Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * processor_idle - idle state submodule to the ACPI processor driver
   3 *
   4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   6 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   7 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   8 *  			- Added processor hotplug support
   9 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10 *  			- Added support for C3 on SMP
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or (at
  17 *  your option) any later version.
  18 *
  19 *  This program is distributed in the hope that it will be useful, but
  20 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  21 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 *  General Public License for more details.
  23 *
  24 *  You should have received a copy of the GNU General Public License along
  25 *  with this program; if not, write to the Free Software Foundation, Inc.,
  26 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  27 *
  28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  29 */
 
  30
  31#include <linux/kernel.h>
  32#include <linux/module.h>
  33#include <linux/init.h>
  34#include <linux/cpufreq.h>
  35#include <linux/slab.h>
  36#include <linux/acpi.h>
  37#include <linux/dmi.h>
  38#include <linux/moduleparam.h>
  39#include <linux/sched.h>	/* need_resched() */
  40#include <linux/pm_qos_params.h>
  41#include <linux/clockchips.h>
  42#include <linux/cpuidle.h>
  43#include <linux/irqflags.h>
 
  44
  45/*
  46 * Include the apic definitions for x86 to have the APIC timer related defines
  47 * available also for UP (on SMP it gets magically included via linux/smp.h).
  48 * asm/acpi.h is not an option, as it would require more include magic. Also
  49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  50 */
  51#ifdef CONFIG_X86
  52#include <asm/apic.h>
  53#endif
  54
  55#include <asm/io.h>
  56#include <asm/uaccess.h>
  57
  58#include <acpi/acpi_bus.h>
  59#include <acpi/processor.h>
  60#include <asm/processor.h>
  61
  62#define PREFIX "ACPI: "
  63
  64#define ACPI_PROCESSOR_CLASS            "processor"
  65#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  66ACPI_MODULE_NAME("processor_idle");
  67#define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
  68#define C2_OVERHEAD			1	/* 1us */
  69#define C3_OVERHEAD			1	/* 1us */
  70#define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
  71
  72static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  73module_param(max_cstate, uint, 0000);
  74static unsigned int nocst __read_mostly;
  75module_param(nocst, uint, 0000);
  76static int bm_check_disable __read_mostly;
  77module_param(bm_check_disable, uint, 0000);
  78
  79static unsigned int latency_factor __read_mostly = 2;
  80module_param(latency_factor, uint, 0644);
  81
 
 
 
 
 
 
 
 
 
 
 
  82static int disabled_by_idle_boot_param(void)
  83{
  84	return boot_option_idle_override == IDLE_POLL ||
  85		boot_option_idle_override == IDLE_FORCE_MWAIT ||
  86		boot_option_idle_override == IDLE_HALT;
  87}
  88
  89/*
  90 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  91 * For now disable this. Probably a bug somewhere else.
  92 *
  93 * To skip this limit, boot/load with a large max_cstate limit.
  94 */
  95static int set_max_cstate(const struct dmi_system_id *id)
  96{
  97	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  98		return 0;
  99
 100	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
 101	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
 102	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
 103
 104	max_cstate = (long)id->driver_data;
 105
 106	return 0;
 107}
 108
 109/* Actually this shouldn't be __cpuinitdata, would be better to fix the
 110   callers to only run once -AK */
 111static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
 112	{ set_max_cstate, "Clevo 5600D", {
 113	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
 114	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
 115	 (void *)2},
 116	{ set_max_cstate, "Pavilion zv5000", {
 117	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
 118	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
 119	 (void *)1},
 120	{ set_max_cstate, "Asus L8400B", {
 121	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
 122	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
 123	 (void *)1},
 124	{},
 125};
 126
 127
 128/*
 129 * Callers should disable interrupts before the call and enable
 130 * interrupts after return.
 131 */
 132static void acpi_safe_halt(void)
 133{
 134	current_thread_info()->status &= ~TS_POLLING;
 135	/*
 136	 * TS_POLLING-cleared state must be visible before we
 137	 * test NEED_RESCHED:
 138	 */
 139	smp_mb();
 140	if (!need_resched()) {
 141		safe_halt();
 142		local_irq_disable();
 143	}
 144	current_thread_info()->status |= TS_POLLING;
 145}
 146
 147#ifdef ARCH_APICTIMER_STOPS_ON_C3
 148
 149/*
 150 * Some BIOS implementations switch to C3 in the published C2 state.
 151 * This seems to be a common problem on AMD boxen, but other vendors
 152 * are affected too. We pick the most conservative approach: we assume
 153 * that the local APIC stops in both C2 and C3.
 154 */
 155static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 156				   struct acpi_processor_cx *cx)
 157{
 158	struct acpi_processor_power *pwr = &pr->power;
 159	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 160
 161	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 162		return;
 163
 164	if (amd_e400_c1e_detected)
 165		type = ACPI_STATE_C1;
 166
 167	/*
 168	 * Check, if one of the previous states already marked the lapic
 169	 * unstable
 170	 */
 171	if (pwr->timer_broadcast_on_state < state)
 172		return;
 173
 174	if (cx->type >= type)
 175		pr->power.timer_broadcast_on_state = state;
 176}
 177
 178static void __lapic_timer_propagate_broadcast(void *arg)
 179{
 180	struct acpi_processor *pr = (struct acpi_processor *) arg;
 181	unsigned long reason;
 182
 183	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
 184		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
 185
 186	clockevents_notify(reason, &pr->id);
 
 
 
 187}
 188
 189static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 190{
 191	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 192				 (void *)pr, 1);
 193}
 194
 195/* Power(C) State timer broadcast control */
 196static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 197				       struct acpi_processor_cx *cx,
 198				       int broadcast)
 199{
 200	int state = cx - pr->power.states;
 201
 202	if (state >= pr->power.timer_broadcast_on_state) {
 203		unsigned long reason;
 204
 205		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
 206			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
 207		clockevents_notify(reason, &pr->id);
 208	}
 209}
 210
 211#else
 212
 213static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 214				   struct acpi_processor_cx *cstate) { }
 215static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 216static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 217				       struct acpi_processor_cx *cx,
 218				       int broadcast)
 219{
 220}
 221
 222#endif
 223
 224/*
 225 * Suspend / resume control
 226 */
 227static int acpi_idle_suspend;
 228static u32 saved_bm_rld;
 229
 230static void acpi_idle_bm_rld_save(void)
 231{
 232	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
 233}
 234static void acpi_idle_bm_rld_restore(void)
 235{
 236	u32 resumed_bm_rld;
 237
 238	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
 239
 240	if (resumed_bm_rld != saved_bm_rld)
 241		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
 242}
 243
 244int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
 245{
 246	if (acpi_idle_suspend == 1)
 247		return 0;
 248
 249	acpi_idle_bm_rld_save();
 250	acpi_idle_suspend = 1;
 251	return 0;
 252}
 253
 254int acpi_processor_resume(struct acpi_device * device)
 255{
 256	if (acpi_idle_suspend == 0)
 257		return 0;
 258
 259	acpi_idle_bm_rld_restore();
 260	acpi_idle_suspend = 0;
 261	return 0;
 262}
 263
 264#if defined(CONFIG_X86)
 265static void tsc_check_state(int state)
 266{
 267	switch (boot_cpu_data.x86_vendor) {
 268	case X86_VENDOR_AMD:
 269	case X86_VENDOR_INTEL:
 270		/*
 271		 * AMD Fam10h TSC will tick in all
 272		 * C/P/S0/S1 states when this bit is set.
 273		 */
 274		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 275			return;
 276
 277		/*FALL THROUGH*/
 278	default:
 279		/* TSC could halt in idle, so notify users */
 280		if (state > ACPI_STATE_C1)
 281			mark_tsc_unstable("TSC halts in idle");
 282	}
 283}
 284#else
 285static void tsc_check_state(int state) { return; }
 286#endif
 287
 288static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 289{
 290
 291	if (!pr)
 292		return -EINVAL;
 293
 294	if (!pr->pblk)
 295		return -ENODEV;
 296
 297	/* if info is obtained from pblk/fadt, type equals state */
 298	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 299	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 300
 301#ifndef CONFIG_HOTPLUG_CPU
 302	/*
 303	 * Check for P_LVL2_UP flag before entering C2 and above on
 304	 * an SMP system.
 305	 */
 306	if ((num_online_cpus() > 1) &&
 307	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 308		return -ENODEV;
 309#endif
 310
 311	/* determine C2 and C3 address from pblk */
 312	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 313	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 314
 315	/* determine latencies from FADT */
 316	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
 317	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
 318
 319	/*
 320	 * FADT specified C2 latency must be less than or equal to
 321	 * 100 microseconds.
 322	 */
 323	if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 324		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 325			"C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
 326		/* invalidate C2 */
 327		pr->power.states[ACPI_STATE_C2].address = 0;
 328	}
 329
 330	/*
 331	 * FADT supplied C3 latency must be less than or equal to
 332	 * 1000 microseconds.
 333	 */
 334	if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 335		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 336			"C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
 337		/* invalidate C3 */
 338		pr->power.states[ACPI_STATE_C3].address = 0;
 339	}
 340
 341	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 342			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 343			  pr->power.states[ACPI_STATE_C2].address,
 344			  pr->power.states[ACPI_STATE_C3].address));
 345
 346	return 0;
 347}
 348
 349static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 350{
 351	if (!pr->power.states[ACPI_STATE_C1].valid) {
 352		/* set the first C-State to C1 */
 353		/* all processors need to support C1 */
 354		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 355		pr->power.states[ACPI_STATE_C1].valid = 1;
 356		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 357	}
 358	/* the C0 state only exists as a filler in our array */
 359	pr->power.states[ACPI_STATE_C0].valid = 1;
 360	return 0;
 361}
 362
 363static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 364{
 365	acpi_status status = 0;
 366	u64 count;
 367	int current_count;
 368	int i;
 369	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 370	union acpi_object *cst;
 371
 372
 373	if (nocst)
 374		return -ENODEV;
 375
 376	current_count = 0;
 377
 378	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 379	if (ACPI_FAILURE(status)) {
 380		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 381		return -ENODEV;
 382	}
 383
 384	cst = buffer.pointer;
 385
 386	/* There must be at least 2 elements */
 387	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 388		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
 389		status = -EFAULT;
 390		goto end;
 391	}
 392
 393	count = cst->package.elements[0].integer.value;
 394
 395	/* Validate number of power states. */
 396	if (count < 1 || count != cst->package.count - 1) {
 397		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
 398		status = -EFAULT;
 399		goto end;
 400	}
 401
 402	/* Tell driver that at least _CST is supported. */
 403	pr->flags.has_cst = 1;
 404
 405	for (i = 1; i <= count; i++) {
 406		union acpi_object *element;
 407		union acpi_object *obj;
 408		struct acpi_power_register *reg;
 409		struct acpi_processor_cx cx;
 410
 411		memset(&cx, 0, sizeof(cx));
 412
 413		element = &(cst->package.elements[i]);
 414		if (element->type != ACPI_TYPE_PACKAGE)
 415			continue;
 416
 417		if (element->package.count != 4)
 418			continue;
 419
 420		obj = &(element->package.elements[0]);
 421
 422		if (obj->type != ACPI_TYPE_BUFFER)
 423			continue;
 424
 425		reg = (struct acpi_power_register *)obj->buffer.pointer;
 426
 427		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 428		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 429			continue;
 430
 431		/* There should be an easy way to extract an integer... */
 432		obj = &(element->package.elements[1]);
 433		if (obj->type != ACPI_TYPE_INTEGER)
 434			continue;
 435
 436		cx.type = obj->integer.value;
 437		/*
 438		 * Some buggy BIOSes won't list C1 in _CST -
 439		 * Let acpi_processor_get_power_info_default() handle them later
 440		 */
 441		if (i == 1 && cx.type != ACPI_STATE_C1)
 442			current_count++;
 443
 444		cx.address = reg->address;
 445		cx.index = current_count + 1;
 446
 447		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 448		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 449			if (acpi_processor_ffh_cstate_probe
 450					(pr->id, &cx, reg) == 0) {
 451				cx.entry_method = ACPI_CSTATE_FFH;
 452			} else if (cx.type == ACPI_STATE_C1) {
 453				/*
 454				 * C1 is a special case where FIXED_HARDWARE
 455				 * can be handled in non-MWAIT way as well.
 456				 * In that case, save this _CST entry info.
 457				 * Otherwise, ignore this info and continue.
 458				 */
 459				cx.entry_method = ACPI_CSTATE_HALT;
 460				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 461			} else {
 462				continue;
 463			}
 464			if (cx.type == ACPI_STATE_C1 &&
 465			    (boot_option_idle_override == IDLE_NOMWAIT)) {
 466				/*
 467				 * In most cases the C1 space_id obtained from
 468				 * _CST object is FIXED_HARDWARE access mode.
 469				 * But when the option of idle=halt is added,
 470				 * the entry_method type should be changed from
 471				 * CSTATE_FFH to CSTATE_HALT.
 472				 * When the option of idle=nomwait is added,
 473				 * the C1 entry_method type should be
 474				 * CSTATE_HALT.
 475				 */
 476				cx.entry_method = ACPI_CSTATE_HALT;
 477				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 478			}
 479		} else {
 480			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 481				 cx.address);
 482		}
 483
 484		if (cx.type == ACPI_STATE_C1) {
 485			cx.valid = 1;
 486		}
 487
 488		obj = &(element->package.elements[2]);
 489		if (obj->type != ACPI_TYPE_INTEGER)
 490			continue;
 491
 492		cx.latency = obj->integer.value;
 493
 494		obj = &(element->package.elements[3]);
 495		if (obj->type != ACPI_TYPE_INTEGER)
 496			continue;
 497
 498		cx.power = obj->integer.value;
 499
 500		current_count++;
 501		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 502
 503		/*
 504		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 505		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 506		 */
 507		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 508			printk(KERN_WARNING
 509			       "Limiting number of power states to max (%d)\n",
 510			       ACPI_PROCESSOR_MAX_POWER);
 511			printk(KERN_WARNING
 512			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 513			break;
 514		}
 515	}
 516
 517	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 518			  current_count));
 519
 520	/* Validate number of power states discovered */
 521	if (current_count < 2)
 522		status = -EFAULT;
 523
 524      end:
 525	kfree(buffer.pointer);
 526
 527	return status;
 528}
 529
 530static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 531					   struct acpi_processor_cx *cx)
 532{
 533	static int bm_check_flag = -1;
 534	static int bm_control_flag = -1;
 535
 536
 537	if (!cx->address)
 538		return;
 539
 540	/*
 541	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 542	 * DMA transfers are used by any ISA device to avoid livelock.
 543	 * Note that we could disable Type-F DMA (as recommended by
 544	 * the erratum), but this is known to disrupt certain ISA
 545	 * devices thus we take the conservative approach.
 546	 */
 547	else if (errata.piix4.fdma) {
 548		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 549				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 550		return;
 551	}
 552
 553	/* All the logic here assumes flags.bm_check is same across all CPUs */
 554	if (bm_check_flag == -1) {
 555		/* Determine whether bm_check is needed based on CPU  */
 556		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 557		bm_check_flag = pr->flags.bm_check;
 558		bm_control_flag = pr->flags.bm_control;
 559	} else {
 560		pr->flags.bm_check = bm_check_flag;
 561		pr->flags.bm_control = bm_control_flag;
 562	}
 563
 564	if (pr->flags.bm_check) {
 565		if (!pr->flags.bm_control) {
 566			if (pr->flags.has_cst != 1) {
 567				/* bus mastering control is necessary */
 568				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 569					"C3 support requires BM control\n"));
 570				return;
 571			} else {
 572				/* Here we enter C3 without bus mastering */
 573				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 574					"C3 support without BM control\n"));
 575			}
 576		}
 577	} else {
 578		/*
 579		 * WBINVD should be set in fadt, for C3 state to be
 580		 * supported on when bm_check is not required.
 581		 */
 582		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 583			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 584					  "Cache invalidation should work properly"
 585					  " for C3 to be enabled on SMP systems\n"));
 586			return;
 587		}
 588	}
 589
 590	/*
 591	 * Otherwise we've met all of our C3 requirements.
 592	 * Normalize the C3 latency to expidite policy.  Enable
 593	 * checking of bus mastering status (bm_check) so we can
 594	 * use this in our C3 policy
 595	 */
 596	cx->valid = 1;
 597
 598	cx->latency_ticks = cx->latency;
 599	/*
 600	 * On older chipsets, BM_RLD needs to be set
 601	 * in order for Bus Master activity to wake the
 602	 * system from C3.  Newer chipsets handle DMA
 603	 * during C3 automatically and BM_RLD is a NOP.
 604	 * In either case, the proper way to
 605	 * handle BM_RLD is to set it and leave it set.
 606	 */
 607	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 608
 609	return;
 610}
 611
 612static int acpi_processor_power_verify(struct acpi_processor *pr)
 613{
 614	unsigned int i;
 615	unsigned int working = 0;
 616
 617	pr->power.timer_broadcast_on_state = INT_MAX;
 618
 619	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 620		struct acpi_processor_cx *cx = &pr->power.states[i];
 621
 622		switch (cx->type) {
 623		case ACPI_STATE_C1:
 624			cx->valid = 1;
 625			break;
 626
 627		case ACPI_STATE_C2:
 628			if (!cx->address)
 629				break;
 630			cx->valid = 1; 
 631			cx->latency_ticks = cx->latency; /* Normalize latency */
 632			break;
 633
 634		case ACPI_STATE_C3:
 635			acpi_processor_power_verify_c3(pr, cx);
 636			break;
 637		}
 638		if (!cx->valid)
 639			continue;
 640
 641		lapic_timer_check_state(i, pr, cx);
 642		tsc_check_state(cx->type);
 643		working++;
 644	}
 645
 646	lapic_timer_propagate_broadcast(pr);
 647
 648	return (working);
 649}
 650
 651static int acpi_processor_get_power_info(struct acpi_processor *pr)
 652{
 653	unsigned int i;
 654	int result;
 655
 656
 657	/* NOTE: the idle thread may not be running while calling
 658	 * this function */
 659
 660	/* Zero initialize all the C-states info. */
 661	memset(pr->power.states, 0, sizeof(pr->power.states));
 662
 663	result = acpi_processor_get_power_info_cst(pr);
 664	if (result == -ENODEV)
 665		result = acpi_processor_get_power_info_fadt(pr);
 666
 667	if (result)
 668		return result;
 669
 670	acpi_processor_get_power_info_default(pr);
 671
 672	pr->power.count = acpi_processor_power_verify(pr);
 673
 674	/*
 675	 * if one state of type C2 or C3 is available, mark this
 676	 * CPU as being "idle manageable"
 677	 */
 678	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 679		if (pr->power.states[i].valid) {
 680			pr->power.count = i;
 681			if (pr->power.states[i].type >= ACPI_STATE_C2)
 682				pr->flags.power = 1;
 683		}
 684	}
 685
 686	return 0;
 687}
 688
 689/**
 690 * acpi_idle_bm_check - checks if bus master activity was detected
 691 */
 692static int acpi_idle_bm_check(void)
 693{
 694	u32 bm_status = 0;
 695
 696	if (bm_check_disable)
 697		return 0;
 698
 699	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 700	if (bm_status)
 701		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 702	/*
 703	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 704	 * the true state of bus mastering activity; forcing us to
 705	 * manually check the BMIDEA bit of each IDE channel.
 706	 */
 707	else if (errata.piix4.bmisx) {
 708		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 709		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 710			bm_status = 1;
 711	}
 712	return bm_status;
 713}
 714
 715/**
 716 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
 717 * @cx: cstate data
 718 *
 719 * Caller disables interrupt before call and enables interrupt after return.
 720 */
 721static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
 722{
 723	/* Don't trace irqs off for idle */
 724	stop_critical_timings();
 725	if (cx->entry_method == ACPI_CSTATE_FFH) {
 726		/* Call into architectural FFH based C-state */
 727		acpi_processor_ffh_cstate_enter(cx);
 728	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 729		acpi_safe_halt();
 730	} else {
 731		/* IO port based C-state */
 732		inb(cx->address);
 733		/* Dummy wait op - must do something useless after P_LVL2 read
 734		   because chipsets cannot guarantee that STPCLK# signal
 735		   gets asserted in time to freeze execution properly. */
 736		inl(acpi_gbl_FADT.xpm_timer_block.address);
 737	}
 738	start_critical_timings();
 739}
 740
 741/**
 742 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
 743 * @dev: the target CPU
 744 * @state: the state data
 745 *
 746 * This is equivalent to the HALT instruction.
 747 */
 748static int acpi_idle_enter_c1(struct cpuidle_device *dev,
 749			      struct cpuidle_state *state)
 750{
 751	ktime_t  kt1, kt2;
 752	s64 idle_time;
 753	struct acpi_processor *pr;
 754	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
 755
 756	pr = __this_cpu_read(processors);
 757
 758	if (unlikely(!pr))
 759		return 0;
 760
 761	local_irq_disable();
 762
 763	/* Do not access any ACPI IO ports in suspend path */
 764	if (acpi_idle_suspend) {
 765		local_irq_enable();
 766		cpu_relax();
 767		return 0;
 
 
 
 768	}
 769
 770	lapic_timer_state_broadcast(pr, cx, 1);
 771	kt1 = ktime_get_real();
 772	acpi_idle_do_entry(cx);
 773	kt2 = ktime_get_real();
 774	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
 775
 776	local_irq_enable();
 777	cx->usage++;
 778	lapic_timer_state_broadcast(pr, cx, 0);
 779
 780	return idle_time;
 781}
 782
 783/**
 784 * acpi_idle_enter_simple - enters an ACPI state without BM handling
 785 * @dev: the target CPU
 786 * @state: the state data
 787 */
 788static int acpi_idle_enter_simple(struct cpuidle_device *dev,
 789				  struct cpuidle_state *state)
 790{
 791	struct acpi_processor *pr;
 792	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
 793	ktime_t  kt1, kt2;
 794	s64 idle_time_ns;
 795	s64 idle_time;
 796
 797	pr = __this_cpu_read(processors);
 798
 799	if (unlikely(!pr))
 800		return 0;
 801
 802	if (acpi_idle_suspend)
 803		return(acpi_idle_enter_c1(dev, state));
 804
 805	local_irq_disable();
 806
 807	if (cx->entry_method != ACPI_CSTATE_FFH) {
 808		current_thread_info()->status &= ~TS_POLLING;
 809		/*
 810		 * TS_POLLING-cleared state must be visible before we test
 811		 * NEED_RESCHED:
 812		 */
 813		smp_mb();
 814
 815		if (unlikely(need_resched())) {
 816			current_thread_info()->status |= TS_POLLING;
 817			local_irq_enable();
 818			return 0;
 819		}
 820	}
 821
 822	/*
 823	 * Must be done before busmaster disable as we might need to
 824	 * access HPET !
 825	 */
 826	lapic_timer_state_broadcast(pr, cx, 1);
 827
 828	if (cx->type == ACPI_STATE_C3)
 829		ACPI_FLUSH_CPU_CACHE();
 830
 831	kt1 = ktime_get_real();
 832	/* Tell the scheduler that we are going deep-idle: */
 833	sched_clock_idle_sleep_event();
 834	acpi_idle_do_entry(cx);
 835	kt2 = ktime_get_real();
 836	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
 837	idle_time = idle_time_ns;
 838	do_div(idle_time, NSEC_PER_USEC);
 839
 840	/* Tell the scheduler how much we idled: */
 841	sched_clock_idle_wakeup_event(idle_time_ns);
 842
 843	local_irq_enable();
 844	if (cx->entry_method != ACPI_CSTATE_FFH)
 845		current_thread_info()->status |= TS_POLLING;
 846
 847	cx->usage++;
 848
 849	lapic_timer_state_broadcast(pr, cx, 0);
 850	cx->time += idle_time;
 851	return idle_time;
 852}
 853
 854static int c3_cpu_count;
 855static DEFINE_SPINLOCK(c3_lock);
 856
 857/**
 858 * acpi_idle_enter_bm - enters C3 with proper BM handling
 859 * @dev: the target CPU
 860 * @state: the state data
 861 *
 862 * If BM is detected, the deepest non-C3 idle state is entered instead.
 863 */
 864static int acpi_idle_enter_bm(struct cpuidle_device *dev,
 865			      struct cpuidle_state *state)
 866{
 867	struct acpi_processor *pr;
 868	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
 869	ktime_t  kt1, kt2;
 870	s64 idle_time_ns;
 871	s64 idle_time;
 872
 873
 874	pr = __this_cpu_read(processors);
 875
 876	if (unlikely(!pr))
 877		return 0;
 878
 879	if (acpi_idle_suspend)
 880		return(acpi_idle_enter_c1(dev, state));
 881
 882	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
 883		if (dev->safe_state) {
 884			dev->last_state = dev->safe_state;
 885			return dev->safe_state->enter(dev, dev->safe_state);
 886		} else {
 887			local_irq_disable();
 888			acpi_safe_halt();
 889			local_irq_enable();
 890			return 0;
 891		}
 892	}
 893
 894	local_irq_disable();
 895
 896	if (cx->entry_method != ACPI_CSTATE_FFH) {
 897		current_thread_info()->status &= ~TS_POLLING;
 898		/*
 899		 * TS_POLLING-cleared state must be visible before we test
 900		 * NEED_RESCHED:
 901		 */
 902		smp_mb();
 903
 904		if (unlikely(need_resched())) {
 905			current_thread_info()->status |= TS_POLLING;
 906			local_irq_enable();
 907			return 0;
 908		}
 909	}
 910
 911	acpi_unlazy_tlb(smp_processor_id());
 912
 913	/* Tell the scheduler that we are going deep-idle: */
 914	sched_clock_idle_sleep_event();
 915	/*
 916	 * Must be done before busmaster disable as we might need to
 917	 * access HPET !
 918	 */
 919	lapic_timer_state_broadcast(pr, cx, 1);
 
 920
 921	kt1 = ktime_get_real();
 922	/*
 923	 * disable bus master
 924	 * bm_check implies we need ARB_DIS
 925	 * !bm_check implies we need cache flush
 926	 * bm_control implies whether we can do ARB_DIS
 927	 *
 928	 * That leaves a case where bm_check is set and bm_control is
 929	 * not set. In that case we cannot do much, we enter C3
 930	 * without doing anything.
 931	 */
 932	if (pr->flags.bm_check && pr->flags.bm_control) {
 933		spin_lock(&c3_lock);
 934		c3_cpu_count++;
 935		/* Disable bus master arbitration when all CPUs are in C3 */
 936		if (c3_cpu_count == num_online_cpus())
 937			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 938		spin_unlock(&c3_lock);
 939	} else if (!pr->flags.bm_check) {
 940		ACPI_FLUSH_CPU_CACHE();
 941	}
 942
 943	acpi_idle_do_entry(cx);
 944
 945	/* Re-enable bus master arbitration */
 946	if (pr->flags.bm_check && pr->flags.bm_control) {
 947		spin_lock(&c3_lock);
 948		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 949		c3_cpu_count--;
 950		spin_unlock(&c3_lock);
 951	}
 952	kt2 = ktime_get_real();
 953	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
 954	idle_time = idle_time_ns;
 955	do_div(idle_time, NSEC_PER_USEC);
 956
 957	/* Tell the scheduler how much we idled: */
 958	sched_clock_idle_wakeup_event(idle_time_ns);
 
 959
 960	local_irq_enable();
 961	if (cx->entry_method != ACPI_CSTATE_FFH)
 962		current_thread_info()->status |= TS_POLLING;
 
 
 963
 964	cx->usage++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965
 966	lapic_timer_state_broadcast(pr, cx, 0);
 967	cx->time += idle_time;
 968	return idle_time;
 969}
 970
 971struct cpuidle_driver acpi_idle_driver = {
 972	.name =		"acpi_idle",
 973	.owner =	THIS_MODULE,
 974};
 975
 976/**
 977 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
 978 * @pr: the ACPI processor
 979 */
 980static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 981{
 982	int i, count = CPUIDLE_DRIVER_STATE_START;
 983	struct acpi_processor_cx *cx;
 984	struct cpuidle_state *state;
 985	struct cpuidle_device *dev = &pr->power.dev;
 986
 987	if (!pr->flags.power_setup_done)
 988		return -EINVAL;
 989
 990	if (pr->flags.power == 0) {
 991		return -EINVAL;
 992	}
 993
 994	dev->cpu = pr->id;
 995	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
 996		dev->states[i].name[0] = '\0';
 997		dev->states[i].desc[0] = '\0';
 
 
 
 
 998	}
 999
 
 
 
 
 
 
 
 
 
 
 
 
 
1000	if (max_cstate == 0)
1001		max_cstate = 1;
1002
1003	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1004		cx = &pr->power.states[i];
1005		state = &dev->states[count];
1006
1007		if (!cx->valid)
1008			continue;
1009
1010#ifdef CONFIG_HOTPLUG_CPU
1011		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1012		    !pr->flags.has_cst &&
1013		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1014			continue;
1015#endif
1016		cpuidle_set_statedata(state, cx);
1017
1018		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1019		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1020		state->exit_latency = cx->latency;
1021		state->target_residency = cx->latency * latency_factor;
 
1022
1023		state->flags = 0;
1024		switch (cx->type) {
1025			case ACPI_STATE_C1:
1026			if (cx->entry_method == ACPI_CSTATE_FFH)
1027				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1028
1029			state->enter = acpi_idle_enter_c1;
1030			dev->safe_state = state;
1031			break;
1032
1033			case ACPI_STATE_C2:
1034			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1035			state->enter = acpi_idle_enter_simple;
1036			dev->safe_state = state;
1037			break;
1038
1039			case ACPI_STATE_C3:
1040			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1041			state->enter = pr->flags.bm_check ?
1042					acpi_idle_enter_bm :
1043					acpi_idle_enter_simple;
1044			break;
1045		}
 
 
 
 
 
 
 
 
 
1046
1047		count++;
1048		if (count == CPUIDLE_STATE_MAX)
1049			break;
1050	}
1051
1052	dev->state_count = count;
1053
1054	if (!count)
1055		return -EINVAL;
1056
1057	return 0;
1058}
1059
1060int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1061{
1062	int ret = 0;
 
1063
1064	if (disabled_by_idle_boot_param())
1065		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1066
1067	if (!pr)
 
 
 
 
 
 
 
 
 
1068		return -EINVAL;
1069
1070	if (nocst) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071		return -ENODEV;
1072	}
1073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074	if (!pr->flags.power_setup_done)
1075		return -ENODEV;
1076
 
1077	cpuidle_pause_and_lock();
1078	cpuidle_disable_device(&pr->power.dev);
1079	acpi_processor_get_power_info(pr);
1080	if (pr->flags.power) {
1081		acpi_processor_setup_cpuidle(pr);
1082		ret = cpuidle_enable_device(&pr->power.dev);
1083	}
1084	cpuidle_resume_and_unlock();
1085
1086	return ret;
1087}
1088
1089int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1090			      struct acpi_device *device)
1091{
1092	acpi_status status = 0;
1093	static int first_run;
 
1094
1095	if (disabled_by_idle_boot_param())
1096		return 0;
1097
1098	if (!first_run) {
1099		dmi_check_system(processor_power_dmi_table);
1100		max_cstate = acpi_processor_cstate_check(max_cstate);
1101		if (max_cstate < ACPI_C_STATES_MAX)
1102			printk(KERN_NOTICE
1103			       "ACPI: processor limited to max C-state %d\n",
1104			       max_cstate);
1105		first_run++;
1106	}
1107
1108	if (!pr)
1109		return -EINVAL;
 
 
 
1110
1111	if (acpi_gbl_FADT.cst_control && !nocst) {
1112		status =
1113		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1114		if (ACPI_FAILURE(status)) {
1115			ACPI_EXCEPTION((AE_INFO, status,
1116					"Notifying BIOS of _CST ability failed"));
 
 
 
 
 
 
 
1117		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118	}
1119
1120	acpi_processor_get_power_info(pr);
1121	pr->flags.power_setup_done = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122
1123	/*
1124	 * Install the idle handler if processor power management is supported.
1125	 * Note that we use previously set idle handler will be used on
1126	 * platforms that only support C1.
1127	 */
1128	if (pr->flags.power) {
1129		acpi_processor_setup_cpuidle(pr);
1130		if (cpuidle_register_device(&pr->power.dev))
1131			return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132	}
1133	return 0;
1134}
1135
1136int acpi_processor_power_exit(struct acpi_processor *pr,
1137			      struct acpi_device *device)
1138{
 
 
1139	if (disabled_by_idle_boot_param())
1140		return 0;
1141
1142	cpuidle_unregister_device(&pr->power.dev);
1143	pr->flags.power_setup_done = 0;
 
 
 
 
1144
 
1145	return 0;
1146}
v4.10.11
   1/*
   2 * processor_idle - idle state submodule to the ACPI processor driver
   3 *
   4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   6 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   7 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   8 *  			- Added processor hotplug support
   9 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10 *  			- Added support for C3 on SMP
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or (at
  17 *  your option) any later version.
  18 *
  19 *  This program is distributed in the hope that it will be useful, but
  20 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  21 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 *  General Public License for more details.
  23 *
 
 
 
 
  24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  25 */
  26#define pr_fmt(fmt) "ACPI: " fmt
  27
 
  28#include <linux/module.h>
 
 
 
  29#include <linux/acpi.h>
  30#include <linux/dmi.h>
  31#include <linux/sched.h>       /* need_resched() */
  32#include <linux/tick.h>
 
 
  33#include <linux/cpuidle.h>
  34#include <linux/cpu.h>
  35#include <acpi/processor.h>
  36
  37/*
  38 * Include the apic definitions for x86 to have the APIC timer related defines
  39 * available also for UP (on SMP it gets magically included via linux/smp.h).
  40 * asm/acpi.h is not an option, as it would require more include magic. Also
  41 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  42 */
  43#ifdef CONFIG_X86
  44#include <asm/apic.h>
  45#endif
  46
 
 
 
 
 
 
 
 
 
  47#define ACPI_PROCESSOR_CLASS            "processor"
  48#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  49ACPI_MODULE_NAME("processor_idle");
 
 
 
 
  50
  51static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  52module_param(max_cstate, uint, 0000);
  53static unsigned int nocst __read_mostly;
  54module_param(nocst, uint, 0000);
  55static int bm_check_disable __read_mostly;
  56module_param(bm_check_disable, uint, 0000);
  57
  58static unsigned int latency_factor __read_mostly = 2;
  59module_param(latency_factor, uint, 0644);
  60
  61static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  62
  63struct cpuidle_driver acpi_idle_driver = {
  64	.name =		"acpi_idle",
  65	.owner =	THIS_MODULE,
  66};
  67
  68#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
  69static
  70DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  71
  72static int disabled_by_idle_boot_param(void)
  73{
  74	return boot_option_idle_override == IDLE_POLL ||
 
  75		boot_option_idle_override == IDLE_HALT;
  76}
  77
  78/*
  79 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  80 * For now disable this. Probably a bug somewhere else.
  81 *
  82 * To skip this limit, boot/load with a large max_cstate limit.
  83 */
  84static int set_max_cstate(const struct dmi_system_id *id)
  85{
  86	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  87		return 0;
  88
  89	pr_notice("%s detected - limiting to C%ld max_cstate."
  90		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  91		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  92
  93	max_cstate = (long)id->driver_data;
  94
  95	return 0;
  96}
  97
  98static const struct dmi_system_id processor_power_dmi_table[] = {
 
 
  99	{ set_max_cstate, "Clevo 5600D", {
 100	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
 101	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
 102	 (void *)2},
 103	{ set_max_cstate, "Pavilion zv5000", {
 104	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
 105	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
 106	 (void *)1},
 107	{ set_max_cstate, "Asus L8400B", {
 108	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
 109	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
 110	 (void *)1},
 111	{},
 112};
 113
 114
 115/*
 116 * Callers should disable interrupts before the call and enable
 117 * interrupts after return.
 118 */
 119static void __cpuidle acpi_safe_halt(void)
 120{
 121	if (!tif_need_resched()) {
 
 
 
 
 
 
 122		safe_halt();
 123		local_irq_disable();
 124	}
 
 125}
 126
 127#ifdef ARCH_APICTIMER_STOPS_ON_C3
 128
 129/*
 130 * Some BIOS implementations switch to C3 in the published C2 state.
 131 * This seems to be a common problem on AMD boxen, but other vendors
 132 * are affected too. We pick the most conservative approach: we assume
 133 * that the local APIC stops in both C2 and C3.
 134 */
 135static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 136				   struct acpi_processor_cx *cx)
 137{
 138	struct acpi_processor_power *pwr = &pr->power;
 139	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 140
 141	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 142		return;
 143
 144	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 145		type = ACPI_STATE_C1;
 146
 147	/*
 148	 * Check, if one of the previous states already marked the lapic
 149	 * unstable
 150	 */
 151	if (pwr->timer_broadcast_on_state < state)
 152		return;
 153
 154	if (cx->type >= type)
 155		pr->power.timer_broadcast_on_state = state;
 156}
 157
 158static void __lapic_timer_propagate_broadcast(void *arg)
 159{
 160	struct acpi_processor *pr = (struct acpi_processor *) arg;
 
 
 
 
 161
 162	if (pr->power.timer_broadcast_on_state < INT_MAX)
 163		tick_broadcast_enable();
 164	else
 165		tick_broadcast_disable();
 166}
 167
 168static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 169{
 170	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 171				 (void *)pr, 1);
 172}
 173
 174/* Power(C) State timer broadcast control */
 175static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 176				       struct acpi_processor_cx *cx,
 177				       int broadcast)
 178{
 179	int state = cx - pr->power.states;
 180
 181	if (state >= pr->power.timer_broadcast_on_state) {
 182		if (broadcast)
 183			tick_broadcast_enter();
 184		else
 185			tick_broadcast_exit();
 
 186	}
 187}
 188
 189#else
 190
 191static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 192				   struct acpi_processor_cx *cstate) { }
 193static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 194static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 195				       struct acpi_processor_cx *cx,
 196				       int broadcast)
 197{
 198}
 199
 200#endif
 201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202#if defined(CONFIG_X86)
 203static void tsc_check_state(int state)
 204{
 205	switch (boot_cpu_data.x86_vendor) {
 206	case X86_VENDOR_AMD:
 207	case X86_VENDOR_INTEL:
 208		/*
 209		 * AMD Fam10h TSC will tick in all
 210		 * C/P/S0/S1 states when this bit is set.
 211		 */
 212		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 213			return;
 214
 215		/*FALL THROUGH*/
 216	default:
 217		/* TSC could halt in idle, so notify users */
 218		if (state > ACPI_STATE_C1)
 219			mark_tsc_unstable("TSC halts in idle");
 220	}
 221}
 222#else
 223static void tsc_check_state(int state) { return; }
 224#endif
 225
 226static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 227{
 228
 
 
 
 229	if (!pr->pblk)
 230		return -ENODEV;
 231
 232	/* if info is obtained from pblk/fadt, type equals state */
 233	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 234	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 235
 236#ifndef CONFIG_HOTPLUG_CPU
 237	/*
 238	 * Check for P_LVL2_UP flag before entering C2 and above on
 239	 * an SMP system.
 240	 */
 241	if ((num_online_cpus() > 1) &&
 242	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 243		return -ENODEV;
 244#endif
 245
 246	/* determine C2 and C3 address from pblk */
 247	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 248	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 249
 250	/* determine latencies from FADT */
 251	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 252	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 253
 254	/*
 255	 * FADT specified C2 latency must be less than or equal to
 256	 * 100 microseconds.
 257	 */
 258	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 259		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 260			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
 261		/* invalidate C2 */
 262		pr->power.states[ACPI_STATE_C2].address = 0;
 263	}
 264
 265	/*
 266	 * FADT supplied C3 latency must be less than or equal to
 267	 * 1000 microseconds.
 268	 */
 269	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 270		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 271			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
 272		/* invalidate C3 */
 273		pr->power.states[ACPI_STATE_C3].address = 0;
 274	}
 275
 276	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 277			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 278			  pr->power.states[ACPI_STATE_C2].address,
 279			  pr->power.states[ACPI_STATE_C3].address));
 280
 281	return 0;
 282}
 283
 284static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 285{
 286	if (!pr->power.states[ACPI_STATE_C1].valid) {
 287		/* set the first C-State to C1 */
 288		/* all processors need to support C1 */
 289		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 290		pr->power.states[ACPI_STATE_C1].valid = 1;
 291		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 292	}
 293	/* the C0 state only exists as a filler in our array */
 294	pr->power.states[ACPI_STATE_C0].valid = 1;
 295	return 0;
 296}
 297
 298static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 299{
 300	acpi_status status;
 301	u64 count;
 302	int current_count;
 303	int i, ret = 0;
 304	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 305	union acpi_object *cst;
 306
 
 307	if (nocst)
 308		return -ENODEV;
 309
 310	current_count = 0;
 311
 312	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 313	if (ACPI_FAILURE(status)) {
 314		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 315		return -ENODEV;
 316	}
 317
 318	cst = buffer.pointer;
 319
 320	/* There must be at least 2 elements */
 321	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 322		pr_err("not enough elements in _CST\n");
 323		ret = -EFAULT;
 324		goto end;
 325	}
 326
 327	count = cst->package.elements[0].integer.value;
 328
 329	/* Validate number of power states. */
 330	if (count < 1 || count != cst->package.count - 1) {
 331		pr_err("count given by _CST is not valid\n");
 332		ret = -EFAULT;
 333		goto end;
 334	}
 335
 336	/* Tell driver that at least _CST is supported. */
 337	pr->flags.has_cst = 1;
 338
 339	for (i = 1; i <= count; i++) {
 340		union acpi_object *element;
 341		union acpi_object *obj;
 342		struct acpi_power_register *reg;
 343		struct acpi_processor_cx cx;
 344
 345		memset(&cx, 0, sizeof(cx));
 346
 347		element = &(cst->package.elements[i]);
 348		if (element->type != ACPI_TYPE_PACKAGE)
 349			continue;
 350
 351		if (element->package.count != 4)
 352			continue;
 353
 354		obj = &(element->package.elements[0]);
 355
 356		if (obj->type != ACPI_TYPE_BUFFER)
 357			continue;
 358
 359		reg = (struct acpi_power_register *)obj->buffer.pointer;
 360
 361		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 362		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 363			continue;
 364
 365		/* There should be an easy way to extract an integer... */
 366		obj = &(element->package.elements[1]);
 367		if (obj->type != ACPI_TYPE_INTEGER)
 368			continue;
 369
 370		cx.type = obj->integer.value;
 371		/*
 372		 * Some buggy BIOSes won't list C1 in _CST -
 373		 * Let acpi_processor_get_power_info_default() handle them later
 374		 */
 375		if (i == 1 && cx.type != ACPI_STATE_C1)
 376			current_count++;
 377
 378		cx.address = reg->address;
 379		cx.index = current_count + 1;
 380
 381		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 382		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 383			if (acpi_processor_ffh_cstate_probe
 384					(pr->id, &cx, reg) == 0) {
 385				cx.entry_method = ACPI_CSTATE_FFH;
 386			} else if (cx.type == ACPI_STATE_C1) {
 387				/*
 388				 * C1 is a special case where FIXED_HARDWARE
 389				 * can be handled in non-MWAIT way as well.
 390				 * In that case, save this _CST entry info.
 391				 * Otherwise, ignore this info and continue.
 392				 */
 393				cx.entry_method = ACPI_CSTATE_HALT;
 394				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 395			} else {
 396				continue;
 397			}
 398			if (cx.type == ACPI_STATE_C1 &&
 399			    (boot_option_idle_override == IDLE_NOMWAIT)) {
 400				/*
 401				 * In most cases the C1 space_id obtained from
 402				 * _CST object is FIXED_HARDWARE access mode.
 403				 * But when the option of idle=halt is added,
 404				 * the entry_method type should be changed from
 405				 * CSTATE_FFH to CSTATE_HALT.
 406				 * When the option of idle=nomwait is added,
 407				 * the C1 entry_method type should be
 408				 * CSTATE_HALT.
 409				 */
 410				cx.entry_method = ACPI_CSTATE_HALT;
 411				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 412			}
 413		} else {
 414			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 415				 cx.address);
 416		}
 417
 418		if (cx.type == ACPI_STATE_C1) {
 419			cx.valid = 1;
 420		}
 421
 422		obj = &(element->package.elements[2]);
 423		if (obj->type != ACPI_TYPE_INTEGER)
 424			continue;
 425
 426		cx.latency = obj->integer.value;
 427
 428		obj = &(element->package.elements[3]);
 429		if (obj->type != ACPI_TYPE_INTEGER)
 430			continue;
 431
 
 
 432		current_count++;
 433		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 434
 435		/*
 436		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 437		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 438		 */
 439		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 440			pr_warn("Limiting number of power states to max (%d)\n",
 441				ACPI_PROCESSOR_MAX_POWER);
 442			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 
 
 443			break;
 444		}
 445	}
 446
 447	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 448			  current_count));
 449
 450	/* Validate number of power states discovered */
 451	if (current_count < 2)
 452		ret = -EFAULT;
 453
 454      end:
 455	kfree(buffer.pointer);
 456
 457	return ret;
 458}
 459
 460static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 461					   struct acpi_processor_cx *cx)
 462{
 463	static int bm_check_flag = -1;
 464	static int bm_control_flag = -1;
 465
 466
 467	if (!cx->address)
 468		return;
 469
 470	/*
 471	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 472	 * DMA transfers are used by any ISA device to avoid livelock.
 473	 * Note that we could disable Type-F DMA (as recommended by
 474	 * the erratum), but this is known to disrupt certain ISA
 475	 * devices thus we take the conservative approach.
 476	 */
 477	else if (errata.piix4.fdma) {
 478		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 479				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 480		return;
 481	}
 482
 483	/* All the logic here assumes flags.bm_check is same across all CPUs */
 484	if (bm_check_flag == -1) {
 485		/* Determine whether bm_check is needed based on CPU  */
 486		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 487		bm_check_flag = pr->flags.bm_check;
 488		bm_control_flag = pr->flags.bm_control;
 489	} else {
 490		pr->flags.bm_check = bm_check_flag;
 491		pr->flags.bm_control = bm_control_flag;
 492	}
 493
 494	if (pr->flags.bm_check) {
 495		if (!pr->flags.bm_control) {
 496			if (pr->flags.has_cst != 1) {
 497				/* bus mastering control is necessary */
 498				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 499					"C3 support requires BM control\n"));
 500				return;
 501			} else {
 502				/* Here we enter C3 without bus mastering */
 503				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 504					"C3 support without BM control\n"));
 505			}
 506		}
 507	} else {
 508		/*
 509		 * WBINVD should be set in fadt, for C3 state to be
 510		 * supported on when bm_check is not required.
 511		 */
 512		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 513			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 514					  "Cache invalidation should work properly"
 515					  " for C3 to be enabled on SMP systems\n"));
 516			return;
 517		}
 518	}
 519
 520	/*
 521	 * Otherwise we've met all of our C3 requirements.
 522	 * Normalize the C3 latency to expidite policy.  Enable
 523	 * checking of bus mastering status (bm_check) so we can
 524	 * use this in our C3 policy
 525	 */
 526	cx->valid = 1;
 527
 
 528	/*
 529	 * On older chipsets, BM_RLD needs to be set
 530	 * in order for Bus Master activity to wake the
 531	 * system from C3.  Newer chipsets handle DMA
 532	 * during C3 automatically and BM_RLD is a NOP.
 533	 * In either case, the proper way to
 534	 * handle BM_RLD is to set it and leave it set.
 535	 */
 536	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 537
 538	return;
 539}
 540
 541static int acpi_processor_power_verify(struct acpi_processor *pr)
 542{
 543	unsigned int i;
 544	unsigned int working = 0;
 545
 546	pr->power.timer_broadcast_on_state = INT_MAX;
 547
 548	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 549		struct acpi_processor_cx *cx = &pr->power.states[i];
 550
 551		switch (cx->type) {
 552		case ACPI_STATE_C1:
 553			cx->valid = 1;
 554			break;
 555
 556		case ACPI_STATE_C2:
 557			if (!cx->address)
 558				break;
 559			cx->valid = 1;
 
 560			break;
 561
 562		case ACPI_STATE_C3:
 563			acpi_processor_power_verify_c3(pr, cx);
 564			break;
 565		}
 566		if (!cx->valid)
 567			continue;
 568
 569		lapic_timer_check_state(i, pr, cx);
 570		tsc_check_state(cx->type);
 571		working++;
 572	}
 573
 574	lapic_timer_propagate_broadcast(pr);
 575
 576	return (working);
 577}
 578
 579static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 580{
 581	unsigned int i;
 582	int result;
 583
 584
 585	/* NOTE: the idle thread may not be running while calling
 586	 * this function */
 587
 588	/* Zero initialize all the C-states info. */
 589	memset(pr->power.states, 0, sizeof(pr->power.states));
 590
 591	result = acpi_processor_get_power_info_cst(pr);
 592	if (result == -ENODEV)
 593		result = acpi_processor_get_power_info_fadt(pr);
 594
 595	if (result)
 596		return result;
 597
 598	acpi_processor_get_power_info_default(pr);
 599
 600	pr->power.count = acpi_processor_power_verify(pr);
 601
 602	/*
 603	 * if one state of type C2 or C3 is available, mark this
 604	 * CPU as being "idle manageable"
 605	 */
 606	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 607		if (pr->power.states[i].valid) {
 608			pr->power.count = i;
 609			if (pr->power.states[i].type >= ACPI_STATE_C2)
 610				pr->flags.power = 1;
 611		}
 612	}
 613
 614	return 0;
 615}
 616
 617/**
 618 * acpi_idle_bm_check - checks if bus master activity was detected
 619 */
 620static int acpi_idle_bm_check(void)
 621{
 622	u32 bm_status = 0;
 623
 624	if (bm_check_disable)
 625		return 0;
 626
 627	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 628	if (bm_status)
 629		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 630	/*
 631	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 632	 * the true state of bus mastering activity; forcing us to
 633	 * manually check the BMIDEA bit of each IDE channel.
 634	 */
 635	else if (errata.piix4.bmisx) {
 636		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 637		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 638			bm_status = 1;
 639	}
 640	return bm_status;
 641}
 642
 643/**
 644 * acpi_idle_do_entry - enter idle state using the appropriate method
 645 * @cx: cstate data
 646 *
 647 * Caller disables interrupt before call and enables interrupt after return.
 648 */
 649static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 650{
 
 
 651	if (cx->entry_method == ACPI_CSTATE_FFH) {
 652		/* Call into architectural FFH based C-state */
 653		acpi_processor_ffh_cstate_enter(cx);
 654	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 655		acpi_safe_halt();
 656	} else {
 657		/* IO port based C-state */
 658		inb(cx->address);
 659		/* Dummy wait op - must do something useless after P_LVL2 read
 660		   because chipsets cannot guarantee that STPCLK# signal
 661		   gets asserted in time to freeze execution properly. */
 662		inl(acpi_gbl_FADT.xpm_timer_block.address);
 663	}
 
 664}
 665
 666/**
 667 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 668 * @dev: the target CPU
 669 * @index: the index of suggested state
 
 
 670 */
 671static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 
 672{
 673	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 
 
 
 
 
 674
 675	ACPI_FLUSH_CPU_CACHE();
 
 676
 677	while (1) {
 678
 679		if (cx->entry_method == ACPI_CSTATE_HALT)
 680			safe_halt();
 681		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 682			inb(cx->address);
 683			/* See comment in acpi_idle_do_entry() */
 684			inl(acpi_gbl_FADT.xpm_timer_block.address);
 685		} else
 686			return -ENODEV;
 687	}
 688
 689	/* Never reached */
 690	return 0;
 
 
 
 
 
 
 
 
 
 691}
 692
 693static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 
 
 
 
 
 
 694{
 695	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 696		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 697}
 698
 699static int c3_cpu_count;
 700static DEFINE_RAW_SPINLOCK(c3_lock);
 701
 702/**
 703 * acpi_idle_enter_bm - enters C3 with proper BM handling
 704 * @pr: Target processor
 705 * @cx: Target state context
 706 * @timer_bc: Whether or not to change timer mode to broadcast
 
 707 */
 708static void acpi_idle_enter_bm(struct acpi_processor *pr,
 709			       struct acpi_processor_cx *cx, bool timer_bc)
 710{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711	acpi_unlazy_tlb(smp_processor_id());
 712
 
 
 713	/*
 714	 * Must be done before busmaster disable as we might need to
 715	 * access HPET !
 716	 */
 717	if (timer_bc)
 718		lapic_timer_state_broadcast(pr, cx, 1);
 719
 
 720	/*
 721	 * disable bus master
 722	 * bm_check implies we need ARB_DIS
 
 723	 * bm_control implies whether we can do ARB_DIS
 724	 *
 725	 * That leaves a case where bm_check is set and bm_control is
 726	 * not set. In that case we cannot do much, we enter C3
 727	 * without doing anything.
 728	 */
 729	if (pr->flags.bm_control) {
 730		raw_spin_lock(&c3_lock);
 731		c3_cpu_count++;
 732		/* Disable bus master arbitration when all CPUs are in C3 */
 733		if (c3_cpu_count == num_online_cpus())
 734			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 735		raw_spin_unlock(&c3_lock);
 
 
 736	}
 737
 738	acpi_idle_do_entry(cx);
 739
 740	/* Re-enable bus master arbitration */
 741	if (pr->flags.bm_control) {
 742		raw_spin_lock(&c3_lock);
 743		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 744		c3_cpu_count--;
 745		raw_spin_unlock(&c3_lock);
 746	}
 
 
 
 
 747
 748	if (timer_bc)
 749		lapic_timer_state_broadcast(pr, cx, 0);
 750}
 751
 752static int acpi_idle_enter(struct cpuidle_device *dev,
 753			   struct cpuidle_driver *drv, int index)
 754{
 755	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 756	struct acpi_processor *pr;
 757
 758	pr = __this_cpu_read(processors);
 759	if (unlikely(!pr))
 760		return -EINVAL;
 761
 762	if (cx->type != ACPI_STATE_C1) {
 763		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 764			index = CPUIDLE_DRIVER_STATE_START;
 765			cx = per_cpu(acpi_cstate[index], dev->cpu);
 766		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
 767			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
 768				acpi_idle_enter_bm(pr, cx, true);
 769				return index;
 770			} else if (drv->safe_state_index >= 0) {
 771				index = drv->safe_state_index;
 772				cx = per_cpu(acpi_cstate[index], dev->cpu);
 773			} else {
 774				acpi_safe_halt();
 775				return -EBUSY;
 776			}
 777		}
 778	}
 779
 780	lapic_timer_state_broadcast(pr, cx, 1);
 781
 782	if (cx->type == ACPI_STATE_C3)
 783		ACPI_FLUSH_CPU_CACHE();
 784
 785	acpi_idle_do_entry(cx);
 786
 787	lapic_timer_state_broadcast(pr, cx, 0);
 788
 789	return index;
 790}
 791
 792static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
 793				   struct cpuidle_driver *drv, int index)
 794{
 795	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 796
 797	if (cx->type == ACPI_STATE_C3) {
 798		struct acpi_processor *pr = __this_cpu_read(processors);
 799
 800		if (unlikely(!pr))
 801			return;
 802
 803		if (pr->flags.bm_check) {
 804			acpi_idle_enter_bm(pr, cx, false);
 805			return;
 806		} else {
 807			ACPI_FLUSH_CPU_CACHE();
 808		}
 809	}
 810	acpi_idle_do_entry(cx);
 811}
 812
 813static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 814					   struct cpuidle_device *dev)
 815{
 816	int i, count = CPUIDLE_DRIVER_STATE_START;
 817	struct acpi_processor_cx *cx;
 
 
 818
 819	if (max_cstate == 0)
 820		max_cstate = 1;
 821
 822	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 823		cx = &pr->power.states[i];
 
 824
 825		if (!cx->valid)
 826			continue;
 827
 828		per_cpu(acpi_cstate[count], dev->cpu) = cx;
 829
 830		count++;
 831		if (count == CPUIDLE_STATE_MAX)
 832			break;
 833	}
 834
 835	if (!count)
 836		return -EINVAL;
 837
 838	return 0;
 839}
 840
 841static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 842{
 843	int i, count = CPUIDLE_DRIVER_STATE_START;
 844	struct acpi_processor_cx *cx;
 845	struct cpuidle_state *state;
 846	struct cpuidle_driver *drv = &acpi_idle_driver;
 847
 848	if (max_cstate == 0)
 849		max_cstate = 1;
 850
 851	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 852		cx = &pr->power.states[i];
 
 853
 854		if (!cx->valid)
 855			continue;
 856
 857		state = &drv->states[count];
 
 
 
 
 
 
 
 858		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 859		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 860		state->exit_latency = cx->latency;
 861		state->target_residency = cx->latency * latency_factor;
 862		state->enter = acpi_idle_enter;
 863
 864		state->flags = 0;
 865		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
 866			state->enter_dead = acpi_idle_play_dead;
 867			drv->safe_state_index = count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868		}
 869		/*
 870		 * Halt-induced C1 is not good for ->enter_freeze, because it
 871		 * re-enables interrupts on exit.  Moreover, C1 is generally not
 872		 * particularly interesting from the suspend-to-idle angle, so
 873		 * avoid C1 and the situations in which we may need to fall back
 874		 * to it altogether.
 875		 */
 876		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 877			state->enter_freeze = acpi_idle_enter_freeze;
 878
 879		count++;
 880		if (count == CPUIDLE_STATE_MAX)
 881			break;
 882	}
 883
 884	drv->state_count = count;
 885
 886	if (!count)
 887		return -EINVAL;
 888
 889	return 0;
 890}
 891
 892static inline void acpi_processor_cstate_first_run_checks(void)
 893{
 894	acpi_status status;
 895	static int first_run;
 896
 897	if (first_run)
 898		return;
 899	dmi_check_system(processor_power_dmi_table);
 900	max_cstate = acpi_processor_cstate_check(max_cstate);
 901	if (max_cstate < ACPI_C_STATES_MAX)
 902		pr_notice("ACPI: processor limited to max C-state %d\n",
 903			  max_cstate);
 904	first_run++;
 905
 906	if (acpi_gbl_FADT.cst_control && !nocst) {
 907		status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
 908					    acpi_gbl_FADT.cst_control, 8);
 909		if (ACPI_FAILURE(status))
 910			ACPI_EXCEPTION((AE_INFO, status,
 911					"Notifying BIOS of _CST ability failed"));
 912	}
 913}
 914#else
 915
 916static inline int disabled_by_idle_boot_param(void) { return 0; }
 917static inline void acpi_processor_cstate_first_run_checks(void) { }
 918static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 919{
 920	return -ENODEV;
 921}
 922
 923static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 924					   struct cpuidle_device *dev)
 925{
 926	return -EINVAL;
 927}
 928
 929static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 930{
 931	return -EINVAL;
 932}
 933
 934#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 935
 936struct acpi_lpi_states_array {
 937	unsigned int size;
 938	unsigned int composite_states_size;
 939	struct acpi_lpi_state *entries;
 940	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 941};
 942
 943static int obj_get_integer(union acpi_object *obj, u32 *value)
 944{
 945	if (obj->type != ACPI_TYPE_INTEGER)
 946		return -EINVAL;
 947
 948	*value = obj->integer.value;
 949	return 0;
 950}
 951
 952static int acpi_processor_evaluate_lpi(acpi_handle handle,
 953				       struct acpi_lpi_states_array *info)
 954{
 955	acpi_status status;
 956	int ret = 0;
 957	int pkg_count, state_idx = 1, loop;
 958	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 959	union acpi_object *lpi_data;
 960	struct acpi_lpi_state *lpi_state;
 961
 962	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 963	if (ACPI_FAILURE(status)) {
 964		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
 965		return -ENODEV;
 966	}
 967
 968	lpi_data = buffer.pointer;
 969
 970	/* There must be at least 4 elements = 3 elements + 1 package */
 971	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 972	    lpi_data->package.count < 4) {
 973		pr_debug("not enough elements in _LPI\n");
 974		ret = -ENODATA;
 975		goto end;
 976	}
 977
 978	pkg_count = lpi_data->package.elements[2].integer.value;
 979
 980	/* Validate number of power states. */
 981	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 982		pr_debug("count given by _LPI is not valid\n");
 983		ret = -ENODATA;
 984		goto end;
 985	}
 986
 987	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
 988	if (!lpi_state) {
 989		ret = -ENOMEM;
 990		goto end;
 991	}
 992
 993	info->size = pkg_count;
 994	info->entries = lpi_state;
 995
 996	/* LPI States start at index 3 */
 997	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
 998		union acpi_object *element, *pkg_elem, *obj;
 999
1000		element = &lpi_data->package.elements[loop];
1001		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1002			continue;
1003
1004		pkg_elem = element->package.elements;
1005
1006		obj = pkg_elem + 6;
1007		if (obj->type == ACPI_TYPE_BUFFER) {
1008			struct acpi_power_register *reg;
1009
1010			reg = (struct acpi_power_register *)obj->buffer.pointer;
1011			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1012			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1013				continue;
1014
1015			lpi_state->address = reg->address;
1016			lpi_state->entry_method =
1017				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1018				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1019		} else if (obj->type == ACPI_TYPE_INTEGER) {
1020			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1021			lpi_state->address = obj->integer.value;
1022		} else {
1023			continue;
1024		}
1025
1026		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1027
1028		obj = pkg_elem + 9;
1029		if (obj->type == ACPI_TYPE_STRING)
1030			strlcpy(lpi_state->desc, obj->string.pointer,
1031				ACPI_CX_DESC_LEN);
1032
1033		lpi_state->index = state_idx;
1034		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1035			pr_debug("No min. residency found, assuming 10 us\n");
1036			lpi_state->min_residency = 10;
1037		}
1038
1039		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1040			pr_debug("No wakeup residency found, assuming 10 us\n");
1041			lpi_state->wake_latency = 10;
1042		}
1043
1044		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1045			lpi_state->flags = 0;
1046
1047		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1048			lpi_state->arch_flags = 0;
1049
1050		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1051			lpi_state->res_cnt_freq = 1;
1052
1053		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1054			lpi_state->enable_parent_state = 0;
1055	}
1056
1057	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1058end:
1059	kfree(buffer.pointer);
1060	return ret;
1061}
1062
1063/*
1064 * flat_state_cnt - the number of composite LPI states after the process of flattening
1065 */
1066static int flat_state_cnt;
1067
1068/**
1069 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1070 *
1071 * @local: local LPI state
1072 * @parent: parent LPI state
1073 * @result: composite LPI state
1074 */
1075static bool combine_lpi_states(struct acpi_lpi_state *local,
1076			       struct acpi_lpi_state *parent,
1077			       struct acpi_lpi_state *result)
1078{
1079	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1080		if (!parent->address) /* 0 means autopromotable */
1081			return false;
1082		result->address = local->address + parent->address;
1083	} else {
1084		result->address = parent->address;
1085	}
1086
1087	result->min_residency = max(local->min_residency, parent->min_residency);
1088	result->wake_latency = local->wake_latency + parent->wake_latency;
1089	result->enable_parent_state = parent->enable_parent_state;
1090	result->entry_method = local->entry_method;
1091
1092	result->flags = parent->flags;
1093	result->arch_flags = parent->arch_flags;
1094	result->index = parent->index;
1095
1096	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1097	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1098	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1099	return true;
1100}
1101
1102#define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1103
1104static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1105				  struct acpi_lpi_state *t)
1106{
1107	curr_level->composite_states[curr_level->composite_states_size++] = t;
1108}
1109
1110static int flatten_lpi_states(struct acpi_processor *pr,
1111			      struct acpi_lpi_states_array *curr_level,
1112			      struct acpi_lpi_states_array *prev_level)
1113{
1114	int i, j, state_count = curr_level->size;
1115	struct acpi_lpi_state *p, *t = curr_level->entries;
1116
1117	curr_level->composite_states_size = 0;
1118	for (j = 0; j < state_count; j++, t++) {
1119		struct acpi_lpi_state *flpi;
1120
1121		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1122			continue;
1123
1124		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1125			pr_warn("Limiting number of LPI states to max (%d)\n",
1126				ACPI_PROCESSOR_MAX_POWER);
1127			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1128			break;
1129		}
1130
1131		flpi = &pr->power.lpi_states[flat_state_cnt];
1132
1133		if (!prev_level) { /* leaf/processor node */
1134			memcpy(flpi, t, sizeof(*t));
1135			stash_composite_state(curr_level, flpi);
1136			flat_state_cnt++;
1137			continue;
1138		}
1139
1140		for (i = 0; i < prev_level->composite_states_size; i++) {
1141			p = prev_level->composite_states[i];
1142			if (t->index <= p->enable_parent_state &&
1143			    combine_lpi_states(p, t, flpi)) {
1144				stash_composite_state(curr_level, flpi);
1145				flat_state_cnt++;
1146				flpi++;
1147			}
1148		}
1149	}
1150
1151	kfree(curr_level->entries);
1152	return 0;
1153}
1154
1155static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1156{
1157	int ret, i;
1158	acpi_status status;
1159	acpi_handle handle = pr->handle, pr_ahandle;
1160	struct acpi_device *d = NULL;
1161	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1162
1163	if (!osc_pc_lpi_support_confirmed)
1164		return -EOPNOTSUPP;
1165
1166	if (!acpi_has_method(handle, "_LPI"))
1167		return -EINVAL;
1168
1169	flat_state_cnt = 0;
1170	prev = &info[0];
1171	curr = &info[1];
1172	handle = pr->handle;
1173	ret = acpi_processor_evaluate_lpi(handle, prev);
1174	if (ret)
1175		return ret;
1176	flatten_lpi_states(pr, prev, NULL);
1177
1178	status = acpi_get_parent(handle, &pr_ahandle);
1179	while (ACPI_SUCCESS(status)) {
1180		acpi_bus_get_device(pr_ahandle, &d);
1181		handle = pr_ahandle;
1182
1183		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1184			break;
1185
1186		/* can be optional ? */
1187		if (!acpi_has_method(handle, "_LPI"))
1188			break;
1189
1190		ret = acpi_processor_evaluate_lpi(handle, curr);
1191		if (ret)
1192			break;
1193
1194		/* flatten all the LPI states in this level of hierarchy */
1195		flatten_lpi_states(pr, curr, prev);
1196
1197		tmp = prev, prev = curr, curr = tmp;
1198
1199		status = acpi_get_parent(handle, &pr_ahandle);
1200	}
1201
1202	pr->power.count = flat_state_cnt;
1203	/* reset the index after flattening */
1204	for (i = 0; i < pr->power.count; i++)
1205		pr->power.lpi_states[i].index = i;
1206
1207	/* Tell driver that _LPI is supported. */
1208	pr->flags.has_lpi = 1;
1209	pr->flags.power = 1;
1210
1211	return 0;
1212}
1213
1214int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1215{
1216	return -ENODEV;
1217}
1218
1219int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1220{
1221	return -ENODEV;
1222}
1223
1224/**
1225 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1226 * @dev: the target CPU
1227 * @drv: cpuidle driver containing cpuidle state info
1228 * @index: index of target state
1229 *
1230 * Return: 0 for success or negative value for error
1231 */
1232static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1233			       struct cpuidle_driver *drv, int index)
1234{
1235	struct acpi_processor *pr;
1236	struct acpi_lpi_state *lpi;
1237
1238	pr = __this_cpu_read(processors);
1239
1240	if (unlikely(!pr))
1241		return -EINVAL;
1242
1243	lpi = &pr->power.lpi_states[index];
1244	if (lpi->entry_method == ACPI_CSTATE_FFH)
1245		return acpi_processor_ffh_lpi_enter(lpi);
1246
1247	return -EINVAL;
1248}
1249
1250static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1251{
1252	int i;
1253	struct acpi_lpi_state *lpi;
1254	struct cpuidle_state *state;
1255	struct cpuidle_driver *drv = &acpi_idle_driver;
1256
1257	if (!pr->flags.has_lpi)
1258		return -EOPNOTSUPP;
1259
1260	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1261		lpi = &pr->power.lpi_states[i];
1262
1263		state = &drv->states[i];
1264		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1265		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1266		state->exit_latency = lpi->wake_latency;
1267		state->target_residency = lpi->min_residency;
1268		if (lpi->arch_flags)
1269			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1270		state->enter = acpi_idle_lpi_enter;
1271		drv->safe_state_index = i;
1272	}
1273
1274	drv->state_count = i;
1275
1276	return 0;
1277}
1278
1279/**
1280 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1281 * global state data i.e. idle routines
1282 *
1283 * @pr: the ACPI processor
1284 */
1285static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1286{
1287	int i;
1288	struct cpuidle_driver *drv = &acpi_idle_driver;
1289
1290	if (!pr->flags.power_setup_done || !pr->flags.power)
1291		return -EINVAL;
1292
1293	drv->safe_state_index = -1;
1294	for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1295		drv->states[i].name[0] = '\0';
1296		drv->states[i].desc[0] = '\0';
1297	}
1298
1299	if (pr->flags.has_lpi)
1300		return acpi_processor_setup_lpi_states(pr);
1301
1302	return acpi_processor_setup_cstates(pr);
1303}
1304
1305/**
1306 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1307 * device i.e. per-cpu data
1308 *
1309 * @pr: the ACPI processor
1310 * @dev : the cpuidle device
1311 */
1312static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1313					    struct cpuidle_device *dev)
1314{
1315	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1316		return -EINVAL;
1317
1318	dev->cpu = pr->id;
1319	if (pr->flags.has_lpi)
1320		return acpi_processor_ffh_lpi_probe(pr->id);
1321
1322	return acpi_processor_setup_cpuidle_cx(pr, dev);
1323}
1324
1325static int acpi_processor_get_power_info(struct acpi_processor *pr)
1326{
1327	int ret;
1328
1329	ret = acpi_processor_get_lpi_info(pr);
1330	if (ret)
1331		ret = acpi_processor_get_cstate_info(pr);
1332
1333	return ret;
1334}
1335
1336int acpi_processor_hotplug(struct acpi_processor *pr)
1337{
1338	int ret = 0;
1339	struct cpuidle_device *dev;
1340
1341	if (disabled_by_idle_boot_param())
1342		return 0;
1343
1344	if (!pr->flags.power_setup_done)
1345		return -ENODEV;
1346
1347	dev = per_cpu(acpi_cpuidle_device, pr->id);
1348	cpuidle_pause_and_lock();
1349	cpuidle_disable_device(dev);
1350	ret = acpi_processor_get_power_info(pr);
1351	if (!ret && pr->flags.power) {
1352		acpi_processor_setup_cpuidle_dev(pr, dev);
1353		ret = cpuidle_enable_device(dev);
1354	}
1355	cpuidle_resume_and_unlock();
1356
1357	return ret;
1358}
1359
1360int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
 
1361{
1362	int cpu;
1363	struct acpi_processor *_pr;
1364	struct cpuidle_device *dev;
1365
1366	if (disabled_by_idle_boot_param())
1367		return 0;
1368
1369	if (!pr->flags.power_setup_done)
1370		return -ENODEV;
 
 
 
 
 
 
 
1371
1372	/*
1373	 * FIXME:  Design the ACPI notification to make it once per
1374	 * system instead of once per-cpu.  This condition is a hack
1375	 * to make the code that updates C-States be called once.
1376	 */
1377
1378	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1379
1380		/* Protect against cpu-hotplug */
1381		get_online_cpus();
1382		cpuidle_pause_and_lock();
1383
1384		/* Disable all cpuidle devices */
1385		for_each_online_cpu(cpu) {
1386			_pr = per_cpu(processors, cpu);
1387			if (!_pr || !_pr->flags.power_setup_done)
1388				continue;
1389			dev = per_cpu(acpi_cpuidle_device, cpu);
1390			cpuidle_disable_device(dev);
1391		}
1392
1393		/* Populate Updated C-state information */
1394		acpi_processor_get_power_info(pr);
1395		acpi_processor_setup_cpuidle_states(pr);
1396
1397		/* Enable all cpuidle devices */
1398		for_each_online_cpu(cpu) {
1399			_pr = per_cpu(processors, cpu);
1400			if (!_pr || !_pr->flags.power_setup_done)
1401				continue;
1402			acpi_processor_get_power_info(_pr);
1403			if (_pr->flags.power) {
1404				dev = per_cpu(acpi_cpuidle_device, cpu);
1405				acpi_processor_setup_cpuidle_dev(_pr, dev);
1406				cpuidle_enable_device(dev);
1407			}
1408		}
1409		cpuidle_resume_and_unlock();
1410		put_online_cpus();
1411	}
1412
1413	return 0;
1414}
1415
1416static int acpi_processor_registered;
1417
1418int acpi_processor_power_init(struct acpi_processor *pr)
1419{
1420	int retval;
1421	struct cpuidle_device *dev;
1422
1423	if (disabled_by_idle_boot_param())
1424		return 0;
1425
1426	acpi_processor_cstate_first_run_checks();
1427
1428	if (!acpi_processor_get_power_info(pr))
1429		pr->flags.power_setup_done = 1;
1430
1431	/*
1432	 * Install the idle handler if processor power management is supported.
1433	 * Note that we use previously set idle handler will be used on
1434	 * platforms that only support C1.
1435	 */
1436	if (pr->flags.power) {
1437		/* Register acpi_idle_driver if not already registered */
1438		if (!acpi_processor_registered) {
1439			acpi_processor_setup_cpuidle_states(pr);
1440			retval = cpuidle_register_driver(&acpi_idle_driver);
1441			if (retval)
1442				return retval;
1443			pr_debug("%s registered with cpuidle\n",
1444				 acpi_idle_driver.name);
1445		}
1446
1447		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1448		if (!dev)
1449			return -ENOMEM;
1450		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1451
1452		acpi_processor_setup_cpuidle_dev(pr, dev);
1453
1454		/* Register per-cpu cpuidle_device. Cpuidle driver
1455		 * must already be registered before registering device
1456		 */
1457		retval = cpuidle_register_device(dev);
1458		if (retval) {
1459			if (acpi_processor_registered == 0)
1460				cpuidle_unregister_driver(&acpi_idle_driver);
1461			return retval;
1462		}
1463		acpi_processor_registered++;
1464	}
1465	return 0;
1466}
1467
1468int acpi_processor_power_exit(struct acpi_processor *pr)
 
1469{
1470	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1471
1472	if (disabled_by_idle_boot_param())
1473		return 0;
1474
1475	if (pr->flags.power) {
1476		cpuidle_unregister_device(dev);
1477		acpi_processor_registered--;
1478		if (acpi_processor_registered == 0)
1479			cpuidle_unregister_driver(&acpi_idle_driver);
1480	}
1481
1482	pr->flags.power_setup_done = 0;
1483	return 0;
1484}