Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * processor_idle - idle state submodule to the ACPI processor driver
   3 *
   4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   6 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   7 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   8 *  			- Added processor hotplug support
   9 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10 *  			- Added support for C3 on SMP
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or (at
  17 *  your option) any later version.
  18 *
  19 *  This program is distributed in the hope that it will be useful, but
  20 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  21 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 *  General Public License for more details.
  23 *
  24 *  You should have received a copy of the GNU General Public License along
  25 *  with this program; if not, write to the Free Software Foundation, Inc.,
  26 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  27 *
  28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  29 */
  30
  31#include <linux/kernel.h>
  32#include <linux/module.h>
  33#include <linux/init.h>
  34#include <linux/cpufreq.h>
  35#include <linux/slab.h>
  36#include <linux/acpi.h>
  37#include <linux/dmi.h>
  38#include <linux/moduleparam.h>
  39#include <linux/sched.h>	/* need_resched() */
  40#include <linux/pm_qos_params.h>
  41#include <linux/clockchips.h>
  42#include <linux/cpuidle.h>
  43#include <linux/irqflags.h>
  44
  45/*
  46 * Include the apic definitions for x86 to have the APIC timer related defines
  47 * available also for UP (on SMP it gets magically included via linux/smp.h).
  48 * asm/acpi.h is not an option, as it would require more include magic. Also
  49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  50 */
  51#ifdef CONFIG_X86
  52#include <asm/apic.h>
  53#endif
  54
  55#include <asm/io.h>
  56#include <asm/uaccess.h>
  57
  58#include <acpi/acpi_bus.h>
  59#include <acpi/processor.h>
  60#include <asm/processor.h>
  61
  62#define PREFIX "ACPI: "
  63
  64#define ACPI_PROCESSOR_CLASS            "processor"
  65#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  66ACPI_MODULE_NAME("processor_idle");
  67#define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
  68#define C2_OVERHEAD			1	/* 1us */
  69#define C3_OVERHEAD			1	/* 1us */
  70#define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
  71
  72static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  73module_param(max_cstate, uint, 0000);
  74static unsigned int nocst __read_mostly;
  75module_param(nocst, uint, 0000);
  76static int bm_check_disable __read_mostly;
  77module_param(bm_check_disable, uint, 0000);
  78
  79static unsigned int latency_factor __read_mostly = 2;
  80module_param(latency_factor, uint, 0644);
  81
  82static int disabled_by_idle_boot_param(void)
  83{
  84	return boot_option_idle_override == IDLE_POLL ||
  85		boot_option_idle_override == IDLE_FORCE_MWAIT ||
  86		boot_option_idle_override == IDLE_HALT;
  87}
  88
  89/*
  90 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  91 * For now disable this. Probably a bug somewhere else.
  92 *
  93 * To skip this limit, boot/load with a large max_cstate limit.
  94 */
  95static int set_max_cstate(const struct dmi_system_id *id)
  96{
  97	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  98		return 0;
  99
 100	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
 101	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
 102	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
 103
 104	max_cstate = (long)id->driver_data;
 105
 106	return 0;
 107}
 108
 109/* Actually this shouldn't be __cpuinitdata, would be better to fix the
 110   callers to only run once -AK */
 111static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
 112	{ set_max_cstate, "Clevo 5600D", {
 113	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
 114	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
 115	 (void *)2},
 116	{ set_max_cstate, "Pavilion zv5000", {
 117	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
 118	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
 119	 (void *)1},
 120	{ set_max_cstate, "Asus L8400B", {
 121	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
 122	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
 123	 (void *)1},
 124	{},
 125};
 126
 127
 128/*
 129 * Callers should disable interrupts before the call and enable
 130 * interrupts after return.
 131 */
 132static void acpi_safe_halt(void)
 133{
 134	current_thread_info()->status &= ~TS_POLLING;
 135	/*
 136	 * TS_POLLING-cleared state must be visible before we
 137	 * test NEED_RESCHED:
 138	 */
 139	smp_mb();
 140	if (!need_resched()) {
 141		safe_halt();
 142		local_irq_disable();
 143	}
 144	current_thread_info()->status |= TS_POLLING;
 145}
 146
 147#ifdef ARCH_APICTIMER_STOPS_ON_C3
 148
 149/*
 150 * Some BIOS implementations switch to C3 in the published C2 state.
 151 * This seems to be a common problem on AMD boxen, but other vendors
 152 * are affected too. We pick the most conservative approach: we assume
 153 * that the local APIC stops in both C2 and C3.
 154 */
 155static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 156				   struct acpi_processor_cx *cx)
 157{
 158	struct acpi_processor_power *pwr = &pr->power;
 159	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 160
 161	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 162		return;
 163
 164	if (amd_e400_c1e_detected)
 165		type = ACPI_STATE_C1;
 166
 167	/*
 168	 * Check, if one of the previous states already marked the lapic
 169	 * unstable
 170	 */
 171	if (pwr->timer_broadcast_on_state < state)
 172		return;
 173
 174	if (cx->type >= type)
 175		pr->power.timer_broadcast_on_state = state;
 176}
 177
 178static void __lapic_timer_propagate_broadcast(void *arg)
 179{
 180	struct acpi_processor *pr = (struct acpi_processor *) arg;
 181	unsigned long reason;
 182
 183	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
 184		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
 185
 186	clockevents_notify(reason, &pr->id);
 187}
 188
 189static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 190{
 191	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 192				 (void *)pr, 1);
 193}
 194
 195/* Power(C) State timer broadcast control */
 196static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 197				       struct acpi_processor_cx *cx,
 198				       int broadcast)
 199{
 200	int state = cx - pr->power.states;
 201
 202	if (state >= pr->power.timer_broadcast_on_state) {
 203		unsigned long reason;
 204
 205		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
 206			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
 207		clockevents_notify(reason, &pr->id);
 208	}
 209}
 210
 211#else
 212
 213static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 214				   struct acpi_processor_cx *cstate) { }
 215static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 216static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 217				       struct acpi_processor_cx *cx,
 218				       int broadcast)
 219{
 220}
 221
 222#endif
 223
 224/*
 225 * Suspend / resume control
 226 */
 227static int acpi_idle_suspend;
 228static u32 saved_bm_rld;
 229
 230static void acpi_idle_bm_rld_save(void)
 231{
 232	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
 233}
 234static void acpi_idle_bm_rld_restore(void)
 235{
 236	u32 resumed_bm_rld;
 237
 238	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
 239
 240	if (resumed_bm_rld != saved_bm_rld)
 241		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
 242}
 243
 244int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
 245{
 246	if (acpi_idle_suspend == 1)
 247		return 0;
 248
 249	acpi_idle_bm_rld_save();
 250	acpi_idle_suspend = 1;
 251	return 0;
 252}
 253
 254int acpi_processor_resume(struct acpi_device * device)
 255{
 256	if (acpi_idle_suspend == 0)
 257		return 0;
 258
 259	acpi_idle_bm_rld_restore();
 260	acpi_idle_suspend = 0;
 261	return 0;
 262}
 263
 264#if defined(CONFIG_X86)
 265static void tsc_check_state(int state)
 266{
 267	switch (boot_cpu_data.x86_vendor) {
 268	case X86_VENDOR_AMD:
 269	case X86_VENDOR_INTEL:
 270		/*
 271		 * AMD Fam10h TSC will tick in all
 272		 * C/P/S0/S1 states when this bit is set.
 273		 */
 274		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 275			return;
 276
 277		/*FALL THROUGH*/
 278	default:
 279		/* TSC could halt in idle, so notify users */
 280		if (state > ACPI_STATE_C1)
 281			mark_tsc_unstable("TSC halts in idle");
 282	}
 283}
 284#else
 285static void tsc_check_state(int state) { return; }
 286#endif
 287
 288static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 289{
 290
 291	if (!pr)
 292		return -EINVAL;
 293
 294	if (!pr->pblk)
 295		return -ENODEV;
 296
 297	/* if info is obtained from pblk/fadt, type equals state */
 298	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 299	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 300
 301#ifndef CONFIG_HOTPLUG_CPU
 302	/*
 303	 * Check for P_LVL2_UP flag before entering C2 and above on
 304	 * an SMP system.
 305	 */
 306	if ((num_online_cpus() > 1) &&
 307	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 308		return -ENODEV;
 309#endif
 310
 311	/* determine C2 and C3 address from pblk */
 312	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 313	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 314
 315	/* determine latencies from FADT */
 316	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
 317	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
 318
 319	/*
 320	 * FADT specified C2 latency must be less than or equal to
 321	 * 100 microseconds.
 322	 */
 323	if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 324		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 325			"C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
 326		/* invalidate C2 */
 327		pr->power.states[ACPI_STATE_C2].address = 0;
 328	}
 329
 330	/*
 331	 * FADT supplied C3 latency must be less than or equal to
 332	 * 1000 microseconds.
 333	 */
 334	if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 335		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 336			"C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
 337		/* invalidate C3 */
 338		pr->power.states[ACPI_STATE_C3].address = 0;
 339	}
 340
 341	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 342			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 343			  pr->power.states[ACPI_STATE_C2].address,
 344			  pr->power.states[ACPI_STATE_C3].address));
 345
 346	return 0;
 347}
 348
 349static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 350{
 351	if (!pr->power.states[ACPI_STATE_C1].valid) {
 352		/* set the first C-State to C1 */
 353		/* all processors need to support C1 */
 354		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 355		pr->power.states[ACPI_STATE_C1].valid = 1;
 356		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 357	}
 358	/* the C0 state only exists as a filler in our array */
 359	pr->power.states[ACPI_STATE_C0].valid = 1;
 360	return 0;
 361}
 362
 363static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 364{
 365	acpi_status status = 0;
 366	u64 count;
 367	int current_count;
 368	int i;
 369	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 370	union acpi_object *cst;
 371
 372
 373	if (nocst)
 374		return -ENODEV;
 375
 376	current_count = 0;
 377
 378	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 379	if (ACPI_FAILURE(status)) {
 380		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 381		return -ENODEV;
 382	}
 383
 384	cst = buffer.pointer;
 385
 386	/* There must be at least 2 elements */
 387	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 388		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
 389		status = -EFAULT;
 390		goto end;
 391	}
 392
 393	count = cst->package.elements[0].integer.value;
 394
 395	/* Validate number of power states. */
 396	if (count < 1 || count != cst->package.count - 1) {
 397		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
 398		status = -EFAULT;
 399		goto end;
 400	}
 401
 402	/* Tell driver that at least _CST is supported. */
 403	pr->flags.has_cst = 1;
 404
 405	for (i = 1; i <= count; i++) {
 406		union acpi_object *element;
 407		union acpi_object *obj;
 408		struct acpi_power_register *reg;
 409		struct acpi_processor_cx cx;
 410
 411		memset(&cx, 0, sizeof(cx));
 412
 413		element = &(cst->package.elements[i]);
 414		if (element->type != ACPI_TYPE_PACKAGE)
 415			continue;
 416
 417		if (element->package.count != 4)
 418			continue;
 419
 420		obj = &(element->package.elements[0]);
 421
 422		if (obj->type != ACPI_TYPE_BUFFER)
 423			continue;
 424
 425		reg = (struct acpi_power_register *)obj->buffer.pointer;
 426
 427		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 428		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 429			continue;
 430
 431		/* There should be an easy way to extract an integer... */
 432		obj = &(element->package.elements[1]);
 433		if (obj->type != ACPI_TYPE_INTEGER)
 434			continue;
 435
 436		cx.type = obj->integer.value;
 437		/*
 438		 * Some buggy BIOSes won't list C1 in _CST -
 439		 * Let acpi_processor_get_power_info_default() handle them later
 440		 */
 441		if (i == 1 && cx.type != ACPI_STATE_C1)
 442			current_count++;
 443
 444		cx.address = reg->address;
 445		cx.index = current_count + 1;
 446
 447		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 448		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 449			if (acpi_processor_ffh_cstate_probe
 450					(pr->id, &cx, reg) == 0) {
 451				cx.entry_method = ACPI_CSTATE_FFH;
 452			} else if (cx.type == ACPI_STATE_C1) {
 453				/*
 454				 * C1 is a special case where FIXED_HARDWARE
 455				 * can be handled in non-MWAIT way as well.
 456				 * In that case, save this _CST entry info.
 457				 * Otherwise, ignore this info and continue.
 458				 */
 459				cx.entry_method = ACPI_CSTATE_HALT;
 460				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 461			} else {
 462				continue;
 463			}
 464			if (cx.type == ACPI_STATE_C1 &&
 465			    (boot_option_idle_override == IDLE_NOMWAIT)) {
 466				/*
 467				 * In most cases the C1 space_id obtained from
 468				 * _CST object is FIXED_HARDWARE access mode.
 469				 * But when the option of idle=halt is added,
 470				 * the entry_method type should be changed from
 471				 * CSTATE_FFH to CSTATE_HALT.
 472				 * When the option of idle=nomwait is added,
 473				 * the C1 entry_method type should be
 474				 * CSTATE_HALT.
 475				 */
 476				cx.entry_method = ACPI_CSTATE_HALT;
 477				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 478			}
 479		} else {
 480			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 481				 cx.address);
 482		}
 483
 484		if (cx.type == ACPI_STATE_C1) {
 485			cx.valid = 1;
 486		}
 487
 488		obj = &(element->package.elements[2]);
 489		if (obj->type != ACPI_TYPE_INTEGER)
 490			continue;
 491
 492		cx.latency = obj->integer.value;
 493
 494		obj = &(element->package.elements[3]);
 495		if (obj->type != ACPI_TYPE_INTEGER)
 496			continue;
 497
 498		cx.power = obj->integer.value;
 499
 500		current_count++;
 501		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 502
 503		/*
 504		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 505		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 506		 */
 507		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 508			printk(KERN_WARNING
 509			       "Limiting number of power states to max (%d)\n",
 510			       ACPI_PROCESSOR_MAX_POWER);
 511			printk(KERN_WARNING
 512			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 513			break;
 514		}
 515	}
 516
 517	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 518			  current_count));
 519
 520	/* Validate number of power states discovered */
 521	if (current_count < 2)
 522		status = -EFAULT;
 523
 524      end:
 525	kfree(buffer.pointer);
 526
 527	return status;
 528}
 529
 530static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 531					   struct acpi_processor_cx *cx)
 532{
 533	static int bm_check_flag = -1;
 534	static int bm_control_flag = -1;
 535
 536
 537	if (!cx->address)
 538		return;
 539
 540	/*
 541	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 542	 * DMA transfers are used by any ISA device to avoid livelock.
 543	 * Note that we could disable Type-F DMA (as recommended by
 544	 * the erratum), but this is known to disrupt certain ISA
 545	 * devices thus we take the conservative approach.
 546	 */
 547	else if (errata.piix4.fdma) {
 548		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 549				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 550		return;
 551	}
 552
 553	/* All the logic here assumes flags.bm_check is same across all CPUs */
 554	if (bm_check_flag == -1) {
 555		/* Determine whether bm_check is needed based on CPU  */
 556		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 557		bm_check_flag = pr->flags.bm_check;
 558		bm_control_flag = pr->flags.bm_control;
 559	} else {
 560		pr->flags.bm_check = bm_check_flag;
 561		pr->flags.bm_control = bm_control_flag;
 562	}
 563
 564	if (pr->flags.bm_check) {
 565		if (!pr->flags.bm_control) {
 566			if (pr->flags.has_cst != 1) {
 567				/* bus mastering control is necessary */
 568				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 569					"C3 support requires BM control\n"));
 570				return;
 571			} else {
 572				/* Here we enter C3 without bus mastering */
 573				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 574					"C3 support without BM control\n"));
 575			}
 576		}
 577	} else {
 578		/*
 579		 * WBINVD should be set in fadt, for C3 state to be
 580		 * supported on when bm_check is not required.
 581		 */
 582		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 583			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 584					  "Cache invalidation should work properly"
 585					  " for C3 to be enabled on SMP systems\n"));
 586			return;
 587		}
 588	}
 589
 590	/*
 591	 * Otherwise we've met all of our C3 requirements.
 592	 * Normalize the C3 latency to expidite policy.  Enable
 593	 * checking of bus mastering status (bm_check) so we can
 594	 * use this in our C3 policy
 595	 */
 596	cx->valid = 1;
 597
 598	cx->latency_ticks = cx->latency;
 599	/*
 600	 * On older chipsets, BM_RLD needs to be set
 601	 * in order for Bus Master activity to wake the
 602	 * system from C3.  Newer chipsets handle DMA
 603	 * during C3 automatically and BM_RLD is a NOP.
 604	 * In either case, the proper way to
 605	 * handle BM_RLD is to set it and leave it set.
 606	 */
 607	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 608
 609	return;
 610}
 611
 612static int acpi_processor_power_verify(struct acpi_processor *pr)
 613{
 614	unsigned int i;
 615	unsigned int working = 0;
 616
 617	pr->power.timer_broadcast_on_state = INT_MAX;
 618
 619	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 620		struct acpi_processor_cx *cx = &pr->power.states[i];
 621
 622		switch (cx->type) {
 623		case ACPI_STATE_C1:
 624			cx->valid = 1;
 625			break;
 626
 627		case ACPI_STATE_C2:
 628			if (!cx->address)
 629				break;
 630			cx->valid = 1; 
 631			cx->latency_ticks = cx->latency; /* Normalize latency */
 632			break;
 633
 634		case ACPI_STATE_C3:
 635			acpi_processor_power_verify_c3(pr, cx);
 636			break;
 637		}
 638		if (!cx->valid)
 639			continue;
 640
 641		lapic_timer_check_state(i, pr, cx);
 642		tsc_check_state(cx->type);
 643		working++;
 644	}
 645
 646	lapic_timer_propagate_broadcast(pr);
 647
 648	return (working);
 649}
 650
 651static int acpi_processor_get_power_info(struct acpi_processor *pr)
 652{
 653	unsigned int i;
 654	int result;
 655
 656
 657	/* NOTE: the idle thread may not be running while calling
 658	 * this function */
 659
 660	/* Zero initialize all the C-states info. */
 661	memset(pr->power.states, 0, sizeof(pr->power.states));
 662
 663	result = acpi_processor_get_power_info_cst(pr);
 664	if (result == -ENODEV)
 665		result = acpi_processor_get_power_info_fadt(pr);
 666
 667	if (result)
 668		return result;
 669
 670	acpi_processor_get_power_info_default(pr);
 671
 672	pr->power.count = acpi_processor_power_verify(pr);
 673
 674	/*
 675	 * if one state of type C2 or C3 is available, mark this
 676	 * CPU as being "idle manageable"
 677	 */
 678	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 679		if (pr->power.states[i].valid) {
 680			pr->power.count = i;
 681			if (pr->power.states[i].type >= ACPI_STATE_C2)
 682				pr->flags.power = 1;
 683		}
 684	}
 685
 686	return 0;
 687}
 688
 689/**
 690 * acpi_idle_bm_check - checks if bus master activity was detected
 691 */
 692static int acpi_idle_bm_check(void)
 693{
 694	u32 bm_status = 0;
 695
 696	if (bm_check_disable)
 697		return 0;
 698
 699	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 700	if (bm_status)
 701		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 702	/*
 703	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 704	 * the true state of bus mastering activity; forcing us to
 705	 * manually check the BMIDEA bit of each IDE channel.
 706	 */
 707	else if (errata.piix4.bmisx) {
 708		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 709		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 710			bm_status = 1;
 711	}
 712	return bm_status;
 713}
 714
 715/**
 716 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
 717 * @cx: cstate data
 718 *
 719 * Caller disables interrupt before call and enables interrupt after return.
 720 */
 721static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
 722{
 723	/* Don't trace irqs off for idle */
 724	stop_critical_timings();
 725	if (cx->entry_method == ACPI_CSTATE_FFH) {
 726		/* Call into architectural FFH based C-state */
 727		acpi_processor_ffh_cstate_enter(cx);
 728	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 729		acpi_safe_halt();
 730	} else {
 731		/* IO port based C-state */
 732		inb(cx->address);
 733		/* Dummy wait op - must do something useless after P_LVL2 read
 734		   because chipsets cannot guarantee that STPCLK# signal
 735		   gets asserted in time to freeze execution properly. */
 736		inl(acpi_gbl_FADT.xpm_timer_block.address);
 737	}
 738	start_critical_timings();
 739}
 740
 741/**
 742 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
 743 * @dev: the target CPU
 744 * @state: the state data
 
 745 *
 746 * This is equivalent to the HALT instruction.
 747 */
 748static int acpi_idle_enter_c1(struct cpuidle_device *dev,
 749			      struct cpuidle_state *state)
 750{
 751	ktime_t  kt1, kt2;
 752	s64 idle_time;
 753	struct acpi_processor *pr;
 754	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
 
 755
 756	pr = __this_cpu_read(processors);
 
 757
 758	if (unlikely(!pr))
 759		return 0;
 760
 761	local_irq_disable();
 762
 763	/* Do not access any ACPI IO ports in suspend path */
 764	if (acpi_idle_suspend) {
 765		local_irq_enable();
 766		cpu_relax();
 767		return 0;
 768	}
 769
 770	lapic_timer_state_broadcast(pr, cx, 1);
 771	kt1 = ktime_get_real();
 772	acpi_idle_do_entry(cx);
 773	kt2 = ktime_get_real();
 774	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
 775
 
 
 
 776	local_irq_enable();
 777	cx->usage++;
 778	lapic_timer_state_broadcast(pr, cx, 0);
 779
 780	return idle_time;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781}
 782
 783/**
 784 * acpi_idle_enter_simple - enters an ACPI state without BM handling
 785 * @dev: the target CPU
 786 * @state: the state data
 
 787 */
 788static int acpi_idle_enter_simple(struct cpuidle_device *dev,
 789				  struct cpuidle_state *state)
 790{
 791	struct acpi_processor *pr;
 792	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
 
 793	ktime_t  kt1, kt2;
 794	s64 idle_time_ns;
 795	s64 idle_time;
 796
 797	pr = __this_cpu_read(processors);
 
 798
 799	if (unlikely(!pr))
 800		return 0;
 801
 802	if (acpi_idle_suspend)
 803		return(acpi_idle_enter_c1(dev, state));
 804
 805	local_irq_disable();
 806
 
 
 
 
 
 
 807	if (cx->entry_method != ACPI_CSTATE_FFH) {
 808		current_thread_info()->status &= ~TS_POLLING;
 809		/*
 810		 * TS_POLLING-cleared state must be visible before we test
 811		 * NEED_RESCHED:
 812		 */
 813		smp_mb();
 814
 815		if (unlikely(need_resched())) {
 816			current_thread_info()->status |= TS_POLLING;
 817			local_irq_enable();
 818			return 0;
 819		}
 820	}
 821
 822	/*
 823	 * Must be done before busmaster disable as we might need to
 824	 * access HPET !
 825	 */
 826	lapic_timer_state_broadcast(pr, cx, 1);
 827
 828	if (cx->type == ACPI_STATE_C3)
 829		ACPI_FLUSH_CPU_CACHE();
 830
 831	kt1 = ktime_get_real();
 832	/* Tell the scheduler that we are going deep-idle: */
 833	sched_clock_idle_sleep_event();
 834	acpi_idle_do_entry(cx);
 835	kt2 = ktime_get_real();
 836	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
 837	idle_time = idle_time_ns;
 838	do_div(idle_time, NSEC_PER_USEC);
 839
 
 
 
 840	/* Tell the scheduler how much we idled: */
 841	sched_clock_idle_wakeup_event(idle_time_ns);
 842
 843	local_irq_enable();
 844	if (cx->entry_method != ACPI_CSTATE_FFH)
 845		current_thread_info()->status |= TS_POLLING;
 846
 847	cx->usage++;
 848
 849	lapic_timer_state_broadcast(pr, cx, 0);
 850	cx->time += idle_time;
 851	return idle_time;
 852}
 853
 854static int c3_cpu_count;
 855static DEFINE_SPINLOCK(c3_lock);
 856
 857/**
 858 * acpi_idle_enter_bm - enters C3 with proper BM handling
 859 * @dev: the target CPU
 860 * @state: the state data
 
 861 *
 862 * If BM is detected, the deepest non-C3 idle state is entered instead.
 863 */
 864static int acpi_idle_enter_bm(struct cpuidle_device *dev,
 865			      struct cpuidle_state *state)
 866{
 867	struct acpi_processor *pr;
 868	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
 
 869	ktime_t  kt1, kt2;
 870	s64 idle_time_ns;
 871	s64 idle_time;
 872
 873
 874	pr = __this_cpu_read(processors);
 
 875
 876	if (unlikely(!pr))
 877		return 0;
 878
 879	if (acpi_idle_suspend)
 880		return(acpi_idle_enter_c1(dev, state));
 881
 882	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
 883		if (dev->safe_state) {
 884			dev->last_state = dev->safe_state;
 885			return dev->safe_state->enter(dev, dev->safe_state);
 886		} else {
 887			local_irq_disable();
 888			acpi_safe_halt();
 
 889			local_irq_enable();
 890			return 0;
 891		}
 892	}
 893
 894	local_irq_disable();
 895
 
 
 
 
 
 
 896	if (cx->entry_method != ACPI_CSTATE_FFH) {
 897		current_thread_info()->status &= ~TS_POLLING;
 898		/*
 899		 * TS_POLLING-cleared state must be visible before we test
 900		 * NEED_RESCHED:
 901		 */
 902		smp_mb();
 903
 904		if (unlikely(need_resched())) {
 905			current_thread_info()->status |= TS_POLLING;
 906			local_irq_enable();
 907			return 0;
 908		}
 909	}
 910
 911	acpi_unlazy_tlb(smp_processor_id());
 912
 913	/* Tell the scheduler that we are going deep-idle: */
 914	sched_clock_idle_sleep_event();
 915	/*
 916	 * Must be done before busmaster disable as we might need to
 917	 * access HPET !
 918	 */
 919	lapic_timer_state_broadcast(pr, cx, 1);
 920
 921	kt1 = ktime_get_real();
 922	/*
 923	 * disable bus master
 924	 * bm_check implies we need ARB_DIS
 925	 * !bm_check implies we need cache flush
 926	 * bm_control implies whether we can do ARB_DIS
 927	 *
 928	 * That leaves a case where bm_check is set and bm_control is
 929	 * not set. In that case we cannot do much, we enter C3
 930	 * without doing anything.
 931	 */
 932	if (pr->flags.bm_check && pr->flags.bm_control) {
 933		spin_lock(&c3_lock);
 934		c3_cpu_count++;
 935		/* Disable bus master arbitration when all CPUs are in C3 */
 936		if (c3_cpu_count == num_online_cpus())
 937			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 938		spin_unlock(&c3_lock);
 939	} else if (!pr->flags.bm_check) {
 940		ACPI_FLUSH_CPU_CACHE();
 941	}
 942
 943	acpi_idle_do_entry(cx);
 944
 945	/* Re-enable bus master arbitration */
 946	if (pr->flags.bm_check && pr->flags.bm_control) {
 947		spin_lock(&c3_lock);
 948		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 949		c3_cpu_count--;
 950		spin_unlock(&c3_lock);
 951	}
 952	kt2 = ktime_get_real();
 953	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
 954	idle_time = idle_time_ns;
 955	do_div(idle_time, NSEC_PER_USEC);
 956
 
 
 
 957	/* Tell the scheduler how much we idled: */
 958	sched_clock_idle_wakeup_event(idle_time_ns);
 959
 960	local_irq_enable();
 961	if (cx->entry_method != ACPI_CSTATE_FFH)
 962		current_thread_info()->status |= TS_POLLING;
 963
 964	cx->usage++;
 965
 966	lapic_timer_state_broadcast(pr, cx, 0);
 967	cx->time += idle_time;
 968	return idle_time;
 969}
 970
 971struct cpuidle_driver acpi_idle_driver = {
 972	.name =		"acpi_idle",
 973	.owner =	THIS_MODULE,
 974};
 975
 976/**
 977 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
 
 
 978 * @pr: the ACPI processor
 979 */
 980static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
 981{
 982	int i, count = CPUIDLE_DRIVER_STATE_START;
 983	struct acpi_processor_cx *cx;
 984	struct cpuidle_state *state;
 985	struct cpuidle_device *dev = &pr->power.dev;
 986
 987	if (!pr->flags.power_setup_done)
 988		return -EINVAL;
 989
 990	if (pr->flags.power == 0) {
 991		return -EINVAL;
 992	}
 993
 994	dev->cpu = pr->id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
 996		dev->states[i].name[0] = '\0';
 997		dev->states[i].desc[0] = '\0';
 998	}
 999
1000	if (max_cstate == 0)
1001		max_cstate = 1;
1002
1003	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1004		cx = &pr->power.states[i];
1005		state = &dev->states[count];
1006
1007		if (!cx->valid)
1008			continue;
1009
1010#ifdef CONFIG_HOTPLUG_CPU
1011		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1012		    !pr->flags.has_cst &&
1013		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1014			continue;
1015#endif
1016		cpuidle_set_statedata(state, cx);
1017
 
1018		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1019		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1020		state->exit_latency = cx->latency;
1021		state->target_residency = cx->latency * latency_factor;
1022
1023		state->flags = 0;
1024		switch (cx->type) {
1025			case ACPI_STATE_C1:
1026			if (cx->entry_method == ACPI_CSTATE_FFH)
1027				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1028
1029			state->enter = acpi_idle_enter_c1;
1030			dev->safe_state = state;
 
1031			break;
1032
1033			case ACPI_STATE_C2:
1034			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1035			state->enter = acpi_idle_enter_simple;
1036			dev->safe_state = state;
 
1037			break;
1038
1039			case ACPI_STATE_C3:
1040			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1041			state->enter = pr->flags.bm_check ?
1042					acpi_idle_enter_bm :
1043					acpi_idle_enter_simple;
1044			break;
1045		}
1046
1047		count++;
1048		if (count == CPUIDLE_STATE_MAX)
1049			break;
1050	}
1051
1052	dev->state_count = count;
1053
1054	if (!count)
1055		return -EINVAL;
1056
1057	return 0;
1058}
1059
1060int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1061{
1062	int ret = 0;
1063
1064	if (disabled_by_idle_boot_param())
1065		return 0;
1066
1067	if (!pr)
1068		return -EINVAL;
1069
1070	if (nocst) {
1071		return -ENODEV;
1072	}
1073
1074	if (!pr->flags.power_setup_done)
1075		return -ENODEV;
1076
1077	cpuidle_pause_and_lock();
1078	cpuidle_disable_device(&pr->power.dev);
1079	acpi_processor_get_power_info(pr);
1080	if (pr->flags.power) {
1081		acpi_processor_setup_cpuidle(pr);
1082		ret = cpuidle_enable_device(&pr->power.dev);
1083	}
1084	cpuidle_resume_and_unlock();
1085
1086	return ret;
1087}
1088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1089int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1090			      struct acpi_device *device)
1091{
1092	acpi_status status = 0;
 
1093	static int first_run;
1094
1095	if (disabled_by_idle_boot_param())
1096		return 0;
1097
1098	if (!first_run) {
1099		dmi_check_system(processor_power_dmi_table);
1100		max_cstate = acpi_processor_cstate_check(max_cstate);
1101		if (max_cstate < ACPI_C_STATES_MAX)
1102			printk(KERN_NOTICE
1103			       "ACPI: processor limited to max C-state %d\n",
1104			       max_cstate);
1105		first_run++;
1106	}
1107
1108	if (!pr)
1109		return -EINVAL;
1110
1111	if (acpi_gbl_FADT.cst_control && !nocst) {
1112		status =
1113		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1114		if (ACPI_FAILURE(status)) {
1115			ACPI_EXCEPTION((AE_INFO, status,
1116					"Notifying BIOS of _CST ability failed"));
1117		}
1118	}
1119
1120	acpi_processor_get_power_info(pr);
1121	pr->flags.power_setup_done = 1;
1122
1123	/*
1124	 * Install the idle handler if processor power management is supported.
1125	 * Note that we use previously set idle handler will be used on
1126	 * platforms that only support C1.
1127	 */
1128	if (pr->flags.power) {
1129		acpi_processor_setup_cpuidle(pr);
1130		if (cpuidle_register_device(&pr->power.dev))
1131			return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132	}
1133	return 0;
1134}
1135
1136int acpi_processor_power_exit(struct acpi_processor *pr,
1137			      struct acpi_device *device)
1138{
1139	if (disabled_by_idle_boot_param())
1140		return 0;
1141
1142	cpuidle_unregister_device(&pr->power.dev);
1143	pr->flags.power_setup_done = 0;
 
 
 
 
1144
 
1145	return 0;
1146}
v3.5.6
   1/*
   2 * processor_idle - idle state submodule to the ACPI processor driver
   3 *
   4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   6 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   7 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   8 *  			- Added processor hotplug support
   9 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10 *  			- Added support for C3 on SMP
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or (at
  17 *  your option) any later version.
  18 *
  19 *  This program is distributed in the hope that it will be useful, but
  20 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  21 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 *  General Public License for more details.
  23 *
  24 *  You should have received a copy of the GNU General Public License along
  25 *  with this program; if not, write to the Free Software Foundation, Inc.,
  26 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  27 *
  28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  29 */
  30
  31#include <linux/kernel.h>
  32#include <linux/module.h>
  33#include <linux/init.h>
  34#include <linux/cpufreq.h>
  35#include <linux/slab.h>
  36#include <linux/acpi.h>
  37#include <linux/dmi.h>
  38#include <linux/moduleparam.h>
  39#include <linux/sched.h>	/* need_resched() */
  40#include <linux/pm_qos.h>
  41#include <linux/clockchips.h>
  42#include <linux/cpuidle.h>
  43#include <linux/irqflags.h>
  44
  45/*
  46 * Include the apic definitions for x86 to have the APIC timer related defines
  47 * available also for UP (on SMP it gets magically included via linux/smp.h).
  48 * asm/acpi.h is not an option, as it would require more include magic. Also
  49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  50 */
  51#ifdef CONFIG_X86
  52#include <asm/apic.h>
  53#endif
  54
  55#include <asm/io.h>
  56#include <asm/uaccess.h>
  57
  58#include <acpi/acpi_bus.h>
  59#include <acpi/processor.h>
  60#include <asm/processor.h>
  61
  62#define PREFIX "ACPI: "
  63
  64#define ACPI_PROCESSOR_CLASS            "processor"
  65#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  66ACPI_MODULE_NAME("processor_idle");
  67#define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
  68#define C2_OVERHEAD			1	/* 1us */
  69#define C3_OVERHEAD			1	/* 1us */
  70#define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
  71
  72static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  73module_param(max_cstate, uint, 0000);
  74static unsigned int nocst __read_mostly;
  75module_param(nocst, uint, 0000);
  76static int bm_check_disable __read_mostly;
  77module_param(bm_check_disable, uint, 0000);
  78
  79static unsigned int latency_factor __read_mostly = 2;
  80module_param(latency_factor, uint, 0644);
  81
  82static int disabled_by_idle_boot_param(void)
  83{
  84	return boot_option_idle_override == IDLE_POLL ||
  85		boot_option_idle_override == IDLE_FORCE_MWAIT ||
  86		boot_option_idle_override == IDLE_HALT;
  87}
  88
  89/*
  90 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  91 * For now disable this. Probably a bug somewhere else.
  92 *
  93 * To skip this limit, boot/load with a large max_cstate limit.
  94 */
  95static int set_max_cstate(const struct dmi_system_id *id)
  96{
  97	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  98		return 0;
  99
 100	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
 101	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
 102	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
 103
 104	max_cstate = (long)id->driver_data;
 105
 106	return 0;
 107}
 108
 109/* Actually this shouldn't be __cpuinitdata, would be better to fix the
 110   callers to only run once -AK */
 111static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
 112	{ set_max_cstate, "Clevo 5600D", {
 113	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
 114	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
 115	 (void *)2},
 116	{ set_max_cstate, "Pavilion zv5000", {
 117	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
 118	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
 119	 (void *)1},
 120	{ set_max_cstate, "Asus L8400B", {
 121	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
 122	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
 123	 (void *)1},
 124	{},
 125};
 126
 127
 128/*
 129 * Callers should disable interrupts before the call and enable
 130 * interrupts after return.
 131 */
 132static void acpi_safe_halt(void)
 133{
 134	current_thread_info()->status &= ~TS_POLLING;
 135	/*
 136	 * TS_POLLING-cleared state must be visible before we
 137	 * test NEED_RESCHED:
 138	 */
 139	smp_mb();
 140	if (!need_resched()) {
 141		safe_halt();
 142		local_irq_disable();
 143	}
 144	current_thread_info()->status |= TS_POLLING;
 145}
 146
 147#ifdef ARCH_APICTIMER_STOPS_ON_C3
 148
 149/*
 150 * Some BIOS implementations switch to C3 in the published C2 state.
 151 * This seems to be a common problem on AMD boxen, but other vendors
 152 * are affected too. We pick the most conservative approach: we assume
 153 * that the local APIC stops in both C2 and C3.
 154 */
 155static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 156				   struct acpi_processor_cx *cx)
 157{
 158	struct acpi_processor_power *pwr = &pr->power;
 159	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 160
 161	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 162		return;
 163
 164	if (amd_e400_c1e_detected)
 165		type = ACPI_STATE_C1;
 166
 167	/*
 168	 * Check, if one of the previous states already marked the lapic
 169	 * unstable
 170	 */
 171	if (pwr->timer_broadcast_on_state < state)
 172		return;
 173
 174	if (cx->type >= type)
 175		pr->power.timer_broadcast_on_state = state;
 176}
 177
 178static void __lapic_timer_propagate_broadcast(void *arg)
 179{
 180	struct acpi_processor *pr = (struct acpi_processor *) arg;
 181	unsigned long reason;
 182
 183	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
 184		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
 185
 186	clockevents_notify(reason, &pr->id);
 187}
 188
 189static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 190{
 191	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 192				 (void *)pr, 1);
 193}
 194
 195/* Power(C) State timer broadcast control */
 196static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 197				       struct acpi_processor_cx *cx,
 198				       int broadcast)
 199{
 200	int state = cx - pr->power.states;
 201
 202	if (state >= pr->power.timer_broadcast_on_state) {
 203		unsigned long reason;
 204
 205		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
 206			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
 207		clockevents_notify(reason, &pr->id);
 208	}
 209}
 210
 211#else
 212
 213static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 214				   struct acpi_processor_cx *cstate) { }
 215static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 216static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 217				       struct acpi_processor_cx *cx,
 218				       int broadcast)
 219{
 220}
 221
 222#endif
 223
 224/*
 225 * Suspend / resume control
 226 */
 227static int acpi_idle_suspend;
 228static u32 saved_bm_rld;
 229
 230static void acpi_idle_bm_rld_save(void)
 231{
 232	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
 233}
 234static void acpi_idle_bm_rld_restore(void)
 235{
 236	u32 resumed_bm_rld;
 237
 238	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
 239
 240	if (resumed_bm_rld != saved_bm_rld)
 241		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
 242}
 243
 244int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
 245{
 246	if (acpi_idle_suspend == 1)
 247		return 0;
 248
 249	acpi_idle_bm_rld_save();
 250	acpi_idle_suspend = 1;
 251	return 0;
 252}
 253
 254int acpi_processor_resume(struct acpi_device * device)
 255{
 256	if (acpi_idle_suspend == 0)
 257		return 0;
 258
 259	acpi_idle_bm_rld_restore();
 260	acpi_idle_suspend = 0;
 261	return 0;
 262}
 263
 264#if defined(CONFIG_X86)
 265static void tsc_check_state(int state)
 266{
 267	switch (boot_cpu_data.x86_vendor) {
 268	case X86_VENDOR_AMD:
 269	case X86_VENDOR_INTEL:
 270		/*
 271		 * AMD Fam10h TSC will tick in all
 272		 * C/P/S0/S1 states when this bit is set.
 273		 */
 274		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 275			return;
 276
 277		/*FALL THROUGH*/
 278	default:
 279		/* TSC could halt in idle, so notify users */
 280		if (state > ACPI_STATE_C1)
 281			mark_tsc_unstable("TSC halts in idle");
 282	}
 283}
 284#else
 285static void tsc_check_state(int state) { return; }
 286#endif
 287
 288static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 289{
 290
 291	if (!pr)
 292		return -EINVAL;
 293
 294	if (!pr->pblk)
 295		return -ENODEV;
 296
 297	/* if info is obtained from pblk/fadt, type equals state */
 298	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 299	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 300
 301#ifndef CONFIG_HOTPLUG_CPU
 302	/*
 303	 * Check for P_LVL2_UP flag before entering C2 and above on
 304	 * an SMP system.
 305	 */
 306	if ((num_online_cpus() > 1) &&
 307	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 308		return -ENODEV;
 309#endif
 310
 311	/* determine C2 and C3 address from pblk */
 312	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 313	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 314
 315	/* determine latencies from FADT */
 316	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
 317	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
 318
 319	/*
 320	 * FADT specified C2 latency must be less than or equal to
 321	 * 100 microseconds.
 322	 */
 323	if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 324		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 325			"C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
 326		/* invalidate C2 */
 327		pr->power.states[ACPI_STATE_C2].address = 0;
 328	}
 329
 330	/*
 331	 * FADT supplied C3 latency must be less than or equal to
 332	 * 1000 microseconds.
 333	 */
 334	if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 335		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 336			"C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
 337		/* invalidate C3 */
 338		pr->power.states[ACPI_STATE_C3].address = 0;
 339	}
 340
 341	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 342			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 343			  pr->power.states[ACPI_STATE_C2].address,
 344			  pr->power.states[ACPI_STATE_C3].address));
 345
 346	return 0;
 347}
 348
 349static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 350{
 351	if (!pr->power.states[ACPI_STATE_C1].valid) {
 352		/* set the first C-State to C1 */
 353		/* all processors need to support C1 */
 354		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 355		pr->power.states[ACPI_STATE_C1].valid = 1;
 356		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 357	}
 358	/* the C0 state only exists as a filler in our array */
 359	pr->power.states[ACPI_STATE_C0].valid = 1;
 360	return 0;
 361}
 362
 363static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 364{
 365	acpi_status status = 0;
 366	u64 count;
 367	int current_count;
 368	int i;
 369	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 370	union acpi_object *cst;
 371
 372
 373	if (nocst)
 374		return -ENODEV;
 375
 376	current_count = 0;
 377
 378	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 379	if (ACPI_FAILURE(status)) {
 380		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 381		return -ENODEV;
 382	}
 383
 384	cst = buffer.pointer;
 385
 386	/* There must be at least 2 elements */
 387	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 388		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
 389		status = -EFAULT;
 390		goto end;
 391	}
 392
 393	count = cst->package.elements[0].integer.value;
 394
 395	/* Validate number of power states. */
 396	if (count < 1 || count != cst->package.count - 1) {
 397		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
 398		status = -EFAULT;
 399		goto end;
 400	}
 401
 402	/* Tell driver that at least _CST is supported. */
 403	pr->flags.has_cst = 1;
 404
 405	for (i = 1; i <= count; i++) {
 406		union acpi_object *element;
 407		union acpi_object *obj;
 408		struct acpi_power_register *reg;
 409		struct acpi_processor_cx cx;
 410
 411		memset(&cx, 0, sizeof(cx));
 412
 413		element = &(cst->package.elements[i]);
 414		if (element->type != ACPI_TYPE_PACKAGE)
 415			continue;
 416
 417		if (element->package.count != 4)
 418			continue;
 419
 420		obj = &(element->package.elements[0]);
 421
 422		if (obj->type != ACPI_TYPE_BUFFER)
 423			continue;
 424
 425		reg = (struct acpi_power_register *)obj->buffer.pointer;
 426
 427		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 428		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 429			continue;
 430
 431		/* There should be an easy way to extract an integer... */
 432		obj = &(element->package.elements[1]);
 433		if (obj->type != ACPI_TYPE_INTEGER)
 434			continue;
 435
 436		cx.type = obj->integer.value;
 437		/*
 438		 * Some buggy BIOSes won't list C1 in _CST -
 439		 * Let acpi_processor_get_power_info_default() handle them later
 440		 */
 441		if (i == 1 && cx.type != ACPI_STATE_C1)
 442			current_count++;
 443
 444		cx.address = reg->address;
 445		cx.index = current_count + 1;
 446
 447		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 448		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 449			if (acpi_processor_ffh_cstate_probe
 450					(pr->id, &cx, reg) == 0) {
 451				cx.entry_method = ACPI_CSTATE_FFH;
 452			} else if (cx.type == ACPI_STATE_C1) {
 453				/*
 454				 * C1 is a special case where FIXED_HARDWARE
 455				 * can be handled in non-MWAIT way as well.
 456				 * In that case, save this _CST entry info.
 457				 * Otherwise, ignore this info and continue.
 458				 */
 459				cx.entry_method = ACPI_CSTATE_HALT;
 460				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 461			} else {
 462				continue;
 463			}
 464			if (cx.type == ACPI_STATE_C1 &&
 465			    (boot_option_idle_override == IDLE_NOMWAIT)) {
 466				/*
 467				 * In most cases the C1 space_id obtained from
 468				 * _CST object is FIXED_HARDWARE access mode.
 469				 * But when the option of idle=halt is added,
 470				 * the entry_method type should be changed from
 471				 * CSTATE_FFH to CSTATE_HALT.
 472				 * When the option of idle=nomwait is added,
 473				 * the C1 entry_method type should be
 474				 * CSTATE_HALT.
 475				 */
 476				cx.entry_method = ACPI_CSTATE_HALT;
 477				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 478			}
 479		} else {
 480			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 481				 cx.address);
 482		}
 483
 484		if (cx.type == ACPI_STATE_C1) {
 485			cx.valid = 1;
 486		}
 487
 488		obj = &(element->package.elements[2]);
 489		if (obj->type != ACPI_TYPE_INTEGER)
 490			continue;
 491
 492		cx.latency = obj->integer.value;
 493
 494		obj = &(element->package.elements[3]);
 495		if (obj->type != ACPI_TYPE_INTEGER)
 496			continue;
 497
 498		cx.power = obj->integer.value;
 499
 500		current_count++;
 501		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 502
 503		/*
 504		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 505		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 506		 */
 507		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 508			printk(KERN_WARNING
 509			       "Limiting number of power states to max (%d)\n",
 510			       ACPI_PROCESSOR_MAX_POWER);
 511			printk(KERN_WARNING
 512			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 513			break;
 514		}
 515	}
 516
 517	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 518			  current_count));
 519
 520	/* Validate number of power states discovered */
 521	if (current_count < 2)
 522		status = -EFAULT;
 523
 524      end:
 525	kfree(buffer.pointer);
 526
 527	return status;
 528}
 529
 530static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 531					   struct acpi_processor_cx *cx)
 532{
 533	static int bm_check_flag = -1;
 534	static int bm_control_flag = -1;
 535
 536
 537	if (!cx->address)
 538		return;
 539
 540	/*
 541	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 542	 * DMA transfers are used by any ISA device to avoid livelock.
 543	 * Note that we could disable Type-F DMA (as recommended by
 544	 * the erratum), but this is known to disrupt certain ISA
 545	 * devices thus we take the conservative approach.
 546	 */
 547	else if (errata.piix4.fdma) {
 548		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 549				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 550		return;
 551	}
 552
 553	/* All the logic here assumes flags.bm_check is same across all CPUs */
 554	if (bm_check_flag == -1) {
 555		/* Determine whether bm_check is needed based on CPU  */
 556		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 557		bm_check_flag = pr->flags.bm_check;
 558		bm_control_flag = pr->flags.bm_control;
 559	} else {
 560		pr->flags.bm_check = bm_check_flag;
 561		pr->flags.bm_control = bm_control_flag;
 562	}
 563
 564	if (pr->flags.bm_check) {
 565		if (!pr->flags.bm_control) {
 566			if (pr->flags.has_cst != 1) {
 567				/* bus mastering control is necessary */
 568				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 569					"C3 support requires BM control\n"));
 570				return;
 571			} else {
 572				/* Here we enter C3 without bus mastering */
 573				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 574					"C3 support without BM control\n"));
 575			}
 576		}
 577	} else {
 578		/*
 579		 * WBINVD should be set in fadt, for C3 state to be
 580		 * supported on when bm_check is not required.
 581		 */
 582		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 583			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 584					  "Cache invalidation should work properly"
 585					  " for C3 to be enabled on SMP systems\n"));
 586			return;
 587		}
 588	}
 589
 590	/*
 591	 * Otherwise we've met all of our C3 requirements.
 592	 * Normalize the C3 latency to expidite policy.  Enable
 593	 * checking of bus mastering status (bm_check) so we can
 594	 * use this in our C3 policy
 595	 */
 596	cx->valid = 1;
 597
 598	cx->latency_ticks = cx->latency;
 599	/*
 600	 * On older chipsets, BM_RLD needs to be set
 601	 * in order for Bus Master activity to wake the
 602	 * system from C3.  Newer chipsets handle DMA
 603	 * during C3 automatically and BM_RLD is a NOP.
 604	 * In either case, the proper way to
 605	 * handle BM_RLD is to set it and leave it set.
 606	 */
 607	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 608
 609	return;
 610}
 611
 612static int acpi_processor_power_verify(struct acpi_processor *pr)
 613{
 614	unsigned int i;
 615	unsigned int working = 0;
 616
 617	pr->power.timer_broadcast_on_state = INT_MAX;
 618
 619	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 620		struct acpi_processor_cx *cx = &pr->power.states[i];
 621
 622		switch (cx->type) {
 623		case ACPI_STATE_C1:
 624			cx->valid = 1;
 625			break;
 626
 627		case ACPI_STATE_C2:
 628			if (!cx->address)
 629				break;
 630			cx->valid = 1; 
 631			cx->latency_ticks = cx->latency; /* Normalize latency */
 632			break;
 633
 634		case ACPI_STATE_C3:
 635			acpi_processor_power_verify_c3(pr, cx);
 636			break;
 637		}
 638		if (!cx->valid)
 639			continue;
 640
 641		lapic_timer_check_state(i, pr, cx);
 642		tsc_check_state(cx->type);
 643		working++;
 644	}
 645
 646	lapic_timer_propagate_broadcast(pr);
 647
 648	return (working);
 649}
 650
 651static int acpi_processor_get_power_info(struct acpi_processor *pr)
 652{
 653	unsigned int i;
 654	int result;
 655
 656
 657	/* NOTE: the idle thread may not be running while calling
 658	 * this function */
 659
 660	/* Zero initialize all the C-states info. */
 661	memset(pr->power.states, 0, sizeof(pr->power.states));
 662
 663	result = acpi_processor_get_power_info_cst(pr);
 664	if (result == -ENODEV)
 665		result = acpi_processor_get_power_info_fadt(pr);
 666
 667	if (result)
 668		return result;
 669
 670	acpi_processor_get_power_info_default(pr);
 671
 672	pr->power.count = acpi_processor_power_verify(pr);
 673
 674	/*
 675	 * if one state of type C2 or C3 is available, mark this
 676	 * CPU as being "idle manageable"
 677	 */
 678	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 679		if (pr->power.states[i].valid) {
 680			pr->power.count = i;
 681			if (pr->power.states[i].type >= ACPI_STATE_C2)
 682				pr->flags.power = 1;
 683		}
 684	}
 685
 686	return 0;
 687}
 688
 689/**
 690 * acpi_idle_bm_check - checks if bus master activity was detected
 691 */
 692static int acpi_idle_bm_check(void)
 693{
 694	u32 bm_status = 0;
 695
 696	if (bm_check_disable)
 697		return 0;
 698
 699	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 700	if (bm_status)
 701		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 702	/*
 703	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 704	 * the true state of bus mastering activity; forcing us to
 705	 * manually check the BMIDEA bit of each IDE channel.
 706	 */
 707	else if (errata.piix4.bmisx) {
 708		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 709		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 710			bm_status = 1;
 711	}
 712	return bm_status;
 713}
 714
 715/**
 716 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
 717 * @cx: cstate data
 718 *
 719 * Caller disables interrupt before call and enables interrupt after return.
 720 */
 721static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
 722{
 723	/* Don't trace irqs off for idle */
 724	stop_critical_timings();
 725	if (cx->entry_method == ACPI_CSTATE_FFH) {
 726		/* Call into architectural FFH based C-state */
 727		acpi_processor_ffh_cstate_enter(cx);
 728	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 729		acpi_safe_halt();
 730	} else {
 731		/* IO port based C-state */
 732		inb(cx->address);
 733		/* Dummy wait op - must do something useless after P_LVL2 read
 734		   because chipsets cannot guarantee that STPCLK# signal
 735		   gets asserted in time to freeze execution properly. */
 736		inl(acpi_gbl_FADT.xpm_timer_block.address);
 737	}
 738	start_critical_timings();
 739}
 740
 741/**
 742 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
 743 * @dev: the target CPU
 744 * @drv: cpuidle driver containing cpuidle state info
 745 * @index: index of target state
 746 *
 747 * This is equivalent to the HALT instruction.
 748 */
 749static int acpi_idle_enter_c1(struct cpuidle_device *dev,
 750		struct cpuidle_driver *drv, int index)
 751{
 752	ktime_t  kt1, kt2;
 753	s64 idle_time;
 754	struct acpi_processor *pr;
 755	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
 756	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
 757
 758	pr = __this_cpu_read(processors);
 759	dev->last_residency = 0;
 760
 761	if (unlikely(!pr))
 762		return -EINVAL;
 763
 764	local_irq_disable();
 765
 
 766	if (acpi_idle_suspend) {
 767		local_irq_enable();
 768		cpu_relax();
 769		return -EBUSY;
 770	}
 771
 772	lapic_timer_state_broadcast(pr, cx, 1);
 773	kt1 = ktime_get_real();
 774	acpi_idle_do_entry(cx);
 775	kt2 = ktime_get_real();
 776	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
 777
 778	/* Update device last_residency*/
 779	dev->last_residency = (int)idle_time;
 780
 781	local_irq_enable();
 782	cx->usage++;
 783	lapic_timer_state_broadcast(pr, cx, 0);
 784
 785	return index;
 786}
 787
 788
 789/**
 790 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 791 * @dev: the target CPU
 792 * @index: the index of suggested state
 793 */
 794static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 795{
 796	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
 797	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
 798
 799	ACPI_FLUSH_CPU_CACHE();
 800
 801	while (1) {
 802
 803		if (cx->entry_method == ACPI_CSTATE_HALT)
 804			safe_halt();
 805		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 806			inb(cx->address);
 807			/* See comment in acpi_idle_do_entry() */
 808			inl(acpi_gbl_FADT.xpm_timer_block.address);
 809		} else
 810			return -ENODEV;
 811	}
 812
 813	/* Never reached */
 814	return 0;
 815}
 816
 817/**
 818 * acpi_idle_enter_simple - enters an ACPI state without BM handling
 819 * @dev: the target CPU
 820 * @drv: cpuidle driver with cpuidle state information
 821 * @index: the index of suggested state
 822 */
 823static int acpi_idle_enter_simple(struct cpuidle_device *dev,
 824		struct cpuidle_driver *drv, int index)
 825{
 826	struct acpi_processor *pr;
 827	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
 828	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
 829	ktime_t  kt1, kt2;
 830	s64 idle_time_ns;
 831	s64 idle_time;
 832
 833	pr = __this_cpu_read(processors);
 834	dev->last_residency = 0;
 835
 836	if (unlikely(!pr))
 837		return -EINVAL;
 
 
 
 838
 839	local_irq_disable();
 840
 841	if (acpi_idle_suspend) {
 842		local_irq_enable();
 843		cpu_relax();
 844		return -EBUSY;
 845	}
 846
 847	if (cx->entry_method != ACPI_CSTATE_FFH) {
 848		current_thread_info()->status &= ~TS_POLLING;
 849		/*
 850		 * TS_POLLING-cleared state must be visible before we test
 851		 * NEED_RESCHED:
 852		 */
 853		smp_mb();
 854
 855		if (unlikely(need_resched())) {
 856			current_thread_info()->status |= TS_POLLING;
 857			local_irq_enable();
 858			return -EINVAL;
 859		}
 860	}
 861
 862	/*
 863	 * Must be done before busmaster disable as we might need to
 864	 * access HPET !
 865	 */
 866	lapic_timer_state_broadcast(pr, cx, 1);
 867
 868	if (cx->type == ACPI_STATE_C3)
 869		ACPI_FLUSH_CPU_CACHE();
 870
 871	kt1 = ktime_get_real();
 872	/* Tell the scheduler that we are going deep-idle: */
 873	sched_clock_idle_sleep_event();
 874	acpi_idle_do_entry(cx);
 875	kt2 = ktime_get_real();
 876	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
 877	idle_time = idle_time_ns;
 878	do_div(idle_time, NSEC_PER_USEC);
 879
 880	/* Update device last_residency*/
 881	dev->last_residency = (int)idle_time;
 882
 883	/* Tell the scheduler how much we idled: */
 884	sched_clock_idle_wakeup_event(idle_time_ns);
 885
 886	local_irq_enable();
 887	if (cx->entry_method != ACPI_CSTATE_FFH)
 888		current_thread_info()->status |= TS_POLLING;
 889
 890	cx->usage++;
 891
 892	lapic_timer_state_broadcast(pr, cx, 0);
 893	cx->time += idle_time;
 894	return index;
 895}
 896
 897static int c3_cpu_count;
 898static DEFINE_RAW_SPINLOCK(c3_lock);
 899
 900/**
 901 * acpi_idle_enter_bm - enters C3 with proper BM handling
 902 * @dev: the target CPU
 903 * @drv: cpuidle driver containing state data
 904 * @index: the index of suggested state
 905 *
 906 * If BM is detected, the deepest non-C3 idle state is entered instead.
 907 */
 908static int acpi_idle_enter_bm(struct cpuidle_device *dev,
 909		struct cpuidle_driver *drv, int index)
 910{
 911	struct acpi_processor *pr;
 912	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
 913	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
 914	ktime_t  kt1, kt2;
 915	s64 idle_time_ns;
 916	s64 idle_time;
 917
 918
 919	pr = __this_cpu_read(processors);
 920	dev->last_residency = 0;
 921
 922	if (unlikely(!pr))
 923		return -EINVAL;
 
 
 
 924
 925	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
 926		if (drv->safe_state_index >= 0) {
 927			return drv->states[drv->safe_state_index].enter(dev,
 928						drv, drv->safe_state_index);
 929		} else {
 930			local_irq_disable();
 931			if (!acpi_idle_suspend)
 932				acpi_safe_halt();
 933			local_irq_enable();
 934			return -EBUSY;
 935		}
 936	}
 937
 938	local_irq_disable();
 939
 940	if (acpi_idle_suspend) {
 941		local_irq_enable();
 942		cpu_relax();
 943		return -EBUSY;
 944	}
 945
 946	if (cx->entry_method != ACPI_CSTATE_FFH) {
 947		current_thread_info()->status &= ~TS_POLLING;
 948		/*
 949		 * TS_POLLING-cleared state must be visible before we test
 950		 * NEED_RESCHED:
 951		 */
 952		smp_mb();
 953
 954		if (unlikely(need_resched())) {
 955			current_thread_info()->status |= TS_POLLING;
 956			local_irq_enable();
 957			return -EINVAL;
 958		}
 959	}
 960
 961	acpi_unlazy_tlb(smp_processor_id());
 962
 963	/* Tell the scheduler that we are going deep-idle: */
 964	sched_clock_idle_sleep_event();
 965	/*
 966	 * Must be done before busmaster disable as we might need to
 967	 * access HPET !
 968	 */
 969	lapic_timer_state_broadcast(pr, cx, 1);
 970
 971	kt1 = ktime_get_real();
 972	/*
 973	 * disable bus master
 974	 * bm_check implies we need ARB_DIS
 975	 * !bm_check implies we need cache flush
 976	 * bm_control implies whether we can do ARB_DIS
 977	 *
 978	 * That leaves a case where bm_check is set and bm_control is
 979	 * not set. In that case we cannot do much, we enter C3
 980	 * without doing anything.
 981	 */
 982	if (pr->flags.bm_check && pr->flags.bm_control) {
 983		raw_spin_lock(&c3_lock);
 984		c3_cpu_count++;
 985		/* Disable bus master arbitration when all CPUs are in C3 */
 986		if (c3_cpu_count == num_online_cpus())
 987			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 988		raw_spin_unlock(&c3_lock);
 989	} else if (!pr->flags.bm_check) {
 990		ACPI_FLUSH_CPU_CACHE();
 991	}
 992
 993	acpi_idle_do_entry(cx);
 994
 995	/* Re-enable bus master arbitration */
 996	if (pr->flags.bm_check && pr->flags.bm_control) {
 997		raw_spin_lock(&c3_lock);
 998		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 999		c3_cpu_count--;
1000		raw_spin_unlock(&c3_lock);
1001	}
1002	kt2 = ktime_get_real();
1003	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
1004	idle_time = idle_time_ns;
1005	do_div(idle_time, NSEC_PER_USEC);
1006
1007	/* Update device last_residency*/
1008	dev->last_residency = (int)idle_time;
1009
1010	/* Tell the scheduler how much we idled: */
1011	sched_clock_idle_wakeup_event(idle_time_ns);
1012
1013	local_irq_enable();
1014	if (cx->entry_method != ACPI_CSTATE_FFH)
1015		current_thread_info()->status |= TS_POLLING;
1016
1017	cx->usage++;
1018
1019	lapic_timer_state_broadcast(pr, cx, 0);
1020	cx->time += idle_time;
1021	return index;
1022}
1023
1024struct cpuidle_driver acpi_idle_driver = {
1025	.name =		"acpi_idle",
1026	.owner =	THIS_MODULE,
1027};
1028
1029/**
1030 * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
1031 * device i.e. per-cpu data
1032 *
1033 * @pr: the ACPI processor
1034 */
1035static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr)
1036{
1037	int i, count = CPUIDLE_DRIVER_STATE_START;
1038	struct acpi_processor_cx *cx;
1039	struct cpuidle_state_usage *state_usage;
1040	struct cpuidle_device *dev = &pr->power.dev;
1041
1042	if (!pr->flags.power_setup_done)
1043		return -EINVAL;
1044
1045	if (pr->flags.power == 0) {
1046		return -EINVAL;
1047	}
1048
1049	dev->cpu = pr->id;
1050
1051	if (max_cstate == 0)
1052		max_cstate = 1;
1053
1054	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1055		cx = &pr->power.states[i];
1056		state_usage = &dev->states_usage[count];
1057
1058		if (!cx->valid)
1059			continue;
1060
1061#ifdef CONFIG_HOTPLUG_CPU
1062		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1063		    !pr->flags.has_cst &&
1064		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1065			continue;
1066#endif
1067
1068		cpuidle_set_statedata(state_usage, cx);
1069
1070		count++;
1071		if (count == CPUIDLE_STATE_MAX)
1072			break;
1073	}
1074
1075	dev->state_count = count;
1076
1077	if (!count)
1078		return -EINVAL;
1079
1080	return 0;
1081}
1082
1083/**
1084 * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
1085 * global state data i.e. idle routines
1086 *
1087 * @pr: the ACPI processor
1088 */
1089static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1090{
1091	int i, count = CPUIDLE_DRIVER_STATE_START;
1092	struct acpi_processor_cx *cx;
1093	struct cpuidle_state *state;
1094	struct cpuidle_driver *drv = &acpi_idle_driver;
1095
1096	if (!pr->flags.power_setup_done)
1097		return -EINVAL;
1098
1099	if (pr->flags.power == 0)
1100		return -EINVAL;
1101
1102	drv->safe_state_index = -1;
1103	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1104		drv->states[i].name[0] = '\0';
1105		drv->states[i].desc[0] = '\0';
1106	}
1107
1108	if (max_cstate == 0)
1109		max_cstate = 1;
1110
1111	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1112		cx = &pr->power.states[i];
 
1113
1114		if (!cx->valid)
1115			continue;
1116
1117#ifdef CONFIG_HOTPLUG_CPU
1118		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1119		    !pr->flags.has_cst &&
1120		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1121			continue;
1122#endif
 
1123
1124		state = &drv->states[count];
1125		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1126		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1127		state->exit_latency = cx->latency;
1128		state->target_residency = cx->latency * latency_factor;
1129
1130		state->flags = 0;
1131		switch (cx->type) {
1132			case ACPI_STATE_C1:
1133			if (cx->entry_method == ACPI_CSTATE_FFH)
1134				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1135
1136			state->enter = acpi_idle_enter_c1;
1137			state->enter_dead = acpi_idle_play_dead;
1138			drv->safe_state_index = count;
1139			break;
1140
1141			case ACPI_STATE_C2:
1142			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1143			state->enter = acpi_idle_enter_simple;
1144			state->enter_dead = acpi_idle_play_dead;
1145			drv->safe_state_index = count;
1146			break;
1147
1148			case ACPI_STATE_C3:
1149			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1150			state->enter = pr->flags.bm_check ?
1151					acpi_idle_enter_bm :
1152					acpi_idle_enter_simple;
1153			break;
1154		}
1155
1156		count++;
1157		if (count == CPUIDLE_STATE_MAX)
1158			break;
1159	}
1160
1161	drv->state_count = count;
1162
1163	if (!count)
1164		return -EINVAL;
1165
1166	return 0;
1167}
1168
1169int acpi_processor_hotplug(struct acpi_processor *pr)
1170{
1171	int ret = 0;
1172
1173	if (disabled_by_idle_boot_param())
1174		return 0;
1175
1176	if (!pr)
1177		return -EINVAL;
1178
1179	if (nocst) {
1180		return -ENODEV;
1181	}
1182
1183	if (!pr->flags.power_setup_done)
1184		return -ENODEV;
1185
1186	cpuidle_pause_and_lock();
1187	cpuidle_disable_device(&pr->power.dev);
1188	acpi_processor_get_power_info(pr);
1189	if (pr->flags.power) {
1190		acpi_processor_setup_cpuidle_cx(pr);
1191		ret = cpuidle_enable_device(&pr->power.dev);
1192	}
1193	cpuidle_resume_and_unlock();
1194
1195	return ret;
1196}
1197
1198int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1199{
1200	int cpu;
1201	struct acpi_processor *_pr;
1202
1203	if (disabled_by_idle_boot_param())
1204		return 0;
1205
1206	if (!pr)
1207		return -EINVAL;
1208
1209	if (nocst)
1210		return -ENODEV;
1211
1212	if (!pr->flags.power_setup_done)
1213		return -ENODEV;
1214
1215	/*
1216	 * FIXME:  Design the ACPI notification to make it once per
1217	 * system instead of once per-cpu.  This condition is a hack
1218	 * to make the code that updates C-States be called once.
1219	 */
1220
1221	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1222
1223		cpuidle_pause_and_lock();
1224		/* Protect against cpu-hotplug */
1225		get_online_cpus();
1226
1227		/* Disable all cpuidle devices */
1228		for_each_online_cpu(cpu) {
1229			_pr = per_cpu(processors, cpu);
1230			if (!_pr || !_pr->flags.power_setup_done)
1231				continue;
1232			cpuidle_disable_device(&_pr->power.dev);
1233		}
1234
1235		/* Populate Updated C-state information */
1236		acpi_processor_setup_cpuidle_states(pr);
1237
1238		/* Enable all cpuidle devices */
1239		for_each_online_cpu(cpu) {
1240			_pr = per_cpu(processors, cpu);
1241			if (!_pr || !_pr->flags.power_setup_done)
1242				continue;
1243			acpi_processor_get_power_info(_pr);
1244			if (_pr->flags.power) {
1245				acpi_processor_setup_cpuidle_cx(_pr);
1246				cpuidle_enable_device(&_pr->power.dev);
1247			}
1248		}
1249		put_online_cpus();
1250		cpuidle_resume_and_unlock();
1251	}
1252
1253	return 0;
1254}
1255
1256static int acpi_processor_registered;
1257
1258int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1259			      struct acpi_device *device)
1260{
1261	acpi_status status = 0;
1262	int retval;
1263	static int first_run;
1264
1265	if (disabled_by_idle_boot_param())
1266		return 0;
1267
1268	if (!first_run) {
1269		dmi_check_system(processor_power_dmi_table);
1270		max_cstate = acpi_processor_cstate_check(max_cstate);
1271		if (max_cstate < ACPI_C_STATES_MAX)
1272			printk(KERN_NOTICE
1273			       "ACPI: processor limited to max C-state %d\n",
1274			       max_cstate);
1275		first_run++;
1276	}
1277
1278	if (!pr)
1279		return -EINVAL;
1280
1281	if (acpi_gbl_FADT.cst_control && !nocst) {
1282		status =
1283		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1284		if (ACPI_FAILURE(status)) {
1285			ACPI_EXCEPTION((AE_INFO, status,
1286					"Notifying BIOS of _CST ability failed"));
1287		}
1288	}
1289
1290	acpi_processor_get_power_info(pr);
1291	pr->flags.power_setup_done = 1;
1292
1293	/*
1294	 * Install the idle handler if processor power management is supported.
1295	 * Note that we use previously set idle handler will be used on
1296	 * platforms that only support C1.
1297	 */
1298	if (pr->flags.power) {
1299		/* Register acpi_idle_driver if not already registered */
1300		if (!acpi_processor_registered) {
1301			acpi_processor_setup_cpuidle_states(pr);
1302			retval = cpuidle_register_driver(&acpi_idle_driver);
1303			if (retval)
1304				return retval;
1305			printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n",
1306					acpi_idle_driver.name);
1307		}
1308		/* Register per-cpu cpuidle_device. Cpuidle driver
1309		 * must already be registered before registering device
1310		 */
1311		acpi_processor_setup_cpuidle_cx(pr);
1312		retval = cpuidle_register_device(&pr->power.dev);
1313		if (retval) {
1314			if (acpi_processor_registered == 0)
1315				cpuidle_unregister_driver(&acpi_idle_driver);
1316			return retval;
1317		}
1318		acpi_processor_registered++;
1319	}
1320	return 0;
1321}
1322
1323int acpi_processor_power_exit(struct acpi_processor *pr,
1324			      struct acpi_device *device)
1325{
1326	if (disabled_by_idle_boot_param())
1327		return 0;
1328
1329	if (pr->flags.power) {
1330		cpuidle_unregister_device(&pr->power.dev);
1331		acpi_processor_registered--;
1332		if (acpi_processor_registered == 0)
1333			cpuidle_unregister_driver(&acpi_idle_driver);
1334	}
1335
1336	pr->flags.power_setup_done = 0;
1337	return 0;
1338}