Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/init.h>
  13#include <linux/clk.h>
  14#include <linux/module.h>
  15#include <linux/platform_device.h>
  16#include <linux/delay.h>
  17#include <linux/dma-mapping.h>
 
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
 
 
  22
  23#include <asm/io.h>
  24#include <mach/board.h>
  25#include <mach/gpio.h>
  26#include <mach/cpu.h>
 
  27
  28/* SPI register offsets */
  29#define SPI_CR					0x0000
  30#define SPI_MR					0x0004
  31#define SPI_RDR					0x0008
  32#define SPI_TDR					0x000c
  33#define SPI_SR					0x0010
  34#define SPI_IER					0x0014
  35#define SPI_IDR					0x0018
  36#define SPI_IMR					0x001c
  37#define SPI_CSR0				0x0030
  38#define SPI_CSR1				0x0034
  39#define SPI_CSR2				0x0038
  40#define SPI_CSR3				0x003c
 
 
 
  41#define SPI_RPR					0x0100
  42#define SPI_RCR					0x0104
  43#define SPI_TPR					0x0108
  44#define SPI_TCR					0x010c
  45#define SPI_RNPR				0x0110
  46#define SPI_RNCR				0x0114
  47#define SPI_TNPR				0x0118
  48#define SPI_TNCR				0x011c
  49#define SPI_PTCR				0x0120
  50#define SPI_PTSR				0x0124
  51
  52/* Bitfields in CR */
  53#define SPI_SPIEN_OFFSET			0
  54#define SPI_SPIEN_SIZE				1
  55#define SPI_SPIDIS_OFFSET			1
  56#define SPI_SPIDIS_SIZE				1
  57#define SPI_SWRST_OFFSET			7
  58#define SPI_SWRST_SIZE				1
  59#define SPI_LASTXFER_OFFSET			24
  60#define SPI_LASTXFER_SIZE			1
 
 
 
 
 
 
 
 
  61
  62/* Bitfields in MR */
  63#define SPI_MSTR_OFFSET				0
  64#define SPI_MSTR_SIZE				1
  65#define SPI_PS_OFFSET				1
  66#define SPI_PS_SIZE				1
  67#define SPI_PCSDEC_OFFSET			2
  68#define SPI_PCSDEC_SIZE				1
  69#define SPI_FDIV_OFFSET				3
  70#define SPI_FDIV_SIZE				1
  71#define SPI_MODFDIS_OFFSET			4
  72#define SPI_MODFDIS_SIZE			1
 
 
  73#define SPI_LLB_OFFSET				7
  74#define SPI_LLB_SIZE				1
  75#define SPI_PCS_OFFSET				16
  76#define SPI_PCS_SIZE				4
  77#define SPI_DLYBCS_OFFSET			24
  78#define SPI_DLYBCS_SIZE				8
  79
  80/* Bitfields in RDR */
  81#define SPI_RD_OFFSET				0
  82#define SPI_RD_SIZE				16
  83
  84/* Bitfields in TDR */
  85#define SPI_TD_OFFSET				0
  86#define SPI_TD_SIZE				16
  87
  88/* Bitfields in SR */
  89#define SPI_RDRF_OFFSET				0
  90#define SPI_RDRF_SIZE				1
  91#define SPI_TDRE_OFFSET				1
  92#define SPI_TDRE_SIZE				1
  93#define SPI_MODF_OFFSET				2
  94#define SPI_MODF_SIZE				1
  95#define SPI_OVRES_OFFSET			3
  96#define SPI_OVRES_SIZE				1
  97#define SPI_ENDRX_OFFSET			4
  98#define SPI_ENDRX_SIZE				1
  99#define SPI_ENDTX_OFFSET			5
 100#define SPI_ENDTX_SIZE				1
 101#define SPI_RXBUFF_OFFSET			6
 102#define SPI_RXBUFF_SIZE				1
 103#define SPI_TXBUFE_OFFSET			7
 104#define SPI_TXBUFE_SIZE				1
 105#define SPI_NSSR_OFFSET				8
 106#define SPI_NSSR_SIZE				1
 107#define SPI_TXEMPTY_OFFSET			9
 108#define SPI_TXEMPTY_SIZE			1
 109#define SPI_SPIENS_OFFSET			16
 110#define SPI_SPIENS_SIZE				1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111
 112/* Bitfields in CSR0 */
 113#define SPI_CPOL_OFFSET				0
 114#define SPI_CPOL_SIZE				1
 115#define SPI_NCPHA_OFFSET			1
 116#define SPI_NCPHA_SIZE				1
 117#define SPI_CSAAT_OFFSET			3
 118#define SPI_CSAAT_SIZE				1
 119#define SPI_BITS_OFFSET				4
 120#define SPI_BITS_SIZE				4
 121#define SPI_SCBR_OFFSET				8
 122#define SPI_SCBR_SIZE				8
 123#define SPI_DLYBS_OFFSET			16
 124#define SPI_DLYBS_SIZE				8
 125#define SPI_DLYBCT_OFFSET			24
 126#define SPI_DLYBCT_SIZE				8
 127
 128/* Bitfields in RCR */
 129#define SPI_RXCTR_OFFSET			0
 130#define SPI_RXCTR_SIZE				16
 131
 132/* Bitfields in TCR */
 133#define SPI_TXCTR_OFFSET			0
 134#define SPI_TXCTR_SIZE				16
 135
 136/* Bitfields in RNCR */
 137#define SPI_RXNCR_OFFSET			0
 138#define SPI_RXNCR_SIZE				16
 139
 140/* Bitfields in TNCR */
 141#define SPI_TXNCR_OFFSET			0
 142#define SPI_TXNCR_SIZE				16
 143
 144/* Bitfields in PTCR */
 145#define SPI_RXTEN_OFFSET			0
 146#define SPI_RXTEN_SIZE				1
 147#define SPI_RXTDIS_OFFSET			1
 148#define SPI_RXTDIS_SIZE				1
 149#define SPI_TXTEN_OFFSET			8
 150#define SPI_TXTEN_SIZE				1
 151#define SPI_TXTDIS_OFFSET			9
 152#define SPI_TXTDIS_SIZE				1
 153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154/* Constants for BITS */
 155#define SPI_BITS_8_BPT				0
 156#define SPI_BITS_9_BPT				1
 157#define SPI_BITS_10_BPT				2
 158#define SPI_BITS_11_BPT				3
 159#define SPI_BITS_12_BPT				4
 160#define SPI_BITS_13_BPT				5
 161#define SPI_BITS_14_BPT				6
 162#define SPI_BITS_15_BPT				7
 163#define SPI_BITS_16_BPT				8
 
 
 
 164
 165/* Bit manipulation macros */
 166#define SPI_BIT(name) \
 167	(1 << SPI_##name##_OFFSET)
 168#define SPI_BF(name,value) \
 169	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 170#define SPI_BFEXT(name,value) \
 171	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 172#define SPI_BFINS(name,value,old) \
 173	( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 174	  | SPI_BF(name,value))
 175
 176/* Register access macros */
 177#define spi_readl(port,reg) \
 
 178	__raw_readl((port)->regs + SPI_##reg)
 179#define spi_writel(port,reg,value) \
 180	__raw_writel((value), (port)->regs + SPI_##reg)
 181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182
 183/*
 184 * The core SPI transfer engine just talks to a register bank to set up
 185 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 186 * framework provides the base clock, subdivided for each spi_device.
 187 */
 188struct atmel_spi {
 189	spinlock_t		lock;
 
 190
 
 191	void __iomem		*regs;
 192	int			irq;
 193	struct clk		*clk;
 194	struct platform_device	*pdev;
 195	struct spi_device	*stay;
 196
 197	u8			stopping;
 198	struct list_head	queue;
 199	struct spi_transfer	*current_transfer;
 200	unsigned long		current_remaining_bytes;
 201	struct spi_transfer	*next_transfer;
 202	unsigned long		next_remaining_bytes;
 
 
 
 
 
 
 
 203
 204	void			*buffer;
 205	dma_addr_t		buffer_dma;
 
 
 
 
 
 
 206};
 207
 208/* Controller-specific per-slave state */
 209struct atmel_spi_device {
 210	unsigned int		npcs_pin;
 211	u32			csr;
 212};
 213
 214#define BUFFER_SIZE		PAGE_SIZE
 215#define INVALID_DMA_ADDRESS	0xffffffff
 216
 217/*
 218 * Version 2 of the SPI controller has
 219 *  - CR.LASTXFER
 220 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 221 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 222 *  - SPI_CSRx.CSAAT
 223 *  - SPI_CSRx.SBCR allows faster clocking
 224 *
 225 * We can determine the controller version by reading the VERSION
 226 * register, but I haven't checked that it exists on all chips, and
 227 * this is cheaper anyway.
 228 */
 229static bool atmel_spi_is_v2(void)
 230{
 231	return !cpu_is_at91rm9200();
 232}
 233
 234/*
 235 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 236 * they assume that spi slave device state will not change on deselect, so
 237 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 238 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 239 * controllers have CSAAT and friends.
 240 *
 241 * Since the CSAAT functionality is a bit weird on newer controllers as
 242 * well, we use GPIO to control nCSx pins on all controllers, updating
 243 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 244 * support active-high chipselects despite the controller's belief that
 245 * only active-low devices/systems exists.
 246 *
 247 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 248 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 249 * Master on Chip Select 0.")  No workaround exists for that ... so for
 250 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 251 * and (c) will trigger that first erratum in some cases.
 252 *
 253 * TODO: Test if the atmel_spi_is_v2() branch below works on
 254 * AT91RM9200 if we use some other register than CSR0. However, don't
 255 * do this unconditionally since AP7000 has an errata where the BITS
 256 * field in CSR0 overrides all other CSRs.
 257 */
 258
 259static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 260{
 261	struct atmel_spi_device *asd = spi->controller_state;
 262	unsigned active = spi->mode & SPI_CS_HIGH;
 263	u32 mr;
 264
 265	if (atmel_spi_is_v2()) {
 266		/*
 267		 * Always use CSR0. This ensures that the clock
 268		 * switches to the correct idle polarity before we
 269		 * toggle the CS.
 270		 */
 271		spi_writel(as, CSR0, asd->csr);
 272		spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
 273				| SPI_BIT(MSTR));
 
 
 
 
 
 
 
 
 
 
 
 274		mr = spi_readl(as, MR);
 275		gpio_set_value(asd->npcs_pin, active);
 
 276	} else {
 277		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 278		int i;
 279		u32 csr;
 280
 281		/* Make sure clock polarity is correct */
 282		for (i = 0; i < spi->master->num_chipselect; i++) {
 283			csr = spi_readl(as, CSR0 + 4 * i);
 284			if ((csr ^ cpol) & SPI_BIT(CPOL))
 285				spi_writel(as, CSR0 + 4 * i,
 286						csr ^ SPI_BIT(CPOL));
 287		}
 288
 289		mr = spi_readl(as, MR);
 290		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 291		if (spi->chip_select != 0)
 292			gpio_set_value(asd->npcs_pin, active);
 293		spi_writel(as, MR, mr);
 294	}
 295
 296	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 297			asd->npcs_pin, active ? " (high)" : "",
 298			mr);
 299}
 300
 301static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 302{
 303	struct atmel_spi_device *asd = spi->controller_state;
 304	unsigned active = spi->mode & SPI_CS_HIGH;
 305	u32 mr;
 306
 307	/* only deactivate *this* device; sometimes transfers to
 308	 * another device may be active when this routine is called.
 309	 */
 310	mr = spi_readl(as, MR);
 311	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 312		mr = SPI_BFINS(PCS, 0xf, mr);
 313		spi_writel(as, MR, mr);
 314	}
 315
 316	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 317			asd->npcs_pin, active ? " (low)" : "",
 318			mr);
 319
 320	if (atmel_spi_is_v2() || spi->chip_select != 0)
 321		gpio_set_value(asd->npcs_pin, !active);
 
 
 322}
 323
 324static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
 325					struct spi_transfer *xfer)
 326{
 327	return msg->transfers.prev == &xfer->transfer_list;
 328}
 329
 330static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
 331{
 332	return xfer->delay_usecs == 0 && !xfer->cs_change;
 333}
 334
 335static void atmel_spi_next_xfer_data(struct spi_master *master,
 336				struct spi_transfer *xfer,
 337				dma_addr_t *tx_dma,
 338				dma_addr_t *rx_dma,
 339				u32 *plen)
 340{
 341	struct atmel_spi	*as = spi_master_get_devdata(master);
 342	u32			len = *plen;
 343
 344	/* use scratch buffer only when rx or tx data is unspecified */
 345	if (xfer->rx_buf)
 346		*rx_dma = xfer->rx_dma + xfer->len - *plen;
 347	else {
 348		*rx_dma = as->buffer_dma;
 349		if (len > BUFFER_SIZE)
 350			len = BUFFER_SIZE;
 351	}
 352	if (xfer->tx_buf)
 353		*tx_dma = xfer->tx_dma + xfer->len - *plen;
 354	else {
 355		*tx_dma = as->buffer_dma;
 356		if (len > BUFFER_SIZE)
 357			len = BUFFER_SIZE;
 358		memset(as->buffer, 0, len);
 359		dma_sync_single_for_device(&as->pdev->dev,
 360				as->buffer_dma, len, DMA_TO_DEVICE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361	}
 362
 363	*plen = len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364}
 365
 366/*
 367 * Submit next transfer for DMA.
 368 * lock is held, spi irq is blocked
 369 */
 370static void atmel_spi_next_xfer(struct spi_master *master,
 371				struct spi_message *msg)
 372{
 373	struct atmel_spi	*as = spi_master_get_devdata(master);
 374	struct spi_transfer	*xfer;
 375	u32			len, remaining;
 376	u32			ieval;
 377	dma_addr_t		tx_dma, rx_dma;
 
 
 
 
 
 
 378
 379	if (!as->current_transfer)
 380		xfer = list_entry(msg->transfers.next,
 381				struct spi_transfer, transfer_list);
 382	else if (!as->next_transfer)
 383		xfer = list_entry(as->current_transfer->transfer_list.next,
 384				struct spi_transfer, transfer_list);
 385	else
 386		xfer = NULL;
 387
 388	if (xfer) {
 389		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 
 
 390
 391		len = xfer->len;
 392		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 393		remaining = xfer->len - len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394
 395		spi_writel(as, RPR, rx_dma);
 396		spi_writel(as, TPR, tx_dma);
 
 397
 398		if (msg->spi->bits_per_word > 8)
 399			len >>= 1;
 400		spi_writel(as, RCR, len);
 401		spi_writel(as, TCR, len);
 
 402
 403		dev_dbg(&msg->spi->dev,
 404			"  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 405			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 406			xfer->rx_buf, xfer->rx_dma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407	} else {
 408		xfer = as->next_transfer;
 409		remaining = as->next_remaining_bytes;
 
 
 
 
 410	}
 
 
 411
 412	as->current_transfer = xfer;
 413	as->current_remaining_bytes = remaining;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414
 415	if (remaining > 0)
 416		len = remaining;
 417	else if (!atmel_spi_xfer_is_last(msg, xfer)
 418			&& atmel_spi_xfer_can_be_chained(xfer)) {
 419		xfer = list_entry(xfer->transfer_list.next,
 420				struct spi_transfer, transfer_list);
 421		len = xfer->len;
 422	} else
 423		xfer = NULL;
 424
 425	as->next_transfer = xfer;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426
 427	if (xfer) {
 428		u32	total;
 429
 430		total = len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 432		as->next_remaining_bytes = total - len;
 433
 434		spi_writel(as, RNPR, rx_dma);
 435		spi_writel(as, TNPR, tx_dma);
 436
 437		if (msg->spi->bits_per_word > 8)
 438			len >>= 1;
 439		spi_writel(as, RNCR, len);
 440		spi_writel(as, TNCR, len);
 441
 442		dev_dbg(&msg->spi->dev,
 443			"  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 444			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 445			xfer->rx_buf, xfer->rx_dma);
 446		ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 447	} else {
 448		spi_writel(as, RNCR, 0);
 449		spi_writel(as, TNCR, 0);
 450		ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 451	}
 452
 453	/* REVISIT: We're waiting for ENDRX before we start the next
 454	 * transfer because we need to handle some difficult timing
 455	 * issues otherwise. If we wait for ENDTX in one transfer and
 456	 * then starts waiting for ENDRX in the next, it's difficult
 457	 * to tell the difference between the ENDRX interrupt we're
 458	 * actually waiting for and the ENDRX interrupt of the
 459	 * previous transfer.
 460	 *
 461	 * It should be doable, though. Just not now...
 462	 */
 463	spi_writel(as, IER, ieval);
 464	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 465}
 466
 467static void atmel_spi_next_message(struct spi_master *master)
 468{
 469	struct atmel_spi	*as = spi_master_get_devdata(master);
 470	struct spi_message	*msg;
 471	struct spi_device	*spi;
 472
 473	BUG_ON(as->current_transfer);
 474
 475	msg = list_entry(as->queue.next, struct spi_message, queue);
 476	spi = msg->spi;
 477
 478	dev_dbg(master->dev.parent, "start message %p for %s\n",
 479			msg, dev_name(&spi->dev));
 480
 481	/* select chip if it's not still active */
 482	if (as->stay) {
 483		if (as->stay != spi) {
 484			cs_deactivate(as, as->stay);
 485			cs_activate(as, spi);
 486		}
 487		as->stay = NULL;
 488	} else
 489		cs_activate(as, spi);
 490
 491	atmel_spi_next_xfer(master, msg);
 492}
 493
 494/*
 495 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 496 *  - The buffer is either valid for CPU access, else NULL
 497 *  - If the buffer is valid, so is its DMA address
 498 *
 499 * This driver manages the dma address unless message->is_dma_mapped.
 500 */
 501static int
 502atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 503{
 504	struct device	*dev = &as->pdev->dev;
 505
 506	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 507	if (xfer->tx_buf) {
 508		/* tx_buf is a const void* where we need a void * for the dma
 509		 * mapping */
 510		void *nonconst_tx = (void *)xfer->tx_buf;
 511
 512		xfer->tx_dma = dma_map_single(dev,
 513				nonconst_tx, xfer->len,
 514				DMA_TO_DEVICE);
 515		if (dma_mapping_error(dev, xfer->tx_dma))
 516			return -ENOMEM;
 517	}
 518	if (xfer->rx_buf) {
 519		xfer->rx_dma = dma_map_single(dev,
 520				xfer->rx_buf, xfer->len,
 521				DMA_FROM_DEVICE);
 522		if (dma_mapping_error(dev, xfer->rx_dma)) {
 523			if (xfer->tx_buf)
 524				dma_unmap_single(dev,
 525						xfer->tx_dma, xfer->len,
 526						DMA_TO_DEVICE);
 527			return -ENOMEM;
 528		}
 529	}
 530	return 0;
 531}
 532
 533static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 534				     struct spi_transfer *xfer)
 535{
 536	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 537		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 538				 xfer->len, DMA_TO_DEVICE);
 539	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 540		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 541				 xfer->len, DMA_FROM_DEVICE);
 542}
 543
 544static void
 545atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
 546		struct spi_message *msg, int status, int stay)
 547{
 548	if (!stay || status < 0)
 549		cs_deactivate(as, msg->spi);
 550	else
 551		as->stay = msg->spi;
 552
 553	list_del(&msg->queue);
 554	msg->status = status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	dev_dbg(master->dev.parent,
 557		"xfer complete: %u bytes transferred\n",
 558		msg->actual_length);
 
 
 
 
 
 
 
 
 
 
 
 559
 560	spin_unlock(&as->lock);
 561	msg->complete(msg->context);
 562	spin_lock(&as->lock);
 
 563
 564	as->current_transfer = NULL;
 565	as->next_transfer = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567	/* continue if needed */
 568	if (list_empty(&as->queue) || as->stopping)
 569		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 
 
 
 
 
 
 
 570	else
 571		atmel_spi_next_message(master);
 572}
 573
 
 
 
 
 
 574static irqreturn_t
 575atmel_spi_interrupt(int irq, void *dev_id)
 576{
 577	struct spi_master	*master = dev_id;
 578	struct atmel_spi	*as = spi_master_get_devdata(master);
 579	struct spi_message	*msg;
 580	struct spi_transfer	*xfer;
 581	u32			status, pending, imr;
 
 582	int			ret = IRQ_NONE;
 583
 584	spin_lock(&as->lock);
 585
 586	xfer = as->current_transfer;
 587	msg = list_entry(as->queue.next, struct spi_message, queue);
 588
 589	imr = spi_readl(as, IMR);
 590	status = spi_readl(as, SR);
 591	pending = status & imr;
 592
 593	if (pending & SPI_BIT(OVRES)) {
 594		int timeout;
 595
 596		ret = IRQ_HANDLED;
 597
 598		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
 599				     | SPI_BIT(OVRES)));
 600
 601		/*
 602		 * When we get an overrun, we disregard the current
 603		 * transfer. Data will not be copied back from any
 604		 * bounce buffer and msg->actual_len will not be
 605		 * updated with the last xfer.
 606		 *
 607		 * We will also not process any remaning transfers in
 608		 * the message.
 609		 *
 610		 * First, stop the transfer and unmap the DMA buffers.
 611		 */
 612		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 613		if (!msg->is_dma_mapped)
 614			atmel_spi_dma_unmap_xfer(master, xfer);
 615
 616		/* REVISIT: udelay in irq is unfriendly */
 617		if (xfer->delay_usecs)
 618			udelay(xfer->delay_usecs);
 619
 620		dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
 621			 spi_readl(as, TCR), spi_readl(as, RCR));
 622
 623		/*
 624		 * Clean up DMA registers and make sure the data
 625		 * registers are empty.
 626		 */
 627		spi_writel(as, RNCR, 0);
 628		spi_writel(as, TNCR, 0);
 629		spi_writel(as, RCR, 0);
 630		spi_writel(as, TCR, 0);
 631		for (timeout = 1000; timeout; timeout--)
 632			if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
 633				break;
 634		if (!timeout)
 635			dev_warn(master->dev.parent,
 636				 "timeout waiting for TXEMPTY");
 637		while (spi_readl(as, SR) & SPI_BIT(RDRF))
 638			spi_readl(as, RDR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639
 640		/* Clear any overrun happening while cleaning up */
 641		spi_readl(as, SR);
 642
 643		atmel_spi_msg_done(master, as, msg, -EIO, 0);
 
 
 
 644	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
 645		ret = IRQ_HANDLED;
 646
 647		spi_writel(as, IDR, pending);
 648
 649		if (as->current_remaining_bytes == 0) {
 650			msg->actual_length += xfer->len;
 651
 652			if (!msg->is_dma_mapped)
 653				atmel_spi_dma_unmap_xfer(master, xfer);
 654
 655			/* REVISIT: udelay in irq is unfriendly */
 656			if (xfer->delay_usecs)
 657				udelay(xfer->delay_usecs);
 658
 659			if (atmel_spi_xfer_is_last(msg, xfer)) {
 660				/* report completed message */
 661				atmel_spi_msg_done(master, as, msg, 0,
 662						xfer->cs_change);
 663			} else {
 664				if (xfer->cs_change) {
 665					cs_deactivate(as, msg->spi);
 666					udelay(1);
 667					cs_activate(as, msg->spi);
 668				}
 669
 670				/*
 671				 * Not done yet. Submit the next transfer.
 672				 *
 673				 * FIXME handle protocol options for xfer
 674				 */
 675				atmel_spi_next_xfer(master, msg);
 676			}
 677		} else {
 678			/*
 679			 * Keep going, we still have data to send in
 680			 * the current transfer.
 681			 */
 682			atmel_spi_next_xfer(master, msg);
 683		}
 684	}
 685
 686	spin_unlock(&as->lock);
 687
 688	return ret;
 689}
 690
 691static int atmel_spi_setup(struct spi_device *spi)
 692{
 693	struct atmel_spi	*as;
 694	struct atmel_spi_device	*asd;
 695	u32			scbr, csr;
 696	unsigned int		bits = spi->bits_per_word;
 697	unsigned long		bus_hz;
 698	unsigned int		npcs_pin;
 699	int			ret;
 700
 701	as = spi_master_get_devdata(spi->master);
 702
 703	if (as->stopping)
 704		return -ESHUTDOWN;
 705
 706	if (spi->chip_select > spi->master->num_chipselect) {
 707		dev_dbg(&spi->dev,
 708				"setup: invalid chipselect %u (%u defined)\n",
 709				spi->chip_select, spi->master->num_chipselect);
 710		return -EINVAL;
 711	}
 712
 713	if (bits < 8 || bits > 16) {
 714		dev_dbg(&spi->dev,
 715				"setup: invalid bits_per_word %u (8 to 16)\n",
 716				bits);
 717		return -EINVAL;
 718	}
 719
 720	/* see notes above re chipselect */
 721	if (!atmel_spi_is_v2()
 722			&& spi->chip_select == 0
 723			&& (spi->mode & SPI_CS_HIGH)) {
 724		dev_dbg(&spi->dev, "setup: can't be active-high\n");
 725		return -EINVAL;
 726	}
 727
 728	/* v1 chips start out at half the peripheral bus speed. */
 729	bus_hz = clk_get_rate(as->clk);
 730	if (!atmel_spi_is_v2())
 731		bus_hz /= 2;
 732
 733	if (spi->max_speed_hz) {
 734		/*
 735		 * Calculate the lowest divider that satisfies the
 736		 * constraint, assuming div32/fdiv/mbz == 0.
 737		 */
 738		scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
 739
 740		/*
 741		 * If the resulting divider doesn't fit into the
 742		 * register bitfield, we can't satisfy the constraint.
 743		 */
 744		if (scbr >= (1 << SPI_SCBR_SIZE)) {
 745			dev_dbg(&spi->dev,
 746				"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 747				spi->max_speed_hz, scbr, bus_hz/255);
 748			return -EINVAL;
 749		}
 750	} else
 751		/* speed zero means "as slow as possible" */
 752		scbr = 0xff;
 753
 754	csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
 755	if (spi->mode & SPI_CPOL)
 756		csr |= SPI_BIT(CPOL);
 757	if (!(spi->mode & SPI_CPHA))
 758		csr |= SPI_BIT(NCPHA);
 
 
 759
 760	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
 761	 *
 762	 * DLYBCT would add delays between words, slowing down transfers.
 763	 * It could potentially be useful to cope with DMA bottlenecks, but
 764	 * in those cases it's probably best to just use a lower bitrate.
 765	 */
 766	csr |= SPI_BF(DLYBS, 0);
 767	csr |= SPI_BF(DLYBCT, 0);
 768
 769	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
 770	npcs_pin = (unsigned int)spi->controller_data;
 
 
 
 
 771	asd = spi->controller_state;
 772	if (!asd) {
 773		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
 774		if (!asd)
 775			return -ENOMEM;
 776
 777		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
 778		if (ret) {
 779			kfree(asd);
 780			return ret;
 
 
 
 
 
 
 
 
 
 781		}
 782
 783		asd->npcs_pin = npcs_pin;
 784		spi->controller_state = asd;
 785		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
 786	} else {
 787		unsigned long		flags;
 788
 789		spin_lock_irqsave(&as->lock, flags);
 790		if (as->stay == spi)
 791			as->stay = NULL;
 792		cs_deactivate(as, spi);
 793		spin_unlock_irqrestore(&as->lock, flags);
 794	}
 795
 796	asd->csr = csr;
 797
 798	dev_dbg(&spi->dev,
 799		"setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
 800		bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
 801
 802	if (!atmel_spi_is_v2())
 803		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 804
 805	return 0;
 806}
 807
 808static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
 
 
 809{
 810	struct atmel_spi	*as;
 811	struct spi_transfer	*xfer;
 812	unsigned long		flags;
 813	struct device		*controller = spi->master->dev.parent;
 814	u8			bits;
 
 815	struct atmel_spi_device	*asd;
 
 
 
 816
 817	as = spi_master_get_devdata(spi->master);
 818
 819	dev_dbg(controller, "new message %p submitted for %s\n",
 820			msg, dev_name(&spi->dev));
 821
 822	if (unlikely(list_empty(&msg->transfers)))
 
 823		return -EINVAL;
 
 824
 825	if (as->stopping)
 826		return -ESHUTDOWN;
 
 
 
 
 
 827
 828	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 829		if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
 830			dev_dbg(&spi->dev, "missing rx or tx buf\n");
 831			return -EINVAL;
 832		}
 
 
 
 
 
 
 833
 834		if (xfer->bits_per_word) {
 835			asd = spi->controller_state;
 836			bits = (asd->csr >> 4) & 0xf;
 837			if (bits != xfer->bits_per_word - 8) {
 838				dev_dbg(&spi->dev, "you can't yet change "
 839					 "bits_per_word in transfers\n");
 840				return -ENOPROTOOPT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 841			}
 
 
 842		}
 843
 844		/* FIXME implement these protocol options!! */
 845		if (xfer->speed_hz) {
 846			dev_dbg(&spi->dev, "no protocol options yet\n");
 847			return -ENOPROTOOPT;
 
 
 
 
 848		}
 849
 850		/*
 851		 * DMA map early, for performance (empties dcache ASAP) and
 852		 * better fault reporting.  This is a DMA-only driver.
 853		 *
 854		 * NOTE that if dma_unmap_single() ever starts to do work on
 855		 * platforms supported by this driver, we would need to clean
 856		 * up mappings for previously-mapped transfers.
 857		 */
 858		if (!msg->is_dma_mapped) {
 859			if (atmel_spi_dma_map_xfer(as, xfer) < 0)
 860				return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861		}
 862	}
 863
 864#ifdef VERBOSE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 866		dev_dbg(controller,
 867			"  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 868			xfer, xfer->len,
 869			xfer->tx_buf, xfer->tx_dma,
 870			xfer->rx_buf, xfer->rx_dma);
 871	}
 872#endif
 873
 874	msg->status = -EINPROGRESS;
 875	msg->actual_length = 0;
 
 876
 877	spin_lock_irqsave(&as->lock, flags);
 878	list_add_tail(&msg->queue, &as->queue);
 879	if (!as->current_transfer)
 880		atmel_spi_next_message(spi->master);
 881	spin_unlock_irqrestore(&as->lock, flags);
 882
 883	return 0;
 
 
 
 884}
 885
 886static void atmel_spi_cleanup(struct spi_device *spi)
 887{
 888	struct atmel_spi	*as = spi_master_get_devdata(spi->master);
 889	struct atmel_spi_device	*asd = spi->controller_state;
 890	unsigned		gpio = (unsigned) spi->controller_data;
 891	unsigned long		flags;
 892
 893	if (!asd)
 894		return;
 895
 896	spin_lock_irqsave(&as->lock, flags);
 897	if (as->stay == spi) {
 898		as->stay = NULL;
 899		cs_deactivate(as, spi);
 900	}
 901	spin_unlock_irqrestore(&as->lock, flags);
 902
 903	spi->controller_state = NULL;
 904	gpio_free(gpio);
 905	kfree(asd);
 906}
 907
 908/*-------------------------------------------------------------------------*/
 
 
 
 909
 910static int __init atmel_spi_probe(struct platform_device *pdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911{
 912	struct resource		*regs;
 913	int			irq;
 914	struct clk		*clk;
 915	int			ret;
 916	struct spi_master	*master;
 917	struct atmel_spi	*as;
 918
 
 
 
 919	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 920	if (!regs)
 921		return -ENXIO;
 922
 923	irq = platform_get_irq(pdev, 0);
 924	if (irq < 0)
 925		return irq;
 926
 927	clk = clk_get(&pdev->dev, "spi_clk");
 928	if (IS_ERR(clk))
 929		return PTR_ERR(clk);
 930
 931	/* setup spi core then atmel-specific driver state */
 932	ret = -ENOMEM;
 933	master = spi_alloc_master(&pdev->dev, sizeof *as);
 934	if (!master)
 935		goto out_free;
 936
 937	/* the spi->mode bits understood by this driver: */
 
 938	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
 939
 
 940	master->bus_num = pdev->id;
 941	master->num_chipselect = 4;
 942	master->setup = atmel_spi_setup;
 943	master->transfer = atmel_spi_transfer;
 
 944	master->cleanup = atmel_spi_cleanup;
 
 
 
 945	platform_set_drvdata(pdev, master);
 946
 947	as = spi_master_get_devdata(master);
 948
 949	/*
 950	 * Scratch buffer is used for throwaway rx and tx data.
 951	 * It's coherent to minimize dcache pollution.
 952	 */
 953	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
 954					&as->buffer_dma, GFP_KERNEL);
 955	if (!as->buffer)
 956		goto out_free;
 957
 958	spin_lock_init(&as->lock);
 959	INIT_LIST_HEAD(&as->queue);
 960	as->pdev = pdev;
 961	as->regs = ioremap(regs->start, resource_size(regs));
 962	if (!as->regs)
 963		goto out_free_buffer;
 
 
 
 964	as->irq = irq;
 965	as->clk = clk;
 966
 967	ret = request_irq(irq, atmel_spi_interrupt, 0,
 968			dev_name(&pdev->dev), master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969	if (ret)
 970		goto out_unmap_regs;
 971
 972	/* Initialize the hardware */
 973	clk_enable(clk);
 974	spi_writel(as, CR, SPI_BIT(SWRST));
 975	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 976	spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
 977	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 978	spi_writel(as, CR, SPI_BIT(SPIEN));
 979
 980	/* go! */
 981	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
 982			(unsigned long)regs->start, irq);
 
 
 
 
 
 
 983
 984	ret = spi_register_master(master);
 
 
 
 
 
 985	if (ret)
 986		goto out_reset_hw;
 
 
 
 
 
 987
 988	return 0;
 989
 990out_reset_hw:
 
 
 
 
 
 
 991	spi_writel(as, CR, SPI_BIT(SWRST));
 992	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 993	clk_disable(clk);
 994	free_irq(irq, master);
 995out_unmap_regs:
 996	iounmap(as->regs);
 997out_free_buffer:
 998	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
 999			as->buffer_dma);
1000out_free:
1001	clk_put(clk);
1002	spi_master_put(master);
1003	return ret;
1004}
1005
1006static int __exit atmel_spi_remove(struct platform_device *pdev)
1007{
1008	struct spi_master	*master = platform_get_drvdata(pdev);
1009	struct atmel_spi	*as = spi_master_get_devdata(master);
1010	struct spi_message	*msg;
 
1011
1012	/* reset the hardware and block queue progress */
 
 
 
 
 
 
 
 
 
 
 
 
 
1013	spin_lock_irq(&as->lock);
1014	as->stopping = 1;
1015	spi_writel(as, CR, SPI_BIT(SWRST));
1016	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1017	spi_readl(as, SR);
1018	spin_unlock_irq(&as->lock);
1019
1020	/* Terminate remaining queued transfers */
1021	list_for_each_entry(msg, &as->queue, queue) {
1022		/* REVISIT unmapping the dma is a NOP on ARM and AVR32
1023		 * but we shouldn't depend on that...
1024		 */
1025		msg->status = -ESHUTDOWN;
1026		msg->complete(msg->context);
1027	}
1028
1029	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1030			as->buffer_dma);
1031
1032	clk_disable(as->clk);
1033	clk_put(as->clk);
1034	free_irq(as->irq, master);
1035	iounmap(as->regs);
1036
1037	spi_unregister_master(master);
 
 
 
 
 
 
 
1038
1039	return 0;
1040}
1041
1042#ifdef	CONFIG_PM
 
 
 
 
 
1043
1044static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
 
 
 
 
1045{
1046	struct spi_master	*master = platform_get_drvdata(pdev);
1047	struct atmel_spi	*as = spi_master_get_devdata(master);
 
 
 
 
 
 
 
 
1048
1049	clk_disable(as->clk);
1050	return 0;
1051}
1052
1053static int atmel_spi_resume(struct platform_device *pdev)
1054{
1055	struct spi_master	*master = platform_get_drvdata(pdev);
1056	struct atmel_spi	*as = spi_master_get_devdata(master);
 
1057
1058	clk_enable(as->clk);
1059	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060}
 
1061
 
 
 
 
 
 
1062#else
1063#define	atmel_spi_suspend	NULL
1064#define	atmel_spi_resume	NULL
1065#endif
1066
 
 
 
 
 
 
 
 
1067
1068static struct platform_driver atmel_spi_driver = {
1069	.driver		= {
1070		.name	= "atmel_spi",
1071		.owner	= THIS_MODULE,
 
1072	},
1073	.suspend	= atmel_spi_suspend,
1074	.resume		= atmel_spi_resume,
1075	.remove		= __exit_p(atmel_spi_remove),
1076};
1077
1078static int __init atmel_spi_init(void)
1079{
1080	return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe);
1081}
1082module_init(atmel_spi_init);
1083
1084static void __exit atmel_spi_exit(void)
1085{
1086	platform_driver_unregister(&atmel_spi_driver);
1087}
1088module_exit(atmel_spi_exit);
1089
1090MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1091MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1092MODULE_LICENSE("GPL");
1093MODULE_ALIAS("platform:atmel_spi");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Atmel AT32 and AT91 SPI Controllers
   4 *
   5 * Copyright (C) 2006 Atmel Corporation
 
 
 
 
   6 */
   7
   8#include <linux/kernel.h>
 
   9#include <linux/clk.h>
  10#include <linux/module.h>
  11#include <linux/platform_device.h>
  12#include <linux/delay.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/dmaengine.h>
  15#include <linux/err.h>
  16#include <linux/interrupt.h>
  17#include <linux/spi/spi.h>
  18#include <linux/slab.h>
  19#include <linux/platform_data/dma-atmel.h>
  20#include <linux/of.h>
  21
  22#include <linux/io.h>
  23#include <linux/gpio/consumer.h>
  24#include <linux/pinctrl/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <trace/events/spi.h>
  27
  28/* SPI register offsets */
  29#define SPI_CR					0x0000
  30#define SPI_MR					0x0004
  31#define SPI_RDR					0x0008
  32#define SPI_TDR					0x000c
  33#define SPI_SR					0x0010
  34#define SPI_IER					0x0014
  35#define SPI_IDR					0x0018
  36#define SPI_IMR					0x001c
  37#define SPI_CSR0				0x0030
  38#define SPI_CSR1				0x0034
  39#define SPI_CSR2				0x0038
  40#define SPI_CSR3				0x003c
  41#define SPI_FMR					0x0040
  42#define SPI_FLR					0x0044
  43#define SPI_VERSION				0x00fc
  44#define SPI_RPR					0x0100
  45#define SPI_RCR					0x0104
  46#define SPI_TPR					0x0108
  47#define SPI_TCR					0x010c
  48#define SPI_RNPR				0x0110
  49#define SPI_RNCR				0x0114
  50#define SPI_TNPR				0x0118
  51#define SPI_TNCR				0x011c
  52#define SPI_PTCR				0x0120
  53#define SPI_PTSR				0x0124
  54
  55/* Bitfields in CR */
  56#define SPI_SPIEN_OFFSET			0
  57#define SPI_SPIEN_SIZE				1
  58#define SPI_SPIDIS_OFFSET			1
  59#define SPI_SPIDIS_SIZE				1
  60#define SPI_SWRST_OFFSET			7
  61#define SPI_SWRST_SIZE				1
  62#define SPI_LASTXFER_OFFSET			24
  63#define SPI_LASTXFER_SIZE			1
  64#define SPI_TXFCLR_OFFSET			16
  65#define SPI_TXFCLR_SIZE				1
  66#define SPI_RXFCLR_OFFSET			17
  67#define SPI_RXFCLR_SIZE				1
  68#define SPI_FIFOEN_OFFSET			30
  69#define SPI_FIFOEN_SIZE				1
  70#define SPI_FIFODIS_OFFSET			31
  71#define SPI_FIFODIS_SIZE			1
  72
  73/* Bitfields in MR */
  74#define SPI_MSTR_OFFSET				0
  75#define SPI_MSTR_SIZE				1
  76#define SPI_PS_OFFSET				1
  77#define SPI_PS_SIZE				1
  78#define SPI_PCSDEC_OFFSET			2
  79#define SPI_PCSDEC_SIZE				1
  80#define SPI_FDIV_OFFSET				3
  81#define SPI_FDIV_SIZE				1
  82#define SPI_MODFDIS_OFFSET			4
  83#define SPI_MODFDIS_SIZE			1
  84#define SPI_WDRBT_OFFSET			5
  85#define SPI_WDRBT_SIZE				1
  86#define SPI_LLB_OFFSET				7
  87#define SPI_LLB_SIZE				1
  88#define SPI_PCS_OFFSET				16
  89#define SPI_PCS_SIZE				4
  90#define SPI_DLYBCS_OFFSET			24
  91#define SPI_DLYBCS_SIZE				8
  92
  93/* Bitfields in RDR */
  94#define SPI_RD_OFFSET				0
  95#define SPI_RD_SIZE				16
  96
  97/* Bitfields in TDR */
  98#define SPI_TD_OFFSET				0
  99#define SPI_TD_SIZE				16
 100
 101/* Bitfields in SR */
 102#define SPI_RDRF_OFFSET				0
 103#define SPI_RDRF_SIZE				1
 104#define SPI_TDRE_OFFSET				1
 105#define SPI_TDRE_SIZE				1
 106#define SPI_MODF_OFFSET				2
 107#define SPI_MODF_SIZE				1
 108#define SPI_OVRES_OFFSET			3
 109#define SPI_OVRES_SIZE				1
 110#define SPI_ENDRX_OFFSET			4
 111#define SPI_ENDRX_SIZE				1
 112#define SPI_ENDTX_OFFSET			5
 113#define SPI_ENDTX_SIZE				1
 114#define SPI_RXBUFF_OFFSET			6
 115#define SPI_RXBUFF_SIZE				1
 116#define SPI_TXBUFE_OFFSET			7
 117#define SPI_TXBUFE_SIZE				1
 118#define SPI_NSSR_OFFSET				8
 119#define SPI_NSSR_SIZE				1
 120#define SPI_TXEMPTY_OFFSET			9
 121#define SPI_TXEMPTY_SIZE			1
 122#define SPI_SPIENS_OFFSET			16
 123#define SPI_SPIENS_SIZE				1
 124#define SPI_TXFEF_OFFSET			24
 125#define SPI_TXFEF_SIZE				1
 126#define SPI_TXFFF_OFFSET			25
 127#define SPI_TXFFF_SIZE				1
 128#define SPI_TXFTHF_OFFSET			26
 129#define SPI_TXFTHF_SIZE				1
 130#define SPI_RXFEF_OFFSET			27
 131#define SPI_RXFEF_SIZE				1
 132#define SPI_RXFFF_OFFSET			28
 133#define SPI_RXFFF_SIZE				1
 134#define SPI_RXFTHF_OFFSET			29
 135#define SPI_RXFTHF_SIZE				1
 136#define SPI_TXFPTEF_OFFSET			30
 137#define SPI_TXFPTEF_SIZE			1
 138#define SPI_RXFPTEF_OFFSET			31
 139#define SPI_RXFPTEF_SIZE			1
 140
 141/* Bitfields in CSR0 */
 142#define SPI_CPOL_OFFSET				0
 143#define SPI_CPOL_SIZE				1
 144#define SPI_NCPHA_OFFSET			1
 145#define SPI_NCPHA_SIZE				1
 146#define SPI_CSAAT_OFFSET			3
 147#define SPI_CSAAT_SIZE				1
 148#define SPI_BITS_OFFSET				4
 149#define SPI_BITS_SIZE				4
 150#define SPI_SCBR_OFFSET				8
 151#define SPI_SCBR_SIZE				8
 152#define SPI_DLYBS_OFFSET			16
 153#define SPI_DLYBS_SIZE				8
 154#define SPI_DLYBCT_OFFSET			24
 155#define SPI_DLYBCT_SIZE				8
 156
 157/* Bitfields in RCR */
 158#define SPI_RXCTR_OFFSET			0
 159#define SPI_RXCTR_SIZE				16
 160
 161/* Bitfields in TCR */
 162#define SPI_TXCTR_OFFSET			0
 163#define SPI_TXCTR_SIZE				16
 164
 165/* Bitfields in RNCR */
 166#define SPI_RXNCR_OFFSET			0
 167#define SPI_RXNCR_SIZE				16
 168
 169/* Bitfields in TNCR */
 170#define SPI_TXNCR_OFFSET			0
 171#define SPI_TXNCR_SIZE				16
 172
 173/* Bitfields in PTCR */
 174#define SPI_RXTEN_OFFSET			0
 175#define SPI_RXTEN_SIZE				1
 176#define SPI_RXTDIS_OFFSET			1
 177#define SPI_RXTDIS_SIZE				1
 178#define SPI_TXTEN_OFFSET			8
 179#define SPI_TXTEN_SIZE				1
 180#define SPI_TXTDIS_OFFSET			9
 181#define SPI_TXTDIS_SIZE				1
 182
 183/* Bitfields in FMR */
 184#define SPI_TXRDYM_OFFSET			0
 185#define SPI_TXRDYM_SIZE				2
 186#define SPI_RXRDYM_OFFSET			4
 187#define SPI_RXRDYM_SIZE				2
 188#define SPI_TXFTHRES_OFFSET			16
 189#define SPI_TXFTHRES_SIZE			6
 190#define SPI_RXFTHRES_OFFSET			24
 191#define SPI_RXFTHRES_SIZE			6
 192
 193/* Bitfields in FLR */
 194#define SPI_TXFL_OFFSET				0
 195#define SPI_TXFL_SIZE				6
 196#define SPI_RXFL_OFFSET				16
 197#define SPI_RXFL_SIZE				6
 198
 199/* Constants for BITS */
 200#define SPI_BITS_8_BPT				0
 201#define SPI_BITS_9_BPT				1
 202#define SPI_BITS_10_BPT				2
 203#define SPI_BITS_11_BPT				3
 204#define SPI_BITS_12_BPT				4
 205#define SPI_BITS_13_BPT				5
 206#define SPI_BITS_14_BPT				6
 207#define SPI_BITS_15_BPT				7
 208#define SPI_BITS_16_BPT				8
 209#define SPI_ONE_DATA				0
 210#define SPI_TWO_DATA				1
 211#define SPI_FOUR_DATA				2
 212
 213/* Bit manipulation macros */
 214#define SPI_BIT(name) \
 215	(1 << SPI_##name##_OFFSET)
 216#define SPI_BF(name, value) \
 217	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 218#define SPI_BFEXT(name, value) \
 219	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 220#define SPI_BFINS(name, value, old) \
 221	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 222	  | SPI_BF(name, value))
 223
 224/* Register access macros */
 225#ifdef CONFIG_AVR32
 226#define spi_readl(port, reg) \
 227	__raw_readl((port)->regs + SPI_##reg)
 228#define spi_writel(port, reg, value) \
 229	__raw_writel((value), (port)->regs + SPI_##reg)
 230
 231#define spi_readw(port, reg) \
 232	__raw_readw((port)->regs + SPI_##reg)
 233#define spi_writew(port, reg, value) \
 234	__raw_writew((value), (port)->regs + SPI_##reg)
 235
 236#define spi_readb(port, reg) \
 237	__raw_readb((port)->regs + SPI_##reg)
 238#define spi_writeb(port, reg, value) \
 239	__raw_writeb((value), (port)->regs + SPI_##reg)
 240#else
 241#define spi_readl(port, reg) \
 242	readl_relaxed((port)->regs + SPI_##reg)
 243#define spi_writel(port, reg, value) \
 244	writel_relaxed((value), (port)->regs + SPI_##reg)
 245
 246#define spi_readw(port, reg) \
 247	readw_relaxed((port)->regs + SPI_##reg)
 248#define spi_writew(port, reg, value) \
 249	writew_relaxed((value), (port)->regs + SPI_##reg)
 250
 251#define spi_readb(port, reg) \
 252	readb_relaxed((port)->regs + SPI_##reg)
 253#define spi_writeb(port, reg, value) \
 254	writeb_relaxed((value), (port)->regs + SPI_##reg)
 255#endif
 256/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 257 * cache operations; better heuristics consider wordsize and bitrate.
 258 */
 259#define DMA_MIN_BYTES	16
 260
 261#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
 262
 263#define AUTOSUSPEND_TIMEOUT	2000
 264
 265struct atmel_spi_caps {
 266	bool	is_spi2;
 267	bool	has_wdrbt;
 268	bool	has_dma_support;
 269	bool	has_pdc_support;
 270};
 271
 272/*
 273 * The core SPI transfer engine just talks to a register bank to set up
 274 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 275 * framework provides the base clock, subdivided for each spi_device.
 276 */
 277struct atmel_spi {
 278	spinlock_t		lock;
 279	unsigned long		flags;
 280
 281	phys_addr_t		phybase;
 282	void __iomem		*regs;
 283	int			irq;
 284	struct clk		*clk;
 285	struct platform_device	*pdev;
 286	unsigned long		spi_clk;
 287
 
 
 288	struct spi_transfer	*current_transfer;
 289	int			current_remaining_bytes;
 290	int			done_status;
 291	dma_addr_t		dma_addr_rx_bbuf;
 292	dma_addr_t		dma_addr_tx_bbuf;
 293	void			*addr_rx_bbuf;
 294	void			*addr_tx_bbuf;
 295
 296	struct completion	xfer_completion;
 297
 298	struct atmel_spi_caps	caps;
 299
 300	bool			use_dma;
 301	bool			use_pdc;
 302	bool			use_cs_gpios;
 303
 304	bool			keep_cs;
 305	bool			cs_active;
 306
 307	u32			fifo_size;
 308};
 309
 310/* Controller-specific per-slave state */
 311struct atmel_spi_device {
 312	struct gpio_desc	*npcs_pin;
 313	u32			csr;
 314};
 315
 316#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
 317#define INVALID_DMA_ADDRESS	0xffffffff
 318
 319/*
 320 * Version 2 of the SPI controller has
 321 *  - CR.LASTXFER
 322 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 323 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 324 *  - SPI_CSRx.CSAAT
 325 *  - SPI_CSRx.SBCR allows faster clocking
 
 
 
 
 326 */
 327static bool atmel_spi_is_v2(struct atmel_spi *as)
 328{
 329	return as->caps.is_spi2;
 330}
 331
 332/*
 333 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 334 * they assume that spi slave device state will not change on deselect, so
 335 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 336 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 337 * controllers have CSAAT and friends.
 338 *
 339 * Since the CSAAT functionality is a bit weird on newer controllers as
 340 * well, we use GPIO to control nCSx pins on all controllers, updating
 341 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 342 * support active-high chipselects despite the controller's belief that
 343 * only active-low devices/systems exists.
 344 *
 345 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 346 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 347 * Master on Chip Select 0.")  No workaround exists for that ... so for
 348 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 349 * and (c) will trigger that first erratum in some cases.
 
 
 
 
 
 350 */
 351
 352static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 353{
 354	struct atmel_spi_device *asd = spi->controller_state;
 
 355	u32 mr;
 356
 357	if (atmel_spi_is_v2(as)) {
 358		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
 359		/* For the low SPI version, there is a issue that PDC transfer
 360		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 
 361		 */
 362		spi_writel(as, CSR0, asd->csr);
 363		if (as->caps.has_wdrbt) {
 364			spi_writel(as, MR,
 365					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 366					| SPI_BIT(WDRBT)
 367					| SPI_BIT(MODFDIS)
 368					| SPI_BIT(MSTR));
 369		} else {
 370			spi_writel(as, MR,
 371					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 372					| SPI_BIT(MODFDIS)
 373					| SPI_BIT(MSTR));
 374		}
 375
 376		mr = spi_readl(as, MR);
 377		if (as->use_cs_gpios)
 378			gpiod_set_value(asd->npcs_pin, 1);
 379	} else {
 380		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 381		int i;
 382		u32 csr;
 383
 384		/* Make sure clock polarity is correct */
 385		for (i = 0; i < spi->master->num_chipselect; i++) {
 386			csr = spi_readl(as, CSR0 + 4 * i);
 387			if ((csr ^ cpol) & SPI_BIT(CPOL))
 388				spi_writel(as, CSR0 + 4 * i,
 389						csr ^ SPI_BIT(CPOL));
 390		}
 391
 392		mr = spi_readl(as, MR);
 393		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 394		if (as->use_cs_gpios && spi->chip_select != 0)
 395			gpiod_set_value(asd->npcs_pin, 1);
 396		spi_writel(as, MR, mr);
 397	}
 398
 399	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
 
 
 400}
 401
 402static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 403{
 404	struct atmel_spi_device *asd = spi->controller_state;
 
 405	u32 mr;
 406
 407	/* only deactivate *this* device; sometimes transfers to
 408	 * another device may be active when this routine is called.
 409	 */
 410	mr = spi_readl(as, MR);
 411	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 412		mr = SPI_BFINS(PCS, 0xf, mr);
 413		spi_writel(as, MR, mr);
 414	}
 415
 416	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
 
 
 417
 418	if (!as->use_cs_gpios)
 419		spi_writel(as, CR, SPI_BIT(LASTXFER));
 420	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
 421		gpiod_set_value(asd->npcs_pin, 0);
 422}
 423
 424static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 
 425{
 426	spin_lock_irqsave(&as->lock, as->flags);
 427}
 428
 429static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 430{
 431	spin_unlock_irqrestore(&as->lock, as->flags);
 432}
 433
 434static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
 
 
 
 
 435{
 436	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
 437}
 438
 439static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 440				struct spi_transfer *xfer)
 441{
 442	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 443}
 444
 445static bool atmel_spi_can_dma(struct spi_master *master,
 446			      struct spi_device *spi,
 447			      struct spi_transfer *xfer)
 448{
 449	struct atmel_spi *as = spi_master_get_devdata(master);
 450
 451	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
 452		return atmel_spi_use_dma(as, xfer) &&
 453			!atmel_spi_is_vmalloc_xfer(xfer);
 454	else
 455		return atmel_spi_use_dma(as, xfer);
 456
 457}
 458
 459static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 460				struct dma_slave_config *slave_config,
 461				u8 bits_per_word)
 462{
 463	struct spi_master *master = platform_get_drvdata(as->pdev);
 464	int err = 0;
 465
 466	if (bits_per_word > 8) {
 467		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 468		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 469	} else {
 470		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 471		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 472	}
 473
 474	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 475	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 476	slave_config->src_maxburst = 1;
 477	slave_config->dst_maxburst = 1;
 478	slave_config->device_fc = false;
 479
 480	/*
 481	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 482	 * the Mode Register).
 483	 * So according to the datasheet, when FIFOs are available (and
 484	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 485	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 486	 * Data Register in a single access.
 487	 * However, the first data has to be written into the lowest 16 bits and
 488	 * the second data into the highest 16 bits of the Transmit
 489	 * Data Register. For 8bit data (the most frequent case), it would
 490	 * require to rework tx_buf so each data would actualy fit 16 bits.
 491	 * So we'd rather write only one data at the time. Hence the transmit
 492	 * path works the same whether FIFOs are available (and enabled) or not.
 493	 */
 494	slave_config->direction = DMA_MEM_TO_DEV;
 495	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
 496		dev_err(&as->pdev->dev,
 497			"failed to configure tx dma channel\n");
 498		err = -EINVAL;
 499	}
 500
 501	/*
 502	 * This driver configures the spi controller for master mode (MSTR bit
 503	 * set to '1' in the Mode Register).
 504	 * So according to the datasheet, when FIFOs are available (and
 505	 * enabled), the Receive FIFO operates in Single Data Mode.
 506	 * So the receive path works the same whether FIFOs are available (and
 507	 * enabled) or not.
 508	 */
 509	slave_config->direction = DMA_DEV_TO_MEM;
 510	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
 511		dev_err(&as->pdev->dev,
 512			"failed to configure rx dma channel\n");
 513		err = -EINVAL;
 514	}
 515
 516	return err;
 517}
 518
 519static int atmel_spi_configure_dma(struct spi_master *master,
 520				   struct atmel_spi *as)
 521{
 522	struct dma_slave_config	slave_config;
 523	struct device *dev = &as->pdev->dev;
 524	int err;
 525
 526	dma_cap_mask_t mask;
 527	dma_cap_zero(mask);
 528	dma_cap_set(DMA_SLAVE, mask);
 529
 530	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
 531	if (IS_ERR(master->dma_tx)) {
 532		err = PTR_ERR(master->dma_tx);
 533		if (err == -EPROBE_DEFER) {
 534			dev_warn(dev, "no DMA channel available at the moment\n");
 535			goto error_clear;
 536		}
 537		dev_err(dev,
 538			"DMA TX channel not available, SPI unable to use DMA\n");
 539		err = -EBUSY;
 540		goto error_clear;
 541	}
 542
 543	/*
 544	 * No reason to check EPROBE_DEFER here since we have already requested
 545	 * tx channel. If it fails here, it's for another reason.
 546	 */
 547	master->dma_rx = dma_request_slave_channel(dev, "rx");
 548
 549	if (!master->dma_rx) {
 550		dev_err(dev,
 551			"DMA RX channel not available, SPI unable to use DMA\n");
 552		err = -EBUSY;
 553		goto error;
 554	}
 555
 556	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 557	if (err)
 558		goto error;
 559
 560	dev_info(&as->pdev->dev,
 561			"Using %s (tx) and %s (rx) for DMA transfers\n",
 562			dma_chan_name(master->dma_tx),
 563			dma_chan_name(master->dma_rx));
 564
 565	return 0;
 566error:
 567	if (master->dma_rx)
 568		dma_release_channel(master->dma_rx);
 569	if (!IS_ERR(master->dma_tx))
 570		dma_release_channel(master->dma_tx);
 571error_clear:
 572	master->dma_tx = master->dma_rx = NULL;
 573	return err;
 574}
 575
 576static void atmel_spi_stop_dma(struct spi_master *master)
 577{
 578	if (master->dma_rx)
 579		dmaengine_terminate_all(master->dma_rx);
 580	if (master->dma_tx)
 581		dmaengine_terminate_all(master->dma_tx);
 582}
 583
 584static void atmel_spi_release_dma(struct spi_master *master)
 585{
 586	if (master->dma_rx) {
 587		dma_release_channel(master->dma_rx);
 588		master->dma_rx = NULL;
 589	}
 590	if (master->dma_tx) {
 591		dma_release_channel(master->dma_tx);
 592		master->dma_tx = NULL;
 593	}
 594}
 595
 596/* This function is called by the DMA driver from tasklet context */
 597static void dma_callback(void *data)
 598{
 599	struct spi_master	*master = data;
 600	struct atmel_spi	*as = spi_master_get_devdata(master);
 601
 602	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
 603	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 604		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
 605		       as->current_transfer->len);
 606	}
 607	complete(&as->xfer_completion);
 608}
 609
 610/*
 611 * Next transfer using PIO without FIFO.
 
 612 */
 613static void atmel_spi_next_xfer_single(struct spi_master *master,
 614				       struct spi_transfer *xfer)
 615{
 616	struct atmel_spi	*as = spi_master_get_devdata(master);
 617	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 618
 619	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 620
 621	/* Make sure data is not remaining in RDR */
 622	spi_readl(as, RDR);
 623	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 624		spi_readl(as, RDR);
 625		cpu_relax();
 626	}
 627
 628	if (xfer->bits_per_word > 8)
 629		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 
 
 
 
 630	else
 631		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 632
 633	dev_dbg(master->dev.parent,
 634		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 635		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 636		xfer->bits_per_word);
 637
 638	/* Enable relevant interrupts */
 639	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 640}
 641
 642/*
 643 * Next transfer using PIO with FIFO.
 644 */
 645static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 646				     struct spi_transfer *xfer)
 647{
 648	struct atmel_spi *as = spi_master_get_devdata(master);
 649	u32 current_remaining_data, num_data;
 650	u32 offset = xfer->len - as->current_remaining_bytes;
 651	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 652	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 653	u16 td0, td1;
 654	u32 fifomr;
 655
 656	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 657
 658	/* Compute the number of data to transfer in the current iteration */
 659	current_remaining_data = ((xfer->bits_per_word > 8) ?
 660				  ((u32)as->current_remaining_bytes >> 1) :
 661				  (u32)as->current_remaining_bytes);
 662	num_data = min(current_remaining_data, as->fifo_size);
 663
 664	/* Flush RX and TX FIFOs */
 665	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 666	while (spi_readl(as, FLR))
 667		cpu_relax();
 668
 669	/* Set RX FIFO Threshold to the number of data to transfer */
 670	fifomr = spi_readl(as, FMR);
 671	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 672
 673	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 674	(void)spi_readl(as, SR);
 675
 676	/* Fill TX FIFO */
 677	while (num_data >= 2) {
 678		if (xfer->bits_per_word > 8) {
 679			td0 = *words++;
 680			td1 = *words++;
 681		} else {
 682			td0 = *bytes++;
 683			td1 = *bytes++;
 684		}
 685
 686		spi_writel(as, TDR, (td1 << 16) | td0);
 687		num_data -= 2;
 688	}
 689
 690	if (num_data) {
 691		if (xfer->bits_per_word > 8)
 692			td0 = *words++;
 693		else
 694			td0 = *bytes++;
 695
 696		spi_writew(as, TDR, td0);
 697		num_data--;
 698	}
 699
 700	dev_dbg(master->dev.parent,
 701		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 702		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 703		xfer->bits_per_word);
 704
 705	/*
 706	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 707	 * transfer completion.
 708	 */
 709	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 710}
 711
 712/*
 713 * Next transfer using PIO.
 714 */
 715static void atmel_spi_next_xfer_pio(struct spi_master *master,
 716				    struct spi_transfer *xfer)
 717{
 718	struct atmel_spi *as = spi_master_get_devdata(master);
 719
 720	if (as->fifo_size)
 721		atmel_spi_next_xfer_fifo(master, xfer);
 722	else
 723		atmel_spi_next_xfer_single(master, xfer);
 724}
 725
 726/*
 727 * Submit next transfer for DMA.
 728 */
 729static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 730				struct spi_transfer *xfer,
 731				u32 *plen)
 732{
 733	struct atmel_spi	*as = spi_master_get_devdata(master);
 734	struct dma_chan		*rxchan = master->dma_rx;
 735	struct dma_chan		*txchan = master->dma_tx;
 736	struct dma_async_tx_descriptor *rxdesc;
 737	struct dma_async_tx_descriptor *txdesc;
 738	struct dma_slave_config	slave_config;
 739	dma_cookie_t		cookie;
 740
 741	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 742
 743	/* Check that the channels are available */
 744	if (!rxchan || !txchan)
 745		return -ENODEV;
 746
 747	/* release lock for DMA operations */
 748	atmel_spi_unlock(as);
 749
 750	*plen = xfer->len;
 751
 752	if (atmel_spi_dma_slave_config(as, &slave_config,
 753				       xfer->bits_per_word))
 754		goto err_exit;
 755
 756	/* Send both scatterlists */
 757	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 758	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 759		rxdesc = dmaengine_prep_slave_single(rxchan,
 760						     as->dma_addr_rx_bbuf,
 761						     xfer->len,
 762						     DMA_DEV_TO_MEM,
 763						     DMA_PREP_INTERRUPT |
 764						     DMA_CTRL_ACK);
 765	} else {
 766		rxdesc = dmaengine_prep_slave_sg(rxchan,
 767						 xfer->rx_sg.sgl,
 768						 xfer->rx_sg.nents,
 769						 DMA_DEV_TO_MEM,
 770						 DMA_PREP_INTERRUPT |
 771						 DMA_CTRL_ACK);
 772	}
 773	if (!rxdesc)
 774		goto err_dma;
 775
 776	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 777	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 778		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
 779		txdesc = dmaengine_prep_slave_single(txchan,
 780						     as->dma_addr_tx_bbuf,
 781						     xfer->len, DMA_MEM_TO_DEV,
 782						     DMA_PREP_INTERRUPT |
 783						     DMA_CTRL_ACK);
 784	} else {
 785		txdesc = dmaengine_prep_slave_sg(txchan,
 786						 xfer->tx_sg.sgl,
 787						 xfer->tx_sg.nents,
 788						 DMA_MEM_TO_DEV,
 789						 DMA_PREP_INTERRUPT |
 790						 DMA_CTRL_ACK);
 791	}
 792	if (!txdesc)
 793		goto err_dma;
 794
 795	dev_dbg(master->dev.parent,
 796		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 797		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 798		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 799
 800	/* Enable relevant interrupts */
 801	spi_writel(as, IER, SPI_BIT(OVRES));
 802
 803	/* Put the callback on the RX transfer only, that should finish last */
 804	rxdesc->callback = dma_callback;
 805	rxdesc->callback_param = master;
 806
 807	/* Submit and fire RX and TX with TX last so we're ready to read! */
 808	cookie = rxdesc->tx_submit(rxdesc);
 809	if (dma_submit_error(cookie))
 810		goto err_dma;
 811	cookie = txdesc->tx_submit(txdesc);
 812	if (dma_submit_error(cookie))
 813		goto err_dma;
 814	rxchan->device->device_issue_pending(rxchan);
 815	txchan->device->device_issue_pending(txchan);
 816
 817	/* take back lock */
 818	atmel_spi_lock(as);
 819	return 0;
 820
 821err_dma:
 822	spi_writel(as, IDR, SPI_BIT(OVRES));
 823	atmel_spi_stop_dma(master);
 824err_exit:
 825	atmel_spi_lock(as);
 826	return -ENOMEM;
 827}
 828
 829static void atmel_spi_next_xfer_data(struct spi_master *master,
 830				struct spi_transfer *xfer,
 831				dma_addr_t *tx_dma,
 832				dma_addr_t *rx_dma,
 833				u32 *plen)
 834{
 835	*rx_dma = xfer->rx_dma + xfer->len - *plen;
 836	*tx_dma = xfer->tx_dma + xfer->len - *plen;
 837	if (*plen > master->max_dma_len)
 838		*plen = master->max_dma_len;
 839}
 840
 841static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 842				    struct spi_device *spi,
 843				    struct spi_transfer *xfer)
 844{
 845	u32			scbr, csr;
 846	unsigned long		bus_hz;
 847
 848	/* v1 chips start out at half the peripheral bus speed. */
 849	bus_hz = as->spi_clk;
 850	if (!atmel_spi_is_v2(as))
 851		bus_hz /= 2;
 852
 853	/*
 854	 * Calculate the lowest divider that satisfies the
 855	 * constraint, assuming div32/fdiv/mbz == 0.
 856	 */
 857	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 
 
 
 
 858
 859	/*
 860	 * If the resulting divider doesn't fit into the
 861	 * register bitfield, we can't satisfy the constraint.
 862	 */
 863	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 864		dev_err(&spi->dev,
 865			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 866			xfer->speed_hz, scbr, bus_hz/255);
 867		return -EINVAL;
 868	}
 869	if (scbr == 0) {
 870		dev_err(&spi->dev,
 871			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 872			xfer->speed_hz, scbr, bus_hz);
 873		return -EINVAL;
 874	}
 875	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
 876	csr = SPI_BFINS(SCBR, scbr, csr);
 877	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 878
 879	return 0;
 880}
 881
 882/*
 883 * Submit next transfer for PDC.
 884 * lock is held, spi irq is blocked
 885 */
 886static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 887					struct spi_message *msg,
 888					struct spi_transfer *xfer)
 889{
 890	struct atmel_spi	*as = spi_master_get_devdata(master);
 891	u32			len;
 892	dma_addr_t		tx_dma, rx_dma;
 893
 894	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 895
 896	len = as->current_remaining_bytes;
 897	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 898	as->current_remaining_bytes -= len;
 899
 900	spi_writel(as, RPR, rx_dma);
 901	spi_writel(as, TPR, tx_dma);
 902
 903	if (msg->spi->bits_per_word > 8)
 904		len >>= 1;
 905	spi_writel(as, RCR, len);
 906	spi_writel(as, TCR, len);
 907
 908	dev_dbg(&msg->spi->dev,
 909		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 910		xfer, xfer->len, xfer->tx_buf,
 911		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 912		(unsigned long long)xfer->rx_dma);
 913
 914	if (as->current_remaining_bytes) {
 915		len = as->current_remaining_bytes;
 916		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 917		as->current_remaining_bytes -= len;
 918
 919		spi_writel(as, RNPR, rx_dma);
 920		spi_writel(as, TNPR, tx_dma);
 921
 922		if (msg->spi->bits_per_word > 8)
 923			len >>= 1;
 924		spi_writel(as, RNCR, len);
 925		spi_writel(as, TNCR, len);
 926
 927		dev_dbg(&msg->spi->dev,
 928			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 929			xfer, xfer->len, xfer->tx_buf,
 930			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 931			(unsigned long long)xfer->rx_dma);
 
 
 
 
 932	}
 933
 934	/* REVISIT: We're waiting for RXBUFF before we start the next
 935	 * transfer because we need to handle some difficult timing
 936	 * issues otherwise. If we wait for TXBUFE in one transfer and
 937	 * then starts waiting for RXBUFF in the next, it's difficult
 938	 * to tell the difference between the RXBUFF interrupt we're
 939	 * actually waiting for and the RXBUFF interrupt of the
 940	 * previous transfer.
 941	 *
 942	 * It should be doable, though. Just not now...
 943	 */
 944	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 945	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 946}
 947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 948/*
 949 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 950 *  - The buffer is either valid for CPU access, else NULL
 951 *  - If the buffer is valid, so is its DMA address
 952 *
 953 * This driver manages the dma address unless message->is_dma_mapped.
 954 */
 955static int
 956atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 957{
 958	struct device	*dev = &as->pdev->dev;
 959
 960	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 961	if (xfer->tx_buf) {
 962		/* tx_buf is a const void* where we need a void * for the dma
 963		 * mapping */
 964		void *nonconst_tx = (void *)xfer->tx_buf;
 965
 966		xfer->tx_dma = dma_map_single(dev,
 967				nonconst_tx, xfer->len,
 968				DMA_TO_DEVICE);
 969		if (dma_mapping_error(dev, xfer->tx_dma))
 970			return -ENOMEM;
 971	}
 972	if (xfer->rx_buf) {
 973		xfer->rx_dma = dma_map_single(dev,
 974				xfer->rx_buf, xfer->len,
 975				DMA_FROM_DEVICE);
 976		if (dma_mapping_error(dev, xfer->rx_dma)) {
 977			if (xfer->tx_buf)
 978				dma_unmap_single(dev,
 979						xfer->tx_dma, xfer->len,
 980						DMA_TO_DEVICE);
 981			return -ENOMEM;
 982		}
 983	}
 984	return 0;
 985}
 986
 987static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 988				     struct spi_transfer *xfer)
 989{
 990	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 991		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 992				 xfer->len, DMA_TO_DEVICE);
 993	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 994		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 995				 xfer->len, DMA_FROM_DEVICE);
 996}
 997
 998static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
 
 
 999{
1000	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1001}
 
 
1002
1003static void
1004atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1005{
1006	u8		*rxp;
1007	u16		*rxp16;
1008	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1009
1010	if (xfer->bits_per_word > 8) {
1011		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1012		*rxp16 = spi_readl(as, RDR);
1013	} else {
1014		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1015		*rxp = spi_readl(as, RDR);
1016	}
1017	if (xfer->bits_per_word > 8) {
1018		if (as->current_remaining_bytes > 2)
1019			as->current_remaining_bytes -= 2;
1020		else
1021			as->current_remaining_bytes = 0;
1022	} else {
1023		as->current_remaining_bytes--;
1024	}
1025}
1026
1027static void
1028atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1029{
1030	u32 fifolr = spi_readl(as, FLR);
1031	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1032	u32 offset = xfer->len - as->current_remaining_bytes;
1033	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1034	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1035	u16 rd; /* RD field is the lowest 16 bits of RDR */
1036
1037	/* Update the number of remaining bytes to transfer */
1038	num_bytes = ((xfer->bits_per_word > 8) ?
1039		     (num_data << 1) :
1040		     num_data);
1041
1042	if (as->current_remaining_bytes > num_bytes)
1043		as->current_remaining_bytes -= num_bytes;
1044	else
1045		as->current_remaining_bytes = 0;
1046
1047	/* Handle odd number of bytes when data are more than 8bit width */
1048	if (xfer->bits_per_word > 8)
1049		as->current_remaining_bytes &= ~0x1;
1050
1051	/* Read data */
1052	while (num_data) {
1053		rd = spi_readl(as, RDR);
1054		if (xfer->bits_per_word > 8)
1055			*words++ = rd;
1056		else
1057			*bytes++ = rd;
1058		num_data--;
1059	}
1060}
1061
1062/* Called from IRQ
1063 *
1064 * Must update "current_remaining_bytes" to keep track of data
1065 * to transfer.
1066 */
1067static void
1068atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1069{
1070	if (as->fifo_size)
1071		atmel_spi_pump_fifo_data(as, xfer);
1072	else
1073		atmel_spi_pump_single_data(as, xfer);
1074}
1075
1076/* Interrupt
1077 *
1078 * No need for locking in this Interrupt handler: done_status is the
1079 * only information modified.
1080 */
1081static irqreturn_t
1082atmel_spi_pio_interrupt(int irq, void *dev_id)
1083{
1084	struct spi_master	*master = dev_id;
1085	struct atmel_spi	*as = spi_master_get_devdata(master);
 
 
1086	u32			status, pending, imr;
1087	struct spi_transfer	*xfer;
1088	int			ret = IRQ_NONE;
1089
 
 
 
 
 
1090	imr = spi_readl(as, IMR);
1091	status = spi_readl(as, SR);
1092	pending = status & imr;
1093
1094	if (pending & SPI_BIT(OVRES)) {
 
 
1095		ret = IRQ_HANDLED;
1096		spi_writel(as, IDR, SPI_BIT(OVRES));
1097		dev_warn(master->dev.parent, "overrun\n");
 
1098
1099		/*
1100		 * When we get an overrun, we disregard the current
1101		 * transfer. Data will not be copied back from any
1102		 * bounce buffer and msg->actual_len will not be
1103		 * updated with the last xfer.
1104		 *
1105		 * We will also not process any remaning transfers in
1106		 * the message.
 
 
1107		 */
1108		as->done_status = -EIO;
1109		smp_wmb();
 
1110
1111		/* Clear any overrun happening while cleaning up */
1112		spi_readl(as, SR);
 
1113
1114		complete(&as->xfer_completion);
 
1115
1116	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1117		atmel_spi_lock(as);
1118
1119		if (as->current_remaining_bytes) {
1120			ret = IRQ_HANDLED;
1121			xfer = as->current_transfer;
1122			atmel_spi_pump_pio_data(as, xfer);
1123			if (!as->current_remaining_bytes)
1124				spi_writel(as, IDR, pending);
1125
1126			complete(&as->xfer_completion);
1127		}
1128
1129		atmel_spi_unlock(as);
1130	} else {
1131		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1132		ret = IRQ_HANDLED;
1133		spi_writel(as, IDR, pending);
1134	}
1135
1136	return ret;
1137}
1138
1139static irqreturn_t
1140atmel_spi_pdc_interrupt(int irq, void *dev_id)
1141{
1142	struct spi_master	*master = dev_id;
1143	struct atmel_spi	*as = spi_master_get_devdata(master);
1144	u32			status, pending, imr;
1145	int			ret = IRQ_NONE;
1146
1147	imr = spi_readl(as, IMR);
1148	status = spi_readl(as, SR);
1149	pending = status & imr;
1150
1151	if (pending & SPI_BIT(OVRES)) {
1152
1153		ret = IRQ_HANDLED;
1154
1155		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1156				     | SPI_BIT(OVRES)));
1157
1158		/* Clear any overrun happening while cleaning up */
1159		spi_readl(as, SR);
1160
1161		as->done_status = -EIO;
1162
1163		complete(&as->xfer_completion);
1164
1165	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1166		ret = IRQ_HANDLED;
1167
1168		spi_writel(as, IDR, pending);
1169
1170		complete(&as->xfer_completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171	}
1172
 
 
1173	return ret;
1174}
1175
1176static int atmel_spi_setup(struct spi_device *spi)
1177{
1178	struct atmel_spi	*as;
1179	struct atmel_spi_device	*asd;
1180	u32			csr;
1181	unsigned int		bits = spi->bits_per_word;
 
 
 
1182
1183	as = spi_master_get_devdata(spi->master);
1184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185	/* see notes above re chipselect */
1186	if (!atmel_spi_is_v2(as)
1187			&& spi->chip_select == 0
1188			&& (spi->mode & SPI_CS_HIGH)) {
1189		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1190		return -EINVAL;
1191	}
1192
1193	csr = SPI_BF(BITS, bits - 8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194	if (spi->mode & SPI_CPOL)
1195		csr |= SPI_BIT(CPOL);
1196	if (!(spi->mode & SPI_CPHA))
1197		csr |= SPI_BIT(NCPHA);
1198	if (!as->use_cs_gpios)
1199		csr |= SPI_BIT(CSAAT);
1200
1201	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
 
 
 
 
1202	 */
1203	csr |= SPI_BF(DLYBS, 0);
 
1204
1205	/* DLYBCT adds delays between words.  This is useful for slow devices
1206	 * that need a bit of time to setup the next transfer.
1207	 */
1208	csr |= SPI_BF(DLYBCT,
1209			(as->spi_clk / 1000000 * spi->word_delay_usecs) >> 5);
1210
1211	asd = spi->controller_state;
1212	if (!asd) {
1213		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1214		if (!asd)
1215			return -ENOMEM;
1216
1217		/*
1218		 * If use_cs_gpios is true this means that we have "cs-gpios"
1219		 * defined in the device tree node so we should have
1220		 * gotten the GPIO lines from the device tree inside the
1221		 * SPI core. Warn if this is not the case but continue since
1222		 * CS GPIOs are after all optional.
1223		 */
1224		if (as->use_cs_gpios) {
1225			if (!spi->cs_gpiod) {
1226				dev_err(&spi->dev,
1227					"host claims to use CS GPIOs but no CS found in DT by the SPI core\n");
1228			}
1229			asd->npcs_pin = spi->cs_gpiod;
1230		}
1231
 
1232		spi->controller_state = asd;
 
 
 
 
 
 
 
 
 
1233	}
1234
1235	asd->csr = csr;
1236
1237	dev_dbg(&spi->dev,
1238		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1239		bits, spi->mode, spi->chip_select, csr);
1240
1241	if (!atmel_spi_is_v2(as))
1242		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1243
1244	return 0;
1245}
1246
1247static int atmel_spi_one_transfer(struct spi_master *master,
1248					struct spi_message *msg,
1249					struct spi_transfer *xfer)
1250{
1251	struct atmel_spi	*as;
1252	struct spi_device	*spi = msg->spi;
 
 
1253	u8			bits;
1254	u32			len;
1255	struct atmel_spi_device	*asd;
1256	int			timeout;
1257	int			ret;
1258	unsigned long		dma_timeout;
1259
1260	as = spi_master_get_devdata(master);
 
 
 
1261
1262	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1263		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1264		return -EINVAL;
1265	}
1266
1267	asd = spi->controller_state;
1268	bits = (asd->csr >> 4) & 0xf;
1269	if (bits != xfer->bits_per_word - 8) {
1270		dev_dbg(&spi->dev,
1271			"you can't yet change bits_per_word in transfers\n");
1272		return -ENOPROTOOPT;
1273	}
1274
1275	/*
1276	 * DMA map early, for performance (empties dcache ASAP) and
1277	 * better fault reporting.
1278	 */
1279	if ((!msg->is_dma_mapped)
1280		&& as->use_pdc) {
1281		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1282			return -ENOMEM;
1283	}
1284
1285	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1286
1287	as->done_status = 0;
1288	as->current_transfer = xfer;
1289	as->current_remaining_bytes = xfer->len;
1290	while (as->current_remaining_bytes) {
1291		reinit_completion(&as->xfer_completion);
1292
1293		if (as->use_pdc) {
1294			atmel_spi_pdc_next_xfer(master, msg, xfer);
1295		} else if (atmel_spi_use_dma(as, xfer)) {
1296			len = as->current_remaining_bytes;
1297			ret = atmel_spi_next_xfer_dma_submit(master,
1298								xfer, &len);
1299			if (ret) {
1300				dev_err(&spi->dev,
1301					"unable to use DMA, fallback to PIO\n");
1302				atmel_spi_next_xfer_pio(master, xfer);
1303			} else {
1304				as->current_remaining_bytes -= len;
1305				if (as->current_remaining_bytes < 0)
1306					as->current_remaining_bytes = 0;
1307			}
1308		} else {
1309			atmel_spi_next_xfer_pio(master, xfer);
1310		}
1311
1312		/* interrupts are disabled, so free the lock for schedule */
1313		atmel_spi_unlock(as);
1314		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1315							  SPI_DMA_TIMEOUT);
1316		atmel_spi_lock(as);
1317		if (WARN_ON(dma_timeout == 0)) {
1318			dev_err(&spi->dev, "spi transfer timeout\n");
1319			as->done_status = -EIO;
1320		}
1321
1322		if (as->done_status)
1323			break;
1324	}
1325
1326	if (as->done_status) {
1327		if (as->use_pdc) {
1328			dev_warn(master->dev.parent,
1329				"overrun (%u/%u remaining)\n",
1330				spi_readl(as, TCR), spi_readl(as, RCR));
1331
1332			/*
1333			 * Clean up DMA registers and make sure the data
1334			 * registers are empty.
1335			 */
1336			spi_writel(as, RNCR, 0);
1337			spi_writel(as, TNCR, 0);
1338			spi_writel(as, RCR, 0);
1339			spi_writel(as, TCR, 0);
1340			for (timeout = 1000; timeout; timeout--)
1341				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1342					break;
1343			if (!timeout)
1344				dev_warn(master->dev.parent,
1345					 "timeout waiting for TXEMPTY");
1346			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1347				spi_readl(as, RDR);
1348
1349			/* Clear any overrun happening while cleaning up */
1350			spi_readl(as, SR);
1351
1352		} else if (atmel_spi_use_dma(as, xfer)) {
1353			atmel_spi_stop_dma(master);
1354		}
1355
1356		if (!msg->is_dma_mapped
1357			&& as->use_pdc)
1358			atmel_spi_dma_unmap_xfer(master, xfer);
1359
1360		return 0;
1361
1362	} else {
1363		/* only update length if no error */
1364		msg->actual_length += xfer->len;
1365	}
1366
1367	if (!msg->is_dma_mapped
1368		&& as->use_pdc)
1369		atmel_spi_dma_unmap_xfer(master, xfer);
1370
1371	if (xfer->delay_usecs)
1372		udelay(xfer->delay_usecs);
1373
1374	if (xfer->cs_change) {
1375		if (list_is_last(&xfer->transfer_list,
1376				 &msg->transfers)) {
1377			as->keep_cs = true;
1378		} else {
1379			as->cs_active = !as->cs_active;
1380			if (as->cs_active)
1381				cs_activate(as, msg->spi);
1382			else
1383				cs_deactivate(as, msg->spi);
1384		}
1385	}
1386
1387	return 0;
1388}
1389
1390static int atmel_spi_transfer_one_message(struct spi_master *master,
1391						struct spi_message *msg)
1392{
1393	struct atmel_spi *as;
1394	struct spi_transfer *xfer;
1395	struct spi_device *spi = msg->spi;
1396	int ret = 0;
1397
1398	as = spi_master_get_devdata(master);
1399
1400	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1401					msg, dev_name(&spi->dev));
1402
1403	atmel_spi_lock(as);
1404	cs_activate(as, spi);
1405
1406	as->cs_active = true;
1407	as->keep_cs = false;
1408
1409	msg->status = 0;
1410	msg->actual_length = 0;
1411
1412	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1413		trace_spi_transfer_start(msg, xfer);
1414
1415		ret = atmel_spi_one_transfer(master, msg, xfer);
1416		if (ret)
1417			goto msg_done;
1418
1419		trace_spi_transfer_stop(msg, xfer);
1420	}
1421
1422	if (as->use_pdc)
1423		atmel_spi_disable_pdc_transfer(as);
1424
1425	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1426		dev_dbg(&spi->dev,
1427			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1428			xfer, xfer->len,
1429			xfer->tx_buf, &xfer->tx_dma,
1430			xfer->rx_buf, &xfer->rx_dma);
1431	}
 
1432
1433msg_done:
1434	if (!as->keep_cs)
1435		cs_deactivate(as, msg->spi);
1436
1437	atmel_spi_unlock(as);
 
 
 
 
1438
1439	msg->status = as->done_status;
1440	spi_finalize_current_message(spi->master);
1441
1442	return ret;
1443}
1444
1445static void atmel_spi_cleanup(struct spi_device *spi)
1446{
 
1447	struct atmel_spi_device	*asd = spi->controller_state;
 
 
1448
1449	if (!asd)
1450		return;
1451
 
 
 
 
 
 
 
1452	spi->controller_state = NULL;
 
1453	kfree(asd);
1454}
1455
1456static inline unsigned int atmel_get_version(struct atmel_spi *as)
1457{
1458	return spi_readl(as, VERSION) & 0x00000fff;
1459}
1460
1461static void atmel_get_caps(struct atmel_spi *as)
1462{
1463	unsigned int version;
1464
1465	version = atmel_get_version(as);
1466
1467	as->caps.is_spi2 = version > 0x121;
1468	as->caps.has_wdrbt = version >= 0x210;
1469	as->caps.has_dma_support = version >= 0x212;
1470	as->caps.has_pdc_support = version < 0x212;
1471}
1472
1473static void atmel_spi_init(struct atmel_spi *as)
1474{
1475	spi_writel(as, CR, SPI_BIT(SWRST));
1476	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1477
1478	/* It is recommended to enable FIFOs first thing after reset */
1479	if (as->fifo_size)
1480		spi_writel(as, CR, SPI_BIT(FIFOEN));
1481
1482	if (as->caps.has_wdrbt) {
1483		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1484				| SPI_BIT(MSTR));
1485	} else {
1486		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1487	}
1488
1489	if (as->use_pdc)
1490		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1491	spi_writel(as, CR, SPI_BIT(SPIEN));
1492}
1493
1494static int atmel_spi_probe(struct platform_device *pdev)
1495{
1496	struct resource		*regs;
1497	int			irq;
1498	struct clk		*clk;
1499	int			ret;
1500	struct spi_master	*master;
1501	struct atmel_spi	*as;
1502
1503	/* Select default pin state */
1504	pinctrl_pm_select_default_state(&pdev->dev);
1505
1506	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1507	if (!regs)
1508		return -ENXIO;
1509
1510	irq = platform_get_irq(pdev, 0);
1511	if (irq < 0)
1512		return irq;
1513
1514	clk = devm_clk_get(&pdev->dev, "spi_clk");
1515	if (IS_ERR(clk))
1516		return PTR_ERR(clk);
1517
1518	/* setup spi core then atmel-specific driver state */
1519	ret = -ENOMEM;
1520	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1521	if (!master)
1522		goto out_free;
1523
1524	/* the spi->mode bits understood by this driver: */
1525	master->use_gpio_descriptors = true;
1526	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1527	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1528	master->dev.of_node = pdev->dev.of_node;
1529	master->bus_num = pdev->id;
1530	master->num_chipselect = master->dev.of_node ? 0 : 4;
1531	master->setup = atmel_spi_setup;
1532	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1533	master->transfer_one_message = atmel_spi_transfer_one_message;
1534	master->cleanup = atmel_spi_cleanup;
1535	master->auto_runtime_pm = true;
1536	master->max_dma_len = SPI_MAX_DMA_XFER;
1537	master->can_dma = atmel_spi_can_dma;
1538	platform_set_drvdata(pdev, master);
1539
1540	as = spi_master_get_devdata(master);
1541
 
 
 
 
 
 
 
 
 
1542	spin_lock_init(&as->lock);
1543
1544	as->pdev = pdev;
1545	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1546	if (IS_ERR(as->regs)) {
1547		ret = PTR_ERR(as->regs);
1548		goto out_unmap_regs;
1549	}
1550	as->phybase = regs->start;
1551	as->irq = irq;
1552	as->clk = clk;
1553
1554	init_completion(&as->xfer_completion);
1555
1556	atmel_get_caps(as);
1557
1558	/*
1559	 * If there are chip selects in the device tree, those will be
1560	 * discovered by the SPI core when registering the SPI master
1561	 * and assigned to each SPI device.
1562	 */
1563	as->use_cs_gpios = true;
1564	if (atmel_spi_is_v2(as) &&
1565	    pdev->dev.of_node &&
1566	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1567		as->use_cs_gpios = false;
1568		master->num_chipselect = 4;
1569	}
1570
1571	as->use_dma = false;
1572	as->use_pdc = false;
1573	if (as->caps.has_dma_support) {
1574		ret = atmel_spi_configure_dma(master, as);
1575		if (ret == 0) {
1576			as->use_dma = true;
1577		} else if (ret == -EPROBE_DEFER) {
1578			return ret;
1579		}
1580	} else if (as->caps.has_pdc_support) {
1581		as->use_pdc = true;
1582	}
1583
1584	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1585		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1586						      SPI_MAX_DMA_XFER,
1587						      &as->dma_addr_rx_bbuf,
1588						      GFP_KERNEL | GFP_DMA);
1589		if (!as->addr_rx_bbuf) {
1590			as->use_dma = false;
1591		} else {
1592			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1593					SPI_MAX_DMA_XFER,
1594					&as->dma_addr_tx_bbuf,
1595					GFP_KERNEL | GFP_DMA);
1596			if (!as->addr_tx_bbuf) {
1597				as->use_dma = false;
1598				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1599						  as->addr_rx_bbuf,
1600						  as->dma_addr_rx_bbuf);
1601			}
1602		}
1603		if (!as->use_dma)
1604			dev_info(master->dev.parent,
1605				 "  can not allocate dma coherent memory\n");
1606	}
1607
1608	if (as->caps.has_dma_support && !as->use_dma)
1609		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1610
1611	if (as->use_pdc) {
1612		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1613					0, dev_name(&pdev->dev), master);
1614	} else {
1615		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1616					0, dev_name(&pdev->dev), master);
1617	}
1618	if (ret)
1619		goto out_unmap_regs;
1620
1621	/* Initialize the hardware */
1622	ret = clk_prepare_enable(clk);
1623	if (ret)
1624		goto out_free_irq;
 
 
 
1625
1626	as->spi_clk = clk_get_rate(clk);
1627
1628	as->fifo_size = 0;
1629	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1630				  &as->fifo_size)) {
1631		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1632	}
1633
1634	atmel_spi_init(as);
1635
1636	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1637	pm_runtime_use_autosuspend(&pdev->dev);
1638	pm_runtime_set_active(&pdev->dev);
1639	pm_runtime_enable(&pdev->dev);
1640
1641	ret = devm_spi_register_master(&pdev->dev, master);
1642	if (ret)
1643		goto out_free_dma;
1644
1645	/* go! */
1646	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1647			atmel_get_version(as), (unsigned long)regs->start,
1648			irq);
1649
1650	return 0;
1651
1652out_free_dma:
1653	pm_runtime_disable(&pdev->dev);
1654	pm_runtime_set_suspended(&pdev->dev);
1655
1656	if (as->use_dma)
1657		atmel_spi_release_dma(master);
1658
1659	spi_writel(as, CR, SPI_BIT(SWRST));
1660	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1661	clk_disable_unprepare(clk);
1662out_free_irq:
1663out_unmap_regs:
 
 
 
 
1664out_free:
 
1665	spi_master_put(master);
1666	return ret;
1667}
1668
1669static int atmel_spi_remove(struct platform_device *pdev)
1670{
1671	struct spi_master	*master = platform_get_drvdata(pdev);
1672	struct atmel_spi	*as = spi_master_get_devdata(master);
1673
1674	pm_runtime_get_sync(&pdev->dev);
1675
1676	/* reset the hardware and block queue progress */
1677	if (as->use_dma) {
1678		atmel_spi_stop_dma(master);
1679		atmel_spi_release_dma(master);
1680		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1681			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1682					  as->addr_tx_bbuf,
1683					  as->dma_addr_tx_bbuf);
1684			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1685					  as->addr_rx_bbuf,
1686					  as->dma_addr_rx_bbuf);
1687		}
1688	}
1689
1690	spin_lock_irq(&as->lock);
 
1691	spi_writel(as, CR, SPI_BIT(SWRST));
1692	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1693	spi_readl(as, SR);
1694	spin_unlock_irq(&as->lock);
1695
1696	clk_disable_unprepare(as->clk);
 
 
 
 
 
 
 
1697
1698	pm_runtime_put_noidle(&pdev->dev);
1699	pm_runtime_disable(&pdev->dev);
1700
1701	return 0;
1702}
 
 
1703
1704#ifdef CONFIG_PM
1705static int atmel_spi_runtime_suspend(struct device *dev)
1706{
1707	struct spi_master *master = dev_get_drvdata(dev);
1708	struct atmel_spi *as = spi_master_get_devdata(master);
1709
1710	clk_disable_unprepare(as->clk);
1711	pinctrl_pm_select_sleep_state(dev);
1712
1713	return 0;
1714}
1715
1716static int atmel_spi_runtime_resume(struct device *dev)
1717{
1718	struct spi_master *master = dev_get_drvdata(dev);
1719	struct atmel_spi *as = spi_master_get_devdata(master);
1720
1721	pinctrl_pm_select_default_state(dev);
1722
1723	return clk_prepare_enable(as->clk);
1724}
1725
1726#ifdef CONFIG_PM_SLEEP
1727static int atmel_spi_suspend(struct device *dev)
1728{
1729	struct spi_master *master = dev_get_drvdata(dev);
1730	int ret;
1731
1732	/* Stop the queue running */
1733	ret = spi_master_suspend(master);
1734	if (ret)
1735		return ret;
1736
1737	if (!pm_runtime_suspended(dev))
1738		atmel_spi_runtime_suspend(dev);
1739
 
1740	return 0;
1741}
1742
1743static int atmel_spi_resume(struct device *dev)
1744{
1745	struct spi_master *master = dev_get_drvdata(dev);
1746	struct atmel_spi *as = spi_master_get_devdata(master);
1747	int ret;
1748
1749	ret = clk_prepare_enable(as->clk);
1750	if (ret)
1751		return ret;
1752
1753	atmel_spi_init(as);
1754
1755	clk_disable_unprepare(as->clk);
1756
1757	if (!pm_runtime_suspended(dev)) {
1758		ret = atmel_spi_runtime_resume(dev);
1759		if (ret)
1760			return ret;
1761	}
1762
1763	/* Start the queue running */
1764	return spi_master_resume(master);
1765}
1766#endif
1767
1768static const struct dev_pm_ops atmel_spi_pm_ops = {
1769	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1770	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1771			   atmel_spi_runtime_resume, NULL)
1772};
1773#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1774#else
1775#define ATMEL_SPI_PM_OPS	NULL
 
1776#endif
1777
1778#if defined(CONFIG_OF)
1779static const struct of_device_id atmel_spi_dt_ids[] = {
1780	{ .compatible = "atmel,at91rm9200-spi" },
1781	{ /* sentinel */ }
1782};
1783
1784MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1785#endif
1786
1787static struct platform_driver atmel_spi_driver = {
1788	.driver		= {
1789		.name	= "atmel_spi",
1790		.pm	= ATMEL_SPI_PM_OPS,
1791		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1792	},
1793	.probe		= atmel_spi_probe,
1794	.remove		= atmel_spi_remove,
 
1795};
1796module_platform_driver(atmel_spi_driver);
 
 
 
 
 
 
 
 
 
 
 
1797
1798MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1799MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1800MODULE_LICENSE("GPL");
1801MODULE_ALIAS("platform:atmel_spi");