Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_bit.h"
  21#include "xfs_log.h"
  22#include "xfs_inum.h"
  23#include "xfs_sb.h"
  24#include "xfs_ag.h"
  25#include "xfs_trans.h"
  26#include "xfs_mount.h"
  27#include "xfs_bmap_btree.h"
  28#include "xfs_alloc.h"
  29#include "xfs_dinode.h"
  30#include "xfs_inode.h"
 
  31#include "xfs_inode_item.h"
  32#include "xfs_bmap.h"
  33#include "xfs_error.h"
  34#include "xfs_vnodeops.h"
  35#include "xfs_da_btree.h"
  36#include "xfs_ioctl.h"
  37#include "xfs_trace.h"
 
 
 
 
 
  38
  39#include <linux/dcache.h>
  40#include <linux/falloc.h>
 
 
 
  41
  42static const struct vm_operations_struct xfs_file_vm_ops;
  43
  44/*
  45 * Locking primitives for read and write IO paths to ensure we consistently use
  46 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
  47 */
  48static inline void
  49xfs_rw_ilock(
  50	struct xfs_inode	*ip,
  51	int			type)
  52{
  53	if (type & XFS_IOLOCK_EXCL)
  54		mutex_lock(&VFS_I(ip)->i_mutex);
  55	xfs_ilock(ip, type);
  56}
  57
  58static inline void
  59xfs_rw_iunlock(
  60	struct xfs_inode	*ip,
  61	int			type)
  62{
  63	xfs_iunlock(ip, type);
  64	if (type & XFS_IOLOCK_EXCL)
  65		mutex_unlock(&VFS_I(ip)->i_mutex);
  66}
  67
  68static inline void
  69xfs_rw_ilock_demote(
  70	struct xfs_inode	*ip,
  71	int			type)
  72{
  73	xfs_ilock_demote(ip, type);
  74	if (type & XFS_IOLOCK_EXCL)
  75		mutex_unlock(&VFS_I(ip)->i_mutex);
 
 
 
 
 
 
 
 
 
 
 
  76}
  77
  78/*
  79 *	xfs_iozero
  80 *
  81 *	xfs_iozero clears the specified range of buffer supplied,
  82 *	and marks all the affected blocks as valid and modified.  If
  83 *	an affected block is not allocated, it will be allocated.  If
  84 *	an affected block is not completely overwritten, and is not
  85 *	valid before the operation, it will be read from disk before
  86 *	being partially zeroed.
  87 */
  88STATIC int
  89xfs_iozero(
  90	struct xfs_inode	*ip,	/* inode			*/
  91	loff_t			pos,	/* offset in file		*/
  92	size_t			count)	/* size of data to zero		*/
 
  93{
  94	struct page		*page;
  95	struct address_space	*mapping;
  96	int			status;
  97
  98	mapping = VFS_I(ip)->i_mapping;
  99	do {
 100		unsigned offset, bytes;
 101		void *fsdata;
 102
 103		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
 104		bytes = PAGE_CACHE_SIZE - offset;
 105		if (bytes > count)
 106			bytes = count;
 107
 108		status = pagecache_write_begin(NULL, mapping, pos, bytes,
 109					AOP_FLAG_UNINTERRUPTIBLE,
 110					&page, &fsdata);
 111		if (status)
 112			break;
 113
 114		zero_user(page, offset, bytes);
 115
 116		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
 117					page, fsdata);
 118		WARN_ON(status <= 0); /* can't return less than zero! */
 119		pos += bytes;
 120		count -= bytes;
 121		status = 0;
 122	} while (count);
 123
 124	return (-status);
 
 
 125}
 126
 127STATIC int
 128xfs_file_fsync(
 129	struct file		*file,
 130	loff_t			start,
 131	loff_t			end,
 132	int			datasync)
 133{
 134	struct inode		*inode = file->f_mapping->host;
 135	struct xfs_inode	*ip = XFS_I(inode);
 136	struct xfs_mount	*mp = ip->i_mount;
 137	struct xfs_trans	*tp;
 138	int			error = 0;
 139	int			log_flushed = 0;
 
 140
 141	trace_xfs_file_fsync(ip);
 142
 143	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
 144	if (error)
 145		return error;
 146
 147	if (XFS_FORCED_SHUTDOWN(mp))
 148		return -XFS_ERROR(EIO);
 149
 150	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 151
 152	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 153	xfs_ioend_wait(ip);
 154	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 155
 156	if (mp->m_flags & XFS_MOUNT_BARRIER) {
 157		/*
 158		 * If we have an RT and/or log subvolume we need to make sure
 159		 * to flush the write cache the device used for file data
 160		 * first.  This is to ensure newly written file data make
 161		 * it to disk before logging the new inode size in case of
 162		 * an extending write.
 163		 */
 164		if (XFS_IS_REALTIME_INODE(ip))
 165			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 166		else if (mp->m_logdev_targp != mp->m_ddev_targp)
 167			xfs_blkdev_issue_flush(mp->m_ddev_targp);
 168	}
 169
 170	/*
 171	 * We always need to make sure that the required inode state is safe on
 172	 * disk.  The inode might be clean but we still might need to force the
 173	 * log because of committed transactions that haven't hit the disk yet.
 174	 * Likewise, there could be unflushed non-transactional changes to the
 175	 * inode core that have to go to disk and this requires us to issue
 176	 * a synchronous transaction to capture these changes correctly.
 177	 *
 178	 * This code relies on the assumption that if the i_update_core field
 179	 * of the inode is clear and the inode is unpinned then it is clean
 180	 * and no action is required.
 181	 */
 182	xfs_ilock(ip, XFS_ILOCK_SHARED);
 
 
 
 183
 184	/*
 185	 * First check if the VFS inode is marked dirty.  All the dirtying
 186	 * of non-transactional updates no goes through mark_inode_dirty*,
 187	 * which allows us to distinguish beteeen pure timestamp updates
 188	 * and i_size updates which need to be caught for fdatasync.
 189	 * After that also theck for the dirty state in the XFS inode, which
 190	 * might gets cleared when the inode gets written out via the AIL
 191	 * or xfs_iflush_cluster.
 192	 */
 193	if (((inode->i_state & I_DIRTY_DATASYNC) ||
 194	    ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
 195	    ip->i_update_core) {
 196		/*
 197		 * Kick off a transaction to log the inode core to get the
 198		 * updates.  The sync transaction will also force the log.
 199		 */
 200		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 201		tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
 202		error = xfs_trans_reserve(tp, 0,
 203				XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
 204		if (error) {
 205			xfs_trans_cancel(tp, 0);
 206			return -error;
 207		}
 208		xfs_ilock(ip, XFS_ILOCK_EXCL);
 209
 210		/*
 211		 * Note - it's possible that we might have pushed ourselves out
 212		 * of the way during trans_reserve which would flush the inode.
 213		 * But there's no guarantee that the inode buffer has actually
 214		 * gone out yet (it's delwri).	Plus the buffer could be pinned
 215		 * anyway if it's part of an inode in another recent
 216		 * transaction.	 So we play it safe and fire off the
 217		 * transaction anyway.
 218		 */
 219		xfs_trans_ijoin(tp, ip);
 220		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 221		xfs_trans_set_sync(tp);
 222		error = _xfs_trans_commit(tp, 0, &log_flushed);
 223
 224		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 225	} else {
 226		/*
 227		 * Timestamps/size haven't changed since last inode flush or
 228		 * inode transaction commit.  That means either nothing got
 229		 * written or a transaction committed which caught the updates.
 230		 * If the latter happened and the transaction hasn't hit the
 231		 * disk yet, the inode will be still be pinned.  If it is,
 232		 * force the log.
 233		 */
 234		if (xfs_ipincount(ip)) {
 235			error = _xfs_log_force_lsn(mp,
 236					ip->i_itemp->ili_last_lsn,
 237					XFS_LOG_SYNC, &log_flushed);
 238		}
 239		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 240	}
 
 241
 242	/*
 243	 * If we only have a single device, and the log force about was
 244	 * a no-op we might have to flush the data device cache here.
 245	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 246	 * an already allocated file and thus do not have any metadata to
 247	 * commit.
 248	 */
 249	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
 250	    mp->m_logdev_targp == mp->m_ddev_targp &&
 251	    !XFS_IS_REALTIME_INODE(ip) &&
 252	    !log_flushed)
 253		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 254
 255	return -error;
 256}
 257
 258STATIC ssize_t
 259xfs_file_aio_read(
 260	struct kiocb		*iocb,
 261	const struct iovec	*iovp,
 262	unsigned long		nr_segs,
 263	loff_t			pos)
 264{
 265	struct file		*file = iocb->ki_filp;
 266	struct inode		*inode = file->f_mapping->host;
 267	struct xfs_inode	*ip = XFS_I(inode);
 268	struct xfs_mount	*mp = ip->i_mount;
 269	size_t			size = 0;
 270	ssize_t			ret = 0;
 271	int			ioflags = 0;
 272	xfs_fsize_t		n;
 273	unsigned long		seg;
 274
 275	XFS_STATS_INC(xs_read_calls);
 276
 277	BUG_ON(iocb->ki_pos != pos);
 278
 279	if (unlikely(file->f_flags & O_DIRECT))
 280		ioflags |= IO_ISDIRECT;
 281	if (file->f_mode & FMODE_NOCMTIME)
 282		ioflags |= IO_INVIS;
 283
 284	/* START copy & waste from filemap.c */
 285	for (seg = 0; seg < nr_segs; seg++) {
 286		const struct iovec *iv = &iovp[seg];
 287
 288		/*
 289		 * If any segment has a negative length, or the cumulative
 290		 * length ever wraps negative then return -EINVAL.
 291		 */
 292		size += iv->iov_len;
 293		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
 294			return XFS_ERROR(-EINVAL);
 295	}
 296	/* END copy & waste from filemap.c */
 297
 298	if (unlikely(ioflags & IO_ISDIRECT)) {
 299		xfs_buftarg_t	*target =
 300			XFS_IS_REALTIME_INODE(ip) ?
 301				mp->m_rtdev_targp : mp->m_ddev_targp;
 302		if ((iocb->ki_pos & target->bt_smask) ||
 303		    (size & target->bt_smask)) {
 304			if (iocb->ki_pos == ip->i_size)
 305				return 0;
 306			return -XFS_ERROR(EINVAL);
 307		}
 308	}
 309
 310	n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
 311	if (n <= 0 || size == 0)
 312		return 0;
 313
 314	if (n < size)
 315		size = n;
 316
 317	if (XFS_FORCED_SHUTDOWN(mp))
 318		return -EIO;
 319
 320	if (unlikely(ioflags & IO_ISDIRECT)) {
 321		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
 322
 323		if (inode->i_mapping->nrpages) {
 324			ret = -xfs_flushinval_pages(ip,
 325					(iocb->ki_pos & PAGE_CACHE_MASK),
 326					-1, FI_REMAPF_LOCKED);
 327			if (ret) {
 328				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
 329				return ret;
 330			}
 331		}
 332		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 333	} else
 334		xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 335
 336	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
 337
 338	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
 339	if (ret > 0)
 340		XFS_STATS_ADD(xs_read_bytes, ret);
 341
 342	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 343	return ret;
 344}
 345
 346STATIC ssize_t
 347xfs_file_splice_read(
 348	struct file		*infilp,
 349	loff_t			*ppos,
 350	struct pipe_inode_info	*pipe,
 351	size_t			count,
 352	unsigned int		flags)
 353{
 354	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
 355	int			ioflags = 0;
 356	ssize_t			ret;
 357
 358	XFS_STATS_INC(xs_read_calls);
 359
 360	if (infilp->f_mode & FMODE_NOCMTIME)
 361		ioflags |= IO_INVIS;
 362
 363	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 364		return -EIO;
 365
 366	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 
 367
 368	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
 
 
 
 
 
 369
 370	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
 371	if (ret > 0)
 372		XFS_STATS_ADD(xs_read_bytes, ret);
 373
 374	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 375	return ret;
 376}
 377
 378STATIC void
 379xfs_aio_write_isize_update(
 380	struct inode	*inode,
 381	loff_t		*ppos,
 382	ssize_t		bytes_written)
 383{
 384	struct xfs_inode	*ip = XFS_I(inode);
 385	xfs_fsize_t		isize = i_size_read(inode);
 386
 387	if (bytes_written > 0)
 388		XFS_STATS_ADD(xs_write_bytes, bytes_written);
 389
 390	if (unlikely(bytes_written < 0 && bytes_written != -EFAULT &&
 391					*ppos > isize))
 392		*ppos = isize;
 393
 394	if (*ppos > ip->i_size) {
 395		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
 396		if (*ppos > ip->i_size)
 397			ip->i_size = *ppos;
 398		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
 399	}
 400}
 
 401
 402/*
 403 * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
 404 * part of the I/O may have been written to disk before the error occurred.  In
 405 * this case the on-disk file size may have been adjusted beyond the in-memory
 406 * file size and now needs to be truncated back.
 407 */
 408STATIC void
 409xfs_aio_write_newsize_update(
 410	struct xfs_inode	*ip)
 411{
 412	if (ip->i_new_size) {
 413		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
 414		ip->i_new_size = 0;
 415		if (ip->i_d.di_size > ip->i_size)
 416			ip->i_d.di_size = ip->i_size;
 417		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
 418	}
 419}
 420
 421/*
 422 * xfs_file_splice_write() does not use xfs_rw_ilock() because
 423 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
 424 * couuld cause lock inversions between the aio_write path and the splice path
 425 * if someone is doing concurrent splice(2) based writes and write(2) based
 426 * writes to the same inode. The only real way to fix this is to re-implement
 427 * the generic code here with correct locking orders.
 428 */
 429STATIC ssize_t
 430xfs_file_splice_write(
 431	struct pipe_inode_info	*pipe,
 432	struct file		*outfilp,
 433	loff_t			*ppos,
 434	size_t			count,
 435	unsigned int		flags)
 436{
 437	struct inode		*inode = outfilp->f_mapping->host;
 438	struct xfs_inode	*ip = XFS_I(inode);
 439	xfs_fsize_t		new_size;
 440	int			ioflags = 0;
 441	ssize_t			ret;
 442
 443	XFS_STATS_INC(xs_write_calls);
 444
 445	if (outfilp->f_mode & FMODE_NOCMTIME)
 446		ioflags |= IO_INVIS;
 447
 448	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 449		return -EIO;
 450
 451	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 452
 453	new_size = *ppos + count;
 454
 455	xfs_ilock(ip, XFS_ILOCK_EXCL);
 456	if (new_size > ip->i_size)
 457		ip->i_new_size = new_size;
 458	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 459
 460	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
 461
 462	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
 463
 464	xfs_aio_write_isize_update(inode, ppos, ret);
 465	xfs_aio_write_newsize_update(ip);
 466	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 467	return ret;
 468}
 469
 470/*
 471 * This routine is called to handle zeroing any space in the last
 472 * block of the file that is beyond the EOF.  We do this since the
 473 * size is being increased without writing anything to that block
 474 * and we don't want anyone to read the garbage on the disk.
 
 475 */
 476STATIC int				/* error (positive) */
 477xfs_zero_last_block(
 478	xfs_inode_t	*ip,
 479	xfs_fsize_t	offset,
 480	xfs_fsize_t	isize)
 481{
 482	xfs_fileoff_t	last_fsb;
 483	xfs_mount_t	*mp = ip->i_mount;
 484	int		nimaps;
 485	int		zero_offset;
 486	int		zero_len;
 487	int		error = 0;
 488	xfs_bmbt_irec_t	imap;
 489
 490	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 491
 492	zero_offset = XFS_B_FSB_OFFSET(mp, isize);
 493	if (zero_offset == 0) {
 494		/*
 495		 * There are no extra bytes in the last block on disk to
 496		 * zero, so return.
 497		 */
 498		return 0;
 499	}
 500
 501	last_fsb = XFS_B_TO_FSBT(mp, isize);
 502	nimaps = 1;
 503	error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
 504			  &nimaps, NULL);
 505	if (error) {
 506		return error;
 507	}
 508	ASSERT(nimaps > 0);
 509	/*
 510	 * If the block underlying isize is just a hole, then there
 511	 * is nothing to zero.
 512	 */
 513	if (imap.br_startblock == HOLESTARTBLOCK) {
 514		return 0;
 515	}
 516	/*
 517	 * Zero the part of the last block beyond the EOF, and write it
 518	 * out sync.  We need to drop the ilock while we do this so we
 519	 * don't deadlock when the buffer cache calls back to us.
 520	 */
 521	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 522
 523	zero_len = mp->m_sb.sb_blocksize - zero_offset;
 524	if (isize + zero_len > offset)
 525		zero_len = offset - isize;
 526	error = xfs_iozero(ip, isize, zero_len);
 527
 528	xfs_ilock(ip, XFS_ILOCK_EXCL);
 529	ASSERT(error >= 0);
 530	return error;
 531}
 532
 533/*
 534 * Zero any on disk space between the current EOF and the new,
 535 * larger EOF.  This handles the normal case of zeroing the remainder
 536 * of the last block in the file and the unusual case of zeroing blocks
 537 * out beyond the size of the file.  This second case only happens
 538 * with fixed size extents and when the system crashes before the inode
 539 * size was updated but after blocks were allocated.  If fill is set,
 540 * then any holes in the range are filled and zeroed.  If not, the holes
 541 * are left alone as holes.
 542 */
 543
 544int					/* error (positive) */
 545xfs_zero_eof(
 546	xfs_inode_t	*ip,
 547	xfs_off_t	offset,		/* starting I/O offset */
 548	xfs_fsize_t	isize)		/* current inode size */
 549{
 550	xfs_mount_t	*mp = ip->i_mount;
 551	xfs_fileoff_t	start_zero_fsb;
 552	xfs_fileoff_t	end_zero_fsb;
 553	xfs_fileoff_t	zero_count_fsb;
 554	xfs_fileoff_t	last_fsb;
 555	xfs_fileoff_t	zero_off;
 556	xfs_fsize_t	zero_len;
 557	int		nimaps;
 558	int		error = 0;
 559	xfs_bmbt_irec_t	imap;
 560
 561	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 562	ASSERT(offset > isize);
 563
 564	/*
 565	 * First handle zeroing the block on which isize resides.
 566	 * We only zero a part of that block so it is handled specially.
 567	 */
 568	error = xfs_zero_last_block(ip, offset, isize);
 569	if (error) {
 570		ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 571		return error;
 572	}
 573
 574	/*
 575	 * Calculate the range between the new size and the old
 576	 * where blocks needing to be zeroed may exist.  To get the
 577	 * block where the last byte in the file currently resides,
 578	 * we need to subtract one from the size and truncate back
 579	 * to a block boundary.  We subtract 1 in case the size is
 580	 * exactly on a block boundary.
 581	 */
 582	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
 583	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
 584	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
 585	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
 586	if (last_fsb == end_zero_fsb) {
 587		/*
 588		 * The size was only incremented on its last block.
 589		 * We took care of that above, so just return.
 590		 */
 591		return 0;
 592	}
 593
 594	ASSERT(start_zero_fsb <= end_zero_fsb);
 595	while (start_zero_fsb <= end_zero_fsb) {
 596		nimaps = 1;
 597		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
 598		error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
 599				  0, NULL, 0, &imap, &nimaps, NULL);
 600		if (error) {
 601			ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 602			return error;
 603		}
 604		ASSERT(nimaps > 0);
 605
 606		if (imap.br_state == XFS_EXT_UNWRITTEN ||
 607		    imap.br_startblock == HOLESTARTBLOCK) {
 
 
 
 
 
 
 
 
 
 
 
 608			/*
 609			 * This loop handles initializing pages that were
 610			 * partially initialized by the code below this
 611			 * loop. It basically zeroes the part of the page
 612			 * that sits on a hole and sets the page as P_HOLE
 613			 * and calls remapf if it is a mapped file.
 
 614			 */
 615			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 616			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 617			continue;
 618		}
 
 
 
 
 
 
 
 
 619
 620		/*
 621		 * There are blocks we need to zero.
 622		 * Drop the inode lock while we're doing the I/O.
 623		 * We'll still have the iolock to protect us.
 624		 */
 625		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 626
 627		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
 628		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
 629
 630		if ((zero_off + zero_len) > offset)
 631			zero_len = offset - zero_off;
 632
 633		error = xfs_iozero(ip, zero_off, zero_len);
 634		if (error) {
 635			goto out_lock;
 636		}
 637
 638		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 639		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 640
 641		xfs_ilock(ip, XFS_ILOCK_EXCL);
 642	}
 643
 644	return 0;
 645
 646out_lock:
 647	xfs_ilock(ip, XFS_ILOCK_EXCL);
 648	ASSERT(error >= 0);
 649	return error;
 650}
 651
 652/*
 653 * Common pre-write limit and setup checks.
 654 *
 655 * Returns with iolock held according to @iolock.
 656 */
 657STATIC ssize_t
 658xfs_file_aio_write_checks(
 659	struct file		*file,
 660	loff_t			*pos,
 661	size_t			*count,
 662	int			*iolock)
 663{
 664	struct inode		*inode = file->f_mapping->host;
 665	struct xfs_inode	*ip = XFS_I(inode);
 666	xfs_fsize_t		new_size;
 667	int			error = 0;
 668
 669	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
 670	if (error) {
 671		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
 672		*iolock = 0;
 673		return error;
 674	}
 675
 676	new_size = *pos + *count;
 677	if (new_size > ip->i_size)
 678		ip->i_new_size = new_size;
 679
 680	if (likely(!(file->f_mode & FMODE_NOCMTIME)))
 681		file_update_time(file);
 
 
 682
 683	/*
 684	 * If the offset is beyond the size of the file, we need to zero any
 685	 * blocks that fall between the existing EOF and the start of this
 686	 * write.
 687	 */
 688	if (*pos > ip->i_size)
 689		error = -xfs_zero_eof(ip, *pos, ip->i_size);
 690
 691	xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
 692	if (error)
 693		return error;
 
 
 
 
 
 
 
 
 
 694
 695	/*
 696	 * If we're writing the file then make sure to clear the setuid and
 697	 * setgid bits if the process is not being run by root.  This keeps
 698	 * people from modifying setuid and setgid binaries.
 
 699	 */
 700	return file_remove_suid(file);
 
 
 
 701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702}
 703
 
 
 
 
 704/*
 705 * xfs_file_dio_aio_write - handle direct IO writes
 706 *
 707 * Lock the inode appropriately to prepare for and issue a direct IO write.
 708 * By separating it from the buffered write path we remove all the tricky to
 709 * follow locking changes and looping.
 710 *
 711 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 712 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 713 * pages are flushed out.
 714 *
 715 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 716 * allowing them to be done in parallel with reads and other direct IO writes.
 717 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 718 * needs to do sub-block zeroing and that requires serialisation against other
 719 * direct IOs to the same block. In this case we need to serialise the
 720 * submission of the unaligned IOs so that we don't get racing block zeroing in
 721 * the dio layer.  To avoid the problem with aio, we also need to wait for
 722 * outstanding IOs to complete so that unwritten extent conversion is completed
 723 * before we try to map the overlapping block. This is currently implemented by
 724 * hitting it with a big hammer (i.e. xfs_ioend_wait()).
 725 *
 726 * Returns with locks held indicated by @iolock and errors indicated by
 727 * negative return values.
 728 */
 729STATIC ssize_t
 730xfs_file_dio_aio_write(
 731	struct kiocb		*iocb,
 732	const struct iovec	*iovp,
 733	unsigned long		nr_segs,
 734	loff_t			pos,
 735	size_t			ocount,
 736	int			*iolock)
 737{
 738	struct file		*file = iocb->ki_filp;
 739	struct address_space	*mapping = file->f_mapping;
 740	struct inode		*inode = mapping->host;
 741	struct xfs_inode	*ip = XFS_I(inode);
 742	struct xfs_mount	*mp = ip->i_mount;
 743	ssize_t			ret = 0;
 744	size_t			count = ocount;
 745	int			unaligned_io = 0;
 746	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
 
 
 747					mp->m_rtdev_targp : mp->m_ddev_targp;
 748
 749	*iolock = 0;
 750	if ((pos & target->bt_smask) || (count & target->bt_smask))
 751		return -XFS_ERROR(EINVAL);
 752
 753	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
 
 
 
 
 
 
 
 
 754		unaligned_io = 1;
 755
 756	if (unaligned_io || mapping->nrpages || pos > ip->i_size)
 757		*iolock = XFS_IOLOCK_EXCL;
 758	else
 759		*iolock = XFS_IOLOCK_SHARED;
 760	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
 
 
 
 
 
 
 
 761
 762	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
 
 
 
 
 
 
 
 
 
 
 763	if (ret)
 764		return ret;
 
 765
 766	if (mapping->nrpages) {
 767		WARN_ON(*iolock != XFS_IOLOCK_EXCL);
 768		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
 769							FI_REMAPF_LOCKED);
 770		if (ret)
 771			return ret;
 
 
 
 
 
 
 772	}
 773
 
 
 
 
 
 
 
 
 
 
 
 
 
 774	/*
 775	 * If we are doing unaligned IO, wait for all other IO to drain,
 776	 * otherwise demote the lock if we had to flush cached pages
 777	 */
 778	if (unaligned_io)
 779		xfs_ioend_wait(ip);
 780	else if (*iolock == XFS_IOLOCK_EXCL) {
 781		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 782		*iolock = XFS_IOLOCK_SHARED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 783	}
 784
 785	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
 786	ret = generic_file_direct_write(iocb, iovp,
 787			&nr_segs, pos, &iocb->ki_pos, count, ocount);
 788
 789	/* No fallback to buffered IO on errors for XFS. */
 790	ASSERT(ret < 0 || ret == count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791	return ret;
 792}
 793
 794STATIC ssize_t
 795xfs_file_buffered_aio_write(
 796	struct kiocb		*iocb,
 797	const struct iovec	*iovp,
 798	unsigned long		nr_segs,
 799	loff_t			pos,
 800	size_t			ocount,
 801	int			*iolock)
 802{
 803	struct file		*file = iocb->ki_filp;
 804	struct address_space	*mapping = file->f_mapping;
 805	struct inode		*inode = mapping->host;
 806	struct xfs_inode	*ip = XFS_I(inode);
 807	ssize_t			ret;
 808	int			enospc = 0;
 809	size_t			count = ocount;
 810
 811	*iolock = XFS_IOLOCK_EXCL;
 812	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
 813
 814	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
 
 
 
 
 815	if (ret)
 816		return ret;
 817
 818	/* We can write back this queue in page reclaim */
 819	current->backing_dev_info = mapping->backing_dev_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820
 821write_retry:
 822	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
 823	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
 824			pos, &iocb->ki_pos, count, ret);
 825	/*
 826	 * if we just got an ENOSPC, flush the inode now we aren't holding any
 827	 * page locks and retry *once*
 828	 */
 829	if (ret == -ENOSPC && !enospc) {
 830		ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
 831		if (ret)
 832			return ret;
 833		enospc = 1;
 
 
 
 
 
 
 834		goto write_retry;
 835	}
 
 836	current->backing_dev_info = NULL;
 
 
 
 
 
 
 
 
 
 837	return ret;
 838}
 839
 840STATIC ssize_t
 841xfs_file_aio_write(
 842	struct kiocb		*iocb,
 843	const struct iovec	*iovp,
 844	unsigned long		nr_segs,
 845	loff_t			pos)
 846{
 847	struct file		*file = iocb->ki_filp;
 848	struct address_space	*mapping = file->f_mapping;
 849	struct inode		*inode = mapping->host;
 850	struct xfs_inode	*ip = XFS_I(inode);
 851	ssize_t			ret;
 852	int			iolock;
 853	size_t			ocount = 0;
 854
 855	XFS_STATS_INC(xs_write_calls);
 856
 857	BUG_ON(iocb->ki_pos != pos);
 858
 859	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
 860	if (ret)
 861		return ret;
 862
 863	if (ocount == 0)
 864		return 0;
 865
 866	xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
 867
 868	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 869		return -EIO;
 870
 871	if (unlikely(file->f_flags & O_DIRECT))
 872		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos,
 873						ocount, &iolock);
 874	else
 875		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
 876						ocount, &iolock);
 
 
 
 
 
 
 
 
 877
 878	xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret);
 
 879
 880	if (ret <= 0)
 881		goto out_unlock;
 
 
 
 882
 883	/* Handle various SYNC-type writes */
 884	if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
 885		loff_t end = pos + ret - 1;
 886		int error;
 887
 888		xfs_rw_iunlock(ip, iolock);
 889		error = xfs_file_fsync(file, pos, end,
 890				      (file->f_flags & __O_SYNC) ? 0 : 1);
 891		xfs_rw_ilock(ip, iolock);
 892		if (error)
 893			ret = error;
 894	}
 895
 896out_unlock:
 897	xfs_aio_write_newsize_update(ip);
 898	xfs_rw_iunlock(ip, iolock);
 899	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900}
 901
 
 
 
 
 
 902STATIC long
 903xfs_file_fallocate(
 904	struct file	*file,
 905	int		mode,
 906	loff_t		offset,
 907	loff_t		len)
 908{
 909	struct inode	*inode = file->f_path.dentry->d_inode;
 910	long		error;
 911	loff_t		new_size = 0;
 912	xfs_flock64_t	bf;
 913	xfs_inode_t	*ip = XFS_I(inode);
 914	int		cmd = XFS_IOC_RESVSP;
 915	int		attr_flags = XFS_ATTR_NOLOCK;
 916
 917	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 
 
 918		return -EOPNOTSUPP;
 919
 920	bf.l_whence = 0;
 921	bf.l_start = offset;
 922	bf.l_len = len;
 923
 924	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 925
 926	if (mode & FALLOC_FL_PUNCH_HOLE)
 927		cmd = XFS_IOC_UNRESVSP;
 928
 929	/* check the new inode size is valid before allocating */
 930	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 931	    offset + len > i_size_read(inode)) {
 932		new_size = offset + len;
 933		error = inode_newsize_ok(inode, new_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934		if (error)
 935			goto out_unlock;
 936	}
 937
 938	if (file->f_flags & O_DSYNC)
 939		attr_flags |= XFS_ATTR_SYNC;
 940
 941	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
 942	if (error)
 943		goto out_unlock;
 944
 945	/* Change file size if needed */
 946	if (new_size) {
 947		struct iattr iattr;
 948
 949		iattr.ia_valid = ATTR_SIZE;
 950		iattr.ia_size = new_size;
 951		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
 
 
 952	}
 953
 
 
 
 
 
 
 
 
 
 954out_unlock:
 955	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 956	return error;
 957}
 958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959
 960STATIC int
 961xfs_file_open(
 962	struct inode	*inode,
 963	struct file	*file)
 964{
 965	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 966		return -EFBIG;
 967	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 968		return -EIO;
 
 969	return 0;
 970}
 971
 972STATIC int
 973xfs_dir_open(
 974	struct inode	*inode,
 975	struct file	*file)
 976{
 977	struct xfs_inode *ip = XFS_I(inode);
 978	int		mode;
 979	int		error;
 980
 981	error = xfs_file_open(inode, file);
 982	if (error)
 983		return error;
 984
 985	/*
 986	 * If there are any blocks, read-ahead block 0 as we're almost
 987	 * certain to have the next operation be a read there.
 988	 */
 989	mode = xfs_ilock_map_shared(ip);
 990	if (ip->i_d.di_nextents > 0)
 991		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
 992	xfs_iunlock(ip, mode);
 993	return 0;
 994}
 995
 996STATIC int
 997xfs_file_release(
 998	struct inode	*inode,
 999	struct file	*filp)
1000{
1001	return -xfs_release(XFS_I(inode));
1002}
1003
1004STATIC int
1005xfs_file_readdir(
1006	struct file	*filp,
1007	void		*dirent,
1008	filldir_t	filldir)
1009{
1010	struct inode	*inode = filp->f_path.dentry->d_inode;
1011	xfs_inode_t	*ip = XFS_I(inode);
1012	int		error;
1013	size_t		bufsize;
1014
1015	/*
1016	 * The Linux API doesn't pass down the total size of the buffer
1017	 * we read into down to the filesystem.  With the filldir concept
1018	 * it's not needed for correct information, but the XFS dir2 leaf
1019	 * code wants an estimate of the buffer size to calculate it's
1020	 * readahead window and size the buffers used for mapping to
1021	 * physical blocks.
1022	 *
1023	 * Try to give it an estimate that's good enough, maybe at some
1024	 * point we can change the ->readdir prototype to include the
1025	 * buffer size.  For now we use the current glibc buffer size.
1026	 */
1027	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1028
1029	error = xfs_readdir(ip, dirent, bufsize,
1030				(xfs_off_t *)&filp->f_pos, filldir);
1031	if (error)
1032		return -error;
1033	return 0;
1034}
1035
1036STATIC int
1037xfs_file_mmap(
1038	struct file	*filp,
1039	struct vm_area_struct *vma)
 
1040{
1041	vma->vm_ops = &xfs_file_vm_ops;
1042	vma->vm_flags |= VM_CAN_NONLINEAR;
1043
1044	file_accessed(filp);
1045	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046}
1047
1048/*
1049 * mmap()d file has taken write protection fault and is being made
1050 * writable. We can set the page state up correctly for a writable
1051 * page, which means we can do correct delalloc accounting (ENOSPC
1052 * checking!) and unwritten extent mapping.
 
 
 
 
1053 */
1054STATIC int
1055xfs_vm_page_mkwrite(
1056	struct vm_area_struct	*vma,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057	struct vm_fault		*vmf)
1058{
1059	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060}
1061
1062const struct file_operations xfs_file_operations = {
1063	.llseek		= generic_file_llseek,
1064	.read		= do_sync_read,
1065	.write		= do_sync_write,
1066	.aio_read	= xfs_file_aio_read,
1067	.aio_write	= xfs_file_aio_write,
1068	.splice_read	= xfs_file_splice_read,
1069	.splice_write	= xfs_file_splice_write,
1070	.unlocked_ioctl	= xfs_file_ioctl,
1071#ifdef CONFIG_COMPAT
1072	.compat_ioctl	= xfs_file_compat_ioctl,
1073#endif
1074	.mmap		= xfs_file_mmap,
 
1075	.open		= xfs_file_open,
1076	.release	= xfs_file_release,
1077	.fsync		= xfs_file_fsync,
 
1078	.fallocate	= xfs_file_fallocate,
 
 
1079};
1080
1081const struct file_operations xfs_dir_file_operations = {
1082	.open		= xfs_dir_open,
1083	.read		= generic_read_dir,
1084	.readdir	= xfs_file_readdir,
1085	.llseek		= generic_file_llseek,
1086	.unlocked_ioctl	= xfs_file_ioctl,
1087#ifdef CONFIG_COMPAT
1088	.compat_ioctl	= xfs_file_compat_ioctl,
1089#endif
1090	.fsync		= xfs_file_fsync,
1091};
1092
1093static const struct vm_operations_struct xfs_file_vm_ops = {
1094	.fault		= filemap_fault,
1095	.page_mkwrite	= xfs_vm_page_mkwrite,
1096};
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
 
 
  12#include "xfs_mount.h"
 
 
 
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
  18#include "xfs_dir2.h"
  19#include "xfs_dir2_priv.h"
  20#include "xfs_ioctl.h"
  21#include "xfs_trace.h"
  22#include "xfs_log.h"
  23#include "xfs_icache.h"
  24#include "xfs_pnfs.h"
  25#include "xfs_iomap.h"
  26#include "xfs_reflink.h"
  27
 
  28#include <linux/falloc.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mman.h>
  31#include <linux/fadvise.h>
  32
  33static const struct vm_operations_struct xfs_file_vm_ops;
  34
  35int
  36xfs_update_prealloc_flags(
 
 
 
 
  37	struct xfs_inode	*ip,
  38	enum xfs_prealloc_flags	flags)
  39{
  40	struct xfs_trans	*tp;
  41	int			error;
 
 
  42
  43	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  44			0, 0, 0, &tp);
  45	if (error)
  46		return error;
 
 
 
 
 
  47
  48	xfs_ilock(ip, XFS_ILOCK_EXCL);
  49	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  50
  51	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  52		VFS_I(ip)->i_mode &= ~S_ISUID;
  53		if (VFS_I(ip)->i_mode & S_IXGRP)
  54			VFS_I(ip)->i_mode &= ~S_ISGID;
  55		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  56	}
  57
  58	if (flags & XFS_PREALLOC_SET)
  59		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
  60	if (flags & XFS_PREALLOC_CLEAR)
  61		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
  62
  63	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  64	if (flags & XFS_PREALLOC_SYNC)
  65		xfs_trans_set_sync(tp);
  66	return xfs_trans_commit(tp);
  67}
  68
  69/*
  70 * Fsync operations on directories are much simpler than on regular files,
  71 * as there is no file data to flush, and thus also no need for explicit
  72 * cache flush operations, and there are no non-transaction metadata updates
  73 * on directories either.
 
 
 
 
  74 */
  75STATIC int
  76xfs_dir_fsync(
  77	struct file		*file,
  78	loff_t			start,
  79	loff_t			end,
  80	int			datasync)
  81{
  82	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
  83	struct xfs_mount	*mp = ip->i_mount;
  84	xfs_lsn_t		lsn = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85
  86	trace_xfs_dir_fsync(ip);
  87
  88	xfs_ilock(ip, XFS_ILOCK_SHARED);
  89	if (xfs_ipincount(ip))
  90		lsn = ip->i_itemp->ili_last_lsn;
  91	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 
 
 
  92
  93	if (!lsn)
  94		return 0;
  95	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
  96}
  97
  98STATIC int
  99xfs_file_fsync(
 100	struct file		*file,
 101	loff_t			start,
 102	loff_t			end,
 103	int			datasync)
 104{
 105	struct inode		*inode = file->f_mapping->host;
 106	struct xfs_inode	*ip = XFS_I(inode);
 107	struct xfs_mount	*mp = ip->i_mount;
 
 108	int			error = 0;
 109	int			log_flushed = 0;
 110	xfs_lsn_t		lsn = 0;
 111
 112	trace_xfs_file_fsync(ip);
 113
 114	error = file_write_and_wait_range(file, start, end);
 115	if (error)
 116		return error;
 117
 118	if (XFS_FORCED_SHUTDOWN(mp))
 119		return -EIO;
 120
 121	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123	/*
 124	 * If we have an RT and/or log subvolume we need to make sure to flush
 125	 * the write cache the device used for file data first.  This is to
 126	 * ensure newly written file data make it to disk before logging the new
 127	 * inode size in case of an extending write.
 
 
 
 
 
 
 128	 */
 129	if (XFS_IS_REALTIME_INODE(ip))
 130		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 131	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 132		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 133
 134	/*
 135	 * All metadata updates are logged, which means that we just have to
 136	 * flush the log up to the latest LSN that touched the inode. If we have
 137	 * concurrent fsync/fdatasync() calls, we need them to all block on the
 138	 * log force before we clear the ili_fsync_fields field. This ensures
 139	 * that we don't get a racing sync operation that does not wait for the
 140	 * metadata to hit the journal before returning. If we race with
 141	 * clearing the ili_fsync_fields, then all that will happen is the log
 142	 * force will do nothing as the lsn will already be on disk. We can't
 143	 * race with setting ili_fsync_fields because that is done under
 144	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 145	 * until after the ili_fsync_fields is cleared.
 146	 */
 147	xfs_ilock(ip, XFS_ILOCK_SHARED);
 148	if (xfs_ipincount(ip)) {
 149		if (!datasync ||
 150		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 151			lsn = ip->i_itemp->ili_last_lsn;
 152	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153
 154	if (lsn) {
 155		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 156		ip->i_itemp->ili_fsync_fields = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 157	}
 158	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 159
 160	/*
 161	 * If we only have a single device, and the log force about was
 162	 * a no-op we might have to flush the data device cache here.
 163	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 164	 * an already allocated file and thus do not have any metadata to
 165	 * commit.
 166	 */
 167	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 168	    mp->m_logdev_targp == mp->m_ddev_targp)
 
 
 169		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 170
 171	return error;
 172}
 173
 174STATIC ssize_t
 175xfs_file_dio_aio_read(
 176	struct kiocb		*iocb,
 177	struct iov_iter		*to)
 
 
 178{
 179	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 180	size_t			count = iov_iter_count(to);
 181	ssize_t			ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182
 183	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
 
 184
 185	if (!count)
 186		return 0; /* skip atime */
 187
 188	file_accessed(iocb->ki_filp);
 
 189
 190	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 191	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
 192	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193
 
 194	return ret;
 195}
 196
 197static noinline ssize_t
 198xfs_file_dax_read(
 199	struct kiocb		*iocb,
 200	struct iov_iter		*to)
 
 
 
 201{
 202	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 203	size_t			count = iov_iter_count(to);
 204	ssize_t			ret = 0;
 
 
 
 
 
 205
 206	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
 
 207
 208	if (!count)
 209		return 0; /* skip atime */
 210
 211	if (iocb->ki_flags & IOCB_NOWAIT) {
 212		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 213			return -EAGAIN;
 214	} else {
 215		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 216	}
 217
 218	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
 219	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 
 220
 221	file_accessed(iocb->ki_filp);
 222	return ret;
 223}
 224
 225STATIC ssize_t
 226xfs_file_buffered_aio_read(
 227	struct kiocb		*iocb,
 228	struct iov_iter		*to)
 
 229{
 230	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 231	ssize_t			ret;
 232
 233	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
 
 234
 235	if (iocb->ki_flags & IOCB_NOWAIT) {
 236		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 237			return -EAGAIN;
 238	} else {
 239		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 
 
 
 
 240	}
 241	ret = generic_file_read_iter(iocb, to);
 242	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 243
 244	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 245}
 246
 
 
 
 
 
 
 
 
 247STATIC ssize_t
 248xfs_file_read_iter(
 249	struct kiocb		*iocb,
 250	struct iov_iter		*to)
 
 
 
 251{
 252	struct inode		*inode = file_inode(iocb->ki_filp);
 253	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 254	ssize_t			ret = 0;
 
 
 
 
 255
 256	XFS_STATS_INC(mp, xs_read_calls);
 
 257
 258	if (XFS_FORCED_SHUTDOWN(mp))
 259		return -EIO;
 260
 261	if (IS_DAX(inode))
 262		ret = xfs_file_dax_read(iocb, to);
 263	else if (iocb->ki_flags & IOCB_DIRECT)
 264		ret = xfs_file_dio_aio_read(iocb, to);
 265	else
 266		ret = xfs_file_buffered_aio_read(iocb, to);
 
 
 
 
 
 
 267
 268	if (ret > 0)
 269		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 
 270	return ret;
 271}
 272
 273/*
 274 * Common pre-write limit and setup checks.
 275 *
 276 * Called with the iolocked held either shared and exclusive according to
 277 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 278 * if called for a direct write beyond i_size.
 279 */
 280STATIC ssize_t
 281xfs_file_aio_write_checks(
 282	struct kiocb		*iocb,
 283	struct iov_iter		*from,
 284	int			*iolock)
 285{
 286	struct file		*file = iocb->ki_filp;
 287	struct inode		*inode = file->f_mapping->host;
 288	struct xfs_inode	*ip = XFS_I(inode);
 289	ssize_t			error = 0;
 290	size_t			count = iov_iter_count(from);
 291	bool			drained_dio = false;
 292	loff_t			isize;
 293
 294restart:
 295	error = generic_write_checks(iocb, from);
 296	if (error <= 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 297		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298
 299	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 300	if (error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 301		return error;
 
 302
 303	/*
 304	 * For changing security info in file_remove_privs() we need i_rwsem
 305	 * exclusively.
 306	 */
 307	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 308		xfs_iunlock(ip, *iolock);
 309		*iolock = XFS_IOLOCK_EXCL;
 310		xfs_ilock(ip, *iolock);
 311		goto restart;
 
 
 
 
 
 
 
 
 
 312	}
 313	/*
 314	 * If the offset is beyond the size of the file, we need to zero any
 315	 * blocks that fall between the existing EOF and the start of this
 316	 * write.  If zeroing is needed and we are currently holding the
 317	 * iolock shared, we need to update it to exclusive which implies
 318	 * having to redo all checks before.
 319	 *
 320	 * We need to serialise against EOF updates that occur in IO
 321	 * completions here. We want to make sure that nobody is changing the
 322	 * size while we do this check until we have placed an IO barrier (i.e.
 323	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 324	 * The spinlock effectively forms a memory barrier once we have the
 325	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 326	 * and hence be able to correctly determine if we need to run zeroing.
 327	 */
 328	spin_lock(&ip->i_flags_lock);
 329	isize = i_size_read(inode);
 330	if (iocb->ki_pos > isize) {
 331		spin_unlock(&ip->i_flags_lock);
 332		if (!drained_dio) {
 333			if (*iolock == XFS_IOLOCK_SHARED) {
 334				xfs_iunlock(ip, *iolock);
 335				*iolock = XFS_IOLOCK_EXCL;
 336				xfs_ilock(ip, *iolock);
 337				iov_iter_reexpand(from, count);
 338			}
 339			/*
 340			 * We now have an IO submission barrier in place, but
 341			 * AIO can do EOF updates during IO completion and hence
 342			 * we now need to wait for all of them to drain. Non-AIO
 343			 * DIO will have drained before we are given the
 344			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 345			 * no-op.
 346			 */
 347			inode_dio_wait(inode);
 348			drained_dio = true;
 349			goto restart;
 350		}
 351	
 352		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 353		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 354				NULL, &xfs_iomap_ops);
 355		if (error)
 356			return error;
 357	} else
 358		spin_unlock(&ip->i_flags_lock);
 359
 360	/*
 361	 * Updating the timestamps will grab the ilock again from
 362	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 363	 * lock above.  Eventually we should look into a way to avoid
 364	 * the pointless lock roundtrip.
 365	 */
 366	return file_modified(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367}
 368
 369static int
 370xfs_dio_write_end_io(
 371	struct kiocb		*iocb,
 372	ssize_t			size,
 373	int			error,
 374	unsigned		flags)
 
 
 
 
 
 375{
 376	struct inode		*inode = file_inode(iocb->ki_filp);
 377	struct xfs_inode	*ip = XFS_I(inode);
 378	loff_t			offset = iocb->ki_pos;
 379	unsigned int		nofs_flag;
 380
 381	trace_xfs_end_io_direct_write(ip, offset, size);
 
 
 
 
 
 382
 383	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 384		return -EIO;
 
 385
 386	if (error)
 387		return error;
 388	if (!size)
 389		return 0;
 390
 391	/*
 392	 * Capture amount written on completion as we can't reliably account
 393	 * for it on submission.
 
 394	 */
 395	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 
 396
 397	/*
 398	 * We can allocate memory here while doing writeback on behalf of
 399	 * memory reclaim.  To avoid memory allocation deadlocks set the
 400	 * task-wide nofs context for the following operations.
 401	 */
 402	nofs_flag = memalloc_nofs_save();
 403
 404	if (flags & IOMAP_DIO_COW) {
 405		error = xfs_reflink_end_cow(ip, offset, size);
 406		if (error)
 407			goto out;
 408	}
 409
 410	/*
 411	 * Unwritten conversion updates the in-core isize after extent
 412	 * conversion but before updating the on-disk size. Updating isize any
 413	 * earlier allows a racing dio read to find unwritten extents before
 414	 * they are converted.
 415	 */
 416	if (flags & IOMAP_DIO_UNWRITTEN) {
 417		error = xfs_iomap_write_unwritten(ip, offset, size, true);
 418		goto out;
 419	}
 420
 421	/*
 422	 * We need to update the in-core inode size here so that we don't end up
 423	 * with the on-disk inode size being outside the in-core inode size. We
 424	 * have no other method of updating EOF for AIO, so always do it here
 425	 * if necessary.
 426	 *
 427	 * We need to lock the test/set EOF update as we can be racing with
 428	 * other IO completions here to update the EOF. Failing to serialise
 429	 * here can result in EOF moving backwards and Bad Things Happen when
 430	 * that occurs.
 431	 */
 432	spin_lock(&ip->i_flags_lock);
 433	if (offset + size > i_size_read(inode)) {
 434		i_size_write(inode, offset + size);
 435		spin_unlock(&ip->i_flags_lock);
 436		error = xfs_setfilesize(ip, offset, size);
 437	} else {
 438		spin_unlock(&ip->i_flags_lock);
 439	}
 440
 441out:
 442	memalloc_nofs_restore(nofs_flag);
 443	return error;
 444}
 445
 446static const struct iomap_dio_ops xfs_dio_write_ops = {
 447	.end_io		= xfs_dio_write_end_io,
 448};
 449
 450/*
 451 * xfs_file_dio_aio_write - handle direct IO writes
 452 *
 453 * Lock the inode appropriately to prepare for and issue a direct IO write.
 454 * By separating it from the buffered write path we remove all the tricky to
 455 * follow locking changes and looping.
 456 *
 457 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 458 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 459 * pages are flushed out.
 460 *
 461 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 462 * allowing them to be done in parallel with reads and other direct IO writes.
 463 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 464 * needs to do sub-block zeroing and that requires serialisation against other
 465 * direct IOs to the same block. In this case we need to serialise the
 466 * submission of the unaligned IOs so that we don't get racing block zeroing in
 467 * the dio layer.  To avoid the problem with aio, we also need to wait for
 468 * outstanding IOs to complete so that unwritten extent conversion is completed
 469 * before we try to map the overlapping block. This is currently implemented by
 470 * hitting it with a big hammer (i.e. inode_dio_wait()).
 471 *
 472 * Returns with locks held indicated by @iolock and errors indicated by
 473 * negative return values.
 474 */
 475STATIC ssize_t
 476xfs_file_dio_aio_write(
 477	struct kiocb		*iocb,
 478	struct iov_iter		*from)
 
 
 
 
 479{
 480	struct file		*file = iocb->ki_filp;
 481	struct address_space	*mapping = file->f_mapping;
 482	struct inode		*inode = mapping->host;
 483	struct xfs_inode	*ip = XFS_I(inode);
 484	struct xfs_mount	*mp = ip->i_mount;
 485	ssize_t			ret = 0;
 
 486	int			unaligned_io = 0;
 487	int			iolock;
 488	size_t			count = iov_iter_count(from);
 489	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
 490					mp->m_rtdev_targp : mp->m_ddev_targp;
 491
 492	/* DIO must be aligned to device logical sector size */
 493	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 494		return -EINVAL;
 495
 496	/*
 497	 * Don't take the exclusive iolock here unless the I/O is unaligned to
 498	 * the file system block size.  We don't need to consider the EOF
 499	 * extension case here because xfs_file_aio_write_checks() will relock
 500	 * the inode as necessary for EOF zeroing cases and fill out the new
 501	 * inode size as appropriate.
 502	 */
 503	if ((iocb->ki_pos & mp->m_blockmask) ||
 504	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
 505		unaligned_io = 1;
 506
 507		/*
 508		 * We can't properly handle unaligned direct I/O to reflink
 509		 * files yet, as we can't unshare a partial block.
 510		 */
 511		if (xfs_is_cow_inode(ip)) {
 512			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
 513			return -EREMCHG;
 514		}
 515		iolock = XFS_IOLOCK_EXCL;
 516	} else {
 517		iolock = XFS_IOLOCK_SHARED;
 518	}
 519
 520	if (iocb->ki_flags & IOCB_NOWAIT) {
 521		/* unaligned dio always waits, bail */
 522		if (unaligned_io)
 523			return -EAGAIN;
 524		if (!xfs_ilock_nowait(ip, iolock))
 525			return -EAGAIN;
 526	} else {
 527		xfs_ilock(ip, iolock);
 528	}
 529
 530	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 531	if (ret)
 532		goto out;
 533	count = iov_iter_count(from);
 534
 535	/*
 536	 * If we are doing unaligned IO, we can't allow any other overlapping IO
 537	 * in-flight at the same time or we risk data corruption. Wait for all
 538	 * other IO to drain before we submit. If the IO is aligned, demote the
 539	 * iolock if we had to take the exclusive lock in
 540	 * xfs_file_aio_write_checks() for other reasons.
 541	 */
 542	if (unaligned_io) {
 543		inode_dio_wait(inode);
 544	} else if (iolock == XFS_IOLOCK_EXCL) {
 545		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 546		iolock = XFS_IOLOCK_SHARED;
 547	}
 548
 549	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
 550	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, &xfs_dio_write_ops);
 551
 552	/*
 553	 * If unaligned, this is the only IO in-flight. If it has not yet
 554	 * completed, wait on it before we release the iolock to prevent
 555	 * subsequent overlapping IO.
 556	 */
 557	if (ret == -EIOCBQUEUED && unaligned_io)
 558		inode_dio_wait(inode);
 559out:
 560	xfs_iunlock(ip, iolock);
 561
 562	/*
 563	 * No fallback to buffered IO on errors for XFS, direct IO will either
 564	 * complete fully or fail.
 565	 */
 566	ASSERT(ret < 0 || ret == count);
 567	return ret;
 568}
 569
 570static noinline ssize_t
 571xfs_file_dax_write(
 572	struct kiocb		*iocb,
 573	struct iov_iter		*from)
 574{
 575	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 576	struct xfs_inode	*ip = XFS_I(inode);
 577	int			iolock = XFS_IOLOCK_EXCL;
 578	ssize_t			ret, error = 0;
 579	size_t			count;
 580	loff_t			pos;
 581
 582	if (iocb->ki_flags & IOCB_NOWAIT) {
 583		if (!xfs_ilock_nowait(ip, iolock))
 584			return -EAGAIN;
 585	} else {
 586		xfs_ilock(ip, iolock);
 587	}
 588
 589	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 590	if (ret)
 591		goto out;
 592
 593	pos = iocb->ki_pos;
 594	count = iov_iter_count(from);
 595
 596	trace_xfs_file_dax_write(ip, count, pos);
 597	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
 598	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 599		i_size_write(inode, iocb->ki_pos);
 600		error = xfs_setfilesize(ip, pos, ret);
 601	}
 602out:
 603	xfs_iunlock(ip, iolock);
 604	if (error)
 605		return error;
 606
 607	if (ret > 0) {
 608		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 609
 610		/* Handle various SYNC-type writes */
 611		ret = generic_write_sync(iocb, ret);
 612	}
 613	return ret;
 614}
 615
 616STATIC ssize_t
 617xfs_file_buffered_aio_write(
 618	struct kiocb		*iocb,
 619	struct iov_iter		*from)
 
 
 
 
 620{
 621	struct file		*file = iocb->ki_filp;
 622	struct address_space	*mapping = file->f_mapping;
 623	struct inode		*inode = mapping->host;
 624	struct xfs_inode	*ip = XFS_I(inode);
 625	ssize_t			ret;
 626	int			enospc = 0;
 627	int			iolock;
 628
 629	if (iocb->ki_flags & IOCB_NOWAIT)
 630		return -EOPNOTSUPP;
 631
 632write_retry:
 633	iolock = XFS_IOLOCK_EXCL;
 634	xfs_ilock(ip, iolock);
 635
 636	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 637	if (ret)
 638		goto out;
 639
 640	/* We can write back this queue in page reclaim */
 641	current->backing_dev_info = inode_to_bdi(inode);
 642
 643	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
 644	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
 645	if (likely(ret >= 0))
 646		iocb->ki_pos += ret;
 647
 648	/*
 649	 * If we hit a space limit, try to free up some lingering preallocated
 650	 * space before returning an error. In the case of ENOSPC, first try to
 651	 * write back all dirty inodes to free up some of the excess reserved
 652	 * metadata space. This reduces the chances that the eofblocks scan
 653	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 654	 * also behaves as a filter to prevent too many eofblocks scans from
 655	 * running at the same time.
 656	 */
 657	if (ret == -EDQUOT && !enospc) {
 658		xfs_iunlock(ip, iolock);
 659		enospc = xfs_inode_free_quota_eofblocks(ip);
 660		if (enospc)
 661			goto write_retry;
 662		enospc = xfs_inode_free_quota_cowblocks(ip);
 663		if (enospc)
 664			goto write_retry;
 665		iolock = 0;
 666	} else if (ret == -ENOSPC && !enospc) {
 667		struct xfs_eofblocks eofb = {0};
 668
 
 
 
 
 
 
 
 
 
 
 
 
 669		enospc = 1;
 670		xfs_flush_inodes(ip->i_mount);
 671
 672		xfs_iunlock(ip, iolock);
 673		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 674		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 675		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
 676		goto write_retry;
 677	}
 678
 679	current->backing_dev_info = NULL;
 680out:
 681	if (iolock)
 682		xfs_iunlock(ip, iolock);
 683
 684	if (ret > 0) {
 685		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 686		/* Handle various SYNC-type writes */
 687		ret = generic_write_sync(iocb, ret);
 688	}
 689	return ret;
 690}
 691
 692STATIC ssize_t
 693xfs_file_write_iter(
 694	struct kiocb		*iocb,
 695	struct iov_iter		*from)
 
 
 696{
 697	struct file		*file = iocb->ki_filp;
 698	struct address_space	*mapping = file->f_mapping;
 699	struct inode		*inode = mapping->host;
 700	struct xfs_inode	*ip = XFS_I(inode);
 701	ssize_t			ret;
 702	size_t			ocount = iov_iter_count(from);
 
 
 
 
 
 703
 704	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 
 
 705
 706	if (ocount == 0)
 707		return 0;
 708
 
 
 709	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 710		return -EIO;
 711
 712	if (IS_DAX(inode))
 713		return xfs_file_dax_write(iocb, from);
 714
 715	if (iocb->ki_flags & IOCB_DIRECT) {
 716		/*
 717		 * Allow a directio write to fall back to a buffered
 718		 * write *only* in the case that we're doing a reflink
 719		 * CoW.  In all other directio scenarios we do not
 720		 * allow an operation to fall back to buffered mode.
 721		 */
 722		ret = xfs_file_dio_aio_write(iocb, from);
 723		if (ret != -EREMCHG)
 724			return ret;
 725	}
 726
 727	return xfs_file_buffered_aio_write(iocb, from);
 728}
 729
 730static void
 731xfs_wait_dax_page(
 732	struct inode		*inode)
 733{
 734	struct xfs_inode        *ip = XFS_I(inode);
 735
 736	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 737	schedule();
 738	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 739}
 
 
 
 
 
 
 
 
 740
 741static int
 742xfs_break_dax_layouts(
 743	struct inode		*inode,
 744	bool			*retry)
 745{
 746	struct page		*page;
 747
 748	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 749
 750	page = dax_layout_busy_page(inode->i_mapping);
 751	if (!page)
 752		return 0;
 753
 754	*retry = true;
 755	return ___wait_var_event(&page->_refcount,
 756			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 757			0, 0, xfs_wait_dax_page(inode));
 758}
 759
 760int
 761xfs_break_layouts(
 762	struct inode		*inode,
 763	uint			*iolock,
 764	enum layout_break_reason reason)
 765{
 766	bool			retry;
 767	int			error;
 768
 769	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 770
 771	do {
 772		retry = false;
 773		switch (reason) {
 774		case BREAK_UNMAP:
 775			error = xfs_break_dax_layouts(inode, &retry);
 776			if (error || retry)
 777				break;
 778			/* fall through */
 779		case BREAK_WRITE:
 780			error = xfs_break_leased_layouts(inode, iolock, &retry);
 781			break;
 782		default:
 783			WARN_ON_ONCE(1);
 784			error = -EINVAL;
 785		}
 786	} while (error == 0 && retry);
 787
 788	return error;
 789}
 790
 791#define	XFS_FALLOC_FL_SUPPORTED						\
 792		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 793		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 794		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 795
 796STATIC long
 797xfs_file_fallocate(
 798	struct file		*file,
 799	int			mode,
 800	loff_t			offset,
 801	loff_t			len)
 802{
 803	struct inode		*inode = file_inode(file);
 804	struct xfs_inode	*ip = XFS_I(inode);
 805	long			error;
 806	enum xfs_prealloc_flags	flags = 0;
 807	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 808	loff_t			new_size = 0;
 809	bool			do_file_insert = false;
 810
 811	if (!S_ISREG(inode->i_mode))
 812		return -EINVAL;
 813	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 814		return -EOPNOTSUPP;
 815
 816	xfs_ilock(ip, iolock);
 817	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 818	if (error)
 819		goto out_unlock;
 820
 821	if (mode & FALLOC_FL_PUNCH_HOLE) {
 822		error = xfs_free_file_space(ip, offset, len);
 823		if (error)
 824			goto out_unlock;
 825	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 826		unsigned int blksize_mask = i_blocksize(inode) - 1;
 827
 828		if (offset & blksize_mask || len & blksize_mask) {
 829			error = -EINVAL;
 830			goto out_unlock;
 831		}
 832
 833		/*
 834		 * There is no need to overlap collapse range with EOF,
 835		 * in which case it is effectively a truncate operation
 836		 */
 837		if (offset + len >= i_size_read(inode)) {
 838			error = -EINVAL;
 839			goto out_unlock;
 840		}
 841
 842		new_size = i_size_read(inode) - len;
 843
 844		error = xfs_collapse_file_space(ip, offset, len);
 845		if (error)
 846			goto out_unlock;
 847	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 848		unsigned int	blksize_mask = i_blocksize(inode) - 1;
 849		loff_t		isize = i_size_read(inode);
 850
 851		if (offset & blksize_mask || len & blksize_mask) {
 852			error = -EINVAL;
 853			goto out_unlock;
 854		}
 855
 856		/*
 857		 * New inode size must not exceed ->s_maxbytes, accounting for
 858		 * possible signed overflow.
 859		 */
 860		if (inode->i_sb->s_maxbytes - isize < len) {
 861			error = -EFBIG;
 862			goto out_unlock;
 863		}
 864		new_size = isize + len;
 865
 866		/* Offset should be less than i_size */
 867		if (offset >= isize) {
 868			error = -EINVAL;
 869			goto out_unlock;
 870		}
 871		do_file_insert = true;
 872	} else {
 873		flags |= XFS_PREALLOC_SET;
 874
 875		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 876		    offset + len > i_size_read(inode)) {
 877			new_size = offset + len;
 878			error = inode_newsize_ok(inode, new_size);
 879			if (error)
 880				goto out_unlock;
 881		}
 882
 883		if (mode & FALLOC_FL_ZERO_RANGE) {
 884			error = xfs_zero_file_space(ip, offset, len);
 885		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
 886			error = xfs_reflink_unshare(ip, offset, len);
 887			if (error)
 888				goto out_unlock;
 889
 890			if (!xfs_is_always_cow_inode(ip)) {
 891				error = xfs_alloc_file_space(ip, offset, len,
 892						XFS_BMAPI_PREALLOC);
 893			}
 894		} else {
 895			/*
 896			 * If always_cow mode we can't use preallocations and
 897			 * thus should not create them.
 898			 */
 899			if (xfs_is_always_cow_inode(ip)) {
 900				error = -EOPNOTSUPP;
 901				goto out_unlock;
 902			}
 903
 904			error = xfs_alloc_file_space(ip, offset, len,
 905						     XFS_BMAPI_PREALLOC);
 906		}
 907		if (error)
 908			goto out_unlock;
 909	}
 910
 911	if (file->f_flags & O_DSYNC)
 912		flags |= XFS_PREALLOC_SYNC;
 913
 914	error = xfs_update_prealloc_flags(ip, flags);
 915	if (error)
 916		goto out_unlock;
 917
 918	/* Change file size if needed */
 919	if (new_size) {
 920		struct iattr iattr;
 921
 922		iattr.ia_valid = ATTR_SIZE;
 923		iattr.ia_size = new_size;
 924		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
 925		if (error)
 926			goto out_unlock;
 927	}
 928
 929	/*
 930	 * Perform hole insertion now that the file size has been
 931	 * updated so that if we crash during the operation we don't
 932	 * leave shifted extents past EOF and hence losing access to
 933	 * the data that is contained within them.
 934	 */
 935	if (do_file_insert)
 936		error = xfs_insert_file_space(ip, offset, len);
 937
 938out_unlock:
 939	xfs_iunlock(ip, iolock);
 940	return error;
 941}
 942
 943STATIC int
 944xfs_file_fadvise(
 945	struct file	*file,
 946	loff_t		start,
 947	loff_t		end,
 948	int		advice)
 949{
 950	struct xfs_inode *ip = XFS_I(file_inode(file));
 951	int ret;
 952	int lockflags = 0;
 953
 954	/*
 955	 * Operations creating pages in page cache need protection from hole
 956	 * punching and similar ops
 957	 */
 958	if (advice == POSIX_FADV_WILLNEED) {
 959		lockflags = XFS_IOLOCK_SHARED;
 960		xfs_ilock(ip, lockflags);
 961	}
 962	ret = generic_fadvise(file, start, end, advice);
 963	if (lockflags)
 964		xfs_iunlock(ip, lockflags);
 965	return ret;
 966}
 967
 968STATIC loff_t
 969xfs_file_remap_range(
 970	struct file		*file_in,
 971	loff_t			pos_in,
 972	struct file		*file_out,
 973	loff_t			pos_out,
 974	loff_t			len,
 975	unsigned int		remap_flags)
 976{
 977	struct inode		*inode_in = file_inode(file_in);
 978	struct xfs_inode	*src = XFS_I(inode_in);
 979	struct inode		*inode_out = file_inode(file_out);
 980	struct xfs_inode	*dest = XFS_I(inode_out);
 981	struct xfs_mount	*mp = src->i_mount;
 982	loff_t			remapped = 0;
 983	xfs_extlen_t		cowextsize;
 984	int			ret;
 985
 986	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
 987		return -EINVAL;
 988
 989	if (!xfs_sb_version_hasreflink(&mp->m_sb))
 990		return -EOPNOTSUPP;
 991
 992	if (XFS_FORCED_SHUTDOWN(mp))
 993		return -EIO;
 994
 995	/* Prepare and then clone file data. */
 996	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
 997			&len, remap_flags);
 998	if (ret < 0 || len == 0)
 999		return ret;
1000
1001	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1002
1003	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1004			&remapped);
1005	if (ret)
1006		goto out_unlock;
1007
1008	/*
1009	 * Carry the cowextsize hint from src to dest if we're sharing the
1010	 * entire source file to the entire destination file, the source file
1011	 * has a cowextsize hint, and the destination file does not.
1012	 */
1013	cowextsize = 0;
1014	if (pos_in == 0 && len == i_size_read(inode_in) &&
1015	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1016	    pos_out == 0 && len >= i_size_read(inode_out) &&
1017	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1018		cowextsize = src->i_d.di_cowextsize;
1019
1020	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1021			remap_flags);
1022
1023out_unlock:
1024	xfs_reflink_remap_unlock(file_in, file_out);
1025	if (ret)
1026		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1027	return remapped > 0 ? remapped : ret;
1028}
1029
1030STATIC int
1031xfs_file_open(
1032	struct inode	*inode,
1033	struct file	*file)
1034{
1035	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1036		return -EFBIG;
1037	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1038		return -EIO;
1039	file->f_mode |= FMODE_NOWAIT;
1040	return 0;
1041}
1042
1043STATIC int
1044xfs_dir_open(
1045	struct inode	*inode,
1046	struct file	*file)
1047{
1048	struct xfs_inode *ip = XFS_I(inode);
1049	int		mode;
1050	int		error;
1051
1052	error = xfs_file_open(inode, file);
1053	if (error)
1054		return error;
1055
1056	/*
1057	 * If there are any blocks, read-ahead block 0 as we're almost
1058	 * certain to have the next operation be a read there.
1059	 */
1060	mode = xfs_ilock_data_map_shared(ip);
1061	if (ip->i_d.di_nextents > 0)
1062		error = xfs_dir3_data_readahead(ip, 0, -1);
1063	xfs_iunlock(ip, mode);
1064	return error;
1065}
1066
1067STATIC int
1068xfs_file_release(
1069	struct inode	*inode,
1070	struct file	*filp)
1071{
1072	return xfs_release(XFS_I(inode));
1073}
1074
1075STATIC int
1076xfs_file_readdir(
1077	struct file	*file,
1078	struct dir_context *ctx)
 
1079{
1080	struct inode	*inode = file_inode(file);
1081	xfs_inode_t	*ip = XFS_I(inode);
 
1082	size_t		bufsize;
1083
1084	/*
1085	 * The Linux API doesn't pass down the total size of the buffer
1086	 * we read into down to the filesystem.  With the filldir concept
1087	 * it's not needed for correct information, but the XFS dir2 leaf
1088	 * code wants an estimate of the buffer size to calculate it's
1089	 * readahead window and size the buffers used for mapping to
1090	 * physical blocks.
1091	 *
1092	 * Try to give it an estimate that's good enough, maybe at some
1093	 * point we can change the ->readdir prototype to include the
1094	 * buffer size.  For now we use the current glibc buffer size.
1095	 */
1096	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1097
1098	return xfs_readdir(NULL, ip, ctx, bufsize);
 
 
 
 
1099}
1100
1101STATIC loff_t
1102xfs_file_llseek(
1103	struct file	*file,
1104	loff_t		offset,
1105	int		whence)
1106{
1107	struct inode		*inode = file->f_mapping->host;
 
1108
1109	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1110		return -EIO;
1111
1112	switch (whence) {
1113	default:
1114		return generic_file_llseek(file, offset, whence);
1115	case SEEK_HOLE:
1116		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1117		break;
1118	case SEEK_DATA:
1119		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1120		break;
1121	}
1122
1123	if (offset < 0)
1124		return offset;
1125	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1126}
1127
1128/*
1129 * Locking for serialisation of IO during page faults. This results in a lock
1130 * ordering of:
1131 *
1132 * mmap_sem (MM)
1133 *   sb_start_pagefault(vfs, freeze)
1134 *     i_mmaplock (XFS - truncate serialisation)
1135 *       page_lock (MM)
1136 *         i_lock (XFS - extent map serialisation)
1137 */
1138static vm_fault_t
1139__xfs_filemap_fault(
1140	struct vm_fault		*vmf,
1141	enum page_entry_size	pe_size,
1142	bool			write_fault)
1143{
1144	struct inode		*inode = file_inode(vmf->vma->vm_file);
1145	struct xfs_inode	*ip = XFS_I(inode);
1146	vm_fault_t		ret;
1147
1148	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1149
1150	if (write_fault) {
1151		sb_start_pagefault(inode->i_sb);
1152		file_update_time(vmf->vma->vm_file);
1153	}
1154
1155	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1156	if (IS_DAX(inode)) {
1157		pfn_t pfn;
1158
1159		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1160		if (ret & VM_FAULT_NEEDDSYNC)
1161			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1162	} else {
1163		if (write_fault)
1164			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1165		else
1166			ret = filemap_fault(vmf);
1167	}
1168	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1169
1170	if (write_fault)
1171		sb_end_pagefault(inode->i_sb);
1172	return ret;
1173}
1174
1175static vm_fault_t
1176xfs_filemap_fault(
1177	struct vm_fault		*vmf)
1178{
1179	/* DAX can shortcut the normal fault path on write faults! */
1180	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1181			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1182			(vmf->flags & FAULT_FLAG_WRITE));
1183}
1184
1185static vm_fault_t
1186xfs_filemap_huge_fault(
1187	struct vm_fault		*vmf,
1188	enum page_entry_size	pe_size)
1189{
1190	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1191		return VM_FAULT_FALLBACK;
1192
1193	/* DAX can shortcut the normal fault path on write faults! */
1194	return __xfs_filemap_fault(vmf, pe_size,
1195			(vmf->flags & FAULT_FLAG_WRITE));
1196}
1197
1198static vm_fault_t
1199xfs_filemap_page_mkwrite(
1200	struct vm_fault		*vmf)
1201{
1202	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1203}
1204
1205/*
1206 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1207 * on write faults. In reality, it needs to serialise against truncate and
1208 * prepare memory for writing so handle is as standard write fault.
1209 */
1210static vm_fault_t
1211xfs_filemap_pfn_mkwrite(
1212	struct vm_fault		*vmf)
1213{
1214
1215	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1216}
1217
1218static const struct vm_operations_struct xfs_file_vm_ops = {
1219	.fault		= xfs_filemap_fault,
1220	.huge_fault	= xfs_filemap_huge_fault,
1221	.map_pages	= filemap_map_pages,
1222	.page_mkwrite	= xfs_filemap_page_mkwrite,
1223	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1224};
1225
1226STATIC int
1227xfs_file_mmap(
1228	struct file	*filp,
1229	struct vm_area_struct *vma)
1230{
1231	struct dax_device 	*dax_dev;
1232
1233	dax_dev = xfs_find_daxdev_for_inode(file_inode(filp));
1234	/*
1235	 * We don't support synchronous mappings for non-DAX files and
1236	 * for DAX files if underneath dax_device is not synchronous.
1237	 */
1238	if (!daxdev_mapping_supported(vma, dax_dev))
1239		return -EOPNOTSUPP;
1240
1241	file_accessed(filp);
1242	vma->vm_ops = &xfs_file_vm_ops;
1243	if (IS_DAX(file_inode(filp)))
1244		vma->vm_flags |= VM_HUGEPAGE;
1245	return 0;
1246}
1247
1248const struct file_operations xfs_file_operations = {
1249	.llseek		= xfs_file_llseek,
1250	.read_iter	= xfs_file_read_iter,
1251	.write_iter	= xfs_file_write_iter,
1252	.splice_read	= generic_file_splice_read,
1253	.splice_write	= iter_file_splice_write,
1254	.iopoll		= iomap_dio_iopoll,
 
1255	.unlocked_ioctl	= xfs_file_ioctl,
1256#ifdef CONFIG_COMPAT
1257	.compat_ioctl	= xfs_file_compat_ioctl,
1258#endif
1259	.mmap		= xfs_file_mmap,
1260	.mmap_supported_flags = MAP_SYNC,
1261	.open		= xfs_file_open,
1262	.release	= xfs_file_release,
1263	.fsync		= xfs_file_fsync,
1264	.get_unmapped_area = thp_get_unmapped_area,
1265	.fallocate	= xfs_file_fallocate,
1266	.fadvise	= xfs_file_fadvise,
1267	.remap_file_range = xfs_file_remap_range,
1268};
1269
1270const struct file_operations xfs_dir_file_operations = {
1271	.open		= xfs_dir_open,
1272	.read		= generic_read_dir,
1273	.iterate_shared	= xfs_file_readdir,
1274	.llseek		= generic_file_llseek,
1275	.unlocked_ioctl	= xfs_file_ioctl,
1276#ifdef CONFIG_COMPAT
1277	.compat_ioctl	= xfs_file_compat_ioctl,
1278#endif
1279	.fsync		= xfs_dir_fsync,
 
 
 
 
 
1280};