Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_bit.h"
  21#include "xfs_log.h"
  22#include "xfs_inum.h"
  23#include "xfs_sb.h"
  24#include "xfs_ag.h"
  25#include "xfs_trans.h"
  26#include "xfs_mount.h"
  27#include "xfs_bmap_btree.h"
  28#include "xfs_alloc.h"
  29#include "xfs_dinode.h"
  30#include "xfs_inode.h"
 
  31#include "xfs_inode_item.h"
  32#include "xfs_bmap.h"
  33#include "xfs_error.h"
  34#include "xfs_vnodeops.h"
  35#include "xfs_da_btree.h"
  36#include "xfs_ioctl.h"
  37#include "xfs_trace.h"
 
 
 
 
 
  38
  39#include <linux/dcache.h>
  40#include <linux/falloc.h>
 
 
 
  41
  42static const struct vm_operations_struct xfs_file_vm_ops;
  43
  44/*
  45 * Locking primitives for read and write IO paths to ensure we consistently use
  46 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
  47 */
  48static inline void
  49xfs_rw_ilock(
  50	struct xfs_inode	*ip,
  51	int			type)
  52{
  53	if (type & XFS_IOLOCK_EXCL)
  54		mutex_lock(&VFS_I(ip)->i_mutex);
  55	xfs_ilock(ip, type);
  56}
  57
  58static inline void
  59xfs_rw_iunlock(
  60	struct xfs_inode	*ip,
  61	int			type)
  62{
  63	xfs_iunlock(ip, type);
  64	if (type & XFS_IOLOCK_EXCL)
  65		mutex_unlock(&VFS_I(ip)->i_mutex);
  66}
  67
  68static inline void
  69xfs_rw_ilock_demote(
  70	struct xfs_inode	*ip,
  71	int			type)
  72{
  73	xfs_ilock_demote(ip, type);
  74	if (type & XFS_IOLOCK_EXCL)
  75		mutex_unlock(&VFS_I(ip)->i_mutex);
 
 
 
 
 
 
 
 
 
 
 
  76}
  77
  78/*
  79 *	xfs_iozero
  80 *
  81 *	xfs_iozero clears the specified range of buffer supplied,
  82 *	and marks all the affected blocks as valid and modified.  If
  83 *	an affected block is not allocated, it will be allocated.  If
  84 *	an affected block is not completely overwritten, and is not
  85 *	valid before the operation, it will be read from disk before
  86 *	being partially zeroed.
  87 */
  88STATIC int
  89xfs_iozero(
  90	struct xfs_inode	*ip,	/* inode			*/
  91	loff_t			pos,	/* offset in file		*/
  92	size_t			count)	/* size of data to zero		*/
 
  93{
  94	struct page		*page;
  95	struct address_space	*mapping;
  96	int			status;
  97
  98	mapping = VFS_I(ip)->i_mapping;
  99	do {
 100		unsigned offset, bytes;
 101		void *fsdata;
 102
 103		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
 104		bytes = PAGE_CACHE_SIZE - offset;
 105		if (bytes > count)
 106			bytes = count;
 107
 108		status = pagecache_write_begin(NULL, mapping, pos, bytes,
 109					AOP_FLAG_UNINTERRUPTIBLE,
 110					&page, &fsdata);
 111		if (status)
 112			break;
 113
 114		zero_user(page, offset, bytes);
 115
 116		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
 117					page, fsdata);
 118		WARN_ON(status <= 0); /* can't return less than zero! */
 119		pos += bytes;
 120		count -= bytes;
 121		status = 0;
 122	} while (count);
 123
 124	return (-status);
 125}
 126
 127STATIC int
 128xfs_file_fsync(
 129	struct file		*file,
 130	loff_t			start,
 131	loff_t			end,
 132	int			datasync)
 133{
 134	struct inode		*inode = file->f_mapping->host;
 135	struct xfs_inode	*ip = XFS_I(inode);
 
 136	struct xfs_mount	*mp = ip->i_mount;
 137	struct xfs_trans	*tp;
 138	int			error = 0;
 139	int			log_flushed = 0;
 
 140
 141	trace_xfs_file_fsync(ip);
 142
 143	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
 144	if (error)
 145		return error;
 146
 147	if (XFS_FORCED_SHUTDOWN(mp))
 148		return -XFS_ERROR(EIO);
 149
 150	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 151
 152	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 153	xfs_ioend_wait(ip);
 154	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 155
 156	if (mp->m_flags & XFS_MOUNT_BARRIER) {
 157		/*
 158		 * If we have an RT and/or log subvolume we need to make sure
 159		 * to flush the write cache the device used for file data
 160		 * first.  This is to ensure newly written file data make
 161		 * it to disk before logging the new inode size in case of
 162		 * an extending write.
 163		 */
 164		if (XFS_IS_REALTIME_INODE(ip))
 165			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 166		else if (mp->m_logdev_targp != mp->m_ddev_targp)
 167			xfs_blkdev_issue_flush(mp->m_ddev_targp);
 168	}
 169
 170	/*
 171	 * We always need to make sure that the required inode state is safe on
 172	 * disk.  The inode might be clean but we still might need to force the
 173	 * log because of committed transactions that haven't hit the disk yet.
 174	 * Likewise, there could be unflushed non-transactional changes to the
 175	 * inode core that have to go to disk and this requires us to issue
 176	 * a synchronous transaction to capture these changes correctly.
 177	 *
 178	 * This code relies on the assumption that if the i_update_core field
 179	 * of the inode is clear and the inode is unpinned then it is clean
 180	 * and no action is required.
 181	 */
 182	xfs_ilock(ip, XFS_ILOCK_SHARED);
 
 
 
 183
 184	/*
 185	 * First check if the VFS inode is marked dirty.  All the dirtying
 186	 * of non-transactional updates no goes through mark_inode_dirty*,
 187	 * which allows us to distinguish beteeen pure timestamp updates
 188	 * and i_size updates which need to be caught for fdatasync.
 189	 * After that also theck for the dirty state in the XFS inode, which
 190	 * might gets cleared when the inode gets written out via the AIL
 191	 * or xfs_iflush_cluster.
 192	 */
 193	if (((inode->i_state & I_DIRTY_DATASYNC) ||
 194	    ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
 195	    ip->i_update_core) {
 196		/*
 197		 * Kick off a transaction to log the inode core to get the
 198		 * updates.  The sync transaction will also force the log.
 199		 */
 200		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 201		tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
 202		error = xfs_trans_reserve(tp, 0,
 203				XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
 204		if (error) {
 205			xfs_trans_cancel(tp, 0);
 206			return -error;
 207		}
 208		xfs_ilock(ip, XFS_ILOCK_EXCL);
 209
 210		/*
 211		 * Note - it's possible that we might have pushed ourselves out
 212		 * of the way during trans_reserve which would flush the inode.
 213		 * But there's no guarantee that the inode buffer has actually
 214		 * gone out yet (it's delwri).	Plus the buffer could be pinned
 215		 * anyway if it's part of an inode in another recent
 216		 * transaction.	 So we play it safe and fire off the
 217		 * transaction anyway.
 218		 */
 219		xfs_trans_ijoin(tp, ip);
 220		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 221		xfs_trans_set_sync(tp);
 222		error = _xfs_trans_commit(tp, 0, &log_flushed);
 223
 224		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 225	} else {
 226		/*
 227		 * Timestamps/size haven't changed since last inode flush or
 228		 * inode transaction commit.  That means either nothing got
 229		 * written or a transaction committed which caught the updates.
 230		 * If the latter happened and the transaction hasn't hit the
 231		 * disk yet, the inode will be still be pinned.  If it is,
 232		 * force the log.
 233		 */
 234		if (xfs_ipincount(ip)) {
 235			error = _xfs_log_force_lsn(mp,
 236					ip->i_itemp->ili_last_lsn,
 237					XFS_LOG_SYNC, &log_flushed);
 238		}
 239		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 240	}
 
 241
 242	/*
 243	 * If we only have a single device, and the log force about was
 244	 * a no-op we might have to flush the data device cache here.
 245	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 246	 * an already allocated file and thus do not have any metadata to
 247	 * commit.
 248	 */
 249	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
 250	    mp->m_logdev_targp == mp->m_ddev_targp &&
 251	    !XFS_IS_REALTIME_INODE(ip) &&
 252	    !log_flushed)
 253		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 254
 255	return -error;
 256}
 257
 258STATIC ssize_t
 259xfs_file_aio_read(
 260	struct kiocb		*iocb,
 261	const struct iovec	*iovp,
 262	unsigned long		nr_segs,
 263	loff_t			pos)
 264{
 265	struct file		*file = iocb->ki_filp;
 266	struct inode		*inode = file->f_mapping->host;
 267	struct xfs_inode	*ip = XFS_I(inode);
 268	struct xfs_mount	*mp = ip->i_mount;
 269	size_t			size = 0;
 270	ssize_t			ret = 0;
 271	int			ioflags = 0;
 272	xfs_fsize_t		n;
 273	unsigned long		seg;
 274
 275	XFS_STATS_INC(xs_read_calls);
 276
 277	BUG_ON(iocb->ki_pos != pos);
 278
 279	if (unlikely(file->f_flags & O_DIRECT))
 280		ioflags |= IO_ISDIRECT;
 281	if (file->f_mode & FMODE_NOCMTIME)
 282		ioflags |= IO_INVIS;
 283
 284	/* START copy & waste from filemap.c */
 285	for (seg = 0; seg < nr_segs; seg++) {
 286		const struct iovec *iv = &iovp[seg];
 287
 288		/*
 289		 * If any segment has a negative length, or the cumulative
 290		 * length ever wraps negative then return -EINVAL.
 291		 */
 292		size += iv->iov_len;
 293		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
 294			return XFS_ERROR(-EINVAL);
 295	}
 296	/* END copy & waste from filemap.c */
 297
 298	if (unlikely(ioflags & IO_ISDIRECT)) {
 299		xfs_buftarg_t	*target =
 300			XFS_IS_REALTIME_INODE(ip) ?
 301				mp->m_rtdev_targp : mp->m_ddev_targp;
 302		if ((iocb->ki_pos & target->bt_smask) ||
 303		    (size & target->bt_smask)) {
 304			if (iocb->ki_pos == ip->i_size)
 305				return 0;
 306			return -XFS_ERROR(EINVAL);
 307		}
 308	}
 309
 310	n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
 311	if (n <= 0 || size == 0)
 312		return 0;
 313
 314	if (n < size)
 315		size = n;
 316
 317	if (XFS_FORCED_SHUTDOWN(mp))
 318		return -EIO;
 319
 320	if (unlikely(ioflags & IO_ISDIRECT)) {
 321		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
 322
 323		if (inode->i_mapping->nrpages) {
 324			ret = -xfs_flushinval_pages(ip,
 325					(iocb->ki_pos & PAGE_CACHE_MASK),
 326					-1, FI_REMAPF_LOCKED);
 327			if (ret) {
 328				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
 329				return ret;
 330			}
 331		}
 332		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 333	} else
 334		xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 335
 336	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
 337
 338	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
 339	if (ret > 0)
 340		XFS_STATS_ADD(xs_read_bytes, ret);
 
 
 
 
 
 
 341
 342	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 343	return ret;
 344}
 345
 346STATIC ssize_t
 347xfs_file_splice_read(
 348	struct file		*infilp,
 349	loff_t			*ppos,
 350	struct pipe_inode_info	*pipe,
 351	size_t			count,
 352	unsigned int		flags)
 353{
 354	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
 355	int			ioflags = 0;
 356	ssize_t			ret;
 357
 358	XFS_STATS_INC(xs_read_calls);
 359
 360	if (infilp->f_mode & FMODE_NOCMTIME)
 361		ioflags |= IO_INVIS;
 362
 363	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 364		return -EIO;
 365
 366	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 367
 368	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
 369
 370	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
 371	if (ret > 0)
 372		XFS_STATS_ADD(xs_read_bytes, ret);
 373
 374	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 375	return ret;
 376}
 377
 378STATIC void
 379xfs_aio_write_isize_update(
 380	struct inode	*inode,
 381	loff_t		*ppos,
 382	ssize_t		bytes_written)
 383{
 384	struct xfs_inode	*ip = XFS_I(inode);
 385	xfs_fsize_t		isize = i_size_read(inode);
 386
 387	if (bytes_written > 0)
 388		XFS_STATS_ADD(xs_write_bytes, bytes_written);
 389
 390	if (unlikely(bytes_written < 0 && bytes_written != -EFAULT &&
 391					*ppos > isize))
 392		*ppos = isize;
 393
 394	if (*ppos > ip->i_size) {
 395		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
 396		if (*ppos > ip->i_size)
 397			ip->i_size = *ppos;
 398		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
 399	}
 400}
 
 401
 402/*
 403 * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
 404 * part of the I/O may have been written to disk before the error occurred.  In
 405 * this case the on-disk file size may have been adjusted beyond the in-memory
 406 * file size and now needs to be truncated back.
 407 */
 408STATIC void
 409xfs_aio_write_newsize_update(
 410	struct xfs_inode	*ip)
 411{
 412	if (ip->i_new_size) {
 413		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
 414		ip->i_new_size = 0;
 415		if (ip->i_d.di_size > ip->i_size)
 416			ip->i_d.di_size = ip->i_size;
 417		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
 418	}
 419}
 420
 421/*
 422 * xfs_file_splice_write() does not use xfs_rw_ilock() because
 423 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
 424 * couuld cause lock inversions between the aio_write path and the splice path
 425 * if someone is doing concurrent splice(2) based writes and write(2) based
 426 * writes to the same inode. The only real way to fix this is to re-implement
 427 * the generic code here with correct locking orders.
 428 */
 429STATIC ssize_t
 430xfs_file_splice_write(
 431	struct pipe_inode_info	*pipe,
 432	struct file		*outfilp,
 433	loff_t			*ppos,
 434	size_t			count,
 435	unsigned int		flags)
 436{
 437	struct inode		*inode = outfilp->f_mapping->host;
 438	struct xfs_inode	*ip = XFS_I(inode);
 439	xfs_fsize_t		new_size;
 440	int			ioflags = 0;
 441	ssize_t			ret;
 442
 443	XFS_STATS_INC(xs_write_calls);
 444
 445	if (outfilp->f_mode & FMODE_NOCMTIME)
 446		ioflags |= IO_INVIS;
 447
 448	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 449		return -EIO;
 450
 451	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 452
 453	new_size = *ppos + count;
 454
 455	xfs_ilock(ip, XFS_ILOCK_EXCL);
 456	if (new_size > ip->i_size)
 457		ip->i_new_size = new_size;
 458	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 459
 460	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
 461
 462	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
 463
 464	xfs_aio_write_isize_update(inode, ppos, ret);
 465	xfs_aio_write_newsize_update(ip);
 466	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 467	return ret;
 468}
 469
 470/*
 471 * This routine is called to handle zeroing any space in the last
 472 * block of the file that is beyond the EOF.  We do this since the
 473 * size is being increased without writing anything to that block
 474 * and we don't want anyone to read the garbage on the disk.
 
 475 */
 476STATIC int				/* error (positive) */
 477xfs_zero_last_block(
 478	xfs_inode_t	*ip,
 479	xfs_fsize_t	offset,
 480	xfs_fsize_t	isize)
 481{
 482	xfs_fileoff_t	last_fsb;
 483	xfs_mount_t	*mp = ip->i_mount;
 484	int		nimaps;
 485	int		zero_offset;
 486	int		zero_len;
 487	int		error = 0;
 488	xfs_bmbt_irec_t	imap;
 489
 490	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 491
 492	zero_offset = XFS_B_FSB_OFFSET(mp, isize);
 493	if (zero_offset == 0) {
 494		/*
 495		 * There are no extra bytes in the last block on disk to
 496		 * zero, so return.
 497		 */
 498		return 0;
 499	}
 500
 501	last_fsb = XFS_B_TO_FSBT(mp, isize);
 502	nimaps = 1;
 503	error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
 504			  &nimaps, NULL);
 505	if (error) {
 506		return error;
 507	}
 508	ASSERT(nimaps > 0);
 509	/*
 510	 * If the block underlying isize is just a hole, then there
 511	 * is nothing to zero.
 512	 */
 513	if (imap.br_startblock == HOLESTARTBLOCK) {
 514		return 0;
 515	}
 516	/*
 517	 * Zero the part of the last block beyond the EOF, and write it
 518	 * out sync.  We need to drop the ilock while we do this so we
 519	 * don't deadlock when the buffer cache calls back to us.
 520	 */
 521	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 522
 523	zero_len = mp->m_sb.sb_blocksize - zero_offset;
 524	if (isize + zero_len > offset)
 525		zero_len = offset - isize;
 526	error = xfs_iozero(ip, isize, zero_len);
 527
 528	xfs_ilock(ip, XFS_ILOCK_EXCL);
 529	ASSERT(error >= 0);
 530	return error;
 531}
 532
 533/*
 534 * Zero any on disk space between the current EOF and the new,
 535 * larger EOF.  This handles the normal case of zeroing the remainder
 536 * of the last block in the file and the unusual case of zeroing blocks
 537 * out beyond the size of the file.  This second case only happens
 538 * with fixed size extents and when the system crashes before the inode
 539 * size was updated but after blocks were allocated.  If fill is set,
 540 * then any holes in the range are filled and zeroed.  If not, the holes
 541 * are left alone as holes.
 542 */
 543
 544int					/* error (positive) */
 545xfs_zero_eof(
 546	xfs_inode_t	*ip,
 547	xfs_off_t	offset,		/* starting I/O offset */
 548	xfs_fsize_t	isize)		/* current inode size */
 549{
 550	xfs_mount_t	*mp = ip->i_mount;
 551	xfs_fileoff_t	start_zero_fsb;
 552	xfs_fileoff_t	end_zero_fsb;
 553	xfs_fileoff_t	zero_count_fsb;
 554	xfs_fileoff_t	last_fsb;
 555	xfs_fileoff_t	zero_off;
 556	xfs_fsize_t	zero_len;
 557	int		nimaps;
 558	int		error = 0;
 559	xfs_bmbt_irec_t	imap;
 560
 561	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 562	ASSERT(offset > isize);
 563
 564	/*
 565	 * First handle zeroing the block on which isize resides.
 566	 * We only zero a part of that block so it is handled specially.
 567	 */
 568	error = xfs_zero_last_block(ip, offset, isize);
 569	if (error) {
 570		ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 571		return error;
 572	}
 573
 574	/*
 575	 * Calculate the range between the new size and the old
 576	 * where blocks needing to be zeroed may exist.  To get the
 577	 * block where the last byte in the file currently resides,
 578	 * we need to subtract one from the size and truncate back
 579	 * to a block boundary.  We subtract 1 in case the size is
 580	 * exactly on a block boundary.
 581	 */
 582	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
 583	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
 584	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
 585	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
 586	if (last_fsb == end_zero_fsb) {
 587		/*
 588		 * The size was only incremented on its last block.
 589		 * We took care of that above, so just return.
 590		 */
 591		return 0;
 592	}
 593
 594	ASSERT(start_zero_fsb <= end_zero_fsb);
 595	while (start_zero_fsb <= end_zero_fsb) {
 596		nimaps = 1;
 597		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
 598		error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
 599				  0, NULL, 0, &imap, &nimaps, NULL);
 600		if (error) {
 601			ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 602			return error;
 603		}
 604		ASSERT(nimaps > 0);
 605
 606		if (imap.br_state == XFS_EXT_UNWRITTEN ||
 607		    imap.br_startblock == HOLESTARTBLOCK) {
 
 
 
 
 
 
 
 
 
 
 
 608			/*
 609			 * This loop handles initializing pages that were
 610			 * partially initialized by the code below this
 611			 * loop. It basically zeroes the part of the page
 612			 * that sits on a hole and sets the page as P_HOLE
 613			 * and calls remapf if it is a mapped file.
 
 614			 */
 615			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 616			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 617			continue;
 618		}
 
 
 
 
 
 
 
 
 619
 620		/*
 621		 * There are blocks we need to zero.
 622		 * Drop the inode lock while we're doing the I/O.
 623		 * We'll still have the iolock to protect us.
 624		 */
 625		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 626
 627		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
 628		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
 629
 630		if ((zero_off + zero_len) > offset)
 631			zero_len = offset - zero_off;
 632
 633		error = xfs_iozero(ip, zero_off, zero_len);
 634		if (error) {
 635			goto out_lock;
 636		}
 637
 638		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 639		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 640
 641		xfs_ilock(ip, XFS_ILOCK_EXCL);
 642	}
 643
 644	return 0;
 645
 646out_lock:
 647	xfs_ilock(ip, XFS_ILOCK_EXCL);
 648	ASSERT(error >= 0);
 649	return error;
 650}
 651
 652/*
 653 * Common pre-write limit and setup checks.
 654 *
 655 * Returns with iolock held according to @iolock.
 656 */
 657STATIC ssize_t
 658xfs_file_aio_write_checks(
 659	struct file		*file,
 660	loff_t			*pos,
 661	size_t			*count,
 662	int			*iolock)
 663{
 664	struct inode		*inode = file->f_mapping->host;
 665	struct xfs_inode	*ip = XFS_I(inode);
 666	xfs_fsize_t		new_size;
 667	int			error = 0;
 668
 669	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
 670	if (error) {
 671		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
 672		*iolock = 0;
 673		return error;
 674	}
 675
 676	new_size = *pos + *count;
 677	if (new_size > ip->i_size)
 678		ip->i_new_size = new_size;
 679
 680	if (likely(!(file->f_mode & FMODE_NOCMTIME)))
 681		file_update_time(file);
 
 
 682
 683	/*
 684	 * If the offset is beyond the size of the file, we need to zero any
 685	 * blocks that fall between the existing EOF and the start of this
 686	 * write.
 687	 */
 688	if (*pos > ip->i_size)
 689		error = -xfs_zero_eof(ip, *pos, ip->i_size);
 690
 691	xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
 692	if (error)
 693		return error;
 
 
 
 
 
 
 
 
 
 694
 695	/*
 696	 * If we're writing the file then make sure to clear the setuid and
 697	 * setgid bits if the process is not being run by root.  This keeps
 698	 * people from modifying setuid and setgid binaries.
 
 699	 */
 700	return file_remove_suid(file);
 
 
 
 701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702}
 703
 
 
 
 
 704/*
 705 * xfs_file_dio_aio_write - handle direct IO writes
 706 *
 707 * Lock the inode appropriately to prepare for and issue a direct IO write.
 708 * By separating it from the buffered write path we remove all the tricky to
 709 * follow locking changes and looping.
 710 *
 711 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 712 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 713 * pages are flushed out.
 714 *
 715 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 716 * allowing them to be done in parallel with reads and other direct IO writes.
 717 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 718 * needs to do sub-block zeroing and that requires serialisation against other
 719 * direct IOs to the same block. In this case we need to serialise the
 720 * submission of the unaligned IOs so that we don't get racing block zeroing in
 721 * the dio layer.  To avoid the problem with aio, we also need to wait for
 722 * outstanding IOs to complete so that unwritten extent conversion is completed
 723 * before we try to map the overlapping block. This is currently implemented by
 724 * hitting it with a big hammer (i.e. xfs_ioend_wait()).
 725 *
 726 * Returns with locks held indicated by @iolock and errors indicated by
 727 * negative return values.
 728 */
 729STATIC ssize_t
 730xfs_file_dio_aio_write(
 731	struct kiocb		*iocb,
 732	const struct iovec	*iovp,
 733	unsigned long		nr_segs,
 734	loff_t			pos,
 735	size_t			ocount,
 736	int			*iolock)
 737{
 738	struct file		*file = iocb->ki_filp;
 739	struct address_space	*mapping = file->f_mapping;
 740	struct inode		*inode = mapping->host;
 741	struct xfs_inode	*ip = XFS_I(inode);
 742	struct xfs_mount	*mp = ip->i_mount;
 743	ssize_t			ret = 0;
 744	size_t			count = ocount;
 745	int			unaligned_io = 0;
 746	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
 747					mp->m_rtdev_targp : mp->m_ddev_targp;
 
 748
 749	*iolock = 0;
 750	if ((pos & target->bt_smask) || (count & target->bt_smask))
 751		return -XFS_ERROR(EINVAL);
 752
 753	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
 
 
 
 
 
 
 
 
 754		unaligned_io = 1;
 755
 756	if (unaligned_io || mapping->nrpages || pos > ip->i_size)
 757		*iolock = XFS_IOLOCK_EXCL;
 758	else
 759		*iolock = XFS_IOLOCK_SHARED;
 760	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761
 762	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
 763	if (ret)
 764		return ret;
 
 765
 766	if (mapping->nrpages) {
 767		WARN_ON(*iolock != XFS_IOLOCK_EXCL);
 768		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
 769							FI_REMAPF_LOCKED);
 770		if (ret)
 771			return ret;
 
 
 
 
 
 
 772	}
 773
 
 774	/*
 775	 * If we are doing unaligned IO, wait for all other IO to drain,
 776	 * otherwise demote the lock if we had to flush cached pages
 777	 */
 778	if (unaligned_io)
 779		xfs_ioend_wait(ip);
 780	else if (*iolock == XFS_IOLOCK_EXCL) {
 781		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 782		*iolock = XFS_IOLOCK_SHARED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 783	}
 784
 785	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
 786	ret = generic_file_direct_write(iocb, iovp,
 787			&nr_segs, pos, &iocb->ki_pos, count, ocount);
 788
 789	/* No fallback to buffered IO on errors for XFS. */
 790	ASSERT(ret < 0 || ret == count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791	return ret;
 792}
 793
 794STATIC ssize_t
 795xfs_file_buffered_aio_write(
 796	struct kiocb		*iocb,
 797	const struct iovec	*iovp,
 798	unsigned long		nr_segs,
 799	loff_t			pos,
 800	size_t			ocount,
 801	int			*iolock)
 802{
 803	struct file		*file = iocb->ki_filp;
 804	struct address_space	*mapping = file->f_mapping;
 805	struct inode		*inode = mapping->host;
 806	struct xfs_inode	*ip = XFS_I(inode);
 807	ssize_t			ret;
 808	int			enospc = 0;
 809	size_t			count = ocount;
 810
 811	*iolock = XFS_IOLOCK_EXCL;
 812	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
 813
 814	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
 
 
 
 
 815	if (ret)
 816		return ret;
 817
 818	/* We can write back this queue in page reclaim */
 819	current->backing_dev_info = mapping->backing_dev_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820
 821write_retry:
 822	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
 823	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
 824			pos, &iocb->ki_pos, count, ret);
 825	/*
 826	 * if we just got an ENOSPC, flush the inode now we aren't holding any
 827	 * page locks and retry *once*
 828	 */
 829	if (ret == -ENOSPC && !enospc) {
 830		ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
 831		if (ret)
 832			return ret;
 833		enospc = 1;
 
 
 
 
 
 
 834		goto write_retry;
 835	}
 
 836	current->backing_dev_info = NULL;
 
 
 
 
 
 
 
 
 
 837	return ret;
 838}
 839
 840STATIC ssize_t
 841xfs_file_aio_write(
 842	struct kiocb		*iocb,
 843	const struct iovec	*iovp,
 844	unsigned long		nr_segs,
 845	loff_t			pos)
 846{
 847	struct file		*file = iocb->ki_filp;
 848	struct address_space	*mapping = file->f_mapping;
 849	struct inode		*inode = mapping->host;
 850	struct xfs_inode	*ip = XFS_I(inode);
 851	ssize_t			ret;
 852	int			iolock;
 853	size_t			ocount = 0;
 854
 855	XFS_STATS_INC(xs_write_calls);
 856
 857	BUG_ON(iocb->ki_pos != pos);
 858
 859	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
 860	if (ret)
 861		return ret;
 862
 863	if (ocount == 0)
 864		return 0;
 865
 866	xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
 867
 868	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 869		return -EIO;
 870
 871	if (unlikely(file->f_flags & O_DIRECT))
 872		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos,
 873						ocount, &iolock);
 874	else
 875		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
 876						ocount, &iolock);
 877
 878	xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret);
 
 
 
 
 
 
 
 
 
 
 879
 880	if (ret <= 0)
 881		goto out_unlock;
 882
 883	/* Handle various SYNC-type writes */
 884	if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
 885		loff_t end = pos + ret - 1;
 886		int error;
 887
 888		xfs_rw_iunlock(ip, iolock);
 889		error = xfs_file_fsync(file, pos, end,
 890				      (file->f_flags & __O_SYNC) ? 0 : 1);
 891		xfs_rw_ilock(ip, iolock);
 892		if (error)
 893			ret = error;
 894	}
 895
 896out_unlock:
 897	xfs_aio_write_newsize_update(ip);
 898	xfs_rw_iunlock(ip, iolock);
 899	return ret;
 900}
 901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902STATIC long
 903xfs_file_fallocate(
 904	struct file	*file,
 905	int		mode,
 906	loff_t		offset,
 907	loff_t		len)
 908{
 909	struct inode	*inode = file->f_path.dentry->d_inode;
 910	long		error;
 911	loff_t		new_size = 0;
 912	xfs_flock64_t	bf;
 913	xfs_inode_t	*ip = XFS_I(inode);
 914	int		cmd = XFS_IOC_RESVSP;
 915	int		attr_flags = XFS_ATTR_NOLOCK;
 916
 917	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 
 
 918		return -EOPNOTSUPP;
 919
 920	bf.l_whence = 0;
 921	bf.l_start = offset;
 922	bf.l_len = len;
 923
 924	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 925
 926	if (mode & FALLOC_FL_PUNCH_HOLE)
 927		cmd = XFS_IOC_UNRESVSP;
 928
 929	/* check the new inode size is valid before allocating */
 930	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 931	    offset + len > i_size_read(inode)) {
 932		new_size = offset + len;
 933		error = inode_newsize_ok(inode, new_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934		if (error)
 935			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 936	}
 937
 938	if (file->f_flags & O_DSYNC)
 939		attr_flags |= XFS_ATTR_SYNC;
 940
 941	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
 942	if (error)
 943		goto out_unlock;
 944
 945	/* Change file size if needed */
 946	if (new_size) {
 947		struct iattr iattr;
 948
 949		iattr.ia_valid = ATTR_SIZE;
 950		iattr.ia_size = new_size;
 951		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
 
 
 952	}
 953
 
 
 
 
 
 
 
 
 
 954out_unlock:
 955	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 956	return error;
 957}
 958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959
 960STATIC int
 961xfs_file_open(
 962	struct inode	*inode,
 963	struct file	*file)
 964{
 965	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 966		return -EFBIG;
 967	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 968		return -EIO;
 
 969	return 0;
 970}
 971
 972STATIC int
 973xfs_dir_open(
 974	struct inode	*inode,
 975	struct file	*file)
 976{
 977	struct xfs_inode *ip = XFS_I(inode);
 978	int		mode;
 979	int		error;
 980
 981	error = xfs_file_open(inode, file);
 982	if (error)
 983		return error;
 984
 985	/*
 986	 * If there are any blocks, read-ahead block 0 as we're almost
 987	 * certain to have the next operation be a read there.
 988	 */
 989	mode = xfs_ilock_map_shared(ip);
 990	if (ip->i_d.di_nextents > 0)
 991		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
 992	xfs_iunlock(ip, mode);
 993	return 0;
 994}
 995
 996STATIC int
 997xfs_file_release(
 998	struct inode	*inode,
 999	struct file	*filp)
1000{
1001	return -xfs_release(XFS_I(inode));
1002}
1003
1004STATIC int
1005xfs_file_readdir(
1006	struct file	*filp,
1007	void		*dirent,
1008	filldir_t	filldir)
1009{
1010	struct inode	*inode = filp->f_path.dentry->d_inode;
1011	xfs_inode_t	*ip = XFS_I(inode);
1012	int		error;
1013	size_t		bufsize;
1014
1015	/*
1016	 * The Linux API doesn't pass down the total size of the buffer
1017	 * we read into down to the filesystem.  With the filldir concept
1018	 * it's not needed for correct information, but the XFS dir2 leaf
1019	 * code wants an estimate of the buffer size to calculate it's
1020	 * readahead window and size the buffers used for mapping to
1021	 * physical blocks.
1022	 *
1023	 * Try to give it an estimate that's good enough, maybe at some
1024	 * point we can change the ->readdir prototype to include the
1025	 * buffer size.  For now we use the current glibc buffer size.
1026	 */
1027	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1028
1029	error = xfs_readdir(ip, dirent, bufsize,
1030				(xfs_off_t *)&filp->f_pos, filldir);
1031	if (error)
1032		return -error;
1033	return 0;
1034}
1035
1036STATIC int
1037xfs_file_mmap(
1038	struct file	*filp,
1039	struct vm_area_struct *vma)
 
1040{
1041	vma->vm_ops = &xfs_file_vm_ops;
1042	vma->vm_flags |= VM_CAN_NONLINEAR;
1043
1044	file_accessed(filp);
1045	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046}
1047
1048/*
1049 * mmap()d file has taken write protection fault and is being made
1050 * writable. We can set the page state up correctly for a writable
1051 * page, which means we can do correct delalloc accounting (ENOSPC
1052 * checking!) and unwritten extent mapping.
 
 
 
 
1053 */
1054STATIC int
1055xfs_vm_page_mkwrite(
1056	struct vm_area_struct	*vma,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057	struct vm_fault		*vmf)
1058{
1059	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060}
1061
1062const struct file_operations xfs_file_operations = {
1063	.llseek		= generic_file_llseek,
1064	.read		= do_sync_read,
1065	.write		= do_sync_write,
1066	.aio_read	= xfs_file_aio_read,
1067	.aio_write	= xfs_file_aio_write,
1068	.splice_read	= xfs_file_splice_read,
1069	.splice_write	= xfs_file_splice_write,
1070	.unlocked_ioctl	= xfs_file_ioctl,
1071#ifdef CONFIG_COMPAT
1072	.compat_ioctl	= xfs_file_compat_ioctl,
1073#endif
1074	.mmap		= xfs_file_mmap,
 
1075	.open		= xfs_file_open,
1076	.release	= xfs_file_release,
1077	.fsync		= xfs_file_fsync,
 
1078	.fallocate	= xfs_file_fallocate,
 
 
1079};
1080
1081const struct file_operations xfs_dir_file_operations = {
1082	.open		= xfs_dir_open,
1083	.read		= generic_read_dir,
1084	.readdir	= xfs_file_readdir,
1085	.llseek		= generic_file_llseek,
1086	.unlocked_ioctl	= xfs_file_ioctl,
1087#ifdef CONFIG_COMPAT
1088	.compat_ioctl	= xfs_file_compat_ioctl,
1089#endif
1090	.fsync		= xfs_file_fsync,
1091};
1092
1093static const struct vm_operations_struct xfs_file_vm_ops = {
1094	.fault		= filemap_fault,
1095	.page_mkwrite	= xfs_vm_page_mkwrite,
1096};
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
 
 
  12#include "xfs_mount.h"
 
 
 
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
  18#include "xfs_dir2.h"
  19#include "xfs_dir2_priv.h"
  20#include "xfs_ioctl.h"
  21#include "xfs_trace.h"
  22#include "xfs_log.h"
  23#include "xfs_icache.h"
  24#include "xfs_pnfs.h"
  25#include "xfs_iomap.h"
  26#include "xfs_reflink.h"
  27
 
  28#include <linux/falloc.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mman.h>
  31#include <linux/fadvise.h>
  32
  33static const struct vm_operations_struct xfs_file_vm_ops;
  34
  35int
  36xfs_update_prealloc_flags(
 
 
 
 
  37	struct xfs_inode	*ip,
  38	enum xfs_prealloc_flags	flags)
  39{
  40	struct xfs_trans	*tp;
  41	int			error;
 
 
  42
  43	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  44			0, 0, 0, &tp);
  45	if (error)
  46		return error;
 
 
 
 
 
  47
  48	xfs_ilock(ip, XFS_ILOCK_EXCL);
  49	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  50
  51	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  52		VFS_I(ip)->i_mode &= ~S_ISUID;
  53		if (VFS_I(ip)->i_mode & S_IXGRP)
  54			VFS_I(ip)->i_mode &= ~S_ISGID;
  55		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  56	}
  57
  58	if (flags & XFS_PREALLOC_SET)
  59		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
  60	if (flags & XFS_PREALLOC_CLEAR)
  61		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
  62
  63	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  64	if (flags & XFS_PREALLOC_SYNC)
  65		xfs_trans_set_sync(tp);
  66	return xfs_trans_commit(tp);
  67}
  68
  69/*
  70 * Fsync operations on directories are much simpler than on regular files,
  71 * as there is no file data to flush, and thus also no need for explicit
  72 * cache flush operations, and there are no non-transaction metadata updates
  73 * on directories either.
 
 
 
 
  74 */
  75STATIC int
  76xfs_dir_fsync(
  77	struct file		*file,
  78	loff_t			start,
  79	loff_t			end,
  80	int			datasync)
  81{
  82	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 
  83
  84	trace_xfs_dir_fsync(ip);
  85	return xfs_log_force_inode(ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86}
  87
  88STATIC int
  89xfs_file_fsync(
  90	struct file		*file,
  91	loff_t			start,
  92	loff_t			end,
  93	int			datasync)
  94{
  95	struct inode		*inode = file->f_mapping->host;
  96	struct xfs_inode	*ip = XFS_I(inode);
  97	struct xfs_inode_log_item *iip = ip->i_itemp;
  98	struct xfs_mount	*mp = ip->i_mount;
 
  99	int			error = 0;
 100	int			log_flushed = 0;
 101	xfs_lsn_t		lsn = 0;
 102
 103	trace_xfs_file_fsync(ip);
 104
 105	error = file_write_and_wait_range(file, start, end);
 106	if (error)
 107		return error;
 108
 109	if (XFS_FORCED_SHUTDOWN(mp))
 110		return -EIO;
 111
 112	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114	/*
 115	 * If we have an RT and/or log subvolume we need to make sure to flush
 116	 * the write cache the device used for file data first.  This is to
 117	 * ensure newly written file data make it to disk before logging the new
 118	 * inode size in case of an extending write.
 
 
 
 
 
 
 119	 */
 120	if (XFS_IS_REALTIME_INODE(ip))
 121		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 122	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 123		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 124
 125	/*
 126	 * All metadata updates are logged, which means that we just have to
 127	 * flush the log up to the latest LSN that touched the inode. If we have
 128	 * concurrent fsync/fdatasync() calls, we need them to all block on the
 129	 * log force before we clear the ili_fsync_fields field. This ensures
 130	 * that we don't get a racing sync operation that does not wait for the
 131	 * metadata to hit the journal before returning. If we race with
 132	 * clearing the ili_fsync_fields, then all that will happen is the log
 133	 * force will do nothing as the lsn will already be on disk. We can't
 134	 * race with setting ili_fsync_fields because that is done under
 135	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 136	 * until after the ili_fsync_fields is cleared.
 137	 */
 138	xfs_ilock(ip, XFS_ILOCK_SHARED);
 139	if (xfs_ipincount(ip)) {
 140		if (!datasync ||
 141		    (iip->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 142			lsn = iip->ili_last_lsn;
 143	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144
 145	if (lsn) {
 146		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 147		spin_lock(&iip->ili_lock);
 148		iip->ili_fsync_fields = 0;
 149		spin_unlock(&iip->ili_lock);
 
 
 
 
 
 
 
 
 
 
 
 150	}
 151	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 152
 153	/*
 154	 * If we only have a single device, and the log force about was
 155	 * a no-op we might have to flush the data device cache here.
 156	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 157	 * an already allocated file and thus do not have any metadata to
 158	 * commit.
 159	 */
 160	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 161	    mp->m_logdev_targp == mp->m_ddev_targp)
 
 
 162		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 163
 164	return error;
 165}
 166
 167STATIC ssize_t
 168xfs_file_dio_aio_read(
 169	struct kiocb		*iocb,
 170	struct iov_iter		*to)
 
 
 171{
 172	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 173	size_t			count = iov_iter_count(to);
 174	ssize_t			ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175
 176	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
 
 177
 178	if (!count)
 179		return 0; /* skip atime */
 
 
 
 
 
 
 
 
 
 
 180
 181	file_accessed(iocb->ki_filp);
 182
 183	if (iocb->ki_flags & IOCB_NOWAIT) {
 184		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 185			return -EAGAIN;
 186	} else {
 187		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 188	}
 189	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
 190			is_sync_kiocb(iocb));
 191	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 192
 
 193	return ret;
 194}
 195
 196static noinline ssize_t
 197xfs_file_dax_read(
 198	struct kiocb		*iocb,
 199	struct iov_iter		*to)
 
 
 
 200{
 201	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 202	size_t			count = iov_iter_count(to);
 203	ssize_t			ret = 0;
 204
 205	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
 206
 207	if (!count)
 208		return 0; /* skip atime */
 209
 210	if (iocb->ki_flags & IOCB_NOWAIT) {
 211		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 212			return -EAGAIN;
 213	} else {
 214		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 215	}
 216
 217	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
 218	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 
 219
 220	file_accessed(iocb->ki_filp);
 221	return ret;
 222}
 223
 224STATIC ssize_t
 225xfs_file_buffered_aio_read(
 226	struct kiocb		*iocb,
 227	struct iov_iter		*to)
 
 228{
 229	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 230	ssize_t			ret;
 231
 232	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
 
 233
 234	if (iocb->ki_flags & IOCB_NOWAIT) {
 235		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 236			return -EAGAIN;
 237	} else {
 238		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 
 
 
 
 239	}
 240	ret = generic_file_read_iter(iocb, to);
 241	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 242
 243	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244}
 245
 
 
 
 
 
 
 
 
 246STATIC ssize_t
 247xfs_file_read_iter(
 248	struct kiocb		*iocb,
 249	struct iov_iter		*to)
 
 
 
 250{
 251	struct inode		*inode = file_inode(iocb->ki_filp);
 252	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 253	ssize_t			ret = 0;
 
 
 
 
 254
 255	XFS_STATS_INC(mp, xs_read_calls);
 
 256
 257	if (XFS_FORCED_SHUTDOWN(mp))
 258		return -EIO;
 259
 260	if (IS_DAX(inode))
 261		ret = xfs_file_dax_read(iocb, to);
 262	else if (iocb->ki_flags & IOCB_DIRECT)
 263		ret = xfs_file_dio_aio_read(iocb, to);
 264	else
 265		ret = xfs_file_buffered_aio_read(iocb, to);
 
 
 
 
 
 
 266
 267	if (ret > 0)
 268		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 
 269	return ret;
 270}
 271
 272/*
 273 * Common pre-write limit and setup checks.
 274 *
 275 * Called with the iolocked held either shared and exclusive according to
 276 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 277 * if called for a direct write beyond i_size.
 278 */
 279STATIC ssize_t
 280xfs_file_aio_write_checks(
 281	struct kiocb		*iocb,
 282	struct iov_iter		*from,
 283	int			*iolock)
 284{
 285	struct file		*file = iocb->ki_filp;
 286	struct inode		*inode = file->f_mapping->host;
 287	struct xfs_inode	*ip = XFS_I(inode);
 288	ssize_t			error = 0;
 289	size_t			count = iov_iter_count(from);
 290	bool			drained_dio = false;
 291	loff_t			isize;
 292
 293restart:
 294	error = generic_write_checks(iocb, from);
 295	if (error <= 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 296		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297
 298	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 299	if (error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300		return error;
 
 301
 302	/*
 303	 * For changing security info in file_remove_privs() we need i_rwsem
 304	 * exclusively.
 305	 */
 306	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 307		xfs_iunlock(ip, *iolock);
 308		*iolock = XFS_IOLOCK_EXCL;
 309		xfs_ilock(ip, *iolock);
 310		goto restart;
 
 
 
 
 
 
 
 
 
 311	}
 312	/*
 313	 * If the offset is beyond the size of the file, we need to zero any
 314	 * blocks that fall between the existing EOF and the start of this
 315	 * write.  If zeroing is needed and we are currently holding the
 316	 * iolock shared, we need to update it to exclusive which implies
 317	 * having to redo all checks before.
 318	 *
 319	 * We need to serialise against EOF updates that occur in IO
 320	 * completions here. We want to make sure that nobody is changing the
 321	 * size while we do this check until we have placed an IO barrier (i.e.
 322	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 323	 * The spinlock effectively forms a memory barrier once we have the
 324	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 325	 * and hence be able to correctly determine if we need to run zeroing.
 326	 */
 327	spin_lock(&ip->i_flags_lock);
 328	isize = i_size_read(inode);
 329	if (iocb->ki_pos > isize) {
 330		spin_unlock(&ip->i_flags_lock);
 331		if (!drained_dio) {
 332			if (*iolock == XFS_IOLOCK_SHARED) {
 333				xfs_iunlock(ip, *iolock);
 334				*iolock = XFS_IOLOCK_EXCL;
 335				xfs_ilock(ip, *iolock);
 336				iov_iter_reexpand(from, count);
 337			}
 338			/*
 339			 * We now have an IO submission barrier in place, but
 340			 * AIO can do EOF updates during IO completion and hence
 341			 * we now need to wait for all of them to drain. Non-AIO
 342			 * DIO will have drained before we are given the
 343			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 344			 * no-op.
 345			 */
 346			inode_dio_wait(inode);
 347			drained_dio = true;
 348			goto restart;
 349		}
 350	
 351		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 352		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 353				NULL, &xfs_buffered_write_iomap_ops);
 354		if (error)
 355			return error;
 356	} else
 357		spin_unlock(&ip->i_flags_lock);
 358
 359	/*
 360	 * Updating the timestamps will grab the ilock again from
 361	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 362	 * lock above.  Eventually we should look into a way to avoid
 363	 * the pointless lock roundtrip.
 364	 */
 365	return file_modified(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366}
 367
 368static int
 369xfs_dio_write_end_io(
 370	struct kiocb		*iocb,
 371	ssize_t			size,
 372	int			error,
 373	unsigned		flags)
 
 
 
 
 
 374{
 375	struct inode		*inode = file_inode(iocb->ki_filp);
 376	struct xfs_inode	*ip = XFS_I(inode);
 377	loff_t			offset = iocb->ki_pos;
 378	unsigned int		nofs_flag;
 379
 380	trace_xfs_end_io_direct_write(ip, offset, size);
 
 
 
 
 
 381
 382	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 383		return -EIO;
 
 384
 385	if (error)
 386		return error;
 387	if (!size)
 388		return 0;
 389
 390	/*
 391	 * Capture amount written on completion as we can't reliably account
 392	 * for it on submission.
 
 393	 */
 394	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 
 395
 396	/*
 397	 * We can allocate memory here while doing writeback on behalf of
 398	 * memory reclaim.  To avoid memory allocation deadlocks set the
 399	 * task-wide nofs context for the following operations.
 400	 */
 401	nofs_flag = memalloc_nofs_save();
 402
 403	if (flags & IOMAP_DIO_COW) {
 404		error = xfs_reflink_end_cow(ip, offset, size);
 405		if (error)
 406			goto out;
 407	}
 408
 409	/*
 410	 * Unwritten conversion updates the in-core isize after extent
 411	 * conversion but before updating the on-disk size. Updating isize any
 412	 * earlier allows a racing dio read to find unwritten extents before
 413	 * they are converted.
 414	 */
 415	if (flags & IOMAP_DIO_UNWRITTEN) {
 416		error = xfs_iomap_write_unwritten(ip, offset, size, true);
 417		goto out;
 418	}
 419
 420	/*
 421	 * We need to update the in-core inode size here so that we don't end up
 422	 * with the on-disk inode size being outside the in-core inode size. We
 423	 * have no other method of updating EOF for AIO, so always do it here
 424	 * if necessary.
 425	 *
 426	 * We need to lock the test/set EOF update as we can be racing with
 427	 * other IO completions here to update the EOF. Failing to serialise
 428	 * here can result in EOF moving backwards and Bad Things Happen when
 429	 * that occurs.
 430	 */
 431	spin_lock(&ip->i_flags_lock);
 432	if (offset + size > i_size_read(inode)) {
 433		i_size_write(inode, offset + size);
 434		spin_unlock(&ip->i_flags_lock);
 435		error = xfs_setfilesize(ip, offset, size);
 436	} else {
 437		spin_unlock(&ip->i_flags_lock);
 438	}
 439
 440out:
 441	memalloc_nofs_restore(nofs_flag);
 442	return error;
 443}
 444
 445static const struct iomap_dio_ops xfs_dio_write_ops = {
 446	.end_io		= xfs_dio_write_end_io,
 447};
 448
 449/*
 450 * xfs_file_dio_aio_write - handle direct IO writes
 451 *
 452 * Lock the inode appropriately to prepare for and issue a direct IO write.
 453 * By separating it from the buffered write path we remove all the tricky to
 454 * follow locking changes and looping.
 455 *
 456 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 457 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 458 * pages are flushed out.
 459 *
 460 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 461 * allowing them to be done in parallel with reads and other direct IO writes.
 462 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 463 * needs to do sub-block zeroing and that requires serialisation against other
 464 * direct IOs to the same block. In this case we need to serialise the
 465 * submission of the unaligned IOs so that we don't get racing block zeroing in
 466 * the dio layer.  To avoid the problem with aio, we also need to wait for
 467 * outstanding IOs to complete so that unwritten extent conversion is completed
 468 * before we try to map the overlapping block. This is currently implemented by
 469 * hitting it with a big hammer (i.e. inode_dio_wait()).
 470 *
 471 * Returns with locks held indicated by @iolock and errors indicated by
 472 * negative return values.
 473 */
 474STATIC ssize_t
 475xfs_file_dio_aio_write(
 476	struct kiocb		*iocb,
 477	struct iov_iter		*from)
 
 
 
 
 478{
 479	struct file		*file = iocb->ki_filp;
 480	struct address_space	*mapping = file->f_mapping;
 481	struct inode		*inode = mapping->host;
 482	struct xfs_inode	*ip = XFS_I(inode);
 483	struct xfs_mount	*mp = ip->i_mount;
 484	ssize_t			ret = 0;
 
 485	int			unaligned_io = 0;
 486	int			iolock;
 487	size_t			count = iov_iter_count(from);
 488	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
 489
 490	/* DIO must be aligned to device logical sector size */
 491	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 492		return -EINVAL;
 493
 494	/*
 495	 * Don't take the exclusive iolock here unless the I/O is unaligned to
 496	 * the file system block size.  We don't need to consider the EOF
 497	 * extension case here because xfs_file_aio_write_checks() will relock
 498	 * the inode as necessary for EOF zeroing cases and fill out the new
 499	 * inode size as appropriate.
 500	 */
 501	if ((iocb->ki_pos & mp->m_blockmask) ||
 502	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
 503		unaligned_io = 1;
 504
 505		/*
 506		 * We can't properly handle unaligned direct I/O to reflink
 507		 * files yet, as we can't unshare a partial block.
 508		 */
 509		if (xfs_is_cow_inode(ip)) {
 510			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
 511			return -ENOTBLK;
 512		}
 513		iolock = XFS_IOLOCK_EXCL;
 514	} else {
 515		iolock = XFS_IOLOCK_SHARED;
 516	}
 517
 518	if (iocb->ki_flags & IOCB_NOWAIT) {
 519		/* unaligned dio always waits, bail */
 520		if (unaligned_io)
 521			return -EAGAIN;
 522		if (!xfs_ilock_nowait(ip, iolock))
 523			return -EAGAIN;
 524	} else {
 525		xfs_ilock(ip, iolock);
 526	}
 527
 528	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 529	if (ret)
 530		goto out;
 531	count = iov_iter_count(from);
 532
 533	/*
 534	 * If we are doing unaligned IO, we can't allow any other overlapping IO
 535	 * in-flight at the same time or we risk data corruption. Wait for all
 536	 * other IO to drain before we submit. If the IO is aligned, demote the
 537	 * iolock if we had to take the exclusive lock in
 538	 * xfs_file_aio_write_checks() for other reasons.
 539	 */
 540	if (unaligned_io) {
 541		inode_dio_wait(inode);
 542	} else if (iolock == XFS_IOLOCK_EXCL) {
 543		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 544		iolock = XFS_IOLOCK_SHARED;
 545	}
 546
 547	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
 548	/*
 549	 * If unaligned, this is the only IO in-flight. Wait on it before we
 550	 * release the iolock to prevent subsequent overlapping IO.
 551	 */
 552	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 553			   &xfs_dio_write_ops,
 554			   is_sync_kiocb(iocb) || unaligned_io);
 555out:
 556	xfs_iunlock(ip, iolock);
 557
 558	/*
 559	 * No fallback to buffered IO after short writes for XFS, direct I/O
 560	 * will either complete fully or return an error.
 561	 */
 562	ASSERT(ret < 0 || ret == count);
 563	return ret;
 564}
 565
 566static noinline ssize_t
 567xfs_file_dax_write(
 568	struct kiocb		*iocb,
 569	struct iov_iter		*from)
 570{
 571	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 572	struct xfs_inode	*ip = XFS_I(inode);
 573	int			iolock = XFS_IOLOCK_EXCL;
 574	ssize_t			ret, error = 0;
 575	size_t			count;
 576	loff_t			pos;
 577
 578	if (iocb->ki_flags & IOCB_NOWAIT) {
 579		if (!xfs_ilock_nowait(ip, iolock))
 580			return -EAGAIN;
 581	} else {
 582		xfs_ilock(ip, iolock);
 583	}
 584
 585	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 586	if (ret)
 587		goto out;
 588
 589	pos = iocb->ki_pos;
 590	count = iov_iter_count(from);
 591
 592	trace_xfs_file_dax_write(ip, count, pos);
 593	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
 594	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 595		i_size_write(inode, iocb->ki_pos);
 596		error = xfs_setfilesize(ip, pos, ret);
 597	}
 598out:
 599	xfs_iunlock(ip, iolock);
 600	if (error)
 601		return error;
 602
 603	if (ret > 0) {
 604		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 605
 606		/* Handle various SYNC-type writes */
 607		ret = generic_write_sync(iocb, ret);
 608	}
 609	return ret;
 610}
 611
 612STATIC ssize_t
 613xfs_file_buffered_aio_write(
 614	struct kiocb		*iocb,
 615	struct iov_iter		*from)
 
 
 
 
 616{
 617	struct file		*file = iocb->ki_filp;
 618	struct address_space	*mapping = file->f_mapping;
 619	struct inode		*inode = mapping->host;
 620	struct xfs_inode	*ip = XFS_I(inode);
 621	ssize_t			ret;
 622	int			enospc = 0;
 623	int			iolock;
 624
 625	if (iocb->ki_flags & IOCB_NOWAIT)
 626		return -EOPNOTSUPP;
 627
 628write_retry:
 629	iolock = XFS_IOLOCK_EXCL;
 630	xfs_ilock(ip, iolock);
 631
 632	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 633	if (ret)
 634		goto out;
 635
 636	/* We can write back this queue in page reclaim */
 637	current->backing_dev_info = inode_to_bdi(inode);
 638
 639	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
 640	ret = iomap_file_buffered_write(iocb, from,
 641			&xfs_buffered_write_iomap_ops);
 642	if (likely(ret >= 0))
 643		iocb->ki_pos += ret;
 644
 645	/*
 646	 * If we hit a space limit, try to free up some lingering preallocated
 647	 * space before returning an error. In the case of ENOSPC, first try to
 648	 * write back all dirty inodes to free up some of the excess reserved
 649	 * metadata space. This reduces the chances that the eofblocks scan
 650	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 651	 * also behaves as a filter to prevent too many eofblocks scans from
 652	 * running at the same time.
 653	 */
 654	if (ret == -EDQUOT && !enospc) {
 655		xfs_iunlock(ip, iolock);
 656		enospc = xfs_inode_free_quota_eofblocks(ip);
 657		if (enospc)
 658			goto write_retry;
 659		enospc = xfs_inode_free_quota_cowblocks(ip);
 660		if (enospc)
 661			goto write_retry;
 662		iolock = 0;
 663	} else if (ret == -ENOSPC && !enospc) {
 664		struct xfs_eofblocks eofb = {0};
 665
 
 
 
 
 
 
 
 
 
 
 
 
 666		enospc = 1;
 667		xfs_flush_inodes(ip->i_mount);
 668
 669		xfs_iunlock(ip, iolock);
 670		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 671		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 672		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
 673		goto write_retry;
 674	}
 675
 676	current->backing_dev_info = NULL;
 677out:
 678	if (iolock)
 679		xfs_iunlock(ip, iolock);
 680
 681	if (ret > 0) {
 682		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 683		/* Handle various SYNC-type writes */
 684		ret = generic_write_sync(iocb, ret);
 685	}
 686	return ret;
 687}
 688
 689STATIC ssize_t
 690xfs_file_write_iter(
 691	struct kiocb		*iocb,
 692	struct iov_iter		*from)
 
 
 693{
 694	struct file		*file = iocb->ki_filp;
 695	struct address_space	*mapping = file->f_mapping;
 696	struct inode		*inode = mapping->host;
 697	struct xfs_inode	*ip = XFS_I(inode);
 698	ssize_t			ret;
 699	size_t			ocount = iov_iter_count(from);
 
 
 
 700
 701	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 
 
 
 
 702
 703	if (ocount == 0)
 704		return 0;
 705
 
 
 706	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 707		return -EIO;
 708
 709	if (IS_DAX(inode))
 710		return xfs_file_dax_write(iocb, from);
 
 
 
 
 711
 712	if (iocb->ki_flags & IOCB_DIRECT) {
 713		/*
 714		 * Allow a directio write to fall back to a buffered
 715		 * write *only* in the case that we're doing a reflink
 716		 * CoW.  In all other directio scenarios we do not
 717		 * allow an operation to fall back to buffered mode.
 718		 */
 719		ret = xfs_file_dio_aio_write(iocb, from);
 720		if (ret != -ENOTBLK)
 721			return ret;
 722	}
 723
 724	return xfs_file_buffered_aio_write(iocb, from);
 725}
 726
 727static void
 728xfs_wait_dax_page(
 729	struct inode		*inode)
 730{
 731	struct xfs_inode        *ip = XFS_I(inode);
 
 
 
 
 
 
 
 732
 733	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 734	schedule();
 735	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 
 736}
 737
 738static int
 739xfs_break_dax_layouts(
 740	struct inode		*inode,
 741	bool			*retry)
 742{
 743	struct page		*page;
 744
 745	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 746
 747	page = dax_layout_busy_page(inode->i_mapping);
 748	if (!page)
 749		return 0;
 750
 751	*retry = true;
 752	return ___wait_var_event(&page->_refcount,
 753			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 754			0, 0, xfs_wait_dax_page(inode));
 755}
 756
 757int
 758xfs_break_layouts(
 759	struct inode		*inode,
 760	uint			*iolock,
 761	enum layout_break_reason reason)
 762{
 763	bool			retry;
 764	int			error;
 765
 766	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 767
 768	do {
 769		retry = false;
 770		switch (reason) {
 771		case BREAK_UNMAP:
 772			error = xfs_break_dax_layouts(inode, &retry);
 773			if (error || retry)
 774				break;
 775			/* fall through */
 776		case BREAK_WRITE:
 777			error = xfs_break_leased_layouts(inode, iolock, &retry);
 778			break;
 779		default:
 780			WARN_ON_ONCE(1);
 781			error = -EINVAL;
 782		}
 783	} while (error == 0 && retry);
 784
 785	return error;
 786}
 787
 788#define	XFS_FALLOC_FL_SUPPORTED						\
 789		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 790		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 791		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 792
 793STATIC long
 794xfs_file_fallocate(
 795	struct file		*file,
 796	int			mode,
 797	loff_t			offset,
 798	loff_t			len)
 799{
 800	struct inode		*inode = file_inode(file);
 801	struct xfs_inode	*ip = XFS_I(inode);
 802	long			error;
 803	enum xfs_prealloc_flags	flags = 0;
 804	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 805	loff_t			new_size = 0;
 806	bool			do_file_insert = false;
 807
 808	if (!S_ISREG(inode->i_mode))
 809		return -EINVAL;
 810	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 811		return -EOPNOTSUPP;
 812
 813	xfs_ilock(ip, iolock);
 814	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 815	if (error)
 816		goto out_unlock;
 817
 818	/*
 819	 * Must wait for all AIO to complete before we continue as AIO can
 820	 * change the file size on completion without holding any locks we
 821	 * currently hold. We must do this first because AIO can update both
 822	 * the on disk and in memory inode sizes, and the operations that follow
 823	 * require the in-memory size to be fully up-to-date.
 824	 */
 825	inode_dio_wait(inode);
 826
 827	/*
 828	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
 829	 * the cached range over the first operation we are about to run.
 830	 *
 831	 * We care about zero and collapse here because they both run a hole
 832	 * punch over the range first. Because that can zero data, and the range
 833	 * of invalidation for the shift operations is much larger, we still do
 834	 * the required flush for collapse in xfs_prepare_shift().
 835	 *
 836	 * Insert has the same range requirements as collapse, and we extend the
 837	 * file first which can zero data. Hence insert has the same
 838	 * flush/invalidate requirements as collapse and so they are both
 839	 * handled at the right time by xfs_prepare_shift().
 840	 */
 841	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
 842		    FALLOC_FL_COLLAPSE_RANGE)) {
 843		error = xfs_flush_unmap_range(ip, offset, len);
 844		if (error)
 845			goto out_unlock;
 846	}
 847
 848	if (mode & FALLOC_FL_PUNCH_HOLE) {
 849		error = xfs_free_file_space(ip, offset, len);
 850		if (error)
 851			goto out_unlock;
 852	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 853		unsigned int blksize_mask = i_blocksize(inode) - 1;
 854
 855		if (offset & blksize_mask || len & blksize_mask) {
 856			error = -EINVAL;
 857			goto out_unlock;
 858		}
 859
 860		/*
 861		 * There is no need to overlap collapse range with EOF,
 862		 * in which case it is effectively a truncate operation
 863		 */
 864		if (offset + len >= i_size_read(inode)) {
 865			error = -EINVAL;
 866			goto out_unlock;
 867		}
 868
 869		new_size = i_size_read(inode) - len;
 870
 871		error = xfs_collapse_file_space(ip, offset, len);
 872		if (error)
 873			goto out_unlock;
 874	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 875		unsigned int	blksize_mask = i_blocksize(inode) - 1;
 876		loff_t		isize = i_size_read(inode);
 877
 878		if (offset & blksize_mask || len & blksize_mask) {
 879			error = -EINVAL;
 880			goto out_unlock;
 881		}
 882
 883		/*
 884		 * New inode size must not exceed ->s_maxbytes, accounting for
 885		 * possible signed overflow.
 886		 */
 887		if (inode->i_sb->s_maxbytes - isize < len) {
 888			error = -EFBIG;
 889			goto out_unlock;
 890		}
 891		new_size = isize + len;
 892
 893		/* Offset should be less than i_size */
 894		if (offset >= isize) {
 895			error = -EINVAL;
 896			goto out_unlock;
 897		}
 898		do_file_insert = true;
 899	} else {
 900		flags |= XFS_PREALLOC_SET;
 901
 902		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 903		    offset + len > i_size_read(inode)) {
 904			new_size = offset + len;
 905			error = inode_newsize_ok(inode, new_size);
 906			if (error)
 907				goto out_unlock;
 908		}
 909
 910		if (mode & FALLOC_FL_ZERO_RANGE) {
 911			/*
 912			 * Punch a hole and prealloc the range.  We use a hole
 913			 * punch rather than unwritten extent conversion for two
 914			 * reasons:
 915			 *
 916			 *   1.) Hole punch handles partial block zeroing for us.
 917			 *   2.) If prealloc returns ENOSPC, the file range is
 918			 *       still zero-valued by virtue of the hole punch.
 919			 */
 920			unsigned int blksize = i_blocksize(inode);
 921
 922			trace_xfs_zero_file_space(ip);
 923
 924			error = xfs_free_file_space(ip, offset, len);
 925			if (error)
 926				goto out_unlock;
 927
 928			len = round_up(offset + len, blksize) -
 929			      round_down(offset, blksize);
 930			offset = round_down(offset, blksize);
 931		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
 932			error = xfs_reflink_unshare(ip, offset, len);
 933			if (error)
 934				goto out_unlock;
 935		} else {
 936			/*
 937			 * If always_cow mode we can't use preallocations and
 938			 * thus should not create them.
 939			 */
 940			if (xfs_is_always_cow_inode(ip)) {
 941				error = -EOPNOTSUPP;
 942				goto out_unlock;
 943			}
 944		}
 945
 946		if (!xfs_is_always_cow_inode(ip)) {
 947			error = xfs_alloc_file_space(ip, offset, len,
 948						     XFS_BMAPI_PREALLOC);
 949			if (error)
 950				goto out_unlock;
 951		}
 952	}
 953
 954	if (file->f_flags & O_DSYNC)
 955		flags |= XFS_PREALLOC_SYNC;
 956
 957	error = xfs_update_prealloc_flags(ip, flags);
 958	if (error)
 959		goto out_unlock;
 960
 961	/* Change file size if needed */
 962	if (new_size) {
 963		struct iattr iattr;
 964
 965		iattr.ia_valid = ATTR_SIZE;
 966		iattr.ia_size = new_size;
 967		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
 968		if (error)
 969			goto out_unlock;
 970	}
 971
 972	/*
 973	 * Perform hole insertion now that the file size has been
 974	 * updated so that if we crash during the operation we don't
 975	 * leave shifted extents past EOF and hence losing access to
 976	 * the data that is contained within them.
 977	 */
 978	if (do_file_insert)
 979		error = xfs_insert_file_space(ip, offset, len);
 980
 981out_unlock:
 982	xfs_iunlock(ip, iolock);
 983	return error;
 984}
 985
 986STATIC int
 987xfs_file_fadvise(
 988	struct file	*file,
 989	loff_t		start,
 990	loff_t		end,
 991	int		advice)
 992{
 993	struct xfs_inode *ip = XFS_I(file_inode(file));
 994	int ret;
 995	int lockflags = 0;
 996
 997	/*
 998	 * Operations creating pages in page cache need protection from hole
 999	 * punching and similar ops
1000	 */
1001	if (advice == POSIX_FADV_WILLNEED) {
1002		lockflags = XFS_IOLOCK_SHARED;
1003		xfs_ilock(ip, lockflags);
1004	}
1005	ret = generic_fadvise(file, start, end, advice);
1006	if (lockflags)
1007		xfs_iunlock(ip, lockflags);
1008	return ret;
1009}
1010
1011STATIC loff_t
1012xfs_file_remap_range(
1013	struct file		*file_in,
1014	loff_t			pos_in,
1015	struct file		*file_out,
1016	loff_t			pos_out,
1017	loff_t			len,
1018	unsigned int		remap_flags)
1019{
1020	struct inode		*inode_in = file_inode(file_in);
1021	struct xfs_inode	*src = XFS_I(inode_in);
1022	struct inode		*inode_out = file_inode(file_out);
1023	struct xfs_inode	*dest = XFS_I(inode_out);
1024	struct xfs_mount	*mp = src->i_mount;
1025	loff_t			remapped = 0;
1026	xfs_extlen_t		cowextsize;
1027	int			ret;
1028
1029	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1030		return -EINVAL;
1031
1032	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1033		return -EOPNOTSUPP;
1034
1035	if (XFS_FORCED_SHUTDOWN(mp))
1036		return -EIO;
1037
1038	/* Prepare and then clone file data. */
1039	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1040			&len, remap_flags);
1041	if (ret || len == 0)
1042		return ret;
1043
1044	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1045
1046	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1047			&remapped);
1048	if (ret)
1049		goto out_unlock;
1050
1051	/*
1052	 * Carry the cowextsize hint from src to dest if we're sharing the
1053	 * entire source file to the entire destination file, the source file
1054	 * has a cowextsize hint, and the destination file does not.
1055	 */
1056	cowextsize = 0;
1057	if (pos_in == 0 && len == i_size_read(inode_in) &&
1058	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1059	    pos_out == 0 && len >= i_size_read(inode_out) &&
1060	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1061		cowextsize = src->i_d.di_cowextsize;
1062
1063	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1064			remap_flags);
1065	if (ret)
1066		goto out_unlock;
1067
1068	if (mp->m_flags & XFS_MOUNT_WSYNC)
1069		xfs_log_force_inode(dest);
1070out_unlock:
1071	xfs_iunlock2_io_mmap(src, dest);
1072	if (ret)
1073		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1074	return remapped > 0 ? remapped : ret;
1075}
1076
1077STATIC int
1078xfs_file_open(
1079	struct inode	*inode,
1080	struct file	*file)
1081{
1082	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1083		return -EFBIG;
1084	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1085		return -EIO;
1086	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1087	return 0;
1088}
1089
1090STATIC int
1091xfs_dir_open(
1092	struct inode	*inode,
1093	struct file	*file)
1094{
1095	struct xfs_inode *ip = XFS_I(inode);
1096	int		mode;
1097	int		error;
1098
1099	error = xfs_file_open(inode, file);
1100	if (error)
1101		return error;
1102
1103	/*
1104	 * If there are any blocks, read-ahead block 0 as we're almost
1105	 * certain to have the next operation be a read there.
1106	 */
1107	mode = xfs_ilock_data_map_shared(ip);
1108	if (ip->i_df.if_nextents > 0)
1109		error = xfs_dir3_data_readahead(ip, 0, 0);
1110	xfs_iunlock(ip, mode);
1111	return error;
1112}
1113
1114STATIC int
1115xfs_file_release(
1116	struct inode	*inode,
1117	struct file	*filp)
1118{
1119	return xfs_release(XFS_I(inode));
1120}
1121
1122STATIC int
1123xfs_file_readdir(
1124	struct file	*file,
1125	struct dir_context *ctx)
 
1126{
1127	struct inode	*inode = file_inode(file);
1128	xfs_inode_t	*ip = XFS_I(inode);
 
1129	size_t		bufsize;
1130
1131	/*
1132	 * The Linux API doesn't pass down the total size of the buffer
1133	 * we read into down to the filesystem.  With the filldir concept
1134	 * it's not needed for correct information, but the XFS dir2 leaf
1135	 * code wants an estimate of the buffer size to calculate it's
1136	 * readahead window and size the buffers used for mapping to
1137	 * physical blocks.
1138	 *
1139	 * Try to give it an estimate that's good enough, maybe at some
1140	 * point we can change the ->readdir prototype to include the
1141	 * buffer size.  For now we use the current glibc buffer size.
1142	 */
1143	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1144
1145	return xfs_readdir(NULL, ip, ctx, bufsize);
 
 
 
 
1146}
1147
1148STATIC loff_t
1149xfs_file_llseek(
1150	struct file	*file,
1151	loff_t		offset,
1152	int		whence)
1153{
1154	struct inode		*inode = file->f_mapping->host;
 
1155
1156	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1157		return -EIO;
1158
1159	switch (whence) {
1160	default:
1161		return generic_file_llseek(file, offset, whence);
1162	case SEEK_HOLE:
1163		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1164		break;
1165	case SEEK_DATA:
1166		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1167		break;
1168	}
1169
1170	if (offset < 0)
1171		return offset;
1172	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1173}
1174
1175/*
1176 * Locking for serialisation of IO during page faults. This results in a lock
1177 * ordering of:
1178 *
1179 * mmap_lock (MM)
1180 *   sb_start_pagefault(vfs, freeze)
1181 *     i_mmaplock (XFS - truncate serialisation)
1182 *       page_lock (MM)
1183 *         i_lock (XFS - extent map serialisation)
1184 */
1185static vm_fault_t
1186__xfs_filemap_fault(
1187	struct vm_fault		*vmf,
1188	enum page_entry_size	pe_size,
1189	bool			write_fault)
1190{
1191	struct inode		*inode = file_inode(vmf->vma->vm_file);
1192	struct xfs_inode	*ip = XFS_I(inode);
1193	vm_fault_t		ret;
1194
1195	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1196
1197	if (write_fault) {
1198		sb_start_pagefault(inode->i_sb);
1199		file_update_time(vmf->vma->vm_file);
1200	}
1201
1202	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1203	if (IS_DAX(inode)) {
1204		pfn_t pfn;
1205
1206		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1207				(write_fault && !vmf->cow_page) ?
1208				 &xfs_direct_write_iomap_ops :
1209				 &xfs_read_iomap_ops);
1210		if (ret & VM_FAULT_NEEDDSYNC)
1211			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1212	} else {
1213		if (write_fault)
1214			ret = iomap_page_mkwrite(vmf,
1215					&xfs_buffered_write_iomap_ops);
1216		else
1217			ret = filemap_fault(vmf);
1218	}
1219	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1220
1221	if (write_fault)
1222		sb_end_pagefault(inode->i_sb);
1223	return ret;
1224}
1225
1226static inline bool
1227xfs_is_write_fault(
1228	struct vm_fault		*vmf)
1229{
1230	return (vmf->flags & FAULT_FLAG_WRITE) &&
1231	       (vmf->vma->vm_flags & VM_SHARED);
1232}
1233
1234static vm_fault_t
1235xfs_filemap_fault(
1236	struct vm_fault		*vmf)
1237{
1238	/* DAX can shortcut the normal fault path on write faults! */
1239	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1240			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1241			xfs_is_write_fault(vmf));
1242}
1243
1244static vm_fault_t
1245xfs_filemap_huge_fault(
1246	struct vm_fault		*vmf,
1247	enum page_entry_size	pe_size)
1248{
1249	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1250		return VM_FAULT_FALLBACK;
1251
1252	/* DAX can shortcut the normal fault path on write faults! */
1253	return __xfs_filemap_fault(vmf, pe_size,
1254			xfs_is_write_fault(vmf));
1255}
1256
1257static vm_fault_t
1258xfs_filemap_page_mkwrite(
1259	struct vm_fault		*vmf)
1260{
1261	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1262}
1263
1264/*
1265 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1266 * on write faults. In reality, it needs to serialise against truncate and
1267 * prepare memory for writing so handle is as standard write fault.
1268 */
1269static vm_fault_t
1270xfs_filemap_pfn_mkwrite(
1271	struct vm_fault		*vmf)
1272{
1273
1274	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1275}
1276
1277static void
1278xfs_filemap_map_pages(
1279	struct vm_fault		*vmf,
1280	pgoff_t			start_pgoff,
1281	pgoff_t			end_pgoff)
1282{
1283	struct inode		*inode = file_inode(vmf->vma->vm_file);
1284
1285	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1286	filemap_map_pages(vmf, start_pgoff, end_pgoff);
1287	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1288}
1289
1290static const struct vm_operations_struct xfs_file_vm_ops = {
1291	.fault		= xfs_filemap_fault,
1292	.huge_fault	= xfs_filemap_huge_fault,
1293	.map_pages	= xfs_filemap_map_pages,
1294	.page_mkwrite	= xfs_filemap_page_mkwrite,
1295	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1296};
1297
1298STATIC int
1299xfs_file_mmap(
1300	struct file		*file,
1301	struct vm_area_struct	*vma)
1302{
1303	struct inode		*inode = file_inode(file);
1304	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1305
1306	/*
1307	 * We don't support synchronous mappings for non-DAX files and
1308	 * for DAX files if underneath dax_device is not synchronous.
1309	 */
1310	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1311		return -EOPNOTSUPP;
1312
1313	file_accessed(file);
1314	vma->vm_ops = &xfs_file_vm_ops;
1315	if (IS_DAX(inode))
1316		vma->vm_flags |= VM_HUGEPAGE;
1317	return 0;
1318}
1319
1320const struct file_operations xfs_file_operations = {
1321	.llseek		= xfs_file_llseek,
1322	.read_iter	= xfs_file_read_iter,
1323	.write_iter	= xfs_file_write_iter,
1324	.splice_read	= generic_file_splice_read,
1325	.splice_write	= iter_file_splice_write,
1326	.iopoll		= iomap_dio_iopoll,
 
1327	.unlocked_ioctl	= xfs_file_ioctl,
1328#ifdef CONFIG_COMPAT
1329	.compat_ioctl	= xfs_file_compat_ioctl,
1330#endif
1331	.mmap		= xfs_file_mmap,
1332	.mmap_supported_flags = MAP_SYNC,
1333	.open		= xfs_file_open,
1334	.release	= xfs_file_release,
1335	.fsync		= xfs_file_fsync,
1336	.get_unmapped_area = thp_get_unmapped_area,
1337	.fallocate	= xfs_file_fallocate,
1338	.fadvise	= xfs_file_fadvise,
1339	.remap_file_range = xfs_file_remap_range,
1340};
1341
1342const struct file_operations xfs_dir_file_operations = {
1343	.open		= xfs_dir_open,
1344	.read		= generic_read_dir,
1345	.iterate_shared	= xfs_file_readdir,
1346	.llseek		= generic_file_llseek,
1347	.unlocked_ioctl	= xfs_file_ioctl,
1348#ifdef CONFIG_COMPAT
1349	.compat_ioctl	= xfs_file_compat_ioctl,
1350#endif
1351	.fsync		= xfs_dir_fsync,
 
 
 
 
 
1352};