Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_bit.h"
  21#include "xfs_log.h"
  22#include "xfs_inum.h"
  23#include "xfs_sb.h"
  24#include "xfs_ag.h"
  25#include "xfs_trans.h"
  26#include "xfs_mount.h"
  27#include "xfs_bmap_btree.h"
  28#include "xfs_alloc.h"
  29#include "xfs_dinode.h"
  30#include "xfs_inode.h"
 
  31#include "xfs_inode_item.h"
  32#include "xfs_bmap.h"
 
  33#include "xfs_error.h"
  34#include "xfs_vnodeops.h"
  35#include "xfs_da_btree.h"
  36#include "xfs_ioctl.h"
  37#include "xfs_trace.h"
 
 
 
  38
  39#include <linux/dcache.h>
  40#include <linux/falloc.h>
 
 
  41
  42static const struct vm_operations_struct xfs_file_vm_ops;
  43
  44/*
  45 * Locking primitives for read and write IO paths to ensure we consistently use
  46 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
  47 */
  48static inline void
  49xfs_rw_ilock(
  50	struct xfs_inode	*ip,
  51	int			type)
  52{
  53	if (type & XFS_IOLOCK_EXCL)
  54		mutex_lock(&VFS_I(ip)->i_mutex);
  55	xfs_ilock(ip, type);
  56}
  57
  58static inline void
  59xfs_rw_iunlock(
  60	struct xfs_inode	*ip,
  61	int			type)
  62{
  63	xfs_iunlock(ip, type);
  64	if (type & XFS_IOLOCK_EXCL)
  65		mutex_unlock(&VFS_I(ip)->i_mutex);
  66}
  67
  68static inline void
  69xfs_rw_ilock_demote(
  70	struct xfs_inode	*ip,
  71	int			type)
  72{
  73	xfs_ilock_demote(ip, type);
  74	if (type & XFS_IOLOCK_EXCL)
  75		mutex_unlock(&VFS_I(ip)->i_mutex);
  76}
  77
  78/*
  79 *	xfs_iozero
 
 
 
 
  80 *
  81 *	xfs_iozero clears the specified range of buffer supplied,
  82 *	and marks all the affected blocks as valid and modified.  If
  83 *	an affected block is not allocated, it will be allocated.  If
  84 *	an affected block is not completely overwritten, and is not
  85 *	valid before the operation, it will be read from disk before
  86 *	being partially zeroed.
  87 */
  88STATIC int
  89xfs_iozero(
  90	struct xfs_inode	*ip,	/* inode			*/
  91	loff_t			pos,	/* offset in file		*/
  92	size_t			count)	/* size of data to zero		*/
  93{
  94	struct page		*page;
  95	struct address_space	*mapping;
  96	int			status;
 
  97
  98	mapping = VFS_I(ip)->i_mapping;
  99	do {
 100		unsigned offset, bytes;
 101		void *fsdata;
 102
 103		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
 104		bytes = PAGE_CACHE_SIZE - offset;
 105		if (bytes > count)
 106			bytes = count;
 107
 108		status = pagecache_write_begin(NULL, mapping, pos, bytes,
 109					AOP_FLAG_UNINTERRUPTIBLE,
 110					&page, &fsdata);
 111		if (status)
 112			break;
 113
 114		zero_user(page, offset, bytes);
 115
 116		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
 117					page, fsdata);
 118		WARN_ON(status <= 0); /* can't return less than zero! */
 
 
 
 
 
 
 
 
 119		pos += bytes;
 120		count -= bytes;
 121		status = 0;
 122	} while (count);
 123
 124	return (-status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125}
 126
 127STATIC int
 128xfs_file_fsync(
 129	struct file		*file,
 130	loff_t			start,
 131	loff_t			end,
 132	int			datasync)
 133{
 134	struct inode		*inode = file->f_mapping->host;
 135	struct xfs_inode	*ip = XFS_I(inode);
 136	struct xfs_mount	*mp = ip->i_mount;
 137	struct xfs_trans	*tp;
 138	int			error = 0;
 139	int			log_flushed = 0;
 
 140
 141	trace_xfs_file_fsync(ip);
 142
 143	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
 144	if (error)
 145		return error;
 146
 147	if (XFS_FORCED_SHUTDOWN(mp))
 148		return -XFS_ERROR(EIO);
 149
 150	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 151
 152	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 153	xfs_ioend_wait(ip);
 154	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 155
 156	if (mp->m_flags & XFS_MOUNT_BARRIER) {
 157		/*
 158		 * If we have an RT and/or log subvolume we need to make sure
 159		 * to flush the write cache the device used for file data
 160		 * first.  This is to ensure newly written file data make
 161		 * it to disk before logging the new inode size in case of
 162		 * an extending write.
 163		 */
 164		if (XFS_IS_REALTIME_INODE(ip))
 165			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 166		else if (mp->m_logdev_targp != mp->m_ddev_targp)
 167			xfs_blkdev_issue_flush(mp->m_ddev_targp);
 168	}
 169
 170	/*
 171	 * We always need to make sure that the required inode state is safe on
 172	 * disk.  The inode might be clean but we still might need to force the
 173	 * log because of committed transactions that haven't hit the disk yet.
 174	 * Likewise, there could be unflushed non-transactional changes to the
 175	 * inode core that have to go to disk and this requires us to issue
 176	 * a synchronous transaction to capture these changes correctly.
 177	 *
 178	 * This code relies on the assumption that if the i_update_core field
 179	 * of the inode is clear and the inode is unpinned then it is clean
 180	 * and no action is required.
 
 181	 */
 182	xfs_ilock(ip, XFS_ILOCK_SHARED);
 
 
 
 
 
 183
 184	/*
 185	 * First check if the VFS inode is marked dirty.  All the dirtying
 186	 * of non-transactional updates no goes through mark_inode_dirty*,
 187	 * which allows us to distinguish beteeen pure timestamp updates
 188	 * and i_size updates which need to be caught for fdatasync.
 189	 * After that also theck for the dirty state in the XFS inode, which
 190	 * might gets cleared when the inode gets written out via the AIL
 191	 * or xfs_iflush_cluster.
 192	 */
 193	if (((inode->i_state & I_DIRTY_DATASYNC) ||
 194	    ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
 195	    ip->i_update_core) {
 196		/*
 197		 * Kick off a transaction to log the inode core to get the
 198		 * updates.  The sync transaction will also force the log.
 199		 */
 200		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 201		tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
 202		error = xfs_trans_reserve(tp, 0,
 203				XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
 204		if (error) {
 205			xfs_trans_cancel(tp, 0);
 206			return -error;
 207		}
 208		xfs_ilock(ip, XFS_ILOCK_EXCL);
 209
 210		/*
 211		 * Note - it's possible that we might have pushed ourselves out
 212		 * of the way during trans_reserve which would flush the inode.
 213		 * But there's no guarantee that the inode buffer has actually
 214		 * gone out yet (it's delwri).	Plus the buffer could be pinned
 215		 * anyway if it's part of an inode in another recent
 216		 * transaction.	 So we play it safe and fire off the
 217		 * transaction anyway.
 218		 */
 219		xfs_trans_ijoin(tp, ip);
 220		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 221		xfs_trans_set_sync(tp);
 222		error = _xfs_trans_commit(tp, 0, &log_flushed);
 223
 224		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 225	} else {
 226		/*
 227		 * Timestamps/size haven't changed since last inode flush or
 228		 * inode transaction commit.  That means either nothing got
 229		 * written or a transaction committed which caught the updates.
 230		 * If the latter happened and the transaction hasn't hit the
 231		 * disk yet, the inode will be still be pinned.  If it is,
 232		 * force the log.
 233		 */
 234		if (xfs_ipincount(ip)) {
 235			error = _xfs_log_force_lsn(mp,
 236					ip->i_itemp->ili_last_lsn,
 237					XFS_LOG_SYNC, &log_flushed);
 238		}
 239		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 240	}
 
 241
 242	/*
 243	 * If we only have a single device, and the log force about was
 244	 * a no-op we might have to flush the data device cache here.
 245	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 246	 * an already allocated file and thus do not have any metadata to
 247	 * commit.
 248	 */
 249	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
 250	    mp->m_logdev_targp == mp->m_ddev_targp &&
 251	    !XFS_IS_REALTIME_INODE(ip) &&
 252	    !log_flushed)
 253		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 254
 255	return -error;
 256}
 257
 258STATIC ssize_t
 259xfs_file_aio_read(
 260	struct kiocb		*iocb,
 261	const struct iovec	*iovp,
 262	unsigned long		nr_segs,
 263	loff_t			pos)
 264{
 265	struct file		*file = iocb->ki_filp;
 266	struct inode		*inode = file->f_mapping->host;
 267	struct xfs_inode	*ip = XFS_I(inode);
 268	struct xfs_mount	*mp = ip->i_mount;
 269	size_t			size = 0;
 270	ssize_t			ret = 0;
 271	int			ioflags = 0;
 272	xfs_fsize_t		n;
 273	unsigned long		seg;
 274
 275	XFS_STATS_INC(xs_read_calls);
 276
 277	BUG_ON(iocb->ki_pos != pos);
 278
 279	if (unlikely(file->f_flags & O_DIRECT))
 280		ioflags |= IO_ISDIRECT;
 281	if (file->f_mode & FMODE_NOCMTIME)
 282		ioflags |= IO_INVIS;
 283
 284	/* START copy & waste from filemap.c */
 285	for (seg = 0; seg < nr_segs; seg++) {
 286		const struct iovec *iv = &iovp[seg];
 287
 288		/*
 289		 * If any segment has a negative length, or the cumulative
 290		 * length ever wraps negative then return -EINVAL.
 291		 */
 292		size += iv->iov_len;
 293		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
 294			return XFS_ERROR(-EINVAL);
 295	}
 296	/* END copy & waste from filemap.c */
 297
 298	if (unlikely(ioflags & IO_ISDIRECT)) {
 299		xfs_buftarg_t	*target =
 300			XFS_IS_REALTIME_INODE(ip) ?
 301				mp->m_rtdev_targp : mp->m_ddev_targp;
 302		if ((iocb->ki_pos & target->bt_smask) ||
 303		    (size & target->bt_smask)) {
 304			if (iocb->ki_pos == ip->i_size)
 305				return 0;
 306			return -XFS_ERROR(EINVAL);
 307		}
 308	}
 309
 310	n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
 311	if (n <= 0 || size == 0)
 312		return 0;
 313
 314	if (n < size)
 315		size = n;
 316
 317	if (XFS_FORCED_SHUTDOWN(mp))
 318		return -EIO;
 319
 320	if (unlikely(ioflags & IO_ISDIRECT)) {
 
 
 
 
 
 
 
 
 
 
 
 
 321		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
 322
 
 
 
 
 
 
 
 
 
 
 
 323		if (inode->i_mapping->nrpages) {
 324			ret = -xfs_flushinval_pages(ip,
 325					(iocb->ki_pos & PAGE_CACHE_MASK),
 326					-1, FI_REMAPF_LOCKED);
 327			if (ret) {
 328				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
 329				return ret;
 330			}
 
 
 
 
 
 
 
 
 
 331		}
 332		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 333	} else
 334		xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 335
 336	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
 337
 338	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
 339	if (ret > 0)
 340		XFS_STATS_ADD(xs_read_bytes, ret);
 341
 342	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 343	return ret;
 344}
 345
 346STATIC ssize_t
 347xfs_file_splice_read(
 348	struct file		*infilp,
 349	loff_t			*ppos,
 350	struct pipe_inode_info	*pipe,
 351	size_t			count,
 352	unsigned int		flags)
 353{
 354	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
 355	int			ioflags = 0;
 356	ssize_t			ret;
 357
 358	XFS_STATS_INC(xs_read_calls);
 359
 360	if (infilp->f_mode & FMODE_NOCMTIME)
 361		ioflags |= IO_INVIS;
 362
 363	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 364		return -EIO;
 365
 366	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 367
 368	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
 369
 370	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
 371	if (ret > 0)
 372		XFS_STATS_ADD(xs_read_bytes, ret);
 
 
 
 
 
 
 
 
 373
 
 
 374	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 
 
 
 375	return ret;
 376}
 377
 378STATIC void
 379xfs_aio_write_isize_update(
 380	struct inode	*inode,
 381	loff_t		*ppos,
 382	ssize_t		bytes_written)
 383{
 384	struct xfs_inode	*ip = XFS_I(inode);
 385	xfs_fsize_t		isize = i_size_read(inode);
 386
 387	if (bytes_written > 0)
 388		XFS_STATS_ADD(xs_write_bytes, bytes_written);
 389
 390	if (unlikely(bytes_written < 0 && bytes_written != -EFAULT &&
 391					*ppos > isize))
 392		*ppos = isize;
 393
 394	if (*ppos > ip->i_size) {
 395		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
 396		if (*ppos > ip->i_size)
 397			ip->i_size = *ppos;
 398		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
 399	}
 400}
 401
 402/*
 403 * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
 404 * part of the I/O may have been written to disk before the error occurred.  In
 405 * this case the on-disk file size may have been adjusted beyond the in-memory
 406 * file size and now needs to be truncated back.
 407 */
 408STATIC void
 409xfs_aio_write_newsize_update(
 410	struct xfs_inode	*ip)
 411{
 412	if (ip->i_new_size) {
 413		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
 414		ip->i_new_size = 0;
 415		if (ip->i_d.di_size > ip->i_size)
 416			ip->i_d.di_size = ip->i_size;
 417		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
 418	}
 419}
 420
 421/*
 422 * xfs_file_splice_write() does not use xfs_rw_ilock() because
 423 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
 424 * couuld cause lock inversions between the aio_write path and the splice path
 425 * if someone is doing concurrent splice(2) based writes and write(2) based
 426 * writes to the same inode. The only real way to fix this is to re-implement
 427 * the generic code here with correct locking orders.
 428 */
 429STATIC ssize_t
 430xfs_file_splice_write(
 431	struct pipe_inode_info	*pipe,
 432	struct file		*outfilp,
 433	loff_t			*ppos,
 434	size_t			count,
 435	unsigned int		flags)
 436{
 437	struct inode		*inode = outfilp->f_mapping->host;
 438	struct xfs_inode	*ip = XFS_I(inode);
 439	xfs_fsize_t		new_size;
 440	int			ioflags = 0;
 441	ssize_t			ret;
 442
 443	XFS_STATS_INC(xs_write_calls);
 444
 445	if (outfilp->f_mode & FMODE_NOCMTIME)
 446		ioflags |= IO_INVIS;
 447
 448	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 449		return -EIO;
 450
 451	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 452
 453	new_size = *ppos + count;
 454
 455	xfs_ilock(ip, XFS_ILOCK_EXCL);
 456	if (new_size > ip->i_size)
 457		ip->i_new_size = new_size;
 458	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 459
 460	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
 461
 462	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
 463
 464	xfs_aio_write_isize_update(inode, ppos, ret);
 465	xfs_aio_write_newsize_update(ip);
 466	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 467	return ret;
 468}
 469
 470/*
 471 * This routine is called to handle zeroing any space in the last
 472 * block of the file that is beyond the EOF.  We do this since the
 473 * size is being increased without writing anything to that block
 474 * and we don't want anyone to read the garbage on the disk.
 475 */
 476STATIC int				/* error (positive) */
 477xfs_zero_last_block(
 478	xfs_inode_t	*ip,
 479	xfs_fsize_t	offset,
 480	xfs_fsize_t	isize)
 481{
 482	xfs_fileoff_t	last_fsb;
 483	xfs_mount_t	*mp = ip->i_mount;
 484	int		nimaps;
 485	int		zero_offset;
 486	int		zero_len;
 487	int		error = 0;
 488	xfs_bmbt_irec_t	imap;
 489
 490	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 491
 492	zero_offset = XFS_B_FSB_OFFSET(mp, isize);
 493	if (zero_offset == 0) {
 494		/*
 495		 * There are no extra bytes in the last block on disk to
 496		 * zero, so return.
 497		 */
 498		return 0;
 499	}
 500
 501	last_fsb = XFS_B_TO_FSBT(mp, isize);
 502	nimaps = 1;
 503	error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
 504			  &nimaps, NULL);
 505	if (error) {
 506		return error;
 507	}
 508	ASSERT(nimaps > 0);
 
 509	/*
 510	 * If the block underlying isize is just a hole, then there
 511	 * is nothing to zero.
 512	 */
 513	if (imap.br_startblock == HOLESTARTBLOCK) {
 514		return 0;
 515	}
 516	/*
 517	 * Zero the part of the last block beyond the EOF, and write it
 518	 * out sync.  We need to drop the ilock while we do this so we
 519	 * don't deadlock when the buffer cache calls back to us.
 520	 */
 521	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 522
 523	zero_len = mp->m_sb.sb_blocksize - zero_offset;
 524	if (isize + zero_len > offset)
 525		zero_len = offset - isize;
 526	error = xfs_iozero(ip, isize, zero_len);
 527
 528	xfs_ilock(ip, XFS_ILOCK_EXCL);
 529	ASSERT(error >= 0);
 530	return error;
 531}
 532
 533/*
 534 * Zero any on disk space between the current EOF and the new,
 535 * larger EOF.  This handles the normal case of zeroing the remainder
 536 * of the last block in the file and the unusual case of zeroing blocks
 537 * out beyond the size of the file.  This second case only happens
 538 * with fixed size extents and when the system crashes before the inode
 539 * size was updated but after blocks were allocated.  If fill is set,
 540 * then any holes in the range are filled and zeroed.  If not, the holes
 541 * are left alone as holes.
 
 542 */
 543
 544int					/* error (positive) */
 545xfs_zero_eof(
 546	xfs_inode_t	*ip,
 547	xfs_off_t	offset,		/* starting I/O offset */
 548	xfs_fsize_t	isize)		/* current inode size */
 549{
 550	xfs_mount_t	*mp = ip->i_mount;
 551	xfs_fileoff_t	start_zero_fsb;
 552	xfs_fileoff_t	end_zero_fsb;
 553	xfs_fileoff_t	zero_count_fsb;
 554	xfs_fileoff_t	last_fsb;
 555	xfs_fileoff_t	zero_off;
 556	xfs_fsize_t	zero_len;
 557	int		nimaps;
 558	int		error = 0;
 559	xfs_bmbt_irec_t	imap;
 
 560
 561	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 562	ASSERT(offset > isize);
 563
 
 
 564	/*
 565	 * First handle zeroing the block on which isize resides.
 
 566	 * We only zero a part of that block so it is handled specially.
 567	 */
 568	error = xfs_zero_last_block(ip, offset, isize);
 569	if (error) {
 570		ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 571		return error;
 572	}
 573
 574	/*
 575	 * Calculate the range between the new size and the old
 576	 * where blocks needing to be zeroed may exist.  To get the
 577	 * block where the last byte in the file currently resides,
 578	 * we need to subtract one from the size and truncate back
 579	 * to a block boundary.  We subtract 1 in case the size is
 580	 * exactly on a block boundary.
 
 581	 */
 582	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
 583	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
 584	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
 585	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
 586	if (last_fsb == end_zero_fsb) {
 587		/*
 588		 * The size was only incremented on its last block.
 589		 * We took care of that above, so just return.
 590		 */
 591		return 0;
 592	}
 593
 594	ASSERT(start_zero_fsb <= end_zero_fsb);
 595	while (start_zero_fsb <= end_zero_fsb) {
 596		nimaps = 1;
 597		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
 598		error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
 599				  0, NULL, 0, &imap, &nimaps, NULL);
 600		if (error) {
 601			ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 
 
 602			return error;
 603		}
 604		ASSERT(nimaps > 0);
 605
 606		if (imap.br_state == XFS_EXT_UNWRITTEN ||
 607		    imap.br_startblock == HOLESTARTBLOCK) {
 608			/*
 609			 * This loop handles initializing pages that were
 610			 * partially initialized by the code below this
 611			 * loop. It basically zeroes the part of the page
 612			 * that sits on a hole and sets the page as P_HOLE
 613			 * and calls remapf if it is a mapped file.
 614			 */
 615			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 616			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 617			continue;
 618		}
 619
 620		/*
 621		 * There are blocks we need to zero.
 622		 * Drop the inode lock while we're doing the I/O.
 623		 * We'll still have the iolock to protect us.
 624		 */
 625		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 626
 627		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
 628		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
 629
 630		if ((zero_off + zero_len) > offset)
 631			zero_len = offset - zero_off;
 632
 633		error = xfs_iozero(ip, zero_off, zero_len);
 634		if (error) {
 635			goto out_lock;
 636		}
 637
 
 638		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 639		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 640
 641		xfs_ilock(ip, XFS_ILOCK_EXCL);
 642	}
 643
 644	return 0;
 645
 646out_lock:
 647	xfs_ilock(ip, XFS_ILOCK_EXCL);
 648	ASSERT(error >= 0);
 649	return error;
 650}
 651
 652/*
 653 * Common pre-write limit and setup checks.
 654 *
 655 * Returns with iolock held according to @iolock.
 
 
 656 */
 657STATIC ssize_t
 658xfs_file_aio_write_checks(
 659	struct file		*file,
 660	loff_t			*pos,
 661	size_t			*count,
 662	int			*iolock)
 663{
 
 664	struct inode		*inode = file->f_mapping->host;
 665	struct xfs_inode	*ip = XFS_I(inode);
 666	xfs_fsize_t		new_size;
 667	int			error = 0;
 668
 669	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
 670	if (error) {
 671		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
 672		*iolock = 0;
 673		return error;
 674	}
 675
 676	new_size = *pos + *count;
 677	if (new_size > ip->i_size)
 678		ip->i_new_size = new_size;
 679
 680	if (likely(!(file->f_mode & FMODE_NOCMTIME)))
 681		file_update_time(file);
 682
 
 
 
 
 
 
 
 683	/*
 684	 * If the offset is beyond the size of the file, we need to zero any
 685	 * blocks that fall between the existing EOF and the start of this
 686	 * write.
 
 
 
 
 
 
 
 
 
 
 687	 */
 688	if (*pos > ip->i_size)
 689		error = -xfs_zero_eof(ip, *pos, ip->i_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690
 691	xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
 692	if (error)
 693		return error;
 
 
 
 
 
 
 
 
 694
 695	/*
 696	 * If we're writing the file then make sure to clear the setuid and
 697	 * setgid bits if the process is not being run by root.  This keeps
 698	 * people from modifying setuid and setgid binaries.
 699	 */
 700	return file_remove_suid(file);
 701
 
 702}
 703
 704/*
 705 * xfs_file_dio_aio_write - handle direct IO writes
 706 *
 707 * Lock the inode appropriately to prepare for and issue a direct IO write.
 708 * By separating it from the buffered write path we remove all the tricky to
 709 * follow locking changes and looping.
 710 *
 711 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 712 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 713 * pages are flushed out.
 714 *
 715 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 716 * allowing them to be done in parallel with reads and other direct IO writes.
 717 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 718 * needs to do sub-block zeroing and that requires serialisation against other
 719 * direct IOs to the same block. In this case we need to serialise the
 720 * submission of the unaligned IOs so that we don't get racing block zeroing in
 721 * the dio layer.  To avoid the problem with aio, we also need to wait for
 722 * outstanding IOs to complete so that unwritten extent conversion is completed
 723 * before we try to map the overlapping block. This is currently implemented by
 724 * hitting it with a big hammer (i.e. xfs_ioend_wait()).
 725 *
 726 * Returns with locks held indicated by @iolock and errors indicated by
 727 * negative return values.
 728 */
 729STATIC ssize_t
 730xfs_file_dio_aio_write(
 731	struct kiocb		*iocb,
 732	const struct iovec	*iovp,
 733	unsigned long		nr_segs,
 734	loff_t			pos,
 735	size_t			ocount,
 736	int			*iolock)
 737{
 738	struct file		*file = iocb->ki_filp;
 739	struct address_space	*mapping = file->f_mapping;
 740	struct inode		*inode = mapping->host;
 741	struct xfs_inode	*ip = XFS_I(inode);
 742	struct xfs_mount	*mp = ip->i_mount;
 743	ssize_t			ret = 0;
 744	size_t			count = ocount;
 745	int			unaligned_io = 0;
 
 
 
 
 
 746	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
 747					mp->m_rtdev_targp : mp->m_ddev_targp;
 748
 749	*iolock = 0;
 750	if ((pos & target->bt_smask) || (count & target->bt_smask))
 751		return -XFS_ERROR(EINVAL);
 752
 
 753	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
 754		unaligned_io = 1;
 755
 756	if (unaligned_io || mapping->nrpages || pos > ip->i_size)
 757		*iolock = XFS_IOLOCK_EXCL;
 
 
 
 
 
 
 
 758	else
 759		*iolock = XFS_IOLOCK_SHARED;
 760	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
 
 
 
 
 
 
 
 
 
 
 
 761
 762	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
 763	if (ret)
 764		return ret;
 
 
 
 765
 
 
 
 766	if (mapping->nrpages) {
 767		WARN_ON(*iolock != XFS_IOLOCK_EXCL);
 768		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
 769							FI_REMAPF_LOCKED);
 770		if (ret)
 771			return ret;
 
 
 
 
 
 
 
 
 772	}
 773
 774	/*
 775	 * If we are doing unaligned IO, wait for all other IO to drain,
 776	 * otherwise demote the lock if we had to flush cached pages
 777	 */
 778	if (unaligned_io)
 779		xfs_ioend_wait(ip);
 780	else if (*iolock == XFS_IOLOCK_EXCL) {
 781		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 782		*iolock = XFS_IOLOCK_SHARED;
 783	}
 784
 785	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
 786	ret = generic_file_direct_write(iocb, iovp,
 787			&nr_segs, pos, &iocb->ki_pos, count, ocount);
 788
 789	/* No fallback to buffered IO on errors for XFS. */
 790	ASSERT(ret < 0 || ret == count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791	return ret;
 792}
 793
 794STATIC ssize_t
 795xfs_file_buffered_aio_write(
 796	struct kiocb		*iocb,
 797	const struct iovec	*iovp,
 798	unsigned long		nr_segs,
 799	loff_t			pos,
 800	size_t			ocount,
 801	int			*iolock)
 802{
 803	struct file		*file = iocb->ki_filp;
 804	struct address_space	*mapping = file->f_mapping;
 805	struct inode		*inode = mapping->host;
 806	struct xfs_inode	*ip = XFS_I(inode);
 807	ssize_t			ret;
 808	int			enospc = 0;
 809	size_t			count = ocount;
 810
 811	*iolock = XFS_IOLOCK_EXCL;
 812	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
 813
 814	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
 815	if (ret)
 816		return ret;
 817
 818	/* We can write back this queue in page reclaim */
 819	current->backing_dev_info = mapping->backing_dev_info;
 820
 821write_retry:
 822	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
 823	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
 824			pos, &iocb->ki_pos, count, ret);
 
 
 
 825	/*
 826	 * if we just got an ENOSPC, flush the inode now we aren't holding any
 827	 * page locks and retry *once*
 
 
 
 
 
 828	 */
 829	if (ret == -ENOSPC && !enospc) {
 830		ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
 831		if (ret)
 832			return ret;
 
 
 
 833		enospc = 1;
 
 
 
 
 834		goto write_retry;
 835	}
 
 836	current->backing_dev_info = NULL;
 
 
 837	return ret;
 838}
 839
 840STATIC ssize_t
 841xfs_file_aio_write(
 842	struct kiocb		*iocb,
 843	const struct iovec	*iovp,
 844	unsigned long		nr_segs,
 845	loff_t			pos)
 846{
 847	struct file		*file = iocb->ki_filp;
 848	struct address_space	*mapping = file->f_mapping;
 849	struct inode		*inode = mapping->host;
 850	struct xfs_inode	*ip = XFS_I(inode);
 851	ssize_t			ret;
 852	int			iolock;
 853	size_t			ocount = 0;
 854
 855	XFS_STATS_INC(xs_write_calls);
 856
 857	BUG_ON(iocb->ki_pos != pos);
 858
 859	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
 860	if (ret)
 861		return ret;
 862
 863	if (ocount == 0)
 864		return 0;
 865
 866	xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
 867
 868	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 869		return -EIO;
 870
 871	if (unlikely(file->f_flags & O_DIRECT))
 872		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos,
 873						ocount, &iolock);
 874	else
 875		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
 876						ocount, &iolock);
 877
 878	xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret);
 879
 880	if (ret <= 0)
 881		goto out_unlock;
 882
 883	/* Handle various SYNC-type writes */
 884	if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
 885		loff_t end = pos + ret - 1;
 886		int error;
 887
 888		xfs_rw_iunlock(ip, iolock);
 889		error = xfs_file_fsync(file, pos, end,
 890				      (file->f_flags & __O_SYNC) ? 0 : 1);
 891		xfs_rw_ilock(ip, iolock);
 892		if (error)
 893			ret = error;
 894	}
 895
 896out_unlock:
 897	xfs_aio_write_newsize_update(ip);
 898	xfs_rw_iunlock(ip, iolock);
 899	return ret;
 900}
 901
 
 
 
 
 
 902STATIC long
 903xfs_file_fallocate(
 904	struct file	*file,
 905	int		mode,
 906	loff_t		offset,
 907	loff_t		len)
 908{
 909	struct inode	*inode = file->f_path.dentry->d_inode;
 910	long		error;
 911	loff_t		new_size = 0;
 912	xfs_flock64_t	bf;
 913	xfs_inode_t	*ip = XFS_I(inode);
 914	int		cmd = XFS_IOC_RESVSP;
 915	int		attr_flags = XFS_ATTR_NOLOCK;
 916
 917	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 
 
 918		return -EOPNOTSUPP;
 919
 920	bf.l_whence = 0;
 921	bf.l_start = offset;
 922	bf.l_len = len;
 923
 924	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 925
 926	if (mode & FALLOC_FL_PUNCH_HOLE)
 927		cmd = XFS_IOC_UNRESVSP;
 928
 929	/* check the new inode size is valid before allocating */
 930	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 931	    offset + len > i_size_read(inode)) {
 932		new_size = offset + len;
 933		error = inode_newsize_ok(inode, new_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934		if (error)
 935			goto out_unlock;
 936	}
 937
 938	if (file->f_flags & O_DSYNC)
 939		attr_flags |= XFS_ATTR_SYNC;
 940
 941	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
 942	if (error)
 943		goto out_unlock;
 944
 945	/* Change file size if needed */
 946	if (new_size) {
 947		struct iattr iattr;
 948
 949		iattr.ia_valid = ATTR_SIZE;
 950		iattr.ia_size = new_size;
 951		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
 
 
 952	}
 953
 
 
 
 
 
 
 
 
 
 954out_unlock:
 955	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 956	return error;
 957}
 958
 959
 960STATIC int
 961xfs_file_open(
 962	struct inode	*inode,
 963	struct file	*file)
 964{
 965	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 966		return -EFBIG;
 967	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 968		return -EIO;
 969	return 0;
 970}
 971
 972STATIC int
 973xfs_dir_open(
 974	struct inode	*inode,
 975	struct file	*file)
 976{
 977	struct xfs_inode *ip = XFS_I(inode);
 978	int		mode;
 979	int		error;
 980
 981	error = xfs_file_open(inode, file);
 982	if (error)
 983		return error;
 984
 985	/*
 986	 * If there are any blocks, read-ahead block 0 as we're almost
 987	 * certain to have the next operation be a read there.
 988	 */
 989	mode = xfs_ilock_map_shared(ip);
 990	if (ip->i_d.di_nextents > 0)
 991		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
 992	xfs_iunlock(ip, mode);
 993	return 0;
 994}
 995
 996STATIC int
 997xfs_file_release(
 998	struct inode	*inode,
 999	struct file	*filp)
1000{
1001	return -xfs_release(XFS_I(inode));
1002}
1003
1004STATIC int
1005xfs_file_readdir(
1006	struct file	*filp,
1007	void		*dirent,
1008	filldir_t	filldir)
1009{
1010	struct inode	*inode = filp->f_path.dentry->d_inode;
1011	xfs_inode_t	*ip = XFS_I(inode);
1012	int		error;
1013	size_t		bufsize;
1014
1015	/*
1016	 * The Linux API doesn't pass down the total size of the buffer
1017	 * we read into down to the filesystem.  With the filldir concept
1018	 * it's not needed for correct information, but the XFS dir2 leaf
1019	 * code wants an estimate of the buffer size to calculate it's
1020	 * readahead window and size the buffers used for mapping to
1021	 * physical blocks.
1022	 *
1023	 * Try to give it an estimate that's good enough, maybe at some
1024	 * point we can change the ->readdir prototype to include the
1025	 * buffer size.  For now we use the current glibc buffer size.
1026	 */
1027	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1028
1029	error = xfs_readdir(ip, dirent, bufsize,
1030				(xfs_off_t *)&filp->f_pos, filldir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031	if (error)
1032		return -error;
1033	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034}
1035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036STATIC int
1037xfs_file_mmap(
1038	struct file	*filp,
1039	struct vm_area_struct *vma)
1040{
1041	vma->vm_ops = &xfs_file_vm_ops;
1042	vma->vm_flags |= VM_CAN_NONLINEAR;
1043
1044	file_accessed(filp);
1045	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046}
1047
1048/*
1049 * mmap()d file has taken write protection fault and is being made
1050 * writable. We can set the page state up correctly for a writable
1051 * page, which means we can do correct delalloc accounting (ENOSPC
1052 * checking!) and unwritten extent mapping.
 
1053 */
1054STATIC int
1055xfs_vm_page_mkwrite(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1056	struct vm_area_struct	*vma,
1057	struct vm_fault		*vmf)
1058{
1059	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060}
1061
1062const struct file_operations xfs_file_operations = {
1063	.llseek		= generic_file_llseek,
1064	.read		= do_sync_read,
1065	.write		= do_sync_write,
1066	.aio_read	= xfs_file_aio_read,
1067	.aio_write	= xfs_file_aio_write,
1068	.splice_read	= xfs_file_splice_read,
1069	.splice_write	= xfs_file_splice_write,
1070	.unlocked_ioctl	= xfs_file_ioctl,
1071#ifdef CONFIG_COMPAT
1072	.compat_ioctl	= xfs_file_compat_ioctl,
1073#endif
1074	.mmap		= xfs_file_mmap,
1075	.open		= xfs_file_open,
1076	.release	= xfs_file_release,
1077	.fsync		= xfs_file_fsync,
1078	.fallocate	= xfs_file_fallocate,
1079};
1080
1081const struct file_operations xfs_dir_file_operations = {
1082	.open		= xfs_dir_open,
1083	.read		= generic_read_dir,
1084	.readdir	= xfs_file_readdir,
1085	.llseek		= generic_file_llseek,
1086	.unlocked_ioctl	= xfs_file_ioctl,
1087#ifdef CONFIG_COMPAT
1088	.compat_ioctl	= xfs_file_compat_ioctl,
1089#endif
1090	.fsync		= xfs_file_fsync,
1091};
1092
1093static const struct vm_operations_struct xfs_file_vm_ops = {
1094	.fault		= filemap_fault,
1095	.page_mkwrite	= xfs_vm_page_mkwrite,
1096};
v4.6
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
 
 
  24#include "xfs_mount.h"
  25#include "xfs_da_format.h"
  26#include "xfs_da_btree.h"
 
  27#include "xfs_inode.h"
  28#include "xfs_trans.h"
  29#include "xfs_inode_item.h"
  30#include "xfs_bmap.h"
  31#include "xfs_bmap_util.h"
  32#include "xfs_error.h"
  33#include "xfs_dir2.h"
  34#include "xfs_dir2_priv.h"
  35#include "xfs_ioctl.h"
  36#include "xfs_trace.h"
  37#include "xfs_log.h"
  38#include "xfs_icache.h"
  39#include "xfs_pnfs.h"
  40
  41#include <linux/dcache.h>
  42#include <linux/falloc.h>
  43#include <linux/pagevec.h>
  44#include <linux/backing-dev.h>
  45
  46static const struct vm_operations_struct xfs_file_vm_ops;
  47
  48/*
  49 * Locking primitives for read and write IO paths to ensure we consistently use
  50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
  51 */
  52static inline void
  53xfs_rw_ilock(
  54	struct xfs_inode	*ip,
  55	int			type)
  56{
  57	if (type & XFS_IOLOCK_EXCL)
  58		inode_lock(VFS_I(ip));
  59	xfs_ilock(ip, type);
  60}
  61
  62static inline void
  63xfs_rw_iunlock(
  64	struct xfs_inode	*ip,
  65	int			type)
  66{
  67	xfs_iunlock(ip, type);
  68	if (type & XFS_IOLOCK_EXCL)
  69		inode_unlock(VFS_I(ip));
  70}
  71
  72static inline void
  73xfs_rw_ilock_demote(
  74	struct xfs_inode	*ip,
  75	int			type)
  76{
  77	xfs_ilock_demote(ip, type);
  78	if (type & XFS_IOLOCK_EXCL)
  79		inode_unlock(VFS_I(ip));
  80}
  81
  82/*
  83 * xfs_iozero clears the specified range supplied via the page cache (except in
  84 * the DAX case). Writes through the page cache will allocate blocks over holes,
  85 * though the callers usually map the holes first and avoid them. If a block is
  86 * not completely zeroed, then it will be read from disk before being partially
  87 * zeroed.
  88 *
  89 * In the DAX case, we can just directly write to the underlying pages. This
  90 * will not allocate blocks, but will avoid holes and unwritten extents and so
  91 * not do unnecessary work.
 
 
 
  92 */
  93int
  94xfs_iozero(
  95	struct xfs_inode	*ip,	/* inode			*/
  96	loff_t			pos,	/* offset in file		*/
  97	size_t			count)	/* size of data to zero		*/
  98{
  99	struct page		*page;
 100	struct address_space	*mapping;
 101	int			status = 0;
 102
 103
 104	mapping = VFS_I(ip)->i_mapping;
 105	do {
 106		unsigned offset, bytes;
 107		void *fsdata;
 108
 109		offset = (pos & (PAGE_SIZE -1)); /* Within page */
 110		bytes = PAGE_SIZE - offset;
 111		if (bytes > count)
 112			bytes = count;
 113
 114		if (IS_DAX(VFS_I(ip))) {
 115			status = dax_zero_page_range(VFS_I(ip), pos, bytes,
 116						     xfs_get_blocks_direct);
 117			if (status)
 118				break;
 119		} else {
 120			status = pagecache_write_begin(NULL, mapping, pos, bytes,
 121						AOP_FLAG_UNINTERRUPTIBLE,
 122						&page, &fsdata);
 123			if (status)
 124				break;
 125
 126			zero_user(page, offset, bytes);
 127
 128			status = pagecache_write_end(NULL, mapping, pos, bytes,
 129						bytes, page, fsdata);
 130			WARN_ON(status <= 0); /* can't return less than zero! */
 131			status = 0;
 132		}
 133		pos += bytes;
 134		count -= bytes;
 
 135	} while (count);
 136
 137	return status;
 138}
 139
 140int
 141xfs_update_prealloc_flags(
 142	struct xfs_inode	*ip,
 143	enum xfs_prealloc_flags	flags)
 144{
 145	struct xfs_trans	*tp;
 146	int			error;
 147
 148	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
 149	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
 150	if (error) {
 151		xfs_trans_cancel(tp);
 152		return error;
 153	}
 154
 155	xfs_ilock(ip, XFS_ILOCK_EXCL);
 156	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 157
 158	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
 159		VFS_I(ip)->i_mode &= ~S_ISUID;
 160		if (VFS_I(ip)->i_mode & S_IXGRP)
 161			VFS_I(ip)->i_mode &= ~S_ISGID;
 162		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 163	}
 164
 165	if (flags & XFS_PREALLOC_SET)
 166		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
 167	if (flags & XFS_PREALLOC_CLEAR)
 168		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
 169
 170	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 171	if (flags & XFS_PREALLOC_SYNC)
 172		xfs_trans_set_sync(tp);
 173	return xfs_trans_commit(tp);
 174}
 175
 176/*
 177 * Fsync operations on directories are much simpler than on regular files,
 178 * as there is no file data to flush, and thus also no need for explicit
 179 * cache flush operations, and there are no non-transaction metadata updates
 180 * on directories either.
 181 */
 182STATIC int
 183xfs_dir_fsync(
 184	struct file		*file,
 185	loff_t			start,
 186	loff_t			end,
 187	int			datasync)
 188{
 189	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 190	struct xfs_mount	*mp = ip->i_mount;
 191	xfs_lsn_t		lsn = 0;
 192
 193	trace_xfs_dir_fsync(ip);
 194
 195	xfs_ilock(ip, XFS_ILOCK_SHARED);
 196	if (xfs_ipincount(ip))
 197		lsn = ip->i_itemp->ili_last_lsn;
 198	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 199
 200	if (!lsn)
 201		return 0;
 202	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
 203}
 204
 205STATIC int
 206xfs_file_fsync(
 207	struct file		*file,
 208	loff_t			start,
 209	loff_t			end,
 210	int			datasync)
 211{
 212	struct inode		*inode = file->f_mapping->host;
 213	struct xfs_inode	*ip = XFS_I(inode);
 214	struct xfs_mount	*mp = ip->i_mount;
 
 215	int			error = 0;
 216	int			log_flushed = 0;
 217	xfs_lsn_t		lsn = 0;
 218
 219	trace_xfs_file_fsync(ip);
 220
 221	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
 222	if (error)
 223		return error;
 224
 225	if (XFS_FORCED_SHUTDOWN(mp))
 226		return -EIO;
 227
 228	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 229
 
 
 
 
 230	if (mp->m_flags & XFS_MOUNT_BARRIER) {
 231		/*
 232		 * If we have an RT and/or log subvolume we need to make sure
 233		 * to flush the write cache the device used for file data
 234		 * first.  This is to ensure newly written file data make
 235		 * it to disk before logging the new inode size in case of
 236		 * an extending write.
 237		 */
 238		if (XFS_IS_REALTIME_INODE(ip))
 239			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 240		else if (mp->m_logdev_targp != mp->m_ddev_targp)
 241			xfs_blkdev_issue_flush(mp->m_ddev_targp);
 242	}
 243
 244	/*
 245	 * All metadata updates are logged, which means that we just have to
 246	 * flush the log up to the latest LSN that touched the inode. If we have
 247	 * concurrent fsync/fdatasync() calls, we need them to all block on the
 248	 * log force before we clear the ili_fsync_fields field. This ensures
 249	 * that we don't get a racing sync operation that does not wait for the
 250	 * metadata to hit the journal before returning. If we race with
 251	 * clearing the ili_fsync_fields, then all that will happen is the log
 252	 * force will do nothing as the lsn will already be on disk. We can't
 253	 * race with setting ili_fsync_fields because that is done under
 254	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 255	 * until after the ili_fsync_fields is cleared.
 256	 */
 257	xfs_ilock(ip, XFS_ILOCK_SHARED);
 258	if (xfs_ipincount(ip)) {
 259		if (!datasync ||
 260		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 261			lsn = ip->i_itemp->ili_last_lsn;
 262	}
 263
 264	if (lsn) {
 265		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 266		ip->i_itemp->ili_fsync_fields = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267	}
 268	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 269
 270	/*
 271	 * If we only have a single device, and the log force about was
 272	 * a no-op we might have to flush the data device cache here.
 273	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 274	 * an already allocated file and thus do not have any metadata to
 275	 * commit.
 276	 */
 277	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
 278	    mp->m_logdev_targp == mp->m_ddev_targp &&
 279	    !XFS_IS_REALTIME_INODE(ip) &&
 280	    !log_flushed)
 281		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 282
 283	return error;
 284}
 285
 286STATIC ssize_t
 287xfs_file_read_iter(
 288	struct kiocb		*iocb,
 289	struct iov_iter		*to)
 
 
 290{
 291	struct file		*file = iocb->ki_filp;
 292	struct inode		*inode = file->f_mapping->host;
 293	struct xfs_inode	*ip = XFS_I(inode);
 294	struct xfs_mount	*mp = ip->i_mount;
 295	size_t			size = iov_iter_count(to);
 296	ssize_t			ret = 0;
 297	int			ioflags = 0;
 298	xfs_fsize_t		n;
 299	loff_t			pos = iocb->ki_pos;
 300
 301	XFS_STATS_INC(mp, xs_read_calls);
 302
 303	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
 304		ioflags |= XFS_IO_ISDIRECT;
 
 
 305	if (file->f_mode & FMODE_NOCMTIME)
 306		ioflags |= XFS_IO_INVIS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307
 308	if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) {
 309		xfs_buftarg_t	*target =
 310			XFS_IS_REALTIME_INODE(ip) ?
 311				mp->m_rtdev_targp : mp->m_ddev_targp;
 312		/* DIO must be aligned to device logical sector size */
 313		if ((pos | size) & target->bt_logical_sectormask) {
 314			if (pos == i_size_read(inode))
 315				return 0;
 316			return -EINVAL;
 317		}
 318	}
 319
 320	n = mp->m_super->s_maxbytes - pos;
 321	if (n <= 0 || size == 0)
 322		return 0;
 323
 324	if (n < size)
 325		size = n;
 326
 327	if (XFS_FORCED_SHUTDOWN(mp))
 328		return -EIO;
 329
 330	/*
 331	 * Locking is a bit tricky here. If we take an exclusive lock for direct
 332	 * IO, we effectively serialise all new concurrent read IO to this file
 333	 * and block it behind IO that is currently in progress because IO in
 334	 * progress holds the IO lock shared. We only need to hold the lock
 335	 * exclusive to blow away the page cache, so only take lock exclusively
 336	 * if the page cache needs invalidation. This allows the normal direct
 337	 * IO case of no page cache pages to proceeed concurrently without
 338	 * serialisation.
 339	 */
 340	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 341	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
 342		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 343		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
 344
 345		/*
 346		 * The generic dio code only flushes the range of the particular
 347		 * I/O. Because we take an exclusive lock here, this whole
 348		 * sequence is considerably more expensive for us. This has a
 349		 * noticeable performance impact for any file with cached pages,
 350		 * even when outside of the range of the particular I/O.
 351		 *
 352		 * Hence, amortize the cost of the lock against a full file
 353		 * flush and reduce the chances of repeated iolock cycles going
 354		 * forward.
 355		 */
 356		if (inode->i_mapping->nrpages) {
 357			ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
 
 
 358			if (ret) {
 359				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
 360				return ret;
 361			}
 362
 363			/*
 364			 * Invalidate whole pages. This can return an error if
 365			 * we fail to invalidate a page, but this should never
 366			 * happen on XFS. Warn if it does fail.
 367			 */
 368			ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
 369			WARN_ON_ONCE(ret);
 370			ret = 0;
 371		}
 372		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 373	}
 
 374
 375	trace_xfs_file_read(ip, size, pos, ioflags);
 376
 377	ret = generic_file_read_iter(iocb, to);
 378	if (ret > 0)
 379		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 380
 381	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 382	return ret;
 383}
 384
 385STATIC ssize_t
 386xfs_file_splice_read(
 387	struct file		*infilp,
 388	loff_t			*ppos,
 389	struct pipe_inode_info	*pipe,
 390	size_t			count,
 391	unsigned int		flags)
 392{
 393	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
 394	int			ioflags = 0;
 395	ssize_t			ret;
 396
 397	XFS_STATS_INC(ip->i_mount, xs_read_calls);
 398
 399	if (infilp->f_mode & FMODE_NOCMTIME)
 400		ioflags |= XFS_IO_INVIS;
 401
 402	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 403		return -EIO;
 404
 
 
 405	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
 406
 407	/*
 408	 * DAX inodes cannot ues the page cache for splice, so we have to push
 409	 * them through the VFS IO path. This means it goes through
 410	 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
 411	 * cannot lock the splice operation at this level for DAX inodes.
 412	 */
 413	if (IS_DAX(VFS_I(ip))) {
 414		ret = default_file_splice_read(infilp, ppos, pipe, count,
 415					       flags);
 416		goto out;
 417	}
 418
 419	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 420	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
 421	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 422out:
 423	if (ret > 0)
 424		XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
 425	return ret;
 426}
 427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428/*
 429 * This routine is called to handle zeroing any space in the last block of the
 430 * file that is beyond the EOF.  We do this since the size is being increased
 431 * without writing anything to that block and we don't want to read the
 432 * garbage on the disk.
 
 
 433 */
 434STATIC int				/* error (positive) */
 435xfs_zero_last_block(
 436	struct xfs_inode	*ip,
 437	xfs_fsize_t		offset,
 438	xfs_fsize_t		isize,
 439	bool			*did_zeroing)
 
 440{
 441	struct xfs_mount	*mp = ip->i_mount;
 442	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
 443	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
 444	int			zero_len;
 445	int			nimaps = 1;
 446	int			error = 0;
 447	struct xfs_bmbt_irec	imap;
 
 
 
 
 
 
 
 
 
 
 448
 449	xfs_ilock(ip, XFS_ILOCK_EXCL);
 450	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
 
 451	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 452	if (error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453		return error;
 454
 455	ASSERT(nimaps > 0);
 456
 457	/*
 458	 * If the block underlying isize is just a hole, then there
 459	 * is nothing to zero.
 460	 */
 461	if (imap.br_startblock == HOLESTARTBLOCK)
 462		return 0;
 
 
 
 
 
 
 
 463
 464	zero_len = mp->m_sb.sb_blocksize - zero_offset;
 465	if (isize + zero_len > offset)
 466		zero_len = offset - isize;
 467	*did_zeroing = true;
 468	return xfs_iozero(ip, isize, zero_len);
 
 
 
 469}
 470
 471/*
 472 * Zero any on disk space between the current EOF and the new, larger EOF.
 473 *
 474 * This handles the normal case of zeroing the remainder of the last block in
 475 * the file and the unusual case of zeroing blocks out beyond the size of the
 476 * file.  This second case only happens with fixed size extents and when the
 477 * system crashes before the inode size was updated but after blocks were
 478 * allocated.
 479 *
 480 * Expects the iolock to be held exclusive, and will take the ilock internally.
 481 */
 
 482int					/* error (positive) */
 483xfs_zero_eof(
 484	struct xfs_inode	*ip,
 485	xfs_off_t		offset,		/* starting I/O offset */
 486	xfs_fsize_t		isize,		/* current inode size */
 487	bool			*did_zeroing)
 488{
 489	struct xfs_mount	*mp = ip->i_mount;
 490	xfs_fileoff_t		start_zero_fsb;
 491	xfs_fileoff_t		end_zero_fsb;
 492	xfs_fileoff_t		zero_count_fsb;
 493	xfs_fileoff_t		last_fsb;
 494	xfs_fileoff_t		zero_off;
 495	xfs_fsize_t		zero_len;
 496	int			nimaps;
 497	int			error = 0;
 498	struct xfs_bmbt_irec	imap;
 499
 500	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
 501	ASSERT(offset > isize);
 502
 503	trace_xfs_zero_eof(ip, isize, offset - isize);
 504
 505	/*
 506	 * First handle zeroing the block on which isize resides.
 507	 *
 508	 * We only zero a part of that block so it is handled specially.
 509	 */
 510	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
 511		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
 512		if (error)
 513			return error;
 514	}
 515
 516	/*
 517	 * Calculate the range between the new size and the old where blocks
 518	 * needing to be zeroed may exist.
 519	 *
 520	 * To get the block where the last byte in the file currently resides,
 521	 * we need to subtract one from the size and truncate back to a block
 522	 * boundary.  We subtract 1 in case the size is exactly on a block
 523	 * boundary.
 524	 */
 525	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
 526	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
 527	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
 528	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
 529	if (last_fsb == end_zero_fsb) {
 530		/*
 531		 * The size was only incremented on its last block.
 532		 * We took care of that above, so just return.
 533		 */
 534		return 0;
 535	}
 536
 537	ASSERT(start_zero_fsb <= end_zero_fsb);
 538	while (start_zero_fsb <= end_zero_fsb) {
 539		nimaps = 1;
 540		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
 541
 542		xfs_ilock(ip, XFS_ILOCK_EXCL);
 543		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
 544					  &imap, &nimaps, 0);
 545		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 546		if (error)
 547			return error;
 548
 549		ASSERT(nimaps > 0);
 550
 551		if (imap.br_state == XFS_EXT_UNWRITTEN ||
 552		    imap.br_startblock == HOLESTARTBLOCK) {
 
 
 
 
 
 
 
 553			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 554			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 555			continue;
 556		}
 557
 558		/*
 559		 * There are blocks we need to zero.
 
 
 560		 */
 
 
 561		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
 562		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
 563
 564		if ((zero_off + zero_len) > offset)
 565			zero_len = offset - zero_off;
 566
 567		error = xfs_iozero(ip, zero_off, zero_len);
 568		if (error)
 569			return error;
 
 570
 571		*did_zeroing = true;
 572		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 573		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 
 
 574	}
 575
 576	return 0;
 
 
 
 
 
 577}
 578
 579/*
 580 * Common pre-write limit and setup checks.
 581 *
 582 * Called with the iolocked held either shared and exclusive according to
 583 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 584 * if called for a direct write beyond i_size.
 585 */
 586STATIC ssize_t
 587xfs_file_aio_write_checks(
 588	struct kiocb		*iocb,
 589	struct iov_iter		*from,
 
 590	int			*iolock)
 591{
 592	struct file		*file = iocb->ki_filp;
 593	struct inode		*inode = file->f_mapping->host;
 594	struct xfs_inode	*ip = XFS_I(inode);
 595	ssize_t			error = 0;
 596	size_t			count = iov_iter_count(from);
 597	bool			drained_dio = false;
 598
 599restart:
 600	error = generic_write_checks(iocb, from);
 601	if (error <= 0)
 602		return error;
 
 603
 604	error = xfs_break_layouts(inode, iolock, true);
 605	if (error)
 606		return error;
 
 
 
 607
 608	/* For changing security info in file_remove_privs() we need i_mutex */
 609	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 610		xfs_rw_iunlock(ip, *iolock);
 611		*iolock = XFS_IOLOCK_EXCL;
 612		xfs_rw_ilock(ip, *iolock);
 613		goto restart;
 614	}
 615	/*
 616	 * If the offset is beyond the size of the file, we need to zero any
 617	 * blocks that fall between the existing EOF and the start of this
 618	 * write.  If zeroing is needed and we are currently holding the
 619	 * iolock shared, we need to update it to exclusive which implies
 620	 * having to redo all checks before.
 621	 *
 622	 * We need to serialise against EOF updates that occur in IO
 623	 * completions here. We want to make sure that nobody is changing the
 624	 * size while we do this check until we have placed an IO barrier (i.e.
 625	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 626	 * The spinlock effectively forms a memory barrier once we have the
 627	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 628	 * and hence be able to correctly determine if we need to run zeroing.
 629	 */
 630	spin_lock(&ip->i_flags_lock);
 631	if (iocb->ki_pos > i_size_read(inode)) {
 632		bool	zero = false;
 633
 634		spin_unlock(&ip->i_flags_lock);
 635		if (!drained_dio) {
 636			if (*iolock == XFS_IOLOCK_SHARED) {
 637				xfs_rw_iunlock(ip, *iolock);
 638				*iolock = XFS_IOLOCK_EXCL;
 639				xfs_rw_ilock(ip, *iolock);
 640				iov_iter_reexpand(from, count);
 641			}
 642			/*
 643			 * We now have an IO submission barrier in place, but
 644			 * AIO can do EOF updates during IO completion and hence
 645			 * we now need to wait for all of them to drain. Non-AIO
 646			 * DIO will have drained before we are given the
 647			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 648			 * no-op.
 649			 */
 650			inode_dio_wait(inode);
 651			drained_dio = true;
 652			goto restart;
 653		}
 654		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
 655		if (error)
 656			return error;
 657	} else
 658		spin_unlock(&ip->i_flags_lock);
 659
 660	/*
 661	 * Updating the timestamps will grab the ilock again from
 662	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 663	 * lock above.  Eventually we should look into a way to avoid
 664	 * the pointless lock roundtrip.
 665	 */
 666	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
 667		error = file_update_time(file);
 668		if (error)
 669			return error;
 670	}
 671
 672	/*
 673	 * If we're writing the file then make sure to clear the setuid and
 674	 * setgid bits if the process is not being run by root.  This keeps
 675	 * people from modifying setuid and setgid binaries.
 676	 */
 677	if (!IS_NOSEC(inode))
 678		return file_remove_privs(file);
 679	return 0;
 680}
 681
 682/*
 683 * xfs_file_dio_aio_write - handle direct IO writes
 684 *
 685 * Lock the inode appropriately to prepare for and issue a direct IO write.
 686 * By separating it from the buffered write path we remove all the tricky to
 687 * follow locking changes and looping.
 688 *
 689 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 690 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 691 * pages are flushed out.
 692 *
 693 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 694 * allowing them to be done in parallel with reads and other direct IO writes.
 695 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 696 * needs to do sub-block zeroing and that requires serialisation against other
 697 * direct IOs to the same block. In this case we need to serialise the
 698 * submission of the unaligned IOs so that we don't get racing block zeroing in
 699 * the dio layer.  To avoid the problem with aio, we also need to wait for
 700 * outstanding IOs to complete so that unwritten extent conversion is completed
 701 * before we try to map the overlapping block. This is currently implemented by
 702 * hitting it with a big hammer (i.e. inode_dio_wait()).
 703 *
 704 * Returns with locks held indicated by @iolock and errors indicated by
 705 * negative return values.
 706 */
 707STATIC ssize_t
 708xfs_file_dio_aio_write(
 709	struct kiocb		*iocb,
 710	struct iov_iter		*from)
 
 
 
 
 711{
 712	struct file		*file = iocb->ki_filp;
 713	struct address_space	*mapping = file->f_mapping;
 714	struct inode		*inode = mapping->host;
 715	struct xfs_inode	*ip = XFS_I(inode);
 716	struct xfs_mount	*mp = ip->i_mount;
 717	ssize_t			ret = 0;
 
 718	int			unaligned_io = 0;
 719	int			iolock;
 720	size_t			count = iov_iter_count(from);
 721	loff_t			pos = iocb->ki_pos;
 722	loff_t			end;
 723	struct iov_iter		data;
 724	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
 725					mp->m_rtdev_targp : mp->m_ddev_targp;
 726
 727	/* DIO must be aligned to device logical sector size */
 728	if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask))
 729		return -EINVAL;
 730
 731	/* "unaligned" here means not aligned to a filesystem block */
 732	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
 733		unaligned_io = 1;
 734
 735	/*
 736	 * We don't need to take an exclusive lock unless there page cache needs
 737	 * to be invalidated or unaligned IO is being executed. We don't need to
 738	 * consider the EOF extension case here because
 739	 * xfs_file_aio_write_checks() will relock the inode as necessary for
 740	 * EOF zeroing cases and fill out the new inode size as appropriate.
 741	 */
 742	if (unaligned_io || mapping->nrpages)
 743		iolock = XFS_IOLOCK_EXCL;
 744	else
 745		iolock = XFS_IOLOCK_SHARED;
 746	xfs_rw_ilock(ip, iolock);
 747
 748	/*
 749	 * Recheck if there are cached pages that need invalidate after we got
 750	 * the iolock to protect against other threads adding new pages while
 751	 * we were waiting for the iolock.
 752	 */
 753	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
 754		xfs_rw_iunlock(ip, iolock);
 755		iolock = XFS_IOLOCK_EXCL;
 756		xfs_rw_ilock(ip, iolock);
 757	}
 758
 759	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 760	if (ret)
 761		goto out;
 762	count = iov_iter_count(from);
 763	pos = iocb->ki_pos;
 764	end = pos + count - 1;
 765
 766	/*
 767	 * See xfs_file_read_iter() for why we do a full-file flush here.
 768	 */
 769	if (mapping->nrpages) {
 770		ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
 
 
 771		if (ret)
 772			goto out;
 773		/*
 774		 * Invalidate whole pages. This can return an error if we fail
 775		 * to invalidate a page, but this should never happen on XFS.
 776		 * Warn if it does fail.
 777		 */
 778		ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
 779		WARN_ON_ONCE(ret);
 780		ret = 0;
 781	}
 782
 783	/*
 784	 * If we are doing unaligned IO, wait for all other IO to drain,
 785	 * otherwise demote the lock if we had to flush cached pages
 786	 */
 787	if (unaligned_io)
 788		inode_dio_wait(inode);
 789	else if (iolock == XFS_IOLOCK_EXCL) {
 790		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 791		iolock = XFS_IOLOCK_SHARED;
 792	}
 793
 794	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
 
 
 795
 796	data = *from;
 797	ret = mapping->a_ops->direct_IO(iocb, &data, pos);
 798
 799	/* see generic_file_direct_write() for why this is necessary */
 800	if (mapping->nrpages) {
 801		invalidate_inode_pages2_range(mapping,
 802					      pos >> PAGE_SHIFT,
 803					      end >> PAGE_SHIFT);
 804	}
 805
 806	if (ret > 0) {
 807		pos += ret;
 808		iov_iter_advance(from, ret);
 809		iocb->ki_pos = pos;
 810	}
 811out:
 812	xfs_rw_iunlock(ip, iolock);
 813
 814	/*
 815	 * No fallback to buffered IO on errors for XFS. DAX can result in
 816	 * partial writes, but direct IO will either complete fully or fail.
 817	 */
 818	ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
 819	return ret;
 820}
 821
 822STATIC ssize_t
 823xfs_file_buffered_aio_write(
 824	struct kiocb		*iocb,
 825	struct iov_iter		*from)
 
 
 
 
 826{
 827	struct file		*file = iocb->ki_filp;
 828	struct address_space	*mapping = file->f_mapping;
 829	struct inode		*inode = mapping->host;
 830	struct xfs_inode	*ip = XFS_I(inode);
 831	ssize_t			ret;
 832	int			enospc = 0;
 833	int			iolock = XFS_IOLOCK_EXCL;
 834
 835	xfs_rw_ilock(ip, iolock);
 
 836
 837	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 838	if (ret)
 839		goto out;
 840
 841	/* We can write back this queue in page reclaim */
 842	current->backing_dev_info = inode_to_bdi(inode);
 843
 844write_retry:
 845	trace_xfs_file_buffered_write(ip, iov_iter_count(from),
 846				      iocb->ki_pos, 0);
 847	ret = generic_perform_write(file, from, iocb->ki_pos);
 848	if (likely(ret >= 0))
 849		iocb->ki_pos += ret;
 850
 851	/*
 852	 * If we hit a space limit, try to free up some lingering preallocated
 853	 * space before returning an error. In the case of ENOSPC, first try to
 854	 * write back all dirty inodes to free up some of the excess reserved
 855	 * metadata space. This reduces the chances that the eofblocks scan
 856	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 857	 * also behaves as a filter to prevent too many eofblocks scans from
 858	 * running at the same time.
 859	 */
 860	if (ret == -EDQUOT && !enospc) {
 861		enospc = xfs_inode_free_quota_eofblocks(ip);
 862		if (enospc)
 863			goto write_retry;
 864	} else if (ret == -ENOSPC && !enospc) {
 865		struct xfs_eofblocks eofb = {0};
 866
 867		enospc = 1;
 868		xfs_flush_inodes(ip->i_mount);
 869		eofb.eof_scan_owner = ip->i_ino; /* for locking */
 870		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 871		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 872		goto write_retry;
 873	}
 874
 875	current->backing_dev_info = NULL;
 876out:
 877	xfs_rw_iunlock(ip, iolock);
 878	return ret;
 879}
 880
 881STATIC ssize_t
 882xfs_file_write_iter(
 883	struct kiocb		*iocb,
 884	struct iov_iter		*from)
 
 
 885{
 886	struct file		*file = iocb->ki_filp;
 887	struct address_space	*mapping = file->f_mapping;
 888	struct inode		*inode = mapping->host;
 889	struct xfs_inode	*ip = XFS_I(inode);
 890	ssize_t			ret;
 891	size_t			ocount = iov_iter_count(from);
 
 
 
 892
 893	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 
 
 
 
 894
 895	if (ocount == 0)
 896		return 0;
 897
 
 
 898	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 899		return -EIO;
 900
 901	if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
 902		ret = xfs_file_dio_aio_write(iocb, from);
 
 903	else
 904		ret = xfs_file_buffered_aio_write(iocb, from);
 
 
 
 905
 906	if (ret > 0) {
 907		ssize_t err;
 908
 909		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 
 
 
 910
 911		/* Handle various SYNC-type writes */
 912		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
 913		if (err < 0)
 914			ret = err;
 
 
 915	}
 
 
 
 
 916	return ret;
 917}
 918
 919#define	XFS_FALLOC_FL_SUPPORTED						\
 920		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 921		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 922		 FALLOC_FL_INSERT_RANGE)
 923
 924STATIC long
 925xfs_file_fallocate(
 926	struct file		*file,
 927	int			mode,
 928	loff_t			offset,
 929	loff_t			len)
 930{
 931	struct inode		*inode = file_inode(file);
 932	struct xfs_inode	*ip = XFS_I(inode);
 933	long			error;
 934	enum xfs_prealloc_flags	flags = 0;
 935	uint			iolock = XFS_IOLOCK_EXCL;
 936	loff_t			new_size = 0;
 937	bool			do_file_insert = 0;
 938
 939	if (!S_ISREG(inode->i_mode))
 940		return -EINVAL;
 941	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 942		return -EOPNOTSUPP;
 943
 944	xfs_ilock(ip, iolock);
 945	error = xfs_break_layouts(inode, &iolock, false);
 946	if (error)
 947		goto out_unlock;
 948
 949	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 950	iolock |= XFS_MMAPLOCK_EXCL;
 951
 952	if (mode & FALLOC_FL_PUNCH_HOLE) {
 953		error = xfs_free_file_space(ip, offset, len);
 954		if (error)
 955			goto out_unlock;
 956	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 957		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
 958
 959		if (offset & blksize_mask || len & blksize_mask) {
 960			error = -EINVAL;
 961			goto out_unlock;
 962		}
 963
 964		/*
 965		 * There is no need to overlap collapse range with EOF,
 966		 * in which case it is effectively a truncate operation
 967		 */
 968		if (offset + len >= i_size_read(inode)) {
 969			error = -EINVAL;
 970			goto out_unlock;
 971		}
 972
 973		new_size = i_size_read(inode) - len;
 974
 975		error = xfs_collapse_file_space(ip, offset, len);
 976		if (error)
 977			goto out_unlock;
 978	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 979		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
 980
 981		new_size = i_size_read(inode) + len;
 982		if (offset & blksize_mask || len & blksize_mask) {
 983			error = -EINVAL;
 984			goto out_unlock;
 985		}
 986
 987		/* check the new inode size does not wrap through zero */
 988		if (new_size > inode->i_sb->s_maxbytes) {
 989			error = -EFBIG;
 990			goto out_unlock;
 991		}
 992
 993		/* Offset should be less than i_size */
 994		if (offset >= i_size_read(inode)) {
 995			error = -EINVAL;
 996			goto out_unlock;
 997		}
 998		do_file_insert = 1;
 999	} else {
1000		flags |= XFS_PREALLOC_SET;
1001
1002		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1003		    offset + len > i_size_read(inode)) {
1004			new_size = offset + len;
1005			error = inode_newsize_ok(inode, new_size);
1006			if (error)
1007				goto out_unlock;
1008		}
1009
1010		if (mode & FALLOC_FL_ZERO_RANGE)
1011			error = xfs_zero_file_space(ip, offset, len);
1012		else
1013			error = xfs_alloc_file_space(ip, offset, len,
1014						     XFS_BMAPI_PREALLOC);
1015		if (error)
1016			goto out_unlock;
1017	}
1018
1019	if (file->f_flags & O_DSYNC)
1020		flags |= XFS_PREALLOC_SYNC;
1021
1022	error = xfs_update_prealloc_flags(ip, flags);
1023	if (error)
1024		goto out_unlock;
1025
1026	/* Change file size if needed */
1027	if (new_size) {
1028		struct iattr iattr;
1029
1030		iattr.ia_valid = ATTR_SIZE;
1031		iattr.ia_size = new_size;
1032		error = xfs_setattr_size(ip, &iattr);
1033		if (error)
1034			goto out_unlock;
1035	}
1036
1037	/*
1038	 * Perform hole insertion now that the file size has been
1039	 * updated so that if we crash during the operation we don't
1040	 * leave shifted extents past EOF and hence losing access to
1041	 * the data that is contained within them.
1042	 */
1043	if (do_file_insert)
1044		error = xfs_insert_file_space(ip, offset, len);
1045
1046out_unlock:
1047	xfs_iunlock(ip, iolock);
1048	return error;
1049}
1050
1051
1052STATIC int
1053xfs_file_open(
1054	struct inode	*inode,
1055	struct file	*file)
1056{
1057	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1058		return -EFBIG;
1059	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1060		return -EIO;
1061	return 0;
1062}
1063
1064STATIC int
1065xfs_dir_open(
1066	struct inode	*inode,
1067	struct file	*file)
1068{
1069	struct xfs_inode *ip = XFS_I(inode);
1070	int		mode;
1071	int		error;
1072
1073	error = xfs_file_open(inode, file);
1074	if (error)
1075		return error;
1076
1077	/*
1078	 * If there are any blocks, read-ahead block 0 as we're almost
1079	 * certain to have the next operation be a read there.
1080	 */
1081	mode = xfs_ilock_data_map_shared(ip);
1082	if (ip->i_d.di_nextents > 0)
1083		xfs_dir3_data_readahead(ip, 0, -1);
1084	xfs_iunlock(ip, mode);
1085	return 0;
1086}
1087
1088STATIC int
1089xfs_file_release(
1090	struct inode	*inode,
1091	struct file	*filp)
1092{
1093	return xfs_release(XFS_I(inode));
1094}
1095
1096STATIC int
1097xfs_file_readdir(
1098	struct file	*file,
1099	struct dir_context *ctx)
 
1100{
1101	struct inode	*inode = file_inode(file);
1102	xfs_inode_t	*ip = XFS_I(inode);
 
1103	size_t		bufsize;
1104
1105	/*
1106	 * The Linux API doesn't pass down the total size of the buffer
1107	 * we read into down to the filesystem.  With the filldir concept
1108	 * it's not needed for correct information, but the XFS dir2 leaf
1109	 * code wants an estimate of the buffer size to calculate it's
1110	 * readahead window and size the buffers used for mapping to
1111	 * physical blocks.
1112	 *
1113	 * Try to give it an estimate that's good enough, maybe at some
1114	 * point we can change the ->readdir prototype to include the
1115	 * buffer size.  For now we use the current glibc buffer size.
1116	 */
1117	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1118
1119	return xfs_readdir(ip, ctx, bufsize);
1120}
1121
1122/*
1123 * This type is designed to indicate the type of offset we would like
1124 * to search from page cache for xfs_seek_hole_data().
1125 */
1126enum {
1127	HOLE_OFF = 0,
1128	DATA_OFF,
1129};
1130
1131/*
1132 * Lookup the desired type of offset from the given page.
1133 *
1134 * On success, return true and the offset argument will point to the
1135 * start of the region that was found.  Otherwise this function will
1136 * return false and keep the offset argument unchanged.
1137 */
1138STATIC bool
1139xfs_lookup_buffer_offset(
1140	struct page		*page,
1141	loff_t			*offset,
1142	unsigned int		type)
1143{
1144	loff_t			lastoff = page_offset(page);
1145	bool			found = false;
1146	struct buffer_head	*bh, *head;
1147
1148	bh = head = page_buffers(page);
1149	do {
1150		/*
1151		 * Unwritten extents that have data in the page
1152		 * cache covering them can be identified by the
1153		 * BH_Unwritten state flag.  Pages with multiple
1154		 * buffers might have a mix of holes, data and
1155		 * unwritten extents - any buffer with valid
1156		 * data in it should have BH_Uptodate flag set
1157		 * on it.
1158		 */
1159		if (buffer_unwritten(bh) ||
1160		    buffer_uptodate(bh)) {
1161			if (type == DATA_OFF)
1162				found = true;
1163		} else {
1164			if (type == HOLE_OFF)
1165				found = true;
1166		}
1167
1168		if (found) {
1169			*offset = lastoff;
1170			break;
1171		}
1172		lastoff += bh->b_size;
1173	} while ((bh = bh->b_this_page) != head);
1174
1175	return found;
1176}
1177
1178/*
1179 * This routine is called to find out and return a data or hole offset
1180 * from the page cache for unwritten extents according to the desired
1181 * type for xfs_seek_hole_data().
1182 *
1183 * The argument offset is used to tell where we start to search from the
1184 * page cache.  Map is used to figure out the end points of the range to
1185 * lookup pages.
1186 *
1187 * Return true if the desired type of offset was found, and the argument
1188 * offset is filled with that address.  Otherwise, return false and keep
1189 * offset unchanged.
1190 */
1191STATIC bool
1192xfs_find_get_desired_pgoff(
1193	struct inode		*inode,
1194	struct xfs_bmbt_irec	*map,
1195	unsigned int		type,
1196	loff_t			*offset)
1197{
1198	struct xfs_inode	*ip = XFS_I(inode);
1199	struct xfs_mount	*mp = ip->i_mount;
1200	struct pagevec		pvec;
1201	pgoff_t			index;
1202	pgoff_t			end;
1203	loff_t			endoff;
1204	loff_t			startoff = *offset;
1205	loff_t			lastoff = startoff;
1206	bool			found = false;
1207
1208	pagevec_init(&pvec, 0);
1209
1210	index = startoff >> PAGE_SHIFT;
1211	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1212	end = endoff >> PAGE_SHIFT;
1213	do {
1214		int		want;
1215		unsigned	nr_pages;
1216		unsigned int	i;
1217
1218		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1219		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1220					  want);
1221		/*
1222		 * No page mapped into given range.  If we are searching holes
1223		 * and if this is the first time we got into the loop, it means
1224		 * that the given offset is landed in a hole, return it.
1225		 *
1226		 * If we have already stepped through some block buffers to find
1227		 * holes but they all contains data.  In this case, the last
1228		 * offset is already updated and pointed to the end of the last
1229		 * mapped page, if it does not reach the endpoint to search,
1230		 * that means there should be a hole between them.
1231		 */
1232		if (nr_pages == 0) {
1233			/* Data search found nothing */
1234			if (type == DATA_OFF)
1235				break;
1236
1237			ASSERT(type == HOLE_OFF);
1238			if (lastoff == startoff || lastoff < endoff) {
1239				found = true;
1240				*offset = lastoff;
1241			}
1242			break;
1243		}
1244
1245		/*
1246		 * At lease we found one page.  If this is the first time we
1247		 * step into the loop, and if the first page index offset is
1248		 * greater than the given search offset, a hole was found.
1249		 */
1250		if (type == HOLE_OFF && lastoff == startoff &&
1251		    lastoff < page_offset(pvec.pages[0])) {
1252			found = true;
1253			break;
1254		}
1255
1256		for (i = 0; i < nr_pages; i++) {
1257			struct page	*page = pvec.pages[i];
1258			loff_t		b_offset;
1259
1260			/*
1261			 * At this point, the page may be truncated or
1262			 * invalidated (changing page->mapping to NULL),
1263			 * or even swizzled back from swapper_space to tmpfs
1264			 * file mapping. However, page->index will not change
1265			 * because we have a reference on the page.
1266			 *
1267			 * Searching done if the page index is out of range.
1268			 * If the current offset is not reaches the end of
1269			 * the specified search range, there should be a hole
1270			 * between them.
1271			 */
1272			if (page->index > end) {
1273				if (type == HOLE_OFF && lastoff < endoff) {
1274					*offset = lastoff;
1275					found = true;
1276				}
1277				goto out;
1278			}
1279
1280			lock_page(page);
1281			/*
1282			 * Page truncated or invalidated(page->mapping == NULL).
1283			 * We can freely skip it and proceed to check the next
1284			 * page.
1285			 */
1286			if (unlikely(page->mapping != inode->i_mapping)) {
1287				unlock_page(page);
1288				continue;
1289			}
1290
1291			if (!page_has_buffers(page)) {
1292				unlock_page(page);
1293				continue;
1294			}
1295
1296			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1297			if (found) {
1298				/*
1299				 * The found offset may be less than the start
1300				 * point to search if this is the first time to
1301				 * come here.
1302				 */
1303				*offset = max_t(loff_t, startoff, b_offset);
1304				unlock_page(page);
1305				goto out;
1306			}
1307
1308			/*
1309			 * We either searching data but nothing was found, or
1310			 * searching hole but found a data buffer.  In either
1311			 * case, probably the next page contains the desired
1312			 * things, update the last offset to it so.
1313			 */
1314			lastoff = page_offset(page) + PAGE_SIZE;
1315			unlock_page(page);
1316		}
1317
1318		/*
1319		 * The number of returned pages less than our desired, search
1320		 * done.  In this case, nothing was found for searching data,
1321		 * but we found a hole behind the last offset.
1322		 */
1323		if (nr_pages < want) {
1324			if (type == HOLE_OFF) {
1325				*offset = lastoff;
1326				found = true;
1327			}
1328			break;
1329		}
1330
1331		index = pvec.pages[i - 1]->index + 1;
1332		pagevec_release(&pvec);
1333	} while (index <= end);
1334
1335out:
1336	pagevec_release(&pvec);
1337	return found;
1338}
1339
1340/*
1341 * caller must lock inode with xfs_ilock_data_map_shared,
1342 * can we craft an appropriate ASSERT?
1343 *
1344 * end is because the VFS-level lseek interface is defined such that any
1345 * offset past i_size shall return -ENXIO, but we use this for quota code
1346 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1347 */
1348loff_t
1349__xfs_seek_hole_data(
1350	struct inode		*inode,
1351	loff_t			start,
1352	loff_t			end,
1353	int			whence)
1354{
1355	struct xfs_inode	*ip = XFS_I(inode);
1356	struct xfs_mount	*mp = ip->i_mount;
1357	loff_t			uninitialized_var(offset);
1358	xfs_fileoff_t		fsbno;
1359	xfs_filblks_t		lastbno;
1360	int			error;
1361
1362	if (start >= end) {
1363		error = -ENXIO;
1364		goto out_error;
1365	}
1366
1367	/*
1368	 * Try to read extents from the first block indicated
1369	 * by fsbno to the end block of the file.
1370	 */
1371	fsbno = XFS_B_TO_FSBT(mp, start);
1372	lastbno = XFS_B_TO_FSB(mp, end);
1373
1374	for (;;) {
1375		struct xfs_bmbt_irec	map[2];
1376		int			nmap = 2;
1377		unsigned int		i;
1378
1379		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1380				       XFS_BMAPI_ENTIRE);
1381		if (error)
1382			goto out_error;
1383
1384		/* No extents at given offset, must be beyond EOF */
1385		if (nmap == 0) {
1386			error = -ENXIO;
1387			goto out_error;
1388		}
1389
1390		for (i = 0; i < nmap; i++) {
1391			offset = max_t(loff_t, start,
1392				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1393
1394			/* Landed in the hole we wanted? */
1395			if (whence == SEEK_HOLE &&
1396			    map[i].br_startblock == HOLESTARTBLOCK)
1397				goto out;
1398
1399			/* Landed in the data extent we wanted? */
1400			if (whence == SEEK_DATA &&
1401			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1402			     (map[i].br_state == XFS_EXT_NORM &&
1403			      !isnullstartblock(map[i].br_startblock))))
1404				goto out;
1405
1406			/*
1407			 * Landed in an unwritten extent, try to search
1408			 * for hole or data from page cache.
1409			 */
1410			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1411				if (xfs_find_get_desired_pgoff(inode, &map[i],
1412				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1413							&offset))
1414					goto out;
1415			}
1416		}
1417
1418		/*
1419		 * We only received one extent out of the two requested. This
1420		 * means we've hit EOF and didn't find what we are looking for.
1421		 */
1422		if (nmap == 1) {
1423			/*
1424			 * If we were looking for a hole, set offset to
1425			 * the end of the file (i.e., there is an implicit
1426			 * hole at the end of any file).
1427		 	 */
1428			if (whence == SEEK_HOLE) {
1429				offset = end;
1430				break;
1431			}
1432			/*
1433			 * If we were looking for data, it's nowhere to be found
1434			 */
1435			ASSERT(whence == SEEK_DATA);
1436			error = -ENXIO;
1437			goto out_error;
1438		}
1439
1440		ASSERT(i > 1);
1441
1442		/*
1443		 * Nothing was found, proceed to the next round of search
1444		 * if the next reading offset is not at or beyond EOF.
1445		 */
1446		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1447		start = XFS_FSB_TO_B(mp, fsbno);
1448		if (start >= end) {
1449			if (whence == SEEK_HOLE) {
1450				offset = end;
1451				break;
1452			}
1453			ASSERT(whence == SEEK_DATA);
1454			error = -ENXIO;
1455			goto out_error;
1456		}
1457	}
1458
1459out:
1460	/*
1461	 * If at this point we have found the hole we wanted, the returned
1462	 * offset may be bigger than the file size as it may be aligned to
1463	 * page boundary for unwritten extents.  We need to deal with this
1464	 * situation in particular.
1465	 */
1466	if (whence == SEEK_HOLE)
1467		offset = min_t(loff_t, offset, end);
1468
1469	return offset;
1470
1471out_error:
1472	return error;
1473}
1474
1475STATIC loff_t
1476xfs_seek_hole_data(
1477	struct file		*file,
1478	loff_t			start,
1479	int			whence)
1480{
1481	struct inode		*inode = file->f_mapping->host;
1482	struct xfs_inode	*ip = XFS_I(inode);
1483	struct xfs_mount	*mp = ip->i_mount;
1484	uint			lock;
1485	loff_t			offset, end;
1486	int			error = 0;
1487
1488	if (XFS_FORCED_SHUTDOWN(mp))
1489		return -EIO;
1490
1491	lock = xfs_ilock_data_map_shared(ip);
1492
1493	end = i_size_read(inode);
1494	offset = __xfs_seek_hole_data(inode, start, end, whence);
1495	if (offset < 0) {
1496		error = offset;
1497		goto out_unlock;
1498	}
1499
1500	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1501
1502out_unlock:
1503	xfs_iunlock(ip, lock);
1504
1505	if (error)
1506		return error;
1507	return offset;
1508}
1509
1510STATIC loff_t
1511xfs_file_llseek(
1512	struct file	*file,
1513	loff_t		offset,
1514	int		whence)
1515{
1516	switch (whence) {
1517	case SEEK_END:
1518	case SEEK_CUR:
1519	case SEEK_SET:
1520		return generic_file_llseek(file, offset, whence);
1521	case SEEK_HOLE:
1522	case SEEK_DATA:
1523		return xfs_seek_hole_data(file, offset, whence);
1524	default:
1525		return -EINVAL;
1526	}
1527}
1528
1529/*
1530 * Locking for serialisation of IO during page faults. This results in a lock
1531 * ordering of:
1532 *
1533 * mmap_sem (MM)
1534 *   sb_start_pagefault(vfs, freeze)
1535 *     i_mmaplock (XFS - truncate serialisation)
1536 *       page_lock (MM)
1537 *         i_lock (XFS - extent map serialisation)
1538 */
1539
1540/*
1541 * mmap()d file has taken write protection fault and is being made writable. We
1542 * can set the page state up correctly for a writable page, which means we can
1543 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1544 * mapping.
1545 */
1546STATIC int
1547xfs_filemap_page_mkwrite(
1548	struct vm_area_struct	*vma,
1549	struct vm_fault		*vmf)
1550{
1551	struct inode		*inode = file_inode(vma->vm_file);
1552	int			ret;
1553
1554	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1555
1556	sb_start_pagefault(inode->i_sb);
1557	file_update_time(vma->vm_file);
1558	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1559
1560	if (IS_DAX(inode)) {
1561		ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault, NULL);
1562	} else {
1563		ret = block_page_mkwrite(vma, vmf, xfs_get_blocks);
1564		ret = block_page_mkwrite_return(ret);
1565	}
1566
1567	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1568	sb_end_pagefault(inode->i_sb);
1569
1570	return ret;
1571}
1572
1573STATIC int
1574xfs_filemap_fault(
1575	struct vm_area_struct	*vma,
1576	struct vm_fault		*vmf)
1577{
1578	struct inode		*inode = file_inode(vma->vm_file);
1579	int			ret;
1580
1581	trace_xfs_filemap_fault(XFS_I(inode));
1582
1583	/* DAX can shortcut the normal fault path on write faults! */
1584	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1585		return xfs_filemap_page_mkwrite(vma, vmf);
1586
1587	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1588	if (IS_DAX(inode)) {
1589		/*
1590		 * we do not want to trigger unwritten extent conversion on read
1591		 * faults - that is unnecessary overhead and would also require
1592		 * changes to xfs_get_blocks_direct() to map unwritten extent
1593		 * ioend for conversion on read-only mappings.
1594		 */
1595		ret = __dax_fault(vma, vmf, xfs_get_blocks_dax_fault, NULL);
1596	} else
1597		ret = filemap_fault(vma, vmf);
1598	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1599
1600	return ret;
1601}
1602
1603/*
1604 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1605 * both read and write faults. Hence we need to handle both cases. There is no
1606 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1607 * handle both cases here. @flags carries the information on the type of fault
1608 * occuring.
1609 */
1610STATIC int
1611xfs_filemap_pmd_fault(
1612	struct vm_area_struct	*vma,
1613	unsigned long		addr,
1614	pmd_t			*pmd,
1615	unsigned int		flags)
1616{
1617	struct inode		*inode = file_inode(vma->vm_file);
1618	struct xfs_inode	*ip = XFS_I(inode);
1619	int			ret;
1620
1621	if (!IS_DAX(inode))
1622		return VM_FAULT_FALLBACK;
1623
1624	trace_xfs_filemap_pmd_fault(ip);
1625
1626	if (flags & FAULT_FLAG_WRITE) {
1627		sb_start_pagefault(inode->i_sb);
1628		file_update_time(vma->vm_file);
1629	}
1630
1631	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1632	ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault,
1633			      NULL);
1634	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1635
1636	if (flags & FAULT_FLAG_WRITE)
1637		sb_end_pagefault(inode->i_sb);
1638
1639	return ret;
1640}
1641
1642/*
1643 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1644 * updates on write faults. In reality, it's need to serialise against
1645 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1646 * to ensure we serialise the fault barrier in place.
1647 */
1648static int
1649xfs_filemap_pfn_mkwrite(
1650	struct vm_area_struct	*vma,
1651	struct vm_fault		*vmf)
1652{
1653
1654	struct inode		*inode = file_inode(vma->vm_file);
1655	struct xfs_inode	*ip = XFS_I(inode);
1656	int			ret = VM_FAULT_NOPAGE;
1657	loff_t			size;
1658
1659	trace_xfs_filemap_pfn_mkwrite(ip);
1660
1661	sb_start_pagefault(inode->i_sb);
1662	file_update_time(vma->vm_file);
1663
1664	/* check if the faulting page hasn't raced with truncate */
1665	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1666	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1667	if (vmf->pgoff >= size)
1668		ret = VM_FAULT_SIGBUS;
1669	else if (IS_DAX(inode))
1670		ret = dax_pfn_mkwrite(vma, vmf);
1671	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1672	sb_end_pagefault(inode->i_sb);
1673	return ret;
1674
1675}
1676
1677static const struct vm_operations_struct xfs_file_vm_ops = {
1678	.fault		= xfs_filemap_fault,
1679	.pmd_fault	= xfs_filemap_pmd_fault,
1680	.map_pages	= filemap_map_pages,
1681	.page_mkwrite	= xfs_filemap_page_mkwrite,
1682	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1683};
1684
1685STATIC int
1686xfs_file_mmap(
1687	struct file	*filp,
1688	struct vm_area_struct *vma)
1689{
1690	file_accessed(filp);
1691	vma->vm_ops = &xfs_file_vm_ops;
1692	if (IS_DAX(file_inode(filp)))
1693		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1694	return 0;
1695}
1696
1697const struct file_operations xfs_file_operations = {
1698	.llseek		= xfs_file_llseek,
1699	.read_iter	= xfs_file_read_iter,
1700	.write_iter	= xfs_file_write_iter,
 
 
1701	.splice_read	= xfs_file_splice_read,
1702	.splice_write	= iter_file_splice_write,
1703	.unlocked_ioctl	= xfs_file_ioctl,
1704#ifdef CONFIG_COMPAT
1705	.compat_ioctl	= xfs_file_compat_ioctl,
1706#endif
1707	.mmap		= xfs_file_mmap,
1708	.open		= xfs_file_open,
1709	.release	= xfs_file_release,
1710	.fsync		= xfs_file_fsync,
1711	.fallocate	= xfs_file_fallocate,
1712};
1713
1714const struct file_operations xfs_dir_file_operations = {
1715	.open		= xfs_dir_open,
1716	.read		= generic_read_dir,
1717	.iterate	= xfs_file_readdir,
1718	.llseek		= generic_file_llseek,
1719	.unlocked_ioctl	= xfs_file_ioctl,
1720#ifdef CONFIG_COMPAT
1721	.compat_ioctl	= xfs_file_compat_ioctl,
1722#endif
1723	.fsync		= xfs_dir_fsync,
 
 
 
 
 
1724};