Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_bit.h"
  21#include "xfs_log.h"
  22#include "xfs_inum.h"
  23#include "xfs_sb.h"
  24#include "xfs_ag.h"
  25#include "xfs_trans.h"
  26#include "xfs_mount.h"
  27#include "xfs_bmap_btree.h"
  28#include "xfs_alloc.h"
  29#include "xfs_dinode.h"
  30#include "xfs_inode.h"
  31#include "xfs_inode_item.h"
  32#include "xfs_bmap.h"
  33#include "xfs_error.h"
  34#include "xfs_vnodeops.h"
  35#include "xfs_da_btree.h"
  36#include "xfs_ioctl.h"
  37#include "xfs_trace.h"
  38
  39#include <linux/dcache.h>
  40#include <linux/falloc.h>
  41
  42static const struct vm_operations_struct xfs_file_vm_ops;
  43
  44/*
  45 * Locking primitives for read and write IO paths to ensure we consistently use
  46 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
  47 */
  48static inline void
  49xfs_rw_ilock(
  50	struct xfs_inode	*ip,
  51	int			type)
  52{
  53	if (type & XFS_IOLOCK_EXCL)
  54		mutex_lock(&VFS_I(ip)->i_mutex);
  55	xfs_ilock(ip, type);
  56}
  57
  58static inline void
  59xfs_rw_iunlock(
  60	struct xfs_inode	*ip,
  61	int			type)
  62{
  63	xfs_iunlock(ip, type);
  64	if (type & XFS_IOLOCK_EXCL)
  65		mutex_unlock(&VFS_I(ip)->i_mutex);
  66}
  67
  68static inline void
  69xfs_rw_ilock_demote(
  70	struct xfs_inode	*ip,
  71	int			type)
  72{
  73	xfs_ilock_demote(ip, type);
  74	if (type & XFS_IOLOCK_EXCL)
  75		mutex_unlock(&VFS_I(ip)->i_mutex);
  76}
  77
  78/*
  79 *	xfs_iozero
  80 *
  81 *	xfs_iozero clears the specified range of buffer supplied,
  82 *	and marks all the affected blocks as valid and modified.  If
  83 *	an affected block is not allocated, it will be allocated.  If
  84 *	an affected block is not completely overwritten, and is not
  85 *	valid before the operation, it will be read from disk before
  86 *	being partially zeroed.
  87 */
  88STATIC int
  89xfs_iozero(
  90	struct xfs_inode	*ip,	/* inode			*/
  91	loff_t			pos,	/* offset in file		*/
  92	size_t			count)	/* size of data to zero		*/
  93{
  94	struct page		*page;
  95	struct address_space	*mapping;
  96	int			status;
  97
  98	mapping = VFS_I(ip)->i_mapping;
  99	do {
 100		unsigned offset, bytes;
 101		void *fsdata;
 102
 103		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
 104		bytes = PAGE_CACHE_SIZE - offset;
 105		if (bytes > count)
 106			bytes = count;
 107
 108		status = pagecache_write_begin(NULL, mapping, pos, bytes,
 109					AOP_FLAG_UNINTERRUPTIBLE,
 110					&page, &fsdata);
 111		if (status)
 112			break;
 113
 114		zero_user(page, offset, bytes);
 115
 116		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
 117					page, fsdata);
 118		WARN_ON(status <= 0); /* can't return less than zero! */
 119		pos += bytes;
 120		count -= bytes;
 121		status = 0;
 122	} while (count);
 123
 124	return (-status);
 125}
 126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127STATIC int
 128xfs_file_fsync(
 129	struct file		*file,
 130	loff_t			start,
 131	loff_t			end,
 132	int			datasync)
 133{
 134	struct inode		*inode = file->f_mapping->host;
 135	struct xfs_inode	*ip = XFS_I(inode);
 136	struct xfs_mount	*mp = ip->i_mount;
 137	struct xfs_trans	*tp;
 138	int			error = 0;
 139	int			log_flushed = 0;
 
 140
 141	trace_xfs_file_fsync(ip);
 142
 143	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
 144	if (error)
 145		return error;
 146
 147	if (XFS_FORCED_SHUTDOWN(mp))
 148		return -XFS_ERROR(EIO);
 149
 150	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 151
 152	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 153	xfs_ioend_wait(ip);
 154	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 155
 156	if (mp->m_flags & XFS_MOUNT_BARRIER) {
 157		/*
 158		 * If we have an RT and/or log subvolume we need to make sure
 159		 * to flush the write cache the device used for file data
 160		 * first.  This is to ensure newly written file data make
 161		 * it to disk before logging the new inode size in case of
 162		 * an extending write.
 163		 */
 164		if (XFS_IS_REALTIME_INODE(ip))
 165			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 166		else if (mp->m_logdev_targp != mp->m_ddev_targp)
 167			xfs_blkdev_issue_flush(mp->m_ddev_targp);
 168	}
 169
 170	/*
 171	 * We always need to make sure that the required inode state is safe on
 172	 * disk.  The inode might be clean but we still might need to force the
 173	 * log because of committed transactions that haven't hit the disk yet.
 174	 * Likewise, there could be unflushed non-transactional changes to the
 175	 * inode core that have to go to disk and this requires us to issue
 176	 * a synchronous transaction to capture these changes correctly.
 177	 *
 178	 * This code relies on the assumption that if the i_update_core field
 179	 * of the inode is clear and the inode is unpinned then it is clean
 180	 * and no action is required.
 181	 */
 182	xfs_ilock(ip, XFS_ILOCK_SHARED);
 183
 184	/*
 185	 * First check if the VFS inode is marked dirty.  All the dirtying
 186	 * of non-transactional updates no goes through mark_inode_dirty*,
 187	 * which allows us to distinguish beteeen pure timestamp updates
 188	 * and i_size updates which need to be caught for fdatasync.
 189	 * After that also theck for the dirty state in the XFS inode, which
 190	 * might gets cleared when the inode gets written out via the AIL
 191	 * or xfs_iflush_cluster.
 192	 */
 193	if (((inode->i_state & I_DIRTY_DATASYNC) ||
 194	    ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
 195	    ip->i_update_core) {
 196		/*
 197		 * Kick off a transaction to log the inode core to get the
 198		 * updates.  The sync transaction will also force the log.
 199		 */
 200		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 201		tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
 202		error = xfs_trans_reserve(tp, 0,
 203				XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
 204		if (error) {
 205			xfs_trans_cancel(tp, 0);
 206			return -error;
 207		}
 208		xfs_ilock(ip, XFS_ILOCK_EXCL);
 209
 210		/*
 211		 * Note - it's possible that we might have pushed ourselves out
 212		 * of the way during trans_reserve which would flush the inode.
 213		 * But there's no guarantee that the inode buffer has actually
 214		 * gone out yet (it's delwri).	Plus the buffer could be pinned
 215		 * anyway if it's part of an inode in another recent
 216		 * transaction.	 So we play it safe and fire off the
 217		 * transaction anyway.
 218		 */
 219		xfs_trans_ijoin(tp, ip);
 220		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 221		xfs_trans_set_sync(tp);
 222		error = _xfs_trans_commit(tp, 0, &log_flushed);
 223
 224		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 225	} else {
 226		/*
 227		 * Timestamps/size haven't changed since last inode flush or
 228		 * inode transaction commit.  That means either nothing got
 229		 * written or a transaction committed which caught the updates.
 230		 * If the latter happened and the transaction hasn't hit the
 231		 * disk yet, the inode will be still be pinned.  If it is,
 232		 * force the log.
 233		 */
 234		if (xfs_ipincount(ip)) {
 235			error = _xfs_log_force_lsn(mp,
 236					ip->i_itemp->ili_last_lsn,
 237					XFS_LOG_SYNC, &log_flushed);
 238		}
 239		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 240	}
 
 
 
 
 241
 242	/*
 243	 * If we only have a single device, and the log force about was
 244	 * a no-op we might have to flush the data device cache here.
 245	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 246	 * an already allocated file and thus do not have any metadata to
 247	 * commit.
 248	 */
 249	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
 250	    mp->m_logdev_targp == mp->m_ddev_targp &&
 251	    !XFS_IS_REALTIME_INODE(ip) &&
 252	    !log_flushed)
 253		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 254
 255	return -error;
 256}
 257
 258STATIC ssize_t
 259xfs_file_aio_read(
 260	struct kiocb		*iocb,
 261	const struct iovec	*iovp,
 262	unsigned long		nr_segs,
 263	loff_t			pos)
 264{
 265	struct file		*file = iocb->ki_filp;
 266	struct inode		*inode = file->f_mapping->host;
 267	struct xfs_inode	*ip = XFS_I(inode);
 268	struct xfs_mount	*mp = ip->i_mount;
 269	size_t			size = 0;
 270	ssize_t			ret = 0;
 271	int			ioflags = 0;
 272	xfs_fsize_t		n;
 273	unsigned long		seg;
 274
 275	XFS_STATS_INC(xs_read_calls);
 276
 277	BUG_ON(iocb->ki_pos != pos);
 278
 279	if (unlikely(file->f_flags & O_DIRECT))
 280		ioflags |= IO_ISDIRECT;
 281	if (file->f_mode & FMODE_NOCMTIME)
 282		ioflags |= IO_INVIS;
 283
 284	/* START copy & waste from filemap.c */
 285	for (seg = 0; seg < nr_segs; seg++) {
 286		const struct iovec *iv = &iovp[seg];
 287
 288		/*
 289		 * If any segment has a negative length, or the cumulative
 290		 * length ever wraps negative then return -EINVAL.
 291		 */
 292		size += iv->iov_len;
 293		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
 294			return XFS_ERROR(-EINVAL);
 295	}
 296	/* END copy & waste from filemap.c */
 297
 298	if (unlikely(ioflags & IO_ISDIRECT)) {
 299		xfs_buftarg_t	*target =
 300			XFS_IS_REALTIME_INODE(ip) ?
 301				mp->m_rtdev_targp : mp->m_ddev_targp;
 302		if ((iocb->ki_pos & target->bt_smask) ||
 303		    (size & target->bt_smask)) {
 304			if (iocb->ki_pos == ip->i_size)
 305				return 0;
 306			return -XFS_ERROR(EINVAL);
 307		}
 308	}
 309
 310	n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
 311	if (n <= 0 || size == 0)
 312		return 0;
 313
 314	if (n < size)
 315		size = n;
 316
 317	if (XFS_FORCED_SHUTDOWN(mp))
 318		return -EIO;
 319
 320	if (unlikely(ioflags & IO_ISDIRECT)) {
 
 
 
 
 
 
 
 
 
 
 
 
 321		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
 322
 323		if (inode->i_mapping->nrpages) {
 324			ret = -xfs_flushinval_pages(ip,
 325					(iocb->ki_pos & PAGE_CACHE_MASK),
 326					-1, FI_REMAPF_LOCKED);
 327			if (ret) {
 328				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
 329				return ret;
 330			}
 331		}
 332		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 333	} else
 334		xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 335
 336	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
 337
 338	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
 339	if (ret > 0)
 340		XFS_STATS_ADD(xs_read_bytes, ret);
 341
 342	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 343	return ret;
 344}
 345
 346STATIC ssize_t
 347xfs_file_splice_read(
 348	struct file		*infilp,
 349	loff_t			*ppos,
 350	struct pipe_inode_info	*pipe,
 351	size_t			count,
 352	unsigned int		flags)
 353{
 354	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
 355	int			ioflags = 0;
 356	ssize_t			ret;
 357
 358	XFS_STATS_INC(xs_read_calls);
 359
 360	if (infilp->f_mode & FMODE_NOCMTIME)
 361		ioflags |= IO_INVIS;
 362
 363	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 364		return -EIO;
 365
 366	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 367
 368	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
 369
 370	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
 371	if (ret > 0)
 372		XFS_STATS_ADD(xs_read_bytes, ret);
 373
 374	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 375	return ret;
 376}
 377
 378STATIC void
 379xfs_aio_write_isize_update(
 380	struct inode	*inode,
 381	loff_t		*ppos,
 382	ssize_t		bytes_written)
 383{
 384	struct xfs_inode	*ip = XFS_I(inode);
 385	xfs_fsize_t		isize = i_size_read(inode);
 386
 387	if (bytes_written > 0)
 388		XFS_STATS_ADD(xs_write_bytes, bytes_written);
 389
 390	if (unlikely(bytes_written < 0 && bytes_written != -EFAULT &&
 391					*ppos > isize))
 392		*ppos = isize;
 393
 394	if (*ppos > ip->i_size) {
 395		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
 396		if (*ppos > ip->i_size)
 397			ip->i_size = *ppos;
 398		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
 399	}
 400}
 401
 402/*
 403 * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
 404 * part of the I/O may have been written to disk before the error occurred.  In
 405 * this case the on-disk file size may have been adjusted beyond the in-memory
 406 * file size and now needs to be truncated back.
 407 */
 408STATIC void
 409xfs_aio_write_newsize_update(
 410	struct xfs_inode	*ip)
 411{
 412	if (ip->i_new_size) {
 413		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
 414		ip->i_new_size = 0;
 415		if (ip->i_d.di_size > ip->i_size)
 416			ip->i_d.di_size = ip->i_size;
 417		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
 418	}
 419}
 420
 421/*
 422 * xfs_file_splice_write() does not use xfs_rw_ilock() because
 423 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
 424 * couuld cause lock inversions between the aio_write path and the splice path
 425 * if someone is doing concurrent splice(2) based writes and write(2) based
 426 * writes to the same inode. The only real way to fix this is to re-implement
 427 * the generic code here with correct locking orders.
 428 */
 429STATIC ssize_t
 430xfs_file_splice_write(
 431	struct pipe_inode_info	*pipe,
 432	struct file		*outfilp,
 433	loff_t			*ppos,
 434	size_t			count,
 435	unsigned int		flags)
 436{
 437	struct inode		*inode = outfilp->f_mapping->host;
 438	struct xfs_inode	*ip = XFS_I(inode);
 439	xfs_fsize_t		new_size;
 440	int			ioflags = 0;
 441	ssize_t			ret;
 442
 443	XFS_STATS_INC(xs_write_calls);
 444
 445	if (outfilp->f_mode & FMODE_NOCMTIME)
 446		ioflags |= IO_INVIS;
 447
 448	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 449		return -EIO;
 450
 451	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 452
 453	new_size = *ppos + count;
 454
 455	xfs_ilock(ip, XFS_ILOCK_EXCL);
 456	if (new_size > ip->i_size)
 457		ip->i_new_size = new_size;
 458	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 459
 460	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
 461
 462	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
 
 
 463
 464	xfs_aio_write_isize_update(inode, ppos, ret);
 465	xfs_aio_write_newsize_update(ip);
 466	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 467	return ret;
 468}
 469
 470/*
 471 * This routine is called to handle zeroing any space in the last
 472 * block of the file that is beyond the EOF.  We do this since the
 473 * size is being increased without writing anything to that block
 474 * and we don't want anyone to read the garbage on the disk.
 475 */
 476STATIC int				/* error (positive) */
 477xfs_zero_last_block(
 478	xfs_inode_t	*ip,
 479	xfs_fsize_t	offset,
 480	xfs_fsize_t	isize)
 481{
 482	xfs_fileoff_t	last_fsb;
 483	xfs_mount_t	*mp = ip->i_mount;
 484	int		nimaps;
 485	int		zero_offset;
 486	int		zero_len;
 487	int		error = 0;
 488	xfs_bmbt_irec_t	imap;
 489
 490	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 491
 492	zero_offset = XFS_B_FSB_OFFSET(mp, isize);
 493	if (zero_offset == 0) {
 494		/*
 495		 * There are no extra bytes in the last block on disk to
 496		 * zero, so return.
 497		 */
 498		return 0;
 499	}
 500
 501	last_fsb = XFS_B_TO_FSBT(mp, isize);
 502	nimaps = 1;
 503	error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
 504			  &nimaps, NULL);
 505	if (error) {
 506		return error;
 507	}
 508	ASSERT(nimaps > 0);
 
 509	/*
 510	 * If the block underlying isize is just a hole, then there
 511	 * is nothing to zero.
 512	 */
 513	if (imap.br_startblock == HOLESTARTBLOCK) {
 514		return 0;
 515	}
 516	/*
 517	 * Zero the part of the last block beyond the EOF, and write it
 518	 * out sync.  We need to drop the ilock while we do this so we
 519	 * don't deadlock when the buffer cache calls back to us.
 520	 */
 521	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 522
 523	zero_len = mp->m_sb.sb_blocksize - zero_offset;
 524	if (isize + zero_len > offset)
 525		zero_len = offset - isize;
 526	error = xfs_iozero(ip, isize, zero_len);
 527
 528	xfs_ilock(ip, XFS_ILOCK_EXCL);
 529	ASSERT(error >= 0);
 530	return error;
 531}
 532
 533/*
 534 * Zero any on disk space between the current EOF and the new,
 535 * larger EOF.  This handles the normal case of zeroing the remainder
 536 * of the last block in the file and the unusual case of zeroing blocks
 537 * out beyond the size of the file.  This second case only happens
 538 * with fixed size extents and when the system crashes before the inode
 539 * size was updated but after blocks were allocated.  If fill is set,
 540 * then any holes in the range are filled and zeroed.  If not, the holes
 541 * are left alone as holes.
 
 542 */
 543
 544int					/* error (positive) */
 545xfs_zero_eof(
 546	xfs_inode_t	*ip,
 547	xfs_off_t	offset,		/* starting I/O offset */
 548	xfs_fsize_t	isize)		/* current inode size */
 549{
 550	xfs_mount_t	*mp = ip->i_mount;
 551	xfs_fileoff_t	start_zero_fsb;
 552	xfs_fileoff_t	end_zero_fsb;
 553	xfs_fileoff_t	zero_count_fsb;
 554	xfs_fileoff_t	last_fsb;
 555	xfs_fileoff_t	zero_off;
 556	xfs_fsize_t	zero_len;
 557	int		nimaps;
 558	int		error = 0;
 559	xfs_bmbt_irec_t	imap;
 560
 561	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 562	ASSERT(offset > isize);
 563
 564	/*
 565	 * First handle zeroing the block on which isize resides.
 
 566	 * We only zero a part of that block so it is handled specially.
 567	 */
 568	error = xfs_zero_last_block(ip, offset, isize);
 569	if (error) {
 570		ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 571		return error;
 572	}
 573
 574	/*
 575	 * Calculate the range between the new size and the old
 576	 * where blocks needing to be zeroed may exist.  To get the
 577	 * block where the last byte in the file currently resides,
 578	 * we need to subtract one from the size and truncate back
 579	 * to a block boundary.  We subtract 1 in case the size is
 580	 * exactly on a block boundary.
 
 581	 */
 582	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
 583	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
 584	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
 585	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
 586	if (last_fsb == end_zero_fsb) {
 587		/*
 588		 * The size was only incremented on its last block.
 589		 * We took care of that above, so just return.
 590		 */
 591		return 0;
 592	}
 593
 594	ASSERT(start_zero_fsb <= end_zero_fsb);
 595	while (start_zero_fsb <= end_zero_fsb) {
 596		nimaps = 1;
 597		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
 598		error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
 599				  0, NULL, 0, &imap, &nimaps, NULL);
 600		if (error) {
 601			ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 
 
 602			return error;
 603		}
 604		ASSERT(nimaps > 0);
 605
 606		if (imap.br_state == XFS_EXT_UNWRITTEN ||
 607		    imap.br_startblock == HOLESTARTBLOCK) {
 608			/*
 609			 * This loop handles initializing pages that were
 610			 * partially initialized by the code below this
 611			 * loop. It basically zeroes the part of the page
 612			 * that sits on a hole and sets the page as P_HOLE
 613			 * and calls remapf if it is a mapped file.
 614			 */
 615			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 616			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 617			continue;
 618		}
 619
 620		/*
 621		 * There are blocks we need to zero.
 622		 * Drop the inode lock while we're doing the I/O.
 623		 * We'll still have the iolock to protect us.
 624		 */
 625		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 626
 627		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
 628		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
 629
 630		if ((zero_off + zero_len) > offset)
 631			zero_len = offset - zero_off;
 632
 633		error = xfs_iozero(ip, zero_off, zero_len);
 634		if (error) {
 635			goto out_lock;
 636		}
 637
 638		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 639		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 640
 641		xfs_ilock(ip, XFS_ILOCK_EXCL);
 642	}
 643
 644	return 0;
 645
 646out_lock:
 647	xfs_ilock(ip, XFS_ILOCK_EXCL);
 648	ASSERT(error >= 0);
 649	return error;
 650}
 651
 652/*
 653 * Common pre-write limit and setup checks.
 654 *
 655 * Returns with iolock held according to @iolock.
 
 
 656 */
 657STATIC ssize_t
 658xfs_file_aio_write_checks(
 659	struct file		*file,
 660	loff_t			*pos,
 661	size_t			*count,
 662	int			*iolock)
 663{
 664	struct inode		*inode = file->f_mapping->host;
 665	struct xfs_inode	*ip = XFS_I(inode);
 666	xfs_fsize_t		new_size;
 667	int			error = 0;
 668
 
 669	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
 670	if (error) {
 671		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
 672		*iolock = 0;
 673		return error;
 674	}
 675
 676	new_size = *pos + *count;
 677	if (new_size > ip->i_size)
 678		ip->i_new_size = new_size;
 679
 680	if (likely(!(file->f_mode & FMODE_NOCMTIME)))
 681		file_update_time(file);
 682
 683	/*
 684	 * If the offset is beyond the size of the file, we need to zero any
 685	 * blocks that fall between the existing EOF and the start of this
 686	 * write.
 
 
 687	 */
 688	if (*pos > ip->i_size)
 689		error = -xfs_zero_eof(ip, *pos, ip->i_size);
 
 
 
 
 
 
 
 
 
 690
 691	xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
 692	if (error)
 693		return error;
 
 
 
 
 
 
 
 
 694
 695	/*
 696	 * If we're writing the file then make sure to clear the setuid and
 697	 * setgid bits if the process is not being run by root.  This keeps
 698	 * people from modifying setuid and setgid binaries.
 699	 */
 700	return file_remove_suid(file);
 701
 702}
 703
 704/*
 705 * xfs_file_dio_aio_write - handle direct IO writes
 706 *
 707 * Lock the inode appropriately to prepare for and issue a direct IO write.
 708 * By separating it from the buffered write path we remove all the tricky to
 709 * follow locking changes and looping.
 710 *
 711 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 712 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 713 * pages are flushed out.
 714 *
 715 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 716 * allowing them to be done in parallel with reads and other direct IO writes.
 717 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 718 * needs to do sub-block zeroing and that requires serialisation against other
 719 * direct IOs to the same block. In this case we need to serialise the
 720 * submission of the unaligned IOs so that we don't get racing block zeroing in
 721 * the dio layer.  To avoid the problem with aio, we also need to wait for
 722 * outstanding IOs to complete so that unwritten extent conversion is completed
 723 * before we try to map the overlapping block. This is currently implemented by
 724 * hitting it with a big hammer (i.e. xfs_ioend_wait()).
 725 *
 726 * Returns with locks held indicated by @iolock and errors indicated by
 727 * negative return values.
 728 */
 729STATIC ssize_t
 730xfs_file_dio_aio_write(
 731	struct kiocb		*iocb,
 732	const struct iovec	*iovp,
 733	unsigned long		nr_segs,
 734	loff_t			pos,
 735	size_t			ocount,
 736	int			*iolock)
 737{
 738	struct file		*file = iocb->ki_filp;
 739	struct address_space	*mapping = file->f_mapping;
 740	struct inode		*inode = mapping->host;
 741	struct xfs_inode	*ip = XFS_I(inode);
 742	struct xfs_mount	*mp = ip->i_mount;
 743	ssize_t			ret = 0;
 744	size_t			count = ocount;
 745	int			unaligned_io = 0;
 
 746	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
 747					mp->m_rtdev_targp : mp->m_ddev_targp;
 748
 749	*iolock = 0;
 750	if ((pos & target->bt_smask) || (count & target->bt_smask))
 751		return -XFS_ERROR(EINVAL);
 752
 753	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
 754		unaligned_io = 1;
 755
 756	if (unaligned_io || mapping->nrpages || pos > ip->i_size)
 757		*iolock = XFS_IOLOCK_EXCL;
 
 
 
 
 
 
 
 758	else
 759		*iolock = XFS_IOLOCK_SHARED;
 760	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
 
 
 
 
 
 
 
 
 
 
 
 761
 762	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
 763	if (ret)
 764		return ret;
 765
 766	if (mapping->nrpages) {
 767		WARN_ON(*iolock != XFS_IOLOCK_EXCL);
 768		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
 769							FI_REMAPF_LOCKED);
 770		if (ret)
 771			return ret;
 772	}
 773
 774	/*
 775	 * If we are doing unaligned IO, wait for all other IO to drain,
 776	 * otherwise demote the lock if we had to flush cached pages
 777	 */
 778	if (unaligned_io)
 779		xfs_ioend_wait(ip);
 780	else if (*iolock == XFS_IOLOCK_EXCL) {
 781		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 782		*iolock = XFS_IOLOCK_SHARED;
 783	}
 784
 785	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
 786	ret = generic_file_direct_write(iocb, iovp,
 787			&nr_segs, pos, &iocb->ki_pos, count, ocount);
 788
 
 
 
 789	/* No fallback to buffered IO on errors for XFS. */
 790	ASSERT(ret < 0 || ret == count);
 791	return ret;
 792}
 793
 794STATIC ssize_t
 795xfs_file_buffered_aio_write(
 796	struct kiocb		*iocb,
 797	const struct iovec	*iovp,
 798	unsigned long		nr_segs,
 799	loff_t			pos,
 800	size_t			ocount,
 801	int			*iolock)
 802{
 803	struct file		*file = iocb->ki_filp;
 804	struct address_space	*mapping = file->f_mapping;
 805	struct inode		*inode = mapping->host;
 806	struct xfs_inode	*ip = XFS_I(inode);
 807	ssize_t			ret;
 808	int			enospc = 0;
 
 809	size_t			count = ocount;
 810
 811	*iolock = XFS_IOLOCK_EXCL;
 812	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
 813
 814	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
 815	if (ret)
 816		return ret;
 817
 818	/* We can write back this queue in page reclaim */
 819	current->backing_dev_info = mapping->backing_dev_info;
 820
 821write_retry:
 822	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
 823	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
 824			pos, &iocb->ki_pos, count, ret);
 825	/*
 826	 * if we just got an ENOSPC, flush the inode now we aren't holding any
 827	 * page locks and retry *once*
 828	 */
 829	if (ret == -ENOSPC && !enospc) {
 830		ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
 831		if (ret)
 832			return ret;
 833		enospc = 1;
 834		goto write_retry;
 
 
 835	}
 
 836	current->backing_dev_info = NULL;
 
 
 837	return ret;
 838}
 839
 840STATIC ssize_t
 841xfs_file_aio_write(
 842	struct kiocb		*iocb,
 843	const struct iovec	*iovp,
 844	unsigned long		nr_segs,
 845	loff_t			pos)
 846{
 847	struct file		*file = iocb->ki_filp;
 848	struct address_space	*mapping = file->f_mapping;
 849	struct inode		*inode = mapping->host;
 850	struct xfs_inode	*ip = XFS_I(inode);
 851	ssize_t			ret;
 852	int			iolock;
 853	size_t			ocount = 0;
 854
 855	XFS_STATS_INC(xs_write_calls);
 856
 857	BUG_ON(iocb->ki_pos != pos);
 858
 859	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
 860	if (ret)
 861		return ret;
 862
 863	if (ocount == 0)
 864		return 0;
 865
 866	xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
 867
 868	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 869		return -EIO;
 870
 871	if (unlikely(file->f_flags & O_DIRECT))
 872		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos,
 873						ocount, &iolock);
 874	else
 875		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
 876						ocount, &iolock);
 877
 878	xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret);
 879
 880	if (ret <= 0)
 881		goto out_unlock;
 882
 883	/* Handle various SYNC-type writes */
 884	if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
 885		loff_t end = pos + ret - 1;
 886		int error;
 887
 888		xfs_rw_iunlock(ip, iolock);
 889		error = xfs_file_fsync(file, pos, end,
 890				      (file->f_flags & __O_SYNC) ? 0 : 1);
 891		xfs_rw_ilock(ip, iolock);
 892		if (error)
 893			ret = error;
 894	}
 895
 896out_unlock:
 897	xfs_aio_write_newsize_update(ip);
 898	xfs_rw_iunlock(ip, iolock);
 899	return ret;
 900}
 901
 902STATIC long
 903xfs_file_fallocate(
 904	struct file	*file,
 905	int		mode,
 906	loff_t		offset,
 907	loff_t		len)
 908{
 909	struct inode	*inode = file->f_path.dentry->d_inode;
 910	long		error;
 911	loff_t		new_size = 0;
 912	xfs_flock64_t	bf;
 913	xfs_inode_t	*ip = XFS_I(inode);
 914	int		cmd = XFS_IOC_RESVSP;
 915	int		attr_flags = XFS_ATTR_NOLOCK;
 916
 917	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 918		return -EOPNOTSUPP;
 919
 920	bf.l_whence = 0;
 921	bf.l_start = offset;
 922	bf.l_len = len;
 923
 924	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 925
 926	if (mode & FALLOC_FL_PUNCH_HOLE)
 927		cmd = XFS_IOC_UNRESVSP;
 928
 929	/* check the new inode size is valid before allocating */
 930	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 931	    offset + len > i_size_read(inode)) {
 932		new_size = offset + len;
 933		error = inode_newsize_ok(inode, new_size);
 934		if (error)
 935			goto out_unlock;
 936	}
 937
 938	if (file->f_flags & O_DSYNC)
 939		attr_flags |= XFS_ATTR_SYNC;
 940
 941	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
 942	if (error)
 943		goto out_unlock;
 944
 945	/* Change file size if needed */
 946	if (new_size) {
 947		struct iattr iattr;
 948
 949		iattr.ia_valid = ATTR_SIZE;
 950		iattr.ia_size = new_size;
 951		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
 952	}
 953
 954out_unlock:
 955	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 956	return error;
 957}
 958
 959
 960STATIC int
 961xfs_file_open(
 962	struct inode	*inode,
 963	struct file	*file)
 964{
 965	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 966		return -EFBIG;
 967	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 968		return -EIO;
 969	return 0;
 970}
 971
 972STATIC int
 973xfs_dir_open(
 974	struct inode	*inode,
 975	struct file	*file)
 976{
 977	struct xfs_inode *ip = XFS_I(inode);
 978	int		mode;
 979	int		error;
 980
 981	error = xfs_file_open(inode, file);
 982	if (error)
 983		return error;
 984
 985	/*
 986	 * If there are any blocks, read-ahead block 0 as we're almost
 987	 * certain to have the next operation be a read there.
 988	 */
 989	mode = xfs_ilock_map_shared(ip);
 990	if (ip->i_d.di_nextents > 0)
 991		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
 992	xfs_iunlock(ip, mode);
 993	return 0;
 994}
 995
 996STATIC int
 997xfs_file_release(
 998	struct inode	*inode,
 999	struct file	*filp)
1000{
1001	return -xfs_release(XFS_I(inode));
1002}
1003
1004STATIC int
1005xfs_file_readdir(
1006	struct file	*filp,
1007	void		*dirent,
1008	filldir_t	filldir)
1009{
1010	struct inode	*inode = filp->f_path.dentry->d_inode;
1011	xfs_inode_t	*ip = XFS_I(inode);
1012	int		error;
1013	size_t		bufsize;
1014
1015	/*
1016	 * The Linux API doesn't pass down the total size of the buffer
1017	 * we read into down to the filesystem.  With the filldir concept
1018	 * it's not needed for correct information, but the XFS dir2 leaf
1019	 * code wants an estimate of the buffer size to calculate it's
1020	 * readahead window and size the buffers used for mapping to
1021	 * physical blocks.
1022	 *
1023	 * Try to give it an estimate that's good enough, maybe at some
1024	 * point we can change the ->readdir prototype to include the
1025	 * buffer size.  For now we use the current glibc buffer size.
1026	 */
1027	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1028
1029	error = xfs_readdir(ip, dirent, bufsize,
1030				(xfs_off_t *)&filp->f_pos, filldir);
1031	if (error)
1032		return -error;
1033	return 0;
1034}
1035
1036STATIC int
1037xfs_file_mmap(
1038	struct file	*filp,
1039	struct vm_area_struct *vma)
1040{
1041	vma->vm_ops = &xfs_file_vm_ops;
1042	vma->vm_flags |= VM_CAN_NONLINEAR;
1043
1044	file_accessed(filp);
1045	return 0;
1046}
1047
1048/*
1049 * mmap()d file has taken write protection fault and is being made
1050 * writable. We can set the page state up correctly for a writable
1051 * page, which means we can do correct delalloc accounting (ENOSPC
1052 * checking!) and unwritten extent mapping.
1053 */
1054STATIC int
1055xfs_vm_page_mkwrite(
1056	struct vm_area_struct	*vma,
1057	struct vm_fault		*vmf)
1058{
1059	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1060}
1061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062const struct file_operations xfs_file_operations = {
1063	.llseek		= generic_file_llseek,
1064	.read		= do_sync_read,
1065	.write		= do_sync_write,
1066	.aio_read	= xfs_file_aio_read,
1067	.aio_write	= xfs_file_aio_write,
1068	.splice_read	= xfs_file_splice_read,
1069	.splice_write	= xfs_file_splice_write,
1070	.unlocked_ioctl	= xfs_file_ioctl,
1071#ifdef CONFIG_COMPAT
1072	.compat_ioctl	= xfs_file_compat_ioctl,
1073#endif
1074	.mmap		= xfs_file_mmap,
1075	.open		= xfs_file_open,
1076	.release	= xfs_file_release,
1077	.fsync		= xfs_file_fsync,
1078	.fallocate	= xfs_file_fallocate,
1079};
1080
1081const struct file_operations xfs_dir_file_operations = {
1082	.open		= xfs_dir_open,
1083	.read		= generic_read_dir,
1084	.readdir	= xfs_file_readdir,
1085	.llseek		= generic_file_llseek,
1086	.unlocked_ioctl	= xfs_file_ioctl,
1087#ifdef CONFIG_COMPAT
1088	.compat_ioctl	= xfs_file_compat_ioctl,
1089#endif
1090	.fsync		= xfs_file_fsync,
1091};
1092
1093static const struct vm_operations_struct xfs_file_vm_ops = {
1094	.fault		= filemap_fault,
1095	.page_mkwrite	= xfs_vm_page_mkwrite,
1096};
v3.5.6
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
 
  20#include "xfs_log.h"
 
  21#include "xfs_sb.h"
  22#include "xfs_ag.h"
  23#include "xfs_trans.h"
  24#include "xfs_mount.h"
  25#include "xfs_bmap_btree.h"
  26#include "xfs_alloc.h"
  27#include "xfs_dinode.h"
  28#include "xfs_inode.h"
  29#include "xfs_inode_item.h"
  30#include "xfs_bmap.h"
  31#include "xfs_error.h"
  32#include "xfs_vnodeops.h"
  33#include "xfs_da_btree.h"
  34#include "xfs_ioctl.h"
  35#include "xfs_trace.h"
  36
  37#include <linux/dcache.h>
  38#include <linux/falloc.h>
  39
  40static const struct vm_operations_struct xfs_file_vm_ops;
  41
  42/*
  43 * Locking primitives for read and write IO paths to ensure we consistently use
  44 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
  45 */
  46static inline void
  47xfs_rw_ilock(
  48	struct xfs_inode	*ip,
  49	int			type)
  50{
  51	if (type & XFS_IOLOCK_EXCL)
  52		mutex_lock(&VFS_I(ip)->i_mutex);
  53	xfs_ilock(ip, type);
  54}
  55
  56static inline void
  57xfs_rw_iunlock(
  58	struct xfs_inode	*ip,
  59	int			type)
  60{
  61	xfs_iunlock(ip, type);
  62	if (type & XFS_IOLOCK_EXCL)
  63		mutex_unlock(&VFS_I(ip)->i_mutex);
  64}
  65
  66static inline void
  67xfs_rw_ilock_demote(
  68	struct xfs_inode	*ip,
  69	int			type)
  70{
  71	xfs_ilock_demote(ip, type);
  72	if (type & XFS_IOLOCK_EXCL)
  73		mutex_unlock(&VFS_I(ip)->i_mutex);
  74}
  75
  76/*
  77 *	xfs_iozero
  78 *
  79 *	xfs_iozero clears the specified range of buffer supplied,
  80 *	and marks all the affected blocks as valid and modified.  If
  81 *	an affected block is not allocated, it will be allocated.  If
  82 *	an affected block is not completely overwritten, and is not
  83 *	valid before the operation, it will be read from disk before
  84 *	being partially zeroed.
  85 */
  86STATIC int
  87xfs_iozero(
  88	struct xfs_inode	*ip,	/* inode			*/
  89	loff_t			pos,	/* offset in file		*/
  90	size_t			count)	/* size of data to zero		*/
  91{
  92	struct page		*page;
  93	struct address_space	*mapping;
  94	int			status;
  95
  96	mapping = VFS_I(ip)->i_mapping;
  97	do {
  98		unsigned offset, bytes;
  99		void *fsdata;
 100
 101		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
 102		bytes = PAGE_CACHE_SIZE - offset;
 103		if (bytes > count)
 104			bytes = count;
 105
 106		status = pagecache_write_begin(NULL, mapping, pos, bytes,
 107					AOP_FLAG_UNINTERRUPTIBLE,
 108					&page, &fsdata);
 109		if (status)
 110			break;
 111
 112		zero_user(page, offset, bytes);
 113
 114		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
 115					page, fsdata);
 116		WARN_ON(status <= 0); /* can't return less than zero! */
 117		pos += bytes;
 118		count -= bytes;
 119		status = 0;
 120	} while (count);
 121
 122	return (-status);
 123}
 124
 125/*
 126 * Fsync operations on directories are much simpler than on regular files,
 127 * as there is no file data to flush, and thus also no need for explicit
 128 * cache flush operations, and there are no non-transaction metadata updates
 129 * on directories either.
 130 */
 131STATIC int
 132xfs_dir_fsync(
 133	struct file		*file,
 134	loff_t			start,
 135	loff_t			end,
 136	int			datasync)
 137{
 138	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 139	struct xfs_mount	*mp = ip->i_mount;
 140	xfs_lsn_t		lsn = 0;
 141
 142	trace_xfs_dir_fsync(ip);
 143
 144	xfs_ilock(ip, XFS_ILOCK_SHARED);
 145	if (xfs_ipincount(ip))
 146		lsn = ip->i_itemp->ili_last_lsn;
 147	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 148
 149	if (!lsn)
 150		return 0;
 151	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
 152}
 153
 154STATIC int
 155xfs_file_fsync(
 156	struct file		*file,
 157	loff_t			start,
 158	loff_t			end,
 159	int			datasync)
 160{
 161	struct inode		*inode = file->f_mapping->host;
 162	struct xfs_inode	*ip = XFS_I(inode);
 163	struct xfs_mount	*mp = ip->i_mount;
 
 164	int			error = 0;
 165	int			log_flushed = 0;
 166	xfs_lsn_t		lsn = 0;
 167
 168	trace_xfs_file_fsync(ip);
 169
 170	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
 171	if (error)
 172		return error;
 173
 174	if (XFS_FORCED_SHUTDOWN(mp))
 175		return -XFS_ERROR(EIO);
 176
 177	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 178
 
 
 
 
 179	if (mp->m_flags & XFS_MOUNT_BARRIER) {
 180		/*
 181		 * If we have an RT and/or log subvolume we need to make sure
 182		 * to flush the write cache the device used for file data
 183		 * first.  This is to ensure newly written file data make
 184		 * it to disk before logging the new inode size in case of
 185		 * an extending write.
 186		 */
 187		if (XFS_IS_REALTIME_INODE(ip))
 188			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 189		else if (mp->m_logdev_targp != mp->m_ddev_targp)
 190			xfs_blkdev_issue_flush(mp->m_ddev_targp);
 191	}
 192
 193	/*
 194	 * All metadata updates are logged, which means that we just have
 195	 * to flush the log up to the latest LSN that touched the inode.
 
 
 
 
 
 
 
 
 196	 */
 197	xfs_ilock(ip, XFS_ILOCK_SHARED);
 198	if (xfs_ipincount(ip)) {
 199		if (!datasync ||
 200		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
 201			lsn = ip->i_itemp->ili_last_lsn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202	}
 203	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 204
 205	if (lsn)
 206		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 207
 208	/*
 209	 * If we only have a single device, and the log force about was
 210	 * a no-op we might have to flush the data device cache here.
 211	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 212	 * an already allocated file and thus do not have any metadata to
 213	 * commit.
 214	 */
 215	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
 216	    mp->m_logdev_targp == mp->m_ddev_targp &&
 217	    !XFS_IS_REALTIME_INODE(ip) &&
 218	    !log_flushed)
 219		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 220
 221	return -error;
 222}
 223
 224STATIC ssize_t
 225xfs_file_aio_read(
 226	struct kiocb		*iocb,
 227	const struct iovec	*iovp,
 228	unsigned long		nr_segs,
 229	loff_t			pos)
 230{
 231	struct file		*file = iocb->ki_filp;
 232	struct inode		*inode = file->f_mapping->host;
 233	struct xfs_inode	*ip = XFS_I(inode);
 234	struct xfs_mount	*mp = ip->i_mount;
 235	size_t			size = 0;
 236	ssize_t			ret = 0;
 237	int			ioflags = 0;
 238	xfs_fsize_t		n;
 239	unsigned long		seg;
 240
 241	XFS_STATS_INC(xs_read_calls);
 242
 243	BUG_ON(iocb->ki_pos != pos);
 244
 245	if (unlikely(file->f_flags & O_DIRECT))
 246		ioflags |= IO_ISDIRECT;
 247	if (file->f_mode & FMODE_NOCMTIME)
 248		ioflags |= IO_INVIS;
 249
 250	/* START copy & waste from filemap.c */
 251	for (seg = 0; seg < nr_segs; seg++) {
 252		const struct iovec *iv = &iovp[seg];
 253
 254		/*
 255		 * If any segment has a negative length, or the cumulative
 256		 * length ever wraps negative then return -EINVAL.
 257		 */
 258		size += iv->iov_len;
 259		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
 260			return XFS_ERROR(-EINVAL);
 261	}
 262	/* END copy & waste from filemap.c */
 263
 264	if (unlikely(ioflags & IO_ISDIRECT)) {
 265		xfs_buftarg_t	*target =
 266			XFS_IS_REALTIME_INODE(ip) ?
 267				mp->m_rtdev_targp : mp->m_ddev_targp;
 268		if ((iocb->ki_pos & target->bt_smask) ||
 269		    (size & target->bt_smask)) {
 270			if (iocb->ki_pos == i_size_read(inode))
 271				return 0;
 272			return -XFS_ERROR(EINVAL);
 273		}
 274	}
 275
 276	n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
 277	if (n <= 0 || size == 0)
 278		return 0;
 279
 280	if (n < size)
 281		size = n;
 282
 283	if (XFS_FORCED_SHUTDOWN(mp))
 284		return -EIO;
 285
 286	/*
 287	 * Locking is a bit tricky here. If we take an exclusive lock
 288	 * for direct IO, we effectively serialise all new concurrent
 289	 * read IO to this file and block it behind IO that is currently in
 290	 * progress because IO in progress holds the IO lock shared. We only
 291	 * need to hold the lock exclusive to blow away the page cache, so
 292	 * only take lock exclusively if the page cache needs invalidation.
 293	 * This allows the normal direct IO case of no page cache pages to
 294	 * proceeed concurrently without serialisation.
 295	 */
 296	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 297	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
 298		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 299		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
 300
 301		if (inode->i_mapping->nrpages) {
 302			ret = -xfs_flushinval_pages(ip,
 303					(iocb->ki_pos & PAGE_CACHE_MASK),
 304					-1, FI_REMAPF_LOCKED);
 305			if (ret) {
 306				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
 307				return ret;
 308			}
 309		}
 310		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 311	}
 
 312
 313	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
 314
 315	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
 316	if (ret > 0)
 317		XFS_STATS_ADD(xs_read_bytes, ret);
 318
 319	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 320	return ret;
 321}
 322
 323STATIC ssize_t
 324xfs_file_splice_read(
 325	struct file		*infilp,
 326	loff_t			*ppos,
 327	struct pipe_inode_info	*pipe,
 328	size_t			count,
 329	unsigned int		flags)
 330{
 331	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
 332	int			ioflags = 0;
 333	ssize_t			ret;
 334
 335	XFS_STATS_INC(xs_read_calls);
 336
 337	if (infilp->f_mode & FMODE_NOCMTIME)
 338		ioflags |= IO_INVIS;
 339
 340	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 341		return -EIO;
 342
 343	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 344
 345	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
 346
 347	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
 348	if (ret > 0)
 349		XFS_STATS_ADD(xs_read_bytes, ret);
 350
 351	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 352	return ret;
 353}
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355/*
 356 * xfs_file_splice_write() does not use xfs_rw_ilock() because
 357 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
 358 * couuld cause lock inversions between the aio_write path and the splice path
 359 * if someone is doing concurrent splice(2) based writes and write(2) based
 360 * writes to the same inode. The only real way to fix this is to re-implement
 361 * the generic code here with correct locking orders.
 362 */
 363STATIC ssize_t
 364xfs_file_splice_write(
 365	struct pipe_inode_info	*pipe,
 366	struct file		*outfilp,
 367	loff_t			*ppos,
 368	size_t			count,
 369	unsigned int		flags)
 370{
 371	struct inode		*inode = outfilp->f_mapping->host;
 372	struct xfs_inode	*ip = XFS_I(inode);
 
 373	int			ioflags = 0;
 374	ssize_t			ret;
 375
 376	XFS_STATS_INC(xs_write_calls);
 377
 378	if (outfilp->f_mode & FMODE_NOCMTIME)
 379		ioflags |= IO_INVIS;
 380
 381	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 382		return -EIO;
 383
 384	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 385
 
 
 
 
 
 
 
 386	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
 387
 388	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
 389	if (ret > 0)
 390		XFS_STATS_ADD(xs_write_bytes, ret);
 391
 
 
 392	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 393	return ret;
 394}
 395
 396/*
 397 * This routine is called to handle zeroing any space in the last block of the
 398 * file that is beyond the EOF.  We do this since the size is being increased
 399 * without writing anything to that block and we don't want to read the
 400 * garbage on the disk.
 401 */
 402STATIC int				/* error (positive) */
 403xfs_zero_last_block(
 404	struct xfs_inode	*ip,
 405	xfs_fsize_t		offset,
 406	xfs_fsize_t		isize)
 407{
 408	struct xfs_mount	*mp = ip->i_mount;
 409	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
 410	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
 411	int			zero_len;
 412	int			nimaps = 1;
 413	int			error = 0;
 414	struct xfs_bmbt_irec	imap;
 
 
 
 
 
 
 
 
 
 
 
 415
 416	xfs_ilock(ip, XFS_ILOCK_EXCL);
 417	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
 418	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 419	if (error)
 
 420		return error;
 421
 422	ASSERT(nimaps > 0);
 423
 424	/*
 425	 * If the block underlying isize is just a hole, then there
 426	 * is nothing to zero.
 427	 */
 428	if (imap.br_startblock == HOLESTARTBLOCK)
 429		return 0;
 
 
 
 
 
 
 
 430
 431	zero_len = mp->m_sb.sb_blocksize - zero_offset;
 432	if (isize + zero_len > offset)
 433		zero_len = offset - isize;
 434	return xfs_iozero(ip, isize, zero_len);
 
 
 
 
 435}
 436
 437/*
 438 * Zero any on disk space between the current EOF and the new, larger EOF.
 439 *
 440 * This handles the normal case of zeroing the remainder of the last block in
 441 * the file and the unusual case of zeroing blocks out beyond the size of the
 442 * file.  This second case only happens with fixed size extents and when the
 443 * system crashes before the inode size was updated but after blocks were
 444 * allocated.
 445 *
 446 * Expects the iolock to be held exclusive, and will take the ilock internally.
 447 */
 
 448int					/* error (positive) */
 449xfs_zero_eof(
 450	struct xfs_inode	*ip,
 451	xfs_off_t		offset,		/* starting I/O offset */
 452	xfs_fsize_t		isize)		/* current inode size */
 453{
 454	struct xfs_mount	*mp = ip->i_mount;
 455	xfs_fileoff_t		start_zero_fsb;
 456	xfs_fileoff_t		end_zero_fsb;
 457	xfs_fileoff_t		zero_count_fsb;
 458	xfs_fileoff_t		last_fsb;
 459	xfs_fileoff_t		zero_off;
 460	xfs_fsize_t		zero_len;
 461	int			nimaps;
 462	int			error = 0;
 463	struct xfs_bmbt_irec	imap;
 464
 465	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
 466	ASSERT(offset > isize);
 467
 468	/*
 469	 * First handle zeroing the block on which isize resides.
 470	 *
 471	 * We only zero a part of that block so it is handled specially.
 472	 */
 473	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
 474		error = xfs_zero_last_block(ip, offset, isize);
 475		if (error)
 476			return error;
 477	}
 478
 479	/*
 480	 * Calculate the range between the new size and the old where blocks
 481	 * needing to be zeroed may exist.
 482	 *
 483	 * To get the block where the last byte in the file currently resides,
 484	 * we need to subtract one from the size and truncate back to a block
 485	 * boundary.  We subtract 1 in case the size is exactly on a block
 486	 * boundary.
 487	 */
 488	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
 489	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
 490	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
 491	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
 492	if (last_fsb == end_zero_fsb) {
 493		/*
 494		 * The size was only incremented on its last block.
 495		 * We took care of that above, so just return.
 496		 */
 497		return 0;
 498	}
 499
 500	ASSERT(start_zero_fsb <= end_zero_fsb);
 501	while (start_zero_fsb <= end_zero_fsb) {
 502		nimaps = 1;
 503		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
 504
 505		xfs_ilock(ip, XFS_ILOCK_EXCL);
 506		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
 507					  &imap, &nimaps, 0);
 508		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 509		if (error)
 510			return error;
 511
 512		ASSERT(nimaps > 0);
 513
 514		if (imap.br_state == XFS_EXT_UNWRITTEN ||
 515		    imap.br_startblock == HOLESTARTBLOCK) {
 
 
 
 
 
 
 
 516			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 517			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 518			continue;
 519		}
 520
 521		/*
 522		 * There are blocks we need to zero.
 
 
 523		 */
 
 
 524		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
 525		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
 526
 527		if ((zero_off + zero_len) > offset)
 528			zero_len = offset - zero_off;
 529
 530		error = xfs_iozero(ip, zero_off, zero_len);
 531		if (error)
 532			return error;
 
 533
 534		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 535		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 
 
 536	}
 537
 538	return 0;
 
 
 
 
 
 539}
 540
 541/*
 542 * Common pre-write limit and setup checks.
 543 *
 544 * Called with the iolocked held either shared and exclusive according to
 545 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 546 * if called for a direct write beyond i_size.
 547 */
 548STATIC ssize_t
 549xfs_file_aio_write_checks(
 550	struct file		*file,
 551	loff_t			*pos,
 552	size_t			*count,
 553	int			*iolock)
 554{
 555	struct inode		*inode = file->f_mapping->host;
 556	struct xfs_inode	*ip = XFS_I(inode);
 
 557	int			error = 0;
 558
 559restart:
 560	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
 561	if (error)
 
 
 562		return error;
 
 
 
 
 
 
 
 
 563
 564	/*
 565	 * If the offset is beyond the size of the file, we need to zero any
 566	 * blocks that fall between the existing EOF and the start of this
 567	 * write.  If zeroing is needed and we are currently holding the
 568	 * iolock shared, we need to update it to exclusive which implies
 569	 * having to redo all checks before.
 570	 */
 571	if (*pos > i_size_read(inode)) {
 572		if (*iolock == XFS_IOLOCK_SHARED) {
 573			xfs_rw_iunlock(ip, *iolock);
 574			*iolock = XFS_IOLOCK_EXCL;
 575			xfs_rw_ilock(ip, *iolock);
 576			goto restart;
 577		}
 578		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
 579		if (error)
 580			return error;
 581	}
 582
 583	/*
 584	 * Updating the timestamps will grab the ilock again from
 585	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 586	 * lock above.  Eventually we should look into a way to avoid
 587	 * the pointless lock roundtrip.
 588	 */
 589	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
 590		error = file_update_time(file);
 591		if (error)
 592			return error;
 593	}
 594
 595	/*
 596	 * If we're writing the file then make sure to clear the setuid and
 597	 * setgid bits if the process is not being run by root.  This keeps
 598	 * people from modifying setuid and setgid binaries.
 599	 */
 600	return file_remove_suid(file);
 
 601}
 602
 603/*
 604 * xfs_file_dio_aio_write - handle direct IO writes
 605 *
 606 * Lock the inode appropriately to prepare for and issue a direct IO write.
 607 * By separating it from the buffered write path we remove all the tricky to
 608 * follow locking changes and looping.
 609 *
 610 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 611 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 612 * pages are flushed out.
 613 *
 614 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 615 * allowing them to be done in parallel with reads and other direct IO writes.
 616 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 617 * needs to do sub-block zeroing and that requires serialisation against other
 618 * direct IOs to the same block. In this case we need to serialise the
 619 * submission of the unaligned IOs so that we don't get racing block zeroing in
 620 * the dio layer.  To avoid the problem with aio, we also need to wait for
 621 * outstanding IOs to complete so that unwritten extent conversion is completed
 622 * before we try to map the overlapping block. This is currently implemented by
 623 * hitting it with a big hammer (i.e. inode_dio_wait()).
 624 *
 625 * Returns with locks held indicated by @iolock and errors indicated by
 626 * negative return values.
 627 */
 628STATIC ssize_t
 629xfs_file_dio_aio_write(
 630	struct kiocb		*iocb,
 631	const struct iovec	*iovp,
 632	unsigned long		nr_segs,
 633	loff_t			pos,
 634	size_t			ocount)
 
 635{
 636	struct file		*file = iocb->ki_filp;
 637	struct address_space	*mapping = file->f_mapping;
 638	struct inode		*inode = mapping->host;
 639	struct xfs_inode	*ip = XFS_I(inode);
 640	struct xfs_mount	*mp = ip->i_mount;
 641	ssize_t			ret = 0;
 642	size_t			count = ocount;
 643	int			unaligned_io = 0;
 644	int			iolock;
 645	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
 646					mp->m_rtdev_targp : mp->m_ddev_targp;
 647
 
 648	if ((pos & target->bt_smask) || (count & target->bt_smask))
 649		return -XFS_ERROR(EINVAL);
 650
 651	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
 652		unaligned_io = 1;
 653
 654	/*
 655	 * We don't need to take an exclusive lock unless there page cache needs
 656	 * to be invalidated or unaligned IO is being executed. We don't need to
 657	 * consider the EOF extension case here because
 658	 * xfs_file_aio_write_checks() will relock the inode as necessary for
 659	 * EOF zeroing cases and fill out the new inode size as appropriate.
 660	 */
 661	if (unaligned_io || mapping->nrpages)
 662		iolock = XFS_IOLOCK_EXCL;
 663	else
 664		iolock = XFS_IOLOCK_SHARED;
 665	xfs_rw_ilock(ip, iolock);
 666
 667	/*
 668	 * Recheck if there are cached pages that need invalidate after we got
 669	 * the iolock to protect against other threads adding new pages while
 670	 * we were waiting for the iolock.
 671	 */
 672	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
 673		xfs_rw_iunlock(ip, iolock);
 674		iolock = XFS_IOLOCK_EXCL;
 675		xfs_rw_ilock(ip, iolock);
 676	}
 677
 678	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
 679	if (ret)
 680		goto out;
 681
 682	if (mapping->nrpages) {
 
 683		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
 684							FI_REMAPF_LOCKED);
 685		if (ret)
 686			goto out;
 687	}
 688
 689	/*
 690	 * If we are doing unaligned IO, wait for all other IO to drain,
 691	 * otherwise demote the lock if we had to flush cached pages
 692	 */
 693	if (unaligned_io)
 694		inode_dio_wait(inode);
 695	else if (iolock == XFS_IOLOCK_EXCL) {
 696		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 697		iolock = XFS_IOLOCK_SHARED;
 698	}
 699
 700	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
 701	ret = generic_file_direct_write(iocb, iovp,
 702			&nr_segs, pos, &iocb->ki_pos, count, ocount);
 703
 704out:
 705	xfs_rw_iunlock(ip, iolock);
 706
 707	/* No fallback to buffered IO on errors for XFS. */
 708	ASSERT(ret < 0 || ret == count);
 709	return ret;
 710}
 711
 712STATIC ssize_t
 713xfs_file_buffered_aio_write(
 714	struct kiocb		*iocb,
 715	const struct iovec	*iovp,
 716	unsigned long		nr_segs,
 717	loff_t			pos,
 718	size_t			ocount)
 
 719{
 720	struct file		*file = iocb->ki_filp;
 721	struct address_space	*mapping = file->f_mapping;
 722	struct inode		*inode = mapping->host;
 723	struct xfs_inode	*ip = XFS_I(inode);
 724	ssize_t			ret;
 725	int			enospc = 0;
 726	int			iolock = XFS_IOLOCK_EXCL;
 727	size_t			count = ocount;
 728
 729	xfs_rw_ilock(ip, iolock);
 
 730
 731	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
 732	if (ret)
 733		goto out;
 734
 735	/* We can write back this queue in page reclaim */
 736	current->backing_dev_info = mapping->backing_dev_info;
 737
 738write_retry:
 739	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
 740	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
 741			pos, &iocb->ki_pos, count, ret);
 742	/*
 743	 * if we just got an ENOSPC, flush the inode now we aren't holding any
 744	 * page locks and retry *once*
 745	 */
 746	if (ret == -ENOSPC && !enospc) {
 
 
 
 747		enospc = 1;
 748		ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
 749		if (!ret)
 750			goto write_retry;
 751	}
 752
 753	current->backing_dev_info = NULL;
 754out:
 755	xfs_rw_iunlock(ip, iolock);
 756	return ret;
 757}
 758
 759STATIC ssize_t
 760xfs_file_aio_write(
 761	struct kiocb		*iocb,
 762	const struct iovec	*iovp,
 763	unsigned long		nr_segs,
 764	loff_t			pos)
 765{
 766	struct file		*file = iocb->ki_filp;
 767	struct address_space	*mapping = file->f_mapping;
 768	struct inode		*inode = mapping->host;
 769	struct xfs_inode	*ip = XFS_I(inode);
 770	ssize_t			ret;
 
 771	size_t			ocount = 0;
 772
 773	XFS_STATS_INC(xs_write_calls);
 774
 775	BUG_ON(iocb->ki_pos != pos);
 776
 777	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
 778	if (ret)
 779		return ret;
 780
 781	if (ocount == 0)
 782		return 0;
 783
 784	xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
 785
 786	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 787		return -EIO;
 788
 789	if (unlikely(file->f_flags & O_DIRECT))
 790		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
 
 791	else
 792		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
 793						  ocount);
 
 
 794
 795	if (ret > 0) {
 796		ssize_t err;
 797
 798		XFS_STATS_ADD(xs_write_bytes, ret);
 
 
 
 799
 800		/* Handle various SYNC-type writes */
 801		err = generic_write_sync(file, pos, ret);
 802		if (err < 0)
 803			ret = err;
 
 
 804	}
 805
 
 
 
 806	return ret;
 807}
 808
 809STATIC long
 810xfs_file_fallocate(
 811	struct file	*file,
 812	int		mode,
 813	loff_t		offset,
 814	loff_t		len)
 815{
 816	struct inode	*inode = file->f_path.dentry->d_inode;
 817	long		error;
 818	loff_t		new_size = 0;
 819	xfs_flock64_t	bf;
 820	xfs_inode_t	*ip = XFS_I(inode);
 821	int		cmd = XFS_IOC_RESVSP;
 822	int		attr_flags = XFS_ATTR_NOLOCK;
 823
 824	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 825		return -EOPNOTSUPP;
 826
 827	bf.l_whence = 0;
 828	bf.l_start = offset;
 829	bf.l_len = len;
 830
 831	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 832
 833	if (mode & FALLOC_FL_PUNCH_HOLE)
 834		cmd = XFS_IOC_UNRESVSP;
 835
 836	/* check the new inode size is valid before allocating */
 837	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 838	    offset + len > i_size_read(inode)) {
 839		new_size = offset + len;
 840		error = inode_newsize_ok(inode, new_size);
 841		if (error)
 842			goto out_unlock;
 843	}
 844
 845	if (file->f_flags & O_DSYNC)
 846		attr_flags |= XFS_ATTR_SYNC;
 847
 848	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
 849	if (error)
 850		goto out_unlock;
 851
 852	/* Change file size if needed */
 853	if (new_size) {
 854		struct iattr iattr;
 855
 856		iattr.ia_valid = ATTR_SIZE;
 857		iattr.ia_size = new_size;
 858		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
 859	}
 860
 861out_unlock:
 862	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 863	return error;
 864}
 865
 866
 867STATIC int
 868xfs_file_open(
 869	struct inode	*inode,
 870	struct file	*file)
 871{
 872	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 873		return -EFBIG;
 874	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 875		return -EIO;
 876	return 0;
 877}
 878
 879STATIC int
 880xfs_dir_open(
 881	struct inode	*inode,
 882	struct file	*file)
 883{
 884	struct xfs_inode *ip = XFS_I(inode);
 885	int		mode;
 886	int		error;
 887
 888	error = xfs_file_open(inode, file);
 889	if (error)
 890		return error;
 891
 892	/*
 893	 * If there are any blocks, read-ahead block 0 as we're almost
 894	 * certain to have the next operation be a read there.
 895	 */
 896	mode = xfs_ilock_map_shared(ip);
 897	if (ip->i_d.di_nextents > 0)
 898		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
 899	xfs_iunlock(ip, mode);
 900	return 0;
 901}
 902
 903STATIC int
 904xfs_file_release(
 905	struct inode	*inode,
 906	struct file	*filp)
 907{
 908	return -xfs_release(XFS_I(inode));
 909}
 910
 911STATIC int
 912xfs_file_readdir(
 913	struct file	*filp,
 914	void		*dirent,
 915	filldir_t	filldir)
 916{
 917	struct inode	*inode = filp->f_path.dentry->d_inode;
 918	xfs_inode_t	*ip = XFS_I(inode);
 919	int		error;
 920	size_t		bufsize;
 921
 922	/*
 923	 * The Linux API doesn't pass down the total size of the buffer
 924	 * we read into down to the filesystem.  With the filldir concept
 925	 * it's not needed for correct information, but the XFS dir2 leaf
 926	 * code wants an estimate of the buffer size to calculate it's
 927	 * readahead window and size the buffers used for mapping to
 928	 * physical blocks.
 929	 *
 930	 * Try to give it an estimate that's good enough, maybe at some
 931	 * point we can change the ->readdir prototype to include the
 932	 * buffer size.  For now we use the current glibc buffer size.
 933	 */
 934	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
 935
 936	error = xfs_readdir(ip, dirent, bufsize,
 937				(xfs_off_t *)&filp->f_pos, filldir);
 938	if (error)
 939		return -error;
 940	return 0;
 941}
 942
 943STATIC int
 944xfs_file_mmap(
 945	struct file	*filp,
 946	struct vm_area_struct *vma)
 947{
 948	vma->vm_ops = &xfs_file_vm_ops;
 949	vma->vm_flags |= VM_CAN_NONLINEAR;
 950
 951	file_accessed(filp);
 952	return 0;
 953}
 954
 955/*
 956 * mmap()d file has taken write protection fault and is being made
 957 * writable. We can set the page state up correctly for a writable
 958 * page, which means we can do correct delalloc accounting (ENOSPC
 959 * checking!) and unwritten extent mapping.
 960 */
 961STATIC int
 962xfs_vm_page_mkwrite(
 963	struct vm_area_struct	*vma,
 964	struct vm_fault		*vmf)
 965{
 966	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
 967}
 968
 969STATIC loff_t
 970xfs_seek_data(
 971	struct file		*file,
 972	loff_t			start,
 973	u32			type)
 974{
 975	struct inode		*inode = file->f_mapping->host;
 976	struct xfs_inode	*ip = XFS_I(inode);
 977	struct xfs_mount	*mp = ip->i_mount;
 978	struct xfs_bmbt_irec	map[2];
 979	int			nmap = 2;
 980	loff_t			uninitialized_var(offset);
 981	xfs_fsize_t		isize;
 982	xfs_fileoff_t		fsbno;
 983	xfs_filblks_t		end;
 984	uint			lock;
 985	int			error;
 986
 987	lock = xfs_ilock_map_shared(ip);
 988
 989	isize = i_size_read(inode);
 990	if (start >= isize) {
 991		error = ENXIO;
 992		goto out_unlock;
 993	}
 994
 995	fsbno = XFS_B_TO_FSBT(mp, start);
 996
 997	/*
 998	 * Try to read extents from the first block indicated
 999	 * by fsbno to the end block of the file.
1000	 */
1001	end = XFS_B_TO_FSB(mp, isize);
1002
1003	error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1004			       XFS_BMAPI_ENTIRE);
1005	if (error)
1006		goto out_unlock;
1007
1008	/*
1009	 * Treat unwritten extent as data extent since it might
1010	 * contains dirty data in page cache.
1011	 */
1012	if (map[0].br_startblock != HOLESTARTBLOCK) {
1013		offset = max_t(loff_t, start,
1014			       XFS_FSB_TO_B(mp, map[0].br_startoff));
1015	} else {
1016		if (nmap == 1) {
1017			error = ENXIO;
1018			goto out_unlock;
1019		}
1020
1021		offset = max_t(loff_t, start,
1022			       XFS_FSB_TO_B(mp, map[1].br_startoff));
1023	}
1024
1025	if (offset != file->f_pos)
1026		file->f_pos = offset;
1027
1028out_unlock:
1029	xfs_iunlock_map_shared(ip, lock);
1030
1031	if (error)
1032		return -error;
1033	return offset;
1034}
1035
1036STATIC loff_t
1037xfs_seek_hole(
1038	struct file		*file,
1039	loff_t			start,
1040	u32			type)
1041{
1042	struct inode		*inode = file->f_mapping->host;
1043	struct xfs_inode	*ip = XFS_I(inode);
1044	struct xfs_mount	*mp = ip->i_mount;
1045	loff_t			uninitialized_var(offset);
1046	loff_t			holeoff;
1047	xfs_fsize_t		isize;
1048	xfs_fileoff_t		fsbno;
1049	uint			lock;
1050	int			error;
1051
1052	if (XFS_FORCED_SHUTDOWN(mp))
1053		return -XFS_ERROR(EIO);
1054
1055	lock = xfs_ilock_map_shared(ip);
1056
1057	isize = i_size_read(inode);
1058	if (start >= isize) {
1059		error = ENXIO;
1060		goto out_unlock;
1061	}
1062
1063	fsbno = XFS_B_TO_FSBT(mp, start);
1064	error = xfs_bmap_first_unused(NULL, ip, 1, &fsbno, XFS_DATA_FORK);
1065	if (error)
1066		goto out_unlock;
1067
1068	holeoff = XFS_FSB_TO_B(mp, fsbno);
1069	if (holeoff <= start)
1070		offset = start;
1071	else {
1072		/*
1073		 * xfs_bmap_first_unused() could return a value bigger than
1074		 * isize if there are no more holes past the supplied offset.
1075		 */
1076		offset = min_t(loff_t, holeoff, isize);
1077	}
1078
1079	if (offset != file->f_pos)
1080		file->f_pos = offset;
1081
1082out_unlock:
1083	xfs_iunlock_map_shared(ip, lock);
1084
1085	if (error)
1086		return -error;
1087	return offset;
1088}
1089
1090STATIC loff_t
1091xfs_file_llseek(
1092	struct file	*file,
1093	loff_t		offset,
1094	int		origin)
1095{
1096	switch (origin) {
1097	case SEEK_END:
1098	case SEEK_CUR:
1099	case SEEK_SET:
1100		return generic_file_llseek(file, offset, origin);
1101	case SEEK_DATA:
1102		return xfs_seek_data(file, offset, origin);
1103	case SEEK_HOLE:
1104		return xfs_seek_hole(file, offset, origin);
1105	default:
1106		return -EINVAL;
1107	}
1108}
1109
1110const struct file_operations xfs_file_operations = {
1111	.llseek		= xfs_file_llseek,
1112	.read		= do_sync_read,
1113	.write		= do_sync_write,
1114	.aio_read	= xfs_file_aio_read,
1115	.aio_write	= xfs_file_aio_write,
1116	.splice_read	= xfs_file_splice_read,
1117	.splice_write	= xfs_file_splice_write,
1118	.unlocked_ioctl	= xfs_file_ioctl,
1119#ifdef CONFIG_COMPAT
1120	.compat_ioctl	= xfs_file_compat_ioctl,
1121#endif
1122	.mmap		= xfs_file_mmap,
1123	.open		= xfs_file_open,
1124	.release	= xfs_file_release,
1125	.fsync		= xfs_file_fsync,
1126	.fallocate	= xfs_file_fallocate,
1127};
1128
1129const struct file_operations xfs_dir_file_operations = {
1130	.open		= xfs_dir_open,
1131	.read		= generic_read_dir,
1132	.readdir	= xfs_file_readdir,
1133	.llseek		= generic_file_llseek,
1134	.unlocked_ioctl	= xfs_file_ioctl,
1135#ifdef CONFIG_COMPAT
1136	.compat_ioctl	= xfs_file_compat_ioctl,
1137#endif
1138	.fsync		= xfs_dir_fsync,
1139};
1140
1141static const struct vm_operations_struct xfs_file_vm_ops = {
1142	.fault		= filemap_fault,
1143	.page_mkwrite	= xfs_vm_page_mkwrite,
1144};