Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/init.h>
  13#include <linux/clk.h>
  14#include <linux/module.h>
  15#include <linux/platform_device.h>
  16#include <linux/delay.h>
  17#include <linux/dma-mapping.h>
 
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
 
 
  22
  23#include <asm/io.h>
  24#include <mach/board.h>
  25#include <mach/gpio.h>
  26#include <mach/cpu.h>
 
  27
  28/* SPI register offsets */
  29#define SPI_CR					0x0000
  30#define SPI_MR					0x0004
  31#define SPI_RDR					0x0008
  32#define SPI_TDR					0x000c
  33#define SPI_SR					0x0010
  34#define SPI_IER					0x0014
  35#define SPI_IDR					0x0018
  36#define SPI_IMR					0x001c
  37#define SPI_CSR0				0x0030
  38#define SPI_CSR1				0x0034
  39#define SPI_CSR2				0x0038
  40#define SPI_CSR3				0x003c
 
 
 
  41#define SPI_RPR					0x0100
  42#define SPI_RCR					0x0104
  43#define SPI_TPR					0x0108
  44#define SPI_TCR					0x010c
  45#define SPI_RNPR				0x0110
  46#define SPI_RNCR				0x0114
  47#define SPI_TNPR				0x0118
  48#define SPI_TNCR				0x011c
  49#define SPI_PTCR				0x0120
  50#define SPI_PTSR				0x0124
  51
  52/* Bitfields in CR */
  53#define SPI_SPIEN_OFFSET			0
  54#define SPI_SPIEN_SIZE				1
  55#define SPI_SPIDIS_OFFSET			1
  56#define SPI_SPIDIS_SIZE				1
  57#define SPI_SWRST_OFFSET			7
  58#define SPI_SWRST_SIZE				1
  59#define SPI_LASTXFER_OFFSET			24
  60#define SPI_LASTXFER_SIZE			1
 
 
 
 
 
 
 
 
  61
  62/* Bitfields in MR */
  63#define SPI_MSTR_OFFSET				0
  64#define SPI_MSTR_SIZE				1
  65#define SPI_PS_OFFSET				1
  66#define SPI_PS_SIZE				1
  67#define SPI_PCSDEC_OFFSET			2
  68#define SPI_PCSDEC_SIZE				1
  69#define SPI_FDIV_OFFSET				3
  70#define SPI_FDIV_SIZE				1
  71#define SPI_MODFDIS_OFFSET			4
  72#define SPI_MODFDIS_SIZE			1
 
 
  73#define SPI_LLB_OFFSET				7
  74#define SPI_LLB_SIZE				1
  75#define SPI_PCS_OFFSET				16
  76#define SPI_PCS_SIZE				4
  77#define SPI_DLYBCS_OFFSET			24
  78#define SPI_DLYBCS_SIZE				8
  79
  80/* Bitfields in RDR */
  81#define SPI_RD_OFFSET				0
  82#define SPI_RD_SIZE				16
  83
  84/* Bitfields in TDR */
  85#define SPI_TD_OFFSET				0
  86#define SPI_TD_SIZE				16
  87
  88/* Bitfields in SR */
  89#define SPI_RDRF_OFFSET				0
  90#define SPI_RDRF_SIZE				1
  91#define SPI_TDRE_OFFSET				1
  92#define SPI_TDRE_SIZE				1
  93#define SPI_MODF_OFFSET				2
  94#define SPI_MODF_SIZE				1
  95#define SPI_OVRES_OFFSET			3
  96#define SPI_OVRES_SIZE				1
  97#define SPI_ENDRX_OFFSET			4
  98#define SPI_ENDRX_SIZE				1
  99#define SPI_ENDTX_OFFSET			5
 100#define SPI_ENDTX_SIZE				1
 101#define SPI_RXBUFF_OFFSET			6
 102#define SPI_RXBUFF_SIZE				1
 103#define SPI_TXBUFE_OFFSET			7
 104#define SPI_TXBUFE_SIZE				1
 105#define SPI_NSSR_OFFSET				8
 106#define SPI_NSSR_SIZE				1
 107#define SPI_TXEMPTY_OFFSET			9
 108#define SPI_TXEMPTY_SIZE			1
 109#define SPI_SPIENS_OFFSET			16
 110#define SPI_SPIENS_SIZE				1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111
 112/* Bitfields in CSR0 */
 113#define SPI_CPOL_OFFSET				0
 114#define SPI_CPOL_SIZE				1
 115#define SPI_NCPHA_OFFSET			1
 116#define SPI_NCPHA_SIZE				1
 117#define SPI_CSAAT_OFFSET			3
 118#define SPI_CSAAT_SIZE				1
 119#define SPI_BITS_OFFSET				4
 120#define SPI_BITS_SIZE				4
 121#define SPI_SCBR_OFFSET				8
 122#define SPI_SCBR_SIZE				8
 123#define SPI_DLYBS_OFFSET			16
 124#define SPI_DLYBS_SIZE				8
 125#define SPI_DLYBCT_OFFSET			24
 126#define SPI_DLYBCT_SIZE				8
 127
 128/* Bitfields in RCR */
 129#define SPI_RXCTR_OFFSET			0
 130#define SPI_RXCTR_SIZE				16
 131
 132/* Bitfields in TCR */
 133#define SPI_TXCTR_OFFSET			0
 134#define SPI_TXCTR_SIZE				16
 135
 136/* Bitfields in RNCR */
 137#define SPI_RXNCR_OFFSET			0
 138#define SPI_RXNCR_SIZE				16
 139
 140/* Bitfields in TNCR */
 141#define SPI_TXNCR_OFFSET			0
 142#define SPI_TXNCR_SIZE				16
 143
 144/* Bitfields in PTCR */
 145#define SPI_RXTEN_OFFSET			0
 146#define SPI_RXTEN_SIZE				1
 147#define SPI_RXTDIS_OFFSET			1
 148#define SPI_RXTDIS_SIZE				1
 149#define SPI_TXTEN_OFFSET			8
 150#define SPI_TXTEN_SIZE				1
 151#define SPI_TXTDIS_OFFSET			9
 152#define SPI_TXTDIS_SIZE				1
 153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154/* Constants for BITS */
 155#define SPI_BITS_8_BPT				0
 156#define SPI_BITS_9_BPT				1
 157#define SPI_BITS_10_BPT				2
 158#define SPI_BITS_11_BPT				3
 159#define SPI_BITS_12_BPT				4
 160#define SPI_BITS_13_BPT				5
 161#define SPI_BITS_14_BPT				6
 162#define SPI_BITS_15_BPT				7
 163#define SPI_BITS_16_BPT				8
 
 
 
 164
 165/* Bit manipulation macros */
 166#define SPI_BIT(name) \
 167	(1 << SPI_##name##_OFFSET)
 168#define SPI_BF(name,value) \
 169	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 170#define SPI_BFEXT(name,value) \
 171	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 172#define SPI_BFINS(name,value,old) \
 173	( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 174	  | SPI_BF(name,value))
 175
 176/* Register access macros */
 177#define spi_readl(port,reg) \
 
 178	__raw_readl((port)->regs + SPI_##reg)
 179#define spi_writel(port,reg,value) \
 180	__raw_writel((value), (port)->regs + SPI_##reg)
 181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182
 183/*
 184 * The core SPI transfer engine just talks to a register bank to set up
 185 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 186 * framework provides the base clock, subdivided for each spi_device.
 187 */
 188struct atmel_spi {
 189	spinlock_t		lock;
 
 190
 
 191	void __iomem		*regs;
 192	int			irq;
 193	struct clk		*clk;
 194	struct platform_device	*pdev;
 195	struct spi_device	*stay;
 196
 197	u8			stopping;
 198	struct list_head	queue;
 199	struct spi_transfer	*current_transfer;
 200	unsigned long		current_remaining_bytes;
 201	struct spi_transfer	*next_transfer;
 202	unsigned long		next_remaining_bytes;
 
 
 
 203
 204	void			*buffer;
 205	dma_addr_t		buffer_dma;
 
 
 
 
 
 
 206};
 207
 208/* Controller-specific per-slave state */
 209struct atmel_spi_device {
 210	unsigned int		npcs_pin;
 211	u32			csr;
 212};
 213
 214#define BUFFER_SIZE		PAGE_SIZE
 215#define INVALID_DMA_ADDRESS	0xffffffff
 216
 217/*
 218 * Version 2 of the SPI controller has
 219 *  - CR.LASTXFER
 220 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 221 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 222 *  - SPI_CSRx.CSAAT
 223 *  - SPI_CSRx.SBCR allows faster clocking
 224 *
 225 * We can determine the controller version by reading the VERSION
 226 * register, but I haven't checked that it exists on all chips, and
 227 * this is cheaper anyway.
 228 */
 229static bool atmel_spi_is_v2(void)
 230{
 231	return !cpu_is_at91rm9200();
 232}
 233
 234/*
 235 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 236 * they assume that spi slave device state will not change on deselect, so
 237 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 238 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 239 * controllers have CSAAT and friends.
 240 *
 241 * Since the CSAAT functionality is a bit weird on newer controllers as
 242 * well, we use GPIO to control nCSx pins on all controllers, updating
 243 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 244 * support active-high chipselects despite the controller's belief that
 245 * only active-low devices/systems exists.
 246 *
 247 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 248 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 249 * Master on Chip Select 0.")  No workaround exists for that ... so for
 250 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 251 * and (c) will trigger that first erratum in some cases.
 252 *
 253 * TODO: Test if the atmel_spi_is_v2() branch below works on
 254 * AT91RM9200 if we use some other register than CSR0. However, don't
 255 * do this unconditionally since AP7000 has an errata where the BITS
 256 * field in CSR0 overrides all other CSRs.
 257 */
 258
 259static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 260{
 261	struct atmel_spi_device *asd = spi->controller_state;
 262	unsigned active = spi->mode & SPI_CS_HIGH;
 263	u32 mr;
 264
 265	if (atmel_spi_is_v2()) {
 266		/*
 267		 * Always use CSR0. This ensures that the clock
 268		 * switches to the correct idle polarity before we
 269		 * toggle the CS.
 270		 */
 271		spi_writel(as, CSR0, asd->csr);
 272		spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
 273				| SPI_BIT(MSTR));
 
 
 
 
 
 
 
 
 
 
 
 274		mr = spi_readl(as, MR);
 275		gpio_set_value(asd->npcs_pin, active);
 
 276	} else {
 277		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 278		int i;
 279		u32 csr;
 280
 281		/* Make sure clock polarity is correct */
 282		for (i = 0; i < spi->master->num_chipselect; i++) {
 283			csr = spi_readl(as, CSR0 + 4 * i);
 284			if ((csr ^ cpol) & SPI_BIT(CPOL))
 285				spi_writel(as, CSR0 + 4 * i,
 286						csr ^ SPI_BIT(CPOL));
 287		}
 288
 289		mr = spi_readl(as, MR);
 290		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 291		if (spi->chip_select != 0)
 292			gpio_set_value(asd->npcs_pin, active);
 293		spi_writel(as, MR, mr);
 294	}
 295
 296	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 297			asd->npcs_pin, active ? " (high)" : "",
 298			mr);
 299}
 300
 301static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 302{
 303	struct atmel_spi_device *asd = spi->controller_state;
 304	unsigned active = spi->mode & SPI_CS_HIGH;
 305	u32 mr;
 306
 307	/* only deactivate *this* device; sometimes transfers to
 308	 * another device may be active when this routine is called.
 309	 */
 310	mr = spi_readl(as, MR);
 311	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 312		mr = SPI_BFINS(PCS, 0xf, mr);
 313		spi_writel(as, MR, mr);
 314	}
 315
 316	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 317			asd->npcs_pin, active ? " (low)" : "",
 318			mr);
 319
 320	if (atmel_spi_is_v2() || spi->chip_select != 0)
 
 
 321		gpio_set_value(asd->npcs_pin, !active);
 322}
 323
 324static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
 325					struct spi_transfer *xfer)
 326{
 327	return msg->transfers.prev == &xfer->transfer_list;
 328}
 329
 330static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
 331{
 332	return xfer->delay_usecs == 0 && !xfer->cs_change;
 333}
 334
 335static void atmel_spi_next_xfer_data(struct spi_master *master,
 336				struct spi_transfer *xfer,
 337				dma_addr_t *tx_dma,
 338				dma_addr_t *rx_dma,
 339				u32 *plen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340{
 341	struct atmel_spi	*as = spi_master_get_devdata(master);
 342	u32			len = *plen;
 343
 344	/* use scratch buffer only when rx or tx data is unspecified */
 345	if (xfer->rx_buf)
 346		*rx_dma = xfer->rx_dma + xfer->len - *plen;
 347	else {
 348		*rx_dma = as->buffer_dma;
 349		if (len > BUFFER_SIZE)
 350			len = BUFFER_SIZE;
 351	}
 352	if (xfer->tx_buf)
 353		*tx_dma = xfer->tx_dma + xfer->len - *plen;
 354	else {
 355		*tx_dma = as->buffer_dma;
 356		if (len > BUFFER_SIZE)
 357			len = BUFFER_SIZE;
 358		memset(as->buffer, 0, len);
 359		dma_sync_single_for_device(&as->pdev->dev,
 360				as->buffer_dma, len, DMA_TO_DEVICE);
 361	}
 362
 363	*plen = len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364}
 365
 366/*
 367 * Submit next transfer for DMA.
 368 * lock is held, spi irq is blocked
 369 */
 370static void atmel_spi_next_xfer(struct spi_master *master,
 371				struct spi_message *msg)
 
 372{
 373	struct atmel_spi	*as = spi_master_get_devdata(master);
 374	struct spi_transfer	*xfer;
 375	u32			len, remaining;
 376	u32			ieval;
 377	dma_addr_t		tx_dma, rx_dma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378
 379	if (!as->current_transfer)
 380		xfer = list_entry(msg->transfers.next,
 381				struct spi_transfer, transfer_list);
 382	else if (!as->next_transfer)
 383		xfer = list_entry(as->current_transfer->transfer_list.next,
 384				struct spi_transfer, transfer_list);
 385	else
 386		xfer = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 387
 388	if (xfer) {
 389		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 
 390
 391		len = xfer->len;
 392		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 393		remaining = xfer->len - len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394
 395		spi_writel(as, RPR, rx_dma);
 396		spi_writel(as, TPR, tx_dma);
 
 
 
 
 397
 398		if (msg->spi->bits_per_word > 8)
 399			len >>= 1;
 400		spi_writel(as, RCR, len);
 401		spi_writel(as, TCR, len);
 402
 403		dev_dbg(&msg->spi->dev,
 404			"  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 405			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 406			xfer->rx_buf, xfer->rx_dma);
 407	} else {
 408		xfer = as->next_transfer;
 409		remaining = as->next_remaining_bytes;
 
 
 
 
 
 
 
 
 410	}
 
 
 
 
 
 
 
 
 
 411
 412	as->current_transfer = xfer;
 413	as->current_remaining_bytes = remaining;
 414
 415	if (remaining > 0)
 416		len = remaining;
 417	else if (!atmel_spi_xfer_is_last(msg, xfer)
 418			&& atmel_spi_xfer_can_be_chained(xfer)) {
 419		xfer = list_entry(xfer->transfer_list.next,
 420				struct spi_transfer, transfer_list);
 421		len = xfer->len;
 422	} else
 423		xfer = NULL;
 
 
 424
 425	as->next_transfer = xfer;
 426
 427	if (xfer) {
 428		u32	total;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429
 430		total = len;
 
 431		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 432		as->next_remaining_bytes = total - len;
 433
 434		spi_writel(as, RNPR, rx_dma);
 435		spi_writel(as, TNPR, tx_dma);
 436
 437		if (msg->spi->bits_per_word > 8)
 438			len >>= 1;
 439		spi_writel(as, RNCR, len);
 440		spi_writel(as, TNCR, len);
 441
 442		dev_dbg(&msg->spi->dev,
 443			"  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 444			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 445			xfer->rx_buf, xfer->rx_dma);
 446		ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 447	} else {
 448		spi_writel(as, RNCR, 0);
 449		spi_writel(as, TNCR, 0);
 450		ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 451	}
 452
 453	/* REVISIT: We're waiting for ENDRX before we start the next
 454	 * transfer because we need to handle some difficult timing
 455	 * issues otherwise. If we wait for ENDTX in one transfer and
 456	 * then starts waiting for ENDRX in the next, it's difficult
 457	 * to tell the difference between the ENDRX interrupt we're
 458	 * actually waiting for and the ENDRX interrupt of the
 459	 * previous transfer.
 460	 *
 461	 * It should be doable, though. Just not now...
 462	 */
 463	spi_writel(as, IER, ieval);
 464	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 465}
 466
 467static void atmel_spi_next_message(struct spi_master *master)
 468{
 469	struct atmel_spi	*as = spi_master_get_devdata(master);
 470	struct spi_message	*msg;
 471	struct spi_device	*spi;
 472
 473	BUG_ON(as->current_transfer);
 474
 475	msg = list_entry(as->queue.next, struct spi_message, queue);
 476	spi = msg->spi;
 477
 478	dev_dbg(master->dev.parent, "start message %p for %s\n",
 479			msg, dev_name(&spi->dev));
 480
 481	/* select chip if it's not still active */
 482	if (as->stay) {
 483		if (as->stay != spi) {
 484			cs_deactivate(as, as->stay);
 485			cs_activate(as, spi);
 486		}
 487		as->stay = NULL;
 488	} else
 489		cs_activate(as, spi);
 490
 491	atmel_spi_next_xfer(master, msg);
 492}
 493
 494/*
 495 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 496 *  - The buffer is either valid for CPU access, else NULL
 497 *  - If the buffer is valid, so is its DMA address
 498 *
 499 * This driver manages the dma address unless message->is_dma_mapped.
 500 */
 501static int
 502atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 503{
 504	struct device	*dev = &as->pdev->dev;
 505
 506	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 507	if (xfer->tx_buf) {
 508		/* tx_buf is a const void* where we need a void * for the dma
 509		 * mapping */
 510		void *nonconst_tx = (void *)xfer->tx_buf;
 511
 512		xfer->tx_dma = dma_map_single(dev,
 513				nonconst_tx, xfer->len,
 514				DMA_TO_DEVICE);
 515		if (dma_mapping_error(dev, xfer->tx_dma))
 516			return -ENOMEM;
 517	}
 518	if (xfer->rx_buf) {
 519		xfer->rx_dma = dma_map_single(dev,
 520				xfer->rx_buf, xfer->len,
 521				DMA_FROM_DEVICE);
 522		if (dma_mapping_error(dev, xfer->rx_dma)) {
 523			if (xfer->tx_buf)
 524				dma_unmap_single(dev,
 525						xfer->tx_dma, xfer->len,
 526						DMA_TO_DEVICE);
 527			return -ENOMEM;
 528		}
 529	}
 530	return 0;
 531}
 532
 533static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 534				     struct spi_transfer *xfer)
 535{
 536	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 537		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 538				 xfer->len, DMA_TO_DEVICE);
 539	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 540		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 541				 xfer->len, DMA_FROM_DEVICE);
 542}
 543
 544static void
 545atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
 546		struct spi_message *msg, int status, int stay)
 547{
 548	if (!stay || status < 0)
 549		cs_deactivate(as, msg->spi);
 550	else
 551		as->stay = msg->spi;
 552
 553	list_del(&msg->queue);
 554	msg->status = status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	dev_dbg(master->dev.parent,
 557		"xfer complete: %u bytes transferred\n",
 558		msg->actual_length);
 
 
 
 
 
 
 
 
 
 
 
 559
 560	spin_unlock(&as->lock);
 561	msg->complete(msg->context);
 562	spin_lock(&as->lock);
 
 563
 564	as->current_transfer = NULL;
 565	as->next_transfer = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567	/* continue if needed */
 568	if (list_empty(&as->queue) || as->stopping)
 569		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 
 
 
 
 
 
 
 570	else
 571		atmel_spi_next_message(master);
 572}
 573
 
 
 
 
 
 574static irqreturn_t
 575atmel_spi_interrupt(int irq, void *dev_id)
 576{
 577	struct spi_master	*master = dev_id;
 578	struct atmel_spi	*as = spi_master_get_devdata(master);
 579	struct spi_message	*msg;
 580	struct spi_transfer	*xfer;
 581	u32			status, pending, imr;
 
 582	int			ret = IRQ_NONE;
 583
 584	spin_lock(&as->lock);
 585
 586	xfer = as->current_transfer;
 587	msg = list_entry(as->queue.next, struct spi_message, queue);
 588
 589	imr = spi_readl(as, IMR);
 590	status = spi_readl(as, SR);
 591	pending = status & imr;
 592
 593	if (pending & SPI_BIT(OVRES)) {
 594		int timeout;
 595
 596		ret = IRQ_HANDLED;
 597
 598		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
 599				     | SPI_BIT(OVRES)));
 600
 601		/*
 602		 * When we get an overrun, we disregard the current
 603		 * transfer. Data will not be copied back from any
 604		 * bounce buffer and msg->actual_len will not be
 605		 * updated with the last xfer.
 606		 *
 607		 * We will also not process any remaning transfers in
 608		 * the message.
 609		 *
 610		 * First, stop the transfer and unmap the DMA buffers.
 611		 */
 612		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 613		if (!msg->is_dma_mapped)
 614			atmel_spi_dma_unmap_xfer(master, xfer);
 615
 616		/* REVISIT: udelay in irq is unfriendly */
 617		if (xfer->delay_usecs)
 618			udelay(xfer->delay_usecs);
 619
 620		dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
 621			 spi_readl(as, TCR), spi_readl(as, RCR));
 622
 623		/*
 624		 * Clean up DMA registers and make sure the data
 625		 * registers are empty.
 626		 */
 627		spi_writel(as, RNCR, 0);
 628		spi_writel(as, TNCR, 0);
 629		spi_writel(as, RCR, 0);
 630		spi_writel(as, TCR, 0);
 631		for (timeout = 1000; timeout; timeout--)
 632			if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
 633				break;
 634		if (!timeout)
 635			dev_warn(master->dev.parent,
 636				 "timeout waiting for TXEMPTY");
 637		while (spi_readl(as, SR) & SPI_BIT(RDRF))
 638			spi_readl(as, RDR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639
 640		/* Clear any overrun happening while cleaning up */
 641		spi_readl(as, SR);
 642
 643		atmel_spi_msg_done(master, as, msg, -EIO, 0);
 
 
 
 644	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
 645		ret = IRQ_HANDLED;
 646
 647		spi_writel(as, IDR, pending);
 648
 649		if (as->current_remaining_bytes == 0) {
 650			msg->actual_length += xfer->len;
 651
 652			if (!msg->is_dma_mapped)
 653				atmel_spi_dma_unmap_xfer(master, xfer);
 654
 655			/* REVISIT: udelay in irq is unfriendly */
 656			if (xfer->delay_usecs)
 657				udelay(xfer->delay_usecs);
 658
 659			if (atmel_spi_xfer_is_last(msg, xfer)) {
 660				/* report completed message */
 661				atmel_spi_msg_done(master, as, msg, 0,
 662						xfer->cs_change);
 663			} else {
 664				if (xfer->cs_change) {
 665					cs_deactivate(as, msg->spi);
 666					udelay(1);
 667					cs_activate(as, msg->spi);
 668				}
 669
 670				/*
 671				 * Not done yet. Submit the next transfer.
 672				 *
 673				 * FIXME handle protocol options for xfer
 674				 */
 675				atmel_spi_next_xfer(master, msg);
 676			}
 677		} else {
 678			/*
 679			 * Keep going, we still have data to send in
 680			 * the current transfer.
 681			 */
 682			atmel_spi_next_xfer(master, msg);
 683		}
 684	}
 685
 686	spin_unlock(&as->lock);
 687
 688	return ret;
 689}
 690
 691static int atmel_spi_setup(struct spi_device *spi)
 692{
 693	struct atmel_spi	*as;
 694	struct atmel_spi_device	*asd;
 695	u32			scbr, csr;
 696	unsigned int		bits = spi->bits_per_word;
 697	unsigned long		bus_hz;
 698	unsigned int		npcs_pin;
 699	int			ret;
 700
 701	as = spi_master_get_devdata(spi->master);
 702
 703	if (as->stopping)
 704		return -ESHUTDOWN;
 705
 706	if (spi->chip_select > spi->master->num_chipselect) {
 707		dev_dbg(&spi->dev,
 708				"setup: invalid chipselect %u (%u defined)\n",
 709				spi->chip_select, spi->master->num_chipselect);
 710		return -EINVAL;
 711	}
 712
 713	if (bits < 8 || bits > 16) {
 714		dev_dbg(&spi->dev,
 715				"setup: invalid bits_per_word %u (8 to 16)\n",
 716				bits);
 717		return -EINVAL;
 718	}
 719
 720	/* see notes above re chipselect */
 721	if (!atmel_spi_is_v2()
 722			&& spi->chip_select == 0
 723			&& (spi->mode & SPI_CS_HIGH)) {
 724		dev_dbg(&spi->dev, "setup: can't be active-high\n");
 725		return -EINVAL;
 726	}
 727
 728	/* v1 chips start out at half the peripheral bus speed. */
 729	bus_hz = clk_get_rate(as->clk);
 730	if (!atmel_spi_is_v2())
 731		bus_hz /= 2;
 732
 733	if (spi->max_speed_hz) {
 734		/*
 735		 * Calculate the lowest divider that satisfies the
 736		 * constraint, assuming div32/fdiv/mbz == 0.
 737		 */
 738		scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
 739
 740		/*
 741		 * If the resulting divider doesn't fit into the
 742		 * register bitfield, we can't satisfy the constraint.
 743		 */
 744		if (scbr >= (1 << SPI_SCBR_SIZE)) {
 745			dev_dbg(&spi->dev,
 746				"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 747				spi->max_speed_hz, scbr, bus_hz/255);
 748			return -EINVAL;
 749		}
 750	} else
 751		/* speed zero means "as slow as possible" */
 752		scbr = 0xff;
 753
 754	csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
 755	if (spi->mode & SPI_CPOL)
 756		csr |= SPI_BIT(CPOL);
 757	if (!(spi->mode & SPI_CPHA))
 758		csr |= SPI_BIT(NCPHA);
 
 
 759
 760	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
 761	 *
 762	 * DLYBCT would add delays between words, slowing down transfers.
 763	 * It could potentially be useful to cope with DMA bottlenecks, but
 764	 * in those cases it's probably best to just use a lower bitrate.
 765	 */
 766	csr |= SPI_BF(DLYBS, 0);
 767	csr |= SPI_BF(DLYBCT, 0);
 768
 769	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
 770	npcs_pin = (unsigned int)spi->controller_data;
 
 
 
 
 
 
 771	asd = spi->controller_state;
 772	if (!asd) {
 773		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
 774		if (!asd)
 775			return -ENOMEM;
 776
 777		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
 778		if (ret) {
 779			kfree(asd);
 780			return ret;
 781		}
 782
 783		asd->npcs_pin = npcs_pin;
 784		spi->controller_state = asd;
 785		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
 786	} else {
 787		unsigned long		flags;
 788
 789		spin_lock_irqsave(&as->lock, flags);
 790		if (as->stay == spi)
 791			as->stay = NULL;
 792		cs_deactivate(as, spi);
 793		spin_unlock_irqrestore(&as->lock, flags);
 794	}
 795
 796	asd->csr = csr;
 797
 798	dev_dbg(&spi->dev,
 799		"setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
 800		bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
 801
 802	if (!atmel_spi_is_v2())
 803		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 804
 805	return 0;
 806}
 807
 808static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
 
 
 809{
 810	struct atmel_spi	*as;
 811	struct spi_transfer	*xfer;
 812	unsigned long		flags;
 813	struct device		*controller = spi->master->dev.parent;
 814	u8			bits;
 
 815	struct atmel_spi_device	*asd;
 
 
 
 816
 817	as = spi_master_get_devdata(spi->master);
 818
 819	dev_dbg(controller, "new message %p submitted for %s\n",
 820			msg, dev_name(&spi->dev));
 821
 822	if (unlikely(list_empty(&msg->transfers)))
 
 823		return -EINVAL;
 
 824
 825	if (as->stopping)
 826		return -ESHUTDOWN;
 
 
 
 
 
 827
 828	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 829		if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
 830			dev_dbg(&spi->dev, "missing rx or tx buf\n");
 831			return -EINVAL;
 832		}
 
 
 
 
 833
 834		if (xfer->bits_per_word) {
 835			asd = spi->controller_state;
 836			bits = (asd->csr >> 4) & 0xf;
 837			if (bits != xfer->bits_per_word - 8) {
 838				dev_dbg(&spi->dev, "you can't yet change "
 839					 "bits_per_word in transfers\n");
 840				return -ENOPROTOOPT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841			}
 
 
 842		}
 843
 844		/* FIXME implement these protocol options!! */
 845		if (xfer->speed_hz) {
 846			dev_dbg(&spi->dev, "no protocol options yet\n");
 847			return -ENOPROTOOPT;
 
 
 
 
 848		}
 849
 850		/*
 851		 * DMA map early, for performance (empties dcache ASAP) and
 852		 * better fault reporting.  This is a DMA-only driver.
 853		 *
 854		 * NOTE that if dma_unmap_single() ever starts to do work on
 855		 * platforms supported by this driver, we would need to clean
 856		 * up mappings for previously-mapped transfers.
 857		 */
 858		if (!msg->is_dma_mapped) {
 859			if (atmel_spi_dma_map_xfer(as, xfer) < 0)
 860				return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861		}
 862	}
 863
 864#ifdef VERBOSE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 866		dev_dbg(controller,
 867			"  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 
 
 
 
 
 
 
 
 
 868			xfer, xfer->len,
 869			xfer->tx_buf, xfer->tx_dma,
 870			xfer->rx_buf, xfer->rx_dma);
 871	}
 872#endif
 873
 874	msg->status = -EINPROGRESS;
 875	msg->actual_length = 0;
 
 876
 877	spin_lock_irqsave(&as->lock, flags);
 878	list_add_tail(&msg->queue, &as->queue);
 879	if (!as->current_transfer)
 880		atmel_spi_next_message(spi->master);
 881	spin_unlock_irqrestore(&as->lock, flags);
 882
 883	return 0;
 
 
 
 884}
 885
 886static void atmel_spi_cleanup(struct spi_device *spi)
 887{
 888	struct atmel_spi	*as = spi_master_get_devdata(spi->master);
 889	struct atmel_spi_device	*asd = spi->controller_state;
 890	unsigned		gpio = (unsigned) spi->controller_data;
 891	unsigned long		flags;
 892
 893	if (!asd)
 894		return;
 895
 896	spin_lock_irqsave(&as->lock, flags);
 897	if (as->stay == spi) {
 898		as->stay = NULL;
 899		cs_deactivate(as, spi);
 900	}
 901	spin_unlock_irqrestore(&as->lock, flags);
 902
 903	spi->controller_state = NULL;
 904	gpio_free(gpio);
 905	kfree(asd);
 906}
 907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908/*-------------------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909
 910static int __init atmel_spi_probe(struct platform_device *pdev)
 
 
 
 911{
 912	struct resource		*regs;
 913	int			irq;
 914	struct clk		*clk;
 915	int			ret;
 916	struct spi_master	*master;
 917	struct atmel_spi	*as;
 918
 
 
 
 919	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 920	if (!regs)
 921		return -ENXIO;
 922
 923	irq = platform_get_irq(pdev, 0);
 924	if (irq < 0)
 925		return irq;
 926
 927	clk = clk_get(&pdev->dev, "spi_clk");
 928	if (IS_ERR(clk))
 929		return PTR_ERR(clk);
 930
 931	/* setup spi core then atmel-specific driver state */
 932	ret = -ENOMEM;
 933	master = spi_alloc_master(&pdev->dev, sizeof *as);
 934	if (!master)
 935		goto out_free;
 936
 937	/* the spi->mode bits understood by this driver: */
 938	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
 939
 
 940	master->bus_num = pdev->id;
 941	master->num_chipselect = 4;
 942	master->setup = atmel_spi_setup;
 943	master->transfer = atmel_spi_transfer;
 
 944	master->cleanup = atmel_spi_cleanup;
 
 
 
 945	platform_set_drvdata(pdev, master);
 946
 947	as = spi_master_get_devdata(master);
 948
 949	/*
 950	 * Scratch buffer is used for throwaway rx and tx data.
 951	 * It's coherent to minimize dcache pollution.
 952	 */
 953	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
 954					&as->buffer_dma, GFP_KERNEL);
 955	if (!as->buffer)
 956		goto out_free;
 957
 958	spin_lock_init(&as->lock);
 959	INIT_LIST_HEAD(&as->queue);
 960	as->pdev = pdev;
 961	as->regs = ioremap(regs->start, resource_size(regs));
 962	if (!as->regs)
 963		goto out_free_buffer;
 
 
 
 964	as->irq = irq;
 965	as->clk = clk;
 966
 967	ret = request_irq(irq, atmel_spi_interrupt, 0,
 968			dev_name(&pdev->dev), master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969	if (ret)
 970		goto out_unmap_regs;
 971
 972	/* Initialize the hardware */
 973	clk_enable(clk);
 
 
 
 
 
 974	spi_writel(as, CR, SPI_BIT(SWRST));
 975	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 976	spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
 977	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 
 
 
 
 
 
 
 978	spi_writel(as, CR, SPI_BIT(SPIEN));
 979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980	/* go! */
 981	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
 982			(unsigned long)regs->start, irq);
 983
 984	ret = spi_register_master(master);
 985	if (ret)
 986		goto out_reset_hw;
 987
 988	return 0;
 989
 990out_reset_hw:
 
 
 
 
 
 
 991	spi_writel(as, CR, SPI_BIT(SWRST));
 992	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 993	clk_disable(clk);
 994	free_irq(irq, master);
 995out_unmap_regs:
 996	iounmap(as->regs);
 997out_free_buffer:
 998	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
 999			as->buffer_dma);
1000out_free:
1001	clk_put(clk);
1002	spi_master_put(master);
1003	return ret;
1004}
1005
1006static int __exit atmel_spi_remove(struct platform_device *pdev)
1007{
1008	struct spi_master	*master = platform_get_drvdata(pdev);
1009	struct atmel_spi	*as = spi_master_get_devdata(master);
1010	struct spi_message	*msg;
 
1011
1012	/* reset the hardware and block queue progress */
1013	spin_lock_irq(&as->lock);
1014	as->stopping = 1;
 
 
 
 
1015	spi_writel(as, CR, SPI_BIT(SWRST));
1016	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1017	spi_readl(as, SR);
1018	spin_unlock_irq(&as->lock);
1019
1020	/* Terminate remaining queued transfers */
1021	list_for_each_entry(msg, &as->queue, queue) {
1022		/* REVISIT unmapping the dma is a NOP on ARM and AVR32
1023		 * but we shouldn't depend on that...
1024		 */
1025		msg->status = -ESHUTDOWN;
1026		msg->complete(msg->context);
1027	}
1028
1029	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1030			as->buffer_dma);
1031
1032	clk_disable(as->clk);
1033	clk_put(as->clk);
1034	free_irq(as->irq, master);
1035	iounmap(as->regs);
 
 
 
 
1036
1037	spi_unregister_master(master);
 
1038
1039	return 0;
1040}
1041
1042#ifdef	CONFIG_PM
 
 
 
 
 
1043
1044static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
 
 
 
 
1045{
1046	struct spi_master	*master = platform_get_drvdata(pdev);
1047	struct atmel_spi	*as = spi_master_get_devdata(master);
 
 
 
 
 
 
 
 
 
 
1048
1049	clk_disable(as->clk);
1050	return 0;
1051}
1052
1053static int atmel_spi_resume(struct platform_device *pdev)
1054{
1055	struct spi_master	*master = platform_get_drvdata(pdev);
1056	struct atmel_spi	*as = spi_master_get_devdata(master);
1057
1058	clk_enable(as->clk);
1059	return 0;
 
 
 
 
 
 
 
 
 
 
1060}
 
1061
 
 
 
 
 
 
1062#else
1063#define	atmel_spi_suspend	NULL
1064#define	atmel_spi_resume	NULL
1065#endif
1066
 
 
 
 
 
 
 
 
1067
1068static struct platform_driver atmel_spi_driver = {
1069	.driver		= {
1070		.name	= "atmel_spi",
1071		.owner	= THIS_MODULE,
 
1072	},
1073	.suspend	= atmel_spi_suspend,
1074	.resume		= atmel_spi_resume,
1075	.remove		= __exit_p(atmel_spi_remove),
1076};
1077
1078static int __init atmel_spi_init(void)
1079{
1080	return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe);
1081}
1082module_init(atmel_spi_init);
1083
1084static void __exit atmel_spi_exit(void)
1085{
1086	platform_driver_unregister(&atmel_spi_driver);
1087}
1088module_exit(atmel_spi_exit);
1089
1090MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1091MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1092MODULE_LICENSE("GPL");
1093MODULE_ALIAS("platform:atmel_spi");
v4.10.11
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
 
  12#include <linux/clk.h>
  13#include <linux/module.h>
  14#include <linux/platform_device.h>
  15#include <linux/delay.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/dmaengine.h>
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
  22#include <linux/platform_data/dma-atmel.h>
  23#include <linux/of.h>
  24
  25#include <linux/io.h>
  26#include <linux/gpio.h>
  27#include <linux/of_gpio.h>
  28#include <linux/pinctrl/consumer.h>
  29#include <linux/pm_runtime.h>
  30
  31/* SPI register offsets */
  32#define SPI_CR					0x0000
  33#define SPI_MR					0x0004
  34#define SPI_RDR					0x0008
  35#define SPI_TDR					0x000c
  36#define SPI_SR					0x0010
  37#define SPI_IER					0x0014
  38#define SPI_IDR					0x0018
  39#define SPI_IMR					0x001c
  40#define SPI_CSR0				0x0030
  41#define SPI_CSR1				0x0034
  42#define SPI_CSR2				0x0038
  43#define SPI_CSR3				0x003c
  44#define SPI_FMR					0x0040
  45#define SPI_FLR					0x0044
  46#define SPI_VERSION				0x00fc
  47#define SPI_RPR					0x0100
  48#define SPI_RCR					0x0104
  49#define SPI_TPR					0x0108
  50#define SPI_TCR					0x010c
  51#define SPI_RNPR				0x0110
  52#define SPI_RNCR				0x0114
  53#define SPI_TNPR				0x0118
  54#define SPI_TNCR				0x011c
  55#define SPI_PTCR				0x0120
  56#define SPI_PTSR				0x0124
  57
  58/* Bitfields in CR */
  59#define SPI_SPIEN_OFFSET			0
  60#define SPI_SPIEN_SIZE				1
  61#define SPI_SPIDIS_OFFSET			1
  62#define SPI_SPIDIS_SIZE				1
  63#define SPI_SWRST_OFFSET			7
  64#define SPI_SWRST_SIZE				1
  65#define SPI_LASTXFER_OFFSET			24
  66#define SPI_LASTXFER_SIZE			1
  67#define SPI_TXFCLR_OFFSET			16
  68#define SPI_TXFCLR_SIZE				1
  69#define SPI_RXFCLR_OFFSET			17
  70#define SPI_RXFCLR_SIZE				1
  71#define SPI_FIFOEN_OFFSET			30
  72#define SPI_FIFOEN_SIZE				1
  73#define SPI_FIFODIS_OFFSET			31
  74#define SPI_FIFODIS_SIZE			1
  75
  76/* Bitfields in MR */
  77#define SPI_MSTR_OFFSET				0
  78#define SPI_MSTR_SIZE				1
  79#define SPI_PS_OFFSET				1
  80#define SPI_PS_SIZE				1
  81#define SPI_PCSDEC_OFFSET			2
  82#define SPI_PCSDEC_SIZE				1
  83#define SPI_FDIV_OFFSET				3
  84#define SPI_FDIV_SIZE				1
  85#define SPI_MODFDIS_OFFSET			4
  86#define SPI_MODFDIS_SIZE			1
  87#define SPI_WDRBT_OFFSET			5
  88#define SPI_WDRBT_SIZE				1
  89#define SPI_LLB_OFFSET				7
  90#define SPI_LLB_SIZE				1
  91#define SPI_PCS_OFFSET				16
  92#define SPI_PCS_SIZE				4
  93#define SPI_DLYBCS_OFFSET			24
  94#define SPI_DLYBCS_SIZE				8
  95
  96/* Bitfields in RDR */
  97#define SPI_RD_OFFSET				0
  98#define SPI_RD_SIZE				16
  99
 100/* Bitfields in TDR */
 101#define SPI_TD_OFFSET				0
 102#define SPI_TD_SIZE				16
 103
 104/* Bitfields in SR */
 105#define SPI_RDRF_OFFSET				0
 106#define SPI_RDRF_SIZE				1
 107#define SPI_TDRE_OFFSET				1
 108#define SPI_TDRE_SIZE				1
 109#define SPI_MODF_OFFSET				2
 110#define SPI_MODF_SIZE				1
 111#define SPI_OVRES_OFFSET			3
 112#define SPI_OVRES_SIZE				1
 113#define SPI_ENDRX_OFFSET			4
 114#define SPI_ENDRX_SIZE				1
 115#define SPI_ENDTX_OFFSET			5
 116#define SPI_ENDTX_SIZE				1
 117#define SPI_RXBUFF_OFFSET			6
 118#define SPI_RXBUFF_SIZE				1
 119#define SPI_TXBUFE_OFFSET			7
 120#define SPI_TXBUFE_SIZE				1
 121#define SPI_NSSR_OFFSET				8
 122#define SPI_NSSR_SIZE				1
 123#define SPI_TXEMPTY_OFFSET			9
 124#define SPI_TXEMPTY_SIZE			1
 125#define SPI_SPIENS_OFFSET			16
 126#define SPI_SPIENS_SIZE				1
 127#define SPI_TXFEF_OFFSET			24
 128#define SPI_TXFEF_SIZE				1
 129#define SPI_TXFFF_OFFSET			25
 130#define SPI_TXFFF_SIZE				1
 131#define SPI_TXFTHF_OFFSET			26
 132#define SPI_TXFTHF_SIZE				1
 133#define SPI_RXFEF_OFFSET			27
 134#define SPI_RXFEF_SIZE				1
 135#define SPI_RXFFF_OFFSET			28
 136#define SPI_RXFFF_SIZE				1
 137#define SPI_RXFTHF_OFFSET			29
 138#define SPI_RXFTHF_SIZE				1
 139#define SPI_TXFPTEF_OFFSET			30
 140#define SPI_TXFPTEF_SIZE			1
 141#define SPI_RXFPTEF_OFFSET			31
 142#define SPI_RXFPTEF_SIZE			1
 143
 144/* Bitfields in CSR0 */
 145#define SPI_CPOL_OFFSET				0
 146#define SPI_CPOL_SIZE				1
 147#define SPI_NCPHA_OFFSET			1
 148#define SPI_NCPHA_SIZE				1
 149#define SPI_CSAAT_OFFSET			3
 150#define SPI_CSAAT_SIZE				1
 151#define SPI_BITS_OFFSET				4
 152#define SPI_BITS_SIZE				4
 153#define SPI_SCBR_OFFSET				8
 154#define SPI_SCBR_SIZE				8
 155#define SPI_DLYBS_OFFSET			16
 156#define SPI_DLYBS_SIZE				8
 157#define SPI_DLYBCT_OFFSET			24
 158#define SPI_DLYBCT_SIZE				8
 159
 160/* Bitfields in RCR */
 161#define SPI_RXCTR_OFFSET			0
 162#define SPI_RXCTR_SIZE				16
 163
 164/* Bitfields in TCR */
 165#define SPI_TXCTR_OFFSET			0
 166#define SPI_TXCTR_SIZE				16
 167
 168/* Bitfields in RNCR */
 169#define SPI_RXNCR_OFFSET			0
 170#define SPI_RXNCR_SIZE				16
 171
 172/* Bitfields in TNCR */
 173#define SPI_TXNCR_OFFSET			0
 174#define SPI_TXNCR_SIZE				16
 175
 176/* Bitfields in PTCR */
 177#define SPI_RXTEN_OFFSET			0
 178#define SPI_RXTEN_SIZE				1
 179#define SPI_RXTDIS_OFFSET			1
 180#define SPI_RXTDIS_SIZE				1
 181#define SPI_TXTEN_OFFSET			8
 182#define SPI_TXTEN_SIZE				1
 183#define SPI_TXTDIS_OFFSET			9
 184#define SPI_TXTDIS_SIZE				1
 185
 186/* Bitfields in FMR */
 187#define SPI_TXRDYM_OFFSET			0
 188#define SPI_TXRDYM_SIZE				2
 189#define SPI_RXRDYM_OFFSET			4
 190#define SPI_RXRDYM_SIZE				2
 191#define SPI_TXFTHRES_OFFSET			16
 192#define SPI_TXFTHRES_SIZE			6
 193#define SPI_RXFTHRES_OFFSET			24
 194#define SPI_RXFTHRES_SIZE			6
 195
 196/* Bitfields in FLR */
 197#define SPI_TXFL_OFFSET				0
 198#define SPI_TXFL_SIZE				6
 199#define SPI_RXFL_OFFSET				16
 200#define SPI_RXFL_SIZE				6
 201
 202/* Constants for BITS */
 203#define SPI_BITS_8_BPT				0
 204#define SPI_BITS_9_BPT				1
 205#define SPI_BITS_10_BPT				2
 206#define SPI_BITS_11_BPT				3
 207#define SPI_BITS_12_BPT				4
 208#define SPI_BITS_13_BPT				5
 209#define SPI_BITS_14_BPT				6
 210#define SPI_BITS_15_BPT				7
 211#define SPI_BITS_16_BPT				8
 212#define SPI_ONE_DATA				0
 213#define SPI_TWO_DATA				1
 214#define SPI_FOUR_DATA				2
 215
 216/* Bit manipulation macros */
 217#define SPI_BIT(name) \
 218	(1 << SPI_##name##_OFFSET)
 219#define SPI_BF(name, value) \
 220	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 221#define SPI_BFEXT(name, value) \
 222	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 223#define SPI_BFINS(name, value, old) \
 224	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 225	  | SPI_BF(name, value))
 226
 227/* Register access macros */
 228#ifdef CONFIG_AVR32
 229#define spi_readl(port, reg) \
 230	__raw_readl((port)->regs + SPI_##reg)
 231#define spi_writel(port, reg, value) \
 232	__raw_writel((value), (port)->regs + SPI_##reg)
 233
 234#define spi_readw(port, reg) \
 235	__raw_readw((port)->regs + SPI_##reg)
 236#define spi_writew(port, reg, value) \
 237	__raw_writew((value), (port)->regs + SPI_##reg)
 238
 239#define spi_readb(port, reg) \
 240	__raw_readb((port)->regs + SPI_##reg)
 241#define spi_writeb(port, reg, value) \
 242	__raw_writeb((value), (port)->regs + SPI_##reg)
 243#else
 244#define spi_readl(port, reg) \
 245	readl_relaxed((port)->regs + SPI_##reg)
 246#define spi_writel(port, reg, value) \
 247	writel_relaxed((value), (port)->regs + SPI_##reg)
 248
 249#define spi_readw(port, reg) \
 250	readw_relaxed((port)->regs + SPI_##reg)
 251#define spi_writew(port, reg, value) \
 252	writew_relaxed((value), (port)->regs + SPI_##reg)
 253
 254#define spi_readb(port, reg) \
 255	readb_relaxed((port)->regs + SPI_##reg)
 256#define spi_writeb(port, reg, value) \
 257	writeb_relaxed((value), (port)->regs + SPI_##reg)
 258#endif
 259/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 260 * cache operations; better heuristics consider wordsize and bitrate.
 261 */
 262#define DMA_MIN_BYTES	16
 263
 264#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
 265
 266#define AUTOSUSPEND_TIMEOUT	2000
 267
 268struct atmel_spi_caps {
 269	bool	is_spi2;
 270	bool	has_wdrbt;
 271	bool	has_dma_support;
 272};
 273
 274/*
 275 * The core SPI transfer engine just talks to a register bank to set up
 276 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 277 * framework provides the base clock, subdivided for each spi_device.
 278 */
 279struct atmel_spi {
 280	spinlock_t		lock;
 281	unsigned long		flags;
 282
 283	phys_addr_t		phybase;
 284	void __iomem		*regs;
 285	int			irq;
 286	struct clk		*clk;
 287	struct platform_device	*pdev;
 288	unsigned long		spi_clk;
 289
 
 
 290	struct spi_transfer	*current_transfer;
 291	int			current_remaining_bytes;
 292	int			done_status;
 293
 294	struct completion	xfer_completion;
 295
 296	struct atmel_spi_caps	caps;
 297
 298	bool			use_dma;
 299	bool			use_pdc;
 300	bool			use_cs_gpios;
 301
 302	bool			keep_cs;
 303	bool			cs_active;
 304
 305	u32			fifo_size;
 306};
 307
 308/* Controller-specific per-slave state */
 309struct atmel_spi_device {
 310	unsigned int		npcs_pin;
 311	u32			csr;
 312};
 313
 314#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
 315#define INVALID_DMA_ADDRESS	0xffffffff
 316
 317/*
 318 * Version 2 of the SPI controller has
 319 *  - CR.LASTXFER
 320 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 321 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 322 *  - SPI_CSRx.CSAAT
 323 *  - SPI_CSRx.SBCR allows faster clocking
 
 
 
 
 324 */
 325static bool atmel_spi_is_v2(struct atmel_spi *as)
 326{
 327	return as->caps.is_spi2;
 328}
 329
 330/*
 331 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 332 * they assume that spi slave device state will not change on deselect, so
 333 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 334 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 335 * controllers have CSAAT and friends.
 336 *
 337 * Since the CSAAT functionality is a bit weird on newer controllers as
 338 * well, we use GPIO to control nCSx pins on all controllers, updating
 339 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 340 * support active-high chipselects despite the controller's belief that
 341 * only active-low devices/systems exists.
 342 *
 343 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 344 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 345 * Master on Chip Select 0.")  No workaround exists for that ... so for
 346 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 347 * and (c) will trigger that first erratum in some cases.
 
 
 
 
 
 348 */
 349
 350static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 351{
 352	struct atmel_spi_device *asd = spi->controller_state;
 353	unsigned active = spi->mode & SPI_CS_HIGH;
 354	u32 mr;
 355
 356	if (atmel_spi_is_v2(as)) {
 357		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
 358		/* For the low SPI version, there is a issue that PDC transfer
 359		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 
 360		 */
 361		spi_writel(as, CSR0, asd->csr);
 362		if (as->caps.has_wdrbt) {
 363			spi_writel(as, MR,
 364					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 365					| SPI_BIT(WDRBT)
 366					| SPI_BIT(MODFDIS)
 367					| SPI_BIT(MSTR));
 368		} else {
 369			spi_writel(as, MR,
 370					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 371					| SPI_BIT(MODFDIS)
 372					| SPI_BIT(MSTR));
 373		}
 374
 375		mr = spi_readl(as, MR);
 376		if (as->use_cs_gpios)
 377			gpio_set_value(asd->npcs_pin, active);
 378	} else {
 379		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 380		int i;
 381		u32 csr;
 382
 383		/* Make sure clock polarity is correct */
 384		for (i = 0; i < spi->master->num_chipselect; i++) {
 385			csr = spi_readl(as, CSR0 + 4 * i);
 386			if ((csr ^ cpol) & SPI_BIT(CPOL))
 387				spi_writel(as, CSR0 + 4 * i,
 388						csr ^ SPI_BIT(CPOL));
 389		}
 390
 391		mr = spi_readl(as, MR);
 392		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 393		if (as->use_cs_gpios && spi->chip_select != 0)
 394			gpio_set_value(asd->npcs_pin, active);
 395		spi_writel(as, MR, mr);
 396	}
 397
 398	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 399			asd->npcs_pin, active ? " (high)" : "",
 400			mr);
 401}
 402
 403static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 404{
 405	struct atmel_spi_device *asd = spi->controller_state;
 406	unsigned active = spi->mode & SPI_CS_HIGH;
 407	u32 mr;
 408
 409	/* only deactivate *this* device; sometimes transfers to
 410	 * another device may be active when this routine is called.
 411	 */
 412	mr = spi_readl(as, MR);
 413	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 414		mr = SPI_BFINS(PCS, 0xf, mr);
 415		spi_writel(as, MR, mr);
 416	}
 417
 418	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 419			asd->npcs_pin, active ? " (low)" : "",
 420			mr);
 421
 422	if (!as->use_cs_gpios)
 423		spi_writel(as, CR, SPI_BIT(LASTXFER));
 424	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
 425		gpio_set_value(asd->npcs_pin, !active);
 426}
 427
 428static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 
 429{
 430	spin_lock_irqsave(&as->lock, as->flags);
 431}
 432
 433static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 434{
 435	spin_unlock_irqrestore(&as->lock, as->flags);
 436}
 437
 438static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 439				struct spi_transfer *xfer)
 440{
 441	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 442}
 443
 444static bool atmel_spi_can_dma(struct spi_master *master,
 445			      struct spi_device *spi,
 446			      struct spi_transfer *xfer)
 447{
 448	struct atmel_spi *as = spi_master_get_devdata(master);
 449
 450	return atmel_spi_use_dma(as, xfer);
 451}
 452
 453static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 454				struct dma_slave_config *slave_config,
 455				u8 bits_per_word)
 456{
 457	struct spi_master *master = platform_get_drvdata(as->pdev);
 458	int err = 0;
 459
 460	if (bits_per_word > 8) {
 461		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 462		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 463	} else {
 464		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 465		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 466	}
 467
 468	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 469	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 470	slave_config->src_maxburst = 1;
 471	slave_config->dst_maxburst = 1;
 472	slave_config->device_fc = false;
 473
 474	/*
 475	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 476	 * the Mode Register).
 477	 * So according to the datasheet, when FIFOs are available (and
 478	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 479	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 480	 * Data Register in a single access.
 481	 * However, the first data has to be written into the lowest 16 bits and
 482	 * the second data into the highest 16 bits of the Transmit
 483	 * Data Register. For 8bit data (the most frequent case), it would
 484	 * require to rework tx_buf so each data would actualy fit 16 bits.
 485	 * So we'd rather write only one data at the time. Hence the transmit
 486	 * path works the same whether FIFOs are available (and enabled) or not.
 487	 */
 488	slave_config->direction = DMA_MEM_TO_DEV;
 489	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
 490		dev_err(&as->pdev->dev,
 491			"failed to configure tx dma channel\n");
 492		err = -EINVAL;
 493	}
 494
 495	/*
 496	 * This driver configures the spi controller for master mode (MSTR bit
 497	 * set to '1' in the Mode Register).
 498	 * So according to the datasheet, when FIFOs are available (and
 499	 * enabled), the Receive FIFO operates in Single Data Mode.
 500	 * So the receive path works the same whether FIFOs are available (and
 501	 * enabled) or not.
 502	 */
 503	slave_config->direction = DMA_DEV_TO_MEM;
 504	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
 505		dev_err(&as->pdev->dev,
 506			"failed to configure rx dma channel\n");
 507		err = -EINVAL;
 508	}
 509
 510	return err;
 511}
 512
 513static int atmel_spi_configure_dma(struct spi_master *master,
 514				   struct atmel_spi *as)
 515{
 516	struct dma_slave_config	slave_config;
 517	struct device *dev = &as->pdev->dev;
 518	int err;
 519
 520	dma_cap_mask_t mask;
 521	dma_cap_zero(mask);
 522	dma_cap_set(DMA_SLAVE, mask);
 523
 524	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
 525	if (IS_ERR(master->dma_tx)) {
 526		err = PTR_ERR(master->dma_tx);
 527		if (err == -EPROBE_DEFER) {
 528			dev_warn(dev, "no DMA channel available at the moment\n");
 529			goto error_clear;
 530		}
 531		dev_err(dev,
 532			"DMA TX channel not available, SPI unable to use DMA\n");
 533		err = -EBUSY;
 534		goto error_clear;
 535	}
 536
 537	/*
 538	 * No reason to check EPROBE_DEFER here since we have already requested
 539	 * tx channel. If it fails here, it's for another reason.
 540	 */
 541	master->dma_rx = dma_request_slave_channel(dev, "rx");
 542
 543	if (!master->dma_rx) {
 544		dev_err(dev,
 545			"DMA RX channel not available, SPI unable to use DMA\n");
 546		err = -EBUSY;
 547		goto error;
 548	}
 549
 550	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 551	if (err)
 552		goto error;
 553
 554	dev_info(&as->pdev->dev,
 555			"Using %s (tx) and %s (rx) for DMA transfers\n",
 556			dma_chan_name(master->dma_tx),
 557			dma_chan_name(master->dma_rx));
 558
 559	return 0;
 560error:
 561	if (master->dma_rx)
 562		dma_release_channel(master->dma_rx);
 563	if (!IS_ERR(master->dma_tx))
 564		dma_release_channel(master->dma_tx);
 565error_clear:
 566	master->dma_tx = master->dma_rx = NULL;
 567	return err;
 568}
 569
 570static void atmel_spi_stop_dma(struct spi_master *master)
 571{
 572	if (master->dma_rx)
 573		dmaengine_terminate_all(master->dma_rx);
 574	if (master->dma_tx)
 575		dmaengine_terminate_all(master->dma_tx);
 576}
 577
 578static void atmel_spi_release_dma(struct spi_master *master)
 579{
 580	if (master->dma_rx) {
 581		dma_release_channel(master->dma_rx);
 582		master->dma_rx = NULL;
 583	}
 584	if (master->dma_tx) {
 585		dma_release_channel(master->dma_tx);
 586		master->dma_tx = NULL;
 587	}
 588}
 589
 590/* This function is called by the DMA driver from tasklet context */
 591static void dma_callback(void *data)
 592{
 593	struct spi_master	*master = data;
 594	struct atmel_spi	*as = spi_master_get_devdata(master);
 595
 596	complete(&as->xfer_completion);
 597}
 598
 599/*
 600 * Next transfer using PIO without FIFO.
 601 */
 602static void atmel_spi_next_xfer_single(struct spi_master *master,
 603				       struct spi_transfer *xfer)
 604{
 605	struct atmel_spi	*as = spi_master_get_devdata(master);
 606	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 607
 608	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 609
 610	/* Make sure data is not remaining in RDR */
 611	spi_readl(as, RDR);
 612	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 613		spi_readl(as, RDR);
 614		cpu_relax();
 
 
 
 
 
 
 
 
 
 
 615	}
 616
 617	if (xfer->bits_per_word > 8)
 618		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 619	else
 620		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 621
 622	dev_dbg(master->dev.parent,
 623		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 624		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 625		xfer->bits_per_word);
 626
 627	/* Enable relevant interrupts */
 628	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 629}
 630
 631/*
 632 * Next transfer using PIO with FIFO.
 633 */
 634static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 635				     struct spi_transfer *xfer)
 636{
 637	struct atmel_spi *as = spi_master_get_devdata(master);
 638	u32 current_remaining_data, num_data;
 639	u32 offset = xfer->len - as->current_remaining_bytes;
 640	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 641	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 642	u16 td0, td1;
 643	u32 fifomr;
 644
 645	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 646
 647	/* Compute the number of data to transfer in the current iteration */
 648	current_remaining_data = ((xfer->bits_per_word > 8) ?
 649				  ((u32)as->current_remaining_bytes >> 1) :
 650				  (u32)as->current_remaining_bytes);
 651	num_data = min(current_remaining_data, as->fifo_size);
 652
 653	/* Flush RX and TX FIFOs */
 654	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 655	while (spi_readl(as, FLR))
 656		cpu_relax();
 657
 658	/* Set RX FIFO Threshold to the number of data to transfer */
 659	fifomr = spi_readl(as, FMR);
 660	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 661
 662	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 663	(void)spi_readl(as, SR);
 664
 665	/* Fill TX FIFO */
 666	while (num_data >= 2) {
 667		if (xfer->bits_per_word > 8) {
 668			td0 = *words++;
 669			td1 = *words++;
 670		} else {
 671			td0 = *bytes++;
 672			td1 = *bytes++;
 673		}
 674
 675		spi_writel(as, TDR, (td1 << 16) | td0);
 676		num_data -= 2;
 677	}
 678
 679	if (num_data) {
 680		if (xfer->bits_per_word > 8)
 681			td0 = *words++;
 682		else
 683			td0 = *bytes++;
 684
 685		spi_writew(as, TDR, td0);
 686		num_data--;
 687	}
 688
 689	dev_dbg(master->dev.parent,
 690		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 691		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 692		xfer->bits_per_word);
 693
 694	/*
 695	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 696	 * transfer completion.
 697	 */
 698	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 699}
 700
 701/*
 702 * Next transfer using PIO.
 703 */
 704static void atmel_spi_next_xfer_pio(struct spi_master *master,
 705				    struct spi_transfer *xfer)
 706{
 707	struct atmel_spi *as = spi_master_get_devdata(master);
 708
 709	if (as->fifo_size)
 710		atmel_spi_next_xfer_fifo(master, xfer);
 711	else
 712		atmel_spi_next_xfer_single(master, xfer);
 713}
 714
 715/*
 716 * Submit next transfer for DMA.
 
 717 */
 718static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 719				struct spi_transfer *xfer,
 720				u32 *plen)
 721{
 722	struct atmel_spi	*as = spi_master_get_devdata(master);
 723	struct dma_chan		*rxchan = master->dma_rx;
 724	struct dma_chan		*txchan = master->dma_tx;
 725	struct dma_async_tx_descriptor *rxdesc;
 726	struct dma_async_tx_descriptor *txdesc;
 727	struct dma_slave_config	slave_config;
 728	dma_cookie_t		cookie;
 729
 730	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 731
 732	/* Check that the channels are available */
 733	if (!rxchan || !txchan)
 734		return -ENODEV;
 735
 736	/* release lock for DMA operations */
 737	atmel_spi_unlock(as);
 738
 739	*plen = xfer->len;
 740
 741	if (atmel_spi_dma_slave_config(as, &slave_config,
 742				       xfer->bits_per_word))
 743		goto err_exit;
 744
 745	/* Send both scatterlists */
 746	rxdesc = dmaengine_prep_slave_sg(rxchan,
 747					 xfer->rx_sg.sgl, xfer->rx_sg.nents,
 748					 DMA_FROM_DEVICE,
 749					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 750	if (!rxdesc)
 751		goto err_dma;
 752
 753	txdesc = dmaengine_prep_slave_sg(txchan,
 754					 xfer->tx_sg.sgl, xfer->tx_sg.nents,
 755					 DMA_TO_DEVICE,
 756					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 757	if (!txdesc)
 758		goto err_dma;
 759
 760	dev_dbg(master->dev.parent,
 761		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 762		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 763		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 764
 765	/* Enable relevant interrupts */
 766	spi_writel(as, IER, SPI_BIT(OVRES));
 767
 768	/* Put the callback on the RX transfer only, that should finish last */
 769	rxdesc->callback = dma_callback;
 770	rxdesc->callback_param = master;
 771
 772	/* Submit and fire RX and TX with TX last so we're ready to read! */
 773	cookie = rxdesc->tx_submit(rxdesc);
 774	if (dma_submit_error(cookie))
 775		goto err_dma;
 776	cookie = txdesc->tx_submit(txdesc);
 777	if (dma_submit_error(cookie))
 778		goto err_dma;
 779	rxchan->device->device_issue_pending(rxchan);
 780	txchan->device->device_issue_pending(txchan);
 781
 782	/* take back lock */
 783	atmel_spi_lock(as);
 784	return 0;
 785
 786err_dma:
 787	spi_writel(as, IDR, SPI_BIT(OVRES));
 788	atmel_spi_stop_dma(master);
 789err_exit:
 790	atmel_spi_lock(as);
 791	return -ENOMEM;
 792}
 793
 794static void atmel_spi_next_xfer_data(struct spi_master *master,
 795				struct spi_transfer *xfer,
 796				dma_addr_t *tx_dma,
 797				dma_addr_t *rx_dma,
 798				u32 *plen)
 799{
 800	*rx_dma = xfer->rx_dma + xfer->len - *plen;
 801	*tx_dma = xfer->tx_dma + xfer->len - *plen;
 802	if (*plen > master->max_dma_len)
 803		*plen = master->max_dma_len;
 804}
 805
 806static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 807				    struct spi_device *spi,
 808				    struct spi_transfer *xfer)
 809{
 810	u32			scbr, csr;
 811	unsigned long		bus_hz;
 812
 813	/* v1 chips start out at half the peripheral bus speed. */
 814	bus_hz = as->spi_clk;
 815	if (!atmel_spi_is_v2(as))
 816		bus_hz /= 2;
 817
 818	/*
 819	 * Calculate the lowest divider that satisfies the
 820	 * constraint, assuming div32/fdiv/mbz == 0.
 821	 */
 822	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 823
 824	/*
 825	 * If the resulting divider doesn't fit into the
 826	 * register bitfield, we can't satisfy the constraint.
 827	 */
 828	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 829		dev_err(&spi->dev,
 830			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 831			xfer->speed_hz, scbr, bus_hz/255);
 832		return -EINVAL;
 833	}
 834	if (scbr == 0) {
 835		dev_err(&spi->dev,
 836			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 837			xfer->speed_hz, scbr, bus_hz);
 838		return -EINVAL;
 839	}
 840	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
 841	csr = SPI_BFINS(SCBR, scbr, csr);
 842	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 843
 844	return 0;
 845}
 846
 847/*
 848 * Submit next transfer for PDC.
 849 * lock is held, spi irq is blocked
 850 */
 851static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 852					struct spi_message *msg,
 853					struct spi_transfer *xfer)
 854{
 855	struct atmel_spi	*as = spi_master_get_devdata(master);
 856	u32			len;
 857	dma_addr_t		tx_dma, rx_dma;
 858
 859	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 860
 861	len = as->current_remaining_bytes;
 862	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 863	as->current_remaining_bytes -= len;
 864
 865	spi_writel(as, RPR, rx_dma);
 866	spi_writel(as, TPR, tx_dma);
 867
 868	if (msg->spi->bits_per_word > 8)
 869		len >>= 1;
 870	spi_writel(as, RCR, len);
 871	spi_writel(as, TCR, len);
 872
 873	dev_dbg(&msg->spi->dev,
 874		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 875		xfer, xfer->len, xfer->tx_buf,
 876		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 877		(unsigned long long)xfer->rx_dma);
 878
 879	if (as->current_remaining_bytes) {
 880		len = as->current_remaining_bytes;
 881		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 882		as->current_remaining_bytes -= len;
 883
 884		spi_writel(as, RNPR, rx_dma);
 885		spi_writel(as, TNPR, tx_dma);
 886
 887		if (msg->spi->bits_per_word > 8)
 888			len >>= 1;
 889		spi_writel(as, RNCR, len);
 890		spi_writel(as, TNCR, len);
 891
 892		dev_dbg(&msg->spi->dev,
 893			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 894			xfer, xfer->len, xfer->tx_buf,
 895			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 896			(unsigned long long)xfer->rx_dma);
 
 
 
 
 897	}
 898
 899	/* REVISIT: We're waiting for RXBUFF before we start the next
 900	 * transfer because we need to handle some difficult timing
 901	 * issues otherwise. If we wait for TXBUFE in one transfer and
 902	 * then starts waiting for RXBUFF in the next, it's difficult
 903	 * to tell the difference between the RXBUFF interrupt we're
 904	 * actually waiting for and the RXBUFF interrupt of the
 905	 * previous transfer.
 906	 *
 907	 * It should be doable, though. Just not now...
 908	 */
 909	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 910	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 911}
 912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913/*
 914 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 915 *  - The buffer is either valid for CPU access, else NULL
 916 *  - If the buffer is valid, so is its DMA address
 917 *
 918 * This driver manages the dma address unless message->is_dma_mapped.
 919 */
 920static int
 921atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 922{
 923	struct device	*dev = &as->pdev->dev;
 924
 925	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 926	if (xfer->tx_buf) {
 927		/* tx_buf is a const void* where we need a void * for the dma
 928		 * mapping */
 929		void *nonconst_tx = (void *)xfer->tx_buf;
 930
 931		xfer->tx_dma = dma_map_single(dev,
 932				nonconst_tx, xfer->len,
 933				DMA_TO_DEVICE);
 934		if (dma_mapping_error(dev, xfer->tx_dma))
 935			return -ENOMEM;
 936	}
 937	if (xfer->rx_buf) {
 938		xfer->rx_dma = dma_map_single(dev,
 939				xfer->rx_buf, xfer->len,
 940				DMA_FROM_DEVICE);
 941		if (dma_mapping_error(dev, xfer->rx_dma)) {
 942			if (xfer->tx_buf)
 943				dma_unmap_single(dev,
 944						xfer->tx_dma, xfer->len,
 945						DMA_TO_DEVICE);
 946			return -ENOMEM;
 947		}
 948	}
 949	return 0;
 950}
 951
 952static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 953				     struct spi_transfer *xfer)
 954{
 955	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 956		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 957				 xfer->len, DMA_TO_DEVICE);
 958	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 959		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 960				 xfer->len, DMA_FROM_DEVICE);
 961}
 962
 963static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
 
 
 964{
 965	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 966}
 
 
 967
 968static void
 969atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
 970{
 971	u8		*rxp;
 972	u16		*rxp16;
 973	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
 974
 975	if (xfer->bits_per_word > 8) {
 976		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
 977		*rxp16 = spi_readl(as, RDR);
 978	} else {
 979		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
 980		*rxp = spi_readl(as, RDR);
 981	}
 982	if (xfer->bits_per_word > 8) {
 983		if (as->current_remaining_bytes > 2)
 984			as->current_remaining_bytes -= 2;
 985		else
 986			as->current_remaining_bytes = 0;
 987	} else {
 988		as->current_remaining_bytes--;
 989	}
 990}
 991
 992static void
 993atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
 994{
 995	u32 fifolr = spi_readl(as, FLR);
 996	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
 997	u32 offset = xfer->len - as->current_remaining_bytes;
 998	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
 999	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1000	u16 rd; /* RD field is the lowest 16 bits of RDR */
1001
1002	/* Update the number of remaining bytes to transfer */
1003	num_bytes = ((xfer->bits_per_word > 8) ?
1004		     (num_data << 1) :
1005		     num_data);
1006
1007	if (as->current_remaining_bytes > num_bytes)
1008		as->current_remaining_bytes -= num_bytes;
1009	else
1010		as->current_remaining_bytes = 0;
1011
1012	/* Handle odd number of bytes when data are more than 8bit width */
1013	if (xfer->bits_per_word > 8)
1014		as->current_remaining_bytes &= ~0x1;
1015
1016	/* Read data */
1017	while (num_data) {
1018		rd = spi_readl(as, RDR);
1019		if (xfer->bits_per_word > 8)
1020			*words++ = rd;
1021		else
1022			*bytes++ = rd;
1023		num_data--;
1024	}
1025}
1026
1027/* Called from IRQ
1028 *
1029 * Must update "current_remaining_bytes" to keep track of data
1030 * to transfer.
1031 */
1032static void
1033atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1034{
1035	if (as->fifo_size)
1036		atmel_spi_pump_fifo_data(as, xfer);
1037	else
1038		atmel_spi_pump_single_data(as, xfer);
1039}
1040
1041/* Interrupt
1042 *
1043 * No need for locking in this Interrupt handler: done_status is the
1044 * only information modified.
1045 */
1046static irqreturn_t
1047atmel_spi_pio_interrupt(int irq, void *dev_id)
1048{
1049	struct spi_master	*master = dev_id;
1050	struct atmel_spi	*as = spi_master_get_devdata(master);
 
 
1051	u32			status, pending, imr;
1052	struct spi_transfer	*xfer;
1053	int			ret = IRQ_NONE;
1054
 
 
 
 
 
1055	imr = spi_readl(as, IMR);
1056	status = spi_readl(as, SR);
1057	pending = status & imr;
1058
1059	if (pending & SPI_BIT(OVRES)) {
 
 
1060		ret = IRQ_HANDLED;
1061		spi_writel(as, IDR, SPI_BIT(OVRES));
1062		dev_warn(master->dev.parent, "overrun\n");
 
1063
1064		/*
1065		 * When we get an overrun, we disregard the current
1066		 * transfer. Data will not be copied back from any
1067		 * bounce buffer and msg->actual_len will not be
1068		 * updated with the last xfer.
1069		 *
1070		 * We will also not process any remaning transfers in
1071		 * the message.
 
 
1072		 */
1073		as->done_status = -EIO;
1074		smp_wmb();
 
1075
1076		/* Clear any overrun happening while cleaning up */
1077		spi_readl(as, SR);
 
1078
1079		complete(&as->xfer_completion);
 
1080
1081	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1082		atmel_spi_lock(as);
1083
1084		if (as->current_remaining_bytes) {
1085			ret = IRQ_HANDLED;
1086			xfer = as->current_transfer;
1087			atmel_spi_pump_pio_data(as, xfer);
1088			if (!as->current_remaining_bytes)
1089				spi_writel(as, IDR, pending);
1090
1091			complete(&as->xfer_completion);
1092		}
1093
1094		atmel_spi_unlock(as);
1095	} else {
1096		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1097		ret = IRQ_HANDLED;
1098		spi_writel(as, IDR, pending);
1099	}
1100
1101	return ret;
1102}
1103
1104static irqreturn_t
1105atmel_spi_pdc_interrupt(int irq, void *dev_id)
1106{
1107	struct spi_master	*master = dev_id;
1108	struct atmel_spi	*as = spi_master_get_devdata(master);
1109	u32			status, pending, imr;
1110	int			ret = IRQ_NONE;
1111
1112	imr = spi_readl(as, IMR);
1113	status = spi_readl(as, SR);
1114	pending = status & imr;
1115
1116	if (pending & SPI_BIT(OVRES)) {
1117
1118		ret = IRQ_HANDLED;
1119
1120		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1121				     | SPI_BIT(OVRES)));
1122
1123		/* Clear any overrun happening while cleaning up */
1124		spi_readl(as, SR);
1125
1126		as->done_status = -EIO;
1127
1128		complete(&as->xfer_completion);
1129
1130	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1131		ret = IRQ_HANDLED;
1132
1133		spi_writel(as, IDR, pending);
1134
1135		complete(&as->xfer_completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136	}
1137
 
 
1138	return ret;
1139}
1140
1141static int atmel_spi_setup(struct spi_device *spi)
1142{
1143	struct atmel_spi	*as;
1144	struct atmel_spi_device	*asd;
1145	u32			csr;
1146	unsigned int		bits = spi->bits_per_word;
 
1147	unsigned int		npcs_pin;
 
1148
1149	as = spi_master_get_devdata(spi->master);
1150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1151	/* see notes above re chipselect */
1152	if (!atmel_spi_is_v2(as)
1153			&& spi->chip_select == 0
1154			&& (spi->mode & SPI_CS_HIGH)) {
1155		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1156		return -EINVAL;
1157	}
1158
1159	csr = SPI_BF(BITS, bits - 8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160	if (spi->mode & SPI_CPOL)
1161		csr |= SPI_BIT(CPOL);
1162	if (!(spi->mode & SPI_CPHA))
1163		csr |= SPI_BIT(NCPHA);
1164	if (!as->use_cs_gpios)
1165		csr |= SPI_BIT(CSAAT);
1166
1167	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1168	 *
1169	 * DLYBCT would add delays between words, slowing down transfers.
1170	 * It could potentially be useful to cope with DMA bottlenecks, but
1171	 * in those cases it's probably best to just use a lower bitrate.
1172	 */
1173	csr |= SPI_BF(DLYBS, 0);
1174	csr |= SPI_BF(DLYBCT, 0);
1175
1176	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1177	npcs_pin = (unsigned long)spi->controller_data;
1178
1179	if (!as->use_cs_gpios)
1180		npcs_pin = spi->chip_select;
1181	else if (gpio_is_valid(spi->cs_gpio))
1182		npcs_pin = spi->cs_gpio;
1183
1184	asd = spi->controller_state;
1185	if (!asd) {
1186		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1187		if (!asd)
1188			return -ENOMEM;
1189
1190		if (as->use_cs_gpios)
1191			gpio_direction_output(npcs_pin,
1192					      !(spi->mode & SPI_CS_HIGH));
 
 
1193
1194		asd->npcs_pin = npcs_pin;
1195		spi->controller_state = asd;
 
 
 
 
 
 
 
 
 
1196	}
1197
1198	asd->csr = csr;
1199
1200	dev_dbg(&spi->dev,
1201		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1202		bits, spi->mode, spi->chip_select, csr);
1203
1204	if (!atmel_spi_is_v2(as))
1205		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1206
1207	return 0;
1208}
1209
1210static int atmel_spi_one_transfer(struct spi_master *master,
1211					struct spi_message *msg,
1212					struct spi_transfer *xfer)
1213{
1214	struct atmel_spi	*as;
1215	struct spi_device	*spi = msg->spi;
 
 
1216	u8			bits;
1217	u32			len;
1218	struct atmel_spi_device	*asd;
1219	int			timeout;
1220	int			ret;
1221	unsigned long		dma_timeout;
1222
1223	as = spi_master_get_devdata(master);
 
 
 
1224
1225	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1226		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1227		return -EINVAL;
1228	}
1229
1230	asd = spi->controller_state;
1231	bits = (asd->csr >> 4) & 0xf;
1232	if (bits != xfer->bits_per_word - 8) {
1233		dev_dbg(&spi->dev,
1234			"you can't yet change bits_per_word in transfers\n");
1235		return -ENOPROTOOPT;
1236	}
1237
1238	/*
1239	 * DMA map early, for performance (empties dcache ASAP) and
1240	 * better fault reporting.
1241	 */
1242	if ((!msg->is_dma_mapped)
1243		&& as->use_pdc) {
1244		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1245			return -ENOMEM;
1246	}
1247
1248	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1249
1250	as->done_status = 0;
1251	as->current_transfer = xfer;
1252	as->current_remaining_bytes = xfer->len;
1253	while (as->current_remaining_bytes) {
1254		reinit_completion(&as->xfer_completion);
1255
1256		if (as->use_pdc) {
1257			atmel_spi_pdc_next_xfer(master, msg, xfer);
1258		} else if (atmel_spi_use_dma(as, xfer)) {
1259			len = as->current_remaining_bytes;
1260			ret = atmel_spi_next_xfer_dma_submit(master,
1261								xfer, &len);
1262			if (ret) {
1263				dev_err(&spi->dev,
1264					"unable to use DMA, fallback to PIO\n");
1265				atmel_spi_next_xfer_pio(master, xfer);
1266			} else {
1267				as->current_remaining_bytes -= len;
1268				if (as->current_remaining_bytes < 0)
1269					as->current_remaining_bytes = 0;
1270			}
1271		} else {
1272			atmel_spi_next_xfer_pio(master, xfer);
1273		}
1274
1275		/* interrupts are disabled, so free the lock for schedule */
1276		atmel_spi_unlock(as);
1277		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1278							  SPI_DMA_TIMEOUT);
1279		atmel_spi_lock(as);
1280		if (WARN_ON(dma_timeout == 0)) {
1281			dev_err(&spi->dev, "spi transfer timeout\n");
1282			as->done_status = -EIO;
1283		}
1284
1285		if (as->done_status)
1286			break;
1287	}
1288
1289	if (as->done_status) {
1290		if (as->use_pdc) {
1291			dev_warn(master->dev.parent,
1292				"overrun (%u/%u remaining)\n",
1293				spi_readl(as, TCR), spi_readl(as, RCR));
1294
1295			/*
1296			 * Clean up DMA registers and make sure the data
1297			 * registers are empty.
1298			 */
1299			spi_writel(as, RNCR, 0);
1300			spi_writel(as, TNCR, 0);
1301			spi_writel(as, RCR, 0);
1302			spi_writel(as, TCR, 0);
1303			for (timeout = 1000; timeout; timeout--)
1304				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1305					break;
1306			if (!timeout)
1307				dev_warn(master->dev.parent,
1308					 "timeout waiting for TXEMPTY");
1309			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1310				spi_readl(as, RDR);
1311
1312			/* Clear any overrun happening while cleaning up */
1313			spi_readl(as, SR);
1314
1315		} else if (atmel_spi_use_dma(as, xfer)) {
1316			atmel_spi_stop_dma(master);
1317		}
1318
1319		if (!msg->is_dma_mapped
1320			&& as->use_pdc)
1321			atmel_spi_dma_unmap_xfer(master, xfer);
1322
1323		return 0;
1324
1325	} else {
1326		/* only update length if no error */
1327		msg->actual_length += xfer->len;
1328	}
1329
1330	if (!msg->is_dma_mapped
1331		&& as->use_pdc)
1332		atmel_spi_dma_unmap_xfer(master, xfer);
1333
1334	if (xfer->delay_usecs)
1335		udelay(xfer->delay_usecs);
1336
1337	if (xfer->cs_change) {
1338		if (list_is_last(&xfer->transfer_list,
1339				 &msg->transfers)) {
1340			as->keep_cs = true;
1341		} else {
1342			as->cs_active = !as->cs_active;
1343			if (as->cs_active)
1344				cs_activate(as, msg->spi);
1345			else
1346				cs_deactivate(as, msg->spi);
1347		}
1348	}
1349
1350	return 0;
1351}
1352
1353static int atmel_spi_transfer_one_message(struct spi_master *master,
1354						struct spi_message *msg)
1355{
1356	struct atmel_spi *as;
1357	struct spi_transfer *xfer;
1358	struct spi_device *spi = msg->spi;
1359	int ret = 0;
1360
1361	as = spi_master_get_devdata(master);
1362
1363	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1364					msg, dev_name(&spi->dev));
1365
1366	atmel_spi_lock(as);
1367	cs_activate(as, spi);
1368
1369	as->cs_active = true;
1370	as->keep_cs = false;
1371
1372	msg->status = 0;
1373	msg->actual_length = 0;
1374
1375	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1376		ret = atmel_spi_one_transfer(master, msg, xfer);
1377		if (ret)
1378			goto msg_done;
1379	}
1380
1381	if (as->use_pdc)
1382		atmel_spi_disable_pdc_transfer(as);
1383
1384	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1385		dev_dbg(&spi->dev,
1386			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1387			xfer, xfer->len,
1388			xfer->tx_buf, &xfer->tx_dma,
1389			xfer->rx_buf, &xfer->rx_dma);
1390	}
 
1391
1392msg_done:
1393	if (!as->keep_cs)
1394		cs_deactivate(as, msg->spi);
1395
1396	atmel_spi_unlock(as);
 
 
 
 
1397
1398	msg->status = as->done_status;
1399	spi_finalize_current_message(spi->master);
1400
1401	return ret;
1402}
1403
1404static void atmel_spi_cleanup(struct spi_device *spi)
1405{
 
1406	struct atmel_spi_device	*asd = spi->controller_state;
 
 
1407
1408	if (!asd)
1409		return;
1410
 
 
 
 
 
 
 
1411	spi->controller_state = NULL;
 
1412	kfree(asd);
1413}
1414
1415static inline unsigned int atmel_get_version(struct atmel_spi *as)
1416{
1417	return spi_readl(as, VERSION) & 0x00000fff;
1418}
1419
1420static void atmel_get_caps(struct atmel_spi *as)
1421{
1422	unsigned int version;
1423
1424	version = atmel_get_version(as);
1425	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1426
1427	as->caps.is_spi2 = version > 0x121;
1428	as->caps.has_wdrbt = version >= 0x210;
1429	as->caps.has_dma_support = version >= 0x212;
1430}
1431
1432/*-------------------------------------------------------------------------*/
1433static int atmel_spi_gpio_cs(struct platform_device *pdev)
1434{
1435	struct spi_master	*master = platform_get_drvdata(pdev);
1436	struct atmel_spi	*as = spi_master_get_devdata(master);
1437	struct device_node	*np = master->dev.of_node;
1438	int			i;
1439	int			ret = 0;
1440	int			nb = 0;
1441
1442	if (!as->use_cs_gpios)
1443		return 0;
1444
1445	if (!np)
1446		return 0;
1447
1448	nb = of_gpio_named_count(np, "cs-gpios");
1449	for (i = 0; i < nb; i++) {
1450		int cs_gpio = of_get_named_gpio(pdev->dev.of_node,
1451						"cs-gpios", i);
1452
1453		if (cs_gpio == -EPROBE_DEFER)
1454			return cs_gpio;
1455
1456		if (gpio_is_valid(cs_gpio)) {
1457			ret = devm_gpio_request(&pdev->dev, cs_gpio,
1458						dev_name(&pdev->dev));
1459			if (ret)
1460				return ret;
1461		}
1462	}
1463
1464	return 0;
1465}
1466
1467static int atmel_spi_probe(struct platform_device *pdev)
1468{
1469	struct resource		*regs;
1470	int			irq;
1471	struct clk		*clk;
1472	int			ret;
1473	struct spi_master	*master;
1474	struct atmel_spi	*as;
1475
1476	/* Select default pin state */
1477	pinctrl_pm_select_default_state(&pdev->dev);
1478
1479	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1480	if (!regs)
1481		return -ENXIO;
1482
1483	irq = platform_get_irq(pdev, 0);
1484	if (irq < 0)
1485		return irq;
1486
1487	clk = devm_clk_get(&pdev->dev, "spi_clk");
1488	if (IS_ERR(clk))
1489		return PTR_ERR(clk);
1490
1491	/* setup spi core then atmel-specific driver state */
1492	ret = -ENOMEM;
1493	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1494	if (!master)
1495		goto out_free;
1496
1497	/* the spi->mode bits understood by this driver: */
1498	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1499	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1500	master->dev.of_node = pdev->dev.of_node;
1501	master->bus_num = pdev->id;
1502	master->num_chipselect = master->dev.of_node ? 0 : 4;
1503	master->setup = atmel_spi_setup;
1504	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1505	master->transfer_one_message = atmel_spi_transfer_one_message;
1506	master->cleanup = atmel_spi_cleanup;
1507	master->auto_runtime_pm = true;
1508	master->max_dma_len = SPI_MAX_DMA_XFER;
1509	master->can_dma = atmel_spi_can_dma;
1510	platform_set_drvdata(pdev, master);
1511
1512	as = spi_master_get_devdata(master);
1513
 
 
 
 
 
 
 
 
 
1514	spin_lock_init(&as->lock);
1515
1516	as->pdev = pdev;
1517	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1518	if (IS_ERR(as->regs)) {
1519		ret = PTR_ERR(as->regs);
1520		goto out_unmap_regs;
1521	}
1522	as->phybase = regs->start;
1523	as->irq = irq;
1524	as->clk = clk;
1525
1526	init_completion(&as->xfer_completion);
1527
1528	atmel_get_caps(as);
1529
1530	as->use_cs_gpios = true;
1531	if (atmel_spi_is_v2(as) &&
1532	    pdev->dev.of_node &&
1533	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1534		as->use_cs_gpios = false;
1535		master->num_chipselect = 4;
1536	}
1537
1538	ret = atmel_spi_gpio_cs(pdev);
1539	if (ret)
1540		goto out_unmap_regs;
1541
1542	as->use_dma = false;
1543	as->use_pdc = false;
1544	if (as->caps.has_dma_support) {
1545		ret = atmel_spi_configure_dma(master, as);
1546		if (ret == 0) {
1547			as->use_dma = true;
1548		} else if (ret == -EPROBE_DEFER) {
1549			return ret;
1550		}
1551	} else {
1552		as->use_pdc = true;
1553	}
1554
1555	if (as->caps.has_dma_support && !as->use_dma)
1556		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1557
1558	if (as->use_pdc) {
1559		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1560					0, dev_name(&pdev->dev), master);
1561	} else {
1562		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1563					0, dev_name(&pdev->dev), master);
1564	}
1565	if (ret)
1566		goto out_unmap_regs;
1567
1568	/* Initialize the hardware */
1569	ret = clk_prepare_enable(clk);
1570	if (ret)
1571		goto out_free_irq;
1572
1573	as->spi_clk = clk_get_rate(clk);
1574
1575	spi_writel(as, CR, SPI_BIT(SWRST));
1576	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1577	if (as->caps.has_wdrbt) {
1578		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1579				| SPI_BIT(MSTR));
1580	} else {
1581		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1582	}
1583
1584	if (as->use_pdc)
1585		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1586	spi_writel(as, CR, SPI_BIT(SPIEN));
1587
1588	as->fifo_size = 0;
1589	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1590				  &as->fifo_size)) {
1591		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1592		spi_writel(as, CR, SPI_BIT(FIFOEN));
1593	}
1594
1595	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1596	pm_runtime_use_autosuspend(&pdev->dev);
1597	pm_runtime_set_active(&pdev->dev);
1598	pm_runtime_enable(&pdev->dev);
1599
1600	ret = devm_spi_register_master(&pdev->dev, master);
1601	if (ret)
1602		goto out_free_dma;
1603
1604	/* go! */
1605	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1606			(unsigned long)regs->start, irq);
1607
 
 
 
 
1608	return 0;
1609
1610out_free_dma:
1611	pm_runtime_disable(&pdev->dev);
1612	pm_runtime_set_suspended(&pdev->dev);
1613
1614	if (as->use_dma)
1615		atmel_spi_release_dma(master);
1616
1617	spi_writel(as, CR, SPI_BIT(SWRST));
1618	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1619	clk_disable_unprepare(clk);
1620out_free_irq:
1621out_unmap_regs:
 
 
 
 
1622out_free:
 
1623	spi_master_put(master);
1624	return ret;
1625}
1626
1627static int atmel_spi_remove(struct platform_device *pdev)
1628{
1629	struct spi_master	*master = platform_get_drvdata(pdev);
1630	struct atmel_spi	*as = spi_master_get_devdata(master);
1631
1632	pm_runtime_get_sync(&pdev->dev);
1633
1634	/* reset the hardware and block queue progress */
1635	spin_lock_irq(&as->lock);
1636	if (as->use_dma) {
1637		atmel_spi_stop_dma(master);
1638		atmel_spi_release_dma(master);
1639	}
1640
1641	spi_writel(as, CR, SPI_BIT(SWRST));
1642	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1643	spi_readl(as, SR);
1644	spin_unlock_irq(&as->lock);
1645
1646	clk_disable_unprepare(as->clk);
 
 
 
 
 
 
 
1647
1648	pm_runtime_put_noidle(&pdev->dev);
1649	pm_runtime_disable(&pdev->dev);
1650
1651	return 0;
1652}
1653
1654#ifdef CONFIG_PM
1655static int atmel_spi_runtime_suspend(struct device *dev)
1656{
1657	struct spi_master *master = dev_get_drvdata(dev);
1658	struct atmel_spi *as = spi_master_get_devdata(master);
1659
1660	clk_disable_unprepare(as->clk);
1661	pinctrl_pm_select_sleep_state(dev);
1662
1663	return 0;
1664}
1665
1666static int atmel_spi_runtime_resume(struct device *dev)
1667{
1668	struct spi_master *master = dev_get_drvdata(dev);
1669	struct atmel_spi *as = spi_master_get_devdata(master);
1670
1671	pinctrl_pm_select_default_state(dev);
1672
1673	return clk_prepare_enable(as->clk);
1674}
1675
1676#ifdef CONFIG_PM_SLEEP
1677static int atmel_spi_suspend(struct device *dev)
1678{
1679	struct spi_master *master = dev_get_drvdata(dev);
1680	int ret;
1681
1682	/* Stop the queue running */
1683	ret = spi_master_suspend(master);
1684	if (ret) {
1685		dev_warn(dev, "cannot suspend master\n");
1686		return ret;
1687	}
1688
1689	if (!pm_runtime_suspended(dev))
1690		atmel_spi_runtime_suspend(dev);
1691
 
1692	return 0;
1693}
1694
1695static int atmel_spi_resume(struct device *dev)
1696{
1697	struct spi_master *master = dev_get_drvdata(dev);
1698	int ret;
1699
1700	if (!pm_runtime_suspended(dev)) {
1701		ret = atmel_spi_runtime_resume(dev);
1702		if (ret)
1703			return ret;
1704	}
1705
1706	/* Start the queue running */
1707	ret = spi_master_resume(master);
1708	if (ret)
1709		dev_err(dev, "problem starting queue (%d)\n", ret);
1710
1711	return ret;
1712}
1713#endif
1714
1715static const struct dev_pm_ops atmel_spi_pm_ops = {
1716	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1717	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1718			   atmel_spi_runtime_resume, NULL)
1719};
1720#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1721#else
1722#define ATMEL_SPI_PM_OPS	NULL
 
1723#endif
1724
1725#if defined(CONFIG_OF)
1726static const struct of_device_id atmel_spi_dt_ids[] = {
1727	{ .compatible = "atmel,at91rm9200-spi" },
1728	{ /* sentinel */ }
1729};
1730
1731MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1732#endif
1733
1734static struct platform_driver atmel_spi_driver = {
1735	.driver		= {
1736		.name	= "atmel_spi",
1737		.pm	= ATMEL_SPI_PM_OPS,
1738		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1739	},
1740	.probe		= atmel_spi_probe,
1741	.remove		= atmel_spi_remove,
 
1742};
1743module_platform_driver(atmel_spi_driver);
 
 
 
 
 
 
 
 
 
 
 
1744
1745MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1746MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1747MODULE_LICENSE("GPL");
1748MODULE_ALIAS("platform:atmel_spi");