Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * processor_idle - idle state submodule to the ACPI processor driver
   3 *
   4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   6 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   7 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   8 *  			- Added processor hotplug support
   9 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10 *  			- Added support for C3 on SMP
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or (at
  17 *  your option) any later version.
  18 *
  19 *  This program is distributed in the hope that it will be useful, but
  20 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  21 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 *  General Public License for more details.
  23 *
  24 *  You should have received a copy of the GNU General Public License along
  25 *  with this program; if not, write to the Free Software Foundation, Inc.,
  26 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  27 *
  28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  29 */
 
  30
  31#include <linux/kernel.h>
  32#include <linux/module.h>
  33#include <linux/init.h>
  34#include <linux/cpufreq.h>
  35#include <linux/slab.h>
  36#include <linux/acpi.h>
  37#include <linux/dmi.h>
  38#include <linux/moduleparam.h>
  39#include <linux/sched.h>	/* need_resched() */
  40#include <linux/pm_qos_params.h>
  41#include <linux/clockchips.h>
  42#include <linux/cpuidle.h>
  43#include <linux/irqflags.h>
 
  44
  45/*
  46 * Include the apic definitions for x86 to have the APIC timer related defines
  47 * available also for UP (on SMP it gets magically included via linux/smp.h).
  48 * asm/acpi.h is not an option, as it would require more include magic. Also
  49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  50 */
  51#ifdef CONFIG_X86
  52#include <asm/apic.h>
  53#endif
  54
  55#include <asm/io.h>
  56#include <asm/uaccess.h>
  57
  58#include <acpi/acpi_bus.h>
  59#include <acpi/processor.h>
  60#include <asm/processor.h>
  61
  62#define PREFIX "ACPI: "
  63
  64#define ACPI_PROCESSOR_CLASS            "processor"
  65#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  66ACPI_MODULE_NAME("processor_idle");
  67#define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
  68#define C2_OVERHEAD			1	/* 1us */
  69#define C3_OVERHEAD			1	/* 1us */
  70#define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
  71
  72static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  73module_param(max_cstate, uint, 0000);
  74static unsigned int nocst __read_mostly;
  75module_param(nocst, uint, 0000);
  76static int bm_check_disable __read_mostly;
  77module_param(bm_check_disable, uint, 0000);
  78
  79static unsigned int latency_factor __read_mostly = 2;
  80module_param(latency_factor, uint, 0644);
  81
 
 
 
 
 
 
 
 
 
 
 
  82static int disabled_by_idle_boot_param(void)
  83{
  84	return boot_option_idle_override == IDLE_POLL ||
  85		boot_option_idle_override == IDLE_FORCE_MWAIT ||
  86		boot_option_idle_override == IDLE_HALT;
  87}
  88
  89/*
  90 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  91 * For now disable this. Probably a bug somewhere else.
  92 *
  93 * To skip this limit, boot/load with a large max_cstate limit.
  94 */
  95static int set_max_cstate(const struct dmi_system_id *id)
  96{
  97	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  98		return 0;
  99
 100	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
 101	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
 102	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
 103
 104	max_cstate = (long)id->driver_data;
 105
 106	return 0;
 107}
 108
 109/* Actually this shouldn't be __cpuinitdata, would be better to fix the
 110   callers to only run once -AK */
 111static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
 112	{ set_max_cstate, "Clevo 5600D", {
 113	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
 114	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
 115	 (void *)2},
 116	{ set_max_cstate, "Pavilion zv5000", {
 117	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
 118	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
 119	 (void *)1},
 120	{ set_max_cstate, "Asus L8400B", {
 121	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
 122	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
 123	 (void *)1},
 124	{},
 125};
 126
 127
 128/*
 129 * Callers should disable interrupts before the call and enable
 130 * interrupts after return.
 131 */
 132static void acpi_safe_halt(void)
 133{
 134	current_thread_info()->status &= ~TS_POLLING;
 135	/*
 136	 * TS_POLLING-cleared state must be visible before we
 137	 * test NEED_RESCHED:
 138	 */
 139	smp_mb();
 140	if (!need_resched()) {
 141		safe_halt();
 142		local_irq_disable();
 143	}
 144	current_thread_info()->status |= TS_POLLING;
 145}
 146
 147#ifdef ARCH_APICTIMER_STOPS_ON_C3
 148
 149/*
 150 * Some BIOS implementations switch to C3 in the published C2 state.
 151 * This seems to be a common problem on AMD boxen, but other vendors
 152 * are affected too. We pick the most conservative approach: we assume
 153 * that the local APIC stops in both C2 and C3.
 154 */
 155static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 156				   struct acpi_processor_cx *cx)
 157{
 158	struct acpi_processor_power *pwr = &pr->power;
 159	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 160
 161	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 162		return;
 163
 164	if (amd_e400_c1e_detected)
 165		type = ACPI_STATE_C1;
 166
 167	/*
 168	 * Check, if one of the previous states already marked the lapic
 169	 * unstable
 170	 */
 171	if (pwr->timer_broadcast_on_state < state)
 172		return;
 173
 174	if (cx->type >= type)
 175		pr->power.timer_broadcast_on_state = state;
 176}
 177
 178static void __lapic_timer_propagate_broadcast(void *arg)
 179{
 180	struct acpi_processor *pr = (struct acpi_processor *) arg;
 181	unsigned long reason;
 182
 183	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
 184		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
 185
 186	clockevents_notify(reason, &pr->id);
 
 
 
 187}
 188
 189static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 190{
 191	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 192				 (void *)pr, 1);
 193}
 194
 195/* Power(C) State timer broadcast control */
 196static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 197				       struct acpi_processor_cx *cx,
 198				       int broadcast)
 199{
 200	int state = cx - pr->power.states;
 201
 202	if (state >= pr->power.timer_broadcast_on_state) {
 203		unsigned long reason;
 204
 205		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
 206			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
 207		clockevents_notify(reason, &pr->id);
 208	}
 209}
 210
 211#else
 212
 213static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 214				   struct acpi_processor_cx *cstate) { }
 215static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 216static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 217				       struct acpi_processor_cx *cx,
 218				       int broadcast)
 219{
 220}
 221
 222#endif
 223
 224/*
 225 * Suspend / resume control
 226 */
 227static int acpi_idle_suspend;
 228static u32 saved_bm_rld;
 229
 230static void acpi_idle_bm_rld_save(void)
 231{
 232	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
 233}
 234static void acpi_idle_bm_rld_restore(void)
 235{
 236	u32 resumed_bm_rld;
 237
 238	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
 239
 240	if (resumed_bm_rld != saved_bm_rld)
 241		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
 242}
 243
 244int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
 245{
 246	if (acpi_idle_suspend == 1)
 247		return 0;
 248
 249	acpi_idle_bm_rld_save();
 250	acpi_idle_suspend = 1;
 251	return 0;
 252}
 253
 254int acpi_processor_resume(struct acpi_device * device)
 255{
 256	if (acpi_idle_suspend == 0)
 257		return 0;
 258
 259	acpi_idle_bm_rld_restore();
 260	acpi_idle_suspend = 0;
 261	return 0;
 262}
 263
 264#if defined(CONFIG_X86)
 265static void tsc_check_state(int state)
 266{
 267	switch (boot_cpu_data.x86_vendor) {
 
 268	case X86_VENDOR_AMD:
 269	case X86_VENDOR_INTEL:
 
 
 270		/*
 271		 * AMD Fam10h TSC will tick in all
 272		 * C/P/S0/S1 states when this bit is set.
 273		 */
 274		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 275			return;
 276
 277		/*FALL THROUGH*/
 278	default:
 279		/* TSC could halt in idle, so notify users */
 280		if (state > ACPI_STATE_C1)
 281			mark_tsc_unstable("TSC halts in idle");
 282	}
 283}
 284#else
 285static void tsc_check_state(int state) { return; }
 286#endif
 287
 288static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 289{
 290
 291	if (!pr)
 292		return -EINVAL;
 293
 294	if (!pr->pblk)
 295		return -ENODEV;
 296
 297	/* if info is obtained from pblk/fadt, type equals state */
 298	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 299	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 300
 301#ifndef CONFIG_HOTPLUG_CPU
 302	/*
 303	 * Check for P_LVL2_UP flag before entering C2 and above on
 304	 * an SMP system.
 305	 */
 306	if ((num_online_cpus() > 1) &&
 307	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 308		return -ENODEV;
 309#endif
 310
 311	/* determine C2 and C3 address from pblk */
 312	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 313	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 314
 315	/* determine latencies from FADT */
 316	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
 317	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
 318
 319	/*
 320	 * FADT specified C2 latency must be less than or equal to
 321	 * 100 microseconds.
 322	 */
 323	if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 324		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 325			"C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
 326		/* invalidate C2 */
 327		pr->power.states[ACPI_STATE_C2].address = 0;
 328	}
 329
 330	/*
 331	 * FADT supplied C3 latency must be less than or equal to
 332	 * 1000 microseconds.
 333	 */
 334	if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 335		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 336			"C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
 337		/* invalidate C3 */
 338		pr->power.states[ACPI_STATE_C3].address = 0;
 339	}
 340
 341	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 342			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 343			  pr->power.states[ACPI_STATE_C2].address,
 344			  pr->power.states[ACPI_STATE_C3].address));
 345
 
 
 
 
 
 
 
 346	return 0;
 347}
 348
 349static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 350{
 351	if (!pr->power.states[ACPI_STATE_C1].valid) {
 352		/* set the first C-State to C1 */
 353		/* all processors need to support C1 */
 354		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 355		pr->power.states[ACPI_STATE_C1].valid = 1;
 356		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 
 
 
 357	}
 358	/* the C0 state only exists as a filler in our array */
 359	pr->power.states[ACPI_STATE_C0].valid = 1;
 360	return 0;
 361}
 362
 363static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 364{
 365	acpi_status status = 0;
 366	u64 count;
 367	int current_count;
 368	int i;
 369	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 370	union acpi_object *cst;
 371
 372
 373	if (nocst)
 374		return -ENODEV;
 375
 376	current_count = 0;
 377
 378	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 379	if (ACPI_FAILURE(status)) {
 380		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 381		return -ENODEV;
 382	}
 383
 384	cst = buffer.pointer;
 385
 386	/* There must be at least 2 elements */
 387	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 388		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
 389		status = -EFAULT;
 390		goto end;
 391	}
 392
 393	count = cst->package.elements[0].integer.value;
 394
 395	/* Validate number of power states. */
 396	if (count < 1 || count != cst->package.count - 1) {
 397		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
 398		status = -EFAULT;
 399		goto end;
 400	}
 401
 402	/* Tell driver that at least _CST is supported. */
 403	pr->flags.has_cst = 1;
 404
 405	for (i = 1; i <= count; i++) {
 406		union acpi_object *element;
 407		union acpi_object *obj;
 408		struct acpi_power_register *reg;
 409		struct acpi_processor_cx cx;
 410
 411		memset(&cx, 0, sizeof(cx));
 412
 413		element = &(cst->package.elements[i]);
 414		if (element->type != ACPI_TYPE_PACKAGE)
 415			continue;
 416
 417		if (element->package.count != 4)
 418			continue;
 419
 420		obj = &(element->package.elements[0]);
 421
 422		if (obj->type != ACPI_TYPE_BUFFER)
 423			continue;
 424
 425		reg = (struct acpi_power_register *)obj->buffer.pointer;
 426
 427		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 428		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 429			continue;
 430
 431		/* There should be an easy way to extract an integer... */
 432		obj = &(element->package.elements[1]);
 433		if (obj->type != ACPI_TYPE_INTEGER)
 434			continue;
 435
 436		cx.type = obj->integer.value;
 437		/*
 438		 * Some buggy BIOSes won't list C1 in _CST -
 439		 * Let acpi_processor_get_power_info_default() handle them later
 440		 */
 441		if (i == 1 && cx.type != ACPI_STATE_C1)
 442			current_count++;
 443
 444		cx.address = reg->address;
 445		cx.index = current_count + 1;
 446
 447		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 448		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 449			if (acpi_processor_ffh_cstate_probe
 450					(pr->id, &cx, reg) == 0) {
 451				cx.entry_method = ACPI_CSTATE_FFH;
 452			} else if (cx.type == ACPI_STATE_C1) {
 453				/*
 454				 * C1 is a special case where FIXED_HARDWARE
 455				 * can be handled in non-MWAIT way as well.
 456				 * In that case, save this _CST entry info.
 457				 * Otherwise, ignore this info and continue.
 458				 */
 459				cx.entry_method = ACPI_CSTATE_HALT;
 460				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 461			} else {
 462				continue;
 463			}
 464			if (cx.type == ACPI_STATE_C1 &&
 465			    (boot_option_idle_override == IDLE_NOMWAIT)) {
 466				/*
 467				 * In most cases the C1 space_id obtained from
 468				 * _CST object is FIXED_HARDWARE access mode.
 469				 * But when the option of idle=halt is added,
 470				 * the entry_method type should be changed from
 471				 * CSTATE_FFH to CSTATE_HALT.
 472				 * When the option of idle=nomwait is added,
 473				 * the C1 entry_method type should be
 474				 * CSTATE_HALT.
 475				 */
 476				cx.entry_method = ACPI_CSTATE_HALT;
 477				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 478			}
 479		} else {
 480			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 481				 cx.address);
 482		}
 483
 484		if (cx.type == ACPI_STATE_C1) {
 485			cx.valid = 1;
 486		}
 487
 488		obj = &(element->package.elements[2]);
 489		if (obj->type != ACPI_TYPE_INTEGER)
 490			continue;
 491
 492		cx.latency = obj->integer.value;
 493
 494		obj = &(element->package.elements[3]);
 495		if (obj->type != ACPI_TYPE_INTEGER)
 496			continue;
 497
 498		cx.power = obj->integer.value;
 499
 500		current_count++;
 501		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 502
 503		/*
 504		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 505		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 506		 */
 507		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 508			printk(KERN_WARNING
 509			       "Limiting number of power states to max (%d)\n",
 510			       ACPI_PROCESSOR_MAX_POWER);
 511			printk(KERN_WARNING
 512			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 513			break;
 514		}
 515	}
 516
 517	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 518			  current_count));
 519
 520	/* Validate number of power states discovered */
 521	if (current_count < 2)
 522		status = -EFAULT;
 523
 524      end:
 525	kfree(buffer.pointer);
 526
 527	return status;
 528}
 529
 530static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 531					   struct acpi_processor_cx *cx)
 532{
 533	static int bm_check_flag = -1;
 534	static int bm_control_flag = -1;
 535
 536
 537	if (!cx->address)
 538		return;
 539
 540	/*
 541	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 542	 * DMA transfers are used by any ISA device to avoid livelock.
 543	 * Note that we could disable Type-F DMA (as recommended by
 544	 * the erratum), but this is known to disrupt certain ISA
 545	 * devices thus we take the conservative approach.
 546	 */
 547	else if (errata.piix4.fdma) {
 548		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 549				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 550		return;
 551	}
 552
 553	/* All the logic here assumes flags.bm_check is same across all CPUs */
 554	if (bm_check_flag == -1) {
 555		/* Determine whether bm_check is needed based on CPU  */
 556		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 557		bm_check_flag = pr->flags.bm_check;
 558		bm_control_flag = pr->flags.bm_control;
 559	} else {
 560		pr->flags.bm_check = bm_check_flag;
 561		pr->flags.bm_control = bm_control_flag;
 562	}
 563
 564	if (pr->flags.bm_check) {
 565		if (!pr->flags.bm_control) {
 566			if (pr->flags.has_cst != 1) {
 567				/* bus mastering control is necessary */
 568				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 569					"C3 support requires BM control\n"));
 570				return;
 571			} else {
 572				/* Here we enter C3 without bus mastering */
 573				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 574					"C3 support without BM control\n"));
 575			}
 576		}
 577	} else {
 578		/*
 579		 * WBINVD should be set in fadt, for C3 state to be
 580		 * supported on when bm_check is not required.
 581		 */
 582		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 583			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 584					  "Cache invalidation should work properly"
 585					  " for C3 to be enabled on SMP systems\n"));
 586			return;
 587		}
 588	}
 589
 590	/*
 591	 * Otherwise we've met all of our C3 requirements.
 592	 * Normalize the C3 latency to expidite policy.  Enable
 593	 * checking of bus mastering status (bm_check) so we can
 594	 * use this in our C3 policy
 595	 */
 596	cx->valid = 1;
 597
 598	cx->latency_ticks = cx->latency;
 599	/*
 600	 * On older chipsets, BM_RLD needs to be set
 601	 * in order for Bus Master activity to wake the
 602	 * system from C3.  Newer chipsets handle DMA
 603	 * during C3 automatically and BM_RLD is a NOP.
 604	 * In either case, the proper way to
 605	 * handle BM_RLD is to set it and leave it set.
 606	 */
 607	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 608
 609	return;
 610}
 611
 612static int acpi_processor_power_verify(struct acpi_processor *pr)
 613{
 614	unsigned int i;
 615	unsigned int working = 0;
 616
 617	pr->power.timer_broadcast_on_state = INT_MAX;
 618
 619	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 620		struct acpi_processor_cx *cx = &pr->power.states[i];
 621
 622		switch (cx->type) {
 623		case ACPI_STATE_C1:
 624			cx->valid = 1;
 625			break;
 626
 627		case ACPI_STATE_C2:
 628			if (!cx->address)
 629				break;
 630			cx->valid = 1; 
 631			cx->latency_ticks = cx->latency; /* Normalize latency */
 632			break;
 633
 634		case ACPI_STATE_C3:
 635			acpi_processor_power_verify_c3(pr, cx);
 636			break;
 637		}
 638		if (!cx->valid)
 639			continue;
 640
 641		lapic_timer_check_state(i, pr, cx);
 642		tsc_check_state(cx->type);
 643		working++;
 644	}
 645
 646	lapic_timer_propagate_broadcast(pr);
 647
 648	return (working);
 649}
 650
 651static int acpi_processor_get_power_info(struct acpi_processor *pr)
 652{
 653	unsigned int i;
 654	int result;
 655
 656
 657	/* NOTE: the idle thread may not be running while calling
 658	 * this function */
 659
 660	/* Zero initialize all the C-states info. */
 661	memset(pr->power.states, 0, sizeof(pr->power.states));
 662
 663	result = acpi_processor_get_power_info_cst(pr);
 664	if (result == -ENODEV)
 665		result = acpi_processor_get_power_info_fadt(pr);
 666
 667	if (result)
 668		return result;
 669
 670	acpi_processor_get_power_info_default(pr);
 671
 672	pr->power.count = acpi_processor_power_verify(pr);
 673
 674	/*
 675	 * if one state of type C2 or C3 is available, mark this
 676	 * CPU as being "idle manageable"
 677	 */
 678	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 679		if (pr->power.states[i].valid) {
 680			pr->power.count = i;
 681			if (pr->power.states[i].type >= ACPI_STATE_C2)
 682				pr->flags.power = 1;
 683		}
 684	}
 685
 686	return 0;
 687}
 688
 689/**
 690 * acpi_idle_bm_check - checks if bus master activity was detected
 691 */
 692static int acpi_idle_bm_check(void)
 693{
 694	u32 bm_status = 0;
 695
 696	if (bm_check_disable)
 697		return 0;
 698
 699	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 700	if (bm_status)
 701		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 702	/*
 703	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 704	 * the true state of bus mastering activity; forcing us to
 705	 * manually check the BMIDEA bit of each IDE channel.
 706	 */
 707	else if (errata.piix4.bmisx) {
 708		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 709		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 710			bm_status = 1;
 711	}
 712	return bm_status;
 713}
 714
 715/**
 716 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
 717 * @cx: cstate data
 718 *
 719 * Caller disables interrupt before call and enables interrupt after return.
 720 */
 721static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
 722{
 723	/* Don't trace irqs off for idle */
 724	stop_critical_timings();
 725	if (cx->entry_method == ACPI_CSTATE_FFH) {
 726		/* Call into architectural FFH based C-state */
 727		acpi_processor_ffh_cstate_enter(cx);
 728	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 729		acpi_safe_halt();
 730	} else {
 731		/* IO port based C-state */
 732		inb(cx->address);
 733		/* Dummy wait op - must do something useless after P_LVL2 read
 734		   because chipsets cannot guarantee that STPCLK# signal
 735		   gets asserted in time to freeze execution properly. */
 736		inl(acpi_gbl_FADT.xpm_timer_block.address);
 737	}
 738	start_critical_timings();
 739}
 740
 741/**
 742 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
 743 * @dev: the target CPU
 744 * @state: the state data
 745 *
 746 * This is equivalent to the HALT instruction.
 747 */
 748static int acpi_idle_enter_c1(struct cpuidle_device *dev,
 749			      struct cpuidle_state *state)
 750{
 751	ktime_t  kt1, kt2;
 752	s64 idle_time;
 753	struct acpi_processor *pr;
 754	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
 755
 756	pr = __this_cpu_read(processors);
 757
 758	if (unlikely(!pr))
 759		return 0;
 760
 761	local_irq_disable();
 762
 763	/* Do not access any ACPI IO ports in suspend path */
 764	if (acpi_idle_suspend) {
 765		local_irq_enable();
 766		cpu_relax();
 767		return 0;
 
 768	}
 769
 770	lapic_timer_state_broadcast(pr, cx, 1);
 771	kt1 = ktime_get_real();
 772	acpi_idle_do_entry(cx);
 773	kt2 = ktime_get_real();
 774	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
 775
 776	local_irq_enable();
 777	cx->usage++;
 778	lapic_timer_state_broadcast(pr, cx, 0);
 779
 780	return idle_time;
 781}
 782
 783/**
 784 * acpi_idle_enter_simple - enters an ACPI state without BM handling
 785 * @dev: the target CPU
 786 * @state: the state data
 787 */
 788static int acpi_idle_enter_simple(struct cpuidle_device *dev,
 789				  struct cpuidle_state *state)
 790{
 791	struct acpi_processor *pr;
 792	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
 793	ktime_t  kt1, kt2;
 794	s64 idle_time_ns;
 795	s64 idle_time;
 796
 797	pr = __this_cpu_read(processors);
 798
 799	if (unlikely(!pr))
 800		return 0;
 801
 802	if (acpi_idle_suspend)
 803		return(acpi_idle_enter_c1(dev, state));
 804
 805	local_irq_disable();
 806
 807	if (cx->entry_method != ACPI_CSTATE_FFH) {
 808		current_thread_info()->status &= ~TS_POLLING;
 809		/*
 810		 * TS_POLLING-cleared state must be visible before we test
 811		 * NEED_RESCHED:
 812		 */
 813		smp_mb();
 814
 815		if (unlikely(need_resched())) {
 816			current_thread_info()->status |= TS_POLLING;
 817			local_irq_enable();
 818			return 0;
 819		}
 820	}
 821
 822	/*
 823	 * Must be done before busmaster disable as we might need to
 824	 * access HPET !
 825	 */
 826	lapic_timer_state_broadcast(pr, cx, 1);
 827
 828	if (cx->type == ACPI_STATE_C3)
 829		ACPI_FLUSH_CPU_CACHE();
 830
 831	kt1 = ktime_get_real();
 832	/* Tell the scheduler that we are going deep-idle: */
 833	sched_clock_idle_sleep_event();
 834	acpi_idle_do_entry(cx);
 835	kt2 = ktime_get_real();
 836	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
 837	idle_time = idle_time_ns;
 838	do_div(idle_time, NSEC_PER_USEC);
 839
 840	/* Tell the scheduler how much we idled: */
 841	sched_clock_idle_wakeup_event(idle_time_ns);
 842
 843	local_irq_enable();
 844	if (cx->entry_method != ACPI_CSTATE_FFH)
 845		current_thread_info()->status |= TS_POLLING;
 846
 847	cx->usage++;
 848
 849	lapic_timer_state_broadcast(pr, cx, 0);
 850	cx->time += idle_time;
 851	return idle_time;
 852}
 853
 854static int c3_cpu_count;
 855static DEFINE_SPINLOCK(c3_lock);
 856
 857/**
 858 * acpi_idle_enter_bm - enters C3 with proper BM handling
 859 * @dev: the target CPU
 860 * @state: the state data
 861 *
 862 * If BM is detected, the deepest non-C3 idle state is entered instead.
 863 */
 864static int acpi_idle_enter_bm(struct cpuidle_device *dev,
 865			      struct cpuidle_state *state)
 866{
 867	struct acpi_processor *pr;
 868	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
 869	ktime_t  kt1, kt2;
 870	s64 idle_time_ns;
 871	s64 idle_time;
 872
 873
 874	pr = __this_cpu_read(processors);
 875
 876	if (unlikely(!pr))
 877		return 0;
 878
 879	if (acpi_idle_suspend)
 880		return(acpi_idle_enter_c1(dev, state));
 881
 882	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
 883		if (dev->safe_state) {
 884			dev->last_state = dev->safe_state;
 885			return dev->safe_state->enter(dev, dev->safe_state);
 886		} else {
 887			local_irq_disable();
 888			acpi_safe_halt();
 889			local_irq_enable();
 890			return 0;
 891		}
 892	}
 893
 894	local_irq_disable();
 895
 896	if (cx->entry_method != ACPI_CSTATE_FFH) {
 897		current_thread_info()->status &= ~TS_POLLING;
 898		/*
 899		 * TS_POLLING-cleared state must be visible before we test
 900		 * NEED_RESCHED:
 901		 */
 902		smp_mb();
 903
 904		if (unlikely(need_resched())) {
 905			current_thread_info()->status |= TS_POLLING;
 906			local_irq_enable();
 907			return 0;
 908		}
 909	}
 910
 911	acpi_unlazy_tlb(smp_processor_id());
 912
 913	/* Tell the scheduler that we are going deep-idle: */
 914	sched_clock_idle_sleep_event();
 915	/*
 916	 * Must be done before busmaster disable as we might need to
 917	 * access HPET !
 918	 */
 919	lapic_timer_state_broadcast(pr, cx, 1);
 
 920
 921	kt1 = ktime_get_real();
 922	/*
 923	 * disable bus master
 924	 * bm_check implies we need ARB_DIS
 925	 * !bm_check implies we need cache flush
 926	 * bm_control implies whether we can do ARB_DIS
 927	 *
 928	 * That leaves a case where bm_check is set and bm_control is
 929	 * not set. In that case we cannot do much, we enter C3
 930	 * without doing anything.
 931	 */
 932	if (pr->flags.bm_check && pr->flags.bm_control) {
 933		spin_lock(&c3_lock);
 934		c3_cpu_count++;
 935		/* Disable bus master arbitration when all CPUs are in C3 */
 936		if (c3_cpu_count == num_online_cpus())
 937			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 938		spin_unlock(&c3_lock);
 939	} else if (!pr->flags.bm_check) {
 940		ACPI_FLUSH_CPU_CACHE();
 941	}
 942
 943	acpi_idle_do_entry(cx);
 944
 945	/* Re-enable bus master arbitration */
 946	if (pr->flags.bm_check && pr->flags.bm_control) {
 947		spin_lock(&c3_lock);
 948		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 949		c3_cpu_count--;
 950		spin_unlock(&c3_lock);
 951	}
 952	kt2 = ktime_get_real();
 953	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
 954	idle_time = idle_time_ns;
 955	do_div(idle_time, NSEC_PER_USEC);
 956
 957	/* Tell the scheduler how much we idled: */
 958	sched_clock_idle_wakeup_event(idle_time_ns);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959
 960	local_irq_enable();
 961	if (cx->entry_method != ACPI_CSTATE_FFH)
 962		current_thread_info()->status |= TS_POLLING;
 963
 964	cx->usage++;
 
 
 
 965
 966	lapic_timer_state_broadcast(pr, cx, 0);
 967	cx->time += idle_time;
 968	return idle_time;
 969}
 970
 971struct cpuidle_driver acpi_idle_driver = {
 972	.name =		"acpi_idle",
 973	.owner =	THIS_MODULE,
 974};
 975
 976/**
 977 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
 978 * @pr: the ACPI processor
 979 */
 980static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
 981{
 982	int i, count = CPUIDLE_DRIVER_STATE_START;
 983	struct acpi_processor_cx *cx;
 984	struct cpuidle_state *state;
 985	struct cpuidle_device *dev = &pr->power.dev;
 986
 987	if (!pr->flags.power_setup_done)
 988		return -EINVAL;
 989
 990	if (pr->flags.power == 0) {
 991		return -EINVAL;
 992	}
 993
 994	dev->cpu = pr->id;
 995	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
 996		dev->states[i].name[0] = '\0';
 997		dev->states[i].desc[0] = '\0';
 
 
 998	}
 
 
 
 
 
 
 
 
 999
1000	if (max_cstate == 0)
1001		max_cstate = 1;
1002
1003	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1004		cx = &pr->power.states[i];
1005		state = &dev->states[count];
1006
1007		if (!cx->valid)
1008			continue;
1009
1010#ifdef CONFIG_HOTPLUG_CPU
1011		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1012		    !pr->flags.has_cst &&
1013		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1014			continue;
1015#endif
1016		cpuidle_set_statedata(state, cx);
1017
 
1018		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1019		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1020		state->exit_latency = cx->latency;
1021		state->target_residency = cx->latency * latency_factor;
 
1022
1023		state->flags = 0;
1024		switch (cx->type) {
1025			case ACPI_STATE_C1:
1026			if (cx->entry_method == ACPI_CSTATE_FFH)
1027				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1028
1029			state->enter = acpi_idle_enter_c1;
1030			dev->safe_state = state;
1031			break;
1032
1033			case ACPI_STATE_C2:
1034			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1035			state->enter = acpi_idle_enter_simple;
1036			dev->safe_state = state;
1037			break;
1038
1039			case ACPI_STATE_C3:
1040			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1041			state->enter = pr->flags.bm_check ?
1042					acpi_idle_enter_bm :
1043					acpi_idle_enter_simple;
1044			break;
1045		}
 
 
 
 
 
 
 
 
 
1046
1047		count++;
1048		if (count == CPUIDLE_STATE_MAX)
1049			break;
1050	}
1051
1052	dev->state_count = count;
1053
1054	if (!count)
1055		return -EINVAL;
1056
1057	return 0;
1058}
1059
1060int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1061{
1062	int ret = 0;
 
1063
1064	if (disabled_by_idle_boot_param())
1065		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1066
1067	if (!pr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068		return -EINVAL;
1069
1070	if (nocst) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071		return -ENODEV;
1072	}
1073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074	if (!pr->flags.power_setup_done)
1075		return -ENODEV;
1076
 
1077	cpuidle_pause_and_lock();
1078	cpuidle_disable_device(&pr->power.dev);
1079	acpi_processor_get_power_info(pr);
1080	if (pr->flags.power) {
1081		acpi_processor_setup_cpuidle(pr);
1082		ret = cpuidle_enable_device(&pr->power.dev);
1083	}
1084	cpuidle_resume_and_unlock();
1085
1086	return ret;
1087}
1088
1089int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1090			      struct acpi_device *device)
1091{
1092	acpi_status status = 0;
1093	static int first_run;
 
1094
1095	if (disabled_by_idle_boot_param())
1096		return 0;
1097
1098	if (!first_run) {
1099		dmi_check_system(processor_power_dmi_table);
1100		max_cstate = acpi_processor_cstate_check(max_cstate);
1101		if (max_cstate < ACPI_C_STATES_MAX)
1102			printk(KERN_NOTICE
1103			       "ACPI: processor limited to max C-state %d\n",
1104			       max_cstate);
1105		first_run++;
1106	}
1107
1108	if (!pr)
1109		return -EINVAL;
 
 
 
1110
1111	if (acpi_gbl_FADT.cst_control && !nocst) {
1112		status =
1113		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1114		if (ACPI_FAILURE(status)) {
1115			ACPI_EXCEPTION((AE_INFO, status,
1116					"Notifying BIOS of _CST ability failed"));
 
 
 
 
 
 
 
1117		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118	}
1119
1120	acpi_processor_get_power_info(pr);
1121	pr->flags.power_setup_done = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122
1123	/*
1124	 * Install the idle handler if processor power management is supported.
1125	 * Note that we use previously set idle handler will be used on
1126	 * platforms that only support C1.
1127	 */
1128	if (pr->flags.power) {
1129		acpi_processor_setup_cpuidle(pr);
1130		if (cpuidle_register_device(&pr->power.dev))
1131			return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132	}
1133	return 0;
1134}
1135
1136int acpi_processor_power_exit(struct acpi_processor *pr,
1137			      struct acpi_device *device)
1138{
 
 
1139	if (disabled_by_idle_boot_param())
1140		return 0;
1141
1142	cpuidle_unregister_device(&pr->power.dev);
1143	pr->flags.power_setup_done = 0;
 
 
 
 
1144
 
1145	return 0;
1146}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * processor_idle - idle state submodule to the ACPI processor driver
   4 *
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   8 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *  			- Added processor hotplug support
  10 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  11 *  			- Added support for C3 on SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  12 */
  13#define pr_fmt(fmt) "ACPI: " fmt
  14
 
  15#include <linux/module.h>
 
 
 
  16#include <linux/acpi.h>
  17#include <linux/dmi.h>
  18#include <linux/sched.h>       /* need_resched() */
  19#include <linux/tick.h>
 
 
  20#include <linux/cpuidle.h>
  21#include <linux/cpu.h>
  22#include <acpi/processor.h>
  23
  24/*
  25 * Include the apic definitions for x86 to have the APIC timer related defines
  26 * available also for UP (on SMP it gets magically included via linux/smp.h).
  27 * asm/acpi.h is not an option, as it would require more include magic. Also
  28 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  29 */
  30#ifdef CONFIG_X86
  31#include <asm/apic.h>
  32#endif
  33
 
 
 
 
 
 
 
 
 
  34#define ACPI_PROCESSOR_CLASS            "processor"
  35#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  36ACPI_MODULE_NAME("processor_idle");
  37
  38#define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
 
 
  39
  40static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  41module_param(max_cstate, uint, 0000);
  42static unsigned int nocst __read_mostly;
  43module_param(nocst, uint, 0000);
  44static int bm_check_disable __read_mostly;
  45module_param(bm_check_disable, uint, 0000);
  46
  47static unsigned int latency_factor __read_mostly = 2;
  48module_param(latency_factor, uint, 0644);
  49
  50static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  51
  52struct cpuidle_driver acpi_idle_driver = {
  53	.name =		"acpi_idle",
  54	.owner =	THIS_MODULE,
  55};
  56
  57#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
  58static
  59DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  60
  61static int disabled_by_idle_boot_param(void)
  62{
  63	return boot_option_idle_override == IDLE_POLL ||
 
  64		boot_option_idle_override == IDLE_HALT;
  65}
  66
  67/*
  68 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  69 * For now disable this. Probably a bug somewhere else.
  70 *
  71 * To skip this limit, boot/load with a large max_cstate limit.
  72 */
  73static int set_max_cstate(const struct dmi_system_id *id)
  74{
  75	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  76		return 0;
  77
  78	pr_notice("%s detected - limiting to C%ld max_cstate."
  79		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  80		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  81
  82	max_cstate = (long)id->driver_data;
  83
  84	return 0;
  85}
  86
  87static const struct dmi_system_id processor_power_dmi_table[] = {
 
 
  88	{ set_max_cstate, "Clevo 5600D", {
  89	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  90	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  91	 (void *)2},
  92	{ set_max_cstate, "Pavilion zv5000", {
  93	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
  94	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
  95	 (void *)1},
  96	{ set_max_cstate, "Asus L8400B", {
  97	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
  98	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
  99	 (void *)1},
 100	{},
 101};
 102
 103
 104/*
 105 * Callers should disable interrupts before the call and enable
 106 * interrupts after return.
 107 */
 108static void __cpuidle acpi_safe_halt(void)
 109{
 110	if (!tif_need_resched()) {
 
 
 
 
 
 
 111		safe_halt();
 112		local_irq_disable();
 113	}
 
 114}
 115
 116#ifdef ARCH_APICTIMER_STOPS_ON_C3
 117
 118/*
 119 * Some BIOS implementations switch to C3 in the published C2 state.
 120 * This seems to be a common problem on AMD boxen, but other vendors
 121 * are affected too. We pick the most conservative approach: we assume
 122 * that the local APIC stops in both C2 and C3.
 123 */
 124static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 125				   struct acpi_processor_cx *cx)
 126{
 127	struct acpi_processor_power *pwr = &pr->power;
 128	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 129
 130	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 131		return;
 132
 133	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 134		type = ACPI_STATE_C1;
 135
 136	/*
 137	 * Check, if one of the previous states already marked the lapic
 138	 * unstable
 139	 */
 140	if (pwr->timer_broadcast_on_state < state)
 141		return;
 142
 143	if (cx->type >= type)
 144		pr->power.timer_broadcast_on_state = state;
 145}
 146
 147static void __lapic_timer_propagate_broadcast(void *arg)
 148{
 149	struct acpi_processor *pr = (struct acpi_processor *) arg;
 
 
 
 
 150
 151	if (pr->power.timer_broadcast_on_state < INT_MAX)
 152		tick_broadcast_enable();
 153	else
 154		tick_broadcast_disable();
 155}
 156
 157static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 158{
 159	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 160				 (void *)pr, 1);
 161}
 162
 163/* Power(C) State timer broadcast control */
 164static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 165				       struct acpi_processor_cx *cx,
 166				       int broadcast)
 167{
 168	int state = cx - pr->power.states;
 169
 170	if (state >= pr->power.timer_broadcast_on_state) {
 171		if (broadcast)
 172			tick_broadcast_enter();
 173		else
 174			tick_broadcast_exit();
 
 175	}
 176}
 177
 178#else
 179
 180static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 181				   struct acpi_processor_cx *cstate) { }
 182static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 183static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 184				       struct acpi_processor_cx *cx,
 185				       int broadcast)
 186{
 187}
 188
 189#endif
 190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191#if defined(CONFIG_X86)
 192static void tsc_check_state(int state)
 193{
 194	switch (boot_cpu_data.x86_vendor) {
 195	case X86_VENDOR_HYGON:
 196	case X86_VENDOR_AMD:
 197	case X86_VENDOR_INTEL:
 198	case X86_VENDOR_CENTAUR:
 199	case X86_VENDOR_ZHAOXIN:
 200		/*
 201		 * AMD Fam10h TSC will tick in all
 202		 * C/P/S0/S1 states when this bit is set.
 203		 */
 204		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 205			return;
 206
 207		/*FALL THROUGH*/
 208	default:
 209		/* TSC could halt in idle, so notify users */
 210		if (state > ACPI_STATE_C1)
 211			mark_tsc_unstable("TSC halts in idle");
 212	}
 213}
 214#else
 215static void tsc_check_state(int state) { return; }
 216#endif
 217
 218static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 219{
 220
 
 
 
 221	if (!pr->pblk)
 222		return -ENODEV;
 223
 224	/* if info is obtained from pblk/fadt, type equals state */
 225	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 226	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 227
 228#ifndef CONFIG_HOTPLUG_CPU
 229	/*
 230	 * Check for P_LVL2_UP flag before entering C2 and above on
 231	 * an SMP system.
 232	 */
 233	if ((num_online_cpus() > 1) &&
 234	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 235		return -ENODEV;
 236#endif
 237
 238	/* determine C2 and C3 address from pblk */
 239	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 240	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 241
 242	/* determine latencies from FADT */
 243	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 244	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 245
 246	/*
 247	 * FADT specified C2 latency must be less than or equal to
 248	 * 100 microseconds.
 249	 */
 250	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 251		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 252			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
 253		/* invalidate C2 */
 254		pr->power.states[ACPI_STATE_C2].address = 0;
 255	}
 256
 257	/*
 258	 * FADT supplied C3 latency must be less than or equal to
 259	 * 1000 microseconds.
 260	 */
 261	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 262		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 263			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
 264		/* invalidate C3 */
 265		pr->power.states[ACPI_STATE_C3].address = 0;
 266	}
 267
 268	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 269			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 270			  pr->power.states[ACPI_STATE_C2].address,
 271			  pr->power.states[ACPI_STATE_C3].address));
 272
 273	snprintf(pr->power.states[ACPI_STATE_C2].desc,
 274			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
 275			 pr->power.states[ACPI_STATE_C2].address);
 276	snprintf(pr->power.states[ACPI_STATE_C3].desc,
 277			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
 278			 pr->power.states[ACPI_STATE_C3].address);
 279
 280	return 0;
 281}
 282
 283static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 284{
 285	if (!pr->power.states[ACPI_STATE_C1].valid) {
 286		/* set the first C-State to C1 */
 287		/* all processors need to support C1 */
 288		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 289		pr->power.states[ACPI_STATE_C1].valid = 1;
 290		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 291
 292		snprintf(pr->power.states[ACPI_STATE_C1].desc,
 293			 ACPI_CX_DESC_LEN, "ACPI HLT");
 294	}
 295	/* the C0 state only exists as a filler in our array */
 296	pr->power.states[ACPI_STATE_C0].valid = 1;
 297	return 0;
 298}
 299
 300static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 301{
 302	acpi_status status;
 303	u64 count;
 304	int current_count;
 305	int i, ret = 0;
 306	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 307	union acpi_object *cst;
 308
 
 309	if (nocst)
 310		return -ENODEV;
 311
 312	current_count = 0;
 313
 314	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 315	if (ACPI_FAILURE(status)) {
 316		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 317		return -ENODEV;
 318	}
 319
 320	cst = buffer.pointer;
 321
 322	/* There must be at least 2 elements */
 323	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 324		pr_err("not enough elements in _CST\n");
 325		ret = -EFAULT;
 326		goto end;
 327	}
 328
 329	count = cst->package.elements[0].integer.value;
 330
 331	/* Validate number of power states. */
 332	if (count < 1 || count != cst->package.count - 1) {
 333		pr_err("count given by _CST is not valid\n");
 334		ret = -EFAULT;
 335		goto end;
 336	}
 337
 338	/* Tell driver that at least _CST is supported. */
 339	pr->flags.has_cst = 1;
 340
 341	for (i = 1; i <= count; i++) {
 342		union acpi_object *element;
 343		union acpi_object *obj;
 344		struct acpi_power_register *reg;
 345		struct acpi_processor_cx cx;
 346
 347		memset(&cx, 0, sizeof(cx));
 348
 349		element = &(cst->package.elements[i]);
 350		if (element->type != ACPI_TYPE_PACKAGE)
 351			continue;
 352
 353		if (element->package.count != 4)
 354			continue;
 355
 356		obj = &(element->package.elements[0]);
 357
 358		if (obj->type != ACPI_TYPE_BUFFER)
 359			continue;
 360
 361		reg = (struct acpi_power_register *)obj->buffer.pointer;
 362
 363		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 364		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 365			continue;
 366
 367		/* There should be an easy way to extract an integer... */
 368		obj = &(element->package.elements[1]);
 369		if (obj->type != ACPI_TYPE_INTEGER)
 370			continue;
 371
 372		cx.type = obj->integer.value;
 373		/*
 374		 * Some buggy BIOSes won't list C1 in _CST -
 375		 * Let acpi_processor_get_power_info_default() handle them later
 376		 */
 377		if (i == 1 && cx.type != ACPI_STATE_C1)
 378			current_count++;
 379
 380		cx.address = reg->address;
 381		cx.index = current_count + 1;
 382
 383		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 384		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 385			if (acpi_processor_ffh_cstate_probe
 386					(pr->id, &cx, reg) == 0) {
 387				cx.entry_method = ACPI_CSTATE_FFH;
 388			} else if (cx.type == ACPI_STATE_C1) {
 389				/*
 390				 * C1 is a special case where FIXED_HARDWARE
 391				 * can be handled in non-MWAIT way as well.
 392				 * In that case, save this _CST entry info.
 393				 * Otherwise, ignore this info and continue.
 394				 */
 395				cx.entry_method = ACPI_CSTATE_HALT;
 396				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 397			} else {
 398				continue;
 399			}
 400			if (cx.type == ACPI_STATE_C1 &&
 401			    (boot_option_idle_override == IDLE_NOMWAIT)) {
 402				/*
 403				 * In most cases the C1 space_id obtained from
 404				 * _CST object is FIXED_HARDWARE access mode.
 405				 * But when the option of idle=halt is added,
 406				 * the entry_method type should be changed from
 407				 * CSTATE_FFH to CSTATE_HALT.
 408				 * When the option of idle=nomwait is added,
 409				 * the C1 entry_method type should be
 410				 * CSTATE_HALT.
 411				 */
 412				cx.entry_method = ACPI_CSTATE_HALT;
 413				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 414			}
 415		} else {
 416			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 417				 cx.address);
 418		}
 419
 420		if (cx.type == ACPI_STATE_C1) {
 421			cx.valid = 1;
 422		}
 423
 424		obj = &(element->package.elements[2]);
 425		if (obj->type != ACPI_TYPE_INTEGER)
 426			continue;
 427
 428		cx.latency = obj->integer.value;
 429
 430		obj = &(element->package.elements[3]);
 431		if (obj->type != ACPI_TYPE_INTEGER)
 432			continue;
 433
 
 
 434		current_count++;
 435		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 436
 437		/*
 438		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 439		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 440		 */
 441		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 442			pr_warn("Limiting number of power states to max (%d)\n",
 443				ACPI_PROCESSOR_MAX_POWER);
 444			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 
 
 445			break;
 446		}
 447	}
 448
 449	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 450			  current_count));
 451
 452	/* Validate number of power states discovered */
 453	if (current_count < 2)
 454		ret = -EFAULT;
 455
 456      end:
 457	kfree(buffer.pointer);
 458
 459	return ret;
 460}
 461
 462static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 463					   struct acpi_processor_cx *cx)
 464{
 465	static int bm_check_flag = -1;
 466	static int bm_control_flag = -1;
 467
 468
 469	if (!cx->address)
 470		return;
 471
 472	/*
 473	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 474	 * DMA transfers are used by any ISA device to avoid livelock.
 475	 * Note that we could disable Type-F DMA (as recommended by
 476	 * the erratum), but this is known to disrupt certain ISA
 477	 * devices thus we take the conservative approach.
 478	 */
 479	else if (errata.piix4.fdma) {
 480		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 481				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 482		return;
 483	}
 484
 485	/* All the logic here assumes flags.bm_check is same across all CPUs */
 486	if (bm_check_flag == -1) {
 487		/* Determine whether bm_check is needed based on CPU  */
 488		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 489		bm_check_flag = pr->flags.bm_check;
 490		bm_control_flag = pr->flags.bm_control;
 491	} else {
 492		pr->flags.bm_check = bm_check_flag;
 493		pr->flags.bm_control = bm_control_flag;
 494	}
 495
 496	if (pr->flags.bm_check) {
 497		if (!pr->flags.bm_control) {
 498			if (pr->flags.has_cst != 1) {
 499				/* bus mastering control is necessary */
 500				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 501					"C3 support requires BM control\n"));
 502				return;
 503			} else {
 504				/* Here we enter C3 without bus mastering */
 505				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 506					"C3 support without BM control\n"));
 507			}
 508		}
 509	} else {
 510		/*
 511		 * WBINVD should be set in fadt, for C3 state to be
 512		 * supported on when bm_check is not required.
 513		 */
 514		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 515			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 516					  "Cache invalidation should work properly"
 517					  " for C3 to be enabled on SMP systems\n"));
 518			return;
 519		}
 520	}
 521
 522	/*
 523	 * Otherwise we've met all of our C3 requirements.
 524	 * Normalize the C3 latency to expidite policy.  Enable
 525	 * checking of bus mastering status (bm_check) so we can
 526	 * use this in our C3 policy
 527	 */
 528	cx->valid = 1;
 529
 
 530	/*
 531	 * On older chipsets, BM_RLD needs to be set
 532	 * in order for Bus Master activity to wake the
 533	 * system from C3.  Newer chipsets handle DMA
 534	 * during C3 automatically and BM_RLD is a NOP.
 535	 * In either case, the proper way to
 536	 * handle BM_RLD is to set it and leave it set.
 537	 */
 538	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 539
 540	return;
 541}
 542
 543static int acpi_processor_power_verify(struct acpi_processor *pr)
 544{
 545	unsigned int i;
 546	unsigned int working = 0;
 547
 548	pr->power.timer_broadcast_on_state = INT_MAX;
 549
 550	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 551		struct acpi_processor_cx *cx = &pr->power.states[i];
 552
 553		switch (cx->type) {
 554		case ACPI_STATE_C1:
 555			cx->valid = 1;
 556			break;
 557
 558		case ACPI_STATE_C2:
 559			if (!cx->address)
 560				break;
 561			cx->valid = 1;
 
 562			break;
 563
 564		case ACPI_STATE_C3:
 565			acpi_processor_power_verify_c3(pr, cx);
 566			break;
 567		}
 568		if (!cx->valid)
 569			continue;
 570
 571		lapic_timer_check_state(i, pr, cx);
 572		tsc_check_state(cx->type);
 573		working++;
 574	}
 575
 576	lapic_timer_propagate_broadcast(pr);
 577
 578	return (working);
 579}
 580
 581static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 582{
 583	unsigned int i;
 584	int result;
 585
 586
 587	/* NOTE: the idle thread may not be running while calling
 588	 * this function */
 589
 590	/* Zero initialize all the C-states info. */
 591	memset(pr->power.states, 0, sizeof(pr->power.states));
 592
 593	result = acpi_processor_get_power_info_cst(pr);
 594	if (result == -ENODEV)
 595		result = acpi_processor_get_power_info_fadt(pr);
 596
 597	if (result)
 598		return result;
 599
 600	acpi_processor_get_power_info_default(pr);
 601
 602	pr->power.count = acpi_processor_power_verify(pr);
 603
 604	/*
 605	 * if one state of type C2 or C3 is available, mark this
 606	 * CPU as being "idle manageable"
 607	 */
 608	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 609		if (pr->power.states[i].valid) {
 610			pr->power.count = i;
 611			if (pr->power.states[i].type >= ACPI_STATE_C2)
 612				pr->flags.power = 1;
 613		}
 614	}
 615
 616	return 0;
 617}
 618
 619/**
 620 * acpi_idle_bm_check - checks if bus master activity was detected
 621 */
 622static int acpi_idle_bm_check(void)
 623{
 624	u32 bm_status = 0;
 625
 626	if (bm_check_disable)
 627		return 0;
 628
 629	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 630	if (bm_status)
 631		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 632	/*
 633	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 634	 * the true state of bus mastering activity; forcing us to
 635	 * manually check the BMIDEA bit of each IDE channel.
 636	 */
 637	else if (errata.piix4.bmisx) {
 638		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 639		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 640			bm_status = 1;
 641	}
 642	return bm_status;
 643}
 644
 645/**
 646 * acpi_idle_do_entry - enter idle state using the appropriate method
 647 * @cx: cstate data
 648 *
 649 * Caller disables interrupt before call and enables interrupt after return.
 650 */
 651static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 652{
 
 
 653	if (cx->entry_method == ACPI_CSTATE_FFH) {
 654		/* Call into architectural FFH based C-state */
 655		acpi_processor_ffh_cstate_enter(cx);
 656	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 657		acpi_safe_halt();
 658	} else {
 659		/* IO port based C-state */
 660		inb(cx->address);
 661		/* Dummy wait op - must do something useless after P_LVL2 read
 662		   because chipsets cannot guarantee that STPCLK# signal
 663		   gets asserted in time to freeze execution properly. */
 664		inl(acpi_gbl_FADT.xpm_timer_block.address);
 665	}
 
 666}
 667
 668/**
 669 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 670 * @dev: the target CPU
 671 * @index: the index of suggested state
 
 
 672 */
 673static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 
 674{
 675	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 
 
 
 676
 677	ACPI_FLUSH_CPU_CACHE();
 678
 679	while (1) {
 
 680
 681		if (cx->entry_method == ACPI_CSTATE_HALT)
 682			safe_halt();
 683		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 684			inb(cx->address);
 685			/* See comment in acpi_idle_do_entry() */
 686			inl(acpi_gbl_FADT.xpm_timer_block.address);
 687		} else
 688			return -ENODEV;
 689	}
 690
 691	/* Never reached */
 692	return 0;
 
 
 
 
 
 
 
 
 
 693}
 694
 695static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 
 
 
 
 
 
 696{
 697	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 698		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699}
 700
 701static int c3_cpu_count;
 702static DEFINE_RAW_SPINLOCK(c3_lock);
 703
 704/**
 705 * acpi_idle_enter_bm - enters C3 with proper BM handling
 706 * @pr: Target processor
 707 * @cx: Target state context
 708 * @timer_bc: Whether or not to change timer mode to broadcast
 
 709 */
 710static void acpi_idle_enter_bm(struct acpi_processor *pr,
 711			       struct acpi_processor_cx *cx, bool timer_bc)
 712{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713	acpi_unlazy_tlb(smp_processor_id());
 714
 
 
 715	/*
 716	 * Must be done before busmaster disable as we might need to
 717	 * access HPET !
 718	 */
 719	if (timer_bc)
 720		lapic_timer_state_broadcast(pr, cx, 1);
 721
 
 722	/*
 723	 * disable bus master
 724	 * bm_check implies we need ARB_DIS
 
 725	 * bm_control implies whether we can do ARB_DIS
 726	 *
 727	 * That leaves a case where bm_check is set and bm_control is
 728	 * not set. In that case we cannot do much, we enter C3
 729	 * without doing anything.
 730	 */
 731	if (pr->flags.bm_control) {
 732		raw_spin_lock(&c3_lock);
 733		c3_cpu_count++;
 734		/* Disable bus master arbitration when all CPUs are in C3 */
 735		if (c3_cpu_count == num_online_cpus())
 736			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 737		raw_spin_unlock(&c3_lock);
 
 
 738	}
 739
 740	acpi_idle_do_entry(cx);
 741
 742	/* Re-enable bus master arbitration */
 743	if (pr->flags.bm_control) {
 744		raw_spin_lock(&c3_lock);
 745		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 746		c3_cpu_count--;
 747		raw_spin_unlock(&c3_lock);
 748	}
 
 
 
 
 749
 750	if (timer_bc)
 751		lapic_timer_state_broadcast(pr, cx, 0);
 752}
 753
 754static int acpi_idle_enter(struct cpuidle_device *dev,
 755			   struct cpuidle_driver *drv, int index)
 756{
 757	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 758	struct acpi_processor *pr;
 759
 760	pr = __this_cpu_read(processors);
 761	if (unlikely(!pr))
 762		return -EINVAL;
 763
 764	if (cx->type != ACPI_STATE_C1) {
 765		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 766			index = ACPI_IDLE_STATE_START;
 767			cx = per_cpu(acpi_cstate[index], dev->cpu);
 768		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
 769			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
 770				acpi_idle_enter_bm(pr, cx, true);
 771				return index;
 772			} else if (drv->safe_state_index >= 0) {
 773				index = drv->safe_state_index;
 774				cx = per_cpu(acpi_cstate[index], dev->cpu);
 775			} else {
 776				acpi_safe_halt();
 777				return -EBUSY;
 778			}
 779		}
 780	}
 781
 782	lapic_timer_state_broadcast(pr, cx, 1);
 
 
 783
 784	if (cx->type == ACPI_STATE_C3)
 785		ACPI_FLUSH_CPU_CACHE();
 786
 787	acpi_idle_do_entry(cx);
 788
 789	lapic_timer_state_broadcast(pr, cx, 0);
 
 
 
 790
 791	return index;
 792}
 
 
 793
 794static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
 795				   struct cpuidle_driver *drv, int index)
 
 
 
 796{
 797	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 
 
 
 798
 799	if (cx->type == ACPI_STATE_C3) {
 800		struct acpi_processor *pr = __this_cpu_read(processors);
 801
 802		if (unlikely(!pr))
 803			return;
 
 804
 805		if (pr->flags.bm_check) {
 806			acpi_idle_enter_bm(pr, cx, false);
 807			return;
 808		} else {
 809			ACPI_FLUSH_CPU_CACHE();
 810		}
 811	}
 812	acpi_idle_do_entry(cx);
 813}
 814
 815static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 816					   struct cpuidle_device *dev)
 817{
 818	int i, count = ACPI_IDLE_STATE_START;
 819	struct acpi_processor_cx *cx;
 820
 821	if (max_cstate == 0)
 822		max_cstate = 1;
 823
 824	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 825		cx = &pr->power.states[i];
 
 826
 827		if (!cx->valid)
 828			continue;
 829
 830		per_cpu(acpi_cstate[count], dev->cpu) = cx;
 831
 832		count++;
 833		if (count == CPUIDLE_STATE_MAX)
 834			break;
 835	}
 836
 837	if (!count)
 838		return -EINVAL;
 839
 840	return 0;
 841}
 842
 843static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 844{
 845	int i, count;
 846	struct acpi_processor_cx *cx;
 847	struct cpuidle_state *state;
 848	struct cpuidle_driver *drv = &acpi_idle_driver;
 849
 850	if (max_cstate == 0)
 851		max_cstate = 1;
 852
 853	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
 854		cpuidle_poll_state_init(drv);
 855		count = 1;
 856	} else {
 857		count = 0;
 858	}
 859
 860	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 861		cx = &pr->power.states[i];
 862
 863		if (!cx->valid)
 864			continue;
 
 
 865
 866		state = &drv->states[count];
 867		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 868		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 869		state->exit_latency = cx->latency;
 870		state->target_residency = cx->latency * latency_factor;
 871		state->enter = acpi_idle_enter;
 872
 873		state->flags = 0;
 874		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
 875			state->enter_dead = acpi_idle_play_dead;
 876			drv->safe_state_index = count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877		}
 878		/*
 879		 * Halt-induced C1 is not good for ->enter_s2idle, because it
 880		 * re-enables interrupts on exit.  Moreover, C1 is generally not
 881		 * particularly interesting from the suspend-to-idle angle, so
 882		 * avoid C1 and the situations in which we may need to fall back
 883		 * to it altogether.
 884		 */
 885		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 886			state->enter_s2idle = acpi_idle_enter_s2idle;
 887
 888		count++;
 889		if (count == CPUIDLE_STATE_MAX)
 890			break;
 891	}
 892
 893	drv->state_count = count;
 894
 895	if (!count)
 896		return -EINVAL;
 897
 898	return 0;
 899}
 900
 901static inline void acpi_processor_cstate_first_run_checks(void)
 902{
 903	acpi_status status;
 904	static int first_run;
 905
 906	if (first_run)
 907		return;
 908	dmi_check_system(processor_power_dmi_table);
 909	max_cstate = acpi_processor_cstate_check(max_cstate);
 910	if (max_cstate < ACPI_C_STATES_MAX)
 911		pr_notice("ACPI: processor limited to max C-state %d\n",
 912			  max_cstate);
 913	first_run++;
 914
 915	if (acpi_gbl_FADT.cst_control && !nocst) {
 916		status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
 917					    acpi_gbl_FADT.cst_control, 8);
 918		if (ACPI_FAILURE(status))
 919			ACPI_EXCEPTION((AE_INFO, status,
 920					"Notifying BIOS of _CST ability failed"));
 921	}
 922}
 923#else
 924
 925static inline int disabled_by_idle_boot_param(void) { return 0; }
 926static inline void acpi_processor_cstate_first_run_checks(void) { }
 927static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 928{
 929	return -ENODEV;
 930}
 931
 932static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 933					   struct cpuidle_device *dev)
 934{
 935	return -EINVAL;
 936}
 937
 938static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 939{
 940	return -EINVAL;
 941}
 942
 943#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 944
 945struct acpi_lpi_states_array {
 946	unsigned int size;
 947	unsigned int composite_states_size;
 948	struct acpi_lpi_state *entries;
 949	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 950};
 951
 952static int obj_get_integer(union acpi_object *obj, u32 *value)
 953{
 954	if (obj->type != ACPI_TYPE_INTEGER)
 955		return -EINVAL;
 956
 957	*value = obj->integer.value;
 958	return 0;
 959}
 960
 961static int acpi_processor_evaluate_lpi(acpi_handle handle,
 962				       struct acpi_lpi_states_array *info)
 963{
 964	acpi_status status;
 965	int ret = 0;
 966	int pkg_count, state_idx = 1, loop;
 967	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 968	union acpi_object *lpi_data;
 969	struct acpi_lpi_state *lpi_state;
 970
 971	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 972	if (ACPI_FAILURE(status)) {
 973		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
 974		return -ENODEV;
 975	}
 976
 977	lpi_data = buffer.pointer;
 978
 979	/* There must be at least 4 elements = 3 elements + 1 package */
 980	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 981	    lpi_data->package.count < 4) {
 982		pr_debug("not enough elements in _LPI\n");
 983		ret = -ENODATA;
 984		goto end;
 985	}
 986
 987	pkg_count = lpi_data->package.elements[2].integer.value;
 988
 989	/* Validate number of power states. */
 990	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 991		pr_debug("count given by _LPI is not valid\n");
 992		ret = -ENODATA;
 993		goto end;
 994	}
 995
 996	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
 997	if (!lpi_state) {
 998		ret = -ENOMEM;
 999		goto end;
1000	}
1001
1002	info->size = pkg_count;
1003	info->entries = lpi_state;
1004
1005	/* LPI States start at index 3 */
1006	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
1007		union acpi_object *element, *pkg_elem, *obj;
1008
1009		element = &lpi_data->package.elements[loop];
1010		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1011			continue;
1012
1013		pkg_elem = element->package.elements;
1014
1015		obj = pkg_elem + 6;
1016		if (obj->type == ACPI_TYPE_BUFFER) {
1017			struct acpi_power_register *reg;
1018
1019			reg = (struct acpi_power_register *)obj->buffer.pointer;
1020			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1021			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1022				continue;
1023
1024			lpi_state->address = reg->address;
1025			lpi_state->entry_method =
1026				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1027				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1028		} else if (obj->type == ACPI_TYPE_INTEGER) {
1029			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1030			lpi_state->address = obj->integer.value;
1031		} else {
1032			continue;
1033		}
1034
1035		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1036
1037		obj = pkg_elem + 9;
1038		if (obj->type == ACPI_TYPE_STRING)
1039			strlcpy(lpi_state->desc, obj->string.pointer,
1040				ACPI_CX_DESC_LEN);
1041
1042		lpi_state->index = state_idx;
1043		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1044			pr_debug("No min. residency found, assuming 10 us\n");
1045			lpi_state->min_residency = 10;
1046		}
1047
1048		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1049			pr_debug("No wakeup residency found, assuming 10 us\n");
1050			lpi_state->wake_latency = 10;
1051		}
1052
1053		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1054			lpi_state->flags = 0;
1055
1056		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1057			lpi_state->arch_flags = 0;
1058
1059		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1060			lpi_state->res_cnt_freq = 1;
1061
1062		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1063			lpi_state->enable_parent_state = 0;
1064	}
1065
1066	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1067end:
1068	kfree(buffer.pointer);
1069	return ret;
1070}
1071
1072/*
1073 * flat_state_cnt - the number of composite LPI states after the process of flattening
1074 */
1075static int flat_state_cnt;
1076
1077/**
1078 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1079 *
1080 * @local: local LPI state
1081 * @parent: parent LPI state
1082 * @result: composite LPI state
1083 */
1084static bool combine_lpi_states(struct acpi_lpi_state *local,
1085			       struct acpi_lpi_state *parent,
1086			       struct acpi_lpi_state *result)
1087{
1088	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1089		if (!parent->address) /* 0 means autopromotable */
1090			return false;
1091		result->address = local->address + parent->address;
1092	} else {
1093		result->address = parent->address;
1094	}
1095
1096	result->min_residency = max(local->min_residency, parent->min_residency);
1097	result->wake_latency = local->wake_latency + parent->wake_latency;
1098	result->enable_parent_state = parent->enable_parent_state;
1099	result->entry_method = local->entry_method;
1100
1101	result->flags = parent->flags;
1102	result->arch_flags = parent->arch_flags;
1103	result->index = parent->index;
1104
1105	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1106	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1107	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1108	return true;
1109}
1110
1111#define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1112
1113static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1114				  struct acpi_lpi_state *t)
1115{
1116	curr_level->composite_states[curr_level->composite_states_size++] = t;
1117}
1118
1119static int flatten_lpi_states(struct acpi_processor *pr,
1120			      struct acpi_lpi_states_array *curr_level,
1121			      struct acpi_lpi_states_array *prev_level)
1122{
1123	int i, j, state_count = curr_level->size;
1124	struct acpi_lpi_state *p, *t = curr_level->entries;
1125
1126	curr_level->composite_states_size = 0;
1127	for (j = 0; j < state_count; j++, t++) {
1128		struct acpi_lpi_state *flpi;
1129
1130		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1131			continue;
1132
1133		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1134			pr_warn("Limiting number of LPI states to max (%d)\n",
1135				ACPI_PROCESSOR_MAX_POWER);
1136			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1137			break;
1138		}
1139
1140		flpi = &pr->power.lpi_states[flat_state_cnt];
1141
1142		if (!prev_level) { /* leaf/processor node */
1143			memcpy(flpi, t, sizeof(*t));
1144			stash_composite_state(curr_level, flpi);
1145			flat_state_cnt++;
1146			continue;
1147		}
1148
1149		for (i = 0; i < prev_level->composite_states_size; i++) {
1150			p = prev_level->composite_states[i];
1151			if (t->index <= p->enable_parent_state &&
1152			    combine_lpi_states(p, t, flpi)) {
1153				stash_composite_state(curr_level, flpi);
1154				flat_state_cnt++;
1155				flpi++;
1156			}
1157		}
1158	}
1159
1160	kfree(curr_level->entries);
1161	return 0;
1162}
1163
1164static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1165{
1166	int ret, i;
1167	acpi_status status;
1168	acpi_handle handle = pr->handle, pr_ahandle;
1169	struct acpi_device *d = NULL;
1170	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1171
1172	if (!osc_pc_lpi_support_confirmed)
1173		return -EOPNOTSUPP;
1174
1175	if (!acpi_has_method(handle, "_LPI"))
1176		return -EINVAL;
1177
1178	flat_state_cnt = 0;
1179	prev = &info[0];
1180	curr = &info[1];
1181	handle = pr->handle;
1182	ret = acpi_processor_evaluate_lpi(handle, prev);
1183	if (ret)
1184		return ret;
1185	flatten_lpi_states(pr, prev, NULL);
1186
1187	status = acpi_get_parent(handle, &pr_ahandle);
1188	while (ACPI_SUCCESS(status)) {
1189		acpi_bus_get_device(pr_ahandle, &d);
1190		handle = pr_ahandle;
1191
1192		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1193			break;
1194
1195		/* can be optional ? */
1196		if (!acpi_has_method(handle, "_LPI"))
1197			break;
1198
1199		ret = acpi_processor_evaluate_lpi(handle, curr);
1200		if (ret)
1201			break;
1202
1203		/* flatten all the LPI states in this level of hierarchy */
1204		flatten_lpi_states(pr, curr, prev);
1205
1206		tmp = prev, prev = curr, curr = tmp;
1207
1208		status = acpi_get_parent(handle, &pr_ahandle);
1209	}
1210
1211	pr->power.count = flat_state_cnt;
1212	/* reset the index after flattening */
1213	for (i = 0; i < pr->power.count; i++)
1214		pr->power.lpi_states[i].index = i;
1215
1216	/* Tell driver that _LPI is supported. */
1217	pr->flags.has_lpi = 1;
1218	pr->flags.power = 1;
1219
1220	return 0;
1221}
1222
1223int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1224{
1225	return -ENODEV;
1226}
1227
1228int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1229{
1230	return -ENODEV;
1231}
1232
1233/**
1234 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1235 * @dev: the target CPU
1236 * @drv: cpuidle driver containing cpuidle state info
1237 * @index: index of target state
1238 *
1239 * Return: 0 for success or negative value for error
1240 */
1241static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1242			       struct cpuidle_driver *drv, int index)
1243{
1244	struct acpi_processor *pr;
1245	struct acpi_lpi_state *lpi;
1246
1247	pr = __this_cpu_read(processors);
1248
1249	if (unlikely(!pr))
1250		return -EINVAL;
1251
1252	lpi = &pr->power.lpi_states[index];
1253	if (lpi->entry_method == ACPI_CSTATE_FFH)
1254		return acpi_processor_ffh_lpi_enter(lpi);
1255
1256	return -EINVAL;
1257}
1258
1259static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1260{
1261	int i;
1262	struct acpi_lpi_state *lpi;
1263	struct cpuidle_state *state;
1264	struct cpuidle_driver *drv = &acpi_idle_driver;
1265
1266	if (!pr->flags.has_lpi)
1267		return -EOPNOTSUPP;
1268
1269	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1270		lpi = &pr->power.lpi_states[i];
1271
1272		state = &drv->states[i];
1273		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1274		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1275		state->exit_latency = lpi->wake_latency;
1276		state->target_residency = lpi->min_residency;
1277		if (lpi->arch_flags)
1278			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1279		state->enter = acpi_idle_lpi_enter;
1280		drv->safe_state_index = i;
1281	}
1282
1283	drv->state_count = i;
1284
1285	return 0;
1286}
1287
1288/**
1289 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1290 * global state data i.e. idle routines
1291 *
1292 * @pr: the ACPI processor
1293 */
1294static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1295{
1296	int i;
1297	struct cpuidle_driver *drv = &acpi_idle_driver;
1298
1299	if (!pr->flags.power_setup_done || !pr->flags.power)
1300		return -EINVAL;
1301
1302	drv->safe_state_index = -1;
1303	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1304		drv->states[i].name[0] = '\0';
1305		drv->states[i].desc[0] = '\0';
1306	}
1307
1308	if (pr->flags.has_lpi)
1309		return acpi_processor_setup_lpi_states(pr);
1310
1311	return acpi_processor_setup_cstates(pr);
1312}
1313
1314/**
1315 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1316 * device i.e. per-cpu data
1317 *
1318 * @pr: the ACPI processor
1319 * @dev : the cpuidle device
1320 */
1321static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1322					    struct cpuidle_device *dev)
1323{
1324	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1325		return -EINVAL;
1326
1327	dev->cpu = pr->id;
1328	if (pr->flags.has_lpi)
1329		return acpi_processor_ffh_lpi_probe(pr->id);
1330
1331	return acpi_processor_setup_cpuidle_cx(pr, dev);
1332}
1333
1334static int acpi_processor_get_power_info(struct acpi_processor *pr)
1335{
1336	int ret;
1337
1338	ret = acpi_processor_get_lpi_info(pr);
1339	if (ret)
1340		ret = acpi_processor_get_cstate_info(pr);
1341
1342	return ret;
1343}
1344
1345int acpi_processor_hotplug(struct acpi_processor *pr)
1346{
1347	int ret = 0;
1348	struct cpuidle_device *dev;
1349
1350	if (disabled_by_idle_boot_param())
1351		return 0;
1352
1353	if (!pr->flags.power_setup_done)
1354		return -ENODEV;
1355
1356	dev = per_cpu(acpi_cpuidle_device, pr->id);
1357	cpuidle_pause_and_lock();
1358	cpuidle_disable_device(dev);
1359	ret = acpi_processor_get_power_info(pr);
1360	if (!ret && pr->flags.power) {
1361		acpi_processor_setup_cpuidle_dev(pr, dev);
1362		ret = cpuidle_enable_device(dev);
1363	}
1364	cpuidle_resume_and_unlock();
1365
1366	return ret;
1367}
1368
1369int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
 
1370{
1371	int cpu;
1372	struct acpi_processor *_pr;
1373	struct cpuidle_device *dev;
1374
1375	if (disabled_by_idle_boot_param())
1376		return 0;
1377
1378	if (!pr->flags.power_setup_done)
1379		return -ENODEV;
 
 
 
 
 
 
 
1380
1381	/*
1382	 * FIXME:  Design the ACPI notification to make it once per
1383	 * system instead of once per-cpu.  This condition is a hack
1384	 * to make the code that updates C-States be called once.
1385	 */
1386
1387	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1388
1389		/* Protect against cpu-hotplug */
1390		get_online_cpus();
1391		cpuidle_pause_and_lock();
1392
1393		/* Disable all cpuidle devices */
1394		for_each_online_cpu(cpu) {
1395			_pr = per_cpu(processors, cpu);
1396			if (!_pr || !_pr->flags.power_setup_done)
1397				continue;
1398			dev = per_cpu(acpi_cpuidle_device, cpu);
1399			cpuidle_disable_device(dev);
1400		}
1401
1402		/* Populate Updated C-state information */
1403		acpi_processor_get_power_info(pr);
1404		acpi_processor_setup_cpuidle_states(pr);
1405
1406		/* Enable all cpuidle devices */
1407		for_each_online_cpu(cpu) {
1408			_pr = per_cpu(processors, cpu);
1409			if (!_pr || !_pr->flags.power_setup_done)
1410				continue;
1411			acpi_processor_get_power_info(_pr);
1412			if (_pr->flags.power) {
1413				dev = per_cpu(acpi_cpuidle_device, cpu);
1414				acpi_processor_setup_cpuidle_dev(_pr, dev);
1415				cpuidle_enable_device(dev);
1416			}
1417		}
1418		cpuidle_resume_and_unlock();
1419		put_online_cpus();
1420	}
1421
1422	return 0;
1423}
1424
1425static int acpi_processor_registered;
1426
1427int acpi_processor_power_init(struct acpi_processor *pr)
1428{
1429	int retval;
1430	struct cpuidle_device *dev;
1431
1432	if (disabled_by_idle_boot_param())
1433		return 0;
1434
1435	acpi_processor_cstate_first_run_checks();
1436
1437	if (!acpi_processor_get_power_info(pr))
1438		pr->flags.power_setup_done = 1;
1439
1440	/*
1441	 * Install the idle handler if processor power management is supported.
1442	 * Note that we use previously set idle handler will be used on
1443	 * platforms that only support C1.
1444	 */
1445	if (pr->flags.power) {
1446		/* Register acpi_idle_driver if not already registered */
1447		if (!acpi_processor_registered) {
1448			acpi_processor_setup_cpuidle_states(pr);
1449			retval = cpuidle_register_driver(&acpi_idle_driver);
1450			if (retval)
1451				return retval;
1452			pr_debug("%s registered with cpuidle\n",
1453				 acpi_idle_driver.name);
1454		}
1455
1456		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1457		if (!dev)
1458			return -ENOMEM;
1459		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1460
1461		acpi_processor_setup_cpuidle_dev(pr, dev);
1462
1463		/* Register per-cpu cpuidle_device. Cpuidle driver
1464		 * must already be registered before registering device
1465		 */
1466		retval = cpuidle_register_device(dev);
1467		if (retval) {
1468			if (acpi_processor_registered == 0)
1469				cpuidle_unregister_driver(&acpi_idle_driver);
1470			return retval;
1471		}
1472		acpi_processor_registered++;
1473	}
1474	return 0;
1475}
1476
1477int acpi_processor_power_exit(struct acpi_processor *pr)
 
1478{
1479	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1480
1481	if (disabled_by_idle_boot_param())
1482		return 0;
1483
1484	if (pr->flags.power) {
1485		cpuidle_unregister_device(dev);
1486		acpi_processor_registered--;
1487		if (acpi_processor_registered == 0)
1488			cpuidle_unregister_driver(&acpi_idle_driver);
1489	}
1490
1491	pr->flags.power_setup_done = 0;
1492	return 0;
1493}