __swapper_4m_tsb_phys_patch;
1724	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1725	ktsb_pa = (kern_base +
1726		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1727	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1728			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1729	}
1730#endif
1731}
1732
1733static void __init sun4v_ktsb_init(void)
1734{
1735	unsigned long ktsb_pa;
1736
1737	/* First KTSB for PAGE_SIZE mappings.  */
1738	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1739
1740	switch (PAGE_SIZE) {
1741	case 8 * 1024:
1742	default:
1743		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1744		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1745		break;
1746
1747	case 64 * 1024:
1748		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1749		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1750		break;
1751
1752	case 512 * 1024:
1753		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1754		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1755		break;
1756
1757	case 4 * 1024 * 1024:
1758		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1759		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1760		break;
1761	}
1762
1763	ktsb_descr[0].assoc = 1;
1764	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1765	ktsb_descr[0].ctx_idx = 0;
1766	ktsb_descr[0].tsb_base = ktsb_pa;
1767	ktsb_descr[0].resv = 0;
1768
1769#ifndef CONFIG_DEBUG_PAGEALLOC
1770	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1771	ktsb_pa = (kern_base +
1772		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1773
1774	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1775	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1776				    HV_PGSZ_MASK_256MB |
1777				    HV_PGSZ_MASK_2GB |
1778				    HV_PGSZ_MASK_16GB) &
1779				   cpu_pgsz_mask);
1780	ktsb_descr[1].assoc = 1;
1781	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1782	ktsb_descr[1].ctx_idx = 0;
1783	ktsb_descr[1].tsb_base = ktsb_pa;
1784	ktsb_descr[1].resv = 0;
1785#endif
1786}
1787
1788void sun4v_ktsb_register(void)
1789{
1790	unsigned long pa, ret;
1791
1792	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1793
1794	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1795	if (ret != 0) {
1796		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1797			    "errors with %lx\n", pa, ret);
1798		prom_halt();
1799	}
1800}
1801
1802static void __init sun4u_linear_pte_xor_finalize(void)
1803{
1804#ifndef CONFIG_DEBUG_PAGEALLOC
1805	/* This is where we would add Panther support for
1806	 * 32MB and 256MB pages.
1807	 */
1808#endif
1809}
1810
1811static void __init sun4v_linear_pte_xor_finalize(void)
1812{
1813#ifndef CONFIG_DEBUG_PAGEALLOC
1814	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1815		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1816			PAGE_OFFSET;
1817		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1818					   _PAGE_P_4V | _PAGE_W_4V);
1819	} else {
1820		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1821	}
1822
1823	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1824		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1825			PAGE_OFFSET;
1826		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1827					   _PAGE_P_4V | _PAGE_W_4V);
1828	} else {
1829		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1830	}
1831
1832	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1833		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1834			PAGE_OFFSET;
1835		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1836					   _PAGE_P_4V | _PAGE_W_4V);
1837	} else {
1838		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1839	}
1840#endif
1841}
1842
1843/* paging_init() sets up the page tables */
1844
1845static unsigned long last_valid_pfn;
1846pgd_t swapper_pg_dir[PTRS_PER_PGD];
1847
1848static void sun4u_pgprot_init(void);
1849static void sun4v_pgprot_init(void);
1850
1851void __init paging_init(void)
1852{
1853	unsigned long end_pfn, shift, phys_base;
1854	unsigned long real_end, i;
1855	int node;
1856
1857	setup_page_offset();
1858
1859	/* These build time checkes make sure that the dcache_dirty_cpu()
1860	 * page->flags usage will work.
1861	 *
1862	 * When a page gets marked as dcache-dirty, we store the
1863	 * cpu number starting at bit 32 in the page->flags.  Also,
1864	 * functions like clear_dcache_dirty_cpu use the cpu mask
1865	 * in 13-bit signed-immediate instruction fields.
1866	 */
1867
1868	/*
1869	 * Page flags must not reach into upper 32 bits that are used
1870	 * for the cpu number
1871	 */
1872	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1873
1874	/*
1875	 * The bit fields placed in the high range must not reach below
1876	 * the 32 bit boundary. Otherwise we cannot place the cpu field
1877	 * at the 32 bit boundary.
1878	 */
1879	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1880		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1881
1882	BUILD_BUG_ON(NR_CPUS > 4096);
1883
1884	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
1885	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1886
1887	/* Invalidate both kernel TSBs.  */
1888	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1889#ifndef CONFIG_DEBUG_PAGEALLOC
1890	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1891#endif
1892
1893	if (tlb_type == hypervisor)
1894		sun4v_pgprot_init();
1895	else
1896		sun4u_pgprot_init();
1897
1898	if (tlb_type == cheetah_plus ||
1899	    tlb_type == hypervisor) {
1900		tsb_phys_patch();
1901		ktsb_phys_patch();
1902	}
1903
1904	if (tlb_type == hypervisor)
1905		sun4v_patch_tlb_handlers();
 
 
 
 
1906
1907	/* Find available physical memory...
1908	 *
1909	 * Read it twice in order to work around a bug in openfirmware.
1910	 * The call to grab this table itself can cause openfirmware to
1911	 * allocate memory, which in turn can take away some space from
1912	 * the list of available memory.  Reading it twice makes sure
1913	 * we really do get the final value.
1914	 */
1915	read_obp_translations();
1916	read_obp_memory("reg", &pall[0], &pall_ents);
1917	read_obp_memory("available", &pavail[0], &pavail_ents);
1918	read_obp_memory("available", &pavail[0], &pavail_ents);
1919
1920	phys_base = 0xffffffffffffffffUL;
1921	for (i = 0; i < pavail_ents; i++) {
1922		phys_base = min(phys_base, pavail[i].phys_addr);
1923		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1924	}
1925
1926	memblock_reserve(kern_base, kern_size);
1927
1928	find_ramdisk(phys_base);
1929
1930	memblock_enforce_memory_limit(cmdline_memory_size);
1931
1932	memblock_allow_resize();
1933	memblock_dump_all();
1934
1935	set_bit(0, mmu_context_bmap);
1936
1937	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1938
1939	real_end = (unsigned long)_end;
1940	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
1941	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1942	       num_kernel_image_mappings);
1943
1944	/* Set kernel pgd to upper alias so physical page computations
1945	 * work.
1946	 */
1947	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1948	
1949	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1950
1951	/* Now can init the kernel/bad page tables. */
1952	pud_set(pud_offset(&swapper_pg_dir[0], 0),
1953		swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1954	
1955	inherit_prom_mappings();
1956	
1957	init_kpte_bitmap();
1958
1959	/* Ok, we can use our TLB miss and window trap handlers safely.  */
1960	setup_tba();
1961
1962	__flush_tlb_all();
1963
 
 
 
1964	prom_build_devicetree();
1965	of_populate_present_mask();
1966#ifndef CONFIG_SMP
1967	of_fill_in_cpu_data();
1968#endif
1969
1970	if (tlb_type == hypervisor) {
1971		sun4v_mdesc_init();
1972		mdesc_populate_present_mask(cpu_all_mask);
1973#ifndef CONFIG_SMP
1974		mdesc_fill_in_cpu_data(cpu_all_mask);
1975#endif
1976		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
1977
1978		sun4v_linear_pte_xor_finalize();
1979
1980		sun4v_ktsb_init();
1981		sun4v_ktsb_register();
1982	} else {
1983		unsigned long impl, ver;
1984
1985		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1986				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
1987
1988		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
1989		impl = ((ver >> 32) & 0xffff);
1990		if (impl == PANTHER_IMPL)
1991			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
1992					  HV_PGSZ_MASK_256MB);
1993
1994		sun4u_linear_pte_xor_finalize();
1995	}
1996
1997	/* Flush the TLBs and the 4M TSB so that the updated linear
1998	 * pte XOR settings are realized for all mappings.
1999	 */
2000	__flush_tlb_all();
2001#ifndef CONFIG_DEBUG_PAGEALLOC
2002	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2003#endif
2004	__flush_tlb_all();
2005
2006	/* Setup bootmem... */
2007	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2008
2009	/* Once the OF device tree and MDESC have been setup, we know
2010	 * the list of possible cpus.  Therefore we can allocate the
2011	 * IRQ stacks.
2012	 */
2013	for_each_possible_cpu(i) {
2014		node = cpu_to_node(i);
 
 
 
2015
2016		softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2017							THREAD_SIZE,
2018							THREAD_SIZE, 0);
2019		hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2020							THREAD_SIZE,
2021							THREAD_SIZE, 0);
2022	}
2023
 
 
 
2024	kernel_physical_mapping_init();
2025
2026	{
2027		unsigned long max_zone_pfns[MAX_NR_ZONES];
2028
2029		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2030
2031		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2032
2033		free_area_init_nodes(max_zone_pfns);
2034	}
2035
2036	printk("Booting Linux...\n");
2037}
2038
2039int page_in_phys_avail(unsigned long paddr)
2040{
2041	int i;
2042
2043	paddr &= PAGE_MASK;
2044
2045	for (i = 0; i < pavail_ents; i++) {
2046		unsigned long start, end;
2047
2048		start = pavail[i].phys_addr;
2049		end = start + pavail[i].reg_size;
2050
2051		if (paddr >= start && paddr < end)
2052			return 1;
2053	}
2054	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2055		return 1;
2056#ifdef CONFIG_BLK_DEV_INITRD
2057	if (paddr >= __pa(initrd_start) &&
2058	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2059		return 1;
2060#endif
2061
2062	return 0;
2063}
2064
2065static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
2066static int pavail_rescan_ents __initdata;
2067
2068/* Certain OBP calls, such as fetching "available" properties, can
2069 * claim physical memory.  So, along with initializing the valid
2070 * address bitmap, what we do here is refetch the physical available
2071 * memory list again, and make sure it provides at least as much
2072 * memory as 'pavail' does.
2073 */
2074static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
2075{
2076	int i;
2077
2078	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
2079
2080	for (i = 0; i < pavail_ents; i++) {
2081		unsigned long old_start, old_end;
2082
2083		old_start = pavail[i].phys_addr;
2084		old_end = old_start + pavail[i].reg_size;
2085		while (old_start < old_end) {
2086			int n;
2087
2088			for (n = 0; n < pavail_rescan_ents; n++) {
2089				unsigned long new_start, new_end;
2090
2091				new_start = pavail_rescan[n].phys_addr;
2092				new_end = new_start +
2093					pavail_rescan[n].reg_size;
2094
2095				if (new_start <= old_start &&
2096				    new_end >= (old_start + PAGE_SIZE)) {
2097					set_bit(old_start >> ILOG2_4MB, bitmap);
2098					goto do_next_page;
2099				}
2100			}
2101
2102			prom_printf("mem_init: Lost memory in pavail\n");
2103			prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
2104				    pavail[i].phys_addr,
2105				    pavail[i].reg_size);
2106			prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2107				    pavail_rescan[i].phys_addr,
2108				    pavail_rescan[i].reg_size);
2109			prom_printf("mem_init: Cannot continue, aborting.\n");
2110			prom_halt();
2111
2112		do_next_page:
2113			old_start += PAGE_SIZE;
2114		}
2115	}
2116}
2117
2118static void __init patch_tlb_miss_handler_bitmap(void)
2119{
2120	extern unsigned int valid_addr_bitmap_insn[];
2121	extern unsigned int valid_addr_bitmap_patch[];
2122
2123	valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2124	mb();
2125	valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2126	flushi(&valid_addr_bitmap_insn[0]);
2127}
2128
2129static void __init register_page_bootmem_info(void)
2130{
2131#ifdef CONFIG_NEED_MULTIPLE_NODES
2132	int i;
2133
2134	for_each_online_node(i)
2135		if (NODE_DATA(i)->node_spanned_pages)
2136			register_page_bootmem_info_node(NODE_DATA(i));
2137#endif
2138}
2139void __init mem_init(void)
2140{
 
2141	unsigned long addr, last;
2142
2143	addr = PAGE_OFFSET + kern_base;
2144	last = PAGE_ALIGN(kern_size) + addr;
2145	while (addr < last) {
2146		set_bit(__pa(addr) >> ILOG2_4MB, sparc64_valid_addr_bitmap);
2147		addr += PAGE_SIZE;
2148	}
2149
2150	setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2151	patch_tlb_miss_handler_bitmap();
2152
2153	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2154
2155	register_page_bootmem_info();
2156	free_all_bootmem();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2157
2158	/*
2159	 * Set up the zero page, mark it reserved, so that page count
2160	 * is not manipulated when freeing the page from user ptes.
2161	 */
2162	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2163	if (mem_map_zero == NULL) {
2164		prom_printf("paging_init: Cannot alloc zero page.\n");
2165		prom_halt();
2166	}
2167	mark_page_reserved(mem_map_zero);
2168
2169	mem_init_print_info(NULL);
 
 
 
 
 
 
 
 
 
 
 
 
2170
2171	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2172		cheetah_ecache_flush_init();
2173}
2174
2175void free_initmem(void)
2176{
2177	unsigned long addr, initend;
2178	int do_free = 1;
2179
2180	/* If the physical memory maps were trimmed by kernel command
2181	 * line options, don't even try freeing this initmem stuff up.
2182	 * The kernel image could have been in the trimmed out region
2183	 * and if so the freeing below will free invalid page structs.
2184	 */
2185	if (cmdline_memory_size)
2186		do_free = 0;
2187
2188	/*
2189	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2190	 */
2191	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2192	initend = (unsigned long)(__init_end) & PAGE_MASK;
2193	for (; addr < initend; addr += PAGE_SIZE) {
2194		unsigned long page;
 
2195
2196		page = (addr +
2197			((unsigned long) __va(kern_base)) -
2198			((unsigned long) KERNBASE));
2199		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2200
2201		if (do_free)
2202			free_reserved_page(virt_to_page(page));
 
 
 
 
 
 
 
2203	}
2204}
2205
2206#ifdef CONFIG_BLK_DEV_INITRD
2207void free_initrd_mem(unsigned long start, unsigned long end)
2208{
2209	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2210			   "initrd");
 
 
 
 
 
 
 
 
 
2211}
2212#endif
2213
2214#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2215#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2216#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2217#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2218#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2219#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2220
2221pgprot_t PAGE_KERNEL __read_mostly;
2222EXPORT_SYMBOL(PAGE_KERNEL);
2223
2224pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2225pgprot_t PAGE_COPY __read_mostly;
2226
2227pgprot_t PAGE_SHARED __read_mostly;
2228EXPORT_SYMBOL(PAGE_SHARED);
2229
2230unsigned long pg_iobits __read_mostly;
2231
2232unsigned long _PAGE_IE __read_mostly;
2233EXPORT_SYMBOL(_PAGE_IE);
2234
2235unsigned long _PAGE_E __read_mostly;
2236EXPORT_SYMBOL(_PAGE_E);
2237
2238unsigned long _PAGE_CACHE __read_mostly;
2239EXPORT_SYMBOL(_PAGE_CACHE);
2240
2241#ifdef CONFIG_SPARSEMEM_VMEMMAP
2242unsigned long vmemmap_table[VMEMMAP_SIZE];
2243
2244static long __meminitdata addr_start, addr_end;
2245static int __meminitdata node_start;
2246
2247int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2248			       int node)
2249{
 
 
2250	unsigned long phys_start = (vstart - VMEMMAP_BASE);
2251	unsigned long phys_end = (vend - VMEMMAP_BASE);
2252	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2253	unsigned long end = VMEMMAP_ALIGN(phys_end);
2254	unsigned long pte_base;
2255
2256	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2257		    _PAGE_CP_4U | _PAGE_CV_4U |
2258		    _PAGE_P_4U | _PAGE_W_4U);
2259	if (tlb_type == hypervisor)
2260		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2261			    _PAGE_CP_4V | _PAGE_CV_4V |
2262			    _PAGE_P_4V | _PAGE_W_4V);
2263
2264	for (; addr < end; addr += VMEMMAP_CHUNK) {
2265		unsigned long *vmem_pp =
2266			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2267		void *block;
2268
2269		if (!(*vmem_pp & _PAGE_VALID)) {
2270			block = vmemmap_alloc_block(1UL << ILOG2_4MB, node);
2271			if (!block)
2272				return -ENOMEM;
2273
2274			*vmem_pp = pte_base | __pa(block);
2275
2276			/* check to see if we have contiguous blocks */
2277			if (addr_end != addr || node_start != node) {
2278				if (addr_start)
2279					printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2280					       addr_start, addr_end-1, node_start);
2281				addr_start = addr;
2282				node_start = node;
2283			}
2284			addr_end = addr + VMEMMAP_CHUNK;
2285		}
2286	}
2287	return 0;
2288}
2289
2290void __meminit vmemmap_populate_print_last(void)
2291{
2292	if (addr_start) {
2293		printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2294		       addr_start, addr_end-1, node_start);
2295		addr_start = 0;
2296		addr_end = 0;
2297		node_start = 0;
2298	}
2299}
2300
2301void vmemmap_free(unsigned long start, unsigned long end)
2302{
2303}
2304
2305#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2306
2307static void prot_init_common(unsigned long page_none,
2308			     unsigned long page_shared,
2309			     unsigned long page_copy,
2310			     unsigned long page_readonly,
2311			     unsigned long page_exec_bit)
2312{
2313	PAGE_COPY = __pgprot(page_copy);
2314	PAGE_SHARED = __pgprot(page_shared);
2315
2316	protection_map[0x0] = __pgprot(page_none);
2317	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2318	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2319	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2320	protection_map[0x4] = __pgprot(page_readonly);
2321	protection_map[0x5] = __pgprot(page_readonly);
2322	protection_map[0x6] = __pgprot(page_copy);
2323	protection_map[0x7] = __pgprot(page_copy);
2324	protection_map[0x8] = __pgprot(page_none);
2325	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2326	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2327	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2328	protection_map[0xc] = __pgprot(page_readonly);
2329	protection_map[0xd] = __pgprot(page_readonly);
2330	protection_map[0xe] = __pgprot(page_shared);
2331	protection_map[0xf] = __pgprot(page_shared);
2332}
2333
2334static void __init sun4u_pgprot_init(void)
2335{
2336	unsigned long page_none, page_shared, page_copy, page_readonly;
2337	unsigned long page_exec_bit;
2338	int i;
2339
2340	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2341				_PAGE_CACHE_4U | _PAGE_P_4U |
2342				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2343				_PAGE_EXEC_4U);
2344	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2345				       _PAGE_CACHE_4U | _PAGE_P_4U |
2346				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2347				       _PAGE_EXEC_4U | _PAGE_L_4U);
2348
2349	_PAGE_IE = _PAGE_IE_4U;
2350	_PAGE_E = _PAGE_E_4U;
2351	_PAGE_CACHE = _PAGE_CACHE_4U;
2352
2353	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2354		     __ACCESS_BITS_4U | _PAGE_E_4U);
2355
2356#ifdef CONFIG_DEBUG_PAGEALLOC
2357	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
 
2358#else
2359	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2360		PAGE_OFFSET;
2361#endif
2362	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2363				   _PAGE_P_4U | _PAGE_W_4U);
2364
2365	for (i = 1; i < 4; i++)
2366		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2367
 
2368	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2369			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2370			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2371
2372
2373	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2374	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2375		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2376	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2377		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2378	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2379			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2380
2381	page_exec_bit = _PAGE_EXEC_4U;
2382
2383	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2384			 page_exec_bit);
2385}
2386
2387static void __init sun4v_pgprot_init(void)
2388{
2389	unsigned long page_none, page_shared, page_copy, page_readonly;
2390	unsigned long page_exec_bit;
2391	int i;
2392
2393	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2394				_PAGE_CACHE_4V | _PAGE_P_4V |
2395				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2396				_PAGE_EXEC_4V);
2397	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2398
2399	_PAGE_IE = _PAGE_IE_4V;
2400	_PAGE_E = _PAGE_E_4V;
2401	_PAGE_CACHE = _PAGE_CACHE_4V;
2402
2403#ifdef CONFIG_DEBUG_PAGEALLOC
2404	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
 
2405#else
2406	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2407		PAGE_OFFSET;
2408#endif
2409	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2410				   _PAGE_P_4V | _PAGE_W_4V);
2411
2412	for (i = 1; i < 4; i++)
2413		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
 
 
 
 
 
 
 
2414
2415	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2416		     __ACCESS_BITS_4V | _PAGE_E_4V);
2417
 
2418	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2419			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2420			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2421			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2422
2423	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2424	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2425		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2426	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2427		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2428	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2429			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2430
2431	page_exec_bit = _PAGE_EXEC_4V;
2432
2433	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2434			 page_exec_bit);
2435}
2436
2437unsigned long pte_sz_bits(unsigned long sz)
2438{
2439	if (tlb_type == hypervisor) {
2440		switch (sz) {
2441		case 8 * 1024:
2442		default:
2443			return _PAGE_SZ8K_4V;
2444		case 64 * 1024:
2445			return _PAGE_SZ64K_4V;
2446		case 512 * 1024:
2447			return _PAGE_SZ512K_4V;
2448		case 4 * 1024 * 1024:
2449			return _PAGE_SZ4MB_4V;
2450		}
2451	} else {
2452		switch (sz) {
2453		case 8 * 1024:
2454		default:
2455			return _PAGE_SZ8K_4U;
2456		case 64 * 1024:
2457			return _PAGE_SZ64K_4U;
2458		case 512 * 1024:
2459			return _PAGE_SZ512K_4U;
2460		case 4 * 1024 * 1024:
2461			return _PAGE_SZ4MB_4U;
2462		}
2463	}
2464}
2465
2466pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2467{
2468	pte_t pte;
2469
2470	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2471	pte_val(pte) |= (((unsigned long)space) << 32);
2472	pte_val(pte) |= pte_sz_bits(page_size);
2473
2474	return pte;
2475}
2476
2477static unsigned long kern_large_tte(unsigned long paddr)
2478{
2479	unsigned long val;
2480
2481	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2482	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2483	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2484	if (tlb_type == hypervisor)
2485		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2486		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2487		       _PAGE_EXEC_4V | _PAGE_W_4V);
2488
2489	return val | paddr;
2490}
2491
2492/* If not locked, zap it. */
2493void __flush_tlb_all(void)
2494{
2495	unsigned long pstate;
2496	int i;
2497
2498	__asm__ __volatile__("flushw\n\t"
2499			     "rdpr	%%pstate, %0\n\t"
2500			     "wrpr	%0, %1, %%pstate"
2501			     : "=r" (pstate)
2502			     : "i" (PSTATE_IE));
2503	if (tlb_type == hypervisor) {
2504		sun4v_mmu_demap_all();
2505	} else if (tlb_type == spitfire) {
2506		for (i = 0; i < 64; i++) {
2507			/* Spitfire Errata #32 workaround */
2508			/* NOTE: Always runs on spitfire, so no
2509			 *       cheetah+ page size encodings.
2510			 */
2511			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2512					     "flush	%%g6"
2513					     : /* No outputs */
2514					     : "r" (0),
2515					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2516
2517			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2518				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2519						     "membar #Sync"
2520						     : /* no outputs */
2521						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2522				spitfire_put_dtlb_data(i, 0x0UL);
2523			}
2524
2525			/* Spitfire Errata #32 workaround */
2526			/* NOTE: Always runs on spitfire, so no
2527			 *       cheetah+ page size encodings.
2528			 */
2529			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2530					     "flush	%%g6"
2531					     : /* No outputs */
2532					     : "r" (0),
2533					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2534
2535			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2536				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2537						     "membar #Sync"
2538						     : /* no outputs */
2539						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2540				spitfire_put_itlb_data(i, 0x0UL);
2541			}
2542		}
2543	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2544		cheetah_flush_dtlb_all();
2545		cheetah_flush_itlb_all();
2546	}
2547	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2548			     : : "r" (pstate));
2549}
2550
2551pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2552			    unsigned long address)
2553{
2554	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2555				       __GFP_REPEAT | __GFP_ZERO);
2556	pte_t *pte = NULL;
2557
2558	if (page)
2559		pte = (pte_t *) page_address(page);
2560
2561	return pte;
2562}
2563
2564pgtable_t pte_alloc_one(struct mm_struct *mm,
2565			unsigned long address)
2566{
2567	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2568				       __GFP_REPEAT | __GFP_ZERO);
2569	if (!page)
2570		return NULL;
2571	if (!pgtable_page_ctor(page)) {
2572		free_hot_cold_page(page, 0);
2573		return NULL;
2574	}
2575	return (pte_t *) page_address(page);
2576}
2577
2578void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2579{
2580	free_page((unsigned long)pte);
2581}
2582
2583static void __pte_free(pgtable_t pte)
2584{
2585	struct page *page = virt_to_page(pte);
2586
2587	pgtable_page_dtor(page);
2588	__free_page(page);
2589}
2590
2591void pte_free(struct mm_struct *mm, pgtable_t pte)
2592{
2593	__pte_free(pte);
2594}
2595
2596void pgtable_free(void *table, bool is_page)
2597{
2598	if (is_page)
2599		__pte_free(table);
2600	else
2601		kmem_cache_free(pgtable_cache, table);
2602}
2603
2604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2605void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2606			  pmd_t *pmd)
2607{
2608	unsigned long pte, flags;
2609	struct mm_struct *mm;
2610	pmd_t entry = *pmd;
2611
2612	if (!pmd_large(entry) || !pmd_young(entry))
2613		return;
2614
2615	pte = pmd_val(entry);
2616
2617	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2618	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2619
2620	mm = vma->vm_mm;
2621
2622	spin_lock_irqsave(&mm->context.lock, flags);
2623
2624	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2625		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2626					addr, pte);
2627
2628	spin_unlock_irqrestore(&mm->context.lock, flags);
2629}
2630#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2631
2632#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2633static void context_reload(void *__data)
2634{
2635	struct mm_struct *mm = __data;
2636
2637	if (mm == current->mm)
2638		load_secondary_context(mm);
2639}
2640
2641void hugetlb_setup(struct pt_regs *regs)
2642{
2643	struct mm_struct *mm = current->mm;
2644	struct tsb_config *tp;
2645
2646	if (in_atomic() || !mm) {
2647		const struct exception_table_entry *entry;
2648
2649		entry = search_exception_tables(regs->tpc);
2650		if (entry) {
2651			regs->tpc = entry->fixup;
2652			regs->tnpc = regs->tpc + 4;
2653			return;
2654		}
2655		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2656		die_if_kernel("HugeTSB in atomic", regs);
2657	}
2658
2659	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2660	if (likely(tp->tsb == NULL))
2661		tsb_grow(mm, MM_TSB_HUGE, 0);
2662
2663	tsb_context_switch(mm);
2664	smp_tsb_sync(mm);
2665
2666	/* On UltraSPARC-III+ and later, configure the second half of
2667	 * the Data-TLB for huge pages.
2668	 */
2669	if (tlb_type == cheetah_plus) {
2670		unsigned long ctx;
2671
2672		spin_lock(&ctx_alloc_lock);
2673		ctx = mm->context.sparc64_ctx_val;
2674		ctx &= ~CTX_PGSZ_MASK;
2675		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2676		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2677
2678		if (ctx != mm->context.sparc64_ctx_val) {
2679			/* When changing the page size fields, we
2680			 * must perform a context flush so that no
2681			 * stale entries match.  This flush must
2682			 * occur with the original context register
2683			 * settings.
2684			 */
2685			do_flush_tlb_mm(mm);
2686
2687			/* Reload the context register of all processors
2688			 * also executing in this address space.
2689			 */
2690			mm->context.sparc64_ctx_val = ctx;
2691			on_each_cpu(context_reload, mm, 0);
2692		}
2693		spin_unlock(&ctx_alloc_lock);
2694	}
2695}
2696#endif