Loading...
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
27#include "xfs_mount.h"
28#include "xfs_error.h"
29#include "xfs_bmap_btree.h"
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
32#include "xfs_dinode.h"
33#include "xfs_inode.h"
34#include "xfs_inode_item.h"
35#include "xfs_alloc.h"
36#include "xfs_ialloc.h"
37#include "xfs_log_priv.h"
38#include "xfs_buf_item.h"
39#include "xfs_log_recover.h"
40#include "xfs_extfree_item.h"
41#include "xfs_trans_priv.h"
42#include "xfs_quota.h"
43#include "xfs_rw.h"
44#include "xfs_utils.h"
45#include "xfs_trace.h"
46
47STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
48STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
49#if defined(DEBUG)
50STATIC void xlog_recover_check_summary(xlog_t *);
51#else
52#define xlog_recover_check_summary(log)
53#endif
54
55/*
56 * This structure is used during recovery to record the buf log items which
57 * have been canceled and should not be replayed.
58 */
59struct xfs_buf_cancel {
60 xfs_daddr_t bc_blkno;
61 uint bc_len;
62 int bc_refcount;
63 struct list_head bc_list;
64};
65
66/*
67 * Sector aligned buffer routines for buffer create/read/write/access
68 */
69
70/*
71 * Verify the given count of basic blocks is valid number of blocks
72 * to specify for an operation involving the given XFS log buffer.
73 * Returns nonzero if the count is valid, 0 otherwise.
74 */
75
76static inline int
77xlog_buf_bbcount_valid(
78 xlog_t *log,
79 int bbcount)
80{
81 return bbcount > 0 && bbcount <= log->l_logBBsize;
82}
83
84/*
85 * Allocate a buffer to hold log data. The buffer needs to be able
86 * to map to a range of nbblks basic blocks at any valid (basic
87 * block) offset within the log.
88 */
89STATIC xfs_buf_t *
90xlog_get_bp(
91 xlog_t *log,
92 int nbblks)
93{
94 struct xfs_buf *bp;
95
96 if (!xlog_buf_bbcount_valid(log, nbblks)) {
97 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
98 nbblks);
99 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
100 return NULL;
101 }
102
103 /*
104 * We do log I/O in units of log sectors (a power-of-2
105 * multiple of the basic block size), so we round up the
106 * requested size to accommodate the basic blocks required
107 * for complete log sectors.
108 *
109 * In addition, the buffer may be used for a non-sector-
110 * aligned block offset, in which case an I/O of the
111 * requested size could extend beyond the end of the
112 * buffer. If the requested size is only 1 basic block it
113 * will never straddle a sector boundary, so this won't be
114 * an issue. Nor will this be a problem if the log I/O is
115 * done in basic blocks (sector size 1). But otherwise we
116 * extend the buffer by one extra log sector to ensure
117 * there's space to accommodate this possibility.
118 */
119 if (nbblks > 1 && log->l_sectBBsize > 1)
120 nbblks += log->l_sectBBsize;
121 nbblks = round_up(nbblks, log->l_sectBBsize);
122
123 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, BBTOB(nbblks), 0);
124 if (bp)
125 xfs_buf_unlock(bp);
126 return bp;
127}
128
129STATIC void
130xlog_put_bp(
131 xfs_buf_t *bp)
132{
133 xfs_buf_free(bp);
134}
135
136/*
137 * Return the address of the start of the given block number's data
138 * in a log buffer. The buffer covers a log sector-aligned region.
139 */
140STATIC xfs_caddr_t
141xlog_align(
142 xlog_t *log,
143 xfs_daddr_t blk_no,
144 int nbblks,
145 xfs_buf_t *bp)
146{
147 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
148
149 ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
150 return bp->b_addr + BBTOB(offset);
151}
152
153
154/*
155 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
156 */
157STATIC int
158xlog_bread_noalign(
159 xlog_t *log,
160 xfs_daddr_t blk_no,
161 int nbblks,
162 xfs_buf_t *bp)
163{
164 int error;
165
166 if (!xlog_buf_bbcount_valid(log, nbblks)) {
167 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
168 nbblks);
169 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
170 return EFSCORRUPTED;
171 }
172
173 blk_no = round_down(blk_no, log->l_sectBBsize);
174 nbblks = round_up(nbblks, log->l_sectBBsize);
175
176 ASSERT(nbblks > 0);
177 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
178
179 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
180 XFS_BUF_READ(bp);
181 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
182
183 xfsbdstrat(log->l_mp, bp);
184 error = xfs_buf_iowait(bp);
185 if (error)
186 xfs_ioerror_alert("xlog_bread", log->l_mp,
187 bp, XFS_BUF_ADDR(bp));
188 return error;
189}
190
191STATIC int
192xlog_bread(
193 xlog_t *log,
194 xfs_daddr_t blk_no,
195 int nbblks,
196 xfs_buf_t *bp,
197 xfs_caddr_t *offset)
198{
199 int error;
200
201 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
202 if (error)
203 return error;
204
205 *offset = xlog_align(log, blk_no, nbblks, bp);
206 return 0;
207}
208
209/*
210 * Read at an offset into the buffer. Returns with the buffer in it's original
211 * state regardless of the result of the read.
212 */
213STATIC int
214xlog_bread_offset(
215 xlog_t *log,
216 xfs_daddr_t blk_no, /* block to read from */
217 int nbblks, /* blocks to read */
218 xfs_buf_t *bp,
219 xfs_caddr_t offset)
220{
221 xfs_caddr_t orig_offset = bp->b_addr;
222 int orig_len = bp->b_buffer_length;
223 int error, error2;
224
225 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
226 if (error)
227 return error;
228
229 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
230
231 /* must reset buffer pointer even on error */
232 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
233 if (error)
234 return error;
235 return error2;
236}
237
238/*
239 * Write out the buffer at the given block for the given number of blocks.
240 * The buffer is kept locked across the write and is returned locked.
241 * This can only be used for synchronous log writes.
242 */
243STATIC int
244xlog_bwrite(
245 xlog_t *log,
246 xfs_daddr_t blk_no,
247 int nbblks,
248 xfs_buf_t *bp)
249{
250 int error;
251
252 if (!xlog_buf_bbcount_valid(log, nbblks)) {
253 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
254 nbblks);
255 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
256 return EFSCORRUPTED;
257 }
258
259 blk_no = round_down(blk_no, log->l_sectBBsize);
260 nbblks = round_up(nbblks, log->l_sectBBsize);
261
262 ASSERT(nbblks > 0);
263 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
264
265 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
266 XFS_BUF_ZEROFLAGS(bp);
267 xfs_buf_hold(bp);
268 xfs_buf_lock(bp);
269 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
270
271 if ((error = xfs_bwrite(log->l_mp, bp)))
272 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
273 bp, XFS_BUF_ADDR(bp));
274 return error;
275}
276
277#ifdef DEBUG
278/*
279 * dump debug superblock and log record information
280 */
281STATIC void
282xlog_header_check_dump(
283 xfs_mount_t *mp,
284 xlog_rec_header_t *head)
285{
286 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
287 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
288 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
289 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
290}
291#else
292#define xlog_header_check_dump(mp, head)
293#endif
294
295/*
296 * check log record header for recovery
297 */
298STATIC int
299xlog_header_check_recover(
300 xfs_mount_t *mp,
301 xlog_rec_header_t *head)
302{
303 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
304
305 /*
306 * IRIX doesn't write the h_fmt field and leaves it zeroed
307 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
308 * a dirty log created in IRIX.
309 */
310 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
311 xfs_warn(mp,
312 "dirty log written in incompatible format - can't recover");
313 xlog_header_check_dump(mp, head);
314 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
315 XFS_ERRLEVEL_HIGH, mp);
316 return XFS_ERROR(EFSCORRUPTED);
317 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
318 xfs_warn(mp,
319 "dirty log entry has mismatched uuid - can't recover");
320 xlog_header_check_dump(mp, head);
321 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
322 XFS_ERRLEVEL_HIGH, mp);
323 return XFS_ERROR(EFSCORRUPTED);
324 }
325 return 0;
326}
327
328/*
329 * read the head block of the log and check the header
330 */
331STATIC int
332xlog_header_check_mount(
333 xfs_mount_t *mp,
334 xlog_rec_header_t *head)
335{
336 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
337
338 if (uuid_is_nil(&head->h_fs_uuid)) {
339 /*
340 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
341 * h_fs_uuid is nil, we assume this log was last mounted
342 * by IRIX and continue.
343 */
344 xfs_warn(mp, "nil uuid in log - IRIX style log");
345 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
346 xfs_warn(mp, "log has mismatched uuid - can't recover");
347 xlog_header_check_dump(mp, head);
348 XFS_ERROR_REPORT("xlog_header_check_mount",
349 XFS_ERRLEVEL_HIGH, mp);
350 return XFS_ERROR(EFSCORRUPTED);
351 }
352 return 0;
353}
354
355STATIC void
356xlog_recover_iodone(
357 struct xfs_buf *bp)
358{
359 if (bp->b_error) {
360 /*
361 * We're not going to bother about retrying
362 * this during recovery. One strike!
363 */
364 xfs_ioerror_alert("xlog_recover_iodone",
365 bp->b_target->bt_mount, bp,
366 XFS_BUF_ADDR(bp));
367 xfs_force_shutdown(bp->b_target->bt_mount,
368 SHUTDOWN_META_IO_ERROR);
369 }
370 bp->b_iodone = NULL;
371 xfs_buf_ioend(bp, 0);
372}
373
374/*
375 * This routine finds (to an approximation) the first block in the physical
376 * log which contains the given cycle. It uses a binary search algorithm.
377 * Note that the algorithm can not be perfect because the disk will not
378 * necessarily be perfect.
379 */
380STATIC int
381xlog_find_cycle_start(
382 xlog_t *log,
383 xfs_buf_t *bp,
384 xfs_daddr_t first_blk,
385 xfs_daddr_t *last_blk,
386 uint cycle)
387{
388 xfs_caddr_t offset;
389 xfs_daddr_t mid_blk;
390 xfs_daddr_t end_blk;
391 uint mid_cycle;
392 int error;
393
394 end_blk = *last_blk;
395 mid_blk = BLK_AVG(first_blk, end_blk);
396 while (mid_blk != first_blk && mid_blk != end_blk) {
397 error = xlog_bread(log, mid_blk, 1, bp, &offset);
398 if (error)
399 return error;
400 mid_cycle = xlog_get_cycle(offset);
401 if (mid_cycle == cycle)
402 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
403 else
404 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
405 mid_blk = BLK_AVG(first_blk, end_blk);
406 }
407 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
408 (mid_blk == end_blk && mid_blk-1 == first_blk));
409
410 *last_blk = end_blk;
411
412 return 0;
413}
414
415/*
416 * Check that a range of blocks does not contain stop_on_cycle_no.
417 * Fill in *new_blk with the block offset where such a block is
418 * found, or with -1 (an invalid block number) if there is no such
419 * block in the range. The scan needs to occur from front to back
420 * and the pointer into the region must be updated since a later
421 * routine will need to perform another test.
422 */
423STATIC int
424xlog_find_verify_cycle(
425 xlog_t *log,
426 xfs_daddr_t start_blk,
427 int nbblks,
428 uint stop_on_cycle_no,
429 xfs_daddr_t *new_blk)
430{
431 xfs_daddr_t i, j;
432 uint cycle;
433 xfs_buf_t *bp;
434 xfs_daddr_t bufblks;
435 xfs_caddr_t buf = NULL;
436 int error = 0;
437
438 /*
439 * Greedily allocate a buffer big enough to handle the full
440 * range of basic blocks we'll be examining. If that fails,
441 * try a smaller size. We need to be able to read at least
442 * a log sector, or we're out of luck.
443 */
444 bufblks = 1 << ffs(nbblks);
445 while (!(bp = xlog_get_bp(log, bufblks))) {
446 bufblks >>= 1;
447 if (bufblks < log->l_sectBBsize)
448 return ENOMEM;
449 }
450
451 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
452 int bcount;
453
454 bcount = min(bufblks, (start_blk + nbblks - i));
455
456 error = xlog_bread(log, i, bcount, bp, &buf);
457 if (error)
458 goto out;
459
460 for (j = 0; j < bcount; j++) {
461 cycle = xlog_get_cycle(buf);
462 if (cycle == stop_on_cycle_no) {
463 *new_blk = i+j;
464 goto out;
465 }
466
467 buf += BBSIZE;
468 }
469 }
470
471 *new_blk = -1;
472
473out:
474 xlog_put_bp(bp);
475 return error;
476}
477
478/*
479 * Potentially backup over partial log record write.
480 *
481 * In the typical case, last_blk is the number of the block directly after
482 * a good log record. Therefore, we subtract one to get the block number
483 * of the last block in the given buffer. extra_bblks contains the number
484 * of blocks we would have read on a previous read. This happens when the
485 * last log record is split over the end of the physical log.
486 *
487 * extra_bblks is the number of blocks potentially verified on a previous
488 * call to this routine.
489 */
490STATIC int
491xlog_find_verify_log_record(
492 xlog_t *log,
493 xfs_daddr_t start_blk,
494 xfs_daddr_t *last_blk,
495 int extra_bblks)
496{
497 xfs_daddr_t i;
498 xfs_buf_t *bp;
499 xfs_caddr_t offset = NULL;
500 xlog_rec_header_t *head = NULL;
501 int error = 0;
502 int smallmem = 0;
503 int num_blks = *last_blk - start_blk;
504 int xhdrs;
505
506 ASSERT(start_blk != 0 || *last_blk != start_blk);
507
508 if (!(bp = xlog_get_bp(log, num_blks))) {
509 if (!(bp = xlog_get_bp(log, 1)))
510 return ENOMEM;
511 smallmem = 1;
512 } else {
513 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
514 if (error)
515 goto out;
516 offset += ((num_blks - 1) << BBSHIFT);
517 }
518
519 for (i = (*last_blk) - 1; i >= 0; i--) {
520 if (i < start_blk) {
521 /* valid log record not found */
522 xfs_warn(log->l_mp,
523 "Log inconsistent (didn't find previous header)");
524 ASSERT(0);
525 error = XFS_ERROR(EIO);
526 goto out;
527 }
528
529 if (smallmem) {
530 error = xlog_bread(log, i, 1, bp, &offset);
531 if (error)
532 goto out;
533 }
534
535 head = (xlog_rec_header_t *)offset;
536
537 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
538 break;
539
540 if (!smallmem)
541 offset -= BBSIZE;
542 }
543
544 /*
545 * We hit the beginning of the physical log & still no header. Return
546 * to caller. If caller can handle a return of -1, then this routine
547 * will be called again for the end of the physical log.
548 */
549 if (i == -1) {
550 error = -1;
551 goto out;
552 }
553
554 /*
555 * We have the final block of the good log (the first block
556 * of the log record _before_ the head. So we check the uuid.
557 */
558 if ((error = xlog_header_check_mount(log->l_mp, head)))
559 goto out;
560
561 /*
562 * We may have found a log record header before we expected one.
563 * last_blk will be the 1st block # with a given cycle #. We may end
564 * up reading an entire log record. In this case, we don't want to
565 * reset last_blk. Only when last_blk points in the middle of a log
566 * record do we update last_blk.
567 */
568 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
569 uint h_size = be32_to_cpu(head->h_size);
570
571 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
572 if (h_size % XLOG_HEADER_CYCLE_SIZE)
573 xhdrs++;
574 } else {
575 xhdrs = 1;
576 }
577
578 if (*last_blk - i + extra_bblks !=
579 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
580 *last_blk = i;
581
582out:
583 xlog_put_bp(bp);
584 return error;
585}
586
587/*
588 * Head is defined to be the point of the log where the next log write
589 * write could go. This means that incomplete LR writes at the end are
590 * eliminated when calculating the head. We aren't guaranteed that previous
591 * LR have complete transactions. We only know that a cycle number of
592 * current cycle number -1 won't be present in the log if we start writing
593 * from our current block number.
594 *
595 * last_blk contains the block number of the first block with a given
596 * cycle number.
597 *
598 * Return: zero if normal, non-zero if error.
599 */
600STATIC int
601xlog_find_head(
602 xlog_t *log,
603 xfs_daddr_t *return_head_blk)
604{
605 xfs_buf_t *bp;
606 xfs_caddr_t offset;
607 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
608 int num_scan_bblks;
609 uint first_half_cycle, last_half_cycle;
610 uint stop_on_cycle;
611 int error, log_bbnum = log->l_logBBsize;
612
613 /* Is the end of the log device zeroed? */
614 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
615 *return_head_blk = first_blk;
616
617 /* Is the whole lot zeroed? */
618 if (!first_blk) {
619 /* Linux XFS shouldn't generate totally zeroed logs -
620 * mkfs etc write a dummy unmount record to a fresh
621 * log so we can store the uuid in there
622 */
623 xfs_warn(log->l_mp, "totally zeroed log");
624 }
625
626 return 0;
627 } else if (error) {
628 xfs_warn(log->l_mp, "empty log check failed");
629 return error;
630 }
631
632 first_blk = 0; /* get cycle # of 1st block */
633 bp = xlog_get_bp(log, 1);
634 if (!bp)
635 return ENOMEM;
636
637 error = xlog_bread(log, 0, 1, bp, &offset);
638 if (error)
639 goto bp_err;
640
641 first_half_cycle = xlog_get_cycle(offset);
642
643 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
644 error = xlog_bread(log, last_blk, 1, bp, &offset);
645 if (error)
646 goto bp_err;
647
648 last_half_cycle = xlog_get_cycle(offset);
649 ASSERT(last_half_cycle != 0);
650
651 /*
652 * If the 1st half cycle number is equal to the last half cycle number,
653 * then the entire log is stamped with the same cycle number. In this
654 * case, head_blk can't be set to zero (which makes sense). The below
655 * math doesn't work out properly with head_blk equal to zero. Instead,
656 * we set it to log_bbnum which is an invalid block number, but this
657 * value makes the math correct. If head_blk doesn't changed through
658 * all the tests below, *head_blk is set to zero at the very end rather
659 * than log_bbnum. In a sense, log_bbnum and zero are the same block
660 * in a circular file.
661 */
662 if (first_half_cycle == last_half_cycle) {
663 /*
664 * In this case we believe that the entire log should have
665 * cycle number last_half_cycle. We need to scan backwards
666 * from the end verifying that there are no holes still
667 * containing last_half_cycle - 1. If we find such a hole,
668 * then the start of that hole will be the new head. The
669 * simple case looks like
670 * x | x ... | x - 1 | x
671 * Another case that fits this picture would be
672 * x | x + 1 | x ... | x
673 * In this case the head really is somewhere at the end of the
674 * log, as one of the latest writes at the beginning was
675 * incomplete.
676 * One more case is
677 * x | x + 1 | x ... | x - 1 | x
678 * This is really the combination of the above two cases, and
679 * the head has to end up at the start of the x-1 hole at the
680 * end of the log.
681 *
682 * In the 256k log case, we will read from the beginning to the
683 * end of the log and search for cycle numbers equal to x-1.
684 * We don't worry about the x+1 blocks that we encounter,
685 * because we know that they cannot be the head since the log
686 * started with x.
687 */
688 head_blk = log_bbnum;
689 stop_on_cycle = last_half_cycle - 1;
690 } else {
691 /*
692 * In this case we want to find the first block with cycle
693 * number matching last_half_cycle. We expect the log to be
694 * some variation on
695 * x + 1 ... | x ... | x
696 * The first block with cycle number x (last_half_cycle) will
697 * be where the new head belongs. First we do a binary search
698 * for the first occurrence of last_half_cycle. The binary
699 * search may not be totally accurate, so then we scan back
700 * from there looking for occurrences of last_half_cycle before
701 * us. If that backwards scan wraps around the beginning of
702 * the log, then we look for occurrences of last_half_cycle - 1
703 * at the end of the log. The cases we're looking for look
704 * like
705 * v binary search stopped here
706 * x + 1 ... | x | x + 1 | x ... | x
707 * ^ but we want to locate this spot
708 * or
709 * <---------> less than scan distance
710 * x + 1 ... | x ... | x - 1 | x
711 * ^ we want to locate this spot
712 */
713 stop_on_cycle = last_half_cycle;
714 if ((error = xlog_find_cycle_start(log, bp, first_blk,
715 &head_blk, last_half_cycle)))
716 goto bp_err;
717 }
718
719 /*
720 * Now validate the answer. Scan back some number of maximum possible
721 * blocks and make sure each one has the expected cycle number. The
722 * maximum is determined by the total possible amount of buffering
723 * in the in-core log. The following number can be made tighter if
724 * we actually look at the block size of the filesystem.
725 */
726 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
727 if (head_blk >= num_scan_bblks) {
728 /*
729 * We are guaranteed that the entire check can be performed
730 * in one buffer.
731 */
732 start_blk = head_blk - num_scan_bblks;
733 if ((error = xlog_find_verify_cycle(log,
734 start_blk, num_scan_bblks,
735 stop_on_cycle, &new_blk)))
736 goto bp_err;
737 if (new_blk != -1)
738 head_blk = new_blk;
739 } else { /* need to read 2 parts of log */
740 /*
741 * We are going to scan backwards in the log in two parts.
742 * First we scan the physical end of the log. In this part
743 * of the log, we are looking for blocks with cycle number
744 * last_half_cycle - 1.
745 * If we find one, then we know that the log starts there, as
746 * we've found a hole that didn't get written in going around
747 * the end of the physical log. The simple case for this is
748 * x + 1 ... | x ... | x - 1 | x
749 * <---------> less than scan distance
750 * If all of the blocks at the end of the log have cycle number
751 * last_half_cycle, then we check the blocks at the start of
752 * the log looking for occurrences of last_half_cycle. If we
753 * find one, then our current estimate for the location of the
754 * first occurrence of last_half_cycle is wrong and we move
755 * back to the hole we've found. This case looks like
756 * x + 1 ... | x | x + 1 | x ...
757 * ^ binary search stopped here
758 * Another case we need to handle that only occurs in 256k
759 * logs is
760 * x + 1 ... | x ... | x+1 | x ...
761 * ^ binary search stops here
762 * In a 256k log, the scan at the end of the log will see the
763 * x + 1 blocks. We need to skip past those since that is
764 * certainly not the head of the log. By searching for
765 * last_half_cycle-1 we accomplish that.
766 */
767 ASSERT(head_blk <= INT_MAX &&
768 (xfs_daddr_t) num_scan_bblks >= head_blk);
769 start_blk = log_bbnum - (num_scan_bblks - head_blk);
770 if ((error = xlog_find_verify_cycle(log, start_blk,
771 num_scan_bblks - (int)head_blk,
772 (stop_on_cycle - 1), &new_blk)))
773 goto bp_err;
774 if (new_blk != -1) {
775 head_blk = new_blk;
776 goto validate_head;
777 }
778
779 /*
780 * Scan beginning of log now. The last part of the physical
781 * log is good. This scan needs to verify that it doesn't find
782 * the last_half_cycle.
783 */
784 start_blk = 0;
785 ASSERT(head_blk <= INT_MAX);
786 if ((error = xlog_find_verify_cycle(log,
787 start_blk, (int)head_blk,
788 stop_on_cycle, &new_blk)))
789 goto bp_err;
790 if (new_blk != -1)
791 head_blk = new_blk;
792 }
793
794validate_head:
795 /*
796 * Now we need to make sure head_blk is not pointing to a block in
797 * the middle of a log record.
798 */
799 num_scan_bblks = XLOG_REC_SHIFT(log);
800 if (head_blk >= num_scan_bblks) {
801 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
802
803 /* start ptr at last block ptr before head_blk */
804 if ((error = xlog_find_verify_log_record(log, start_blk,
805 &head_blk, 0)) == -1) {
806 error = XFS_ERROR(EIO);
807 goto bp_err;
808 } else if (error)
809 goto bp_err;
810 } else {
811 start_blk = 0;
812 ASSERT(head_blk <= INT_MAX);
813 if ((error = xlog_find_verify_log_record(log, start_blk,
814 &head_blk, 0)) == -1) {
815 /* We hit the beginning of the log during our search */
816 start_blk = log_bbnum - (num_scan_bblks - head_blk);
817 new_blk = log_bbnum;
818 ASSERT(start_blk <= INT_MAX &&
819 (xfs_daddr_t) log_bbnum-start_blk >= 0);
820 ASSERT(head_blk <= INT_MAX);
821 if ((error = xlog_find_verify_log_record(log,
822 start_blk, &new_blk,
823 (int)head_blk)) == -1) {
824 error = XFS_ERROR(EIO);
825 goto bp_err;
826 } else if (error)
827 goto bp_err;
828 if (new_blk != log_bbnum)
829 head_blk = new_blk;
830 } else if (error)
831 goto bp_err;
832 }
833
834 xlog_put_bp(bp);
835 if (head_blk == log_bbnum)
836 *return_head_blk = 0;
837 else
838 *return_head_blk = head_blk;
839 /*
840 * When returning here, we have a good block number. Bad block
841 * means that during a previous crash, we didn't have a clean break
842 * from cycle number N to cycle number N-1. In this case, we need
843 * to find the first block with cycle number N-1.
844 */
845 return 0;
846
847 bp_err:
848 xlog_put_bp(bp);
849
850 if (error)
851 xfs_warn(log->l_mp, "failed to find log head");
852 return error;
853}
854
855/*
856 * Find the sync block number or the tail of the log.
857 *
858 * This will be the block number of the last record to have its
859 * associated buffers synced to disk. Every log record header has
860 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
861 * to get a sync block number. The only concern is to figure out which
862 * log record header to believe.
863 *
864 * The following algorithm uses the log record header with the largest
865 * lsn. The entire log record does not need to be valid. We only care
866 * that the header is valid.
867 *
868 * We could speed up search by using current head_blk buffer, but it is not
869 * available.
870 */
871STATIC int
872xlog_find_tail(
873 xlog_t *log,
874 xfs_daddr_t *head_blk,
875 xfs_daddr_t *tail_blk)
876{
877 xlog_rec_header_t *rhead;
878 xlog_op_header_t *op_head;
879 xfs_caddr_t offset = NULL;
880 xfs_buf_t *bp;
881 int error, i, found;
882 xfs_daddr_t umount_data_blk;
883 xfs_daddr_t after_umount_blk;
884 xfs_lsn_t tail_lsn;
885 int hblks;
886
887 found = 0;
888
889 /*
890 * Find previous log record
891 */
892 if ((error = xlog_find_head(log, head_blk)))
893 return error;
894
895 bp = xlog_get_bp(log, 1);
896 if (!bp)
897 return ENOMEM;
898 if (*head_blk == 0) { /* special case */
899 error = xlog_bread(log, 0, 1, bp, &offset);
900 if (error)
901 goto done;
902
903 if (xlog_get_cycle(offset) == 0) {
904 *tail_blk = 0;
905 /* leave all other log inited values alone */
906 goto done;
907 }
908 }
909
910 /*
911 * Search backwards looking for log record header block
912 */
913 ASSERT(*head_blk < INT_MAX);
914 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
915 error = xlog_bread(log, i, 1, bp, &offset);
916 if (error)
917 goto done;
918
919 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
920 found = 1;
921 break;
922 }
923 }
924 /*
925 * If we haven't found the log record header block, start looking
926 * again from the end of the physical log. XXXmiken: There should be
927 * a check here to make sure we didn't search more than N blocks in
928 * the previous code.
929 */
930 if (!found) {
931 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
932 error = xlog_bread(log, i, 1, bp, &offset);
933 if (error)
934 goto done;
935
936 if (*(__be32 *)offset ==
937 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
938 found = 2;
939 break;
940 }
941 }
942 }
943 if (!found) {
944 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
945 ASSERT(0);
946 return XFS_ERROR(EIO);
947 }
948
949 /* find blk_no of tail of log */
950 rhead = (xlog_rec_header_t *)offset;
951 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
952
953 /*
954 * Reset log values according to the state of the log when we
955 * crashed. In the case where head_blk == 0, we bump curr_cycle
956 * one because the next write starts a new cycle rather than
957 * continuing the cycle of the last good log record. At this
958 * point we have guaranteed that all partial log records have been
959 * accounted for. Therefore, we know that the last good log record
960 * written was complete and ended exactly on the end boundary
961 * of the physical log.
962 */
963 log->l_prev_block = i;
964 log->l_curr_block = (int)*head_blk;
965 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
966 if (found == 2)
967 log->l_curr_cycle++;
968 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
969 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
970 xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
971 BBTOB(log->l_curr_block));
972 xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
973 BBTOB(log->l_curr_block));
974
975 /*
976 * Look for unmount record. If we find it, then we know there
977 * was a clean unmount. Since 'i' could be the last block in
978 * the physical log, we convert to a log block before comparing
979 * to the head_blk.
980 *
981 * Save the current tail lsn to use to pass to
982 * xlog_clear_stale_blocks() below. We won't want to clear the
983 * unmount record if there is one, so we pass the lsn of the
984 * unmount record rather than the block after it.
985 */
986 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
987 int h_size = be32_to_cpu(rhead->h_size);
988 int h_version = be32_to_cpu(rhead->h_version);
989
990 if ((h_version & XLOG_VERSION_2) &&
991 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
992 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
993 if (h_size % XLOG_HEADER_CYCLE_SIZE)
994 hblks++;
995 } else {
996 hblks = 1;
997 }
998 } else {
999 hblks = 1;
1000 }
1001 after_umount_blk = (i + hblks + (int)
1002 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1003 tail_lsn = atomic64_read(&log->l_tail_lsn);
1004 if (*head_blk == after_umount_blk &&
1005 be32_to_cpu(rhead->h_num_logops) == 1) {
1006 umount_data_blk = (i + hblks) % log->l_logBBsize;
1007 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1008 if (error)
1009 goto done;
1010
1011 op_head = (xlog_op_header_t *)offset;
1012 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1013 /*
1014 * Set tail and last sync so that newly written
1015 * log records will point recovery to after the
1016 * current unmount record.
1017 */
1018 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1019 log->l_curr_cycle, after_umount_blk);
1020 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1021 log->l_curr_cycle, after_umount_blk);
1022 *tail_blk = after_umount_blk;
1023
1024 /*
1025 * Note that the unmount was clean. If the unmount
1026 * was not clean, we need to know this to rebuild the
1027 * superblock counters from the perag headers if we
1028 * have a filesystem using non-persistent counters.
1029 */
1030 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1031 }
1032 }
1033
1034 /*
1035 * Make sure that there are no blocks in front of the head
1036 * with the same cycle number as the head. This can happen
1037 * because we allow multiple outstanding log writes concurrently,
1038 * and the later writes might make it out before earlier ones.
1039 *
1040 * We use the lsn from before modifying it so that we'll never
1041 * overwrite the unmount record after a clean unmount.
1042 *
1043 * Do this only if we are going to recover the filesystem
1044 *
1045 * NOTE: This used to say "if (!readonly)"
1046 * However on Linux, we can & do recover a read-only filesystem.
1047 * We only skip recovery if NORECOVERY is specified on mount,
1048 * in which case we would not be here.
1049 *
1050 * But... if the -device- itself is readonly, just skip this.
1051 * We can't recover this device anyway, so it won't matter.
1052 */
1053 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1054 error = xlog_clear_stale_blocks(log, tail_lsn);
1055
1056done:
1057 xlog_put_bp(bp);
1058
1059 if (error)
1060 xfs_warn(log->l_mp, "failed to locate log tail");
1061 return error;
1062}
1063
1064/*
1065 * Is the log zeroed at all?
1066 *
1067 * The last binary search should be changed to perform an X block read
1068 * once X becomes small enough. You can then search linearly through
1069 * the X blocks. This will cut down on the number of reads we need to do.
1070 *
1071 * If the log is partially zeroed, this routine will pass back the blkno
1072 * of the first block with cycle number 0. It won't have a complete LR
1073 * preceding it.
1074 *
1075 * Return:
1076 * 0 => the log is completely written to
1077 * -1 => use *blk_no as the first block of the log
1078 * >0 => error has occurred
1079 */
1080STATIC int
1081xlog_find_zeroed(
1082 xlog_t *log,
1083 xfs_daddr_t *blk_no)
1084{
1085 xfs_buf_t *bp;
1086 xfs_caddr_t offset;
1087 uint first_cycle, last_cycle;
1088 xfs_daddr_t new_blk, last_blk, start_blk;
1089 xfs_daddr_t num_scan_bblks;
1090 int error, log_bbnum = log->l_logBBsize;
1091
1092 *blk_no = 0;
1093
1094 /* check totally zeroed log */
1095 bp = xlog_get_bp(log, 1);
1096 if (!bp)
1097 return ENOMEM;
1098 error = xlog_bread(log, 0, 1, bp, &offset);
1099 if (error)
1100 goto bp_err;
1101
1102 first_cycle = xlog_get_cycle(offset);
1103 if (first_cycle == 0) { /* completely zeroed log */
1104 *blk_no = 0;
1105 xlog_put_bp(bp);
1106 return -1;
1107 }
1108
1109 /* check partially zeroed log */
1110 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1111 if (error)
1112 goto bp_err;
1113
1114 last_cycle = xlog_get_cycle(offset);
1115 if (last_cycle != 0) { /* log completely written to */
1116 xlog_put_bp(bp);
1117 return 0;
1118 } else if (first_cycle != 1) {
1119 /*
1120 * If the cycle of the last block is zero, the cycle of
1121 * the first block must be 1. If it's not, maybe we're
1122 * not looking at a log... Bail out.
1123 */
1124 xfs_warn(log->l_mp,
1125 "Log inconsistent or not a log (last==0, first!=1)");
1126 return XFS_ERROR(EINVAL);
1127 }
1128
1129 /* we have a partially zeroed log */
1130 last_blk = log_bbnum-1;
1131 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1132 goto bp_err;
1133
1134 /*
1135 * Validate the answer. Because there is no way to guarantee that
1136 * the entire log is made up of log records which are the same size,
1137 * we scan over the defined maximum blocks. At this point, the maximum
1138 * is not chosen to mean anything special. XXXmiken
1139 */
1140 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1141 ASSERT(num_scan_bblks <= INT_MAX);
1142
1143 if (last_blk < num_scan_bblks)
1144 num_scan_bblks = last_blk;
1145 start_blk = last_blk - num_scan_bblks;
1146
1147 /*
1148 * We search for any instances of cycle number 0 that occur before
1149 * our current estimate of the head. What we're trying to detect is
1150 * 1 ... | 0 | 1 | 0...
1151 * ^ binary search ends here
1152 */
1153 if ((error = xlog_find_verify_cycle(log, start_blk,
1154 (int)num_scan_bblks, 0, &new_blk)))
1155 goto bp_err;
1156 if (new_blk != -1)
1157 last_blk = new_blk;
1158
1159 /*
1160 * Potentially backup over partial log record write. We don't need
1161 * to search the end of the log because we know it is zero.
1162 */
1163 if ((error = xlog_find_verify_log_record(log, start_blk,
1164 &last_blk, 0)) == -1) {
1165 error = XFS_ERROR(EIO);
1166 goto bp_err;
1167 } else if (error)
1168 goto bp_err;
1169
1170 *blk_no = last_blk;
1171bp_err:
1172 xlog_put_bp(bp);
1173 if (error)
1174 return error;
1175 return -1;
1176}
1177
1178/*
1179 * These are simple subroutines used by xlog_clear_stale_blocks() below
1180 * to initialize a buffer full of empty log record headers and write
1181 * them into the log.
1182 */
1183STATIC void
1184xlog_add_record(
1185 xlog_t *log,
1186 xfs_caddr_t buf,
1187 int cycle,
1188 int block,
1189 int tail_cycle,
1190 int tail_block)
1191{
1192 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1193
1194 memset(buf, 0, BBSIZE);
1195 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1196 recp->h_cycle = cpu_to_be32(cycle);
1197 recp->h_version = cpu_to_be32(
1198 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1199 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1200 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1201 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1202 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1203}
1204
1205STATIC int
1206xlog_write_log_records(
1207 xlog_t *log,
1208 int cycle,
1209 int start_block,
1210 int blocks,
1211 int tail_cycle,
1212 int tail_block)
1213{
1214 xfs_caddr_t offset;
1215 xfs_buf_t *bp;
1216 int balign, ealign;
1217 int sectbb = log->l_sectBBsize;
1218 int end_block = start_block + blocks;
1219 int bufblks;
1220 int error = 0;
1221 int i, j = 0;
1222
1223 /*
1224 * Greedily allocate a buffer big enough to handle the full
1225 * range of basic blocks to be written. If that fails, try
1226 * a smaller size. We need to be able to write at least a
1227 * log sector, or we're out of luck.
1228 */
1229 bufblks = 1 << ffs(blocks);
1230 while (!(bp = xlog_get_bp(log, bufblks))) {
1231 bufblks >>= 1;
1232 if (bufblks < sectbb)
1233 return ENOMEM;
1234 }
1235
1236 /* We may need to do a read at the start to fill in part of
1237 * the buffer in the starting sector not covered by the first
1238 * write below.
1239 */
1240 balign = round_down(start_block, sectbb);
1241 if (balign != start_block) {
1242 error = xlog_bread_noalign(log, start_block, 1, bp);
1243 if (error)
1244 goto out_put_bp;
1245
1246 j = start_block - balign;
1247 }
1248
1249 for (i = start_block; i < end_block; i += bufblks) {
1250 int bcount, endcount;
1251
1252 bcount = min(bufblks, end_block - start_block);
1253 endcount = bcount - j;
1254
1255 /* We may need to do a read at the end to fill in part of
1256 * the buffer in the final sector not covered by the write.
1257 * If this is the same sector as the above read, skip it.
1258 */
1259 ealign = round_down(end_block, sectbb);
1260 if (j == 0 && (start_block + endcount > ealign)) {
1261 offset = bp->b_addr + BBTOB(ealign - start_block);
1262 error = xlog_bread_offset(log, ealign, sectbb,
1263 bp, offset);
1264 if (error)
1265 break;
1266
1267 }
1268
1269 offset = xlog_align(log, start_block, endcount, bp);
1270 for (; j < endcount; j++) {
1271 xlog_add_record(log, offset, cycle, i+j,
1272 tail_cycle, tail_block);
1273 offset += BBSIZE;
1274 }
1275 error = xlog_bwrite(log, start_block, endcount, bp);
1276 if (error)
1277 break;
1278 start_block += endcount;
1279 j = 0;
1280 }
1281
1282 out_put_bp:
1283 xlog_put_bp(bp);
1284 return error;
1285}
1286
1287/*
1288 * This routine is called to blow away any incomplete log writes out
1289 * in front of the log head. We do this so that we won't become confused
1290 * if we come up, write only a little bit more, and then crash again.
1291 * If we leave the partial log records out there, this situation could
1292 * cause us to think those partial writes are valid blocks since they
1293 * have the current cycle number. We get rid of them by overwriting them
1294 * with empty log records with the old cycle number rather than the
1295 * current one.
1296 *
1297 * The tail lsn is passed in rather than taken from
1298 * the log so that we will not write over the unmount record after a
1299 * clean unmount in a 512 block log. Doing so would leave the log without
1300 * any valid log records in it until a new one was written. If we crashed
1301 * during that time we would not be able to recover.
1302 */
1303STATIC int
1304xlog_clear_stale_blocks(
1305 xlog_t *log,
1306 xfs_lsn_t tail_lsn)
1307{
1308 int tail_cycle, head_cycle;
1309 int tail_block, head_block;
1310 int tail_distance, max_distance;
1311 int distance;
1312 int error;
1313
1314 tail_cycle = CYCLE_LSN(tail_lsn);
1315 tail_block = BLOCK_LSN(tail_lsn);
1316 head_cycle = log->l_curr_cycle;
1317 head_block = log->l_curr_block;
1318
1319 /*
1320 * Figure out the distance between the new head of the log
1321 * and the tail. We want to write over any blocks beyond the
1322 * head that we may have written just before the crash, but
1323 * we don't want to overwrite the tail of the log.
1324 */
1325 if (head_cycle == tail_cycle) {
1326 /*
1327 * The tail is behind the head in the physical log,
1328 * so the distance from the head to the tail is the
1329 * distance from the head to the end of the log plus
1330 * the distance from the beginning of the log to the
1331 * tail.
1332 */
1333 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1334 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1335 XFS_ERRLEVEL_LOW, log->l_mp);
1336 return XFS_ERROR(EFSCORRUPTED);
1337 }
1338 tail_distance = tail_block + (log->l_logBBsize - head_block);
1339 } else {
1340 /*
1341 * The head is behind the tail in the physical log,
1342 * so the distance from the head to the tail is just
1343 * the tail block minus the head block.
1344 */
1345 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1346 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1347 XFS_ERRLEVEL_LOW, log->l_mp);
1348 return XFS_ERROR(EFSCORRUPTED);
1349 }
1350 tail_distance = tail_block - head_block;
1351 }
1352
1353 /*
1354 * If the head is right up against the tail, we can't clear
1355 * anything.
1356 */
1357 if (tail_distance <= 0) {
1358 ASSERT(tail_distance == 0);
1359 return 0;
1360 }
1361
1362 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1363 /*
1364 * Take the smaller of the maximum amount of outstanding I/O
1365 * we could have and the distance to the tail to clear out.
1366 * We take the smaller so that we don't overwrite the tail and
1367 * we don't waste all day writing from the head to the tail
1368 * for no reason.
1369 */
1370 max_distance = MIN(max_distance, tail_distance);
1371
1372 if ((head_block + max_distance) <= log->l_logBBsize) {
1373 /*
1374 * We can stomp all the blocks we need to without
1375 * wrapping around the end of the log. Just do it
1376 * in a single write. Use the cycle number of the
1377 * current cycle minus one so that the log will look like:
1378 * n ... | n - 1 ...
1379 */
1380 error = xlog_write_log_records(log, (head_cycle - 1),
1381 head_block, max_distance, tail_cycle,
1382 tail_block);
1383 if (error)
1384 return error;
1385 } else {
1386 /*
1387 * We need to wrap around the end of the physical log in
1388 * order to clear all the blocks. Do it in two separate
1389 * I/Os. The first write should be from the head to the
1390 * end of the physical log, and it should use the current
1391 * cycle number minus one just like above.
1392 */
1393 distance = log->l_logBBsize - head_block;
1394 error = xlog_write_log_records(log, (head_cycle - 1),
1395 head_block, distance, tail_cycle,
1396 tail_block);
1397
1398 if (error)
1399 return error;
1400
1401 /*
1402 * Now write the blocks at the start of the physical log.
1403 * This writes the remainder of the blocks we want to clear.
1404 * It uses the current cycle number since we're now on the
1405 * same cycle as the head so that we get:
1406 * n ... n ... | n - 1 ...
1407 * ^^^^^ blocks we're writing
1408 */
1409 distance = max_distance - (log->l_logBBsize - head_block);
1410 error = xlog_write_log_records(log, head_cycle, 0, distance,
1411 tail_cycle, tail_block);
1412 if (error)
1413 return error;
1414 }
1415
1416 return 0;
1417}
1418
1419/******************************************************************************
1420 *
1421 * Log recover routines
1422 *
1423 ******************************************************************************
1424 */
1425
1426STATIC xlog_recover_t *
1427xlog_recover_find_tid(
1428 struct hlist_head *head,
1429 xlog_tid_t tid)
1430{
1431 xlog_recover_t *trans;
1432 struct hlist_node *n;
1433
1434 hlist_for_each_entry(trans, n, head, r_list) {
1435 if (trans->r_log_tid == tid)
1436 return trans;
1437 }
1438 return NULL;
1439}
1440
1441STATIC void
1442xlog_recover_new_tid(
1443 struct hlist_head *head,
1444 xlog_tid_t tid,
1445 xfs_lsn_t lsn)
1446{
1447 xlog_recover_t *trans;
1448
1449 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1450 trans->r_log_tid = tid;
1451 trans->r_lsn = lsn;
1452 INIT_LIST_HEAD(&trans->r_itemq);
1453
1454 INIT_HLIST_NODE(&trans->r_list);
1455 hlist_add_head(&trans->r_list, head);
1456}
1457
1458STATIC void
1459xlog_recover_add_item(
1460 struct list_head *head)
1461{
1462 xlog_recover_item_t *item;
1463
1464 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1465 INIT_LIST_HEAD(&item->ri_list);
1466 list_add_tail(&item->ri_list, head);
1467}
1468
1469STATIC int
1470xlog_recover_add_to_cont_trans(
1471 struct log *log,
1472 xlog_recover_t *trans,
1473 xfs_caddr_t dp,
1474 int len)
1475{
1476 xlog_recover_item_t *item;
1477 xfs_caddr_t ptr, old_ptr;
1478 int old_len;
1479
1480 if (list_empty(&trans->r_itemq)) {
1481 /* finish copying rest of trans header */
1482 xlog_recover_add_item(&trans->r_itemq);
1483 ptr = (xfs_caddr_t) &trans->r_theader +
1484 sizeof(xfs_trans_header_t) - len;
1485 memcpy(ptr, dp, len); /* d, s, l */
1486 return 0;
1487 }
1488 /* take the tail entry */
1489 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1490
1491 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1492 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1493
1494 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1495 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1496 item->ri_buf[item->ri_cnt-1].i_len += len;
1497 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1498 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1499 return 0;
1500}
1501
1502/*
1503 * The next region to add is the start of a new region. It could be
1504 * a whole region or it could be the first part of a new region. Because
1505 * of this, the assumption here is that the type and size fields of all
1506 * format structures fit into the first 32 bits of the structure.
1507 *
1508 * This works because all regions must be 32 bit aligned. Therefore, we
1509 * either have both fields or we have neither field. In the case we have
1510 * neither field, the data part of the region is zero length. We only have
1511 * a log_op_header and can throw away the header since a new one will appear
1512 * later. If we have at least 4 bytes, then we can determine how many regions
1513 * will appear in the current log item.
1514 */
1515STATIC int
1516xlog_recover_add_to_trans(
1517 struct log *log,
1518 xlog_recover_t *trans,
1519 xfs_caddr_t dp,
1520 int len)
1521{
1522 xfs_inode_log_format_t *in_f; /* any will do */
1523 xlog_recover_item_t *item;
1524 xfs_caddr_t ptr;
1525
1526 if (!len)
1527 return 0;
1528 if (list_empty(&trans->r_itemq)) {
1529 /* we need to catch log corruptions here */
1530 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1531 xfs_warn(log->l_mp, "%s: bad header magic number",
1532 __func__);
1533 ASSERT(0);
1534 return XFS_ERROR(EIO);
1535 }
1536 if (len == sizeof(xfs_trans_header_t))
1537 xlog_recover_add_item(&trans->r_itemq);
1538 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1539 return 0;
1540 }
1541
1542 ptr = kmem_alloc(len, KM_SLEEP);
1543 memcpy(ptr, dp, len);
1544 in_f = (xfs_inode_log_format_t *)ptr;
1545
1546 /* take the tail entry */
1547 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1548 if (item->ri_total != 0 &&
1549 item->ri_total == item->ri_cnt) {
1550 /* tail item is in use, get a new one */
1551 xlog_recover_add_item(&trans->r_itemq);
1552 item = list_entry(trans->r_itemq.prev,
1553 xlog_recover_item_t, ri_list);
1554 }
1555
1556 if (item->ri_total == 0) { /* first region to be added */
1557 if (in_f->ilf_size == 0 ||
1558 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1559 xfs_warn(log->l_mp,
1560 "bad number of regions (%d) in inode log format",
1561 in_f->ilf_size);
1562 ASSERT(0);
1563 return XFS_ERROR(EIO);
1564 }
1565
1566 item->ri_total = in_f->ilf_size;
1567 item->ri_buf =
1568 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1569 KM_SLEEP);
1570 }
1571 ASSERT(item->ri_total > item->ri_cnt);
1572 /* Description region is ri_buf[0] */
1573 item->ri_buf[item->ri_cnt].i_addr = ptr;
1574 item->ri_buf[item->ri_cnt].i_len = len;
1575 item->ri_cnt++;
1576 trace_xfs_log_recover_item_add(log, trans, item, 0);
1577 return 0;
1578}
1579
1580/*
1581 * Sort the log items in the transaction. Cancelled buffers need
1582 * to be put first so they are processed before any items that might
1583 * modify the buffers. If they are cancelled, then the modifications
1584 * don't need to be replayed.
1585 */
1586STATIC int
1587xlog_recover_reorder_trans(
1588 struct log *log,
1589 xlog_recover_t *trans,
1590 int pass)
1591{
1592 xlog_recover_item_t *item, *n;
1593 LIST_HEAD(sort_list);
1594
1595 list_splice_init(&trans->r_itemq, &sort_list);
1596 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1597 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1598
1599 switch (ITEM_TYPE(item)) {
1600 case XFS_LI_BUF:
1601 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1602 trace_xfs_log_recover_item_reorder_head(log,
1603 trans, item, pass);
1604 list_move(&item->ri_list, &trans->r_itemq);
1605 break;
1606 }
1607 case XFS_LI_INODE:
1608 case XFS_LI_DQUOT:
1609 case XFS_LI_QUOTAOFF:
1610 case XFS_LI_EFD:
1611 case XFS_LI_EFI:
1612 trace_xfs_log_recover_item_reorder_tail(log,
1613 trans, item, pass);
1614 list_move_tail(&item->ri_list, &trans->r_itemq);
1615 break;
1616 default:
1617 xfs_warn(log->l_mp,
1618 "%s: unrecognized type of log operation",
1619 __func__);
1620 ASSERT(0);
1621 return XFS_ERROR(EIO);
1622 }
1623 }
1624 ASSERT(list_empty(&sort_list));
1625 return 0;
1626}
1627
1628/*
1629 * Build up the table of buf cancel records so that we don't replay
1630 * cancelled data in the second pass. For buffer records that are
1631 * not cancel records, there is nothing to do here so we just return.
1632 *
1633 * If we get a cancel record which is already in the table, this indicates
1634 * that the buffer was cancelled multiple times. In order to ensure
1635 * that during pass 2 we keep the record in the table until we reach its
1636 * last occurrence in the log, we keep a reference count in the cancel
1637 * record in the table to tell us how many times we expect to see this
1638 * record during the second pass.
1639 */
1640STATIC int
1641xlog_recover_buffer_pass1(
1642 struct log *log,
1643 xlog_recover_item_t *item)
1644{
1645 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1646 struct list_head *bucket;
1647 struct xfs_buf_cancel *bcp;
1648
1649 /*
1650 * If this isn't a cancel buffer item, then just return.
1651 */
1652 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1653 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1654 return 0;
1655 }
1656
1657 /*
1658 * Insert an xfs_buf_cancel record into the hash table of them.
1659 * If there is already an identical record, bump its reference count.
1660 */
1661 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1662 list_for_each_entry(bcp, bucket, bc_list) {
1663 if (bcp->bc_blkno == buf_f->blf_blkno &&
1664 bcp->bc_len == buf_f->blf_len) {
1665 bcp->bc_refcount++;
1666 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1667 return 0;
1668 }
1669 }
1670
1671 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1672 bcp->bc_blkno = buf_f->blf_blkno;
1673 bcp->bc_len = buf_f->blf_len;
1674 bcp->bc_refcount = 1;
1675 list_add_tail(&bcp->bc_list, bucket);
1676
1677 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1678 return 0;
1679}
1680
1681/*
1682 * Check to see whether the buffer being recovered has a corresponding
1683 * entry in the buffer cancel record table. If it does then return 1
1684 * so that it will be cancelled, otherwise return 0. If the buffer is
1685 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1686 * the refcount on the entry in the table and remove it from the table
1687 * if this is the last reference.
1688 *
1689 * We remove the cancel record from the table when we encounter its
1690 * last occurrence in the log so that if the same buffer is re-used
1691 * again after its last cancellation we actually replay the changes
1692 * made at that point.
1693 */
1694STATIC int
1695xlog_check_buffer_cancelled(
1696 struct log *log,
1697 xfs_daddr_t blkno,
1698 uint len,
1699 ushort flags)
1700{
1701 struct list_head *bucket;
1702 struct xfs_buf_cancel *bcp;
1703
1704 if (log->l_buf_cancel_table == NULL) {
1705 /*
1706 * There is nothing in the table built in pass one,
1707 * so this buffer must not be cancelled.
1708 */
1709 ASSERT(!(flags & XFS_BLF_CANCEL));
1710 return 0;
1711 }
1712
1713 /*
1714 * Search for an entry in the cancel table that matches our buffer.
1715 */
1716 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1717 list_for_each_entry(bcp, bucket, bc_list) {
1718 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1719 goto found;
1720 }
1721
1722 /*
1723 * We didn't find a corresponding entry in the table, so return 0 so
1724 * that the buffer is NOT cancelled.
1725 */
1726 ASSERT(!(flags & XFS_BLF_CANCEL));
1727 return 0;
1728
1729found:
1730 /*
1731 * We've go a match, so return 1 so that the recovery of this buffer
1732 * is cancelled. If this buffer is actually a buffer cancel log
1733 * item, then decrement the refcount on the one in the table and
1734 * remove it if this is the last reference.
1735 */
1736 if (flags & XFS_BLF_CANCEL) {
1737 if (--bcp->bc_refcount == 0) {
1738 list_del(&bcp->bc_list);
1739 kmem_free(bcp);
1740 }
1741 }
1742 return 1;
1743}
1744
1745/*
1746 * Perform recovery for a buffer full of inodes. In these buffers, the only
1747 * data which should be recovered is that which corresponds to the
1748 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1749 * data for the inodes is always logged through the inodes themselves rather
1750 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1751 *
1752 * The only time when buffers full of inodes are fully recovered is when the
1753 * buffer is full of newly allocated inodes. In this case the buffer will
1754 * not be marked as an inode buffer and so will be sent to
1755 * xlog_recover_do_reg_buffer() below during recovery.
1756 */
1757STATIC int
1758xlog_recover_do_inode_buffer(
1759 struct xfs_mount *mp,
1760 xlog_recover_item_t *item,
1761 struct xfs_buf *bp,
1762 xfs_buf_log_format_t *buf_f)
1763{
1764 int i;
1765 int item_index = 0;
1766 int bit = 0;
1767 int nbits = 0;
1768 int reg_buf_offset = 0;
1769 int reg_buf_bytes = 0;
1770 int next_unlinked_offset;
1771 int inodes_per_buf;
1772 xfs_agino_t *logged_nextp;
1773 xfs_agino_t *buffer_nextp;
1774
1775 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1776
1777 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1778 for (i = 0; i < inodes_per_buf; i++) {
1779 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1780 offsetof(xfs_dinode_t, di_next_unlinked);
1781
1782 while (next_unlinked_offset >=
1783 (reg_buf_offset + reg_buf_bytes)) {
1784 /*
1785 * The next di_next_unlinked field is beyond
1786 * the current logged region. Find the next
1787 * logged region that contains or is beyond
1788 * the current di_next_unlinked field.
1789 */
1790 bit += nbits;
1791 bit = xfs_next_bit(buf_f->blf_data_map,
1792 buf_f->blf_map_size, bit);
1793
1794 /*
1795 * If there are no more logged regions in the
1796 * buffer, then we're done.
1797 */
1798 if (bit == -1)
1799 return 0;
1800
1801 nbits = xfs_contig_bits(buf_f->blf_data_map,
1802 buf_f->blf_map_size, bit);
1803 ASSERT(nbits > 0);
1804 reg_buf_offset = bit << XFS_BLF_SHIFT;
1805 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1806 item_index++;
1807 }
1808
1809 /*
1810 * If the current logged region starts after the current
1811 * di_next_unlinked field, then move on to the next
1812 * di_next_unlinked field.
1813 */
1814 if (next_unlinked_offset < reg_buf_offset)
1815 continue;
1816
1817 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1818 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1819 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1820
1821 /*
1822 * The current logged region contains a copy of the
1823 * current di_next_unlinked field. Extract its value
1824 * and copy it to the buffer copy.
1825 */
1826 logged_nextp = item->ri_buf[item_index].i_addr +
1827 next_unlinked_offset - reg_buf_offset;
1828 if (unlikely(*logged_nextp == 0)) {
1829 xfs_alert(mp,
1830 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1831 "Trying to replay bad (0) inode di_next_unlinked field.",
1832 item, bp);
1833 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1834 XFS_ERRLEVEL_LOW, mp);
1835 return XFS_ERROR(EFSCORRUPTED);
1836 }
1837
1838 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1839 next_unlinked_offset);
1840 *buffer_nextp = *logged_nextp;
1841 }
1842
1843 return 0;
1844}
1845
1846/*
1847 * Perform a 'normal' buffer recovery. Each logged region of the
1848 * buffer should be copied over the corresponding region in the
1849 * given buffer. The bitmap in the buf log format structure indicates
1850 * where to place the logged data.
1851 */
1852STATIC void
1853xlog_recover_do_reg_buffer(
1854 struct xfs_mount *mp,
1855 xlog_recover_item_t *item,
1856 struct xfs_buf *bp,
1857 xfs_buf_log_format_t *buf_f)
1858{
1859 int i;
1860 int bit;
1861 int nbits;
1862 int error;
1863
1864 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1865
1866 bit = 0;
1867 i = 1; /* 0 is the buf format structure */
1868 while (1) {
1869 bit = xfs_next_bit(buf_f->blf_data_map,
1870 buf_f->blf_map_size, bit);
1871 if (bit == -1)
1872 break;
1873 nbits = xfs_contig_bits(buf_f->blf_data_map,
1874 buf_f->blf_map_size, bit);
1875 ASSERT(nbits > 0);
1876 ASSERT(item->ri_buf[i].i_addr != NULL);
1877 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1878 ASSERT(XFS_BUF_COUNT(bp) >=
1879 ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1880
1881 /*
1882 * Do a sanity check if this is a dquot buffer. Just checking
1883 * the first dquot in the buffer should do. XXXThis is
1884 * probably a good thing to do for other buf types also.
1885 */
1886 error = 0;
1887 if (buf_f->blf_flags &
1888 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1889 if (item->ri_buf[i].i_addr == NULL) {
1890 xfs_alert(mp,
1891 "XFS: NULL dquot in %s.", __func__);
1892 goto next;
1893 }
1894 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1895 xfs_alert(mp,
1896 "XFS: dquot too small (%d) in %s.",
1897 item->ri_buf[i].i_len, __func__);
1898 goto next;
1899 }
1900 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1901 -1, 0, XFS_QMOPT_DOWARN,
1902 "dquot_buf_recover");
1903 if (error)
1904 goto next;
1905 }
1906
1907 memcpy(xfs_buf_offset(bp,
1908 (uint)bit << XFS_BLF_SHIFT), /* dest */
1909 item->ri_buf[i].i_addr, /* source */
1910 nbits<<XFS_BLF_SHIFT); /* length */
1911 next:
1912 i++;
1913 bit += nbits;
1914 }
1915
1916 /* Shouldn't be any more regions */
1917 ASSERT(i == item->ri_total);
1918}
1919
1920/*
1921 * Do some primitive error checking on ondisk dquot data structures.
1922 */
1923int
1924xfs_qm_dqcheck(
1925 struct xfs_mount *mp,
1926 xfs_disk_dquot_t *ddq,
1927 xfs_dqid_t id,
1928 uint type, /* used only when IO_dorepair is true */
1929 uint flags,
1930 char *str)
1931{
1932 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1933 int errs = 0;
1934
1935 /*
1936 * We can encounter an uninitialized dquot buffer for 2 reasons:
1937 * 1. If we crash while deleting the quotainode(s), and those blks got
1938 * used for user data. This is because we take the path of regular
1939 * file deletion; however, the size field of quotainodes is never
1940 * updated, so all the tricks that we play in itruncate_finish
1941 * don't quite matter.
1942 *
1943 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1944 * But the allocation will be replayed so we'll end up with an
1945 * uninitialized quota block.
1946 *
1947 * This is all fine; things are still consistent, and we haven't lost
1948 * any quota information. Just don't complain about bad dquot blks.
1949 */
1950 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1951 if (flags & XFS_QMOPT_DOWARN)
1952 xfs_alert(mp,
1953 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1954 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1955 errs++;
1956 }
1957 if (ddq->d_version != XFS_DQUOT_VERSION) {
1958 if (flags & XFS_QMOPT_DOWARN)
1959 xfs_alert(mp,
1960 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1961 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1962 errs++;
1963 }
1964
1965 if (ddq->d_flags != XFS_DQ_USER &&
1966 ddq->d_flags != XFS_DQ_PROJ &&
1967 ddq->d_flags != XFS_DQ_GROUP) {
1968 if (flags & XFS_QMOPT_DOWARN)
1969 xfs_alert(mp,
1970 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1971 str, id, ddq->d_flags);
1972 errs++;
1973 }
1974
1975 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1976 if (flags & XFS_QMOPT_DOWARN)
1977 xfs_alert(mp,
1978 "%s : ondisk-dquot 0x%p, ID mismatch: "
1979 "0x%x expected, found id 0x%x",
1980 str, ddq, id, be32_to_cpu(ddq->d_id));
1981 errs++;
1982 }
1983
1984 if (!errs && ddq->d_id) {
1985 if (ddq->d_blk_softlimit &&
1986 be64_to_cpu(ddq->d_bcount) >=
1987 be64_to_cpu(ddq->d_blk_softlimit)) {
1988 if (!ddq->d_btimer) {
1989 if (flags & XFS_QMOPT_DOWARN)
1990 xfs_alert(mp,
1991 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1992 str, (int)be32_to_cpu(ddq->d_id), ddq);
1993 errs++;
1994 }
1995 }
1996 if (ddq->d_ino_softlimit &&
1997 be64_to_cpu(ddq->d_icount) >=
1998 be64_to_cpu(ddq->d_ino_softlimit)) {
1999 if (!ddq->d_itimer) {
2000 if (flags & XFS_QMOPT_DOWARN)
2001 xfs_alert(mp,
2002 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2003 str, (int)be32_to_cpu(ddq->d_id), ddq);
2004 errs++;
2005 }
2006 }
2007 if (ddq->d_rtb_softlimit &&
2008 be64_to_cpu(ddq->d_rtbcount) >=
2009 be64_to_cpu(ddq->d_rtb_softlimit)) {
2010 if (!ddq->d_rtbtimer) {
2011 if (flags & XFS_QMOPT_DOWARN)
2012 xfs_alert(mp,
2013 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2014 str, (int)be32_to_cpu(ddq->d_id), ddq);
2015 errs++;
2016 }
2017 }
2018 }
2019
2020 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2021 return errs;
2022
2023 if (flags & XFS_QMOPT_DOWARN)
2024 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2025
2026 /*
2027 * Typically, a repair is only requested by quotacheck.
2028 */
2029 ASSERT(id != -1);
2030 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2031 memset(d, 0, sizeof(xfs_dqblk_t));
2032
2033 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2034 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2035 d->dd_diskdq.d_flags = type;
2036 d->dd_diskdq.d_id = cpu_to_be32(id);
2037
2038 return errs;
2039}
2040
2041/*
2042 * Perform a dquot buffer recovery.
2043 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2044 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2045 * Else, treat it as a regular buffer and do recovery.
2046 */
2047STATIC void
2048xlog_recover_do_dquot_buffer(
2049 xfs_mount_t *mp,
2050 xlog_t *log,
2051 xlog_recover_item_t *item,
2052 xfs_buf_t *bp,
2053 xfs_buf_log_format_t *buf_f)
2054{
2055 uint type;
2056
2057 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2058
2059 /*
2060 * Filesystems are required to send in quota flags at mount time.
2061 */
2062 if (mp->m_qflags == 0) {
2063 return;
2064 }
2065
2066 type = 0;
2067 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2068 type |= XFS_DQ_USER;
2069 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2070 type |= XFS_DQ_PROJ;
2071 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2072 type |= XFS_DQ_GROUP;
2073 /*
2074 * This type of quotas was turned off, so ignore this buffer
2075 */
2076 if (log->l_quotaoffs_flag & type)
2077 return;
2078
2079 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2080}
2081
2082/*
2083 * This routine replays a modification made to a buffer at runtime.
2084 * There are actually two types of buffer, regular and inode, which
2085 * are handled differently. Inode buffers are handled differently
2086 * in that we only recover a specific set of data from them, namely
2087 * the inode di_next_unlinked fields. This is because all other inode
2088 * data is actually logged via inode records and any data we replay
2089 * here which overlaps that may be stale.
2090 *
2091 * When meta-data buffers are freed at run time we log a buffer item
2092 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2093 * of the buffer in the log should not be replayed at recovery time.
2094 * This is so that if the blocks covered by the buffer are reused for
2095 * file data before we crash we don't end up replaying old, freed
2096 * meta-data into a user's file.
2097 *
2098 * To handle the cancellation of buffer log items, we make two passes
2099 * over the log during recovery. During the first we build a table of
2100 * those buffers which have been cancelled, and during the second we
2101 * only replay those buffers which do not have corresponding cancel
2102 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2103 * for more details on the implementation of the table of cancel records.
2104 */
2105STATIC int
2106xlog_recover_buffer_pass2(
2107 xlog_t *log,
2108 xlog_recover_item_t *item)
2109{
2110 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2111 xfs_mount_t *mp = log->l_mp;
2112 xfs_buf_t *bp;
2113 int error;
2114 uint buf_flags;
2115
2116 /*
2117 * In this pass we only want to recover all the buffers which have
2118 * not been cancelled and are not cancellation buffers themselves.
2119 */
2120 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2121 buf_f->blf_len, buf_f->blf_flags)) {
2122 trace_xfs_log_recover_buf_cancel(log, buf_f);
2123 return 0;
2124 }
2125
2126 trace_xfs_log_recover_buf_recover(log, buf_f);
2127
2128 buf_flags = XBF_LOCK;
2129 if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
2130 buf_flags |= XBF_MAPPED;
2131
2132 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2133 buf_flags);
2134 if (!bp)
2135 return XFS_ERROR(ENOMEM);
2136 error = bp->b_error;
2137 if (error) {
2138 xfs_ioerror_alert("xlog_recover_do..(read#1)", mp,
2139 bp, buf_f->blf_blkno);
2140 xfs_buf_relse(bp);
2141 return error;
2142 }
2143
2144 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2145 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2146 } else if (buf_f->blf_flags &
2147 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2148 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2149 } else {
2150 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2151 }
2152 if (error)
2153 return XFS_ERROR(error);
2154
2155 /*
2156 * Perform delayed write on the buffer. Asynchronous writes will be
2157 * slower when taking into account all the buffers to be flushed.
2158 *
2159 * Also make sure that only inode buffers with good sizes stay in
2160 * the buffer cache. The kernel moves inodes in buffers of 1 block
2161 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2162 * buffers in the log can be a different size if the log was generated
2163 * by an older kernel using unclustered inode buffers or a newer kernel
2164 * running with a different inode cluster size. Regardless, if the
2165 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2166 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2167 * the buffer out of the buffer cache so that the buffer won't
2168 * overlap with future reads of those inodes.
2169 */
2170 if (XFS_DINODE_MAGIC ==
2171 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2172 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2173 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2174 XFS_BUF_STALE(bp);
2175 error = xfs_bwrite(mp, bp);
2176 } else {
2177 ASSERT(bp->b_target->bt_mount == mp);
2178 bp->b_iodone = xlog_recover_iodone;
2179 xfs_bdwrite(mp, bp);
2180 }
2181
2182 return (error);
2183}
2184
2185STATIC int
2186xlog_recover_inode_pass2(
2187 xlog_t *log,
2188 xlog_recover_item_t *item)
2189{
2190 xfs_inode_log_format_t *in_f;
2191 xfs_mount_t *mp = log->l_mp;
2192 xfs_buf_t *bp;
2193 xfs_dinode_t *dip;
2194 int len;
2195 xfs_caddr_t src;
2196 xfs_caddr_t dest;
2197 int error;
2198 int attr_index;
2199 uint fields;
2200 xfs_icdinode_t *dicp;
2201 int need_free = 0;
2202
2203 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2204 in_f = item->ri_buf[0].i_addr;
2205 } else {
2206 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2207 need_free = 1;
2208 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2209 if (error)
2210 goto error;
2211 }
2212
2213 /*
2214 * Inode buffers can be freed, look out for it,
2215 * and do not replay the inode.
2216 */
2217 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2218 in_f->ilf_len, 0)) {
2219 error = 0;
2220 trace_xfs_log_recover_inode_cancel(log, in_f);
2221 goto error;
2222 }
2223 trace_xfs_log_recover_inode_recover(log, in_f);
2224
2225 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2226 XBF_LOCK);
2227 if (!bp) {
2228 error = ENOMEM;
2229 goto error;
2230 }
2231 error = bp->b_error;
2232 if (error) {
2233 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2234 bp, in_f->ilf_blkno);
2235 xfs_buf_relse(bp);
2236 goto error;
2237 }
2238 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2239 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2240
2241 /*
2242 * Make sure the place we're flushing out to really looks
2243 * like an inode!
2244 */
2245 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2246 xfs_buf_relse(bp);
2247 xfs_alert(mp,
2248 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2249 __func__, dip, bp, in_f->ilf_ino);
2250 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2251 XFS_ERRLEVEL_LOW, mp);
2252 error = EFSCORRUPTED;
2253 goto error;
2254 }
2255 dicp = item->ri_buf[1].i_addr;
2256 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2257 xfs_buf_relse(bp);
2258 xfs_alert(mp,
2259 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2260 __func__, item, in_f->ilf_ino);
2261 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2262 XFS_ERRLEVEL_LOW, mp);
2263 error = EFSCORRUPTED;
2264 goto error;
2265 }
2266
2267 /* Skip replay when the on disk inode is newer than the log one */
2268 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2269 /*
2270 * Deal with the wrap case, DI_MAX_FLUSH is less
2271 * than smaller numbers
2272 */
2273 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2274 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2275 /* do nothing */
2276 } else {
2277 xfs_buf_relse(bp);
2278 trace_xfs_log_recover_inode_skip(log, in_f);
2279 error = 0;
2280 goto error;
2281 }
2282 }
2283 /* Take the opportunity to reset the flush iteration count */
2284 dicp->di_flushiter = 0;
2285
2286 if (unlikely(S_ISREG(dicp->di_mode))) {
2287 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2288 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2289 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2290 XFS_ERRLEVEL_LOW, mp, dicp);
2291 xfs_buf_relse(bp);
2292 xfs_alert(mp,
2293 "%s: Bad regular inode log record, rec ptr 0x%p, "
2294 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2295 __func__, item, dip, bp, in_f->ilf_ino);
2296 error = EFSCORRUPTED;
2297 goto error;
2298 }
2299 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2300 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2301 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2302 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2303 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2304 XFS_ERRLEVEL_LOW, mp, dicp);
2305 xfs_buf_relse(bp);
2306 xfs_alert(mp,
2307 "%s: Bad dir inode log record, rec ptr 0x%p, "
2308 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2309 __func__, item, dip, bp, in_f->ilf_ino);
2310 error = EFSCORRUPTED;
2311 goto error;
2312 }
2313 }
2314 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2315 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2316 XFS_ERRLEVEL_LOW, mp, dicp);
2317 xfs_buf_relse(bp);
2318 xfs_alert(mp,
2319 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2320 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2321 __func__, item, dip, bp, in_f->ilf_ino,
2322 dicp->di_nextents + dicp->di_anextents,
2323 dicp->di_nblocks);
2324 error = EFSCORRUPTED;
2325 goto error;
2326 }
2327 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2328 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2329 XFS_ERRLEVEL_LOW, mp, dicp);
2330 xfs_buf_relse(bp);
2331 xfs_alert(mp,
2332 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2333 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2334 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2335 error = EFSCORRUPTED;
2336 goto error;
2337 }
2338 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2339 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2340 XFS_ERRLEVEL_LOW, mp, dicp);
2341 xfs_buf_relse(bp);
2342 xfs_alert(mp,
2343 "%s: Bad inode log record length %d, rec ptr 0x%p",
2344 __func__, item->ri_buf[1].i_len, item);
2345 error = EFSCORRUPTED;
2346 goto error;
2347 }
2348
2349 /* The core is in in-core format */
2350 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2351
2352 /* the rest is in on-disk format */
2353 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2354 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2355 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2356 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2357 }
2358
2359 fields = in_f->ilf_fields;
2360 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2361 case XFS_ILOG_DEV:
2362 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2363 break;
2364 case XFS_ILOG_UUID:
2365 memcpy(XFS_DFORK_DPTR(dip),
2366 &in_f->ilf_u.ilfu_uuid,
2367 sizeof(uuid_t));
2368 break;
2369 }
2370
2371 if (in_f->ilf_size == 2)
2372 goto write_inode_buffer;
2373 len = item->ri_buf[2].i_len;
2374 src = item->ri_buf[2].i_addr;
2375 ASSERT(in_f->ilf_size <= 4);
2376 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2377 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2378 (len == in_f->ilf_dsize));
2379
2380 switch (fields & XFS_ILOG_DFORK) {
2381 case XFS_ILOG_DDATA:
2382 case XFS_ILOG_DEXT:
2383 memcpy(XFS_DFORK_DPTR(dip), src, len);
2384 break;
2385
2386 case XFS_ILOG_DBROOT:
2387 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2388 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2389 XFS_DFORK_DSIZE(dip, mp));
2390 break;
2391
2392 default:
2393 /*
2394 * There are no data fork flags set.
2395 */
2396 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2397 break;
2398 }
2399
2400 /*
2401 * If we logged any attribute data, recover it. There may or
2402 * may not have been any other non-core data logged in this
2403 * transaction.
2404 */
2405 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2406 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2407 attr_index = 3;
2408 } else {
2409 attr_index = 2;
2410 }
2411 len = item->ri_buf[attr_index].i_len;
2412 src = item->ri_buf[attr_index].i_addr;
2413 ASSERT(len == in_f->ilf_asize);
2414
2415 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2416 case XFS_ILOG_ADATA:
2417 case XFS_ILOG_AEXT:
2418 dest = XFS_DFORK_APTR(dip);
2419 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2420 memcpy(dest, src, len);
2421 break;
2422
2423 case XFS_ILOG_ABROOT:
2424 dest = XFS_DFORK_APTR(dip);
2425 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2426 len, (xfs_bmdr_block_t*)dest,
2427 XFS_DFORK_ASIZE(dip, mp));
2428 break;
2429
2430 default:
2431 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2432 ASSERT(0);
2433 xfs_buf_relse(bp);
2434 error = EIO;
2435 goto error;
2436 }
2437 }
2438
2439write_inode_buffer:
2440 ASSERT(bp->b_target->bt_mount == mp);
2441 bp->b_iodone = xlog_recover_iodone;
2442 xfs_bdwrite(mp, bp);
2443error:
2444 if (need_free)
2445 kmem_free(in_f);
2446 return XFS_ERROR(error);
2447}
2448
2449/*
2450 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2451 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2452 * of that type.
2453 */
2454STATIC int
2455xlog_recover_quotaoff_pass1(
2456 xlog_t *log,
2457 xlog_recover_item_t *item)
2458{
2459 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2460 ASSERT(qoff_f);
2461
2462 /*
2463 * The logitem format's flag tells us if this was user quotaoff,
2464 * group/project quotaoff or both.
2465 */
2466 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2467 log->l_quotaoffs_flag |= XFS_DQ_USER;
2468 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2469 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2470 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2471 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2472
2473 return (0);
2474}
2475
2476/*
2477 * Recover a dquot record
2478 */
2479STATIC int
2480xlog_recover_dquot_pass2(
2481 xlog_t *log,
2482 xlog_recover_item_t *item)
2483{
2484 xfs_mount_t *mp = log->l_mp;
2485 xfs_buf_t *bp;
2486 struct xfs_disk_dquot *ddq, *recddq;
2487 int error;
2488 xfs_dq_logformat_t *dq_f;
2489 uint type;
2490
2491
2492 /*
2493 * Filesystems are required to send in quota flags at mount time.
2494 */
2495 if (mp->m_qflags == 0)
2496 return (0);
2497
2498 recddq = item->ri_buf[1].i_addr;
2499 if (recddq == NULL) {
2500 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2501 return XFS_ERROR(EIO);
2502 }
2503 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2504 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2505 item->ri_buf[1].i_len, __func__);
2506 return XFS_ERROR(EIO);
2507 }
2508
2509 /*
2510 * This type of quotas was turned off, so ignore this record.
2511 */
2512 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2513 ASSERT(type);
2514 if (log->l_quotaoffs_flag & type)
2515 return (0);
2516
2517 /*
2518 * At this point we know that quota was _not_ turned off.
2519 * Since the mount flags are not indicating to us otherwise, this
2520 * must mean that quota is on, and the dquot needs to be replayed.
2521 * Remember that we may not have fully recovered the superblock yet,
2522 * so we can't do the usual trick of looking at the SB quota bits.
2523 *
2524 * The other possibility, of course, is that the quota subsystem was
2525 * removed since the last mount - ENOSYS.
2526 */
2527 dq_f = item->ri_buf[0].i_addr;
2528 ASSERT(dq_f);
2529 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2530 "xlog_recover_dquot_pass2 (log copy)");
2531 if (error)
2532 return XFS_ERROR(EIO);
2533 ASSERT(dq_f->qlf_len == 1);
2534
2535 error = xfs_read_buf(mp, mp->m_ddev_targp,
2536 dq_f->qlf_blkno,
2537 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2538 0, &bp);
2539 if (error) {
2540 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2541 bp, dq_f->qlf_blkno);
2542 return error;
2543 }
2544 ASSERT(bp);
2545 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2546
2547 /*
2548 * At least the magic num portion should be on disk because this
2549 * was among a chunk of dquots created earlier, and we did some
2550 * minimal initialization then.
2551 */
2552 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2553 "xlog_recover_dquot_pass2");
2554 if (error) {
2555 xfs_buf_relse(bp);
2556 return XFS_ERROR(EIO);
2557 }
2558
2559 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2560
2561 ASSERT(dq_f->qlf_size == 2);
2562 ASSERT(bp->b_target->bt_mount == mp);
2563 bp->b_iodone = xlog_recover_iodone;
2564 xfs_bdwrite(mp, bp);
2565
2566 return (0);
2567}
2568
2569/*
2570 * This routine is called to create an in-core extent free intent
2571 * item from the efi format structure which was logged on disk.
2572 * It allocates an in-core efi, copies the extents from the format
2573 * structure into it, and adds the efi to the AIL with the given
2574 * LSN.
2575 */
2576STATIC int
2577xlog_recover_efi_pass2(
2578 xlog_t *log,
2579 xlog_recover_item_t *item,
2580 xfs_lsn_t lsn)
2581{
2582 int error;
2583 xfs_mount_t *mp = log->l_mp;
2584 xfs_efi_log_item_t *efip;
2585 xfs_efi_log_format_t *efi_formatp;
2586
2587 efi_formatp = item->ri_buf[0].i_addr;
2588
2589 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2590 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2591 &(efip->efi_format)))) {
2592 xfs_efi_item_free(efip);
2593 return error;
2594 }
2595 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2596
2597 spin_lock(&log->l_ailp->xa_lock);
2598 /*
2599 * xfs_trans_ail_update() drops the AIL lock.
2600 */
2601 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2602 return 0;
2603}
2604
2605
2606/*
2607 * This routine is called when an efd format structure is found in
2608 * a committed transaction in the log. It's purpose is to cancel
2609 * the corresponding efi if it was still in the log. To do this
2610 * it searches the AIL for the efi with an id equal to that in the
2611 * efd format structure. If we find it, we remove the efi from the
2612 * AIL and free it.
2613 */
2614STATIC int
2615xlog_recover_efd_pass2(
2616 xlog_t *log,
2617 xlog_recover_item_t *item)
2618{
2619 xfs_efd_log_format_t *efd_formatp;
2620 xfs_efi_log_item_t *efip = NULL;
2621 xfs_log_item_t *lip;
2622 __uint64_t efi_id;
2623 struct xfs_ail_cursor cur;
2624 struct xfs_ail *ailp = log->l_ailp;
2625
2626 efd_formatp = item->ri_buf[0].i_addr;
2627 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2628 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2629 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2630 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2631 efi_id = efd_formatp->efd_efi_id;
2632
2633 /*
2634 * Search for the efi with the id in the efd format structure
2635 * in the AIL.
2636 */
2637 spin_lock(&ailp->xa_lock);
2638 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2639 while (lip != NULL) {
2640 if (lip->li_type == XFS_LI_EFI) {
2641 efip = (xfs_efi_log_item_t *)lip;
2642 if (efip->efi_format.efi_id == efi_id) {
2643 /*
2644 * xfs_trans_ail_delete() drops the
2645 * AIL lock.
2646 */
2647 xfs_trans_ail_delete(ailp, lip);
2648 xfs_efi_item_free(efip);
2649 spin_lock(&ailp->xa_lock);
2650 break;
2651 }
2652 }
2653 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2654 }
2655 xfs_trans_ail_cursor_done(ailp, &cur);
2656 spin_unlock(&ailp->xa_lock);
2657
2658 return 0;
2659}
2660
2661/*
2662 * Free up any resources allocated by the transaction
2663 *
2664 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2665 */
2666STATIC void
2667xlog_recover_free_trans(
2668 struct xlog_recover *trans)
2669{
2670 xlog_recover_item_t *item, *n;
2671 int i;
2672
2673 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2674 /* Free the regions in the item. */
2675 list_del(&item->ri_list);
2676 for (i = 0; i < item->ri_cnt; i++)
2677 kmem_free(item->ri_buf[i].i_addr);
2678 /* Free the item itself */
2679 kmem_free(item->ri_buf);
2680 kmem_free(item);
2681 }
2682 /* Free the transaction recover structure */
2683 kmem_free(trans);
2684}
2685
2686STATIC int
2687xlog_recover_commit_pass1(
2688 struct log *log,
2689 struct xlog_recover *trans,
2690 xlog_recover_item_t *item)
2691{
2692 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2693
2694 switch (ITEM_TYPE(item)) {
2695 case XFS_LI_BUF:
2696 return xlog_recover_buffer_pass1(log, item);
2697 case XFS_LI_QUOTAOFF:
2698 return xlog_recover_quotaoff_pass1(log, item);
2699 case XFS_LI_INODE:
2700 case XFS_LI_EFI:
2701 case XFS_LI_EFD:
2702 case XFS_LI_DQUOT:
2703 /* nothing to do in pass 1 */
2704 return 0;
2705 default:
2706 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2707 __func__, ITEM_TYPE(item));
2708 ASSERT(0);
2709 return XFS_ERROR(EIO);
2710 }
2711}
2712
2713STATIC int
2714xlog_recover_commit_pass2(
2715 struct log *log,
2716 struct xlog_recover *trans,
2717 xlog_recover_item_t *item)
2718{
2719 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2720
2721 switch (ITEM_TYPE(item)) {
2722 case XFS_LI_BUF:
2723 return xlog_recover_buffer_pass2(log, item);
2724 case XFS_LI_INODE:
2725 return xlog_recover_inode_pass2(log, item);
2726 case XFS_LI_EFI:
2727 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2728 case XFS_LI_EFD:
2729 return xlog_recover_efd_pass2(log, item);
2730 case XFS_LI_DQUOT:
2731 return xlog_recover_dquot_pass2(log, item);
2732 case XFS_LI_QUOTAOFF:
2733 /* nothing to do in pass2 */
2734 return 0;
2735 default:
2736 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2737 __func__, ITEM_TYPE(item));
2738 ASSERT(0);
2739 return XFS_ERROR(EIO);
2740 }
2741}
2742
2743/*
2744 * Perform the transaction.
2745 *
2746 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2747 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2748 */
2749STATIC int
2750xlog_recover_commit_trans(
2751 struct log *log,
2752 struct xlog_recover *trans,
2753 int pass)
2754{
2755 int error = 0;
2756 xlog_recover_item_t *item;
2757
2758 hlist_del(&trans->r_list);
2759
2760 error = xlog_recover_reorder_trans(log, trans, pass);
2761 if (error)
2762 return error;
2763
2764 list_for_each_entry(item, &trans->r_itemq, ri_list) {
2765 if (pass == XLOG_RECOVER_PASS1)
2766 error = xlog_recover_commit_pass1(log, trans, item);
2767 else
2768 error = xlog_recover_commit_pass2(log, trans, item);
2769 if (error)
2770 return error;
2771 }
2772
2773 xlog_recover_free_trans(trans);
2774 return 0;
2775}
2776
2777STATIC int
2778xlog_recover_unmount_trans(
2779 struct log *log,
2780 xlog_recover_t *trans)
2781{
2782 /* Do nothing now */
2783 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2784 return 0;
2785}
2786
2787/*
2788 * There are two valid states of the r_state field. 0 indicates that the
2789 * transaction structure is in a normal state. We have either seen the
2790 * start of the transaction or the last operation we added was not a partial
2791 * operation. If the last operation we added to the transaction was a
2792 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2793 *
2794 * NOTE: skip LRs with 0 data length.
2795 */
2796STATIC int
2797xlog_recover_process_data(
2798 xlog_t *log,
2799 struct hlist_head rhash[],
2800 xlog_rec_header_t *rhead,
2801 xfs_caddr_t dp,
2802 int pass)
2803{
2804 xfs_caddr_t lp;
2805 int num_logops;
2806 xlog_op_header_t *ohead;
2807 xlog_recover_t *trans;
2808 xlog_tid_t tid;
2809 int error;
2810 unsigned long hash;
2811 uint flags;
2812
2813 lp = dp + be32_to_cpu(rhead->h_len);
2814 num_logops = be32_to_cpu(rhead->h_num_logops);
2815
2816 /* check the log format matches our own - else we can't recover */
2817 if (xlog_header_check_recover(log->l_mp, rhead))
2818 return (XFS_ERROR(EIO));
2819
2820 while ((dp < lp) && num_logops) {
2821 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2822 ohead = (xlog_op_header_t *)dp;
2823 dp += sizeof(xlog_op_header_t);
2824 if (ohead->oh_clientid != XFS_TRANSACTION &&
2825 ohead->oh_clientid != XFS_LOG) {
2826 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2827 __func__, ohead->oh_clientid);
2828 ASSERT(0);
2829 return (XFS_ERROR(EIO));
2830 }
2831 tid = be32_to_cpu(ohead->oh_tid);
2832 hash = XLOG_RHASH(tid);
2833 trans = xlog_recover_find_tid(&rhash[hash], tid);
2834 if (trans == NULL) { /* not found; add new tid */
2835 if (ohead->oh_flags & XLOG_START_TRANS)
2836 xlog_recover_new_tid(&rhash[hash], tid,
2837 be64_to_cpu(rhead->h_lsn));
2838 } else {
2839 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2840 xfs_warn(log->l_mp, "%s: bad length 0x%x",
2841 __func__, be32_to_cpu(ohead->oh_len));
2842 WARN_ON(1);
2843 return (XFS_ERROR(EIO));
2844 }
2845 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2846 if (flags & XLOG_WAS_CONT_TRANS)
2847 flags &= ~XLOG_CONTINUE_TRANS;
2848 switch (flags) {
2849 case XLOG_COMMIT_TRANS:
2850 error = xlog_recover_commit_trans(log,
2851 trans, pass);
2852 break;
2853 case XLOG_UNMOUNT_TRANS:
2854 error = xlog_recover_unmount_trans(log, trans);
2855 break;
2856 case XLOG_WAS_CONT_TRANS:
2857 error = xlog_recover_add_to_cont_trans(log,
2858 trans, dp,
2859 be32_to_cpu(ohead->oh_len));
2860 break;
2861 case XLOG_START_TRANS:
2862 xfs_warn(log->l_mp, "%s: bad transaction",
2863 __func__);
2864 ASSERT(0);
2865 error = XFS_ERROR(EIO);
2866 break;
2867 case 0:
2868 case XLOG_CONTINUE_TRANS:
2869 error = xlog_recover_add_to_trans(log, trans,
2870 dp, be32_to_cpu(ohead->oh_len));
2871 break;
2872 default:
2873 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2874 __func__, flags);
2875 ASSERT(0);
2876 error = XFS_ERROR(EIO);
2877 break;
2878 }
2879 if (error)
2880 return error;
2881 }
2882 dp += be32_to_cpu(ohead->oh_len);
2883 num_logops--;
2884 }
2885 return 0;
2886}
2887
2888/*
2889 * Process an extent free intent item that was recovered from
2890 * the log. We need to free the extents that it describes.
2891 */
2892STATIC int
2893xlog_recover_process_efi(
2894 xfs_mount_t *mp,
2895 xfs_efi_log_item_t *efip)
2896{
2897 xfs_efd_log_item_t *efdp;
2898 xfs_trans_t *tp;
2899 int i;
2900 int error = 0;
2901 xfs_extent_t *extp;
2902 xfs_fsblock_t startblock_fsb;
2903
2904 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2905
2906 /*
2907 * First check the validity of the extents described by the
2908 * EFI. If any are bad, then assume that all are bad and
2909 * just toss the EFI.
2910 */
2911 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2912 extp = &(efip->efi_format.efi_extents[i]);
2913 startblock_fsb = XFS_BB_TO_FSB(mp,
2914 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2915 if ((startblock_fsb == 0) ||
2916 (extp->ext_len == 0) ||
2917 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2918 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2919 /*
2920 * This will pull the EFI from the AIL and
2921 * free the memory associated with it.
2922 */
2923 xfs_efi_release(efip, efip->efi_format.efi_nextents);
2924 return XFS_ERROR(EIO);
2925 }
2926 }
2927
2928 tp = xfs_trans_alloc(mp, 0);
2929 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2930 if (error)
2931 goto abort_error;
2932 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2933
2934 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2935 extp = &(efip->efi_format.efi_extents[i]);
2936 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2937 if (error)
2938 goto abort_error;
2939 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2940 extp->ext_len);
2941 }
2942
2943 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2944 error = xfs_trans_commit(tp, 0);
2945 return error;
2946
2947abort_error:
2948 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2949 return error;
2950}
2951
2952/*
2953 * When this is called, all of the EFIs which did not have
2954 * corresponding EFDs should be in the AIL. What we do now
2955 * is free the extents associated with each one.
2956 *
2957 * Since we process the EFIs in normal transactions, they
2958 * will be removed at some point after the commit. This prevents
2959 * us from just walking down the list processing each one.
2960 * We'll use a flag in the EFI to skip those that we've already
2961 * processed and use the AIL iteration mechanism's generation
2962 * count to try to speed this up at least a bit.
2963 *
2964 * When we start, we know that the EFIs are the only things in
2965 * the AIL. As we process them, however, other items are added
2966 * to the AIL. Since everything added to the AIL must come after
2967 * everything already in the AIL, we stop processing as soon as
2968 * we see something other than an EFI in the AIL.
2969 */
2970STATIC int
2971xlog_recover_process_efis(
2972 xlog_t *log)
2973{
2974 xfs_log_item_t *lip;
2975 xfs_efi_log_item_t *efip;
2976 int error = 0;
2977 struct xfs_ail_cursor cur;
2978 struct xfs_ail *ailp;
2979
2980 ailp = log->l_ailp;
2981 spin_lock(&ailp->xa_lock);
2982 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2983 while (lip != NULL) {
2984 /*
2985 * We're done when we see something other than an EFI.
2986 * There should be no EFIs left in the AIL now.
2987 */
2988 if (lip->li_type != XFS_LI_EFI) {
2989#ifdef DEBUG
2990 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2991 ASSERT(lip->li_type != XFS_LI_EFI);
2992#endif
2993 break;
2994 }
2995
2996 /*
2997 * Skip EFIs that we've already processed.
2998 */
2999 efip = (xfs_efi_log_item_t *)lip;
3000 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3001 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3002 continue;
3003 }
3004
3005 spin_unlock(&ailp->xa_lock);
3006 error = xlog_recover_process_efi(log->l_mp, efip);
3007 spin_lock(&ailp->xa_lock);
3008 if (error)
3009 goto out;
3010 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3011 }
3012out:
3013 xfs_trans_ail_cursor_done(ailp, &cur);
3014 spin_unlock(&ailp->xa_lock);
3015 return error;
3016}
3017
3018/*
3019 * This routine performs a transaction to null out a bad inode pointer
3020 * in an agi unlinked inode hash bucket.
3021 */
3022STATIC void
3023xlog_recover_clear_agi_bucket(
3024 xfs_mount_t *mp,
3025 xfs_agnumber_t agno,
3026 int bucket)
3027{
3028 xfs_trans_t *tp;
3029 xfs_agi_t *agi;
3030 xfs_buf_t *agibp;
3031 int offset;
3032 int error;
3033
3034 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3035 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3036 0, 0, 0);
3037 if (error)
3038 goto out_abort;
3039
3040 error = xfs_read_agi(mp, tp, agno, &agibp);
3041 if (error)
3042 goto out_abort;
3043
3044 agi = XFS_BUF_TO_AGI(agibp);
3045 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3046 offset = offsetof(xfs_agi_t, agi_unlinked) +
3047 (sizeof(xfs_agino_t) * bucket);
3048 xfs_trans_log_buf(tp, agibp, offset,
3049 (offset + sizeof(xfs_agino_t) - 1));
3050
3051 error = xfs_trans_commit(tp, 0);
3052 if (error)
3053 goto out_error;
3054 return;
3055
3056out_abort:
3057 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3058out_error:
3059 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3060 return;
3061}
3062
3063STATIC xfs_agino_t
3064xlog_recover_process_one_iunlink(
3065 struct xfs_mount *mp,
3066 xfs_agnumber_t agno,
3067 xfs_agino_t agino,
3068 int bucket)
3069{
3070 struct xfs_buf *ibp;
3071 struct xfs_dinode *dip;
3072 struct xfs_inode *ip;
3073 xfs_ino_t ino;
3074 int error;
3075
3076 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3077 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3078 if (error)
3079 goto fail;
3080
3081 /*
3082 * Get the on disk inode to find the next inode in the bucket.
3083 */
3084 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3085 if (error)
3086 goto fail_iput;
3087
3088 ASSERT(ip->i_d.di_nlink == 0);
3089 ASSERT(ip->i_d.di_mode != 0);
3090
3091 /* setup for the next pass */
3092 agino = be32_to_cpu(dip->di_next_unlinked);
3093 xfs_buf_relse(ibp);
3094
3095 /*
3096 * Prevent any DMAPI event from being sent when the reference on
3097 * the inode is dropped.
3098 */
3099 ip->i_d.di_dmevmask = 0;
3100
3101 IRELE(ip);
3102 return agino;
3103
3104 fail_iput:
3105 IRELE(ip);
3106 fail:
3107 /*
3108 * We can't read in the inode this bucket points to, or this inode
3109 * is messed up. Just ditch this bucket of inodes. We will lose
3110 * some inodes and space, but at least we won't hang.
3111 *
3112 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3113 * clear the inode pointer in the bucket.
3114 */
3115 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3116 return NULLAGINO;
3117}
3118
3119/*
3120 * xlog_iunlink_recover
3121 *
3122 * This is called during recovery to process any inodes which
3123 * we unlinked but not freed when the system crashed. These
3124 * inodes will be on the lists in the AGI blocks. What we do
3125 * here is scan all the AGIs and fully truncate and free any
3126 * inodes found on the lists. Each inode is removed from the
3127 * lists when it has been fully truncated and is freed. The
3128 * freeing of the inode and its removal from the list must be
3129 * atomic.
3130 */
3131STATIC void
3132xlog_recover_process_iunlinks(
3133 xlog_t *log)
3134{
3135 xfs_mount_t *mp;
3136 xfs_agnumber_t agno;
3137 xfs_agi_t *agi;
3138 xfs_buf_t *agibp;
3139 xfs_agino_t agino;
3140 int bucket;
3141 int error;
3142 uint mp_dmevmask;
3143
3144 mp = log->l_mp;
3145
3146 /*
3147 * Prevent any DMAPI event from being sent while in this function.
3148 */
3149 mp_dmevmask = mp->m_dmevmask;
3150 mp->m_dmevmask = 0;
3151
3152 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3153 /*
3154 * Find the agi for this ag.
3155 */
3156 error = xfs_read_agi(mp, NULL, agno, &agibp);
3157 if (error) {
3158 /*
3159 * AGI is b0rked. Don't process it.
3160 *
3161 * We should probably mark the filesystem as corrupt
3162 * after we've recovered all the ag's we can....
3163 */
3164 continue;
3165 }
3166 agi = XFS_BUF_TO_AGI(agibp);
3167
3168 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3169 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3170 while (agino != NULLAGINO) {
3171 /*
3172 * Release the agi buffer so that it can
3173 * be acquired in the normal course of the
3174 * transaction to truncate and free the inode.
3175 */
3176 xfs_buf_relse(agibp);
3177
3178 agino = xlog_recover_process_one_iunlink(mp,
3179 agno, agino, bucket);
3180
3181 /*
3182 * Reacquire the agibuffer and continue around
3183 * the loop. This should never fail as we know
3184 * the buffer was good earlier on.
3185 */
3186 error = xfs_read_agi(mp, NULL, agno, &agibp);
3187 ASSERT(error == 0);
3188 agi = XFS_BUF_TO_AGI(agibp);
3189 }
3190 }
3191
3192 /*
3193 * Release the buffer for the current agi so we can
3194 * go on to the next one.
3195 */
3196 xfs_buf_relse(agibp);
3197 }
3198
3199 mp->m_dmevmask = mp_dmevmask;
3200}
3201
3202
3203#ifdef DEBUG
3204STATIC void
3205xlog_pack_data_checksum(
3206 xlog_t *log,
3207 xlog_in_core_t *iclog,
3208 int size)
3209{
3210 int i;
3211 __be32 *up;
3212 uint chksum = 0;
3213
3214 up = (__be32 *)iclog->ic_datap;
3215 /* divide length by 4 to get # words */
3216 for (i = 0; i < (size >> 2); i++) {
3217 chksum ^= be32_to_cpu(*up);
3218 up++;
3219 }
3220 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3221}
3222#else
3223#define xlog_pack_data_checksum(log, iclog, size)
3224#endif
3225
3226/*
3227 * Stamp cycle number in every block
3228 */
3229void
3230xlog_pack_data(
3231 xlog_t *log,
3232 xlog_in_core_t *iclog,
3233 int roundoff)
3234{
3235 int i, j, k;
3236 int size = iclog->ic_offset + roundoff;
3237 __be32 cycle_lsn;
3238 xfs_caddr_t dp;
3239
3240 xlog_pack_data_checksum(log, iclog, size);
3241
3242 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3243
3244 dp = iclog->ic_datap;
3245 for (i = 0; i < BTOBB(size) &&
3246 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3247 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3248 *(__be32 *)dp = cycle_lsn;
3249 dp += BBSIZE;
3250 }
3251
3252 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3253 xlog_in_core_2_t *xhdr = iclog->ic_data;
3254
3255 for ( ; i < BTOBB(size); i++) {
3256 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3257 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3258 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3259 *(__be32 *)dp = cycle_lsn;
3260 dp += BBSIZE;
3261 }
3262
3263 for (i = 1; i < log->l_iclog_heads; i++) {
3264 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3265 }
3266 }
3267}
3268
3269STATIC void
3270xlog_unpack_data(
3271 xlog_rec_header_t *rhead,
3272 xfs_caddr_t dp,
3273 xlog_t *log)
3274{
3275 int i, j, k;
3276
3277 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3278 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3279 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3280 dp += BBSIZE;
3281 }
3282
3283 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3284 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3285 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3286 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3287 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3288 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3289 dp += BBSIZE;
3290 }
3291 }
3292}
3293
3294STATIC int
3295xlog_valid_rec_header(
3296 xlog_t *log,
3297 xlog_rec_header_t *rhead,
3298 xfs_daddr_t blkno)
3299{
3300 int hlen;
3301
3302 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3303 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3304 XFS_ERRLEVEL_LOW, log->l_mp);
3305 return XFS_ERROR(EFSCORRUPTED);
3306 }
3307 if (unlikely(
3308 (!rhead->h_version ||
3309 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3310 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3311 __func__, be32_to_cpu(rhead->h_version));
3312 return XFS_ERROR(EIO);
3313 }
3314
3315 /* LR body must have data or it wouldn't have been written */
3316 hlen = be32_to_cpu(rhead->h_len);
3317 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3318 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3319 XFS_ERRLEVEL_LOW, log->l_mp);
3320 return XFS_ERROR(EFSCORRUPTED);
3321 }
3322 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3323 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3324 XFS_ERRLEVEL_LOW, log->l_mp);
3325 return XFS_ERROR(EFSCORRUPTED);
3326 }
3327 return 0;
3328}
3329
3330/*
3331 * Read the log from tail to head and process the log records found.
3332 * Handle the two cases where the tail and head are in the same cycle
3333 * and where the active portion of the log wraps around the end of
3334 * the physical log separately. The pass parameter is passed through
3335 * to the routines called to process the data and is not looked at
3336 * here.
3337 */
3338STATIC int
3339xlog_do_recovery_pass(
3340 xlog_t *log,
3341 xfs_daddr_t head_blk,
3342 xfs_daddr_t tail_blk,
3343 int pass)
3344{
3345 xlog_rec_header_t *rhead;
3346 xfs_daddr_t blk_no;
3347 xfs_caddr_t offset;
3348 xfs_buf_t *hbp, *dbp;
3349 int error = 0, h_size;
3350 int bblks, split_bblks;
3351 int hblks, split_hblks, wrapped_hblks;
3352 struct hlist_head rhash[XLOG_RHASH_SIZE];
3353
3354 ASSERT(head_blk != tail_blk);
3355
3356 /*
3357 * Read the header of the tail block and get the iclog buffer size from
3358 * h_size. Use this to tell how many sectors make up the log header.
3359 */
3360 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3361 /*
3362 * When using variable length iclogs, read first sector of
3363 * iclog header and extract the header size from it. Get a
3364 * new hbp that is the correct size.
3365 */
3366 hbp = xlog_get_bp(log, 1);
3367 if (!hbp)
3368 return ENOMEM;
3369
3370 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3371 if (error)
3372 goto bread_err1;
3373
3374 rhead = (xlog_rec_header_t *)offset;
3375 error = xlog_valid_rec_header(log, rhead, tail_blk);
3376 if (error)
3377 goto bread_err1;
3378 h_size = be32_to_cpu(rhead->h_size);
3379 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3380 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3381 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3382 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3383 hblks++;
3384 xlog_put_bp(hbp);
3385 hbp = xlog_get_bp(log, hblks);
3386 } else {
3387 hblks = 1;
3388 }
3389 } else {
3390 ASSERT(log->l_sectBBsize == 1);
3391 hblks = 1;
3392 hbp = xlog_get_bp(log, 1);
3393 h_size = XLOG_BIG_RECORD_BSIZE;
3394 }
3395
3396 if (!hbp)
3397 return ENOMEM;
3398 dbp = xlog_get_bp(log, BTOBB(h_size));
3399 if (!dbp) {
3400 xlog_put_bp(hbp);
3401 return ENOMEM;
3402 }
3403
3404 memset(rhash, 0, sizeof(rhash));
3405 if (tail_blk <= head_blk) {
3406 for (blk_no = tail_blk; blk_no < head_blk; ) {
3407 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3408 if (error)
3409 goto bread_err2;
3410
3411 rhead = (xlog_rec_header_t *)offset;
3412 error = xlog_valid_rec_header(log, rhead, blk_no);
3413 if (error)
3414 goto bread_err2;
3415
3416 /* blocks in data section */
3417 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3418 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3419 &offset);
3420 if (error)
3421 goto bread_err2;
3422
3423 xlog_unpack_data(rhead, offset, log);
3424 if ((error = xlog_recover_process_data(log,
3425 rhash, rhead, offset, pass)))
3426 goto bread_err2;
3427 blk_no += bblks + hblks;
3428 }
3429 } else {
3430 /*
3431 * Perform recovery around the end of the physical log.
3432 * When the head is not on the same cycle number as the tail,
3433 * we can't do a sequential recovery as above.
3434 */
3435 blk_no = tail_blk;
3436 while (blk_no < log->l_logBBsize) {
3437 /*
3438 * Check for header wrapping around physical end-of-log
3439 */
3440 offset = hbp->b_addr;
3441 split_hblks = 0;
3442 wrapped_hblks = 0;
3443 if (blk_no + hblks <= log->l_logBBsize) {
3444 /* Read header in one read */
3445 error = xlog_bread(log, blk_no, hblks, hbp,
3446 &offset);
3447 if (error)
3448 goto bread_err2;
3449 } else {
3450 /* This LR is split across physical log end */
3451 if (blk_no != log->l_logBBsize) {
3452 /* some data before physical log end */
3453 ASSERT(blk_no <= INT_MAX);
3454 split_hblks = log->l_logBBsize - (int)blk_no;
3455 ASSERT(split_hblks > 0);
3456 error = xlog_bread(log, blk_no,
3457 split_hblks, hbp,
3458 &offset);
3459 if (error)
3460 goto bread_err2;
3461 }
3462
3463 /*
3464 * Note: this black magic still works with
3465 * large sector sizes (non-512) only because:
3466 * - we increased the buffer size originally
3467 * by 1 sector giving us enough extra space
3468 * for the second read;
3469 * - the log start is guaranteed to be sector
3470 * aligned;
3471 * - we read the log end (LR header start)
3472 * _first_, then the log start (LR header end)
3473 * - order is important.
3474 */
3475 wrapped_hblks = hblks - split_hblks;
3476 error = xlog_bread_offset(log, 0,
3477 wrapped_hblks, hbp,
3478 offset + BBTOB(split_hblks));
3479 if (error)
3480 goto bread_err2;
3481 }
3482 rhead = (xlog_rec_header_t *)offset;
3483 error = xlog_valid_rec_header(log, rhead,
3484 split_hblks ? blk_no : 0);
3485 if (error)
3486 goto bread_err2;
3487
3488 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3489 blk_no += hblks;
3490
3491 /* Read in data for log record */
3492 if (blk_no + bblks <= log->l_logBBsize) {
3493 error = xlog_bread(log, blk_no, bblks, dbp,
3494 &offset);
3495 if (error)
3496 goto bread_err2;
3497 } else {
3498 /* This log record is split across the
3499 * physical end of log */
3500 offset = dbp->b_addr;
3501 split_bblks = 0;
3502 if (blk_no != log->l_logBBsize) {
3503 /* some data is before the physical
3504 * end of log */
3505 ASSERT(!wrapped_hblks);
3506 ASSERT(blk_no <= INT_MAX);
3507 split_bblks =
3508 log->l_logBBsize - (int)blk_no;
3509 ASSERT(split_bblks > 0);
3510 error = xlog_bread(log, blk_no,
3511 split_bblks, dbp,
3512 &offset);
3513 if (error)
3514 goto bread_err2;
3515 }
3516
3517 /*
3518 * Note: this black magic still works with
3519 * large sector sizes (non-512) only because:
3520 * - we increased the buffer size originally
3521 * by 1 sector giving us enough extra space
3522 * for the second read;
3523 * - the log start is guaranteed to be sector
3524 * aligned;
3525 * - we read the log end (LR header start)
3526 * _first_, then the log start (LR header end)
3527 * - order is important.
3528 */
3529 error = xlog_bread_offset(log, 0,
3530 bblks - split_bblks, hbp,
3531 offset + BBTOB(split_bblks));
3532 if (error)
3533 goto bread_err2;
3534 }
3535 xlog_unpack_data(rhead, offset, log);
3536 if ((error = xlog_recover_process_data(log, rhash,
3537 rhead, offset, pass)))
3538 goto bread_err2;
3539 blk_no += bblks;
3540 }
3541
3542 ASSERT(blk_no >= log->l_logBBsize);
3543 blk_no -= log->l_logBBsize;
3544
3545 /* read first part of physical log */
3546 while (blk_no < head_blk) {
3547 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3548 if (error)
3549 goto bread_err2;
3550
3551 rhead = (xlog_rec_header_t *)offset;
3552 error = xlog_valid_rec_header(log, rhead, blk_no);
3553 if (error)
3554 goto bread_err2;
3555
3556 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3557 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3558 &offset);
3559 if (error)
3560 goto bread_err2;
3561
3562 xlog_unpack_data(rhead, offset, log);
3563 if ((error = xlog_recover_process_data(log, rhash,
3564 rhead, offset, pass)))
3565 goto bread_err2;
3566 blk_no += bblks + hblks;
3567 }
3568 }
3569
3570 bread_err2:
3571 xlog_put_bp(dbp);
3572 bread_err1:
3573 xlog_put_bp(hbp);
3574 return error;
3575}
3576
3577/*
3578 * Do the recovery of the log. We actually do this in two phases.
3579 * The two passes are necessary in order to implement the function
3580 * of cancelling a record written into the log. The first pass
3581 * determines those things which have been cancelled, and the
3582 * second pass replays log items normally except for those which
3583 * have been cancelled. The handling of the replay and cancellations
3584 * takes place in the log item type specific routines.
3585 *
3586 * The table of items which have cancel records in the log is allocated
3587 * and freed at this level, since only here do we know when all of
3588 * the log recovery has been completed.
3589 */
3590STATIC int
3591xlog_do_log_recovery(
3592 xlog_t *log,
3593 xfs_daddr_t head_blk,
3594 xfs_daddr_t tail_blk)
3595{
3596 int error, i;
3597
3598 ASSERT(head_blk != tail_blk);
3599
3600 /*
3601 * First do a pass to find all of the cancelled buf log items.
3602 * Store them in the buf_cancel_table for use in the second pass.
3603 */
3604 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3605 sizeof(struct list_head),
3606 KM_SLEEP);
3607 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3608 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3609
3610 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3611 XLOG_RECOVER_PASS1);
3612 if (error != 0) {
3613 kmem_free(log->l_buf_cancel_table);
3614 log->l_buf_cancel_table = NULL;
3615 return error;
3616 }
3617 /*
3618 * Then do a second pass to actually recover the items in the log.
3619 * When it is complete free the table of buf cancel items.
3620 */
3621 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3622 XLOG_RECOVER_PASS2);
3623#ifdef DEBUG
3624 if (!error) {
3625 int i;
3626
3627 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3628 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3629 }
3630#endif /* DEBUG */
3631
3632 kmem_free(log->l_buf_cancel_table);
3633 log->l_buf_cancel_table = NULL;
3634
3635 return error;
3636}
3637
3638/*
3639 * Do the actual recovery
3640 */
3641STATIC int
3642xlog_do_recover(
3643 xlog_t *log,
3644 xfs_daddr_t head_blk,
3645 xfs_daddr_t tail_blk)
3646{
3647 int error;
3648 xfs_buf_t *bp;
3649 xfs_sb_t *sbp;
3650
3651 /*
3652 * First replay the images in the log.
3653 */
3654 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3655 if (error) {
3656 return error;
3657 }
3658
3659 XFS_bflush(log->l_mp->m_ddev_targp);
3660
3661 /*
3662 * If IO errors happened during recovery, bail out.
3663 */
3664 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3665 return (EIO);
3666 }
3667
3668 /*
3669 * We now update the tail_lsn since much of the recovery has completed
3670 * and there may be space available to use. If there were no extent
3671 * or iunlinks, we can free up the entire log and set the tail_lsn to
3672 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3673 * lsn of the last known good LR on disk. If there are extent frees
3674 * or iunlinks they will have some entries in the AIL; so we look at
3675 * the AIL to determine how to set the tail_lsn.
3676 */
3677 xlog_assign_tail_lsn(log->l_mp);
3678
3679 /*
3680 * Now that we've finished replaying all buffer and inode
3681 * updates, re-read in the superblock.
3682 */
3683 bp = xfs_getsb(log->l_mp, 0);
3684 XFS_BUF_UNDONE(bp);
3685 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3686 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3687 XFS_BUF_READ(bp);
3688 XFS_BUF_UNASYNC(bp);
3689 xfsbdstrat(log->l_mp, bp);
3690 error = xfs_buf_iowait(bp);
3691 if (error) {
3692 xfs_ioerror_alert("xlog_do_recover",
3693 log->l_mp, bp, XFS_BUF_ADDR(bp));
3694 ASSERT(0);
3695 xfs_buf_relse(bp);
3696 return error;
3697 }
3698
3699 /* Convert superblock from on-disk format */
3700 sbp = &log->l_mp->m_sb;
3701 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3702 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3703 ASSERT(xfs_sb_good_version(sbp));
3704 xfs_buf_relse(bp);
3705
3706 /* We've re-read the superblock so re-initialize per-cpu counters */
3707 xfs_icsb_reinit_counters(log->l_mp);
3708
3709 xlog_recover_check_summary(log);
3710
3711 /* Normal transactions can now occur */
3712 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3713 return 0;
3714}
3715
3716/*
3717 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3718 *
3719 * Return error or zero.
3720 */
3721int
3722xlog_recover(
3723 xlog_t *log)
3724{
3725 xfs_daddr_t head_blk, tail_blk;
3726 int error;
3727
3728 /* find the tail of the log */
3729 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3730 return error;
3731
3732 if (tail_blk != head_blk) {
3733 /* There used to be a comment here:
3734 *
3735 * disallow recovery on read-only mounts. note -- mount
3736 * checks for ENOSPC and turns it into an intelligent
3737 * error message.
3738 * ...but this is no longer true. Now, unless you specify
3739 * NORECOVERY (in which case this function would never be
3740 * called), we just go ahead and recover. We do this all
3741 * under the vfs layer, so we can get away with it unless
3742 * the device itself is read-only, in which case we fail.
3743 */
3744 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3745 return error;
3746 }
3747
3748 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3749 log->l_mp->m_logname ? log->l_mp->m_logname
3750 : "internal");
3751
3752 error = xlog_do_recover(log, head_blk, tail_blk);
3753 log->l_flags |= XLOG_RECOVERY_NEEDED;
3754 }
3755 return error;
3756}
3757
3758/*
3759 * In the first part of recovery we replay inodes and buffers and build
3760 * up the list of extent free items which need to be processed. Here
3761 * we process the extent free items and clean up the on disk unlinked
3762 * inode lists. This is separated from the first part of recovery so
3763 * that the root and real-time bitmap inodes can be read in from disk in
3764 * between the two stages. This is necessary so that we can free space
3765 * in the real-time portion of the file system.
3766 */
3767int
3768xlog_recover_finish(
3769 xlog_t *log)
3770{
3771 /*
3772 * Now we're ready to do the transactions needed for the
3773 * rest of recovery. Start with completing all the extent
3774 * free intent records and then process the unlinked inode
3775 * lists. At this point, we essentially run in normal mode
3776 * except that we're still performing recovery actions
3777 * rather than accepting new requests.
3778 */
3779 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3780 int error;
3781 error = xlog_recover_process_efis(log);
3782 if (error) {
3783 xfs_alert(log->l_mp, "Failed to recover EFIs");
3784 return error;
3785 }
3786 /*
3787 * Sync the log to get all the EFIs out of the AIL.
3788 * This isn't absolutely necessary, but it helps in
3789 * case the unlink transactions would have problems
3790 * pushing the EFIs out of the way.
3791 */
3792 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3793
3794 xlog_recover_process_iunlinks(log);
3795
3796 xlog_recover_check_summary(log);
3797
3798 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3799 log->l_mp->m_logname ? log->l_mp->m_logname
3800 : "internal");
3801 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3802 } else {
3803 xfs_info(log->l_mp, "Ending clean mount");
3804 }
3805 return 0;
3806}
3807
3808
3809#if defined(DEBUG)
3810/*
3811 * Read all of the agf and agi counters and check that they
3812 * are consistent with the superblock counters.
3813 */
3814void
3815xlog_recover_check_summary(
3816 xlog_t *log)
3817{
3818 xfs_mount_t *mp;
3819 xfs_agf_t *agfp;
3820 xfs_buf_t *agfbp;
3821 xfs_buf_t *agibp;
3822 xfs_agnumber_t agno;
3823 __uint64_t freeblks;
3824 __uint64_t itotal;
3825 __uint64_t ifree;
3826 int error;
3827
3828 mp = log->l_mp;
3829
3830 freeblks = 0LL;
3831 itotal = 0LL;
3832 ifree = 0LL;
3833 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3834 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3835 if (error) {
3836 xfs_alert(mp, "%s agf read failed agno %d error %d",
3837 __func__, agno, error);
3838 } else {
3839 agfp = XFS_BUF_TO_AGF(agfbp);
3840 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3841 be32_to_cpu(agfp->agf_flcount);
3842 xfs_buf_relse(agfbp);
3843 }
3844
3845 error = xfs_read_agi(mp, NULL, agno, &agibp);
3846 if (error) {
3847 xfs_alert(mp, "%s agi read failed agno %d error %d",
3848 __func__, agno, error);
3849 } else {
3850 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3851
3852 itotal += be32_to_cpu(agi->agi_count);
3853 ifree += be32_to_cpu(agi->agi_freecount);
3854 xfs_buf_relse(agibp);
3855 }
3856 }
3857}
3858#endif /* DEBUG */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_defer.h"
16#include "xfs_inode.h"
17#include "xfs_trans.h"
18#include "xfs_log.h"
19#include "xfs_log_priv.h"
20#include "xfs_log_recover.h"
21#include "xfs_trans_priv.h"
22#include "xfs_alloc.h"
23#include "xfs_ialloc.h"
24#include "xfs_trace.h"
25#include "xfs_icache.h"
26#include "xfs_error.h"
27#include "xfs_buf_item.h"
28#include "xfs_ag.h"
29
30#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
31
32STATIC int
33xlog_find_zeroed(
34 struct xlog *,
35 xfs_daddr_t *);
36STATIC int
37xlog_clear_stale_blocks(
38 struct xlog *,
39 xfs_lsn_t);
40#if defined(DEBUG)
41STATIC void
42xlog_recover_check_summary(
43 struct xlog *);
44#else
45#define xlog_recover_check_summary(log)
46#endif
47STATIC int
48xlog_do_recovery_pass(
49 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
50
51/*
52 * Sector aligned buffer routines for buffer create/read/write/access
53 */
54
55/*
56 * Verify the log-relative block number and length in basic blocks are valid for
57 * an operation involving the given XFS log buffer. Returns true if the fields
58 * are valid, false otherwise.
59 */
60static inline bool
61xlog_verify_bno(
62 struct xlog *log,
63 xfs_daddr_t blk_no,
64 int bbcount)
65{
66 if (blk_no < 0 || blk_no >= log->l_logBBsize)
67 return false;
68 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
69 return false;
70 return true;
71}
72
73/*
74 * Allocate a buffer to hold log data. The buffer needs to be able to map to
75 * a range of nbblks basic blocks at any valid offset within the log.
76 */
77static char *
78xlog_alloc_buffer(
79 struct xlog *log,
80 int nbblks)
81{
82 int align_mask = xfs_buftarg_dma_alignment(log->l_targ);
83
84 /*
85 * Pass log block 0 since we don't have an addr yet, buffer will be
86 * verified on read.
87 */
88 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
89 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
90 nbblks);
91 return NULL;
92 }
93
94 /*
95 * We do log I/O in units of log sectors (a power-of-2 multiple of the
96 * basic block size), so we round up the requested size to accommodate
97 * the basic blocks required for complete log sectors.
98 *
99 * In addition, the buffer may be used for a non-sector-aligned block
100 * offset, in which case an I/O of the requested size could extend
101 * beyond the end of the buffer. If the requested size is only 1 basic
102 * block it will never straddle a sector boundary, so this won't be an
103 * issue. Nor will this be a problem if the log I/O is done in basic
104 * blocks (sector size 1). But otherwise we extend the buffer by one
105 * extra log sector to ensure there's space to accommodate this
106 * possibility.
107 */
108 if (nbblks > 1 && log->l_sectBBsize > 1)
109 nbblks += log->l_sectBBsize;
110 nbblks = round_up(nbblks, log->l_sectBBsize);
111 return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO);
112}
113
114/*
115 * Return the address of the start of the given block number's data
116 * in a log buffer. The buffer covers a log sector-aligned region.
117 */
118static inline unsigned int
119xlog_align(
120 struct xlog *log,
121 xfs_daddr_t blk_no)
122{
123 return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
124}
125
126static int
127xlog_do_io(
128 struct xlog *log,
129 xfs_daddr_t blk_no,
130 unsigned int nbblks,
131 char *data,
132 unsigned int op)
133{
134 int error;
135
136 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
137 xfs_warn(log->l_mp,
138 "Invalid log block/length (0x%llx, 0x%x) for buffer",
139 blk_no, nbblks);
140 return -EFSCORRUPTED;
141 }
142
143 blk_no = round_down(blk_no, log->l_sectBBsize);
144 nbblks = round_up(nbblks, log->l_sectBBsize);
145 ASSERT(nbblks > 0);
146
147 error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
148 BBTOB(nbblks), data, op);
149 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) {
150 xfs_alert(log->l_mp,
151 "log recovery %s I/O error at daddr 0x%llx len %d error %d",
152 op == REQ_OP_WRITE ? "write" : "read",
153 blk_no, nbblks, error);
154 }
155 return error;
156}
157
158STATIC int
159xlog_bread_noalign(
160 struct xlog *log,
161 xfs_daddr_t blk_no,
162 int nbblks,
163 char *data)
164{
165 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
166}
167
168STATIC int
169xlog_bread(
170 struct xlog *log,
171 xfs_daddr_t blk_no,
172 int nbblks,
173 char *data,
174 char **offset)
175{
176 int error;
177
178 error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
179 if (!error)
180 *offset = data + xlog_align(log, blk_no);
181 return error;
182}
183
184STATIC int
185xlog_bwrite(
186 struct xlog *log,
187 xfs_daddr_t blk_no,
188 int nbblks,
189 char *data)
190{
191 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
192}
193
194#ifdef DEBUG
195/*
196 * dump debug superblock and log record information
197 */
198STATIC void
199xlog_header_check_dump(
200 xfs_mount_t *mp,
201 xlog_rec_header_t *head)
202{
203 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
204 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
205 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
206 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
207}
208#else
209#define xlog_header_check_dump(mp, head)
210#endif
211
212/*
213 * check log record header for recovery
214 */
215STATIC int
216xlog_header_check_recover(
217 xfs_mount_t *mp,
218 xlog_rec_header_t *head)
219{
220 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
221
222 /*
223 * IRIX doesn't write the h_fmt field and leaves it zeroed
224 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
225 * a dirty log created in IRIX.
226 */
227 if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
228 xfs_warn(mp,
229 "dirty log written in incompatible format - can't recover");
230 xlog_header_check_dump(mp, head);
231 return -EFSCORRUPTED;
232 }
233 if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
234 &head->h_fs_uuid))) {
235 xfs_warn(mp,
236 "dirty log entry has mismatched uuid - can't recover");
237 xlog_header_check_dump(mp, head);
238 return -EFSCORRUPTED;
239 }
240 return 0;
241}
242
243/*
244 * read the head block of the log and check the header
245 */
246STATIC int
247xlog_header_check_mount(
248 xfs_mount_t *mp,
249 xlog_rec_header_t *head)
250{
251 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
252
253 if (uuid_is_null(&head->h_fs_uuid)) {
254 /*
255 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
256 * h_fs_uuid is null, we assume this log was last mounted
257 * by IRIX and continue.
258 */
259 xfs_warn(mp, "null uuid in log - IRIX style log");
260 } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
261 &head->h_fs_uuid))) {
262 xfs_warn(mp, "log has mismatched uuid - can't recover");
263 xlog_header_check_dump(mp, head);
264 return -EFSCORRUPTED;
265 }
266 return 0;
267}
268
269/*
270 * This routine finds (to an approximation) the first block in the physical
271 * log which contains the given cycle. It uses a binary search algorithm.
272 * Note that the algorithm can not be perfect because the disk will not
273 * necessarily be perfect.
274 */
275STATIC int
276xlog_find_cycle_start(
277 struct xlog *log,
278 char *buffer,
279 xfs_daddr_t first_blk,
280 xfs_daddr_t *last_blk,
281 uint cycle)
282{
283 char *offset;
284 xfs_daddr_t mid_blk;
285 xfs_daddr_t end_blk;
286 uint mid_cycle;
287 int error;
288
289 end_blk = *last_blk;
290 mid_blk = BLK_AVG(first_blk, end_blk);
291 while (mid_blk != first_blk && mid_blk != end_blk) {
292 error = xlog_bread(log, mid_blk, 1, buffer, &offset);
293 if (error)
294 return error;
295 mid_cycle = xlog_get_cycle(offset);
296 if (mid_cycle == cycle)
297 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
298 else
299 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
300 mid_blk = BLK_AVG(first_blk, end_blk);
301 }
302 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
303 (mid_blk == end_blk && mid_blk-1 == first_blk));
304
305 *last_blk = end_blk;
306
307 return 0;
308}
309
310/*
311 * Check that a range of blocks does not contain stop_on_cycle_no.
312 * Fill in *new_blk with the block offset where such a block is
313 * found, or with -1 (an invalid block number) if there is no such
314 * block in the range. The scan needs to occur from front to back
315 * and the pointer into the region must be updated since a later
316 * routine will need to perform another test.
317 */
318STATIC int
319xlog_find_verify_cycle(
320 struct xlog *log,
321 xfs_daddr_t start_blk,
322 int nbblks,
323 uint stop_on_cycle_no,
324 xfs_daddr_t *new_blk)
325{
326 xfs_daddr_t i, j;
327 uint cycle;
328 char *buffer;
329 xfs_daddr_t bufblks;
330 char *buf = NULL;
331 int error = 0;
332
333 /*
334 * Greedily allocate a buffer big enough to handle the full
335 * range of basic blocks we'll be examining. If that fails,
336 * try a smaller size. We need to be able to read at least
337 * a log sector, or we're out of luck.
338 */
339 bufblks = 1 << ffs(nbblks);
340 while (bufblks > log->l_logBBsize)
341 bufblks >>= 1;
342 while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
343 bufblks >>= 1;
344 if (bufblks < log->l_sectBBsize)
345 return -ENOMEM;
346 }
347
348 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
349 int bcount;
350
351 bcount = min(bufblks, (start_blk + nbblks - i));
352
353 error = xlog_bread(log, i, bcount, buffer, &buf);
354 if (error)
355 goto out;
356
357 for (j = 0; j < bcount; j++) {
358 cycle = xlog_get_cycle(buf);
359 if (cycle == stop_on_cycle_no) {
360 *new_blk = i+j;
361 goto out;
362 }
363
364 buf += BBSIZE;
365 }
366 }
367
368 *new_blk = -1;
369
370out:
371 kmem_free(buffer);
372 return error;
373}
374
375static inline int
376xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh)
377{
378 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
379 int h_size = be32_to_cpu(rh->h_size);
380
381 if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) &&
382 h_size > XLOG_HEADER_CYCLE_SIZE)
383 return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
384 }
385 return 1;
386}
387
388/*
389 * Potentially backup over partial log record write.
390 *
391 * In the typical case, last_blk is the number of the block directly after
392 * a good log record. Therefore, we subtract one to get the block number
393 * of the last block in the given buffer. extra_bblks contains the number
394 * of blocks we would have read on a previous read. This happens when the
395 * last log record is split over the end of the physical log.
396 *
397 * extra_bblks is the number of blocks potentially verified on a previous
398 * call to this routine.
399 */
400STATIC int
401xlog_find_verify_log_record(
402 struct xlog *log,
403 xfs_daddr_t start_blk,
404 xfs_daddr_t *last_blk,
405 int extra_bblks)
406{
407 xfs_daddr_t i;
408 char *buffer;
409 char *offset = NULL;
410 xlog_rec_header_t *head = NULL;
411 int error = 0;
412 int smallmem = 0;
413 int num_blks = *last_blk - start_blk;
414 int xhdrs;
415
416 ASSERT(start_blk != 0 || *last_blk != start_blk);
417
418 buffer = xlog_alloc_buffer(log, num_blks);
419 if (!buffer) {
420 buffer = xlog_alloc_buffer(log, 1);
421 if (!buffer)
422 return -ENOMEM;
423 smallmem = 1;
424 } else {
425 error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
426 if (error)
427 goto out;
428 offset += ((num_blks - 1) << BBSHIFT);
429 }
430
431 for (i = (*last_blk) - 1; i >= 0; i--) {
432 if (i < start_blk) {
433 /* valid log record not found */
434 xfs_warn(log->l_mp,
435 "Log inconsistent (didn't find previous header)");
436 ASSERT(0);
437 error = -EFSCORRUPTED;
438 goto out;
439 }
440
441 if (smallmem) {
442 error = xlog_bread(log, i, 1, buffer, &offset);
443 if (error)
444 goto out;
445 }
446
447 head = (xlog_rec_header_t *)offset;
448
449 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
450 break;
451
452 if (!smallmem)
453 offset -= BBSIZE;
454 }
455
456 /*
457 * We hit the beginning of the physical log & still no header. Return
458 * to caller. If caller can handle a return of -1, then this routine
459 * will be called again for the end of the physical log.
460 */
461 if (i == -1) {
462 error = 1;
463 goto out;
464 }
465
466 /*
467 * We have the final block of the good log (the first block
468 * of the log record _before_ the head. So we check the uuid.
469 */
470 if ((error = xlog_header_check_mount(log->l_mp, head)))
471 goto out;
472
473 /*
474 * We may have found a log record header before we expected one.
475 * last_blk will be the 1st block # with a given cycle #. We may end
476 * up reading an entire log record. In this case, we don't want to
477 * reset last_blk. Only when last_blk points in the middle of a log
478 * record do we update last_blk.
479 */
480 xhdrs = xlog_logrec_hblks(log, head);
481
482 if (*last_blk - i + extra_bblks !=
483 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
484 *last_blk = i;
485
486out:
487 kmem_free(buffer);
488 return error;
489}
490
491/*
492 * Head is defined to be the point of the log where the next log write
493 * could go. This means that incomplete LR writes at the end are
494 * eliminated when calculating the head. We aren't guaranteed that previous
495 * LR have complete transactions. We only know that a cycle number of
496 * current cycle number -1 won't be present in the log if we start writing
497 * from our current block number.
498 *
499 * last_blk contains the block number of the first block with a given
500 * cycle number.
501 *
502 * Return: zero if normal, non-zero if error.
503 */
504STATIC int
505xlog_find_head(
506 struct xlog *log,
507 xfs_daddr_t *return_head_blk)
508{
509 char *buffer;
510 char *offset;
511 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
512 int num_scan_bblks;
513 uint first_half_cycle, last_half_cycle;
514 uint stop_on_cycle;
515 int error, log_bbnum = log->l_logBBsize;
516
517 /* Is the end of the log device zeroed? */
518 error = xlog_find_zeroed(log, &first_blk);
519 if (error < 0) {
520 xfs_warn(log->l_mp, "empty log check failed");
521 return error;
522 }
523 if (error == 1) {
524 *return_head_blk = first_blk;
525
526 /* Is the whole lot zeroed? */
527 if (!first_blk) {
528 /* Linux XFS shouldn't generate totally zeroed logs -
529 * mkfs etc write a dummy unmount record to a fresh
530 * log so we can store the uuid in there
531 */
532 xfs_warn(log->l_mp, "totally zeroed log");
533 }
534
535 return 0;
536 }
537
538 first_blk = 0; /* get cycle # of 1st block */
539 buffer = xlog_alloc_buffer(log, 1);
540 if (!buffer)
541 return -ENOMEM;
542
543 error = xlog_bread(log, 0, 1, buffer, &offset);
544 if (error)
545 goto out_free_buffer;
546
547 first_half_cycle = xlog_get_cycle(offset);
548
549 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
550 error = xlog_bread(log, last_blk, 1, buffer, &offset);
551 if (error)
552 goto out_free_buffer;
553
554 last_half_cycle = xlog_get_cycle(offset);
555 ASSERT(last_half_cycle != 0);
556
557 /*
558 * If the 1st half cycle number is equal to the last half cycle number,
559 * then the entire log is stamped with the same cycle number. In this
560 * case, head_blk can't be set to zero (which makes sense). The below
561 * math doesn't work out properly with head_blk equal to zero. Instead,
562 * we set it to log_bbnum which is an invalid block number, but this
563 * value makes the math correct. If head_blk doesn't changed through
564 * all the tests below, *head_blk is set to zero at the very end rather
565 * than log_bbnum. In a sense, log_bbnum and zero are the same block
566 * in a circular file.
567 */
568 if (first_half_cycle == last_half_cycle) {
569 /*
570 * In this case we believe that the entire log should have
571 * cycle number last_half_cycle. We need to scan backwards
572 * from the end verifying that there are no holes still
573 * containing last_half_cycle - 1. If we find such a hole,
574 * then the start of that hole will be the new head. The
575 * simple case looks like
576 * x | x ... | x - 1 | x
577 * Another case that fits this picture would be
578 * x | x + 1 | x ... | x
579 * In this case the head really is somewhere at the end of the
580 * log, as one of the latest writes at the beginning was
581 * incomplete.
582 * One more case is
583 * x | x + 1 | x ... | x - 1 | x
584 * This is really the combination of the above two cases, and
585 * the head has to end up at the start of the x-1 hole at the
586 * end of the log.
587 *
588 * In the 256k log case, we will read from the beginning to the
589 * end of the log and search for cycle numbers equal to x-1.
590 * We don't worry about the x+1 blocks that we encounter,
591 * because we know that they cannot be the head since the log
592 * started with x.
593 */
594 head_blk = log_bbnum;
595 stop_on_cycle = last_half_cycle - 1;
596 } else {
597 /*
598 * In this case we want to find the first block with cycle
599 * number matching last_half_cycle. We expect the log to be
600 * some variation on
601 * x + 1 ... | x ... | x
602 * The first block with cycle number x (last_half_cycle) will
603 * be where the new head belongs. First we do a binary search
604 * for the first occurrence of last_half_cycle. The binary
605 * search may not be totally accurate, so then we scan back
606 * from there looking for occurrences of last_half_cycle before
607 * us. If that backwards scan wraps around the beginning of
608 * the log, then we look for occurrences of last_half_cycle - 1
609 * at the end of the log. The cases we're looking for look
610 * like
611 * v binary search stopped here
612 * x + 1 ... | x | x + 1 | x ... | x
613 * ^ but we want to locate this spot
614 * or
615 * <---------> less than scan distance
616 * x + 1 ... | x ... | x - 1 | x
617 * ^ we want to locate this spot
618 */
619 stop_on_cycle = last_half_cycle;
620 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
621 last_half_cycle);
622 if (error)
623 goto out_free_buffer;
624 }
625
626 /*
627 * Now validate the answer. Scan back some number of maximum possible
628 * blocks and make sure each one has the expected cycle number. The
629 * maximum is determined by the total possible amount of buffering
630 * in the in-core log. The following number can be made tighter if
631 * we actually look at the block size of the filesystem.
632 */
633 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
634 if (head_blk >= num_scan_bblks) {
635 /*
636 * We are guaranteed that the entire check can be performed
637 * in one buffer.
638 */
639 start_blk = head_blk - num_scan_bblks;
640 if ((error = xlog_find_verify_cycle(log,
641 start_blk, num_scan_bblks,
642 stop_on_cycle, &new_blk)))
643 goto out_free_buffer;
644 if (new_blk != -1)
645 head_blk = new_blk;
646 } else { /* need to read 2 parts of log */
647 /*
648 * We are going to scan backwards in the log in two parts.
649 * First we scan the physical end of the log. In this part
650 * of the log, we are looking for blocks with cycle number
651 * last_half_cycle - 1.
652 * If we find one, then we know that the log starts there, as
653 * we've found a hole that didn't get written in going around
654 * the end of the physical log. The simple case for this is
655 * x + 1 ... | x ... | x - 1 | x
656 * <---------> less than scan distance
657 * If all of the blocks at the end of the log have cycle number
658 * last_half_cycle, then we check the blocks at the start of
659 * the log looking for occurrences of last_half_cycle. If we
660 * find one, then our current estimate for the location of the
661 * first occurrence of last_half_cycle is wrong and we move
662 * back to the hole we've found. This case looks like
663 * x + 1 ... | x | x + 1 | x ...
664 * ^ binary search stopped here
665 * Another case we need to handle that only occurs in 256k
666 * logs is
667 * x + 1 ... | x ... | x+1 | x ...
668 * ^ binary search stops here
669 * In a 256k log, the scan at the end of the log will see the
670 * x + 1 blocks. We need to skip past those since that is
671 * certainly not the head of the log. By searching for
672 * last_half_cycle-1 we accomplish that.
673 */
674 ASSERT(head_blk <= INT_MAX &&
675 (xfs_daddr_t) num_scan_bblks >= head_blk);
676 start_blk = log_bbnum - (num_scan_bblks - head_blk);
677 if ((error = xlog_find_verify_cycle(log, start_blk,
678 num_scan_bblks - (int)head_blk,
679 (stop_on_cycle - 1), &new_blk)))
680 goto out_free_buffer;
681 if (new_blk != -1) {
682 head_blk = new_blk;
683 goto validate_head;
684 }
685
686 /*
687 * Scan beginning of log now. The last part of the physical
688 * log is good. This scan needs to verify that it doesn't find
689 * the last_half_cycle.
690 */
691 start_blk = 0;
692 ASSERT(head_blk <= INT_MAX);
693 if ((error = xlog_find_verify_cycle(log,
694 start_blk, (int)head_blk,
695 stop_on_cycle, &new_blk)))
696 goto out_free_buffer;
697 if (new_blk != -1)
698 head_blk = new_blk;
699 }
700
701validate_head:
702 /*
703 * Now we need to make sure head_blk is not pointing to a block in
704 * the middle of a log record.
705 */
706 num_scan_bblks = XLOG_REC_SHIFT(log);
707 if (head_blk >= num_scan_bblks) {
708 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
709
710 /* start ptr at last block ptr before head_blk */
711 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
712 if (error == 1)
713 error = -EIO;
714 if (error)
715 goto out_free_buffer;
716 } else {
717 start_blk = 0;
718 ASSERT(head_blk <= INT_MAX);
719 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
720 if (error < 0)
721 goto out_free_buffer;
722 if (error == 1) {
723 /* We hit the beginning of the log during our search */
724 start_blk = log_bbnum - (num_scan_bblks - head_blk);
725 new_blk = log_bbnum;
726 ASSERT(start_blk <= INT_MAX &&
727 (xfs_daddr_t) log_bbnum-start_blk >= 0);
728 ASSERT(head_blk <= INT_MAX);
729 error = xlog_find_verify_log_record(log, start_blk,
730 &new_blk, (int)head_blk);
731 if (error == 1)
732 error = -EIO;
733 if (error)
734 goto out_free_buffer;
735 if (new_blk != log_bbnum)
736 head_blk = new_blk;
737 } else if (error)
738 goto out_free_buffer;
739 }
740
741 kmem_free(buffer);
742 if (head_blk == log_bbnum)
743 *return_head_blk = 0;
744 else
745 *return_head_blk = head_blk;
746 /*
747 * When returning here, we have a good block number. Bad block
748 * means that during a previous crash, we didn't have a clean break
749 * from cycle number N to cycle number N-1. In this case, we need
750 * to find the first block with cycle number N-1.
751 */
752 return 0;
753
754out_free_buffer:
755 kmem_free(buffer);
756 if (error)
757 xfs_warn(log->l_mp, "failed to find log head");
758 return error;
759}
760
761/*
762 * Seek backwards in the log for log record headers.
763 *
764 * Given a starting log block, walk backwards until we find the provided number
765 * of records or hit the provided tail block. The return value is the number of
766 * records encountered or a negative error code. The log block and buffer
767 * pointer of the last record seen are returned in rblk and rhead respectively.
768 */
769STATIC int
770xlog_rseek_logrec_hdr(
771 struct xlog *log,
772 xfs_daddr_t head_blk,
773 xfs_daddr_t tail_blk,
774 int count,
775 char *buffer,
776 xfs_daddr_t *rblk,
777 struct xlog_rec_header **rhead,
778 bool *wrapped)
779{
780 int i;
781 int error;
782 int found = 0;
783 char *offset = NULL;
784 xfs_daddr_t end_blk;
785
786 *wrapped = false;
787
788 /*
789 * Walk backwards from the head block until we hit the tail or the first
790 * block in the log.
791 */
792 end_blk = head_blk > tail_blk ? tail_blk : 0;
793 for (i = (int) head_blk - 1; i >= end_blk; i--) {
794 error = xlog_bread(log, i, 1, buffer, &offset);
795 if (error)
796 goto out_error;
797
798 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
799 *rblk = i;
800 *rhead = (struct xlog_rec_header *) offset;
801 if (++found == count)
802 break;
803 }
804 }
805
806 /*
807 * If we haven't hit the tail block or the log record header count,
808 * start looking again from the end of the physical log. Note that
809 * callers can pass head == tail if the tail is not yet known.
810 */
811 if (tail_blk >= head_blk && found != count) {
812 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
813 error = xlog_bread(log, i, 1, buffer, &offset);
814 if (error)
815 goto out_error;
816
817 if (*(__be32 *)offset ==
818 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
819 *wrapped = true;
820 *rblk = i;
821 *rhead = (struct xlog_rec_header *) offset;
822 if (++found == count)
823 break;
824 }
825 }
826 }
827
828 return found;
829
830out_error:
831 return error;
832}
833
834/*
835 * Seek forward in the log for log record headers.
836 *
837 * Given head and tail blocks, walk forward from the tail block until we find
838 * the provided number of records or hit the head block. The return value is the
839 * number of records encountered or a negative error code. The log block and
840 * buffer pointer of the last record seen are returned in rblk and rhead
841 * respectively.
842 */
843STATIC int
844xlog_seek_logrec_hdr(
845 struct xlog *log,
846 xfs_daddr_t head_blk,
847 xfs_daddr_t tail_blk,
848 int count,
849 char *buffer,
850 xfs_daddr_t *rblk,
851 struct xlog_rec_header **rhead,
852 bool *wrapped)
853{
854 int i;
855 int error;
856 int found = 0;
857 char *offset = NULL;
858 xfs_daddr_t end_blk;
859
860 *wrapped = false;
861
862 /*
863 * Walk forward from the tail block until we hit the head or the last
864 * block in the log.
865 */
866 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
867 for (i = (int) tail_blk; i <= end_blk; i++) {
868 error = xlog_bread(log, i, 1, buffer, &offset);
869 if (error)
870 goto out_error;
871
872 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
873 *rblk = i;
874 *rhead = (struct xlog_rec_header *) offset;
875 if (++found == count)
876 break;
877 }
878 }
879
880 /*
881 * If we haven't hit the head block or the log record header count,
882 * start looking again from the start of the physical log.
883 */
884 if (tail_blk > head_blk && found != count) {
885 for (i = 0; i < (int) head_blk; i++) {
886 error = xlog_bread(log, i, 1, buffer, &offset);
887 if (error)
888 goto out_error;
889
890 if (*(__be32 *)offset ==
891 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
892 *wrapped = true;
893 *rblk = i;
894 *rhead = (struct xlog_rec_header *) offset;
895 if (++found == count)
896 break;
897 }
898 }
899 }
900
901 return found;
902
903out_error:
904 return error;
905}
906
907/*
908 * Calculate distance from head to tail (i.e., unused space in the log).
909 */
910static inline int
911xlog_tail_distance(
912 struct xlog *log,
913 xfs_daddr_t head_blk,
914 xfs_daddr_t tail_blk)
915{
916 if (head_blk < tail_blk)
917 return tail_blk - head_blk;
918
919 return tail_blk + (log->l_logBBsize - head_blk);
920}
921
922/*
923 * Verify the log tail. This is particularly important when torn or incomplete
924 * writes have been detected near the front of the log and the head has been
925 * walked back accordingly.
926 *
927 * We also have to handle the case where the tail was pinned and the head
928 * blocked behind the tail right before a crash. If the tail had been pushed
929 * immediately prior to the crash and the subsequent checkpoint was only
930 * partially written, it's possible it overwrote the last referenced tail in the
931 * log with garbage. This is not a coherency problem because the tail must have
932 * been pushed before it can be overwritten, but appears as log corruption to
933 * recovery because we have no way to know the tail was updated if the
934 * subsequent checkpoint didn't write successfully.
935 *
936 * Therefore, CRC check the log from tail to head. If a failure occurs and the
937 * offending record is within max iclog bufs from the head, walk the tail
938 * forward and retry until a valid tail is found or corruption is detected out
939 * of the range of a possible overwrite.
940 */
941STATIC int
942xlog_verify_tail(
943 struct xlog *log,
944 xfs_daddr_t head_blk,
945 xfs_daddr_t *tail_blk,
946 int hsize)
947{
948 struct xlog_rec_header *thead;
949 char *buffer;
950 xfs_daddr_t first_bad;
951 int error = 0;
952 bool wrapped;
953 xfs_daddr_t tmp_tail;
954 xfs_daddr_t orig_tail = *tail_blk;
955
956 buffer = xlog_alloc_buffer(log, 1);
957 if (!buffer)
958 return -ENOMEM;
959
960 /*
961 * Make sure the tail points to a record (returns positive count on
962 * success).
963 */
964 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
965 &tmp_tail, &thead, &wrapped);
966 if (error < 0)
967 goto out;
968 if (*tail_blk != tmp_tail)
969 *tail_blk = tmp_tail;
970
971 /*
972 * Run a CRC check from the tail to the head. We can't just check
973 * MAX_ICLOGS records past the tail because the tail may point to stale
974 * blocks cleared during the search for the head/tail. These blocks are
975 * overwritten with zero-length records and thus record count is not a
976 * reliable indicator of the iclog state before a crash.
977 */
978 first_bad = 0;
979 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
980 XLOG_RECOVER_CRCPASS, &first_bad);
981 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
982 int tail_distance;
983
984 /*
985 * Is corruption within range of the head? If so, retry from
986 * the next record. Otherwise return an error.
987 */
988 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
989 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
990 break;
991
992 /* skip to the next record; returns positive count on success */
993 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
994 buffer, &tmp_tail, &thead, &wrapped);
995 if (error < 0)
996 goto out;
997
998 *tail_blk = tmp_tail;
999 first_bad = 0;
1000 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1001 XLOG_RECOVER_CRCPASS, &first_bad);
1002 }
1003
1004 if (!error && *tail_blk != orig_tail)
1005 xfs_warn(log->l_mp,
1006 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1007 orig_tail, *tail_blk);
1008out:
1009 kmem_free(buffer);
1010 return error;
1011}
1012
1013/*
1014 * Detect and trim torn writes from the head of the log.
1015 *
1016 * Storage without sector atomicity guarantees can result in torn writes in the
1017 * log in the event of a crash. Our only means to detect this scenario is via
1018 * CRC verification. While we can't always be certain that CRC verification
1019 * failure is due to a torn write vs. an unrelated corruption, we do know that
1020 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1021 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1022 * the log and treat failures in this range as torn writes as a matter of
1023 * policy. In the event of CRC failure, the head is walked back to the last good
1024 * record in the log and the tail is updated from that record and verified.
1025 */
1026STATIC int
1027xlog_verify_head(
1028 struct xlog *log,
1029 xfs_daddr_t *head_blk, /* in/out: unverified head */
1030 xfs_daddr_t *tail_blk, /* out: tail block */
1031 char *buffer,
1032 xfs_daddr_t *rhead_blk, /* start blk of last record */
1033 struct xlog_rec_header **rhead, /* ptr to last record */
1034 bool *wrapped) /* last rec. wraps phys. log */
1035{
1036 struct xlog_rec_header *tmp_rhead;
1037 char *tmp_buffer;
1038 xfs_daddr_t first_bad;
1039 xfs_daddr_t tmp_rhead_blk;
1040 int found;
1041 int error;
1042 bool tmp_wrapped;
1043
1044 /*
1045 * Check the head of the log for torn writes. Search backwards from the
1046 * head until we hit the tail or the maximum number of log record I/Os
1047 * that could have been in flight at one time. Use a temporary buffer so
1048 * we don't trash the rhead/buffer pointers from the caller.
1049 */
1050 tmp_buffer = xlog_alloc_buffer(log, 1);
1051 if (!tmp_buffer)
1052 return -ENOMEM;
1053 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1054 XLOG_MAX_ICLOGS, tmp_buffer,
1055 &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1056 kmem_free(tmp_buffer);
1057 if (error < 0)
1058 return error;
1059
1060 /*
1061 * Now run a CRC verification pass over the records starting at the
1062 * block found above to the current head. If a CRC failure occurs, the
1063 * log block of the first bad record is saved in first_bad.
1064 */
1065 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1066 XLOG_RECOVER_CRCPASS, &first_bad);
1067 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1068 /*
1069 * We've hit a potential torn write. Reset the error and warn
1070 * about it.
1071 */
1072 error = 0;
1073 xfs_warn(log->l_mp,
1074"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1075 first_bad, *head_blk);
1076
1077 /*
1078 * Get the header block and buffer pointer for the last good
1079 * record before the bad record.
1080 *
1081 * Note that xlog_find_tail() clears the blocks at the new head
1082 * (i.e., the records with invalid CRC) if the cycle number
1083 * matches the current cycle.
1084 */
1085 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1086 buffer, rhead_blk, rhead, wrapped);
1087 if (found < 0)
1088 return found;
1089 if (found == 0) /* XXX: right thing to do here? */
1090 return -EIO;
1091
1092 /*
1093 * Reset the head block to the starting block of the first bad
1094 * log record and set the tail block based on the last good
1095 * record.
1096 *
1097 * Bail out if the updated head/tail match as this indicates
1098 * possible corruption outside of the acceptable
1099 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1100 */
1101 *head_blk = first_bad;
1102 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1103 if (*head_blk == *tail_blk) {
1104 ASSERT(0);
1105 return 0;
1106 }
1107 }
1108 if (error)
1109 return error;
1110
1111 return xlog_verify_tail(log, *head_blk, tail_blk,
1112 be32_to_cpu((*rhead)->h_size));
1113}
1114
1115/*
1116 * We need to make sure we handle log wrapping properly, so we can't use the
1117 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1118 * log.
1119 *
1120 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1121 * operation here and cast it back to a 64 bit daddr on return.
1122 */
1123static inline xfs_daddr_t
1124xlog_wrap_logbno(
1125 struct xlog *log,
1126 xfs_daddr_t bno)
1127{
1128 int mod;
1129
1130 div_s64_rem(bno, log->l_logBBsize, &mod);
1131 return mod;
1132}
1133
1134/*
1135 * Check whether the head of the log points to an unmount record. In other
1136 * words, determine whether the log is clean. If so, update the in-core state
1137 * appropriately.
1138 */
1139static int
1140xlog_check_unmount_rec(
1141 struct xlog *log,
1142 xfs_daddr_t *head_blk,
1143 xfs_daddr_t *tail_blk,
1144 struct xlog_rec_header *rhead,
1145 xfs_daddr_t rhead_blk,
1146 char *buffer,
1147 bool *clean)
1148{
1149 struct xlog_op_header *op_head;
1150 xfs_daddr_t umount_data_blk;
1151 xfs_daddr_t after_umount_blk;
1152 int hblks;
1153 int error;
1154 char *offset;
1155
1156 *clean = false;
1157
1158 /*
1159 * Look for unmount record. If we find it, then we know there was a
1160 * clean unmount. Since 'i' could be the last block in the physical
1161 * log, we convert to a log block before comparing to the head_blk.
1162 *
1163 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1164 * below. We won't want to clear the unmount record if there is one, so
1165 * we pass the lsn of the unmount record rather than the block after it.
1166 */
1167 hblks = xlog_logrec_hblks(log, rhead);
1168 after_umount_blk = xlog_wrap_logbno(log,
1169 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1170
1171 if (*head_blk == after_umount_blk &&
1172 be32_to_cpu(rhead->h_num_logops) == 1) {
1173 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1174 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1175 if (error)
1176 return error;
1177
1178 op_head = (struct xlog_op_header *)offset;
1179 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1180 /*
1181 * Set tail and last sync so that newly written log
1182 * records will point recovery to after the current
1183 * unmount record.
1184 */
1185 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1186 log->l_curr_cycle, after_umount_blk);
1187 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1188 log->l_curr_cycle, after_umount_blk);
1189 *tail_blk = after_umount_blk;
1190
1191 *clean = true;
1192 }
1193 }
1194
1195 return 0;
1196}
1197
1198static void
1199xlog_set_state(
1200 struct xlog *log,
1201 xfs_daddr_t head_blk,
1202 struct xlog_rec_header *rhead,
1203 xfs_daddr_t rhead_blk,
1204 bool bump_cycle)
1205{
1206 /*
1207 * Reset log values according to the state of the log when we
1208 * crashed. In the case where head_blk == 0, we bump curr_cycle
1209 * one because the next write starts a new cycle rather than
1210 * continuing the cycle of the last good log record. At this
1211 * point we have guaranteed that all partial log records have been
1212 * accounted for. Therefore, we know that the last good log record
1213 * written was complete and ended exactly on the end boundary
1214 * of the physical log.
1215 */
1216 log->l_prev_block = rhead_blk;
1217 log->l_curr_block = (int)head_blk;
1218 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1219 if (bump_cycle)
1220 log->l_curr_cycle++;
1221 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1222 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1223 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1224 BBTOB(log->l_curr_block));
1225 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1226 BBTOB(log->l_curr_block));
1227}
1228
1229/*
1230 * Find the sync block number or the tail of the log.
1231 *
1232 * This will be the block number of the last record to have its
1233 * associated buffers synced to disk. Every log record header has
1234 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1235 * to get a sync block number. The only concern is to figure out which
1236 * log record header to believe.
1237 *
1238 * The following algorithm uses the log record header with the largest
1239 * lsn. The entire log record does not need to be valid. We only care
1240 * that the header is valid.
1241 *
1242 * We could speed up search by using current head_blk buffer, but it is not
1243 * available.
1244 */
1245STATIC int
1246xlog_find_tail(
1247 struct xlog *log,
1248 xfs_daddr_t *head_blk,
1249 xfs_daddr_t *tail_blk)
1250{
1251 xlog_rec_header_t *rhead;
1252 char *offset = NULL;
1253 char *buffer;
1254 int error;
1255 xfs_daddr_t rhead_blk;
1256 xfs_lsn_t tail_lsn;
1257 bool wrapped = false;
1258 bool clean = false;
1259
1260 /*
1261 * Find previous log record
1262 */
1263 if ((error = xlog_find_head(log, head_blk)))
1264 return error;
1265 ASSERT(*head_blk < INT_MAX);
1266
1267 buffer = xlog_alloc_buffer(log, 1);
1268 if (!buffer)
1269 return -ENOMEM;
1270 if (*head_blk == 0) { /* special case */
1271 error = xlog_bread(log, 0, 1, buffer, &offset);
1272 if (error)
1273 goto done;
1274
1275 if (xlog_get_cycle(offset) == 0) {
1276 *tail_blk = 0;
1277 /* leave all other log inited values alone */
1278 goto done;
1279 }
1280 }
1281
1282 /*
1283 * Search backwards through the log looking for the log record header
1284 * block. This wraps all the way back around to the head so something is
1285 * seriously wrong if we can't find it.
1286 */
1287 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1288 &rhead_blk, &rhead, &wrapped);
1289 if (error < 0)
1290 goto done;
1291 if (!error) {
1292 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1293 error = -EFSCORRUPTED;
1294 goto done;
1295 }
1296 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1297
1298 /*
1299 * Set the log state based on the current head record.
1300 */
1301 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1302 tail_lsn = atomic64_read(&log->l_tail_lsn);
1303
1304 /*
1305 * Look for an unmount record at the head of the log. This sets the log
1306 * state to determine whether recovery is necessary.
1307 */
1308 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1309 rhead_blk, buffer, &clean);
1310 if (error)
1311 goto done;
1312
1313 /*
1314 * Verify the log head if the log is not clean (e.g., we have anything
1315 * but an unmount record at the head). This uses CRC verification to
1316 * detect and trim torn writes. If discovered, CRC failures are
1317 * considered torn writes and the log head is trimmed accordingly.
1318 *
1319 * Note that we can only run CRC verification when the log is dirty
1320 * because there's no guarantee that the log data behind an unmount
1321 * record is compatible with the current architecture.
1322 */
1323 if (!clean) {
1324 xfs_daddr_t orig_head = *head_blk;
1325
1326 error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1327 &rhead_blk, &rhead, &wrapped);
1328 if (error)
1329 goto done;
1330
1331 /* update in-core state again if the head changed */
1332 if (*head_blk != orig_head) {
1333 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1334 wrapped);
1335 tail_lsn = atomic64_read(&log->l_tail_lsn);
1336 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1337 rhead, rhead_blk, buffer,
1338 &clean);
1339 if (error)
1340 goto done;
1341 }
1342 }
1343
1344 /*
1345 * Note that the unmount was clean. If the unmount was not clean, we
1346 * need to know this to rebuild the superblock counters from the perag
1347 * headers if we have a filesystem using non-persistent counters.
1348 */
1349 if (clean)
1350 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1351
1352 /*
1353 * Make sure that there are no blocks in front of the head
1354 * with the same cycle number as the head. This can happen
1355 * because we allow multiple outstanding log writes concurrently,
1356 * and the later writes might make it out before earlier ones.
1357 *
1358 * We use the lsn from before modifying it so that we'll never
1359 * overwrite the unmount record after a clean unmount.
1360 *
1361 * Do this only if we are going to recover the filesystem
1362 *
1363 * NOTE: This used to say "if (!readonly)"
1364 * However on Linux, we can & do recover a read-only filesystem.
1365 * We only skip recovery if NORECOVERY is specified on mount,
1366 * in which case we would not be here.
1367 *
1368 * But... if the -device- itself is readonly, just skip this.
1369 * We can't recover this device anyway, so it won't matter.
1370 */
1371 if (!xfs_readonly_buftarg(log->l_targ))
1372 error = xlog_clear_stale_blocks(log, tail_lsn);
1373
1374done:
1375 kmem_free(buffer);
1376
1377 if (error)
1378 xfs_warn(log->l_mp, "failed to locate log tail");
1379 return error;
1380}
1381
1382/*
1383 * Is the log zeroed at all?
1384 *
1385 * The last binary search should be changed to perform an X block read
1386 * once X becomes small enough. You can then search linearly through
1387 * the X blocks. This will cut down on the number of reads we need to do.
1388 *
1389 * If the log is partially zeroed, this routine will pass back the blkno
1390 * of the first block with cycle number 0. It won't have a complete LR
1391 * preceding it.
1392 *
1393 * Return:
1394 * 0 => the log is completely written to
1395 * 1 => use *blk_no as the first block of the log
1396 * <0 => error has occurred
1397 */
1398STATIC int
1399xlog_find_zeroed(
1400 struct xlog *log,
1401 xfs_daddr_t *blk_no)
1402{
1403 char *buffer;
1404 char *offset;
1405 uint first_cycle, last_cycle;
1406 xfs_daddr_t new_blk, last_blk, start_blk;
1407 xfs_daddr_t num_scan_bblks;
1408 int error, log_bbnum = log->l_logBBsize;
1409
1410 *blk_no = 0;
1411
1412 /* check totally zeroed log */
1413 buffer = xlog_alloc_buffer(log, 1);
1414 if (!buffer)
1415 return -ENOMEM;
1416 error = xlog_bread(log, 0, 1, buffer, &offset);
1417 if (error)
1418 goto out_free_buffer;
1419
1420 first_cycle = xlog_get_cycle(offset);
1421 if (first_cycle == 0) { /* completely zeroed log */
1422 *blk_no = 0;
1423 kmem_free(buffer);
1424 return 1;
1425 }
1426
1427 /* check partially zeroed log */
1428 error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1429 if (error)
1430 goto out_free_buffer;
1431
1432 last_cycle = xlog_get_cycle(offset);
1433 if (last_cycle != 0) { /* log completely written to */
1434 kmem_free(buffer);
1435 return 0;
1436 }
1437
1438 /* we have a partially zeroed log */
1439 last_blk = log_bbnum-1;
1440 error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1441 if (error)
1442 goto out_free_buffer;
1443
1444 /*
1445 * Validate the answer. Because there is no way to guarantee that
1446 * the entire log is made up of log records which are the same size,
1447 * we scan over the defined maximum blocks. At this point, the maximum
1448 * is not chosen to mean anything special. XXXmiken
1449 */
1450 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1451 ASSERT(num_scan_bblks <= INT_MAX);
1452
1453 if (last_blk < num_scan_bblks)
1454 num_scan_bblks = last_blk;
1455 start_blk = last_blk - num_scan_bblks;
1456
1457 /*
1458 * We search for any instances of cycle number 0 that occur before
1459 * our current estimate of the head. What we're trying to detect is
1460 * 1 ... | 0 | 1 | 0...
1461 * ^ binary search ends here
1462 */
1463 if ((error = xlog_find_verify_cycle(log, start_blk,
1464 (int)num_scan_bblks, 0, &new_blk)))
1465 goto out_free_buffer;
1466 if (new_blk != -1)
1467 last_blk = new_blk;
1468
1469 /*
1470 * Potentially backup over partial log record write. We don't need
1471 * to search the end of the log because we know it is zero.
1472 */
1473 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1474 if (error == 1)
1475 error = -EIO;
1476 if (error)
1477 goto out_free_buffer;
1478
1479 *blk_no = last_blk;
1480out_free_buffer:
1481 kmem_free(buffer);
1482 if (error)
1483 return error;
1484 return 1;
1485}
1486
1487/*
1488 * These are simple subroutines used by xlog_clear_stale_blocks() below
1489 * to initialize a buffer full of empty log record headers and write
1490 * them into the log.
1491 */
1492STATIC void
1493xlog_add_record(
1494 struct xlog *log,
1495 char *buf,
1496 int cycle,
1497 int block,
1498 int tail_cycle,
1499 int tail_block)
1500{
1501 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1502
1503 memset(buf, 0, BBSIZE);
1504 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1505 recp->h_cycle = cpu_to_be32(cycle);
1506 recp->h_version = cpu_to_be32(
1507 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1508 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1509 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1510 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1511 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1512}
1513
1514STATIC int
1515xlog_write_log_records(
1516 struct xlog *log,
1517 int cycle,
1518 int start_block,
1519 int blocks,
1520 int tail_cycle,
1521 int tail_block)
1522{
1523 char *offset;
1524 char *buffer;
1525 int balign, ealign;
1526 int sectbb = log->l_sectBBsize;
1527 int end_block = start_block + blocks;
1528 int bufblks;
1529 int error = 0;
1530 int i, j = 0;
1531
1532 /*
1533 * Greedily allocate a buffer big enough to handle the full
1534 * range of basic blocks to be written. If that fails, try
1535 * a smaller size. We need to be able to write at least a
1536 * log sector, or we're out of luck.
1537 */
1538 bufblks = 1 << ffs(blocks);
1539 while (bufblks > log->l_logBBsize)
1540 bufblks >>= 1;
1541 while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1542 bufblks >>= 1;
1543 if (bufblks < sectbb)
1544 return -ENOMEM;
1545 }
1546
1547 /* We may need to do a read at the start to fill in part of
1548 * the buffer in the starting sector not covered by the first
1549 * write below.
1550 */
1551 balign = round_down(start_block, sectbb);
1552 if (balign != start_block) {
1553 error = xlog_bread_noalign(log, start_block, 1, buffer);
1554 if (error)
1555 goto out_free_buffer;
1556
1557 j = start_block - balign;
1558 }
1559
1560 for (i = start_block; i < end_block; i += bufblks) {
1561 int bcount, endcount;
1562
1563 bcount = min(bufblks, end_block - start_block);
1564 endcount = bcount - j;
1565
1566 /* We may need to do a read at the end to fill in part of
1567 * the buffer in the final sector not covered by the write.
1568 * If this is the same sector as the above read, skip it.
1569 */
1570 ealign = round_down(end_block, sectbb);
1571 if (j == 0 && (start_block + endcount > ealign)) {
1572 error = xlog_bread_noalign(log, ealign, sectbb,
1573 buffer + BBTOB(ealign - start_block));
1574 if (error)
1575 break;
1576
1577 }
1578
1579 offset = buffer + xlog_align(log, start_block);
1580 for (; j < endcount; j++) {
1581 xlog_add_record(log, offset, cycle, i+j,
1582 tail_cycle, tail_block);
1583 offset += BBSIZE;
1584 }
1585 error = xlog_bwrite(log, start_block, endcount, buffer);
1586 if (error)
1587 break;
1588 start_block += endcount;
1589 j = 0;
1590 }
1591
1592out_free_buffer:
1593 kmem_free(buffer);
1594 return error;
1595}
1596
1597/*
1598 * This routine is called to blow away any incomplete log writes out
1599 * in front of the log head. We do this so that we won't become confused
1600 * if we come up, write only a little bit more, and then crash again.
1601 * If we leave the partial log records out there, this situation could
1602 * cause us to think those partial writes are valid blocks since they
1603 * have the current cycle number. We get rid of them by overwriting them
1604 * with empty log records with the old cycle number rather than the
1605 * current one.
1606 *
1607 * The tail lsn is passed in rather than taken from
1608 * the log so that we will not write over the unmount record after a
1609 * clean unmount in a 512 block log. Doing so would leave the log without
1610 * any valid log records in it until a new one was written. If we crashed
1611 * during that time we would not be able to recover.
1612 */
1613STATIC int
1614xlog_clear_stale_blocks(
1615 struct xlog *log,
1616 xfs_lsn_t tail_lsn)
1617{
1618 int tail_cycle, head_cycle;
1619 int tail_block, head_block;
1620 int tail_distance, max_distance;
1621 int distance;
1622 int error;
1623
1624 tail_cycle = CYCLE_LSN(tail_lsn);
1625 tail_block = BLOCK_LSN(tail_lsn);
1626 head_cycle = log->l_curr_cycle;
1627 head_block = log->l_curr_block;
1628
1629 /*
1630 * Figure out the distance between the new head of the log
1631 * and the tail. We want to write over any blocks beyond the
1632 * head that we may have written just before the crash, but
1633 * we don't want to overwrite the tail of the log.
1634 */
1635 if (head_cycle == tail_cycle) {
1636 /*
1637 * The tail is behind the head in the physical log,
1638 * so the distance from the head to the tail is the
1639 * distance from the head to the end of the log plus
1640 * the distance from the beginning of the log to the
1641 * tail.
1642 */
1643 if (XFS_IS_CORRUPT(log->l_mp,
1644 head_block < tail_block ||
1645 head_block >= log->l_logBBsize))
1646 return -EFSCORRUPTED;
1647 tail_distance = tail_block + (log->l_logBBsize - head_block);
1648 } else {
1649 /*
1650 * The head is behind the tail in the physical log,
1651 * so the distance from the head to the tail is just
1652 * the tail block minus the head block.
1653 */
1654 if (XFS_IS_CORRUPT(log->l_mp,
1655 head_block >= tail_block ||
1656 head_cycle != tail_cycle + 1))
1657 return -EFSCORRUPTED;
1658 tail_distance = tail_block - head_block;
1659 }
1660
1661 /*
1662 * If the head is right up against the tail, we can't clear
1663 * anything.
1664 */
1665 if (tail_distance <= 0) {
1666 ASSERT(tail_distance == 0);
1667 return 0;
1668 }
1669
1670 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1671 /*
1672 * Take the smaller of the maximum amount of outstanding I/O
1673 * we could have and the distance to the tail to clear out.
1674 * We take the smaller so that we don't overwrite the tail and
1675 * we don't waste all day writing from the head to the tail
1676 * for no reason.
1677 */
1678 max_distance = min(max_distance, tail_distance);
1679
1680 if ((head_block + max_distance) <= log->l_logBBsize) {
1681 /*
1682 * We can stomp all the blocks we need to without
1683 * wrapping around the end of the log. Just do it
1684 * in a single write. Use the cycle number of the
1685 * current cycle minus one so that the log will look like:
1686 * n ... | n - 1 ...
1687 */
1688 error = xlog_write_log_records(log, (head_cycle - 1),
1689 head_block, max_distance, tail_cycle,
1690 tail_block);
1691 if (error)
1692 return error;
1693 } else {
1694 /*
1695 * We need to wrap around the end of the physical log in
1696 * order to clear all the blocks. Do it in two separate
1697 * I/Os. The first write should be from the head to the
1698 * end of the physical log, and it should use the current
1699 * cycle number minus one just like above.
1700 */
1701 distance = log->l_logBBsize - head_block;
1702 error = xlog_write_log_records(log, (head_cycle - 1),
1703 head_block, distance, tail_cycle,
1704 tail_block);
1705
1706 if (error)
1707 return error;
1708
1709 /*
1710 * Now write the blocks at the start of the physical log.
1711 * This writes the remainder of the blocks we want to clear.
1712 * It uses the current cycle number since we're now on the
1713 * same cycle as the head so that we get:
1714 * n ... n ... | n - 1 ...
1715 * ^^^^^ blocks we're writing
1716 */
1717 distance = max_distance - (log->l_logBBsize - head_block);
1718 error = xlog_write_log_records(log, head_cycle, 0, distance,
1719 tail_cycle, tail_block);
1720 if (error)
1721 return error;
1722 }
1723
1724 return 0;
1725}
1726
1727/*
1728 * Release the recovered intent item in the AIL that matches the given intent
1729 * type and intent id.
1730 */
1731void
1732xlog_recover_release_intent(
1733 struct xlog *log,
1734 unsigned short intent_type,
1735 uint64_t intent_id)
1736{
1737 struct xfs_ail_cursor cur;
1738 struct xfs_log_item *lip;
1739 struct xfs_ail *ailp = log->l_ailp;
1740
1741 spin_lock(&ailp->ail_lock);
1742 for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); lip != NULL;
1743 lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
1744 if (lip->li_type != intent_type)
1745 continue;
1746 if (!lip->li_ops->iop_match(lip, intent_id))
1747 continue;
1748
1749 spin_unlock(&ailp->ail_lock);
1750 lip->li_ops->iop_release(lip);
1751 spin_lock(&ailp->ail_lock);
1752 break;
1753 }
1754
1755 xfs_trans_ail_cursor_done(&cur);
1756 spin_unlock(&ailp->ail_lock);
1757}
1758
1759/******************************************************************************
1760 *
1761 * Log recover routines
1762 *
1763 ******************************************************************************
1764 */
1765static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
1766 &xlog_buf_item_ops,
1767 &xlog_inode_item_ops,
1768 &xlog_dquot_item_ops,
1769 &xlog_quotaoff_item_ops,
1770 &xlog_icreate_item_ops,
1771 &xlog_efi_item_ops,
1772 &xlog_efd_item_ops,
1773 &xlog_rui_item_ops,
1774 &xlog_rud_item_ops,
1775 &xlog_cui_item_ops,
1776 &xlog_cud_item_ops,
1777 &xlog_bui_item_ops,
1778 &xlog_bud_item_ops,
1779};
1780
1781static const struct xlog_recover_item_ops *
1782xlog_find_item_ops(
1783 struct xlog_recover_item *item)
1784{
1785 unsigned int i;
1786
1787 for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
1788 if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
1789 return xlog_recover_item_ops[i];
1790
1791 return NULL;
1792}
1793
1794/*
1795 * Sort the log items in the transaction.
1796 *
1797 * The ordering constraints are defined by the inode allocation and unlink
1798 * behaviour. The rules are:
1799 *
1800 * 1. Every item is only logged once in a given transaction. Hence it
1801 * represents the last logged state of the item. Hence ordering is
1802 * dependent on the order in which operations need to be performed so
1803 * required initial conditions are always met.
1804 *
1805 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1806 * there's nothing to replay from them so we can simply cull them
1807 * from the transaction. However, we can't do that until after we've
1808 * replayed all the other items because they may be dependent on the
1809 * cancelled buffer and replaying the cancelled buffer can remove it
1810 * form the cancelled buffer table. Hence they have tobe done last.
1811 *
1812 * 3. Inode allocation buffers must be replayed before inode items that
1813 * read the buffer and replay changes into it. For filesystems using the
1814 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1815 * treated the same as inode allocation buffers as they create and
1816 * initialise the buffers directly.
1817 *
1818 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1819 * This ensures that inodes are completely flushed to the inode buffer
1820 * in a "free" state before we remove the unlinked inode list pointer.
1821 *
1822 * Hence the ordering needs to be inode allocation buffers first, inode items
1823 * second, inode unlink buffers third and cancelled buffers last.
1824 *
1825 * But there's a problem with that - we can't tell an inode allocation buffer
1826 * apart from a regular buffer, so we can't separate them. We can, however,
1827 * tell an inode unlink buffer from the others, and so we can separate them out
1828 * from all the other buffers and move them to last.
1829 *
1830 * Hence, 4 lists, in order from head to tail:
1831 * - buffer_list for all buffers except cancelled/inode unlink buffers
1832 * - item_list for all non-buffer items
1833 * - inode_buffer_list for inode unlink buffers
1834 * - cancel_list for the cancelled buffers
1835 *
1836 * Note that we add objects to the tail of the lists so that first-to-last
1837 * ordering is preserved within the lists. Adding objects to the head of the
1838 * list means when we traverse from the head we walk them in last-to-first
1839 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1840 * but for all other items there may be specific ordering that we need to
1841 * preserve.
1842 */
1843STATIC int
1844xlog_recover_reorder_trans(
1845 struct xlog *log,
1846 struct xlog_recover *trans,
1847 int pass)
1848{
1849 struct xlog_recover_item *item, *n;
1850 int error = 0;
1851 LIST_HEAD(sort_list);
1852 LIST_HEAD(cancel_list);
1853 LIST_HEAD(buffer_list);
1854 LIST_HEAD(inode_buffer_list);
1855 LIST_HEAD(item_list);
1856
1857 list_splice_init(&trans->r_itemq, &sort_list);
1858 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1859 enum xlog_recover_reorder fate = XLOG_REORDER_ITEM_LIST;
1860
1861 item->ri_ops = xlog_find_item_ops(item);
1862 if (!item->ri_ops) {
1863 xfs_warn(log->l_mp,
1864 "%s: unrecognized type of log operation (%d)",
1865 __func__, ITEM_TYPE(item));
1866 ASSERT(0);
1867 /*
1868 * return the remaining items back to the transaction
1869 * item list so they can be freed in caller.
1870 */
1871 if (!list_empty(&sort_list))
1872 list_splice_init(&sort_list, &trans->r_itemq);
1873 error = -EFSCORRUPTED;
1874 break;
1875 }
1876
1877 if (item->ri_ops->reorder)
1878 fate = item->ri_ops->reorder(item);
1879
1880 switch (fate) {
1881 case XLOG_REORDER_BUFFER_LIST:
1882 list_move_tail(&item->ri_list, &buffer_list);
1883 break;
1884 case XLOG_REORDER_CANCEL_LIST:
1885 trace_xfs_log_recover_item_reorder_head(log,
1886 trans, item, pass);
1887 list_move(&item->ri_list, &cancel_list);
1888 break;
1889 case XLOG_REORDER_INODE_BUFFER_LIST:
1890 list_move(&item->ri_list, &inode_buffer_list);
1891 break;
1892 case XLOG_REORDER_ITEM_LIST:
1893 trace_xfs_log_recover_item_reorder_tail(log,
1894 trans, item, pass);
1895 list_move_tail(&item->ri_list, &item_list);
1896 break;
1897 }
1898 }
1899
1900 ASSERT(list_empty(&sort_list));
1901 if (!list_empty(&buffer_list))
1902 list_splice(&buffer_list, &trans->r_itemq);
1903 if (!list_empty(&item_list))
1904 list_splice_tail(&item_list, &trans->r_itemq);
1905 if (!list_empty(&inode_buffer_list))
1906 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1907 if (!list_empty(&cancel_list))
1908 list_splice_tail(&cancel_list, &trans->r_itemq);
1909 return error;
1910}
1911
1912void
1913xlog_buf_readahead(
1914 struct xlog *log,
1915 xfs_daddr_t blkno,
1916 uint len,
1917 const struct xfs_buf_ops *ops)
1918{
1919 if (!xlog_is_buffer_cancelled(log, blkno, len))
1920 xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
1921}
1922
1923STATIC int
1924xlog_recover_items_pass2(
1925 struct xlog *log,
1926 struct xlog_recover *trans,
1927 struct list_head *buffer_list,
1928 struct list_head *item_list)
1929{
1930 struct xlog_recover_item *item;
1931 int error = 0;
1932
1933 list_for_each_entry(item, item_list, ri_list) {
1934 trace_xfs_log_recover_item_recover(log, trans, item,
1935 XLOG_RECOVER_PASS2);
1936
1937 if (item->ri_ops->commit_pass2)
1938 error = item->ri_ops->commit_pass2(log, buffer_list,
1939 item, trans->r_lsn);
1940 if (error)
1941 return error;
1942 }
1943
1944 return error;
1945}
1946
1947/*
1948 * Perform the transaction.
1949 *
1950 * If the transaction modifies a buffer or inode, do it now. Otherwise,
1951 * EFIs and EFDs get queued up by adding entries into the AIL for them.
1952 */
1953STATIC int
1954xlog_recover_commit_trans(
1955 struct xlog *log,
1956 struct xlog_recover *trans,
1957 int pass,
1958 struct list_head *buffer_list)
1959{
1960 int error = 0;
1961 int items_queued = 0;
1962 struct xlog_recover_item *item;
1963 struct xlog_recover_item *next;
1964 LIST_HEAD (ra_list);
1965 LIST_HEAD (done_list);
1966
1967 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1968
1969 hlist_del_init(&trans->r_list);
1970
1971 error = xlog_recover_reorder_trans(log, trans, pass);
1972 if (error)
1973 return error;
1974
1975 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
1976 trace_xfs_log_recover_item_recover(log, trans, item, pass);
1977
1978 switch (pass) {
1979 case XLOG_RECOVER_PASS1:
1980 if (item->ri_ops->commit_pass1)
1981 error = item->ri_ops->commit_pass1(log, item);
1982 break;
1983 case XLOG_RECOVER_PASS2:
1984 if (item->ri_ops->ra_pass2)
1985 item->ri_ops->ra_pass2(log, item);
1986 list_move_tail(&item->ri_list, &ra_list);
1987 items_queued++;
1988 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
1989 error = xlog_recover_items_pass2(log, trans,
1990 buffer_list, &ra_list);
1991 list_splice_tail_init(&ra_list, &done_list);
1992 items_queued = 0;
1993 }
1994
1995 break;
1996 default:
1997 ASSERT(0);
1998 }
1999
2000 if (error)
2001 goto out;
2002 }
2003
2004out:
2005 if (!list_empty(&ra_list)) {
2006 if (!error)
2007 error = xlog_recover_items_pass2(log, trans,
2008 buffer_list, &ra_list);
2009 list_splice_tail_init(&ra_list, &done_list);
2010 }
2011
2012 if (!list_empty(&done_list))
2013 list_splice_init(&done_list, &trans->r_itemq);
2014
2015 return error;
2016}
2017
2018STATIC void
2019xlog_recover_add_item(
2020 struct list_head *head)
2021{
2022 struct xlog_recover_item *item;
2023
2024 item = kmem_zalloc(sizeof(struct xlog_recover_item), 0);
2025 INIT_LIST_HEAD(&item->ri_list);
2026 list_add_tail(&item->ri_list, head);
2027}
2028
2029STATIC int
2030xlog_recover_add_to_cont_trans(
2031 struct xlog *log,
2032 struct xlog_recover *trans,
2033 char *dp,
2034 int len)
2035{
2036 struct xlog_recover_item *item;
2037 char *ptr, *old_ptr;
2038 int old_len;
2039
2040 /*
2041 * If the transaction is empty, the header was split across this and the
2042 * previous record. Copy the rest of the header.
2043 */
2044 if (list_empty(&trans->r_itemq)) {
2045 ASSERT(len <= sizeof(struct xfs_trans_header));
2046 if (len > sizeof(struct xfs_trans_header)) {
2047 xfs_warn(log->l_mp, "%s: bad header length", __func__);
2048 return -EFSCORRUPTED;
2049 }
2050
2051 xlog_recover_add_item(&trans->r_itemq);
2052 ptr = (char *)&trans->r_theader +
2053 sizeof(struct xfs_trans_header) - len;
2054 memcpy(ptr, dp, len);
2055 return 0;
2056 }
2057
2058 /* take the tail entry */
2059 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2060 ri_list);
2061
2062 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
2063 old_len = item->ri_buf[item->ri_cnt-1].i_len;
2064
2065 ptr = krealloc(old_ptr, len + old_len, GFP_KERNEL | __GFP_NOFAIL);
2066 memcpy(&ptr[old_len], dp, len);
2067 item->ri_buf[item->ri_cnt-1].i_len += len;
2068 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
2069 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
2070 return 0;
2071}
2072
2073/*
2074 * The next region to add is the start of a new region. It could be
2075 * a whole region or it could be the first part of a new region. Because
2076 * of this, the assumption here is that the type and size fields of all
2077 * format structures fit into the first 32 bits of the structure.
2078 *
2079 * This works because all regions must be 32 bit aligned. Therefore, we
2080 * either have both fields or we have neither field. In the case we have
2081 * neither field, the data part of the region is zero length. We only have
2082 * a log_op_header and can throw away the header since a new one will appear
2083 * later. If we have at least 4 bytes, then we can determine how many regions
2084 * will appear in the current log item.
2085 */
2086STATIC int
2087xlog_recover_add_to_trans(
2088 struct xlog *log,
2089 struct xlog_recover *trans,
2090 char *dp,
2091 int len)
2092{
2093 struct xfs_inode_log_format *in_f; /* any will do */
2094 struct xlog_recover_item *item;
2095 char *ptr;
2096
2097 if (!len)
2098 return 0;
2099 if (list_empty(&trans->r_itemq)) {
2100 /* we need to catch log corruptions here */
2101 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
2102 xfs_warn(log->l_mp, "%s: bad header magic number",
2103 __func__);
2104 ASSERT(0);
2105 return -EFSCORRUPTED;
2106 }
2107
2108 if (len > sizeof(struct xfs_trans_header)) {
2109 xfs_warn(log->l_mp, "%s: bad header length", __func__);
2110 ASSERT(0);
2111 return -EFSCORRUPTED;
2112 }
2113
2114 /*
2115 * The transaction header can be arbitrarily split across op
2116 * records. If we don't have the whole thing here, copy what we
2117 * do have and handle the rest in the next record.
2118 */
2119 if (len == sizeof(struct xfs_trans_header))
2120 xlog_recover_add_item(&trans->r_itemq);
2121 memcpy(&trans->r_theader, dp, len);
2122 return 0;
2123 }
2124
2125 ptr = kmem_alloc(len, 0);
2126 memcpy(ptr, dp, len);
2127 in_f = (struct xfs_inode_log_format *)ptr;
2128
2129 /* take the tail entry */
2130 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2131 ri_list);
2132 if (item->ri_total != 0 &&
2133 item->ri_total == item->ri_cnt) {
2134 /* tail item is in use, get a new one */
2135 xlog_recover_add_item(&trans->r_itemq);
2136 item = list_entry(trans->r_itemq.prev,
2137 struct xlog_recover_item, ri_list);
2138 }
2139
2140 if (item->ri_total == 0) { /* first region to be added */
2141 if (in_f->ilf_size == 0 ||
2142 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
2143 xfs_warn(log->l_mp,
2144 "bad number of regions (%d) in inode log format",
2145 in_f->ilf_size);
2146 ASSERT(0);
2147 kmem_free(ptr);
2148 return -EFSCORRUPTED;
2149 }
2150
2151 item->ri_total = in_f->ilf_size;
2152 item->ri_buf =
2153 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
2154 0);
2155 }
2156
2157 if (item->ri_total <= item->ri_cnt) {
2158 xfs_warn(log->l_mp,
2159 "log item region count (%d) overflowed size (%d)",
2160 item->ri_cnt, item->ri_total);
2161 ASSERT(0);
2162 kmem_free(ptr);
2163 return -EFSCORRUPTED;
2164 }
2165
2166 /* Description region is ri_buf[0] */
2167 item->ri_buf[item->ri_cnt].i_addr = ptr;
2168 item->ri_buf[item->ri_cnt].i_len = len;
2169 item->ri_cnt++;
2170 trace_xfs_log_recover_item_add(log, trans, item, 0);
2171 return 0;
2172}
2173
2174/*
2175 * Free up any resources allocated by the transaction
2176 *
2177 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2178 */
2179STATIC void
2180xlog_recover_free_trans(
2181 struct xlog_recover *trans)
2182{
2183 struct xlog_recover_item *item, *n;
2184 int i;
2185
2186 hlist_del_init(&trans->r_list);
2187
2188 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2189 /* Free the regions in the item. */
2190 list_del(&item->ri_list);
2191 for (i = 0; i < item->ri_cnt; i++)
2192 kmem_free(item->ri_buf[i].i_addr);
2193 /* Free the item itself */
2194 kmem_free(item->ri_buf);
2195 kmem_free(item);
2196 }
2197 /* Free the transaction recover structure */
2198 kmem_free(trans);
2199}
2200
2201/*
2202 * On error or completion, trans is freed.
2203 */
2204STATIC int
2205xlog_recovery_process_trans(
2206 struct xlog *log,
2207 struct xlog_recover *trans,
2208 char *dp,
2209 unsigned int len,
2210 unsigned int flags,
2211 int pass,
2212 struct list_head *buffer_list)
2213{
2214 int error = 0;
2215 bool freeit = false;
2216
2217 /* mask off ophdr transaction container flags */
2218 flags &= ~XLOG_END_TRANS;
2219 if (flags & XLOG_WAS_CONT_TRANS)
2220 flags &= ~XLOG_CONTINUE_TRANS;
2221
2222 /*
2223 * Callees must not free the trans structure. We'll decide if we need to
2224 * free it or not based on the operation being done and it's result.
2225 */
2226 switch (flags) {
2227 /* expected flag values */
2228 case 0:
2229 case XLOG_CONTINUE_TRANS:
2230 error = xlog_recover_add_to_trans(log, trans, dp, len);
2231 break;
2232 case XLOG_WAS_CONT_TRANS:
2233 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
2234 break;
2235 case XLOG_COMMIT_TRANS:
2236 error = xlog_recover_commit_trans(log, trans, pass,
2237 buffer_list);
2238 /* success or fail, we are now done with this transaction. */
2239 freeit = true;
2240 break;
2241
2242 /* unexpected flag values */
2243 case XLOG_UNMOUNT_TRANS:
2244 /* just skip trans */
2245 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2246 freeit = true;
2247 break;
2248 case XLOG_START_TRANS:
2249 default:
2250 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
2251 ASSERT(0);
2252 error = -EFSCORRUPTED;
2253 break;
2254 }
2255 if (error || freeit)
2256 xlog_recover_free_trans(trans);
2257 return error;
2258}
2259
2260/*
2261 * Lookup the transaction recovery structure associated with the ID in the
2262 * current ophdr. If the transaction doesn't exist and the start flag is set in
2263 * the ophdr, then allocate a new transaction for future ID matches to find.
2264 * Either way, return what we found during the lookup - an existing transaction
2265 * or nothing.
2266 */
2267STATIC struct xlog_recover *
2268xlog_recover_ophdr_to_trans(
2269 struct hlist_head rhash[],
2270 struct xlog_rec_header *rhead,
2271 struct xlog_op_header *ohead)
2272{
2273 struct xlog_recover *trans;
2274 xlog_tid_t tid;
2275 struct hlist_head *rhp;
2276
2277 tid = be32_to_cpu(ohead->oh_tid);
2278 rhp = &rhash[XLOG_RHASH(tid)];
2279 hlist_for_each_entry(trans, rhp, r_list) {
2280 if (trans->r_log_tid == tid)
2281 return trans;
2282 }
2283
2284 /*
2285 * skip over non-start transaction headers - we could be
2286 * processing slack space before the next transaction starts
2287 */
2288 if (!(ohead->oh_flags & XLOG_START_TRANS))
2289 return NULL;
2290
2291 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
2292
2293 /*
2294 * This is a new transaction so allocate a new recovery container to
2295 * hold the recovery ops that will follow.
2296 */
2297 trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
2298 trans->r_log_tid = tid;
2299 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
2300 INIT_LIST_HEAD(&trans->r_itemq);
2301 INIT_HLIST_NODE(&trans->r_list);
2302 hlist_add_head(&trans->r_list, rhp);
2303
2304 /*
2305 * Nothing more to do for this ophdr. Items to be added to this new
2306 * transaction will be in subsequent ophdr containers.
2307 */
2308 return NULL;
2309}
2310
2311STATIC int
2312xlog_recover_process_ophdr(
2313 struct xlog *log,
2314 struct hlist_head rhash[],
2315 struct xlog_rec_header *rhead,
2316 struct xlog_op_header *ohead,
2317 char *dp,
2318 char *end,
2319 int pass,
2320 struct list_head *buffer_list)
2321{
2322 struct xlog_recover *trans;
2323 unsigned int len;
2324 int error;
2325
2326 /* Do we understand who wrote this op? */
2327 if (ohead->oh_clientid != XFS_TRANSACTION &&
2328 ohead->oh_clientid != XFS_LOG) {
2329 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2330 __func__, ohead->oh_clientid);
2331 ASSERT(0);
2332 return -EFSCORRUPTED;
2333 }
2334
2335 /*
2336 * Check the ophdr contains all the data it is supposed to contain.
2337 */
2338 len = be32_to_cpu(ohead->oh_len);
2339 if (dp + len > end) {
2340 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
2341 WARN_ON(1);
2342 return -EFSCORRUPTED;
2343 }
2344
2345 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
2346 if (!trans) {
2347 /* nothing to do, so skip over this ophdr */
2348 return 0;
2349 }
2350
2351 /*
2352 * The recovered buffer queue is drained only once we know that all
2353 * recovery items for the current LSN have been processed. This is
2354 * required because:
2355 *
2356 * - Buffer write submission updates the metadata LSN of the buffer.
2357 * - Log recovery skips items with a metadata LSN >= the current LSN of
2358 * the recovery item.
2359 * - Separate recovery items against the same metadata buffer can share
2360 * a current LSN. I.e., consider that the LSN of a recovery item is
2361 * defined as the starting LSN of the first record in which its
2362 * transaction appears, that a record can hold multiple transactions,
2363 * and/or that a transaction can span multiple records.
2364 *
2365 * In other words, we are allowed to submit a buffer from log recovery
2366 * once per current LSN. Otherwise, we may incorrectly skip recovery
2367 * items and cause corruption.
2368 *
2369 * We don't know up front whether buffers are updated multiple times per
2370 * LSN. Therefore, track the current LSN of each commit log record as it
2371 * is processed and drain the queue when it changes. Use commit records
2372 * because they are ordered correctly by the logging code.
2373 */
2374 if (log->l_recovery_lsn != trans->r_lsn &&
2375 ohead->oh_flags & XLOG_COMMIT_TRANS) {
2376 error = xfs_buf_delwri_submit(buffer_list);
2377 if (error)
2378 return error;
2379 log->l_recovery_lsn = trans->r_lsn;
2380 }
2381
2382 return xlog_recovery_process_trans(log, trans, dp, len,
2383 ohead->oh_flags, pass, buffer_list);
2384}
2385
2386/*
2387 * There are two valid states of the r_state field. 0 indicates that the
2388 * transaction structure is in a normal state. We have either seen the
2389 * start of the transaction or the last operation we added was not a partial
2390 * operation. If the last operation we added to the transaction was a
2391 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2392 *
2393 * NOTE: skip LRs with 0 data length.
2394 */
2395STATIC int
2396xlog_recover_process_data(
2397 struct xlog *log,
2398 struct hlist_head rhash[],
2399 struct xlog_rec_header *rhead,
2400 char *dp,
2401 int pass,
2402 struct list_head *buffer_list)
2403{
2404 struct xlog_op_header *ohead;
2405 char *end;
2406 int num_logops;
2407 int error;
2408
2409 end = dp + be32_to_cpu(rhead->h_len);
2410 num_logops = be32_to_cpu(rhead->h_num_logops);
2411
2412 /* check the log format matches our own - else we can't recover */
2413 if (xlog_header_check_recover(log->l_mp, rhead))
2414 return -EIO;
2415
2416 trace_xfs_log_recover_record(log, rhead, pass);
2417 while ((dp < end) && num_logops) {
2418
2419 ohead = (struct xlog_op_header *)dp;
2420 dp += sizeof(*ohead);
2421 ASSERT(dp <= end);
2422
2423 /* errors will abort recovery */
2424 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
2425 dp, end, pass, buffer_list);
2426 if (error)
2427 return error;
2428
2429 dp += be32_to_cpu(ohead->oh_len);
2430 num_logops--;
2431 }
2432 return 0;
2433}
2434
2435/* Take all the collected deferred ops and finish them in order. */
2436static int
2437xlog_finish_defer_ops(
2438 struct xfs_mount *mp,
2439 struct list_head *capture_list)
2440{
2441 struct xfs_defer_capture *dfc, *next;
2442 struct xfs_trans *tp;
2443 struct xfs_inode *ip;
2444 int error = 0;
2445
2446 list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2447 struct xfs_trans_res resv;
2448
2449 /*
2450 * Create a new transaction reservation from the captured
2451 * information. Set logcount to 1 to force the new transaction
2452 * to regrant every roll so that we can make forward progress
2453 * in recovery no matter how full the log might be.
2454 */
2455 resv.tr_logres = dfc->dfc_logres;
2456 resv.tr_logcount = 1;
2457 resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;
2458
2459 error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
2460 dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
2461 if (error) {
2462 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2463 return error;
2464 }
2465
2466 /*
2467 * Transfer to this new transaction all the dfops we captured
2468 * from recovering a single intent item.
2469 */
2470 list_del_init(&dfc->dfc_list);
2471 xfs_defer_ops_continue(dfc, tp, &ip);
2472
2473 error = xfs_trans_commit(tp);
2474 if (ip) {
2475 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2476 xfs_irele(ip);
2477 }
2478 if (error)
2479 return error;
2480 }
2481
2482 ASSERT(list_empty(capture_list));
2483 return 0;
2484}
2485
2486/* Release all the captured defer ops and capture structures in this list. */
2487static void
2488xlog_abort_defer_ops(
2489 struct xfs_mount *mp,
2490 struct list_head *capture_list)
2491{
2492 struct xfs_defer_capture *dfc;
2493 struct xfs_defer_capture *next;
2494
2495 list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2496 list_del_init(&dfc->dfc_list);
2497 xfs_defer_ops_release(mp, dfc);
2498 }
2499}
2500/*
2501 * When this is called, all of the log intent items which did not have
2502 * corresponding log done items should be in the AIL. What we do now
2503 * is update the data structures associated with each one.
2504 *
2505 * Since we process the log intent items in normal transactions, they
2506 * will be removed at some point after the commit. This prevents us
2507 * from just walking down the list processing each one. We'll use a
2508 * flag in the intent item to skip those that we've already processed
2509 * and use the AIL iteration mechanism's generation count to try to
2510 * speed this up at least a bit.
2511 *
2512 * When we start, we know that the intents are the only things in the
2513 * AIL. As we process them, however, other items are added to the
2514 * AIL.
2515 */
2516STATIC int
2517xlog_recover_process_intents(
2518 struct xlog *log)
2519{
2520 LIST_HEAD(capture_list);
2521 struct xfs_ail_cursor cur;
2522 struct xfs_log_item *lip;
2523 struct xfs_ail *ailp;
2524 int error = 0;
2525#if defined(DEBUG) || defined(XFS_WARN)
2526 xfs_lsn_t last_lsn;
2527#endif
2528
2529 ailp = log->l_ailp;
2530 spin_lock(&ailp->ail_lock);
2531#if defined(DEBUG) || defined(XFS_WARN)
2532 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
2533#endif
2534 for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2535 lip != NULL;
2536 lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
2537 /*
2538 * We're done when we see something other than an intent.
2539 * There should be no intents left in the AIL now.
2540 */
2541 if (!xlog_item_is_intent(lip)) {
2542#ifdef DEBUG
2543 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2544 ASSERT(!xlog_item_is_intent(lip));
2545#endif
2546 break;
2547 }
2548
2549 /*
2550 * We should never see a redo item with a LSN higher than
2551 * the last transaction we found in the log at the start
2552 * of recovery.
2553 */
2554 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
2555
2556 /*
2557 * NOTE: If your intent processing routine can create more
2558 * deferred ops, you /must/ attach them to the capture list in
2559 * the recover routine or else those subsequent intents will be
2560 * replayed in the wrong order!
2561 */
2562 spin_unlock(&ailp->ail_lock);
2563 error = lip->li_ops->iop_recover(lip, &capture_list);
2564 spin_lock(&ailp->ail_lock);
2565 if (error) {
2566 trace_xlog_intent_recovery_failed(log->l_mp, error,
2567 lip->li_ops->iop_recover);
2568 break;
2569 }
2570 }
2571
2572 xfs_trans_ail_cursor_done(&cur);
2573 spin_unlock(&ailp->ail_lock);
2574 if (error)
2575 goto err;
2576
2577 error = xlog_finish_defer_ops(log->l_mp, &capture_list);
2578 if (error)
2579 goto err;
2580
2581 return 0;
2582err:
2583 xlog_abort_defer_ops(log->l_mp, &capture_list);
2584 return error;
2585}
2586
2587/*
2588 * A cancel occurs when the mount has failed and we're bailing out.
2589 * Release all pending log intent items so they don't pin the AIL.
2590 */
2591STATIC void
2592xlog_recover_cancel_intents(
2593 struct xlog *log)
2594{
2595 struct xfs_log_item *lip;
2596 struct xfs_ail_cursor cur;
2597 struct xfs_ail *ailp;
2598
2599 ailp = log->l_ailp;
2600 spin_lock(&ailp->ail_lock);
2601 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2602 while (lip != NULL) {
2603 /*
2604 * We're done when we see something other than an intent.
2605 * There should be no intents left in the AIL now.
2606 */
2607 if (!xlog_item_is_intent(lip)) {
2608#ifdef DEBUG
2609 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2610 ASSERT(!xlog_item_is_intent(lip));
2611#endif
2612 break;
2613 }
2614
2615 spin_unlock(&ailp->ail_lock);
2616 lip->li_ops->iop_release(lip);
2617 spin_lock(&ailp->ail_lock);
2618 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2619 }
2620
2621 xfs_trans_ail_cursor_done(&cur);
2622 spin_unlock(&ailp->ail_lock);
2623}
2624
2625/*
2626 * This routine performs a transaction to null out a bad inode pointer
2627 * in an agi unlinked inode hash bucket.
2628 */
2629STATIC void
2630xlog_recover_clear_agi_bucket(
2631 xfs_mount_t *mp,
2632 xfs_agnumber_t agno,
2633 int bucket)
2634{
2635 xfs_trans_t *tp;
2636 xfs_agi_t *agi;
2637 struct xfs_buf *agibp;
2638 int offset;
2639 int error;
2640
2641 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
2642 if (error)
2643 goto out_error;
2644
2645 error = xfs_read_agi(mp, tp, agno, &agibp);
2646 if (error)
2647 goto out_abort;
2648
2649 agi = agibp->b_addr;
2650 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
2651 offset = offsetof(xfs_agi_t, agi_unlinked) +
2652 (sizeof(xfs_agino_t) * bucket);
2653 xfs_trans_log_buf(tp, agibp, offset,
2654 (offset + sizeof(xfs_agino_t) - 1));
2655
2656 error = xfs_trans_commit(tp);
2657 if (error)
2658 goto out_error;
2659 return;
2660
2661out_abort:
2662 xfs_trans_cancel(tp);
2663out_error:
2664 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
2665 return;
2666}
2667
2668STATIC xfs_agino_t
2669xlog_recover_process_one_iunlink(
2670 struct xfs_mount *mp,
2671 xfs_agnumber_t agno,
2672 xfs_agino_t agino,
2673 int bucket)
2674{
2675 struct xfs_buf *ibp;
2676 struct xfs_dinode *dip;
2677 struct xfs_inode *ip;
2678 xfs_ino_t ino;
2679 int error;
2680
2681 ino = XFS_AGINO_TO_INO(mp, agno, agino);
2682 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
2683 if (error)
2684 goto fail;
2685
2686 /*
2687 * Get the on disk inode to find the next inode in the bucket.
2688 */
2689 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &ibp);
2690 if (error)
2691 goto fail_iput;
2692 dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2693
2694 xfs_iflags_clear(ip, XFS_IRECOVERY);
2695 ASSERT(VFS_I(ip)->i_nlink == 0);
2696 ASSERT(VFS_I(ip)->i_mode != 0);
2697
2698 /* setup for the next pass */
2699 agino = be32_to_cpu(dip->di_next_unlinked);
2700 xfs_buf_relse(ibp);
2701
2702 xfs_irele(ip);
2703 return agino;
2704
2705 fail_iput:
2706 xfs_irele(ip);
2707 fail:
2708 /*
2709 * We can't read in the inode this bucket points to, or this inode
2710 * is messed up. Just ditch this bucket of inodes. We will lose
2711 * some inodes and space, but at least we won't hang.
2712 *
2713 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
2714 * clear the inode pointer in the bucket.
2715 */
2716 xlog_recover_clear_agi_bucket(mp, agno, bucket);
2717 return NULLAGINO;
2718}
2719
2720/*
2721 * Recover AGI unlinked lists
2722 *
2723 * This is called during recovery to process any inodes which we unlinked but
2724 * not freed when the system crashed. These inodes will be on the lists in the
2725 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
2726 * any inodes found on the lists. Each inode is removed from the lists when it
2727 * has been fully truncated and is freed. The freeing of the inode and its
2728 * removal from the list must be atomic.
2729 *
2730 * If everything we touch in the agi processing loop is already in memory, this
2731 * loop can hold the cpu for a long time. It runs without lock contention,
2732 * memory allocation contention, the need wait for IO, etc, and so will run
2733 * until we either run out of inodes to process, run low on memory or we run out
2734 * of log space.
2735 *
2736 * This behaviour is bad for latency on single CPU and non-preemptible kernels,
2737 * and can prevent other filesystem work (such as CIL pushes) from running. This
2738 * can lead to deadlocks if the recovery process runs out of log reservation
2739 * space. Hence we need to yield the CPU when there is other kernel work
2740 * scheduled on this CPU to ensure other scheduled work can run without undue
2741 * latency.
2742 */
2743STATIC void
2744xlog_recover_process_iunlinks(
2745 struct xlog *log)
2746{
2747 struct xfs_mount *mp = log->l_mp;
2748 struct xfs_perag *pag;
2749 xfs_agnumber_t agno;
2750 struct xfs_agi *agi;
2751 struct xfs_buf *agibp;
2752 xfs_agino_t agino;
2753 int bucket;
2754 int error;
2755
2756 for_each_perag(mp, agno, pag) {
2757 error = xfs_read_agi(mp, NULL, pag->pag_agno, &agibp);
2758 if (error) {
2759 /*
2760 * AGI is b0rked. Don't process it.
2761 *
2762 * We should probably mark the filesystem as corrupt
2763 * after we've recovered all the ag's we can....
2764 */
2765 continue;
2766 }
2767 /*
2768 * Unlock the buffer so that it can be acquired in the normal
2769 * course of the transaction to truncate and free each inode.
2770 * Because we are not racing with anyone else here for the AGI
2771 * buffer, we don't even need to hold it locked to read the
2772 * initial unlinked bucket entries out of the buffer. We keep
2773 * buffer reference though, so that it stays pinned in memory
2774 * while we need the buffer.
2775 */
2776 agi = agibp->b_addr;
2777 xfs_buf_unlock(agibp);
2778
2779 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
2780 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2781 while (agino != NULLAGINO) {
2782 agino = xlog_recover_process_one_iunlink(mp,
2783 pag->pag_agno, agino, bucket);
2784 cond_resched();
2785 }
2786 }
2787 xfs_buf_rele(agibp);
2788 }
2789}
2790
2791STATIC void
2792xlog_unpack_data(
2793 struct xlog_rec_header *rhead,
2794 char *dp,
2795 struct xlog *log)
2796{
2797 int i, j, k;
2798
2799 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
2800 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
2801 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
2802 dp += BBSIZE;
2803 }
2804
2805 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
2806 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
2807 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
2808 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2809 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2810 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
2811 dp += BBSIZE;
2812 }
2813 }
2814}
2815
2816/*
2817 * CRC check, unpack and process a log record.
2818 */
2819STATIC int
2820xlog_recover_process(
2821 struct xlog *log,
2822 struct hlist_head rhash[],
2823 struct xlog_rec_header *rhead,
2824 char *dp,
2825 int pass,
2826 struct list_head *buffer_list)
2827{
2828 __le32 old_crc = rhead->h_crc;
2829 __le32 crc;
2830
2831 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
2832
2833 /*
2834 * Nothing else to do if this is a CRC verification pass. Just return
2835 * if this a record with a non-zero crc. Unfortunately, mkfs always
2836 * sets old_crc to 0 so we must consider this valid even on v5 supers.
2837 * Otherwise, return EFSBADCRC on failure so the callers up the stack
2838 * know precisely what failed.
2839 */
2840 if (pass == XLOG_RECOVER_CRCPASS) {
2841 if (old_crc && crc != old_crc)
2842 return -EFSBADCRC;
2843 return 0;
2844 }
2845
2846 /*
2847 * We're in the normal recovery path. Issue a warning if and only if the
2848 * CRC in the header is non-zero. This is an advisory warning and the
2849 * zero CRC check prevents warnings from being emitted when upgrading
2850 * the kernel from one that does not add CRCs by default.
2851 */
2852 if (crc != old_crc) {
2853 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
2854 xfs_alert(log->l_mp,
2855 "log record CRC mismatch: found 0x%x, expected 0x%x.",
2856 le32_to_cpu(old_crc),
2857 le32_to_cpu(crc));
2858 xfs_hex_dump(dp, 32);
2859 }
2860
2861 /*
2862 * If the filesystem is CRC enabled, this mismatch becomes a
2863 * fatal log corruption failure.
2864 */
2865 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
2866 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
2867 return -EFSCORRUPTED;
2868 }
2869 }
2870
2871 xlog_unpack_data(rhead, dp, log);
2872
2873 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
2874 buffer_list);
2875}
2876
2877STATIC int
2878xlog_valid_rec_header(
2879 struct xlog *log,
2880 struct xlog_rec_header *rhead,
2881 xfs_daddr_t blkno,
2882 int bufsize)
2883{
2884 int hlen;
2885
2886 if (XFS_IS_CORRUPT(log->l_mp,
2887 rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
2888 return -EFSCORRUPTED;
2889 if (XFS_IS_CORRUPT(log->l_mp,
2890 (!rhead->h_version ||
2891 (be32_to_cpu(rhead->h_version) &
2892 (~XLOG_VERSION_OKBITS))))) {
2893 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
2894 __func__, be32_to_cpu(rhead->h_version));
2895 return -EFSCORRUPTED;
2896 }
2897
2898 /*
2899 * LR body must have data (or it wouldn't have been written)
2900 * and h_len must not be greater than LR buffer size.
2901 */
2902 hlen = be32_to_cpu(rhead->h_len);
2903 if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize))
2904 return -EFSCORRUPTED;
2905
2906 if (XFS_IS_CORRUPT(log->l_mp,
2907 blkno > log->l_logBBsize || blkno > INT_MAX))
2908 return -EFSCORRUPTED;
2909 return 0;
2910}
2911
2912/*
2913 * Read the log from tail to head and process the log records found.
2914 * Handle the two cases where the tail and head are in the same cycle
2915 * and where the active portion of the log wraps around the end of
2916 * the physical log separately. The pass parameter is passed through
2917 * to the routines called to process the data and is not looked at
2918 * here.
2919 */
2920STATIC int
2921xlog_do_recovery_pass(
2922 struct xlog *log,
2923 xfs_daddr_t head_blk,
2924 xfs_daddr_t tail_blk,
2925 int pass,
2926 xfs_daddr_t *first_bad) /* out: first bad log rec */
2927{
2928 xlog_rec_header_t *rhead;
2929 xfs_daddr_t blk_no, rblk_no;
2930 xfs_daddr_t rhead_blk;
2931 char *offset;
2932 char *hbp, *dbp;
2933 int error = 0, h_size, h_len;
2934 int error2 = 0;
2935 int bblks, split_bblks;
2936 int hblks, split_hblks, wrapped_hblks;
2937 int i;
2938 struct hlist_head rhash[XLOG_RHASH_SIZE];
2939 LIST_HEAD (buffer_list);
2940
2941 ASSERT(head_blk != tail_blk);
2942 blk_no = rhead_blk = tail_blk;
2943
2944 for (i = 0; i < XLOG_RHASH_SIZE; i++)
2945 INIT_HLIST_HEAD(&rhash[i]);
2946
2947 /*
2948 * Read the header of the tail block and get the iclog buffer size from
2949 * h_size. Use this to tell how many sectors make up the log header.
2950 */
2951 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
2952 /*
2953 * When using variable length iclogs, read first sector of
2954 * iclog header and extract the header size from it. Get a
2955 * new hbp that is the correct size.
2956 */
2957 hbp = xlog_alloc_buffer(log, 1);
2958 if (!hbp)
2959 return -ENOMEM;
2960
2961 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
2962 if (error)
2963 goto bread_err1;
2964
2965 rhead = (xlog_rec_header_t *)offset;
2966
2967 /*
2968 * xfsprogs has a bug where record length is based on lsunit but
2969 * h_size (iclog size) is hardcoded to 32k. Now that we
2970 * unconditionally CRC verify the unmount record, this means the
2971 * log buffer can be too small for the record and cause an
2972 * overrun.
2973 *
2974 * Detect this condition here. Use lsunit for the buffer size as
2975 * long as this looks like the mkfs case. Otherwise, return an
2976 * error to avoid a buffer overrun.
2977 */
2978 h_size = be32_to_cpu(rhead->h_size);
2979 h_len = be32_to_cpu(rhead->h_len);
2980 if (h_len > h_size && h_len <= log->l_mp->m_logbsize &&
2981 rhead->h_num_logops == cpu_to_be32(1)) {
2982 xfs_warn(log->l_mp,
2983 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
2984 h_size, log->l_mp->m_logbsize);
2985 h_size = log->l_mp->m_logbsize;
2986 }
2987
2988 error = xlog_valid_rec_header(log, rhead, tail_blk, h_size);
2989 if (error)
2990 goto bread_err1;
2991
2992 hblks = xlog_logrec_hblks(log, rhead);
2993 if (hblks != 1) {
2994 kmem_free(hbp);
2995 hbp = xlog_alloc_buffer(log, hblks);
2996 }
2997 } else {
2998 ASSERT(log->l_sectBBsize == 1);
2999 hblks = 1;
3000 hbp = xlog_alloc_buffer(log, 1);
3001 h_size = XLOG_BIG_RECORD_BSIZE;
3002 }
3003
3004 if (!hbp)
3005 return -ENOMEM;
3006 dbp = xlog_alloc_buffer(log, BTOBB(h_size));
3007 if (!dbp) {
3008 kmem_free(hbp);
3009 return -ENOMEM;
3010 }
3011
3012 memset(rhash, 0, sizeof(rhash));
3013 if (tail_blk > head_blk) {
3014 /*
3015 * Perform recovery around the end of the physical log.
3016 * When the head is not on the same cycle number as the tail,
3017 * we can't do a sequential recovery.
3018 */
3019 while (blk_no < log->l_logBBsize) {
3020 /*
3021 * Check for header wrapping around physical end-of-log
3022 */
3023 offset = hbp;
3024 split_hblks = 0;
3025 wrapped_hblks = 0;
3026 if (blk_no + hblks <= log->l_logBBsize) {
3027 /* Read header in one read */
3028 error = xlog_bread(log, blk_no, hblks, hbp,
3029 &offset);
3030 if (error)
3031 goto bread_err2;
3032 } else {
3033 /* This LR is split across physical log end */
3034 if (blk_no != log->l_logBBsize) {
3035 /* some data before physical log end */
3036 ASSERT(blk_no <= INT_MAX);
3037 split_hblks = log->l_logBBsize - (int)blk_no;
3038 ASSERT(split_hblks > 0);
3039 error = xlog_bread(log, blk_no,
3040 split_hblks, hbp,
3041 &offset);
3042 if (error)
3043 goto bread_err2;
3044 }
3045
3046 /*
3047 * Note: this black magic still works with
3048 * large sector sizes (non-512) only because:
3049 * - we increased the buffer size originally
3050 * by 1 sector giving us enough extra space
3051 * for the second read;
3052 * - the log start is guaranteed to be sector
3053 * aligned;
3054 * - we read the log end (LR header start)
3055 * _first_, then the log start (LR header end)
3056 * - order is important.
3057 */
3058 wrapped_hblks = hblks - split_hblks;
3059 error = xlog_bread_noalign(log, 0,
3060 wrapped_hblks,
3061 offset + BBTOB(split_hblks));
3062 if (error)
3063 goto bread_err2;
3064 }
3065 rhead = (xlog_rec_header_t *)offset;
3066 error = xlog_valid_rec_header(log, rhead,
3067 split_hblks ? blk_no : 0, h_size);
3068 if (error)
3069 goto bread_err2;
3070
3071 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3072 blk_no += hblks;
3073
3074 /*
3075 * Read the log record data in multiple reads if it
3076 * wraps around the end of the log. Note that if the
3077 * header already wrapped, blk_no could point past the
3078 * end of the log. The record data is contiguous in
3079 * that case.
3080 */
3081 if (blk_no + bblks <= log->l_logBBsize ||
3082 blk_no >= log->l_logBBsize) {
3083 rblk_no = xlog_wrap_logbno(log, blk_no);
3084 error = xlog_bread(log, rblk_no, bblks, dbp,
3085 &offset);
3086 if (error)
3087 goto bread_err2;
3088 } else {
3089 /* This log record is split across the
3090 * physical end of log */
3091 offset = dbp;
3092 split_bblks = 0;
3093 if (blk_no != log->l_logBBsize) {
3094 /* some data is before the physical
3095 * end of log */
3096 ASSERT(!wrapped_hblks);
3097 ASSERT(blk_no <= INT_MAX);
3098 split_bblks =
3099 log->l_logBBsize - (int)blk_no;
3100 ASSERT(split_bblks > 0);
3101 error = xlog_bread(log, blk_no,
3102 split_bblks, dbp,
3103 &offset);
3104 if (error)
3105 goto bread_err2;
3106 }
3107
3108 /*
3109 * Note: this black magic still works with
3110 * large sector sizes (non-512) only because:
3111 * - we increased the buffer size originally
3112 * by 1 sector giving us enough extra space
3113 * for the second read;
3114 * - the log start is guaranteed to be sector
3115 * aligned;
3116 * - we read the log end (LR header start)
3117 * _first_, then the log start (LR header end)
3118 * - order is important.
3119 */
3120 error = xlog_bread_noalign(log, 0,
3121 bblks - split_bblks,
3122 offset + BBTOB(split_bblks));
3123 if (error)
3124 goto bread_err2;
3125 }
3126
3127 error = xlog_recover_process(log, rhash, rhead, offset,
3128 pass, &buffer_list);
3129 if (error)
3130 goto bread_err2;
3131
3132 blk_no += bblks;
3133 rhead_blk = blk_no;
3134 }
3135
3136 ASSERT(blk_no >= log->l_logBBsize);
3137 blk_no -= log->l_logBBsize;
3138 rhead_blk = blk_no;
3139 }
3140
3141 /* read first part of physical log */
3142 while (blk_no < head_blk) {
3143 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3144 if (error)
3145 goto bread_err2;
3146
3147 rhead = (xlog_rec_header_t *)offset;
3148 error = xlog_valid_rec_header(log, rhead, blk_no, h_size);
3149 if (error)
3150 goto bread_err2;
3151
3152 /* blocks in data section */
3153 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3154 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3155 &offset);
3156 if (error)
3157 goto bread_err2;
3158
3159 error = xlog_recover_process(log, rhash, rhead, offset, pass,
3160 &buffer_list);
3161 if (error)
3162 goto bread_err2;
3163
3164 blk_no += bblks + hblks;
3165 rhead_blk = blk_no;
3166 }
3167
3168 bread_err2:
3169 kmem_free(dbp);
3170 bread_err1:
3171 kmem_free(hbp);
3172
3173 /*
3174 * Submit buffers that have been added from the last record processed,
3175 * regardless of error status.
3176 */
3177 if (!list_empty(&buffer_list))
3178 error2 = xfs_buf_delwri_submit(&buffer_list);
3179
3180 if (error && first_bad)
3181 *first_bad = rhead_blk;
3182
3183 /*
3184 * Transactions are freed at commit time but transactions without commit
3185 * records on disk are never committed. Free any that may be left in the
3186 * hash table.
3187 */
3188 for (i = 0; i < XLOG_RHASH_SIZE; i++) {
3189 struct hlist_node *tmp;
3190 struct xlog_recover *trans;
3191
3192 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
3193 xlog_recover_free_trans(trans);
3194 }
3195
3196 return error ? error : error2;
3197}
3198
3199/*
3200 * Do the recovery of the log. We actually do this in two phases.
3201 * The two passes are necessary in order to implement the function
3202 * of cancelling a record written into the log. The first pass
3203 * determines those things which have been cancelled, and the
3204 * second pass replays log items normally except for those which
3205 * have been cancelled. The handling of the replay and cancellations
3206 * takes place in the log item type specific routines.
3207 *
3208 * The table of items which have cancel records in the log is allocated
3209 * and freed at this level, since only here do we know when all of
3210 * the log recovery has been completed.
3211 */
3212STATIC int
3213xlog_do_log_recovery(
3214 struct xlog *log,
3215 xfs_daddr_t head_blk,
3216 xfs_daddr_t tail_blk)
3217{
3218 int error, i;
3219
3220 ASSERT(head_blk != tail_blk);
3221
3222 /*
3223 * First do a pass to find all of the cancelled buf log items.
3224 * Store them in the buf_cancel_table for use in the second pass.
3225 */
3226 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3227 sizeof(struct list_head),
3228 0);
3229 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3230 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3231
3232 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3233 XLOG_RECOVER_PASS1, NULL);
3234 if (error != 0) {
3235 kmem_free(log->l_buf_cancel_table);
3236 log->l_buf_cancel_table = NULL;
3237 return error;
3238 }
3239 /*
3240 * Then do a second pass to actually recover the items in the log.
3241 * When it is complete free the table of buf cancel items.
3242 */
3243 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3244 XLOG_RECOVER_PASS2, NULL);
3245#ifdef DEBUG
3246 if (!error) {
3247 int i;
3248
3249 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3250 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3251 }
3252#endif /* DEBUG */
3253
3254 kmem_free(log->l_buf_cancel_table);
3255 log->l_buf_cancel_table = NULL;
3256
3257 return error;
3258}
3259
3260/*
3261 * Do the actual recovery
3262 */
3263STATIC int
3264xlog_do_recover(
3265 struct xlog *log,
3266 xfs_daddr_t head_blk,
3267 xfs_daddr_t tail_blk)
3268{
3269 struct xfs_mount *mp = log->l_mp;
3270 struct xfs_buf *bp = mp->m_sb_bp;
3271 struct xfs_sb *sbp = &mp->m_sb;
3272 int error;
3273
3274 trace_xfs_log_recover(log, head_blk, tail_blk);
3275
3276 /*
3277 * First replay the images in the log.
3278 */
3279 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3280 if (error)
3281 return error;
3282
3283 /*
3284 * If IO errors happened during recovery, bail out.
3285 */
3286 if (XFS_FORCED_SHUTDOWN(mp))
3287 return -EIO;
3288
3289 /*
3290 * We now update the tail_lsn since much of the recovery has completed
3291 * and there may be space available to use. If there were no extent
3292 * or iunlinks, we can free up the entire log and set the tail_lsn to
3293 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3294 * lsn of the last known good LR on disk. If there are extent frees
3295 * or iunlinks they will have some entries in the AIL; so we look at
3296 * the AIL to determine how to set the tail_lsn.
3297 */
3298 xlog_assign_tail_lsn(mp);
3299
3300 /*
3301 * Now that we've finished replaying all buffer and inode updates,
3302 * re-read the superblock and reverify it.
3303 */
3304 xfs_buf_lock(bp);
3305 xfs_buf_hold(bp);
3306 error = _xfs_buf_read(bp, XBF_READ);
3307 if (error) {
3308 if (!XFS_FORCED_SHUTDOWN(mp)) {
3309 xfs_buf_ioerror_alert(bp, __this_address);
3310 ASSERT(0);
3311 }
3312 xfs_buf_relse(bp);
3313 return error;
3314 }
3315
3316 /* Convert superblock from on-disk format */
3317 xfs_sb_from_disk(sbp, bp->b_addr);
3318 xfs_buf_relse(bp);
3319
3320 /* re-initialise in-core superblock and geometry structures */
3321 xfs_reinit_percpu_counters(mp);
3322 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
3323 if (error) {
3324 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
3325 return error;
3326 }
3327 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
3328
3329 xlog_recover_check_summary(log);
3330
3331 /* Normal transactions can now occur */
3332 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3333 return 0;
3334}
3335
3336/*
3337 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3338 *
3339 * Return error or zero.
3340 */
3341int
3342xlog_recover(
3343 struct xlog *log)
3344{
3345 xfs_daddr_t head_blk, tail_blk;
3346 int error;
3347
3348 /* find the tail of the log */
3349 error = xlog_find_tail(log, &head_blk, &tail_blk);
3350 if (error)
3351 return error;
3352
3353 /*
3354 * The superblock was read before the log was available and thus the LSN
3355 * could not be verified. Check the superblock LSN against the current
3356 * LSN now that it's known.
3357 */
3358 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
3359 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
3360 return -EINVAL;
3361
3362 if (tail_blk != head_blk) {
3363 /* There used to be a comment here:
3364 *
3365 * disallow recovery on read-only mounts. note -- mount
3366 * checks for ENOSPC and turns it into an intelligent
3367 * error message.
3368 * ...but this is no longer true. Now, unless you specify
3369 * NORECOVERY (in which case this function would never be
3370 * called), we just go ahead and recover. We do this all
3371 * under the vfs layer, so we can get away with it unless
3372 * the device itself is read-only, in which case we fail.
3373 */
3374 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3375 return error;
3376 }
3377
3378 /*
3379 * Version 5 superblock log feature mask validation. We know the
3380 * log is dirty so check if there are any unknown log features
3381 * in what we need to recover. If there are unknown features
3382 * (e.g. unsupported transactions, then simply reject the
3383 * attempt at recovery before touching anything.
3384 */
3385 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
3386 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
3387 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
3388 xfs_warn(log->l_mp,
3389"Superblock has unknown incompatible log features (0x%x) enabled.",
3390 (log->l_mp->m_sb.sb_features_log_incompat &
3391 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
3392 xfs_warn(log->l_mp,
3393"The log can not be fully and/or safely recovered by this kernel.");
3394 xfs_warn(log->l_mp,
3395"Please recover the log on a kernel that supports the unknown features.");
3396 return -EINVAL;
3397 }
3398
3399 /*
3400 * Delay log recovery if the debug hook is set. This is debug
3401 * instrumentation to coordinate simulation of I/O failures with
3402 * log recovery.
3403 */
3404 if (xfs_globals.log_recovery_delay) {
3405 xfs_notice(log->l_mp,
3406 "Delaying log recovery for %d seconds.",
3407 xfs_globals.log_recovery_delay);
3408 msleep(xfs_globals.log_recovery_delay * 1000);
3409 }
3410
3411 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3412 log->l_mp->m_logname ? log->l_mp->m_logname
3413 : "internal");
3414
3415 error = xlog_do_recover(log, head_blk, tail_blk);
3416 log->l_flags |= XLOG_RECOVERY_NEEDED;
3417 }
3418 return error;
3419}
3420
3421/*
3422 * In the first part of recovery we replay inodes and buffers and build
3423 * up the list of extent free items which need to be processed. Here
3424 * we process the extent free items and clean up the on disk unlinked
3425 * inode lists. This is separated from the first part of recovery so
3426 * that the root and real-time bitmap inodes can be read in from disk in
3427 * between the two stages. This is necessary so that we can free space
3428 * in the real-time portion of the file system.
3429 */
3430int
3431xlog_recover_finish(
3432 struct xlog *log)
3433{
3434 /*
3435 * Now we're ready to do the transactions needed for the
3436 * rest of recovery. Start with completing all the extent
3437 * free intent records and then process the unlinked inode
3438 * lists. At this point, we essentially run in normal mode
3439 * except that we're still performing recovery actions
3440 * rather than accepting new requests.
3441 */
3442 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3443 int error;
3444 error = xlog_recover_process_intents(log);
3445 if (error) {
3446 /*
3447 * Cancel all the unprocessed intent items now so that
3448 * we don't leave them pinned in the AIL. This can
3449 * cause the AIL to livelock on the pinned item if
3450 * anyone tries to push the AIL (inode reclaim does
3451 * this) before we get around to xfs_log_mount_cancel.
3452 */
3453 xlog_recover_cancel_intents(log);
3454 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
3455 xfs_alert(log->l_mp, "Failed to recover intents");
3456 return error;
3457 }
3458
3459 /*
3460 * Sync the log to get all the intents out of the AIL.
3461 * This isn't absolutely necessary, but it helps in
3462 * case the unlink transactions would have problems
3463 * pushing the intents out of the way.
3464 */
3465 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3466
3467 xlog_recover_process_iunlinks(log);
3468
3469 xlog_recover_check_summary(log);
3470
3471 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3472 log->l_mp->m_logname ? log->l_mp->m_logname
3473 : "internal");
3474 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3475 } else {
3476 xfs_info(log->l_mp, "Ending clean mount");
3477 }
3478 return 0;
3479}
3480
3481void
3482xlog_recover_cancel(
3483 struct xlog *log)
3484{
3485 if (log->l_flags & XLOG_RECOVERY_NEEDED)
3486 xlog_recover_cancel_intents(log);
3487}
3488
3489#if defined(DEBUG)
3490/*
3491 * Read all of the agf and agi counters and check that they
3492 * are consistent with the superblock counters.
3493 */
3494STATIC void
3495xlog_recover_check_summary(
3496 struct xlog *log)
3497{
3498 struct xfs_mount *mp = log->l_mp;
3499 struct xfs_perag *pag;
3500 struct xfs_buf *agfbp;
3501 struct xfs_buf *agibp;
3502 xfs_agnumber_t agno;
3503 uint64_t freeblks;
3504 uint64_t itotal;
3505 uint64_t ifree;
3506 int error;
3507
3508 mp = log->l_mp;
3509
3510 freeblks = 0LL;
3511 itotal = 0LL;
3512 ifree = 0LL;
3513 for_each_perag(mp, agno, pag) {
3514 error = xfs_read_agf(mp, NULL, pag->pag_agno, 0, &agfbp);
3515 if (error) {
3516 xfs_alert(mp, "%s agf read failed agno %d error %d",
3517 __func__, pag->pag_agno, error);
3518 } else {
3519 struct xfs_agf *agfp = agfbp->b_addr;
3520
3521 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3522 be32_to_cpu(agfp->agf_flcount);
3523 xfs_buf_relse(agfbp);
3524 }
3525
3526 error = xfs_read_agi(mp, NULL, pag->pag_agno, &agibp);
3527 if (error) {
3528 xfs_alert(mp, "%s agi read failed agno %d error %d",
3529 __func__, pag->pag_agno, error);
3530 } else {
3531 struct xfs_agi *agi = agibp->b_addr;
3532
3533 itotal += be32_to_cpu(agi->agi_count);
3534 ifree += be32_to_cpu(agi->agi_freecount);
3535 xfs_buf_relse(agibp);
3536 }
3537 }
3538}
3539#endif /* DEBUG */