Loading...
1/*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/kernel.h>
12#include <linux/init.h>
13#include <linux/clk.h>
14#include <linux/module.h>
15#include <linux/platform_device.h>
16#include <linux/delay.h>
17#include <linux/dma-mapping.h>
18#include <linux/err.h>
19#include <linux/interrupt.h>
20#include <linux/spi/spi.h>
21#include <linux/slab.h>
22
23#include <asm/io.h>
24#include <mach/board.h>
25#include <mach/gpio.h>
26#include <mach/cpu.h>
27
28/* SPI register offsets */
29#define SPI_CR 0x0000
30#define SPI_MR 0x0004
31#define SPI_RDR 0x0008
32#define SPI_TDR 0x000c
33#define SPI_SR 0x0010
34#define SPI_IER 0x0014
35#define SPI_IDR 0x0018
36#define SPI_IMR 0x001c
37#define SPI_CSR0 0x0030
38#define SPI_CSR1 0x0034
39#define SPI_CSR2 0x0038
40#define SPI_CSR3 0x003c
41#define SPI_RPR 0x0100
42#define SPI_RCR 0x0104
43#define SPI_TPR 0x0108
44#define SPI_TCR 0x010c
45#define SPI_RNPR 0x0110
46#define SPI_RNCR 0x0114
47#define SPI_TNPR 0x0118
48#define SPI_TNCR 0x011c
49#define SPI_PTCR 0x0120
50#define SPI_PTSR 0x0124
51
52/* Bitfields in CR */
53#define SPI_SPIEN_OFFSET 0
54#define SPI_SPIEN_SIZE 1
55#define SPI_SPIDIS_OFFSET 1
56#define SPI_SPIDIS_SIZE 1
57#define SPI_SWRST_OFFSET 7
58#define SPI_SWRST_SIZE 1
59#define SPI_LASTXFER_OFFSET 24
60#define SPI_LASTXFER_SIZE 1
61
62/* Bitfields in MR */
63#define SPI_MSTR_OFFSET 0
64#define SPI_MSTR_SIZE 1
65#define SPI_PS_OFFSET 1
66#define SPI_PS_SIZE 1
67#define SPI_PCSDEC_OFFSET 2
68#define SPI_PCSDEC_SIZE 1
69#define SPI_FDIV_OFFSET 3
70#define SPI_FDIV_SIZE 1
71#define SPI_MODFDIS_OFFSET 4
72#define SPI_MODFDIS_SIZE 1
73#define SPI_LLB_OFFSET 7
74#define SPI_LLB_SIZE 1
75#define SPI_PCS_OFFSET 16
76#define SPI_PCS_SIZE 4
77#define SPI_DLYBCS_OFFSET 24
78#define SPI_DLYBCS_SIZE 8
79
80/* Bitfields in RDR */
81#define SPI_RD_OFFSET 0
82#define SPI_RD_SIZE 16
83
84/* Bitfields in TDR */
85#define SPI_TD_OFFSET 0
86#define SPI_TD_SIZE 16
87
88/* Bitfields in SR */
89#define SPI_RDRF_OFFSET 0
90#define SPI_RDRF_SIZE 1
91#define SPI_TDRE_OFFSET 1
92#define SPI_TDRE_SIZE 1
93#define SPI_MODF_OFFSET 2
94#define SPI_MODF_SIZE 1
95#define SPI_OVRES_OFFSET 3
96#define SPI_OVRES_SIZE 1
97#define SPI_ENDRX_OFFSET 4
98#define SPI_ENDRX_SIZE 1
99#define SPI_ENDTX_OFFSET 5
100#define SPI_ENDTX_SIZE 1
101#define SPI_RXBUFF_OFFSET 6
102#define SPI_RXBUFF_SIZE 1
103#define SPI_TXBUFE_OFFSET 7
104#define SPI_TXBUFE_SIZE 1
105#define SPI_NSSR_OFFSET 8
106#define SPI_NSSR_SIZE 1
107#define SPI_TXEMPTY_OFFSET 9
108#define SPI_TXEMPTY_SIZE 1
109#define SPI_SPIENS_OFFSET 16
110#define SPI_SPIENS_SIZE 1
111
112/* Bitfields in CSR0 */
113#define SPI_CPOL_OFFSET 0
114#define SPI_CPOL_SIZE 1
115#define SPI_NCPHA_OFFSET 1
116#define SPI_NCPHA_SIZE 1
117#define SPI_CSAAT_OFFSET 3
118#define SPI_CSAAT_SIZE 1
119#define SPI_BITS_OFFSET 4
120#define SPI_BITS_SIZE 4
121#define SPI_SCBR_OFFSET 8
122#define SPI_SCBR_SIZE 8
123#define SPI_DLYBS_OFFSET 16
124#define SPI_DLYBS_SIZE 8
125#define SPI_DLYBCT_OFFSET 24
126#define SPI_DLYBCT_SIZE 8
127
128/* Bitfields in RCR */
129#define SPI_RXCTR_OFFSET 0
130#define SPI_RXCTR_SIZE 16
131
132/* Bitfields in TCR */
133#define SPI_TXCTR_OFFSET 0
134#define SPI_TXCTR_SIZE 16
135
136/* Bitfields in RNCR */
137#define SPI_RXNCR_OFFSET 0
138#define SPI_RXNCR_SIZE 16
139
140/* Bitfields in TNCR */
141#define SPI_TXNCR_OFFSET 0
142#define SPI_TXNCR_SIZE 16
143
144/* Bitfields in PTCR */
145#define SPI_RXTEN_OFFSET 0
146#define SPI_RXTEN_SIZE 1
147#define SPI_RXTDIS_OFFSET 1
148#define SPI_RXTDIS_SIZE 1
149#define SPI_TXTEN_OFFSET 8
150#define SPI_TXTEN_SIZE 1
151#define SPI_TXTDIS_OFFSET 9
152#define SPI_TXTDIS_SIZE 1
153
154/* Constants for BITS */
155#define SPI_BITS_8_BPT 0
156#define SPI_BITS_9_BPT 1
157#define SPI_BITS_10_BPT 2
158#define SPI_BITS_11_BPT 3
159#define SPI_BITS_12_BPT 4
160#define SPI_BITS_13_BPT 5
161#define SPI_BITS_14_BPT 6
162#define SPI_BITS_15_BPT 7
163#define SPI_BITS_16_BPT 8
164
165/* Bit manipulation macros */
166#define SPI_BIT(name) \
167 (1 << SPI_##name##_OFFSET)
168#define SPI_BF(name,value) \
169 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
170#define SPI_BFEXT(name,value) \
171 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
172#define SPI_BFINS(name,value,old) \
173 ( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
174 | SPI_BF(name,value))
175
176/* Register access macros */
177#define spi_readl(port,reg) \
178 __raw_readl((port)->regs + SPI_##reg)
179#define spi_writel(port,reg,value) \
180 __raw_writel((value), (port)->regs + SPI_##reg)
181
182
183/*
184 * The core SPI transfer engine just talks to a register bank to set up
185 * DMA transfers; transfer queue progress is driven by IRQs. The clock
186 * framework provides the base clock, subdivided for each spi_device.
187 */
188struct atmel_spi {
189 spinlock_t lock;
190
191 void __iomem *regs;
192 int irq;
193 struct clk *clk;
194 struct platform_device *pdev;
195 struct spi_device *stay;
196
197 u8 stopping;
198 struct list_head queue;
199 struct spi_transfer *current_transfer;
200 unsigned long current_remaining_bytes;
201 struct spi_transfer *next_transfer;
202 unsigned long next_remaining_bytes;
203
204 void *buffer;
205 dma_addr_t buffer_dma;
206};
207
208/* Controller-specific per-slave state */
209struct atmel_spi_device {
210 unsigned int npcs_pin;
211 u32 csr;
212};
213
214#define BUFFER_SIZE PAGE_SIZE
215#define INVALID_DMA_ADDRESS 0xffffffff
216
217/*
218 * Version 2 of the SPI controller has
219 * - CR.LASTXFER
220 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
221 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
222 * - SPI_CSRx.CSAAT
223 * - SPI_CSRx.SBCR allows faster clocking
224 *
225 * We can determine the controller version by reading the VERSION
226 * register, but I haven't checked that it exists on all chips, and
227 * this is cheaper anyway.
228 */
229static bool atmel_spi_is_v2(void)
230{
231 return !cpu_is_at91rm9200();
232}
233
234/*
235 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
236 * they assume that spi slave device state will not change on deselect, so
237 * that automagic deselection is OK. ("NPCSx rises if no data is to be
238 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
239 * controllers have CSAAT and friends.
240 *
241 * Since the CSAAT functionality is a bit weird on newer controllers as
242 * well, we use GPIO to control nCSx pins on all controllers, updating
243 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
244 * support active-high chipselects despite the controller's belief that
245 * only active-low devices/systems exists.
246 *
247 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
248 * right when driven with GPIO. ("Mode Fault does not allow more than one
249 * Master on Chip Select 0.") No workaround exists for that ... so for
250 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
251 * and (c) will trigger that first erratum in some cases.
252 *
253 * TODO: Test if the atmel_spi_is_v2() branch below works on
254 * AT91RM9200 if we use some other register than CSR0. However, don't
255 * do this unconditionally since AP7000 has an errata where the BITS
256 * field in CSR0 overrides all other CSRs.
257 */
258
259static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
260{
261 struct atmel_spi_device *asd = spi->controller_state;
262 unsigned active = spi->mode & SPI_CS_HIGH;
263 u32 mr;
264
265 if (atmel_spi_is_v2()) {
266 /*
267 * Always use CSR0. This ensures that the clock
268 * switches to the correct idle polarity before we
269 * toggle the CS.
270 */
271 spi_writel(as, CSR0, asd->csr);
272 spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
273 | SPI_BIT(MSTR));
274 mr = spi_readl(as, MR);
275 gpio_set_value(asd->npcs_pin, active);
276 } else {
277 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
278 int i;
279 u32 csr;
280
281 /* Make sure clock polarity is correct */
282 for (i = 0; i < spi->master->num_chipselect; i++) {
283 csr = spi_readl(as, CSR0 + 4 * i);
284 if ((csr ^ cpol) & SPI_BIT(CPOL))
285 spi_writel(as, CSR0 + 4 * i,
286 csr ^ SPI_BIT(CPOL));
287 }
288
289 mr = spi_readl(as, MR);
290 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
291 if (spi->chip_select != 0)
292 gpio_set_value(asd->npcs_pin, active);
293 spi_writel(as, MR, mr);
294 }
295
296 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
297 asd->npcs_pin, active ? " (high)" : "",
298 mr);
299}
300
301static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
302{
303 struct atmel_spi_device *asd = spi->controller_state;
304 unsigned active = spi->mode & SPI_CS_HIGH;
305 u32 mr;
306
307 /* only deactivate *this* device; sometimes transfers to
308 * another device may be active when this routine is called.
309 */
310 mr = spi_readl(as, MR);
311 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
312 mr = SPI_BFINS(PCS, 0xf, mr);
313 spi_writel(as, MR, mr);
314 }
315
316 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
317 asd->npcs_pin, active ? " (low)" : "",
318 mr);
319
320 if (atmel_spi_is_v2() || spi->chip_select != 0)
321 gpio_set_value(asd->npcs_pin, !active);
322}
323
324static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
325 struct spi_transfer *xfer)
326{
327 return msg->transfers.prev == &xfer->transfer_list;
328}
329
330static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
331{
332 return xfer->delay_usecs == 0 && !xfer->cs_change;
333}
334
335static void atmel_spi_next_xfer_data(struct spi_master *master,
336 struct spi_transfer *xfer,
337 dma_addr_t *tx_dma,
338 dma_addr_t *rx_dma,
339 u32 *plen)
340{
341 struct atmel_spi *as = spi_master_get_devdata(master);
342 u32 len = *plen;
343
344 /* use scratch buffer only when rx or tx data is unspecified */
345 if (xfer->rx_buf)
346 *rx_dma = xfer->rx_dma + xfer->len - *plen;
347 else {
348 *rx_dma = as->buffer_dma;
349 if (len > BUFFER_SIZE)
350 len = BUFFER_SIZE;
351 }
352 if (xfer->tx_buf)
353 *tx_dma = xfer->tx_dma + xfer->len - *plen;
354 else {
355 *tx_dma = as->buffer_dma;
356 if (len > BUFFER_SIZE)
357 len = BUFFER_SIZE;
358 memset(as->buffer, 0, len);
359 dma_sync_single_for_device(&as->pdev->dev,
360 as->buffer_dma, len, DMA_TO_DEVICE);
361 }
362
363 *plen = len;
364}
365
366/*
367 * Submit next transfer for DMA.
368 * lock is held, spi irq is blocked
369 */
370static void atmel_spi_next_xfer(struct spi_master *master,
371 struct spi_message *msg)
372{
373 struct atmel_spi *as = spi_master_get_devdata(master);
374 struct spi_transfer *xfer;
375 u32 len, remaining;
376 u32 ieval;
377 dma_addr_t tx_dma, rx_dma;
378
379 if (!as->current_transfer)
380 xfer = list_entry(msg->transfers.next,
381 struct spi_transfer, transfer_list);
382 else if (!as->next_transfer)
383 xfer = list_entry(as->current_transfer->transfer_list.next,
384 struct spi_transfer, transfer_list);
385 else
386 xfer = NULL;
387
388 if (xfer) {
389 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
390
391 len = xfer->len;
392 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
393 remaining = xfer->len - len;
394
395 spi_writel(as, RPR, rx_dma);
396 spi_writel(as, TPR, tx_dma);
397
398 if (msg->spi->bits_per_word > 8)
399 len >>= 1;
400 spi_writel(as, RCR, len);
401 spi_writel(as, TCR, len);
402
403 dev_dbg(&msg->spi->dev,
404 " start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
405 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
406 xfer->rx_buf, xfer->rx_dma);
407 } else {
408 xfer = as->next_transfer;
409 remaining = as->next_remaining_bytes;
410 }
411
412 as->current_transfer = xfer;
413 as->current_remaining_bytes = remaining;
414
415 if (remaining > 0)
416 len = remaining;
417 else if (!atmel_spi_xfer_is_last(msg, xfer)
418 && atmel_spi_xfer_can_be_chained(xfer)) {
419 xfer = list_entry(xfer->transfer_list.next,
420 struct spi_transfer, transfer_list);
421 len = xfer->len;
422 } else
423 xfer = NULL;
424
425 as->next_transfer = xfer;
426
427 if (xfer) {
428 u32 total;
429
430 total = len;
431 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
432 as->next_remaining_bytes = total - len;
433
434 spi_writel(as, RNPR, rx_dma);
435 spi_writel(as, TNPR, tx_dma);
436
437 if (msg->spi->bits_per_word > 8)
438 len >>= 1;
439 spi_writel(as, RNCR, len);
440 spi_writel(as, TNCR, len);
441
442 dev_dbg(&msg->spi->dev,
443 " next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
444 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
445 xfer->rx_buf, xfer->rx_dma);
446 ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
447 } else {
448 spi_writel(as, RNCR, 0);
449 spi_writel(as, TNCR, 0);
450 ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
451 }
452
453 /* REVISIT: We're waiting for ENDRX before we start the next
454 * transfer because we need to handle some difficult timing
455 * issues otherwise. If we wait for ENDTX in one transfer and
456 * then starts waiting for ENDRX in the next, it's difficult
457 * to tell the difference between the ENDRX interrupt we're
458 * actually waiting for and the ENDRX interrupt of the
459 * previous transfer.
460 *
461 * It should be doable, though. Just not now...
462 */
463 spi_writel(as, IER, ieval);
464 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
465}
466
467static void atmel_spi_next_message(struct spi_master *master)
468{
469 struct atmel_spi *as = spi_master_get_devdata(master);
470 struct spi_message *msg;
471 struct spi_device *spi;
472
473 BUG_ON(as->current_transfer);
474
475 msg = list_entry(as->queue.next, struct spi_message, queue);
476 spi = msg->spi;
477
478 dev_dbg(master->dev.parent, "start message %p for %s\n",
479 msg, dev_name(&spi->dev));
480
481 /* select chip if it's not still active */
482 if (as->stay) {
483 if (as->stay != spi) {
484 cs_deactivate(as, as->stay);
485 cs_activate(as, spi);
486 }
487 as->stay = NULL;
488 } else
489 cs_activate(as, spi);
490
491 atmel_spi_next_xfer(master, msg);
492}
493
494/*
495 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
496 * - The buffer is either valid for CPU access, else NULL
497 * - If the buffer is valid, so is its DMA address
498 *
499 * This driver manages the dma address unless message->is_dma_mapped.
500 */
501static int
502atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
503{
504 struct device *dev = &as->pdev->dev;
505
506 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
507 if (xfer->tx_buf) {
508 /* tx_buf is a const void* where we need a void * for the dma
509 * mapping */
510 void *nonconst_tx = (void *)xfer->tx_buf;
511
512 xfer->tx_dma = dma_map_single(dev,
513 nonconst_tx, xfer->len,
514 DMA_TO_DEVICE);
515 if (dma_mapping_error(dev, xfer->tx_dma))
516 return -ENOMEM;
517 }
518 if (xfer->rx_buf) {
519 xfer->rx_dma = dma_map_single(dev,
520 xfer->rx_buf, xfer->len,
521 DMA_FROM_DEVICE);
522 if (dma_mapping_error(dev, xfer->rx_dma)) {
523 if (xfer->tx_buf)
524 dma_unmap_single(dev,
525 xfer->tx_dma, xfer->len,
526 DMA_TO_DEVICE);
527 return -ENOMEM;
528 }
529 }
530 return 0;
531}
532
533static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
534 struct spi_transfer *xfer)
535{
536 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
537 dma_unmap_single(master->dev.parent, xfer->tx_dma,
538 xfer->len, DMA_TO_DEVICE);
539 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
540 dma_unmap_single(master->dev.parent, xfer->rx_dma,
541 xfer->len, DMA_FROM_DEVICE);
542}
543
544static void
545atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
546 struct spi_message *msg, int status, int stay)
547{
548 if (!stay || status < 0)
549 cs_deactivate(as, msg->spi);
550 else
551 as->stay = msg->spi;
552
553 list_del(&msg->queue);
554 msg->status = status;
555
556 dev_dbg(master->dev.parent,
557 "xfer complete: %u bytes transferred\n",
558 msg->actual_length);
559
560 spin_unlock(&as->lock);
561 msg->complete(msg->context);
562 spin_lock(&as->lock);
563
564 as->current_transfer = NULL;
565 as->next_transfer = NULL;
566
567 /* continue if needed */
568 if (list_empty(&as->queue) || as->stopping)
569 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
570 else
571 atmel_spi_next_message(master);
572}
573
574static irqreturn_t
575atmel_spi_interrupt(int irq, void *dev_id)
576{
577 struct spi_master *master = dev_id;
578 struct atmel_spi *as = spi_master_get_devdata(master);
579 struct spi_message *msg;
580 struct spi_transfer *xfer;
581 u32 status, pending, imr;
582 int ret = IRQ_NONE;
583
584 spin_lock(&as->lock);
585
586 xfer = as->current_transfer;
587 msg = list_entry(as->queue.next, struct spi_message, queue);
588
589 imr = spi_readl(as, IMR);
590 status = spi_readl(as, SR);
591 pending = status & imr;
592
593 if (pending & SPI_BIT(OVRES)) {
594 int timeout;
595
596 ret = IRQ_HANDLED;
597
598 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
599 | SPI_BIT(OVRES)));
600
601 /*
602 * When we get an overrun, we disregard the current
603 * transfer. Data will not be copied back from any
604 * bounce buffer and msg->actual_len will not be
605 * updated with the last xfer.
606 *
607 * We will also not process any remaning transfers in
608 * the message.
609 *
610 * First, stop the transfer and unmap the DMA buffers.
611 */
612 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
613 if (!msg->is_dma_mapped)
614 atmel_spi_dma_unmap_xfer(master, xfer);
615
616 /* REVISIT: udelay in irq is unfriendly */
617 if (xfer->delay_usecs)
618 udelay(xfer->delay_usecs);
619
620 dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
621 spi_readl(as, TCR), spi_readl(as, RCR));
622
623 /*
624 * Clean up DMA registers and make sure the data
625 * registers are empty.
626 */
627 spi_writel(as, RNCR, 0);
628 spi_writel(as, TNCR, 0);
629 spi_writel(as, RCR, 0);
630 spi_writel(as, TCR, 0);
631 for (timeout = 1000; timeout; timeout--)
632 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
633 break;
634 if (!timeout)
635 dev_warn(master->dev.parent,
636 "timeout waiting for TXEMPTY");
637 while (spi_readl(as, SR) & SPI_BIT(RDRF))
638 spi_readl(as, RDR);
639
640 /* Clear any overrun happening while cleaning up */
641 spi_readl(as, SR);
642
643 atmel_spi_msg_done(master, as, msg, -EIO, 0);
644 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
645 ret = IRQ_HANDLED;
646
647 spi_writel(as, IDR, pending);
648
649 if (as->current_remaining_bytes == 0) {
650 msg->actual_length += xfer->len;
651
652 if (!msg->is_dma_mapped)
653 atmel_spi_dma_unmap_xfer(master, xfer);
654
655 /* REVISIT: udelay in irq is unfriendly */
656 if (xfer->delay_usecs)
657 udelay(xfer->delay_usecs);
658
659 if (atmel_spi_xfer_is_last(msg, xfer)) {
660 /* report completed message */
661 atmel_spi_msg_done(master, as, msg, 0,
662 xfer->cs_change);
663 } else {
664 if (xfer->cs_change) {
665 cs_deactivate(as, msg->spi);
666 udelay(1);
667 cs_activate(as, msg->spi);
668 }
669
670 /*
671 * Not done yet. Submit the next transfer.
672 *
673 * FIXME handle protocol options for xfer
674 */
675 atmel_spi_next_xfer(master, msg);
676 }
677 } else {
678 /*
679 * Keep going, we still have data to send in
680 * the current transfer.
681 */
682 atmel_spi_next_xfer(master, msg);
683 }
684 }
685
686 spin_unlock(&as->lock);
687
688 return ret;
689}
690
691static int atmel_spi_setup(struct spi_device *spi)
692{
693 struct atmel_spi *as;
694 struct atmel_spi_device *asd;
695 u32 scbr, csr;
696 unsigned int bits = spi->bits_per_word;
697 unsigned long bus_hz;
698 unsigned int npcs_pin;
699 int ret;
700
701 as = spi_master_get_devdata(spi->master);
702
703 if (as->stopping)
704 return -ESHUTDOWN;
705
706 if (spi->chip_select > spi->master->num_chipselect) {
707 dev_dbg(&spi->dev,
708 "setup: invalid chipselect %u (%u defined)\n",
709 spi->chip_select, spi->master->num_chipselect);
710 return -EINVAL;
711 }
712
713 if (bits < 8 || bits > 16) {
714 dev_dbg(&spi->dev,
715 "setup: invalid bits_per_word %u (8 to 16)\n",
716 bits);
717 return -EINVAL;
718 }
719
720 /* see notes above re chipselect */
721 if (!atmel_spi_is_v2()
722 && spi->chip_select == 0
723 && (spi->mode & SPI_CS_HIGH)) {
724 dev_dbg(&spi->dev, "setup: can't be active-high\n");
725 return -EINVAL;
726 }
727
728 /* v1 chips start out at half the peripheral bus speed. */
729 bus_hz = clk_get_rate(as->clk);
730 if (!atmel_spi_is_v2())
731 bus_hz /= 2;
732
733 if (spi->max_speed_hz) {
734 /*
735 * Calculate the lowest divider that satisfies the
736 * constraint, assuming div32/fdiv/mbz == 0.
737 */
738 scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
739
740 /*
741 * If the resulting divider doesn't fit into the
742 * register bitfield, we can't satisfy the constraint.
743 */
744 if (scbr >= (1 << SPI_SCBR_SIZE)) {
745 dev_dbg(&spi->dev,
746 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
747 spi->max_speed_hz, scbr, bus_hz/255);
748 return -EINVAL;
749 }
750 } else
751 /* speed zero means "as slow as possible" */
752 scbr = 0xff;
753
754 csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
755 if (spi->mode & SPI_CPOL)
756 csr |= SPI_BIT(CPOL);
757 if (!(spi->mode & SPI_CPHA))
758 csr |= SPI_BIT(NCPHA);
759
760 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
761 *
762 * DLYBCT would add delays between words, slowing down transfers.
763 * It could potentially be useful to cope with DMA bottlenecks, but
764 * in those cases it's probably best to just use a lower bitrate.
765 */
766 csr |= SPI_BF(DLYBS, 0);
767 csr |= SPI_BF(DLYBCT, 0);
768
769 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
770 npcs_pin = (unsigned int)spi->controller_data;
771 asd = spi->controller_state;
772 if (!asd) {
773 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
774 if (!asd)
775 return -ENOMEM;
776
777 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
778 if (ret) {
779 kfree(asd);
780 return ret;
781 }
782
783 asd->npcs_pin = npcs_pin;
784 spi->controller_state = asd;
785 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
786 } else {
787 unsigned long flags;
788
789 spin_lock_irqsave(&as->lock, flags);
790 if (as->stay == spi)
791 as->stay = NULL;
792 cs_deactivate(as, spi);
793 spin_unlock_irqrestore(&as->lock, flags);
794 }
795
796 asd->csr = csr;
797
798 dev_dbg(&spi->dev,
799 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
800 bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
801
802 if (!atmel_spi_is_v2())
803 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
804
805 return 0;
806}
807
808static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
809{
810 struct atmel_spi *as;
811 struct spi_transfer *xfer;
812 unsigned long flags;
813 struct device *controller = spi->master->dev.parent;
814 u8 bits;
815 struct atmel_spi_device *asd;
816
817 as = spi_master_get_devdata(spi->master);
818
819 dev_dbg(controller, "new message %p submitted for %s\n",
820 msg, dev_name(&spi->dev));
821
822 if (unlikely(list_empty(&msg->transfers)))
823 return -EINVAL;
824
825 if (as->stopping)
826 return -ESHUTDOWN;
827
828 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
829 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
830 dev_dbg(&spi->dev, "missing rx or tx buf\n");
831 return -EINVAL;
832 }
833
834 if (xfer->bits_per_word) {
835 asd = spi->controller_state;
836 bits = (asd->csr >> 4) & 0xf;
837 if (bits != xfer->bits_per_word - 8) {
838 dev_dbg(&spi->dev, "you can't yet change "
839 "bits_per_word in transfers\n");
840 return -ENOPROTOOPT;
841 }
842 }
843
844 /* FIXME implement these protocol options!! */
845 if (xfer->speed_hz) {
846 dev_dbg(&spi->dev, "no protocol options yet\n");
847 return -ENOPROTOOPT;
848 }
849
850 /*
851 * DMA map early, for performance (empties dcache ASAP) and
852 * better fault reporting. This is a DMA-only driver.
853 *
854 * NOTE that if dma_unmap_single() ever starts to do work on
855 * platforms supported by this driver, we would need to clean
856 * up mappings for previously-mapped transfers.
857 */
858 if (!msg->is_dma_mapped) {
859 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
860 return -ENOMEM;
861 }
862 }
863
864#ifdef VERBOSE
865 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
866 dev_dbg(controller,
867 " xfer %p: len %u tx %p/%08x rx %p/%08x\n",
868 xfer, xfer->len,
869 xfer->tx_buf, xfer->tx_dma,
870 xfer->rx_buf, xfer->rx_dma);
871 }
872#endif
873
874 msg->status = -EINPROGRESS;
875 msg->actual_length = 0;
876
877 spin_lock_irqsave(&as->lock, flags);
878 list_add_tail(&msg->queue, &as->queue);
879 if (!as->current_transfer)
880 atmel_spi_next_message(spi->master);
881 spin_unlock_irqrestore(&as->lock, flags);
882
883 return 0;
884}
885
886static void atmel_spi_cleanup(struct spi_device *spi)
887{
888 struct atmel_spi *as = spi_master_get_devdata(spi->master);
889 struct atmel_spi_device *asd = spi->controller_state;
890 unsigned gpio = (unsigned) spi->controller_data;
891 unsigned long flags;
892
893 if (!asd)
894 return;
895
896 spin_lock_irqsave(&as->lock, flags);
897 if (as->stay == spi) {
898 as->stay = NULL;
899 cs_deactivate(as, spi);
900 }
901 spin_unlock_irqrestore(&as->lock, flags);
902
903 spi->controller_state = NULL;
904 gpio_free(gpio);
905 kfree(asd);
906}
907
908/*-------------------------------------------------------------------------*/
909
910static int __init atmel_spi_probe(struct platform_device *pdev)
911{
912 struct resource *regs;
913 int irq;
914 struct clk *clk;
915 int ret;
916 struct spi_master *master;
917 struct atmel_spi *as;
918
919 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
920 if (!regs)
921 return -ENXIO;
922
923 irq = platform_get_irq(pdev, 0);
924 if (irq < 0)
925 return irq;
926
927 clk = clk_get(&pdev->dev, "spi_clk");
928 if (IS_ERR(clk))
929 return PTR_ERR(clk);
930
931 /* setup spi core then atmel-specific driver state */
932 ret = -ENOMEM;
933 master = spi_alloc_master(&pdev->dev, sizeof *as);
934 if (!master)
935 goto out_free;
936
937 /* the spi->mode bits understood by this driver: */
938 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
939
940 master->bus_num = pdev->id;
941 master->num_chipselect = 4;
942 master->setup = atmel_spi_setup;
943 master->transfer = atmel_spi_transfer;
944 master->cleanup = atmel_spi_cleanup;
945 platform_set_drvdata(pdev, master);
946
947 as = spi_master_get_devdata(master);
948
949 /*
950 * Scratch buffer is used for throwaway rx and tx data.
951 * It's coherent to minimize dcache pollution.
952 */
953 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
954 &as->buffer_dma, GFP_KERNEL);
955 if (!as->buffer)
956 goto out_free;
957
958 spin_lock_init(&as->lock);
959 INIT_LIST_HEAD(&as->queue);
960 as->pdev = pdev;
961 as->regs = ioremap(regs->start, resource_size(regs));
962 if (!as->regs)
963 goto out_free_buffer;
964 as->irq = irq;
965 as->clk = clk;
966
967 ret = request_irq(irq, atmel_spi_interrupt, 0,
968 dev_name(&pdev->dev), master);
969 if (ret)
970 goto out_unmap_regs;
971
972 /* Initialize the hardware */
973 clk_enable(clk);
974 spi_writel(as, CR, SPI_BIT(SWRST));
975 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
976 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
977 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
978 spi_writel(as, CR, SPI_BIT(SPIEN));
979
980 /* go! */
981 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
982 (unsigned long)regs->start, irq);
983
984 ret = spi_register_master(master);
985 if (ret)
986 goto out_reset_hw;
987
988 return 0;
989
990out_reset_hw:
991 spi_writel(as, CR, SPI_BIT(SWRST));
992 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
993 clk_disable(clk);
994 free_irq(irq, master);
995out_unmap_regs:
996 iounmap(as->regs);
997out_free_buffer:
998 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
999 as->buffer_dma);
1000out_free:
1001 clk_put(clk);
1002 spi_master_put(master);
1003 return ret;
1004}
1005
1006static int __exit atmel_spi_remove(struct platform_device *pdev)
1007{
1008 struct spi_master *master = platform_get_drvdata(pdev);
1009 struct atmel_spi *as = spi_master_get_devdata(master);
1010 struct spi_message *msg;
1011
1012 /* reset the hardware and block queue progress */
1013 spin_lock_irq(&as->lock);
1014 as->stopping = 1;
1015 spi_writel(as, CR, SPI_BIT(SWRST));
1016 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1017 spi_readl(as, SR);
1018 spin_unlock_irq(&as->lock);
1019
1020 /* Terminate remaining queued transfers */
1021 list_for_each_entry(msg, &as->queue, queue) {
1022 /* REVISIT unmapping the dma is a NOP on ARM and AVR32
1023 * but we shouldn't depend on that...
1024 */
1025 msg->status = -ESHUTDOWN;
1026 msg->complete(msg->context);
1027 }
1028
1029 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1030 as->buffer_dma);
1031
1032 clk_disable(as->clk);
1033 clk_put(as->clk);
1034 free_irq(as->irq, master);
1035 iounmap(as->regs);
1036
1037 spi_unregister_master(master);
1038
1039 return 0;
1040}
1041
1042#ifdef CONFIG_PM
1043
1044static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
1045{
1046 struct spi_master *master = platform_get_drvdata(pdev);
1047 struct atmel_spi *as = spi_master_get_devdata(master);
1048
1049 clk_disable(as->clk);
1050 return 0;
1051}
1052
1053static int atmel_spi_resume(struct platform_device *pdev)
1054{
1055 struct spi_master *master = platform_get_drvdata(pdev);
1056 struct atmel_spi *as = spi_master_get_devdata(master);
1057
1058 clk_enable(as->clk);
1059 return 0;
1060}
1061
1062#else
1063#define atmel_spi_suspend NULL
1064#define atmel_spi_resume NULL
1065#endif
1066
1067
1068static struct platform_driver atmel_spi_driver = {
1069 .driver = {
1070 .name = "atmel_spi",
1071 .owner = THIS_MODULE,
1072 },
1073 .suspend = atmel_spi_suspend,
1074 .resume = atmel_spi_resume,
1075 .remove = __exit_p(atmel_spi_remove),
1076};
1077
1078static int __init atmel_spi_init(void)
1079{
1080 return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe);
1081}
1082module_init(atmel_spi_init);
1083
1084static void __exit atmel_spi_exit(void)
1085{
1086 platform_driver_unregister(&atmel_spi_driver);
1087}
1088module_exit(atmel_spi_exit);
1089
1090MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1091MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1092MODULE_LICENSE("GPL");
1093MODULE_ALIAS("platform:atmel_spi");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
4 *
5 * Copyright (C) 2006 Atmel Corporation
6 */
7
8#include <linux/kernel.h>
9#include <linux/clk.h>
10#include <linux/module.h>
11#include <linux/platform_device.h>
12#include <linux/delay.h>
13#include <linux/dma-mapping.h>
14#include <linux/dmaengine.h>
15#include <linux/err.h>
16#include <linux/interrupt.h>
17#include <linux/spi/spi.h>
18#include <linux/slab.h>
19#include <linux/platform_data/dma-atmel.h>
20#include <linux/of.h>
21
22#include <linux/io.h>
23#include <linux/gpio/consumer.h>
24#include <linux/pinctrl/consumer.h>
25#include <linux/pm_runtime.h>
26#include <trace/events/spi.h>
27
28/* SPI register offsets */
29#define SPI_CR 0x0000
30#define SPI_MR 0x0004
31#define SPI_RDR 0x0008
32#define SPI_TDR 0x000c
33#define SPI_SR 0x0010
34#define SPI_IER 0x0014
35#define SPI_IDR 0x0018
36#define SPI_IMR 0x001c
37#define SPI_CSR0 0x0030
38#define SPI_CSR1 0x0034
39#define SPI_CSR2 0x0038
40#define SPI_CSR3 0x003c
41#define SPI_FMR 0x0040
42#define SPI_FLR 0x0044
43#define SPI_VERSION 0x00fc
44#define SPI_RPR 0x0100
45#define SPI_RCR 0x0104
46#define SPI_TPR 0x0108
47#define SPI_TCR 0x010c
48#define SPI_RNPR 0x0110
49#define SPI_RNCR 0x0114
50#define SPI_TNPR 0x0118
51#define SPI_TNCR 0x011c
52#define SPI_PTCR 0x0120
53#define SPI_PTSR 0x0124
54
55/* Bitfields in CR */
56#define SPI_SPIEN_OFFSET 0
57#define SPI_SPIEN_SIZE 1
58#define SPI_SPIDIS_OFFSET 1
59#define SPI_SPIDIS_SIZE 1
60#define SPI_SWRST_OFFSET 7
61#define SPI_SWRST_SIZE 1
62#define SPI_LASTXFER_OFFSET 24
63#define SPI_LASTXFER_SIZE 1
64#define SPI_TXFCLR_OFFSET 16
65#define SPI_TXFCLR_SIZE 1
66#define SPI_RXFCLR_OFFSET 17
67#define SPI_RXFCLR_SIZE 1
68#define SPI_FIFOEN_OFFSET 30
69#define SPI_FIFOEN_SIZE 1
70#define SPI_FIFODIS_OFFSET 31
71#define SPI_FIFODIS_SIZE 1
72
73/* Bitfields in MR */
74#define SPI_MSTR_OFFSET 0
75#define SPI_MSTR_SIZE 1
76#define SPI_PS_OFFSET 1
77#define SPI_PS_SIZE 1
78#define SPI_PCSDEC_OFFSET 2
79#define SPI_PCSDEC_SIZE 1
80#define SPI_FDIV_OFFSET 3
81#define SPI_FDIV_SIZE 1
82#define SPI_MODFDIS_OFFSET 4
83#define SPI_MODFDIS_SIZE 1
84#define SPI_WDRBT_OFFSET 5
85#define SPI_WDRBT_SIZE 1
86#define SPI_LLB_OFFSET 7
87#define SPI_LLB_SIZE 1
88#define SPI_PCS_OFFSET 16
89#define SPI_PCS_SIZE 4
90#define SPI_DLYBCS_OFFSET 24
91#define SPI_DLYBCS_SIZE 8
92
93/* Bitfields in RDR */
94#define SPI_RD_OFFSET 0
95#define SPI_RD_SIZE 16
96
97/* Bitfields in TDR */
98#define SPI_TD_OFFSET 0
99#define SPI_TD_SIZE 16
100
101/* Bitfields in SR */
102#define SPI_RDRF_OFFSET 0
103#define SPI_RDRF_SIZE 1
104#define SPI_TDRE_OFFSET 1
105#define SPI_TDRE_SIZE 1
106#define SPI_MODF_OFFSET 2
107#define SPI_MODF_SIZE 1
108#define SPI_OVRES_OFFSET 3
109#define SPI_OVRES_SIZE 1
110#define SPI_ENDRX_OFFSET 4
111#define SPI_ENDRX_SIZE 1
112#define SPI_ENDTX_OFFSET 5
113#define SPI_ENDTX_SIZE 1
114#define SPI_RXBUFF_OFFSET 6
115#define SPI_RXBUFF_SIZE 1
116#define SPI_TXBUFE_OFFSET 7
117#define SPI_TXBUFE_SIZE 1
118#define SPI_NSSR_OFFSET 8
119#define SPI_NSSR_SIZE 1
120#define SPI_TXEMPTY_OFFSET 9
121#define SPI_TXEMPTY_SIZE 1
122#define SPI_SPIENS_OFFSET 16
123#define SPI_SPIENS_SIZE 1
124#define SPI_TXFEF_OFFSET 24
125#define SPI_TXFEF_SIZE 1
126#define SPI_TXFFF_OFFSET 25
127#define SPI_TXFFF_SIZE 1
128#define SPI_TXFTHF_OFFSET 26
129#define SPI_TXFTHF_SIZE 1
130#define SPI_RXFEF_OFFSET 27
131#define SPI_RXFEF_SIZE 1
132#define SPI_RXFFF_OFFSET 28
133#define SPI_RXFFF_SIZE 1
134#define SPI_RXFTHF_OFFSET 29
135#define SPI_RXFTHF_SIZE 1
136#define SPI_TXFPTEF_OFFSET 30
137#define SPI_TXFPTEF_SIZE 1
138#define SPI_RXFPTEF_OFFSET 31
139#define SPI_RXFPTEF_SIZE 1
140
141/* Bitfields in CSR0 */
142#define SPI_CPOL_OFFSET 0
143#define SPI_CPOL_SIZE 1
144#define SPI_NCPHA_OFFSET 1
145#define SPI_NCPHA_SIZE 1
146#define SPI_CSAAT_OFFSET 3
147#define SPI_CSAAT_SIZE 1
148#define SPI_BITS_OFFSET 4
149#define SPI_BITS_SIZE 4
150#define SPI_SCBR_OFFSET 8
151#define SPI_SCBR_SIZE 8
152#define SPI_DLYBS_OFFSET 16
153#define SPI_DLYBS_SIZE 8
154#define SPI_DLYBCT_OFFSET 24
155#define SPI_DLYBCT_SIZE 8
156
157/* Bitfields in RCR */
158#define SPI_RXCTR_OFFSET 0
159#define SPI_RXCTR_SIZE 16
160
161/* Bitfields in TCR */
162#define SPI_TXCTR_OFFSET 0
163#define SPI_TXCTR_SIZE 16
164
165/* Bitfields in RNCR */
166#define SPI_RXNCR_OFFSET 0
167#define SPI_RXNCR_SIZE 16
168
169/* Bitfields in TNCR */
170#define SPI_TXNCR_OFFSET 0
171#define SPI_TXNCR_SIZE 16
172
173/* Bitfields in PTCR */
174#define SPI_RXTEN_OFFSET 0
175#define SPI_RXTEN_SIZE 1
176#define SPI_RXTDIS_OFFSET 1
177#define SPI_RXTDIS_SIZE 1
178#define SPI_TXTEN_OFFSET 8
179#define SPI_TXTEN_SIZE 1
180#define SPI_TXTDIS_OFFSET 9
181#define SPI_TXTDIS_SIZE 1
182
183/* Bitfields in FMR */
184#define SPI_TXRDYM_OFFSET 0
185#define SPI_TXRDYM_SIZE 2
186#define SPI_RXRDYM_OFFSET 4
187#define SPI_RXRDYM_SIZE 2
188#define SPI_TXFTHRES_OFFSET 16
189#define SPI_TXFTHRES_SIZE 6
190#define SPI_RXFTHRES_OFFSET 24
191#define SPI_RXFTHRES_SIZE 6
192
193/* Bitfields in FLR */
194#define SPI_TXFL_OFFSET 0
195#define SPI_TXFL_SIZE 6
196#define SPI_RXFL_OFFSET 16
197#define SPI_RXFL_SIZE 6
198
199/* Constants for BITS */
200#define SPI_BITS_8_BPT 0
201#define SPI_BITS_9_BPT 1
202#define SPI_BITS_10_BPT 2
203#define SPI_BITS_11_BPT 3
204#define SPI_BITS_12_BPT 4
205#define SPI_BITS_13_BPT 5
206#define SPI_BITS_14_BPT 6
207#define SPI_BITS_15_BPT 7
208#define SPI_BITS_16_BPT 8
209#define SPI_ONE_DATA 0
210#define SPI_TWO_DATA 1
211#define SPI_FOUR_DATA 2
212
213/* Bit manipulation macros */
214#define SPI_BIT(name) \
215 (1 << SPI_##name##_OFFSET)
216#define SPI_BF(name, value) \
217 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218#define SPI_BFEXT(name, value) \
219 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220#define SPI_BFINS(name, value, old) \
221 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222 | SPI_BF(name, value))
223
224/* Register access macros */
225#ifdef CONFIG_AVR32
226#define spi_readl(port, reg) \
227 __raw_readl((port)->regs + SPI_##reg)
228#define spi_writel(port, reg, value) \
229 __raw_writel((value), (port)->regs + SPI_##reg)
230
231#define spi_readw(port, reg) \
232 __raw_readw((port)->regs + SPI_##reg)
233#define spi_writew(port, reg, value) \
234 __raw_writew((value), (port)->regs + SPI_##reg)
235
236#define spi_readb(port, reg) \
237 __raw_readb((port)->regs + SPI_##reg)
238#define spi_writeb(port, reg, value) \
239 __raw_writeb((value), (port)->regs + SPI_##reg)
240#else
241#define spi_readl(port, reg) \
242 readl_relaxed((port)->regs + SPI_##reg)
243#define spi_writel(port, reg, value) \
244 writel_relaxed((value), (port)->regs + SPI_##reg)
245
246#define spi_readw(port, reg) \
247 readw_relaxed((port)->regs + SPI_##reg)
248#define spi_writew(port, reg, value) \
249 writew_relaxed((value), (port)->regs + SPI_##reg)
250
251#define spi_readb(port, reg) \
252 readb_relaxed((port)->regs + SPI_##reg)
253#define spi_writeb(port, reg, value) \
254 writeb_relaxed((value), (port)->regs + SPI_##reg)
255#endif
256/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
257 * cache operations; better heuristics consider wordsize and bitrate.
258 */
259#define DMA_MIN_BYTES 16
260
261#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
262
263#define AUTOSUSPEND_TIMEOUT 2000
264
265struct atmel_spi_caps {
266 bool is_spi2;
267 bool has_wdrbt;
268 bool has_dma_support;
269 bool has_pdc_support;
270};
271
272/*
273 * The core SPI transfer engine just talks to a register bank to set up
274 * DMA transfers; transfer queue progress is driven by IRQs. The clock
275 * framework provides the base clock, subdivided for each spi_device.
276 */
277struct atmel_spi {
278 spinlock_t lock;
279 unsigned long flags;
280
281 phys_addr_t phybase;
282 void __iomem *regs;
283 int irq;
284 struct clk *clk;
285 struct platform_device *pdev;
286 unsigned long spi_clk;
287
288 struct spi_transfer *current_transfer;
289 int current_remaining_bytes;
290 int done_status;
291 dma_addr_t dma_addr_rx_bbuf;
292 dma_addr_t dma_addr_tx_bbuf;
293 void *addr_rx_bbuf;
294 void *addr_tx_bbuf;
295
296 struct completion xfer_completion;
297
298 struct atmel_spi_caps caps;
299
300 bool use_dma;
301 bool use_pdc;
302 bool use_cs_gpios;
303
304 bool keep_cs;
305 bool cs_active;
306
307 u32 fifo_size;
308};
309
310/* Controller-specific per-slave state */
311struct atmel_spi_device {
312 struct gpio_desc *npcs_pin;
313 u32 csr;
314};
315
316#define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
317#define INVALID_DMA_ADDRESS 0xffffffff
318
319/*
320 * Version 2 of the SPI controller has
321 * - CR.LASTXFER
322 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
323 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
324 * - SPI_CSRx.CSAAT
325 * - SPI_CSRx.SBCR allows faster clocking
326 */
327static bool atmel_spi_is_v2(struct atmel_spi *as)
328{
329 return as->caps.is_spi2;
330}
331
332/*
333 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
334 * they assume that spi slave device state will not change on deselect, so
335 * that automagic deselection is OK. ("NPCSx rises if no data is to be
336 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
337 * controllers have CSAAT and friends.
338 *
339 * Since the CSAAT functionality is a bit weird on newer controllers as
340 * well, we use GPIO to control nCSx pins on all controllers, updating
341 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
342 * support active-high chipselects despite the controller's belief that
343 * only active-low devices/systems exists.
344 *
345 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
346 * right when driven with GPIO. ("Mode Fault does not allow more than one
347 * Master on Chip Select 0.") No workaround exists for that ... so for
348 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
349 * and (c) will trigger that first erratum in some cases.
350 */
351
352static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
353{
354 struct atmel_spi_device *asd = spi->controller_state;
355 u32 mr;
356
357 if (atmel_spi_is_v2(as)) {
358 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
359 /* For the low SPI version, there is a issue that PDC transfer
360 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
361 */
362 spi_writel(as, CSR0, asd->csr);
363 if (as->caps.has_wdrbt) {
364 spi_writel(as, MR,
365 SPI_BF(PCS, ~(0x01 << spi->chip_select))
366 | SPI_BIT(WDRBT)
367 | SPI_BIT(MODFDIS)
368 | SPI_BIT(MSTR));
369 } else {
370 spi_writel(as, MR,
371 SPI_BF(PCS, ~(0x01 << spi->chip_select))
372 | SPI_BIT(MODFDIS)
373 | SPI_BIT(MSTR));
374 }
375
376 mr = spi_readl(as, MR);
377 if (as->use_cs_gpios)
378 gpiod_set_value(asd->npcs_pin, 1);
379 } else {
380 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
381 int i;
382 u32 csr;
383
384 /* Make sure clock polarity is correct */
385 for (i = 0; i < spi->master->num_chipselect; i++) {
386 csr = spi_readl(as, CSR0 + 4 * i);
387 if ((csr ^ cpol) & SPI_BIT(CPOL))
388 spi_writel(as, CSR0 + 4 * i,
389 csr ^ SPI_BIT(CPOL));
390 }
391
392 mr = spi_readl(as, MR);
393 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
394 if (as->use_cs_gpios && spi->chip_select != 0)
395 gpiod_set_value(asd->npcs_pin, 1);
396 spi_writel(as, MR, mr);
397 }
398
399 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
400}
401
402static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
403{
404 struct atmel_spi_device *asd = spi->controller_state;
405 u32 mr;
406
407 /* only deactivate *this* device; sometimes transfers to
408 * another device may be active when this routine is called.
409 */
410 mr = spi_readl(as, MR);
411 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
412 mr = SPI_BFINS(PCS, 0xf, mr);
413 spi_writel(as, MR, mr);
414 }
415
416 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
417
418 if (!as->use_cs_gpios)
419 spi_writel(as, CR, SPI_BIT(LASTXFER));
420 else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
421 gpiod_set_value(asd->npcs_pin, 0);
422}
423
424static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
425{
426 spin_lock_irqsave(&as->lock, as->flags);
427}
428
429static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
430{
431 spin_unlock_irqrestore(&as->lock, as->flags);
432}
433
434static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
435{
436 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
437}
438
439static inline bool atmel_spi_use_dma(struct atmel_spi *as,
440 struct spi_transfer *xfer)
441{
442 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
443}
444
445static bool atmel_spi_can_dma(struct spi_master *master,
446 struct spi_device *spi,
447 struct spi_transfer *xfer)
448{
449 struct atmel_spi *as = spi_master_get_devdata(master);
450
451 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
452 return atmel_spi_use_dma(as, xfer) &&
453 !atmel_spi_is_vmalloc_xfer(xfer);
454 else
455 return atmel_spi_use_dma(as, xfer);
456
457}
458
459static int atmel_spi_dma_slave_config(struct atmel_spi *as,
460 struct dma_slave_config *slave_config,
461 u8 bits_per_word)
462{
463 struct spi_master *master = platform_get_drvdata(as->pdev);
464 int err = 0;
465
466 if (bits_per_word > 8) {
467 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
468 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
469 } else {
470 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
471 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
472 }
473
474 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
475 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
476 slave_config->src_maxburst = 1;
477 slave_config->dst_maxburst = 1;
478 slave_config->device_fc = false;
479
480 /*
481 * This driver uses fixed peripheral select mode (PS bit set to '0' in
482 * the Mode Register).
483 * So according to the datasheet, when FIFOs are available (and
484 * enabled), the Transmit FIFO operates in Multiple Data Mode.
485 * In this mode, up to 2 data, not 4, can be written into the Transmit
486 * Data Register in a single access.
487 * However, the first data has to be written into the lowest 16 bits and
488 * the second data into the highest 16 bits of the Transmit
489 * Data Register. For 8bit data (the most frequent case), it would
490 * require to rework tx_buf so each data would actualy fit 16 bits.
491 * So we'd rather write only one data at the time. Hence the transmit
492 * path works the same whether FIFOs are available (and enabled) or not.
493 */
494 slave_config->direction = DMA_MEM_TO_DEV;
495 if (dmaengine_slave_config(master->dma_tx, slave_config)) {
496 dev_err(&as->pdev->dev,
497 "failed to configure tx dma channel\n");
498 err = -EINVAL;
499 }
500
501 /*
502 * This driver configures the spi controller for master mode (MSTR bit
503 * set to '1' in the Mode Register).
504 * So according to the datasheet, when FIFOs are available (and
505 * enabled), the Receive FIFO operates in Single Data Mode.
506 * So the receive path works the same whether FIFOs are available (and
507 * enabled) or not.
508 */
509 slave_config->direction = DMA_DEV_TO_MEM;
510 if (dmaengine_slave_config(master->dma_rx, slave_config)) {
511 dev_err(&as->pdev->dev,
512 "failed to configure rx dma channel\n");
513 err = -EINVAL;
514 }
515
516 return err;
517}
518
519static int atmel_spi_configure_dma(struct spi_master *master,
520 struct atmel_spi *as)
521{
522 struct dma_slave_config slave_config;
523 struct device *dev = &as->pdev->dev;
524 int err;
525
526 dma_cap_mask_t mask;
527 dma_cap_zero(mask);
528 dma_cap_set(DMA_SLAVE, mask);
529
530 master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
531 if (IS_ERR(master->dma_tx)) {
532 err = PTR_ERR(master->dma_tx);
533 if (err == -EPROBE_DEFER) {
534 dev_warn(dev, "no DMA channel available at the moment\n");
535 goto error_clear;
536 }
537 dev_err(dev,
538 "DMA TX channel not available, SPI unable to use DMA\n");
539 err = -EBUSY;
540 goto error_clear;
541 }
542
543 /*
544 * No reason to check EPROBE_DEFER here since we have already requested
545 * tx channel. If it fails here, it's for another reason.
546 */
547 master->dma_rx = dma_request_slave_channel(dev, "rx");
548
549 if (!master->dma_rx) {
550 dev_err(dev,
551 "DMA RX channel not available, SPI unable to use DMA\n");
552 err = -EBUSY;
553 goto error;
554 }
555
556 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
557 if (err)
558 goto error;
559
560 dev_info(&as->pdev->dev,
561 "Using %s (tx) and %s (rx) for DMA transfers\n",
562 dma_chan_name(master->dma_tx),
563 dma_chan_name(master->dma_rx));
564
565 return 0;
566error:
567 if (master->dma_rx)
568 dma_release_channel(master->dma_rx);
569 if (!IS_ERR(master->dma_tx))
570 dma_release_channel(master->dma_tx);
571error_clear:
572 master->dma_tx = master->dma_rx = NULL;
573 return err;
574}
575
576static void atmel_spi_stop_dma(struct spi_master *master)
577{
578 if (master->dma_rx)
579 dmaengine_terminate_all(master->dma_rx);
580 if (master->dma_tx)
581 dmaengine_terminate_all(master->dma_tx);
582}
583
584static void atmel_spi_release_dma(struct spi_master *master)
585{
586 if (master->dma_rx) {
587 dma_release_channel(master->dma_rx);
588 master->dma_rx = NULL;
589 }
590 if (master->dma_tx) {
591 dma_release_channel(master->dma_tx);
592 master->dma_tx = NULL;
593 }
594}
595
596/* This function is called by the DMA driver from tasklet context */
597static void dma_callback(void *data)
598{
599 struct spi_master *master = data;
600 struct atmel_spi *as = spi_master_get_devdata(master);
601
602 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
603 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
604 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
605 as->current_transfer->len);
606 }
607 complete(&as->xfer_completion);
608}
609
610/*
611 * Next transfer using PIO without FIFO.
612 */
613static void atmel_spi_next_xfer_single(struct spi_master *master,
614 struct spi_transfer *xfer)
615{
616 struct atmel_spi *as = spi_master_get_devdata(master);
617 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
618
619 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
620
621 /* Make sure data is not remaining in RDR */
622 spi_readl(as, RDR);
623 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
624 spi_readl(as, RDR);
625 cpu_relax();
626 }
627
628 if (xfer->bits_per_word > 8)
629 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
630 else
631 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
632
633 dev_dbg(master->dev.parent,
634 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
635 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
636 xfer->bits_per_word);
637
638 /* Enable relevant interrupts */
639 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
640}
641
642/*
643 * Next transfer using PIO with FIFO.
644 */
645static void atmel_spi_next_xfer_fifo(struct spi_master *master,
646 struct spi_transfer *xfer)
647{
648 struct atmel_spi *as = spi_master_get_devdata(master);
649 u32 current_remaining_data, num_data;
650 u32 offset = xfer->len - as->current_remaining_bytes;
651 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
652 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
653 u16 td0, td1;
654 u32 fifomr;
655
656 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
657
658 /* Compute the number of data to transfer in the current iteration */
659 current_remaining_data = ((xfer->bits_per_word > 8) ?
660 ((u32)as->current_remaining_bytes >> 1) :
661 (u32)as->current_remaining_bytes);
662 num_data = min(current_remaining_data, as->fifo_size);
663
664 /* Flush RX and TX FIFOs */
665 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
666 while (spi_readl(as, FLR))
667 cpu_relax();
668
669 /* Set RX FIFO Threshold to the number of data to transfer */
670 fifomr = spi_readl(as, FMR);
671 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
672
673 /* Clear FIFO flags in the Status Register, especially RXFTHF */
674 (void)spi_readl(as, SR);
675
676 /* Fill TX FIFO */
677 while (num_data >= 2) {
678 if (xfer->bits_per_word > 8) {
679 td0 = *words++;
680 td1 = *words++;
681 } else {
682 td0 = *bytes++;
683 td1 = *bytes++;
684 }
685
686 spi_writel(as, TDR, (td1 << 16) | td0);
687 num_data -= 2;
688 }
689
690 if (num_data) {
691 if (xfer->bits_per_word > 8)
692 td0 = *words++;
693 else
694 td0 = *bytes++;
695
696 spi_writew(as, TDR, td0);
697 num_data--;
698 }
699
700 dev_dbg(master->dev.parent,
701 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
702 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
703 xfer->bits_per_word);
704
705 /*
706 * Enable RX FIFO Threshold Flag interrupt to be notified about
707 * transfer completion.
708 */
709 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
710}
711
712/*
713 * Next transfer using PIO.
714 */
715static void atmel_spi_next_xfer_pio(struct spi_master *master,
716 struct spi_transfer *xfer)
717{
718 struct atmel_spi *as = spi_master_get_devdata(master);
719
720 if (as->fifo_size)
721 atmel_spi_next_xfer_fifo(master, xfer);
722 else
723 atmel_spi_next_xfer_single(master, xfer);
724}
725
726/*
727 * Submit next transfer for DMA.
728 */
729static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
730 struct spi_transfer *xfer,
731 u32 *plen)
732{
733 struct atmel_spi *as = spi_master_get_devdata(master);
734 struct dma_chan *rxchan = master->dma_rx;
735 struct dma_chan *txchan = master->dma_tx;
736 struct dma_async_tx_descriptor *rxdesc;
737 struct dma_async_tx_descriptor *txdesc;
738 struct dma_slave_config slave_config;
739 dma_cookie_t cookie;
740
741 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
742
743 /* Check that the channels are available */
744 if (!rxchan || !txchan)
745 return -ENODEV;
746
747 /* release lock for DMA operations */
748 atmel_spi_unlock(as);
749
750 *plen = xfer->len;
751
752 if (atmel_spi_dma_slave_config(as, &slave_config,
753 xfer->bits_per_word))
754 goto err_exit;
755
756 /* Send both scatterlists */
757 if (atmel_spi_is_vmalloc_xfer(xfer) &&
758 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
759 rxdesc = dmaengine_prep_slave_single(rxchan,
760 as->dma_addr_rx_bbuf,
761 xfer->len,
762 DMA_DEV_TO_MEM,
763 DMA_PREP_INTERRUPT |
764 DMA_CTRL_ACK);
765 } else {
766 rxdesc = dmaengine_prep_slave_sg(rxchan,
767 xfer->rx_sg.sgl,
768 xfer->rx_sg.nents,
769 DMA_DEV_TO_MEM,
770 DMA_PREP_INTERRUPT |
771 DMA_CTRL_ACK);
772 }
773 if (!rxdesc)
774 goto err_dma;
775
776 if (atmel_spi_is_vmalloc_xfer(xfer) &&
777 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
778 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
779 txdesc = dmaengine_prep_slave_single(txchan,
780 as->dma_addr_tx_bbuf,
781 xfer->len, DMA_MEM_TO_DEV,
782 DMA_PREP_INTERRUPT |
783 DMA_CTRL_ACK);
784 } else {
785 txdesc = dmaengine_prep_slave_sg(txchan,
786 xfer->tx_sg.sgl,
787 xfer->tx_sg.nents,
788 DMA_MEM_TO_DEV,
789 DMA_PREP_INTERRUPT |
790 DMA_CTRL_ACK);
791 }
792 if (!txdesc)
793 goto err_dma;
794
795 dev_dbg(master->dev.parent,
796 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
797 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
798 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
799
800 /* Enable relevant interrupts */
801 spi_writel(as, IER, SPI_BIT(OVRES));
802
803 /* Put the callback on the RX transfer only, that should finish last */
804 rxdesc->callback = dma_callback;
805 rxdesc->callback_param = master;
806
807 /* Submit and fire RX and TX with TX last so we're ready to read! */
808 cookie = rxdesc->tx_submit(rxdesc);
809 if (dma_submit_error(cookie))
810 goto err_dma;
811 cookie = txdesc->tx_submit(txdesc);
812 if (dma_submit_error(cookie))
813 goto err_dma;
814 rxchan->device->device_issue_pending(rxchan);
815 txchan->device->device_issue_pending(txchan);
816
817 /* take back lock */
818 atmel_spi_lock(as);
819 return 0;
820
821err_dma:
822 spi_writel(as, IDR, SPI_BIT(OVRES));
823 atmel_spi_stop_dma(master);
824err_exit:
825 atmel_spi_lock(as);
826 return -ENOMEM;
827}
828
829static void atmel_spi_next_xfer_data(struct spi_master *master,
830 struct spi_transfer *xfer,
831 dma_addr_t *tx_dma,
832 dma_addr_t *rx_dma,
833 u32 *plen)
834{
835 *rx_dma = xfer->rx_dma + xfer->len - *plen;
836 *tx_dma = xfer->tx_dma + xfer->len - *plen;
837 if (*plen > master->max_dma_len)
838 *plen = master->max_dma_len;
839}
840
841static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
842 struct spi_device *spi,
843 struct spi_transfer *xfer)
844{
845 u32 scbr, csr;
846 unsigned long bus_hz;
847
848 /* v1 chips start out at half the peripheral bus speed. */
849 bus_hz = as->spi_clk;
850 if (!atmel_spi_is_v2(as))
851 bus_hz /= 2;
852
853 /*
854 * Calculate the lowest divider that satisfies the
855 * constraint, assuming div32/fdiv/mbz == 0.
856 */
857 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
858
859 /*
860 * If the resulting divider doesn't fit into the
861 * register bitfield, we can't satisfy the constraint.
862 */
863 if (scbr >= (1 << SPI_SCBR_SIZE)) {
864 dev_err(&spi->dev,
865 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
866 xfer->speed_hz, scbr, bus_hz/255);
867 return -EINVAL;
868 }
869 if (scbr == 0) {
870 dev_err(&spi->dev,
871 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
872 xfer->speed_hz, scbr, bus_hz);
873 return -EINVAL;
874 }
875 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
876 csr = SPI_BFINS(SCBR, scbr, csr);
877 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
878
879 return 0;
880}
881
882/*
883 * Submit next transfer for PDC.
884 * lock is held, spi irq is blocked
885 */
886static void atmel_spi_pdc_next_xfer(struct spi_master *master,
887 struct spi_message *msg,
888 struct spi_transfer *xfer)
889{
890 struct atmel_spi *as = spi_master_get_devdata(master);
891 u32 len;
892 dma_addr_t tx_dma, rx_dma;
893
894 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
895
896 len = as->current_remaining_bytes;
897 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
898 as->current_remaining_bytes -= len;
899
900 spi_writel(as, RPR, rx_dma);
901 spi_writel(as, TPR, tx_dma);
902
903 if (msg->spi->bits_per_word > 8)
904 len >>= 1;
905 spi_writel(as, RCR, len);
906 spi_writel(as, TCR, len);
907
908 dev_dbg(&msg->spi->dev,
909 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
910 xfer, xfer->len, xfer->tx_buf,
911 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
912 (unsigned long long)xfer->rx_dma);
913
914 if (as->current_remaining_bytes) {
915 len = as->current_remaining_bytes;
916 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
917 as->current_remaining_bytes -= len;
918
919 spi_writel(as, RNPR, rx_dma);
920 spi_writel(as, TNPR, tx_dma);
921
922 if (msg->spi->bits_per_word > 8)
923 len >>= 1;
924 spi_writel(as, RNCR, len);
925 spi_writel(as, TNCR, len);
926
927 dev_dbg(&msg->spi->dev,
928 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
929 xfer, xfer->len, xfer->tx_buf,
930 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
931 (unsigned long long)xfer->rx_dma);
932 }
933
934 /* REVISIT: We're waiting for RXBUFF before we start the next
935 * transfer because we need to handle some difficult timing
936 * issues otherwise. If we wait for TXBUFE in one transfer and
937 * then starts waiting for RXBUFF in the next, it's difficult
938 * to tell the difference between the RXBUFF interrupt we're
939 * actually waiting for and the RXBUFF interrupt of the
940 * previous transfer.
941 *
942 * It should be doable, though. Just not now...
943 */
944 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
945 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
946}
947
948/*
949 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
950 * - The buffer is either valid for CPU access, else NULL
951 * - If the buffer is valid, so is its DMA address
952 *
953 * This driver manages the dma address unless message->is_dma_mapped.
954 */
955static int
956atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
957{
958 struct device *dev = &as->pdev->dev;
959
960 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
961 if (xfer->tx_buf) {
962 /* tx_buf is a const void* where we need a void * for the dma
963 * mapping */
964 void *nonconst_tx = (void *)xfer->tx_buf;
965
966 xfer->tx_dma = dma_map_single(dev,
967 nonconst_tx, xfer->len,
968 DMA_TO_DEVICE);
969 if (dma_mapping_error(dev, xfer->tx_dma))
970 return -ENOMEM;
971 }
972 if (xfer->rx_buf) {
973 xfer->rx_dma = dma_map_single(dev,
974 xfer->rx_buf, xfer->len,
975 DMA_FROM_DEVICE);
976 if (dma_mapping_error(dev, xfer->rx_dma)) {
977 if (xfer->tx_buf)
978 dma_unmap_single(dev,
979 xfer->tx_dma, xfer->len,
980 DMA_TO_DEVICE);
981 return -ENOMEM;
982 }
983 }
984 return 0;
985}
986
987static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
988 struct spi_transfer *xfer)
989{
990 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
991 dma_unmap_single(master->dev.parent, xfer->tx_dma,
992 xfer->len, DMA_TO_DEVICE);
993 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
994 dma_unmap_single(master->dev.parent, xfer->rx_dma,
995 xfer->len, DMA_FROM_DEVICE);
996}
997
998static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
999{
1000 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1001}
1002
1003static void
1004atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1005{
1006 u8 *rxp;
1007 u16 *rxp16;
1008 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1009
1010 if (xfer->bits_per_word > 8) {
1011 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1012 *rxp16 = spi_readl(as, RDR);
1013 } else {
1014 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1015 *rxp = spi_readl(as, RDR);
1016 }
1017 if (xfer->bits_per_word > 8) {
1018 if (as->current_remaining_bytes > 2)
1019 as->current_remaining_bytes -= 2;
1020 else
1021 as->current_remaining_bytes = 0;
1022 } else {
1023 as->current_remaining_bytes--;
1024 }
1025}
1026
1027static void
1028atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1029{
1030 u32 fifolr = spi_readl(as, FLR);
1031 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1032 u32 offset = xfer->len - as->current_remaining_bytes;
1033 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1034 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1035 u16 rd; /* RD field is the lowest 16 bits of RDR */
1036
1037 /* Update the number of remaining bytes to transfer */
1038 num_bytes = ((xfer->bits_per_word > 8) ?
1039 (num_data << 1) :
1040 num_data);
1041
1042 if (as->current_remaining_bytes > num_bytes)
1043 as->current_remaining_bytes -= num_bytes;
1044 else
1045 as->current_remaining_bytes = 0;
1046
1047 /* Handle odd number of bytes when data are more than 8bit width */
1048 if (xfer->bits_per_word > 8)
1049 as->current_remaining_bytes &= ~0x1;
1050
1051 /* Read data */
1052 while (num_data) {
1053 rd = spi_readl(as, RDR);
1054 if (xfer->bits_per_word > 8)
1055 *words++ = rd;
1056 else
1057 *bytes++ = rd;
1058 num_data--;
1059 }
1060}
1061
1062/* Called from IRQ
1063 *
1064 * Must update "current_remaining_bytes" to keep track of data
1065 * to transfer.
1066 */
1067static void
1068atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1069{
1070 if (as->fifo_size)
1071 atmel_spi_pump_fifo_data(as, xfer);
1072 else
1073 atmel_spi_pump_single_data(as, xfer);
1074}
1075
1076/* Interrupt
1077 *
1078 * No need for locking in this Interrupt handler: done_status is the
1079 * only information modified.
1080 */
1081static irqreturn_t
1082atmel_spi_pio_interrupt(int irq, void *dev_id)
1083{
1084 struct spi_master *master = dev_id;
1085 struct atmel_spi *as = spi_master_get_devdata(master);
1086 u32 status, pending, imr;
1087 struct spi_transfer *xfer;
1088 int ret = IRQ_NONE;
1089
1090 imr = spi_readl(as, IMR);
1091 status = spi_readl(as, SR);
1092 pending = status & imr;
1093
1094 if (pending & SPI_BIT(OVRES)) {
1095 ret = IRQ_HANDLED;
1096 spi_writel(as, IDR, SPI_BIT(OVRES));
1097 dev_warn(master->dev.parent, "overrun\n");
1098
1099 /*
1100 * When we get an overrun, we disregard the current
1101 * transfer. Data will not be copied back from any
1102 * bounce buffer and msg->actual_len will not be
1103 * updated with the last xfer.
1104 *
1105 * We will also not process any remaning transfers in
1106 * the message.
1107 */
1108 as->done_status = -EIO;
1109 smp_wmb();
1110
1111 /* Clear any overrun happening while cleaning up */
1112 spi_readl(as, SR);
1113
1114 complete(&as->xfer_completion);
1115
1116 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1117 atmel_spi_lock(as);
1118
1119 if (as->current_remaining_bytes) {
1120 ret = IRQ_HANDLED;
1121 xfer = as->current_transfer;
1122 atmel_spi_pump_pio_data(as, xfer);
1123 if (!as->current_remaining_bytes)
1124 spi_writel(as, IDR, pending);
1125
1126 complete(&as->xfer_completion);
1127 }
1128
1129 atmel_spi_unlock(as);
1130 } else {
1131 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1132 ret = IRQ_HANDLED;
1133 spi_writel(as, IDR, pending);
1134 }
1135
1136 return ret;
1137}
1138
1139static irqreturn_t
1140atmel_spi_pdc_interrupt(int irq, void *dev_id)
1141{
1142 struct spi_master *master = dev_id;
1143 struct atmel_spi *as = spi_master_get_devdata(master);
1144 u32 status, pending, imr;
1145 int ret = IRQ_NONE;
1146
1147 imr = spi_readl(as, IMR);
1148 status = spi_readl(as, SR);
1149 pending = status & imr;
1150
1151 if (pending & SPI_BIT(OVRES)) {
1152
1153 ret = IRQ_HANDLED;
1154
1155 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1156 | SPI_BIT(OVRES)));
1157
1158 /* Clear any overrun happening while cleaning up */
1159 spi_readl(as, SR);
1160
1161 as->done_status = -EIO;
1162
1163 complete(&as->xfer_completion);
1164
1165 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1166 ret = IRQ_HANDLED;
1167
1168 spi_writel(as, IDR, pending);
1169
1170 complete(&as->xfer_completion);
1171 }
1172
1173 return ret;
1174}
1175
1176static int atmel_spi_setup(struct spi_device *spi)
1177{
1178 struct atmel_spi *as;
1179 struct atmel_spi_device *asd;
1180 u32 csr;
1181 unsigned int bits = spi->bits_per_word;
1182
1183 as = spi_master_get_devdata(spi->master);
1184
1185 /* see notes above re chipselect */
1186 if (!atmel_spi_is_v2(as)
1187 && spi->chip_select == 0
1188 && (spi->mode & SPI_CS_HIGH)) {
1189 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1190 return -EINVAL;
1191 }
1192
1193 csr = SPI_BF(BITS, bits - 8);
1194 if (spi->mode & SPI_CPOL)
1195 csr |= SPI_BIT(CPOL);
1196 if (!(spi->mode & SPI_CPHA))
1197 csr |= SPI_BIT(NCPHA);
1198 if (!as->use_cs_gpios)
1199 csr |= SPI_BIT(CSAAT);
1200
1201 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1202 */
1203 csr |= SPI_BF(DLYBS, 0);
1204
1205 /* DLYBCT adds delays between words. This is useful for slow devices
1206 * that need a bit of time to setup the next transfer.
1207 */
1208 csr |= SPI_BF(DLYBCT,
1209 (as->spi_clk / 1000000 * spi->word_delay_usecs) >> 5);
1210
1211 asd = spi->controller_state;
1212 if (!asd) {
1213 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1214 if (!asd)
1215 return -ENOMEM;
1216
1217 /*
1218 * If use_cs_gpios is true this means that we have "cs-gpios"
1219 * defined in the device tree node so we should have
1220 * gotten the GPIO lines from the device tree inside the
1221 * SPI core. Warn if this is not the case but continue since
1222 * CS GPIOs are after all optional.
1223 */
1224 if (as->use_cs_gpios) {
1225 if (!spi->cs_gpiod) {
1226 dev_err(&spi->dev,
1227 "host claims to use CS GPIOs but no CS found in DT by the SPI core\n");
1228 }
1229 asd->npcs_pin = spi->cs_gpiod;
1230 }
1231
1232 spi->controller_state = asd;
1233 }
1234
1235 asd->csr = csr;
1236
1237 dev_dbg(&spi->dev,
1238 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1239 bits, spi->mode, spi->chip_select, csr);
1240
1241 if (!atmel_spi_is_v2(as))
1242 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1243
1244 return 0;
1245}
1246
1247static int atmel_spi_one_transfer(struct spi_master *master,
1248 struct spi_message *msg,
1249 struct spi_transfer *xfer)
1250{
1251 struct atmel_spi *as;
1252 struct spi_device *spi = msg->spi;
1253 u8 bits;
1254 u32 len;
1255 struct atmel_spi_device *asd;
1256 int timeout;
1257 int ret;
1258 unsigned long dma_timeout;
1259
1260 as = spi_master_get_devdata(master);
1261
1262 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1263 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1264 return -EINVAL;
1265 }
1266
1267 asd = spi->controller_state;
1268 bits = (asd->csr >> 4) & 0xf;
1269 if (bits != xfer->bits_per_word - 8) {
1270 dev_dbg(&spi->dev,
1271 "you can't yet change bits_per_word in transfers\n");
1272 return -ENOPROTOOPT;
1273 }
1274
1275 /*
1276 * DMA map early, for performance (empties dcache ASAP) and
1277 * better fault reporting.
1278 */
1279 if ((!msg->is_dma_mapped)
1280 && as->use_pdc) {
1281 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1282 return -ENOMEM;
1283 }
1284
1285 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1286
1287 as->done_status = 0;
1288 as->current_transfer = xfer;
1289 as->current_remaining_bytes = xfer->len;
1290 while (as->current_remaining_bytes) {
1291 reinit_completion(&as->xfer_completion);
1292
1293 if (as->use_pdc) {
1294 atmel_spi_pdc_next_xfer(master, msg, xfer);
1295 } else if (atmel_spi_use_dma(as, xfer)) {
1296 len = as->current_remaining_bytes;
1297 ret = atmel_spi_next_xfer_dma_submit(master,
1298 xfer, &len);
1299 if (ret) {
1300 dev_err(&spi->dev,
1301 "unable to use DMA, fallback to PIO\n");
1302 atmel_spi_next_xfer_pio(master, xfer);
1303 } else {
1304 as->current_remaining_bytes -= len;
1305 if (as->current_remaining_bytes < 0)
1306 as->current_remaining_bytes = 0;
1307 }
1308 } else {
1309 atmel_spi_next_xfer_pio(master, xfer);
1310 }
1311
1312 /* interrupts are disabled, so free the lock for schedule */
1313 atmel_spi_unlock(as);
1314 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1315 SPI_DMA_TIMEOUT);
1316 atmel_spi_lock(as);
1317 if (WARN_ON(dma_timeout == 0)) {
1318 dev_err(&spi->dev, "spi transfer timeout\n");
1319 as->done_status = -EIO;
1320 }
1321
1322 if (as->done_status)
1323 break;
1324 }
1325
1326 if (as->done_status) {
1327 if (as->use_pdc) {
1328 dev_warn(master->dev.parent,
1329 "overrun (%u/%u remaining)\n",
1330 spi_readl(as, TCR), spi_readl(as, RCR));
1331
1332 /*
1333 * Clean up DMA registers and make sure the data
1334 * registers are empty.
1335 */
1336 spi_writel(as, RNCR, 0);
1337 spi_writel(as, TNCR, 0);
1338 spi_writel(as, RCR, 0);
1339 spi_writel(as, TCR, 0);
1340 for (timeout = 1000; timeout; timeout--)
1341 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1342 break;
1343 if (!timeout)
1344 dev_warn(master->dev.parent,
1345 "timeout waiting for TXEMPTY");
1346 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1347 spi_readl(as, RDR);
1348
1349 /* Clear any overrun happening while cleaning up */
1350 spi_readl(as, SR);
1351
1352 } else if (atmel_spi_use_dma(as, xfer)) {
1353 atmel_spi_stop_dma(master);
1354 }
1355
1356 if (!msg->is_dma_mapped
1357 && as->use_pdc)
1358 atmel_spi_dma_unmap_xfer(master, xfer);
1359
1360 return 0;
1361
1362 } else {
1363 /* only update length if no error */
1364 msg->actual_length += xfer->len;
1365 }
1366
1367 if (!msg->is_dma_mapped
1368 && as->use_pdc)
1369 atmel_spi_dma_unmap_xfer(master, xfer);
1370
1371 if (xfer->delay_usecs)
1372 udelay(xfer->delay_usecs);
1373
1374 if (xfer->cs_change) {
1375 if (list_is_last(&xfer->transfer_list,
1376 &msg->transfers)) {
1377 as->keep_cs = true;
1378 } else {
1379 as->cs_active = !as->cs_active;
1380 if (as->cs_active)
1381 cs_activate(as, msg->spi);
1382 else
1383 cs_deactivate(as, msg->spi);
1384 }
1385 }
1386
1387 return 0;
1388}
1389
1390static int atmel_spi_transfer_one_message(struct spi_master *master,
1391 struct spi_message *msg)
1392{
1393 struct atmel_spi *as;
1394 struct spi_transfer *xfer;
1395 struct spi_device *spi = msg->spi;
1396 int ret = 0;
1397
1398 as = spi_master_get_devdata(master);
1399
1400 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1401 msg, dev_name(&spi->dev));
1402
1403 atmel_spi_lock(as);
1404 cs_activate(as, spi);
1405
1406 as->cs_active = true;
1407 as->keep_cs = false;
1408
1409 msg->status = 0;
1410 msg->actual_length = 0;
1411
1412 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1413 trace_spi_transfer_start(msg, xfer);
1414
1415 ret = atmel_spi_one_transfer(master, msg, xfer);
1416 if (ret)
1417 goto msg_done;
1418
1419 trace_spi_transfer_stop(msg, xfer);
1420 }
1421
1422 if (as->use_pdc)
1423 atmel_spi_disable_pdc_transfer(as);
1424
1425 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1426 dev_dbg(&spi->dev,
1427 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1428 xfer, xfer->len,
1429 xfer->tx_buf, &xfer->tx_dma,
1430 xfer->rx_buf, &xfer->rx_dma);
1431 }
1432
1433msg_done:
1434 if (!as->keep_cs)
1435 cs_deactivate(as, msg->spi);
1436
1437 atmel_spi_unlock(as);
1438
1439 msg->status = as->done_status;
1440 spi_finalize_current_message(spi->master);
1441
1442 return ret;
1443}
1444
1445static void atmel_spi_cleanup(struct spi_device *spi)
1446{
1447 struct atmel_spi_device *asd = spi->controller_state;
1448
1449 if (!asd)
1450 return;
1451
1452 spi->controller_state = NULL;
1453 kfree(asd);
1454}
1455
1456static inline unsigned int atmel_get_version(struct atmel_spi *as)
1457{
1458 return spi_readl(as, VERSION) & 0x00000fff;
1459}
1460
1461static void atmel_get_caps(struct atmel_spi *as)
1462{
1463 unsigned int version;
1464
1465 version = atmel_get_version(as);
1466
1467 as->caps.is_spi2 = version > 0x121;
1468 as->caps.has_wdrbt = version >= 0x210;
1469 as->caps.has_dma_support = version >= 0x212;
1470 as->caps.has_pdc_support = version < 0x212;
1471}
1472
1473static void atmel_spi_init(struct atmel_spi *as)
1474{
1475 spi_writel(as, CR, SPI_BIT(SWRST));
1476 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1477
1478 /* It is recommended to enable FIFOs first thing after reset */
1479 if (as->fifo_size)
1480 spi_writel(as, CR, SPI_BIT(FIFOEN));
1481
1482 if (as->caps.has_wdrbt) {
1483 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1484 | SPI_BIT(MSTR));
1485 } else {
1486 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1487 }
1488
1489 if (as->use_pdc)
1490 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1491 spi_writel(as, CR, SPI_BIT(SPIEN));
1492}
1493
1494static int atmel_spi_probe(struct platform_device *pdev)
1495{
1496 struct resource *regs;
1497 int irq;
1498 struct clk *clk;
1499 int ret;
1500 struct spi_master *master;
1501 struct atmel_spi *as;
1502
1503 /* Select default pin state */
1504 pinctrl_pm_select_default_state(&pdev->dev);
1505
1506 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1507 if (!regs)
1508 return -ENXIO;
1509
1510 irq = platform_get_irq(pdev, 0);
1511 if (irq < 0)
1512 return irq;
1513
1514 clk = devm_clk_get(&pdev->dev, "spi_clk");
1515 if (IS_ERR(clk))
1516 return PTR_ERR(clk);
1517
1518 /* setup spi core then atmel-specific driver state */
1519 ret = -ENOMEM;
1520 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1521 if (!master)
1522 goto out_free;
1523
1524 /* the spi->mode bits understood by this driver: */
1525 master->use_gpio_descriptors = true;
1526 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1527 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1528 master->dev.of_node = pdev->dev.of_node;
1529 master->bus_num = pdev->id;
1530 master->num_chipselect = master->dev.of_node ? 0 : 4;
1531 master->setup = atmel_spi_setup;
1532 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1533 master->transfer_one_message = atmel_spi_transfer_one_message;
1534 master->cleanup = atmel_spi_cleanup;
1535 master->auto_runtime_pm = true;
1536 master->max_dma_len = SPI_MAX_DMA_XFER;
1537 master->can_dma = atmel_spi_can_dma;
1538 platform_set_drvdata(pdev, master);
1539
1540 as = spi_master_get_devdata(master);
1541
1542 spin_lock_init(&as->lock);
1543
1544 as->pdev = pdev;
1545 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1546 if (IS_ERR(as->regs)) {
1547 ret = PTR_ERR(as->regs);
1548 goto out_unmap_regs;
1549 }
1550 as->phybase = regs->start;
1551 as->irq = irq;
1552 as->clk = clk;
1553
1554 init_completion(&as->xfer_completion);
1555
1556 atmel_get_caps(as);
1557
1558 /*
1559 * If there are chip selects in the device tree, those will be
1560 * discovered by the SPI core when registering the SPI master
1561 * and assigned to each SPI device.
1562 */
1563 as->use_cs_gpios = true;
1564 if (atmel_spi_is_v2(as) &&
1565 pdev->dev.of_node &&
1566 !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1567 as->use_cs_gpios = false;
1568 master->num_chipselect = 4;
1569 }
1570
1571 as->use_dma = false;
1572 as->use_pdc = false;
1573 if (as->caps.has_dma_support) {
1574 ret = atmel_spi_configure_dma(master, as);
1575 if (ret == 0) {
1576 as->use_dma = true;
1577 } else if (ret == -EPROBE_DEFER) {
1578 return ret;
1579 }
1580 } else if (as->caps.has_pdc_support) {
1581 as->use_pdc = true;
1582 }
1583
1584 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1585 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1586 SPI_MAX_DMA_XFER,
1587 &as->dma_addr_rx_bbuf,
1588 GFP_KERNEL | GFP_DMA);
1589 if (!as->addr_rx_bbuf) {
1590 as->use_dma = false;
1591 } else {
1592 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1593 SPI_MAX_DMA_XFER,
1594 &as->dma_addr_tx_bbuf,
1595 GFP_KERNEL | GFP_DMA);
1596 if (!as->addr_tx_bbuf) {
1597 as->use_dma = false;
1598 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1599 as->addr_rx_bbuf,
1600 as->dma_addr_rx_bbuf);
1601 }
1602 }
1603 if (!as->use_dma)
1604 dev_info(master->dev.parent,
1605 " can not allocate dma coherent memory\n");
1606 }
1607
1608 if (as->caps.has_dma_support && !as->use_dma)
1609 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1610
1611 if (as->use_pdc) {
1612 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1613 0, dev_name(&pdev->dev), master);
1614 } else {
1615 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1616 0, dev_name(&pdev->dev), master);
1617 }
1618 if (ret)
1619 goto out_unmap_regs;
1620
1621 /* Initialize the hardware */
1622 ret = clk_prepare_enable(clk);
1623 if (ret)
1624 goto out_free_irq;
1625
1626 as->spi_clk = clk_get_rate(clk);
1627
1628 as->fifo_size = 0;
1629 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1630 &as->fifo_size)) {
1631 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1632 }
1633
1634 atmel_spi_init(as);
1635
1636 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1637 pm_runtime_use_autosuspend(&pdev->dev);
1638 pm_runtime_set_active(&pdev->dev);
1639 pm_runtime_enable(&pdev->dev);
1640
1641 ret = devm_spi_register_master(&pdev->dev, master);
1642 if (ret)
1643 goto out_free_dma;
1644
1645 /* go! */
1646 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1647 atmel_get_version(as), (unsigned long)regs->start,
1648 irq);
1649
1650 return 0;
1651
1652out_free_dma:
1653 pm_runtime_disable(&pdev->dev);
1654 pm_runtime_set_suspended(&pdev->dev);
1655
1656 if (as->use_dma)
1657 atmel_spi_release_dma(master);
1658
1659 spi_writel(as, CR, SPI_BIT(SWRST));
1660 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1661 clk_disable_unprepare(clk);
1662out_free_irq:
1663out_unmap_regs:
1664out_free:
1665 spi_master_put(master);
1666 return ret;
1667}
1668
1669static int atmel_spi_remove(struct platform_device *pdev)
1670{
1671 struct spi_master *master = platform_get_drvdata(pdev);
1672 struct atmel_spi *as = spi_master_get_devdata(master);
1673
1674 pm_runtime_get_sync(&pdev->dev);
1675
1676 /* reset the hardware and block queue progress */
1677 if (as->use_dma) {
1678 atmel_spi_stop_dma(master);
1679 atmel_spi_release_dma(master);
1680 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1681 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1682 as->addr_tx_bbuf,
1683 as->dma_addr_tx_bbuf);
1684 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1685 as->addr_rx_bbuf,
1686 as->dma_addr_rx_bbuf);
1687 }
1688 }
1689
1690 spin_lock_irq(&as->lock);
1691 spi_writel(as, CR, SPI_BIT(SWRST));
1692 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1693 spi_readl(as, SR);
1694 spin_unlock_irq(&as->lock);
1695
1696 clk_disable_unprepare(as->clk);
1697
1698 pm_runtime_put_noidle(&pdev->dev);
1699 pm_runtime_disable(&pdev->dev);
1700
1701 return 0;
1702}
1703
1704#ifdef CONFIG_PM
1705static int atmel_spi_runtime_suspend(struct device *dev)
1706{
1707 struct spi_master *master = dev_get_drvdata(dev);
1708 struct atmel_spi *as = spi_master_get_devdata(master);
1709
1710 clk_disable_unprepare(as->clk);
1711 pinctrl_pm_select_sleep_state(dev);
1712
1713 return 0;
1714}
1715
1716static int atmel_spi_runtime_resume(struct device *dev)
1717{
1718 struct spi_master *master = dev_get_drvdata(dev);
1719 struct atmel_spi *as = spi_master_get_devdata(master);
1720
1721 pinctrl_pm_select_default_state(dev);
1722
1723 return clk_prepare_enable(as->clk);
1724}
1725
1726#ifdef CONFIG_PM_SLEEP
1727static int atmel_spi_suspend(struct device *dev)
1728{
1729 struct spi_master *master = dev_get_drvdata(dev);
1730 int ret;
1731
1732 /* Stop the queue running */
1733 ret = spi_master_suspend(master);
1734 if (ret)
1735 return ret;
1736
1737 if (!pm_runtime_suspended(dev))
1738 atmel_spi_runtime_suspend(dev);
1739
1740 return 0;
1741}
1742
1743static int atmel_spi_resume(struct device *dev)
1744{
1745 struct spi_master *master = dev_get_drvdata(dev);
1746 struct atmel_spi *as = spi_master_get_devdata(master);
1747 int ret;
1748
1749 ret = clk_prepare_enable(as->clk);
1750 if (ret)
1751 return ret;
1752
1753 atmel_spi_init(as);
1754
1755 clk_disable_unprepare(as->clk);
1756
1757 if (!pm_runtime_suspended(dev)) {
1758 ret = atmel_spi_runtime_resume(dev);
1759 if (ret)
1760 return ret;
1761 }
1762
1763 /* Start the queue running */
1764 return spi_master_resume(master);
1765}
1766#endif
1767
1768static const struct dev_pm_ops atmel_spi_pm_ops = {
1769 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1770 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1771 atmel_spi_runtime_resume, NULL)
1772};
1773#define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1774#else
1775#define ATMEL_SPI_PM_OPS NULL
1776#endif
1777
1778#if defined(CONFIG_OF)
1779static const struct of_device_id atmel_spi_dt_ids[] = {
1780 { .compatible = "atmel,at91rm9200-spi" },
1781 { /* sentinel */ }
1782};
1783
1784MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1785#endif
1786
1787static struct platform_driver atmel_spi_driver = {
1788 .driver = {
1789 .name = "atmel_spi",
1790 .pm = ATMEL_SPI_PM_OPS,
1791 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1792 },
1793 .probe = atmel_spi_probe,
1794 .remove = atmel_spi_remove,
1795};
1796module_platform_driver(atmel_spi_driver);
1797
1798MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1799MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1800MODULE_LICENSE("GPL");
1801MODULE_ALIAS("platform:atmel_spi");