Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/init.h>
  13#include <linux/clk.h>
  14#include <linux/module.h>
  15#include <linux/platform_device.h>
  16#include <linux/delay.h>
  17#include <linux/dma-mapping.h>
 
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
 
 
  22
  23#include <asm/io.h>
  24#include <mach/board.h>
  25#include <mach/gpio.h>
  26#include <mach/cpu.h>
 
  27
  28/* SPI register offsets */
  29#define SPI_CR					0x0000
  30#define SPI_MR					0x0004
  31#define SPI_RDR					0x0008
  32#define SPI_TDR					0x000c
  33#define SPI_SR					0x0010
  34#define SPI_IER					0x0014
  35#define SPI_IDR					0x0018
  36#define SPI_IMR					0x001c
  37#define SPI_CSR0				0x0030
  38#define SPI_CSR1				0x0034
  39#define SPI_CSR2				0x0038
  40#define SPI_CSR3				0x003c
 
 
 
  41#define SPI_RPR					0x0100
  42#define SPI_RCR					0x0104
  43#define SPI_TPR					0x0108
  44#define SPI_TCR					0x010c
  45#define SPI_RNPR				0x0110
  46#define SPI_RNCR				0x0114
  47#define SPI_TNPR				0x0118
  48#define SPI_TNCR				0x011c
  49#define SPI_PTCR				0x0120
  50#define SPI_PTSR				0x0124
  51
  52/* Bitfields in CR */
  53#define SPI_SPIEN_OFFSET			0
  54#define SPI_SPIEN_SIZE				1
  55#define SPI_SPIDIS_OFFSET			1
  56#define SPI_SPIDIS_SIZE				1
  57#define SPI_SWRST_OFFSET			7
  58#define SPI_SWRST_SIZE				1
  59#define SPI_LASTXFER_OFFSET			24
  60#define SPI_LASTXFER_SIZE			1
 
 
 
 
 
 
 
 
  61
  62/* Bitfields in MR */
  63#define SPI_MSTR_OFFSET				0
  64#define SPI_MSTR_SIZE				1
  65#define SPI_PS_OFFSET				1
  66#define SPI_PS_SIZE				1
  67#define SPI_PCSDEC_OFFSET			2
  68#define SPI_PCSDEC_SIZE				1
  69#define SPI_FDIV_OFFSET				3
  70#define SPI_FDIV_SIZE				1
  71#define SPI_MODFDIS_OFFSET			4
  72#define SPI_MODFDIS_SIZE			1
 
 
  73#define SPI_LLB_OFFSET				7
  74#define SPI_LLB_SIZE				1
  75#define SPI_PCS_OFFSET				16
  76#define SPI_PCS_SIZE				4
  77#define SPI_DLYBCS_OFFSET			24
  78#define SPI_DLYBCS_SIZE				8
  79
  80/* Bitfields in RDR */
  81#define SPI_RD_OFFSET				0
  82#define SPI_RD_SIZE				16
  83
  84/* Bitfields in TDR */
  85#define SPI_TD_OFFSET				0
  86#define SPI_TD_SIZE				16
  87
  88/* Bitfields in SR */
  89#define SPI_RDRF_OFFSET				0
  90#define SPI_RDRF_SIZE				1
  91#define SPI_TDRE_OFFSET				1
  92#define SPI_TDRE_SIZE				1
  93#define SPI_MODF_OFFSET				2
  94#define SPI_MODF_SIZE				1
  95#define SPI_OVRES_OFFSET			3
  96#define SPI_OVRES_SIZE				1
  97#define SPI_ENDRX_OFFSET			4
  98#define SPI_ENDRX_SIZE				1
  99#define SPI_ENDTX_OFFSET			5
 100#define SPI_ENDTX_SIZE				1
 101#define SPI_RXBUFF_OFFSET			6
 102#define SPI_RXBUFF_SIZE				1
 103#define SPI_TXBUFE_OFFSET			7
 104#define SPI_TXBUFE_SIZE				1
 105#define SPI_NSSR_OFFSET				8
 106#define SPI_NSSR_SIZE				1
 107#define SPI_TXEMPTY_OFFSET			9
 108#define SPI_TXEMPTY_SIZE			1
 109#define SPI_SPIENS_OFFSET			16
 110#define SPI_SPIENS_SIZE				1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111
 112/* Bitfields in CSR0 */
 113#define SPI_CPOL_OFFSET				0
 114#define SPI_CPOL_SIZE				1
 115#define SPI_NCPHA_OFFSET			1
 116#define SPI_NCPHA_SIZE				1
 117#define SPI_CSAAT_OFFSET			3
 118#define SPI_CSAAT_SIZE				1
 119#define SPI_BITS_OFFSET				4
 120#define SPI_BITS_SIZE				4
 121#define SPI_SCBR_OFFSET				8
 122#define SPI_SCBR_SIZE				8
 123#define SPI_DLYBS_OFFSET			16
 124#define SPI_DLYBS_SIZE				8
 125#define SPI_DLYBCT_OFFSET			24
 126#define SPI_DLYBCT_SIZE				8
 127
 128/* Bitfields in RCR */
 129#define SPI_RXCTR_OFFSET			0
 130#define SPI_RXCTR_SIZE				16
 131
 132/* Bitfields in TCR */
 133#define SPI_TXCTR_OFFSET			0
 134#define SPI_TXCTR_SIZE				16
 135
 136/* Bitfields in RNCR */
 137#define SPI_RXNCR_OFFSET			0
 138#define SPI_RXNCR_SIZE				16
 139
 140/* Bitfields in TNCR */
 141#define SPI_TXNCR_OFFSET			0
 142#define SPI_TXNCR_SIZE				16
 143
 144/* Bitfields in PTCR */
 145#define SPI_RXTEN_OFFSET			0
 146#define SPI_RXTEN_SIZE				1
 147#define SPI_RXTDIS_OFFSET			1
 148#define SPI_RXTDIS_SIZE				1
 149#define SPI_TXTEN_OFFSET			8
 150#define SPI_TXTEN_SIZE				1
 151#define SPI_TXTDIS_OFFSET			9
 152#define SPI_TXTDIS_SIZE				1
 153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154/* Constants for BITS */
 155#define SPI_BITS_8_BPT				0
 156#define SPI_BITS_9_BPT				1
 157#define SPI_BITS_10_BPT				2
 158#define SPI_BITS_11_BPT				3
 159#define SPI_BITS_12_BPT				4
 160#define SPI_BITS_13_BPT				5
 161#define SPI_BITS_14_BPT				6
 162#define SPI_BITS_15_BPT				7
 163#define SPI_BITS_16_BPT				8
 
 
 
 164
 165/* Bit manipulation macros */
 166#define SPI_BIT(name) \
 167	(1 << SPI_##name##_OFFSET)
 168#define SPI_BF(name,value) \
 169	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 170#define SPI_BFEXT(name,value) \
 171	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 172#define SPI_BFINS(name,value,old) \
 173	( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 174	  | SPI_BF(name,value))
 175
 176/* Register access macros */
 177#define spi_readl(port,reg) \
 
 178	__raw_readl((port)->regs + SPI_##reg)
 179#define spi_writel(port,reg,value) \
 180	__raw_writel((value), (port)->regs + SPI_##reg)
 181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182
 183/*
 184 * The core SPI transfer engine just talks to a register bank to set up
 185 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 186 * framework provides the base clock, subdivided for each spi_device.
 187 */
 188struct atmel_spi {
 189	spinlock_t		lock;
 
 190
 
 191	void __iomem		*regs;
 192	int			irq;
 193	struct clk		*clk;
 194	struct platform_device	*pdev;
 195	struct spi_device	*stay;
 196
 197	u8			stopping;
 198	struct list_head	queue;
 199	struct spi_transfer	*current_transfer;
 200	unsigned long		current_remaining_bytes;
 201	struct spi_transfer	*next_transfer;
 202	unsigned long		next_remaining_bytes;
 
 
 
 
 
 
 
 
 
 
 
 203
 204	void			*buffer;
 205	dma_addr_t		buffer_dma;
 
 
 206};
 207
 208/* Controller-specific per-slave state */
 209struct atmel_spi_device {
 210	unsigned int		npcs_pin;
 211	u32			csr;
 212};
 213
 214#define BUFFER_SIZE		PAGE_SIZE
 215#define INVALID_DMA_ADDRESS	0xffffffff
 216
 217/*
 218 * Version 2 of the SPI controller has
 219 *  - CR.LASTXFER
 220 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 221 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 222 *  - SPI_CSRx.CSAAT
 223 *  - SPI_CSRx.SBCR allows faster clocking
 224 *
 225 * We can determine the controller version by reading the VERSION
 226 * register, but I haven't checked that it exists on all chips, and
 227 * this is cheaper anyway.
 228 */
 229static bool atmel_spi_is_v2(void)
 230{
 231	return !cpu_is_at91rm9200();
 232}
 233
 234/*
 235 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 236 * they assume that spi slave device state will not change on deselect, so
 237 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 238 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 239 * controllers have CSAAT and friends.
 240 *
 241 * Since the CSAAT functionality is a bit weird on newer controllers as
 242 * well, we use GPIO to control nCSx pins on all controllers, updating
 243 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 244 * support active-high chipselects despite the controller's belief that
 245 * only active-low devices/systems exists.
 246 *
 247 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 248 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 249 * Master on Chip Select 0.")  No workaround exists for that ... so for
 250 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 251 * and (c) will trigger that first erratum in some cases.
 252 *
 253 * TODO: Test if the atmel_spi_is_v2() branch below works on
 254 * AT91RM9200 if we use some other register than CSR0. However, don't
 255 * do this unconditionally since AP7000 has an errata where the BITS
 256 * field in CSR0 overrides all other CSRs.
 257 */
 258
 259static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 260{
 261	struct atmel_spi_device *asd = spi->controller_state;
 262	unsigned active = spi->mode & SPI_CS_HIGH;
 263	u32 mr;
 264
 265	if (atmel_spi_is_v2()) {
 266		/*
 267		 * Always use CSR0. This ensures that the clock
 268		 * switches to the correct idle polarity before we
 269		 * toggle the CS.
 270		 */
 271		spi_writel(as, CSR0, asd->csr);
 272		spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
 273				| SPI_BIT(MSTR));
 
 
 
 
 
 
 
 
 
 
 
 274		mr = spi_readl(as, MR);
 275		gpio_set_value(asd->npcs_pin, active);
 
 276	} else {
 277		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 278		int i;
 279		u32 csr;
 280
 281		/* Make sure clock polarity is correct */
 282		for (i = 0; i < spi->master->num_chipselect; i++) {
 283			csr = spi_readl(as, CSR0 + 4 * i);
 284			if ((csr ^ cpol) & SPI_BIT(CPOL))
 285				spi_writel(as, CSR0 + 4 * i,
 286						csr ^ SPI_BIT(CPOL));
 287		}
 288
 289		mr = spi_readl(as, MR);
 290		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 291		if (spi->chip_select != 0)
 292			gpio_set_value(asd->npcs_pin, active);
 293		spi_writel(as, MR, mr);
 294	}
 295
 296	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 297			asd->npcs_pin, active ? " (high)" : "",
 298			mr);
 299}
 300
 301static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 302{
 303	struct atmel_spi_device *asd = spi->controller_state;
 304	unsigned active = spi->mode & SPI_CS_HIGH;
 305	u32 mr;
 306
 307	/* only deactivate *this* device; sometimes transfers to
 308	 * another device may be active when this routine is called.
 309	 */
 310	mr = spi_readl(as, MR);
 311	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 312		mr = SPI_BFINS(PCS, 0xf, mr);
 313		spi_writel(as, MR, mr);
 314	}
 315
 316	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 317			asd->npcs_pin, active ? " (low)" : "",
 318			mr);
 319
 320	if (atmel_spi_is_v2() || spi->chip_select != 0)
 
 
 321		gpio_set_value(asd->npcs_pin, !active);
 322}
 323
 324static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
 325					struct spi_transfer *xfer)
 326{
 327	return msg->transfers.prev == &xfer->transfer_list;
 328}
 329
 330static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
 331{
 332	return xfer->delay_usecs == 0 && !xfer->cs_change;
 333}
 334
 335static void atmel_spi_next_xfer_data(struct spi_master *master,
 336				struct spi_transfer *xfer,
 337				dma_addr_t *tx_dma,
 338				dma_addr_t *rx_dma,
 339				u32 *plen)
 340{
 341	struct atmel_spi	*as = spi_master_get_devdata(master);
 342	u32			len = *plen;
 343
 344	/* use scratch buffer only when rx or tx data is unspecified */
 345	if (xfer->rx_buf)
 346		*rx_dma = xfer->rx_dma + xfer->len - *plen;
 347	else {
 348		*rx_dma = as->buffer_dma;
 349		if (len > BUFFER_SIZE)
 350			len = BUFFER_SIZE;
 351	}
 352	if (xfer->tx_buf)
 353		*tx_dma = xfer->tx_dma + xfer->len - *plen;
 354	else {
 355		*tx_dma = as->buffer_dma;
 356		if (len > BUFFER_SIZE)
 357			len = BUFFER_SIZE;
 358		memset(as->buffer, 0, len);
 359		dma_sync_single_for_device(&as->pdev->dev,
 360				as->buffer_dma, len, DMA_TO_DEVICE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361	}
 362
 363	*plen = len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364}
 365
 366/*
 367 * Submit next transfer for DMA.
 368 * lock is held, spi irq is blocked
 369 */
 370static void atmel_spi_next_xfer(struct spi_master *master,
 371				struct spi_message *msg)
 372{
 373	struct atmel_spi	*as = spi_master_get_devdata(master);
 374	struct spi_transfer	*xfer;
 375	u32			len, remaining;
 376	u32			ieval;
 377	dma_addr_t		tx_dma, rx_dma;
 378
 379	if (!as->current_transfer)
 380		xfer = list_entry(msg->transfers.next,
 381				struct spi_transfer, transfer_list);
 382	else if (!as->next_transfer)
 383		xfer = list_entry(as->current_transfer->transfer_list.next,
 384				struct spi_transfer, transfer_list);
 
 
 
 
 
 385	else
 386		xfer = NULL;
 387
 388	if (xfer) {
 389		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 
 
 390
 391		len = xfer->len;
 392		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 393		remaining = xfer->len - len;
 394
 395		spi_writel(as, RPR, rx_dma);
 396		spi_writel(as, TPR, tx_dma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397
 398		if (msg->spi->bits_per_word > 8)
 399			len >>= 1;
 400		spi_writel(as, RCR, len);
 401		spi_writel(as, TCR, len);
 402
 403		dev_dbg(&msg->spi->dev,
 404			"  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 405			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 406			xfer->rx_buf, xfer->rx_dma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407	} else {
 408		xfer = as->next_transfer;
 409		remaining = as->next_remaining_bytes;
 
 
 
 
 410	}
 
 
 411
 412	as->current_transfer = xfer;
 413	as->current_remaining_bytes = remaining;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414
 415	if (remaining > 0)
 416		len = remaining;
 417	else if (!atmel_spi_xfer_is_last(msg, xfer)
 418			&& atmel_spi_xfer_can_be_chained(xfer)) {
 419		xfer = list_entry(xfer->transfer_list.next,
 420				struct spi_transfer, transfer_list);
 421		len = xfer->len;
 422	} else
 423		xfer = NULL;
 424
 425	as->next_transfer = xfer;
 
 
 
 426
 427	if (xfer) {
 428		u32	total;
 
 
 
 429
 430		total = len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 432		as->next_remaining_bytes = total - len;
 433
 434		spi_writel(as, RNPR, rx_dma);
 435		spi_writel(as, TNPR, tx_dma);
 436
 437		if (msg->spi->bits_per_word > 8)
 438			len >>= 1;
 439		spi_writel(as, RNCR, len);
 440		spi_writel(as, TNCR, len);
 441
 442		dev_dbg(&msg->spi->dev,
 443			"  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 444			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 445			xfer->rx_buf, xfer->rx_dma);
 446		ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 447	} else {
 448		spi_writel(as, RNCR, 0);
 449		spi_writel(as, TNCR, 0);
 450		ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 451	}
 452
 453	/* REVISIT: We're waiting for ENDRX before we start the next
 454	 * transfer because we need to handle some difficult timing
 455	 * issues otherwise. If we wait for ENDTX in one transfer and
 456	 * then starts waiting for ENDRX in the next, it's difficult
 457	 * to tell the difference between the ENDRX interrupt we're
 458	 * actually waiting for and the ENDRX interrupt of the
 459	 * previous transfer.
 460	 *
 461	 * It should be doable, though. Just not now...
 462	 */
 463	spi_writel(as, IER, ieval);
 464	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 465}
 466
 467static void atmel_spi_next_message(struct spi_master *master)
 468{
 469	struct atmel_spi	*as = spi_master_get_devdata(master);
 470	struct spi_message	*msg;
 471	struct spi_device	*spi;
 472
 473	BUG_ON(as->current_transfer);
 474
 475	msg = list_entry(as->queue.next, struct spi_message, queue);
 476	spi = msg->spi;
 477
 478	dev_dbg(master->dev.parent, "start message %p for %s\n",
 479			msg, dev_name(&spi->dev));
 480
 481	/* select chip if it's not still active */
 482	if (as->stay) {
 483		if (as->stay != spi) {
 484			cs_deactivate(as, as->stay);
 485			cs_activate(as, spi);
 486		}
 487		as->stay = NULL;
 488	} else
 489		cs_activate(as, spi);
 490
 491	atmel_spi_next_xfer(master, msg);
 492}
 493
 494/*
 495 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 496 *  - The buffer is either valid for CPU access, else NULL
 497 *  - If the buffer is valid, so is its DMA address
 498 *
 499 * This driver manages the dma address unless message->is_dma_mapped.
 500 */
 501static int
 502atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 503{
 504	struct device	*dev = &as->pdev->dev;
 505
 506	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 507	if (xfer->tx_buf) {
 508		/* tx_buf is a const void* where we need a void * for the dma
 509		 * mapping */
 510		void *nonconst_tx = (void *)xfer->tx_buf;
 511
 512		xfer->tx_dma = dma_map_single(dev,
 513				nonconst_tx, xfer->len,
 514				DMA_TO_DEVICE);
 515		if (dma_mapping_error(dev, xfer->tx_dma))
 516			return -ENOMEM;
 517	}
 518	if (xfer->rx_buf) {
 519		xfer->rx_dma = dma_map_single(dev,
 520				xfer->rx_buf, xfer->len,
 521				DMA_FROM_DEVICE);
 522		if (dma_mapping_error(dev, xfer->rx_dma)) {
 523			if (xfer->tx_buf)
 524				dma_unmap_single(dev,
 525						xfer->tx_dma, xfer->len,
 526						DMA_TO_DEVICE);
 527			return -ENOMEM;
 528		}
 529	}
 530	return 0;
 531}
 532
 533static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 534				     struct spi_transfer *xfer)
 535{
 536	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 537		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 538				 xfer->len, DMA_TO_DEVICE);
 539	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 540		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 541				 xfer->len, DMA_FROM_DEVICE);
 542}
 543
 544static void
 545atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
 546		struct spi_message *msg, int status, int stay)
 547{
 548	if (!stay || status < 0)
 549		cs_deactivate(as, msg->spi);
 550	else
 551		as->stay = msg->spi;
 552
 553	list_del(&msg->queue);
 554	msg->status = status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	dev_dbg(master->dev.parent,
 557		"xfer complete: %u bytes transferred\n",
 558		msg->actual_length);
 
 
 
 
 
 
 
 
 
 
 
 559
 560	spin_unlock(&as->lock);
 561	msg->complete(msg->context);
 562	spin_lock(&as->lock);
 
 563
 564	as->current_transfer = NULL;
 565	as->next_transfer = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567	/* continue if needed */
 568	if (list_empty(&as->queue) || as->stopping)
 569		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 
 
 
 
 
 
 
 570	else
 571		atmel_spi_next_message(master);
 572}
 573
 
 
 
 
 
 574static irqreturn_t
 575atmel_spi_interrupt(int irq, void *dev_id)
 576{
 577	struct spi_master	*master = dev_id;
 578	struct atmel_spi	*as = spi_master_get_devdata(master);
 579	struct spi_message	*msg;
 580	struct spi_transfer	*xfer;
 581	u32			status, pending, imr;
 
 582	int			ret = IRQ_NONE;
 583
 584	spin_lock(&as->lock);
 585
 586	xfer = as->current_transfer;
 587	msg = list_entry(as->queue.next, struct spi_message, queue);
 588
 589	imr = spi_readl(as, IMR);
 590	status = spi_readl(as, SR);
 591	pending = status & imr;
 592
 593	if (pending & SPI_BIT(OVRES)) {
 594		int timeout;
 595
 596		ret = IRQ_HANDLED;
 597
 598		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
 599				     | SPI_BIT(OVRES)));
 600
 601		/*
 602		 * When we get an overrun, we disregard the current
 603		 * transfer. Data will not be copied back from any
 604		 * bounce buffer and msg->actual_len will not be
 605		 * updated with the last xfer.
 606		 *
 607		 * We will also not process any remaning transfers in
 608		 * the message.
 609		 *
 610		 * First, stop the transfer and unmap the DMA buffers.
 611		 */
 612		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 613		if (!msg->is_dma_mapped)
 614			atmel_spi_dma_unmap_xfer(master, xfer);
 615
 616		/* REVISIT: udelay in irq is unfriendly */
 617		if (xfer->delay_usecs)
 618			udelay(xfer->delay_usecs);
 619
 620		dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
 621			 spi_readl(as, TCR), spi_readl(as, RCR));
 622
 623		/*
 624		 * Clean up DMA registers and make sure the data
 625		 * registers are empty.
 626		 */
 627		spi_writel(as, RNCR, 0);
 628		spi_writel(as, TNCR, 0);
 629		spi_writel(as, RCR, 0);
 630		spi_writel(as, TCR, 0);
 631		for (timeout = 1000; timeout; timeout--)
 632			if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
 633				break;
 634		if (!timeout)
 635			dev_warn(master->dev.parent,
 636				 "timeout waiting for TXEMPTY");
 637		while (spi_readl(as, SR) & SPI_BIT(RDRF))
 638			spi_readl(as, RDR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639
 640		/* Clear any overrun happening while cleaning up */
 641		spi_readl(as, SR);
 642
 643		atmel_spi_msg_done(master, as, msg, -EIO, 0);
 
 
 
 644	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
 645		ret = IRQ_HANDLED;
 646
 647		spi_writel(as, IDR, pending);
 648
 649		if (as->current_remaining_bytes == 0) {
 650			msg->actual_length += xfer->len;
 651
 652			if (!msg->is_dma_mapped)
 653				atmel_spi_dma_unmap_xfer(master, xfer);
 654
 655			/* REVISIT: udelay in irq is unfriendly */
 656			if (xfer->delay_usecs)
 657				udelay(xfer->delay_usecs);
 658
 659			if (atmel_spi_xfer_is_last(msg, xfer)) {
 660				/* report completed message */
 661				atmel_spi_msg_done(master, as, msg, 0,
 662						xfer->cs_change);
 663			} else {
 664				if (xfer->cs_change) {
 665					cs_deactivate(as, msg->spi);
 666					udelay(1);
 667					cs_activate(as, msg->spi);
 668				}
 669
 670				/*
 671				 * Not done yet. Submit the next transfer.
 672				 *
 673				 * FIXME handle protocol options for xfer
 674				 */
 675				atmel_spi_next_xfer(master, msg);
 676			}
 677		} else {
 678			/*
 679			 * Keep going, we still have data to send in
 680			 * the current transfer.
 681			 */
 682			atmel_spi_next_xfer(master, msg);
 683		}
 684	}
 685
 686	spin_unlock(&as->lock);
 687
 688	return ret;
 689}
 690
 691static int atmel_spi_setup(struct spi_device *spi)
 692{
 693	struct atmel_spi	*as;
 694	struct atmel_spi_device	*asd;
 695	u32			scbr, csr;
 696	unsigned int		bits = spi->bits_per_word;
 697	unsigned long		bus_hz;
 698	unsigned int		npcs_pin;
 699	int			ret;
 700
 701	as = spi_master_get_devdata(spi->master);
 702
 703	if (as->stopping)
 704		return -ESHUTDOWN;
 705
 706	if (spi->chip_select > spi->master->num_chipselect) {
 707		dev_dbg(&spi->dev,
 708				"setup: invalid chipselect %u (%u defined)\n",
 709				spi->chip_select, spi->master->num_chipselect);
 710		return -EINVAL;
 711	}
 712
 713	if (bits < 8 || bits > 16) {
 714		dev_dbg(&spi->dev,
 715				"setup: invalid bits_per_word %u (8 to 16)\n",
 716				bits);
 717		return -EINVAL;
 718	}
 719
 720	/* see notes above re chipselect */
 721	if (!atmel_spi_is_v2()
 722			&& spi->chip_select == 0
 723			&& (spi->mode & SPI_CS_HIGH)) {
 724		dev_dbg(&spi->dev, "setup: can't be active-high\n");
 725		return -EINVAL;
 726	}
 727
 728	/* v1 chips start out at half the peripheral bus speed. */
 729	bus_hz = clk_get_rate(as->clk);
 730	if (!atmel_spi_is_v2())
 731		bus_hz /= 2;
 732
 733	if (spi->max_speed_hz) {
 734		/*
 735		 * Calculate the lowest divider that satisfies the
 736		 * constraint, assuming div32/fdiv/mbz == 0.
 737		 */
 738		scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
 739
 740		/*
 741		 * If the resulting divider doesn't fit into the
 742		 * register bitfield, we can't satisfy the constraint.
 743		 */
 744		if (scbr >= (1 << SPI_SCBR_SIZE)) {
 745			dev_dbg(&spi->dev,
 746				"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 747				spi->max_speed_hz, scbr, bus_hz/255);
 748			return -EINVAL;
 749		}
 750	} else
 751		/* speed zero means "as slow as possible" */
 752		scbr = 0xff;
 753
 754	csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
 755	if (spi->mode & SPI_CPOL)
 756		csr |= SPI_BIT(CPOL);
 757	if (!(spi->mode & SPI_CPHA))
 758		csr |= SPI_BIT(NCPHA);
 
 
 759
 760	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
 761	 *
 762	 * DLYBCT would add delays between words, slowing down transfers.
 763	 * It could potentially be useful to cope with DMA bottlenecks, but
 764	 * in those cases it's probably best to just use a lower bitrate.
 765	 */
 766	csr |= SPI_BF(DLYBS, 0);
 767	csr |= SPI_BF(DLYBCT, 0);
 768
 769	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
 770	npcs_pin = (unsigned int)spi->controller_data;
 
 
 
 
 
 
 771	asd = spi->controller_state;
 772	if (!asd) {
 773		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
 774		if (!asd)
 775			return -ENOMEM;
 776
 777		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
 778		if (ret) {
 779			kfree(asd);
 780			return ret;
 781		}
 782
 783		asd->npcs_pin = npcs_pin;
 784		spi->controller_state = asd;
 785		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
 786	} else {
 787		unsigned long		flags;
 788
 789		spin_lock_irqsave(&as->lock, flags);
 790		if (as->stay == spi)
 791			as->stay = NULL;
 792		cs_deactivate(as, spi);
 793		spin_unlock_irqrestore(&as->lock, flags);
 794	}
 795
 796	asd->csr = csr;
 797
 798	dev_dbg(&spi->dev,
 799		"setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
 800		bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
 801
 802	if (!atmel_spi_is_v2())
 803		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 804
 805	return 0;
 806}
 807
 808static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
 
 
 809{
 810	struct atmel_spi	*as;
 811	struct spi_transfer	*xfer;
 812	unsigned long		flags;
 813	struct device		*controller = spi->master->dev.parent;
 814	u8			bits;
 
 815	struct atmel_spi_device	*asd;
 
 
 
 816
 817	as = spi_master_get_devdata(spi->master);
 818
 819	dev_dbg(controller, "new message %p submitted for %s\n",
 820			msg, dev_name(&spi->dev));
 821
 822	if (unlikely(list_empty(&msg->transfers)))
 
 823		return -EINVAL;
 
 824
 825	if (as->stopping)
 826		return -ESHUTDOWN;
 
 
 
 
 
 827
 828	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 829		if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
 830			dev_dbg(&spi->dev, "missing rx or tx buf\n");
 831			return -EINVAL;
 832		}
 
 
 
 
 833
 834		if (xfer->bits_per_word) {
 835			asd = spi->controller_state;
 836			bits = (asd->csr >> 4) & 0xf;
 837			if (bits != xfer->bits_per_word - 8) {
 838				dev_dbg(&spi->dev, "you can't yet change "
 839					 "bits_per_word in transfers\n");
 840				return -ENOPROTOOPT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841			}
 
 
 842		}
 843
 844		/* FIXME implement these protocol options!! */
 845		if (xfer->speed_hz) {
 846			dev_dbg(&spi->dev, "no protocol options yet\n");
 847			return -ENOPROTOOPT;
 
 
 
 
 848		}
 849
 850		/*
 851		 * DMA map early, for performance (empties dcache ASAP) and
 852		 * better fault reporting.  This is a DMA-only driver.
 853		 *
 854		 * NOTE that if dma_unmap_single() ever starts to do work on
 855		 * platforms supported by this driver, we would need to clean
 856		 * up mappings for previously-mapped transfers.
 857		 */
 858		if (!msg->is_dma_mapped) {
 859			if (atmel_spi_dma_map_xfer(as, xfer) < 0)
 860				return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861		}
 862	}
 863
 864#ifdef VERBOSE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 866		dev_dbg(controller,
 867			"  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 
 
 
 
 
 
 
 
 
 868			xfer, xfer->len,
 869			xfer->tx_buf, xfer->tx_dma,
 870			xfer->rx_buf, xfer->rx_dma);
 871	}
 872#endif
 873
 874	msg->status = -EINPROGRESS;
 875	msg->actual_length = 0;
 
 876
 877	spin_lock_irqsave(&as->lock, flags);
 878	list_add_tail(&msg->queue, &as->queue);
 879	if (!as->current_transfer)
 880		atmel_spi_next_message(spi->master);
 881	spin_unlock_irqrestore(&as->lock, flags);
 882
 883	return 0;
 
 
 
 884}
 885
 886static void atmel_spi_cleanup(struct spi_device *spi)
 887{
 888	struct atmel_spi	*as = spi_master_get_devdata(spi->master);
 889	struct atmel_spi_device	*asd = spi->controller_state;
 890	unsigned		gpio = (unsigned) spi->controller_data;
 891	unsigned long		flags;
 892
 893	if (!asd)
 894		return;
 895
 896	spin_lock_irqsave(&as->lock, flags);
 897	if (as->stay == spi) {
 898		as->stay = NULL;
 899		cs_deactivate(as, spi);
 900	}
 901	spin_unlock_irqrestore(&as->lock, flags);
 902
 903	spi->controller_state = NULL;
 904	gpio_free(gpio);
 905	kfree(asd);
 906}
 907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908/*-------------------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909
 910static int __init atmel_spi_probe(struct platform_device *pdev)
 911{
 912	struct resource		*regs;
 913	int			irq;
 914	struct clk		*clk;
 915	int			ret;
 916	struct spi_master	*master;
 917	struct atmel_spi	*as;
 918
 
 
 
 919	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 920	if (!regs)
 921		return -ENXIO;
 922
 923	irq = platform_get_irq(pdev, 0);
 924	if (irq < 0)
 925		return irq;
 926
 927	clk = clk_get(&pdev->dev, "spi_clk");
 928	if (IS_ERR(clk))
 929		return PTR_ERR(clk);
 930
 931	/* setup spi core then atmel-specific driver state */
 932	ret = -ENOMEM;
 933	master = spi_alloc_master(&pdev->dev, sizeof *as);
 934	if (!master)
 935		goto out_free;
 936
 937	/* the spi->mode bits understood by this driver: */
 938	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
 939
 
 940	master->bus_num = pdev->id;
 941	master->num_chipselect = 4;
 942	master->setup = atmel_spi_setup;
 943	master->transfer = atmel_spi_transfer;
 
 944	master->cleanup = atmel_spi_cleanup;
 
 
 
 945	platform_set_drvdata(pdev, master);
 946
 947	as = spi_master_get_devdata(master);
 948
 949	/*
 950	 * Scratch buffer is used for throwaway rx and tx data.
 951	 * It's coherent to minimize dcache pollution.
 952	 */
 953	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
 954					&as->buffer_dma, GFP_KERNEL);
 955	if (!as->buffer)
 956		goto out_free;
 957
 958	spin_lock_init(&as->lock);
 959	INIT_LIST_HEAD(&as->queue);
 960	as->pdev = pdev;
 961	as->regs = ioremap(regs->start, resource_size(regs));
 962	if (!as->regs)
 963		goto out_free_buffer;
 
 
 
 964	as->irq = irq;
 965	as->clk = clk;
 966
 967	ret = request_irq(irq, atmel_spi_interrupt, 0,
 968			dev_name(&pdev->dev), master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969	if (ret)
 970		goto out_unmap_regs;
 971
 972	/* Initialize the hardware */
 973	clk_enable(clk);
 974	spi_writel(as, CR, SPI_BIT(SWRST));
 975	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 976	spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
 977	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 978	spi_writel(as, CR, SPI_BIT(SPIEN));
 979
 980	/* go! */
 981	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
 982			(unsigned long)regs->start, irq);
 983
 984	ret = spi_register_master(master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 985	if (ret)
 986		goto out_reset_hw;
 
 
 
 
 
 987
 988	return 0;
 989
 990out_reset_hw:
 
 
 
 
 
 
 991	spi_writel(as, CR, SPI_BIT(SWRST));
 992	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 993	clk_disable(clk);
 994	free_irq(irq, master);
 995out_unmap_regs:
 996	iounmap(as->regs);
 997out_free_buffer:
 998	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
 999			as->buffer_dma);
1000out_free:
1001	clk_put(clk);
1002	spi_master_put(master);
1003	return ret;
1004}
1005
1006static int __exit atmel_spi_remove(struct platform_device *pdev)
1007{
1008	struct spi_master	*master = platform_get_drvdata(pdev);
1009	struct atmel_spi	*as = spi_master_get_devdata(master);
1010	struct spi_message	*msg;
 
1011
1012	/* reset the hardware and block queue progress */
 
 
 
 
 
 
 
 
 
 
 
 
 
1013	spin_lock_irq(&as->lock);
1014	as->stopping = 1;
1015	spi_writel(as, CR, SPI_BIT(SWRST));
1016	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1017	spi_readl(as, SR);
1018	spin_unlock_irq(&as->lock);
1019
1020	/* Terminate remaining queued transfers */
1021	list_for_each_entry(msg, &as->queue, queue) {
1022		/* REVISIT unmapping the dma is a NOP on ARM and AVR32
1023		 * but we shouldn't depend on that...
1024		 */
1025		msg->status = -ESHUTDOWN;
1026		msg->complete(msg->context);
1027	}
1028
1029	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1030			as->buffer_dma);
1031
1032	clk_disable(as->clk);
1033	clk_put(as->clk);
1034	free_irq(as->irq, master);
1035	iounmap(as->regs);
 
1036
1037	spi_unregister_master(master);
 
1038
1039	return 0;
1040}
1041
1042#ifdef	CONFIG_PM
 
 
 
 
 
 
 
 
1043
1044static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
 
1045{
1046	struct spi_master	*master = platform_get_drvdata(pdev);
1047	struct atmel_spi	*as = spi_master_get_devdata(master);
 
 
 
 
 
 
 
 
 
 
1048
1049	clk_disable(as->clk);
1050	return 0;
1051}
1052
1053static int atmel_spi_resume(struct platform_device *pdev)
1054{
1055	struct spi_master	*master = platform_get_drvdata(pdev);
1056	struct atmel_spi	*as = spi_master_get_devdata(master);
 
1057
1058	clk_enable(as->clk);
1059	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060}
 
1061
 
 
 
 
 
 
1062#else
1063#define	atmel_spi_suspend	NULL
1064#define	atmel_spi_resume	NULL
1065#endif
1066
 
 
 
 
 
 
 
 
1067
1068static struct platform_driver atmel_spi_driver = {
1069	.driver		= {
1070		.name	= "atmel_spi",
1071		.owner	= THIS_MODULE,
 
1072	},
1073	.suspend	= atmel_spi_suspend,
1074	.resume		= atmel_spi_resume,
1075	.remove		= __exit_p(atmel_spi_remove),
1076};
1077
1078static int __init atmel_spi_init(void)
1079{
1080	return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe);
1081}
1082module_init(atmel_spi_init);
1083
1084static void __exit atmel_spi_exit(void)
1085{
1086	platform_driver_unregister(&atmel_spi_driver);
1087}
1088module_exit(atmel_spi_exit);
1089
1090MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1091MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1092MODULE_LICENSE("GPL");
1093MODULE_ALIAS("platform:atmel_spi");
v4.17
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
 
  12#include <linux/clk.h>
  13#include <linux/module.h>
  14#include <linux/platform_device.h>
  15#include <linux/delay.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/dmaengine.h>
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
  22#include <linux/platform_data/dma-atmel.h>
  23#include <linux/of.h>
  24
  25#include <linux/io.h>
  26#include <linux/gpio.h>
  27#include <linux/of_gpio.h>
  28#include <linux/pinctrl/consumer.h>
  29#include <linux/pm_runtime.h>
  30
  31/* SPI register offsets */
  32#define SPI_CR					0x0000
  33#define SPI_MR					0x0004
  34#define SPI_RDR					0x0008
  35#define SPI_TDR					0x000c
  36#define SPI_SR					0x0010
  37#define SPI_IER					0x0014
  38#define SPI_IDR					0x0018
  39#define SPI_IMR					0x001c
  40#define SPI_CSR0				0x0030
  41#define SPI_CSR1				0x0034
  42#define SPI_CSR2				0x0038
  43#define SPI_CSR3				0x003c
  44#define SPI_FMR					0x0040
  45#define SPI_FLR					0x0044
  46#define SPI_VERSION				0x00fc
  47#define SPI_RPR					0x0100
  48#define SPI_RCR					0x0104
  49#define SPI_TPR					0x0108
  50#define SPI_TCR					0x010c
  51#define SPI_RNPR				0x0110
  52#define SPI_RNCR				0x0114
  53#define SPI_TNPR				0x0118
  54#define SPI_TNCR				0x011c
  55#define SPI_PTCR				0x0120
  56#define SPI_PTSR				0x0124
  57
  58/* Bitfields in CR */
  59#define SPI_SPIEN_OFFSET			0
  60#define SPI_SPIEN_SIZE				1
  61#define SPI_SPIDIS_OFFSET			1
  62#define SPI_SPIDIS_SIZE				1
  63#define SPI_SWRST_OFFSET			7
  64#define SPI_SWRST_SIZE				1
  65#define SPI_LASTXFER_OFFSET			24
  66#define SPI_LASTXFER_SIZE			1
  67#define SPI_TXFCLR_OFFSET			16
  68#define SPI_TXFCLR_SIZE				1
  69#define SPI_RXFCLR_OFFSET			17
  70#define SPI_RXFCLR_SIZE				1
  71#define SPI_FIFOEN_OFFSET			30
  72#define SPI_FIFOEN_SIZE				1
  73#define SPI_FIFODIS_OFFSET			31
  74#define SPI_FIFODIS_SIZE			1
  75
  76/* Bitfields in MR */
  77#define SPI_MSTR_OFFSET				0
  78#define SPI_MSTR_SIZE				1
  79#define SPI_PS_OFFSET				1
  80#define SPI_PS_SIZE				1
  81#define SPI_PCSDEC_OFFSET			2
  82#define SPI_PCSDEC_SIZE				1
  83#define SPI_FDIV_OFFSET				3
  84#define SPI_FDIV_SIZE				1
  85#define SPI_MODFDIS_OFFSET			4
  86#define SPI_MODFDIS_SIZE			1
  87#define SPI_WDRBT_OFFSET			5
  88#define SPI_WDRBT_SIZE				1
  89#define SPI_LLB_OFFSET				7
  90#define SPI_LLB_SIZE				1
  91#define SPI_PCS_OFFSET				16
  92#define SPI_PCS_SIZE				4
  93#define SPI_DLYBCS_OFFSET			24
  94#define SPI_DLYBCS_SIZE				8
  95
  96/* Bitfields in RDR */
  97#define SPI_RD_OFFSET				0
  98#define SPI_RD_SIZE				16
  99
 100/* Bitfields in TDR */
 101#define SPI_TD_OFFSET				0
 102#define SPI_TD_SIZE				16
 103
 104/* Bitfields in SR */
 105#define SPI_RDRF_OFFSET				0
 106#define SPI_RDRF_SIZE				1
 107#define SPI_TDRE_OFFSET				1
 108#define SPI_TDRE_SIZE				1
 109#define SPI_MODF_OFFSET				2
 110#define SPI_MODF_SIZE				1
 111#define SPI_OVRES_OFFSET			3
 112#define SPI_OVRES_SIZE				1
 113#define SPI_ENDRX_OFFSET			4
 114#define SPI_ENDRX_SIZE				1
 115#define SPI_ENDTX_OFFSET			5
 116#define SPI_ENDTX_SIZE				1
 117#define SPI_RXBUFF_OFFSET			6
 118#define SPI_RXBUFF_SIZE				1
 119#define SPI_TXBUFE_OFFSET			7
 120#define SPI_TXBUFE_SIZE				1
 121#define SPI_NSSR_OFFSET				8
 122#define SPI_NSSR_SIZE				1
 123#define SPI_TXEMPTY_OFFSET			9
 124#define SPI_TXEMPTY_SIZE			1
 125#define SPI_SPIENS_OFFSET			16
 126#define SPI_SPIENS_SIZE				1
 127#define SPI_TXFEF_OFFSET			24
 128#define SPI_TXFEF_SIZE				1
 129#define SPI_TXFFF_OFFSET			25
 130#define SPI_TXFFF_SIZE				1
 131#define SPI_TXFTHF_OFFSET			26
 132#define SPI_TXFTHF_SIZE				1
 133#define SPI_RXFEF_OFFSET			27
 134#define SPI_RXFEF_SIZE				1
 135#define SPI_RXFFF_OFFSET			28
 136#define SPI_RXFFF_SIZE				1
 137#define SPI_RXFTHF_OFFSET			29
 138#define SPI_RXFTHF_SIZE				1
 139#define SPI_TXFPTEF_OFFSET			30
 140#define SPI_TXFPTEF_SIZE			1
 141#define SPI_RXFPTEF_OFFSET			31
 142#define SPI_RXFPTEF_SIZE			1
 143
 144/* Bitfields in CSR0 */
 145#define SPI_CPOL_OFFSET				0
 146#define SPI_CPOL_SIZE				1
 147#define SPI_NCPHA_OFFSET			1
 148#define SPI_NCPHA_SIZE				1
 149#define SPI_CSAAT_OFFSET			3
 150#define SPI_CSAAT_SIZE				1
 151#define SPI_BITS_OFFSET				4
 152#define SPI_BITS_SIZE				4
 153#define SPI_SCBR_OFFSET				8
 154#define SPI_SCBR_SIZE				8
 155#define SPI_DLYBS_OFFSET			16
 156#define SPI_DLYBS_SIZE				8
 157#define SPI_DLYBCT_OFFSET			24
 158#define SPI_DLYBCT_SIZE				8
 159
 160/* Bitfields in RCR */
 161#define SPI_RXCTR_OFFSET			0
 162#define SPI_RXCTR_SIZE				16
 163
 164/* Bitfields in TCR */
 165#define SPI_TXCTR_OFFSET			0
 166#define SPI_TXCTR_SIZE				16
 167
 168/* Bitfields in RNCR */
 169#define SPI_RXNCR_OFFSET			0
 170#define SPI_RXNCR_SIZE				16
 171
 172/* Bitfields in TNCR */
 173#define SPI_TXNCR_OFFSET			0
 174#define SPI_TXNCR_SIZE				16
 175
 176/* Bitfields in PTCR */
 177#define SPI_RXTEN_OFFSET			0
 178#define SPI_RXTEN_SIZE				1
 179#define SPI_RXTDIS_OFFSET			1
 180#define SPI_RXTDIS_SIZE				1
 181#define SPI_TXTEN_OFFSET			8
 182#define SPI_TXTEN_SIZE				1
 183#define SPI_TXTDIS_OFFSET			9
 184#define SPI_TXTDIS_SIZE				1
 185
 186/* Bitfields in FMR */
 187#define SPI_TXRDYM_OFFSET			0
 188#define SPI_TXRDYM_SIZE				2
 189#define SPI_RXRDYM_OFFSET			4
 190#define SPI_RXRDYM_SIZE				2
 191#define SPI_TXFTHRES_OFFSET			16
 192#define SPI_TXFTHRES_SIZE			6
 193#define SPI_RXFTHRES_OFFSET			24
 194#define SPI_RXFTHRES_SIZE			6
 195
 196/* Bitfields in FLR */
 197#define SPI_TXFL_OFFSET				0
 198#define SPI_TXFL_SIZE				6
 199#define SPI_RXFL_OFFSET				16
 200#define SPI_RXFL_SIZE				6
 201
 202/* Constants for BITS */
 203#define SPI_BITS_8_BPT				0
 204#define SPI_BITS_9_BPT				1
 205#define SPI_BITS_10_BPT				2
 206#define SPI_BITS_11_BPT				3
 207#define SPI_BITS_12_BPT				4
 208#define SPI_BITS_13_BPT				5
 209#define SPI_BITS_14_BPT				6
 210#define SPI_BITS_15_BPT				7
 211#define SPI_BITS_16_BPT				8
 212#define SPI_ONE_DATA				0
 213#define SPI_TWO_DATA				1
 214#define SPI_FOUR_DATA				2
 215
 216/* Bit manipulation macros */
 217#define SPI_BIT(name) \
 218	(1 << SPI_##name##_OFFSET)
 219#define SPI_BF(name, value) \
 220	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 221#define SPI_BFEXT(name, value) \
 222	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 223#define SPI_BFINS(name, value, old) \
 224	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 225	  | SPI_BF(name, value))
 226
 227/* Register access macros */
 228#ifdef CONFIG_AVR32
 229#define spi_readl(port, reg) \
 230	__raw_readl((port)->regs + SPI_##reg)
 231#define spi_writel(port, reg, value) \
 232	__raw_writel((value), (port)->regs + SPI_##reg)
 233
 234#define spi_readw(port, reg) \
 235	__raw_readw((port)->regs + SPI_##reg)
 236#define spi_writew(port, reg, value) \
 237	__raw_writew((value), (port)->regs + SPI_##reg)
 238
 239#define spi_readb(port, reg) \
 240	__raw_readb((port)->regs + SPI_##reg)
 241#define spi_writeb(port, reg, value) \
 242	__raw_writeb((value), (port)->regs + SPI_##reg)
 243#else
 244#define spi_readl(port, reg) \
 245	readl_relaxed((port)->regs + SPI_##reg)
 246#define spi_writel(port, reg, value) \
 247	writel_relaxed((value), (port)->regs + SPI_##reg)
 248
 249#define spi_readw(port, reg) \
 250	readw_relaxed((port)->regs + SPI_##reg)
 251#define spi_writew(port, reg, value) \
 252	writew_relaxed((value), (port)->regs + SPI_##reg)
 253
 254#define spi_readb(port, reg) \
 255	readb_relaxed((port)->regs + SPI_##reg)
 256#define spi_writeb(port, reg, value) \
 257	writeb_relaxed((value), (port)->regs + SPI_##reg)
 258#endif
 259/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 260 * cache operations; better heuristics consider wordsize and bitrate.
 261 */
 262#define DMA_MIN_BYTES	16
 263
 264#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
 265
 266#define AUTOSUSPEND_TIMEOUT	2000
 267
 268struct atmel_spi_caps {
 269	bool	is_spi2;
 270	bool	has_wdrbt;
 271	bool	has_dma_support;
 272	bool	has_pdc_support;
 273};
 274
 275/*
 276 * The core SPI transfer engine just talks to a register bank to set up
 277 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 278 * framework provides the base clock, subdivided for each spi_device.
 279 */
 280struct atmel_spi {
 281	spinlock_t		lock;
 282	unsigned long		flags;
 283
 284	phys_addr_t		phybase;
 285	void __iomem		*regs;
 286	int			irq;
 287	struct clk		*clk;
 288	struct platform_device	*pdev;
 289	unsigned long		spi_clk;
 290
 
 
 291	struct spi_transfer	*current_transfer;
 292	int			current_remaining_bytes;
 293	int			done_status;
 294	dma_addr_t		dma_addr_rx_bbuf;
 295	dma_addr_t		dma_addr_tx_bbuf;
 296	void			*addr_rx_bbuf;
 297	void			*addr_tx_bbuf;
 298
 299	struct completion	xfer_completion;
 300
 301	struct atmel_spi_caps	caps;
 302
 303	bool			use_dma;
 304	bool			use_pdc;
 305	bool			use_cs_gpios;
 306
 307	bool			keep_cs;
 308	bool			cs_active;
 309
 310	u32			fifo_size;
 311};
 312
 313/* Controller-specific per-slave state */
 314struct atmel_spi_device {
 315	unsigned int		npcs_pin;
 316	u32			csr;
 317};
 318
 319#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
 320#define INVALID_DMA_ADDRESS	0xffffffff
 321
 322/*
 323 * Version 2 of the SPI controller has
 324 *  - CR.LASTXFER
 325 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 326 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 327 *  - SPI_CSRx.CSAAT
 328 *  - SPI_CSRx.SBCR allows faster clocking
 
 
 
 
 329 */
 330static bool atmel_spi_is_v2(struct atmel_spi *as)
 331{
 332	return as->caps.is_spi2;
 333}
 334
 335/*
 336 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 337 * they assume that spi slave device state will not change on deselect, so
 338 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 339 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 340 * controllers have CSAAT and friends.
 341 *
 342 * Since the CSAAT functionality is a bit weird on newer controllers as
 343 * well, we use GPIO to control nCSx pins on all controllers, updating
 344 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 345 * support active-high chipselects despite the controller's belief that
 346 * only active-low devices/systems exists.
 347 *
 348 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 349 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 350 * Master on Chip Select 0.")  No workaround exists for that ... so for
 351 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 352 * and (c) will trigger that first erratum in some cases.
 
 
 
 
 
 353 */
 354
 355static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 356{
 357	struct atmel_spi_device *asd = spi->controller_state;
 358	unsigned active = spi->mode & SPI_CS_HIGH;
 359	u32 mr;
 360
 361	if (atmel_spi_is_v2(as)) {
 362		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
 363		/* For the low SPI version, there is a issue that PDC transfer
 364		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 
 365		 */
 366		spi_writel(as, CSR0, asd->csr);
 367		if (as->caps.has_wdrbt) {
 368			spi_writel(as, MR,
 369					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 370					| SPI_BIT(WDRBT)
 371					| SPI_BIT(MODFDIS)
 372					| SPI_BIT(MSTR));
 373		} else {
 374			spi_writel(as, MR,
 375					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 376					| SPI_BIT(MODFDIS)
 377					| SPI_BIT(MSTR));
 378		}
 379
 380		mr = spi_readl(as, MR);
 381		if (as->use_cs_gpios)
 382			gpio_set_value(asd->npcs_pin, active);
 383	} else {
 384		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 385		int i;
 386		u32 csr;
 387
 388		/* Make sure clock polarity is correct */
 389		for (i = 0; i < spi->master->num_chipselect; i++) {
 390			csr = spi_readl(as, CSR0 + 4 * i);
 391			if ((csr ^ cpol) & SPI_BIT(CPOL))
 392				spi_writel(as, CSR0 + 4 * i,
 393						csr ^ SPI_BIT(CPOL));
 394		}
 395
 396		mr = spi_readl(as, MR);
 397		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 398		if (as->use_cs_gpios && spi->chip_select != 0)
 399			gpio_set_value(asd->npcs_pin, active);
 400		spi_writel(as, MR, mr);
 401	}
 402
 403	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 404			asd->npcs_pin, active ? " (high)" : "",
 405			mr);
 406}
 407
 408static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 409{
 410	struct atmel_spi_device *asd = spi->controller_state;
 411	unsigned active = spi->mode & SPI_CS_HIGH;
 412	u32 mr;
 413
 414	/* only deactivate *this* device; sometimes transfers to
 415	 * another device may be active when this routine is called.
 416	 */
 417	mr = spi_readl(as, MR);
 418	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 419		mr = SPI_BFINS(PCS, 0xf, mr);
 420		spi_writel(as, MR, mr);
 421	}
 422
 423	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 424			asd->npcs_pin, active ? " (low)" : "",
 425			mr);
 426
 427	if (!as->use_cs_gpios)
 428		spi_writel(as, CR, SPI_BIT(LASTXFER));
 429	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
 430		gpio_set_value(asd->npcs_pin, !active);
 431}
 432
 433static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 
 434{
 435	spin_lock_irqsave(&as->lock, as->flags);
 436}
 437
 438static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 439{
 440	spin_unlock_irqrestore(&as->lock, as->flags);
 441}
 442
 443static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
 
 
 
 
 444{
 445	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
 446}
 447
 448static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 449				struct spi_transfer *xfer)
 450{
 451	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 452}
 453
 454static bool atmel_spi_can_dma(struct spi_master *master,
 455			      struct spi_device *spi,
 456			      struct spi_transfer *xfer)
 457{
 458	struct atmel_spi *as = spi_master_get_devdata(master);
 459
 460	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
 461		return atmel_spi_use_dma(as, xfer) &&
 462			!atmel_spi_is_vmalloc_xfer(xfer);
 463	else
 464		return atmel_spi_use_dma(as, xfer);
 465
 466}
 467
 468static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 469				struct dma_slave_config *slave_config,
 470				u8 bits_per_word)
 471{
 472	struct spi_master *master = platform_get_drvdata(as->pdev);
 473	int err = 0;
 474
 475	if (bits_per_word > 8) {
 476		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 477		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 478	} else {
 479		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 480		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 481	}
 482
 483	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 484	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 485	slave_config->src_maxburst = 1;
 486	slave_config->dst_maxburst = 1;
 487	slave_config->device_fc = false;
 488
 489	/*
 490	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 491	 * the Mode Register).
 492	 * So according to the datasheet, when FIFOs are available (and
 493	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 494	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 495	 * Data Register in a single access.
 496	 * However, the first data has to be written into the lowest 16 bits and
 497	 * the second data into the highest 16 bits of the Transmit
 498	 * Data Register. For 8bit data (the most frequent case), it would
 499	 * require to rework tx_buf so each data would actualy fit 16 bits.
 500	 * So we'd rather write only one data at the time. Hence the transmit
 501	 * path works the same whether FIFOs are available (and enabled) or not.
 502	 */
 503	slave_config->direction = DMA_MEM_TO_DEV;
 504	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
 505		dev_err(&as->pdev->dev,
 506			"failed to configure tx dma channel\n");
 507		err = -EINVAL;
 508	}
 509
 510	/*
 511	 * This driver configures the spi controller for master mode (MSTR bit
 512	 * set to '1' in the Mode Register).
 513	 * So according to the datasheet, when FIFOs are available (and
 514	 * enabled), the Receive FIFO operates in Single Data Mode.
 515	 * So the receive path works the same whether FIFOs are available (and
 516	 * enabled) or not.
 517	 */
 518	slave_config->direction = DMA_DEV_TO_MEM;
 519	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
 520		dev_err(&as->pdev->dev,
 521			"failed to configure rx dma channel\n");
 522		err = -EINVAL;
 523	}
 524
 525	return err;
 526}
 527
 528static int atmel_spi_configure_dma(struct spi_master *master,
 529				   struct atmel_spi *as)
 530{
 531	struct dma_slave_config	slave_config;
 532	struct device *dev = &as->pdev->dev;
 533	int err;
 534
 535	dma_cap_mask_t mask;
 536	dma_cap_zero(mask);
 537	dma_cap_set(DMA_SLAVE, mask);
 538
 539	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
 540	if (IS_ERR(master->dma_tx)) {
 541		err = PTR_ERR(master->dma_tx);
 542		if (err == -EPROBE_DEFER) {
 543			dev_warn(dev, "no DMA channel available at the moment\n");
 544			goto error_clear;
 545		}
 546		dev_err(dev,
 547			"DMA TX channel not available, SPI unable to use DMA\n");
 548		err = -EBUSY;
 549		goto error_clear;
 550	}
 551
 552	/*
 553	 * No reason to check EPROBE_DEFER here since we have already requested
 554	 * tx channel. If it fails here, it's for another reason.
 555	 */
 556	master->dma_rx = dma_request_slave_channel(dev, "rx");
 557
 558	if (!master->dma_rx) {
 559		dev_err(dev,
 560			"DMA RX channel not available, SPI unable to use DMA\n");
 561		err = -EBUSY;
 562		goto error;
 563	}
 564
 565	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 566	if (err)
 567		goto error;
 568
 569	dev_info(&as->pdev->dev,
 570			"Using %s (tx) and %s (rx) for DMA transfers\n",
 571			dma_chan_name(master->dma_tx),
 572			dma_chan_name(master->dma_rx));
 573
 574	return 0;
 575error:
 576	if (master->dma_rx)
 577		dma_release_channel(master->dma_rx);
 578	if (!IS_ERR(master->dma_tx))
 579		dma_release_channel(master->dma_tx);
 580error_clear:
 581	master->dma_tx = master->dma_rx = NULL;
 582	return err;
 583}
 584
 585static void atmel_spi_stop_dma(struct spi_master *master)
 586{
 587	if (master->dma_rx)
 588		dmaengine_terminate_all(master->dma_rx);
 589	if (master->dma_tx)
 590		dmaengine_terminate_all(master->dma_tx);
 591}
 592
 593static void atmel_spi_release_dma(struct spi_master *master)
 594{
 595	if (master->dma_rx) {
 596		dma_release_channel(master->dma_rx);
 597		master->dma_rx = NULL;
 598	}
 599	if (master->dma_tx) {
 600		dma_release_channel(master->dma_tx);
 601		master->dma_tx = NULL;
 602	}
 603}
 604
 605/* This function is called by the DMA driver from tasklet context */
 606static void dma_callback(void *data)
 607{
 608	struct spi_master	*master = data;
 609	struct atmel_spi	*as = spi_master_get_devdata(master);
 610
 611	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
 612	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 613		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
 614		       as->current_transfer->len);
 615	}
 616	complete(&as->xfer_completion);
 617}
 618
 619/*
 620 * Next transfer using PIO without FIFO.
 
 621 */
 622static void atmel_spi_next_xfer_single(struct spi_master *master,
 623				       struct spi_transfer *xfer)
 624{
 625	struct atmel_spi	*as = spi_master_get_devdata(master);
 626	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 
 
 
 627
 628	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 629
 630	/* Make sure data is not remaining in RDR */
 631	spi_readl(as, RDR);
 632	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 633		spi_readl(as, RDR);
 634		cpu_relax();
 635	}
 636
 637	if (xfer->bits_per_word > 8)
 638		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 639	else
 640		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 641
 642	dev_dbg(master->dev.parent,
 643		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 644		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 645		xfer->bits_per_word);
 646
 647	/* Enable relevant interrupts */
 648	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 649}
 650
 651/*
 652 * Next transfer using PIO with FIFO.
 653 */
 654static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 655				     struct spi_transfer *xfer)
 656{
 657	struct atmel_spi *as = spi_master_get_devdata(master);
 658	u32 current_remaining_data, num_data;
 659	u32 offset = xfer->len - as->current_remaining_bytes;
 660	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 661	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 662	u16 td0, td1;
 663	u32 fifomr;
 664
 665	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 666
 667	/* Compute the number of data to transfer in the current iteration */
 668	current_remaining_data = ((xfer->bits_per_word > 8) ?
 669				  ((u32)as->current_remaining_bytes >> 1) :
 670				  (u32)as->current_remaining_bytes);
 671	num_data = min(current_remaining_data, as->fifo_size);
 672
 673	/* Flush RX and TX FIFOs */
 674	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 675	while (spi_readl(as, FLR))
 676		cpu_relax();
 677
 678	/* Set RX FIFO Threshold to the number of data to transfer */
 679	fifomr = spi_readl(as, FMR);
 680	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 681
 682	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 683	(void)spi_readl(as, SR);
 684
 685	/* Fill TX FIFO */
 686	while (num_data >= 2) {
 687		if (xfer->bits_per_word > 8) {
 688			td0 = *words++;
 689			td1 = *words++;
 690		} else {
 691			td0 = *bytes++;
 692			td1 = *bytes++;
 693		}
 694
 695		spi_writel(as, TDR, (td1 << 16) | td0);
 696		num_data -= 2;
 697	}
 
 698
 699	if (num_data) {
 700		if (xfer->bits_per_word > 8)
 701			td0 = *words++;
 702		else
 703			td0 = *bytes++;
 704
 705		spi_writew(as, TDR, td0);
 706		num_data--;
 707	}
 708
 709	dev_dbg(master->dev.parent,
 710		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 711		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 712		xfer->bits_per_word);
 713
 714	/*
 715	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 716	 * transfer completion.
 717	 */
 718	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 719}
 720
 721/*
 722 * Next transfer using PIO.
 723 */
 724static void atmel_spi_next_xfer_pio(struct spi_master *master,
 725				    struct spi_transfer *xfer)
 726{
 727	struct atmel_spi *as = spi_master_get_devdata(master);
 728
 729	if (as->fifo_size)
 730		atmel_spi_next_xfer_fifo(master, xfer);
 731	else
 732		atmel_spi_next_xfer_single(master, xfer);
 733}
 734
 735/*
 736 * Submit next transfer for DMA.
 737 */
 738static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 739				struct spi_transfer *xfer,
 740				u32 *plen)
 741{
 742	struct atmel_spi	*as = spi_master_get_devdata(master);
 743	struct dma_chan		*rxchan = master->dma_rx;
 744	struct dma_chan		*txchan = master->dma_tx;
 745	struct dma_async_tx_descriptor *rxdesc;
 746	struct dma_async_tx_descriptor *txdesc;
 747	struct dma_slave_config	slave_config;
 748	dma_cookie_t		cookie;
 749
 750	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 751
 752	/* Check that the channels are available */
 753	if (!rxchan || !txchan)
 754		return -ENODEV;
 755
 756	/* release lock for DMA operations */
 757	atmel_spi_unlock(as);
 758
 759	*plen = xfer->len;
 760
 761	if (atmel_spi_dma_slave_config(as, &slave_config,
 762				       xfer->bits_per_word))
 763		goto err_exit;
 764
 765	/* Send both scatterlists */
 766	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 767	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 768		rxdesc = dmaengine_prep_slave_single(rxchan,
 769						     as->dma_addr_rx_bbuf,
 770						     xfer->len,
 771						     DMA_DEV_TO_MEM,
 772						     DMA_PREP_INTERRUPT |
 773						     DMA_CTRL_ACK);
 774	} else {
 775		rxdesc = dmaengine_prep_slave_sg(rxchan,
 776						 xfer->rx_sg.sgl,
 777						 xfer->rx_sg.nents,
 778						 DMA_DEV_TO_MEM,
 779						 DMA_PREP_INTERRUPT |
 780						 DMA_CTRL_ACK);
 781	}
 782	if (!rxdesc)
 783		goto err_dma;
 784
 785	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 786	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 787		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
 788		txdesc = dmaengine_prep_slave_single(txchan,
 789						     as->dma_addr_tx_bbuf,
 790						     xfer->len, DMA_MEM_TO_DEV,
 791						     DMA_PREP_INTERRUPT |
 792						     DMA_CTRL_ACK);
 793	} else {
 794		txdesc = dmaengine_prep_slave_sg(txchan,
 795						 xfer->tx_sg.sgl,
 796						 xfer->tx_sg.nents,
 797						 DMA_MEM_TO_DEV,
 798						 DMA_PREP_INTERRUPT |
 799						 DMA_CTRL_ACK);
 800	}
 801	if (!txdesc)
 802		goto err_dma;
 803
 804	dev_dbg(master->dev.parent,
 805		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 806		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 807		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 808
 809	/* Enable relevant interrupts */
 810	spi_writel(as, IER, SPI_BIT(OVRES));
 811
 812	/* Put the callback on the RX transfer only, that should finish last */
 813	rxdesc->callback = dma_callback;
 814	rxdesc->callback_param = master;
 815
 816	/* Submit and fire RX and TX with TX last so we're ready to read! */
 817	cookie = rxdesc->tx_submit(rxdesc);
 818	if (dma_submit_error(cookie))
 819		goto err_dma;
 820	cookie = txdesc->tx_submit(txdesc);
 821	if (dma_submit_error(cookie))
 822		goto err_dma;
 823	rxchan->device->device_issue_pending(rxchan);
 824	txchan->device->device_issue_pending(txchan);
 825
 826	/* take back lock */
 827	atmel_spi_lock(as);
 828	return 0;
 829
 830err_dma:
 831	spi_writel(as, IDR, SPI_BIT(OVRES));
 832	atmel_spi_stop_dma(master);
 833err_exit:
 834	atmel_spi_lock(as);
 835	return -ENOMEM;
 836}
 837
 838static void atmel_spi_next_xfer_data(struct spi_master *master,
 839				struct spi_transfer *xfer,
 840				dma_addr_t *tx_dma,
 841				dma_addr_t *rx_dma,
 842				u32 *plen)
 843{
 844	*rx_dma = xfer->rx_dma + xfer->len - *plen;
 845	*tx_dma = xfer->tx_dma + xfer->len - *plen;
 846	if (*plen > master->max_dma_len)
 847		*plen = master->max_dma_len;
 848}
 849
 850static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 851				    struct spi_device *spi,
 852				    struct spi_transfer *xfer)
 853{
 854	u32			scbr, csr;
 855	unsigned long		bus_hz;
 
 
 
 856
 857	/* v1 chips start out at half the peripheral bus speed. */
 858	bus_hz = as->spi_clk;
 859	if (!atmel_spi_is_v2(as))
 860		bus_hz /= 2;
 861
 862	/*
 863	 * Calculate the lowest divider that satisfies the
 864	 * constraint, assuming div32/fdiv/mbz == 0.
 865	 */
 866	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 867
 868	/*
 869	 * If the resulting divider doesn't fit into the
 870	 * register bitfield, we can't satisfy the constraint.
 871	 */
 872	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 873		dev_err(&spi->dev,
 874			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 875			xfer->speed_hz, scbr, bus_hz/255);
 876		return -EINVAL;
 877	}
 878	if (scbr == 0) {
 879		dev_err(&spi->dev,
 880			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 881			xfer->speed_hz, scbr, bus_hz);
 882		return -EINVAL;
 883	}
 884	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
 885	csr = SPI_BFINS(SCBR, scbr, csr);
 886	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 887
 888	return 0;
 889}
 890
 891/*
 892 * Submit next transfer for PDC.
 893 * lock is held, spi irq is blocked
 894 */
 895static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 896					struct spi_message *msg,
 897					struct spi_transfer *xfer)
 898{
 899	struct atmel_spi	*as = spi_master_get_devdata(master);
 900	u32			len;
 901	dma_addr_t		tx_dma, rx_dma;
 902
 903	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 904
 905	len = as->current_remaining_bytes;
 906	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 907	as->current_remaining_bytes -= len;
 908
 909	spi_writel(as, RPR, rx_dma);
 910	spi_writel(as, TPR, tx_dma);
 911
 912	if (msg->spi->bits_per_word > 8)
 913		len >>= 1;
 914	spi_writel(as, RCR, len);
 915	spi_writel(as, TCR, len);
 916
 917	dev_dbg(&msg->spi->dev,
 918		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 919		xfer, xfer->len, xfer->tx_buf,
 920		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 921		(unsigned long long)xfer->rx_dma);
 922
 923	if (as->current_remaining_bytes) {
 924		len = as->current_remaining_bytes;
 925		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 926		as->current_remaining_bytes -= len;
 927
 928		spi_writel(as, RNPR, rx_dma);
 929		spi_writel(as, TNPR, tx_dma);
 930
 931		if (msg->spi->bits_per_word > 8)
 932			len >>= 1;
 933		spi_writel(as, RNCR, len);
 934		spi_writel(as, TNCR, len);
 935
 936		dev_dbg(&msg->spi->dev,
 937			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 938			xfer, xfer->len, xfer->tx_buf,
 939			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 940			(unsigned long long)xfer->rx_dma);
 
 
 
 
 941	}
 942
 943	/* REVISIT: We're waiting for RXBUFF before we start the next
 944	 * transfer because we need to handle some difficult timing
 945	 * issues otherwise. If we wait for TXBUFE in one transfer and
 946	 * then starts waiting for RXBUFF in the next, it's difficult
 947	 * to tell the difference between the RXBUFF interrupt we're
 948	 * actually waiting for and the RXBUFF interrupt of the
 949	 * previous transfer.
 950	 *
 951	 * It should be doable, though. Just not now...
 952	 */
 953	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 954	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 955}
 956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 957/*
 958 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 959 *  - The buffer is either valid for CPU access, else NULL
 960 *  - If the buffer is valid, so is its DMA address
 961 *
 962 * This driver manages the dma address unless message->is_dma_mapped.
 963 */
 964static int
 965atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 966{
 967	struct device	*dev = &as->pdev->dev;
 968
 969	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 970	if (xfer->tx_buf) {
 971		/* tx_buf is a const void* where we need a void * for the dma
 972		 * mapping */
 973		void *nonconst_tx = (void *)xfer->tx_buf;
 974
 975		xfer->tx_dma = dma_map_single(dev,
 976				nonconst_tx, xfer->len,
 977				DMA_TO_DEVICE);
 978		if (dma_mapping_error(dev, xfer->tx_dma))
 979			return -ENOMEM;
 980	}
 981	if (xfer->rx_buf) {
 982		xfer->rx_dma = dma_map_single(dev,
 983				xfer->rx_buf, xfer->len,
 984				DMA_FROM_DEVICE);
 985		if (dma_mapping_error(dev, xfer->rx_dma)) {
 986			if (xfer->tx_buf)
 987				dma_unmap_single(dev,
 988						xfer->tx_dma, xfer->len,
 989						DMA_TO_DEVICE);
 990			return -ENOMEM;
 991		}
 992	}
 993	return 0;
 994}
 995
 996static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 997				     struct spi_transfer *xfer)
 998{
 999	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1000		dma_unmap_single(master->dev.parent, xfer->tx_dma,
1001				 xfer->len, DMA_TO_DEVICE);
1002	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1003		dma_unmap_single(master->dev.parent, xfer->rx_dma,
1004				 xfer->len, DMA_FROM_DEVICE);
1005}
1006
1007static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
 
 
1008{
1009	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1010}
 
 
1011
1012static void
1013atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1014{
1015	u8		*rxp;
1016	u16		*rxp16;
1017	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1018
1019	if (xfer->bits_per_word > 8) {
1020		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1021		*rxp16 = spi_readl(as, RDR);
1022	} else {
1023		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1024		*rxp = spi_readl(as, RDR);
1025	}
1026	if (xfer->bits_per_word > 8) {
1027		if (as->current_remaining_bytes > 2)
1028			as->current_remaining_bytes -= 2;
1029		else
1030			as->current_remaining_bytes = 0;
1031	} else {
1032		as->current_remaining_bytes--;
1033	}
1034}
1035
1036static void
1037atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1038{
1039	u32 fifolr = spi_readl(as, FLR);
1040	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1041	u32 offset = xfer->len - as->current_remaining_bytes;
1042	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1043	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1044	u16 rd; /* RD field is the lowest 16 bits of RDR */
1045
1046	/* Update the number of remaining bytes to transfer */
1047	num_bytes = ((xfer->bits_per_word > 8) ?
1048		     (num_data << 1) :
1049		     num_data);
1050
1051	if (as->current_remaining_bytes > num_bytes)
1052		as->current_remaining_bytes -= num_bytes;
1053	else
1054		as->current_remaining_bytes = 0;
1055
1056	/* Handle odd number of bytes when data are more than 8bit width */
1057	if (xfer->bits_per_word > 8)
1058		as->current_remaining_bytes &= ~0x1;
1059
1060	/* Read data */
1061	while (num_data) {
1062		rd = spi_readl(as, RDR);
1063		if (xfer->bits_per_word > 8)
1064			*words++ = rd;
1065		else
1066			*bytes++ = rd;
1067		num_data--;
1068	}
1069}
1070
1071/* Called from IRQ
1072 *
1073 * Must update "current_remaining_bytes" to keep track of data
1074 * to transfer.
1075 */
1076static void
1077atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1078{
1079	if (as->fifo_size)
1080		atmel_spi_pump_fifo_data(as, xfer);
1081	else
1082		atmel_spi_pump_single_data(as, xfer);
1083}
1084
1085/* Interrupt
1086 *
1087 * No need for locking in this Interrupt handler: done_status is the
1088 * only information modified.
1089 */
1090static irqreturn_t
1091atmel_spi_pio_interrupt(int irq, void *dev_id)
1092{
1093	struct spi_master	*master = dev_id;
1094	struct atmel_spi	*as = spi_master_get_devdata(master);
 
 
1095	u32			status, pending, imr;
1096	struct spi_transfer	*xfer;
1097	int			ret = IRQ_NONE;
1098
 
 
 
 
 
1099	imr = spi_readl(as, IMR);
1100	status = spi_readl(as, SR);
1101	pending = status & imr;
1102
1103	if (pending & SPI_BIT(OVRES)) {
 
 
1104		ret = IRQ_HANDLED;
1105		spi_writel(as, IDR, SPI_BIT(OVRES));
1106		dev_warn(master->dev.parent, "overrun\n");
 
1107
1108		/*
1109		 * When we get an overrun, we disregard the current
1110		 * transfer. Data will not be copied back from any
1111		 * bounce buffer and msg->actual_len will not be
1112		 * updated with the last xfer.
1113		 *
1114		 * We will also not process any remaning transfers in
1115		 * the message.
 
 
1116		 */
1117		as->done_status = -EIO;
1118		smp_wmb();
 
1119
1120		/* Clear any overrun happening while cleaning up */
1121		spi_readl(as, SR);
 
1122
1123		complete(&as->xfer_completion);
 
1124
1125	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1126		atmel_spi_lock(as);
1127
1128		if (as->current_remaining_bytes) {
1129			ret = IRQ_HANDLED;
1130			xfer = as->current_transfer;
1131			atmel_spi_pump_pio_data(as, xfer);
1132			if (!as->current_remaining_bytes)
1133				spi_writel(as, IDR, pending);
1134
1135			complete(&as->xfer_completion);
1136		}
1137
1138		atmel_spi_unlock(as);
1139	} else {
1140		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1141		ret = IRQ_HANDLED;
1142		spi_writel(as, IDR, pending);
1143	}
1144
1145	return ret;
1146}
1147
1148static irqreturn_t
1149atmel_spi_pdc_interrupt(int irq, void *dev_id)
1150{
1151	struct spi_master	*master = dev_id;
1152	struct atmel_spi	*as = spi_master_get_devdata(master);
1153	u32			status, pending, imr;
1154	int			ret = IRQ_NONE;
1155
1156	imr = spi_readl(as, IMR);
1157	status = spi_readl(as, SR);
1158	pending = status & imr;
1159
1160	if (pending & SPI_BIT(OVRES)) {
1161
1162		ret = IRQ_HANDLED;
1163
1164		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1165				     | SPI_BIT(OVRES)));
1166
1167		/* Clear any overrun happening while cleaning up */
1168		spi_readl(as, SR);
1169
1170		as->done_status = -EIO;
1171
1172		complete(&as->xfer_completion);
1173
1174	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1175		ret = IRQ_HANDLED;
1176
1177		spi_writel(as, IDR, pending);
1178
1179		complete(&as->xfer_completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180	}
1181
 
 
1182	return ret;
1183}
1184
1185static int atmel_spi_setup(struct spi_device *spi)
1186{
1187	struct atmel_spi	*as;
1188	struct atmel_spi_device	*asd;
1189	u32			csr;
1190	unsigned int		bits = spi->bits_per_word;
 
1191	unsigned int		npcs_pin;
 
1192
1193	as = spi_master_get_devdata(spi->master);
1194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195	/* see notes above re chipselect */
1196	if (!atmel_spi_is_v2(as)
1197			&& spi->chip_select == 0
1198			&& (spi->mode & SPI_CS_HIGH)) {
1199		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1200		return -EINVAL;
1201	}
1202
1203	csr = SPI_BF(BITS, bits - 8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204	if (spi->mode & SPI_CPOL)
1205		csr |= SPI_BIT(CPOL);
1206	if (!(spi->mode & SPI_CPHA))
1207		csr |= SPI_BIT(NCPHA);
1208	if (!as->use_cs_gpios)
1209		csr |= SPI_BIT(CSAAT);
1210
1211	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1212	 *
1213	 * DLYBCT would add delays between words, slowing down transfers.
1214	 * It could potentially be useful to cope with DMA bottlenecks, but
1215	 * in those cases it's probably best to just use a lower bitrate.
1216	 */
1217	csr |= SPI_BF(DLYBS, 0);
1218	csr |= SPI_BF(DLYBCT, 0);
1219
1220	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1221	npcs_pin = (unsigned long)spi->controller_data;
1222
1223	if (!as->use_cs_gpios)
1224		npcs_pin = spi->chip_select;
1225	else if (gpio_is_valid(spi->cs_gpio))
1226		npcs_pin = spi->cs_gpio;
1227
1228	asd = spi->controller_state;
1229	if (!asd) {
1230		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1231		if (!asd)
1232			return -ENOMEM;
1233
1234		if (as->use_cs_gpios)
1235			gpio_direction_output(npcs_pin,
1236					      !(spi->mode & SPI_CS_HIGH));
 
 
1237
1238		asd->npcs_pin = npcs_pin;
1239		spi->controller_state = asd;
 
 
 
 
 
 
 
 
 
1240	}
1241
1242	asd->csr = csr;
1243
1244	dev_dbg(&spi->dev,
1245		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1246		bits, spi->mode, spi->chip_select, csr);
1247
1248	if (!atmel_spi_is_v2(as))
1249		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1250
1251	return 0;
1252}
1253
1254static int atmel_spi_one_transfer(struct spi_master *master,
1255					struct spi_message *msg,
1256					struct spi_transfer *xfer)
1257{
1258	struct atmel_spi	*as;
1259	struct spi_device	*spi = msg->spi;
 
 
1260	u8			bits;
1261	u32			len;
1262	struct atmel_spi_device	*asd;
1263	int			timeout;
1264	int			ret;
1265	unsigned long		dma_timeout;
1266
1267	as = spi_master_get_devdata(master);
 
 
 
1268
1269	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1270		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1271		return -EINVAL;
1272	}
1273
1274	asd = spi->controller_state;
1275	bits = (asd->csr >> 4) & 0xf;
1276	if (bits != xfer->bits_per_word - 8) {
1277		dev_dbg(&spi->dev,
1278			"you can't yet change bits_per_word in transfers\n");
1279		return -ENOPROTOOPT;
1280	}
1281
1282	/*
1283	 * DMA map early, for performance (empties dcache ASAP) and
1284	 * better fault reporting.
1285	 */
1286	if ((!msg->is_dma_mapped)
1287		&& as->use_pdc) {
1288		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1289			return -ENOMEM;
1290	}
1291
1292	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1293
1294	as->done_status = 0;
1295	as->current_transfer = xfer;
1296	as->current_remaining_bytes = xfer->len;
1297	while (as->current_remaining_bytes) {
1298		reinit_completion(&as->xfer_completion);
1299
1300		if (as->use_pdc) {
1301			atmel_spi_pdc_next_xfer(master, msg, xfer);
1302		} else if (atmel_spi_use_dma(as, xfer)) {
1303			len = as->current_remaining_bytes;
1304			ret = atmel_spi_next_xfer_dma_submit(master,
1305								xfer, &len);
1306			if (ret) {
1307				dev_err(&spi->dev,
1308					"unable to use DMA, fallback to PIO\n");
1309				atmel_spi_next_xfer_pio(master, xfer);
1310			} else {
1311				as->current_remaining_bytes -= len;
1312				if (as->current_remaining_bytes < 0)
1313					as->current_remaining_bytes = 0;
1314			}
1315		} else {
1316			atmel_spi_next_xfer_pio(master, xfer);
1317		}
1318
1319		/* interrupts are disabled, so free the lock for schedule */
1320		atmel_spi_unlock(as);
1321		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1322							  SPI_DMA_TIMEOUT);
1323		atmel_spi_lock(as);
1324		if (WARN_ON(dma_timeout == 0)) {
1325			dev_err(&spi->dev, "spi transfer timeout\n");
1326			as->done_status = -EIO;
1327		}
1328
1329		if (as->done_status)
1330			break;
1331	}
1332
1333	if (as->done_status) {
1334		if (as->use_pdc) {
1335			dev_warn(master->dev.parent,
1336				"overrun (%u/%u remaining)\n",
1337				spi_readl(as, TCR), spi_readl(as, RCR));
1338
1339			/*
1340			 * Clean up DMA registers and make sure the data
1341			 * registers are empty.
1342			 */
1343			spi_writel(as, RNCR, 0);
1344			spi_writel(as, TNCR, 0);
1345			spi_writel(as, RCR, 0);
1346			spi_writel(as, TCR, 0);
1347			for (timeout = 1000; timeout; timeout--)
1348				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1349					break;
1350			if (!timeout)
1351				dev_warn(master->dev.parent,
1352					 "timeout waiting for TXEMPTY");
1353			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1354				spi_readl(as, RDR);
1355
1356			/* Clear any overrun happening while cleaning up */
1357			spi_readl(as, SR);
1358
1359		} else if (atmel_spi_use_dma(as, xfer)) {
1360			atmel_spi_stop_dma(master);
1361		}
1362
1363		if (!msg->is_dma_mapped
1364			&& as->use_pdc)
1365			atmel_spi_dma_unmap_xfer(master, xfer);
1366
1367		return 0;
1368
1369	} else {
1370		/* only update length if no error */
1371		msg->actual_length += xfer->len;
1372	}
1373
1374	if (!msg->is_dma_mapped
1375		&& as->use_pdc)
1376		atmel_spi_dma_unmap_xfer(master, xfer);
1377
1378	if (xfer->delay_usecs)
1379		udelay(xfer->delay_usecs);
1380
1381	if (xfer->cs_change) {
1382		if (list_is_last(&xfer->transfer_list,
1383				 &msg->transfers)) {
1384			as->keep_cs = true;
1385		} else {
1386			as->cs_active = !as->cs_active;
1387			if (as->cs_active)
1388				cs_activate(as, msg->spi);
1389			else
1390				cs_deactivate(as, msg->spi);
1391		}
1392	}
1393
1394	return 0;
1395}
1396
1397static int atmel_spi_transfer_one_message(struct spi_master *master,
1398						struct spi_message *msg)
1399{
1400	struct atmel_spi *as;
1401	struct spi_transfer *xfer;
1402	struct spi_device *spi = msg->spi;
1403	int ret = 0;
1404
1405	as = spi_master_get_devdata(master);
1406
1407	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1408					msg, dev_name(&spi->dev));
1409
1410	atmel_spi_lock(as);
1411	cs_activate(as, spi);
1412
1413	as->cs_active = true;
1414	as->keep_cs = false;
1415
1416	msg->status = 0;
1417	msg->actual_length = 0;
1418
1419	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1420		ret = atmel_spi_one_transfer(master, msg, xfer);
1421		if (ret)
1422			goto msg_done;
1423	}
1424
1425	if (as->use_pdc)
1426		atmel_spi_disable_pdc_transfer(as);
1427
1428	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1429		dev_dbg(&spi->dev,
1430			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1431			xfer, xfer->len,
1432			xfer->tx_buf, &xfer->tx_dma,
1433			xfer->rx_buf, &xfer->rx_dma);
1434	}
 
1435
1436msg_done:
1437	if (!as->keep_cs)
1438		cs_deactivate(as, msg->spi);
1439
1440	atmel_spi_unlock(as);
 
 
 
 
1441
1442	msg->status = as->done_status;
1443	spi_finalize_current_message(spi->master);
1444
1445	return ret;
1446}
1447
1448static void atmel_spi_cleanup(struct spi_device *spi)
1449{
 
1450	struct atmel_spi_device	*asd = spi->controller_state;
 
 
1451
1452	if (!asd)
1453		return;
1454
 
 
 
 
 
 
 
1455	spi->controller_state = NULL;
 
1456	kfree(asd);
1457}
1458
1459static inline unsigned int atmel_get_version(struct atmel_spi *as)
1460{
1461	return spi_readl(as, VERSION) & 0x00000fff;
1462}
1463
1464static void atmel_get_caps(struct atmel_spi *as)
1465{
1466	unsigned int version;
1467
1468	version = atmel_get_version(as);
1469
1470	as->caps.is_spi2 = version > 0x121;
1471	as->caps.has_wdrbt = version >= 0x210;
1472	as->caps.has_dma_support = version >= 0x212;
1473	as->caps.has_pdc_support = version < 0x212;
1474}
1475
1476/*-------------------------------------------------------------------------*/
1477static int atmel_spi_gpio_cs(struct platform_device *pdev)
1478{
1479	struct spi_master	*master = platform_get_drvdata(pdev);
1480	struct atmel_spi	*as = spi_master_get_devdata(master);
1481	struct device_node	*np = master->dev.of_node;
1482	int			i;
1483	int			ret = 0;
1484	int			nb = 0;
1485
1486	if (!as->use_cs_gpios)
1487		return 0;
1488
1489	if (!np)
1490		return 0;
1491
1492	nb = of_gpio_named_count(np, "cs-gpios");
1493	for (i = 0; i < nb; i++) {
1494		int cs_gpio = of_get_named_gpio(pdev->dev.of_node,
1495						"cs-gpios", i);
1496
1497		if (cs_gpio == -EPROBE_DEFER)
1498			return cs_gpio;
1499
1500		if (gpio_is_valid(cs_gpio)) {
1501			ret = devm_gpio_request(&pdev->dev, cs_gpio,
1502						dev_name(&pdev->dev));
1503			if (ret)
1504				return ret;
1505		}
1506	}
1507
1508	return 0;
1509}
1510
1511static void atmel_spi_init(struct atmel_spi *as)
1512{
1513	spi_writel(as, CR, SPI_BIT(SWRST));
1514	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1515
1516	/* It is recommended to enable FIFOs first thing after reset */
1517	if (as->fifo_size)
1518		spi_writel(as, CR, SPI_BIT(FIFOEN));
1519
1520	if (as->caps.has_wdrbt) {
1521		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1522				| SPI_BIT(MSTR));
1523	} else {
1524		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1525	}
1526
1527	if (as->use_pdc)
1528		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1529	spi_writel(as, CR, SPI_BIT(SPIEN));
1530}
1531
1532static int atmel_spi_probe(struct platform_device *pdev)
1533{
1534	struct resource		*regs;
1535	int			irq;
1536	struct clk		*clk;
1537	int			ret;
1538	struct spi_master	*master;
1539	struct atmel_spi	*as;
1540
1541	/* Select default pin state */
1542	pinctrl_pm_select_default_state(&pdev->dev);
1543
1544	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1545	if (!regs)
1546		return -ENXIO;
1547
1548	irq = platform_get_irq(pdev, 0);
1549	if (irq < 0)
1550		return irq;
1551
1552	clk = devm_clk_get(&pdev->dev, "spi_clk");
1553	if (IS_ERR(clk))
1554		return PTR_ERR(clk);
1555
1556	/* setup spi core then atmel-specific driver state */
1557	ret = -ENOMEM;
1558	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1559	if (!master)
1560		goto out_free;
1561
1562	/* the spi->mode bits understood by this driver: */
1563	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1564	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1565	master->dev.of_node = pdev->dev.of_node;
1566	master->bus_num = pdev->id;
1567	master->num_chipselect = master->dev.of_node ? 0 : 4;
1568	master->setup = atmel_spi_setup;
1569	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1570	master->transfer_one_message = atmel_spi_transfer_one_message;
1571	master->cleanup = atmel_spi_cleanup;
1572	master->auto_runtime_pm = true;
1573	master->max_dma_len = SPI_MAX_DMA_XFER;
1574	master->can_dma = atmel_spi_can_dma;
1575	platform_set_drvdata(pdev, master);
1576
1577	as = spi_master_get_devdata(master);
1578
 
 
 
 
 
 
 
 
 
1579	spin_lock_init(&as->lock);
1580
1581	as->pdev = pdev;
1582	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1583	if (IS_ERR(as->regs)) {
1584		ret = PTR_ERR(as->regs);
1585		goto out_unmap_regs;
1586	}
1587	as->phybase = regs->start;
1588	as->irq = irq;
1589	as->clk = clk;
1590
1591	init_completion(&as->xfer_completion);
1592
1593	atmel_get_caps(as);
1594
1595	as->use_cs_gpios = true;
1596	if (atmel_spi_is_v2(as) &&
1597	    pdev->dev.of_node &&
1598	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1599		as->use_cs_gpios = false;
1600		master->num_chipselect = 4;
1601	}
1602
1603	ret = atmel_spi_gpio_cs(pdev);
1604	if (ret)
1605		goto out_unmap_regs;
1606
1607	as->use_dma = false;
1608	as->use_pdc = false;
1609	if (as->caps.has_dma_support) {
1610		ret = atmel_spi_configure_dma(master, as);
1611		if (ret == 0) {
1612			as->use_dma = true;
1613		} else if (ret == -EPROBE_DEFER) {
1614			return ret;
1615		}
1616	} else if (as->caps.has_pdc_support) {
1617		as->use_pdc = true;
1618	}
1619
1620	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1621		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1622						      SPI_MAX_DMA_XFER,
1623						      &as->dma_addr_rx_bbuf,
1624						      GFP_KERNEL | GFP_DMA);
1625		if (!as->addr_rx_bbuf) {
1626			as->use_dma = false;
1627		} else {
1628			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1629					SPI_MAX_DMA_XFER,
1630					&as->dma_addr_tx_bbuf,
1631					GFP_KERNEL | GFP_DMA);
1632			if (!as->addr_tx_bbuf) {
1633				as->use_dma = false;
1634				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1635						  as->addr_rx_bbuf,
1636						  as->dma_addr_rx_bbuf);
1637			}
1638		}
1639		if (!as->use_dma)
1640			dev_info(master->dev.parent,
1641				 "  can not allocate dma coherent memory\n");
1642	}
1643
1644	if (as->caps.has_dma_support && !as->use_dma)
1645		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1646
1647	if (as->use_pdc) {
1648		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1649					0, dev_name(&pdev->dev), master);
1650	} else {
1651		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1652					0, dev_name(&pdev->dev), master);
1653	}
1654	if (ret)
1655		goto out_unmap_regs;
1656
1657	/* Initialize the hardware */
1658	ret = clk_prepare_enable(clk);
1659	if (ret)
1660		goto out_free_irq;
 
 
 
1661
1662	as->spi_clk = clk_get_rate(clk);
 
 
1663
1664	as->fifo_size = 0;
1665	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1666				  &as->fifo_size)) {
1667		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1668	}
1669
1670	atmel_spi_init(as);
1671
1672	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1673	pm_runtime_use_autosuspend(&pdev->dev);
1674	pm_runtime_set_active(&pdev->dev);
1675	pm_runtime_enable(&pdev->dev);
1676
1677	ret = devm_spi_register_master(&pdev->dev, master);
1678	if (ret)
1679		goto out_free_dma;
1680
1681	/* go! */
1682	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1683			atmel_get_version(as), (unsigned long)regs->start,
1684			irq);
1685
1686	return 0;
1687
1688out_free_dma:
1689	pm_runtime_disable(&pdev->dev);
1690	pm_runtime_set_suspended(&pdev->dev);
1691
1692	if (as->use_dma)
1693		atmel_spi_release_dma(master);
1694
1695	spi_writel(as, CR, SPI_BIT(SWRST));
1696	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1697	clk_disable_unprepare(clk);
1698out_free_irq:
1699out_unmap_regs:
 
 
 
 
1700out_free:
 
1701	spi_master_put(master);
1702	return ret;
1703}
1704
1705static int atmel_spi_remove(struct platform_device *pdev)
1706{
1707	struct spi_master	*master = platform_get_drvdata(pdev);
1708	struct atmel_spi	*as = spi_master_get_devdata(master);
1709
1710	pm_runtime_get_sync(&pdev->dev);
1711
1712	/* reset the hardware and block queue progress */
1713	if (as->use_dma) {
1714		atmel_spi_stop_dma(master);
1715		atmel_spi_release_dma(master);
1716		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1717			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1718					  as->addr_tx_bbuf,
1719					  as->dma_addr_tx_bbuf);
1720			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1721					  as->addr_rx_bbuf,
1722					  as->dma_addr_rx_bbuf);
1723		}
1724	}
1725
1726	spin_lock_irq(&as->lock);
 
1727	spi_writel(as, CR, SPI_BIT(SWRST));
1728	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1729	spi_readl(as, SR);
1730	spin_unlock_irq(&as->lock);
1731
1732	clk_disable_unprepare(as->clk);
1733
1734	pm_runtime_put_noidle(&pdev->dev);
1735	pm_runtime_disable(&pdev->dev);
 
 
 
 
1736
1737	return 0;
1738}
1739
1740#ifdef CONFIG_PM
1741static int atmel_spi_runtime_suspend(struct device *dev)
1742{
1743	struct spi_master *master = dev_get_drvdata(dev);
1744	struct atmel_spi *as = spi_master_get_devdata(master);
1745
1746	clk_disable_unprepare(as->clk);
1747	pinctrl_pm_select_sleep_state(dev);
1748
1749	return 0;
1750}
1751
1752static int atmel_spi_runtime_resume(struct device *dev)
1753{
1754	struct spi_master *master = dev_get_drvdata(dev);
1755	struct atmel_spi *as = spi_master_get_devdata(master);
1756
1757	pinctrl_pm_select_default_state(dev);
1758
1759	return clk_prepare_enable(as->clk);
1760}
1761
1762#ifdef CONFIG_PM_SLEEP
1763static int atmel_spi_suspend(struct device *dev)
1764{
1765	struct spi_master *master = dev_get_drvdata(dev);
1766	int ret;
1767
1768	/* Stop the queue running */
1769	ret = spi_master_suspend(master);
1770	if (ret) {
1771		dev_warn(dev, "cannot suspend master\n");
1772		return ret;
1773	}
1774
1775	if (!pm_runtime_suspended(dev))
1776		atmel_spi_runtime_suspend(dev);
1777
 
1778	return 0;
1779}
1780
1781static int atmel_spi_resume(struct device *dev)
1782{
1783	struct spi_master *master = dev_get_drvdata(dev);
1784	struct atmel_spi *as = spi_master_get_devdata(master);
1785	int ret;
1786
1787	ret = clk_prepare_enable(as->clk);
1788	if (ret)
1789		return ret;
1790
1791	atmel_spi_init(as);
1792
1793	clk_disable_unprepare(as->clk);
1794
1795	if (!pm_runtime_suspended(dev)) {
1796		ret = atmel_spi_runtime_resume(dev);
1797		if (ret)
1798			return ret;
1799	}
1800
1801	/* Start the queue running */
1802	ret = spi_master_resume(master);
1803	if (ret)
1804		dev_err(dev, "problem starting queue (%d)\n", ret);
1805
1806	return ret;
1807}
1808#endif
1809
1810static const struct dev_pm_ops atmel_spi_pm_ops = {
1811	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1812	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1813			   atmel_spi_runtime_resume, NULL)
1814};
1815#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1816#else
1817#define ATMEL_SPI_PM_OPS	NULL
 
1818#endif
1819
1820#if defined(CONFIG_OF)
1821static const struct of_device_id atmel_spi_dt_ids[] = {
1822	{ .compatible = "atmel,at91rm9200-spi" },
1823	{ /* sentinel */ }
1824};
1825
1826MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1827#endif
1828
1829static struct platform_driver atmel_spi_driver = {
1830	.driver		= {
1831		.name	= "atmel_spi",
1832		.pm	= ATMEL_SPI_PM_OPS,
1833		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1834	},
1835	.probe		= atmel_spi_probe,
1836	.remove		= atmel_spi_remove,
 
1837};
1838module_platform_driver(atmel_spi_driver);
 
 
 
 
 
 
 
 
 
 
 
1839
1840MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1841MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1842MODULE_LICENSE("GPL");
1843MODULE_ALIAS("platform:atmel_spi");