Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_bit.h"
  21#include "xfs_log.h"
  22#include "xfs_inum.h"
  23#include "xfs_sb.h"
  24#include "xfs_ag.h"
  25#include "xfs_trans.h"
  26#include "xfs_mount.h"
  27#include "xfs_bmap_btree.h"
  28#include "xfs_alloc.h"
  29#include "xfs_dinode.h"
  30#include "xfs_inode.h"
 
  31#include "xfs_inode_item.h"
  32#include "xfs_bmap.h"
  33#include "xfs_error.h"
  34#include "xfs_vnodeops.h"
  35#include "xfs_da_btree.h"
  36#include "xfs_ioctl.h"
  37#include "xfs_trace.h"
 
 
 
 
 
  38
  39#include <linux/dcache.h>
  40#include <linux/falloc.h>
 
 
 
 
  41
  42static const struct vm_operations_struct xfs_file_vm_ops;
  43
  44/*
  45 * Locking primitives for read and write IO paths to ensure we consistently use
  46 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
  47 */
  48static inline void
  49xfs_rw_ilock(
  50	struct xfs_inode	*ip,
  51	int			type)
 
  52{
  53	if (type & XFS_IOLOCK_EXCL)
  54		mutex_lock(&VFS_I(ip)->i_mutex);
  55	xfs_ilock(ip, type);
  56}
  57
  58static inline void
  59xfs_rw_iunlock(
  60	struct xfs_inode	*ip,
  61	int			type)
  62{
  63	xfs_iunlock(ip, type);
  64	if (type & XFS_IOLOCK_EXCL)
  65		mutex_unlock(&VFS_I(ip)->i_mutex);
 
 
 
 
 
 
 
 
 
 
  66}
  67
  68static inline void
  69xfs_rw_ilock_demote(
  70	struct xfs_inode	*ip,
  71	int			type)
  72{
  73	xfs_ilock_demote(ip, type);
  74	if (type & XFS_IOLOCK_EXCL)
  75		mutex_unlock(&VFS_I(ip)->i_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76}
  77
  78/*
  79 *	xfs_iozero
  80 *
  81 *	xfs_iozero clears the specified range of buffer supplied,
  82 *	and marks all the affected blocks as valid and modified.  If
  83 *	an affected block is not allocated, it will be allocated.  If
  84 *	an affected block is not completely overwritten, and is not
  85 *	valid before the operation, it will be read from disk before
  86 *	being partially zeroed.
  87 */
  88STATIC int
  89xfs_iozero(
  90	struct xfs_inode	*ip,	/* inode			*/
  91	loff_t			pos,	/* offset in file		*/
  92	size_t			count)	/* size of data to zero		*/
 
  93{
  94	struct page		*page;
  95	struct address_space	*mapping;
  96	int			status;
  97
  98	mapping = VFS_I(ip)->i_mapping;
  99	do {
 100		unsigned offset, bytes;
 101		void *fsdata;
 102
 103		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
 104		bytes = PAGE_CACHE_SIZE - offset;
 105		if (bytes > count)
 106			bytes = count;
 107
 108		status = pagecache_write_begin(NULL, mapping, pos, bytes,
 109					AOP_FLAG_UNINTERRUPTIBLE,
 110					&page, &fsdata);
 111		if (status)
 112			break;
 113
 114		zero_user(page, offset, bytes);
 
 
 
 
 
 
 
 
 
 
 115
 116		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
 117					page, fsdata);
 118		WARN_ON(status <= 0); /* can't return less than zero! */
 119		pos += bytes;
 120		count -= bytes;
 121		status = 0;
 122	} while (count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123
 124	return (-status);
 
 
 
 
 
 
 
 
 
 
 
 125}
 126
 127STATIC int
 128xfs_file_fsync(
 129	struct file		*file,
 130	loff_t			start,
 131	loff_t			end,
 132	int			datasync)
 133{
 134	struct inode		*inode = file->f_mapping->host;
 135	struct xfs_inode	*ip = XFS_I(inode);
 136	struct xfs_mount	*mp = ip->i_mount;
 137	struct xfs_trans	*tp;
 138	int			error = 0;
 139	int			log_flushed = 0;
 140
 141	trace_xfs_file_fsync(ip);
 142
 143	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
 144	if (error)
 145		return error;
 146
 147	if (XFS_FORCED_SHUTDOWN(mp))
 148		return -XFS_ERROR(EIO);
 149
 150	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 151
 152	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 153	xfs_ioend_wait(ip);
 154	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 155
 156	if (mp->m_flags & XFS_MOUNT_BARRIER) {
 157		/*
 158		 * If we have an RT and/or log subvolume we need to make sure
 159		 * to flush the write cache the device used for file data
 160		 * first.  This is to ensure newly written file data make
 161		 * it to disk before logging the new inode size in case of
 162		 * an extending write.
 163		 */
 164		if (XFS_IS_REALTIME_INODE(ip))
 165			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 166		else if (mp->m_logdev_targp != mp->m_ddev_targp)
 167			xfs_blkdev_issue_flush(mp->m_ddev_targp);
 168	}
 169
 170	/*
 171	 * We always need to make sure that the required inode state is safe on
 172	 * disk.  The inode might be clean but we still might need to force the
 173	 * log because of committed transactions that haven't hit the disk yet.
 174	 * Likewise, there could be unflushed non-transactional changes to the
 175	 * inode core that have to go to disk and this requires us to issue
 176	 * a synchronous transaction to capture these changes correctly.
 177	 *
 178	 * This code relies on the assumption that if the i_update_core field
 179	 * of the inode is clear and the inode is unpinned then it is clean
 180	 * and no action is required.
 181	 */
 182	xfs_ilock(ip, XFS_ILOCK_SHARED);
 
 
 
 183
 184	/*
 185	 * First check if the VFS inode is marked dirty.  All the dirtying
 186	 * of non-transactional updates no goes through mark_inode_dirty*,
 187	 * which allows us to distinguish beteeen pure timestamp updates
 188	 * and i_size updates which need to be caught for fdatasync.
 189	 * After that also theck for the dirty state in the XFS inode, which
 190	 * might gets cleared when the inode gets written out via the AIL
 191	 * or xfs_iflush_cluster.
 192	 */
 193	if (((inode->i_state & I_DIRTY_DATASYNC) ||
 194	    ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
 195	    ip->i_update_core) {
 196		/*
 197		 * Kick off a transaction to log the inode core to get the
 198		 * updates.  The sync transaction will also force the log.
 199		 */
 200		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 201		tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
 202		error = xfs_trans_reserve(tp, 0,
 203				XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
 204		if (error) {
 205			xfs_trans_cancel(tp, 0);
 206			return -error;
 207		}
 208		xfs_ilock(ip, XFS_ILOCK_EXCL);
 209
 210		/*
 211		 * Note - it's possible that we might have pushed ourselves out
 212		 * of the way during trans_reserve which would flush the inode.
 213		 * But there's no guarantee that the inode buffer has actually
 214		 * gone out yet (it's delwri).	Plus the buffer could be pinned
 215		 * anyway if it's part of an inode in another recent
 216		 * transaction.	 So we play it safe and fire off the
 217		 * transaction anyway.
 218		 */
 219		xfs_trans_ijoin(tp, ip);
 220		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 221		xfs_trans_set_sync(tp);
 222		error = _xfs_trans_commit(tp, 0, &log_flushed);
 223
 224		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 225	} else {
 226		/*
 227		 * Timestamps/size haven't changed since last inode flush or
 228		 * inode transaction commit.  That means either nothing got
 229		 * written or a transaction committed which caught the updates.
 230		 * If the latter happened and the transaction hasn't hit the
 231		 * disk yet, the inode will be still be pinned.  If it is,
 232		 * force the log.
 233		 */
 234		if (xfs_ipincount(ip)) {
 235			error = _xfs_log_force_lsn(mp,
 236					ip->i_itemp->ili_last_lsn,
 237					XFS_LOG_SYNC, &log_flushed);
 238		}
 239		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 240	}
 241
 242	/*
 243	 * If we only have a single device, and the log force about was
 244	 * a no-op we might have to flush the data device cache here.
 245	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 246	 * an already allocated file and thus do not have any metadata to
 247	 * commit.
 248	 */
 249	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
 250	    mp->m_logdev_targp == mp->m_ddev_targp &&
 251	    !XFS_IS_REALTIME_INODE(ip) &&
 252	    !log_flushed)
 253		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 254
 255	return -error;
 256}
 257
 258STATIC ssize_t
 259xfs_file_aio_read(
 260	struct kiocb		*iocb,
 261	const struct iovec	*iovp,
 262	unsigned long		nr_segs,
 263	loff_t			pos)
 264{
 265	struct file		*file = iocb->ki_filp;
 266	struct inode		*inode = file->f_mapping->host;
 267	struct xfs_inode	*ip = XFS_I(inode);
 268	struct xfs_mount	*mp = ip->i_mount;
 269	size_t			size = 0;
 270	ssize_t			ret = 0;
 271	int			ioflags = 0;
 272	xfs_fsize_t		n;
 273	unsigned long		seg;
 274
 275	XFS_STATS_INC(xs_read_calls);
 276
 277	BUG_ON(iocb->ki_pos != pos);
 278
 279	if (unlikely(file->f_flags & O_DIRECT))
 280		ioflags |= IO_ISDIRECT;
 281	if (file->f_mode & FMODE_NOCMTIME)
 282		ioflags |= IO_INVIS;
 283
 284	/* START copy & waste from filemap.c */
 285	for (seg = 0; seg < nr_segs; seg++) {
 286		const struct iovec *iv = &iovp[seg];
 287
 288		/*
 289		 * If any segment has a negative length, or the cumulative
 290		 * length ever wraps negative then return -EINVAL.
 291		 */
 292		size += iv->iov_len;
 293		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
 294			return XFS_ERROR(-EINVAL);
 295	}
 296	/* END copy & waste from filemap.c */
 297
 298	if (unlikely(ioflags & IO_ISDIRECT)) {
 299		xfs_buftarg_t	*target =
 300			XFS_IS_REALTIME_INODE(ip) ?
 301				mp->m_rtdev_targp : mp->m_ddev_targp;
 302		if ((iocb->ki_pos & target->bt_smask) ||
 303		    (size & target->bt_smask)) {
 304			if (iocb->ki_pos == ip->i_size)
 305				return 0;
 306			return -XFS_ERROR(EINVAL);
 307		}
 308	}
 309
 310	n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
 311	if (n <= 0 || size == 0)
 312		return 0;
 313
 314	if (n < size)
 315		size = n;
 316
 317	if (XFS_FORCED_SHUTDOWN(mp))
 318		return -EIO;
 319
 320	if (unlikely(ioflags & IO_ISDIRECT)) {
 321		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
 322
 323		if (inode->i_mapping->nrpages) {
 324			ret = -xfs_flushinval_pages(ip,
 325					(iocb->ki_pos & PAGE_CACHE_MASK),
 326					-1, FI_REMAPF_LOCKED);
 327			if (ret) {
 328				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
 329				return ret;
 330			}
 331		}
 332		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 333	} else
 334		xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 335
 336	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
 337
 338	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
 339	if (ret > 0)
 340		XFS_STATS_ADD(xs_read_bytes, ret);
 341
 342	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 343	return ret;
 344}
 345
 346STATIC ssize_t
 347xfs_file_splice_read(
 348	struct file		*infilp,
 349	loff_t			*ppos,
 350	struct pipe_inode_info	*pipe,
 351	size_t			count,
 352	unsigned int		flags)
 353{
 354	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
 355	int			ioflags = 0;
 356	ssize_t			ret;
 357
 358	XFS_STATS_INC(xs_read_calls);
 359
 360	if (infilp->f_mode & FMODE_NOCMTIME)
 361		ioflags |= IO_INVIS;
 362
 363	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 364		return -EIO;
 365
 366	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 
 367
 368	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
 369
 370	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
 371	if (ret > 0)
 372		XFS_STATS_ADD(xs_read_bytes, ret);
 
 
 373
 374	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 375	return ret;
 376}
 377
 378STATIC void
 379xfs_aio_write_isize_update(
 380	struct inode	*inode,
 381	loff_t		*ppos,
 382	ssize_t		bytes_written)
 383{
 384	struct xfs_inode	*ip = XFS_I(inode);
 385	xfs_fsize_t		isize = i_size_read(inode);
 386
 387	if (bytes_written > 0)
 388		XFS_STATS_ADD(xs_write_bytes, bytes_written);
 389
 390	if (unlikely(bytes_written < 0 && bytes_written != -EFAULT &&
 391					*ppos > isize))
 392		*ppos = isize;
 393
 394	if (*ppos > ip->i_size) {
 395		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
 396		if (*ppos > ip->i_size)
 397			ip->i_size = *ppos;
 398		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
 399	}
 400}
 401
 402/*
 403 * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
 404 * part of the I/O may have been written to disk before the error occurred.  In
 405 * this case the on-disk file size may have been adjusted beyond the in-memory
 406 * file size and now needs to be truncated back.
 407 */
 408STATIC void
 409xfs_aio_write_newsize_update(
 410	struct xfs_inode	*ip)
 411{
 412	if (ip->i_new_size) {
 413		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
 414		ip->i_new_size = 0;
 415		if (ip->i_d.di_size > ip->i_size)
 416			ip->i_d.di_size = ip->i_size;
 417		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
 418	}
 419}
 420
 421/*
 422 * xfs_file_splice_write() does not use xfs_rw_ilock() because
 423 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
 424 * couuld cause lock inversions between the aio_write path and the splice path
 425 * if someone is doing concurrent splice(2) based writes and write(2) based
 426 * writes to the same inode. The only real way to fix this is to re-implement
 427 * the generic code here with correct locking orders.
 428 */
 429STATIC ssize_t
 430xfs_file_splice_write(
 431	struct pipe_inode_info	*pipe,
 432	struct file		*outfilp,
 433	loff_t			*ppos,
 434	size_t			count,
 435	unsigned int		flags)
 436{
 437	struct inode		*inode = outfilp->f_mapping->host;
 438	struct xfs_inode	*ip = XFS_I(inode);
 439	xfs_fsize_t		new_size;
 440	int			ioflags = 0;
 441	ssize_t			ret;
 442
 443	XFS_STATS_INC(xs_write_calls);
 444
 445	if (outfilp->f_mode & FMODE_NOCMTIME)
 446		ioflags |= IO_INVIS;
 447
 448	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 449		return -EIO;
 450
 451	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 
 452
 453	new_size = *ppos + count;
 
 
 
 
 
 
 
 454
 455	xfs_ilock(ip, XFS_ILOCK_EXCL);
 456	if (new_size > ip->i_size)
 457		ip->i_new_size = new_size;
 458	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 459
 460	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
 
 461
 462	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
 
 
 
 
 
 463
 464	xfs_aio_write_isize_update(inode, ppos, ret);
 465	xfs_aio_write_newsize_update(ip);
 466	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 467	return ret;
 468}
 469
 470/*
 471 * This routine is called to handle zeroing any space in the last
 472 * block of the file that is beyond the EOF.  We do this since the
 473 * size is being increased without writing anything to that block
 474 * and we don't want anyone to read the garbage on the disk.
 
 475 */
 476STATIC int				/* error (positive) */
 477xfs_zero_last_block(
 478	xfs_inode_t	*ip,
 479	xfs_fsize_t	offset,
 480	xfs_fsize_t	isize)
 481{
 482	xfs_fileoff_t	last_fsb;
 483	xfs_mount_t	*mp = ip->i_mount;
 484	int		nimaps;
 485	int		zero_offset;
 486	int		zero_len;
 487	int		error = 0;
 488	xfs_bmbt_irec_t	imap;
 489
 490	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 
 
 
 491
 492	zero_offset = XFS_B_FSB_OFFSET(mp, isize);
 493	if (zero_offset == 0) {
 494		/*
 495		 * There are no extra bytes in the last block on disk to
 496		 * zero, so return.
 497		 */
 498		return 0;
 499	}
 500
 501	last_fsb = XFS_B_TO_FSBT(mp, isize);
 502	nimaps = 1;
 503	error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
 504			  &nimaps, NULL);
 505	if (error) {
 506		return error;
 507	}
 508	ASSERT(nimaps > 0);
 509	/*
 510	 * If the block underlying isize is just a hole, then there
 511	 * is nothing to zero.
 512	 */
 513	if (imap.br_startblock == HOLESTARTBLOCK) {
 514		return 0;
 
 
 
 
 
 
 
 515	}
 
 516	/*
 517	 * Zero the part of the last block beyond the EOF, and write it
 518	 * out sync.  We need to drop the ilock while we do this so we
 519	 * don't deadlock when the buffer cache calls back to us.
 520	 */
 521	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 522
 523	zero_len = mp->m_sb.sb_blocksize - zero_offset;
 524	if (isize + zero_len > offset)
 525		zero_len = offset - isize;
 526	error = xfs_iozero(ip, isize, zero_len);
 
 
 
 
 
 
 
 
 
 
 
 527
 528	xfs_ilock(ip, XFS_ILOCK_EXCL);
 529	ASSERT(error >= 0);
 530	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531}
 532
 533/*
 534 * Zero any on disk space between the current EOF and the new,
 535 * larger EOF.  This handles the normal case of zeroing the remainder
 536 * of the last block in the file and the unusual case of zeroing blocks
 537 * out beyond the size of the file.  This second case only happens
 538 * with fixed size extents and when the system crashes before the inode
 539 * size was updated but after blocks were allocated.  If fill is set,
 540 * then any holes in the range are filled and zeroed.  If not, the holes
 541 * are left alone as holes.
 542 */
 
 
 
 
 
 
 543
 544int					/* error (positive) */
 545xfs_zero_eof(
 546	xfs_inode_t	*ip,
 547	xfs_off_t	offset,		/* starting I/O offset */
 548	xfs_fsize_t	isize)		/* current inode size */
 549{
 550	xfs_mount_t	*mp = ip->i_mount;
 551	xfs_fileoff_t	start_zero_fsb;
 552	xfs_fileoff_t	end_zero_fsb;
 553	xfs_fileoff_t	zero_count_fsb;
 554	xfs_fileoff_t	last_fsb;
 555	xfs_fileoff_t	zero_off;
 556	xfs_fsize_t	zero_len;
 557	int		nimaps;
 558	int		error = 0;
 559	xfs_bmbt_irec_t	imap;
 560
 561	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 562	ASSERT(offset > isize);
 563
 564	/*
 565	 * First handle zeroing the block on which isize resides.
 566	 * We only zero a part of that block so it is handled specially.
 567	 */
 568	error = xfs_zero_last_block(ip, offset, isize);
 569	if (error) {
 570		ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 571		return error;
 572	}
 
 573
 574	/*
 575	 * Calculate the range between the new size and the old
 576	 * where blocks needing to be zeroed may exist.  To get the
 577	 * block where the last byte in the file currently resides,
 578	 * we need to subtract one from the size and truncate back
 579	 * to a block boundary.  We subtract 1 in case the size is
 580	 * exactly on a block boundary.
 581	 */
 582	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
 583	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
 584	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
 585	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
 586	if (last_fsb == end_zero_fsb) {
 587		/*
 588		 * The size was only incremented on its last block.
 589		 * We took care of that above, so just return.
 590		 */
 591		return 0;
 592	}
 593
 594	ASSERT(start_zero_fsb <= end_zero_fsb);
 595	while (start_zero_fsb <= end_zero_fsb) {
 596		nimaps = 1;
 597		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
 598		error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
 599				  0, NULL, 0, &imap, &nimaps, NULL);
 600		if (error) {
 601			ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 602			return error;
 603		}
 604		ASSERT(nimaps > 0);
 605
 606		if (imap.br_state == XFS_EXT_UNWRITTEN ||
 607		    imap.br_startblock == HOLESTARTBLOCK) {
 608			/*
 609			 * This loop handles initializing pages that were
 610			 * partially initialized by the code below this
 611			 * loop. It basically zeroes the part of the page
 612			 * that sits on a hole and sets the page as P_HOLE
 613			 * and calls remapf if it is a mapped file.
 614			 */
 615			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 616			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 617			continue;
 618		}
 619
 620		/*
 621		 * There are blocks we need to zero.
 622		 * Drop the inode lock while we're doing the I/O.
 623		 * We'll still have the iolock to protect us.
 624		 */
 625		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 
 
 
 
 626
 627		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
 628		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629
 630		if ((zero_off + zero_len) > offset)
 631			zero_len = offset - zero_off;
 
 
 
 
 
 
 632
 633		error = xfs_iozero(ip, zero_off, zero_len);
 634		if (error) {
 635			goto out_lock;
 636		}
 637
 638		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 639		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 
 640
 641		xfs_ilock(ip, XFS_ILOCK_EXCL);
 642	}
 
 
 
 
 
 
 
 
 
 643
 644	return 0;
 
 
 
 
 
 645
 646out_lock:
 647	xfs_ilock(ip, XFS_ILOCK_EXCL);
 648	ASSERT(error >= 0);
 649	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 650}
 651
 652/*
 653 * Common pre-write limit and setup checks.
 
 
 
 
 
 
 
 
 
 654 *
 655 * Returns with iolock held according to @iolock.
 
 
 
 656 */
 657STATIC ssize_t
 658xfs_file_aio_write_checks(
 659	struct file		*file,
 660	loff_t			*pos,
 661	size_t			*count,
 662	int			*iolock)
 663{
 664	struct inode		*inode = file->f_mapping->host;
 665	struct xfs_inode	*ip = XFS_I(inode);
 666	xfs_fsize_t		new_size;
 667	int			error = 0;
 
 668
 669	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
 670	if (error) {
 671		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
 672		*iolock = 0;
 673		return error;
 
 
 
 
 
 
 674	}
 675
 676	new_size = *pos + *count;
 677	if (new_size > ip->i_size)
 678		ip->i_new_size = new_size;
 679
 680	if (likely(!(file->f_mode & FMODE_NOCMTIME)))
 681		file_update_time(file);
 
 
 
 
 
 
 
 
 
 
 
 682
 683	/*
 684	 * If the offset is beyond the size of the file, we need to zero any
 685	 * blocks that fall between the existing EOF and the start of this
 686	 * write.
 
 687	 */
 688	if (*pos > ip->i_size)
 689		error = -xfs_zero_eof(ip, *pos, ip->i_size);
 690
 691	xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
 692	if (error)
 693		return error;
 694
 695	/*
 696	 * If we're writing the file then make sure to clear the setuid and
 697	 * setgid bits if the process is not being run by root.  This keeps
 698	 * people from modifying setuid and setgid binaries.
 699	 */
 700	return file_remove_suid(file);
 
 
 
 
 701
 
 
 
 
 702}
 703
 704/*
 705 * xfs_file_dio_aio_write - handle direct IO writes
 706 *
 707 * Lock the inode appropriately to prepare for and issue a direct IO write.
 708 * By separating it from the buffered write path we remove all the tricky to
 709 * follow locking changes and looping.
 710 *
 711 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 712 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 713 * pages are flushed out.
 714 *
 715 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 716 * allowing them to be done in parallel with reads and other direct IO writes.
 717 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 718 * needs to do sub-block zeroing and that requires serialisation against other
 719 * direct IOs to the same block. In this case we need to serialise the
 720 * submission of the unaligned IOs so that we don't get racing block zeroing in
 721 * the dio layer.  To avoid the problem with aio, we also need to wait for
 722 * outstanding IOs to complete so that unwritten extent conversion is completed
 723 * before we try to map the overlapping block. This is currently implemented by
 724 * hitting it with a big hammer (i.e. xfs_ioend_wait()).
 725 *
 726 * Returns with locks held indicated by @iolock and errors indicated by
 727 * negative return values.
 728 */
 729STATIC ssize_t
 730xfs_file_dio_aio_write(
 731	struct kiocb		*iocb,
 732	const struct iovec	*iovp,
 733	unsigned long		nr_segs,
 734	loff_t			pos,
 735	size_t			ocount,
 736	int			*iolock)
 737{
 738	struct file		*file = iocb->ki_filp;
 739	struct address_space	*mapping = file->f_mapping;
 740	struct inode		*inode = mapping->host;
 741	struct xfs_inode	*ip = XFS_I(inode);
 742	struct xfs_mount	*mp = ip->i_mount;
 743	ssize_t			ret = 0;
 744	size_t			count = ocount;
 745	int			unaligned_io = 0;
 746	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
 747					mp->m_rtdev_targp : mp->m_ddev_targp;
 748
 749	*iolock = 0;
 750	if ((pos & target->bt_smask) || (count & target->bt_smask))
 751		return -XFS_ERROR(EINVAL);
 752
 753	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
 754		unaligned_io = 1;
 755
 756	if (unaligned_io || mapping->nrpages || pos > ip->i_size)
 757		*iolock = XFS_IOLOCK_EXCL;
 758	else
 759		*iolock = XFS_IOLOCK_SHARED;
 760	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
 
 
 
 
 
 761
 762	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
 763	if (ret)
 764		return ret;
 
 
 
 765
 766	if (mapping->nrpages) {
 767		WARN_ON(*iolock != XFS_IOLOCK_EXCL);
 768		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
 769							FI_REMAPF_LOCKED);
 770		if (ret)
 771			return ret;
 
 772	}
 
 
 
 
 
 773
 774	/*
 775	 * If we are doing unaligned IO, wait for all other IO to drain,
 776	 * otherwise demote the lock if we had to flush cached pages
 777	 */
 778	if (unaligned_io)
 779		xfs_ioend_wait(ip);
 780	else if (*iolock == XFS_IOLOCK_EXCL) {
 781		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 782		*iolock = XFS_IOLOCK_SHARED;
 783	}
 784
 785	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
 786	ret = generic_file_direct_write(iocb, iovp,
 787			&nr_segs, pos, &iocb->ki_pos, count, ocount);
 788
 789	/* No fallback to buffered IO on errors for XFS. */
 790	ASSERT(ret < 0 || ret == count);
 
 791	return ret;
 792}
 793
 794STATIC ssize_t
 795xfs_file_buffered_aio_write(
 796	struct kiocb		*iocb,
 797	const struct iovec	*iovp,
 798	unsigned long		nr_segs,
 799	loff_t			pos,
 800	size_t			ocount,
 801	int			*iolock)
 802{
 803	struct file		*file = iocb->ki_filp;
 804	struct address_space	*mapping = file->f_mapping;
 805	struct inode		*inode = mapping->host;
 806	struct xfs_inode	*ip = XFS_I(inode);
 807	ssize_t			ret;
 808	int			enospc = 0;
 809	size_t			count = ocount;
 810
 811	*iolock = XFS_IOLOCK_EXCL;
 812	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
 
 
 
 
 813
 814	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
 815	if (ret)
 816		return ret;
 817
 818	/* We can write back this queue in page reclaim */
 819	current->backing_dev_info = mapping->backing_dev_info;
 820
 821write_retry:
 822	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
 823	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
 824			pos, &iocb->ki_pos, count, ret);
 825	/*
 826	 * if we just got an ENOSPC, flush the inode now we aren't holding any
 827	 * page locks and retry *once*
 828	 */
 829	if (ret == -ENOSPC && !enospc) {
 830		ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
 831		if (ret)
 832			return ret;
 833		enospc = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834		goto write_retry;
 835	}
 
 836	current->backing_dev_info = NULL;
 
 
 
 
 
 
 
 
 
 837	return ret;
 838}
 839
 840STATIC ssize_t
 841xfs_file_aio_write(
 842	struct kiocb		*iocb,
 843	const struct iovec	*iovp,
 844	unsigned long		nr_segs,
 845	loff_t			pos)
 846{
 847	struct file		*file = iocb->ki_filp;
 848	struct address_space	*mapping = file->f_mapping;
 849	struct inode		*inode = mapping->host;
 850	struct xfs_inode	*ip = XFS_I(inode);
 851	ssize_t			ret;
 852	int			iolock;
 853	size_t			ocount = 0;
 854
 855	XFS_STATS_INC(xs_write_calls);
 856
 857	BUG_ON(iocb->ki_pos != pos);
 858
 859	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
 860	if (ret)
 861		return ret;
 862
 863	if (ocount == 0)
 864		return 0;
 865
 866	xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
 867
 868	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 869		return -EIO;
 870
 871	if (unlikely(file->f_flags & O_DIRECT))
 872		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos,
 873						ocount, &iolock);
 874	else
 875		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
 876						ocount, &iolock);
 877
 878	xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret);
 
 
 
 
 
 
 
 
 
 
 879
 880	if (ret <= 0)
 881		goto out_unlock;
 882
 883	/* Handle various SYNC-type writes */
 884	if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
 885		loff_t end = pos + ret - 1;
 886		int error;
 887
 888		xfs_rw_iunlock(ip, iolock);
 889		error = xfs_file_fsync(file, pos, end,
 890				      (file->f_flags & __O_SYNC) ? 0 : 1);
 891		xfs_rw_ilock(ip, iolock);
 892		if (error)
 893			ret = error;
 894	}
 895
 896out_unlock:
 897	xfs_aio_write_newsize_update(ip);
 898	xfs_rw_iunlock(ip, iolock);
 899	return ret;
 900}
 901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902STATIC long
 903xfs_file_fallocate(
 904	struct file	*file,
 905	int		mode,
 906	loff_t		offset,
 907	loff_t		len)
 908{
 909	struct inode	*inode = file->f_path.dentry->d_inode;
 910	long		error;
 911	loff_t		new_size = 0;
 912	xfs_flock64_t	bf;
 913	xfs_inode_t	*ip = XFS_I(inode);
 914	int		cmd = XFS_IOC_RESVSP;
 915	int		attr_flags = XFS_ATTR_NOLOCK;
 916
 917	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 
 
 918		return -EOPNOTSUPP;
 919
 920	bf.l_whence = 0;
 921	bf.l_start = offset;
 922	bf.l_len = len;
 923
 924	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 925
 926	if (mode & FALLOC_FL_PUNCH_HOLE)
 927		cmd = XFS_IOC_UNRESVSP;
 928
 929	/* check the new inode size is valid before allocating */
 930	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 931	    offset + len > i_size_read(inode)) {
 932		new_size = offset + len;
 933		error = inode_newsize_ok(inode, new_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934		if (error)
 935			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 936	}
 937
 938	if (file->f_flags & O_DSYNC)
 939		attr_flags |= XFS_ATTR_SYNC;
 940
 941	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
 942	if (error)
 943		goto out_unlock;
 944
 945	/* Change file size if needed */
 946	if (new_size) {
 947		struct iattr iattr;
 948
 949		iattr.ia_valid = ATTR_SIZE;
 950		iattr.ia_size = new_size;
 951		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
 
 
 
 952	}
 953
 
 
 
 
 
 
 
 
 
 954out_unlock:
 955	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 956	return error;
 957}
 958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959
 960STATIC int
 961xfs_file_open(
 962	struct inode	*inode,
 963	struct file	*file)
 964{
 965	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 966		return -EFBIG;
 967	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 968		return -EIO;
 
 969	return 0;
 970}
 971
 972STATIC int
 973xfs_dir_open(
 974	struct inode	*inode,
 975	struct file	*file)
 976{
 977	struct xfs_inode *ip = XFS_I(inode);
 978	int		mode;
 979	int		error;
 980
 981	error = xfs_file_open(inode, file);
 982	if (error)
 983		return error;
 984
 985	/*
 986	 * If there are any blocks, read-ahead block 0 as we're almost
 987	 * certain to have the next operation be a read there.
 988	 */
 989	mode = xfs_ilock_map_shared(ip);
 990	if (ip->i_d.di_nextents > 0)
 991		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
 992	xfs_iunlock(ip, mode);
 993	return 0;
 994}
 995
 996STATIC int
 997xfs_file_release(
 998	struct inode	*inode,
 999	struct file	*filp)
1000{
1001	return -xfs_release(XFS_I(inode));
1002}
1003
1004STATIC int
1005xfs_file_readdir(
1006	struct file	*filp,
1007	void		*dirent,
1008	filldir_t	filldir)
1009{
1010	struct inode	*inode = filp->f_path.dentry->d_inode;
1011	xfs_inode_t	*ip = XFS_I(inode);
1012	int		error;
1013	size_t		bufsize;
1014
1015	/*
1016	 * The Linux API doesn't pass down the total size of the buffer
1017	 * we read into down to the filesystem.  With the filldir concept
1018	 * it's not needed for correct information, but the XFS dir2 leaf
1019	 * code wants an estimate of the buffer size to calculate it's
1020	 * readahead window and size the buffers used for mapping to
1021	 * physical blocks.
1022	 *
1023	 * Try to give it an estimate that's good enough, maybe at some
1024	 * point we can change the ->readdir prototype to include the
1025	 * buffer size.  For now we use the current glibc buffer size.
1026	 */
1027	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1028
1029	error = xfs_readdir(ip, dirent, bufsize,
1030				(xfs_off_t *)&filp->f_pos, filldir);
1031	if (error)
1032		return -error;
1033	return 0;
1034}
1035
1036STATIC int
1037xfs_file_mmap(
1038	struct file	*filp,
1039	struct vm_area_struct *vma)
 
1040{
1041	vma->vm_ops = &xfs_file_vm_ops;
1042	vma->vm_flags |= VM_CAN_NONLINEAR;
1043
1044	file_accessed(filp);
1045	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046}
1047
1048/*
1049 * mmap()d file has taken write protection fault and is being made
1050 * writable. We can set the page state up correctly for a writable
1051 * page, which means we can do correct delalloc accounting (ENOSPC
1052 * checking!) and unwritten extent mapping.
 
 
 
 
1053 */
1054STATIC int
1055xfs_vm_page_mkwrite(
1056	struct vm_area_struct	*vma,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057	struct vm_fault		*vmf)
1058{
1059	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060}
1061
1062const struct file_operations xfs_file_operations = {
1063	.llseek		= generic_file_llseek,
1064	.read		= do_sync_read,
1065	.write		= do_sync_write,
1066	.aio_read	= xfs_file_aio_read,
1067	.aio_write	= xfs_file_aio_write,
1068	.splice_read	= xfs_file_splice_read,
1069	.splice_write	= xfs_file_splice_write,
1070	.unlocked_ioctl	= xfs_file_ioctl,
1071#ifdef CONFIG_COMPAT
1072	.compat_ioctl	= xfs_file_compat_ioctl,
1073#endif
1074	.mmap		= xfs_file_mmap,
 
1075	.open		= xfs_file_open,
1076	.release	= xfs_file_release,
1077	.fsync		= xfs_file_fsync,
 
1078	.fallocate	= xfs_file_fallocate,
 
 
1079};
1080
1081const struct file_operations xfs_dir_file_operations = {
1082	.open		= xfs_dir_open,
1083	.read		= generic_read_dir,
1084	.readdir	= xfs_file_readdir,
1085	.llseek		= generic_file_llseek,
1086	.unlocked_ioctl	= xfs_file_ioctl,
1087#ifdef CONFIG_COMPAT
1088	.compat_ioctl	= xfs_file_compat_ioctl,
1089#endif
1090	.fsync		= xfs_file_fsync,
1091};
1092
1093static const struct vm_operations_struct xfs_file_vm_ops = {
1094	.fault		= filemap_fault,
1095	.page_mkwrite	= xfs_vm_page_mkwrite,
1096};
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
 
 
  12#include "xfs_mount.h"
 
 
 
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
  18#include "xfs_dir2.h"
  19#include "xfs_dir2_priv.h"
  20#include "xfs_ioctl.h"
  21#include "xfs_trace.h"
  22#include "xfs_log.h"
  23#include "xfs_icache.h"
  24#include "xfs_pnfs.h"
  25#include "xfs_iomap.h"
  26#include "xfs_reflink.h"
  27
 
  28#include <linux/falloc.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mman.h>
  31#include <linux/fadvise.h>
  32#include <linux/mount.h>
  33
  34static const struct vm_operations_struct xfs_file_vm_ops;
  35
  36/*
  37 * Decide if the given file range is aligned to the size of the fundamental
  38 * allocation unit for the file.
  39 */
  40static bool
  41xfs_is_falloc_aligned(
  42	struct xfs_inode	*ip,
  43	loff_t			pos,
  44	long long int		len)
  45{
  46	struct xfs_mount	*mp = ip->i_mount;
  47	uint64_t		mask;
 
 
  48
  49	if (XFS_IS_REALTIME_INODE(ip)) {
  50		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
  51			u64	rextbytes;
  52			u32	mod;
  53
  54			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
  55			div_u64_rem(pos, rextbytes, &mod);
  56			if (mod)
  57				return false;
  58			div_u64_rem(len, rextbytes, &mod);
  59			return mod == 0;
  60		}
  61		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
  62	} else {
  63		mask = mp->m_sb.sb_blocksize - 1;
  64	}
  65
  66	return !((pos | len) & mask);
  67}
  68
  69int
  70xfs_update_prealloc_flags(
  71	struct xfs_inode	*ip,
  72	enum xfs_prealloc_flags	flags)
  73{
  74	struct xfs_trans	*tp;
  75	int			error;
  76
  77	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  78			0, 0, 0, &tp);
  79	if (error)
  80		return error;
  81
  82	xfs_ilock(ip, XFS_ILOCK_EXCL);
  83	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  84
  85	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  86		VFS_I(ip)->i_mode &= ~S_ISUID;
  87		if (VFS_I(ip)->i_mode & S_IXGRP)
  88			VFS_I(ip)->i_mode &= ~S_ISGID;
  89		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  90	}
  91
  92	if (flags & XFS_PREALLOC_SET)
  93		ip->i_diflags |= XFS_DIFLAG_PREALLOC;
  94	if (flags & XFS_PREALLOC_CLEAR)
  95		ip->i_diflags &= ~XFS_DIFLAG_PREALLOC;
  96
  97	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  98	if (flags & XFS_PREALLOC_SYNC)
  99		xfs_trans_set_sync(tp);
 100	return xfs_trans_commit(tp);
 101}
 102
 103/*
 104 * Fsync operations on directories are much simpler than on regular files,
 105 * as there is no file data to flush, and thus also no need for explicit
 106 * cache flush operations, and there are no non-transaction metadata updates
 107 * on directories either.
 
 
 
 
 108 */
 109STATIC int
 110xfs_dir_fsync(
 111	struct file		*file,
 112	loff_t			start,
 113	loff_t			end,
 114	int			datasync)
 115{
 116	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 
 117
 118	trace_xfs_dir_fsync(ip);
 119	return xfs_log_force_inode(ip);
 120}
 
 
 
 
 
 
 
 
 
 
 
 
 121
 122static xfs_csn_t
 123xfs_fsync_seq(
 124	struct xfs_inode	*ip,
 125	bool			datasync)
 126{
 127	if (!xfs_ipincount(ip))
 128		return 0;
 129	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 130		return 0;
 131	return ip->i_itemp->ili_commit_seq;
 132}
 133
 134/*
 135 * All metadata updates are logged, which means that we just have to flush the
 136 * log up to the latest LSN that touched the inode.
 137 *
 138 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
 139 * the log force before we clear the ili_fsync_fields field. This ensures that
 140 * we don't get a racing sync operation that does not wait for the metadata to
 141 * hit the journal before returning.  If we race with clearing ili_fsync_fields,
 142 * then all that will happen is the log force will do nothing as the lsn will
 143 * already be on disk.  We can't race with setting ili_fsync_fields because that
 144 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
 145 * shared until after the ili_fsync_fields is cleared.
 146 */
 147static  int
 148xfs_fsync_flush_log(
 149	struct xfs_inode	*ip,
 150	bool			datasync,
 151	int			*log_flushed)
 152{
 153	int			error = 0;
 154	xfs_csn_t		seq;
 155
 156	xfs_ilock(ip, XFS_ILOCK_SHARED);
 157	seq = xfs_fsync_seq(ip, datasync);
 158	if (seq) {
 159		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
 160					  log_flushed);
 161
 162		spin_lock(&ip->i_itemp->ili_lock);
 163		ip->i_itemp->ili_fsync_fields = 0;
 164		spin_unlock(&ip->i_itemp->ili_lock);
 165	}
 166	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 167	return error;
 168}
 169
 170STATIC int
 171xfs_file_fsync(
 172	struct file		*file,
 173	loff_t			start,
 174	loff_t			end,
 175	int			datasync)
 176{
 177	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 178	struct xfs_mount	*mp = ip->i_mount;
 
 179	int			error = 0;
 180	int			log_flushed = 0;
 181
 182	trace_xfs_file_fsync(ip);
 183
 184	error = file_write_and_wait_range(file, start, end);
 185	if (error)
 186		return error;
 187
 188	if (XFS_FORCED_SHUTDOWN(mp))
 189		return -EIO;
 190
 191	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193	/*
 194	 * If we have an RT and/or log subvolume we need to make sure to flush
 195	 * the write cache the device used for file data first.  This is to
 196	 * ensure newly written file data make it to disk before logging the new
 197	 * inode size in case of an extending write.
 
 
 
 
 
 
 198	 */
 199	if (XFS_IS_REALTIME_INODE(ip))
 200		blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
 201	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 202		blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
 203
 204	/*
 205	 * Any inode that has dirty modifications in the log is pinned.  The
 206	 * racy check here for a pinned inode while not catch modifications
 207	 * that happen concurrently to the fsync call, but fsync semantics
 208	 * only require to sync previously completed I/O.
 209	 */
 210	if (xfs_ipincount(ip))
 211		error = xfs_fsync_flush_log(ip, datasync, &log_flushed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212
 213	/*
 214	 * If we only have a single device, and the log force about was
 215	 * a no-op we might have to flush the data device cache here.
 216	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 217	 * an already allocated file and thus do not have any metadata to
 218	 * commit.
 219	 */
 220	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 221	    mp->m_logdev_targp == mp->m_ddev_targp)
 222		blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
 
 
 223
 224	return error;
 225}
 226
 227static int
 228xfs_ilock_iocb(
 229	struct kiocb		*iocb,
 230	unsigned int		lock_mode)
 
 
 231{
 232	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233
 234	if (iocb->ki_flags & IOCB_NOWAIT) {
 235		if (!xfs_ilock_nowait(ip, lock_mode))
 236			return -EAGAIN;
 237	} else {
 238		xfs_ilock(ip, lock_mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239	}
 240
 241	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242}
 243
 244STATIC ssize_t
 245xfs_file_dio_read(
 246	struct kiocb		*iocb,
 247	struct iov_iter		*to)
 
 
 
 248{
 249	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 
 250	ssize_t			ret;
 251
 252	trace_xfs_file_direct_read(iocb, to);
 
 
 
 
 
 
 253
 254	if (!iov_iter_count(to))
 255		return 0; /* skip atime */
 256
 257	file_accessed(iocb->ki_filp);
 258
 259	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 260	if (ret)
 261		return ret;
 262	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0);
 263	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 264
 
 265	return ret;
 266}
 267
 268static noinline ssize_t
 269xfs_file_dax_read(
 270	struct kiocb		*iocb,
 271	struct iov_iter		*to)
 
 272{
 273	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 274	ssize_t			ret = 0;
 275
 276	trace_xfs_file_dax_read(iocb, to);
 
 277
 278	if (!iov_iter_count(to))
 279		return 0; /* skip atime */
 
 
 
 
 
 
 
 
 
 280
 281	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 282	if (ret)
 283		return ret;
 284	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
 285	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 286
 287	file_accessed(iocb->ki_filp);
 288	return ret;
 
 
 
 
 
 
 
 
 
 289}
 290
 
 
 
 
 
 
 
 
 291STATIC ssize_t
 292xfs_file_buffered_read(
 293	struct kiocb		*iocb,
 294	struct iov_iter		*to)
 
 
 
 295{
 296	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 
 
 
 297	ssize_t			ret;
 298
 299	trace_xfs_file_buffered_read(iocb, to);
 300
 301	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 302	if (ret)
 303		return ret;
 304	ret = generic_file_read_iter(iocb, to);
 305	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 306
 307	return ret;
 308}
 309
 310STATIC ssize_t
 311xfs_file_read_iter(
 312	struct kiocb		*iocb,
 313	struct iov_iter		*to)
 314{
 315	struct inode		*inode = file_inode(iocb->ki_filp);
 316	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 317	ssize_t			ret = 0;
 318
 319	XFS_STATS_INC(mp, xs_read_calls);
 
 
 
 320
 321	if (XFS_FORCED_SHUTDOWN(mp))
 322		return -EIO;
 323
 324	if (IS_DAX(inode))
 325		ret = xfs_file_dax_read(iocb, to);
 326	else if (iocb->ki_flags & IOCB_DIRECT)
 327		ret = xfs_file_dio_read(iocb, to);
 328	else
 329		ret = xfs_file_buffered_read(iocb, to);
 330
 331	if (ret > 0)
 332		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 
 333	return ret;
 334}
 335
 336/*
 337 * Common pre-write limit and setup checks.
 338 *
 339 * Called with the iolocked held either shared and exclusive according to
 340 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 341 * if called for a direct write beyond i_size.
 342 */
 343STATIC ssize_t
 344xfs_file_write_checks(
 345	struct kiocb		*iocb,
 346	struct iov_iter		*from,
 347	int			*iolock)
 348{
 349	struct file		*file = iocb->ki_filp;
 350	struct inode		*inode = file->f_mapping->host;
 351	struct xfs_inode	*ip = XFS_I(inode);
 352	ssize_t			error = 0;
 353	size_t			count = iov_iter_count(from);
 354	bool			drained_dio = false;
 355	loff_t			isize;
 356
 357restart:
 358	error = generic_write_checks(iocb, from);
 359	if (error <= 0)
 360		return error;
 361
 362	if (iocb->ki_flags & IOCB_NOWAIT) {
 363		error = break_layout(inode, false);
 364		if (error == -EWOULDBLOCK)
 365			error = -EAGAIN;
 366	} else {
 367		error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 
 368	}
 369
 370	if (error)
 
 
 
 
 371		return error;
 372
 
 373	/*
 374	 * For changing security info in file_remove_privs() we need i_rwsem
 375	 * exclusively.
 376	 */
 377	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 378		xfs_iunlock(ip, *iolock);
 379		*iolock = XFS_IOLOCK_EXCL;
 380		error = xfs_ilock_iocb(iocb, *iolock);
 381		if (error) {
 382			*iolock = 0;
 383			return error;
 384		}
 385		goto restart;
 386	}
 387
 388	/*
 389	 * If the offset is beyond the size of the file, we need to zero any
 390	 * blocks that fall between the existing EOF and the start of this
 391	 * write.  If zeroing is needed and we are currently holding the iolock
 392	 * shared, we need to update it to exclusive which implies having to
 393	 * redo all checks before.
 394	 *
 395	 * We need to serialise against EOF updates that occur in IO completions
 396	 * here. We want to make sure that nobody is changing the size while we
 397	 * do this check until we have placed an IO barrier (i.e.  hold the
 398	 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The
 399	 * spinlock effectively forms a memory barrier once we have the
 400	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
 401	 * hence be able to correctly determine if we need to run zeroing.
 402	 *
 403	 * We can do an unlocked check here safely as IO completion can only
 404	 * extend EOF. Truncate is locked out at this point, so the EOF can
 405	 * not move backwards, only forwards. Hence we only need to take the
 406	 * slow path and spin locks when we are at or beyond the current EOF.
 407	 */
 408	if (iocb->ki_pos <= i_size_read(inode))
 409		goto out;
 410
 411	spin_lock(&ip->i_flags_lock);
 412	isize = i_size_read(inode);
 413	if (iocb->ki_pos > isize) {
 414		spin_unlock(&ip->i_flags_lock);
 415
 416		if (iocb->ki_flags & IOCB_NOWAIT)
 417			return -EAGAIN;
 418
 419		if (!drained_dio) {
 420			if (*iolock == XFS_IOLOCK_SHARED) {
 421				xfs_iunlock(ip, *iolock);
 422				*iolock = XFS_IOLOCK_EXCL;
 423				xfs_ilock(ip, *iolock);
 424				iov_iter_reexpand(from, count);
 425			}
 426			/*
 427			 * We now have an IO submission barrier in place, but
 428			 * AIO can do EOF updates during IO completion and hence
 429			 * we now need to wait for all of them to drain. Non-AIO
 430			 * DIO will have drained before we are given the
 431			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 432			 * no-op.
 433			 */
 434			inode_dio_wait(inode);
 435			drained_dio = true;
 436			goto restart;
 437		}
 438
 439		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 440		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 441				NULL, &xfs_buffered_write_iomap_ops);
 442		if (error)
 443			return error;
 444	} else
 445		spin_unlock(&ip->i_flags_lock);
 446
 447out:
 448	return file_modified(file);
 449}
 450
 451static int
 452xfs_dio_write_end_io(
 453	struct kiocb		*iocb,
 454	ssize_t			size,
 455	int			error,
 456	unsigned		flags)
 457{
 458	struct inode		*inode = file_inode(iocb->ki_filp);
 459	struct xfs_inode	*ip = XFS_I(inode);
 460	loff_t			offset = iocb->ki_pos;
 461	unsigned int		nofs_flag;
 462
 463	trace_xfs_end_io_direct_write(ip, offset, size);
 464
 465	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 466		return -EIO;
 467
 468	if (error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 469		return error;
 470	if (!size)
 471		return 0;
 472
 473	/*
 474	 * Capture amount written on completion as we can't reliably account
 475	 * for it on submission.
 476	 */
 477	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478
 479	/*
 480	 * We can allocate memory here while doing writeback on behalf of
 481	 * memory reclaim.  To avoid memory allocation deadlocks set the
 482	 * task-wide nofs context for the following operations.
 483	 */
 484	nofs_flag = memalloc_nofs_save();
 
 
 
 
 
 485
 486	if (flags & IOMAP_DIO_COW) {
 487		error = xfs_reflink_end_cow(ip, offset, size);
 488		if (error)
 489			goto out;
 490	}
 
 
 
 
 
 
 
 
 491
 492	/*
 493	 * Unwritten conversion updates the in-core isize after extent
 494	 * conversion but before updating the on-disk size. Updating isize any
 495	 * earlier allows a racing dio read to find unwritten extents before
 496	 * they are converted.
 497	 */
 498	if (flags & IOMAP_DIO_UNWRITTEN) {
 499		error = xfs_iomap_write_unwritten(ip, offset, size, true);
 500		goto out;
 501	}
 502
 503	/*
 504	 * We need to update the in-core inode size here so that we don't end up
 505	 * with the on-disk inode size being outside the in-core inode size. We
 506	 * have no other method of updating EOF for AIO, so always do it here
 507	 * if necessary.
 508	 *
 509	 * We need to lock the test/set EOF update as we can be racing with
 510	 * other IO completions here to update the EOF. Failing to serialise
 511	 * here can result in EOF moving backwards and Bad Things Happen when
 512	 * that occurs.
 513	 *
 514	 * As IO completion only ever extends EOF, we can do an unlocked check
 515	 * here to avoid taking the spinlock. If we land within the current EOF,
 516	 * then we do not need to do an extending update at all, and we don't
 517	 * need to take the lock to check this. If we race with an update moving
 518	 * EOF, then we'll either still be beyond EOF and need to take the lock,
 519	 * or we'll be within EOF and we don't need to take it at all.
 520	 */
 521	if (offset + size <= i_size_read(inode))
 522		goto out;
 523
 524	spin_lock(&ip->i_flags_lock);
 525	if (offset + size > i_size_read(inode)) {
 526		i_size_write(inode, offset + size);
 527		spin_unlock(&ip->i_flags_lock);
 528		error = xfs_setfilesize(ip, offset, size);
 529	} else {
 530		spin_unlock(&ip->i_flags_lock);
 531	}
 532
 533out:
 534	memalloc_nofs_restore(nofs_flag);
 535	return error;
 536}
 537
 538static const struct iomap_dio_ops xfs_dio_write_ops = {
 539	.end_io		= xfs_dio_write_end_io,
 540};
 541
 542/*
 543 * Handle block aligned direct I/O writes
 544 */
 545static noinline ssize_t
 546xfs_file_dio_write_aligned(
 547	struct xfs_inode	*ip,
 548	struct kiocb		*iocb,
 549	struct iov_iter		*from)
 550{
 551	int			iolock = XFS_IOLOCK_SHARED;
 552	ssize_t			ret;
 553
 554	ret = xfs_ilock_iocb(iocb, iolock);
 555	if (ret)
 556		return ret;
 557	ret = xfs_file_write_checks(iocb, from, &iolock);
 558	if (ret)
 559		goto out_unlock;
 560
 561	/*
 562	 * We don't need to hold the IOLOCK exclusively across the IO, so demote
 563	 * the iolock back to shared if we had to take the exclusive lock in
 564	 * xfs_file_write_checks() for other reasons.
 565	 */
 566	if (iolock == XFS_IOLOCK_EXCL) {
 567		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 568		iolock = XFS_IOLOCK_SHARED;
 569	}
 570	trace_xfs_file_direct_write(iocb, from);
 571	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 572			   &xfs_dio_write_ops, 0);
 573out_unlock:
 574	if (iolock)
 575		xfs_iunlock(ip, iolock);
 576	return ret;
 577}
 578
 579/*
 580 * Handle block unaligned direct I/O writes
 581 *
 582 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
 583 * them to be done in parallel with reads and other direct I/O writes.  However,
 584 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
 585 * to do sub-block zeroing and that requires serialisation against other direct
 586 * I/O to the same block.  In this case we need to serialise the submission of
 587 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
 588 * In the case where sub-block zeroing is not required, we can do concurrent
 589 * sub-block dios to the same block successfully.
 590 *
 591 * Optimistically submit the I/O using the shared lock first, but use the
 592 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
 593 * if block allocation or partial block zeroing would be required.  In that case
 594 * we try again with the exclusive lock.
 595 */
 596static noinline ssize_t
 597xfs_file_dio_write_unaligned(
 598	struct xfs_inode	*ip,
 599	struct kiocb		*iocb,
 600	struct iov_iter		*from)
 
 601{
 602	size_t			isize = i_size_read(VFS_I(ip));
 603	size_t			count = iov_iter_count(from);
 604	int			iolock = XFS_IOLOCK_SHARED;
 605	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY;
 606	ssize_t			ret;
 607
 608	/*
 609	 * Extending writes need exclusivity because of the sub-block zeroing
 610	 * that the DIO code always does for partial tail blocks beyond EOF, so
 611	 * don't even bother trying the fast path in this case.
 612	 */
 613	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
 614retry_exclusive:
 615		if (iocb->ki_flags & IOCB_NOWAIT)
 616			return -EAGAIN;
 617		iolock = XFS_IOLOCK_EXCL;
 618		flags = IOMAP_DIO_FORCE_WAIT;
 619	}
 620
 621	ret = xfs_ilock_iocb(iocb, iolock);
 622	if (ret)
 623		return ret;
 624
 625	/*
 626	 * We can't properly handle unaligned direct I/O to reflink files yet,
 627	 * as we can't unshare a partial block.
 628	 */
 629	if (xfs_is_cow_inode(ip)) {
 630		trace_xfs_reflink_bounce_dio_write(iocb, from);
 631		ret = -ENOTBLK;
 632		goto out_unlock;
 633	}
 634
 635	ret = xfs_file_write_checks(iocb, from, &iolock);
 636	if (ret)
 637		goto out_unlock;
 638
 639	/*
 640	 * If we are doing exclusive unaligned I/O, this must be the only I/O
 641	 * in-flight.  Otherwise we risk data corruption due to unwritten extent
 642	 * conversions from the AIO end_io handler.  Wait for all other I/O to
 643	 * drain first.
 644	 */
 645	if (flags & IOMAP_DIO_FORCE_WAIT)
 646		inode_dio_wait(VFS_I(ip));
 647
 648	trace_xfs_file_direct_write(iocb, from);
 649	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 650			   &xfs_dio_write_ops, flags);
 651
 652	/*
 653	 * Retry unaligned I/O with exclusive blocking semantics if the DIO
 654	 * layer rejected it for mapping or locking reasons. If we are doing
 655	 * nonblocking user I/O, propagate the error.
 656	 */
 657	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
 658		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
 659		xfs_iunlock(ip, iolock);
 660		goto retry_exclusive;
 661	}
 662
 663out_unlock:
 664	if (iolock)
 665		xfs_iunlock(ip, iolock);
 666	return ret;
 667}
 668
 669static ssize_t
 670xfs_file_dio_write(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671	struct kiocb		*iocb,
 672	struct iov_iter		*from)
 
 
 
 
 673{
 674	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 675	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
 676	size_t			count = iov_iter_count(from);
 677
 678	/* direct I/O must be aligned to device logical sector size */
 679	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 680		return -EINVAL;
 681	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
 682		return xfs_file_dio_write_unaligned(ip, iocb, from);
 683	return xfs_file_dio_write_aligned(ip, iocb, from);
 684}
 
 
 
 
 
 
 685
 686static noinline ssize_t
 687xfs_file_dax_write(
 688	struct kiocb		*iocb,
 689	struct iov_iter		*from)
 690{
 691	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 692	struct xfs_inode	*ip = XFS_I(inode);
 693	int			iolock = XFS_IOLOCK_EXCL;
 694	ssize_t			ret, error = 0;
 695	loff_t			pos;
 696
 697	ret = xfs_ilock_iocb(iocb, iolock);
 698	if (ret)
 699		return ret;
 700	ret = xfs_file_write_checks(iocb, from, &iolock);
 701	if (ret)
 702		goto out;
 703
 704	pos = iocb->ki_pos;
 705
 706	trace_xfs_file_dax_write(iocb, from);
 707	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
 708	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 709		i_size_write(inode, iocb->ki_pos);
 710		error = xfs_setfilesize(ip, pos, ret);
 711	}
 712out:
 713	if (iolock)
 714		xfs_iunlock(ip, iolock);
 715	if (error)
 716		return error;
 717
 718	if (ret > 0) {
 719		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 
 
 
 
 
 
 
 
 
 
 
 
 720
 721		/* Handle various SYNC-type writes */
 722		ret = generic_write_sync(iocb, ret);
 723	}
 724	return ret;
 725}
 726
 727STATIC ssize_t
 728xfs_file_buffered_write(
 729	struct kiocb		*iocb,
 730	struct iov_iter		*from)
 
 
 
 
 731{
 732	struct file		*file = iocb->ki_filp;
 733	struct address_space	*mapping = file->f_mapping;
 734	struct inode		*inode = mapping->host;
 735	struct xfs_inode	*ip = XFS_I(inode);
 736	ssize_t			ret;
 737	bool			cleared_space = false;
 738	int			iolock;
 739
 740	if (iocb->ki_flags & IOCB_NOWAIT)
 741		return -EOPNOTSUPP;
 742
 743write_retry:
 744	iolock = XFS_IOLOCK_EXCL;
 745	xfs_ilock(ip, iolock);
 746
 747	ret = xfs_file_write_checks(iocb, from, &iolock);
 748	if (ret)
 749		goto out;
 750
 751	/* We can write back this queue in page reclaim */
 752	current->backing_dev_info = inode_to_bdi(inode);
 753
 754	trace_xfs_file_buffered_write(iocb, from);
 755	ret = iomap_file_buffered_write(iocb, from,
 756			&xfs_buffered_write_iomap_ops);
 757	if (likely(ret >= 0))
 758		iocb->ki_pos += ret;
 759
 760	/*
 761	 * If we hit a space limit, try to free up some lingering preallocated
 762	 * space before returning an error. In the case of ENOSPC, first try to
 763	 * write back all dirty inodes to free up some of the excess reserved
 764	 * metadata space. This reduces the chances that the eofblocks scan
 765	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 766	 * also behaves as a filter to prevent too many eofblocks scans from
 767	 * running at the same time.  Use a synchronous scan to increase the
 768	 * effectiveness of the scan.
 769	 */
 770	if (ret == -EDQUOT && !cleared_space) {
 771		xfs_iunlock(ip, iolock);
 772		xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
 773		cleared_space = true;
 774		goto write_retry;
 775	} else if (ret == -ENOSPC && !cleared_space) {
 776		struct xfs_icwalk	icw = {0};
 777
 778		cleared_space = true;
 779		xfs_flush_inodes(ip->i_mount);
 780
 781		xfs_iunlock(ip, iolock);
 782		icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
 783		xfs_blockgc_free_space(ip->i_mount, &icw);
 784		goto write_retry;
 785	}
 786
 787	current->backing_dev_info = NULL;
 788out:
 789	if (iolock)
 790		xfs_iunlock(ip, iolock);
 791
 792	if (ret > 0) {
 793		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 794		/* Handle various SYNC-type writes */
 795		ret = generic_write_sync(iocb, ret);
 796	}
 797	return ret;
 798}
 799
 800STATIC ssize_t
 801xfs_file_write_iter(
 802	struct kiocb		*iocb,
 803	struct iov_iter		*from)
 
 
 804{
 805	struct file		*file = iocb->ki_filp;
 806	struct address_space	*mapping = file->f_mapping;
 807	struct inode		*inode = mapping->host;
 808	struct xfs_inode	*ip = XFS_I(inode);
 809	ssize_t			ret;
 810	size_t			ocount = iov_iter_count(from);
 
 
 
 811
 812	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 
 
 
 
 813
 814	if (ocount == 0)
 815		return 0;
 816
 
 
 817	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 818		return -EIO;
 819
 820	if (IS_DAX(inode))
 821		return xfs_file_dax_write(iocb, from);
 
 
 
 
 822
 823	if (iocb->ki_flags & IOCB_DIRECT) {
 824		/*
 825		 * Allow a directio write to fall back to a buffered
 826		 * write *only* in the case that we're doing a reflink
 827		 * CoW.  In all other directio scenarios we do not
 828		 * allow an operation to fall back to buffered mode.
 829		 */
 830		ret = xfs_file_dio_write(iocb, from);
 831		if (ret != -ENOTBLK)
 832			return ret;
 833	}
 834
 835	return xfs_file_buffered_write(iocb, from);
 836}
 837
 838static void
 839xfs_wait_dax_page(
 840	struct inode		*inode)
 841{
 842	struct xfs_inode        *ip = XFS_I(inode);
 
 
 
 
 
 
 
 843
 844	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 845	schedule();
 846	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 
 847}
 848
 849static int
 850xfs_break_dax_layouts(
 851	struct inode		*inode,
 852	bool			*retry)
 853{
 854	struct page		*page;
 855
 856	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 857
 858	page = dax_layout_busy_page(inode->i_mapping);
 859	if (!page)
 860		return 0;
 861
 862	*retry = true;
 863	return ___wait_var_event(&page->_refcount,
 864			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 865			0, 0, xfs_wait_dax_page(inode));
 866}
 867
 868int
 869xfs_break_layouts(
 870	struct inode		*inode,
 871	uint			*iolock,
 872	enum layout_break_reason reason)
 873{
 874	bool			retry;
 875	int			error;
 876
 877	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 878
 879	do {
 880		retry = false;
 881		switch (reason) {
 882		case BREAK_UNMAP:
 883			error = xfs_break_dax_layouts(inode, &retry);
 884			if (error || retry)
 885				break;
 886			fallthrough;
 887		case BREAK_WRITE:
 888			error = xfs_break_leased_layouts(inode, iolock, &retry);
 889			break;
 890		default:
 891			WARN_ON_ONCE(1);
 892			error = -EINVAL;
 893		}
 894	} while (error == 0 && retry);
 895
 896	return error;
 897}
 898
 899#define	XFS_FALLOC_FL_SUPPORTED						\
 900		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 901		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 902		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 903
 904STATIC long
 905xfs_file_fallocate(
 906	struct file		*file,
 907	int			mode,
 908	loff_t			offset,
 909	loff_t			len)
 910{
 911	struct inode		*inode = file_inode(file);
 912	struct xfs_inode	*ip = XFS_I(inode);
 913	long			error;
 914	enum xfs_prealloc_flags	flags = 0;
 915	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 916	loff_t			new_size = 0;
 917	bool			do_file_insert = false;
 918
 919	if (!S_ISREG(inode->i_mode))
 920		return -EINVAL;
 921	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 922		return -EOPNOTSUPP;
 923
 924	xfs_ilock(ip, iolock);
 925	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 926	if (error)
 927		goto out_unlock;
 928
 929	/*
 930	 * Must wait for all AIO to complete before we continue as AIO can
 931	 * change the file size on completion without holding any locks we
 932	 * currently hold. We must do this first because AIO can update both
 933	 * the on disk and in memory inode sizes, and the operations that follow
 934	 * require the in-memory size to be fully up-to-date.
 935	 */
 936	inode_dio_wait(inode);
 937
 938	/*
 939	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
 940	 * the cached range over the first operation we are about to run.
 941	 *
 942	 * We care about zero and collapse here because they both run a hole
 943	 * punch over the range first. Because that can zero data, and the range
 944	 * of invalidation for the shift operations is much larger, we still do
 945	 * the required flush for collapse in xfs_prepare_shift().
 946	 *
 947	 * Insert has the same range requirements as collapse, and we extend the
 948	 * file first which can zero data. Hence insert has the same
 949	 * flush/invalidate requirements as collapse and so they are both
 950	 * handled at the right time by xfs_prepare_shift().
 951	 */
 952	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
 953		    FALLOC_FL_COLLAPSE_RANGE)) {
 954		error = xfs_flush_unmap_range(ip, offset, len);
 955		if (error)
 956			goto out_unlock;
 957	}
 958
 959	if (mode & FALLOC_FL_PUNCH_HOLE) {
 960		error = xfs_free_file_space(ip, offset, len);
 961		if (error)
 962			goto out_unlock;
 963	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 964		if (!xfs_is_falloc_aligned(ip, offset, len)) {
 965			error = -EINVAL;
 966			goto out_unlock;
 967		}
 968
 969		/*
 970		 * There is no need to overlap collapse range with EOF,
 971		 * in which case it is effectively a truncate operation
 972		 */
 973		if (offset + len >= i_size_read(inode)) {
 974			error = -EINVAL;
 975			goto out_unlock;
 976		}
 977
 978		new_size = i_size_read(inode) - len;
 979
 980		error = xfs_collapse_file_space(ip, offset, len);
 981		if (error)
 982			goto out_unlock;
 983	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 984		loff_t		isize = i_size_read(inode);
 985
 986		if (!xfs_is_falloc_aligned(ip, offset, len)) {
 987			error = -EINVAL;
 988			goto out_unlock;
 989		}
 990
 991		/*
 992		 * New inode size must not exceed ->s_maxbytes, accounting for
 993		 * possible signed overflow.
 994		 */
 995		if (inode->i_sb->s_maxbytes - isize < len) {
 996			error = -EFBIG;
 997			goto out_unlock;
 998		}
 999		new_size = isize + len;
1000
1001		/* Offset should be less than i_size */
1002		if (offset >= isize) {
1003			error = -EINVAL;
1004			goto out_unlock;
1005		}
1006		do_file_insert = true;
1007	} else {
1008		flags |= XFS_PREALLOC_SET;
1009
1010		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1011		    offset + len > i_size_read(inode)) {
1012			new_size = offset + len;
1013			error = inode_newsize_ok(inode, new_size);
1014			if (error)
1015				goto out_unlock;
1016		}
1017
1018		if (mode & FALLOC_FL_ZERO_RANGE) {
1019			/*
1020			 * Punch a hole and prealloc the range.  We use a hole
1021			 * punch rather than unwritten extent conversion for two
1022			 * reasons:
1023			 *
1024			 *   1.) Hole punch handles partial block zeroing for us.
1025			 *   2.) If prealloc returns ENOSPC, the file range is
1026			 *       still zero-valued by virtue of the hole punch.
1027			 */
1028			unsigned int blksize = i_blocksize(inode);
1029
1030			trace_xfs_zero_file_space(ip);
1031
1032			error = xfs_free_file_space(ip, offset, len);
1033			if (error)
1034				goto out_unlock;
1035
1036			len = round_up(offset + len, blksize) -
1037			      round_down(offset, blksize);
1038			offset = round_down(offset, blksize);
1039		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1040			error = xfs_reflink_unshare(ip, offset, len);
1041			if (error)
1042				goto out_unlock;
1043		} else {
1044			/*
1045			 * If always_cow mode we can't use preallocations and
1046			 * thus should not create them.
1047			 */
1048			if (xfs_is_always_cow_inode(ip)) {
1049				error = -EOPNOTSUPP;
1050				goto out_unlock;
1051			}
1052		}
1053
1054		if (!xfs_is_always_cow_inode(ip)) {
1055			error = xfs_alloc_file_space(ip, offset, len,
1056						     XFS_BMAPI_PREALLOC);
1057			if (error)
1058				goto out_unlock;
1059		}
1060	}
1061
1062	if (file->f_flags & O_DSYNC)
1063		flags |= XFS_PREALLOC_SYNC;
1064
1065	error = xfs_update_prealloc_flags(ip, flags);
1066	if (error)
1067		goto out_unlock;
1068
1069	/* Change file size if needed */
1070	if (new_size) {
1071		struct iattr iattr;
1072
1073		iattr.ia_valid = ATTR_SIZE;
1074		iattr.ia_size = new_size;
1075		error = xfs_vn_setattr_size(file_mnt_user_ns(file),
1076					    file_dentry(file), &iattr);
1077		if (error)
1078			goto out_unlock;
1079	}
1080
1081	/*
1082	 * Perform hole insertion now that the file size has been
1083	 * updated so that if we crash during the operation we don't
1084	 * leave shifted extents past EOF and hence losing access to
1085	 * the data that is contained within them.
1086	 */
1087	if (do_file_insert)
1088		error = xfs_insert_file_space(ip, offset, len);
1089
1090out_unlock:
1091	xfs_iunlock(ip, iolock);
1092	return error;
1093}
1094
1095STATIC int
1096xfs_file_fadvise(
1097	struct file	*file,
1098	loff_t		start,
1099	loff_t		end,
1100	int		advice)
1101{
1102	struct xfs_inode *ip = XFS_I(file_inode(file));
1103	int ret;
1104	int lockflags = 0;
1105
1106	/*
1107	 * Operations creating pages in page cache need protection from hole
1108	 * punching and similar ops
1109	 */
1110	if (advice == POSIX_FADV_WILLNEED) {
1111		lockflags = XFS_IOLOCK_SHARED;
1112		xfs_ilock(ip, lockflags);
1113	}
1114	ret = generic_fadvise(file, start, end, advice);
1115	if (lockflags)
1116		xfs_iunlock(ip, lockflags);
1117	return ret;
1118}
1119
1120/* Does this file, inode, or mount want synchronous writes? */
1121static inline bool xfs_file_sync_writes(struct file *filp)
1122{
1123	struct xfs_inode	*ip = XFS_I(file_inode(filp));
1124
1125	if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC)
1126		return true;
1127	if (filp->f_flags & (__O_SYNC | O_DSYNC))
1128		return true;
1129	if (IS_SYNC(file_inode(filp)))
1130		return true;
1131
1132	return false;
1133}
1134
1135STATIC loff_t
1136xfs_file_remap_range(
1137	struct file		*file_in,
1138	loff_t			pos_in,
1139	struct file		*file_out,
1140	loff_t			pos_out,
1141	loff_t			len,
1142	unsigned int		remap_flags)
1143{
1144	struct inode		*inode_in = file_inode(file_in);
1145	struct xfs_inode	*src = XFS_I(inode_in);
1146	struct inode		*inode_out = file_inode(file_out);
1147	struct xfs_inode	*dest = XFS_I(inode_out);
1148	struct xfs_mount	*mp = src->i_mount;
1149	loff_t			remapped = 0;
1150	xfs_extlen_t		cowextsize;
1151	int			ret;
1152
1153	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1154		return -EINVAL;
1155
1156	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1157		return -EOPNOTSUPP;
1158
1159	if (XFS_FORCED_SHUTDOWN(mp))
1160		return -EIO;
1161
1162	/* Prepare and then clone file data. */
1163	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1164			&len, remap_flags);
1165	if (ret || len == 0)
1166		return ret;
1167
1168	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1169
1170	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1171			&remapped);
1172	if (ret)
1173		goto out_unlock;
1174
1175	/*
1176	 * Carry the cowextsize hint from src to dest if we're sharing the
1177	 * entire source file to the entire destination file, the source file
1178	 * has a cowextsize hint, and the destination file does not.
1179	 */
1180	cowextsize = 0;
1181	if (pos_in == 0 && len == i_size_read(inode_in) &&
1182	    (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1183	    pos_out == 0 && len >= i_size_read(inode_out) &&
1184	    !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1185		cowextsize = src->i_cowextsize;
1186
1187	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1188			remap_flags);
1189	if (ret)
1190		goto out_unlock;
1191
1192	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1193		xfs_log_force_inode(dest);
1194out_unlock:
1195	xfs_iunlock2_io_mmap(src, dest);
1196	if (ret)
1197		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1198	return remapped > 0 ? remapped : ret;
1199}
1200
1201STATIC int
1202xfs_file_open(
1203	struct inode	*inode,
1204	struct file	*file)
1205{
1206	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1207		return -EFBIG;
1208	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1209		return -EIO;
1210	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1211	return 0;
1212}
1213
1214STATIC int
1215xfs_dir_open(
1216	struct inode	*inode,
1217	struct file	*file)
1218{
1219	struct xfs_inode *ip = XFS_I(inode);
1220	int		mode;
1221	int		error;
1222
1223	error = xfs_file_open(inode, file);
1224	if (error)
1225		return error;
1226
1227	/*
1228	 * If there are any blocks, read-ahead block 0 as we're almost
1229	 * certain to have the next operation be a read there.
1230	 */
1231	mode = xfs_ilock_data_map_shared(ip);
1232	if (ip->i_df.if_nextents > 0)
1233		error = xfs_dir3_data_readahead(ip, 0, 0);
1234	xfs_iunlock(ip, mode);
1235	return error;
1236}
1237
1238STATIC int
1239xfs_file_release(
1240	struct inode	*inode,
1241	struct file	*filp)
1242{
1243	return xfs_release(XFS_I(inode));
1244}
1245
1246STATIC int
1247xfs_file_readdir(
1248	struct file	*file,
1249	struct dir_context *ctx)
 
1250{
1251	struct inode	*inode = file_inode(file);
1252	xfs_inode_t	*ip = XFS_I(inode);
 
1253	size_t		bufsize;
1254
1255	/*
1256	 * The Linux API doesn't pass down the total size of the buffer
1257	 * we read into down to the filesystem.  With the filldir concept
1258	 * it's not needed for correct information, but the XFS dir2 leaf
1259	 * code wants an estimate of the buffer size to calculate it's
1260	 * readahead window and size the buffers used for mapping to
1261	 * physical blocks.
1262	 *
1263	 * Try to give it an estimate that's good enough, maybe at some
1264	 * point we can change the ->readdir prototype to include the
1265	 * buffer size.  For now we use the current glibc buffer size.
1266	 */
1267	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1268
1269	return xfs_readdir(NULL, ip, ctx, bufsize);
 
 
 
 
1270}
1271
1272STATIC loff_t
1273xfs_file_llseek(
1274	struct file	*file,
1275	loff_t		offset,
1276	int		whence)
1277{
1278	struct inode		*inode = file->f_mapping->host;
 
1279
1280	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1281		return -EIO;
1282
1283	switch (whence) {
1284	default:
1285		return generic_file_llseek(file, offset, whence);
1286	case SEEK_HOLE:
1287		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1288		break;
1289	case SEEK_DATA:
1290		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1291		break;
1292	}
1293
1294	if (offset < 0)
1295		return offset;
1296	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1297}
1298
1299/*
1300 * Locking for serialisation of IO during page faults. This results in a lock
1301 * ordering of:
1302 *
1303 * mmap_lock (MM)
1304 *   sb_start_pagefault(vfs, freeze)
1305 *     i_mmaplock (XFS - truncate serialisation)
1306 *       page_lock (MM)
1307 *         i_lock (XFS - extent map serialisation)
1308 */
1309static vm_fault_t
1310__xfs_filemap_fault(
1311	struct vm_fault		*vmf,
1312	enum page_entry_size	pe_size,
1313	bool			write_fault)
1314{
1315	struct inode		*inode = file_inode(vmf->vma->vm_file);
1316	struct xfs_inode	*ip = XFS_I(inode);
1317	vm_fault_t		ret;
1318
1319	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1320
1321	if (write_fault) {
1322		sb_start_pagefault(inode->i_sb);
1323		file_update_time(vmf->vma->vm_file);
1324	}
1325
1326	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1327	if (IS_DAX(inode)) {
1328		pfn_t pfn;
1329
1330		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1331				(write_fault && !vmf->cow_page) ?
1332				 &xfs_direct_write_iomap_ops :
1333				 &xfs_read_iomap_ops);
1334		if (ret & VM_FAULT_NEEDDSYNC)
1335			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1336	} else {
1337		if (write_fault)
1338			ret = iomap_page_mkwrite(vmf,
1339					&xfs_buffered_write_iomap_ops);
1340		else
1341			ret = filemap_fault(vmf);
1342	}
1343	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1344
1345	if (write_fault)
1346		sb_end_pagefault(inode->i_sb);
1347	return ret;
1348}
1349
1350static inline bool
1351xfs_is_write_fault(
1352	struct vm_fault		*vmf)
1353{
1354	return (vmf->flags & FAULT_FLAG_WRITE) &&
1355	       (vmf->vma->vm_flags & VM_SHARED);
1356}
1357
1358static vm_fault_t
1359xfs_filemap_fault(
1360	struct vm_fault		*vmf)
1361{
1362	/* DAX can shortcut the normal fault path on write faults! */
1363	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1364			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1365			xfs_is_write_fault(vmf));
1366}
1367
1368static vm_fault_t
1369xfs_filemap_huge_fault(
1370	struct vm_fault		*vmf,
1371	enum page_entry_size	pe_size)
1372{
1373	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1374		return VM_FAULT_FALLBACK;
1375
1376	/* DAX can shortcut the normal fault path on write faults! */
1377	return __xfs_filemap_fault(vmf, pe_size,
1378			xfs_is_write_fault(vmf));
1379}
1380
1381static vm_fault_t
1382xfs_filemap_page_mkwrite(
1383	struct vm_fault		*vmf)
1384{
1385	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1386}
1387
1388/*
1389 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1390 * on write faults. In reality, it needs to serialise against truncate and
1391 * prepare memory for writing so handle is as standard write fault.
1392 */
1393static vm_fault_t
1394xfs_filemap_pfn_mkwrite(
1395	struct vm_fault		*vmf)
1396{
1397
1398	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1399}
1400
1401static vm_fault_t
1402xfs_filemap_map_pages(
1403	struct vm_fault		*vmf,
1404	pgoff_t			start_pgoff,
1405	pgoff_t			end_pgoff)
1406{
1407	struct inode		*inode = file_inode(vmf->vma->vm_file);
1408	vm_fault_t ret;
1409
1410	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1411	ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
1412	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1413	return ret;
1414}
1415
1416static const struct vm_operations_struct xfs_file_vm_ops = {
1417	.fault		= xfs_filemap_fault,
1418	.huge_fault	= xfs_filemap_huge_fault,
1419	.map_pages	= xfs_filemap_map_pages,
1420	.page_mkwrite	= xfs_filemap_page_mkwrite,
1421	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1422};
1423
1424STATIC int
1425xfs_file_mmap(
1426	struct file		*file,
1427	struct vm_area_struct	*vma)
1428{
1429	struct inode		*inode = file_inode(file);
1430	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1431
1432	/*
1433	 * We don't support synchronous mappings for non-DAX files and
1434	 * for DAX files if underneath dax_device is not synchronous.
1435	 */
1436	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1437		return -EOPNOTSUPP;
1438
1439	file_accessed(file);
1440	vma->vm_ops = &xfs_file_vm_ops;
1441	if (IS_DAX(inode))
1442		vma->vm_flags |= VM_HUGEPAGE;
1443	return 0;
1444}
1445
1446const struct file_operations xfs_file_operations = {
1447	.llseek		= xfs_file_llseek,
1448	.read_iter	= xfs_file_read_iter,
1449	.write_iter	= xfs_file_write_iter,
1450	.splice_read	= generic_file_splice_read,
1451	.splice_write	= iter_file_splice_write,
1452	.iopoll		= iomap_dio_iopoll,
 
1453	.unlocked_ioctl	= xfs_file_ioctl,
1454#ifdef CONFIG_COMPAT
1455	.compat_ioctl	= xfs_file_compat_ioctl,
1456#endif
1457	.mmap		= xfs_file_mmap,
1458	.mmap_supported_flags = MAP_SYNC,
1459	.open		= xfs_file_open,
1460	.release	= xfs_file_release,
1461	.fsync		= xfs_file_fsync,
1462	.get_unmapped_area = thp_get_unmapped_area,
1463	.fallocate	= xfs_file_fallocate,
1464	.fadvise	= xfs_file_fadvise,
1465	.remap_file_range = xfs_file_remap_range,
1466};
1467
1468const struct file_operations xfs_dir_file_operations = {
1469	.open		= xfs_dir_open,
1470	.read		= generic_read_dir,
1471	.iterate_shared	= xfs_file_readdir,
1472	.llseek		= generic_file_llseek,
1473	.unlocked_ioctl	= xfs_file_ioctl,
1474#ifdef CONFIG_COMPAT
1475	.compat_ioctl	= xfs_file_compat_ioctl,
1476#endif
1477	.fsync		= xfs_dir_fsync,
 
 
 
 
 
1478};