Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/init.h>
  13#include <linux/clk.h>
  14#include <linux/module.h>
  15#include <linux/platform_device.h>
  16#include <linux/delay.h>
  17#include <linux/dma-mapping.h>
 
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
 
  22
  23#include <asm/io.h>
  24#include <mach/board.h>
  25#include <mach/gpio.h>
  26#include <mach/cpu.h>
 
  27
  28/* SPI register offsets */
  29#define SPI_CR					0x0000
  30#define SPI_MR					0x0004
  31#define SPI_RDR					0x0008
  32#define SPI_TDR					0x000c
  33#define SPI_SR					0x0010
  34#define SPI_IER					0x0014
  35#define SPI_IDR					0x0018
  36#define SPI_IMR					0x001c
  37#define SPI_CSR0				0x0030
  38#define SPI_CSR1				0x0034
  39#define SPI_CSR2				0x0038
  40#define SPI_CSR3				0x003c
 
 
 
  41#define SPI_RPR					0x0100
  42#define SPI_RCR					0x0104
  43#define SPI_TPR					0x0108
  44#define SPI_TCR					0x010c
  45#define SPI_RNPR				0x0110
  46#define SPI_RNCR				0x0114
  47#define SPI_TNPR				0x0118
  48#define SPI_TNCR				0x011c
  49#define SPI_PTCR				0x0120
  50#define SPI_PTSR				0x0124
  51
  52/* Bitfields in CR */
  53#define SPI_SPIEN_OFFSET			0
  54#define SPI_SPIEN_SIZE				1
  55#define SPI_SPIDIS_OFFSET			1
  56#define SPI_SPIDIS_SIZE				1
  57#define SPI_SWRST_OFFSET			7
  58#define SPI_SWRST_SIZE				1
  59#define SPI_LASTXFER_OFFSET			24
  60#define SPI_LASTXFER_SIZE			1
 
 
 
 
 
 
 
 
  61
  62/* Bitfields in MR */
  63#define SPI_MSTR_OFFSET				0
  64#define SPI_MSTR_SIZE				1
  65#define SPI_PS_OFFSET				1
  66#define SPI_PS_SIZE				1
  67#define SPI_PCSDEC_OFFSET			2
  68#define SPI_PCSDEC_SIZE				1
  69#define SPI_FDIV_OFFSET				3
  70#define SPI_FDIV_SIZE				1
  71#define SPI_MODFDIS_OFFSET			4
  72#define SPI_MODFDIS_SIZE			1
 
 
  73#define SPI_LLB_OFFSET				7
  74#define SPI_LLB_SIZE				1
  75#define SPI_PCS_OFFSET				16
  76#define SPI_PCS_SIZE				4
  77#define SPI_DLYBCS_OFFSET			24
  78#define SPI_DLYBCS_SIZE				8
  79
  80/* Bitfields in RDR */
  81#define SPI_RD_OFFSET				0
  82#define SPI_RD_SIZE				16
  83
  84/* Bitfields in TDR */
  85#define SPI_TD_OFFSET				0
  86#define SPI_TD_SIZE				16
  87
  88/* Bitfields in SR */
  89#define SPI_RDRF_OFFSET				0
  90#define SPI_RDRF_SIZE				1
  91#define SPI_TDRE_OFFSET				1
  92#define SPI_TDRE_SIZE				1
  93#define SPI_MODF_OFFSET				2
  94#define SPI_MODF_SIZE				1
  95#define SPI_OVRES_OFFSET			3
  96#define SPI_OVRES_SIZE				1
  97#define SPI_ENDRX_OFFSET			4
  98#define SPI_ENDRX_SIZE				1
  99#define SPI_ENDTX_OFFSET			5
 100#define SPI_ENDTX_SIZE				1
 101#define SPI_RXBUFF_OFFSET			6
 102#define SPI_RXBUFF_SIZE				1
 103#define SPI_TXBUFE_OFFSET			7
 104#define SPI_TXBUFE_SIZE				1
 105#define SPI_NSSR_OFFSET				8
 106#define SPI_NSSR_SIZE				1
 107#define SPI_TXEMPTY_OFFSET			9
 108#define SPI_TXEMPTY_SIZE			1
 109#define SPI_SPIENS_OFFSET			16
 110#define SPI_SPIENS_SIZE				1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111
 112/* Bitfields in CSR0 */
 113#define SPI_CPOL_OFFSET				0
 114#define SPI_CPOL_SIZE				1
 115#define SPI_NCPHA_OFFSET			1
 116#define SPI_NCPHA_SIZE				1
 117#define SPI_CSAAT_OFFSET			3
 118#define SPI_CSAAT_SIZE				1
 119#define SPI_BITS_OFFSET				4
 120#define SPI_BITS_SIZE				4
 121#define SPI_SCBR_OFFSET				8
 122#define SPI_SCBR_SIZE				8
 123#define SPI_DLYBS_OFFSET			16
 124#define SPI_DLYBS_SIZE				8
 125#define SPI_DLYBCT_OFFSET			24
 126#define SPI_DLYBCT_SIZE				8
 127
 128/* Bitfields in RCR */
 129#define SPI_RXCTR_OFFSET			0
 130#define SPI_RXCTR_SIZE				16
 131
 132/* Bitfields in TCR */
 133#define SPI_TXCTR_OFFSET			0
 134#define SPI_TXCTR_SIZE				16
 135
 136/* Bitfields in RNCR */
 137#define SPI_RXNCR_OFFSET			0
 138#define SPI_RXNCR_SIZE				16
 139
 140/* Bitfields in TNCR */
 141#define SPI_TXNCR_OFFSET			0
 142#define SPI_TXNCR_SIZE				16
 143
 144/* Bitfields in PTCR */
 145#define SPI_RXTEN_OFFSET			0
 146#define SPI_RXTEN_SIZE				1
 147#define SPI_RXTDIS_OFFSET			1
 148#define SPI_RXTDIS_SIZE				1
 149#define SPI_TXTEN_OFFSET			8
 150#define SPI_TXTEN_SIZE				1
 151#define SPI_TXTDIS_OFFSET			9
 152#define SPI_TXTDIS_SIZE				1
 153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154/* Constants for BITS */
 155#define SPI_BITS_8_BPT				0
 156#define SPI_BITS_9_BPT				1
 157#define SPI_BITS_10_BPT				2
 158#define SPI_BITS_11_BPT				3
 159#define SPI_BITS_12_BPT				4
 160#define SPI_BITS_13_BPT				5
 161#define SPI_BITS_14_BPT				6
 162#define SPI_BITS_15_BPT				7
 163#define SPI_BITS_16_BPT				8
 
 
 
 164
 165/* Bit manipulation macros */
 166#define SPI_BIT(name) \
 167	(1 << SPI_##name##_OFFSET)
 168#define SPI_BF(name,value) \
 169	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 170#define SPI_BFEXT(name,value) \
 171	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 172#define SPI_BFINS(name,value,old) \
 173	( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 174	  | SPI_BF(name,value))
 175
 176/* Register access macros */
 177#define spi_readl(port,reg) \
 178	__raw_readl((port)->regs + SPI_##reg)
 179#define spi_writel(port,reg,value) \
 180	__raw_writel((value), (port)->regs + SPI_##reg)
 
 
 
 
 
 
 
 181
 
 
 
 
 
 
 
 
 
 
 182
 183/*
 184 * The core SPI transfer engine just talks to a register bank to set up
 185 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 186 * framework provides the base clock, subdivided for each spi_device.
 187 */
 188struct atmel_spi {
 189	spinlock_t		lock;
 
 190
 
 191	void __iomem		*regs;
 192	int			irq;
 193	struct clk		*clk;
 194	struct platform_device	*pdev;
 195	struct spi_device	*stay;
 196
 197	u8			stopping;
 198	struct list_head	queue;
 199	struct spi_transfer	*current_transfer;
 200	unsigned long		current_remaining_bytes;
 201	struct spi_transfer	*next_transfer;
 202	unsigned long		next_remaining_bytes;
 
 
 
 
 
 
 
 
 
 
 203
 204	void			*buffer;
 205	dma_addr_t		buffer_dma;
 
 
 
 206};
 207
 208/* Controller-specific per-slave state */
 209struct atmel_spi_device {
 210	unsigned int		npcs_pin;
 211	u32			csr;
 212};
 213
 214#define BUFFER_SIZE		PAGE_SIZE
 215#define INVALID_DMA_ADDRESS	0xffffffff
 216
 217/*
 218 * Version 2 of the SPI controller has
 219 *  - CR.LASTXFER
 220 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 221 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 222 *  - SPI_CSRx.CSAAT
 223 *  - SPI_CSRx.SBCR allows faster clocking
 224 *
 225 * We can determine the controller version by reading the VERSION
 226 * register, but I haven't checked that it exists on all chips, and
 227 * this is cheaper anyway.
 228 */
 229static bool atmel_spi_is_v2(void)
 230{
 231	return !cpu_is_at91rm9200();
 232}
 233
 234/*
 235 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 236 * they assume that spi slave device state will not change on deselect, so
 237 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 238 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 239 * controllers have CSAAT and friends.
 240 *
 241 * Since the CSAAT functionality is a bit weird on newer controllers as
 242 * well, we use GPIO to control nCSx pins on all controllers, updating
 243 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 244 * support active-high chipselects despite the controller's belief that
 245 * only active-low devices/systems exists.
 246 *
 247 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 248 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 249 * Master on Chip Select 0.")  No workaround exists for that ... so for
 250 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 251 * and (c) will trigger that first erratum in some cases.
 252 *
 253 * TODO: Test if the atmel_spi_is_v2() branch below works on
 254 * AT91RM9200 if we use some other register than CSR0. However, don't
 255 * do this unconditionally since AP7000 has an errata where the BITS
 256 * field in CSR0 overrides all other CSRs.
 257 */
 258
 259static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 260{
 261	struct atmel_spi_device *asd = spi->controller_state;
 262	unsigned active = spi->mode & SPI_CS_HIGH;
 263	u32 mr;
 264
 265	if (atmel_spi_is_v2()) {
 266		/*
 267		 * Always use CSR0. This ensures that the clock
 268		 * switches to the correct idle polarity before we
 269		 * toggle the CS.
 
 
 
 
 270		 */
 271		spi_writel(as, CSR0, asd->csr);
 272		spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
 273				| SPI_BIT(MSTR));
 
 
 
 
 
 
 
 
 
 
 
 274		mr = spi_readl(as, MR);
 275		gpio_set_value(asd->npcs_pin, active);
 276	} else {
 277		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 278		int i;
 279		u32 csr;
 280
 281		/* Make sure clock polarity is correct */
 282		for (i = 0; i < spi->master->num_chipselect; i++) {
 283			csr = spi_readl(as, CSR0 + 4 * i);
 284			if ((csr ^ cpol) & SPI_BIT(CPOL))
 285				spi_writel(as, CSR0 + 4 * i,
 286						csr ^ SPI_BIT(CPOL));
 287		}
 288
 289		mr = spi_readl(as, MR);
 290		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 291		if (spi->chip_select != 0)
 292			gpio_set_value(asd->npcs_pin, active);
 293		spi_writel(as, MR, mr);
 294	}
 295
 296	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 297			asd->npcs_pin, active ? " (high)" : "",
 298			mr);
 299}
 300
 301static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 302{
 303	struct atmel_spi_device *asd = spi->controller_state;
 304	unsigned active = spi->mode & SPI_CS_HIGH;
 305	u32 mr;
 306
 
 
 
 
 
 307	/* only deactivate *this* device; sometimes transfers to
 308	 * another device may be active when this routine is called.
 309	 */
 310	mr = spi_readl(as, MR);
 311	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 312		mr = SPI_BFINS(PCS, 0xf, mr);
 313		spi_writel(as, MR, mr);
 314	}
 315
 316	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 317			asd->npcs_pin, active ? " (low)" : "",
 318			mr);
 319
 320	if (atmel_spi_is_v2() || spi->chip_select != 0)
 321		gpio_set_value(asd->npcs_pin, !active);
 322}
 323
 324static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
 325					struct spi_transfer *xfer)
 326{
 327	return msg->transfers.prev == &xfer->transfer_list;
 328}
 329
 330static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
 331{
 332	return xfer->delay_usecs == 0 && !xfer->cs_change;
 333}
 334
 335static void atmel_spi_next_xfer_data(struct spi_master *master,
 336				struct spi_transfer *xfer,
 337				dma_addr_t *tx_dma,
 338				dma_addr_t *rx_dma,
 339				u32 *plen)
 340{
 341	struct atmel_spi	*as = spi_master_get_devdata(master);
 342	u32			len = *plen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343
 344	/* use scratch buffer only when rx or tx data is unspecified */
 345	if (xfer->rx_buf)
 346		*rx_dma = xfer->rx_dma + xfer->len - *plen;
 347	else {
 348		*rx_dma = as->buffer_dma;
 349		if (len > BUFFER_SIZE)
 350			len = BUFFER_SIZE;
 351	}
 352	if (xfer->tx_buf)
 353		*tx_dma = xfer->tx_dma + xfer->len - *plen;
 354	else {
 355		*tx_dma = as->buffer_dma;
 356		if (len > BUFFER_SIZE)
 357			len = BUFFER_SIZE;
 358		memset(as->buffer, 0, len);
 359		dma_sync_single_for_device(&as->pdev->dev,
 360				as->buffer_dma, len, DMA_TO_DEVICE);
 361	}
 
 
 
 
 
 
 
 362
 363	*plen = len;
 
 
 
 
 
 364}
 365
 366/*
 367 * Submit next transfer for DMA.
 368 * lock is held, spi irq is blocked
 369 */
 370static void atmel_spi_next_xfer(struct spi_master *master,
 371				struct spi_message *msg)
 372{
 373	struct atmel_spi	*as = spi_master_get_devdata(master);
 374	struct spi_transfer	*xfer;
 375	u32			len, remaining;
 376	u32			ieval;
 377	dma_addr_t		tx_dma, rx_dma;
 378
 379	if (!as->current_transfer)
 380		xfer = list_entry(msg->transfers.next,
 381				struct spi_transfer, transfer_list);
 382	else if (!as->next_transfer)
 383		xfer = list_entry(as->current_transfer->transfer_list.next,
 384				struct spi_transfer, transfer_list);
 
 
 
 385	else
 386		xfer = NULL;
 387
 388	if (xfer) {
 389		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 
 
 390
 391		len = xfer->len;
 392		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 393		remaining = xfer->len - len;
 394
 395		spi_writel(as, RPR, rx_dma);
 396		spi_writel(as, TPR, tx_dma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397
 398		if (msg->spi->bits_per_word > 8)
 399			len >>= 1;
 400		spi_writel(as, RCR, len);
 401		spi_writel(as, TCR, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 402
 403		dev_dbg(&msg->spi->dev,
 404			"  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 405			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 406			xfer->rx_buf, xfer->rx_dma);
 
 
 
 
 407	} else {
 408		xfer = as->next_transfer;
 409		remaining = as->next_remaining_bytes;
 
 
 
 
 410	}
 
 
 411
 412	as->current_transfer = xfer;
 413	as->current_remaining_bytes = remaining;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414
 415	if (remaining > 0)
 416		len = remaining;
 417	else if (!atmel_spi_xfer_is_last(msg, xfer)
 418			&& atmel_spi_xfer_can_be_chained(xfer)) {
 419		xfer = list_entry(xfer->transfer_list.next,
 420				struct spi_transfer, transfer_list);
 421		len = xfer->len;
 422	} else
 423		xfer = NULL;
 
 
 
 
 424
 425	as->next_transfer = xfer;
 426
 427	if (xfer) {
 428		u32	total;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429
 430		total = len;
 
 431		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 432		as->next_remaining_bytes = total - len;
 433
 434		spi_writel(as, RNPR, rx_dma);
 435		spi_writel(as, TNPR, tx_dma);
 436
 437		if (msg->spi->bits_per_word > 8)
 438			len >>= 1;
 439		spi_writel(as, RNCR, len);
 440		spi_writel(as, TNCR, len);
 441
 442		dev_dbg(&msg->spi->dev,
 443			"  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 444			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 445			xfer->rx_buf, xfer->rx_dma);
 446		ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 447	} else {
 448		spi_writel(as, RNCR, 0);
 449		spi_writel(as, TNCR, 0);
 450		ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 451	}
 452
 453	/* REVISIT: We're waiting for ENDRX before we start the next
 454	 * transfer because we need to handle some difficult timing
 455	 * issues otherwise. If we wait for ENDTX in one transfer and
 456	 * then starts waiting for ENDRX in the next, it's difficult
 457	 * to tell the difference between the ENDRX interrupt we're
 458	 * actually waiting for and the ENDRX interrupt of the
 459	 * previous transfer.
 460	 *
 461	 * It should be doable, though. Just not now...
 462	 */
 463	spi_writel(as, IER, ieval);
 464	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 465}
 466
 467static void atmel_spi_next_message(struct spi_master *master)
 468{
 469	struct atmel_spi	*as = spi_master_get_devdata(master);
 470	struct spi_message	*msg;
 471	struct spi_device	*spi;
 472
 473	BUG_ON(as->current_transfer);
 474
 475	msg = list_entry(as->queue.next, struct spi_message, queue);
 476	spi = msg->spi;
 477
 478	dev_dbg(master->dev.parent, "start message %p for %s\n",
 479			msg, dev_name(&spi->dev));
 480
 481	/* select chip if it's not still active */
 482	if (as->stay) {
 483		if (as->stay != spi) {
 484			cs_deactivate(as, as->stay);
 485			cs_activate(as, spi);
 486		}
 487		as->stay = NULL;
 488	} else
 489		cs_activate(as, spi);
 490
 491	atmel_spi_next_xfer(master, msg);
 492}
 493
 494/*
 495 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 496 *  - The buffer is either valid for CPU access, else NULL
 497 *  - If the buffer is valid, so is its DMA address
 498 *
 499 * This driver manages the dma address unless message->is_dma_mapped.
 500 */
 501static int
 502atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 503{
 504	struct device	*dev = &as->pdev->dev;
 505
 506	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 507	if (xfer->tx_buf) {
 508		/* tx_buf is a const void* where we need a void * for the dma
 509		 * mapping */
 510		void *nonconst_tx = (void *)xfer->tx_buf;
 511
 512		xfer->tx_dma = dma_map_single(dev,
 513				nonconst_tx, xfer->len,
 514				DMA_TO_DEVICE);
 515		if (dma_mapping_error(dev, xfer->tx_dma))
 516			return -ENOMEM;
 517	}
 518	if (xfer->rx_buf) {
 519		xfer->rx_dma = dma_map_single(dev,
 520				xfer->rx_buf, xfer->len,
 521				DMA_FROM_DEVICE);
 522		if (dma_mapping_error(dev, xfer->rx_dma)) {
 523			if (xfer->tx_buf)
 524				dma_unmap_single(dev,
 525						xfer->tx_dma, xfer->len,
 526						DMA_TO_DEVICE);
 527			return -ENOMEM;
 528		}
 529	}
 530	return 0;
 531}
 532
 533static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 534				     struct spi_transfer *xfer)
 535{
 536	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 537		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 538				 xfer->len, DMA_TO_DEVICE);
 539	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 540		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 541				 xfer->len, DMA_FROM_DEVICE);
 542}
 543
 544static void
 545atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
 546		struct spi_message *msg, int status, int stay)
 547{
 548	if (!stay || status < 0)
 549		cs_deactivate(as, msg->spi);
 550	else
 551		as->stay = msg->spi;
 552
 553	list_del(&msg->queue);
 554	msg->status = status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	dev_dbg(master->dev.parent,
 557		"xfer complete: %u bytes transferred\n",
 558		msg->actual_length);
 
 
 
 
 
 
 
 
 
 
 
 559
 560	spin_unlock(&as->lock);
 561	msg->complete(msg->context);
 562	spin_lock(&as->lock);
 
 563
 564	as->current_transfer = NULL;
 565	as->next_transfer = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567	/* continue if needed */
 568	if (list_empty(&as->queue) || as->stopping)
 569		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 
 
 
 
 
 
 
 570	else
 571		atmel_spi_next_message(master);
 572}
 573
 
 
 
 574static irqreturn_t
 575atmel_spi_interrupt(int irq, void *dev_id)
 576{
 577	struct spi_master	*master = dev_id;
 578	struct atmel_spi	*as = spi_master_get_devdata(master);
 579	struct spi_message	*msg;
 580	struct spi_transfer	*xfer;
 581	u32			status, pending, imr;
 
 582	int			ret = IRQ_NONE;
 583
 584	spin_lock(&as->lock);
 585
 586	xfer = as->current_transfer;
 587	msg = list_entry(as->queue.next, struct spi_message, queue);
 588
 589	imr = spi_readl(as, IMR);
 590	status = spi_readl(as, SR);
 591	pending = status & imr;
 592
 593	if (pending & SPI_BIT(OVRES)) {
 594		int timeout;
 595
 596		ret = IRQ_HANDLED;
 597
 598		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
 599				     | SPI_BIT(OVRES)));
 600
 601		/*
 602		 * When we get an overrun, we disregard the current
 603		 * transfer. Data will not be copied back from any
 604		 * bounce buffer and msg->actual_len will not be
 605		 * updated with the last xfer.
 606		 *
 607		 * We will also not process any remaning transfers in
 608		 * the message.
 609		 *
 610		 * First, stop the transfer and unmap the DMA buffers.
 611		 */
 612		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 613		if (!msg->is_dma_mapped)
 614			atmel_spi_dma_unmap_xfer(master, xfer);
 615
 616		/* REVISIT: udelay in irq is unfriendly */
 617		if (xfer->delay_usecs)
 618			udelay(xfer->delay_usecs);
 619
 620		dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
 621			 spi_readl(as, TCR), spi_readl(as, RCR));
 622
 623		/*
 624		 * Clean up DMA registers and make sure the data
 625		 * registers are empty.
 626		 */
 627		spi_writel(as, RNCR, 0);
 628		spi_writel(as, TNCR, 0);
 629		spi_writel(as, RCR, 0);
 630		spi_writel(as, TCR, 0);
 631		for (timeout = 1000; timeout; timeout--)
 632			if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
 633				break;
 634		if (!timeout)
 635			dev_warn(master->dev.parent,
 636				 "timeout waiting for TXEMPTY");
 637		while (spi_readl(as, SR) & SPI_BIT(RDRF))
 638			spi_readl(as, RDR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639
 640		/* Clear any overrun happening while cleaning up */
 641		spi_readl(as, SR);
 642
 643		atmel_spi_msg_done(master, as, msg, -EIO, 0);
 
 
 
 644	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
 645		ret = IRQ_HANDLED;
 646
 647		spi_writel(as, IDR, pending);
 648
 649		if (as->current_remaining_bytes == 0) {
 650			msg->actual_length += xfer->len;
 
 
 
 651
 652			if (!msg->is_dma_mapped)
 653				atmel_spi_dma_unmap_xfer(master, xfer);
 
 
 654
 655			/* REVISIT: udelay in irq is unfriendly */
 656			if (xfer->delay_usecs)
 657				udelay(xfer->delay_usecs);
 658
 659			if (atmel_spi_xfer_is_last(msg, xfer)) {
 660				/* report completed message */
 661				atmel_spi_msg_done(master, as, msg, 0,
 662						xfer->cs_change);
 663			} else {
 664				if (xfer->cs_change) {
 665					cs_deactivate(as, msg->spi);
 666					udelay(1);
 667					cs_activate(as, msg->spi);
 668				}
 669
 670				/*
 671				 * Not done yet. Submit the next transfer.
 672				 *
 673				 * FIXME handle protocol options for xfer
 674				 */
 675				atmel_spi_next_xfer(master, msg);
 676			}
 677		} else {
 678			/*
 679			 * Keep going, we still have data to send in
 680			 * the current transfer.
 681			 */
 682			atmel_spi_next_xfer(master, msg);
 683		}
 684	}
 685
 686	spin_unlock(&as->lock);
 
 687
 688	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689}
 690
 691static int atmel_spi_setup(struct spi_device *spi)
 692{
 693	struct atmel_spi	*as;
 694	struct atmel_spi_device	*asd;
 695	u32			scbr, csr;
 696	unsigned int		bits = spi->bits_per_word;
 697	unsigned long		bus_hz;
 698	unsigned int		npcs_pin;
 699	int			ret;
 700
 701	as = spi_master_get_devdata(spi->master);
 702
 703	if (as->stopping)
 704		return -ESHUTDOWN;
 705
 706	if (spi->chip_select > spi->master->num_chipselect) {
 707		dev_dbg(&spi->dev,
 708				"setup: invalid chipselect %u (%u defined)\n",
 709				spi->chip_select, spi->master->num_chipselect);
 710		return -EINVAL;
 711	}
 712
 713	if (bits < 8 || bits > 16) {
 714		dev_dbg(&spi->dev,
 715				"setup: invalid bits_per_word %u (8 to 16)\n",
 716				bits);
 717		return -EINVAL;
 718	}
 719
 720	/* see notes above re chipselect */
 721	if (!atmel_spi_is_v2()
 722			&& spi->chip_select == 0
 723			&& (spi->mode & SPI_CS_HIGH)) {
 724		dev_dbg(&spi->dev, "setup: can't be active-high\n");
 725		return -EINVAL;
 726	}
 727
 728	/* v1 chips start out at half the peripheral bus speed. */
 729	bus_hz = clk_get_rate(as->clk);
 730	if (!atmel_spi_is_v2())
 731		bus_hz /= 2;
 
 
 732
 733	if (spi->max_speed_hz) {
 734		/*
 735		 * Calculate the lowest divider that satisfies the
 736		 * constraint, assuming div32/fdiv/mbz == 0.
 737		 */
 738		scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
 739
 740		/*
 741		 * If the resulting divider doesn't fit into the
 742		 * register bitfield, we can't satisfy the constraint.
 743		 */
 744		if (scbr >= (1 << SPI_SCBR_SIZE)) {
 745			dev_dbg(&spi->dev,
 746				"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 747				spi->max_speed_hz, scbr, bus_hz/255);
 748			return -EINVAL;
 749		}
 750	} else
 751		/* speed zero means "as slow as possible" */
 752		scbr = 0xff;
 753
 754	csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
 755	if (spi->mode & SPI_CPOL)
 756		csr |= SPI_BIT(CPOL);
 757	if (!(spi->mode & SPI_CPHA))
 758		csr |= SPI_BIT(NCPHA);
 759
 760	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
 761	 *
 762	 * DLYBCT would add delays between words, slowing down transfers.
 763	 * It could potentially be useful to cope with DMA bottlenecks, but
 764	 * in those cases it's probably best to just use a lower bitrate.
 765	 */
 766	csr |= SPI_BF(DLYBS, 0);
 767	csr |= SPI_BF(DLYBCT, 0);
 768
 769	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
 770	npcs_pin = (unsigned int)spi->controller_data;
 
 
 
 
 
 
 
 771	asd = spi->controller_state;
 772	if (!asd) {
 773		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
 774		if (!asd)
 775			return -ENOMEM;
 776
 777		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
 778		if (ret) {
 779			kfree(asd);
 780			return ret;
 781		}
 782
 783		asd->npcs_pin = npcs_pin;
 784		spi->controller_state = asd;
 785		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
 786	} else {
 787		unsigned long		flags;
 788
 789		spin_lock_irqsave(&as->lock, flags);
 790		if (as->stay == spi)
 791			as->stay = NULL;
 792		cs_deactivate(as, spi);
 793		spin_unlock_irqrestore(&as->lock, flags);
 794	}
 795
 796	asd->csr = csr;
 797
 798	dev_dbg(&spi->dev,
 799		"setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
 800		bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
 801
 802	if (!atmel_spi_is_v2())
 803		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 804
 805	return 0;
 806}
 807
 808static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809{
 810	struct atmel_spi	*as;
 811	struct spi_transfer	*xfer;
 812	unsigned long		flags;
 813	struct device		*controller = spi->master->dev.parent;
 814	u8			bits;
 
 815	struct atmel_spi_device	*asd;
 
 
 
 816
 817	as = spi_master_get_devdata(spi->master);
 818
 819	dev_dbg(controller, "new message %p submitted for %s\n",
 820			msg, dev_name(&spi->dev));
 821
 822	if (unlikely(list_empty(&msg->transfers)))
 823		return -EINVAL;
 
 
 
 
 
 824
 825	if (as->stopping)
 826		return -ESHUTDOWN;
 
 
 
 
 
 
 
 827
 828	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 829		if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
 830			dev_dbg(&spi->dev, "missing rx or tx buf\n");
 831			return -EINVAL;
 832		}
 833
 834		if (xfer->bits_per_word) {
 835			asd = spi->controller_state;
 836			bits = (asd->csr >> 4) & 0xf;
 837			if (bits != xfer->bits_per_word - 8) {
 838				dev_dbg(&spi->dev, "you can't yet change "
 839					 "bits_per_word in transfers\n");
 840				return -ENOPROTOOPT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841			}
 
 
 
 
 842		}
 843
 844		/* FIXME implement these protocol options!! */
 845		if (xfer->speed_hz) {
 846			dev_dbg(&spi->dev, "no protocol options yet\n");
 847			return -ENOPROTOOPT;
 
 848		}
 849
 850		/*
 851		 * DMA map early, for performance (empties dcache ASAP) and
 852		 * better fault reporting.  This is a DMA-only driver.
 853		 *
 854		 * NOTE that if dma_unmap_single() ever starts to do work on
 855		 * platforms supported by this driver, we would need to clean
 856		 * up mappings for previously-mapped transfers.
 857		 */
 858		if (!msg->is_dma_mapped) {
 859			if (atmel_spi_dma_map_xfer(as, xfer) < 0)
 860				return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861		}
 862	}
 863
 864#ifdef VERBOSE
 865	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 866		dev_dbg(controller,
 867			"  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 868			xfer, xfer->len,
 869			xfer->tx_buf, xfer->tx_dma,
 870			xfer->rx_buf, xfer->rx_dma);
 871	}
 872#endif
 873
 874	msg->status = -EINPROGRESS;
 875	msg->actual_length = 0;
 876
 877	spin_lock_irqsave(&as->lock, flags);
 878	list_add_tail(&msg->queue, &as->queue);
 879	if (!as->current_transfer)
 880		atmel_spi_next_message(spi->master);
 881	spin_unlock_irqrestore(&as->lock, flags);
 882
 883	return 0;
 
 
 
 884}
 885
 886static void atmel_spi_cleanup(struct spi_device *spi)
 887{
 888	struct atmel_spi	*as = spi_master_get_devdata(spi->master);
 889	struct atmel_spi_device	*asd = spi->controller_state;
 890	unsigned		gpio = (unsigned) spi->controller_data;
 891	unsigned long		flags;
 892
 893	if (!asd)
 894		return;
 895
 896	spin_lock_irqsave(&as->lock, flags);
 897	if (as->stay == spi) {
 898		as->stay = NULL;
 899		cs_deactivate(as, spi);
 900	}
 901	spin_unlock_irqrestore(&as->lock, flags);
 902
 903	spi->controller_state = NULL;
 904	gpio_free(gpio);
 905	kfree(asd);
 906}
 907
 908/*-------------------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909
 910static int __init atmel_spi_probe(struct platform_device *pdev)
 911{
 912	struct resource		*regs;
 913	int			irq;
 914	struct clk		*clk;
 915	int			ret;
 916	struct spi_master	*master;
 917	struct atmel_spi	*as;
 918
 
 
 
 919	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 920	if (!regs)
 921		return -ENXIO;
 922
 923	irq = platform_get_irq(pdev, 0);
 924	if (irq < 0)
 925		return irq;
 926
 927	clk = clk_get(&pdev->dev, "spi_clk");
 928	if (IS_ERR(clk))
 929		return PTR_ERR(clk);
 930
 931	/* setup spi core then atmel-specific driver state */
 932	ret = -ENOMEM;
 933	master = spi_alloc_master(&pdev->dev, sizeof *as);
 934	if (!master)
 935		goto out_free;
 936
 937	/* the spi->mode bits understood by this driver: */
 
 938	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
 939
 
 940	master->bus_num = pdev->id;
 941	master->num_chipselect = 4;
 942	master->setup = atmel_spi_setup;
 943	master->transfer = atmel_spi_transfer;
 
 
 
 944	master->cleanup = atmel_spi_cleanup;
 
 
 
 945	platform_set_drvdata(pdev, master);
 946
 947	as = spi_master_get_devdata(master);
 948
 949	/*
 950	 * Scratch buffer is used for throwaway rx and tx data.
 951	 * It's coherent to minimize dcache pollution.
 952	 */
 953	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
 954					&as->buffer_dma, GFP_KERNEL);
 955	if (!as->buffer)
 956		goto out_free;
 957
 958	spin_lock_init(&as->lock);
 959	INIT_LIST_HEAD(&as->queue);
 960	as->pdev = pdev;
 961	as->regs = ioremap(regs->start, resource_size(regs));
 962	if (!as->regs)
 963		goto out_free_buffer;
 
 
 
 964	as->irq = irq;
 965	as->clk = clk;
 966
 967	ret = request_irq(irq, atmel_spi_interrupt, 0,
 968			dev_name(&pdev->dev), master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969	if (ret)
 970		goto out_unmap_regs;
 971
 972	/* Initialize the hardware */
 973	clk_enable(clk);
 974	spi_writel(as, CR, SPI_BIT(SWRST));
 975	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 976	spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
 977	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 978	spi_writel(as, CR, SPI_BIT(SPIEN));
 979
 980	/* go! */
 981	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
 982			(unsigned long)regs->start, irq);
 
 
 
 
 983
 984	ret = spi_register_master(master);
 
 
 
 
 
 
 
 985	if (ret)
 986		goto out_reset_hw;
 
 
 
 
 
 987
 988	return 0;
 989
 990out_reset_hw:
 
 
 
 
 
 
 991	spi_writel(as, CR, SPI_BIT(SWRST));
 992	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 993	clk_disable(clk);
 994	free_irq(irq, master);
 995out_unmap_regs:
 996	iounmap(as->regs);
 997out_free_buffer:
 998	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
 999			as->buffer_dma);
1000out_free:
1001	clk_put(clk);
1002	spi_master_put(master);
1003	return ret;
1004}
1005
1006static int __exit atmel_spi_remove(struct platform_device *pdev)
1007{
1008	struct spi_master	*master = platform_get_drvdata(pdev);
1009	struct atmel_spi	*as = spi_master_get_devdata(master);
1010	struct spi_message	*msg;
 
1011
1012	/* reset the hardware and block queue progress */
 
 
 
 
 
 
 
 
 
 
 
 
 
1013	spin_lock_irq(&as->lock);
1014	as->stopping = 1;
1015	spi_writel(as, CR, SPI_BIT(SWRST));
1016	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1017	spi_readl(as, SR);
1018	spin_unlock_irq(&as->lock);
1019
1020	/* Terminate remaining queued transfers */
1021	list_for_each_entry(msg, &as->queue, queue) {
1022		/* REVISIT unmapping the dma is a NOP on ARM and AVR32
1023		 * but we shouldn't depend on that...
1024		 */
1025		msg->status = -ESHUTDOWN;
1026		msg->complete(msg->context);
1027	}
1028
1029	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1030			as->buffer_dma);
1031
1032	clk_disable(as->clk);
1033	clk_put(as->clk);
1034	free_irq(as->irq, master);
1035	iounmap(as->regs);
1036
1037	spi_unregister_master(master);
 
 
 
 
 
 
1038
1039	return 0;
1040}
1041
1042#ifdef	CONFIG_PM
 
 
 
1043
1044static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
 
 
 
 
 
1045{
1046	struct spi_master	*master = platform_get_drvdata(pdev);
1047	struct atmel_spi	*as = spi_master_get_devdata(master);
 
 
 
 
 
 
 
 
1048
1049	clk_disable(as->clk);
1050	return 0;
1051}
1052
1053static int atmel_spi_resume(struct platform_device *pdev)
1054{
1055	struct spi_master	*master = platform_get_drvdata(pdev);
1056	struct atmel_spi	*as = spi_master_get_devdata(master);
 
1057
1058	clk_enable(as->clk);
1059	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060}
1061
1062#else
1063#define	atmel_spi_suspend	NULL
1064#define	atmel_spi_resume	NULL
1065#endif
 
 
 
 
 
 
1066
 
1067
1068static struct platform_driver atmel_spi_driver = {
1069	.driver		= {
1070		.name	= "atmel_spi",
1071		.owner	= THIS_MODULE,
 
1072	},
1073	.suspend	= atmel_spi_suspend,
1074	.resume		= atmel_spi_resume,
1075	.remove		= __exit_p(atmel_spi_remove),
1076};
1077
1078static int __init atmel_spi_init(void)
1079{
1080	return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe);
1081}
1082module_init(atmel_spi_init);
1083
1084static void __exit atmel_spi_exit(void)
1085{
1086	platform_driver_unregister(&atmel_spi_driver);
1087}
1088module_exit(atmel_spi_exit);
1089
1090MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1091MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1092MODULE_LICENSE("GPL");
1093MODULE_ALIAS("platform:atmel_spi");
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Atmel AT32 and AT91 SPI Controllers
   4 *
   5 * Copyright (C) 2006 Atmel Corporation
 
 
 
 
   6 */
   7
   8#include <linux/kernel.h>
 
   9#include <linux/clk.h>
  10#include <linux/module.h>
  11#include <linux/platform_device.h>
  12#include <linux/delay.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/dmaengine.h>
  15#include <linux/err.h>
  16#include <linux/interrupt.h>
  17#include <linux/spi/spi.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20
  21#include <linux/io.h>
  22#include <linux/gpio/consumer.h>
  23#include <linux/pinctrl/consumer.h>
  24#include <linux/pm_runtime.h>
  25#include <trace/events/spi.h>
  26
  27/* SPI register offsets */
  28#define SPI_CR					0x0000
  29#define SPI_MR					0x0004
  30#define SPI_RDR					0x0008
  31#define SPI_TDR					0x000c
  32#define SPI_SR					0x0010
  33#define SPI_IER					0x0014
  34#define SPI_IDR					0x0018
  35#define SPI_IMR					0x001c
  36#define SPI_CSR0				0x0030
  37#define SPI_CSR1				0x0034
  38#define SPI_CSR2				0x0038
  39#define SPI_CSR3				0x003c
  40#define SPI_FMR					0x0040
  41#define SPI_FLR					0x0044
  42#define SPI_VERSION				0x00fc
  43#define SPI_RPR					0x0100
  44#define SPI_RCR					0x0104
  45#define SPI_TPR					0x0108
  46#define SPI_TCR					0x010c
  47#define SPI_RNPR				0x0110
  48#define SPI_RNCR				0x0114
  49#define SPI_TNPR				0x0118
  50#define SPI_TNCR				0x011c
  51#define SPI_PTCR				0x0120
  52#define SPI_PTSR				0x0124
  53
  54/* Bitfields in CR */
  55#define SPI_SPIEN_OFFSET			0
  56#define SPI_SPIEN_SIZE				1
  57#define SPI_SPIDIS_OFFSET			1
  58#define SPI_SPIDIS_SIZE				1
  59#define SPI_SWRST_OFFSET			7
  60#define SPI_SWRST_SIZE				1
  61#define SPI_LASTXFER_OFFSET			24
  62#define SPI_LASTXFER_SIZE			1
  63#define SPI_TXFCLR_OFFSET			16
  64#define SPI_TXFCLR_SIZE				1
  65#define SPI_RXFCLR_OFFSET			17
  66#define SPI_RXFCLR_SIZE				1
  67#define SPI_FIFOEN_OFFSET			30
  68#define SPI_FIFOEN_SIZE				1
  69#define SPI_FIFODIS_OFFSET			31
  70#define SPI_FIFODIS_SIZE			1
  71
  72/* Bitfields in MR */
  73#define SPI_MSTR_OFFSET				0
  74#define SPI_MSTR_SIZE				1
  75#define SPI_PS_OFFSET				1
  76#define SPI_PS_SIZE				1
  77#define SPI_PCSDEC_OFFSET			2
  78#define SPI_PCSDEC_SIZE				1
  79#define SPI_FDIV_OFFSET				3
  80#define SPI_FDIV_SIZE				1
  81#define SPI_MODFDIS_OFFSET			4
  82#define SPI_MODFDIS_SIZE			1
  83#define SPI_WDRBT_OFFSET			5
  84#define SPI_WDRBT_SIZE				1
  85#define SPI_LLB_OFFSET				7
  86#define SPI_LLB_SIZE				1
  87#define SPI_PCS_OFFSET				16
  88#define SPI_PCS_SIZE				4
  89#define SPI_DLYBCS_OFFSET			24
  90#define SPI_DLYBCS_SIZE				8
  91
  92/* Bitfields in RDR */
  93#define SPI_RD_OFFSET				0
  94#define SPI_RD_SIZE				16
  95
  96/* Bitfields in TDR */
  97#define SPI_TD_OFFSET				0
  98#define SPI_TD_SIZE				16
  99
 100/* Bitfields in SR */
 101#define SPI_RDRF_OFFSET				0
 102#define SPI_RDRF_SIZE				1
 103#define SPI_TDRE_OFFSET				1
 104#define SPI_TDRE_SIZE				1
 105#define SPI_MODF_OFFSET				2
 106#define SPI_MODF_SIZE				1
 107#define SPI_OVRES_OFFSET			3
 108#define SPI_OVRES_SIZE				1
 109#define SPI_ENDRX_OFFSET			4
 110#define SPI_ENDRX_SIZE				1
 111#define SPI_ENDTX_OFFSET			5
 112#define SPI_ENDTX_SIZE				1
 113#define SPI_RXBUFF_OFFSET			6
 114#define SPI_RXBUFF_SIZE				1
 115#define SPI_TXBUFE_OFFSET			7
 116#define SPI_TXBUFE_SIZE				1
 117#define SPI_NSSR_OFFSET				8
 118#define SPI_NSSR_SIZE				1
 119#define SPI_TXEMPTY_OFFSET			9
 120#define SPI_TXEMPTY_SIZE			1
 121#define SPI_SPIENS_OFFSET			16
 122#define SPI_SPIENS_SIZE				1
 123#define SPI_TXFEF_OFFSET			24
 124#define SPI_TXFEF_SIZE				1
 125#define SPI_TXFFF_OFFSET			25
 126#define SPI_TXFFF_SIZE				1
 127#define SPI_TXFTHF_OFFSET			26
 128#define SPI_TXFTHF_SIZE				1
 129#define SPI_RXFEF_OFFSET			27
 130#define SPI_RXFEF_SIZE				1
 131#define SPI_RXFFF_OFFSET			28
 132#define SPI_RXFFF_SIZE				1
 133#define SPI_RXFTHF_OFFSET			29
 134#define SPI_RXFTHF_SIZE				1
 135#define SPI_TXFPTEF_OFFSET			30
 136#define SPI_TXFPTEF_SIZE			1
 137#define SPI_RXFPTEF_OFFSET			31
 138#define SPI_RXFPTEF_SIZE			1
 139
 140/* Bitfields in CSR0 */
 141#define SPI_CPOL_OFFSET				0
 142#define SPI_CPOL_SIZE				1
 143#define SPI_NCPHA_OFFSET			1
 144#define SPI_NCPHA_SIZE				1
 145#define SPI_CSAAT_OFFSET			3
 146#define SPI_CSAAT_SIZE				1
 147#define SPI_BITS_OFFSET				4
 148#define SPI_BITS_SIZE				4
 149#define SPI_SCBR_OFFSET				8
 150#define SPI_SCBR_SIZE				8
 151#define SPI_DLYBS_OFFSET			16
 152#define SPI_DLYBS_SIZE				8
 153#define SPI_DLYBCT_OFFSET			24
 154#define SPI_DLYBCT_SIZE				8
 155
 156/* Bitfields in RCR */
 157#define SPI_RXCTR_OFFSET			0
 158#define SPI_RXCTR_SIZE				16
 159
 160/* Bitfields in TCR */
 161#define SPI_TXCTR_OFFSET			0
 162#define SPI_TXCTR_SIZE				16
 163
 164/* Bitfields in RNCR */
 165#define SPI_RXNCR_OFFSET			0
 166#define SPI_RXNCR_SIZE				16
 167
 168/* Bitfields in TNCR */
 169#define SPI_TXNCR_OFFSET			0
 170#define SPI_TXNCR_SIZE				16
 171
 172/* Bitfields in PTCR */
 173#define SPI_RXTEN_OFFSET			0
 174#define SPI_RXTEN_SIZE				1
 175#define SPI_RXTDIS_OFFSET			1
 176#define SPI_RXTDIS_SIZE				1
 177#define SPI_TXTEN_OFFSET			8
 178#define SPI_TXTEN_SIZE				1
 179#define SPI_TXTDIS_OFFSET			9
 180#define SPI_TXTDIS_SIZE				1
 181
 182/* Bitfields in FMR */
 183#define SPI_TXRDYM_OFFSET			0
 184#define SPI_TXRDYM_SIZE				2
 185#define SPI_RXRDYM_OFFSET			4
 186#define SPI_RXRDYM_SIZE				2
 187#define SPI_TXFTHRES_OFFSET			16
 188#define SPI_TXFTHRES_SIZE			6
 189#define SPI_RXFTHRES_OFFSET			24
 190#define SPI_RXFTHRES_SIZE			6
 191
 192/* Bitfields in FLR */
 193#define SPI_TXFL_OFFSET				0
 194#define SPI_TXFL_SIZE				6
 195#define SPI_RXFL_OFFSET				16
 196#define SPI_RXFL_SIZE				6
 197
 198/* Constants for BITS */
 199#define SPI_BITS_8_BPT				0
 200#define SPI_BITS_9_BPT				1
 201#define SPI_BITS_10_BPT				2
 202#define SPI_BITS_11_BPT				3
 203#define SPI_BITS_12_BPT				4
 204#define SPI_BITS_13_BPT				5
 205#define SPI_BITS_14_BPT				6
 206#define SPI_BITS_15_BPT				7
 207#define SPI_BITS_16_BPT				8
 208#define SPI_ONE_DATA				0
 209#define SPI_TWO_DATA				1
 210#define SPI_FOUR_DATA				2
 211
 212/* Bit manipulation macros */
 213#define SPI_BIT(name) \
 214	(1 << SPI_##name##_OFFSET)
 215#define SPI_BF(name, value) \
 216	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 217#define SPI_BFEXT(name, value) \
 218	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 219#define SPI_BFINS(name, value, old) \
 220	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 221	  | SPI_BF(name, value))
 222
 223/* Register access macros */
 224#define spi_readl(port, reg) \
 225	readl_relaxed((port)->regs + SPI_##reg)
 226#define spi_writel(port, reg, value) \
 227	writel_relaxed((value), (port)->regs + SPI_##reg)
 228#define spi_writew(port, reg, value) \
 229	writew_relaxed((value), (port)->regs + SPI_##reg)
 230
 231/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 232 * cache operations; better heuristics consider wordsize and bitrate.
 233 */
 234#define DMA_MIN_BYTES	16
 235
 236#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
 237
 238#define AUTOSUSPEND_TIMEOUT	2000
 239
 240struct atmel_spi_caps {
 241	bool	is_spi2;
 242	bool	has_wdrbt;
 243	bool	has_dma_support;
 244	bool	has_pdc_support;
 245};
 246
 247/*
 248 * The core SPI transfer engine just talks to a register bank to set up
 249 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 250 * framework provides the base clock, subdivided for each spi_device.
 251 */
 252struct atmel_spi {
 253	spinlock_t		lock;
 254	unsigned long		flags;
 255
 256	phys_addr_t		phybase;
 257	void __iomem		*regs;
 258	int			irq;
 259	struct clk		*clk;
 260	struct platform_device	*pdev;
 261	unsigned long		spi_clk;
 262
 
 
 263	struct spi_transfer	*current_transfer;
 264	int			current_remaining_bytes;
 265	int			done_status;
 266	dma_addr_t		dma_addr_rx_bbuf;
 267	dma_addr_t		dma_addr_tx_bbuf;
 268	void			*addr_rx_bbuf;
 269	void			*addr_tx_bbuf;
 270
 271	struct completion	xfer_completion;
 272
 273	struct atmel_spi_caps	caps;
 274
 275	bool			use_dma;
 276	bool			use_pdc;
 277
 278	bool			keep_cs;
 279
 280	u32			fifo_size;
 281	u8			native_cs_free;
 282	u8			native_cs_for_gpio;
 283};
 284
 285/* Controller-specific per-slave state */
 286struct atmel_spi_device {
 
 287	u32			csr;
 288};
 289
 290#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
 291#define INVALID_DMA_ADDRESS	0xffffffff
 292
 293/*
 294 * Version 2 of the SPI controller has
 295 *  - CR.LASTXFER
 296 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 297 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 298 *  - SPI_CSRx.CSAAT
 299 *  - SPI_CSRx.SBCR allows faster clocking
 
 
 
 
 300 */
 301static bool atmel_spi_is_v2(struct atmel_spi *as)
 302{
 303	return as->caps.is_spi2;
 304}
 305
 306/*
 307 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 308 * they assume that spi slave device state will not change on deselect, so
 309 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 310 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 311 * controllers have CSAAT and friends.
 312 *
 313 * Even controller newer than ar91rm9200, using GPIOs can make sens as
 314 * it lets us support active-high chipselects despite the controller's
 315 * belief that only active-low devices/systems exists.
 
 
 316 *
 317 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 318 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 319 * Master on Chip Select 0.")  No workaround exists for that ... so for
 320 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 321 * and (c) will trigger that first erratum in some cases.
 
 
 
 
 
 322 */
 323
 324static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 325{
 326	struct atmel_spi_device *asd = spi->controller_state;
 327	int chip_select;
 328	u32 mr;
 329
 330	if (spi->cs_gpiod)
 331		chip_select = as->native_cs_for_gpio;
 332	else
 333		chip_select = spi->chip_select;
 334
 335	if (atmel_spi_is_v2(as)) {
 336		spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
 337		/* For the low SPI version, there is a issue that PDC transfer
 338		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 339		 */
 340		spi_writel(as, CSR0, asd->csr);
 341		if (as->caps.has_wdrbt) {
 342			spi_writel(as, MR,
 343					SPI_BF(PCS, ~(0x01 << chip_select))
 344					| SPI_BIT(WDRBT)
 345					| SPI_BIT(MODFDIS)
 346					| SPI_BIT(MSTR));
 347		} else {
 348			spi_writel(as, MR,
 349					SPI_BF(PCS, ~(0x01 << chip_select))
 350					| SPI_BIT(MODFDIS)
 351					| SPI_BIT(MSTR));
 352		}
 353
 354		mr = spi_readl(as, MR);
 
 355	} else {
 356		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 357		int i;
 358		u32 csr;
 359
 360		/* Make sure clock polarity is correct */
 361		for (i = 0; i < spi->master->num_chipselect; i++) {
 362			csr = spi_readl(as, CSR0 + 4 * i);
 363			if ((csr ^ cpol) & SPI_BIT(CPOL))
 364				spi_writel(as, CSR0 + 4 * i,
 365						csr ^ SPI_BIT(CPOL));
 366		}
 367
 368		mr = spi_readl(as, MR);
 369		mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
 
 
 370		spi_writel(as, MR, mr);
 371	}
 372
 373	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
 
 
 374}
 375
 376static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 377{
 378	int chip_select;
 
 379	u32 mr;
 380
 381	if (spi->cs_gpiod)
 382		chip_select = as->native_cs_for_gpio;
 383	else
 384		chip_select = spi->chip_select;
 385
 386	/* only deactivate *this* device; sometimes transfers to
 387	 * another device may be active when this routine is called.
 388	 */
 389	mr = spi_readl(as, MR);
 390	if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
 391		mr = SPI_BFINS(PCS, 0xf, mr);
 392		spi_writel(as, MR, mr);
 393	}
 394
 395	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
 
 
 396
 397	if (!spi->cs_gpiod)
 398		spi_writel(as, CR, SPI_BIT(LASTXFER));
 399}
 400
 401static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 
 402{
 403	spin_lock_irqsave(&as->lock, as->flags);
 404}
 405
 406static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 407{
 408	spin_unlock_irqrestore(&as->lock, as->flags);
 409}
 410
 411static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
 
 
 
 
 412{
 413	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
 414}
 415
 416static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 417				struct spi_transfer *xfer)
 418{
 419	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 420}
 421
 422static bool atmel_spi_can_dma(struct spi_master *master,
 423			      struct spi_device *spi,
 424			      struct spi_transfer *xfer)
 425{
 426	struct atmel_spi *as = spi_master_get_devdata(master);
 427
 428	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
 429		return atmel_spi_use_dma(as, xfer) &&
 430			!atmel_spi_is_vmalloc_xfer(xfer);
 431	else
 432		return atmel_spi_use_dma(as, xfer);
 433
 434}
 435
 436static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
 437{
 438	struct spi_master *master = platform_get_drvdata(as->pdev);
 439	struct dma_slave_config	slave_config;
 440	int err = 0;
 441
 442	if (bits_per_word > 8) {
 443		slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 444		slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 445	} else {
 446		slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 447		slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 448	}
 449
 450	slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 451	slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 452	slave_config.src_maxburst = 1;
 453	slave_config.dst_maxburst = 1;
 454	slave_config.device_fc = false;
 455
 456	/*
 457	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 458	 * the Mode Register).
 459	 * So according to the datasheet, when FIFOs are available (and
 460	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 461	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 462	 * Data Register in a single access.
 463	 * However, the first data has to be written into the lowest 16 bits and
 464	 * the second data into the highest 16 bits of the Transmit
 465	 * Data Register. For 8bit data (the most frequent case), it would
 466	 * require to rework tx_buf so each data would actually fit 16 bits.
 467	 * So we'd rather write only one data at the time. Hence the transmit
 468	 * path works the same whether FIFOs are available (and enabled) or not.
 469	 */
 470	if (dmaengine_slave_config(master->dma_tx, &slave_config)) {
 471		dev_err(&as->pdev->dev,
 472			"failed to configure tx dma channel\n");
 473		err = -EINVAL;
 474	}
 475
 476	/*
 477	 * This driver configures the spi controller for master mode (MSTR bit
 478	 * set to '1' in the Mode Register).
 479	 * So according to the datasheet, when FIFOs are available (and
 480	 * enabled), the Receive FIFO operates in Single Data Mode.
 481	 * So the receive path works the same whether FIFOs are available (and
 482	 * enabled) or not.
 483	 */
 484	if (dmaengine_slave_config(master->dma_rx, &slave_config)) {
 485		dev_err(&as->pdev->dev,
 486			"failed to configure rx dma channel\n");
 487		err = -EINVAL;
 488	}
 489
 490	return err;
 491}
 492
 493static int atmel_spi_configure_dma(struct spi_master *master,
 494				   struct atmel_spi *as)
 495{
 496	struct device *dev = &as->pdev->dev;
 497	int err;
 498
 499	master->dma_tx = dma_request_chan(dev, "tx");
 500	if (IS_ERR(master->dma_tx)) {
 501		err = PTR_ERR(master->dma_tx);
 502		dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
 503		goto error_clear;
 504	}
 505
 506	master->dma_rx = dma_request_chan(dev, "rx");
 507	if (IS_ERR(master->dma_rx)) {
 508		err = PTR_ERR(master->dma_rx);
 509		/*
 510		 * No reason to check EPROBE_DEFER here since we have already
 511		 * requested tx channel.
 512		 */
 513		dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
 514		goto error;
 515	}
 516
 517	err = atmel_spi_dma_slave_config(as, 8);
 518	if (err)
 519		goto error;
 520
 521	dev_info(&as->pdev->dev,
 522			"Using %s (tx) and %s (rx) for DMA transfers\n",
 523			dma_chan_name(master->dma_tx),
 524			dma_chan_name(master->dma_rx));
 525
 526	return 0;
 527error:
 528	if (!IS_ERR(master->dma_rx))
 529		dma_release_channel(master->dma_rx);
 530	if (!IS_ERR(master->dma_tx))
 531		dma_release_channel(master->dma_tx);
 532error_clear:
 533	master->dma_tx = master->dma_rx = NULL;
 534	return err;
 535}
 536
 537static void atmel_spi_stop_dma(struct spi_master *master)
 538{
 539	if (master->dma_rx)
 540		dmaengine_terminate_all(master->dma_rx);
 541	if (master->dma_tx)
 542		dmaengine_terminate_all(master->dma_tx);
 543}
 544
 545static void atmel_spi_release_dma(struct spi_master *master)
 546{
 547	if (master->dma_rx) {
 548		dma_release_channel(master->dma_rx);
 549		master->dma_rx = NULL;
 550	}
 551	if (master->dma_tx) {
 552		dma_release_channel(master->dma_tx);
 553		master->dma_tx = NULL;
 
 
 
 
 
 
 
 
 554	}
 555}
 556
 557/* This function is called by the DMA driver from tasklet context */
 558static void dma_callback(void *data)
 559{
 560	struct spi_master	*master = data;
 561	struct atmel_spi	*as = spi_master_get_devdata(master);
 562
 563	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
 564	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 565		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
 566		       as->current_transfer->len);
 567	}
 568	complete(&as->xfer_completion);
 569}
 570
 571/*
 572 * Next transfer using PIO without FIFO.
 
 573 */
 574static void atmel_spi_next_xfer_single(struct spi_master *master,
 575				       struct spi_transfer *xfer)
 576{
 577	struct atmel_spi	*as = spi_master_get_devdata(master);
 578	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 579
 580	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 
 581
 582	/* Make sure data is not remaining in RDR */
 583	spi_readl(as, RDR);
 584	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 585		spi_readl(as, RDR);
 586		cpu_relax();
 587	}
 588
 589	if (xfer->bits_per_word > 8)
 590		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 591	else
 592		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 593
 594	dev_dbg(master->dev.parent,
 595		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 596		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 597		xfer->bits_per_word);
 598
 599	/* Enable relevant interrupts */
 600	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 601}
 602
 603/*
 604 * Next transfer using PIO with FIFO.
 605 */
 606static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 607				     struct spi_transfer *xfer)
 608{
 609	struct atmel_spi *as = spi_master_get_devdata(master);
 610	u32 current_remaining_data, num_data;
 611	u32 offset = xfer->len - as->current_remaining_bytes;
 612	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 613	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 614	u16 td0, td1;
 615	u32 fifomr;
 616
 617	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 618
 619	/* Compute the number of data to transfer in the current iteration */
 620	current_remaining_data = ((xfer->bits_per_word > 8) ?
 621				  ((u32)as->current_remaining_bytes >> 1) :
 622				  (u32)as->current_remaining_bytes);
 623	num_data = min(current_remaining_data, as->fifo_size);
 624
 625	/* Flush RX and TX FIFOs */
 626	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 627	while (spi_readl(as, FLR))
 628		cpu_relax();
 629
 630	/* Set RX FIFO Threshold to the number of data to transfer */
 631	fifomr = spi_readl(as, FMR);
 632	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 633
 634	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 635	(void)spi_readl(as, SR);
 636
 637	/* Fill TX FIFO */
 638	while (num_data >= 2) {
 639		if (xfer->bits_per_word > 8) {
 640			td0 = *words++;
 641			td1 = *words++;
 642		} else {
 643			td0 = *bytes++;
 644			td1 = *bytes++;
 645		}
 646
 647		spi_writel(as, TDR, (td1 << 16) | td0);
 648		num_data -= 2;
 649	}
 650
 651	if (num_data) {
 652		if (xfer->bits_per_word > 8)
 653			td0 = *words++;
 654		else
 655			td0 = *bytes++;
 656
 657		spi_writew(as, TDR, td0);
 658		num_data--;
 659	}
 660
 661	dev_dbg(master->dev.parent,
 662		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 663		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 664		xfer->bits_per_word);
 665
 666	/*
 667	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 668	 * transfer completion.
 669	 */
 670	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 671}
 672
 673/*
 674 * Next transfer using PIO.
 675 */
 676static void atmel_spi_next_xfer_pio(struct spi_master *master,
 677				    struct spi_transfer *xfer)
 678{
 679	struct atmel_spi *as = spi_master_get_devdata(master);
 680
 681	if (as->fifo_size)
 682		atmel_spi_next_xfer_fifo(master, xfer);
 683	else
 684		atmel_spi_next_xfer_single(master, xfer);
 685}
 686
 687/*
 688 * Submit next transfer for DMA.
 689 */
 690static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 691				struct spi_transfer *xfer,
 692				u32 *plen)
 693{
 694	struct atmel_spi	*as = spi_master_get_devdata(master);
 695	struct dma_chan		*rxchan = master->dma_rx;
 696	struct dma_chan		*txchan = master->dma_tx;
 697	struct dma_async_tx_descriptor *rxdesc;
 698	struct dma_async_tx_descriptor *txdesc;
 699	dma_cookie_t		cookie;
 700
 701	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 702
 703	/* Check that the channels are available */
 704	if (!rxchan || !txchan)
 705		return -ENODEV;
 706
 707
 708	*plen = xfer->len;
 709
 710	if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
 711		goto err_exit;
 712
 713	/* Send both scatterlists */
 714	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 715	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 716		rxdesc = dmaengine_prep_slave_single(rxchan,
 717						     as->dma_addr_rx_bbuf,
 718						     xfer->len,
 719						     DMA_DEV_TO_MEM,
 720						     DMA_PREP_INTERRUPT |
 721						     DMA_CTRL_ACK);
 722	} else {
 723		rxdesc = dmaengine_prep_slave_sg(rxchan,
 724						 xfer->rx_sg.sgl,
 725						 xfer->rx_sg.nents,
 726						 DMA_DEV_TO_MEM,
 727						 DMA_PREP_INTERRUPT |
 728						 DMA_CTRL_ACK);
 729	}
 730	if (!rxdesc)
 731		goto err_dma;
 732
 733	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 734	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 735		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
 736		txdesc = dmaengine_prep_slave_single(txchan,
 737						     as->dma_addr_tx_bbuf,
 738						     xfer->len, DMA_MEM_TO_DEV,
 739						     DMA_PREP_INTERRUPT |
 740						     DMA_CTRL_ACK);
 741	} else {
 742		txdesc = dmaengine_prep_slave_sg(txchan,
 743						 xfer->tx_sg.sgl,
 744						 xfer->tx_sg.nents,
 745						 DMA_MEM_TO_DEV,
 746						 DMA_PREP_INTERRUPT |
 747						 DMA_CTRL_ACK);
 748	}
 749	if (!txdesc)
 750		goto err_dma;
 751
 752	dev_dbg(master->dev.parent,
 753		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 754		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 755		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 756
 757	/* Enable relevant interrupts */
 758	spi_writel(as, IER, SPI_BIT(OVRES));
 759
 760	/* Put the callback on the RX transfer only, that should finish last */
 761	rxdesc->callback = dma_callback;
 762	rxdesc->callback_param = master;
 763
 764	/* Submit and fire RX and TX with TX last so we're ready to read! */
 765	cookie = rxdesc->tx_submit(rxdesc);
 766	if (dma_submit_error(cookie))
 767		goto err_dma;
 768	cookie = txdesc->tx_submit(txdesc);
 769	if (dma_submit_error(cookie))
 770		goto err_dma;
 771	rxchan->device->device_issue_pending(rxchan);
 772	txchan->device->device_issue_pending(txchan);
 773
 774	return 0;
 775
 776err_dma:
 777	spi_writel(as, IDR, SPI_BIT(OVRES));
 778	atmel_spi_stop_dma(master);
 779err_exit:
 780	return -ENOMEM;
 781}
 782
 783static void atmel_spi_next_xfer_data(struct spi_master *master,
 784				struct spi_transfer *xfer,
 785				dma_addr_t *tx_dma,
 786				dma_addr_t *rx_dma,
 787				u32 *plen)
 788{
 789	*rx_dma = xfer->rx_dma + xfer->len - *plen;
 790	*tx_dma = xfer->tx_dma + xfer->len - *plen;
 791	if (*plen > master->max_dma_len)
 792		*plen = master->max_dma_len;
 793}
 794
 795static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 796				    struct spi_device *spi,
 797				    struct spi_transfer *xfer)
 798{
 799	u32			scbr, csr;
 800	unsigned long		bus_hz;
 801	int chip_select;
 802
 803	if (spi->cs_gpiod)
 804		chip_select = as->native_cs_for_gpio;
 805	else
 806		chip_select = spi->chip_select;
 807
 808	/* v1 chips start out at half the peripheral bus speed. */
 809	bus_hz = as->spi_clk;
 810	if (!atmel_spi_is_v2(as))
 811		bus_hz /= 2;
 812
 813	/*
 814	 * Calculate the lowest divider that satisfies the
 815	 * constraint, assuming div32/fdiv/mbz == 0.
 816	 */
 817	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 818
 819	/*
 820	 * If the resulting divider doesn't fit into the
 821	 * register bitfield, we can't satisfy the constraint.
 822	 */
 823	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 824		dev_err(&spi->dev,
 825			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 826			xfer->speed_hz, scbr, bus_hz/255);
 827		return -EINVAL;
 828	}
 829	if (scbr == 0) {
 830		dev_err(&spi->dev,
 831			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 832			xfer->speed_hz, scbr, bus_hz);
 833		return -EINVAL;
 834	}
 835	csr = spi_readl(as, CSR0 + 4 * chip_select);
 836	csr = SPI_BFINS(SCBR, scbr, csr);
 837	spi_writel(as, CSR0 + 4 * chip_select, csr);
 838	xfer->effective_speed_hz = bus_hz / scbr;
 839
 840	return 0;
 841}
 842
 843/*
 844 * Submit next transfer for PDC.
 845 * lock is held, spi irq is blocked
 846 */
 847static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 848					struct spi_transfer *xfer)
 849{
 850	struct atmel_spi	*as = spi_master_get_devdata(master);
 851	u32			len;
 852	dma_addr_t		tx_dma, rx_dma;
 853
 854	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 855
 856	len = as->current_remaining_bytes;
 857	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 858	as->current_remaining_bytes -= len;
 859
 860	spi_writel(as, RPR, rx_dma);
 861	spi_writel(as, TPR, tx_dma);
 862
 863	if (xfer->bits_per_word > 8)
 864		len >>= 1;
 865	spi_writel(as, RCR, len);
 866	spi_writel(as, TCR, len);
 867
 868	dev_dbg(&master->dev,
 869		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 870		xfer, xfer->len, xfer->tx_buf,
 871		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 872		(unsigned long long)xfer->rx_dma);
 873
 874	if (as->current_remaining_bytes) {
 875		len = as->current_remaining_bytes;
 876		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 877		as->current_remaining_bytes -= len;
 878
 879		spi_writel(as, RNPR, rx_dma);
 880		spi_writel(as, TNPR, tx_dma);
 881
 882		if (xfer->bits_per_word > 8)
 883			len >>= 1;
 884		spi_writel(as, RNCR, len);
 885		spi_writel(as, TNCR, len);
 886
 887		dev_dbg(&master->dev,
 888			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 889			xfer, xfer->len, xfer->tx_buf,
 890			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 891			(unsigned long long)xfer->rx_dma);
 
 
 
 
 892	}
 893
 894	/* REVISIT: We're waiting for RXBUFF before we start the next
 895	 * transfer because we need to handle some difficult timing
 896	 * issues otherwise. If we wait for TXBUFE in one transfer and
 897	 * then starts waiting for RXBUFF in the next, it's difficult
 898	 * to tell the difference between the RXBUFF interrupt we're
 899	 * actually waiting for and the RXBUFF interrupt of the
 900	 * previous transfer.
 901	 *
 902	 * It should be doable, though. Just not now...
 903	 */
 904	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 905	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 906}
 907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908/*
 909 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 910 *  - The buffer is either valid for CPU access, else NULL
 911 *  - If the buffer is valid, so is its DMA address
 912 *
 913 * This driver manages the dma address unless message->is_dma_mapped.
 914 */
 915static int
 916atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 917{
 918	struct device	*dev = &as->pdev->dev;
 919
 920	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 921	if (xfer->tx_buf) {
 922		/* tx_buf is a const void* where we need a void * for the dma
 923		 * mapping */
 924		void *nonconst_tx = (void *)xfer->tx_buf;
 925
 926		xfer->tx_dma = dma_map_single(dev,
 927				nonconst_tx, xfer->len,
 928				DMA_TO_DEVICE);
 929		if (dma_mapping_error(dev, xfer->tx_dma))
 930			return -ENOMEM;
 931	}
 932	if (xfer->rx_buf) {
 933		xfer->rx_dma = dma_map_single(dev,
 934				xfer->rx_buf, xfer->len,
 935				DMA_FROM_DEVICE);
 936		if (dma_mapping_error(dev, xfer->rx_dma)) {
 937			if (xfer->tx_buf)
 938				dma_unmap_single(dev,
 939						xfer->tx_dma, xfer->len,
 940						DMA_TO_DEVICE);
 941			return -ENOMEM;
 942		}
 943	}
 944	return 0;
 945}
 946
 947static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 948				     struct spi_transfer *xfer)
 949{
 950	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 951		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 952				 xfer->len, DMA_TO_DEVICE);
 953	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 954		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 955				 xfer->len, DMA_FROM_DEVICE);
 956}
 957
 958static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
 
 
 959{
 960	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 961}
 
 
 962
 963static void
 964atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
 965{
 966	u8		*rxp;
 967	u16		*rxp16;
 968	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
 969
 970	if (xfer->bits_per_word > 8) {
 971		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
 972		*rxp16 = spi_readl(as, RDR);
 973	} else {
 974		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
 975		*rxp = spi_readl(as, RDR);
 976	}
 977	if (xfer->bits_per_word > 8) {
 978		if (as->current_remaining_bytes > 2)
 979			as->current_remaining_bytes -= 2;
 980		else
 981			as->current_remaining_bytes = 0;
 982	} else {
 983		as->current_remaining_bytes--;
 984	}
 985}
 986
 987static void
 988atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
 989{
 990	u32 fifolr = spi_readl(as, FLR);
 991	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
 992	u32 offset = xfer->len - as->current_remaining_bytes;
 993	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
 994	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
 995	u16 rd; /* RD field is the lowest 16 bits of RDR */
 996
 997	/* Update the number of remaining bytes to transfer */
 998	num_bytes = ((xfer->bits_per_word > 8) ?
 999		     (num_data << 1) :
1000		     num_data);
1001
1002	if (as->current_remaining_bytes > num_bytes)
1003		as->current_remaining_bytes -= num_bytes;
1004	else
1005		as->current_remaining_bytes = 0;
1006
1007	/* Handle odd number of bytes when data are more than 8bit width */
1008	if (xfer->bits_per_word > 8)
1009		as->current_remaining_bytes &= ~0x1;
1010
1011	/* Read data */
1012	while (num_data) {
1013		rd = spi_readl(as, RDR);
1014		if (xfer->bits_per_word > 8)
1015			*words++ = rd;
1016		else
1017			*bytes++ = rd;
1018		num_data--;
1019	}
1020}
1021
1022/* Called from IRQ
1023 *
1024 * Must update "current_remaining_bytes" to keep track of data
1025 * to transfer.
1026 */
1027static void
1028atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1029{
1030	if (as->fifo_size)
1031		atmel_spi_pump_fifo_data(as, xfer);
1032	else
1033		atmel_spi_pump_single_data(as, xfer);
1034}
1035
1036/* Interrupt
1037 *
1038 */
1039static irqreturn_t
1040atmel_spi_pio_interrupt(int irq, void *dev_id)
1041{
1042	struct spi_master	*master = dev_id;
1043	struct atmel_spi	*as = spi_master_get_devdata(master);
 
 
1044	u32			status, pending, imr;
1045	struct spi_transfer	*xfer;
1046	int			ret = IRQ_NONE;
1047
 
 
 
 
 
1048	imr = spi_readl(as, IMR);
1049	status = spi_readl(as, SR);
1050	pending = status & imr;
1051
1052	if (pending & SPI_BIT(OVRES)) {
 
 
1053		ret = IRQ_HANDLED;
1054		spi_writel(as, IDR, SPI_BIT(OVRES));
1055		dev_warn(master->dev.parent, "overrun\n");
 
1056
1057		/*
1058		 * When we get an overrun, we disregard the current
1059		 * transfer. Data will not be copied back from any
1060		 * bounce buffer and msg->actual_len will not be
1061		 * updated with the last xfer.
1062		 *
1063		 * We will also not process any remaning transfers in
1064		 * the message.
 
 
1065		 */
1066		as->done_status = -EIO;
1067		smp_wmb();
 
1068
1069		/* Clear any overrun happening while cleaning up */
1070		spi_readl(as, SR);
 
1071
1072		complete(&as->xfer_completion);
 
1073
1074	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1075		atmel_spi_lock(as);
1076
1077		if (as->current_remaining_bytes) {
1078			ret = IRQ_HANDLED;
1079			xfer = as->current_transfer;
1080			atmel_spi_pump_pio_data(as, xfer);
1081			if (!as->current_remaining_bytes)
1082				spi_writel(as, IDR, pending);
1083
1084			complete(&as->xfer_completion);
1085		}
1086
1087		atmel_spi_unlock(as);
1088	} else {
1089		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1090		ret = IRQ_HANDLED;
1091		spi_writel(as, IDR, pending);
1092	}
1093
1094	return ret;
1095}
1096
1097static irqreturn_t
1098atmel_spi_pdc_interrupt(int irq, void *dev_id)
1099{
1100	struct spi_master	*master = dev_id;
1101	struct atmel_spi	*as = spi_master_get_devdata(master);
1102	u32			status, pending, imr;
1103	int			ret = IRQ_NONE;
1104
1105	imr = spi_readl(as, IMR);
1106	status = spi_readl(as, SR);
1107	pending = status & imr;
1108
1109	if (pending & SPI_BIT(OVRES)) {
1110
1111		ret = IRQ_HANDLED;
1112
1113		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1114				     | SPI_BIT(OVRES)));
1115
1116		/* Clear any overrun happening while cleaning up */
1117		spi_readl(as, SR);
1118
1119		as->done_status = -EIO;
1120
1121		complete(&as->xfer_completion);
1122
1123	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1124		ret = IRQ_HANDLED;
1125
1126		spi_writel(as, IDR, pending);
1127
1128		complete(&as->xfer_completion);
1129	}
1130
1131	return ret;
1132}
1133
1134static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1135{
1136	struct spi_delay *delay = &spi->word_delay;
1137	u32 value = delay->value;
1138
1139	switch (delay->unit) {
1140	case SPI_DELAY_UNIT_NSECS:
1141		value /= 1000;
1142		break;
1143	case SPI_DELAY_UNIT_USECS:
1144		break;
1145	default:
1146		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147	}
1148
1149	return (as->spi_clk / 1000000 * value) >> 5;
1150}
1151
1152static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1153{
1154	int i;
1155	struct spi_master *master = platform_get_drvdata(as->pdev);
1156
1157	if (!as->native_cs_free)
1158		return; /* already initialized */
1159
1160	if (!master->cs_gpiods)
1161		return; /* No CS GPIO */
1162
1163	/*
1164	 * On the first version of the controller (AT91RM9200), CS0
1165	 * can't be used associated with GPIO
1166	 */
1167	if (atmel_spi_is_v2(as))
1168		i = 0;
1169	else
1170		i = 1;
1171
1172	for (; i < 4; i++)
1173		if (master->cs_gpiods[i])
1174			as->native_cs_free |= BIT(i);
1175
1176	if (as->native_cs_free)
1177		as->native_cs_for_gpio = ffs(as->native_cs_free);
1178}
1179
1180static int atmel_spi_setup(struct spi_device *spi)
1181{
1182	struct atmel_spi	*as;
1183	struct atmel_spi_device	*asd;
1184	u32			csr;
1185	unsigned int		bits = spi->bits_per_word;
1186	int chip_select;
1187	int			word_delay_csr;
 
1188
1189	as = spi_master_get_devdata(spi->master);
1190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191	/* see notes above re chipselect */
1192	if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1193		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
 
 
1194		return -EINVAL;
1195	}
1196
1197	/* Setup() is called during spi_register_controller(aka
1198	 * spi_register_master) but after all membmers of the cs_gpiod
1199	 * array have been filled, so we can looked for which native
1200	 * CS will be free for using with GPIO
1201	 */
1202	initialize_native_cs_for_gpio(as);
1203
1204	if (spi->cs_gpiod && as->native_cs_free) {
1205		dev_err(&spi->dev,
1206			"No native CS available to support this GPIO CS\n");
1207		return -EBUSY;
1208	}
 
1209
1210	if (spi->cs_gpiod)
1211		chip_select = as->native_cs_for_gpio;
1212	else
1213		chip_select = spi->chip_select;
 
 
 
 
 
 
 
 
 
1214
1215	csr = SPI_BF(BITS, bits - 8);
1216	if (spi->mode & SPI_CPOL)
1217		csr |= SPI_BIT(CPOL);
1218	if (!(spi->mode & SPI_CPHA))
1219		csr |= SPI_BIT(NCPHA);
1220
1221	if (!spi->cs_gpiod)
1222		csr |= SPI_BIT(CSAAT);
 
 
 
 
1223	csr |= SPI_BF(DLYBS, 0);
 
1224
1225	word_delay_csr = atmel_word_delay_csr(spi, as);
1226	if (word_delay_csr < 0)
1227		return word_delay_csr;
1228
1229	/* DLYBCT adds delays between words.  This is useful for slow devices
1230	 * that need a bit of time to setup the next transfer.
1231	 */
1232	csr |= SPI_BF(DLYBCT, word_delay_csr);
1233
1234	asd = spi->controller_state;
1235	if (!asd) {
1236		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1237		if (!asd)
1238			return -ENOMEM;
1239
 
 
 
 
 
 
 
1240		spi->controller_state = asd;
 
 
 
 
 
 
 
 
 
1241	}
1242
1243	asd->csr = csr;
1244
1245	dev_dbg(&spi->dev,
1246		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1247		bits, spi->mode, spi->chip_select, csr);
1248
1249	if (!atmel_spi_is_v2(as))
1250		spi_writel(as, CSR0 + 4 * chip_select, csr);
1251
1252	return 0;
1253}
1254
1255static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1256{
1257	struct atmel_spi *as = spi_master_get_devdata(spi->master);
1258	/* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1259	 * since we already have routines for activate/deactivate translate
1260	 * high/low to active/inactive
1261	 */
1262	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1263
1264	if (enable) {
1265		cs_activate(as, spi);
1266	} else {
1267		cs_deactivate(as, spi);
1268	}
1269
1270}
1271
1272static int atmel_spi_one_transfer(struct spi_master *master,
1273					struct spi_device *spi,
1274					struct spi_transfer *xfer)
1275{
1276	struct atmel_spi	*as;
 
 
 
1277	u8			bits;
1278	u32			len;
1279	struct atmel_spi_device	*asd;
1280	int			timeout;
1281	int			ret;
1282	unsigned long		dma_timeout;
1283
1284	as = spi_master_get_devdata(master);
 
 
 
1285
1286	asd = spi->controller_state;
1287	bits = (asd->csr >> 4) & 0xf;
1288	if (bits != xfer->bits_per_word - 8) {
1289		dev_dbg(&spi->dev,
1290			"you can't yet change bits_per_word in transfers\n");
1291		return -ENOPROTOOPT;
1292	}
1293
1294	/*
1295	 * DMA map early, for performance (empties dcache ASAP) and
1296	 * better fault reporting.
1297	 */
1298	if ((!master->cur_msg->is_dma_mapped)
1299		&& as->use_pdc) {
1300		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1301			return -ENOMEM;
1302	}
1303
1304	atmel_spi_set_xfer_speed(as, spi, xfer);
 
 
 
 
1305
1306	as->done_status = 0;
1307	as->current_transfer = xfer;
1308	as->current_remaining_bytes = xfer->len;
1309	while (as->current_remaining_bytes) {
1310		reinit_completion(&as->xfer_completion);
1311
1312		if (as->use_pdc) {
1313			atmel_spi_lock(as);
1314			atmel_spi_pdc_next_xfer(master, xfer);
1315			atmel_spi_unlock(as);
1316		} else if (atmel_spi_use_dma(as, xfer)) {
1317			len = as->current_remaining_bytes;
1318			ret = atmel_spi_next_xfer_dma_submit(master,
1319								xfer, &len);
1320			if (ret) {
1321				dev_err(&spi->dev,
1322					"unable to use DMA, fallback to PIO\n");
1323				as->done_status = ret;
1324				break;
1325			} else {
1326				as->current_remaining_bytes -= len;
1327				if (as->current_remaining_bytes < 0)
1328					as->current_remaining_bytes = 0;
1329			}
1330		} else {
1331			atmel_spi_lock(as);
1332			atmel_spi_next_xfer_pio(master, xfer);
1333			atmel_spi_unlock(as);
1334		}
1335
1336		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1337							  SPI_DMA_TIMEOUT);
1338		if (WARN_ON(dma_timeout == 0)) {
1339			dev_err(&spi->dev, "spi transfer timeout\n");
1340			as->done_status = -EIO;
1341		}
1342
1343		if (as->done_status)
1344			break;
1345	}
1346
1347	if (as->done_status) {
1348		if (as->use_pdc) {
1349			dev_warn(master->dev.parent,
1350				"overrun (%u/%u remaining)\n",
1351				spi_readl(as, TCR), spi_readl(as, RCR));
1352
1353			/*
1354			 * Clean up DMA registers and make sure the data
1355			 * registers are empty.
1356			 */
1357			spi_writel(as, RNCR, 0);
1358			spi_writel(as, TNCR, 0);
1359			spi_writel(as, RCR, 0);
1360			spi_writel(as, TCR, 0);
1361			for (timeout = 1000; timeout; timeout--)
1362				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1363					break;
1364			if (!timeout)
1365				dev_warn(master->dev.parent,
1366					 "timeout waiting for TXEMPTY");
1367			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1368				spi_readl(as, RDR);
1369
1370			/* Clear any overrun happening while cleaning up */
1371			spi_readl(as, SR);
1372
1373		} else if (atmel_spi_use_dma(as, xfer)) {
1374			atmel_spi_stop_dma(master);
1375		}
1376	}
1377
1378	if (!master->cur_msg->is_dma_mapped
1379		&& as->use_pdc)
1380		atmel_spi_dma_unmap_xfer(master, xfer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1381
1382	if (as->use_pdc)
1383		atmel_spi_disable_pdc_transfer(as);
1384
1385	return as->done_status;
1386}
1387
1388static void atmel_spi_cleanup(struct spi_device *spi)
1389{
 
1390	struct atmel_spi_device	*asd = spi->controller_state;
 
 
1391
1392	if (!asd)
1393		return;
1394
 
 
 
 
 
 
 
1395	spi->controller_state = NULL;
 
1396	kfree(asd);
1397}
1398
1399static inline unsigned int atmel_get_version(struct atmel_spi *as)
1400{
1401	return spi_readl(as, VERSION) & 0x00000fff;
1402}
1403
1404static void atmel_get_caps(struct atmel_spi *as)
1405{
1406	unsigned int version;
1407
1408	version = atmel_get_version(as);
1409
1410	as->caps.is_spi2 = version > 0x121;
1411	as->caps.has_wdrbt = version >= 0x210;
1412	as->caps.has_dma_support = version >= 0x212;
1413	as->caps.has_pdc_support = version < 0x212;
1414}
1415
1416static void atmel_spi_init(struct atmel_spi *as)
1417{
1418	spi_writel(as, CR, SPI_BIT(SWRST));
1419	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1420
1421	/* It is recommended to enable FIFOs first thing after reset */
1422	if (as->fifo_size)
1423		spi_writel(as, CR, SPI_BIT(FIFOEN));
1424
1425	if (as->caps.has_wdrbt) {
1426		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1427				| SPI_BIT(MSTR));
1428	} else {
1429		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1430	}
1431
1432	if (as->use_pdc)
1433		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1434	spi_writel(as, CR, SPI_BIT(SPIEN));
1435}
1436
1437static int atmel_spi_probe(struct platform_device *pdev)
1438{
1439	struct resource		*regs;
1440	int			irq;
1441	struct clk		*clk;
1442	int			ret;
1443	struct spi_master	*master;
1444	struct atmel_spi	*as;
1445
1446	/* Select default pin state */
1447	pinctrl_pm_select_default_state(&pdev->dev);
1448
1449	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1450	if (!regs)
1451		return -ENXIO;
1452
1453	irq = platform_get_irq(pdev, 0);
1454	if (irq < 0)
1455		return irq;
1456
1457	clk = devm_clk_get(&pdev->dev, "spi_clk");
1458	if (IS_ERR(clk))
1459		return PTR_ERR(clk);
1460
1461	/* setup spi core then atmel-specific driver state */
1462	master = spi_alloc_master(&pdev->dev, sizeof(*as));
 
1463	if (!master)
1464		return -ENOMEM;
1465
1466	/* the spi->mode bits understood by this driver: */
1467	master->use_gpio_descriptors = true;
1468	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1469	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1470	master->dev.of_node = pdev->dev.of_node;
1471	master->bus_num = pdev->id;
1472	master->num_chipselect = 4;
1473	master->setup = atmel_spi_setup;
1474	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX |
1475			SPI_MASTER_GPIO_SS);
1476	master->transfer_one = atmel_spi_one_transfer;
1477	master->set_cs = atmel_spi_set_cs;
1478	master->cleanup = atmel_spi_cleanup;
1479	master->auto_runtime_pm = true;
1480	master->max_dma_len = SPI_MAX_DMA_XFER;
1481	master->can_dma = atmel_spi_can_dma;
1482	platform_set_drvdata(pdev, master);
1483
1484	as = spi_master_get_devdata(master);
1485
 
 
 
 
 
 
 
 
 
1486	spin_lock_init(&as->lock);
1487
1488	as->pdev = pdev;
1489	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1490	if (IS_ERR(as->regs)) {
1491		ret = PTR_ERR(as->regs);
1492		goto out_unmap_regs;
1493	}
1494	as->phybase = regs->start;
1495	as->irq = irq;
1496	as->clk = clk;
1497
1498	init_completion(&as->xfer_completion);
1499
1500	atmel_get_caps(as);
1501
1502	as->use_dma = false;
1503	as->use_pdc = false;
1504	if (as->caps.has_dma_support) {
1505		ret = atmel_spi_configure_dma(master, as);
1506		if (ret == 0) {
1507			as->use_dma = true;
1508		} else if (ret == -EPROBE_DEFER) {
1509			goto out_unmap_regs;
1510		}
1511	} else if (as->caps.has_pdc_support) {
1512		as->use_pdc = true;
1513	}
1514
1515	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1516		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1517						      SPI_MAX_DMA_XFER,
1518						      &as->dma_addr_rx_bbuf,
1519						      GFP_KERNEL | GFP_DMA);
1520		if (!as->addr_rx_bbuf) {
1521			as->use_dma = false;
1522		} else {
1523			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1524					SPI_MAX_DMA_XFER,
1525					&as->dma_addr_tx_bbuf,
1526					GFP_KERNEL | GFP_DMA);
1527			if (!as->addr_tx_bbuf) {
1528				as->use_dma = false;
1529				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1530						  as->addr_rx_bbuf,
1531						  as->dma_addr_rx_bbuf);
1532			}
1533		}
1534		if (!as->use_dma)
1535			dev_info(master->dev.parent,
1536				 "  can not allocate dma coherent memory\n");
1537	}
1538
1539	if (as->caps.has_dma_support && !as->use_dma)
1540		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1541
1542	if (as->use_pdc) {
1543		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1544					0, dev_name(&pdev->dev), master);
1545	} else {
1546		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1547					0, dev_name(&pdev->dev), master);
1548	}
1549	if (ret)
1550		goto out_unmap_regs;
1551
1552	/* Initialize the hardware */
1553	ret = clk_prepare_enable(clk);
1554	if (ret)
1555		goto out_free_irq;
 
 
 
1556
1557	as->spi_clk = clk_get_rate(clk);
1558
1559	as->fifo_size = 0;
1560	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1561				  &as->fifo_size)) {
1562		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1563	}
1564
1565	atmel_spi_init(as);
1566
1567	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1568	pm_runtime_use_autosuspend(&pdev->dev);
1569	pm_runtime_set_active(&pdev->dev);
1570	pm_runtime_enable(&pdev->dev);
1571
1572	ret = devm_spi_register_master(&pdev->dev, master);
1573	if (ret)
1574		goto out_free_dma;
1575
1576	/* go! */
1577	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1578			atmel_get_version(as), (unsigned long)regs->start,
1579			irq);
1580
1581	return 0;
1582
1583out_free_dma:
1584	pm_runtime_disable(&pdev->dev);
1585	pm_runtime_set_suspended(&pdev->dev);
1586
1587	if (as->use_dma)
1588		atmel_spi_release_dma(master);
1589
1590	spi_writel(as, CR, SPI_BIT(SWRST));
1591	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1592	clk_disable_unprepare(clk);
1593out_free_irq:
1594out_unmap_regs:
 
 
 
 
 
 
1595	spi_master_put(master);
1596	return ret;
1597}
1598
1599static int atmel_spi_remove(struct platform_device *pdev)
1600{
1601	struct spi_master	*master = platform_get_drvdata(pdev);
1602	struct atmel_spi	*as = spi_master_get_devdata(master);
1603
1604	pm_runtime_get_sync(&pdev->dev);
1605
1606	/* reset the hardware and block queue progress */
1607	if (as->use_dma) {
1608		atmel_spi_stop_dma(master);
1609		atmel_spi_release_dma(master);
1610		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1611			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1612					  as->addr_tx_bbuf,
1613					  as->dma_addr_tx_bbuf);
1614			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1615					  as->addr_rx_bbuf,
1616					  as->dma_addr_rx_bbuf);
1617		}
1618	}
1619
1620	spin_lock_irq(&as->lock);
 
1621	spi_writel(as, CR, SPI_BIT(SWRST));
1622	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1623	spi_readl(as, SR);
1624	spin_unlock_irq(&as->lock);
1625
1626	clk_disable_unprepare(as->clk);
 
 
 
 
 
 
 
1627
1628	pm_runtime_put_noidle(&pdev->dev);
1629	pm_runtime_disable(&pdev->dev);
1630
1631	return 0;
1632}
 
 
1633
1634static int atmel_spi_runtime_suspend(struct device *dev)
1635{
1636	struct spi_master *master = dev_get_drvdata(dev);
1637	struct atmel_spi *as = spi_master_get_devdata(master);
1638
1639	clk_disable_unprepare(as->clk);
1640	pinctrl_pm_select_sleep_state(dev);
1641
1642	return 0;
1643}
1644
1645static int atmel_spi_runtime_resume(struct device *dev)
1646{
1647	struct spi_master *master = dev_get_drvdata(dev);
1648	struct atmel_spi *as = spi_master_get_devdata(master);
1649
1650	pinctrl_pm_select_default_state(dev);
1651
1652	return clk_prepare_enable(as->clk);
1653}
1654
1655static int atmel_spi_suspend(struct device *dev)
1656{
1657	struct spi_master *master = dev_get_drvdata(dev);
1658	int ret;
1659
1660	/* Stop the queue running */
1661	ret = spi_master_suspend(master);
1662	if (ret)
1663		return ret;
1664
1665	if (!pm_runtime_suspended(dev))
1666		atmel_spi_runtime_suspend(dev);
1667
 
1668	return 0;
1669}
1670
1671static int atmel_spi_resume(struct device *dev)
1672{
1673	struct spi_master *master = dev_get_drvdata(dev);
1674	struct atmel_spi *as = spi_master_get_devdata(master);
1675	int ret;
1676
1677	ret = clk_prepare_enable(as->clk);
1678	if (ret)
1679		return ret;
1680
1681	atmel_spi_init(as);
1682
1683	clk_disable_unprepare(as->clk);
1684
1685	if (!pm_runtime_suspended(dev)) {
1686		ret = atmel_spi_runtime_resume(dev);
1687		if (ret)
1688			return ret;
1689	}
1690
1691	/* Start the queue running */
1692	return spi_master_resume(master);
1693}
1694
1695static const struct dev_pm_ops atmel_spi_pm_ops = {
1696	SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1697	RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1698		       atmel_spi_runtime_resume, NULL)
1699};
1700
1701static const struct of_device_id atmel_spi_dt_ids[] = {
1702	{ .compatible = "atmel,at91rm9200-spi" },
1703	{ /* sentinel */ }
1704};
1705
1706MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1707
1708static struct platform_driver atmel_spi_driver = {
1709	.driver		= {
1710		.name	= "atmel_spi",
1711		.pm	= pm_ptr(&atmel_spi_pm_ops),
1712		.of_match_table	= atmel_spi_dt_ids,
1713	},
1714	.probe		= atmel_spi_probe,
1715	.remove		= atmel_spi_remove,
 
1716};
1717module_platform_driver(atmel_spi_driver);
 
 
 
 
 
 
 
 
 
 
 
1718
1719MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1720MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1721MODULE_LICENSE("GPL");
1722MODULE_ALIAS("platform:atmel_spi");