Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/init.h>
  13#include <linux/clk.h>
  14#include <linux/module.h>
  15#include <linux/platform_device.h>
  16#include <linux/delay.h>
  17#include <linux/dma-mapping.h>
 
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
  22
  23#include <asm/io.h>
  24#include <mach/board.h>
  25#include <mach/gpio.h>
  26#include <mach/cpu.h>
 
 
  27
  28/* SPI register offsets */
  29#define SPI_CR					0x0000
  30#define SPI_MR					0x0004
  31#define SPI_RDR					0x0008
  32#define SPI_TDR					0x000c
  33#define SPI_SR					0x0010
  34#define SPI_IER					0x0014
  35#define SPI_IDR					0x0018
  36#define SPI_IMR					0x001c
  37#define SPI_CSR0				0x0030
  38#define SPI_CSR1				0x0034
  39#define SPI_CSR2				0x0038
  40#define SPI_CSR3				0x003c
 
  41#define SPI_RPR					0x0100
  42#define SPI_RCR					0x0104
  43#define SPI_TPR					0x0108
  44#define SPI_TCR					0x010c
  45#define SPI_RNPR				0x0110
  46#define SPI_RNCR				0x0114
  47#define SPI_TNPR				0x0118
  48#define SPI_TNCR				0x011c
  49#define SPI_PTCR				0x0120
  50#define SPI_PTSR				0x0124
  51
  52/* Bitfields in CR */
  53#define SPI_SPIEN_OFFSET			0
  54#define SPI_SPIEN_SIZE				1
  55#define SPI_SPIDIS_OFFSET			1
  56#define SPI_SPIDIS_SIZE				1
  57#define SPI_SWRST_OFFSET			7
  58#define SPI_SWRST_SIZE				1
  59#define SPI_LASTXFER_OFFSET			24
  60#define SPI_LASTXFER_SIZE			1
  61
  62/* Bitfields in MR */
  63#define SPI_MSTR_OFFSET				0
  64#define SPI_MSTR_SIZE				1
  65#define SPI_PS_OFFSET				1
  66#define SPI_PS_SIZE				1
  67#define SPI_PCSDEC_OFFSET			2
  68#define SPI_PCSDEC_SIZE				1
  69#define SPI_FDIV_OFFSET				3
  70#define SPI_FDIV_SIZE				1
  71#define SPI_MODFDIS_OFFSET			4
  72#define SPI_MODFDIS_SIZE			1
 
 
  73#define SPI_LLB_OFFSET				7
  74#define SPI_LLB_SIZE				1
  75#define SPI_PCS_OFFSET				16
  76#define SPI_PCS_SIZE				4
  77#define SPI_DLYBCS_OFFSET			24
  78#define SPI_DLYBCS_SIZE				8
  79
  80/* Bitfields in RDR */
  81#define SPI_RD_OFFSET				0
  82#define SPI_RD_SIZE				16
  83
  84/* Bitfields in TDR */
  85#define SPI_TD_OFFSET				0
  86#define SPI_TD_SIZE				16
  87
  88/* Bitfields in SR */
  89#define SPI_RDRF_OFFSET				0
  90#define SPI_RDRF_SIZE				1
  91#define SPI_TDRE_OFFSET				1
  92#define SPI_TDRE_SIZE				1
  93#define SPI_MODF_OFFSET				2
  94#define SPI_MODF_SIZE				1
  95#define SPI_OVRES_OFFSET			3
  96#define SPI_OVRES_SIZE				1
  97#define SPI_ENDRX_OFFSET			4
  98#define SPI_ENDRX_SIZE				1
  99#define SPI_ENDTX_OFFSET			5
 100#define SPI_ENDTX_SIZE				1
 101#define SPI_RXBUFF_OFFSET			6
 102#define SPI_RXBUFF_SIZE				1
 103#define SPI_TXBUFE_OFFSET			7
 104#define SPI_TXBUFE_SIZE				1
 105#define SPI_NSSR_OFFSET				8
 106#define SPI_NSSR_SIZE				1
 107#define SPI_TXEMPTY_OFFSET			9
 108#define SPI_TXEMPTY_SIZE			1
 109#define SPI_SPIENS_OFFSET			16
 110#define SPI_SPIENS_SIZE				1
 111
 112/* Bitfields in CSR0 */
 113#define SPI_CPOL_OFFSET				0
 114#define SPI_CPOL_SIZE				1
 115#define SPI_NCPHA_OFFSET			1
 116#define SPI_NCPHA_SIZE				1
 117#define SPI_CSAAT_OFFSET			3
 118#define SPI_CSAAT_SIZE				1
 119#define SPI_BITS_OFFSET				4
 120#define SPI_BITS_SIZE				4
 121#define SPI_SCBR_OFFSET				8
 122#define SPI_SCBR_SIZE				8
 123#define SPI_DLYBS_OFFSET			16
 124#define SPI_DLYBS_SIZE				8
 125#define SPI_DLYBCT_OFFSET			24
 126#define SPI_DLYBCT_SIZE				8
 127
 128/* Bitfields in RCR */
 129#define SPI_RXCTR_OFFSET			0
 130#define SPI_RXCTR_SIZE				16
 131
 132/* Bitfields in TCR */
 133#define SPI_TXCTR_OFFSET			0
 134#define SPI_TXCTR_SIZE				16
 135
 136/* Bitfields in RNCR */
 137#define SPI_RXNCR_OFFSET			0
 138#define SPI_RXNCR_SIZE				16
 139
 140/* Bitfields in TNCR */
 141#define SPI_TXNCR_OFFSET			0
 142#define SPI_TXNCR_SIZE				16
 143
 144/* Bitfields in PTCR */
 145#define SPI_RXTEN_OFFSET			0
 146#define SPI_RXTEN_SIZE				1
 147#define SPI_RXTDIS_OFFSET			1
 148#define SPI_RXTDIS_SIZE				1
 149#define SPI_TXTEN_OFFSET			8
 150#define SPI_TXTEN_SIZE				1
 151#define SPI_TXTDIS_OFFSET			9
 152#define SPI_TXTDIS_SIZE				1
 153
 154/* Constants for BITS */
 155#define SPI_BITS_8_BPT				0
 156#define SPI_BITS_9_BPT				1
 157#define SPI_BITS_10_BPT				2
 158#define SPI_BITS_11_BPT				3
 159#define SPI_BITS_12_BPT				4
 160#define SPI_BITS_13_BPT				5
 161#define SPI_BITS_14_BPT				6
 162#define SPI_BITS_15_BPT				7
 163#define SPI_BITS_16_BPT				8
 164
 165/* Bit manipulation macros */
 166#define SPI_BIT(name) \
 167	(1 << SPI_##name##_OFFSET)
 168#define SPI_BF(name,value) \
 169	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 170#define SPI_BFEXT(name,value) \
 171	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 172#define SPI_BFINS(name,value,old) \
 173	( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 174	  | SPI_BF(name,value))
 175
 176/* Register access macros */
 177#define spi_readl(port,reg) \
 178	__raw_readl((port)->regs + SPI_##reg)
 179#define spi_writel(port,reg,value) \
 180	__raw_writel((value), (port)->regs + SPI_##reg)
 181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182
 183/*
 184 * The core SPI transfer engine just talks to a register bank to set up
 185 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 186 * framework provides the base clock, subdivided for each spi_device.
 187 */
 188struct atmel_spi {
 189	spinlock_t		lock;
 
 190
 
 191	void __iomem		*regs;
 192	int			irq;
 193	struct clk		*clk;
 194	struct platform_device	*pdev;
 195	struct spi_device	*stay;
 196
 197	u8			stopping;
 198	struct list_head	queue;
 199	struct spi_transfer	*current_transfer;
 200	unsigned long		current_remaining_bytes;
 201	struct spi_transfer	*next_transfer;
 202	unsigned long		next_remaining_bytes;
 
 203
 
 204	void			*buffer;
 205	dma_addr_t		buffer_dma;
 
 
 
 
 
 
 
 
 
 
 206};
 207
 208/* Controller-specific per-slave state */
 209struct atmel_spi_device {
 210	unsigned int		npcs_pin;
 211	u32			csr;
 212};
 213
 214#define BUFFER_SIZE		PAGE_SIZE
 215#define INVALID_DMA_ADDRESS	0xffffffff
 216
 217/*
 218 * Version 2 of the SPI controller has
 219 *  - CR.LASTXFER
 220 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 221 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 222 *  - SPI_CSRx.CSAAT
 223 *  - SPI_CSRx.SBCR allows faster clocking
 224 *
 225 * We can determine the controller version by reading the VERSION
 226 * register, but I haven't checked that it exists on all chips, and
 227 * this is cheaper anyway.
 228 */
 229static bool atmel_spi_is_v2(void)
 230{
 231	return !cpu_is_at91rm9200();
 232}
 233
 234/*
 235 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 236 * they assume that spi slave device state will not change on deselect, so
 237 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 238 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 239 * controllers have CSAAT and friends.
 240 *
 241 * Since the CSAAT functionality is a bit weird on newer controllers as
 242 * well, we use GPIO to control nCSx pins on all controllers, updating
 243 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 244 * support active-high chipselects despite the controller's belief that
 245 * only active-low devices/systems exists.
 246 *
 247 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 248 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 249 * Master on Chip Select 0.")  No workaround exists for that ... so for
 250 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 251 * and (c) will trigger that first erratum in some cases.
 252 *
 253 * TODO: Test if the atmel_spi_is_v2() branch below works on
 254 * AT91RM9200 if we use some other register than CSR0. However, don't
 255 * do this unconditionally since AP7000 has an errata where the BITS
 256 * field in CSR0 overrides all other CSRs.
 257 */
 258
 259static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 260{
 261	struct atmel_spi_device *asd = spi->controller_state;
 262	unsigned active = spi->mode & SPI_CS_HIGH;
 263	u32 mr;
 264
 265	if (atmel_spi_is_v2()) {
 266		/*
 267		 * Always use CSR0. This ensures that the clock
 268		 * switches to the correct idle polarity before we
 269		 * toggle the CS.
 270		 */
 271		spi_writel(as, CSR0, asd->csr);
 272		spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
 273				| SPI_BIT(MSTR));
 
 
 
 
 
 
 
 
 
 
 
 274		mr = spi_readl(as, MR);
 275		gpio_set_value(asd->npcs_pin, active);
 276	} else {
 277		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 278		int i;
 279		u32 csr;
 280
 281		/* Make sure clock polarity is correct */
 282		for (i = 0; i < spi->master->num_chipselect; i++) {
 283			csr = spi_readl(as, CSR0 + 4 * i);
 284			if ((csr ^ cpol) & SPI_BIT(CPOL))
 285				spi_writel(as, CSR0 + 4 * i,
 286						csr ^ SPI_BIT(CPOL));
 287		}
 288
 289		mr = spi_readl(as, MR);
 290		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 291		if (spi->chip_select != 0)
 292			gpio_set_value(asd->npcs_pin, active);
 293		spi_writel(as, MR, mr);
 294	}
 295
 296	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 297			asd->npcs_pin, active ? " (high)" : "",
 298			mr);
 299}
 300
 301static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 302{
 303	struct atmel_spi_device *asd = spi->controller_state;
 304	unsigned active = spi->mode & SPI_CS_HIGH;
 305	u32 mr;
 306
 307	/* only deactivate *this* device; sometimes transfers to
 308	 * another device may be active when this routine is called.
 309	 */
 310	mr = spi_readl(as, MR);
 311	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 312		mr = SPI_BFINS(PCS, 0xf, mr);
 313		spi_writel(as, MR, mr);
 314	}
 315
 316	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 317			asd->npcs_pin, active ? " (low)" : "",
 318			mr);
 319
 320	if (atmel_spi_is_v2() || spi->chip_select != 0)
 321		gpio_set_value(asd->npcs_pin, !active);
 322}
 323
 324static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
 325					struct spi_transfer *xfer)
 
 
 
 
 326{
 327	return msg->transfers.prev == &xfer->transfer_list;
 328}
 329
 330static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
 
 331{
 332	return xfer->delay_usecs == 0 && !xfer->cs_change;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333}
 334
 335static void atmel_spi_next_xfer_data(struct spi_master *master,
 336				struct spi_transfer *xfer,
 337				dma_addr_t *tx_dma,
 338				dma_addr_t *rx_dma,
 339				u32 *plen)
 340{
 341	struct atmel_spi	*as = spi_master_get_devdata(master);
 342	u32			len = *plen;
 343
 344	/* use scratch buffer only when rx or tx data is unspecified */
 345	if (xfer->rx_buf)
 346		*rx_dma = xfer->rx_dma + xfer->len - *plen;
 347	else {
 348		*rx_dma = as->buffer_dma;
 349		if (len > BUFFER_SIZE)
 350			len = BUFFER_SIZE;
 351	}
 
 352	if (xfer->tx_buf)
 353		*tx_dma = xfer->tx_dma + xfer->len - *plen;
 354	else {
 355		*tx_dma = as->buffer_dma;
 356		if (len > BUFFER_SIZE)
 357			len = BUFFER_SIZE;
 358		memset(as->buffer, 0, len);
 359		dma_sync_single_for_device(&as->pdev->dev,
 360				as->buffer_dma, len, DMA_TO_DEVICE);
 361	}
 362
 363	*plen = len;
 364}
 365
 366/*
 367 * Submit next transfer for DMA.
 368 * lock is held, spi irq is blocked
 369 */
 370static void atmel_spi_next_xfer(struct spi_master *master,
 371				struct spi_message *msg)
 372{
 373	struct atmel_spi	*as = spi_master_get_devdata(master);
 374	struct spi_transfer	*xfer;
 375	u32			len, remaining;
 376	u32			ieval;
 377	dma_addr_t		tx_dma, rx_dma;
 378
 379	if (!as->current_transfer)
 380		xfer = list_entry(msg->transfers.next,
 381				struct spi_transfer, transfer_list);
 382	else if (!as->next_transfer)
 383		xfer = list_entry(as->current_transfer->transfer_list.next,
 384				struct spi_transfer, transfer_list);
 385	else
 386		xfer = NULL;
 387
 388	if (xfer) {
 389		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 390
 391		len = xfer->len;
 392		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 393		remaining = xfer->len - len;
 394
 395		spi_writel(as, RPR, rx_dma);
 396		spi_writel(as, TPR, tx_dma);
 
 
 397
 398		if (msg->spi->bits_per_word > 8)
 399			len >>= 1;
 400		spi_writel(as, RCR, len);
 401		spi_writel(as, TCR, len);
 
 
 
 
 
 
 
 
 402
 403		dev_dbg(&msg->spi->dev,
 404			"  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 405			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 406			xfer->rx_buf, xfer->rx_dma);
 407	} else {
 408		xfer = as->next_transfer;
 409		remaining = as->next_remaining_bytes;
 
 
 410	}
 
 
 
 
 
 
 
 
 
 411
 412	as->current_transfer = xfer;
 413	as->current_remaining_bytes = remaining;
 414
 415	if (remaining > 0)
 416		len = remaining;
 417	else if (!atmel_spi_xfer_is_last(msg, xfer)
 418			&& atmel_spi_xfer_can_be_chained(xfer)) {
 419		xfer = list_entry(xfer->transfer_list.next,
 420				struct spi_transfer, transfer_list);
 421		len = xfer->len;
 422	} else
 423		xfer = NULL;
 
 
 424
 425	as->next_transfer = xfer;
 426
 427	if (xfer) {
 428		u32	total;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429
 430		total = len;
 
 431		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 432		as->next_remaining_bytes = total - len;
 433
 434		spi_writel(as, RNPR, rx_dma);
 435		spi_writel(as, TNPR, tx_dma);
 436
 437		if (msg->spi->bits_per_word > 8)
 438			len >>= 1;
 439		spi_writel(as, RNCR, len);
 440		spi_writel(as, TNCR, len);
 441
 442		dev_dbg(&msg->spi->dev,
 443			"  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 444			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
 445			xfer->rx_buf, xfer->rx_dma);
 446		ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 447	} else {
 448		spi_writel(as, RNCR, 0);
 449		spi_writel(as, TNCR, 0);
 450		ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
 451	}
 452
 453	/* REVISIT: We're waiting for ENDRX before we start the next
 454	 * transfer because we need to handle some difficult timing
 455	 * issues otherwise. If we wait for ENDTX in one transfer and
 456	 * then starts waiting for ENDRX in the next, it's difficult
 457	 * to tell the difference between the ENDRX interrupt we're
 458	 * actually waiting for and the ENDRX interrupt of the
 459	 * previous transfer.
 460	 *
 461	 * It should be doable, though. Just not now...
 462	 */
 463	spi_writel(as, IER, ieval);
 464	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 465}
 466
 467static void atmel_spi_next_message(struct spi_master *master)
 468{
 469	struct atmel_spi	*as = spi_master_get_devdata(master);
 470	struct spi_message	*msg;
 471	struct spi_device	*spi;
 472
 473	BUG_ON(as->current_transfer);
 474
 475	msg = list_entry(as->queue.next, struct spi_message, queue);
 476	spi = msg->spi;
 477
 478	dev_dbg(master->dev.parent, "start message %p for %s\n",
 479			msg, dev_name(&spi->dev));
 480
 481	/* select chip if it's not still active */
 482	if (as->stay) {
 483		if (as->stay != spi) {
 484			cs_deactivate(as, as->stay);
 485			cs_activate(as, spi);
 486		}
 487		as->stay = NULL;
 488	} else
 489		cs_activate(as, spi);
 490
 491	atmel_spi_next_xfer(master, msg);
 492}
 493
 494/*
 495 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 496 *  - The buffer is either valid for CPU access, else NULL
 497 *  - If the buffer is valid, so is its DMA address
 498 *
 499 * This driver manages the dma address unless message->is_dma_mapped.
 500 */
 501static int
 502atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 503{
 504	struct device	*dev = &as->pdev->dev;
 505
 506	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 507	if (xfer->tx_buf) {
 508		/* tx_buf is a const void* where we need a void * for the dma
 509		 * mapping */
 510		void *nonconst_tx = (void *)xfer->tx_buf;
 511
 512		xfer->tx_dma = dma_map_single(dev,
 513				nonconst_tx, xfer->len,
 514				DMA_TO_DEVICE);
 515		if (dma_mapping_error(dev, xfer->tx_dma))
 516			return -ENOMEM;
 517	}
 518	if (xfer->rx_buf) {
 519		xfer->rx_dma = dma_map_single(dev,
 520				xfer->rx_buf, xfer->len,
 521				DMA_FROM_DEVICE);
 522		if (dma_mapping_error(dev, xfer->rx_dma)) {
 523			if (xfer->tx_buf)
 524				dma_unmap_single(dev,
 525						xfer->tx_dma, xfer->len,
 526						DMA_TO_DEVICE);
 527			return -ENOMEM;
 528		}
 529	}
 530	return 0;
 531}
 532
 533static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 534				     struct spi_transfer *xfer)
 535{
 536	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 537		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 538				 xfer->len, DMA_TO_DEVICE);
 539	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 540		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 541				 xfer->len, DMA_FROM_DEVICE);
 542}
 543
 544static void
 545atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
 546		struct spi_message *msg, int status, int stay)
 547{
 548	if (!stay || status < 0)
 549		cs_deactivate(as, msg->spi);
 550	else
 551		as->stay = msg->spi;
 552
 553	list_del(&msg->queue);
 554	msg->status = status;
 555
 556	dev_dbg(master->dev.parent,
 557		"xfer complete: %u bytes transferred\n",
 558		msg->actual_length);
 559
 560	spin_unlock(&as->lock);
 561	msg->complete(msg->context);
 562	spin_lock(&as->lock);
 563
 564	as->current_transfer = NULL;
 565	as->next_transfer = NULL;
 
 
 
 
 
 
 
 
 
 566
 567	/* continue if needed */
 568	if (list_empty(&as->queue) || as->stopping)
 569		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 570	else
 571		atmel_spi_next_message(master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 572}
 573
 
 
 
 
 
 574static irqreturn_t
 575atmel_spi_interrupt(int irq, void *dev_id)
 576{
 577	struct spi_master	*master = dev_id;
 578	struct atmel_spi	*as = spi_master_get_devdata(master);
 579	struct spi_message	*msg;
 580	struct spi_transfer	*xfer;
 581	u32			status, pending, imr;
 
 582	int			ret = IRQ_NONE;
 583
 584	spin_lock(&as->lock);
 585
 586	xfer = as->current_transfer;
 587	msg = list_entry(as->queue.next, struct spi_message, queue);
 588
 589	imr = spi_readl(as, IMR);
 590	status = spi_readl(as, SR);
 591	pending = status & imr;
 592
 593	if (pending & SPI_BIT(OVRES)) {
 594		int timeout;
 595
 596		ret = IRQ_HANDLED;
 597
 598		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
 599				     | SPI_BIT(OVRES)));
 600
 601		/*
 602		 * When we get an overrun, we disregard the current
 603		 * transfer. Data will not be copied back from any
 604		 * bounce buffer and msg->actual_len will not be
 605		 * updated with the last xfer.
 606		 *
 607		 * We will also not process any remaning transfers in
 608		 * the message.
 609		 *
 610		 * First, stop the transfer and unmap the DMA buffers.
 611		 */
 612		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 613		if (!msg->is_dma_mapped)
 614			atmel_spi_dma_unmap_xfer(master, xfer);
 615
 616		/* REVISIT: udelay in irq is unfriendly */
 617		if (xfer->delay_usecs)
 618			udelay(xfer->delay_usecs);
 619
 620		dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
 621			 spi_readl(as, TCR), spi_readl(as, RCR));
 622
 623		/*
 624		 * Clean up DMA registers and make sure the data
 625		 * registers are empty.
 626		 */
 627		spi_writel(as, RNCR, 0);
 628		spi_writel(as, TNCR, 0);
 629		spi_writel(as, RCR, 0);
 630		spi_writel(as, TCR, 0);
 631		for (timeout = 1000; timeout; timeout--)
 632			if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
 633				break;
 634		if (!timeout)
 635			dev_warn(master->dev.parent,
 636				 "timeout waiting for TXEMPTY");
 637		while (spi_readl(as, SR) & SPI_BIT(RDRF))
 638			spi_readl(as, RDR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639
 640		/* Clear any overrun happening while cleaning up */
 641		spi_readl(as, SR);
 642
 643		atmel_spi_msg_done(master, as, msg, -EIO, 0);
 
 
 
 644	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
 645		ret = IRQ_HANDLED;
 646
 647		spi_writel(as, IDR, pending);
 648
 649		if (as->current_remaining_bytes == 0) {
 650			msg->actual_length += xfer->len;
 651
 652			if (!msg->is_dma_mapped)
 653				atmel_spi_dma_unmap_xfer(master, xfer);
 654
 655			/* REVISIT: udelay in irq is unfriendly */
 656			if (xfer->delay_usecs)
 657				udelay(xfer->delay_usecs);
 658
 659			if (atmel_spi_xfer_is_last(msg, xfer)) {
 660				/* report completed message */
 661				atmel_spi_msg_done(master, as, msg, 0,
 662						xfer->cs_change);
 663			} else {
 664				if (xfer->cs_change) {
 665					cs_deactivate(as, msg->spi);
 666					udelay(1);
 667					cs_activate(as, msg->spi);
 668				}
 669
 670				/*
 671				 * Not done yet. Submit the next transfer.
 672				 *
 673				 * FIXME handle protocol options for xfer
 674				 */
 675				atmel_spi_next_xfer(master, msg);
 676			}
 677		} else {
 678			/*
 679			 * Keep going, we still have data to send in
 680			 * the current transfer.
 681			 */
 682			atmel_spi_next_xfer(master, msg);
 683		}
 684	}
 685
 686	spin_unlock(&as->lock);
 687
 688	return ret;
 689}
 690
 691static int atmel_spi_setup(struct spi_device *spi)
 692{
 693	struct atmel_spi	*as;
 694	struct atmel_spi_device	*asd;
 695	u32			scbr, csr;
 696	unsigned int		bits = spi->bits_per_word;
 697	unsigned long		bus_hz;
 698	unsigned int		npcs_pin;
 699	int			ret;
 700
 701	as = spi_master_get_devdata(spi->master);
 702
 703	if (as->stopping)
 704		return -ESHUTDOWN;
 705
 706	if (spi->chip_select > spi->master->num_chipselect) {
 707		dev_dbg(&spi->dev,
 708				"setup: invalid chipselect %u (%u defined)\n",
 709				spi->chip_select, spi->master->num_chipselect);
 710		return -EINVAL;
 711	}
 712
 713	if (bits < 8 || bits > 16) {
 714		dev_dbg(&spi->dev,
 715				"setup: invalid bits_per_word %u (8 to 16)\n",
 716				bits);
 717		return -EINVAL;
 718	}
 719
 720	/* see notes above re chipselect */
 721	if (!atmel_spi_is_v2()
 722			&& spi->chip_select == 0
 723			&& (spi->mode & SPI_CS_HIGH)) {
 724		dev_dbg(&spi->dev, "setup: can't be active-high\n");
 725		return -EINVAL;
 726	}
 727
 728	/* v1 chips start out at half the peripheral bus speed. */
 729	bus_hz = clk_get_rate(as->clk);
 730	if (!atmel_spi_is_v2())
 731		bus_hz /= 2;
 732
 733	if (spi->max_speed_hz) {
 734		/*
 735		 * Calculate the lowest divider that satisfies the
 736		 * constraint, assuming div32/fdiv/mbz == 0.
 737		 */
 738		scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
 739
 740		/*
 741		 * If the resulting divider doesn't fit into the
 742		 * register bitfield, we can't satisfy the constraint.
 743		 */
 744		if (scbr >= (1 << SPI_SCBR_SIZE)) {
 745			dev_dbg(&spi->dev,
 746				"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 747				spi->max_speed_hz, scbr, bus_hz/255);
 748			return -EINVAL;
 749		}
 750	} else
 751		/* speed zero means "as slow as possible" */
 752		scbr = 0xff;
 753
 754	csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
 755	if (spi->mode & SPI_CPOL)
 756		csr |= SPI_BIT(CPOL);
 757	if (!(spi->mode & SPI_CPHA))
 758		csr |= SPI_BIT(NCPHA);
 759
 760	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
 761	 *
 762	 * DLYBCT would add delays between words, slowing down transfers.
 763	 * It could potentially be useful to cope with DMA bottlenecks, but
 764	 * in those cases it's probably best to just use a lower bitrate.
 765	 */
 766	csr |= SPI_BF(DLYBS, 0);
 767	csr |= SPI_BF(DLYBCT, 0);
 768
 769	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
 770	npcs_pin = (unsigned int)spi->controller_data;
 
 
 
 
 771	asd = spi->controller_state;
 772	if (!asd) {
 773		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
 774		if (!asd)
 775			return -ENOMEM;
 776
 777		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
 778		if (ret) {
 779			kfree(asd);
 780			return ret;
 781		}
 782
 783		asd->npcs_pin = npcs_pin;
 784		spi->controller_state = asd;
 785		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
 786	} else {
 787		unsigned long		flags;
 788
 789		spin_lock_irqsave(&as->lock, flags);
 790		if (as->stay == spi)
 791			as->stay = NULL;
 792		cs_deactivate(as, spi);
 793		spin_unlock_irqrestore(&as->lock, flags);
 794	}
 795
 796	asd->csr = csr;
 797
 798	dev_dbg(&spi->dev,
 799		"setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
 800		bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
 801
 802	if (!atmel_spi_is_v2())
 803		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 804
 805	return 0;
 806}
 807
 808static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
 
 
 809{
 810	struct atmel_spi	*as;
 811	struct spi_transfer	*xfer;
 812	unsigned long		flags;
 813	struct device		*controller = spi->master->dev.parent;
 814	u8			bits;
 
 815	struct atmel_spi_device	*asd;
 
 
 816
 817	as = spi_master_get_devdata(spi->master);
 818
 819	dev_dbg(controller, "new message %p submitted for %s\n",
 820			msg, dev_name(&spi->dev));
 821
 822	if (unlikely(list_empty(&msg->transfers)))
 
 823		return -EINVAL;
 
 824
 825	if (as->stopping)
 826		return -ESHUTDOWN;
 827
 828	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 829		if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
 830			dev_dbg(&spi->dev, "missing rx or tx buf\n");
 831			return -EINVAL;
 832		}
 
 833
 834		if (xfer->bits_per_word) {
 835			asd = spi->controller_state;
 836			bits = (asd->csr >> 4) & 0xf;
 837			if (bits != xfer->bits_per_word - 8) {
 838				dev_dbg(&spi->dev, "you can't yet change "
 839					 "bits_per_word in transfers\n");
 840				return -ENOPROTOOPT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841			}
 
 
 842		}
 843
 844		/* FIXME implement these protocol options!! */
 845		if (xfer->speed_hz) {
 846			dev_dbg(&spi->dev, "no protocol options yet\n");
 847			return -ENOPROTOOPT;
 
 
 
 
 
 
 
 848		}
 849
 850		/*
 851		 * DMA map early, for performance (empties dcache ASAP) and
 852		 * better fault reporting.  This is a DMA-only driver.
 853		 *
 854		 * NOTE that if dma_unmap_single() ever starts to do work on
 855		 * platforms supported by this driver, we would need to clean
 856		 * up mappings for previously-mapped transfers.
 857		 */
 858		if (!msg->is_dma_mapped) {
 859			if (atmel_spi_dma_map_xfer(as, xfer) < 0)
 860				return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862	}
 863
 864#ifdef VERBOSE
 
 
 865	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 866		dev_dbg(controller,
 867			"  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
 868			xfer, xfer->len,
 869			xfer->tx_buf, xfer->tx_dma,
 870			xfer->rx_buf, xfer->rx_dma);
 871	}
 872#endif
 873
 874	msg->status = -EINPROGRESS;
 875	msg->actual_length = 0;
 
 876
 877	spin_lock_irqsave(&as->lock, flags);
 878	list_add_tail(&msg->queue, &as->queue);
 879	if (!as->current_transfer)
 880		atmel_spi_next_message(spi->master);
 881	spin_unlock_irqrestore(&as->lock, flags);
 882
 883	return 0;
 
 
 
 884}
 885
 886static void atmel_spi_cleanup(struct spi_device *spi)
 887{
 888	struct atmel_spi	*as = spi_master_get_devdata(spi->master);
 889	struct atmel_spi_device	*asd = spi->controller_state;
 890	unsigned		gpio = (unsigned) spi->controller_data;
 891	unsigned long		flags;
 892
 893	if (!asd)
 894		return;
 895
 896	spin_lock_irqsave(&as->lock, flags);
 897	if (as->stay == spi) {
 898		as->stay = NULL;
 899		cs_deactivate(as, spi);
 900	}
 901	spin_unlock_irqrestore(&as->lock, flags);
 902
 903	spi->controller_state = NULL;
 904	gpio_free(gpio);
 905	kfree(asd);
 906}
 907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908/*-------------------------------------------------------------------------*/
 909
 910static int __init atmel_spi_probe(struct platform_device *pdev)
 911{
 912	struct resource		*regs;
 913	int			irq;
 914	struct clk		*clk;
 915	int			ret;
 916	struct spi_master	*master;
 917	struct atmel_spi	*as;
 918
 
 
 
 919	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 920	if (!regs)
 921		return -ENXIO;
 922
 923	irq = platform_get_irq(pdev, 0);
 924	if (irq < 0)
 925		return irq;
 926
 927	clk = clk_get(&pdev->dev, "spi_clk");
 928	if (IS_ERR(clk))
 929		return PTR_ERR(clk);
 930
 931	/* setup spi core then atmel-specific driver state */
 932	ret = -ENOMEM;
 933	master = spi_alloc_master(&pdev->dev, sizeof *as);
 934	if (!master)
 935		goto out_free;
 936
 937	/* the spi->mode bits understood by this driver: */
 938	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
 939
 
 940	master->bus_num = pdev->id;
 941	master->num_chipselect = 4;
 942	master->setup = atmel_spi_setup;
 943	master->transfer = atmel_spi_transfer;
 944	master->cleanup = atmel_spi_cleanup;
 945	platform_set_drvdata(pdev, master);
 946
 947	as = spi_master_get_devdata(master);
 948
 949	/*
 950	 * Scratch buffer is used for throwaway rx and tx data.
 951	 * It's coherent to minimize dcache pollution.
 952	 */
 953	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
 954					&as->buffer_dma, GFP_KERNEL);
 955	if (!as->buffer)
 956		goto out_free;
 957
 958	spin_lock_init(&as->lock);
 959	INIT_LIST_HEAD(&as->queue);
 960	as->pdev = pdev;
 961	as->regs = ioremap(regs->start, resource_size(regs));
 962	if (!as->regs)
 
 963		goto out_free_buffer;
 
 
 964	as->irq = irq;
 965	as->clk = clk;
 966
 967	ret = request_irq(irq, atmel_spi_interrupt, 0,
 968			dev_name(&pdev->dev), master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969	if (ret)
 970		goto out_unmap_regs;
 971
 972	/* Initialize the hardware */
 973	clk_enable(clk);
 
 
 974	spi_writel(as, CR, SPI_BIT(SWRST));
 975	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 976	spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
 977	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 
 
 
 
 
 
 
 978	spi_writel(as, CR, SPI_BIT(SPIEN));
 979
 980	/* go! */
 981	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
 982			(unsigned long)regs->start, irq);
 983
 984	ret = spi_register_master(master);
 985	if (ret)
 986		goto out_reset_hw;
 987
 988	return 0;
 989
 990out_reset_hw:
 
 
 
 991	spi_writel(as, CR, SPI_BIT(SWRST));
 992	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 993	clk_disable(clk);
 994	free_irq(irq, master);
 995out_unmap_regs:
 996	iounmap(as->regs);
 997out_free_buffer:
 998	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
 999			as->buffer_dma);
1000out_free:
1001	clk_put(clk);
1002	spi_master_put(master);
1003	return ret;
1004}
1005
1006static int __exit atmel_spi_remove(struct platform_device *pdev)
1007{
1008	struct spi_master	*master = platform_get_drvdata(pdev);
1009	struct atmel_spi	*as = spi_master_get_devdata(master);
1010	struct spi_message	*msg;
1011
1012	/* reset the hardware and block queue progress */
1013	spin_lock_irq(&as->lock);
1014	as->stopping = 1;
 
 
 
 
1015	spi_writel(as, CR, SPI_BIT(SWRST));
1016	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1017	spi_readl(as, SR);
1018	spin_unlock_irq(&as->lock);
1019
1020	/* Terminate remaining queued transfers */
1021	list_for_each_entry(msg, &as->queue, queue) {
1022		/* REVISIT unmapping the dma is a NOP on ARM and AVR32
1023		 * but we shouldn't depend on that...
1024		 */
1025		msg->status = -ESHUTDOWN;
1026		msg->complete(msg->context);
1027	}
1028
1029	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1030			as->buffer_dma);
1031
1032	clk_disable(as->clk);
1033	clk_put(as->clk);
1034	free_irq(as->irq, master);
1035	iounmap(as->regs);
1036
1037	spi_unregister_master(master);
1038
1039	return 0;
1040}
1041
1042#ifdef	CONFIG_PM
1043
1044static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
1045{
1046	struct spi_master	*master = platform_get_drvdata(pdev);
1047	struct atmel_spi	*as = spi_master_get_devdata(master);
 
 
 
 
 
 
 
 
 
 
 
 
1048
1049	clk_disable(as->clk);
1050	return 0;
1051}
1052
1053static int atmel_spi_resume(struct platform_device *pdev)
1054{
1055	struct spi_master	*master = platform_get_drvdata(pdev);
1056	struct atmel_spi	*as = spi_master_get_devdata(master);
 
1057
1058	clk_enable(as->clk);
1059	return 0;
 
 
 
 
 
 
 
 
1060}
1061
 
 
 
1062#else
1063#define	atmel_spi_suspend	NULL
1064#define	atmel_spi_resume	NULL
1065#endif
1066
 
 
 
 
 
 
 
 
1067
1068static struct platform_driver atmel_spi_driver = {
1069	.driver		= {
1070		.name	= "atmel_spi",
1071		.owner	= THIS_MODULE,
 
 
1072	},
1073	.suspend	= atmel_spi_suspend,
1074	.resume		= atmel_spi_resume,
1075	.remove		= __exit_p(atmel_spi_remove),
1076};
1077
1078static int __init atmel_spi_init(void)
1079{
1080	return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe);
1081}
1082module_init(atmel_spi_init);
1083
1084static void __exit atmel_spi_exit(void)
1085{
1086	platform_driver_unregister(&atmel_spi_driver);
1087}
1088module_exit(atmel_spi_exit);
1089
1090MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1091MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1092MODULE_LICENSE("GPL");
1093MODULE_ALIAS("platform:atmel_spi");
v3.15
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
 
  12#include <linux/clk.h>
  13#include <linux/module.h>
  14#include <linux/platform_device.h>
  15#include <linux/delay.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/dmaengine.h>
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
  22#include <linux/platform_data/atmel.h>
  23#include <linux/platform_data/dma-atmel.h>
  24#include <linux/of.h>
  25
  26#include <linux/io.h>
  27#include <linux/gpio.h>
  28#include <linux/pinctrl/consumer.h>
  29
  30/* SPI register offsets */
  31#define SPI_CR					0x0000
  32#define SPI_MR					0x0004
  33#define SPI_RDR					0x0008
  34#define SPI_TDR					0x000c
  35#define SPI_SR					0x0010
  36#define SPI_IER					0x0014
  37#define SPI_IDR					0x0018
  38#define SPI_IMR					0x001c
  39#define SPI_CSR0				0x0030
  40#define SPI_CSR1				0x0034
  41#define SPI_CSR2				0x0038
  42#define SPI_CSR3				0x003c
  43#define SPI_VERSION				0x00fc
  44#define SPI_RPR					0x0100
  45#define SPI_RCR					0x0104
  46#define SPI_TPR					0x0108
  47#define SPI_TCR					0x010c
  48#define SPI_RNPR				0x0110
  49#define SPI_RNCR				0x0114
  50#define SPI_TNPR				0x0118
  51#define SPI_TNCR				0x011c
  52#define SPI_PTCR				0x0120
  53#define SPI_PTSR				0x0124
  54
  55/* Bitfields in CR */
  56#define SPI_SPIEN_OFFSET			0
  57#define SPI_SPIEN_SIZE				1
  58#define SPI_SPIDIS_OFFSET			1
  59#define SPI_SPIDIS_SIZE				1
  60#define SPI_SWRST_OFFSET			7
  61#define SPI_SWRST_SIZE				1
  62#define SPI_LASTXFER_OFFSET			24
  63#define SPI_LASTXFER_SIZE			1
  64
  65/* Bitfields in MR */
  66#define SPI_MSTR_OFFSET				0
  67#define SPI_MSTR_SIZE				1
  68#define SPI_PS_OFFSET				1
  69#define SPI_PS_SIZE				1
  70#define SPI_PCSDEC_OFFSET			2
  71#define SPI_PCSDEC_SIZE				1
  72#define SPI_FDIV_OFFSET				3
  73#define SPI_FDIV_SIZE				1
  74#define SPI_MODFDIS_OFFSET			4
  75#define SPI_MODFDIS_SIZE			1
  76#define SPI_WDRBT_OFFSET			5
  77#define SPI_WDRBT_SIZE				1
  78#define SPI_LLB_OFFSET				7
  79#define SPI_LLB_SIZE				1
  80#define SPI_PCS_OFFSET				16
  81#define SPI_PCS_SIZE				4
  82#define SPI_DLYBCS_OFFSET			24
  83#define SPI_DLYBCS_SIZE				8
  84
  85/* Bitfields in RDR */
  86#define SPI_RD_OFFSET				0
  87#define SPI_RD_SIZE				16
  88
  89/* Bitfields in TDR */
  90#define SPI_TD_OFFSET				0
  91#define SPI_TD_SIZE				16
  92
  93/* Bitfields in SR */
  94#define SPI_RDRF_OFFSET				0
  95#define SPI_RDRF_SIZE				1
  96#define SPI_TDRE_OFFSET				1
  97#define SPI_TDRE_SIZE				1
  98#define SPI_MODF_OFFSET				2
  99#define SPI_MODF_SIZE				1
 100#define SPI_OVRES_OFFSET			3
 101#define SPI_OVRES_SIZE				1
 102#define SPI_ENDRX_OFFSET			4
 103#define SPI_ENDRX_SIZE				1
 104#define SPI_ENDTX_OFFSET			5
 105#define SPI_ENDTX_SIZE				1
 106#define SPI_RXBUFF_OFFSET			6
 107#define SPI_RXBUFF_SIZE				1
 108#define SPI_TXBUFE_OFFSET			7
 109#define SPI_TXBUFE_SIZE				1
 110#define SPI_NSSR_OFFSET				8
 111#define SPI_NSSR_SIZE				1
 112#define SPI_TXEMPTY_OFFSET			9
 113#define SPI_TXEMPTY_SIZE			1
 114#define SPI_SPIENS_OFFSET			16
 115#define SPI_SPIENS_SIZE				1
 116
 117/* Bitfields in CSR0 */
 118#define SPI_CPOL_OFFSET				0
 119#define SPI_CPOL_SIZE				1
 120#define SPI_NCPHA_OFFSET			1
 121#define SPI_NCPHA_SIZE				1
 122#define SPI_CSAAT_OFFSET			3
 123#define SPI_CSAAT_SIZE				1
 124#define SPI_BITS_OFFSET				4
 125#define SPI_BITS_SIZE				4
 126#define SPI_SCBR_OFFSET				8
 127#define SPI_SCBR_SIZE				8
 128#define SPI_DLYBS_OFFSET			16
 129#define SPI_DLYBS_SIZE				8
 130#define SPI_DLYBCT_OFFSET			24
 131#define SPI_DLYBCT_SIZE				8
 132
 133/* Bitfields in RCR */
 134#define SPI_RXCTR_OFFSET			0
 135#define SPI_RXCTR_SIZE				16
 136
 137/* Bitfields in TCR */
 138#define SPI_TXCTR_OFFSET			0
 139#define SPI_TXCTR_SIZE				16
 140
 141/* Bitfields in RNCR */
 142#define SPI_RXNCR_OFFSET			0
 143#define SPI_RXNCR_SIZE				16
 144
 145/* Bitfields in TNCR */
 146#define SPI_TXNCR_OFFSET			0
 147#define SPI_TXNCR_SIZE				16
 148
 149/* Bitfields in PTCR */
 150#define SPI_RXTEN_OFFSET			0
 151#define SPI_RXTEN_SIZE				1
 152#define SPI_RXTDIS_OFFSET			1
 153#define SPI_RXTDIS_SIZE				1
 154#define SPI_TXTEN_OFFSET			8
 155#define SPI_TXTEN_SIZE				1
 156#define SPI_TXTDIS_OFFSET			9
 157#define SPI_TXTDIS_SIZE				1
 158
 159/* Constants for BITS */
 160#define SPI_BITS_8_BPT				0
 161#define SPI_BITS_9_BPT				1
 162#define SPI_BITS_10_BPT				2
 163#define SPI_BITS_11_BPT				3
 164#define SPI_BITS_12_BPT				4
 165#define SPI_BITS_13_BPT				5
 166#define SPI_BITS_14_BPT				6
 167#define SPI_BITS_15_BPT				7
 168#define SPI_BITS_16_BPT				8
 169
 170/* Bit manipulation macros */
 171#define SPI_BIT(name) \
 172	(1 << SPI_##name##_OFFSET)
 173#define SPI_BF(name, value) \
 174	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 175#define SPI_BFEXT(name, value) \
 176	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 177#define SPI_BFINS(name, value, old) \
 178	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 179	  | SPI_BF(name, value))
 180
 181/* Register access macros */
 182#define spi_readl(port, reg) \
 183	__raw_readl((port)->regs + SPI_##reg)
 184#define spi_writel(port, reg, value) \
 185	__raw_writel((value), (port)->regs + SPI_##reg)
 186
 187/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 188 * cache operations; better heuristics consider wordsize and bitrate.
 189 */
 190#define DMA_MIN_BYTES	16
 191
 192#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
 193
 194struct atmel_spi_dma {
 195	struct dma_chan			*chan_rx;
 196	struct dma_chan			*chan_tx;
 197	struct scatterlist		sgrx;
 198	struct scatterlist		sgtx;
 199	struct dma_async_tx_descriptor	*data_desc_rx;
 200	struct dma_async_tx_descriptor	*data_desc_tx;
 201
 202	struct at_dma_slave	dma_slave;
 203};
 204
 205struct atmel_spi_caps {
 206	bool	is_spi2;
 207	bool	has_wdrbt;
 208	bool	has_dma_support;
 209};
 210
 211/*
 212 * The core SPI transfer engine just talks to a register bank to set up
 213 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 214 * framework provides the base clock, subdivided for each spi_device.
 215 */
 216struct atmel_spi {
 217	spinlock_t		lock;
 218	unsigned long		flags;
 219
 220	phys_addr_t		phybase;
 221	void __iomem		*regs;
 222	int			irq;
 223	struct clk		*clk;
 224	struct platform_device	*pdev;
 
 225
 
 
 226	struct spi_transfer	*current_transfer;
 227	unsigned long		current_remaining_bytes;
 228	int			done_status;
 229
 230	struct completion	xfer_completion;
 231
 232	/* scratch buffer */
 233	void			*buffer;
 234	dma_addr_t		buffer_dma;
 235
 236	struct atmel_spi_caps	caps;
 237
 238	bool			use_dma;
 239	bool			use_pdc;
 240	/* dmaengine data */
 241	struct atmel_spi_dma	dma;
 242
 243	bool			keep_cs;
 244	bool			cs_active;
 245};
 246
 247/* Controller-specific per-slave state */
 248struct atmel_spi_device {
 249	unsigned int		npcs_pin;
 250	u32			csr;
 251};
 252
 253#define BUFFER_SIZE		PAGE_SIZE
 254#define INVALID_DMA_ADDRESS	0xffffffff
 255
 256/*
 257 * Version 2 of the SPI controller has
 258 *  - CR.LASTXFER
 259 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 260 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 261 *  - SPI_CSRx.CSAAT
 262 *  - SPI_CSRx.SBCR allows faster clocking
 
 
 
 
 263 */
 264static bool atmel_spi_is_v2(struct atmel_spi *as)
 265{
 266	return as->caps.is_spi2;
 267}
 268
 269/*
 270 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 271 * they assume that spi slave device state will not change on deselect, so
 272 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 273 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 274 * controllers have CSAAT and friends.
 275 *
 276 * Since the CSAAT functionality is a bit weird on newer controllers as
 277 * well, we use GPIO to control nCSx pins on all controllers, updating
 278 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 279 * support active-high chipselects despite the controller's belief that
 280 * only active-low devices/systems exists.
 281 *
 282 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 283 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 284 * Master on Chip Select 0.")  No workaround exists for that ... so for
 285 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 286 * and (c) will trigger that first erratum in some cases.
 
 
 
 
 
 287 */
 288
 289static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 290{
 291	struct atmel_spi_device *asd = spi->controller_state;
 292	unsigned active = spi->mode & SPI_CS_HIGH;
 293	u32 mr;
 294
 295	if (atmel_spi_is_v2(as)) {
 296		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
 297		/* For the low SPI version, there is a issue that PDC transfer
 298		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 
 299		 */
 300		spi_writel(as, CSR0, asd->csr);
 301		if (as->caps.has_wdrbt) {
 302			spi_writel(as, MR,
 303					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 304					| SPI_BIT(WDRBT)
 305					| SPI_BIT(MODFDIS)
 306					| SPI_BIT(MSTR));
 307		} else {
 308			spi_writel(as, MR,
 309					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 310					| SPI_BIT(MODFDIS)
 311					| SPI_BIT(MSTR));
 312		}
 313
 314		mr = spi_readl(as, MR);
 315		gpio_set_value(asd->npcs_pin, active);
 316	} else {
 317		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 318		int i;
 319		u32 csr;
 320
 321		/* Make sure clock polarity is correct */
 322		for (i = 0; i < spi->master->num_chipselect; i++) {
 323			csr = spi_readl(as, CSR0 + 4 * i);
 324			if ((csr ^ cpol) & SPI_BIT(CPOL))
 325				spi_writel(as, CSR0 + 4 * i,
 326						csr ^ SPI_BIT(CPOL));
 327		}
 328
 329		mr = spi_readl(as, MR);
 330		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 331		if (spi->chip_select != 0)
 332			gpio_set_value(asd->npcs_pin, active);
 333		spi_writel(as, MR, mr);
 334	}
 335
 336	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 337			asd->npcs_pin, active ? " (high)" : "",
 338			mr);
 339}
 340
 341static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 342{
 343	struct atmel_spi_device *asd = spi->controller_state;
 344	unsigned active = spi->mode & SPI_CS_HIGH;
 345	u32 mr;
 346
 347	/* only deactivate *this* device; sometimes transfers to
 348	 * another device may be active when this routine is called.
 349	 */
 350	mr = spi_readl(as, MR);
 351	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 352		mr = SPI_BFINS(PCS, 0xf, mr);
 353		spi_writel(as, MR, mr);
 354	}
 355
 356	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 357			asd->npcs_pin, active ? " (low)" : "",
 358			mr);
 359
 360	if (atmel_spi_is_v2(as) || spi->chip_select != 0)
 361		gpio_set_value(asd->npcs_pin, !active);
 362}
 363
 364static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 365{
 366	spin_lock_irqsave(&as->lock, as->flags);
 367}
 368
 369static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 370{
 371	spin_unlock_irqrestore(&as->lock, as->flags);
 372}
 373
 374static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 375				struct spi_transfer *xfer)
 376{
 377	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 378}
 379
 380static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 381				struct dma_slave_config *slave_config,
 382				u8 bits_per_word)
 383{
 384	int err = 0;
 385
 386	if (bits_per_word > 8) {
 387		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 388		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 389	} else {
 390		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 391		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 392	}
 393
 394	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 395	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 396	slave_config->src_maxburst = 1;
 397	slave_config->dst_maxburst = 1;
 398	slave_config->device_fc = false;
 399
 400	slave_config->direction = DMA_MEM_TO_DEV;
 401	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
 402		dev_err(&as->pdev->dev,
 403			"failed to configure tx dma channel\n");
 404		err = -EINVAL;
 405	}
 406
 407	slave_config->direction = DMA_DEV_TO_MEM;
 408	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
 409		dev_err(&as->pdev->dev,
 410			"failed to configure rx dma channel\n");
 411		err = -EINVAL;
 412	}
 413
 414	return err;
 415}
 416
 417static bool filter(struct dma_chan *chan, void *pdata)
 418{
 419	struct atmel_spi_dma *sl_pdata = pdata;
 420	struct at_dma_slave *sl;
 421
 422	if (!sl_pdata)
 423		return false;
 424
 425	sl = &sl_pdata->dma_slave;
 426	if (sl->dma_dev == chan->device->dev) {
 427		chan->private = sl;
 428		return true;
 429	} else {
 430		return false;
 431	}
 432}
 433
 434static int atmel_spi_configure_dma(struct atmel_spi *as)
 435{
 436	struct dma_slave_config	slave_config;
 437	struct device *dev = &as->pdev->dev;
 438	int err;
 439
 440	dma_cap_mask_t mask;
 441	dma_cap_zero(mask);
 442	dma_cap_set(DMA_SLAVE, mask);
 443
 444	as->dma.chan_tx = dma_request_slave_channel_compat(mask, filter,
 445							   &as->dma,
 446							   dev, "tx");
 447	if (!as->dma.chan_tx) {
 448		dev_err(dev,
 449			"DMA TX channel not available, SPI unable to use DMA\n");
 450		err = -EBUSY;
 451		goto error;
 452	}
 453
 454	as->dma.chan_rx = dma_request_slave_channel_compat(mask, filter,
 455							   &as->dma,
 456							   dev, "rx");
 457
 458	if (!as->dma.chan_rx) {
 459		dev_err(dev,
 460			"DMA RX channel not available, SPI unable to use DMA\n");
 461		err = -EBUSY;
 462		goto error;
 463	}
 464
 465	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 466	if (err)
 467		goto error;
 468
 469	dev_info(&as->pdev->dev,
 470			"Using %s (tx) and %s (rx) for DMA transfers\n",
 471			dma_chan_name(as->dma.chan_tx),
 472			dma_chan_name(as->dma.chan_rx));
 473	return 0;
 474error:
 475	if (as->dma.chan_rx)
 476		dma_release_channel(as->dma.chan_rx);
 477	if (as->dma.chan_tx)
 478		dma_release_channel(as->dma.chan_tx);
 479	return err;
 480}
 481
 482static void atmel_spi_stop_dma(struct atmel_spi *as)
 483{
 484	if (as->dma.chan_rx)
 485		as->dma.chan_rx->device->device_control(as->dma.chan_rx,
 486							DMA_TERMINATE_ALL, 0);
 487	if (as->dma.chan_tx)
 488		as->dma.chan_tx->device->device_control(as->dma.chan_tx,
 489							DMA_TERMINATE_ALL, 0);
 490}
 491
 492static void atmel_spi_release_dma(struct atmel_spi *as)
 493{
 494	if (as->dma.chan_rx)
 495		dma_release_channel(as->dma.chan_rx);
 496	if (as->dma.chan_tx)
 497		dma_release_channel(as->dma.chan_tx);
 498}
 499
 500/* This function is called by the DMA driver from tasklet context */
 501static void dma_callback(void *data)
 502{
 503	struct spi_master	*master = data;
 504	struct atmel_spi	*as = spi_master_get_devdata(master);
 505
 506	complete(&as->xfer_completion);
 507}
 508
 509/*
 510 * Next transfer using PIO.
 511 */
 512static void atmel_spi_next_xfer_pio(struct spi_master *master,
 513				struct spi_transfer *xfer)
 514{
 515	struct atmel_spi	*as = spi_master_get_devdata(master);
 516	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 517
 518	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 519
 520	/* Make sure data is not remaining in RDR */
 521	spi_readl(as, RDR);
 522	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 523		spi_readl(as, RDR);
 524		cpu_relax();
 525	}
 526
 527	if (xfer->tx_buf) {
 528		if (xfer->bits_per_word > 8)
 529			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 530		else
 531			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 532	} else {
 533		spi_writel(as, TDR, 0);
 534	}
 535
 536	dev_dbg(master->dev.parent,
 537		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 538		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 539		xfer->bits_per_word);
 540
 541	/* Enable relevant interrupts */
 542	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 543}
 544
 545/*
 546 * Submit next transfer for DMA.
 547 */
 548static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 549				struct spi_transfer *xfer,
 550				u32 *plen)
 551{
 552	struct atmel_spi	*as = spi_master_get_devdata(master);
 553	struct dma_chan		*rxchan = as->dma.chan_rx;
 554	struct dma_chan		*txchan = as->dma.chan_tx;
 555	struct dma_async_tx_descriptor *rxdesc;
 556	struct dma_async_tx_descriptor *txdesc;
 557	struct dma_slave_config	slave_config;
 558	dma_cookie_t		cookie;
 559	u32	len = *plen;
 560
 561	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 562
 563	/* Check that the channels are available */
 564	if (!rxchan || !txchan)
 565		return -ENODEV;
 566
 567	/* release lock for DMA operations */
 568	atmel_spi_unlock(as);
 569
 570	/* prepare the RX dma transfer */
 571	sg_init_table(&as->dma.sgrx, 1);
 572	if (xfer->rx_buf) {
 573		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
 574	} else {
 575		as->dma.sgrx.dma_address = as->buffer_dma;
 576		if (len > BUFFER_SIZE)
 577			len = BUFFER_SIZE;
 578	}
 579
 580	/* prepare the TX dma transfer */
 581	sg_init_table(&as->dma.sgtx, 1);
 582	if (xfer->tx_buf) {
 583		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
 584	} else {
 585		as->dma.sgtx.dma_address = as->buffer_dma;
 586		if (len > BUFFER_SIZE)
 587			len = BUFFER_SIZE;
 588		memset(as->buffer, 0, len);
 589	}
 590
 591	sg_dma_len(&as->dma.sgtx) = len;
 592	sg_dma_len(&as->dma.sgrx) = len;
 593
 594	*plen = len;
 595
 596	if (atmel_spi_dma_slave_config(as, &slave_config, 8))
 597		goto err_exit;
 598
 599	/* Send both scatterlists */
 600	rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
 601					&as->dma.sgrx,
 602					1,
 603					DMA_FROM_DEVICE,
 604					DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
 605					NULL);
 606	if (!rxdesc)
 607		goto err_dma;
 608
 609	txdesc = txchan->device->device_prep_slave_sg(txchan,
 610					&as->dma.sgtx,
 611					1,
 612					DMA_TO_DEVICE,
 613					DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
 614					NULL);
 615	if (!txdesc)
 616		goto err_dma;
 617
 618	dev_dbg(master->dev.parent,
 619		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 620		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 621		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 622
 623	/* Enable relevant interrupts */
 624	spi_writel(as, IER, SPI_BIT(OVRES));
 625
 626	/* Put the callback on the RX transfer only, that should finish last */
 627	rxdesc->callback = dma_callback;
 628	rxdesc->callback_param = master;
 629
 630	/* Submit and fire RX and TX with TX last so we're ready to read! */
 631	cookie = rxdesc->tx_submit(rxdesc);
 632	if (dma_submit_error(cookie))
 633		goto err_dma;
 634	cookie = txdesc->tx_submit(txdesc);
 635	if (dma_submit_error(cookie))
 636		goto err_dma;
 637	rxchan->device->device_issue_pending(rxchan);
 638	txchan->device->device_issue_pending(txchan);
 639
 640	/* take back lock */
 641	atmel_spi_lock(as);
 642	return 0;
 643
 644err_dma:
 645	spi_writel(as, IDR, SPI_BIT(OVRES));
 646	atmel_spi_stop_dma(as);
 647err_exit:
 648	atmel_spi_lock(as);
 649	return -ENOMEM;
 650}
 651
 652static void atmel_spi_next_xfer_data(struct spi_master *master,
 653				struct spi_transfer *xfer,
 654				dma_addr_t *tx_dma,
 655				dma_addr_t *rx_dma,
 656				u32 *plen)
 657{
 658	struct atmel_spi	*as = spi_master_get_devdata(master);
 659	u32			len = *plen;
 660
 661	/* use scratch buffer only when rx or tx data is unspecified */
 662	if (xfer->rx_buf)
 663		*rx_dma = xfer->rx_dma + xfer->len - *plen;
 664	else {
 665		*rx_dma = as->buffer_dma;
 666		if (len > BUFFER_SIZE)
 667			len = BUFFER_SIZE;
 668	}
 669
 670	if (xfer->tx_buf)
 671		*tx_dma = xfer->tx_dma + xfer->len - *plen;
 672	else {
 673		*tx_dma = as->buffer_dma;
 674		if (len > BUFFER_SIZE)
 675			len = BUFFER_SIZE;
 676		memset(as->buffer, 0, len);
 677		dma_sync_single_for_device(&as->pdev->dev,
 678				as->buffer_dma, len, DMA_TO_DEVICE);
 679	}
 680
 681	*plen = len;
 682}
 683
 684static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 685				    struct spi_device *spi,
 686				    struct spi_transfer *xfer)
 
 
 
 687{
 688	u32			scbr, csr;
 689	unsigned long		bus_hz;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690
 691	/* v1 chips start out at half the peripheral bus speed. */
 692	bus_hz = clk_get_rate(as->clk);
 693	if (!atmel_spi_is_v2(as))
 694		bus_hz /= 2;
 695
 696	/*
 697	 * Calculate the lowest divider that satisfies the
 698	 * constraint, assuming div32/fdiv/mbz == 0.
 699	 */
 700	if (xfer->speed_hz)
 701		scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 702	else
 703		/*
 704		 * This can happend if max_speed is null.
 705		 * In this case, we set the lowest possible speed
 706		 */
 707		scbr = 0xff;
 708
 709	/*
 710	 * If the resulting divider doesn't fit into the
 711	 * register bitfield, we can't satisfy the constraint.
 712	 */
 713	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 714		dev_err(&spi->dev,
 715			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 716			xfer->speed_hz, scbr, bus_hz/255);
 717		return -EINVAL;
 718	}
 719	if (scbr == 0) {
 720		dev_err(&spi->dev,
 721			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 722			xfer->speed_hz, scbr, bus_hz);
 723		return -EINVAL;
 724	}
 725	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
 726	csr = SPI_BFINS(SCBR, scbr, csr);
 727	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 728
 729	return 0;
 730}
 731
 732/*
 733 * Submit next transfer for PDC.
 734 * lock is held, spi irq is blocked
 735 */
 736static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 737					struct spi_message *msg,
 738					struct spi_transfer *xfer)
 739{
 740	struct atmel_spi	*as = spi_master_get_devdata(master);
 741	u32			len;
 742	dma_addr_t		tx_dma, rx_dma;
 743
 744	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 745
 746	len = as->current_remaining_bytes;
 747	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 748	as->current_remaining_bytes -= len;
 749
 750	spi_writel(as, RPR, rx_dma);
 751	spi_writel(as, TPR, tx_dma);
 752
 753	if (msg->spi->bits_per_word > 8)
 754		len >>= 1;
 755	spi_writel(as, RCR, len);
 756	spi_writel(as, TCR, len);
 757
 758	dev_dbg(&msg->spi->dev,
 759		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 760		xfer, xfer->len, xfer->tx_buf,
 761		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 762		(unsigned long long)xfer->rx_dma);
 763
 764	if (as->current_remaining_bytes) {
 765		len = as->current_remaining_bytes;
 766		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 767		as->current_remaining_bytes -= len;
 768
 769		spi_writel(as, RNPR, rx_dma);
 770		spi_writel(as, TNPR, tx_dma);
 771
 772		if (msg->spi->bits_per_word > 8)
 773			len >>= 1;
 774		spi_writel(as, RNCR, len);
 775		spi_writel(as, TNCR, len);
 776
 777		dev_dbg(&msg->spi->dev,
 778			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 779			xfer, xfer->len, xfer->tx_buf,
 780			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 781			(unsigned long long)xfer->rx_dma);
 
 
 
 
 782	}
 783
 784	/* REVISIT: We're waiting for ENDRX before we start the next
 785	 * transfer because we need to handle some difficult timing
 786	 * issues otherwise. If we wait for ENDTX in one transfer and
 787	 * then starts waiting for ENDRX in the next, it's difficult
 788	 * to tell the difference between the ENDRX interrupt we're
 789	 * actually waiting for and the ENDRX interrupt of the
 790	 * previous transfer.
 791	 *
 792	 * It should be doable, though. Just not now...
 793	 */
 794	spi_writel(as, IER, SPI_BIT(ENDRX) | SPI_BIT(OVRES));
 795	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 796}
 797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798/*
 799 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 800 *  - The buffer is either valid for CPU access, else NULL
 801 *  - If the buffer is valid, so is its DMA address
 802 *
 803 * This driver manages the dma address unless message->is_dma_mapped.
 804 */
 805static int
 806atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 807{
 808	struct device	*dev = &as->pdev->dev;
 809
 810	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 811	if (xfer->tx_buf) {
 812		/* tx_buf is a const void* where we need a void * for the dma
 813		 * mapping */
 814		void *nonconst_tx = (void *)xfer->tx_buf;
 815
 816		xfer->tx_dma = dma_map_single(dev,
 817				nonconst_tx, xfer->len,
 818				DMA_TO_DEVICE);
 819		if (dma_mapping_error(dev, xfer->tx_dma))
 820			return -ENOMEM;
 821	}
 822	if (xfer->rx_buf) {
 823		xfer->rx_dma = dma_map_single(dev,
 824				xfer->rx_buf, xfer->len,
 825				DMA_FROM_DEVICE);
 826		if (dma_mapping_error(dev, xfer->rx_dma)) {
 827			if (xfer->tx_buf)
 828				dma_unmap_single(dev,
 829						xfer->tx_dma, xfer->len,
 830						DMA_TO_DEVICE);
 831			return -ENOMEM;
 832		}
 833	}
 834	return 0;
 835}
 836
 837static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 838				     struct spi_transfer *xfer)
 839{
 840	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 841		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 842				 xfer->len, DMA_TO_DEVICE);
 843	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 844		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 845				 xfer->len, DMA_FROM_DEVICE);
 846}
 847
 848static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
 
 
 849{
 850	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 851}
 
 
 
 
 
 
 
 
 
 
 
 
 
 852
 853/* Called from IRQ
 854 *
 855 * Must update "current_remaining_bytes" to keep track of data
 856 * to transfer.
 857 */
 858static void
 859atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
 860{
 861	u8		*rxp;
 862	u16		*rxp16;
 863	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
 864
 865	if (xfer->rx_buf) {
 866		if (xfer->bits_per_word > 8) {
 867			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
 868			*rxp16 = spi_readl(as, RDR);
 869		} else {
 870			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
 871			*rxp = spi_readl(as, RDR);
 872		}
 873	} else {
 874		spi_readl(as, RDR);
 875	}
 876	if (xfer->bits_per_word > 8) {
 877		as->current_remaining_bytes -= 2;
 878		if (as->current_remaining_bytes < 0)
 879			as->current_remaining_bytes = 0;
 880	} else {
 881		as->current_remaining_bytes--;
 882	}
 883}
 884
 885/* Interrupt
 886 *
 887 * No need for locking in this Interrupt handler: done_status is the
 888 * only information modified.
 889 */
 890static irqreturn_t
 891atmel_spi_pio_interrupt(int irq, void *dev_id)
 892{
 893	struct spi_master	*master = dev_id;
 894	struct atmel_spi	*as = spi_master_get_devdata(master);
 
 
 895	u32			status, pending, imr;
 896	struct spi_transfer	*xfer;
 897	int			ret = IRQ_NONE;
 898
 
 
 
 
 
 899	imr = spi_readl(as, IMR);
 900	status = spi_readl(as, SR);
 901	pending = status & imr;
 902
 903	if (pending & SPI_BIT(OVRES)) {
 
 
 904		ret = IRQ_HANDLED;
 905		spi_writel(as, IDR, SPI_BIT(OVRES));
 906		dev_warn(master->dev.parent, "overrun\n");
 
 907
 908		/*
 909		 * When we get an overrun, we disregard the current
 910		 * transfer. Data will not be copied back from any
 911		 * bounce buffer and msg->actual_len will not be
 912		 * updated with the last xfer.
 913		 *
 914		 * We will also not process any remaning transfers in
 915		 * the message.
 
 
 916		 */
 917		as->done_status = -EIO;
 918		smp_wmb();
 
 919
 920		/* Clear any overrun happening while cleaning up */
 921		spi_readl(as, SR);
 
 922
 923		complete(&as->xfer_completion);
 
 924
 925	} else if (pending & SPI_BIT(RDRF)) {
 926		atmel_spi_lock(as);
 927
 928		if (as->current_remaining_bytes) {
 929			ret = IRQ_HANDLED;
 930			xfer = as->current_transfer;
 931			atmel_spi_pump_pio_data(as, xfer);
 932			if (!as->current_remaining_bytes)
 933				spi_writel(as, IDR, pending);
 934
 935			complete(&as->xfer_completion);
 936		}
 937
 938		atmel_spi_unlock(as);
 939	} else {
 940		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
 941		ret = IRQ_HANDLED;
 942		spi_writel(as, IDR, pending);
 943	}
 944
 945	return ret;
 946}
 947
 948static irqreturn_t
 949atmel_spi_pdc_interrupt(int irq, void *dev_id)
 950{
 951	struct spi_master	*master = dev_id;
 952	struct atmel_spi	*as = spi_master_get_devdata(master);
 953	u32			status, pending, imr;
 954	int			ret = IRQ_NONE;
 955
 956	imr = spi_readl(as, IMR);
 957	status = spi_readl(as, SR);
 958	pending = status & imr;
 959
 960	if (pending & SPI_BIT(OVRES)) {
 961
 962		ret = IRQ_HANDLED;
 963
 964		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
 965				     | SPI_BIT(OVRES)));
 966
 967		/* Clear any overrun happening while cleaning up */
 968		spi_readl(as, SR);
 969
 970		as->done_status = -EIO;
 971
 972		complete(&as->xfer_completion);
 973
 974	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
 975		ret = IRQ_HANDLED;
 976
 977		spi_writel(as, IDR, pending);
 978
 979		complete(&as->xfer_completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980	}
 981
 
 
 982	return ret;
 983}
 984
 985static int atmel_spi_setup(struct spi_device *spi)
 986{
 987	struct atmel_spi	*as;
 988	struct atmel_spi_device	*asd;
 989	u32			csr;
 990	unsigned int		bits = spi->bits_per_word;
 
 991	unsigned int		npcs_pin;
 992	int			ret;
 993
 994	as = spi_master_get_devdata(spi->master);
 995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996	/* see notes above re chipselect */
 997	if (!atmel_spi_is_v2(as)
 998			&& spi->chip_select == 0
 999			&& (spi->mode & SPI_CS_HIGH)) {
1000		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1001		return -EINVAL;
1002	}
1003
1004	csr = SPI_BF(BITS, bits - 8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005	if (spi->mode & SPI_CPOL)
1006		csr |= SPI_BIT(CPOL);
1007	if (!(spi->mode & SPI_CPHA))
1008		csr |= SPI_BIT(NCPHA);
1009
1010	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1011	 *
1012	 * DLYBCT would add delays between words, slowing down transfers.
1013	 * It could potentially be useful to cope with DMA bottlenecks, but
1014	 * in those cases it's probably best to just use a lower bitrate.
1015	 */
1016	csr |= SPI_BF(DLYBS, 0);
1017	csr |= SPI_BF(DLYBCT, 0);
1018
1019	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1020	npcs_pin = (unsigned int)spi->controller_data;
1021
1022	if (gpio_is_valid(spi->cs_gpio))
1023		npcs_pin = spi->cs_gpio;
1024
1025	asd = spi->controller_state;
1026	if (!asd) {
1027		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1028		if (!asd)
1029			return -ENOMEM;
1030
1031		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1032		if (ret) {
1033			kfree(asd);
1034			return ret;
1035		}
1036
1037		asd->npcs_pin = npcs_pin;
1038		spi->controller_state = asd;
1039		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
 
 
 
 
 
 
 
 
1040	}
1041
1042	asd->csr = csr;
1043
1044	dev_dbg(&spi->dev,
1045		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1046		bits, spi->mode, spi->chip_select, csr);
1047
1048	if (!atmel_spi_is_v2(as))
1049		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1050
1051	return 0;
1052}
1053
1054static int atmel_spi_one_transfer(struct spi_master *master,
1055					struct spi_message *msg,
1056					struct spi_transfer *xfer)
1057{
1058	struct atmel_spi	*as;
1059	struct spi_device	*spi = msg->spi;
 
 
1060	u8			bits;
1061	u32			len;
1062	struct atmel_spi_device	*asd;
1063	int			timeout;
1064	int			ret;
1065
1066	as = spi_master_get_devdata(master);
 
 
 
1067
1068	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1069		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1070		return -EINVAL;
1071	}
1072
1073	if (xfer->bits_per_word) {
1074		asd = spi->controller_state;
1075		bits = (asd->csr >> 4) & 0xf;
1076		if (bits != xfer->bits_per_word - 8) {
1077			dev_dbg(&spi->dev,
1078			"you can't yet change bits_per_word in transfers\n");
1079			return -ENOPROTOOPT;
1080		}
1081	}
1082
1083	/*
1084	 * DMA map early, for performance (empties dcache ASAP) and
1085	 * better fault reporting.
1086	 */
1087	if ((!msg->is_dma_mapped)
1088		&& (atmel_spi_use_dma(as, xfer)	|| as->use_pdc)) {
1089		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1090			return -ENOMEM;
1091	}
1092
1093	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1094
1095	as->done_status = 0;
1096	as->current_transfer = xfer;
1097	as->current_remaining_bytes = xfer->len;
1098	while (as->current_remaining_bytes) {
1099		reinit_completion(&as->xfer_completion);
1100
1101		if (as->use_pdc) {
1102			atmel_spi_pdc_next_xfer(master, msg, xfer);
1103		} else if (atmel_spi_use_dma(as, xfer)) {
1104			len = as->current_remaining_bytes;
1105			ret = atmel_spi_next_xfer_dma_submit(master,
1106								xfer, &len);
1107			if (ret) {
1108				dev_err(&spi->dev,
1109					"unable to use DMA, fallback to PIO\n");
1110				atmel_spi_next_xfer_pio(master, xfer);
1111			} else {
1112				as->current_remaining_bytes -= len;
1113			}
1114		} else {
1115			atmel_spi_next_xfer_pio(master, xfer);
1116		}
1117
1118		/* interrupts are disabled, so free the lock for schedule */
1119		atmel_spi_unlock(as);
1120		ret = wait_for_completion_timeout(&as->xfer_completion,
1121							SPI_DMA_TIMEOUT);
1122		atmel_spi_lock(as);
1123		if (WARN_ON(ret == 0)) {
1124			dev_err(&spi->dev,
1125				"spi trasfer timeout, err %d\n", ret);
1126			as->done_status = -EIO;
1127		} else {
1128			ret = 0;
1129		}
1130
1131		if (as->done_status)
1132			break;
1133	}
1134
1135	if (as->done_status) {
1136		if (as->use_pdc) {
1137			dev_warn(master->dev.parent,
1138				"overrun (%u/%u remaining)\n",
1139				spi_readl(as, TCR), spi_readl(as, RCR));
1140
1141			/*
1142			 * Clean up DMA registers and make sure the data
1143			 * registers are empty.
1144			 */
1145			spi_writel(as, RNCR, 0);
1146			spi_writel(as, TNCR, 0);
1147			spi_writel(as, RCR, 0);
1148			spi_writel(as, TCR, 0);
1149			for (timeout = 1000; timeout; timeout--)
1150				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1151					break;
1152			if (!timeout)
1153				dev_warn(master->dev.parent,
1154					 "timeout waiting for TXEMPTY");
1155			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1156				spi_readl(as, RDR);
1157
1158			/* Clear any overrun happening while cleaning up */
1159			spi_readl(as, SR);
1160
1161		} else if (atmel_spi_use_dma(as, xfer)) {
1162			atmel_spi_stop_dma(as);
1163		}
1164
1165		if (!msg->is_dma_mapped
1166			&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1167			atmel_spi_dma_unmap_xfer(master, xfer);
1168
1169		return 0;
1170
1171	} else {
1172		/* only update length if no error */
1173		msg->actual_length += xfer->len;
1174	}
1175
1176	if (!msg->is_dma_mapped
1177		&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1178		atmel_spi_dma_unmap_xfer(master, xfer);
1179
1180	if (xfer->delay_usecs)
1181		udelay(xfer->delay_usecs);
1182
1183	if (xfer->cs_change) {
1184		if (list_is_last(&xfer->transfer_list,
1185				 &msg->transfers)) {
1186			as->keep_cs = true;
1187		} else {
1188			as->cs_active = !as->cs_active;
1189			if (as->cs_active)
1190				cs_activate(as, msg->spi);
1191			else
1192				cs_deactivate(as, msg->spi);
1193		}
1194	}
1195
1196	return 0;
1197}
1198
1199static int atmel_spi_transfer_one_message(struct spi_master *master,
1200						struct spi_message *msg)
1201{
1202	struct atmel_spi *as;
1203	struct spi_transfer *xfer;
1204	struct spi_device *spi = msg->spi;
1205	int ret = 0;
1206
1207	as = spi_master_get_devdata(master);
1208
1209	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1210					msg, dev_name(&spi->dev));
1211
1212	atmel_spi_lock(as);
1213	cs_activate(as, spi);
1214
1215	as->cs_active = true;
1216	as->keep_cs = false;
1217
1218	msg->status = 0;
1219	msg->actual_length = 0;
1220
1221	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1222		ret = atmel_spi_one_transfer(master, msg, xfer);
1223		if (ret)
1224			goto msg_done;
1225	}
1226
1227	if (as->use_pdc)
1228		atmel_spi_disable_pdc_transfer(as);
1229
1230	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1231		dev_dbg(&spi->dev,
1232			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1233			xfer, xfer->len,
1234			xfer->tx_buf, &xfer->tx_dma,
1235			xfer->rx_buf, &xfer->rx_dma);
1236	}
 
1237
1238msg_done:
1239	if (!as->keep_cs)
1240		cs_deactivate(as, msg->spi);
1241
1242	atmel_spi_unlock(as);
 
 
 
 
1243
1244	msg->status = as->done_status;
1245	spi_finalize_current_message(spi->master);
1246
1247	return ret;
1248}
1249
1250static void atmel_spi_cleanup(struct spi_device *spi)
1251{
 
1252	struct atmel_spi_device	*asd = spi->controller_state;
1253	unsigned		gpio = (unsigned) spi->controller_data;
 
1254
1255	if (!asd)
1256		return;
1257
 
 
 
 
 
 
 
1258	spi->controller_state = NULL;
1259	gpio_free(gpio);
1260	kfree(asd);
1261}
1262
1263static inline unsigned int atmel_get_version(struct atmel_spi *as)
1264{
1265	return spi_readl(as, VERSION) & 0x00000fff;
1266}
1267
1268static void atmel_get_caps(struct atmel_spi *as)
1269{
1270	unsigned int version;
1271
1272	version = atmel_get_version(as);
1273	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1274
1275	as->caps.is_spi2 = version > 0x121;
1276	as->caps.has_wdrbt = version >= 0x210;
1277	as->caps.has_dma_support = version >= 0x212;
1278}
1279
1280/*-------------------------------------------------------------------------*/
1281
1282static int atmel_spi_probe(struct platform_device *pdev)
1283{
1284	struct resource		*regs;
1285	int			irq;
1286	struct clk		*clk;
1287	int			ret;
1288	struct spi_master	*master;
1289	struct atmel_spi	*as;
1290
1291	/* Select default pin state */
1292	pinctrl_pm_select_default_state(&pdev->dev);
1293
1294	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1295	if (!regs)
1296		return -ENXIO;
1297
1298	irq = platform_get_irq(pdev, 0);
1299	if (irq < 0)
1300		return irq;
1301
1302	clk = devm_clk_get(&pdev->dev, "spi_clk");
1303	if (IS_ERR(clk))
1304		return PTR_ERR(clk);
1305
1306	/* setup spi core then atmel-specific driver state */
1307	ret = -ENOMEM;
1308	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1309	if (!master)
1310		goto out_free;
1311
1312	/* the spi->mode bits understood by this driver: */
1313	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1314	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1315	master->dev.of_node = pdev->dev.of_node;
1316	master->bus_num = pdev->id;
1317	master->num_chipselect = master->dev.of_node ? 0 : 4;
1318	master->setup = atmel_spi_setup;
1319	master->transfer_one_message = atmel_spi_transfer_one_message;
1320	master->cleanup = atmel_spi_cleanup;
1321	platform_set_drvdata(pdev, master);
1322
1323	as = spi_master_get_devdata(master);
1324
1325	/*
1326	 * Scratch buffer is used for throwaway rx and tx data.
1327	 * It's coherent to minimize dcache pollution.
1328	 */
1329	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1330					&as->buffer_dma, GFP_KERNEL);
1331	if (!as->buffer)
1332		goto out_free;
1333
1334	spin_lock_init(&as->lock);
1335
1336	as->pdev = pdev;
1337	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1338	if (IS_ERR(as->regs)) {
1339		ret = PTR_ERR(as->regs);
1340		goto out_free_buffer;
1341	}
1342	as->phybase = regs->start;
1343	as->irq = irq;
1344	as->clk = clk;
1345
1346	init_completion(&as->xfer_completion);
1347
1348	atmel_get_caps(as);
1349
1350	as->use_dma = false;
1351	as->use_pdc = false;
1352	if (as->caps.has_dma_support) {
1353		if (atmel_spi_configure_dma(as) == 0)
1354			as->use_dma = true;
1355	} else {
1356		as->use_pdc = true;
1357	}
1358
1359	if (as->caps.has_dma_support && !as->use_dma)
1360		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1361
1362	if (as->use_pdc) {
1363		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1364					0, dev_name(&pdev->dev), master);
1365	} else {
1366		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1367					0, dev_name(&pdev->dev), master);
1368	}
1369	if (ret)
1370		goto out_unmap_regs;
1371
1372	/* Initialize the hardware */
1373	ret = clk_prepare_enable(clk);
1374	if (ret)
1375		goto out_free_irq;
1376	spi_writel(as, CR, SPI_BIT(SWRST));
1377	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1378	if (as->caps.has_wdrbt) {
1379		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1380				| SPI_BIT(MSTR));
1381	} else {
1382		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1383	}
1384
1385	if (as->use_pdc)
1386		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1387	spi_writel(as, CR, SPI_BIT(SPIEN));
1388
1389	/* go! */
1390	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1391			(unsigned long)regs->start, irq);
1392
1393	ret = devm_spi_register_master(&pdev->dev, master);
1394	if (ret)
1395		goto out_free_dma;
1396
1397	return 0;
1398
1399out_free_dma:
1400	if (as->use_dma)
1401		atmel_spi_release_dma(as);
1402
1403	spi_writel(as, CR, SPI_BIT(SWRST));
1404	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1405	clk_disable_unprepare(clk);
1406out_free_irq:
1407out_unmap_regs:
 
1408out_free_buffer:
1409	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1410			as->buffer_dma);
1411out_free:
 
1412	spi_master_put(master);
1413	return ret;
1414}
1415
1416static int atmel_spi_remove(struct platform_device *pdev)
1417{
1418	struct spi_master	*master = platform_get_drvdata(pdev);
1419	struct atmel_spi	*as = spi_master_get_devdata(master);
 
1420
1421	/* reset the hardware and block queue progress */
1422	spin_lock_irq(&as->lock);
1423	if (as->use_dma) {
1424		atmel_spi_stop_dma(as);
1425		atmel_spi_release_dma(as);
1426	}
1427
1428	spi_writel(as, CR, SPI_BIT(SWRST));
1429	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1430	spi_readl(as, SR);
1431	spin_unlock_irq(&as->lock);
1432
 
 
 
 
 
 
 
 
 
1433	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1434			as->buffer_dma);
1435
1436	clk_disable_unprepare(as->clk);
 
 
 
 
 
1437
1438	return 0;
1439}
1440
1441#ifdef CONFIG_PM_SLEEP
1442static int atmel_spi_suspend(struct device *dev)
 
1443{
1444	struct spi_master	*master = dev_get_drvdata(dev);
1445	struct atmel_spi	*as = spi_master_get_devdata(master);
1446	int ret;
1447
1448	/* Stop the queue running */
1449	ret = spi_master_suspend(master);
1450	if (ret) {
1451		dev_warn(dev, "cannot suspend master\n");
1452		return ret;
1453	}
1454
1455	clk_disable_unprepare(as->clk);
1456
1457	pinctrl_pm_select_sleep_state(dev);
1458
 
1459	return 0;
1460}
1461
1462static int atmel_spi_resume(struct device *dev)
1463{
1464	struct spi_master	*master = dev_get_drvdata(dev);
1465	struct atmel_spi	*as = spi_master_get_devdata(master);
1466	int ret;
1467
1468	pinctrl_pm_select_default_state(dev);
1469
1470	clk_prepare_enable(as->clk);
1471
1472	/* Start the queue running */
1473	ret = spi_master_resume(master);
1474	if (ret)
1475		dev_err(dev, "problem starting queue (%d)\n", ret);
1476
1477	return ret;
1478}
1479
1480static SIMPLE_DEV_PM_OPS(atmel_spi_pm_ops, atmel_spi_suspend, atmel_spi_resume);
1481
1482#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1483#else
1484#define ATMEL_SPI_PM_OPS	NULL
 
1485#endif
1486
1487#if defined(CONFIG_OF)
1488static const struct of_device_id atmel_spi_dt_ids[] = {
1489	{ .compatible = "atmel,at91rm9200-spi" },
1490	{ /* sentinel */ }
1491};
1492
1493MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1494#endif
1495
1496static struct platform_driver atmel_spi_driver = {
1497	.driver		= {
1498		.name	= "atmel_spi",
1499		.owner	= THIS_MODULE,
1500		.pm	= ATMEL_SPI_PM_OPS,
1501		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1502	},
1503	.probe		= atmel_spi_probe,
1504	.remove		= atmel_spi_remove,
 
1505};
1506module_platform_driver(atmel_spi_driver);
 
 
 
 
 
 
 
 
 
 
 
1507
1508MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1509MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1510MODULE_LICENSE("GPL");
1511MODULE_ALIAS("platform:atmel_spi");