Linux Audio

Check our new training course

Loading...
   1/*
   2 *  arch/sparc64/mm/init.c
   3 *
   4 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   5 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   6 */
   7 
   8#include <linux/module.h>
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/string.h>
  12#include <linux/init.h>
  13#include <linux/bootmem.h>
  14#include <linux/mm.h>
  15#include <linux/hugetlb.h>
  16#include <linux/initrd.h>
  17#include <linux/swap.h>
  18#include <linux/pagemap.h>
  19#include <linux/poison.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/kprobes.h>
  23#include <linux/cache.h>
  24#include <linux/sort.h>
  25#include <linux/percpu.h>
  26#include <linux/memblock.h>
  27#include <linux/mmzone.h>
  28#include <linux/gfp.h>
  29
  30#include <asm/head.h>
  31#include <asm/page.h>
  32#include <asm/pgalloc.h>
  33#include <asm/pgtable.h>
  34#include <asm/oplib.h>
  35#include <asm/iommu.h>
  36#include <asm/io.h>
  37#include <asm/uaccess.h>
  38#include <asm/mmu_context.h>
  39#include <asm/tlbflush.h>
  40#include <asm/dma.h>
  41#include <asm/starfire.h>
  42#include <asm/tlb.h>
  43#include <asm/spitfire.h>
  44#include <asm/sections.h>
  45#include <asm/tsb.h>
  46#include <asm/hypervisor.h>
  47#include <asm/prom.h>
  48#include <asm/mdesc.h>
  49#include <asm/cpudata.h>
  50#include <asm/irq.h>
  51
  52#include "init_64.h"
  53
  54unsigned long kern_linear_pte_xor[2] __read_mostly;
  55
  56/* A bitmap, one bit for every 256MB of physical memory.  If the bit
  57 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  58 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
  59 */
  60unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  61
  62#ifndef CONFIG_DEBUG_PAGEALLOC
  63/* A special kernel TSB for 4MB and 256MB linear mappings.
  64 * Space is allocated for this right after the trap table
  65 * in arch/sparc64/kernel/head.S
  66 */
  67extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  68#endif
  69
  70#define MAX_BANKS	32
  71
  72static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
  73static int pavail_ents __devinitdata;
  74
  75static int cmp_p64(const void *a, const void *b)
  76{
  77	const struct linux_prom64_registers *x = a, *y = b;
  78
  79	if (x->phys_addr > y->phys_addr)
  80		return 1;
  81	if (x->phys_addr < y->phys_addr)
  82		return -1;
  83	return 0;
  84}
  85
  86static void __init read_obp_memory(const char *property,
  87				   struct linux_prom64_registers *regs,
  88				   int *num_ents)
  89{
  90	phandle node = prom_finddevice("/memory");
  91	int prop_size = prom_getproplen(node, property);
  92	int ents, ret, i;
  93
  94	ents = prop_size / sizeof(struct linux_prom64_registers);
  95	if (ents > MAX_BANKS) {
  96		prom_printf("The machine has more %s property entries than "
  97			    "this kernel can support (%d).\n",
  98			    property, MAX_BANKS);
  99		prom_halt();
 100	}
 101
 102	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 103	if (ret == -1) {
 104		prom_printf("Couldn't get %s property from /memory.\n");
 105		prom_halt();
 106	}
 107
 108	/* Sanitize what we got from the firmware, by page aligning
 109	 * everything.
 110	 */
 111	for (i = 0; i < ents; i++) {
 112		unsigned long base, size;
 113
 114		base = regs[i].phys_addr;
 115		size = regs[i].reg_size;
 116
 117		size &= PAGE_MASK;
 118		if (base & ~PAGE_MASK) {
 119			unsigned long new_base = PAGE_ALIGN(base);
 120
 121			size -= new_base - base;
 122			if ((long) size < 0L)
 123				size = 0UL;
 124			base = new_base;
 125		}
 126		if (size == 0UL) {
 127			/* If it is empty, simply get rid of it.
 128			 * This simplifies the logic of the other
 129			 * functions that process these arrays.
 130			 */
 131			memmove(&regs[i], &regs[i + 1],
 132				(ents - i - 1) * sizeof(regs[0]));
 133			i--;
 134			ents--;
 135			continue;
 136		}
 137		regs[i].phys_addr = base;
 138		regs[i].reg_size = size;
 139	}
 140
 141	*num_ents = ents;
 142
 143	sort(regs, ents, sizeof(struct linux_prom64_registers),
 144	     cmp_p64, NULL);
 145}
 146
 147unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
 148					sizeof(unsigned long)];
 149EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
 150
 151/* Kernel physical address base and size in bytes.  */
 152unsigned long kern_base __read_mostly;
 153unsigned long kern_size __read_mostly;
 154
 155/* Initial ramdisk setup */
 156extern unsigned long sparc_ramdisk_image64;
 157extern unsigned int sparc_ramdisk_image;
 158extern unsigned int sparc_ramdisk_size;
 159
 160struct page *mem_map_zero __read_mostly;
 161EXPORT_SYMBOL(mem_map_zero);
 162
 163unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 164
 165unsigned long sparc64_kern_pri_context __read_mostly;
 166unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 167unsigned long sparc64_kern_sec_context __read_mostly;
 168
 169int num_kernel_image_mappings;
 170
 171#ifdef CONFIG_DEBUG_DCFLUSH
 172atomic_t dcpage_flushes = ATOMIC_INIT(0);
 173#ifdef CONFIG_SMP
 174atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 175#endif
 176#endif
 177
 178inline void flush_dcache_page_impl(struct page *page)
 179{
 180	BUG_ON(tlb_type == hypervisor);
 181#ifdef CONFIG_DEBUG_DCFLUSH
 182	atomic_inc(&dcpage_flushes);
 183#endif
 184
 185#ifdef DCACHE_ALIASING_POSSIBLE
 186	__flush_dcache_page(page_address(page),
 187			    ((tlb_type == spitfire) &&
 188			     page_mapping(page) != NULL));
 189#else
 190	if (page_mapping(page) != NULL &&
 191	    tlb_type == spitfire)
 192		__flush_icache_page(__pa(page_address(page)));
 193#endif
 194}
 195
 196#define PG_dcache_dirty		PG_arch_1
 197#define PG_dcache_cpu_shift	32UL
 198#define PG_dcache_cpu_mask	\
 199	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 200
 201#define dcache_dirty_cpu(page) \
 202	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 203
 204static inline void set_dcache_dirty(struct page *page, int this_cpu)
 205{
 206	unsigned long mask = this_cpu;
 207	unsigned long non_cpu_bits;
 208
 209	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 210	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 211
 212	__asm__ __volatile__("1:\n\t"
 213			     "ldx	[%2], %%g7\n\t"
 214			     "and	%%g7, %1, %%g1\n\t"
 215			     "or	%%g1, %0, %%g1\n\t"
 216			     "casx	[%2], %%g7, %%g1\n\t"
 217			     "cmp	%%g7, %%g1\n\t"
 218			     "bne,pn	%%xcc, 1b\n\t"
 219			     " nop"
 220			     : /* no outputs */
 221			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 222			     : "g1", "g7");
 223}
 224
 225static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 226{
 227	unsigned long mask = (1UL << PG_dcache_dirty);
 228
 229	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 230			     "1:\n\t"
 231			     "ldx	[%2], %%g7\n\t"
 232			     "srlx	%%g7, %4, %%g1\n\t"
 233			     "and	%%g1, %3, %%g1\n\t"
 234			     "cmp	%%g1, %0\n\t"
 235			     "bne,pn	%%icc, 2f\n\t"
 236			     " andn	%%g7, %1, %%g1\n\t"
 237			     "casx	[%2], %%g7, %%g1\n\t"
 238			     "cmp	%%g7, %%g1\n\t"
 239			     "bne,pn	%%xcc, 1b\n\t"
 240			     " nop\n"
 241			     "2:"
 242			     : /* no outputs */
 243			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 244			       "i" (PG_dcache_cpu_mask),
 245			       "i" (PG_dcache_cpu_shift)
 246			     : "g1", "g7");
 247}
 248
 249static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 250{
 251	unsigned long tsb_addr = (unsigned long) ent;
 252
 253	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 254		tsb_addr = __pa(tsb_addr);
 255
 256	__tsb_insert(tsb_addr, tag, pte);
 257}
 258
 259unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 260unsigned long _PAGE_SZBITS __read_mostly;
 261
 262static void flush_dcache(unsigned long pfn)
 263{
 264	struct page *page;
 265
 266	page = pfn_to_page(pfn);
 267	if (page) {
 268		unsigned long pg_flags;
 269
 270		pg_flags = page->flags;
 271		if (pg_flags & (1UL << PG_dcache_dirty)) {
 272			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 273				   PG_dcache_cpu_mask);
 274			int this_cpu = get_cpu();
 275
 276			/* This is just to optimize away some function calls
 277			 * in the SMP case.
 278			 */
 279			if (cpu == this_cpu)
 280				flush_dcache_page_impl(page);
 281			else
 282				smp_flush_dcache_page_impl(page, cpu);
 283
 284			clear_dcache_dirty_cpu(page, cpu);
 285
 286			put_cpu();
 287		}
 288	}
 289}
 290
 291void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 292{
 293	struct mm_struct *mm;
 294	struct tsb *tsb;
 295	unsigned long tag, flags;
 296	unsigned long tsb_index, tsb_hash_shift;
 297	pte_t pte = *ptep;
 298
 299	if (tlb_type != hypervisor) {
 300		unsigned long pfn = pte_pfn(pte);
 301
 302		if (pfn_valid(pfn))
 303			flush_dcache(pfn);
 304	}
 305
 306	mm = vma->vm_mm;
 307
 308	tsb_index = MM_TSB_BASE;
 309	tsb_hash_shift = PAGE_SHIFT;
 310
 311	spin_lock_irqsave(&mm->context.lock, flags);
 312
 313#ifdef CONFIG_HUGETLB_PAGE
 314	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
 315		if ((tlb_type == hypervisor &&
 316		     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
 317		    (tlb_type != hypervisor &&
 318		     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
 319			tsb_index = MM_TSB_HUGE;
 320			tsb_hash_shift = HPAGE_SHIFT;
 321		}
 322	}
 323#endif
 324
 325	tsb = mm->context.tsb_block[tsb_index].tsb;
 326	tsb += ((address >> tsb_hash_shift) &
 327		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 328	tag = (address >> 22UL);
 329	tsb_insert(tsb, tag, pte_val(pte));
 330
 331	spin_unlock_irqrestore(&mm->context.lock, flags);
 332}
 333
 334void flush_dcache_page(struct page *page)
 335{
 336	struct address_space *mapping;
 337	int this_cpu;
 338
 339	if (tlb_type == hypervisor)
 340		return;
 341
 342	/* Do not bother with the expensive D-cache flush if it
 343	 * is merely the zero page.  The 'bigcore' testcase in GDB
 344	 * causes this case to run millions of times.
 345	 */
 346	if (page == ZERO_PAGE(0))
 347		return;
 348
 349	this_cpu = get_cpu();
 350
 351	mapping = page_mapping(page);
 352	if (mapping && !mapping_mapped(mapping)) {
 353		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 354		if (dirty) {
 355			int dirty_cpu = dcache_dirty_cpu(page);
 356
 357			if (dirty_cpu == this_cpu)
 358				goto out;
 359			smp_flush_dcache_page_impl(page, dirty_cpu);
 360		}
 361		set_dcache_dirty(page, this_cpu);
 362	} else {
 363		/* We could delay the flush for the !page_mapping
 364		 * case too.  But that case is for exec env/arg
 365		 * pages and those are %99 certainly going to get
 366		 * faulted into the tlb (and thus flushed) anyways.
 367		 */
 368		flush_dcache_page_impl(page);
 369	}
 370
 371out:
 372	put_cpu();
 373}
 374EXPORT_SYMBOL(flush_dcache_page);
 375
 376void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 377{
 378	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 379	if (tlb_type == spitfire) {
 380		unsigned long kaddr;
 381
 382		/* This code only runs on Spitfire cpus so this is
 383		 * why we can assume _PAGE_PADDR_4U.
 384		 */
 385		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 386			unsigned long paddr, mask = _PAGE_PADDR_4U;
 387
 388			if (kaddr >= PAGE_OFFSET)
 389				paddr = kaddr & mask;
 390			else {
 391				pgd_t *pgdp = pgd_offset_k(kaddr);
 392				pud_t *pudp = pud_offset(pgdp, kaddr);
 393				pmd_t *pmdp = pmd_offset(pudp, kaddr);
 394				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 395
 396				paddr = pte_val(*ptep) & mask;
 397			}
 398			__flush_icache_page(paddr);
 399		}
 400	}
 401}
 402EXPORT_SYMBOL(flush_icache_range);
 403
 404void mmu_info(struct seq_file *m)
 405{
 406	if (tlb_type == cheetah)
 407		seq_printf(m, "MMU Type\t: Cheetah\n");
 408	else if (tlb_type == cheetah_plus)
 409		seq_printf(m, "MMU Type\t: Cheetah+\n");
 410	else if (tlb_type == spitfire)
 411		seq_printf(m, "MMU Type\t: Spitfire\n");
 412	else if (tlb_type == hypervisor)
 413		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 414	else
 415		seq_printf(m, "MMU Type\t: ???\n");
 416
 417#ifdef CONFIG_DEBUG_DCFLUSH
 418	seq_printf(m, "DCPageFlushes\t: %d\n",
 419		   atomic_read(&dcpage_flushes));
 420#ifdef CONFIG_SMP
 421	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 422		   atomic_read(&dcpage_flushes_xcall));
 423#endif /* CONFIG_SMP */
 424#endif /* CONFIG_DEBUG_DCFLUSH */
 425}
 426
 427struct linux_prom_translation prom_trans[512] __read_mostly;
 428unsigned int prom_trans_ents __read_mostly;
 429
 430unsigned long kern_locked_tte_data;
 431
 432/* The obp translations are saved based on 8k pagesize, since obp can
 433 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 434 * HI_OBP_ADDRESS range are handled in ktlb.S.
 435 */
 436static inline int in_obp_range(unsigned long vaddr)
 437{
 438	return (vaddr >= LOW_OBP_ADDRESS &&
 439		vaddr < HI_OBP_ADDRESS);
 440}
 441
 442static int cmp_ptrans(const void *a, const void *b)
 443{
 444	const struct linux_prom_translation *x = a, *y = b;
 445
 446	if (x->virt > y->virt)
 447		return 1;
 448	if (x->virt < y->virt)
 449		return -1;
 450	return 0;
 451}
 452
 453/* Read OBP translations property into 'prom_trans[]'.  */
 454static void __init read_obp_translations(void)
 455{
 456	int n, node, ents, first, last, i;
 457
 458	node = prom_finddevice("/virtual-memory");
 459	n = prom_getproplen(node, "translations");
 460	if (unlikely(n == 0 || n == -1)) {
 461		prom_printf("prom_mappings: Couldn't get size.\n");
 462		prom_halt();
 463	}
 464	if (unlikely(n > sizeof(prom_trans))) {
 465		prom_printf("prom_mappings: Size %Zd is too big.\n", n);
 466		prom_halt();
 467	}
 468
 469	if ((n = prom_getproperty(node, "translations",
 470				  (char *)&prom_trans[0],
 471				  sizeof(prom_trans))) == -1) {
 472		prom_printf("prom_mappings: Couldn't get property.\n");
 473		prom_halt();
 474	}
 475
 476	n = n / sizeof(struct linux_prom_translation);
 477
 478	ents = n;
 479
 480	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 481	     cmp_ptrans, NULL);
 482
 483	/* Now kick out all the non-OBP entries.  */
 484	for (i = 0; i < ents; i++) {
 485		if (in_obp_range(prom_trans[i].virt))
 486			break;
 487	}
 488	first = i;
 489	for (; i < ents; i++) {
 490		if (!in_obp_range(prom_trans[i].virt))
 491			break;
 492	}
 493	last = i;
 494
 495	for (i = 0; i < (last - first); i++) {
 496		struct linux_prom_translation *src = &prom_trans[i + first];
 497		struct linux_prom_translation *dest = &prom_trans[i];
 498
 499		*dest = *src;
 500	}
 501	for (; i < ents; i++) {
 502		struct linux_prom_translation *dest = &prom_trans[i];
 503		dest->virt = dest->size = dest->data = 0x0UL;
 504	}
 505
 506	prom_trans_ents = last - first;
 507
 508	if (tlb_type == spitfire) {
 509		/* Clear diag TTE bits. */
 510		for (i = 0; i < prom_trans_ents; i++)
 511			prom_trans[i].data &= ~0x0003fe0000000000UL;
 512	}
 513
 514	/* Force execute bit on.  */
 515	for (i = 0; i < prom_trans_ents; i++)
 516		prom_trans[i].data |= (tlb_type == hypervisor ?
 517				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 518}
 519
 520static void __init hypervisor_tlb_lock(unsigned long vaddr,
 521				       unsigned long pte,
 522				       unsigned long mmu)
 523{
 524	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 525
 526	if (ret != 0) {
 527		prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
 528			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 529		prom_halt();
 530	}
 531}
 532
 533static unsigned long kern_large_tte(unsigned long paddr);
 534
 535static void __init remap_kernel(void)
 536{
 537	unsigned long phys_page, tte_vaddr, tte_data;
 538	int i, tlb_ent = sparc64_highest_locked_tlbent();
 539
 540	tte_vaddr = (unsigned long) KERNBASE;
 541	phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
 542	tte_data = kern_large_tte(phys_page);
 543
 544	kern_locked_tte_data = tte_data;
 545
 546	/* Now lock us into the TLBs via Hypervisor or OBP. */
 547	if (tlb_type == hypervisor) {
 548		for (i = 0; i < num_kernel_image_mappings; i++) {
 549			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 550			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 551			tte_vaddr += 0x400000;
 552			tte_data += 0x400000;
 553		}
 554	} else {
 555		for (i = 0; i < num_kernel_image_mappings; i++) {
 556			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 557			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 558			tte_vaddr += 0x400000;
 559			tte_data += 0x400000;
 560		}
 561		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 562	}
 563	if (tlb_type == cheetah_plus) {
 564		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 565					    CTX_CHEETAH_PLUS_NUC);
 566		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 567		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 568	}
 569}
 570
 571
 572static void __init inherit_prom_mappings(void)
 573{
 574	/* Now fixup OBP's idea about where we really are mapped. */
 575	printk("Remapping the kernel... ");
 576	remap_kernel();
 577	printk("done.\n");
 578}
 579
 580void prom_world(int enter)
 581{
 582	if (!enter)
 583		set_fs((mm_segment_t) { get_thread_current_ds() });
 584
 585	__asm__ __volatile__("flushw");
 586}
 587
 588void __flush_dcache_range(unsigned long start, unsigned long end)
 589{
 590	unsigned long va;
 591
 592	if (tlb_type == spitfire) {
 593		int n = 0;
 594
 595		for (va = start; va < end; va += 32) {
 596			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 597			if (++n >= 512)
 598				break;
 599		}
 600	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 601		start = __pa(start);
 602		end = __pa(end);
 603		for (va = start; va < end; va += 32)
 604			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 605					     "membar #Sync"
 606					     : /* no outputs */
 607					     : "r" (va),
 608					       "i" (ASI_DCACHE_INVALIDATE));
 609	}
 610}
 611EXPORT_SYMBOL(__flush_dcache_range);
 612
 613/* get_new_mmu_context() uses "cache + 1".  */
 614DEFINE_SPINLOCK(ctx_alloc_lock);
 615unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
 616#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 617#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 618DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 619
 620/* Caller does TLB context flushing on local CPU if necessary.
 621 * The caller also ensures that CTX_VALID(mm->context) is false.
 622 *
 623 * We must be careful about boundary cases so that we never
 624 * let the user have CTX 0 (nucleus) or we ever use a CTX
 625 * version of zero (and thus NO_CONTEXT would not be caught
 626 * by version mis-match tests in mmu_context.h).
 627 *
 628 * Always invoked with interrupts disabled.
 629 */
 630void get_new_mmu_context(struct mm_struct *mm)
 631{
 632	unsigned long ctx, new_ctx;
 633	unsigned long orig_pgsz_bits;
 634	unsigned long flags;
 635	int new_version;
 636
 637	spin_lock_irqsave(&ctx_alloc_lock, flags);
 638	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 639	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 640	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 641	new_version = 0;
 642	if (new_ctx >= (1 << CTX_NR_BITS)) {
 643		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 644		if (new_ctx >= ctx) {
 645			int i;
 646			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
 647				CTX_FIRST_VERSION;
 648			if (new_ctx == 1)
 649				new_ctx = CTX_FIRST_VERSION;
 650
 651			/* Don't call memset, for 16 entries that's just
 652			 * plain silly...
 653			 */
 654			mmu_context_bmap[0] = 3;
 655			mmu_context_bmap[1] = 0;
 656			mmu_context_bmap[2] = 0;
 657			mmu_context_bmap[3] = 0;
 658			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
 659				mmu_context_bmap[i + 0] = 0;
 660				mmu_context_bmap[i + 1] = 0;
 661				mmu_context_bmap[i + 2] = 0;
 662				mmu_context_bmap[i + 3] = 0;
 663			}
 664			new_version = 1;
 665			goto out;
 666		}
 667	}
 668	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 669	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 670out:
 671	tlb_context_cache = new_ctx;
 672	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 673	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
 674
 675	if (unlikely(new_version))
 676		smp_new_mmu_context_version();
 677}
 678
 679static int numa_enabled = 1;
 680static int numa_debug;
 681
 682static int __init early_numa(char *p)
 683{
 684	if (!p)
 685		return 0;
 686
 687	if (strstr(p, "off"))
 688		numa_enabled = 0;
 689
 690	if (strstr(p, "debug"))
 691		numa_debug = 1;
 692
 693	return 0;
 694}
 695early_param("numa", early_numa);
 696
 697#define numadbg(f, a...) \
 698do {	if (numa_debug) \
 699		printk(KERN_INFO f, ## a); \
 700} while (0)
 701
 702static void __init find_ramdisk(unsigned long phys_base)
 703{
 704#ifdef CONFIG_BLK_DEV_INITRD
 705	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 706		unsigned long ramdisk_image;
 707
 708		/* Older versions of the bootloader only supported a
 709		 * 32-bit physical address for the ramdisk image
 710		 * location, stored at sparc_ramdisk_image.  Newer
 711		 * SILO versions set sparc_ramdisk_image to zero and
 712		 * provide a full 64-bit physical address at
 713		 * sparc_ramdisk_image64.
 714		 */
 715		ramdisk_image = sparc_ramdisk_image;
 716		if (!ramdisk_image)
 717			ramdisk_image = sparc_ramdisk_image64;
 718
 719		/* Another bootloader quirk.  The bootloader normalizes
 720		 * the physical address to KERNBASE, so we have to
 721		 * factor that back out and add in the lowest valid
 722		 * physical page address to get the true physical address.
 723		 */
 724		ramdisk_image -= KERNBASE;
 725		ramdisk_image += phys_base;
 726
 727		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 728			ramdisk_image, sparc_ramdisk_size);
 729
 730		initrd_start = ramdisk_image;
 731		initrd_end = ramdisk_image + sparc_ramdisk_size;
 732
 733		memblock_reserve(initrd_start, sparc_ramdisk_size);
 734
 735		initrd_start += PAGE_OFFSET;
 736		initrd_end += PAGE_OFFSET;
 737	}
 738#endif
 739}
 740
 741struct node_mem_mask {
 742	unsigned long mask;
 743	unsigned long val;
 744};
 745static struct node_mem_mask node_masks[MAX_NUMNODES];
 746static int num_node_masks;
 747
 748int numa_cpu_lookup_table[NR_CPUS];
 749cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 750
 751#ifdef CONFIG_NEED_MULTIPLE_NODES
 752
 753struct mdesc_mblock {
 754	u64	base;
 755	u64	size;
 756	u64	offset; /* RA-to-PA */
 757};
 758static struct mdesc_mblock *mblocks;
 759static int num_mblocks;
 760
 761static unsigned long ra_to_pa(unsigned long addr)
 762{
 763	int i;
 764
 765	for (i = 0; i < num_mblocks; i++) {
 766		struct mdesc_mblock *m = &mblocks[i];
 767
 768		if (addr >= m->base &&
 769		    addr < (m->base + m->size)) {
 770			addr += m->offset;
 771			break;
 772		}
 773	}
 774	return addr;
 775}
 776
 777static int find_node(unsigned long addr)
 778{
 779	int i;
 780
 781	addr = ra_to_pa(addr);
 782	for (i = 0; i < num_node_masks; i++) {
 783		struct node_mem_mask *p = &node_masks[i];
 784
 785		if ((addr & p->mask) == p->val)
 786			return i;
 787	}
 788	return -1;
 789}
 790
 791static u64 memblock_nid_range(u64 start, u64 end, int *nid)
 792{
 793	*nid = find_node(start);
 794	start += PAGE_SIZE;
 795	while (start < end) {
 796		int n = find_node(start);
 797
 798		if (n != *nid)
 799			break;
 800		start += PAGE_SIZE;
 801	}
 802
 803	if (start > end)
 804		start = end;
 805
 806	return start;
 807}
 808#endif
 809
 810/* This must be invoked after performing all of the necessary
 811 * memblock_set_node() calls for 'nid'.  We need to be able to get
 812 * correct data from get_pfn_range_for_nid().
 813 */
 814static void __init allocate_node_data(int nid)
 815{
 816	struct pglist_data *p;
 817	unsigned long start_pfn, end_pfn;
 818#ifdef CONFIG_NEED_MULTIPLE_NODES
 819	unsigned long paddr;
 820
 821	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
 822	if (!paddr) {
 823		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
 824		prom_halt();
 825	}
 826	NODE_DATA(nid) = __va(paddr);
 827	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 828
 829	NODE_DATA(nid)->node_id = nid;
 830#endif
 831
 832	p = NODE_DATA(nid);
 833
 834	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 835	p->node_start_pfn = start_pfn;
 836	p->node_spanned_pages = end_pfn - start_pfn;
 837}
 838
 839static void init_node_masks_nonnuma(void)
 840{
 841	int i;
 842
 843	numadbg("Initializing tables for non-numa.\n");
 844
 845	node_masks[0].mask = node_masks[0].val = 0;
 846	num_node_masks = 1;
 847
 848	for (i = 0; i < NR_CPUS; i++)
 849		numa_cpu_lookup_table[i] = 0;
 850
 851	cpumask_setall(&numa_cpumask_lookup_table[0]);
 852}
 853
 854#ifdef CONFIG_NEED_MULTIPLE_NODES
 855struct pglist_data *node_data[MAX_NUMNODES];
 856
 857EXPORT_SYMBOL(numa_cpu_lookup_table);
 858EXPORT_SYMBOL(numa_cpumask_lookup_table);
 859EXPORT_SYMBOL(node_data);
 860
 861struct mdesc_mlgroup {
 862	u64	node;
 863	u64	latency;
 864	u64	match;
 865	u64	mask;
 866};
 867static struct mdesc_mlgroup *mlgroups;
 868static int num_mlgroups;
 869
 870static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
 871				   u32 cfg_handle)
 872{
 873	u64 arc;
 874
 875	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
 876		u64 target = mdesc_arc_target(md, arc);
 877		const u64 *val;
 878
 879		val = mdesc_get_property(md, target,
 880					 "cfg-handle", NULL);
 881		if (val && *val == cfg_handle)
 882			return 0;
 883	}
 884	return -ENODEV;
 885}
 886
 887static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
 888				    u32 cfg_handle)
 889{
 890	u64 arc, candidate, best_latency = ~(u64)0;
 891
 892	candidate = MDESC_NODE_NULL;
 893	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 894		u64 target = mdesc_arc_target(md, arc);
 895		const char *name = mdesc_node_name(md, target);
 896		const u64 *val;
 897
 898		if (strcmp(name, "pio-latency-group"))
 899			continue;
 900
 901		val = mdesc_get_property(md, target, "latency", NULL);
 902		if (!val)
 903			continue;
 904
 905		if (*val < best_latency) {
 906			candidate = target;
 907			best_latency = *val;
 908		}
 909	}
 910
 911	if (candidate == MDESC_NODE_NULL)
 912		return -ENODEV;
 913
 914	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
 915}
 916
 917int of_node_to_nid(struct device_node *dp)
 918{
 919	const struct linux_prom64_registers *regs;
 920	struct mdesc_handle *md;
 921	u32 cfg_handle;
 922	int count, nid;
 923	u64 grp;
 924
 925	/* This is the right thing to do on currently supported
 926	 * SUN4U NUMA platforms as well, as the PCI controller does
 927	 * not sit behind any particular memory controller.
 928	 */
 929	if (!mlgroups)
 930		return -1;
 931
 932	regs = of_get_property(dp, "reg", NULL);
 933	if (!regs)
 934		return -1;
 935
 936	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
 937
 938	md = mdesc_grab();
 939
 940	count = 0;
 941	nid = -1;
 942	mdesc_for_each_node_by_name(md, grp, "group") {
 943		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
 944			nid = count;
 945			break;
 946		}
 947		count++;
 948	}
 949
 950	mdesc_release(md);
 951
 952	return nid;
 953}
 954
 955static void __init add_node_ranges(void)
 956{
 957	struct memblock_region *reg;
 958
 959	for_each_memblock(memory, reg) {
 960		unsigned long size = reg->size;
 961		unsigned long start, end;
 962
 963		start = reg->base;
 964		end = start + size;
 965		while (start < end) {
 966			unsigned long this_end;
 967			int nid;
 968
 969			this_end = memblock_nid_range(start, end, &nid);
 970
 971			numadbg("Setting memblock NUMA node nid[%d] "
 972				"start[%lx] end[%lx]\n",
 973				nid, start, this_end);
 974
 975			memblock_set_node(start, this_end - start, nid);
 976			start = this_end;
 977		}
 978	}
 979}
 980
 981static int __init grab_mlgroups(struct mdesc_handle *md)
 982{
 983	unsigned long paddr;
 984	int count = 0;
 985	u64 node;
 986
 987	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
 988		count++;
 989	if (!count)
 990		return -ENOENT;
 991
 992	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
 993			  SMP_CACHE_BYTES);
 994	if (!paddr)
 995		return -ENOMEM;
 996
 997	mlgroups = __va(paddr);
 998	num_mlgroups = count;
 999
1000	count = 0;
1001	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1002		struct mdesc_mlgroup *m = &mlgroups[count++];
1003		const u64 *val;
1004
1005		m->node = node;
1006
1007		val = mdesc_get_property(md, node, "latency", NULL);
1008		m->latency = *val;
1009		val = mdesc_get_property(md, node, "address-match", NULL);
1010		m->match = *val;
1011		val = mdesc_get_property(md, node, "address-mask", NULL);
1012		m->mask = *val;
1013
1014		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1015			"match[%llx] mask[%llx]\n",
1016			count - 1, m->node, m->latency, m->match, m->mask);
1017	}
1018
1019	return 0;
1020}
1021
1022static int __init grab_mblocks(struct mdesc_handle *md)
1023{
1024	unsigned long paddr;
1025	int count = 0;
1026	u64 node;
1027
1028	mdesc_for_each_node_by_name(md, node, "mblock")
1029		count++;
1030	if (!count)
1031		return -ENOENT;
1032
1033	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1034			  SMP_CACHE_BYTES);
1035	if (!paddr)
1036		return -ENOMEM;
1037
1038	mblocks = __va(paddr);
1039	num_mblocks = count;
1040
1041	count = 0;
1042	mdesc_for_each_node_by_name(md, node, "mblock") {
1043		struct mdesc_mblock *m = &mblocks[count++];
1044		const u64 *val;
1045
1046		val = mdesc_get_property(md, node, "base", NULL);
1047		m->base = *val;
1048		val = mdesc_get_property(md, node, "size", NULL);
1049		m->size = *val;
1050		val = mdesc_get_property(md, node,
1051					 "address-congruence-offset", NULL);
1052		m->offset = *val;
1053
1054		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1055			count - 1, m->base, m->size, m->offset);
1056	}
1057
1058	return 0;
1059}
1060
1061static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1062					       u64 grp, cpumask_t *mask)
1063{
1064	u64 arc;
1065
1066	cpumask_clear(mask);
1067
1068	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1069		u64 target = mdesc_arc_target(md, arc);
1070		const char *name = mdesc_node_name(md, target);
1071		const u64 *id;
1072
1073		if (strcmp(name, "cpu"))
1074			continue;
1075		id = mdesc_get_property(md, target, "id", NULL);
1076		if (*id < nr_cpu_ids)
1077			cpumask_set_cpu(*id, mask);
1078	}
1079}
1080
1081static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1082{
1083	int i;
1084
1085	for (i = 0; i < num_mlgroups; i++) {
1086		struct mdesc_mlgroup *m = &mlgroups[i];
1087		if (m->node == node)
1088			return m;
1089	}
1090	return NULL;
1091}
1092
1093static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1094				      int index)
1095{
1096	struct mdesc_mlgroup *candidate = NULL;
1097	u64 arc, best_latency = ~(u64)0;
1098	struct node_mem_mask *n;
1099
1100	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1101		u64 target = mdesc_arc_target(md, arc);
1102		struct mdesc_mlgroup *m = find_mlgroup(target);
1103		if (!m)
1104			continue;
1105		if (m->latency < best_latency) {
1106			candidate = m;
1107			best_latency = m->latency;
1108		}
1109	}
1110	if (!candidate)
1111		return -ENOENT;
1112
1113	if (num_node_masks != index) {
1114		printk(KERN_ERR "Inconsistent NUMA state, "
1115		       "index[%d] != num_node_masks[%d]\n",
1116		       index, num_node_masks);
1117		return -EINVAL;
1118	}
1119
1120	n = &node_masks[num_node_masks++];
1121
1122	n->mask = candidate->mask;
1123	n->val = candidate->match;
1124
1125	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1126		index, n->mask, n->val, candidate->latency);
1127
1128	return 0;
1129}
1130
1131static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1132					 int index)
1133{
1134	cpumask_t mask;
1135	int cpu;
1136
1137	numa_parse_mdesc_group_cpus(md, grp, &mask);
1138
1139	for_each_cpu(cpu, &mask)
1140		numa_cpu_lookup_table[cpu] = index;
1141	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1142
1143	if (numa_debug) {
1144		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1145		for_each_cpu(cpu, &mask)
1146			printk("%d ", cpu);
1147		printk("]\n");
1148	}
1149
1150	return numa_attach_mlgroup(md, grp, index);
1151}
1152
1153static int __init numa_parse_mdesc(void)
1154{
1155	struct mdesc_handle *md = mdesc_grab();
1156	int i, err, count;
1157	u64 node;
1158
1159	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1160	if (node == MDESC_NODE_NULL) {
1161		mdesc_release(md);
1162		return -ENOENT;
1163	}
1164
1165	err = grab_mblocks(md);
1166	if (err < 0)
1167		goto out;
1168
1169	err = grab_mlgroups(md);
1170	if (err < 0)
1171		goto out;
1172
1173	count = 0;
1174	mdesc_for_each_node_by_name(md, node, "group") {
1175		err = numa_parse_mdesc_group(md, node, count);
1176		if (err < 0)
1177			break;
1178		count++;
1179	}
1180
1181	add_node_ranges();
1182
1183	for (i = 0; i < num_node_masks; i++) {
1184		allocate_node_data(i);
1185		node_set_online(i);
1186	}
1187
1188	err = 0;
1189out:
1190	mdesc_release(md);
1191	return err;
1192}
1193
1194static int __init numa_parse_jbus(void)
1195{
1196	unsigned long cpu, index;
1197
1198	/* NUMA node id is encoded in bits 36 and higher, and there is
1199	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1200	 */
1201	index = 0;
1202	for_each_present_cpu(cpu) {
1203		numa_cpu_lookup_table[cpu] = index;
1204		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1205		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1206		node_masks[index].val = cpu << 36UL;
1207
1208		index++;
1209	}
1210	num_node_masks = index;
1211
1212	add_node_ranges();
1213
1214	for (index = 0; index < num_node_masks; index++) {
1215		allocate_node_data(index);
1216		node_set_online(index);
1217	}
1218
1219	return 0;
1220}
1221
1222static int __init numa_parse_sun4u(void)
1223{
1224	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1225		unsigned long ver;
1226
1227		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1228		if ((ver >> 32UL) == __JALAPENO_ID ||
1229		    (ver >> 32UL) == __SERRANO_ID)
1230			return numa_parse_jbus();
1231	}
1232	return -1;
1233}
1234
1235static int __init bootmem_init_numa(void)
1236{
1237	int err = -1;
1238
1239	numadbg("bootmem_init_numa()\n");
1240
1241	if (numa_enabled) {
1242		if (tlb_type == hypervisor)
1243			err = numa_parse_mdesc();
1244		else
1245			err = numa_parse_sun4u();
1246	}
1247	return err;
1248}
1249
1250#else
1251
1252static int bootmem_init_numa(void)
1253{
1254	return -1;
1255}
1256
1257#endif
1258
1259static void __init bootmem_init_nonnuma(void)
1260{
1261	unsigned long top_of_ram = memblock_end_of_DRAM();
1262	unsigned long total_ram = memblock_phys_mem_size();
1263
1264	numadbg("bootmem_init_nonnuma()\n");
1265
1266	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1267	       top_of_ram, total_ram);
1268	printk(KERN_INFO "Memory hole size: %ldMB\n",
1269	       (top_of_ram - total_ram) >> 20);
1270
1271	init_node_masks_nonnuma();
1272	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1273	allocate_node_data(0);
1274	node_set_online(0);
1275}
1276
1277static unsigned long __init bootmem_init(unsigned long phys_base)
1278{
1279	unsigned long end_pfn;
1280
1281	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1282	max_pfn = max_low_pfn = end_pfn;
1283	min_low_pfn = (phys_base >> PAGE_SHIFT);
1284
1285	if (bootmem_init_numa() < 0)
1286		bootmem_init_nonnuma();
1287
1288	/* Dump memblock with node info. */
1289	memblock_dump_all();
1290
1291	/* XXX cpu notifier XXX */
1292
1293	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1294	sparse_init();
1295
1296	return end_pfn;
1297}
1298
1299static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1300static int pall_ents __initdata;
1301
1302#ifdef CONFIG_DEBUG_PAGEALLOC
1303static unsigned long __ref kernel_map_range(unsigned long pstart,
1304					    unsigned long pend, pgprot_t prot)
1305{
1306	unsigned long vstart = PAGE_OFFSET + pstart;
1307	unsigned long vend = PAGE_OFFSET + pend;
1308	unsigned long alloc_bytes = 0UL;
1309
1310	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1311		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1312			    vstart, vend);
1313		prom_halt();
1314	}
1315
1316	while (vstart < vend) {
1317		unsigned long this_end, paddr = __pa(vstart);
1318		pgd_t *pgd = pgd_offset_k(vstart);
1319		pud_t *pud;
1320		pmd_t *pmd;
1321		pte_t *pte;
1322
1323		pud = pud_offset(pgd, vstart);
1324		if (pud_none(*pud)) {
1325			pmd_t *new;
1326
1327			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1328			alloc_bytes += PAGE_SIZE;
1329			pud_populate(&init_mm, pud, new);
1330		}
1331
1332		pmd = pmd_offset(pud, vstart);
1333		if (!pmd_present(*pmd)) {
1334			pte_t *new;
1335
1336			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1337			alloc_bytes += PAGE_SIZE;
1338			pmd_populate_kernel(&init_mm, pmd, new);
1339		}
1340
1341		pte = pte_offset_kernel(pmd, vstart);
1342		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1343		if (this_end > vend)
1344			this_end = vend;
1345
1346		while (vstart < this_end) {
1347			pte_val(*pte) = (paddr | pgprot_val(prot));
1348
1349			vstart += PAGE_SIZE;
1350			paddr += PAGE_SIZE;
1351			pte++;
1352		}
1353	}
1354
1355	return alloc_bytes;
1356}
1357
1358extern unsigned int kvmap_linear_patch[1];
1359#endif /* CONFIG_DEBUG_PAGEALLOC */
1360
1361static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1362{
1363	const unsigned long shift_256MB = 28;
1364	const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1365	const unsigned long size_256MB = (1UL << shift_256MB);
1366
1367	while (start < end) {
1368		long remains;
1369
1370		remains = end - start;
1371		if (remains < size_256MB)
1372			break;
1373
1374		if (start & mask_256MB) {
1375			start = (start + size_256MB) & ~mask_256MB;
1376			continue;
1377		}
1378
1379		while (remains >= size_256MB) {
1380			unsigned long index = start >> shift_256MB;
1381
1382			__set_bit(index, kpte_linear_bitmap);
1383
1384			start += size_256MB;
1385			remains -= size_256MB;
1386		}
1387	}
1388}
1389
1390static void __init init_kpte_bitmap(void)
1391{
1392	unsigned long i;
1393
1394	for (i = 0; i < pall_ents; i++) {
1395		unsigned long phys_start, phys_end;
1396
1397		phys_start = pall[i].phys_addr;
1398		phys_end = phys_start + pall[i].reg_size;
1399
1400		mark_kpte_bitmap(phys_start, phys_end);
1401	}
1402}
1403
1404static void __init kernel_physical_mapping_init(void)
1405{
1406#ifdef CONFIG_DEBUG_PAGEALLOC
1407	unsigned long i, mem_alloced = 0UL;
1408
1409	for (i = 0; i < pall_ents; i++) {
1410		unsigned long phys_start, phys_end;
1411
1412		phys_start = pall[i].phys_addr;
1413		phys_end = phys_start + pall[i].reg_size;
1414
1415		mem_alloced += kernel_map_range(phys_start, phys_end,
1416						PAGE_KERNEL);
1417	}
1418
1419	printk("Allocated %ld bytes for kernel page tables.\n",
1420	       mem_alloced);
1421
1422	kvmap_linear_patch[0] = 0x01000000; /* nop */
1423	flushi(&kvmap_linear_patch[0]);
1424
1425	__flush_tlb_all();
1426#endif
1427}
1428
1429#ifdef CONFIG_DEBUG_PAGEALLOC
1430void kernel_map_pages(struct page *page, int numpages, int enable)
1431{
1432	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1433	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1434
1435	kernel_map_range(phys_start, phys_end,
1436			 (enable ? PAGE_KERNEL : __pgprot(0)));
1437
1438	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1439			       PAGE_OFFSET + phys_end);
1440
1441	/* we should perform an IPI and flush all tlbs,
1442	 * but that can deadlock->flush only current cpu.
1443	 */
1444	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1445				 PAGE_OFFSET + phys_end);
1446}
1447#endif
1448
1449unsigned long __init find_ecache_flush_span(unsigned long size)
1450{
1451	int i;
1452
1453	for (i = 0; i < pavail_ents; i++) {
1454		if (pavail[i].reg_size >= size)
1455			return pavail[i].phys_addr;
1456	}
1457
1458	return ~0UL;
1459}
1460
1461static void __init tsb_phys_patch(void)
1462{
1463	struct tsb_ldquad_phys_patch_entry *pquad;
1464	struct tsb_phys_patch_entry *p;
1465
1466	pquad = &__tsb_ldquad_phys_patch;
1467	while (pquad < &__tsb_ldquad_phys_patch_end) {
1468		unsigned long addr = pquad->addr;
1469
1470		if (tlb_type == hypervisor)
1471			*(unsigned int *) addr = pquad->sun4v_insn;
1472		else
1473			*(unsigned int *) addr = pquad->sun4u_insn;
1474		wmb();
1475		__asm__ __volatile__("flush	%0"
1476				     : /* no outputs */
1477				     : "r" (addr));
1478
1479		pquad++;
1480	}
1481
1482	p = &__tsb_phys_patch;
1483	while (p < &__tsb_phys_patch_end) {
1484		unsigned long addr = p->addr;
1485
1486		*(unsigned int *) addr = p->insn;
1487		wmb();
1488		__asm__ __volatile__("flush	%0"
1489				     : /* no outputs */
1490				     : "r" (addr));
1491
1492		p++;
1493	}
1494}
1495
1496/* Don't mark as init, we give this to the Hypervisor.  */
1497#ifndef CONFIG_DEBUG_PAGEALLOC
1498#define NUM_KTSB_DESCR	2
1499#else
1500#define NUM_KTSB_DESCR	1
1501#endif
1502static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1503extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1504
1505static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1506{
1507	pa >>= KTSB_PHYS_SHIFT;
1508
1509	while (start < end) {
1510		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1511
1512		ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1513		__asm__ __volatile__("flush	%0" : : "r" (ia));
1514
1515		ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1516		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1517
1518		start++;
1519	}
1520}
1521
1522static void ktsb_phys_patch(void)
1523{
1524	extern unsigned int __swapper_tsb_phys_patch;
1525	extern unsigned int __swapper_tsb_phys_patch_end;
1526	unsigned long ktsb_pa;
1527
1528	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1529	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1530			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1531#ifndef CONFIG_DEBUG_PAGEALLOC
1532	{
1533	extern unsigned int __swapper_4m_tsb_phys_patch;
1534	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1535	ktsb_pa = (kern_base +
1536		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1537	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1538			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1539	}
1540#endif
1541}
1542
1543static void __init sun4v_ktsb_init(void)
1544{
1545	unsigned long ktsb_pa;
1546
1547	/* First KTSB for PAGE_SIZE mappings.  */
1548	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1549
1550	switch (PAGE_SIZE) {
1551	case 8 * 1024:
1552	default:
1553		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1554		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1555		break;
1556
1557	case 64 * 1024:
1558		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1559		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1560		break;
1561
1562	case 512 * 1024:
1563		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1564		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1565		break;
1566
1567	case 4 * 1024 * 1024:
1568		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1569		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1570		break;
1571	}
1572
1573	ktsb_descr[0].assoc = 1;
1574	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1575	ktsb_descr[0].ctx_idx = 0;
1576	ktsb_descr[0].tsb_base = ktsb_pa;
1577	ktsb_descr[0].resv = 0;
1578
1579#ifndef CONFIG_DEBUG_PAGEALLOC
1580	/* Second KTSB for 4MB/256MB mappings.  */
1581	ktsb_pa = (kern_base +
1582		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1583
1584	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1585	ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1586				   HV_PGSZ_MASK_256MB);
1587	ktsb_descr[1].assoc = 1;
1588	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1589	ktsb_descr[1].ctx_idx = 0;
1590	ktsb_descr[1].tsb_base = ktsb_pa;
1591	ktsb_descr[1].resv = 0;
1592#endif
1593}
1594
1595void __cpuinit sun4v_ktsb_register(void)
1596{
1597	unsigned long pa, ret;
1598
1599	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1600
1601	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1602	if (ret != 0) {
1603		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1604			    "errors with %lx\n", pa, ret);
1605		prom_halt();
1606	}
1607}
1608
1609/* paging_init() sets up the page tables */
1610
1611static unsigned long last_valid_pfn;
1612pgd_t swapper_pg_dir[2048];
1613
1614static void sun4u_pgprot_init(void);
1615static void sun4v_pgprot_init(void);
1616
1617void __init paging_init(void)
1618{
1619	unsigned long end_pfn, shift, phys_base;
1620	unsigned long real_end, i;
1621	int node;
1622
1623	/* These build time checkes make sure that the dcache_dirty_cpu()
1624	 * page->flags usage will work.
1625	 *
1626	 * When a page gets marked as dcache-dirty, we store the
1627	 * cpu number starting at bit 32 in the page->flags.  Also,
1628	 * functions like clear_dcache_dirty_cpu use the cpu mask
1629	 * in 13-bit signed-immediate instruction fields.
1630	 */
1631
1632	/*
1633	 * Page flags must not reach into upper 32 bits that are used
1634	 * for the cpu number
1635	 */
1636	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1637
1638	/*
1639	 * The bit fields placed in the high range must not reach below
1640	 * the 32 bit boundary. Otherwise we cannot place the cpu field
1641	 * at the 32 bit boundary.
1642	 */
1643	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1644		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1645
1646	BUILD_BUG_ON(NR_CPUS > 4096);
1647
1648	kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1649	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1650
1651	/* Invalidate both kernel TSBs.  */
1652	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1653#ifndef CONFIG_DEBUG_PAGEALLOC
1654	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1655#endif
1656
1657	if (tlb_type == hypervisor)
1658		sun4v_pgprot_init();
1659	else
1660		sun4u_pgprot_init();
1661
1662	if (tlb_type == cheetah_plus ||
1663	    tlb_type == hypervisor) {
1664		tsb_phys_patch();
1665		ktsb_phys_patch();
1666	}
1667
1668	if (tlb_type == hypervisor) {
1669		sun4v_patch_tlb_handlers();
1670		sun4v_ktsb_init();
1671	}
1672
1673	/* Find available physical memory...
1674	 *
1675	 * Read it twice in order to work around a bug in openfirmware.
1676	 * The call to grab this table itself can cause openfirmware to
1677	 * allocate memory, which in turn can take away some space from
1678	 * the list of available memory.  Reading it twice makes sure
1679	 * we really do get the final value.
1680	 */
1681	read_obp_translations();
1682	read_obp_memory("reg", &pall[0], &pall_ents);
1683	read_obp_memory("available", &pavail[0], &pavail_ents);
1684	read_obp_memory("available", &pavail[0], &pavail_ents);
1685
1686	phys_base = 0xffffffffffffffffUL;
1687	for (i = 0; i < pavail_ents; i++) {
1688		phys_base = min(phys_base, pavail[i].phys_addr);
1689		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1690	}
1691
1692	memblock_reserve(kern_base, kern_size);
1693
1694	find_ramdisk(phys_base);
1695
1696	memblock_enforce_memory_limit(cmdline_memory_size);
1697
1698	memblock_allow_resize();
1699	memblock_dump_all();
1700
1701	set_bit(0, mmu_context_bmap);
1702
1703	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1704
1705	real_end = (unsigned long)_end;
1706	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1707	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1708	       num_kernel_image_mappings);
1709
1710	/* Set kernel pgd to upper alias so physical page computations
1711	 * work.
1712	 */
1713	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1714	
1715	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1716
1717	/* Now can init the kernel/bad page tables. */
1718	pud_set(pud_offset(&swapper_pg_dir[0], 0),
1719		swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1720	
1721	inherit_prom_mappings();
1722	
1723	init_kpte_bitmap();
1724
1725	/* Ok, we can use our TLB miss and window trap handlers safely.  */
1726	setup_tba();
1727
1728	__flush_tlb_all();
1729
1730	if (tlb_type == hypervisor)
1731		sun4v_ktsb_register();
1732
1733	prom_build_devicetree();
1734	of_populate_present_mask();
1735#ifndef CONFIG_SMP
1736	of_fill_in_cpu_data();
1737#endif
1738
1739	if (tlb_type == hypervisor) {
1740		sun4v_mdesc_init();
1741		mdesc_populate_present_mask(cpu_all_mask);
1742#ifndef CONFIG_SMP
1743		mdesc_fill_in_cpu_data(cpu_all_mask);
1744#endif
1745	}
1746
1747	/* Setup bootmem... */
1748	last_valid_pfn = end_pfn = bootmem_init(phys_base);
1749
1750	/* Once the OF device tree and MDESC have been setup, we know
1751	 * the list of possible cpus.  Therefore we can allocate the
1752	 * IRQ stacks.
1753	 */
1754	for_each_possible_cpu(i) {
1755		node = cpu_to_node(i);
1756
1757		softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1758							THREAD_SIZE,
1759							THREAD_SIZE, 0);
1760		hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1761							THREAD_SIZE,
1762							THREAD_SIZE, 0);
1763	}
1764
1765	kernel_physical_mapping_init();
1766
1767	{
1768		unsigned long max_zone_pfns[MAX_NR_ZONES];
1769
1770		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1771
1772		max_zone_pfns[ZONE_NORMAL] = end_pfn;
1773
1774		free_area_init_nodes(max_zone_pfns);
1775	}
1776
1777	printk("Booting Linux...\n");
1778}
1779
1780int __devinit page_in_phys_avail(unsigned long paddr)
1781{
1782	int i;
1783
1784	paddr &= PAGE_MASK;
1785
1786	for (i = 0; i < pavail_ents; i++) {
1787		unsigned long start, end;
1788
1789		start = pavail[i].phys_addr;
1790		end = start + pavail[i].reg_size;
1791
1792		if (paddr >= start && paddr < end)
1793			return 1;
1794	}
1795	if (paddr >= kern_base && paddr < (kern_base + kern_size))
1796		return 1;
1797#ifdef CONFIG_BLK_DEV_INITRD
1798	if (paddr >= __pa(initrd_start) &&
1799	    paddr < __pa(PAGE_ALIGN(initrd_end)))
1800		return 1;
1801#endif
1802
1803	return 0;
1804}
1805
1806static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1807static int pavail_rescan_ents __initdata;
1808
1809/* Certain OBP calls, such as fetching "available" properties, can
1810 * claim physical memory.  So, along with initializing the valid
1811 * address bitmap, what we do here is refetch the physical available
1812 * memory list again, and make sure it provides at least as much
1813 * memory as 'pavail' does.
1814 */
1815static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1816{
1817	int i;
1818
1819	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1820
1821	for (i = 0; i < pavail_ents; i++) {
1822		unsigned long old_start, old_end;
1823
1824		old_start = pavail[i].phys_addr;
1825		old_end = old_start + pavail[i].reg_size;
1826		while (old_start < old_end) {
1827			int n;
1828
1829			for (n = 0; n < pavail_rescan_ents; n++) {
1830				unsigned long new_start, new_end;
1831
1832				new_start = pavail_rescan[n].phys_addr;
1833				new_end = new_start +
1834					pavail_rescan[n].reg_size;
1835
1836				if (new_start <= old_start &&
1837				    new_end >= (old_start + PAGE_SIZE)) {
1838					set_bit(old_start >> 22, bitmap);
1839					goto do_next_page;
1840				}
1841			}
1842
1843			prom_printf("mem_init: Lost memory in pavail\n");
1844			prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1845				    pavail[i].phys_addr,
1846				    pavail[i].reg_size);
1847			prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1848				    pavail_rescan[i].phys_addr,
1849				    pavail_rescan[i].reg_size);
1850			prom_printf("mem_init: Cannot continue, aborting.\n");
1851			prom_halt();
1852
1853		do_next_page:
1854			old_start += PAGE_SIZE;
1855		}
1856	}
1857}
1858
1859static void __init patch_tlb_miss_handler_bitmap(void)
1860{
1861	extern unsigned int valid_addr_bitmap_insn[];
1862	extern unsigned int valid_addr_bitmap_patch[];
1863
1864	valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1865	mb();
1866	valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1867	flushi(&valid_addr_bitmap_insn[0]);
1868}
1869
1870void __init mem_init(void)
1871{
1872	unsigned long codepages, datapages, initpages;
1873	unsigned long addr, last;
1874
1875	addr = PAGE_OFFSET + kern_base;
1876	last = PAGE_ALIGN(kern_size) + addr;
1877	while (addr < last) {
1878		set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1879		addr += PAGE_SIZE;
1880	}
1881
1882	setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1883	patch_tlb_miss_handler_bitmap();
1884
1885	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1886
1887#ifdef CONFIG_NEED_MULTIPLE_NODES
1888	{
1889		int i;
1890		for_each_online_node(i) {
1891			if (NODE_DATA(i)->node_spanned_pages != 0) {
1892				totalram_pages +=
1893					free_all_bootmem_node(NODE_DATA(i));
1894			}
1895		}
1896		totalram_pages += free_low_memory_core_early(MAX_NUMNODES);
1897	}
1898#else
1899	totalram_pages = free_all_bootmem();
1900#endif
1901
1902	/* We subtract one to account for the mem_map_zero page
1903	 * allocated below.
1904	 */
1905	totalram_pages -= 1;
1906	num_physpages = totalram_pages;
1907
1908	/*
1909	 * Set up the zero page, mark it reserved, so that page count
1910	 * is not manipulated when freeing the page from user ptes.
1911	 */
1912	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1913	if (mem_map_zero == NULL) {
1914		prom_printf("paging_init: Cannot alloc zero page.\n");
1915		prom_halt();
1916	}
1917	SetPageReserved(mem_map_zero);
1918
1919	codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1920	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1921	datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1922	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1923	initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1924	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1925
1926	printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1927	       nr_free_pages() << (PAGE_SHIFT-10),
1928	       codepages << (PAGE_SHIFT-10),
1929	       datapages << (PAGE_SHIFT-10), 
1930	       initpages << (PAGE_SHIFT-10), 
1931	       PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1932
1933	if (tlb_type == cheetah || tlb_type == cheetah_plus)
1934		cheetah_ecache_flush_init();
1935}
1936
1937void free_initmem(void)
1938{
1939	unsigned long addr, initend;
1940	int do_free = 1;
1941
1942	/* If the physical memory maps were trimmed by kernel command
1943	 * line options, don't even try freeing this initmem stuff up.
1944	 * The kernel image could have been in the trimmed out region
1945	 * and if so the freeing below will free invalid page structs.
1946	 */
1947	if (cmdline_memory_size)
1948		do_free = 0;
1949
1950	/*
1951	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1952	 */
1953	addr = PAGE_ALIGN((unsigned long)(__init_begin));
1954	initend = (unsigned long)(__init_end) & PAGE_MASK;
1955	for (; addr < initend; addr += PAGE_SIZE) {
1956		unsigned long page;
1957		struct page *p;
1958
1959		page = (addr +
1960			((unsigned long) __va(kern_base)) -
1961			((unsigned long) KERNBASE));
1962		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1963
1964		if (do_free) {
1965			p = virt_to_page(page);
1966
1967			ClearPageReserved(p);
1968			init_page_count(p);
1969			__free_page(p);
1970			num_physpages++;
1971			totalram_pages++;
1972		}
1973	}
1974}
1975
1976#ifdef CONFIG_BLK_DEV_INITRD
1977void free_initrd_mem(unsigned long start, unsigned long end)
1978{
1979	if (start < end)
1980		printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1981	for (; start < end; start += PAGE_SIZE) {
1982		struct page *p = virt_to_page(start);
1983
1984		ClearPageReserved(p);
1985		init_page_count(p);
1986		__free_page(p);
1987		num_physpages++;
1988		totalram_pages++;
1989	}
1990}
1991#endif
1992
1993#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
1994#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
1995#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1996#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1997#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1998#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1999
2000pgprot_t PAGE_KERNEL __read_mostly;
2001EXPORT_SYMBOL(PAGE_KERNEL);
2002
2003pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2004pgprot_t PAGE_COPY __read_mostly;
2005
2006pgprot_t PAGE_SHARED __read_mostly;
2007EXPORT_SYMBOL(PAGE_SHARED);
2008
2009unsigned long pg_iobits __read_mostly;
2010
2011unsigned long _PAGE_IE __read_mostly;
2012EXPORT_SYMBOL(_PAGE_IE);
2013
2014unsigned long _PAGE_E __read_mostly;
2015EXPORT_SYMBOL(_PAGE_E);
2016
2017unsigned long _PAGE_CACHE __read_mostly;
2018EXPORT_SYMBOL(_PAGE_CACHE);
2019
2020#ifdef CONFIG_SPARSEMEM_VMEMMAP
2021unsigned long vmemmap_table[VMEMMAP_SIZE];
2022
2023int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2024{
2025	unsigned long vstart = (unsigned long) start;
2026	unsigned long vend = (unsigned long) (start + nr);
2027	unsigned long phys_start = (vstart - VMEMMAP_BASE);
2028	unsigned long phys_end = (vend - VMEMMAP_BASE);
2029	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2030	unsigned long end = VMEMMAP_ALIGN(phys_end);
2031	unsigned long pte_base;
2032
2033	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2034		    _PAGE_CP_4U | _PAGE_CV_4U |
2035		    _PAGE_P_4U | _PAGE_W_4U);
2036	if (tlb_type == hypervisor)
2037		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2038			    _PAGE_CP_4V | _PAGE_CV_4V |
2039			    _PAGE_P_4V | _PAGE_W_4V);
2040
2041	for (; addr < end; addr += VMEMMAP_CHUNK) {
2042		unsigned long *vmem_pp =
2043			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2044		void *block;
2045
2046		if (!(*vmem_pp & _PAGE_VALID)) {
2047			block = vmemmap_alloc_block(1UL << 22, node);
2048			if (!block)
2049				return -ENOMEM;
2050
2051			*vmem_pp = pte_base | __pa(block);
2052
2053			printk(KERN_INFO "[%p-%p] page_structs=%lu "
2054			       "node=%d entry=%lu/%lu\n", start, block, nr,
2055			       node,
2056			       addr >> VMEMMAP_CHUNK_SHIFT,
2057			       VMEMMAP_SIZE);
2058		}
2059	}
2060	return 0;
2061}
2062#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2063
2064static void prot_init_common(unsigned long page_none,
2065			     unsigned long page_shared,
2066			     unsigned long page_copy,
2067			     unsigned long page_readonly,
2068			     unsigned long page_exec_bit)
2069{
2070	PAGE_COPY = __pgprot(page_copy);
2071	PAGE_SHARED = __pgprot(page_shared);
2072
2073	protection_map[0x0] = __pgprot(page_none);
2074	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2075	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2076	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2077	protection_map[0x4] = __pgprot(page_readonly);
2078	protection_map[0x5] = __pgprot(page_readonly);
2079	protection_map[0x6] = __pgprot(page_copy);
2080	protection_map[0x7] = __pgprot(page_copy);
2081	protection_map[0x8] = __pgprot(page_none);
2082	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2083	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2084	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2085	protection_map[0xc] = __pgprot(page_readonly);
2086	protection_map[0xd] = __pgprot(page_readonly);
2087	protection_map[0xe] = __pgprot(page_shared);
2088	protection_map[0xf] = __pgprot(page_shared);
2089}
2090
2091static void __init sun4u_pgprot_init(void)
2092{
2093	unsigned long page_none, page_shared, page_copy, page_readonly;
2094	unsigned long page_exec_bit;
2095
2096	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2097				_PAGE_CACHE_4U | _PAGE_P_4U |
2098				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2099				_PAGE_EXEC_4U);
2100	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2101				       _PAGE_CACHE_4U | _PAGE_P_4U |
2102				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2103				       _PAGE_EXEC_4U | _PAGE_L_4U);
2104
2105	_PAGE_IE = _PAGE_IE_4U;
2106	_PAGE_E = _PAGE_E_4U;
2107	_PAGE_CACHE = _PAGE_CACHE_4U;
2108
2109	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2110		     __ACCESS_BITS_4U | _PAGE_E_4U);
2111
2112#ifdef CONFIG_DEBUG_PAGEALLOC
2113	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2114		0xfffff80000000000UL;
2115#else
2116	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2117		0xfffff80000000000UL;
2118#endif
2119	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2120				   _PAGE_P_4U | _PAGE_W_4U);
2121
2122	/* XXX Should use 256MB on Panther. XXX */
2123	kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2124
2125	_PAGE_SZBITS = _PAGE_SZBITS_4U;
2126	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2127			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2128			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2129
2130
2131	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2132	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2133		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2134	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2135		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2136	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2137			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2138
2139	page_exec_bit = _PAGE_EXEC_4U;
2140
2141	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2142			 page_exec_bit);
2143}
2144
2145static void __init sun4v_pgprot_init(void)
2146{
2147	unsigned long page_none, page_shared, page_copy, page_readonly;
2148	unsigned long page_exec_bit;
2149
2150	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2151				_PAGE_CACHE_4V | _PAGE_P_4V |
2152				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2153				_PAGE_EXEC_4V);
2154	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2155
2156	_PAGE_IE = _PAGE_IE_4V;
2157	_PAGE_E = _PAGE_E_4V;
2158	_PAGE_CACHE = _PAGE_CACHE_4V;
2159
2160#ifdef CONFIG_DEBUG_PAGEALLOC
2161	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2162		0xfffff80000000000UL;
2163#else
2164	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2165		0xfffff80000000000UL;
2166#endif
2167	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2168				   _PAGE_P_4V | _PAGE_W_4V);
2169
2170#ifdef CONFIG_DEBUG_PAGEALLOC
2171	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2172		0xfffff80000000000UL;
2173#else
2174	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2175		0xfffff80000000000UL;
2176#endif
2177	kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2178				   _PAGE_P_4V | _PAGE_W_4V);
2179
2180	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2181		     __ACCESS_BITS_4V | _PAGE_E_4V);
2182
2183	_PAGE_SZBITS = _PAGE_SZBITS_4V;
2184	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2185			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2186			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2187			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2188
2189	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2190	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2191		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2192	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2193		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2194	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2195			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2196
2197	page_exec_bit = _PAGE_EXEC_4V;
2198
2199	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2200			 page_exec_bit);
2201}
2202
2203unsigned long pte_sz_bits(unsigned long sz)
2204{
2205	if (tlb_type == hypervisor) {
2206		switch (sz) {
2207		case 8 * 1024:
2208		default:
2209			return _PAGE_SZ8K_4V;
2210		case 64 * 1024:
2211			return _PAGE_SZ64K_4V;
2212		case 512 * 1024:
2213			return _PAGE_SZ512K_4V;
2214		case 4 * 1024 * 1024:
2215			return _PAGE_SZ4MB_4V;
2216		}
2217	} else {
2218		switch (sz) {
2219		case 8 * 1024:
2220		default:
2221			return _PAGE_SZ8K_4U;
2222		case 64 * 1024:
2223			return _PAGE_SZ64K_4U;
2224		case 512 * 1024:
2225			return _PAGE_SZ512K_4U;
2226		case 4 * 1024 * 1024:
2227			return _PAGE_SZ4MB_4U;
2228		}
2229	}
2230}
2231
2232pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2233{
2234	pte_t pte;
2235
2236	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2237	pte_val(pte) |= (((unsigned long)space) << 32);
2238	pte_val(pte) |= pte_sz_bits(page_size);
2239
2240	return pte;
2241}
2242
2243static unsigned long kern_large_tte(unsigned long paddr)
2244{
2245	unsigned long val;
2246
2247	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2248	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2249	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2250	if (tlb_type == hypervisor)
2251		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2252		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2253		       _PAGE_EXEC_4V | _PAGE_W_4V);
2254
2255	return val | paddr;
2256}
2257
2258/* If not locked, zap it. */
2259void __flush_tlb_all(void)
2260{
2261	unsigned long pstate;
2262	int i;
2263
2264	__asm__ __volatile__("flushw\n\t"
2265			     "rdpr	%%pstate, %0\n\t"
2266			     "wrpr	%0, %1, %%pstate"
2267			     : "=r" (pstate)
2268			     : "i" (PSTATE_IE));
2269	if (tlb_type == hypervisor) {
2270		sun4v_mmu_demap_all();
2271	} else if (tlb_type == spitfire) {
2272		for (i = 0; i < 64; i++) {
2273			/* Spitfire Errata #32 workaround */
2274			/* NOTE: Always runs on spitfire, so no
2275			 *       cheetah+ page size encodings.
2276			 */
2277			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2278					     "flush	%%g6"
2279					     : /* No outputs */
2280					     : "r" (0),
2281					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2282
2283			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2284				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2285						     "membar #Sync"
2286						     : /* no outputs */
2287						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2288				spitfire_put_dtlb_data(i, 0x0UL);
2289			}
2290
2291			/* Spitfire Errata #32 workaround */
2292			/* NOTE: Always runs on spitfire, so no
2293			 *       cheetah+ page size encodings.
2294			 */
2295			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2296					     "flush	%%g6"
2297					     : /* No outputs */
2298					     : "r" (0),
2299					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2300
2301			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2302				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2303						     "membar #Sync"
2304						     : /* no outputs */
2305						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2306				spitfire_put_itlb_data(i, 0x0UL);
2307			}
2308		}
2309	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2310		cheetah_flush_dtlb_all();
2311		cheetah_flush_itlb_all();
2312	}
2313	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2314			     : : "r" (pstate));
2315}