Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  arch/sparc64/mm/init.c
   3 *
   4 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   5 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   6 */
   7 
   8#include <linux/module.h>
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/string.h>
  12#include <linux/init.h>
  13#include <linux/bootmem.h>
  14#include <linux/mm.h>
  15#include <linux/hugetlb.h>
  16#include <linux/initrd.h>
  17#include <linux/swap.h>
  18#include <linux/pagemap.h>
  19#include <linux/poison.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/kprobes.h>
  23#include <linux/cache.h>
  24#include <linux/sort.h>
 
  25#include <linux/percpu.h>
  26#include <linux/memblock.h>
  27#include <linux/mmzone.h>
  28#include <linux/gfp.h>
  29
  30#include <asm/head.h>
  31#include <asm/system.h>
  32#include <asm/page.h>
  33#include <asm/pgalloc.h>
  34#include <asm/pgtable.h>
  35#include <asm/oplib.h>
  36#include <asm/iommu.h>
  37#include <asm/io.h>
  38#include <asm/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/tlbflush.h>
  41#include <asm/dma.h>
  42#include <asm/starfire.h>
  43#include <asm/tlb.h>
  44#include <asm/spitfire.h>
  45#include <asm/sections.h>
  46#include <asm/tsb.h>
  47#include <asm/hypervisor.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/cpudata.h>
 
  51#include <asm/irq.h>
  52
  53#include "init_64.h"
  54
  55unsigned long kern_linear_pte_xor[2] __read_mostly;
 
  56
  57/* A bitmap, one bit for every 256MB of physical memory.  If the bit
  58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60 */
  61unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  62
  63#ifndef CONFIG_DEBUG_PAGEALLOC
  64/* A special kernel TSB for 4MB and 256MB linear mappings.
  65 * Space is allocated for this right after the trap table
  66 * in arch/sparc64/kernel/head.S
  67 */
  68extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  69#endif
 
  70
  71#define MAX_BANKS	32
  72
  73static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
  74static int pavail_ents __devinitdata;
 
 
 
 
  75
  76static int cmp_p64(const void *a, const void *b)
  77{
  78	const struct linux_prom64_registers *x = a, *y = b;
  79
  80	if (x->phys_addr > y->phys_addr)
  81		return 1;
  82	if (x->phys_addr < y->phys_addr)
  83		return -1;
  84	return 0;
  85}
  86
  87static void __init read_obp_memory(const char *property,
  88				   struct linux_prom64_registers *regs,
  89				   int *num_ents)
  90{
  91	phandle node = prom_finddevice("/memory");
  92	int prop_size = prom_getproplen(node, property);
  93	int ents, ret, i;
  94
  95	ents = prop_size / sizeof(struct linux_prom64_registers);
  96	if (ents > MAX_BANKS) {
  97		prom_printf("The machine has more %s property entries than "
  98			    "this kernel can support (%d).\n",
  99			    property, MAX_BANKS);
 100		prom_halt();
 101	}
 102
 103	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 104	if (ret == -1) {
 105		prom_printf("Couldn't get %s property from /memory.\n");
 
 106		prom_halt();
 107	}
 108
 109	/* Sanitize what we got from the firmware, by page aligning
 110	 * everything.
 111	 */
 112	for (i = 0; i < ents; i++) {
 113		unsigned long base, size;
 114
 115		base = regs[i].phys_addr;
 116		size = regs[i].reg_size;
 117
 118		size &= PAGE_MASK;
 119		if (base & ~PAGE_MASK) {
 120			unsigned long new_base = PAGE_ALIGN(base);
 121
 122			size -= new_base - base;
 123			if ((long) size < 0L)
 124				size = 0UL;
 125			base = new_base;
 126		}
 127		if (size == 0UL) {
 128			/* If it is empty, simply get rid of it.
 129			 * This simplifies the logic of the other
 130			 * functions that process these arrays.
 131			 */
 132			memmove(&regs[i], &regs[i + 1],
 133				(ents - i - 1) * sizeof(regs[0]));
 134			i--;
 135			ents--;
 136			continue;
 137		}
 138		regs[i].phys_addr = base;
 139		regs[i].reg_size = size;
 140	}
 141
 142	*num_ents = ents;
 143
 144	sort(regs, ents, sizeof(struct linux_prom64_registers),
 145	     cmp_p64, NULL);
 146}
 147
 148unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
 149					sizeof(unsigned long)];
 150EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
 151
 152/* Kernel physical address base and size in bytes.  */
 153unsigned long kern_base __read_mostly;
 154unsigned long kern_size __read_mostly;
 155
 156/* Initial ramdisk setup */
 157extern unsigned long sparc_ramdisk_image64;
 158extern unsigned int sparc_ramdisk_image;
 159extern unsigned int sparc_ramdisk_size;
 160
 161struct page *mem_map_zero __read_mostly;
 162EXPORT_SYMBOL(mem_map_zero);
 163
 164unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 165
 166unsigned long sparc64_kern_pri_context __read_mostly;
 167unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 168unsigned long sparc64_kern_sec_context __read_mostly;
 169
 170int num_kernel_image_mappings;
 171
 172#ifdef CONFIG_DEBUG_DCFLUSH
 173atomic_t dcpage_flushes = ATOMIC_INIT(0);
 174#ifdef CONFIG_SMP
 175atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 176#endif
 177#endif
 178
 179inline void flush_dcache_page_impl(struct page *page)
 180{
 181	BUG_ON(tlb_type == hypervisor);
 182#ifdef CONFIG_DEBUG_DCFLUSH
 183	atomic_inc(&dcpage_flushes);
 184#endif
 185
 186#ifdef DCACHE_ALIASING_POSSIBLE
 187	__flush_dcache_page(page_address(page),
 188			    ((tlb_type == spitfire) &&
 189			     page_mapping(page) != NULL));
 190#else
 191	if (page_mapping(page) != NULL &&
 192	    tlb_type == spitfire)
 193		__flush_icache_page(__pa(page_address(page)));
 194#endif
 195}
 196
 197#define PG_dcache_dirty		PG_arch_1
 198#define PG_dcache_cpu_shift	32UL
 199#define PG_dcache_cpu_mask	\
 200	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 201
 202#define dcache_dirty_cpu(page) \
 203	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 204
 205static inline void set_dcache_dirty(struct page *page, int this_cpu)
 206{
 207	unsigned long mask = this_cpu;
 208	unsigned long non_cpu_bits;
 209
 210	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 211	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 212
 213	__asm__ __volatile__("1:\n\t"
 214			     "ldx	[%2], %%g7\n\t"
 215			     "and	%%g7, %1, %%g1\n\t"
 216			     "or	%%g1, %0, %%g1\n\t"
 217			     "casx	[%2], %%g7, %%g1\n\t"
 218			     "cmp	%%g7, %%g1\n\t"
 219			     "bne,pn	%%xcc, 1b\n\t"
 220			     " nop"
 221			     : /* no outputs */
 222			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 223			     : "g1", "g7");
 224}
 225
 226static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 227{
 228	unsigned long mask = (1UL << PG_dcache_dirty);
 229
 230	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 231			     "1:\n\t"
 232			     "ldx	[%2], %%g7\n\t"
 233			     "srlx	%%g7, %4, %%g1\n\t"
 234			     "and	%%g1, %3, %%g1\n\t"
 235			     "cmp	%%g1, %0\n\t"
 236			     "bne,pn	%%icc, 2f\n\t"
 237			     " andn	%%g7, %1, %%g1\n\t"
 238			     "casx	[%2], %%g7, %%g1\n\t"
 239			     "cmp	%%g7, %%g1\n\t"
 240			     "bne,pn	%%xcc, 1b\n\t"
 241			     " nop\n"
 242			     "2:"
 243			     : /* no outputs */
 244			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 245			       "i" (PG_dcache_cpu_mask),
 246			       "i" (PG_dcache_cpu_shift)
 247			     : "g1", "g7");
 248}
 249
 250static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 251{
 252	unsigned long tsb_addr = (unsigned long) ent;
 253
 254	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 255		tsb_addr = __pa(tsb_addr);
 256
 257	__tsb_insert(tsb_addr, tag, pte);
 258}
 259
 260unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 261unsigned long _PAGE_SZBITS __read_mostly;
 262
 263static void flush_dcache(unsigned long pfn)
 264{
 265	struct page *page;
 266
 267	page = pfn_to_page(pfn);
 268	if (page) {
 269		unsigned long pg_flags;
 270
 271		pg_flags = page->flags;
 272		if (pg_flags & (1UL << PG_dcache_dirty)) {
 273			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 274				   PG_dcache_cpu_mask);
 275			int this_cpu = get_cpu();
 276
 277			/* This is just to optimize away some function calls
 278			 * in the SMP case.
 279			 */
 280			if (cpu == this_cpu)
 281				flush_dcache_page_impl(page);
 282			else
 283				smp_flush_dcache_page_impl(page, cpu);
 284
 285			clear_dcache_dirty_cpu(page, cpu);
 286
 287			put_cpu();
 288		}
 289	}
 290}
 291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 293{
 294	struct mm_struct *mm;
 295	struct tsb *tsb;
 296	unsigned long tag, flags;
 297	unsigned long tsb_index, tsb_hash_shift;
 298	pte_t pte = *ptep;
 299
 300	if (tlb_type != hypervisor) {
 301		unsigned long pfn = pte_pfn(pte);
 302
 303		if (pfn_valid(pfn))
 304			flush_dcache(pfn);
 305	}
 306
 307	mm = vma->vm_mm;
 308
 309	tsb_index = MM_TSB_BASE;
 310	tsb_hash_shift = PAGE_SHIFT;
 
 311
 312	spin_lock_irqsave(&mm->context.lock, flags);
 313
 314#ifdef CONFIG_HUGETLB_PAGE
 315	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
 316		if ((tlb_type == hypervisor &&
 317		     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
 318		    (tlb_type != hypervisor &&
 319		     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
 320			tsb_index = MM_TSB_HUGE;
 321			tsb_hash_shift = HPAGE_SHIFT;
 322		}
 323	}
 324#endif
 325
 326	tsb = mm->context.tsb_block[tsb_index].tsb;
 327	tsb += ((address >> tsb_hash_shift) &
 328		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 329	tag = (address >> 22UL);
 330	tsb_insert(tsb, tag, pte_val(pte));
 331
 332	spin_unlock_irqrestore(&mm->context.lock, flags);
 333}
 334
 335void flush_dcache_page(struct page *page)
 336{
 337	struct address_space *mapping;
 338	int this_cpu;
 339
 340	if (tlb_type == hypervisor)
 341		return;
 342
 343	/* Do not bother with the expensive D-cache flush if it
 344	 * is merely the zero page.  The 'bigcore' testcase in GDB
 345	 * causes this case to run millions of times.
 346	 */
 347	if (page == ZERO_PAGE(0))
 348		return;
 349
 350	this_cpu = get_cpu();
 351
 352	mapping = page_mapping(page);
 353	if (mapping && !mapping_mapped(mapping)) {
 354		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 355		if (dirty) {
 356			int dirty_cpu = dcache_dirty_cpu(page);
 357
 358			if (dirty_cpu == this_cpu)
 359				goto out;
 360			smp_flush_dcache_page_impl(page, dirty_cpu);
 361		}
 362		set_dcache_dirty(page, this_cpu);
 363	} else {
 364		/* We could delay the flush for the !page_mapping
 365		 * case too.  But that case is for exec env/arg
 366		 * pages and those are %99 certainly going to get
 367		 * faulted into the tlb (and thus flushed) anyways.
 368		 */
 369		flush_dcache_page_impl(page);
 370	}
 371
 372out:
 373	put_cpu();
 374}
 375EXPORT_SYMBOL(flush_dcache_page);
 376
 377void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 378{
 379	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 380	if (tlb_type == spitfire) {
 381		unsigned long kaddr;
 382
 383		/* This code only runs on Spitfire cpus so this is
 384		 * why we can assume _PAGE_PADDR_4U.
 385		 */
 386		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 387			unsigned long paddr, mask = _PAGE_PADDR_4U;
 388
 389			if (kaddr >= PAGE_OFFSET)
 390				paddr = kaddr & mask;
 391			else {
 392				pgd_t *pgdp = pgd_offset_k(kaddr);
 393				pud_t *pudp = pud_offset(pgdp, kaddr);
 394				pmd_t *pmdp = pmd_offset(pudp, kaddr);
 395				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 396
 397				paddr = pte_val(*ptep) & mask;
 398			}
 399			__flush_icache_page(paddr);
 400		}
 401	}
 402}
 403EXPORT_SYMBOL(flush_icache_range);
 404
 405void mmu_info(struct seq_file *m)
 406{
 
 
 
 
 
 
 407	if (tlb_type == cheetah)
 408		seq_printf(m, "MMU Type\t: Cheetah\n");
 409	else if (tlb_type == cheetah_plus)
 410		seq_printf(m, "MMU Type\t: Cheetah+\n");
 411	else if (tlb_type == spitfire)
 412		seq_printf(m, "MMU Type\t: Spitfire\n");
 413	else if (tlb_type == hypervisor)
 414		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 415	else
 416		seq_printf(m, "MMU Type\t: ???\n");
 417
 
 
 
 
 
 
 
 
 
 
 
 418#ifdef CONFIG_DEBUG_DCFLUSH
 419	seq_printf(m, "DCPageFlushes\t: %d\n",
 420		   atomic_read(&dcpage_flushes));
 421#ifdef CONFIG_SMP
 422	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 423		   atomic_read(&dcpage_flushes_xcall));
 424#endif /* CONFIG_SMP */
 425#endif /* CONFIG_DEBUG_DCFLUSH */
 426}
 427
 428struct linux_prom_translation prom_trans[512] __read_mostly;
 429unsigned int prom_trans_ents __read_mostly;
 430
 431unsigned long kern_locked_tte_data;
 432
 433/* The obp translations are saved based on 8k pagesize, since obp can
 434 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 435 * HI_OBP_ADDRESS range are handled in ktlb.S.
 436 */
 437static inline int in_obp_range(unsigned long vaddr)
 438{
 439	return (vaddr >= LOW_OBP_ADDRESS &&
 440		vaddr < HI_OBP_ADDRESS);
 441}
 442
 443static int cmp_ptrans(const void *a, const void *b)
 444{
 445	const struct linux_prom_translation *x = a, *y = b;
 446
 447	if (x->virt > y->virt)
 448		return 1;
 449	if (x->virt < y->virt)
 450		return -1;
 451	return 0;
 452}
 453
 454/* Read OBP translations property into 'prom_trans[]'.  */
 455static void __init read_obp_translations(void)
 456{
 457	int n, node, ents, first, last, i;
 458
 459	node = prom_finddevice("/virtual-memory");
 460	n = prom_getproplen(node, "translations");
 461	if (unlikely(n == 0 || n == -1)) {
 462		prom_printf("prom_mappings: Couldn't get size.\n");
 463		prom_halt();
 464	}
 465	if (unlikely(n > sizeof(prom_trans))) {
 466		prom_printf("prom_mappings: Size %Zd is too big.\n", n);
 467		prom_halt();
 468	}
 469
 470	if ((n = prom_getproperty(node, "translations",
 471				  (char *)&prom_trans[0],
 472				  sizeof(prom_trans))) == -1) {
 473		prom_printf("prom_mappings: Couldn't get property.\n");
 474		prom_halt();
 475	}
 476
 477	n = n / sizeof(struct linux_prom_translation);
 478
 479	ents = n;
 480
 481	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 482	     cmp_ptrans, NULL);
 483
 484	/* Now kick out all the non-OBP entries.  */
 485	for (i = 0; i < ents; i++) {
 486		if (in_obp_range(prom_trans[i].virt))
 487			break;
 488	}
 489	first = i;
 490	for (; i < ents; i++) {
 491		if (!in_obp_range(prom_trans[i].virt))
 492			break;
 493	}
 494	last = i;
 495
 496	for (i = 0; i < (last - first); i++) {
 497		struct linux_prom_translation *src = &prom_trans[i + first];
 498		struct linux_prom_translation *dest = &prom_trans[i];
 499
 500		*dest = *src;
 501	}
 502	for (; i < ents; i++) {
 503		struct linux_prom_translation *dest = &prom_trans[i];
 504		dest->virt = dest->size = dest->data = 0x0UL;
 505	}
 506
 507	prom_trans_ents = last - first;
 508
 509	if (tlb_type == spitfire) {
 510		/* Clear diag TTE bits. */
 511		for (i = 0; i < prom_trans_ents; i++)
 512			prom_trans[i].data &= ~0x0003fe0000000000UL;
 513	}
 514
 515	/* Force execute bit on.  */
 516	for (i = 0; i < prom_trans_ents; i++)
 517		prom_trans[i].data |= (tlb_type == hypervisor ?
 518				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 519}
 520
 521static void __init hypervisor_tlb_lock(unsigned long vaddr,
 522				       unsigned long pte,
 523				       unsigned long mmu)
 524{
 525	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 526
 527	if (ret != 0) {
 528		prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
 529			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 530		prom_halt();
 531	}
 532}
 533
 534static unsigned long kern_large_tte(unsigned long paddr);
 535
 536static void __init remap_kernel(void)
 537{
 538	unsigned long phys_page, tte_vaddr, tte_data;
 539	int i, tlb_ent = sparc64_highest_locked_tlbent();
 540
 541	tte_vaddr = (unsigned long) KERNBASE;
 542	phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
 543	tte_data = kern_large_tte(phys_page);
 544
 545	kern_locked_tte_data = tte_data;
 546
 547	/* Now lock us into the TLBs via Hypervisor or OBP. */
 548	if (tlb_type == hypervisor) {
 549		for (i = 0; i < num_kernel_image_mappings; i++) {
 550			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 551			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 552			tte_vaddr += 0x400000;
 553			tte_data += 0x400000;
 554		}
 555	} else {
 556		for (i = 0; i < num_kernel_image_mappings; i++) {
 557			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 558			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 559			tte_vaddr += 0x400000;
 560			tte_data += 0x400000;
 561		}
 562		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 563	}
 564	if (tlb_type == cheetah_plus) {
 565		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 566					    CTX_CHEETAH_PLUS_NUC);
 567		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 568		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 569	}
 570}
 571
 572
 573static void __init inherit_prom_mappings(void)
 574{
 575	/* Now fixup OBP's idea about where we really are mapped. */
 576	printk("Remapping the kernel... ");
 577	remap_kernel();
 578	printk("done.\n");
 579}
 580
 581void prom_world(int enter)
 582{
 583	if (!enter)
 584		set_fs((mm_segment_t) { get_thread_current_ds() });
 585
 586	__asm__ __volatile__("flushw");
 587}
 588
 589void __flush_dcache_range(unsigned long start, unsigned long end)
 590{
 591	unsigned long va;
 592
 593	if (tlb_type == spitfire) {
 594		int n = 0;
 595
 596		for (va = start; va < end; va += 32) {
 597			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 598			if (++n >= 512)
 599				break;
 600		}
 601	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 602		start = __pa(start);
 603		end = __pa(end);
 604		for (va = start; va < end; va += 32)
 605			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 606					     "membar #Sync"
 607					     : /* no outputs */
 608					     : "r" (va),
 609					       "i" (ASI_DCACHE_INVALIDATE));
 610	}
 611}
 612EXPORT_SYMBOL(__flush_dcache_range);
 613
 614/* get_new_mmu_context() uses "cache + 1".  */
 615DEFINE_SPINLOCK(ctx_alloc_lock);
 616unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
 617#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 618#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 619DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 620
 621/* Caller does TLB context flushing on local CPU if necessary.
 622 * The caller also ensures that CTX_VALID(mm->context) is false.
 623 *
 624 * We must be careful about boundary cases so that we never
 625 * let the user have CTX 0 (nucleus) or we ever use a CTX
 626 * version of zero (and thus NO_CONTEXT would not be caught
 627 * by version mis-match tests in mmu_context.h).
 628 *
 629 * Always invoked with interrupts disabled.
 630 */
 631void get_new_mmu_context(struct mm_struct *mm)
 632{
 633	unsigned long ctx, new_ctx;
 634	unsigned long orig_pgsz_bits;
 635	unsigned long flags;
 636	int new_version;
 637
 638	spin_lock_irqsave(&ctx_alloc_lock, flags);
 639	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 640	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 641	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 642	new_version = 0;
 643	if (new_ctx >= (1 << CTX_NR_BITS)) {
 644		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 645		if (new_ctx >= ctx) {
 646			int i;
 647			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
 648				CTX_FIRST_VERSION;
 649			if (new_ctx == 1)
 650				new_ctx = CTX_FIRST_VERSION;
 651
 652			/* Don't call memset, for 16 entries that's just
 653			 * plain silly...
 654			 */
 655			mmu_context_bmap[0] = 3;
 656			mmu_context_bmap[1] = 0;
 657			mmu_context_bmap[2] = 0;
 658			mmu_context_bmap[3] = 0;
 659			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
 660				mmu_context_bmap[i + 0] = 0;
 661				mmu_context_bmap[i + 1] = 0;
 662				mmu_context_bmap[i + 2] = 0;
 663				mmu_context_bmap[i + 3] = 0;
 664			}
 665			new_version = 1;
 666			goto out;
 667		}
 668	}
 669	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 670	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 671out:
 672	tlb_context_cache = new_ctx;
 673	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 674	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
 675
 676	if (unlikely(new_version))
 677		smp_new_mmu_context_version();
 678}
 679
 680static int numa_enabled = 1;
 681static int numa_debug;
 682
 683static int __init early_numa(char *p)
 684{
 685	if (!p)
 686		return 0;
 687
 688	if (strstr(p, "off"))
 689		numa_enabled = 0;
 690
 691	if (strstr(p, "debug"))
 692		numa_debug = 1;
 693
 694	return 0;
 695}
 696early_param("numa", early_numa);
 697
 698#define numadbg(f, a...) \
 699do {	if (numa_debug) \
 700		printk(KERN_INFO f, ## a); \
 701} while (0)
 702
 703static void __init find_ramdisk(unsigned long phys_base)
 704{
 705#ifdef CONFIG_BLK_DEV_INITRD
 706	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 707		unsigned long ramdisk_image;
 708
 709		/* Older versions of the bootloader only supported a
 710		 * 32-bit physical address for the ramdisk image
 711		 * location, stored at sparc_ramdisk_image.  Newer
 712		 * SILO versions set sparc_ramdisk_image to zero and
 713		 * provide a full 64-bit physical address at
 714		 * sparc_ramdisk_image64.
 715		 */
 716		ramdisk_image = sparc_ramdisk_image;
 717		if (!ramdisk_image)
 718			ramdisk_image = sparc_ramdisk_image64;
 719
 720		/* Another bootloader quirk.  The bootloader normalizes
 721		 * the physical address to KERNBASE, so we have to
 722		 * factor that back out and add in the lowest valid
 723		 * physical page address to get the true physical address.
 724		 */
 725		ramdisk_image -= KERNBASE;
 726		ramdisk_image += phys_base;
 727
 728		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 729			ramdisk_image, sparc_ramdisk_size);
 730
 731		initrd_start = ramdisk_image;
 732		initrd_end = ramdisk_image + sparc_ramdisk_size;
 733
 734		memblock_reserve(initrd_start, sparc_ramdisk_size);
 735
 736		initrd_start += PAGE_OFFSET;
 737		initrd_end += PAGE_OFFSET;
 738	}
 739#endif
 740}
 741
 742struct node_mem_mask {
 743	unsigned long mask;
 744	unsigned long val;
 745	unsigned long bootmem_paddr;
 746};
 747static struct node_mem_mask node_masks[MAX_NUMNODES];
 748static int num_node_masks;
 749
 
 
 750int numa_cpu_lookup_table[NR_CPUS];
 751cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 752
 753#ifdef CONFIG_NEED_MULTIPLE_NODES
 754
 755struct mdesc_mblock {
 756	u64	base;
 757	u64	size;
 758	u64	offset; /* RA-to-PA */
 759};
 760static struct mdesc_mblock *mblocks;
 761static int num_mblocks;
 
 
 762
 763static unsigned long ra_to_pa(unsigned long addr)
 764{
 765	int i;
 766
 767	for (i = 0; i < num_mblocks; i++) {
 768		struct mdesc_mblock *m = &mblocks[i];
 769
 770		if (addr >= m->base &&
 771		    addr < (m->base + m->size)) {
 772			addr += m->offset;
 773			break;
 774		}
 775	}
 776	return addr;
 777}
 778
 779static int find_node(unsigned long addr)
 780{
 
 
 
 781	int i;
 782
 783	addr = ra_to_pa(addr);
 784	for (i = 0; i < num_node_masks; i++) {
 785		struct node_mem_mask *p = &node_masks[i];
 786
 787		if ((addr & p->mask) == p->val)
 788			return i;
 789	}
 790	return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791}
 792
 793u64 memblock_nid_range(u64 start, u64 end, int *nid)
 794{
 795	*nid = find_node(start);
 796	start += PAGE_SIZE;
 797	while (start < end) {
 798		int n = find_node(start);
 799
 800		if (n != *nid)
 801			break;
 802		start += PAGE_SIZE;
 803	}
 804
 805	if (start > end)
 806		start = end;
 807
 808	return start;
 809}
 810#else
 811u64 memblock_nid_range(u64 start, u64 end, int *nid)
 812{
 813	*nid = 0;
 814	return end;
 815}
 816#endif
 817
 818/* This must be invoked after performing all of the necessary
 819 * add_active_range() calls for 'nid'.  We need to be able to get
 820 * correct data from get_pfn_range_for_nid().
 821 */
 822static void __init allocate_node_data(int nid)
 823{
 824	unsigned long paddr, num_pages, start_pfn, end_pfn;
 825	struct pglist_data *p;
 826
 827#ifdef CONFIG_NEED_MULTIPLE_NODES
 
 
 828	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
 829	if (!paddr) {
 830		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
 831		prom_halt();
 832	}
 833	NODE_DATA(nid) = __va(paddr);
 834	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 835
 836	NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
 837#endif
 838
 839	p = NODE_DATA(nid);
 840
 841	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 842	p->node_start_pfn = start_pfn;
 843	p->node_spanned_pages = end_pfn - start_pfn;
 844
 845	if (p->node_spanned_pages) {
 846		num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
 847
 848		paddr = memblock_alloc_try_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid);
 849		if (!paddr) {
 850			prom_printf("Cannot allocate bootmap for nid[%d]\n",
 851				  nid);
 852			prom_halt();
 853		}
 854		node_masks[nid].bootmem_paddr = paddr;
 855	}
 856}
 857
 858static void init_node_masks_nonnuma(void)
 859{
 
 860	int i;
 
 861
 862	numadbg("Initializing tables for non-numa.\n");
 863
 864	node_masks[0].mask = node_masks[0].val = 0;
 865	num_node_masks = 1;
 866
 
 867	for (i = 0; i < NR_CPUS; i++)
 868		numa_cpu_lookup_table[i] = 0;
 869
 870	cpumask_setall(&numa_cpumask_lookup_table[0]);
 
 871}
 872
 873#ifdef CONFIG_NEED_MULTIPLE_NODES
 874struct pglist_data *node_data[MAX_NUMNODES];
 875
 876EXPORT_SYMBOL(numa_cpu_lookup_table);
 877EXPORT_SYMBOL(numa_cpumask_lookup_table);
 878EXPORT_SYMBOL(node_data);
 879
 880struct mdesc_mlgroup {
 881	u64	node;
 882	u64	latency;
 883	u64	match;
 884	u64	mask;
 885};
 886static struct mdesc_mlgroup *mlgroups;
 887static int num_mlgroups;
 888
 889static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
 890				   u32 cfg_handle)
 891{
 892	u64 arc;
 893
 894	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
 895		u64 target = mdesc_arc_target(md, arc);
 896		const u64 *val;
 897
 898		val = mdesc_get_property(md, target,
 899					 "cfg-handle", NULL);
 900		if (val && *val == cfg_handle)
 901			return 0;
 902	}
 903	return -ENODEV;
 904}
 905
 906static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
 907				    u32 cfg_handle)
 908{
 909	u64 arc, candidate, best_latency = ~(u64)0;
 910
 911	candidate = MDESC_NODE_NULL;
 912	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 913		u64 target = mdesc_arc_target(md, arc);
 914		const char *name = mdesc_node_name(md, target);
 915		const u64 *val;
 916
 917		if (strcmp(name, "pio-latency-group"))
 918			continue;
 919
 920		val = mdesc_get_property(md, target, "latency", NULL);
 921		if (!val)
 922			continue;
 923
 924		if (*val < best_latency) {
 925			candidate = target;
 926			best_latency = *val;
 927		}
 928	}
 929
 930	if (candidate == MDESC_NODE_NULL)
 931		return -ENODEV;
 932
 933	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
 934}
 935
 936int of_node_to_nid(struct device_node *dp)
 937{
 938	const struct linux_prom64_registers *regs;
 939	struct mdesc_handle *md;
 940	u32 cfg_handle;
 941	int count, nid;
 942	u64 grp;
 943
 944	/* This is the right thing to do on currently supported
 945	 * SUN4U NUMA platforms as well, as the PCI controller does
 946	 * not sit behind any particular memory controller.
 947	 */
 948	if (!mlgroups)
 949		return -1;
 950
 951	regs = of_get_property(dp, "reg", NULL);
 952	if (!regs)
 953		return -1;
 954
 955	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
 956
 957	md = mdesc_grab();
 958
 959	count = 0;
 960	nid = -1;
 961	mdesc_for_each_node_by_name(md, grp, "group") {
 962		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
 963			nid = count;
 964			break;
 965		}
 966		count++;
 967	}
 968
 969	mdesc_release(md);
 970
 971	return nid;
 972}
 973
 974static void __init add_node_ranges(void)
 975{
 976	struct memblock_region *reg;
 977
 978	for_each_memblock(memory, reg) {
 979		unsigned long size = reg->size;
 980		unsigned long start, end;
 981
 982		start = reg->base;
 983		end = start + size;
 984		while (start < end) {
 985			unsigned long this_end;
 986			int nid;
 987
 988			this_end = memblock_nid_range(start, end, &nid);
 989
 990			numadbg("Adding active range nid[%d] "
 991				"start[%lx] end[%lx]\n",
 992				nid, start, this_end);
 993
 994			add_active_range(nid,
 995					 start >> PAGE_SHIFT,
 996					 this_end >> PAGE_SHIFT);
 997
 998			start = this_end;
 999		}
1000	}
1001}
1002
1003static int __init grab_mlgroups(struct mdesc_handle *md)
1004{
1005	unsigned long paddr;
1006	int count = 0;
1007	u64 node;
1008
1009	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1010		count++;
1011	if (!count)
1012		return -ENOENT;
1013
1014	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1015			  SMP_CACHE_BYTES);
1016	if (!paddr)
1017		return -ENOMEM;
1018
1019	mlgroups = __va(paddr);
1020	num_mlgroups = count;
1021
1022	count = 0;
1023	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1024		struct mdesc_mlgroup *m = &mlgroups[count++];
1025		const u64 *val;
1026
1027		m->node = node;
1028
1029		val = mdesc_get_property(md, node, "latency", NULL);
1030		m->latency = *val;
1031		val = mdesc_get_property(md, node, "address-match", NULL);
1032		m->match = *val;
1033		val = mdesc_get_property(md, node, "address-mask", NULL);
1034		m->mask = *val;
1035
1036		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1037			"match[%llx] mask[%llx]\n",
1038			count - 1, m->node, m->latency, m->match, m->mask);
1039	}
1040
1041	return 0;
1042}
1043
1044static int __init grab_mblocks(struct mdesc_handle *md)
1045{
1046	unsigned long paddr;
1047	int count = 0;
1048	u64 node;
1049
1050	mdesc_for_each_node_by_name(md, node, "mblock")
1051		count++;
1052	if (!count)
1053		return -ENOENT;
1054
1055	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1056			  SMP_CACHE_BYTES);
1057	if (!paddr)
1058		return -ENOMEM;
1059
1060	mblocks = __va(paddr);
1061	num_mblocks = count;
1062
1063	count = 0;
1064	mdesc_for_each_node_by_name(md, node, "mblock") {
1065		struct mdesc_mblock *m = &mblocks[count++];
1066		const u64 *val;
1067
1068		val = mdesc_get_property(md, node, "base", NULL);
1069		m->base = *val;
1070		val = mdesc_get_property(md, node, "size", NULL);
1071		m->size = *val;
1072		val = mdesc_get_property(md, node,
1073					 "address-congruence-offset", NULL);
1074		m->offset = *val;
 
 
 
 
 
 
 
1075
1076		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1077			count - 1, m->base, m->size, m->offset);
1078	}
1079
1080	return 0;
1081}
1082
1083static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1084					       u64 grp, cpumask_t *mask)
1085{
1086	u64 arc;
1087
1088	cpumask_clear(mask);
1089
1090	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1091		u64 target = mdesc_arc_target(md, arc);
1092		const char *name = mdesc_node_name(md, target);
1093		const u64 *id;
1094
1095		if (strcmp(name, "cpu"))
1096			continue;
1097		id = mdesc_get_property(md, target, "id", NULL);
1098		if (*id < nr_cpu_ids)
1099			cpumask_set_cpu(*id, mask);
1100	}
1101}
1102
1103static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1104{
1105	int i;
1106
1107	for (i = 0; i < num_mlgroups; i++) {
1108		struct mdesc_mlgroup *m = &mlgroups[i];
1109		if (m->node == node)
1110			return m;
1111	}
1112	return NULL;
1113}
1114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1115static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1116				      int index)
1117{
1118	struct mdesc_mlgroup *candidate = NULL;
1119	u64 arc, best_latency = ~(u64)0;
1120	struct node_mem_mask *n;
1121
1122	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1123		u64 target = mdesc_arc_target(md, arc);
1124		struct mdesc_mlgroup *m = find_mlgroup(target);
1125		if (!m)
1126			continue;
1127		if (m->latency < best_latency) {
1128			candidate = m;
1129			best_latency = m->latency;
1130		}
1131	}
1132	if (!candidate)
1133		return -ENOENT;
1134
1135	if (num_node_masks != index) {
1136		printk(KERN_ERR "Inconsistent NUMA state, "
1137		       "index[%d] != num_node_masks[%d]\n",
1138		       index, num_node_masks);
1139		return -EINVAL;
1140	}
1141
1142	n = &node_masks[num_node_masks++];
1143
1144	n->mask = candidate->mask;
1145	n->val = candidate->match;
1146
1147	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1148		index, n->mask, n->val, candidate->latency);
1149
1150	return 0;
1151}
1152
1153static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1154					 int index)
1155{
1156	cpumask_t mask;
1157	int cpu;
1158
1159	numa_parse_mdesc_group_cpus(md, grp, &mask);
1160
1161	for_each_cpu(cpu, &mask)
1162		numa_cpu_lookup_table[cpu] = index;
1163	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1164
1165	if (numa_debug) {
1166		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1167		for_each_cpu(cpu, &mask)
1168			printk("%d ", cpu);
1169		printk("]\n");
1170	}
1171
1172	return numa_attach_mlgroup(md, grp, index);
1173}
1174
1175static int __init numa_parse_mdesc(void)
1176{
1177	struct mdesc_handle *md = mdesc_grab();
1178	int i, err, count;
1179	u64 node;
1180
1181	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1182	if (node == MDESC_NODE_NULL) {
1183		mdesc_release(md);
1184		return -ENOENT;
1185	}
1186
1187	err = grab_mblocks(md);
1188	if (err < 0)
1189		goto out;
1190
1191	err = grab_mlgroups(md);
1192	if (err < 0)
1193		goto out;
1194
1195	count = 0;
1196	mdesc_for_each_node_by_name(md, node, "group") {
1197		err = numa_parse_mdesc_group(md, node, count);
1198		if (err < 0)
1199			break;
1200		count++;
1201	}
1202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203	add_node_ranges();
1204
1205	for (i = 0; i < num_node_masks; i++) {
1206		allocate_node_data(i);
1207		node_set_online(i);
1208	}
1209
1210	err = 0;
1211out:
1212	mdesc_release(md);
1213	return err;
1214}
1215
1216static int __init numa_parse_jbus(void)
1217{
1218	unsigned long cpu, index;
1219
1220	/* NUMA node id is encoded in bits 36 and higher, and there is
1221	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1222	 */
1223	index = 0;
1224	for_each_present_cpu(cpu) {
1225		numa_cpu_lookup_table[cpu] = index;
1226		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1227		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1228		node_masks[index].val = cpu << 36UL;
1229
1230		index++;
1231	}
1232	num_node_masks = index;
1233
1234	add_node_ranges();
1235
1236	for (index = 0; index < num_node_masks; index++) {
1237		allocate_node_data(index);
1238		node_set_online(index);
1239	}
1240
1241	return 0;
1242}
1243
1244static int __init numa_parse_sun4u(void)
1245{
1246	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1247		unsigned long ver;
1248
1249		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1250		if ((ver >> 32UL) == __JALAPENO_ID ||
1251		    (ver >> 32UL) == __SERRANO_ID)
1252			return numa_parse_jbus();
1253	}
1254	return -1;
1255}
1256
1257static int __init bootmem_init_numa(void)
1258{
 
1259	int err = -1;
1260
1261	numadbg("bootmem_init_numa()\n");
1262
 
 
 
 
 
 
 
1263	if (numa_enabled) {
1264		if (tlb_type == hypervisor)
1265			err = numa_parse_mdesc();
1266		else
1267			err = numa_parse_sun4u();
1268	}
1269	return err;
1270}
1271
1272#else
1273
1274static int bootmem_init_numa(void)
1275{
1276	return -1;
1277}
1278
1279#endif
1280
1281static void __init bootmem_init_nonnuma(void)
1282{
1283	unsigned long top_of_ram = memblock_end_of_DRAM();
1284	unsigned long total_ram = memblock_phys_mem_size();
1285	struct memblock_region *reg;
1286
1287	numadbg("bootmem_init_nonnuma()\n");
1288
1289	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1290	       top_of_ram, total_ram);
1291	printk(KERN_INFO "Memory hole size: %ldMB\n",
1292	       (top_of_ram - total_ram) >> 20);
1293
1294	init_node_masks_nonnuma();
 
 
 
 
1295
1296	for_each_memblock(memory, reg) {
1297		unsigned long start_pfn, end_pfn;
 
1298
1299		if (!reg->size)
1300			continue;
 
1301
1302		start_pfn = memblock_region_memory_base_pfn(reg);
1303		end_pfn = memblock_region_memory_end_pfn(reg);
1304		add_active_range(0, start_pfn, end_pfn);
1305	}
1306
1307	allocate_node_data(0);
 
1308
1309	node_set_online(0);
 
 
 
 
 
1310}
1311
1312static void __init reserve_range_in_node(int nid, unsigned long start,
1313					 unsigned long end)
 
 
 
 
1314{
1315	numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1316		nid, start, end);
1317	while (start < end) {
1318		unsigned long this_end;
1319		int n;
1320
1321		this_end = memblock_nid_range(start, end, &n);
1322		if (n == nid) {
1323			numadbg("      MATCH reserving range [%lx:%lx]\n",
1324				start, this_end);
1325			reserve_bootmem_node(NODE_DATA(nid), start,
1326					     (this_end - start), BOOTMEM_DEFAULT);
1327		} else
1328			numadbg("      NO MATCH, advancing start to %lx\n",
1329				this_end);
1330
1331		start = this_end;
 
 
 
1332	}
1333}
1334
1335static void __init trim_reserved_in_node(int nid)
1336{
1337	struct memblock_region *reg;
1338
1339	numadbg("  trim_reserved_in_node(%d)\n", nid);
 
 
1340
1341	for_each_memblock(reserved, reg)
1342		reserve_range_in_node(nid, reg->base, reg->base + reg->size);
1343}
1344
1345static void __init bootmem_init_one_node(int nid)
1346{
1347	struct pglist_data *p;
 
 
 
1348
1349	numadbg("bootmem_init_one_node(%d)\n", nid);
 
1350
1351	p = NODE_DATA(nid);
 
 
1352
1353	if (p->node_spanned_pages) {
1354		unsigned long paddr = node_masks[nid].bootmem_paddr;
1355		unsigned long end_pfn;
1356
1357		end_pfn = p->node_start_pfn + p->node_spanned_pages;
 
 
 
 
 
1358
1359		numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1360			nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
 
 
 
1361
1362		init_bootmem_node(p, paddr >> PAGE_SHIFT,
1363				  p->node_start_pfn, end_pfn);
1364
1365		numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1366			nid, end_pfn);
1367		free_bootmem_with_active_regions(nid, end_pfn);
1368
1369		trim_reserved_in_node(nid);
 
 
1370
1371		numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1372			nid);
1373		sparse_memory_present_with_active_regions(nid);
1374	}
 
1375}
1376
1377static unsigned long __init bootmem_init(unsigned long phys_base)
 
1378{
1379	unsigned long end_pfn;
1380	int nid;
1381
1382	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1383	max_pfn = max_low_pfn = end_pfn;
1384	min_low_pfn = (phys_base >> PAGE_SHIFT);
1385
1386	if (bootmem_init_numa() < 0)
1387		bootmem_init_nonnuma();
 
 
 
 
 
1388
1389	/* XXX cpu notifier XXX */
 
 
 
 
1390
1391	for_each_online_node(nid)
1392		bootmem_init_one_node(nid);
1393
1394	sparse_init();
 
 
 
 
 
 
 
 
 
1395
1396	return end_pfn;
 
 
 
 
 
 
 
 
1397}
1398
1399static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1400static int pall_ents __initdata;
 
 
 
 
 
 
1401
1402#ifdef CONFIG_DEBUG_PAGEALLOC
1403static unsigned long __ref kernel_map_range(unsigned long pstart,
1404					    unsigned long pend, pgprot_t prot)
 
1405{
1406	unsigned long vstart = PAGE_OFFSET + pstart;
1407	unsigned long vend = PAGE_OFFSET + pend;
1408	unsigned long alloc_bytes = 0UL;
1409
1410	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1411		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1412			    vstart, vend);
1413		prom_halt();
1414	}
1415
1416	while (vstart < vend) {
1417		unsigned long this_end, paddr = __pa(vstart);
1418		pgd_t *pgd = pgd_offset_k(vstart);
1419		pud_t *pud;
1420		pmd_t *pmd;
1421		pte_t *pte;
1422
 
 
 
 
 
 
 
1423		pud = pud_offset(pgd, vstart);
1424		if (pud_none(*pud)) {
1425			pmd_t *new;
1426
 
 
 
 
1427			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1428			alloc_bytes += PAGE_SIZE;
1429			pud_populate(&init_mm, pud, new);
1430		}
1431
1432		pmd = pmd_offset(pud, vstart);
1433		if (!pmd_present(*pmd)) {
1434			pte_t *new;
1435
 
 
 
 
1436			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1437			alloc_bytes += PAGE_SIZE;
1438			pmd_populate_kernel(&init_mm, pmd, new);
1439		}
1440
1441		pte = pte_offset_kernel(pmd, vstart);
1442		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1443		if (this_end > vend)
1444			this_end = vend;
1445
1446		while (vstart < this_end) {
1447			pte_val(*pte) = (paddr | pgprot_val(prot));
1448
1449			vstart += PAGE_SIZE;
1450			paddr += PAGE_SIZE;
1451			pte++;
1452		}
1453	}
1454
1455	return alloc_bytes;
1456}
1457
1458extern unsigned int kvmap_linear_patch[1];
1459#endif /* CONFIG_DEBUG_PAGEALLOC */
1460
1461static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1462{
1463	const unsigned long shift_256MB = 28;
1464	const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1465	const unsigned long size_256MB = (1UL << shift_256MB);
1466
1467	while (start < end) {
1468		long remains;
1469
1470		remains = end - start;
1471		if (remains < size_256MB)
1472			break;
1473
1474		if (start & mask_256MB) {
1475			start = (start + size_256MB) & ~mask_256MB;
1476			continue;
1477		}
1478
1479		while (remains >= size_256MB) {
1480			unsigned long index = start >> shift_256MB;
1481
1482			__set_bit(index, kpte_linear_bitmap);
 
1483
1484			start += size_256MB;
1485			remains -= size_256MB;
1486		}
1487	}
1488}
1489
1490static void __init init_kpte_bitmap(void)
1491{
1492	unsigned long i;
1493
1494	for (i = 0; i < pall_ents; i++) {
1495		unsigned long phys_start, phys_end;
1496
1497		phys_start = pall[i].phys_addr;
1498		phys_end = phys_start + pall[i].reg_size;
1499
1500		mark_kpte_bitmap(phys_start, phys_end);
1501	}
 
1502}
1503
 
 
1504static void __init kernel_physical_mapping_init(void)
1505{
1506#ifdef CONFIG_DEBUG_PAGEALLOC
1507	unsigned long i, mem_alloced = 0UL;
 
1508
 
 
 
1509	for (i = 0; i < pall_ents; i++) {
1510		unsigned long phys_start, phys_end;
1511
1512		phys_start = pall[i].phys_addr;
1513		phys_end = phys_start + pall[i].reg_size;
1514
1515		mem_alloced += kernel_map_range(phys_start, phys_end,
1516						PAGE_KERNEL);
1517	}
1518
1519	printk("Allocated %ld bytes for kernel page tables.\n",
1520	       mem_alloced);
1521
1522	kvmap_linear_patch[0] = 0x01000000; /* nop */
1523	flushi(&kvmap_linear_patch[0]);
1524
 
 
1525	__flush_tlb_all();
1526#endif
1527}
1528
1529#ifdef CONFIG_DEBUG_PAGEALLOC
1530void kernel_map_pages(struct page *page, int numpages, int enable)
1531{
1532	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1533	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1534
1535	kernel_map_range(phys_start, phys_end,
1536			 (enable ? PAGE_KERNEL : __pgprot(0)));
1537
1538	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1539			       PAGE_OFFSET + phys_end);
1540
1541	/* we should perform an IPI and flush all tlbs,
1542	 * but that can deadlock->flush only current cpu.
1543	 */
1544	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1545				 PAGE_OFFSET + phys_end);
1546}
1547#endif
1548
1549unsigned long __init find_ecache_flush_span(unsigned long size)
1550{
1551	int i;
1552
1553	for (i = 0; i < pavail_ents; i++) {
1554		if (pavail[i].reg_size >= size)
1555			return pavail[i].phys_addr;
1556	}
1557
1558	return ~0UL;
1559}
1560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1561static void __init tsb_phys_patch(void)
1562{
1563	struct tsb_ldquad_phys_patch_entry *pquad;
1564	struct tsb_phys_patch_entry *p;
1565
1566	pquad = &__tsb_ldquad_phys_patch;
1567	while (pquad < &__tsb_ldquad_phys_patch_end) {
1568		unsigned long addr = pquad->addr;
1569
1570		if (tlb_type == hypervisor)
1571			*(unsigned int *) addr = pquad->sun4v_insn;
1572		else
1573			*(unsigned int *) addr = pquad->sun4u_insn;
1574		wmb();
1575		__asm__ __volatile__("flush	%0"
1576				     : /* no outputs */
1577				     : "r" (addr));
1578
1579		pquad++;
1580	}
1581
1582	p = &__tsb_phys_patch;
1583	while (p < &__tsb_phys_patch_end) {
1584		unsigned long addr = p->addr;
1585
1586		*(unsigned int *) addr = p->insn;
1587		wmb();
1588		__asm__ __volatile__("flush	%0"
1589				     : /* no outputs */
1590				     : "r" (addr));
1591
1592		p++;
1593	}
1594}
1595
1596/* Don't mark as init, we give this to the Hypervisor.  */
1597#ifndef CONFIG_DEBUG_PAGEALLOC
1598#define NUM_KTSB_DESCR	2
1599#else
1600#define NUM_KTSB_DESCR	1
1601#endif
1602static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1603extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
 
 
 
 
 
 
 
 
 
 
 
 
1604
1605static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1606{
1607	pa >>= KTSB_PHYS_SHIFT;
 
 
 
1608
1609	while (start < end) {
1610		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1611
1612		ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1613		__asm__ __volatile__("flush	%0" : : "r" (ia));
1614
1615		ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1616		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1617
 
 
 
 
 
 
1618		start++;
1619	}
1620}
1621
1622static void ktsb_phys_patch(void)
1623{
1624	extern unsigned int __swapper_tsb_phys_patch;
1625	extern unsigned int __swapper_tsb_phys_patch_end;
1626	unsigned long ktsb_pa;
1627
1628	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1629	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1630			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1631#ifndef CONFIG_DEBUG_PAGEALLOC
1632	{
1633	extern unsigned int __swapper_4m_tsb_phys_patch;
1634	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1635	ktsb_pa = (kern_base +
1636		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1637	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1638			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1639	}
1640#endif
1641}
1642
1643static void __init sun4v_ktsb_init(void)
1644{
1645	unsigned long ktsb_pa;
1646
1647	/* First KTSB for PAGE_SIZE mappings.  */
1648	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1649
1650	switch (PAGE_SIZE) {
1651	case 8 * 1024:
1652	default:
1653		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1654		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1655		break;
1656
1657	case 64 * 1024:
1658		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1659		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1660		break;
1661
1662	case 512 * 1024:
1663		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1664		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1665		break;
1666
1667	case 4 * 1024 * 1024:
1668		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1669		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1670		break;
1671	}
1672
1673	ktsb_descr[0].assoc = 1;
1674	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1675	ktsb_descr[0].ctx_idx = 0;
1676	ktsb_descr[0].tsb_base = ktsb_pa;
1677	ktsb_descr[0].resv = 0;
1678
1679#ifndef CONFIG_DEBUG_PAGEALLOC
1680	/* Second KTSB for 4MB/256MB mappings.  */
1681	ktsb_pa = (kern_base +
1682		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1683
1684	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1685	ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1686				   HV_PGSZ_MASK_256MB);
 
 
 
1687	ktsb_descr[1].assoc = 1;
1688	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1689	ktsb_descr[1].ctx_idx = 0;
1690	ktsb_descr[1].tsb_base = ktsb_pa;
1691	ktsb_descr[1].resv = 0;
1692#endif
1693}
1694
1695void __cpuinit sun4v_ktsb_register(void)
1696{
1697	unsigned long pa, ret;
1698
1699	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1700
1701	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1702	if (ret != 0) {
1703		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1704			    "errors with %lx\n", pa, ret);
1705		prom_halt();
1706	}
1707}
1708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709/* paging_init() sets up the page tables */
1710
1711static unsigned long last_valid_pfn;
1712pgd_t swapper_pg_dir[2048];
1713
1714static void sun4u_pgprot_init(void);
1715static void sun4v_pgprot_init(void);
1716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1717void __init paging_init(void)
1718{
1719	unsigned long end_pfn, shift, phys_base;
1720	unsigned long real_end, i;
1721
 
 
1722	/* These build time checkes make sure that the dcache_dirty_cpu()
1723	 * page->flags usage will work.
1724	 *
1725	 * When a page gets marked as dcache-dirty, we store the
1726	 * cpu number starting at bit 32 in the page->flags.  Also,
1727	 * functions like clear_dcache_dirty_cpu use the cpu mask
1728	 * in 13-bit signed-immediate instruction fields.
1729	 */
1730
1731	/*
1732	 * Page flags must not reach into upper 32 bits that are used
1733	 * for the cpu number
1734	 */
1735	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1736
1737	/*
1738	 * The bit fields placed in the high range must not reach below
1739	 * the 32 bit boundary. Otherwise we cannot place the cpu field
1740	 * at the 32 bit boundary.
1741	 */
1742	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1743		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1744
1745	BUILD_BUG_ON(NR_CPUS > 4096);
1746
1747	kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1748	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1749
1750	/* Invalidate both kernel TSBs.  */
1751	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1752#ifndef CONFIG_DEBUG_PAGEALLOC
1753	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1754#endif
1755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756	if (tlb_type == hypervisor)
1757		sun4v_pgprot_init();
1758	else
1759		sun4u_pgprot_init();
1760
1761	if (tlb_type == cheetah_plus ||
1762	    tlb_type == hypervisor) {
1763		tsb_phys_patch();
1764		ktsb_phys_patch();
1765	}
1766
1767	if (tlb_type == hypervisor) {
1768		sun4v_patch_tlb_handlers();
1769		sun4v_ktsb_init();
1770	}
1771
1772	memblock_init();
1773
1774	/* Find available physical memory...
1775	 *
1776	 * Read it twice in order to work around a bug in openfirmware.
1777	 * The call to grab this table itself can cause openfirmware to
1778	 * allocate memory, which in turn can take away some space from
1779	 * the list of available memory.  Reading it twice makes sure
1780	 * we really do get the final value.
1781	 */
1782	read_obp_translations();
1783	read_obp_memory("reg", &pall[0], &pall_ents);
1784	read_obp_memory("available", &pavail[0], &pavail_ents);
1785	read_obp_memory("available", &pavail[0], &pavail_ents);
1786
1787	phys_base = 0xffffffffffffffffUL;
1788	for (i = 0; i < pavail_ents; i++) {
1789		phys_base = min(phys_base, pavail[i].phys_addr);
1790		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1791	}
1792
1793	memblock_reserve(kern_base, kern_size);
1794
1795	find_ramdisk(phys_base);
1796
1797	memblock_enforce_memory_limit(cmdline_memory_size);
 
1798
1799	memblock_analyze();
1800	memblock_dump_all();
1801
1802	set_bit(0, mmu_context_bmap);
1803
1804	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1805
1806	real_end = (unsigned long)_end;
1807	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1808	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1809	       num_kernel_image_mappings);
1810
1811	/* Set kernel pgd to upper alias so physical page computations
1812	 * work.
1813	 */
1814	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1815	
1816	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1817
1818	/* Now can init the kernel/bad page tables. */
1819	pud_set(pud_offset(&swapper_pg_dir[0], 0),
1820		swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1821	
1822	inherit_prom_mappings();
1823	
1824	init_kpte_bitmap();
1825
1826	/* Ok, we can use our TLB miss and window trap handlers safely.  */
1827	setup_tba();
1828
1829	__flush_tlb_all();
1830
1831	if (tlb_type == hypervisor)
1832		sun4v_ktsb_register();
1833
1834	prom_build_devicetree();
1835	of_populate_present_mask();
1836#ifndef CONFIG_SMP
1837	of_fill_in_cpu_data();
1838#endif
1839
1840	if (tlb_type == hypervisor) {
1841		sun4v_mdesc_init();
1842		mdesc_populate_present_mask(cpu_all_mask);
1843#ifndef CONFIG_SMP
1844		mdesc_fill_in_cpu_data(cpu_all_mask);
1845#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1846	}
1847
1848	/* Once the OF device tree and MDESC have been setup, we know
1849	 * the list of possible cpus.  Therefore we can allocate the
1850	 * IRQ stacks.
1851	 */
1852	for_each_possible_cpu(i) {
1853		/* XXX Use node local allocations... XXX */
1854		softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1855		hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1856	}
1857
1858	/* Setup bootmem... */
1859	last_valid_pfn = end_pfn = bootmem_init(phys_base);
1860
1861#ifndef CONFIG_NEED_MULTIPLE_NODES
1862	max_mapnr = last_valid_pfn;
1863#endif
1864	kernel_physical_mapping_init();
1865
1866	{
1867		unsigned long max_zone_pfns[MAX_NR_ZONES];
1868
1869		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1870
1871		max_zone_pfns[ZONE_NORMAL] = end_pfn;
1872
1873		free_area_init_nodes(max_zone_pfns);
1874	}
1875
1876	printk("Booting Linux...\n");
1877}
1878
1879int __devinit page_in_phys_avail(unsigned long paddr)
1880{
1881	int i;
1882
1883	paddr &= PAGE_MASK;
1884
1885	for (i = 0; i < pavail_ents; i++) {
1886		unsigned long start, end;
1887
1888		start = pavail[i].phys_addr;
1889		end = start + pavail[i].reg_size;
1890
1891		if (paddr >= start && paddr < end)
1892			return 1;
1893	}
1894	if (paddr >= kern_base && paddr < (kern_base + kern_size))
1895		return 1;
1896#ifdef CONFIG_BLK_DEV_INITRD
1897	if (paddr >= __pa(initrd_start) &&
1898	    paddr < __pa(PAGE_ALIGN(initrd_end)))
1899		return 1;
1900#endif
1901
1902	return 0;
1903}
1904
1905static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1906static int pavail_rescan_ents __initdata;
1907
1908/* Certain OBP calls, such as fetching "available" properties, can
1909 * claim physical memory.  So, along with initializing the valid
1910 * address bitmap, what we do here is refetch the physical available
1911 * memory list again, and make sure it provides at least as much
1912 * memory as 'pavail' does.
1913 */
1914static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1915{
 
1916	int i;
1917
1918	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1919
1920	for (i = 0; i < pavail_ents; i++) {
1921		unsigned long old_start, old_end;
1922
1923		old_start = pavail[i].phys_addr;
1924		old_end = old_start + pavail[i].reg_size;
1925		while (old_start < old_end) {
1926			int n;
1927
1928			for (n = 0; n < pavail_rescan_ents; n++) {
1929				unsigned long new_start, new_end;
1930
1931				new_start = pavail_rescan[n].phys_addr;
1932				new_end = new_start +
1933					pavail_rescan[n].reg_size;
1934
1935				if (new_start <= old_start &&
1936				    new_end >= (old_start + PAGE_SIZE)) {
1937					set_bit(old_start >> 22, bitmap);
1938					goto do_next_page;
1939				}
1940			}
1941
1942			prom_printf("mem_init: Lost memory in pavail\n");
1943			prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1944				    pavail[i].phys_addr,
1945				    pavail[i].reg_size);
1946			prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1947				    pavail_rescan[i].phys_addr,
1948				    pavail_rescan[i].reg_size);
1949			prom_printf("mem_init: Cannot continue, aborting.\n");
1950			prom_halt();
1951
1952		do_next_page:
1953			old_start += PAGE_SIZE;
1954		}
1955	}
1956}
1957
1958static void __init patch_tlb_miss_handler_bitmap(void)
1959{
1960	extern unsigned int valid_addr_bitmap_insn[];
1961	extern unsigned int valid_addr_bitmap_patch[];
1962
1963	valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1964	mb();
1965	valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1966	flushi(&valid_addr_bitmap_insn[0]);
1967}
1968
1969void __init mem_init(void)
1970{
1971	unsigned long codepages, datapages, initpages;
1972	unsigned long addr, last;
1973
1974	addr = PAGE_OFFSET + kern_base;
1975	last = PAGE_ALIGN(kern_size) + addr;
1976	while (addr < last) {
1977		set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1978		addr += PAGE_SIZE;
1979	}
1980
1981	setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1982	patch_tlb_miss_handler_bitmap();
1983
1984	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1985
1986#ifdef CONFIG_NEED_MULTIPLE_NODES
1987	{
1988		int i;
1989		for_each_online_node(i) {
1990			if (NODE_DATA(i)->node_spanned_pages != 0) {
1991				totalram_pages +=
1992					free_all_bootmem_node(NODE_DATA(i));
1993			}
1994		}
1995	}
1996#else
1997	totalram_pages = free_all_bootmem();
1998#endif
1999
2000	/* We subtract one to account for the mem_map_zero page
2001	 * allocated below.
2002	 */
2003	totalram_pages -= 1;
2004	num_physpages = totalram_pages;
2005
2006	/*
2007	 * Set up the zero page, mark it reserved, so that page count
2008	 * is not manipulated when freeing the page from user ptes.
2009	 */
2010	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2011	if (mem_map_zero == NULL) {
2012		prom_printf("paging_init: Cannot alloc zero page.\n");
2013		prom_halt();
2014	}
2015	SetPageReserved(mem_map_zero);
2016
2017	codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2018	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2019	datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2020	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2021	initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2022	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2023
2024	printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2025	       nr_free_pages() << (PAGE_SHIFT-10),
2026	       codepages << (PAGE_SHIFT-10),
2027	       datapages << (PAGE_SHIFT-10), 
2028	       initpages << (PAGE_SHIFT-10), 
2029	       PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2030
2031	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2032		cheetah_ecache_flush_init();
2033}
2034
2035void free_initmem(void)
2036{
2037	unsigned long addr, initend;
2038	int do_free = 1;
2039
2040	/* If the physical memory maps were trimmed by kernel command
2041	 * line options, don't even try freeing this initmem stuff up.
2042	 * The kernel image could have been in the trimmed out region
2043	 * and if so the freeing below will free invalid page structs.
2044	 */
2045	if (cmdline_memory_size)
2046		do_free = 0;
2047
2048	/*
2049	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2050	 */
2051	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2052	initend = (unsigned long)(__init_end) & PAGE_MASK;
2053	for (; addr < initend; addr += PAGE_SIZE) {
2054		unsigned long page;
2055		struct page *p;
2056
2057		page = (addr +
2058			((unsigned long) __va(kern_base)) -
2059			((unsigned long) KERNBASE));
2060		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2061
2062		if (do_free) {
2063			p = virt_to_page(page);
2064
2065			ClearPageReserved(p);
2066			init_page_count(p);
2067			__free_page(p);
2068			num_physpages++;
2069			totalram_pages++;
2070		}
2071	}
2072}
2073
2074#ifdef CONFIG_BLK_DEV_INITRD
2075void free_initrd_mem(unsigned long start, unsigned long end)
2076{
2077	if (start < end)
2078		printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2079	for (; start < end; start += PAGE_SIZE) {
2080		struct page *p = virt_to_page(start);
2081
2082		ClearPageReserved(p);
2083		init_page_count(p);
2084		__free_page(p);
2085		num_physpages++;
2086		totalram_pages++;
2087	}
2088}
2089#endif
2090
2091#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2092#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2093#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2094#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2095#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2096#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2097
2098pgprot_t PAGE_KERNEL __read_mostly;
2099EXPORT_SYMBOL(PAGE_KERNEL);
2100
2101pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2102pgprot_t PAGE_COPY __read_mostly;
2103
2104pgprot_t PAGE_SHARED __read_mostly;
2105EXPORT_SYMBOL(PAGE_SHARED);
2106
2107unsigned long pg_iobits __read_mostly;
2108
2109unsigned long _PAGE_IE __read_mostly;
2110EXPORT_SYMBOL(_PAGE_IE);
2111
2112unsigned long _PAGE_E __read_mostly;
2113EXPORT_SYMBOL(_PAGE_E);
2114
2115unsigned long _PAGE_CACHE __read_mostly;
2116EXPORT_SYMBOL(_PAGE_CACHE);
2117
2118#ifdef CONFIG_SPARSEMEM_VMEMMAP
2119unsigned long vmemmap_table[VMEMMAP_SIZE];
2120
2121int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2122{
2123	unsigned long vstart = (unsigned long) start;
2124	unsigned long vend = (unsigned long) (start + nr);
2125	unsigned long phys_start = (vstart - VMEMMAP_BASE);
2126	unsigned long phys_end = (vend - VMEMMAP_BASE);
2127	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2128	unsigned long end = VMEMMAP_ALIGN(phys_end);
2129	unsigned long pte_base;
2130
2131	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2132		    _PAGE_CP_4U | _PAGE_CV_4U |
2133		    _PAGE_P_4U | _PAGE_W_4U);
2134	if (tlb_type == hypervisor)
2135		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2136			    _PAGE_CP_4V | _PAGE_CV_4V |
2137			    _PAGE_P_4V | _PAGE_W_4V);
2138
2139	for (; addr < end; addr += VMEMMAP_CHUNK) {
2140		unsigned long *vmem_pp =
2141			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2142		void *block;
2143
2144		if (!(*vmem_pp & _PAGE_VALID)) {
2145			block = vmemmap_alloc_block(1UL << 22, node);
2146			if (!block)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147				return -ENOMEM;
 
 
 
 
2148
2149			*vmem_pp = pte_base | __pa(block);
 
 
2150
2151			printk(KERN_INFO "[%p-%p] page_structs=%lu "
2152			       "node=%d entry=%lu/%lu\n", start, block, nr,
2153			       node,
2154			       addr >> VMEMMAP_CHUNK_SHIFT,
2155			       VMEMMAP_SIZE);
2156		}
2157	}
 
2158	return 0;
2159}
 
 
 
 
2160#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2161
2162static void prot_init_common(unsigned long page_none,
2163			     unsigned long page_shared,
2164			     unsigned long page_copy,
2165			     unsigned long page_readonly,
2166			     unsigned long page_exec_bit)
2167{
2168	PAGE_COPY = __pgprot(page_copy);
2169	PAGE_SHARED = __pgprot(page_shared);
2170
2171	protection_map[0x0] = __pgprot(page_none);
2172	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2173	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2174	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2175	protection_map[0x4] = __pgprot(page_readonly);
2176	protection_map[0x5] = __pgprot(page_readonly);
2177	protection_map[0x6] = __pgprot(page_copy);
2178	protection_map[0x7] = __pgprot(page_copy);
2179	protection_map[0x8] = __pgprot(page_none);
2180	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2181	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2182	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2183	protection_map[0xc] = __pgprot(page_readonly);
2184	protection_map[0xd] = __pgprot(page_readonly);
2185	protection_map[0xe] = __pgprot(page_shared);
2186	protection_map[0xf] = __pgprot(page_shared);
2187}
2188
2189static void __init sun4u_pgprot_init(void)
2190{
2191	unsigned long page_none, page_shared, page_copy, page_readonly;
2192	unsigned long page_exec_bit;
 
2193
2194	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2195				_PAGE_CACHE_4U | _PAGE_P_4U |
2196				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2197				_PAGE_EXEC_4U);
2198	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2199				       _PAGE_CACHE_4U | _PAGE_P_4U |
2200				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2201				       _PAGE_EXEC_4U | _PAGE_L_4U);
2202
2203	_PAGE_IE = _PAGE_IE_4U;
2204	_PAGE_E = _PAGE_E_4U;
2205	_PAGE_CACHE = _PAGE_CACHE_4U;
2206
2207	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2208		     __ACCESS_BITS_4U | _PAGE_E_4U);
2209
2210#ifdef CONFIG_DEBUG_PAGEALLOC
2211	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2212		0xfffff80000000000UL;
2213#else
2214	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2215		0xfffff80000000000UL;
2216#endif
2217	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2218				   _PAGE_P_4U | _PAGE_W_4U);
2219
2220	/* XXX Should use 256MB on Panther. XXX */
2221	kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2222
2223	_PAGE_SZBITS = _PAGE_SZBITS_4U;
2224	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2225			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2226			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2227
2228
2229	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2230	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2231		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2232	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2233		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2234	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2235			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2236
2237	page_exec_bit = _PAGE_EXEC_4U;
2238
2239	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2240			 page_exec_bit);
2241}
2242
2243static void __init sun4v_pgprot_init(void)
2244{
2245	unsigned long page_none, page_shared, page_copy, page_readonly;
2246	unsigned long page_exec_bit;
 
2247
2248	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2249				_PAGE_CACHE_4V | _PAGE_P_4V |
2250				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2251				_PAGE_EXEC_4V);
2252	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2253
2254	_PAGE_IE = _PAGE_IE_4V;
2255	_PAGE_E = _PAGE_E_4V;
2256	_PAGE_CACHE = _PAGE_CACHE_4V;
2257
2258#ifdef CONFIG_DEBUG_PAGEALLOC
2259	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2260		0xfffff80000000000UL;
2261#else
2262	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2263		0xfffff80000000000UL;
2264#endif
2265	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2266				   _PAGE_P_4V | _PAGE_W_4V);
2267
2268#ifdef CONFIG_DEBUG_PAGEALLOC
2269	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2270		0xfffff80000000000UL;
2271#else
2272	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2273		0xfffff80000000000UL;
2274#endif
2275	kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2276				   _PAGE_P_4V | _PAGE_W_4V);
2277
2278	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2279		     __ACCESS_BITS_4V | _PAGE_E_4V);
2280
2281	_PAGE_SZBITS = _PAGE_SZBITS_4V;
2282	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2283			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2284			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2285			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2286
2287	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2288	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2289		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2290	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2291		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2292	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2293			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2294
2295	page_exec_bit = _PAGE_EXEC_4V;
2296
2297	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2298			 page_exec_bit);
2299}
2300
2301unsigned long pte_sz_bits(unsigned long sz)
2302{
2303	if (tlb_type == hypervisor) {
2304		switch (sz) {
2305		case 8 * 1024:
2306		default:
2307			return _PAGE_SZ8K_4V;
2308		case 64 * 1024:
2309			return _PAGE_SZ64K_4V;
2310		case 512 * 1024:
2311			return _PAGE_SZ512K_4V;
2312		case 4 * 1024 * 1024:
2313			return _PAGE_SZ4MB_4V;
2314		}
2315	} else {
2316		switch (sz) {
2317		case 8 * 1024:
2318		default:
2319			return _PAGE_SZ8K_4U;
2320		case 64 * 1024:
2321			return _PAGE_SZ64K_4U;
2322		case 512 * 1024:
2323			return _PAGE_SZ512K_4U;
2324		case 4 * 1024 * 1024:
2325			return _PAGE_SZ4MB_4U;
2326		}
2327	}
2328}
2329
2330pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2331{
2332	pte_t pte;
2333
2334	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2335	pte_val(pte) |= (((unsigned long)space) << 32);
2336	pte_val(pte) |= pte_sz_bits(page_size);
2337
2338	return pte;
2339}
2340
2341static unsigned long kern_large_tte(unsigned long paddr)
2342{
2343	unsigned long val;
2344
2345	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2346	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2347	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2348	if (tlb_type == hypervisor)
2349		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2350		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2351		       _PAGE_EXEC_4V | _PAGE_W_4V);
2352
2353	return val | paddr;
2354}
2355
2356/* If not locked, zap it. */
2357void __flush_tlb_all(void)
2358{
2359	unsigned long pstate;
2360	int i;
2361
2362	__asm__ __volatile__("flushw\n\t"
2363			     "rdpr	%%pstate, %0\n\t"
2364			     "wrpr	%0, %1, %%pstate"
2365			     : "=r" (pstate)
2366			     : "i" (PSTATE_IE));
2367	if (tlb_type == hypervisor) {
2368		sun4v_mmu_demap_all();
2369	} else if (tlb_type == spitfire) {
2370		for (i = 0; i < 64; i++) {
2371			/* Spitfire Errata #32 workaround */
2372			/* NOTE: Always runs on spitfire, so no
2373			 *       cheetah+ page size encodings.
2374			 */
2375			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2376					     "flush	%%g6"
2377					     : /* No outputs */
2378					     : "r" (0),
2379					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2380
2381			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2382				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2383						     "membar #Sync"
2384						     : /* no outputs */
2385						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2386				spitfire_put_dtlb_data(i, 0x0UL);
2387			}
2388
2389			/* Spitfire Errata #32 workaround */
2390			/* NOTE: Always runs on spitfire, so no
2391			 *       cheetah+ page size encodings.
2392			 */
2393			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2394					     "flush	%%g6"
2395					     : /* No outputs */
2396					     : "r" (0),
2397					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2398
2399			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2400				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2401						     "membar #Sync"
2402						     : /* no outputs */
2403						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2404				spitfire_put_itlb_data(i, 0x0UL);
2405			}
2406		}
2407	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2408		cheetah_flush_dtlb_all();
2409		cheetah_flush_itlb_all();
2410	}
2411	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2412			     : : "r" (pstate));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2413}
v4.10.11
   1/*
   2 *  arch/sparc64/mm/init.c
   3 *
   4 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   5 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   6 */
   7 
   8#include <linux/extable.h>
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/string.h>
  12#include <linux/init.h>
  13#include <linux/bootmem.h>
  14#include <linux/mm.h>
  15#include <linux/hugetlb.h>
  16#include <linux/initrd.h>
  17#include <linux/swap.h>
  18#include <linux/pagemap.h>
  19#include <linux/poison.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/kprobes.h>
  23#include <linux/cache.h>
  24#include <linux/sort.h>
  25#include <linux/ioport.h>
  26#include <linux/percpu.h>
  27#include <linux/memblock.h>
  28#include <linux/mmzone.h>
  29#include <linux/gfp.h>
  30
  31#include <asm/head.h>
 
  32#include <asm/page.h>
  33#include <asm/pgalloc.h>
  34#include <asm/pgtable.h>
  35#include <asm/oplib.h>
  36#include <asm/iommu.h>
  37#include <asm/io.h>
  38#include <linux/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/tlbflush.h>
  41#include <asm/dma.h>
  42#include <asm/starfire.h>
  43#include <asm/tlb.h>
  44#include <asm/spitfire.h>
  45#include <asm/sections.h>
  46#include <asm/tsb.h>
  47#include <asm/hypervisor.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/cpudata.h>
  51#include <asm/setup.h>
  52#include <asm/irq.h>
  53
  54#include "init_64.h"
  55
  56unsigned long kern_linear_pte_xor[4] __read_mostly;
  57static unsigned long page_cache4v_flag;
  58
  59/* A bitmap, two bits for every 256MB of physical memory.  These two
  60 * bits determine what page size we use for kernel linear
  61 * translations.  They form an index into kern_linear_pte_xor[].  The
  62 * value in the indexed slot is XOR'd with the TLB miss virtual
  63 * address to form the resulting TTE.  The mapping is:
  64 *
  65 *	0	==>	4MB
  66 *	1	==>	256MB
  67 *	2	==>	2GB
  68 *	3	==>	16GB
  69 *
  70 * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
  71 * support 2GB pages, and hopefully future cpus will support the 16GB
  72 * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
  73 * if these larger page sizes are not supported by the cpu.
  74 *
  75 * It would be nice to determine this from the machine description
  76 * 'cpu' properties, but we need to have this table setup before the
  77 * MDESC is initialized.
  78 */
 
  79
  80#ifndef CONFIG_DEBUG_PAGEALLOC
  81/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
  82 * Space is allocated for this right after the trap table in
  83 * arch/sparc64/kernel/head.S
  84 */
  85extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  86#endif
  87extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  88
  89static unsigned long cpu_pgsz_mask;
  90
  91#define MAX_BANKS	1024
  92
  93static struct linux_prom64_registers pavail[MAX_BANKS];
  94static int pavail_ents;
  95
  96u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
  97
  98static int cmp_p64(const void *a, const void *b)
  99{
 100	const struct linux_prom64_registers *x = a, *y = b;
 101
 102	if (x->phys_addr > y->phys_addr)
 103		return 1;
 104	if (x->phys_addr < y->phys_addr)
 105		return -1;
 106	return 0;
 107}
 108
 109static void __init read_obp_memory(const char *property,
 110				   struct linux_prom64_registers *regs,
 111				   int *num_ents)
 112{
 113	phandle node = prom_finddevice("/memory");
 114	int prop_size = prom_getproplen(node, property);
 115	int ents, ret, i;
 116
 117	ents = prop_size / sizeof(struct linux_prom64_registers);
 118	if (ents > MAX_BANKS) {
 119		prom_printf("The machine has more %s property entries than "
 120			    "this kernel can support (%d).\n",
 121			    property, MAX_BANKS);
 122		prom_halt();
 123	}
 124
 125	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 126	if (ret == -1) {
 127		prom_printf("Couldn't get %s property from /memory.\n",
 128				property);
 129		prom_halt();
 130	}
 131
 132	/* Sanitize what we got from the firmware, by page aligning
 133	 * everything.
 134	 */
 135	for (i = 0; i < ents; i++) {
 136		unsigned long base, size;
 137
 138		base = regs[i].phys_addr;
 139		size = regs[i].reg_size;
 140
 141		size &= PAGE_MASK;
 142		if (base & ~PAGE_MASK) {
 143			unsigned long new_base = PAGE_ALIGN(base);
 144
 145			size -= new_base - base;
 146			if ((long) size < 0L)
 147				size = 0UL;
 148			base = new_base;
 149		}
 150		if (size == 0UL) {
 151			/* If it is empty, simply get rid of it.
 152			 * This simplifies the logic of the other
 153			 * functions that process these arrays.
 154			 */
 155			memmove(&regs[i], &regs[i + 1],
 156				(ents - i - 1) * sizeof(regs[0]));
 157			i--;
 158			ents--;
 159			continue;
 160		}
 161		regs[i].phys_addr = base;
 162		regs[i].reg_size = size;
 163	}
 164
 165	*num_ents = ents;
 166
 167	sort(regs, ents, sizeof(struct linux_prom64_registers),
 168	     cmp_p64, NULL);
 169}
 170
 
 
 
 
 171/* Kernel physical address base and size in bytes.  */
 172unsigned long kern_base __read_mostly;
 173unsigned long kern_size __read_mostly;
 174
 175/* Initial ramdisk setup */
 176extern unsigned long sparc_ramdisk_image64;
 177extern unsigned int sparc_ramdisk_image;
 178extern unsigned int sparc_ramdisk_size;
 179
 180struct page *mem_map_zero __read_mostly;
 181EXPORT_SYMBOL(mem_map_zero);
 182
 183unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 184
 185unsigned long sparc64_kern_pri_context __read_mostly;
 186unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 187unsigned long sparc64_kern_sec_context __read_mostly;
 188
 189int num_kernel_image_mappings;
 190
 191#ifdef CONFIG_DEBUG_DCFLUSH
 192atomic_t dcpage_flushes = ATOMIC_INIT(0);
 193#ifdef CONFIG_SMP
 194atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 195#endif
 196#endif
 197
 198inline void flush_dcache_page_impl(struct page *page)
 199{
 200	BUG_ON(tlb_type == hypervisor);
 201#ifdef CONFIG_DEBUG_DCFLUSH
 202	atomic_inc(&dcpage_flushes);
 203#endif
 204
 205#ifdef DCACHE_ALIASING_POSSIBLE
 206	__flush_dcache_page(page_address(page),
 207			    ((tlb_type == spitfire) &&
 208			     page_mapping(page) != NULL));
 209#else
 210	if (page_mapping(page) != NULL &&
 211	    tlb_type == spitfire)
 212		__flush_icache_page(__pa(page_address(page)));
 213#endif
 214}
 215
 216#define PG_dcache_dirty		PG_arch_1
 217#define PG_dcache_cpu_shift	32UL
 218#define PG_dcache_cpu_mask	\
 219	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 220
 221#define dcache_dirty_cpu(page) \
 222	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 223
 224static inline void set_dcache_dirty(struct page *page, int this_cpu)
 225{
 226	unsigned long mask = this_cpu;
 227	unsigned long non_cpu_bits;
 228
 229	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 230	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 231
 232	__asm__ __volatile__("1:\n\t"
 233			     "ldx	[%2], %%g7\n\t"
 234			     "and	%%g7, %1, %%g1\n\t"
 235			     "or	%%g1, %0, %%g1\n\t"
 236			     "casx	[%2], %%g7, %%g1\n\t"
 237			     "cmp	%%g7, %%g1\n\t"
 238			     "bne,pn	%%xcc, 1b\n\t"
 239			     " nop"
 240			     : /* no outputs */
 241			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 242			     : "g1", "g7");
 243}
 244
 245static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 246{
 247	unsigned long mask = (1UL << PG_dcache_dirty);
 248
 249	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 250			     "1:\n\t"
 251			     "ldx	[%2], %%g7\n\t"
 252			     "srlx	%%g7, %4, %%g1\n\t"
 253			     "and	%%g1, %3, %%g1\n\t"
 254			     "cmp	%%g1, %0\n\t"
 255			     "bne,pn	%%icc, 2f\n\t"
 256			     " andn	%%g7, %1, %%g1\n\t"
 257			     "casx	[%2], %%g7, %%g1\n\t"
 258			     "cmp	%%g7, %%g1\n\t"
 259			     "bne,pn	%%xcc, 1b\n\t"
 260			     " nop\n"
 261			     "2:"
 262			     : /* no outputs */
 263			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 264			       "i" (PG_dcache_cpu_mask),
 265			       "i" (PG_dcache_cpu_shift)
 266			     : "g1", "g7");
 267}
 268
 269static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 270{
 271	unsigned long tsb_addr = (unsigned long) ent;
 272
 273	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 274		tsb_addr = __pa(tsb_addr);
 275
 276	__tsb_insert(tsb_addr, tag, pte);
 277}
 278
 279unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 
 280
 281static void flush_dcache(unsigned long pfn)
 282{
 283	struct page *page;
 284
 285	page = pfn_to_page(pfn);
 286	if (page) {
 287		unsigned long pg_flags;
 288
 289		pg_flags = page->flags;
 290		if (pg_flags & (1UL << PG_dcache_dirty)) {
 291			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 292				   PG_dcache_cpu_mask);
 293			int this_cpu = get_cpu();
 294
 295			/* This is just to optimize away some function calls
 296			 * in the SMP case.
 297			 */
 298			if (cpu == this_cpu)
 299				flush_dcache_page_impl(page);
 300			else
 301				smp_flush_dcache_page_impl(page, cpu);
 302
 303			clear_dcache_dirty_cpu(page, cpu);
 304
 305			put_cpu();
 306		}
 307	}
 308}
 309
 310/* mm->context.lock must be held */
 311static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
 312				    unsigned long tsb_hash_shift, unsigned long address,
 313				    unsigned long tte)
 314{
 315	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
 316	unsigned long tag;
 317
 318	if (unlikely(!tsb))
 319		return;
 320
 321	tsb += ((address >> tsb_hash_shift) &
 322		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 323	tag = (address >> 22UL);
 324	tsb_insert(tsb, tag, tte);
 325}
 326
 327void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 328{
 329	struct mm_struct *mm;
 330	unsigned long flags;
 
 
 331	pte_t pte = *ptep;
 332
 333	if (tlb_type != hypervisor) {
 334		unsigned long pfn = pte_pfn(pte);
 335
 336		if (pfn_valid(pfn))
 337			flush_dcache(pfn);
 338	}
 339
 340	mm = vma->vm_mm;
 341
 342	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
 343	if (!pte_accessible(mm, pte))
 344		return;
 345
 346	spin_lock_irqsave(&mm->context.lock, flags);
 347
 348#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 349	if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) &&
 350	    is_hugetlb_pte(pte)) {
 351		/* We are fabricating 8MB pages using 4MB real hw pages.  */
 352		pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
 353		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
 354					address, pte_val(pte));
 355	} else
 
 
 356#endif
 357		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
 358					address, pte_val(pte));
 
 
 
 
 359
 360	spin_unlock_irqrestore(&mm->context.lock, flags);
 361}
 362
 363void flush_dcache_page(struct page *page)
 364{
 365	struct address_space *mapping;
 366	int this_cpu;
 367
 368	if (tlb_type == hypervisor)
 369		return;
 370
 371	/* Do not bother with the expensive D-cache flush if it
 372	 * is merely the zero page.  The 'bigcore' testcase in GDB
 373	 * causes this case to run millions of times.
 374	 */
 375	if (page == ZERO_PAGE(0))
 376		return;
 377
 378	this_cpu = get_cpu();
 379
 380	mapping = page_mapping(page);
 381	if (mapping && !mapping_mapped(mapping)) {
 382		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 383		if (dirty) {
 384			int dirty_cpu = dcache_dirty_cpu(page);
 385
 386			if (dirty_cpu == this_cpu)
 387				goto out;
 388			smp_flush_dcache_page_impl(page, dirty_cpu);
 389		}
 390		set_dcache_dirty(page, this_cpu);
 391	} else {
 392		/* We could delay the flush for the !page_mapping
 393		 * case too.  But that case is for exec env/arg
 394		 * pages and those are %99 certainly going to get
 395		 * faulted into the tlb (and thus flushed) anyways.
 396		 */
 397		flush_dcache_page_impl(page);
 398	}
 399
 400out:
 401	put_cpu();
 402}
 403EXPORT_SYMBOL(flush_dcache_page);
 404
 405void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 406{
 407	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 408	if (tlb_type == spitfire) {
 409		unsigned long kaddr;
 410
 411		/* This code only runs on Spitfire cpus so this is
 412		 * why we can assume _PAGE_PADDR_4U.
 413		 */
 414		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 415			unsigned long paddr, mask = _PAGE_PADDR_4U;
 416
 417			if (kaddr >= PAGE_OFFSET)
 418				paddr = kaddr & mask;
 419			else {
 420				pgd_t *pgdp = pgd_offset_k(kaddr);
 421				pud_t *pudp = pud_offset(pgdp, kaddr);
 422				pmd_t *pmdp = pmd_offset(pudp, kaddr);
 423				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 424
 425				paddr = pte_val(*ptep) & mask;
 426			}
 427			__flush_icache_page(paddr);
 428		}
 429	}
 430}
 431EXPORT_SYMBOL(flush_icache_range);
 432
 433void mmu_info(struct seq_file *m)
 434{
 435	static const char *pgsz_strings[] = {
 436		"8K", "64K", "512K", "4MB", "32MB",
 437		"256MB", "2GB", "16GB",
 438	};
 439	int i, printed;
 440
 441	if (tlb_type == cheetah)
 442		seq_printf(m, "MMU Type\t: Cheetah\n");
 443	else if (tlb_type == cheetah_plus)
 444		seq_printf(m, "MMU Type\t: Cheetah+\n");
 445	else if (tlb_type == spitfire)
 446		seq_printf(m, "MMU Type\t: Spitfire\n");
 447	else if (tlb_type == hypervisor)
 448		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 449	else
 450		seq_printf(m, "MMU Type\t: ???\n");
 451
 452	seq_printf(m, "MMU PGSZs\t: ");
 453	printed = 0;
 454	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
 455		if (cpu_pgsz_mask & (1UL << i)) {
 456			seq_printf(m, "%s%s",
 457				   printed ? "," : "", pgsz_strings[i]);
 458			printed++;
 459		}
 460	}
 461	seq_putc(m, '\n');
 462
 463#ifdef CONFIG_DEBUG_DCFLUSH
 464	seq_printf(m, "DCPageFlushes\t: %d\n",
 465		   atomic_read(&dcpage_flushes));
 466#ifdef CONFIG_SMP
 467	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 468		   atomic_read(&dcpage_flushes_xcall));
 469#endif /* CONFIG_SMP */
 470#endif /* CONFIG_DEBUG_DCFLUSH */
 471}
 472
 473struct linux_prom_translation prom_trans[512] __read_mostly;
 474unsigned int prom_trans_ents __read_mostly;
 475
 476unsigned long kern_locked_tte_data;
 477
 478/* The obp translations are saved based on 8k pagesize, since obp can
 479 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 480 * HI_OBP_ADDRESS range are handled in ktlb.S.
 481 */
 482static inline int in_obp_range(unsigned long vaddr)
 483{
 484	return (vaddr >= LOW_OBP_ADDRESS &&
 485		vaddr < HI_OBP_ADDRESS);
 486}
 487
 488static int cmp_ptrans(const void *a, const void *b)
 489{
 490	const struct linux_prom_translation *x = a, *y = b;
 491
 492	if (x->virt > y->virt)
 493		return 1;
 494	if (x->virt < y->virt)
 495		return -1;
 496	return 0;
 497}
 498
 499/* Read OBP translations property into 'prom_trans[]'.  */
 500static void __init read_obp_translations(void)
 501{
 502	int n, node, ents, first, last, i;
 503
 504	node = prom_finddevice("/virtual-memory");
 505	n = prom_getproplen(node, "translations");
 506	if (unlikely(n == 0 || n == -1)) {
 507		prom_printf("prom_mappings: Couldn't get size.\n");
 508		prom_halt();
 509	}
 510	if (unlikely(n > sizeof(prom_trans))) {
 511		prom_printf("prom_mappings: Size %d is too big.\n", n);
 512		prom_halt();
 513	}
 514
 515	if ((n = prom_getproperty(node, "translations",
 516				  (char *)&prom_trans[0],
 517				  sizeof(prom_trans))) == -1) {
 518		prom_printf("prom_mappings: Couldn't get property.\n");
 519		prom_halt();
 520	}
 521
 522	n = n / sizeof(struct linux_prom_translation);
 523
 524	ents = n;
 525
 526	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 527	     cmp_ptrans, NULL);
 528
 529	/* Now kick out all the non-OBP entries.  */
 530	for (i = 0; i < ents; i++) {
 531		if (in_obp_range(prom_trans[i].virt))
 532			break;
 533	}
 534	first = i;
 535	for (; i < ents; i++) {
 536		if (!in_obp_range(prom_trans[i].virt))
 537			break;
 538	}
 539	last = i;
 540
 541	for (i = 0; i < (last - first); i++) {
 542		struct linux_prom_translation *src = &prom_trans[i + first];
 543		struct linux_prom_translation *dest = &prom_trans[i];
 544
 545		*dest = *src;
 546	}
 547	for (; i < ents; i++) {
 548		struct linux_prom_translation *dest = &prom_trans[i];
 549		dest->virt = dest->size = dest->data = 0x0UL;
 550	}
 551
 552	prom_trans_ents = last - first;
 553
 554	if (tlb_type == spitfire) {
 555		/* Clear diag TTE bits. */
 556		for (i = 0; i < prom_trans_ents; i++)
 557			prom_trans[i].data &= ~0x0003fe0000000000UL;
 558	}
 559
 560	/* Force execute bit on.  */
 561	for (i = 0; i < prom_trans_ents; i++)
 562		prom_trans[i].data |= (tlb_type == hypervisor ?
 563				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 564}
 565
 566static void __init hypervisor_tlb_lock(unsigned long vaddr,
 567				       unsigned long pte,
 568				       unsigned long mmu)
 569{
 570	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 571
 572	if (ret != 0) {
 573		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
 574			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 575		prom_halt();
 576	}
 577}
 578
 579static unsigned long kern_large_tte(unsigned long paddr);
 580
 581static void __init remap_kernel(void)
 582{
 583	unsigned long phys_page, tte_vaddr, tte_data;
 584	int i, tlb_ent = sparc64_highest_locked_tlbent();
 585
 586	tte_vaddr = (unsigned long) KERNBASE;
 587	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
 588	tte_data = kern_large_tte(phys_page);
 589
 590	kern_locked_tte_data = tte_data;
 591
 592	/* Now lock us into the TLBs via Hypervisor or OBP. */
 593	if (tlb_type == hypervisor) {
 594		for (i = 0; i < num_kernel_image_mappings; i++) {
 595			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 596			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 597			tte_vaddr += 0x400000;
 598			tte_data += 0x400000;
 599		}
 600	} else {
 601		for (i = 0; i < num_kernel_image_mappings; i++) {
 602			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 603			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 604			tte_vaddr += 0x400000;
 605			tte_data += 0x400000;
 606		}
 607		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 608	}
 609	if (tlb_type == cheetah_plus) {
 610		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 611					    CTX_CHEETAH_PLUS_NUC);
 612		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 613		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 614	}
 615}
 616
 617
 618static void __init inherit_prom_mappings(void)
 619{
 620	/* Now fixup OBP's idea about where we really are mapped. */
 621	printk("Remapping the kernel... ");
 622	remap_kernel();
 623	printk("done.\n");
 624}
 625
 626void prom_world(int enter)
 627{
 628	if (!enter)
 629		set_fs(get_fs());
 630
 631	__asm__ __volatile__("flushw");
 632}
 633
 634void __flush_dcache_range(unsigned long start, unsigned long end)
 635{
 636	unsigned long va;
 637
 638	if (tlb_type == spitfire) {
 639		int n = 0;
 640
 641		for (va = start; va < end; va += 32) {
 642			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 643			if (++n >= 512)
 644				break;
 645		}
 646	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 647		start = __pa(start);
 648		end = __pa(end);
 649		for (va = start; va < end; va += 32)
 650			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 651					     "membar #Sync"
 652					     : /* no outputs */
 653					     : "r" (va),
 654					       "i" (ASI_DCACHE_INVALIDATE));
 655	}
 656}
 657EXPORT_SYMBOL(__flush_dcache_range);
 658
 659/* get_new_mmu_context() uses "cache + 1".  */
 660DEFINE_SPINLOCK(ctx_alloc_lock);
 661unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
 662#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 663#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 664DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 665
 666/* Caller does TLB context flushing on local CPU if necessary.
 667 * The caller also ensures that CTX_VALID(mm->context) is false.
 668 *
 669 * We must be careful about boundary cases so that we never
 670 * let the user have CTX 0 (nucleus) or we ever use a CTX
 671 * version of zero (and thus NO_CONTEXT would not be caught
 672 * by version mis-match tests in mmu_context.h).
 673 *
 674 * Always invoked with interrupts disabled.
 675 */
 676void get_new_mmu_context(struct mm_struct *mm)
 677{
 678	unsigned long ctx, new_ctx;
 679	unsigned long orig_pgsz_bits;
 
 680	int new_version;
 681
 682	spin_lock(&ctx_alloc_lock);
 683	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 684	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 685	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 686	new_version = 0;
 687	if (new_ctx >= (1 << CTX_NR_BITS)) {
 688		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 689		if (new_ctx >= ctx) {
 690			int i;
 691			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
 692				CTX_FIRST_VERSION;
 693			if (new_ctx == 1)
 694				new_ctx = CTX_FIRST_VERSION;
 695
 696			/* Don't call memset, for 16 entries that's just
 697			 * plain silly...
 698			 */
 699			mmu_context_bmap[0] = 3;
 700			mmu_context_bmap[1] = 0;
 701			mmu_context_bmap[2] = 0;
 702			mmu_context_bmap[3] = 0;
 703			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
 704				mmu_context_bmap[i + 0] = 0;
 705				mmu_context_bmap[i + 1] = 0;
 706				mmu_context_bmap[i + 2] = 0;
 707				mmu_context_bmap[i + 3] = 0;
 708			}
 709			new_version = 1;
 710			goto out;
 711		}
 712	}
 713	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 714	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 715out:
 716	tlb_context_cache = new_ctx;
 717	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 718	spin_unlock(&ctx_alloc_lock);
 719
 720	if (unlikely(new_version))
 721		smp_new_mmu_context_version();
 722}
 723
 724static int numa_enabled = 1;
 725static int numa_debug;
 726
 727static int __init early_numa(char *p)
 728{
 729	if (!p)
 730		return 0;
 731
 732	if (strstr(p, "off"))
 733		numa_enabled = 0;
 734
 735	if (strstr(p, "debug"))
 736		numa_debug = 1;
 737
 738	return 0;
 739}
 740early_param("numa", early_numa);
 741
 742#define numadbg(f, a...) \
 743do {	if (numa_debug) \
 744		printk(KERN_INFO f, ## a); \
 745} while (0)
 746
 747static void __init find_ramdisk(unsigned long phys_base)
 748{
 749#ifdef CONFIG_BLK_DEV_INITRD
 750	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 751		unsigned long ramdisk_image;
 752
 753		/* Older versions of the bootloader only supported a
 754		 * 32-bit physical address for the ramdisk image
 755		 * location, stored at sparc_ramdisk_image.  Newer
 756		 * SILO versions set sparc_ramdisk_image to zero and
 757		 * provide a full 64-bit physical address at
 758		 * sparc_ramdisk_image64.
 759		 */
 760		ramdisk_image = sparc_ramdisk_image;
 761		if (!ramdisk_image)
 762			ramdisk_image = sparc_ramdisk_image64;
 763
 764		/* Another bootloader quirk.  The bootloader normalizes
 765		 * the physical address to KERNBASE, so we have to
 766		 * factor that back out and add in the lowest valid
 767		 * physical page address to get the true physical address.
 768		 */
 769		ramdisk_image -= KERNBASE;
 770		ramdisk_image += phys_base;
 771
 772		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 773			ramdisk_image, sparc_ramdisk_size);
 774
 775		initrd_start = ramdisk_image;
 776		initrd_end = ramdisk_image + sparc_ramdisk_size;
 777
 778		memblock_reserve(initrd_start, sparc_ramdisk_size);
 779
 780		initrd_start += PAGE_OFFSET;
 781		initrd_end += PAGE_OFFSET;
 782	}
 783#endif
 784}
 785
 786struct node_mem_mask {
 787	unsigned long mask;
 788	unsigned long val;
 
 789};
 790static struct node_mem_mask node_masks[MAX_NUMNODES];
 791static int num_node_masks;
 792
 793#ifdef CONFIG_NEED_MULTIPLE_NODES
 794
 795int numa_cpu_lookup_table[NR_CPUS];
 796cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 797
 
 
 798struct mdesc_mblock {
 799	u64	base;
 800	u64	size;
 801	u64	offset; /* RA-to-PA */
 802};
 803static struct mdesc_mblock *mblocks;
 804static int num_mblocks;
 805static int find_numa_node_for_addr(unsigned long pa,
 806				   struct node_mem_mask *pnode_mask);
 807
 808static unsigned long __init ra_to_pa(unsigned long addr)
 809{
 810	int i;
 811
 812	for (i = 0; i < num_mblocks; i++) {
 813		struct mdesc_mblock *m = &mblocks[i];
 814
 815		if (addr >= m->base &&
 816		    addr < (m->base + m->size)) {
 817			addr += m->offset;
 818			break;
 819		}
 820	}
 821	return addr;
 822}
 823
 824static int __init find_node(unsigned long addr)
 825{
 826	static bool search_mdesc = true;
 827	static struct node_mem_mask last_mem_mask = { ~0UL, ~0UL };
 828	static int last_index;
 829	int i;
 830
 831	addr = ra_to_pa(addr);
 832	for (i = 0; i < num_node_masks; i++) {
 833		struct node_mem_mask *p = &node_masks[i];
 834
 835		if ((addr & p->mask) == p->val)
 836			return i;
 837	}
 838	/* The following condition has been observed on LDOM guests because
 839	 * node_masks only contains the best latency mask and value.
 840	 * LDOM guest's mdesc can contain a single latency group to
 841	 * cover multiple address range. Print warning message only if the
 842	 * address cannot be found in node_masks nor mdesc.
 843	 */
 844	if ((search_mdesc) &&
 845	    ((addr & last_mem_mask.mask) != last_mem_mask.val)) {
 846		/* find the available node in the mdesc */
 847		last_index = find_numa_node_for_addr(addr, &last_mem_mask);
 848		numadbg("find_node: latency group for address 0x%lx is %d\n",
 849			addr, last_index);
 850		if ((last_index < 0) || (last_index >= num_node_masks)) {
 851			/* WARN_ONCE() and use default group 0 */
 852			WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node rule. Some physical memory will be owned by node 0.");
 853			search_mdesc = false;
 854			last_index = 0;
 855		}
 856	}
 857
 858	return last_index;
 859}
 860
 861static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
 862{
 863	*nid = find_node(start);
 864	start += PAGE_SIZE;
 865	while (start < end) {
 866		int n = find_node(start);
 867
 868		if (n != *nid)
 869			break;
 870		start += PAGE_SIZE;
 871	}
 872
 873	if (start > end)
 874		start = end;
 875
 876	return start;
 877}
 
 
 
 
 
 
 878#endif
 879
 880/* This must be invoked after performing all of the necessary
 881 * memblock_set_node() calls for 'nid'.  We need to be able to get
 882 * correct data from get_pfn_range_for_nid().
 883 */
 884static void __init allocate_node_data(int nid)
 885{
 
 886	struct pglist_data *p;
 887	unsigned long start_pfn, end_pfn;
 888#ifdef CONFIG_NEED_MULTIPLE_NODES
 889	unsigned long paddr;
 890
 891	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
 892	if (!paddr) {
 893		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
 894		prom_halt();
 895	}
 896	NODE_DATA(nid) = __va(paddr);
 897	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 898
 899	NODE_DATA(nid)->node_id = nid;
 900#endif
 901
 902	p = NODE_DATA(nid);
 903
 904	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 905	p->node_start_pfn = start_pfn;
 906	p->node_spanned_pages = end_pfn - start_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 907}
 908
 909static void init_node_masks_nonnuma(void)
 910{
 911#ifdef CONFIG_NEED_MULTIPLE_NODES
 912	int i;
 913#endif
 914
 915	numadbg("Initializing tables for non-numa.\n");
 916
 917	node_masks[0].mask = node_masks[0].val = 0;
 918	num_node_masks = 1;
 919
 920#ifdef CONFIG_NEED_MULTIPLE_NODES
 921	for (i = 0; i < NR_CPUS; i++)
 922		numa_cpu_lookup_table[i] = 0;
 923
 924	cpumask_setall(&numa_cpumask_lookup_table[0]);
 925#endif
 926}
 927
 928#ifdef CONFIG_NEED_MULTIPLE_NODES
 929struct pglist_data *node_data[MAX_NUMNODES];
 930
 931EXPORT_SYMBOL(numa_cpu_lookup_table);
 932EXPORT_SYMBOL(numa_cpumask_lookup_table);
 933EXPORT_SYMBOL(node_data);
 934
 935struct mdesc_mlgroup {
 936	u64	node;
 937	u64	latency;
 938	u64	match;
 939	u64	mask;
 940};
 941static struct mdesc_mlgroup *mlgroups;
 942static int num_mlgroups;
 943
 944static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
 945				   u32 cfg_handle)
 946{
 947	u64 arc;
 948
 949	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
 950		u64 target = mdesc_arc_target(md, arc);
 951		const u64 *val;
 952
 953		val = mdesc_get_property(md, target,
 954					 "cfg-handle", NULL);
 955		if (val && *val == cfg_handle)
 956			return 0;
 957	}
 958	return -ENODEV;
 959}
 960
 961static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
 962				    u32 cfg_handle)
 963{
 964	u64 arc, candidate, best_latency = ~(u64)0;
 965
 966	candidate = MDESC_NODE_NULL;
 967	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 968		u64 target = mdesc_arc_target(md, arc);
 969		const char *name = mdesc_node_name(md, target);
 970		const u64 *val;
 971
 972		if (strcmp(name, "pio-latency-group"))
 973			continue;
 974
 975		val = mdesc_get_property(md, target, "latency", NULL);
 976		if (!val)
 977			continue;
 978
 979		if (*val < best_latency) {
 980			candidate = target;
 981			best_latency = *val;
 982		}
 983	}
 984
 985	if (candidate == MDESC_NODE_NULL)
 986		return -ENODEV;
 987
 988	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
 989}
 990
 991int of_node_to_nid(struct device_node *dp)
 992{
 993	const struct linux_prom64_registers *regs;
 994	struct mdesc_handle *md;
 995	u32 cfg_handle;
 996	int count, nid;
 997	u64 grp;
 998
 999	/* This is the right thing to do on currently supported
1000	 * SUN4U NUMA platforms as well, as the PCI controller does
1001	 * not sit behind any particular memory controller.
1002	 */
1003	if (!mlgroups)
1004		return -1;
1005
1006	regs = of_get_property(dp, "reg", NULL);
1007	if (!regs)
1008		return -1;
1009
1010	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1011
1012	md = mdesc_grab();
1013
1014	count = 0;
1015	nid = -1;
1016	mdesc_for_each_node_by_name(md, grp, "group") {
1017		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1018			nid = count;
1019			break;
1020		}
1021		count++;
1022	}
1023
1024	mdesc_release(md);
1025
1026	return nid;
1027}
1028
1029static void __init add_node_ranges(void)
1030{
1031	struct memblock_region *reg;
1032
1033	for_each_memblock(memory, reg) {
1034		unsigned long size = reg->size;
1035		unsigned long start, end;
1036
1037		start = reg->base;
1038		end = start + size;
1039		while (start < end) {
1040			unsigned long this_end;
1041			int nid;
1042
1043			this_end = memblock_nid_range(start, end, &nid);
1044
1045			numadbg("Setting memblock NUMA node nid[%d] "
1046				"start[%lx] end[%lx]\n",
1047				nid, start, this_end);
1048
1049			memblock_set_node(start, this_end - start,
1050					  &memblock.memory, nid);
 
 
1051			start = this_end;
1052		}
1053	}
1054}
1055
1056static int __init grab_mlgroups(struct mdesc_handle *md)
1057{
1058	unsigned long paddr;
1059	int count = 0;
1060	u64 node;
1061
1062	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1063		count++;
1064	if (!count)
1065		return -ENOENT;
1066
1067	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1068			  SMP_CACHE_BYTES);
1069	if (!paddr)
1070		return -ENOMEM;
1071
1072	mlgroups = __va(paddr);
1073	num_mlgroups = count;
1074
1075	count = 0;
1076	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1077		struct mdesc_mlgroup *m = &mlgroups[count++];
1078		const u64 *val;
1079
1080		m->node = node;
1081
1082		val = mdesc_get_property(md, node, "latency", NULL);
1083		m->latency = *val;
1084		val = mdesc_get_property(md, node, "address-match", NULL);
1085		m->match = *val;
1086		val = mdesc_get_property(md, node, "address-mask", NULL);
1087		m->mask = *val;
1088
1089		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1090			"match[%llx] mask[%llx]\n",
1091			count - 1, m->node, m->latency, m->match, m->mask);
1092	}
1093
1094	return 0;
1095}
1096
1097static int __init grab_mblocks(struct mdesc_handle *md)
1098{
1099	unsigned long paddr;
1100	int count = 0;
1101	u64 node;
1102
1103	mdesc_for_each_node_by_name(md, node, "mblock")
1104		count++;
1105	if (!count)
1106		return -ENOENT;
1107
1108	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1109			  SMP_CACHE_BYTES);
1110	if (!paddr)
1111		return -ENOMEM;
1112
1113	mblocks = __va(paddr);
1114	num_mblocks = count;
1115
1116	count = 0;
1117	mdesc_for_each_node_by_name(md, node, "mblock") {
1118		struct mdesc_mblock *m = &mblocks[count++];
1119		const u64 *val;
1120
1121		val = mdesc_get_property(md, node, "base", NULL);
1122		m->base = *val;
1123		val = mdesc_get_property(md, node, "size", NULL);
1124		m->size = *val;
1125		val = mdesc_get_property(md, node,
1126					 "address-congruence-offset", NULL);
1127
1128		/* The address-congruence-offset property is optional.
1129		 * Explicity zero it be identifty this.
1130		 */
1131		if (val)
1132			m->offset = *val;
1133		else
1134			m->offset = 0UL;
1135
1136		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1137			count - 1, m->base, m->size, m->offset);
1138	}
1139
1140	return 0;
1141}
1142
1143static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1144					       u64 grp, cpumask_t *mask)
1145{
1146	u64 arc;
1147
1148	cpumask_clear(mask);
1149
1150	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1151		u64 target = mdesc_arc_target(md, arc);
1152		const char *name = mdesc_node_name(md, target);
1153		const u64 *id;
1154
1155		if (strcmp(name, "cpu"))
1156			continue;
1157		id = mdesc_get_property(md, target, "id", NULL);
1158		if (*id < nr_cpu_ids)
1159			cpumask_set_cpu(*id, mask);
1160	}
1161}
1162
1163static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1164{
1165	int i;
1166
1167	for (i = 0; i < num_mlgroups; i++) {
1168		struct mdesc_mlgroup *m = &mlgroups[i];
1169		if (m->node == node)
1170			return m;
1171	}
1172	return NULL;
1173}
1174
1175int __node_distance(int from, int to)
1176{
1177	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1178		pr_warn("Returning default NUMA distance value for %d->%d\n",
1179			from, to);
1180		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1181	}
1182	return numa_latency[from][to];
1183}
1184
1185static int find_numa_node_for_addr(unsigned long pa,
1186				   struct node_mem_mask *pnode_mask)
1187{
1188	struct mdesc_handle *md = mdesc_grab();
1189	u64 node, arc;
1190	int i = 0;
1191
1192	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1193	if (node == MDESC_NODE_NULL)
1194		goto out;
1195
1196	mdesc_for_each_node_by_name(md, node, "group") {
1197		mdesc_for_each_arc(arc, md, node, MDESC_ARC_TYPE_FWD) {
1198			u64 target = mdesc_arc_target(md, arc);
1199			struct mdesc_mlgroup *m = find_mlgroup(target);
1200
1201			if (!m)
1202				continue;
1203			if ((pa & m->mask) == m->match) {
1204				if (pnode_mask) {
1205					pnode_mask->mask = m->mask;
1206					pnode_mask->val = m->match;
1207				}
1208				mdesc_release(md);
1209				return i;
1210			}
1211		}
1212		i++;
1213	}
1214
1215out:
1216	mdesc_release(md);
1217	return -1;
1218}
1219
1220static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1221{
1222	int i;
1223
1224	for (i = 0; i < MAX_NUMNODES; i++) {
1225		struct node_mem_mask *n = &node_masks[i];
1226
1227		if ((grp->mask == n->mask) && (grp->match == n->val))
1228			break;
1229	}
1230	return i;
1231}
1232
1233static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1234						 u64 grp, int index)
1235{
1236	u64 arc;
1237
1238	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1239		int tnode;
1240		u64 target = mdesc_arc_target(md, arc);
1241		struct mdesc_mlgroup *m = find_mlgroup(target);
1242
1243		if (!m)
1244			continue;
1245		tnode = find_best_numa_node_for_mlgroup(m);
1246		if (tnode == MAX_NUMNODES)
1247			continue;
1248		numa_latency[index][tnode] = m->latency;
1249	}
1250}
1251
1252static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1253				      int index)
1254{
1255	struct mdesc_mlgroup *candidate = NULL;
1256	u64 arc, best_latency = ~(u64)0;
1257	struct node_mem_mask *n;
1258
1259	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1260		u64 target = mdesc_arc_target(md, arc);
1261		struct mdesc_mlgroup *m = find_mlgroup(target);
1262		if (!m)
1263			continue;
1264		if (m->latency < best_latency) {
1265			candidate = m;
1266			best_latency = m->latency;
1267		}
1268	}
1269	if (!candidate)
1270		return -ENOENT;
1271
1272	if (num_node_masks != index) {
1273		printk(KERN_ERR "Inconsistent NUMA state, "
1274		       "index[%d] != num_node_masks[%d]\n",
1275		       index, num_node_masks);
1276		return -EINVAL;
1277	}
1278
1279	n = &node_masks[num_node_masks++];
1280
1281	n->mask = candidate->mask;
1282	n->val = candidate->match;
1283
1284	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1285		index, n->mask, n->val, candidate->latency);
1286
1287	return 0;
1288}
1289
1290static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1291					 int index)
1292{
1293	cpumask_t mask;
1294	int cpu;
1295
1296	numa_parse_mdesc_group_cpus(md, grp, &mask);
1297
1298	for_each_cpu(cpu, &mask)
1299		numa_cpu_lookup_table[cpu] = index;
1300	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1301
1302	if (numa_debug) {
1303		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1304		for_each_cpu(cpu, &mask)
1305			printk("%d ", cpu);
1306		printk("]\n");
1307	}
1308
1309	return numa_attach_mlgroup(md, grp, index);
1310}
1311
1312static int __init numa_parse_mdesc(void)
1313{
1314	struct mdesc_handle *md = mdesc_grab();
1315	int i, j, err, count;
1316	u64 node;
1317
1318	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1319	if (node == MDESC_NODE_NULL) {
1320		mdesc_release(md);
1321		return -ENOENT;
1322	}
1323
1324	err = grab_mblocks(md);
1325	if (err < 0)
1326		goto out;
1327
1328	err = grab_mlgroups(md);
1329	if (err < 0)
1330		goto out;
1331
1332	count = 0;
1333	mdesc_for_each_node_by_name(md, node, "group") {
1334		err = numa_parse_mdesc_group(md, node, count);
1335		if (err < 0)
1336			break;
1337		count++;
1338	}
1339
1340	count = 0;
1341	mdesc_for_each_node_by_name(md, node, "group") {
1342		find_numa_latencies_for_group(md, node, count);
1343		count++;
1344	}
1345
1346	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1347	for (i = 0; i < MAX_NUMNODES; i++) {
1348		u64 self_latency = numa_latency[i][i];
1349
1350		for (j = 0; j < MAX_NUMNODES; j++) {
1351			numa_latency[i][j] =
1352				(numa_latency[i][j] * LOCAL_DISTANCE) /
1353				self_latency;
1354		}
1355	}
1356
1357	add_node_ranges();
1358
1359	for (i = 0; i < num_node_masks; i++) {
1360		allocate_node_data(i);
1361		node_set_online(i);
1362	}
1363
1364	err = 0;
1365out:
1366	mdesc_release(md);
1367	return err;
1368}
1369
1370static int __init numa_parse_jbus(void)
1371{
1372	unsigned long cpu, index;
1373
1374	/* NUMA node id is encoded in bits 36 and higher, and there is
1375	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1376	 */
1377	index = 0;
1378	for_each_present_cpu(cpu) {
1379		numa_cpu_lookup_table[cpu] = index;
1380		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1381		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1382		node_masks[index].val = cpu << 36UL;
1383
1384		index++;
1385	}
1386	num_node_masks = index;
1387
1388	add_node_ranges();
1389
1390	for (index = 0; index < num_node_masks; index++) {
1391		allocate_node_data(index);
1392		node_set_online(index);
1393	}
1394
1395	return 0;
1396}
1397
1398static int __init numa_parse_sun4u(void)
1399{
1400	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1401		unsigned long ver;
1402
1403		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1404		if ((ver >> 32UL) == __JALAPENO_ID ||
1405		    (ver >> 32UL) == __SERRANO_ID)
1406			return numa_parse_jbus();
1407	}
1408	return -1;
1409}
1410
1411static int __init bootmem_init_numa(void)
1412{
1413	int i, j;
1414	int err = -1;
1415
1416	numadbg("bootmem_init_numa()\n");
1417
1418	/* Some sane defaults for numa latency values */
1419	for (i = 0; i < MAX_NUMNODES; i++) {
1420		for (j = 0; j < MAX_NUMNODES; j++)
1421			numa_latency[i][j] = (i == j) ?
1422				LOCAL_DISTANCE : REMOTE_DISTANCE;
1423	}
1424
1425	if (numa_enabled) {
1426		if (tlb_type == hypervisor)
1427			err = numa_parse_mdesc();
1428		else
1429			err = numa_parse_sun4u();
1430	}
1431	return err;
1432}
1433
1434#else
1435
1436static int bootmem_init_numa(void)
1437{
1438	return -1;
1439}
1440
1441#endif
1442
1443static void __init bootmem_init_nonnuma(void)
1444{
1445	unsigned long top_of_ram = memblock_end_of_DRAM();
1446	unsigned long total_ram = memblock_phys_mem_size();
 
1447
1448	numadbg("bootmem_init_nonnuma()\n");
1449
1450	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1451	       top_of_ram, total_ram);
1452	printk(KERN_INFO "Memory hole size: %ldMB\n",
1453	       (top_of_ram - total_ram) >> 20);
1454
1455	init_node_masks_nonnuma();
1456	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1457	allocate_node_data(0);
1458	node_set_online(0);
1459}
1460
1461static unsigned long __init bootmem_init(unsigned long phys_base)
1462{
1463	unsigned long end_pfn;
1464
1465	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1466	max_pfn = max_low_pfn = end_pfn;
1467	min_low_pfn = (phys_base >> PAGE_SHIFT);
1468
1469	if (bootmem_init_numa() < 0)
1470		bootmem_init_nonnuma();
 
 
1471
1472	/* Dump memblock with node info. */
1473	memblock_dump_all();
1474
1475	/* XXX cpu notifier XXX */
1476
1477	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1478	sparse_init();
1479
1480	return end_pfn;
1481}
1482
1483static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1484static int pall_ents __initdata;
1485
1486static unsigned long max_phys_bits = 40;
1487
1488bool kern_addr_valid(unsigned long addr)
1489{
1490	pgd_t *pgd;
1491	pud_t *pud;
1492	pmd_t *pmd;
1493	pte_t *pte;
 
1494
1495	if ((long)addr < 0L) {
1496		unsigned long pa = __pa(addr);
 
 
 
 
 
 
 
1497
1498		if ((addr >> max_phys_bits) != 0UL)
1499			return false;
1500
1501		return pfn_valid(pa >> PAGE_SHIFT);
1502	}
 
1503
1504	if (addr >= (unsigned long) KERNBASE &&
1505	    addr < (unsigned long)&_end)
1506		return true;
1507
1508	pgd = pgd_offset_k(addr);
1509	if (pgd_none(*pgd))
1510		return 0;
1511
1512	pud = pud_offset(pgd, addr);
1513	if (pud_none(*pud))
1514		return 0;
1515
1516	if (pud_large(*pud))
1517		return pfn_valid(pud_pfn(*pud));
1518
1519	pmd = pmd_offset(pud, addr);
1520	if (pmd_none(*pmd))
1521		return 0;
1522
1523	if (pmd_large(*pmd))
1524		return pfn_valid(pmd_pfn(*pmd));
1525
1526	pte = pte_offset_kernel(pmd, addr);
1527	if (pte_none(*pte))
1528		return 0;
1529
1530	return pfn_valid(pte_pfn(*pte));
1531}
1532EXPORT_SYMBOL(kern_addr_valid);
1533
1534static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1535					      unsigned long vend,
1536					      pud_t *pud)
1537{
1538	const unsigned long mask16gb = (1UL << 34) - 1UL;
1539	u64 pte_val = vstart;
1540
1541	/* Each PUD is 8GB */
1542	if ((vstart & mask16gb) ||
1543	    (vend - vstart <= mask16gb)) {
1544		pte_val ^= kern_linear_pte_xor[2];
1545		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1546
1547		return vstart + PUD_SIZE;
1548	}
1549
1550	pte_val ^= kern_linear_pte_xor[3];
1551	pte_val |= _PAGE_PUD_HUGE;
 
1552
1553	vend = vstart + mask16gb + 1UL;
1554	while (vstart < vend) {
1555		pud_val(*pud) = pte_val;
1556
1557		pte_val += PUD_SIZE;
1558		vstart += PUD_SIZE;
1559		pud++;
1560	}
1561	return vstart;
1562}
1563
1564static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1565				   bool guard)
1566{
1567	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1568		return true;
1569
1570	return false;
1571}
 
1572
1573static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1574					      unsigned long vend,
1575					      pmd_t *pmd)
1576{
1577	const unsigned long mask256mb = (1UL << 28) - 1UL;
1578	const unsigned long mask2gb = (1UL << 31) - 1UL;
1579	u64 pte_val = vstart;
1580
1581	/* Each PMD is 8MB */
1582	if ((vstart & mask256mb) ||
1583	    (vend - vstart <= mask256mb)) {
1584		pte_val ^= kern_linear_pte_xor[0];
1585		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1586
1587		return vstart + PMD_SIZE;
1588	}
1589
1590	if ((vstart & mask2gb) ||
1591	    (vend - vstart <= mask2gb)) {
1592		pte_val ^= kern_linear_pte_xor[1];
1593		pte_val |= _PAGE_PMD_HUGE;
1594		vend = vstart + mask256mb + 1UL;
1595	} else {
1596		pte_val ^= kern_linear_pte_xor[2];
1597		pte_val |= _PAGE_PMD_HUGE;
1598		vend = vstart + mask2gb + 1UL;
1599	}
1600
1601	while (vstart < vend) {
1602		pmd_val(*pmd) = pte_val;
1603
1604		pte_val += PMD_SIZE;
1605		vstart += PMD_SIZE;
1606		pmd++;
1607	}
1608
1609	return vstart;
1610}
1611
1612static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1613				   bool guard)
1614{
1615	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1616		return true;
1617
1618	return false;
1619}
1620
 
1621static unsigned long __ref kernel_map_range(unsigned long pstart,
1622					    unsigned long pend, pgprot_t prot,
1623					    bool use_huge)
1624{
1625	unsigned long vstart = PAGE_OFFSET + pstart;
1626	unsigned long vend = PAGE_OFFSET + pend;
1627	unsigned long alloc_bytes = 0UL;
1628
1629	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1630		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1631			    vstart, vend);
1632		prom_halt();
1633	}
1634
1635	while (vstart < vend) {
1636		unsigned long this_end, paddr = __pa(vstart);
1637		pgd_t *pgd = pgd_offset_k(vstart);
1638		pud_t *pud;
1639		pmd_t *pmd;
1640		pte_t *pte;
1641
1642		if (pgd_none(*pgd)) {
1643			pud_t *new;
1644
1645			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1646			alloc_bytes += PAGE_SIZE;
1647			pgd_populate(&init_mm, pgd, new);
1648		}
1649		pud = pud_offset(pgd, vstart);
1650		if (pud_none(*pud)) {
1651			pmd_t *new;
1652
1653			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1654				vstart = kernel_map_hugepud(vstart, vend, pud);
1655				continue;
1656			}
1657			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1658			alloc_bytes += PAGE_SIZE;
1659			pud_populate(&init_mm, pud, new);
1660		}
1661
1662		pmd = pmd_offset(pud, vstart);
1663		if (pmd_none(*pmd)) {
1664			pte_t *new;
1665
1666			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1667				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1668				continue;
1669			}
1670			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1671			alloc_bytes += PAGE_SIZE;
1672			pmd_populate_kernel(&init_mm, pmd, new);
1673		}
1674
1675		pte = pte_offset_kernel(pmd, vstart);
1676		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1677		if (this_end > vend)
1678			this_end = vend;
1679
1680		while (vstart < this_end) {
1681			pte_val(*pte) = (paddr | pgprot_val(prot));
1682
1683			vstart += PAGE_SIZE;
1684			paddr += PAGE_SIZE;
1685			pte++;
1686		}
1687	}
1688
1689	return alloc_bytes;
1690}
1691
1692static void __init flush_all_kernel_tsbs(void)
 
 
 
1693{
1694	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1695
1696	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1697		struct tsb *ent = &swapper_tsb[i];
1698
1699		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
 
 
1700	}
1701#ifndef CONFIG_DEBUG_PAGEALLOC
1702	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1703		struct tsb *ent = &swapper_4m_tsb[i];
 
 
 
 
 
 
 
 
1704
1705		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1706	}
1707#endif
1708}
1709
1710extern unsigned int kvmap_linear_patch[1];
1711
1712static void __init kernel_physical_mapping_init(void)
1713{
 
1714	unsigned long i, mem_alloced = 0UL;
1715	bool use_huge = true;
1716
1717#ifdef CONFIG_DEBUG_PAGEALLOC
1718	use_huge = false;
1719#endif
1720	for (i = 0; i < pall_ents; i++) {
1721		unsigned long phys_start, phys_end;
1722
1723		phys_start = pall[i].phys_addr;
1724		phys_end = phys_start + pall[i].reg_size;
1725
1726		mem_alloced += kernel_map_range(phys_start, phys_end,
1727						PAGE_KERNEL, use_huge);
1728	}
1729
1730	printk("Allocated %ld bytes for kernel page tables.\n",
1731	       mem_alloced);
1732
1733	kvmap_linear_patch[0] = 0x01000000; /* nop */
1734	flushi(&kvmap_linear_patch[0]);
1735
1736	flush_all_kernel_tsbs();
1737
1738	__flush_tlb_all();
 
1739}
1740
1741#ifdef CONFIG_DEBUG_PAGEALLOC
1742void __kernel_map_pages(struct page *page, int numpages, int enable)
1743{
1744	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1745	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1746
1747	kernel_map_range(phys_start, phys_end,
1748			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1749
1750	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1751			       PAGE_OFFSET + phys_end);
1752
1753	/* we should perform an IPI and flush all tlbs,
1754	 * but that can deadlock->flush only current cpu.
1755	 */
1756	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1757				 PAGE_OFFSET + phys_end);
1758}
1759#endif
1760
1761unsigned long __init find_ecache_flush_span(unsigned long size)
1762{
1763	int i;
1764
1765	for (i = 0; i < pavail_ents; i++) {
1766		if (pavail[i].reg_size >= size)
1767			return pavail[i].phys_addr;
1768	}
1769
1770	return ~0UL;
1771}
1772
1773unsigned long PAGE_OFFSET;
1774EXPORT_SYMBOL(PAGE_OFFSET);
1775
1776unsigned long VMALLOC_END   = 0x0000010000000000UL;
1777EXPORT_SYMBOL(VMALLOC_END);
1778
1779unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1780unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1781
1782static void __init setup_page_offset(void)
1783{
1784	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1785		/* Cheetah/Panther support a full 64-bit virtual
1786		 * address, so we can use all that our page tables
1787		 * support.
1788		 */
1789		sparc64_va_hole_top =    0xfff0000000000000UL;
1790		sparc64_va_hole_bottom = 0x0010000000000000UL;
1791
1792		max_phys_bits = 42;
1793	} else if (tlb_type == hypervisor) {
1794		switch (sun4v_chip_type) {
1795		case SUN4V_CHIP_NIAGARA1:
1796		case SUN4V_CHIP_NIAGARA2:
1797			/* T1 and T2 support 48-bit virtual addresses.  */
1798			sparc64_va_hole_top =    0xffff800000000000UL;
1799			sparc64_va_hole_bottom = 0x0000800000000000UL;
1800
1801			max_phys_bits = 39;
1802			break;
1803		case SUN4V_CHIP_NIAGARA3:
1804			/* T3 supports 48-bit virtual addresses.  */
1805			sparc64_va_hole_top =    0xffff800000000000UL;
1806			sparc64_va_hole_bottom = 0x0000800000000000UL;
1807
1808			max_phys_bits = 43;
1809			break;
1810		case SUN4V_CHIP_NIAGARA4:
1811		case SUN4V_CHIP_NIAGARA5:
1812		case SUN4V_CHIP_SPARC64X:
1813		case SUN4V_CHIP_SPARC_M6:
1814			/* T4 and later support 52-bit virtual addresses.  */
1815			sparc64_va_hole_top =    0xfff8000000000000UL;
1816			sparc64_va_hole_bottom = 0x0008000000000000UL;
1817			max_phys_bits = 47;
1818			break;
1819		case SUN4V_CHIP_SPARC_M7:
1820		case SUN4V_CHIP_SPARC_SN:
1821		default:
1822			/* M7 and later support 52-bit virtual addresses.  */
1823			sparc64_va_hole_top =    0xfff8000000000000UL;
1824			sparc64_va_hole_bottom = 0x0008000000000000UL;
1825			max_phys_bits = 49;
1826			break;
1827		}
1828	}
1829
1830	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1831		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1832			    max_phys_bits);
1833		prom_halt();
1834	}
1835
1836	PAGE_OFFSET = sparc64_va_hole_top;
1837	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1838		       (sparc64_va_hole_bottom >> 2));
1839
1840	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1841		PAGE_OFFSET, max_phys_bits);
1842	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1843		VMALLOC_START, VMALLOC_END);
1844	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1845		VMEMMAP_BASE, VMEMMAP_BASE << 1);
1846}
1847
1848static void __init tsb_phys_patch(void)
1849{
1850	struct tsb_ldquad_phys_patch_entry *pquad;
1851	struct tsb_phys_patch_entry *p;
1852
1853	pquad = &__tsb_ldquad_phys_patch;
1854	while (pquad < &__tsb_ldquad_phys_patch_end) {
1855		unsigned long addr = pquad->addr;
1856
1857		if (tlb_type == hypervisor)
1858			*(unsigned int *) addr = pquad->sun4v_insn;
1859		else
1860			*(unsigned int *) addr = pquad->sun4u_insn;
1861		wmb();
1862		__asm__ __volatile__("flush	%0"
1863				     : /* no outputs */
1864				     : "r" (addr));
1865
1866		pquad++;
1867	}
1868
1869	p = &__tsb_phys_patch;
1870	while (p < &__tsb_phys_patch_end) {
1871		unsigned long addr = p->addr;
1872
1873		*(unsigned int *) addr = p->insn;
1874		wmb();
1875		__asm__ __volatile__("flush	%0"
1876				     : /* no outputs */
1877				     : "r" (addr));
1878
1879		p++;
1880	}
1881}
1882
1883/* Don't mark as init, we give this to the Hypervisor.  */
1884#ifndef CONFIG_DEBUG_PAGEALLOC
1885#define NUM_KTSB_DESCR	2
1886#else
1887#define NUM_KTSB_DESCR	1
1888#endif
1889static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1890
1891/* The swapper TSBs are loaded with a base sequence of:
1892 *
1893 *	sethi	%uhi(SYMBOL), REG1
1894 *	sethi	%hi(SYMBOL), REG2
1895 *	or	REG1, %ulo(SYMBOL), REG1
1896 *	or	REG2, %lo(SYMBOL), REG2
1897 *	sllx	REG1, 32, REG1
1898 *	or	REG1, REG2, REG1
1899 *
1900 * When we use physical addressing for the TSB accesses, we patch the
1901 * first four instructions in the above sequence.
1902 */
1903
1904static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1905{
1906	unsigned long high_bits, low_bits;
1907
1908	high_bits = (pa >> 32) & 0xffffffff;
1909	low_bits = (pa >> 0) & 0xffffffff;
1910
1911	while (start < end) {
1912		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1913
1914		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1915		__asm__ __volatile__("flush	%0" : : "r" (ia));
1916
1917		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1918		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1919
1920		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1921		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
1922
1923		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1924		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
1925
1926		start++;
1927	}
1928}
1929
1930static void ktsb_phys_patch(void)
1931{
1932	extern unsigned int __swapper_tsb_phys_patch;
1933	extern unsigned int __swapper_tsb_phys_patch_end;
1934	unsigned long ktsb_pa;
1935
1936	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1937	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1938			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1939#ifndef CONFIG_DEBUG_PAGEALLOC
1940	{
1941	extern unsigned int __swapper_4m_tsb_phys_patch;
1942	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1943	ktsb_pa = (kern_base +
1944		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1945	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1946			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1947	}
1948#endif
1949}
1950
1951static void __init sun4v_ktsb_init(void)
1952{
1953	unsigned long ktsb_pa;
1954
1955	/* First KTSB for PAGE_SIZE mappings.  */
1956	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1957
1958	switch (PAGE_SIZE) {
1959	case 8 * 1024:
1960	default:
1961		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1962		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1963		break;
1964
1965	case 64 * 1024:
1966		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1967		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1968		break;
1969
1970	case 512 * 1024:
1971		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1972		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1973		break;
1974
1975	case 4 * 1024 * 1024:
1976		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1977		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1978		break;
1979	}
1980
1981	ktsb_descr[0].assoc = 1;
1982	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1983	ktsb_descr[0].ctx_idx = 0;
1984	ktsb_descr[0].tsb_base = ktsb_pa;
1985	ktsb_descr[0].resv = 0;
1986
1987#ifndef CONFIG_DEBUG_PAGEALLOC
1988	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1989	ktsb_pa = (kern_base +
1990		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1991
1992	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1993	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1994				    HV_PGSZ_MASK_256MB |
1995				    HV_PGSZ_MASK_2GB |
1996				    HV_PGSZ_MASK_16GB) &
1997				   cpu_pgsz_mask);
1998	ktsb_descr[1].assoc = 1;
1999	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2000	ktsb_descr[1].ctx_idx = 0;
2001	ktsb_descr[1].tsb_base = ktsb_pa;
2002	ktsb_descr[1].resv = 0;
2003#endif
2004}
2005
2006void sun4v_ktsb_register(void)
2007{
2008	unsigned long pa, ret;
2009
2010	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2011
2012	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2013	if (ret != 0) {
2014		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2015			    "errors with %lx\n", pa, ret);
2016		prom_halt();
2017	}
2018}
2019
2020static void __init sun4u_linear_pte_xor_finalize(void)
2021{
2022#ifndef CONFIG_DEBUG_PAGEALLOC
2023	/* This is where we would add Panther support for
2024	 * 32MB and 256MB pages.
2025	 */
2026#endif
2027}
2028
2029static void __init sun4v_linear_pte_xor_finalize(void)
2030{
2031	unsigned long pagecv_flag;
2032
2033	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2034	 * enables MCD error. Do not set bit 9 on M7 processor.
2035	 */
2036	switch (sun4v_chip_type) {
2037	case SUN4V_CHIP_SPARC_M7:
2038	case SUN4V_CHIP_SPARC_SN:
2039		pagecv_flag = 0x00;
2040		break;
2041	default:
2042		pagecv_flag = _PAGE_CV_4V;
2043		break;
2044	}
2045#ifndef CONFIG_DEBUG_PAGEALLOC
2046	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2047		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2048			PAGE_OFFSET;
2049		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2050					   _PAGE_P_4V | _PAGE_W_4V);
2051	} else {
2052		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2053	}
2054
2055	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2056		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2057			PAGE_OFFSET;
2058		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2059					   _PAGE_P_4V | _PAGE_W_4V);
2060	} else {
2061		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2062	}
2063
2064	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2065		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2066			PAGE_OFFSET;
2067		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2068					   _PAGE_P_4V | _PAGE_W_4V);
2069	} else {
2070		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2071	}
2072#endif
2073}
2074
2075/* paging_init() sets up the page tables */
2076
2077static unsigned long last_valid_pfn;
 
2078
2079static void sun4u_pgprot_init(void);
2080static void sun4v_pgprot_init(void);
2081
2082static phys_addr_t __init available_memory(void)
2083{
2084	phys_addr_t available = 0ULL;
2085	phys_addr_t pa_start, pa_end;
2086	u64 i;
2087
2088	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2089				&pa_end, NULL)
2090		available = available + (pa_end  - pa_start);
2091
2092	return available;
2093}
2094
2095#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2096#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2097#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2098#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2099#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2100#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2101
2102/* We need to exclude reserved regions. This exclusion will include
2103 * vmlinux and initrd. To be more precise the initrd size could be used to
2104 * compute a new lower limit because it is freed later during initialization.
2105 */
2106static void __init reduce_memory(phys_addr_t limit_ram)
2107{
2108	phys_addr_t avail_ram = available_memory();
2109	phys_addr_t pa_start, pa_end;
2110	u64 i;
2111
2112	if (limit_ram >= avail_ram)
2113		return;
2114
2115	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2116				&pa_end, NULL) {
2117		phys_addr_t region_size = pa_end - pa_start;
2118		phys_addr_t clip_start = pa_start;
2119
2120		avail_ram = avail_ram - region_size;
2121		/* Are we consuming too much? */
2122		if (avail_ram < limit_ram) {
2123			phys_addr_t give_back = limit_ram - avail_ram;
2124
2125			region_size = region_size - give_back;
2126			clip_start = clip_start + give_back;
2127		}
2128
2129		memblock_remove(clip_start, region_size);
2130
2131		if (avail_ram <= limit_ram)
2132			break;
2133		i = 0UL;
2134	}
2135}
2136
2137void __init paging_init(void)
2138{
2139	unsigned long end_pfn, shift, phys_base;
2140	unsigned long real_end, i;
2141
2142	setup_page_offset();
2143
2144	/* These build time checkes make sure that the dcache_dirty_cpu()
2145	 * page->flags usage will work.
2146	 *
2147	 * When a page gets marked as dcache-dirty, we store the
2148	 * cpu number starting at bit 32 in the page->flags.  Also,
2149	 * functions like clear_dcache_dirty_cpu use the cpu mask
2150	 * in 13-bit signed-immediate instruction fields.
2151	 */
2152
2153	/*
2154	 * Page flags must not reach into upper 32 bits that are used
2155	 * for the cpu number
2156	 */
2157	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2158
2159	/*
2160	 * The bit fields placed in the high range must not reach below
2161	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2162	 * at the 32 bit boundary.
2163	 */
2164	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2165		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2166
2167	BUILD_BUG_ON(NR_CPUS > 4096);
2168
2169	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2170	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2171
2172	/* Invalidate both kernel TSBs.  */
2173	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2174#ifndef CONFIG_DEBUG_PAGEALLOC
2175	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2176#endif
2177
2178	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2179	 * bit on M7 processor. This is a conflicting usage of the same
2180	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2181	 * Detection error on all pages and this will lead to problems
2182	 * later. Kernel does not run with MCD enabled and hence rest
2183	 * of the required steps to fully configure memory corruption
2184	 * detection are not taken. We need to ensure TTE.mcde is not
2185	 * set on M7 processor. Compute the value of cacheability
2186	 * flag for use later taking this into consideration.
2187	 */
2188	switch (sun4v_chip_type) {
2189	case SUN4V_CHIP_SPARC_M7:
2190	case SUN4V_CHIP_SPARC_SN:
2191		page_cache4v_flag = _PAGE_CP_4V;
2192		break;
2193	default:
2194		page_cache4v_flag = _PAGE_CACHE_4V;
2195		break;
2196	}
2197
2198	if (tlb_type == hypervisor)
2199		sun4v_pgprot_init();
2200	else
2201		sun4u_pgprot_init();
2202
2203	if (tlb_type == cheetah_plus ||
2204	    tlb_type == hypervisor) {
2205		tsb_phys_patch();
2206		ktsb_phys_patch();
2207	}
2208
2209	if (tlb_type == hypervisor)
2210		sun4v_patch_tlb_handlers();
 
 
 
 
2211
2212	/* Find available physical memory...
2213	 *
2214	 * Read it twice in order to work around a bug in openfirmware.
2215	 * The call to grab this table itself can cause openfirmware to
2216	 * allocate memory, which in turn can take away some space from
2217	 * the list of available memory.  Reading it twice makes sure
2218	 * we really do get the final value.
2219	 */
2220	read_obp_translations();
2221	read_obp_memory("reg", &pall[0], &pall_ents);
2222	read_obp_memory("available", &pavail[0], &pavail_ents);
2223	read_obp_memory("available", &pavail[0], &pavail_ents);
2224
2225	phys_base = 0xffffffffffffffffUL;
2226	for (i = 0; i < pavail_ents; i++) {
2227		phys_base = min(phys_base, pavail[i].phys_addr);
2228		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2229	}
2230
2231	memblock_reserve(kern_base, kern_size);
2232
2233	find_ramdisk(phys_base);
2234
2235	if (cmdline_memory_size)
2236		reduce_memory(cmdline_memory_size);
2237
2238	memblock_allow_resize();
2239	memblock_dump_all();
2240
2241	set_bit(0, mmu_context_bmap);
2242
2243	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2244
2245	real_end = (unsigned long)_end;
2246	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2247	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2248	       num_kernel_image_mappings);
2249
2250	/* Set kernel pgd to upper alias so physical page computations
2251	 * work.
2252	 */
2253	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2254	
2255	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2256
 
 
 
 
2257	inherit_prom_mappings();
2258	
 
 
2259	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2260	setup_tba();
2261
2262	__flush_tlb_all();
2263
 
 
 
2264	prom_build_devicetree();
2265	of_populate_present_mask();
2266#ifndef CONFIG_SMP
2267	of_fill_in_cpu_data();
2268#endif
2269
2270	if (tlb_type == hypervisor) {
2271		sun4v_mdesc_init();
2272		mdesc_populate_present_mask(cpu_all_mask);
2273#ifndef CONFIG_SMP
2274		mdesc_fill_in_cpu_data(cpu_all_mask);
2275#endif
2276		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2277
2278		sun4v_linear_pte_xor_finalize();
2279
2280		sun4v_ktsb_init();
2281		sun4v_ktsb_register();
2282	} else {
2283		unsigned long impl, ver;
2284
2285		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2286				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2287
2288		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2289		impl = ((ver >> 32) & 0xffff);
2290		if (impl == PANTHER_IMPL)
2291			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2292					  HV_PGSZ_MASK_256MB);
2293
2294		sun4u_linear_pte_xor_finalize();
2295	}
2296
2297	/* Flush the TLBs and the 4M TSB so that the updated linear
2298	 * pte XOR settings are realized for all mappings.
 
2299	 */
2300	__flush_tlb_all();
2301#ifndef CONFIG_DEBUG_PAGEALLOC
2302	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2303#endif
2304	__flush_tlb_all();
2305
2306	/* Setup bootmem... */
2307	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2308
 
 
 
2309	kernel_physical_mapping_init();
2310
2311	{
2312		unsigned long max_zone_pfns[MAX_NR_ZONES];
2313
2314		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2315
2316		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2317
2318		free_area_init_nodes(max_zone_pfns);
2319	}
2320
2321	printk("Booting Linux...\n");
2322}
2323
2324int page_in_phys_avail(unsigned long paddr)
2325{
2326	int i;
2327
2328	paddr &= PAGE_MASK;
2329
2330	for (i = 0; i < pavail_ents; i++) {
2331		unsigned long start, end;
2332
2333		start = pavail[i].phys_addr;
2334		end = start + pavail[i].reg_size;
2335
2336		if (paddr >= start && paddr < end)
2337			return 1;
2338	}
2339	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2340		return 1;
2341#ifdef CONFIG_BLK_DEV_INITRD
2342	if (paddr >= __pa(initrd_start) &&
2343	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2344		return 1;
2345#endif
2346
2347	return 0;
2348}
2349
2350static void __init register_page_bootmem_info(void)
 
 
 
 
 
 
 
 
 
2351{
2352#ifdef CONFIG_NEED_MULTIPLE_NODES
2353	int i;
2354
2355	for_each_online_node(i)
2356		if (NODE_DATA(i)->node_spanned_pages)
2357			register_page_bootmem_info_node(NODE_DATA(i));
2358#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2359}
 
2360void __init mem_init(void)
2361{
 
 
 
 
 
 
 
 
 
 
 
 
 
2362	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2363
2364	register_page_bootmem_info();
2365	free_all_bootmem();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2366
2367	/*
2368	 * Set up the zero page, mark it reserved, so that page count
2369	 * is not manipulated when freeing the page from user ptes.
2370	 */
2371	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2372	if (mem_map_zero == NULL) {
2373		prom_printf("paging_init: Cannot alloc zero page.\n");
2374		prom_halt();
2375	}
2376	mark_page_reserved(mem_map_zero);
2377
2378	mem_init_print_info(NULL);
 
 
 
 
 
 
 
 
 
 
 
 
2379
2380	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2381		cheetah_ecache_flush_init();
2382}
2383
2384void free_initmem(void)
2385{
2386	unsigned long addr, initend;
2387	int do_free = 1;
2388
2389	/* If the physical memory maps were trimmed by kernel command
2390	 * line options, don't even try freeing this initmem stuff up.
2391	 * The kernel image could have been in the trimmed out region
2392	 * and if so the freeing below will free invalid page structs.
2393	 */
2394	if (cmdline_memory_size)
2395		do_free = 0;
2396
2397	/*
2398	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2399	 */
2400	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2401	initend = (unsigned long)(__init_end) & PAGE_MASK;
2402	for (; addr < initend; addr += PAGE_SIZE) {
2403		unsigned long page;
 
2404
2405		page = (addr +
2406			((unsigned long) __va(kern_base)) -
2407			((unsigned long) KERNBASE));
2408		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2409
2410		if (do_free)
2411			free_reserved_page(virt_to_page(page));
 
 
 
 
 
 
 
2412	}
2413}
2414
2415#ifdef CONFIG_BLK_DEV_INITRD
2416void free_initrd_mem(unsigned long start, unsigned long end)
2417{
2418	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2419			   "initrd");
 
 
 
 
 
 
 
 
 
2420}
2421#endif
2422
 
 
 
 
 
 
 
2423pgprot_t PAGE_KERNEL __read_mostly;
2424EXPORT_SYMBOL(PAGE_KERNEL);
2425
2426pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2427pgprot_t PAGE_COPY __read_mostly;
2428
2429pgprot_t PAGE_SHARED __read_mostly;
2430EXPORT_SYMBOL(PAGE_SHARED);
2431
2432unsigned long pg_iobits __read_mostly;
2433
2434unsigned long _PAGE_IE __read_mostly;
2435EXPORT_SYMBOL(_PAGE_IE);
2436
2437unsigned long _PAGE_E __read_mostly;
2438EXPORT_SYMBOL(_PAGE_E);
2439
2440unsigned long _PAGE_CACHE __read_mostly;
2441EXPORT_SYMBOL(_PAGE_CACHE);
2442
2443#ifdef CONFIG_SPARSEMEM_VMEMMAP
2444int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2445			       int node)
 
2446{
 
 
 
 
 
 
2447	unsigned long pte_base;
2448
2449	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2450		    _PAGE_CP_4U | _PAGE_CV_4U |
2451		    _PAGE_P_4U | _PAGE_W_4U);
2452	if (tlb_type == hypervisor)
2453		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2454			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
 
2455
2456	pte_base |= _PAGE_PMD_HUGE;
 
 
 
2457
2458	vstart = vstart & PMD_MASK;
2459	vend = ALIGN(vend, PMD_SIZE);
2460	for (; vstart < vend; vstart += PMD_SIZE) {
2461		pgd_t *pgd = pgd_offset_k(vstart);
2462		unsigned long pte;
2463		pud_t *pud;
2464		pmd_t *pmd;
2465
2466		if (pgd_none(*pgd)) {
2467			pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2468
2469			if (!new)
2470				return -ENOMEM;
2471			pgd_populate(&init_mm, pgd, new);
2472		}
2473
2474		pud = pud_offset(pgd, vstart);
2475		if (pud_none(*pud)) {
2476			pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2477
2478			if (!new)
2479				return -ENOMEM;
2480			pud_populate(&init_mm, pud, new);
2481		}
2482
2483		pmd = pmd_offset(pud, vstart);
2484
2485		pte = pmd_val(*pmd);
2486		if (!(pte & _PAGE_VALID)) {
2487			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2488
2489			if (!block)
2490				return -ENOMEM;
2491
2492			pmd_val(*pmd) = pte_base | __pa(block);
 
2493		}
2494	}
2495
2496	return 0;
2497}
2498
2499void vmemmap_free(unsigned long start, unsigned long end)
2500{
2501}
2502#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2503
2504static void prot_init_common(unsigned long page_none,
2505			     unsigned long page_shared,
2506			     unsigned long page_copy,
2507			     unsigned long page_readonly,
2508			     unsigned long page_exec_bit)
2509{
2510	PAGE_COPY = __pgprot(page_copy);
2511	PAGE_SHARED = __pgprot(page_shared);
2512
2513	protection_map[0x0] = __pgprot(page_none);
2514	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2515	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2516	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2517	protection_map[0x4] = __pgprot(page_readonly);
2518	protection_map[0x5] = __pgprot(page_readonly);
2519	protection_map[0x6] = __pgprot(page_copy);
2520	protection_map[0x7] = __pgprot(page_copy);
2521	protection_map[0x8] = __pgprot(page_none);
2522	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2523	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2524	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2525	protection_map[0xc] = __pgprot(page_readonly);
2526	protection_map[0xd] = __pgprot(page_readonly);
2527	protection_map[0xe] = __pgprot(page_shared);
2528	protection_map[0xf] = __pgprot(page_shared);
2529}
2530
2531static void __init sun4u_pgprot_init(void)
2532{
2533	unsigned long page_none, page_shared, page_copy, page_readonly;
2534	unsigned long page_exec_bit;
2535	int i;
2536
2537	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2538				_PAGE_CACHE_4U | _PAGE_P_4U |
2539				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2540				_PAGE_EXEC_4U);
2541	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2542				       _PAGE_CACHE_4U | _PAGE_P_4U |
2543				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2544				       _PAGE_EXEC_4U | _PAGE_L_4U);
2545
2546	_PAGE_IE = _PAGE_IE_4U;
2547	_PAGE_E = _PAGE_E_4U;
2548	_PAGE_CACHE = _PAGE_CACHE_4U;
2549
2550	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2551		     __ACCESS_BITS_4U | _PAGE_E_4U);
2552
2553#ifdef CONFIG_DEBUG_PAGEALLOC
2554	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
 
2555#else
2556	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2557		PAGE_OFFSET;
2558#endif
2559	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2560				   _PAGE_P_4U | _PAGE_W_4U);
2561
2562	for (i = 1; i < 4; i++)
2563		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2564
 
2565	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2566			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2567			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2568
2569
2570	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2571	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2572		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2573	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2574		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2575	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2576			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2577
2578	page_exec_bit = _PAGE_EXEC_4U;
2579
2580	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2581			 page_exec_bit);
2582}
2583
2584static void __init sun4v_pgprot_init(void)
2585{
2586	unsigned long page_none, page_shared, page_copy, page_readonly;
2587	unsigned long page_exec_bit;
2588	int i;
2589
2590	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2591				page_cache4v_flag | _PAGE_P_4V |
2592				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2593				_PAGE_EXEC_4V);
2594	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2595
2596	_PAGE_IE = _PAGE_IE_4V;
2597	_PAGE_E = _PAGE_E_4V;
2598	_PAGE_CACHE = page_cache4v_flag;
2599
2600#ifdef CONFIG_DEBUG_PAGEALLOC
2601	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
 
2602#else
2603	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2604		PAGE_OFFSET;
2605#endif
2606	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2607				   _PAGE_W_4V);
2608
2609	for (i = 1; i < 4; i++)
2610		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
 
 
 
 
 
 
 
2611
2612	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2613		     __ACCESS_BITS_4V | _PAGE_E_4V);
2614
 
2615	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2616			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2617			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2618			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2619
2620	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2621	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2622		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2623	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2624		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2625	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2626			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2627
2628	page_exec_bit = _PAGE_EXEC_4V;
2629
2630	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2631			 page_exec_bit);
2632}
2633
2634unsigned long pte_sz_bits(unsigned long sz)
2635{
2636	if (tlb_type == hypervisor) {
2637		switch (sz) {
2638		case 8 * 1024:
2639		default:
2640			return _PAGE_SZ8K_4V;
2641		case 64 * 1024:
2642			return _PAGE_SZ64K_4V;
2643		case 512 * 1024:
2644			return _PAGE_SZ512K_4V;
2645		case 4 * 1024 * 1024:
2646			return _PAGE_SZ4MB_4V;
2647		}
2648	} else {
2649		switch (sz) {
2650		case 8 * 1024:
2651		default:
2652			return _PAGE_SZ8K_4U;
2653		case 64 * 1024:
2654			return _PAGE_SZ64K_4U;
2655		case 512 * 1024:
2656			return _PAGE_SZ512K_4U;
2657		case 4 * 1024 * 1024:
2658			return _PAGE_SZ4MB_4U;
2659		}
2660	}
2661}
2662
2663pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2664{
2665	pte_t pte;
2666
2667	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2668	pte_val(pte) |= (((unsigned long)space) << 32);
2669	pte_val(pte) |= pte_sz_bits(page_size);
2670
2671	return pte;
2672}
2673
2674static unsigned long kern_large_tte(unsigned long paddr)
2675{
2676	unsigned long val;
2677
2678	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2679	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2680	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2681	if (tlb_type == hypervisor)
2682		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2683		       page_cache4v_flag | _PAGE_P_4V |
2684		       _PAGE_EXEC_4V | _PAGE_W_4V);
2685
2686	return val | paddr;
2687}
2688
2689/* If not locked, zap it. */
2690void __flush_tlb_all(void)
2691{
2692	unsigned long pstate;
2693	int i;
2694
2695	__asm__ __volatile__("flushw\n\t"
2696			     "rdpr	%%pstate, %0\n\t"
2697			     "wrpr	%0, %1, %%pstate"
2698			     : "=r" (pstate)
2699			     : "i" (PSTATE_IE));
2700	if (tlb_type == hypervisor) {
2701		sun4v_mmu_demap_all();
2702	} else if (tlb_type == spitfire) {
2703		for (i = 0; i < 64; i++) {
2704			/* Spitfire Errata #32 workaround */
2705			/* NOTE: Always runs on spitfire, so no
2706			 *       cheetah+ page size encodings.
2707			 */
2708			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2709					     "flush	%%g6"
2710					     : /* No outputs */
2711					     : "r" (0),
2712					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2713
2714			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2715				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2716						     "membar #Sync"
2717						     : /* no outputs */
2718						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2719				spitfire_put_dtlb_data(i, 0x0UL);
2720			}
2721
2722			/* Spitfire Errata #32 workaround */
2723			/* NOTE: Always runs on spitfire, so no
2724			 *       cheetah+ page size encodings.
2725			 */
2726			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2727					     "flush	%%g6"
2728					     : /* No outputs */
2729					     : "r" (0),
2730					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2731
2732			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2733				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2734						     "membar #Sync"
2735						     : /* no outputs */
2736						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2737				spitfire_put_itlb_data(i, 0x0UL);
2738			}
2739		}
2740	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2741		cheetah_flush_dtlb_all();
2742		cheetah_flush_itlb_all();
2743	}
2744	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2745			     : : "r" (pstate));
2746}
2747
2748pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2749			    unsigned long address)
2750{
2751	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2752	pte_t *pte = NULL;
2753
2754	if (page)
2755		pte = (pte_t *) page_address(page);
2756
2757	return pte;
2758}
2759
2760pgtable_t pte_alloc_one(struct mm_struct *mm,
2761			unsigned long address)
2762{
2763	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2764	if (!page)
2765		return NULL;
2766	if (!pgtable_page_ctor(page)) {
2767		free_hot_cold_page(page, 0);
2768		return NULL;
2769	}
2770	return (pte_t *) page_address(page);
2771}
2772
2773void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2774{
2775	free_page((unsigned long)pte);
2776}
2777
2778static void __pte_free(pgtable_t pte)
2779{
2780	struct page *page = virt_to_page(pte);
2781
2782	pgtable_page_dtor(page);
2783	__free_page(page);
2784}
2785
2786void pte_free(struct mm_struct *mm, pgtable_t pte)
2787{
2788	__pte_free(pte);
2789}
2790
2791void pgtable_free(void *table, bool is_page)
2792{
2793	if (is_page)
2794		__pte_free(table);
2795	else
2796		kmem_cache_free(pgtable_cache, table);
2797}
2798
2799#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2800void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2801			  pmd_t *pmd)
2802{
2803	unsigned long pte, flags;
2804	struct mm_struct *mm;
2805	pmd_t entry = *pmd;
2806
2807	if (!pmd_large(entry) || !pmd_young(entry))
2808		return;
2809
2810	pte = pmd_val(entry);
2811
2812	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2813	if (!(pte & _PAGE_VALID))
2814		return;
2815
2816	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2817	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2818
2819	mm = vma->vm_mm;
2820
2821	spin_lock_irqsave(&mm->context.lock, flags);
2822
2823	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2824		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2825					addr, pte);
2826
2827	spin_unlock_irqrestore(&mm->context.lock, flags);
2828}
2829#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2830
2831#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2832static void context_reload(void *__data)
2833{
2834	struct mm_struct *mm = __data;
2835
2836	if (mm == current->mm)
2837		load_secondary_context(mm);
2838}
2839
2840void hugetlb_setup(struct pt_regs *regs)
2841{
2842	struct mm_struct *mm = current->mm;
2843	struct tsb_config *tp;
2844
2845	if (faulthandler_disabled() || !mm) {
2846		const struct exception_table_entry *entry;
2847
2848		entry = search_exception_tables(regs->tpc);
2849		if (entry) {
2850			regs->tpc = entry->fixup;
2851			regs->tnpc = regs->tpc + 4;
2852			return;
2853		}
2854		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2855		die_if_kernel("HugeTSB in atomic", regs);
2856	}
2857
2858	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2859	if (likely(tp->tsb == NULL))
2860		tsb_grow(mm, MM_TSB_HUGE, 0);
2861
2862	tsb_context_switch(mm);
2863	smp_tsb_sync(mm);
2864
2865	/* On UltraSPARC-III+ and later, configure the second half of
2866	 * the Data-TLB for huge pages.
2867	 */
2868	if (tlb_type == cheetah_plus) {
2869		bool need_context_reload = false;
2870		unsigned long ctx;
2871
2872		spin_lock_irq(&ctx_alloc_lock);
2873		ctx = mm->context.sparc64_ctx_val;
2874		ctx &= ~CTX_PGSZ_MASK;
2875		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2876		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2877
2878		if (ctx != mm->context.sparc64_ctx_val) {
2879			/* When changing the page size fields, we
2880			 * must perform a context flush so that no
2881			 * stale entries match.  This flush must
2882			 * occur with the original context register
2883			 * settings.
2884			 */
2885			do_flush_tlb_mm(mm);
2886
2887			/* Reload the context register of all processors
2888			 * also executing in this address space.
2889			 */
2890			mm->context.sparc64_ctx_val = ctx;
2891			need_context_reload = true;
2892		}
2893		spin_unlock_irq(&ctx_alloc_lock);
2894
2895		if (need_context_reload)
2896			on_each_cpu(context_reload, mm, 0);
2897	}
2898}
2899#endif
2900
2901static struct resource code_resource = {
2902	.name	= "Kernel code",
2903	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2904};
2905
2906static struct resource data_resource = {
2907	.name	= "Kernel data",
2908	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2909};
2910
2911static struct resource bss_resource = {
2912	.name	= "Kernel bss",
2913	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2914};
2915
2916static inline resource_size_t compute_kern_paddr(void *addr)
2917{
2918	return (resource_size_t) (addr - KERNBASE + kern_base);
2919}
2920
2921static void __init kernel_lds_init(void)
2922{
2923	code_resource.start = compute_kern_paddr(_text);
2924	code_resource.end   = compute_kern_paddr(_etext - 1);
2925	data_resource.start = compute_kern_paddr(_etext);
2926	data_resource.end   = compute_kern_paddr(_edata - 1);
2927	bss_resource.start  = compute_kern_paddr(__bss_start);
2928	bss_resource.end    = compute_kern_paddr(_end - 1);
2929}
2930
2931static int __init report_memory(void)
2932{
2933	int i;
2934	struct resource *res;
2935
2936	kernel_lds_init();
2937
2938	for (i = 0; i < pavail_ents; i++) {
2939		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2940
2941		if (!res) {
2942			pr_warn("Failed to allocate source.\n");
2943			break;
2944		}
2945
2946		res->name = "System RAM";
2947		res->start = pavail[i].phys_addr;
2948		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2949		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
2950
2951		if (insert_resource(&iomem_resource, res) < 0) {
2952			pr_warn("Resource insertion failed.\n");
2953			break;
2954		}
2955
2956		insert_resource(res, &code_resource);
2957		insert_resource(res, &data_resource);
2958		insert_resource(res, &bss_resource);
2959	}
2960
2961	return 0;
2962}
2963arch_initcall(report_memory);
2964
2965#ifdef CONFIG_SMP
2966#define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
2967#else
2968#define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
2969#endif
2970
2971void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2972{
2973	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2974		if (start < LOW_OBP_ADDRESS) {
2975			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2976			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2977		}
2978		if (end > HI_OBP_ADDRESS) {
2979			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2980			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2981		}
2982	} else {
2983		flush_tsb_kernel_range(start, end);
2984		do_flush_tlb_kernel_range(start, end);
2985	}
2986}