Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
 
 
 
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_sb.h"
  26#include "xfs_ag.h"
  27#include "xfs_mount.h"
  28#include "xfs_error.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_alloc_btree.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_dinode.h"
  33#include "xfs_inode.h"
  34#include "xfs_inode_item.h"
  35#include "xfs_alloc.h"
  36#include "xfs_ialloc.h"
  37#include "xfs_log_priv.h"
  38#include "xfs_buf_item.h"
  39#include "xfs_log_recover.h"
  40#include "xfs_extfree_item.h"
  41#include "xfs_trans_priv.h"
  42#include "xfs_quota.h"
  43#include "xfs_rw.h"
  44#include "xfs_utils.h"
  45#include "xfs_trace.h"
 
 
 
 
  46
  47STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  48STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
 
 
 
 
 
 
 
 
  49#if defined(DEBUG)
  50STATIC void	xlog_recover_check_summary(xlog_t *);
 
 
  51#else
  52#define	xlog_recover_check_summary(log)
  53#endif
  54
  55/*
  56 * This structure is used during recovery to record the buf log items which
  57 * have been canceled and should not be replayed.
  58 */
  59struct xfs_buf_cancel {
  60	xfs_daddr_t		bc_blkno;
  61	uint			bc_len;
  62	int			bc_refcount;
  63	struct list_head	bc_list;
  64};
  65
  66/*
  67 * Sector aligned buffer routines for buffer create/read/write/access
  68 */
  69
  70/*
  71 * Verify the given count of basic blocks is valid number of blocks
  72 * to specify for an operation involving the given XFS log buffer.
  73 * Returns nonzero if the count is valid, 0 otherwise.
  74 */
  75
  76static inline int
  77xlog_buf_bbcount_valid(
  78	xlog_t		*log,
  79	int		bbcount)
  80{
  81	return bbcount > 0 && bbcount <= log->l_logBBsize;
 
 
 
 
  82}
  83
  84/*
  85 * Allocate a buffer to hold log data.  The buffer needs to be able
  86 * to map to a range of nbblks basic blocks at any valid (basic
  87 * block) offset within the log.
  88 */
  89STATIC xfs_buf_t *
  90xlog_get_bp(
  91	xlog_t		*log,
  92	int		nbblks)
  93{
  94	struct xfs_buf	*bp;
  95
  96	if (!xlog_buf_bbcount_valid(log, nbblks)) {
 
 
 
 
  97		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  98			nbblks);
  99		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 100		return NULL;
 101	}
 102
 103	/*
 104	 * We do log I/O in units of log sectors (a power-of-2
 105	 * multiple of the basic block size), so we round up the
 106	 * requested size to accommodate the basic blocks required
 107	 * for complete log sectors.
 108	 *
 109	 * In addition, the buffer may be used for a non-sector-
 110	 * aligned block offset, in which case an I/O of the
 111	 * requested size could extend beyond the end of the
 112	 * buffer.  If the requested size is only 1 basic block it
 113	 * will never straddle a sector boundary, so this won't be
 114	 * an issue.  Nor will this be a problem if the log I/O is
 115	 * done in basic blocks (sector size 1).  But otherwise we
 116	 * extend the buffer by one extra log sector to ensure
 117	 * there's space to accommodate this possibility.
 118	 */
 119	if (nbblks > 1 && log->l_sectBBsize > 1)
 120		nbblks += log->l_sectBBsize;
 121	nbblks = round_up(nbblks, log->l_sectBBsize);
 122
 123	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, BBTOB(nbblks), 0);
 124	if (bp)
 125		xfs_buf_unlock(bp);
 126	return bp;
 127}
 128
 129STATIC void
 130xlog_put_bp(
 131	xfs_buf_t	*bp)
 132{
 133	xfs_buf_free(bp);
 134}
 135
 136/*
 137 * Return the address of the start of the given block number's data
 138 * in a log buffer.  The buffer covers a log sector-aligned region.
 139 */
 140STATIC xfs_caddr_t
 141xlog_align(
 142	xlog_t		*log,
 143	xfs_daddr_t	blk_no,
 144	int		nbblks,
 145	xfs_buf_t	*bp)
 146{
 147	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
 148
 149	ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
 150	return bp->b_addr + BBTOB(offset);
 151}
 152
 153
 154/*
 155 * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
 156 */
 157STATIC int
 158xlog_bread_noalign(
 159	xlog_t		*log,
 160	xfs_daddr_t	blk_no,
 161	int		nbblks,
 162	xfs_buf_t	*bp)
 163{
 164	int		error;
 165
 166	if (!xlog_buf_bbcount_valid(log, nbblks)) {
 167		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 168			nbblks);
 169		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 170		return EFSCORRUPTED;
 171	}
 172
 173	blk_no = round_down(blk_no, log->l_sectBBsize);
 174	nbblks = round_up(nbblks, log->l_sectBBsize);
 175
 176	ASSERT(nbblks > 0);
 177	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
 178
 179	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 180	XFS_BUF_READ(bp);
 181	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
 182
 183	xfsbdstrat(log->l_mp, bp);
 184	error = xfs_buf_iowait(bp);
 185	if (error)
 186		xfs_ioerror_alert("xlog_bread", log->l_mp,
 187				  bp, XFS_BUF_ADDR(bp));
 188	return error;
 189}
 190
 191STATIC int
 192xlog_bread(
 193	xlog_t		*log,
 194	xfs_daddr_t	blk_no,
 195	int		nbblks,
 196	xfs_buf_t	*bp,
 197	xfs_caddr_t	*offset)
 198{
 199	int		error;
 200
 201	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 202	if (error)
 203		return error;
 204
 205	*offset = xlog_align(log, blk_no, nbblks, bp);
 206	return 0;
 207}
 208
 209/*
 210 * Read at an offset into the buffer. Returns with the buffer in it's original
 211 * state regardless of the result of the read.
 212 */
 213STATIC int
 214xlog_bread_offset(
 215	xlog_t		*log,
 216	xfs_daddr_t	blk_no,		/* block to read from */
 217	int		nbblks,		/* blocks to read */
 218	xfs_buf_t	*bp,
 219	xfs_caddr_t	offset)
 220{
 221	xfs_caddr_t	orig_offset = bp->b_addr;
 222	int		orig_len = bp->b_buffer_length;
 223	int		error, error2;
 224
 225	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
 226	if (error)
 227		return error;
 228
 229	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 230
 231	/* must reset buffer pointer even on error */
 232	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
 233	if (error)
 234		return error;
 235	return error2;
 236}
 237
 238/*
 239 * Write out the buffer at the given block for the given number of blocks.
 240 * The buffer is kept locked across the write and is returned locked.
 241 * This can only be used for synchronous log writes.
 242 */
 243STATIC int
 244xlog_bwrite(
 245	xlog_t		*log,
 246	xfs_daddr_t	blk_no,
 247	int		nbblks,
 248	xfs_buf_t	*bp)
 249{
 250	int		error;
 251
 252	if (!xlog_buf_bbcount_valid(log, nbblks)) {
 253		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 254			nbblks);
 255		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 256		return EFSCORRUPTED;
 257	}
 258
 259	blk_no = round_down(blk_no, log->l_sectBBsize);
 260	nbblks = round_up(nbblks, log->l_sectBBsize);
 261
 262	ASSERT(nbblks > 0);
 263	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
 264
 265	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 266	XFS_BUF_ZEROFLAGS(bp);
 267	xfs_buf_hold(bp);
 268	xfs_buf_lock(bp);
 269	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
 270
 271	if ((error = xfs_bwrite(log->l_mp, bp)))
 272		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
 273				  bp, XFS_BUF_ADDR(bp));
 274	return error;
 275}
 276
 277#ifdef DEBUG
 278/*
 279 * dump debug superblock and log record information
 280 */
 281STATIC void
 282xlog_header_check_dump(
 283	xfs_mount_t		*mp,
 284	xlog_rec_header_t	*head)
 285{
 286	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d\n",
 287		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 288	xfs_debug(mp, "    log : uuid = %pU, fmt = %d\n",
 289		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 290}
 291#else
 292#define xlog_header_check_dump(mp, head)
 293#endif
 294
 295/*
 296 * check log record header for recovery
 297 */
 298STATIC int
 299xlog_header_check_recover(
 300	xfs_mount_t		*mp,
 301	xlog_rec_header_t	*head)
 302{
 303	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 304
 305	/*
 306	 * IRIX doesn't write the h_fmt field and leaves it zeroed
 307	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 308	 * a dirty log created in IRIX.
 309	 */
 310	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
 311		xfs_warn(mp,
 312	"dirty log written in incompatible format - can't recover");
 313		xlog_header_check_dump(mp, head);
 314		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
 315				 XFS_ERRLEVEL_HIGH, mp);
 316		return XFS_ERROR(EFSCORRUPTED);
 317	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 318		xfs_warn(mp,
 319	"dirty log entry has mismatched uuid - can't recover");
 320		xlog_header_check_dump(mp, head);
 321		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
 322				 XFS_ERRLEVEL_HIGH, mp);
 323		return XFS_ERROR(EFSCORRUPTED);
 324	}
 325	return 0;
 326}
 327
 328/*
 329 * read the head block of the log and check the header
 330 */
 331STATIC int
 332xlog_header_check_mount(
 333	xfs_mount_t		*mp,
 334	xlog_rec_header_t	*head)
 335{
 336	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 337
 338	if (uuid_is_nil(&head->h_fs_uuid)) {
 339		/*
 340		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 341		 * h_fs_uuid is nil, we assume this log was last mounted
 342		 * by IRIX and continue.
 343		 */
 344		xfs_warn(mp, "nil uuid in log - IRIX style log");
 345	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 
 346		xfs_warn(mp, "log has mismatched uuid - can't recover");
 347		xlog_header_check_dump(mp, head);
 348		XFS_ERROR_REPORT("xlog_header_check_mount",
 349				 XFS_ERRLEVEL_HIGH, mp);
 350		return XFS_ERROR(EFSCORRUPTED);
 351	}
 352	return 0;
 353}
 354
 355STATIC void
 356xlog_recover_iodone(
 357	struct xfs_buf	*bp)
 358{
 359	if (bp->b_error) {
 360		/*
 361		 * We're not going to bother about retrying
 362		 * this during recovery. One strike!
 363		 */
 364		xfs_ioerror_alert("xlog_recover_iodone",
 365					bp->b_target->bt_mount, bp,
 366					XFS_BUF_ADDR(bp));
 367		xfs_force_shutdown(bp->b_target->bt_mount,
 368					SHUTDOWN_META_IO_ERROR);
 369	}
 370	bp->b_iodone = NULL;
 371	xfs_buf_ioend(bp, 0);
 372}
 373
 374/*
 375 * This routine finds (to an approximation) the first block in the physical
 376 * log which contains the given cycle.  It uses a binary search algorithm.
 377 * Note that the algorithm can not be perfect because the disk will not
 378 * necessarily be perfect.
 379 */
 380STATIC int
 381xlog_find_cycle_start(
 382	xlog_t		*log,
 383	xfs_buf_t	*bp,
 384	xfs_daddr_t	first_blk,
 385	xfs_daddr_t	*last_blk,
 386	uint		cycle)
 387{
 388	xfs_caddr_t	offset;
 389	xfs_daddr_t	mid_blk;
 390	xfs_daddr_t	end_blk;
 391	uint		mid_cycle;
 392	int		error;
 393
 394	end_blk = *last_blk;
 395	mid_blk = BLK_AVG(first_blk, end_blk);
 396	while (mid_blk != first_blk && mid_blk != end_blk) {
 397		error = xlog_bread(log, mid_blk, 1, bp, &offset);
 398		if (error)
 399			return error;
 400		mid_cycle = xlog_get_cycle(offset);
 401		if (mid_cycle == cycle)
 402			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 403		else
 404			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 405		mid_blk = BLK_AVG(first_blk, end_blk);
 406	}
 407	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 408	       (mid_blk == end_blk && mid_blk-1 == first_blk));
 409
 410	*last_blk = end_blk;
 411
 412	return 0;
 413}
 414
 415/*
 416 * Check that a range of blocks does not contain stop_on_cycle_no.
 417 * Fill in *new_blk with the block offset where such a block is
 418 * found, or with -1 (an invalid block number) if there is no such
 419 * block in the range.  The scan needs to occur from front to back
 420 * and the pointer into the region must be updated since a later
 421 * routine will need to perform another test.
 422 */
 423STATIC int
 424xlog_find_verify_cycle(
 425	xlog_t		*log,
 426	xfs_daddr_t	start_blk,
 427	int		nbblks,
 428	uint		stop_on_cycle_no,
 429	xfs_daddr_t	*new_blk)
 430{
 431	xfs_daddr_t	i, j;
 432	uint		cycle;
 433	xfs_buf_t	*bp;
 434	xfs_daddr_t	bufblks;
 435	xfs_caddr_t	buf = NULL;
 436	int		error = 0;
 437
 438	/*
 439	 * Greedily allocate a buffer big enough to handle the full
 440	 * range of basic blocks we'll be examining.  If that fails,
 441	 * try a smaller size.  We need to be able to read at least
 442	 * a log sector, or we're out of luck.
 443	 */
 444	bufblks = 1 << ffs(nbblks);
 445	while (!(bp = xlog_get_bp(log, bufblks))) {
 
 
 446		bufblks >>= 1;
 447		if (bufblks < log->l_sectBBsize)
 448			return ENOMEM;
 449	}
 450
 451	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 452		int	bcount;
 453
 454		bcount = min(bufblks, (start_blk + nbblks - i));
 455
 456		error = xlog_bread(log, i, bcount, bp, &buf);
 457		if (error)
 458			goto out;
 459
 460		for (j = 0; j < bcount; j++) {
 461			cycle = xlog_get_cycle(buf);
 462			if (cycle == stop_on_cycle_no) {
 463				*new_blk = i+j;
 464				goto out;
 465			}
 466
 467			buf += BBSIZE;
 468		}
 469	}
 470
 471	*new_blk = -1;
 472
 473out:
 474	xlog_put_bp(bp);
 475	return error;
 476}
 477
 
 
 
 
 
 
 
 
 
 
 
 
 
 478/*
 479 * Potentially backup over partial log record write.
 480 *
 481 * In the typical case, last_blk is the number of the block directly after
 482 * a good log record.  Therefore, we subtract one to get the block number
 483 * of the last block in the given buffer.  extra_bblks contains the number
 484 * of blocks we would have read on a previous read.  This happens when the
 485 * last log record is split over the end of the physical log.
 486 *
 487 * extra_bblks is the number of blocks potentially verified on a previous
 488 * call to this routine.
 489 */
 490STATIC int
 491xlog_find_verify_log_record(
 492	xlog_t			*log,
 493	xfs_daddr_t		start_blk,
 494	xfs_daddr_t		*last_blk,
 495	int			extra_bblks)
 496{
 497	xfs_daddr_t		i;
 498	xfs_buf_t		*bp;
 499	xfs_caddr_t		offset = NULL;
 500	xlog_rec_header_t	*head = NULL;
 501	int			error = 0;
 502	int			smallmem = 0;
 503	int			num_blks = *last_blk - start_blk;
 504	int			xhdrs;
 505
 506	ASSERT(start_blk != 0 || *last_blk != start_blk);
 507
 508	if (!(bp = xlog_get_bp(log, num_blks))) {
 509		if (!(bp = xlog_get_bp(log, 1)))
 510			return ENOMEM;
 
 
 511		smallmem = 1;
 512	} else {
 513		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
 514		if (error)
 515			goto out;
 516		offset += ((num_blks - 1) << BBSHIFT);
 517	}
 518
 519	for (i = (*last_blk) - 1; i >= 0; i--) {
 520		if (i < start_blk) {
 521			/* valid log record not found */
 522			xfs_warn(log->l_mp,
 523		"Log inconsistent (didn't find previous header)");
 524			ASSERT(0);
 525			error = XFS_ERROR(EIO);
 526			goto out;
 527		}
 528
 529		if (smallmem) {
 530			error = xlog_bread(log, i, 1, bp, &offset);
 531			if (error)
 532				goto out;
 533		}
 534
 535		head = (xlog_rec_header_t *)offset;
 536
 537		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
 538			break;
 539
 540		if (!smallmem)
 541			offset -= BBSIZE;
 542	}
 543
 544	/*
 545	 * We hit the beginning of the physical log & still no header.  Return
 546	 * to caller.  If caller can handle a return of -1, then this routine
 547	 * will be called again for the end of the physical log.
 548	 */
 549	if (i == -1) {
 550		error = -1;
 551		goto out;
 552	}
 553
 554	/*
 555	 * We have the final block of the good log (the first block
 556	 * of the log record _before_ the head. So we check the uuid.
 557	 */
 558	if ((error = xlog_header_check_mount(log->l_mp, head)))
 559		goto out;
 560
 561	/*
 562	 * We may have found a log record header before we expected one.
 563	 * last_blk will be the 1st block # with a given cycle #.  We may end
 564	 * up reading an entire log record.  In this case, we don't want to
 565	 * reset last_blk.  Only when last_blk points in the middle of a log
 566	 * record do we update last_blk.
 567	 */
 568	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 569		uint	h_size = be32_to_cpu(head->h_size);
 570
 571		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 572		if (h_size % XLOG_HEADER_CYCLE_SIZE)
 573			xhdrs++;
 574	} else {
 575		xhdrs = 1;
 576	}
 577
 578	if (*last_blk - i + extra_bblks !=
 579	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 580		*last_blk = i;
 581
 582out:
 583	xlog_put_bp(bp);
 584	return error;
 585}
 586
 587/*
 588 * Head is defined to be the point of the log where the next log write
 589 * write could go.  This means that incomplete LR writes at the end are
 590 * eliminated when calculating the head.  We aren't guaranteed that previous
 591 * LR have complete transactions.  We only know that a cycle number of
 592 * current cycle number -1 won't be present in the log if we start writing
 593 * from our current block number.
 594 *
 595 * last_blk contains the block number of the first block with a given
 596 * cycle number.
 597 *
 598 * Return: zero if normal, non-zero if error.
 599 */
 600STATIC int
 601xlog_find_head(
 602	xlog_t 		*log,
 603	xfs_daddr_t	*return_head_blk)
 604{
 605	xfs_buf_t	*bp;
 606	xfs_caddr_t	offset;
 607	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
 608	int		num_scan_bblks;
 609	uint		first_half_cycle, last_half_cycle;
 610	uint		stop_on_cycle;
 611	int		error, log_bbnum = log->l_logBBsize;
 612
 613	/* Is the end of the log device zeroed? */
 614	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
 
 
 
 
 
 615		*return_head_blk = first_blk;
 616
 617		/* Is the whole lot zeroed? */
 618		if (!first_blk) {
 619			/* Linux XFS shouldn't generate totally zeroed logs -
 620			 * mkfs etc write a dummy unmount record to a fresh
 621			 * log so we can store the uuid in there
 622			 */
 623			xfs_warn(log->l_mp, "totally zeroed log");
 624		}
 625
 626		return 0;
 627	} else if (error) {
 628		xfs_warn(log->l_mp, "empty log check failed");
 629		return error;
 630	}
 631
 632	first_blk = 0;			/* get cycle # of 1st block */
 633	bp = xlog_get_bp(log, 1);
 634	if (!bp)
 635		return ENOMEM;
 636
 637	error = xlog_bread(log, 0, 1, bp, &offset);
 638	if (error)
 639		goto bp_err;
 640
 641	first_half_cycle = xlog_get_cycle(offset);
 642
 643	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
 644	error = xlog_bread(log, last_blk, 1, bp, &offset);
 645	if (error)
 646		goto bp_err;
 647
 648	last_half_cycle = xlog_get_cycle(offset);
 649	ASSERT(last_half_cycle != 0);
 650
 651	/*
 652	 * If the 1st half cycle number is equal to the last half cycle number,
 653	 * then the entire log is stamped with the same cycle number.  In this
 654	 * case, head_blk can't be set to zero (which makes sense).  The below
 655	 * math doesn't work out properly with head_blk equal to zero.  Instead,
 656	 * we set it to log_bbnum which is an invalid block number, but this
 657	 * value makes the math correct.  If head_blk doesn't changed through
 658	 * all the tests below, *head_blk is set to zero at the very end rather
 659	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 660	 * in a circular file.
 661	 */
 662	if (first_half_cycle == last_half_cycle) {
 663		/*
 664		 * In this case we believe that the entire log should have
 665		 * cycle number last_half_cycle.  We need to scan backwards
 666		 * from the end verifying that there are no holes still
 667		 * containing last_half_cycle - 1.  If we find such a hole,
 668		 * then the start of that hole will be the new head.  The
 669		 * simple case looks like
 670		 *        x | x ... | x - 1 | x
 671		 * Another case that fits this picture would be
 672		 *        x | x + 1 | x ... | x
 673		 * In this case the head really is somewhere at the end of the
 674		 * log, as one of the latest writes at the beginning was
 675		 * incomplete.
 676		 * One more case is
 677		 *        x | x + 1 | x ... | x - 1 | x
 678		 * This is really the combination of the above two cases, and
 679		 * the head has to end up at the start of the x-1 hole at the
 680		 * end of the log.
 681		 *
 682		 * In the 256k log case, we will read from the beginning to the
 683		 * end of the log and search for cycle numbers equal to x-1.
 684		 * We don't worry about the x+1 blocks that we encounter,
 685		 * because we know that they cannot be the head since the log
 686		 * started with x.
 687		 */
 688		head_blk = log_bbnum;
 689		stop_on_cycle = last_half_cycle - 1;
 690	} else {
 691		/*
 692		 * In this case we want to find the first block with cycle
 693		 * number matching last_half_cycle.  We expect the log to be
 694		 * some variation on
 695		 *        x + 1 ... | x ... | x
 696		 * The first block with cycle number x (last_half_cycle) will
 697		 * be where the new head belongs.  First we do a binary search
 698		 * for the first occurrence of last_half_cycle.  The binary
 699		 * search may not be totally accurate, so then we scan back
 700		 * from there looking for occurrences of last_half_cycle before
 701		 * us.  If that backwards scan wraps around the beginning of
 702		 * the log, then we look for occurrences of last_half_cycle - 1
 703		 * at the end of the log.  The cases we're looking for look
 704		 * like
 705		 *                               v binary search stopped here
 706		 *        x + 1 ... | x | x + 1 | x ... | x
 707		 *                   ^ but we want to locate this spot
 708		 * or
 709		 *        <---------> less than scan distance
 710		 *        x + 1 ... | x ... | x - 1 | x
 711		 *                           ^ we want to locate this spot
 712		 */
 713		stop_on_cycle = last_half_cycle;
 714		if ((error = xlog_find_cycle_start(log, bp, first_blk,
 715						&head_blk, last_half_cycle)))
 716			goto bp_err;
 
 717	}
 718
 719	/*
 720	 * Now validate the answer.  Scan back some number of maximum possible
 721	 * blocks and make sure each one has the expected cycle number.  The
 722	 * maximum is determined by the total possible amount of buffering
 723	 * in the in-core log.  The following number can be made tighter if
 724	 * we actually look at the block size of the filesystem.
 725	 */
 726	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
 727	if (head_blk >= num_scan_bblks) {
 728		/*
 729		 * We are guaranteed that the entire check can be performed
 730		 * in one buffer.
 731		 */
 732		start_blk = head_blk - num_scan_bblks;
 733		if ((error = xlog_find_verify_cycle(log,
 734						start_blk, num_scan_bblks,
 735						stop_on_cycle, &new_blk)))
 736			goto bp_err;
 737		if (new_blk != -1)
 738			head_blk = new_blk;
 739	} else {		/* need to read 2 parts of log */
 740		/*
 741		 * We are going to scan backwards in the log in two parts.
 742		 * First we scan the physical end of the log.  In this part
 743		 * of the log, we are looking for blocks with cycle number
 744		 * last_half_cycle - 1.
 745		 * If we find one, then we know that the log starts there, as
 746		 * we've found a hole that didn't get written in going around
 747		 * the end of the physical log.  The simple case for this is
 748		 *        x + 1 ... | x ... | x - 1 | x
 749		 *        <---------> less than scan distance
 750		 * If all of the blocks at the end of the log have cycle number
 751		 * last_half_cycle, then we check the blocks at the start of
 752		 * the log looking for occurrences of last_half_cycle.  If we
 753		 * find one, then our current estimate for the location of the
 754		 * first occurrence of last_half_cycle is wrong and we move
 755		 * back to the hole we've found.  This case looks like
 756		 *        x + 1 ... | x | x + 1 | x ...
 757		 *                               ^ binary search stopped here
 758		 * Another case we need to handle that only occurs in 256k
 759		 * logs is
 760		 *        x + 1 ... | x ... | x+1 | x ...
 761		 *                   ^ binary search stops here
 762		 * In a 256k log, the scan at the end of the log will see the
 763		 * x + 1 blocks.  We need to skip past those since that is
 764		 * certainly not the head of the log.  By searching for
 765		 * last_half_cycle-1 we accomplish that.
 766		 */
 767		ASSERT(head_blk <= INT_MAX &&
 768			(xfs_daddr_t) num_scan_bblks >= head_blk);
 769		start_blk = log_bbnum - (num_scan_bblks - head_blk);
 770		if ((error = xlog_find_verify_cycle(log, start_blk,
 771					num_scan_bblks - (int)head_blk,
 772					(stop_on_cycle - 1), &new_blk)))
 773			goto bp_err;
 774		if (new_blk != -1) {
 775			head_blk = new_blk;
 776			goto validate_head;
 777		}
 778
 779		/*
 780		 * Scan beginning of log now.  The last part of the physical
 781		 * log is good.  This scan needs to verify that it doesn't find
 782		 * the last_half_cycle.
 783		 */
 784		start_blk = 0;
 785		ASSERT(head_blk <= INT_MAX);
 786		if ((error = xlog_find_verify_cycle(log,
 787					start_blk, (int)head_blk,
 788					stop_on_cycle, &new_blk)))
 789			goto bp_err;
 790		if (new_blk != -1)
 791			head_blk = new_blk;
 792	}
 793
 794validate_head:
 795	/*
 796	 * Now we need to make sure head_blk is not pointing to a block in
 797	 * the middle of a log record.
 798	 */
 799	num_scan_bblks = XLOG_REC_SHIFT(log);
 800	if (head_blk >= num_scan_bblks) {
 801		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 802
 803		/* start ptr at last block ptr before head_blk */
 804		if ((error = xlog_find_verify_log_record(log, start_blk,
 805							&head_blk, 0)) == -1) {
 806			error = XFS_ERROR(EIO);
 807			goto bp_err;
 808		} else if (error)
 809			goto bp_err;
 810	} else {
 811		start_blk = 0;
 812		ASSERT(head_blk <= INT_MAX);
 813		if ((error = xlog_find_verify_log_record(log, start_blk,
 814							&head_blk, 0)) == -1) {
 
 
 815			/* We hit the beginning of the log during our search */
 816			start_blk = log_bbnum - (num_scan_bblks - head_blk);
 817			new_blk = log_bbnum;
 818			ASSERT(start_blk <= INT_MAX &&
 819				(xfs_daddr_t) log_bbnum-start_blk >= 0);
 820			ASSERT(head_blk <= INT_MAX);
 821			if ((error = xlog_find_verify_log_record(log,
 822							start_blk, &new_blk,
 823							(int)head_blk)) == -1) {
 824				error = XFS_ERROR(EIO);
 825				goto bp_err;
 826			} else if (error)
 827				goto bp_err;
 828			if (new_blk != log_bbnum)
 829				head_blk = new_blk;
 830		} else if (error)
 831			goto bp_err;
 832	}
 833
 834	xlog_put_bp(bp);
 835	if (head_blk == log_bbnum)
 836		*return_head_blk = 0;
 837	else
 838		*return_head_blk = head_blk;
 839	/*
 840	 * When returning here, we have a good block number.  Bad block
 841	 * means that during a previous crash, we didn't have a clean break
 842	 * from cycle number N to cycle number N-1.  In this case, we need
 843	 * to find the first block with cycle number N-1.
 844	 */
 845	return 0;
 846
 847 bp_err:
 848	xlog_put_bp(bp);
 849
 850	if (error)
 851		xfs_warn(log->l_mp, "failed to find log head");
 852	return error;
 853}
 854
 855/*
 856 * Find the sync block number or the tail of the log.
 857 *
 858 * This will be the block number of the last record to have its
 859 * associated buffers synced to disk.  Every log record header has
 860 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
 861 * to get a sync block number.  The only concern is to figure out which
 862 * log record header to believe.
 863 *
 864 * The following algorithm uses the log record header with the largest
 865 * lsn.  The entire log record does not need to be valid.  We only care
 866 * that the header is valid.
 867 *
 868 * We could speed up search by using current head_blk buffer, but it is not
 869 * available.
 
 
 870 */
 871STATIC int
 872xlog_find_tail(
 873	xlog_t			*log,
 874	xfs_daddr_t		*head_blk,
 875	xfs_daddr_t		*tail_blk)
 
 
 
 
 
 876{
 877	xlog_rec_header_t	*rhead;
 878	xlog_op_header_t	*op_head;
 879	xfs_caddr_t		offset = NULL;
 880	xfs_buf_t		*bp;
 881	int			error, i, found;
 882	xfs_daddr_t		umount_data_blk;
 883	xfs_daddr_t		after_umount_blk;
 884	xfs_lsn_t		tail_lsn;
 885	int			hblks;
 886
 887	found = 0;
 888
 889	/*
 890	 * Find previous log record
 
 891	 */
 892	if ((error = xlog_find_head(log, head_blk)))
 893		return error;
 894
 895	bp = xlog_get_bp(log, 1);
 896	if (!bp)
 897		return ENOMEM;
 898	if (*head_blk == 0) {				/* special case */
 899		error = xlog_bread(log, 0, 1, bp, &offset);
 900		if (error)
 901			goto done;
 902
 903		if (xlog_get_cycle(offset) == 0) {
 904			*tail_blk = 0;
 905			/* leave all other log inited values alone */
 906			goto done;
 
 907		}
 908	}
 909
 910	/*
 911	 * Search backwards looking for log record header block
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912	 */
 913	ASSERT(*head_blk < INT_MAX);
 914	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
 915		error = xlog_bread(log, i, 1, bp, &offset);
 916		if (error)
 917			goto done;
 918
 919		if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 920			found = 1;
 921			break;
 
 
 922		}
 923	}
 
 924	/*
 925	 * If we haven't found the log record header block, start looking
 926	 * again from the end of the physical log.  XXXmiken: There should be
 927	 * a check here to make sure we didn't search more than N blocks in
 928	 * the previous code.
 929	 */
 930	if (!found) {
 931		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
 932			error = xlog_bread(log, i, 1, bp, &offset);
 933			if (error)
 934				goto done;
 935
 936			if (*(__be32 *)offset ==
 937			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 938				found = 2;
 939				break;
 
 
 
 940			}
 941		}
 942	}
 943	if (!found) {
 944		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
 945		ASSERT(0);
 946		return XFS_ERROR(EIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 947	}
 948
 949	/* find blk_no of tail of log */
 950	rhead = (xlog_rec_header_t *)offset;
 951	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953	/*
 954	 * Reset log values according to the state of the log when we
 955	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
 956	 * one because the next write starts a new cycle rather than
 957	 * continuing the cycle of the last good log record.  At this
 958	 * point we have guaranteed that all partial log records have been
 959	 * accounted for.  Therefore, we know that the last good log record
 960	 * written was complete and ended exactly on the end boundary
 961	 * of the physical log.
 962	 */
 963	log->l_prev_block = i;
 964	log->l_curr_block = (int)*head_blk;
 965	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
 966	if (found == 2)
 967		log->l_curr_cycle++;
 968	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
 969	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
 970	xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
 971					BBTOB(log->l_curr_block));
 972	xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
 973					BBTOB(log->l_curr_block));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974
 975	/*
 976	 * Look for unmount record.  If we find it, then we know there
 977	 * was a clean unmount.  Since 'i' could be the last block in
 978	 * the physical log, we convert to a log block before comparing
 979	 * to the head_blk.
 980	 *
 981	 * Save the current tail lsn to use to pass to
 982	 * xlog_clear_stale_blocks() below.  We won't want to clear the
 983	 * unmount record if there is one, so we pass the lsn of the
 984	 * unmount record rather than the block after it.
 985	 */
 986	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 987		int	h_size = be32_to_cpu(rhead->h_size);
 988		int	h_version = be32_to_cpu(rhead->h_version);
 989
 990		if ((h_version & XLOG_VERSION_2) &&
 991		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
 992			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
 993			if (h_size % XLOG_HEADER_CYCLE_SIZE)
 994				hblks++;
 995		} else {
 996			hblks = 1;
 
 
 
 
 
 997		}
 998	} else {
 999		hblks = 1;
1000	}
1001	after_umount_blk = (i + hblks + (int)
1002		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003	tail_lsn = atomic64_read(&log->l_tail_lsn);
1004	if (*head_blk == after_umount_blk &&
1005	    be32_to_cpu(rhead->h_num_logops) == 1) {
1006		umount_data_blk = (i + hblks) % log->l_logBBsize;
1007		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008		if (error)
1009			goto done;
1010
1011		op_head = (xlog_op_header_t *)offset;
1012		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1013			/*
1014			 * Set tail and last sync so that newly written
1015			 * log records will point recovery to after the
1016			 * current unmount record.
1017			 */
1018			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1019					log->l_curr_cycle, after_umount_blk);
1020			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1021					log->l_curr_cycle, after_umount_blk);
1022			*tail_blk = after_umount_blk;
1023
1024			/*
1025			 * Note that the unmount was clean. If the unmount
1026			 * was not clean, we need to know this to rebuild the
1027			 * superblock counters from the perag headers if we
1028			 * have a filesystem using non-persistent counters.
1029			 */
1030			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1031		}
1032	}
1033
1034	/*
 
 
 
 
 
 
 
 
1035	 * Make sure that there are no blocks in front of the head
1036	 * with the same cycle number as the head.  This can happen
1037	 * because we allow multiple outstanding log writes concurrently,
1038	 * and the later writes might make it out before earlier ones.
1039	 *
1040	 * We use the lsn from before modifying it so that we'll never
1041	 * overwrite the unmount record after a clean unmount.
1042	 *
1043	 * Do this only if we are going to recover the filesystem
1044	 *
1045	 * NOTE: This used to say "if (!readonly)"
1046	 * However on Linux, we can & do recover a read-only filesystem.
1047	 * We only skip recovery if NORECOVERY is specified on mount,
1048	 * in which case we would not be here.
1049	 *
1050	 * But... if the -device- itself is readonly, just skip this.
1051	 * We can't recover this device anyway, so it won't matter.
1052	 */
1053	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1054		error = xlog_clear_stale_blocks(log, tail_lsn);
1055
1056done:
1057	xlog_put_bp(bp);
1058
1059	if (error)
1060		xfs_warn(log->l_mp, "failed to locate log tail");
1061	return error;
1062}
1063
1064/*
1065 * Is the log zeroed at all?
1066 *
1067 * The last binary search should be changed to perform an X block read
1068 * once X becomes small enough.  You can then search linearly through
1069 * the X blocks.  This will cut down on the number of reads we need to do.
1070 *
1071 * If the log is partially zeroed, this routine will pass back the blkno
1072 * of the first block with cycle number 0.  It won't have a complete LR
1073 * preceding it.
1074 *
1075 * Return:
1076 *	0  => the log is completely written to
1077 *	-1 => use *blk_no as the first block of the log
1078 *	>0 => error has occurred
1079 */
1080STATIC int
1081xlog_find_zeroed(
1082	xlog_t		*log,
1083	xfs_daddr_t	*blk_no)
1084{
1085	xfs_buf_t	*bp;
1086	xfs_caddr_t	offset;
1087	uint	        first_cycle, last_cycle;
1088	xfs_daddr_t	new_blk, last_blk, start_blk;
1089	xfs_daddr_t     num_scan_bblks;
1090	int	        error, log_bbnum = log->l_logBBsize;
1091
1092	*blk_no = 0;
1093
1094	/* check totally zeroed log */
1095	bp = xlog_get_bp(log, 1);
1096	if (!bp)
1097		return ENOMEM;
1098	error = xlog_bread(log, 0, 1, bp, &offset);
1099	if (error)
1100		goto bp_err;
1101
1102	first_cycle = xlog_get_cycle(offset);
1103	if (first_cycle == 0) {		/* completely zeroed log */
1104		*blk_no = 0;
1105		xlog_put_bp(bp);
1106		return -1;
1107	}
1108
1109	/* check partially zeroed log */
1110	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1111	if (error)
1112		goto bp_err;
1113
1114	last_cycle = xlog_get_cycle(offset);
1115	if (last_cycle != 0) {		/* log completely written to */
1116		xlog_put_bp(bp);
1117		return 0;
1118	} else if (first_cycle != 1) {
1119		/*
1120		 * If the cycle of the last block is zero, the cycle of
1121		 * the first block must be 1. If it's not, maybe we're
1122		 * not looking at a log... Bail out.
1123		 */
1124		xfs_warn(log->l_mp,
1125			"Log inconsistent or not a log (last==0, first!=1)");
1126		return XFS_ERROR(EINVAL);
1127	}
1128
1129	/* we have a partially zeroed log */
1130	last_blk = log_bbnum-1;
1131	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1132		goto bp_err;
 
1133
1134	/*
1135	 * Validate the answer.  Because there is no way to guarantee that
1136	 * the entire log is made up of log records which are the same size,
1137	 * we scan over the defined maximum blocks.  At this point, the maximum
1138	 * is not chosen to mean anything special.   XXXmiken
1139	 */
1140	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1141	ASSERT(num_scan_bblks <= INT_MAX);
1142
1143	if (last_blk < num_scan_bblks)
1144		num_scan_bblks = last_blk;
1145	start_blk = last_blk - num_scan_bblks;
1146
1147	/*
1148	 * We search for any instances of cycle number 0 that occur before
1149	 * our current estimate of the head.  What we're trying to detect is
1150	 *        1 ... | 0 | 1 | 0...
1151	 *                       ^ binary search ends here
1152	 */
1153	if ((error = xlog_find_verify_cycle(log, start_blk,
1154					 (int)num_scan_bblks, 0, &new_blk)))
1155		goto bp_err;
1156	if (new_blk != -1)
1157		last_blk = new_blk;
1158
1159	/*
1160	 * Potentially backup over partial log record write.  We don't need
1161	 * to search the end of the log because we know it is zero.
1162	 */
1163	if ((error = xlog_find_verify_log_record(log, start_blk,
1164				&last_blk, 0)) == -1) {
1165	    error = XFS_ERROR(EIO);
1166	    goto bp_err;
1167	} else if (error)
1168	    goto bp_err;
1169
1170	*blk_no = last_blk;
1171bp_err:
1172	xlog_put_bp(bp);
1173	if (error)
1174		return error;
1175	return -1;
1176}
1177
1178/*
1179 * These are simple subroutines used by xlog_clear_stale_blocks() below
1180 * to initialize a buffer full of empty log record headers and write
1181 * them into the log.
1182 */
1183STATIC void
1184xlog_add_record(
1185	xlog_t			*log,
1186	xfs_caddr_t		buf,
1187	int			cycle,
1188	int			block,
1189	int			tail_cycle,
1190	int			tail_block)
1191{
1192	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1193
1194	memset(buf, 0, BBSIZE);
1195	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1196	recp->h_cycle = cpu_to_be32(cycle);
1197	recp->h_version = cpu_to_be32(
1198			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1199	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1200	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1201	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1202	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1203}
1204
1205STATIC int
1206xlog_write_log_records(
1207	xlog_t		*log,
1208	int		cycle,
1209	int		start_block,
1210	int		blocks,
1211	int		tail_cycle,
1212	int		tail_block)
1213{
1214	xfs_caddr_t	offset;
1215	xfs_buf_t	*bp;
1216	int		balign, ealign;
1217	int		sectbb = log->l_sectBBsize;
1218	int		end_block = start_block + blocks;
1219	int		bufblks;
1220	int		error = 0;
1221	int		i, j = 0;
1222
1223	/*
1224	 * Greedily allocate a buffer big enough to handle the full
1225	 * range of basic blocks to be written.  If that fails, try
1226	 * a smaller size.  We need to be able to write at least a
1227	 * log sector, or we're out of luck.
1228	 */
1229	bufblks = 1 << ffs(blocks);
1230	while (!(bp = xlog_get_bp(log, bufblks))) {
 
 
1231		bufblks >>= 1;
1232		if (bufblks < sectbb)
1233			return ENOMEM;
1234	}
1235
1236	/* We may need to do a read at the start to fill in part of
1237	 * the buffer in the starting sector not covered by the first
1238	 * write below.
1239	 */
1240	balign = round_down(start_block, sectbb);
1241	if (balign != start_block) {
1242		error = xlog_bread_noalign(log, start_block, 1, bp);
1243		if (error)
1244			goto out_put_bp;
1245
1246		j = start_block - balign;
1247	}
1248
1249	for (i = start_block; i < end_block; i += bufblks) {
1250		int		bcount, endcount;
1251
1252		bcount = min(bufblks, end_block - start_block);
1253		endcount = bcount - j;
1254
1255		/* We may need to do a read at the end to fill in part of
1256		 * the buffer in the final sector not covered by the write.
1257		 * If this is the same sector as the above read, skip it.
1258		 */
1259		ealign = round_down(end_block, sectbb);
1260		if (j == 0 && (start_block + endcount > ealign)) {
1261			offset = bp->b_addr + BBTOB(ealign - start_block);
1262			error = xlog_bread_offset(log, ealign, sectbb,
1263							bp, offset);
1264			if (error)
1265				break;
1266
1267		}
1268
1269		offset = xlog_align(log, start_block, endcount, bp);
1270		for (; j < endcount; j++) {
1271			xlog_add_record(log, offset, cycle, i+j,
1272					tail_cycle, tail_block);
1273			offset += BBSIZE;
1274		}
1275		error = xlog_bwrite(log, start_block, endcount, bp);
1276		if (error)
1277			break;
1278		start_block += endcount;
1279		j = 0;
1280	}
1281
1282 out_put_bp:
1283	xlog_put_bp(bp);
1284	return error;
1285}
1286
1287/*
1288 * This routine is called to blow away any incomplete log writes out
1289 * in front of the log head.  We do this so that we won't become confused
1290 * if we come up, write only a little bit more, and then crash again.
1291 * If we leave the partial log records out there, this situation could
1292 * cause us to think those partial writes are valid blocks since they
1293 * have the current cycle number.  We get rid of them by overwriting them
1294 * with empty log records with the old cycle number rather than the
1295 * current one.
1296 *
1297 * The tail lsn is passed in rather than taken from
1298 * the log so that we will not write over the unmount record after a
1299 * clean unmount in a 512 block log.  Doing so would leave the log without
1300 * any valid log records in it until a new one was written.  If we crashed
1301 * during that time we would not be able to recover.
1302 */
1303STATIC int
1304xlog_clear_stale_blocks(
1305	xlog_t		*log,
1306	xfs_lsn_t	tail_lsn)
1307{
1308	int		tail_cycle, head_cycle;
1309	int		tail_block, head_block;
1310	int		tail_distance, max_distance;
1311	int		distance;
1312	int		error;
1313
1314	tail_cycle = CYCLE_LSN(tail_lsn);
1315	tail_block = BLOCK_LSN(tail_lsn);
1316	head_cycle = log->l_curr_cycle;
1317	head_block = log->l_curr_block;
1318
1319	/*
1320	 * Figure out the distance between the new head of the log
1321	 * and the tail.  We want to write over any blocks beyond the
1322	 * head that we may have written just before the crash, but
1323	 * we don't want to overwrite the tail of the log.
1324	 */
1325	if (head_cycle == tail_cycle) {
1326		/*
1327		 * The tail is behind the head in the physical log,
1328		 * so the distance from the head to the tail is the
1329		 * distance from the head to the end of the log plus
1330		 * the distance from the beginning of the log to the
1331		 * tail.
1332		 */
1333		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1334			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1335					 XFS_ERRLEVEL_LOW, log->l_mp);
1336			return XFS_ERROR(EFSCORRUPTED);
1337		}
1338		tail_distance = tail_block + (log->l_logBBsize - head_block);
1339	} else {
1340		/*
1341		 * The head is behind the tail in the physical log,
1342		 * so the distance from the head to the tail is just
1343		 * the tail block minus the head block.
1344		 */
1345		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1346			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1347					 XFS_ERRLEVEL_LOW, log->l_mp);
1348			return XFS_ERROR(EFSCORRUPTED);
1349		}
1350		tail_distance = tail_block - head_block;
1351	}
1352
1353	/*
1354	 * If the head is right up against the tail, we can't clear
1355	 * anything.
1356	 */
1357	if (tail_distance <= 0) {
1358		ASSERT(tail_distance == 0);
1359		return 0;
1360	}
1361
1362	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1363	/*
1364	 * Take the smaller of the maximum amount of outstanding I/O
1365	 * we could have and the distance to the tail to clear out.
1366	 * We take the smaller so that we don't overwrite the tail and
1367	 * we don't waste all day writing from the head to the tail
1368	 * for no reason.
1369	 */
1370	max_distance = MIN(max_distance, tail_distance);
1371
1372	if ((head_block + max_distance) <= log->l_logBBsize) {
1373		/*
1374		 * We can stomp all the blocks we need to without
1375		 * wrapping around the end of the log.  Just do it
1376		 * in a single write.  Use the cycle number of the
1377		 * current cycle minus one so that the log will look like:
1378		 *     n ... | n - 1 ...
1379		 */
1380		error = xlog_write_log_records(log, (head_cycle - 1),
1381				head_block, max_distance, tail_cycle,
1382				tail_block);
1383		if (error)
1384			return error;
1385	} else {
1386		/*
1387		 * We need to wrap around the end of the physical log in
1388		 * order to clear all the blocks.  Do it in two separate
1389		 * I/Os.  The first write should be from the head to the
1390		 * end of the physical log, and it should use the current
1391		 * cycle number minus one just like above.
1392		 */
1393		distance = log->l_logBBsize - head_block;
1394		error = xlog_write_log_records(log, (head_cycle - 1),
1395				head_block, distance, tail_cycle,
1396				tail_block);
1397
1398		if (error)
1399			return error;
1400
1401		/*
1402		 * Now write the blocks at the start of the physical log.
1403		 * This writes the remainder of the blocks we want to clear.
1404		 * It uses the current cycle number since we're now on the
1405		 * same cycle as the head so that we get:
1406		 *    n ... n ... | n - 1 ...
1407		 *    ^^^^^ blocks we're writing
1408		 */
1409		distance = max_distance - (log->l_logBBsize - head_block);
1410		error = xlog_write_log_records(log, head_cycle, 0, distance,
1411				tail_cycle, tail_block);
1412		if (error)
1413			return error;
1414	}
1415
1416	return 0;
1417}
1418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1419/******************************************************************************
1420 *
1421 *		Log recover routines
1422 *
1423 ******************************************************************************
1424 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425
1426STATIC xlog_recover_t *
1427xlog_recover_find_tid(
1428	struct hlist_head	*head,
1429	xlog_tid_t		tid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430{
1431	xlog_recover_t		*trans;
1432	struct hlist_node	*n;
 
 
 
 
 
1433
1434	hlist_for_each_entry(trans, n, head, r_list) {
1435		if (trans->r_log_tid == tid)
1436			return trans;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437	}
1438	return NULL;
 
 
 
 
 
 
 
 
 
 
1439}
1440
1441STATIC void
1442xlog_recover_new_tid(
1443	struct hlist_head	*head,
1444	xlog_tid_t		tid,
1445	xfs_lsn_t		lsn)
1446{
1447	xlog_recover_t		*trans;
1448
1449	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1450	trans->r_log_tid   = tid;
1451	trans->r_lsn	   = lsn;
1452	INIT_LIST_HEAD(&trans->r_itemq);
1453
1454	INIT_HLIST_NODE(&trans->r_list);
1455	hlist_add_head(&trans->r_list, head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1456}
1457
1458STATIC void
1459xlog_recover_add_item(
1460	struct list_head	*head)
1461{
1462	xlog_recover_item_t	*item;
1463
1464	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1465	INIT_LIST_HEAD(&item->ri_list);
1466	list_add_tail(&item->ri_list, head);
1467}
1468
1469STATIC int
1470xlog_recover_add_to_cont_trans(
1471	struct log		*log,
1472	xlog_recover_t		*trans,
1473	xfs_caddr_t		dp,
1474	int			len)
1475{
1476	xlog_recover_item_t	*item;
1477	xfs_caddr_t		ptr, old_ptr;
1478	int			old_len;
1479
 
 
 
 
1480	if (list_empty(&trans->r_itemq)) {
1481		/* finish copying rest of trans header */
 
 
 
 
 
1482		xlog_recover_add_item(&trans->r_itemq);
1483		ptr = (xfs_caddr_t) &trans->r_theader +
1484				sizeof(xfs_trans_header_t) - len;
1485		memcpy(ptr, dp, len); /* d, s, l */
1486		return 0;
1487	}
 
1488	/* take the tail entry */
1489	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
 
1490
1491	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1492	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1493
1494	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1495	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1496	item->ri_buf[item->ri_cnt-1].i_len += len;
1497	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1498	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1499	return 0;
1500}
1501
1502/*
1503 * The next region to add is the start of a new region.  It could be
1504 * a whole region or it could be the first part of a new region.  Because
1505 * of this, the assumption here is that the type and size fields of all
1506 * format structures fit into the first 32 bits of the structure.
1507 *
1508 * This works because all regions must be 32 bit aligned.  Therefore, we
1509 * either have both fields or we have neither field.  In the case we have
1510 * neither field, the data part of the region is zero length.  We only have
1511 * a log_op_header and can throw away the header since a new one will appear
1512 * later.  If we have at least 4 bytes, then we can determine how many regions
1513 * will appear in the current log item.
1514 */
1515STATIC int
1516xlog_recover_add_to_trans(
1517	struct log		*log,
1518	xlog_recover_t		*trans,
1519	xfs_caddr_t		dp,
1520	int			len)
1521{
1522	xfs_inode_log_format_t	*in_f;			/* any will do */
1523	xlog_recover_item_t	*item;
1524	xfs_caddr_t		ptr;
1525
1526	if (!len)
1527		return 0;
1528	if (list_empty(&trans->r_itemq)) {
1529		/* we need to catch log corruptions here */
1530		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1531			xfs_warn(log->l_mp, "%s: bad header magic number",
1532				__func__);
1533			ASSERT(0);
1534			return XFS_ERROR(EIO);
 
 
 
 
 
 
1535		}
1536		if (len == sizeof(xfs_trans_header_t))
 
 
 
 
 
 
1537			xlog_recover_add_item(&trans->r_itemq);
1538		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1539		return 0;
1540	}
1541
1542	ptr = kmem_alloc(len, KM_SLEEP);
1543	memcpy(ptr, dp, len);
1544	in_f = (xfs_inode_log_format_t *)ptr;
1545
1546	/* take the tail entry */
1547	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
 
1548	if (item->ri_total != 0 &&
1549	     item->ri_total == item->ri_cnt) {
1550		/* tail item is in use, get a new one */
1551		xlog_recover_add_item(&trans->r_itemq);
1552		item = list_entry(trans->r_itemq.prev,
1553					xlog_recover_item_t, ri_list);
1554	}
1555
1556	if (item->ri_total == 0) {		/* first region to be added */
1557		if (in_f->ilf_size == 0 ||
1558		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1559			xfs_warn(log->l_mp,
1560		"bad number of regions (%d) in inode log format",
1561				  in_f->ilf_size);
1562			ASSERT(0);
1563			return XFS_ERROR(EIO);
 
1564		}
1565
1566		item->ri_total = in_f->ilf_size;
1567		item->ri_buf =
1568			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1569				    KM_SLEEP);
1570	}
1571	ASSERT(item->ri_total > item->ri_cnt);
 
 
 
 
 
 
 
 
 
1572	/* Description region is ri_buf[0] */
1573	item->ri_buf[item->ri_cnt].i_addr = ptr;
1574	item->ri_buf[item->ri_cnt].i_len  = len;
1575	item->ri_cnt++;
1576	trace_xfs_log_recover_item_add(log, trans, item, 0);
1577	return 0;
1578}
1579
1580/*
1581 * Sort the log items in the transaction. Cancelled buffers need
1582 * to be put first so they are processed before any items that might
1583 * modify the buffers. If they are cancelled, then the modifications
1584 * don't need to be replayed.
1585 */
1586STATIC int
1587xlog_recover_reorder_trans(
1588	struct log		*log,
1589	xlog_recover_t		*trans,
1590	int			pass)
1591{
1592	xlog_recover_item_t	*item, *n;
1593	LIST_HEAD(sort_list);
1594
1595	list_splice_init(&trans->r_itemq, &sort_list);
1596	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1597		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1598
1599		switch (ITEM_TYPE(item)) {
1600		case XFS_LI_BUF:
1601			if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1602				trace_xfs_log_recover_item_reorder_head(log,
1603							trans, item, pass);
1604				list_move(&item->ri_list, &trans->r_itemq);
1605				break;
1606			}
1607		case XFS_LI_INODE:
1608		case XFS_LI_DQUOT:
1609		case XFS_LI_QUOTAOFF:
1610		case XFS_LI_EFD:
1611		case XFS_LI_EFI:
1612			trace_xfs_log_recover_item_reorder_tail(log,
1613							trans, item, pass);
1614			list_move_tail(&item->ri_list, &trans->r_itemq);
1615			break;
1616		default:
1617			xfs_warn(log->l_mp,
1618				"%s: unrecognized type of log operation",
1619				__func__);
1620			ASSERT(0);
1621			return XFS_ERROR(EIO);
1622		}
1623	}
1624	ASSERT(list_empty(&sort_list));
1625	return 0;
1626}
1627
1628/*
1629 * Build up the table of buf cancel records so that we don't replay
1630 * cancelled data in the second pass.  For buffer records that are
1631 * not cancel records, there is nothing to do here so we just return.
1632 *
1633 * If we get a cancel record which is already in the table, this indicates
1634 * that the buffer was cancelled multiple times.  In order to ensure
1635 * that during pass 2 we keep the record in the table until we reach its
1636 * last occurrence in the log, we keep a reference count in the cancel
1637 * record in the table to tell us how many times we expect to see this
1638 * record during the second pass.
1639 */
1640STATIC int
1641xlog_recover_buffer_pass1(
1642	struct log		*log,
1643	xlog_recover_item_t	*item)
1644{
1645	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1646	struct list_head	*bucket;
1647	struct xfs_buf_cancel	*bcp;
1648
1649	/*
1650	 * If this isn't a cancel buffer item, then just return.
1651	 */
1652	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1653		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1654		return 0;
1655	}
1656
1657	/*
1658	 * Insert an xfs_buf_cancel record into the hash table of them.
1659	 * If there is already an identical record, bump its reference count.
1660	 */
1661	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1662	list_for_each_entry(bcp, bucket, bc_list) {
1663		if (bcp->bc_blkno == buf_f->blf_blkno &&
1664		    bcp->bc_len == buf_f->blf_len) {
1665			bcp->bc_refcount++;
1666			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1667			return 0;
1668		}
1669	}
1670
1671	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1672	bcp->bc_blkno = buf_f->blf_blkno;
1673	bcp->bc_len = buf_f->blf_len;
1674	bcp->bc_refcount = 1;
1675	list_add_tail(&bcp->bc_list, bucket);
1676
1677	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1678	return 0;
1679}
1680
1681/*
1682 * Check to see whether the buffer being recovered has a corresponding
1683 * entry in the buffer cancel record table.  If it does then return 1
1684 * so that it will be cancelled, otherwise return 0.  If the buffer is
1685 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1686 * the refcount on the entry in the table and remove it from the table
1687 * if this is the last reference.
1688 *
1689 * We remove the cancel record from the table when we encounter its
1690 * last occurrence in the log so that if the same buffer is re-used
1691 * again after its last cancellation we actually replay the changes
1692 * made at that point.
1693 */
1694STATIC int
1695xlog_check_buffer_cancelled(
1696	struct log		*log,
1697	xfs_daddr_t		blkno,
1698	uint			len,
1699	ushort			flags)
1700{
1701	struct list_head	*bucket;
1702	struct xfs_buf_cancel	*bcp;
1703
1704	if (log->l_buf_cancel_table == NULL) {
1705		/*
1706		 * There is nothing in the table built in pass one,
1707		 * so this buffer must not be cancelled.
1708		 */
1709		ASSERT(!(flags & XFS_BLF_CANCEL));
1710		return 0;
1711	}
1712
1713	/*
1714	 * Search for an entry in the  cancel table that matches our buffer.
1715	 */
1716	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1717	list_for_each_entry(bcp, bucket, bc_list) {
1718		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1719			goto found;
1720	}
1721
1722	/*
1723	 * We didn't find a corresponding entry in the table, so return 0 so
1724	 * that the buffer is NOT cancelled.
1725	 */
1726	ASSERT(!(flags & XFS_BLF_CANCEL));
1727	return 0;
1728
1729found:
1730	/*
1731	 * We've go a match, so return 1 so that the recovery of this buffer
1732	 * is cancelled.  If this buffer is actually a buffer cancel log
1733	 * item, then decrement the refcount on the one in the table and
1734	 * remove it if this is the last reference.
1735	 */
1736	if (flags & XFS_BLF_CANCEL) {
1737		if (--bcp->bc_refcount == 0) {
1738			list_del(&bcp->bc_list);
1739			kmem_free(bcp);
1740		}
1741	}
1742	return 1;
1743}
1744
1745/*
1746 * Perform recovery for a buffer full of inodes.  In these buffers, the only
1747 * data which should be recovered is that which corresponds to the
1748 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1749 * data for the inodes is always logged through the inodes themselves rather
1750 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1751 *
1752 * The only time when buffers full of inodes are fully recovered is when the
1753 * buffer is full of newly allocated inodes.  In this case the buffer will
1754 * not be marked as an inode buffer and so will be sent to
1755 * xlog_recover_do_reg_buffer() below during recovery.
1756 */
1757STATIC int
1758xlog_recover_do_inode_buffer(
1759	struct xfs_mount	*mp,
1760	xlog_recover_item_t	*item,
1761	struct xfs_buf		*bp,
1762	xfs_buf_log_format_t	*buf_f)
1763{
1764	int			i;
1765	int			item_index = 0;
1766	int			bit = 0;
1767	int			nbits = 0;
1768	int			reg_buf_offset = 0;
1769	int			reg_buf_bytes = 0;
1770	int			next_unlinked_offset;
1771	int			inodes_per_buf;
1772	xfs_agino_t		*logged_nextp;
1773	xfs_agino_t		*buffer_nextp;
1774
1775	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1776
1777	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1778	for (i = 0; i < inodes_per_buf; i++) {
1779		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1780			offsetof(xfs_dinode_t, di_next_unlinked);
1781
1782		while (next_unlinked_offset >=
1783		       (reg_buf_offset + reg_buf_bytes)) {
1784			/*
1785			 * The next di_next_unlinked field is beyond
1786			 * the current logged region.  Find the next
1787			 * logged region that contains or is beyond
1788			 * the current di_next_unlinked field.
1789			 */
1790			bit += nbits;
1791			bit = xfs_next_bit(buf_f->blf_data_map,
1792					   buf_f->blf_map_size, bit);
1793
1794			/*
1795			 * If there are no more logged regions in the
1796			 * buffer, then we're done.
1797			 */
1798			if (bit == -1)
1799				return 0;
1800
1801			nbits = xfs_contig_bits(buf_f->blf_data_map,
1802						buf_f->blf_map_size, bit);
1803			ASSERT(nbits > 0);
1804			reg_buf_offset = bit << XFS_BLF_SHIFT;
1805			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1806			item_index++;
1807		}
1808
1809		/*
1810		 * If the current logged region starts after the current
1811		 * di_next_unlinked field, then move on to the next
1812		 * di_next_unlinked field.
1813		 */
1814		if (next_unlinked_offset < reg_buf_offset)
1815			continue;
1816
1817		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1818		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1819		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1820
1821		/*
1822		 * The current logged region contains a copy of the
1823		 * current di_next_unlinked field.  Extract its value
1824		 * and copy it to the buffer copy.
1825		 */
1826		logged_nextp = item->ri_buf[item_index].i_addr +
1827				next_unlinked_offset - reg_buf_offset;
1828		if (unlikely(*logged_nextp == 0)) {
1829			xfs_alert(mp,
1830		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1831		"Trying to replay bad (0) inode di_next_unlinked field.",
1832				item, bp);
1833			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1834					 XFS_ERRLEVEL_LOW, mp);
1835			return XFS_ERROR(EFSCORRUPTED);
1836		}
1837
1838		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1839					      next_unlinked_offset);
1840		*buffer_nextp = *logged_nextp;
1841	}
1842
1843	return 0;
1844}
1845
1846/*
1847 * Perform a 'normal' buffer recovery.  Each logged region of the
1848 * buffer should be copied over the corresponding region in the
1849 * given buffer.  The bitmap in the buf log format structure indicates
1850 * where to place the logged data.
1851 */
1852STATIC void
1853xlog_recover_do_reg_buffer(
1854	struct xfs_mount	*mp,
1855	xlog_recover_item_t	*item,
1856	struct xfs_buf		*bp,
1857	xfs_buf_log_format_t	*buf_f)
1858{
 
1859	int			i;
1860	int			bit;
1861	int			nbits;
1862	int                     error;
1863
1864	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1865
1866	bit = 0;
1867	i = 1;  /* 0 is the buf format structure */
1868	while (1) {
1869		bit = xfs_next_bit(buf_f->blf_data_map,
1870				   buf_f->blf_map_size, bit);
1871		if (bit == -1)
1872			break;
1873		nbits = xfs_contig_bits(buf_f->blf_data_map,
1874					buf_f->blf_map_size, bit);
1875		ASSERT(nbits > 0);
1876		ASSERT(item->ri_buf[i].i_addr != NULL);
1877		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1878		ASSERT(XFS_BUF_COUNT(bp) >=
1879		       ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1880
1881		/*
1882		 * Do a sanity check if this is a dquot buffer. Just checking
1883		 * the first dquot in the buffer should do. XXXThis is
1884		 * probably a good thing to do for other buf types also.
1885		 */
1886		error = 0;
1887		if (buf_f->blf_flags &
1888		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1889			if (item->ri_buf[i].i_addr == NULL) {
1890				xfs_alert(mp,
1891					"XFS: NULL dquot in %s.", __func__);
1892				goto next;
1893			}
1894			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1895				xfs_alert(mp,
1896					"XFS: dquot too small (%d) in %s.",
1897					item->ri_buf[i].i_len, __func__);
1898				goto next;
1899			}
1900			error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1901					       -1, 0, XFS_QMOPT_DOWARN,
1902					       "dquot_buf_recover");
1903			if (error)
1904				goto next;
1905		}
1906
1907		memcpy(xfs_buf_offset(bp,
1908			(uint)bit << XFS_BLF_SHIFT),	/* dest */
1909			item->ri_buf[i].i_addr,		/* source */
1910			nbits<<XFS_BLF_SHIFT);		/* length */
1911 next:
1912		i++;
1913		bit += nbits;
1914	}
1915
1916	/* Shouldn't be any more regions */
1917	ASSERT(i == item->ri_total);
1918}
1919
1920/*
1921 * Do some primitive error checking on ondisk dquot data structures.
1922 */
1923int
1924xfs_qm_dqcheck(
1925	struct xfs_mount *mp,
1926	xfs_disk_dquot_t *ddq,
1927	xfs_dqid_t	 id,
1928	uint		 type,	  /* used only when IO_dorepair is true */
1929	uint		 flags,
1930	char		 *str)
1931{
1932	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
1933	int		errs = 0;
1934
1935	/*
1936	 * We can encounter an uninitialized dquot buffer for 2 reasons:
1937	 * 1. If we crash while deleting the quotainode(s), and those blks got
1938	 *    used for user data. This is because we take the path of regular
1939	 *    file deletion; however, the size field of quotainodes is never
1940	 *    updated, so all the tricks that we play in itruncate_finish
1941	 *    don't quite matter.
1942	 *
1943	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1944	 *    But the allocation will be replayed so we'll end up with an
1945	 *    uninitialized quota block.
1946	 *
1947	 * This is all fine; things are still consistent, and we haven't lost
1948	 * any quota information. Just don't complain about bad dquot blks.
1949	 */
1950	if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1951		if (flags & XFS_QMOPT_DOWARN)
1952			xfs_alert(mp,
1953			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1954			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1955		errs++;
1956	}
1957	if (ddq->d_version != XFS_DQUOT_VERSION) {
1958		if (flags & XFS_QMOPT_DOWARN)
1959			xfs_alert(mp,
1960			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1961			str, id, ddq->d_version, XFS_DQUOT_VERSION);
1962		errs++;
1963	}
1964
1965	if (ddq->d_flags != XFS_DQ_USER &&
1966	    ddq->d_flags != XFS_DQ_PROJ &&
1967	    ddq->d_flags != XFS_DQ_GROUP) {
1968		if (flags & XFS_QMOPT_DOWARN)
1969			xfs_alert(mp,
1970			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1971			str, id, ddq->d_flags);
1972		errs++;
1973	}
1974
1975	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1976		if (flags & XFS_QMOPT_DOWARN)
1977			xfs_alert(mp,
1978			"%s : ondisk-dquot 0x%p, ID mismatch: "
1979			"0x%x expected, found id 0x%x",
1980			str, ddq, id, be32_to_cpu(ddq->d_id));
1981		errs++;
1982	}
1983
1984	if (!errs && ddq->d_id) {
1985		if (ddq->d_blk_softlimit &&
1986		    be64_to_cpu(ddq->d_bcount) >=
1987				be64_to_cpu(ddq->d_blk_softlimit)) {
1988			if (!ddq->d_btimer) {
1989				if (flags & XFS_QMOPT_DOWARN)
1990					xfs_alert(mp,
1991			"%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1992					str, (int)be32_to_cpu(ddq->d_id), ddq);
1993				errs++;
1994			}
1995		}
1996		if (ddq->d_ino_softlimit &&
1997		    be64_to_cpu(ddq->d_icount) >=
1998				be64_to_cpu(ddq->d_ino_softlimit)) {
1999			if (!ddq->d_itimer) {
2000				if (flags & XFS_QMOPT_DOWARN)
2001					xfs_alert(mp,
2002			"%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2003					str, (int)be32_to_cpu(ddq->d_id), ddq);
2004				errs++;
2005			}
2006		}
2007		if (ddq->d_rtb_softlimit &&
2008		    be64_to_cpu(ddq->d_rtbcount) >=
2009				be64_to_cpu(ddq->d_rtb_softlimit)) {
2010			if (!ddq->d_rtbtimer) {
2011				if (flags & XFS_QMOPT_DOWARN)
2012					xfs_alert(mp,
2013			"%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2014					str, (int)be32_to_cpu(ddq->d_id), ddq);
2015				errs++;
2016			}
2017		}
2018	}
2019
2020	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2021		return errs;
2022
2023	if (flags & XFS_QMOPT_DOWARN)
2024		xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2025
2026	/*
2027	 * Typically, a repair is only requested by quotacheck.
2028	 */
2029	ASSERT(id != -1);
2030	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2031	memset(d, 0, sizeof(xfs_dqblk_t));
2032
2033	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2034	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2035	d->dd_diskdq.d_flags = type;
2036	d->dd_diskdq.d_id = cpu_to_be32(id);
2037
2038	return errs;
2039}
2040
2041/*
2042 * Perform a dquot buffer recovery.
2043 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2044 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2045 * Else, treat it as a regular buffer and do recovery.
2046 */
2047STATIC void
2048xlog_recover_do_dquot_buffer(
2049	xfs_mount_t		*mp,
2050	xlog_t			*log,
2051	xlog_recover_item_t	*item,
2052	xfs_buf_t		*bp,
2053	xfs_buf_log_format_t	*buf_f)
2054{
2055	uint			type;
2056
2057	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2058
2059	/*
2060	 * Filesystems are required to send in quota flags at mount time.
2061	 */
2062	if (mp->m_qflags == 0) {
2063		return;
2064	}
2065
2066	type = 0;
2067	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2068		type |= XFS_DQ_USER;
2069	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2070		type |= XFS_DQ_PROJ;
2071	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2072		type |= XFS_DQ_GROUP;
2073	/*
2074	 * This type of quotas was turned off, so ignore this buffer
2075	 */
2076	if (log->l_quotaoffs_flag & type)
2077		return;
2078
2079	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2080}
2081
2082/*
2083 * This routine replays a modification made to a buffer at runtime.
2084 * There are actually two types of buffer, regular and inode, which
2085 * are handled differently.  Inode buffers are handled differently
2086 * in that we only recover a specific set of data from them, namely
2087 * the inode di_next_unlinked fields.  This is because all other inode
2088 * data is actually logged via inode records and any data we replay
2089 * here which overlaps that may be stale.
2090 *
2091 * When meta-data buffers are freed at run time we log a buffer item
2092 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2093 * of the buffer in the log should not be replayed at recovery time.
2094 * This is so that if the blocks covered by the buffer are reused for
2095 * file data before we crash we don't end up replaying old, freed
2096 * meta-data into a user's file.
2097 *
2098 * To handle the cancellation of buffer log items, we make two passes
2099 * over the log during recovery.  During the first we build a table of
2100 * those buffers which have been cancelled, and during the second we
2101 * only replay those buffers which do not have corresponding cancel
2102 * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2103 * for more details on the implementation of the table of cancel records.
2104 */
2105STATIC int
2106xlog_recover_buffer_pass2(
2107	xlog_t			*log,
2108	xlog_recover_item_t	*item)
2109{
2110	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2111	xfs_mount_t		*mp = log->l_mp;
2112	xfs_buf_t		*bp;
2113	int			error;
2114	uint			buf_flags;
2115
2116	/*
2117	 * In this pass we only want to recover all the buffers which have
2118	 * not been cancelled and are not cancellation buffers themselves.
2119	 */
2120	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2121			buf_f->blf_len, buf_f->blf_flags)) {
2122		trace_xfs_log_recover_buf_cancel(log, buf_f);
2123		return 0;
2124	}
2125
2126	trace_xfs_log_recover_buf_recover(log, buf_f);
2127
2128	buf_flags = XBF_LOCK;
2129	if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
2130		buf_flags |= XBF_MAPPED;
2131
2132	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2133			  buf_flags);
2134	if (!bp)
2135		return XFS_ERROR(ENOMEM);
2136	error = bp->b_error;
2137	if (error) {
2138		xfs_ioerror_alert("xlog_recover_do..(read#1)", mp,
2139				  bp, buf_f->blf_blkno);
2140		xfs_buf_relse(bp);
2141		return error;
2142	}
2143
2144	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2145		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2146	} else if (buf_f->blf_flags &
2147		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2148		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2149	} else {
2150		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2151	}
2152	if (error)
2153		return XFS_ERROR(error);
2154
2155	/*
2156	 * Perform delayed write on the buffer.  Asynchronous writes will be
2157	 * slower when taking into account all the buffers to be flushed.
2158	 *
2159	 * Also make sure that only inode buffers with good sizes stay in
2160	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2161	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2162	 * buffers in the log can be a different size if the log was generated
2163	 * by an older kernel using unclustered inode buffers or a newer kernel
2164	 * running with a different inode cluster size.  Regardless, if the
2165	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2166	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2167	 * the buffer out of the buffer cache so that the buffer won't
2168	 * overlap with future reads of those inodes.
2169	 */
2170	if (XFS_DINODE_MAGIC ==
2171	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2172	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2173			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2174		XFS_BUF_STALE(bp);
2175		error = xfs_bwrite(mp, bp);
2176	} else {
2177		ASSERT(bp->b_target->bt_mount == mp);
2178		bp->b_iodone = xlog_recover_iodone;
2179		xfs_bdwrite(mp, bp);
2180	}
2181
2182	return (error);
2183}
2184
2185STATIC int
2186xlog_recover_inode_pass2(
2187	xlog_t			*log,
2188	xlog_recover_item_t	*item)
2189{
2190	xfs_inode_log_format_t	*in_f;
2191	xfs_mount_t		*mp = log->l_mp;
2192	xfs_buf_t		*bp;
2193	xfs_dinode_t		*dip;
2194	int			len;
2195	xfs_caddr_t		src;
2196	xfs_caddr_t		dest;
2197	int			error;
2198	int			attr_index;
2199	uint			fields;
2200	xfs_icdinode_t		*dicp;
2201	int			need_free = 0;
2202
2203	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2204		in_f = item->ri_buf[0].i_addr;
2205	} else {
2206		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2207		need_free = 1;
2208		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2209		if (error)
2210			goto error;
2211	}
2212
2213	/*
2214	 * Inode buffers can be freed, look out for it,
2215	 * and do not replay the inode.
2216	 */
2217	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2218					in_f->ilf_len, 0)) {
2219		error = 0;
2220		trace_xfs_log_recover_inode_cancel(log, in_f);
2221		goto error;
2222	}
2223	trace_xfs_log_recover_inode_recover(log, in_f);
2224
2225	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2226			  XBF_LOCK);
2227	if (!bp) {
2228		error = ENOMEM;
2229		goto error;
2230	}
2231	error = bp->b_error;
2232	if (error) {
2233		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2234				  bp, in_f->ilf_blkno);
2235		xfs_buf_relse(bp);
2236		goto error;
2237	}
2238	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2239	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2240
2241	/*
2242	 * Make sure the place we're flushing out to really looks
2243	 * like an inode!
2244	 */
2245	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2246		xfs_buf_relse(bp);
2247		xfs_alert(mp,
2248	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2249			__func__, dip, bp, in_f->ilf_ino);
2250		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2251				 XFS_ERRLEVEL_LOW, mp);
2252		error = EFSCORRUPTED;
2253		goto error;
2254	}
2255	dicp = item->ri_buf[1].i_addr;
2256	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2257		xfs_buf_relse(bp);
2258		xfs_alert(mp,
2259			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2260			__func__, item, in_f->ilf_ino);
2261		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2262				 XFS_ERRLEVEL_LOW, mp);
2263		error = EFSCORRUPTED;
2264		goto error;
2265	}
2266
2267	/* Skip replay when the on disk inode is newer than the log one */
2268	if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2269		/*
2270		 * Deal with the wrap case, DI_MAX_FLUSH is less
2271		 * than smaller numbers
2272		 */
2273		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2274		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2275			/* do nothing */
2276		} else {
2277			xfs_buf_relse(bp);
2278			trace_xfs_log_recover_inode_skip(log, in_f);
2279			error = 0;
2280			goto error;
2281		}
2282	}
2283	/* Take the opportunity to reset the flush iteration count */
2284	dicp->di_flushiter = 0;
2285
2286	if (unlikely(S_ISREG(dicp->di_mode))) {
2287		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2288		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2289			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2290					 XFS_ERRLEVEL_LOW, mp, dicp);
2291			xfs_buf_relse(bp);
2292			xfs_alert(mp,
2293		"%s: Bad regular inode log record, rec ptr 0x%p, "
2294		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2295				__func__, item, dip, bp, in_f->ilf_ino);
2296			error = EFSCORRUPTED;
2297			goto error;
2298		}
2299	} else if (unlikely(S_ISDIR(dicp->di_mode))) {
2300		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2301		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2302		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2303			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2304					     XFS_ERRLEVEL_LOW, mp, dicp);
2305			xfs_buf_relse(bp);
2306			xfs_alert(mp,
2307		"%s: Bad dir inode log record, rec ptr 0x%p, "
2308		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2309				__func__, item, dip, bp, in_f->ilf_ino);
2310			error = EFSCORRUPTED;
2311			goto error;
2312		}
2313	}
2314	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2315		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2316				     XFS_ERRLEVEL_LOW, mp, dicp);
2317		xfs_buf_relse(bp);
2318		xfs_alert(mp,
2319	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2320	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2321			__func__, item, dip, bp, in_f->ilf_ino,
2322			dicp->di_nextents + dicp->di_anextents,
2323			dicp->di_nblocks);
2324		error = EFSCORRUPTED;
2325		goto error;
2326	}
2327	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2328		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2329				     XFS_ERRLEVEL_LOW, mp, dicp);
2330		xfs_buf_relse(bp);
2331		xfs_alert(mp,
2332	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2333	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2334			item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2335		error = EFSCORRUPTED;
2336		goto error;
2337	}
2338	if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2339		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2340				     XFS_ERRLEVEL_LOW, mp, dicp);
2341		xfs_buf_relse(bp);
2342		xfs_alert(mp,
2343			"%s: Bad inode log record length %d, rec ptr 0x%p",
2344			__func__, item->ri_buf[1].i_len, item);
2345		error = EFSCORRUPTED;
2346		goto error;
2347	}
2348
2349	/* The core is in in-core format */
2350	xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2351
2352	/* the rest is in on-disk format */
2353	if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2354		memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2355			item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2356			item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2357	}
2358
2359	fields = in_f->ilf_fields;
2360	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2361	case XFS_ILOG_DEV:
2362		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2363		break;
2364	case XFS_ILOG_UUID:
2365		memcpy(XFS_DFORK_DPTR(dip),
2366		       &in_f->ilf_u.ilfu_uuid,
2367		       sizeof(uuid_t));
2368		break;
2369	}
2370
2371	if (in_f->ilf_size == 2)
2372		goto write_inode_buffer;
2373	len = item->ri_buf[2].i_len;
2374	src = item->ri_buf[2].i_addr;
2375	ASSERT(in_f->ilf_size <= 4);
2376	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2377	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2378	       (len == in_f->ilf_dsize));
2379
2380	switch (fields & XFS_ILOG_DFORK) {
2381	case XFS_ILOG_DDATA:
2382	case XFS_ILOG_DEXT:
2383		memcpy(XFS_DFORK_DPTR(dip), src, len);
2384		break;
2385
2386	case XFS_ILOG_DBROOT:
2387		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2388				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2389				 XFS_DFORK_DSIZE(dip, mp));
 
2390		break;
2391
2392	default:
2393		/*
2394		 * There are no data fork flags set.
2395		 */
2396		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2397		break;
2398	}
2399
2400	/*
2401	 * If we logged any attribute data, recover it.  There may or
2402	 * may not have been any other non-core data logged in this
2403	 * transaction.
2404	 */
2405	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2406		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2407			attr_index = 3;
2408		} else {
2409			attr_index = 2;
2410		}
2411		len = item->ri_buf[attr_index].i_len;
2412		src = item->ri_buf[attr_index].i_addr;
2413		ASSERT(len == in_f->ilf_asize);
2414
2415		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2416		case XFS_ILOG_ADATA:
2417		case XFS_ILOG_AEXT:
2418			dest = XFS_DFORK_APTR(dip);
2419			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2420			memcpy(dest, src, len);
2421			break;
2422
2423		case XFS_ILOG_ABROOT:
2424			dest = XFS_DFORK_APTR(dip);
2425			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2426					 len, (xfs_bmdr_block_t*)dest,
2427					 XFS_DFORK_ASIZE(dip, mp));
2428			break;
2429
2430		default:
2431			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2432			ASSERT(0);
2433			xfs_buf_relse(bp);
2434			error = EIO;
2435			goto error;
2436		}
2437	}
2438
2439write_inode_buffer:
2440	ASSERT(bp->b_target->bt_mount == mp);
2441	bp->b_iodone = xlog_recover_iodone;
2442	xfs_bdwrite(mp, bp);
2443error:
2444	if (need_free)
2445		kmem_free(in_f);
2446	return XFS_ERROR(error);
2447}
2448
2449/*
2450 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2451 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2452 * of that type.
2453 */
2454STATIC int
2455xlog_recover_quotaoff_pass1(
2456	xlog_t			*log,
2457	xlog_recover_item_t	*item)
2458{
2459	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
2460	ASSERT(qoff_f);
2461
2462	/*
2463	 * The logitem format's flag tells us if this was user quotaoff,
2464	 * group/project quotaoff or both.
2465	 */
2466	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2467		log->l_quotaoffs_flag |= XFS_DQ_USER;
2468	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2469		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2470	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2471		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2472
2473	return (0);
2474}
2475
2476/*
2477 * Recover a dquot record
 
 
 
 
2478 */
2479STATIC int
2480xlog_recover_dquot_pass2(
2481	xlog_t			*log,
2482	xlog_recover_item_t	*item)
 
2483{
2484	xfs_mount_t		*mp = log->l_mp;
2485	xfs_buf_t		*bp;
2486	struct xfs_disk_dquot	*ddq, *recddq;
2487	int			error;
2488	xfs_dq_logformat_t	*dq_f;
2489	uint			type;
2490
2491
2492	/*
2493	 * Filesystems are required to send in quota flags at mount time.
2494	 */
2495	if (mp->m_qflags == 0)
2496		return (0);
2497
2498	recddq = item->ri_buf[1].i_addr;
2499	if (recddq == NULL) {
2500		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2501		return XFS_ERROR(EIO);
2502	}
2503	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2504		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2505			item->ri_buf[1].i_len, __func__);
2506		return XFS_ERROR(EIO);
2507	}
2508
2509	/*
2510	 * This type of quotas was turned off, so ignore this record.
 
2511	 */
2512	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2513	ASSERT(type);
2514	if (log->l_quotaoffs_flag & type)
2515		return (0);
2516
2517	/*
2518	 * At this point we know that quota was _not_ turned off.
2519	 * Since the mount flags are not indicating to us otherwise, this
2520	 * must mean that quota is on, and the dquot needs to be replayed.
2521	 * Remember that we may not have fully recovered the superblock yet,
2522	 * so we can't do the usual trick of looking at the SB quota bits.
2523	 *
2524	 * The other possibility, of course, is that the quota subsystem was
2525	 * removed since the last mount - ENOSYS.
2526	 */
2527	dq_f = item->ri_buf[0].i_addr;
2528	ASSERT(dq_f);
2529	error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2530			   "xlog_recover_dquot_pass2 (log copy)");
2531	if (error)
2532		return XFS_ERROR(EIO);
2533	ASSERT(dq_f->qlf_len == 1);
2534
2535	error = xfs_read_buf(mp, mp->m_ddev_targp,
2536			     dq_f->qlf_blkno,
2537			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2538			     0, &bp);
2539	if (error) {
2540		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2541				  bp, dq_f->qlf_blkno);
2542		return error;
2543	}
2544	ASSERT(bp);
2545	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2546
2547	/*
2548	 * At least the magic num portion should be on disk because this
2549	 * was among a chunk of dquots created earlier, and we did some
2550	 * minimal initialization then.
2551	 */
2552	error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2553			   "xlog_recover_dquot_pass2");
2554	if (error) {
2555		xfs_buf_relse(bp);
2556		return XFS_ERROR(EIO);
2557	}
2558
2559	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2560
2561	ASSERT(dq_f->qlf_size == 2);
2562	ASSERT(bp->b_target->bt_mount == mp);
2563	bp->b_iodone = xlog_recover_iodone;
2564	xfs_bdwrite(mp, bp);
2565
2566	return (0);
2567}
2568
2569/*
2570 * This routine is called to create an in-core extent free intent
2571 * item from the efi format structure which was logged on disk.
2572 * It allocates an in-core efi, copies the extents from the format
2573 * structure into it, and adds the efi to the AIL with the given
2574 * LSN.
2575 */
2576STATIC int
2577xlog_recover_efi_pass2(
2578	xlog_t			*log,
2579	xlog_recover_item_t	*item,
2580	xfs_lsn_t		lsn)
 
 
 
 
 
2581{
 
 
2582	int			error;
2583	xfs_mount_t		*mp = log->l_mp;
2584	xfs_efi_log_item_t	*efip;
2585	xfs_efi_log_format_t	*efi_formatp;
2586
2587	efi_formatp = item->ri_buf[0].i_addr;
2588
2589	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2590	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2591					 &(efip->efi_format)))) {
2592		xfs_efi_item_free(efip);
2593		return error;
2594	}
2595	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2596
2597	spin_lock(&log->l_ailp->xa_lock);
2598	/*
2599	 * xfs_trans_ail_update() drops the AIL lock.
2600	 */
2601	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2602	return 0;
2603}
2604
2605
2606/*
2607 * This routine is called when an efd format structure is found in
2608 * a committed transaction in the log.  It's purpose is to cancel
2609 * the corresponding efi if it was still in the log.  To do this
2610 * it searches the AIL for the efi with an id equal to that in the
2611 * efd format structure.  If we find it, we remove the efi from the
2612 * AIL and free it.
2613 */
2614STATIC int
2615xlog_recover_efd_pass2(
2616	xlog_t			*log,
2617	xlog_recover_item_t	*item)
2618{
2619	xfs_efd_log_format_t	*efd_formatp;
2620	xfs_efi_log_item_t	*efip = NULL;
2621	xfs_log_item_t		*lip;
2622	__uint64_t		efi_id;
2623	struct xfs_ail_cursor	cur;
2624	struct xfs_ail		*ailp = log->l_ailp;
2625
2626	efd_formatp = item->ri_buf[0].i_addr;
2627	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2628		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2629	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2630		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2631	efi_id = efd_formatp->efd_efi_id;
 
 
2632
2633	/*
2634	 * Search for the efi with the id in the efd format structure
2635	 * in the AIL.
2636	 */
2637	spin_lock(&ailp->xa_lock);
2638	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2639	while (lip != NULL) {
2640		if (lip->li_type == XFS_LI_EFI) {
2641			efip = (xfs_efi_log_item_t *)lip;
2642			if (efip->efi_format.efi_id == efi_id) {
2643				/*
2644				 * xfs_trans_ail_delete() drops the
2645				 * AIL lock.
2646				 */
2647				xfs_trans_ail_delete(ailp, lip);
2648				xfs_efi_item_free(efip);
2649				spin_lock(&ailp->xa_lock);
2650				break;
2651			}
2652		}
2653		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2654	}
2655	xfs_trans_ail_cursor_done(ailp, &cur);
2656	spin_unlock(&ailp->xa_lock);
2657
2658	return 0;
2659}
2660
2661/*
2662 * Free up any resources allocated by the transaction
2663 *
2664 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2665 */
2666STATIC void
2667xlog_recover_free_trans(
2668	struct xlog_recover	*trans)
2669{
2670	xlog_recover_item_t	*item, *n;
2671	int			i;
2672
2673	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2674		/* Free the regions in the item. */
2675		list_del(&item->ri_list);
2676		for (i = 0; i < item->ri_cnt; i++)
2677			kmem_free(item->ri_buf[i].i_addr);
2678		/* Free the item itself */
2679		kmem_free(item->ri_buf);
2680		kmem_free(item);
2681	}
2682	/* Free the transaction recover structure */
2683	kmem_free(trans);
2684}
2685
2686STATIC int
2687xlog_recover_commit_pass1(
2688	struct log		*log,
2689	struct xlog_recover	*trans,
2690	xlog_recover_item_t	*item)
2691{
2692	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2693
2694	switch (ITEM_TYPE(item)) {
2695	case XFS_LI_BUF:
2696		return xlog_recover_buffer_pass1(log, item);
2697	case XFS_LI_QUOTAOFF:
2698		return xlog_recover_quotaoff_pass1(log, item);
2699	case XFS_LI_INODE:
2700	case XFS_LI_EFI:
2701	case XFS_LI_EFD:
2702	case XFS_LI_DQUOT:
2703		/* nothing to do in pass 1 */
2704		return 0;
2705	default:
2706		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2707			__func__, ITEM_TYPE(item));
2708		ASSERT(0);
2709		return XFS_ERROR(EIO);
2710	}
2711}
2712
2713STATIC int
2714xlog_recover_commit_pass2(
2715	struct log		*log,
2716	struct xlog_recover	*trans,
2717	xlog_recover_item_t	*item)
2718{
2719	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2720
2721	switch (ITEM_TYPE(item)) {
2722	case XFS_LI_BUF:
2723		return xlog_recover_buffer_pass2(log, item);
2724	case XFS_LI_INODE:
2725		return xlog_recover_inode_pass2(log, item);
2726	case XFS_LI_EFI:
2727		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2728	case XFS_LI_EFD:
2729		return xlog_recover_efd_pass2(log, item);
2730	case XFS_LI_DQUOT:
2731		return xlog_recover_dquot_pass2(log, item);
2732	case XFS_LI_QUOTAOFF:
2733		/* nothing to do in pass2 */
2734		return 0;
2735	default:
2736		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2737			__func__, ITEM_TYPE(item));
2738		ASSERT(0);
2739		return XFS_ERROR(EIO);
2740	}
2741}
2742
2743/*
2744 * Perform the transaction.
2745 *
2746 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2747 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2748 */
2749STATIC int
2750xlog_recover_commit_trans(
2751	struct log		*log,
2752	struct xlog_recover	*trans,
2753	int			pass)
2754{
2755	int			error = 0;
2756	xlog_recover_item_t	*item;
2757
2758	hlist_del(&trans->r_list);
2759
2760	error = xlog_recover_reorder_trans(log, trans, pass);
2761	if (error)
2762		return error;
2763
2764	list_for_each_entry(item, &trans->r_itemq, ri_list) {
2765		if (pass == XLOG_RECOVER_PASS1)
2766			error = xlog_recover_commit_pass1(log, trans, item);
2767		else
2768			error = xlog_recover_commit_pass2(log, trans, item);
2769		if (error)
2770			return error;
 
2771	}
2772
2773	xlog_recover_free_trans(trans);
2774	return 0;
2775}
2776
2777STATIC int
2778xlog_recover_unmount_trans(
2779	struct log		*log,
2780	xlog_recover_t		*trans)
2781{
2782	/* Do nothing now */
2783	xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2784	return 0;
2785}
2786
2787/*
2788 * There are two valid states of the r_state field.  0 indicates that the
2789 * transaction structure is in a normal state.  We have either seen the
2790 * start of the transaction or the last operation we added was not a partial
2791 * operation.  If the last operation we added to the transaction was a
2792 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2793 *
2794 * NOTE: skip LRs with 0 data length.
2795 */
2796STATIC int
2797xlog_recover_process_data(
2798	xlog_t			*log,
2799	struct hlist_head	rhash[],
2800	xlog_rec_header_t	*rhead,
2801	xfs_caddr_t		dp,
2802	int			pass)
 
2803{
2804	xfs_caddr_t		lp;
 
2805	int			num_logops;
2806	xlog_op_header_t	*ohead;
2807	xlog_recover_t		*trans;
2808	xlog_tid_t		tid;
2809	int			error;
2810	unsigned long		hash;
2811	uint			flags;
2812
2813	lp = dp + be32_to_cpu(rhead->h_len);
2814	num_logops = be32_to_cpu(rhead->h_num_logops);
2815
2816	/* check the log format matches our own - else we can't recover */
2817	if (xlog_header_check_recover(log->l_mp, rhead))
2818		return (XFS_ERROR(EIO));
 
 
 
 
 
 
 
 
 
 
 
 
 
2819
2820	while ((dp < lp) && num_logops) {
2821		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2822		ohead = (xlog_op_header_t *)dp;
2823		dp += sizeof(xlog_op_header_t);
2824		if (ohead->oh_clientid != XFS_TRANSACTION &&
2825		    ohead->oh_clientid != XFS_LOG) {
2826			xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2827					__func__, ohead->oh_clientid);
2828			ASSERT(0);
2829			return (XFS_ERROR(EIO));
2830		}
2831		tid = be32_to_cpu(ohead->oh_tid);
2832		hash = XLOG_RHASH(tid);
2833		trans = xlog_recover_find_tid(&rhash[hash], tid);
2834		if (trans == NULL) {		   /* not found; add new tid */
2835			if (ohead->oh_flags & XLOG_START_TRANS)
2836				xlog_recover_new_tid(&rhash[hash], tid,
2837					be64_to_cpu(rhead->h_lsn));
2838		} else {
2839			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2840				xfs_warn(log->l_mp, "%s: bad length 0x%x",
2841					__func__, be32_to_cpu(ohead->oh_len));
2842				WARN_ON(1);
2843				return (XFS_ERROR(EIO));
2844			}
2845			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2846			if (flags & XLOG_WAS_CONT_TRANS)
2847				flags &= ~XLOG_CONTINUE_TRANS;
2848			switch (flags) {
2849			case XLOG_COMMIT_TRANS:
2850				error = xlog_recover_commit_trans(log,
2851								trans, pass);
2852				break;
2853			case XLOG_UNMOUNT_TRANS:
2854				error = xlog_recover_unmount_trans(log, trans);
2855				break;
2856			case XLOG_WAS_CONT_TRANS:
2857				error = xlog_recover_add_to_cont_trans(log,
2858						trans, dp,
2859						be32_to_cpu(ohead->oh_len));
2860				break;
2861			case XLOG_START_TRANS:
2862				xfs_warn(log->l_mp, "%s: bad transaction",
2863					__func__);
2864				ASSERT(0);
2865				error = XFS_ERROR(EIO);
2866				break;
2867			case 0:
2868			case XLOG_CONTINUE_TRANS:
2869				error = xlog_recover_add_to_trans(log, trans,
2870						dp, be32_to_cpu(ohead->oh_len));
2871				break;
2872			default:
2873				xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2874					__func__, flags);
2875				ASSERT(0);
2876				error = XFS_ERROR(EIO);
2877				break;
2878			}
2879			if (error)
2880				return error;
2881		}
2882		dp += be32_to_cpu(ohead->oh_len);
2883		num_logops--;
2884	}
2885	return 0;
2886}
2887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2888/*
2889 * Process an extent free intent item that was recovered from
2890 * the log.  We need to free the extents that it describes.
 
 
 
 
 
 
 
 
 
 
 
 
2891 */
2892STATIC int
2893xlog_recover_process_efi(
2894	xfs_mount_t		*mp,
2895	xfs_efi_log_item_t	*efip)
2896{
2897	xfs_efd_log_item_t	*efdp;
2898	xfs_trans_t		*tp;
2899	int			i;
 
2900	int			error = 0;
2901	xfs_extent_t		*extp;
2902	xfs_fsblock_t		startblock_fsb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2903
2904	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
 
 
 
 
 
2905
2906	/*
2907	 * First check the validity of the extents described by the
2908	 * EFI.  If any are bad, then assume that all are bad and
2909	 * just toss the EFI.
2910	 */
2911	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2912		extp = &(efip->efi_format.efi_extents[i]);
2913		startblock_fsb = XFS_BB_TO_FSB(mp,
2914				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
2915		if ((startblock_fsb == 0) ||
2916		    (extp->ext_len == 0) ||
2917		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2918		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2919			/*
2920			 * This will pull the EFI from the AIL and
2921			 * free the memory associated with it.
2922			 */
2923			xfs_efi_release(efip, efip->efi_format.efi_nextents);
2924			return XFS_ERROR(EIO);
2925		}
2926	}
2927
2928	tp = xfs_trans_alloc(mp, 0);
2929	error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2930	if (error)
2931		goto abort_error;
2932	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2933
2934	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2935		extp = &(efip->efi_format.efi_extents[i]);
2936		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2937		if (error)
2938			goto abort_error;
2939		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2940					 extp->ext_len);
2941	}
2942
2943	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2944	error = xfs_trans_commit(tp, 0);
2945	return error;
2946
2947abort_error:
2948	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
 
2949	return error;
2950}
2951
2952/*
2953 * When this is called, all of the EFIs which did not have
2954 * corresponding EFDs should be in the AIL.  What we do now
2955 * is free the extents associated with each one.
2956 *
2957 * Since we process the EFIs in normal transactions, they
2958 * will be removed at some point after the commit.  This prevents
2959 * us from just walking down the list processing each one.
2960 * We'll use a flag in the EFI to skip those that we've already
2961 * processed and use the AIL iteration mechanism's generation
2962 * count to try to speed this up at least a bit.
2963 *
2964 * When we start, we know that the EFIs are the only things in
2965 * the AIL.  As we process them, however, other items are added
2966 * to the AIL.  Since everything added to the AIL must come after
2967 * everything already in the AIL, we stop processing as soon as
2968 * we see something other than an EFI in the AIL.
2969 */
2970STATIC int
2971xlog_recover_process_efis(
2972	xlog_t			*log)
2973{
2974	xfs_log_item_t		*lip;
2975	xfs_efi_log_item_t	*efip;
2976	int			error = 0;
2977	struct xfs_ail_cursor	cur;
2978	struct xfs_ail		*ailp;
2979
2980	ailp = log->l_ailp;
2981	spin_lock(&ailp->xa_lock);
2982	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2983	while (lip != NULL) {
2984		/*
2985		 * We're done when we see something other than an EFI.
2986		 * There should be no EFIs left in the AIL now.
2987		 */
2988		if (lip->li_type != XFS_LI_EFI) {
2989#ifdef DEBUG
2990			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2991				ASSERT(lip->li_type != XFS_LI_EFI);
2992#endif
2993			break;
2994		}
2995
2996		/*
2997		 * Skip EFIs that we've already processed.
2998		 */
2999		efip = (xfs_efi_log_item_t *)lip;
3000		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3001			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3002			continue;
3003		}
3004
3005		spin_unlock(&ailp->xa_lock);
3006		error = xlog_recover_process_efi(log->l_mp, efip);
3007		spin_lock(&ailp->xa_lock);
3008		if (error)
3009			goto out;
3010		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3011	}
3012out:
3013	xfs_trans_ail_cursor_done(ailp, &cur);
3014	spin_unlock(&ailp->xa_lock);
3015	return error;
3016}
3017
3018/*
3019 * This routine performs a transaction to null out a bad inode pointer
3020 * in an agi unlinked inode hash bucket.
3021 */
3022STATIC void
3023xlog_recover_clear_agi_bucket(
3024	xfs_mount_t	*mp,
3025	xfs_agnumber_t	agno,
3026	int		bucket)
3027{
3028	xfs_trans_t	*tp;
3029	xfs_agi_t	*agi;
3030	xfs_buf_t	*agibp;
3031	int		offset;
3032	int		error;
3033
3034	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3035	error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3036				  0, 0, 0);
3037	if (error)
3038		goto out_abort;
3039
3040	error = xfs_read_agi(mp, tp, agno, &agibp);
3041	if (error)
3042		goto out_abort;
3043
3044	agi = XFS_BUF_TO_AGI(agibp);
3045	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3046	offset = offsetof(xfs_agi_t, agi_unlinked) +
3047		 (sizeof(xfs_agino_t) * bucket);
3048	xfs_trans_log_buf(tp, agibp, offset,
3049			  (offset + sizeof(xfs_agino_t) - 1));
3050
3051	error = xfs_trans_commit(tp, 0);
3052	if (error)
3053		goto out_error;
3054	return;
3055
3056out_abort:
3057	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3058out_error:
3059	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3060	return;
3061}
3062
3063STATIC xfs_agino_t
3064xlog_recover_process_one_iunlink(
3065	struct xfs_mount		*mp,
3066	xfs_agnumber_t			agno,
3067	xfs_agino_t			agino,
3068	int				bucket)
3069{
3070	struct xfs_buf			*ibp;
3071	struct xfs_dinode		*dip;
3072	struct xfs_inode		*ip;
3073	xfs_ino_t			ino;
3074	int				error;
3075
3076	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3077	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3078	if (error)
3079		goto fail;
3080
3081	/*
3082	 * Get the on disk inode to find the next inode in the bucket.
3083	 */
3084	error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3085	if (error)
3086		goto fail_iput;
 
3087
3088	ASSERT(ip->i_d.di_nlink == 0);
3089	ASSERT(ip->i_d.di_mode != 0);
 
3090
3091	/* setup for the next pass */
3092	agino = be32_to_cpu(dip->di_next_unlinked);
3093	xfs_buf_relse(ibp);
3094
3095	/*
3096	 * Prevent any DMAPI event from being sent when the reference on
3097	 * the inode is dropped.
3098	 */
3099	ip->i_d.di_dmevmask = 0;
3100
3101	IRELE(ip);
3102	return agino;
3103
3104 fail_iput:
3105	IRELE(ip);
3106 fail:
3107	/*
3108	 * We can't read in the inode this bucket points to, or this inode
3109	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3110	 * some inodes and space, but at least we won't hang.
3111	 *
3112	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3113	 * clear the inode pointer in the bucket.
3114	 */
3115	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3116	return NULLAGINO;
3117}
3118
3119/*
3120 * xlog_iunlink_recover
3121 *
3122 * This is called during recovery to process any inodes which
3123 * we unlinked but not freed when the system crashed.  These
3124 * inodes will be on the lists in the AGI blocks.  What we do
3125 * here is scan all the AGIs and fully truncate and free any
3126 * inodes found on the lists.  Each inode is removed from the
3127 * lists when it has been fully truncated and is freed.  The
3128 * freeing of the inode and its removal from the list must be
3129 * atomic.
 
 
 
 
 
 
 
 
 
 
 
3130 */
3131STATIC void
3132xlog_recover_process_iunlinks(
3133	xlog_t		*log)
3134{
3135	xfs_mount_t	*mp;
3136	xfs_agnumber_t	agno;
3137	xfs_agi_t	*agi;
3138	xfs_buf_t	*agibp;
3139	xfs_agino_t	agino;
3140	int		bucket;
3141	int		error;
3142	uint		mp_dmevmask;
3143
3144	mp = log->l_mp;
3145
3146	/*
3147	 * Prevent any DMAPI event from being sent while in this function.
3148	 */
3149	mp_dmevmask = mp->m_dmevmask;
3150	mp->m_dmevmask = 0;
3151
3152	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3153		/*
3154		 * Find the agi for this ag.
3155		 */
3156		error = xfs_read_agi(mp, NULL, agno, &agibp);
3157		if (error) {
3158			/*
3159			 * AGI is b0rked. Don't process it.
3160			 *
3161			 * We should probably mark the filesystem as corrupt
3162			 * after we've recovered all the ag's we can....
3163			 */
3164			continue;
3165		}
3166		agi = XFS_BUF_TO_AGI(agibp);
 
 
 
 
 
 
 
 
 
 
3167
3168		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3169			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3170			while (agino != NULLAGINO) {
3171				/*
3172				 * Release the agi buffer so that it can
3173				 * be acquired in the normal course of the
3174				 * transaction to truncate and free the inode.
3175				 */
3176				xfs_buf_relse(agibp);
3177
3178				agino = xlog_recover_process_one_iunlink(mp,
3179							agno, agino, bucket);
3180
3181				/*
3182				 * Reacquire the agibuffer and continue around
3183				 * the loop. This should never fail as we know
3184				 * the buffer was good earlier on.
3185				 */
3186				error = xfs_read_agi(mp, NULL, agno, &agibp);
3187				ASSERT(error == 0);
3188				agi = XFS_BUF_TO_AGI(agibp);
3189			}
3190		}
3191
3192		/*
3193		 * Release the buffer for the current agi so we can
3194		 * go on to the next one.
3195		 */
3196		xfs_buf_relse(agibp);
3197	}
3198
3199	mp->m_dmevmask = mp_dmevmask;
3200}
3201
3202
3203#ifdef DEBUG
3204STATIC void
3205xlog_pack_data_checksum(
3206	xlog_t		*log,
3207	xlog_in_core_t	*iclog,
3208	int		size)
3209{
3210	int		i;
3211	__be32		*up;
3212	uint		chksum = 0;
3213
3214	up = (__be32 *)iclog->ic_datap;
3215	/* divide length by 4 to get # words */
3216	for (i = 0; i < (size >> 2); i++) {
3217		chksum ^= be32_to_cpu(*up);
3218		up++;
3219	}
3220	iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3221}
3222#else
3223#define xlog_pack_data_checksum(log, iclog, size)
3224#endif
3225
3226/*
3227 * Stamp cycle number in every block
3228 */
3229void
3230xlog_pack_data(
3231	xlog_t			*log,
3232	xlog_in_core_t		*iclog,
3233	int			roundoff)
3234{
3235	int			i, j, k;
3236	int			size = iclog->ic_offset + roundoff;
3237	__be32			cycle_lsn;
3238	xfs_caddr_t		dp;
3239
3240	xlog_pack_data_checksum(log, iclog, size);
3241
3242	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3243
3244	dp = iclog->ic_datap;
3245	for (i = 0; i < BTOBB(size) &&
3246		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3247		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3248		*(__be32 *)dp = cycle_lsn;
3249		dp += BBSIZE;
3250	}
3251
3252	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3253		xlog_in_core_2_t *xhdr = iclog->ic_data;
3254
3255		for ( ; i < BTOBB(size); i++) {
3256			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3257			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3258			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3259			*(__be32 *)dp = cycle_lsn;
3260			dp += BBSIZE;
3261		}
3262
3263		for (i = 1; i < log->l_iclog_heads; i++) {
3264			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3265		}
3266	}
3267}
3268
3269STATIC void
3270xlog_unpack_data(
3271	xlog_rec_header_t	*rhead,
3272	xfs_caddr_t		dp,
3273	xlog_t			*log)
3274{
3275	int			i, j, k;
3276
3277	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3278		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3279		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3280		dp += BBSIZE;
3281	}
3282
3283	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3284		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3285		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3286			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3287			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3288			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3289			dp += BBSIZE;
3290		}
3291	}
3292}
3293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3294STATIC int
3295xlog_valid_rec_header(
3296	xlog_t			*log,
3297	xlog_rec_header_t	*rhead,
3298	xfs_daddr_t		blkno)
 
3299{
3300	int			hlen;
3301
3302	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3303		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3304				XFS_ERRLEVEL_LOW, log->l_mp);
3305		return XFS_ERROR(EFSCORRUPTED);
3306	}
3307	if (unlikely(
3308	    (!rhead->h_version ||
3309	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3310		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3311			__func__, be32_to_cpu(rhead->h_version));
3312		return XFS_ERROR(EIO);
3313	}
3314
3315	/* LR body must have data or it wouldn't have been written */
 
 
 
3316	hlen = be32_to_cpu(rhead->h_len);
3317	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3318		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3319				XFS_ERRLEVEL_LOW, log->l_mp);
3320		return XFS_ERROR(EFSCORRUPTED);
3321	}
3322	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3323		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3324				XFS_ERRLEVEL_LOW, log->l_mp);
3325		return XFS_ERROR(EFSCORRUPTED);
3326	}
3327	return 0;
3328}
3329
3330/*
3331 * Read the log from tail to head and process the log records found.
3332 * Handle the two cases where the tail and head are in the same cycle
3333 * and where the active portion of the log wraps around the end of
3334 * the physical log separately.  The pass parameter is passed through
3335 * to the routines called to process the data and is not looked at
3336 * here.
3337 */
3338STATIC int
3339xlog_do_recovery_pass(
3340	xlog_t			*log,
3341	xfs_daddr_t		head_blk,
3342	xfs_daddr_t		tail_blk,
3343	int			pass)
 
3344{
3345	xlog_rec_header_t	*rhead;
3346	xfs_daddr_t		blk_no;
3347	xfs_caddr_t		offset;
3348	xfs_buf_t		*hbp, *dbp;
3349	int			error = 0, h_size;
 
 
3350	int			bblks, split_bblks;
3351	int			hblks, split_hblks, wrapped_hblks;
 
3352	struct hlist_head	rhash[XLOG_RHASH_SIZE];
 
3353
3354	ASSERT(head_blk != tail_blk);
 
 
 
 
3355
3356	/*
3357	 * Read the header of the tail block and get the iclog buffer size from
3358	 * h_size.  Use this to tell how many sectors make up the log header.
3359	 */
3360	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3361		/*
3362		 * When using variable length iclogs, read first sector of
3363		 * iclog header and extract the header size from it.  Get a
3364		 * new hbp that is the correct size.
3365		 */
3366		hbp = xlog_get_bp(log, 1);
3367		if (!hbp)
3368			return ENOMEM;
3369
3370		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3371		if (error)
3372			goto bread_err1;
3373
3374		rhead = (xlog_rec_header_t *)offset;
3375		error = xlog_valid_rec_header(log, rhead, tail_blk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3376		if (error)
3377			goto bread_err1;
3378		h_size = be32_to_cpu(rhead->h_size);
3379		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3380		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3381			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3382			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3383				hblks++;
3384			xlog_put_bp(hbp);
3385			hbp = xlog_get_bp(log, hblks);
3386		} else {
3387			hblks = 1;
3388		}
3389	} else {
3390		ASSERT(log->l_sectBBsize == 1);
3391		hblks = 1;
3392		hbp = xlog_get_bp(log, 1);
3393		h_size = XLOG_BIG_RECORD_BSIZE;
3394	}
3395
3396	if (!hbp)
3397		return ENOMEM;
3398	dbp = xlog_get_bp(log, BTOBB(h_size));
3399	if (!dbp) {
3400		xlog_put_bp(hbp);
3401		return ENOMEM;
3402	}
3403
3404	memset(rhash, 0, sizeof(rhash));
3405	if (tail_blk <= head_blk) {
3406		for (blk_no = tail_blk; blk_no < head_blk; ) {
3407			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3408			if (error)
3409				goto bread_err2;
3410
3411			rhead = (xlog_rec_header_t *)offset;
3412			error = xlog_valid_rec_header(log, rhead, blk_no);
3413			if (error)
3414				goto bread_err2;
3415
3416			/* blocks in data section */
3417			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3418			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3419					   &offset);
3420			if (error)
3421				goto bread_err2;
3422
3423			xlog_unpack_data(rhead, offset, log);
3424			if ((error = xlog_recover_process_data(log,
3425						rhash, rhead, offset, pass)))
3426				goto bread_err2;
3427			blk_no += bblks + hblks;
3428		}
3429	} else {
3430		/*
3431		 * Perform recovery around the end of the physical log.
3432		 * When the head is not on the same cycle number as the tail,
3433		 * we can't do a sequential recovery as above.
3434		 */
3435		blk_no = tail_blk;
3436		while (blk_no < log->l_logBBsize) {
3437			/*
3438			 * Check for header wrapping around physical end-of-log
3439			 */
3440			offset = hbp->b_addr;
3441			split_hblks = 0;
3442			wrapped_hblks = 0;
3443			if (blk_no + hblks <= log->l_logBBsize) {
3444				/* Read header in one read */
3445				error = xlog_bread(log, blk_no, hblks, hbp,
3446						   &offset);
3447				if (error)
3448					goto bread_err2;
3449			} else {
3450				/* This LR is split across physical log end */
3451				if (blk_no != log->l_logBBsize) {
3452					/* some data before physical log end */
3453					ASSERT(blk_no <= INT_MAX);
3454					split_hblks = log->l_logBBsize - (int)blk_no;
3455					ASSERT(split_hblks > 0);
3456					error = xlog_bread(log, blk_no,
3457							   split_hblks, hbp,
3458							   &offset);
3459					if (error)
3460						goto bread_err2;
3461				}
3462
3463				/*
3464				 * Note: this black magic still works with
3465				 * large sector sizes (non-512) only because:
3466				 * - we increased the buffer size originally
3467				 *   by 1 sector giving us enough extra space
3468				 *   for the second read;
3469				 * - the log start is guaranteed to be sector
3470				 *   aligned;
3471				 * - we read the log end (LR header start)
3472				 *   _first_, then the log start (LR header end)
3473				 *   - order is important.
3474				 */
3475				wrapped_hblks = hblks - split_hblks;
3476				error = xlog_bread_offset(log, 0,
3477						wrapped_hblks, hbp,
3478						offset + BBTOB(split_hblks));
3479				if (error)
3480					goto bread_err2;
3481			}
3482			rhead = (xlog_rec_header_t *)offset;
3483			error = xlog_valid_rec_header(log, rhead,
3484						split_hblks ? blk_no : 0);
3485			if (error)
3486				goto bread_err2;
3487
3488			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3489			blk_no += hblks;
3490
3491			/* Read in data for log record */
3492			if (blk_no + bblks <= log->l_logBBsize) {
3493				error = xlog_bread(log, blk_no, bblks, dbp,
 
 
 
 
 
 
 
 
3494						   &offset);
3495				if (error)
3496					goto bread_err2;
3497			} else {
3498				/* This log record is split across the
3499				 * physical end of log */
3500				offset = dbp->b_addr;
3501				split_bblks = 0;
3502				if (blk_no != log->l_logBBsize) {
3503					/* some data is before the physical
3504					 * end of log */
3505					ASSERT(!wrapped_hblks);
3506					ASSERT(blk_no <= INT_MAX);
3507					split_bblks =
3508						log->l_logBBsize - (int)blk_no;
3509					ASSERT(split_bblks > 0);
3510					error = xlog_bread(log, blk_no,
3511							split_bblks, dbp,
3512							&offset);
3513					if (error)
3514						goto bread_err2;
3515				}
3516
3517				/*
3518				 * Note: this black magic still works with
3519				 * large sector sizes (non-512) only because:
3520				 * - we increased the buffer size originally
3521				 *   by 1 sector giving us enough extra space
3522				 *   for the second read;
3523				 * - the log start is guaranteed to be sector
3524				 *   aligned;
3525				 * - we read the log end (LR header start)
3526				 *   _first_, then the log start (LR header end)
3527				 *   - order is important.
3528				 */
3529				error = xlog_bread_offset(log, 0,
3530						bblks - split_bblks, hbp,
3531						offset + BBTOB(split_bblks));
3532				if (error)
3533					goto bread_err2;
3534			}
3535			xlog_unpack_data(rhead, offset, log);
3536			if ((error = xlog_recover_process_data(log, rhash,
3537							rhead, offset, pass)))
 
3538				goto bread_err2;
 
3539			blk_no += bblks;
 
3540		}
3541
3542		ASSERT(blk_no >= log->l_logBBsize);
3543		blk_no -= log->l_logBBsize;
 
 
3544
3545		/* read first part of physical log */
3546		while (blk_no < head_blk) {
3547			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3548			if (error)
3549				goto bread_err2;
3550
3551			rhead = (xlog_rec_header_t *)offset;
3552			error = xlog_valid_rec_header(log, rhead, blk_no);
3553			if (error)
3554				goto bread_err2;
3555
3556			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3557			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3558					   &offset);
3559			if (error)
3560				goto bread_err2;
 
3561
3562			xlog_unpack_data(rhead, offset, log);
3563			if ((error = xlog_recover_process_data(log, rhash,
3564							rhead, offset, pass)))
3565				goto bread_err2;
3566			blk_no += bblks + hblks;
3567		}
 
3568	}
3569
3570 bread_err2:
3571	xlog_put_bp(dbp);
3572 bread_err1:
3573	xlog_put_bp(hbp);
3574	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3575}
3576
3577/*
3578 * Do the recovery of the log.  We actually do this in two phases.
3579 * The two passes are necessary in order to implement the function
3580 * of cancelling a record written into the log.  The first pass
3581 * determines those things which have been cancelled, and the
3582 * second pass replays log items normally except for those which
3583 * have been cancelled.  The handling of the replay and cancellations
3584 * takes place in the log item type specific routines.
3585 *
3586 * The table of items which have cancel records in the log is allocated
3587 * and freed at this level, since only here do we know when all of
3588 * the log recovery has been completed.
3589 */
3590STATIC int
3591xlog_do_log_recovery(
3592	xlog_t		*log,
3593	xfs_daddr_t	head_blk,
3594	xfs_daddr_t	tail_blk)
3595{
3596	int		error, i;
3597
3598	ASSERT(head_blk != tail_blk);
3599
3600	/*
3601	 * First do a pass to find all of the cancelled buf log items.
3602	 * Store them in the buf_cancel_table for use in the second pass.
3603	 */
3604	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3605						 sizeof(struct list_head),
3606						 KM_SLEEP);
3607	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3608		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3609
3610	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3611				      XLOG_RECOVER_PASS1);
3612	if (error != 0) {
3613		kmem_free(log->l_buf_cancel_table);
3614		log->l_buf_cancel_table = NULL;
3615		return error;
3616	}
3617	/*
3618	 * Then do a second pass to actually recover the items in the log.
3619	 * When it is complete free the table of buf cancel items.
3620	 */
3621	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3622				      XLOG_RECOVER_PASS2);
3623#ifdef DEBUG
3624	if (!error) {
3625		int	i;
3626
3627		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3628			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3629	}
3630#endif	/* DEBUG */
3631
3632	kmem_free(log->l_buf_cancel_table);
3633	log->l_buf_cancel_table = NULL;
3634
3635	return error;
3636}
3637
3638/*
3639 * Do the actual recovery
3640 */
3641STATIC int
3642xlog_do_recover(
3643	xlog_t		*log,
3644	xfs_daddr_t	head_blk,
3645	xfs_daddr_t	tail_blk)
3646{
3647	int		error;
3648	xfs_buf_t	*bp;
3649	xfs_sb_t	*sbp;
 
 
 
3650
3651	/*
3652	 * First replay the images in the log.
3653	 */
3654	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3655	if (error) {
3656		return error;
3657	}
3658
3659	XFS_bflush(log->l_mp->m_ddev_targp);
3660
3661	/*
3662	 * If IO errors happened during recovery, bail out.
3663	 */
3664	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3665		return (EIO);
3666	}
3667
3668	/*
3669	 * We now update the tail_lsn since much of the recovery has completed
3670	 * and there may be space available to use.  If there were no extent
3671	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3672	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3673	 * lsn of the last known good LR on disk.  If there are extent frees
3674	 * or iunlinks they will have some entries in the AIL; so we look at
3675	 * the AIL to determine how to set the tail_lsn.
3676	 */
3677	xlog_assign_tail_lsn(log->l_mp);
3678
3679	/*
3680	 * Now that we've finished replaying all buffer and inode
3681	 * updates, re-read in the superblock.
3682	 */
3683	bp = xfs_getsb(log->l_mp, 0);
3684	XFS_BUF_UNDONE(bp);
3685	ASSERT(!(XFS_BUF_ISWRITE(bp)));
3686	ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3687	XFS_BUF_READ(bp);
3688	XFS_BUF_UNASYNC(bp);
3689	xfsbdstrat(log->l_mp, bp);
3690	error = xfs_buf_iowait(bp);
3691	if (error) {
3692		xfs_ioerror_alert("xlog_do_recover",
3693				  log->l_mp, bp, XFS_BUF_ADDR(bp));
3694		ASSERT(0);
 
3695		xfs_buf_relse(bp);
3696		return error;
3697	}
3698
3699	/* Convert superblock from on-disk format */
3700	sbp = &log->l_mp->m_sb;
3701	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3702	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3703	ASSERT(xfs_sb_good_version(sbp));
3704	xfs_buf_relse(bp);
3705
3706	/* We've re-read the superblock so re-initialize per-cpu counters */
3707	xfs_icsb_reinit_counters(log->l_mp);
 
 
 
 
 
 
3708
3709	xlog_recover_check_summary(log);
3710
3711	/* Normal transactions can now occur */
3712	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3713	return 0;
3714}
3715
3716/*
3717 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3718 *
3719 * Return error or zero.
3720 */
3721int
3722xlog_recover(
3723	xlog_t		*log)
3724{
3725	xfs_daddr_t	head_blk, tail_blk;
3726	int		error;
3727
3728	/* find the tail of the log */
3729	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
 
3730		return error;
3731
 
 
 
 
 
 
 
 
 
3732	if (tail_blk != head_blk) {
3733		/* There used to be a comment here:
3734		 *
3735		 * disallow recovery on read-only mounts.  note -- mount
3736		 * checks for ENOSPC and turns it into an intelligent
3737		 * error message.
3738		 * ...but this is no longer true.  Now, unless you specify
3739		 * NORECOVERY (in which case this function would never be
3740		 * called), we just go ahead and recover.  We do this all
3741		 * under the vfs layer, so we can get away with it unless
3742		 * the device itself is read-only, in which case we fail.
3743		 */
3744		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3745			return error;
3746		}
3747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3748		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3749				log->l_mp->m_logname ? log->l_mp->m_logname
3750						     : "internal");
3751
3752		error = xlog_do_recover(log, head_blk, tail_blk);
3753		log->l_flags |= XLOG_RECOVERY_NEEDED;
3754	}
3755	return error;
3756}
3757
3758/*
3759 * In the first part of recovery we replay inodes and buffers and build
3760 * up the list of extent free items which need to be processed.  Here
3761 * we process the extent free items and clean up the on disk unlinked
3762 * inode lists.  This is separated from the first part of recovery so
3763 * that the root and real-time bitmap inodes can be read in from disk in
3764 * between the two stages.  This is necessary so that we can free space
3765 * in the real-time portion of the file system.
3766 */
3767int
3768xlog_recover_finish(
3769	xlog_t		*log)
3770{
3771	/*
3772	 * Now we're ready to do the transactions needed for the
3773	 * rest of recovery.  Start with completing all the extent
3774	 * free intent records and then process the unlinked inode
3775	 * lists.  At this point, we essentially run in normal mode
3776	 * except that we're still performing recovery actions
3777	 * rather than accepting new requests.
3778	 */
3779	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3780		int	error;
3781		error = xlog_recover_process_efis(log);
3782		if (error) {
3783			xfs_alert(log->l_mp, "Failed to recover EFIs");
 
 
 
 
 
 
 
 
 
3784			return error;
3785		}
 
3786		/*
3787		 * Sync the log to get all the EFIs out of the AIL.
3788		 * This isn't absolutely necessary, but it helps in
3789		 * case the unlink transactions would have problems
3790		 * pushing the EFIs out of the way.
3791		 */
3792		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3793
3794		xlog_recover_process_iunlinks(log);
3795
3796		xlog_recover_check_summary(log);
3797
3798		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3799				log->l_mp->m_logname ? log->l_mp->m_logname
3800						     : "internal");
3801		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3802	} else {
3803		xfs_info(log->l_mp, "Ending clean mount");
3804	}
3805	return 0;
3806}
3807
 
 
 
 
 
 
 
3808
3809#if defined(DEBUG)
3810/*
3811 * Read all of the agf and agi counters and check that they
3812 * are consistent with the superblock counters.
3813 */
3814void
3815xlog_recover_check_summary(
3816	xlog_t		*log)
3817{
3818	xfs_mount_t	*mp;
3819	xfs_agf_t	*agfp;
3820	xfs_buf_t	*agfbp;
3821	xfs_buf_t	*agibp;
3822	xfs_agnumber_t	agno;
3823	__uint64_t	freeblks;
3824	__uint64_t	itotal;
3825	__uint64_t	ifree;
3826	int		error;
3827
3828	mp = log->l_mp;
3829
3830	freeblks = 0LL;
3831	itotal = 0LL;
3832	ifree = 0LL;
3833	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3834		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3835		if (error) {
3836			xfs_alert(mp, "%s agf read failed agno %d error %d",
3837						__func__, agno, error);
3838		} else {
3839			agfp = XFS_BUF_TO_AGF(agfbp);
 
3840			freeblks += be32_to_cpu(agfp->agf_freeblks) +
3841				    be32_to_cpu(agfp->agf_flcount);
3842			xfs_buf_relse(agfbp);
3843		}
3844
3845		error = xfs_read_agi(mp, NULL, agno, &agibp);
3846		if (error) {
3847			xfs_alert(mp, "%s agi read failed agno %d error %d",
3848						__func__, agno, error);
3849		} else {
3850			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
3851
3852			itotal += be32_to_cpu(agi->agi_count);
3853			ifree += be32_to_cpu(agi->agi_freecount);
3854			xfs_buf_relse(agibp);
3855		}
3856	}
3857}
3858#endif /* DEBUG */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
 
 
 
  13#include "xfs_sb.h"
 
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
 
 
 
 
  16#include "xfs_inode.h"
  17#include "xfs_trans.h"
  18#include "xfs_log.h"
 
  19#include "xfs_log_priv.h"
 
  20#include "xfs_log_recover.h"
 
  21#include "xfs_trans_priv.h"
  22#include "xfs_alloc.h"
  23#include "xfs_ialloc.h"
 
  24#include "xfs_trace.h"
  25#include "xfs_icache.h"
  26#include "xfs_error.h"
  27#include "xfs_buf_item.h"
  28#include "xfs_ag.h"
  29
  30#define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
  31
  32STATIC int
  33xlog_find_zeroed(
  34	struct xlog	*,
  35	xfs_daddr_t	*);
  36STATIC int
  37xlog_clear_stale_blocks(
  38	struct xlog	*,
  39	xfs_lsn_t);
  40#if defined(DEBUG)
  41STATIC void
  42xlog_recover_check_summary(
  43	struct xlog *);
  44#else
  45#define	xlog_recover_check_summary(log)
  46#endif
  47STATIC int
  48xlog_do_recovery_pass(
  49        struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
 
 
 
 
 
 
 
 
  50
  51/*
  52 * Sector aligned buffer routines for buffer create/read/write/access
  53 */
  54
  55/*
  56 * Verify the log-relative block number and length in basic blocks are valid for
  57 * an operation involving the given XFS log buffer. Returns true if the fields
  58 * are valid, false otherwise.
  59 */
  60static inline bool
  61xlog_verify_bno(
  62	struct xlog	*log,
  63	xfs_daddr_t	blk_no,
  64	int		bbcount)
  65{
  66	if (blk_no < 0 || blk_no >= log->l_logBBsize)
  67		return false;
  68	if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
  69		return false;
  70	return true;
  71}
  72
  73/*
  74 * Allocate a buffer to hold log data.  The buffer needs to be able to map to
  75 * a range of nbblks basic blocks at any valid offset within the log.
 
  76 */
  77static char *
  78xlog_alloc_buffer(
  79	struct xlog	*log,
  80	int		nbblks)
  81{
  82	int align_mask = xfs_buftarg_dma_alignment(log->l_targ);
  83
  84	/*
  85	 * Pass log block 0 since we don't have an addr yet, buffer will be
  86	 * verified on read.
  87	 */
  88	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
  89		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  90			nbblks);
 
  91		return NULL;
  92	}
  93
  94	/*
  95	 * We do log I/O in units of log sectors (a power-of-2 multiple of the
  96	 * basic block size), so we round up the requested size to accommodate
  97	 * the basic blocks required for complete log sectors.
 
  98	 *
  99	 * In addition, the buffer may be used for a non-sector-aligned block
 100	 * offset, in which case an I/O of the requested size could extend
 101	 * beyond the end of the buffer.  If the requested size is only 1 basic
 102	 * block it will never straddle a sector boundary, so this won't be an
 103	 * issue.  Nor will this be a problem if the log I/O is done in basic
 104	 * blocks (sector size 1).  But otherwise we extend the buffer by one
 105	 * extra log sector to ensure there's space to accommodate this
 106	 * possibility.
 
 107	 */
 108	if (nbblks > 1 && log->l_sectBBsize > 1)
 109		nbblks += log->l_sectBBsize;
 110	nbblks = round_up(nbblks, log->l_sectBBsize);
 111	return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO);
 
 
 
 
 
 
 
 
 
 
 
 112}
 113
 114/*
 115 * Return the address of the start of the given block number's data
 116 * in a log buffer.  The buffer covers a log sector-aligned region.
 117 */
 118static inline unsigned int
 119xlog_align(
 120	struct xlog	*log,
 121	xfs_daddr_t	blk_no)
 
 
 122{
 123	return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
 
 
 
 124}
 125
 126static int
 127xlog_do_io(
 128	struct xlog		*log,
 129	xfs_daddr_t		blk_no,
 130	unsigned int		nbblks,
 131	char			*data,
 132	unsigned int		op)
 
 
 
 133{
 134	int			error;
 135
 136	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
 137		xfs_warn(log->l_mp,
 138			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
 139			 blk_no, nbblks);
 140		return -EFSCORRUPTED;
 141	}
 142
 143	blk_no = round_down(blk_no, log->l_sectBBsize);
 144	nbblks = round_up(nbblks, log->l_sectBBsize);
 
 145	ASSERT(nbblks > 0);
 
 146
 147	error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
 148			BBTOB(nbblks), data, op);
 149	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) {
 150		xfs_alert(log->l_mp,
 151			  "log recovery %s I/O error at daddr 0x%llx len %d error %d",
 152			  op == REQ_OP_WRITE ? "write" : "read",
 153			  blk_no, nbblks, error);
 154	}
 
 155	return error;
 156}
 157
 158STATIC int
 159xlog_bread_noalign(
 160	struct xlog	*log,
 161	xfs_daddr_t	blk_no,
 162	int		nbblks,
 163	char		*data)
 
 164{
 165	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
 
 
 
 
 
 
 
 166}
 167
 
 
 
 
 168STATIC int
 169xlog_bread(
 170	struct xlog	*log,
 171	xfs_daddr_t	blk_no,
 172	int		nbblks,
 173	char		*data,
 174	char		**offset)
 175{
 176	int		error;
 
 
 
 
 
 
 
 
 177
 178	error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
 179	if (!error)
 180		*offset = data + xlog_align(log, blk_no);
 181	return error;
 
 182}
 183
 
 
 
 
 
 184STATIC int
 185xlog_bwrite(
 186	struct xlog	*log,
 187	xfs_daddr_t	blk_no,
 188	int		nbblks,
 189	char		*data)
 190{
 191	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 192}
 193
 194#ifdef DEBUG
 195/*
 196 * dump debug superblock and log record information
 197 */
 198STATIC void
 199xlog_header_check_dump(
 200	xfs_mount_t		*mp,
 201	xlog_rec_header_t	*head)
 202{
 203	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
 204		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 205	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
 206		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 207}
 208#else
 209#define xlog_header_check_dump(mp, head)
 210#endif
 211
 212/*
 213 * check log record header for recovery
 214 */
 215STATIC int
 216xlog_header_check_recover(
 217	xfs_mount_t		*mp,
 218	xlog_rec_header_t	*head)
 219{
 220	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 221
 222	/*
 223	 * IRIX doesn't write the h_fmt field and leaves it zeroed
 224	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 225	 * a dirty log created in IRIX.
 226	 */
 227	if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
 228		xfs_warn(mp,
 229	"dirty log written in incompatible format - can't recover");
 230		xlog_header_check_dump(mp, head);
 231		return -EFSCORRUPTED;
 232	}
 233	if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
 234					   &head->h_fs_uuid))) {
 235		xfs_warn(mp,
 236	"dirty log entry has mismatched uuid - can't recover");
 237		xlog_header_check_dump(mp, head);
 238		return -EFSCORRUPTED;
 
 
 239	}
 240	return 0;
 241}
 242
 243/*
 244 * read the head block of the log and check the header
 245 */
 246STATIC int
 247xlog_header_check_mount(
 248	xfs_mount_t		*mp,
 249	xlog_rec_header_t	*head)
 250{
 251	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 252
 253	if (uuid_is_null(&head->h_fs_uuid)) {
 254		/*
 255		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 256		 * h_fs_uuid is null, we assume this log was last mounted
 257		 * by IRIX and continue.
 258		 */
 259		xfs_warn(mp, "null uuid in log - IRIX style log");
 260	} else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
 261						  &head->h_fs_uuid))) {
 262		xfs_warn(mp, "log has mismatched uuid - can't recover");
 263		xlog_header_check_dump(mp, head);
 264		return -EFSCORRUPTED;
 
 
 265	}
 266	return 0;
 267}
 268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 269/*
 270 * This routine finds (to an approximation) the first block in the physical
 271 * log which contains the given cycle.  It uses a binary search algorithm.
 272 * Note that the algorithm can not be perfect because the disk will not
 273 * necessarily be perfect.
 274 */
 275STATIC int
 276xlog_find_cycle_start(
 277	struct xlog	*log,
 278	char		*buffer,
 279	xfs_daddr_t	first_blk,
 280	xfs_daddr_t	*last_blk,
 281	uint		cycle)
 282{
 283	char		*offset;
 284	xfs_daddr_t	mid_blk;
 285	xfs_daddr_t	end_blk;
 286	uint		mid_cycle;
 287	int		error;
 288
 289	end_blk = *last_blk;
 290	mid_blk = BLK_AVG(first_blk, end_blk);
 291	while (mid_blk != first_blk && mid_blk != end_blk) {
 292		error = xlog_bread(log, mid_blk, 1, buffer, &offset);
 293		if (error)
 294			return error;
 295		mid_cycle = xlog_get_cycle(offset);
 296		if (mid_cycle == cycle)
 297			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 298		else
 299			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 300		mid_blk = BLK_AVG(first_blk, end_blk);
 301	}
 302	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 303	       (mid_blk == end_blk && mid_blk-1 == first_blk));
 304
 305	*last_blk = end_blk;
 306
 307	return 0;
 308}
 309
 310/*
 311 * Check that a range of blocks does not contain stop_on_cycle_no.
 312 * Fill in *new_blk with the block offset where such a block is
 313 * found, or with -1 (an invalid block number) if there is no such
 314 * block in the range.  The scan needs to occur from front to back
 315 * and the pointer into the region must be updated since a later
 316 * routine will need to perform another test.
 317 */
 318STATIC int
 319xlog_find_verify_cycle(
 320	struct xlog	*log,
 321	xfs_daddr_t	start_blk,
 322	int		nbblks,
 323	uint		stop_on_cycle_no,
 324	xfs_daddr_t	*new_blk)
 325{
 326	xfs_daddr_t	i, j;
 327	uint		cycle;
 328	char		*buffer;
 329	xfs_daddr_t	bufblks;
 330	char		*buf = NULL;
 331	int		error = 0;
 332
 333	/*
 334	 * Greedily allocate a buffer big enough to handle the full
 335	 * range of basic blocks we'll be examining.  If that fails,
 336	 * try a smaller size.  We need to be able to read at least
 337	 * a log sector, or we're out of luck.
 338	 */
 339	bufblks = 1 << ffs(nbblks);
 340	while (bufblks > log->l_logBBsize)
 341		bufblks >>= 1;
 342	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
 343		bufblks >>= 1;
 344		if (bufblks < log->l_sectBBsize)
 345			return -ENOMEM;
 346	}
 347
 348	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 349		int	bcount;
 350
 351		bcount = min(bufblks, (start_blk + nbblks - i));
 352
 353		error = xlog_bread(log, i, bcount, buffer, &buf);
 354		if (error)
 355			goto out;
 356
 357		for (j = 0; j < bcount; j++) {
 358			cycle = xlog_get_cycle(buf);
 359			if (cycle == stop_on_cycle_no) {
 360				*new_blk = i+j;
 361				goto out;
 362			}
 363
 364			buf += BBSIZE;
 365		}
 366	}
 367
 368	*new_blk = -1;
 369
 370out:
 371	kmem_free(buffer);
 372	return error;
 373}
 374
 375static inline int
 376xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh)
 377{
 378	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 379		int	h_size = be32_to_cpu(rh->h_size);
 380
 381		if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) &&
 382		    h_size > XLOG_HEADER_CYCLE_SIZE)
 383			return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
 384	}
 385	return 1;
 386}
 387
 388/*
 389 * Potentially backup over partial log record write.
 390 *
 391 * In the typical case, last_blk is the number of the block directly after
 392 * a good log record.  Therefore, we subtract one to get the block number
 393 * of the last block in the given buffer.  extra_bblks contains the number
 394 * of blocks we would have read on a previous read.  This happens when the
 395 * last log record is split over the end of the physical log.
 396 *
 397 * extra_bblks is the number of blocks potentially verified on a previous
 398 * call to this routine.
 399 */
 400STATIC int
 401xlog_find_verify_log_record(
 402	struct xlog		*log,
 403	xfs_daddr_t		start_blk,
 404	xfs_daddr_t		*last_blk,
 405	int			extra_bblks)
 406{
 407	xfs_daddr_t		i;
 408	char			*buffer;
 409	char			*offset = NULL;
 410	xlog_rec_header_t	*head = NULL;
 411	int			error = 0;
 412	int			smallmem = 0;
 413	int			num_blks = *last_blk - start_blk;
 414	int			xhdrs;
 415
 416	ASSERT(start_blk != 0 || *last_blk != start_blk);
 417
 418	buffer = xlog_alloc_buffer(log, num_blks);
 419	if (!buffer) {
 420		buffer = xlog_alloc_buffer(log, 1);
 421		if (!buffer)
 422			return -ENOMEM;
 423		smallmem = 1;
 424	} else {
 425		error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
 426		if (error)
 427			goto out;
 428		offset += ((num_blks - 1) << BBSHIFT);
 429	}
 430
 431	for (i = (*last_blk) - 1; i >= 0; i--) {
 432		if (i < start_blk) {
 433			/* valid log record not found */
 434			xfs_warn(log->l_mp,
 435		"Log inconsistent (didn't find previous header)");
 436			ASSERT(0);
 437			error = -EFSCORRUPTED;
 438			goto out;
 439		}
 440
 441		if (smallmem) {
 442			error = xlog_bread(log, i, 1, buffer, &offset);
 443			if (error)
 444				goto out;
 445		}
 446
 447		head = (xlog_rec_header_t *)offset;
 448
 449		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
 450			break;
 451
 452		if (!smallmem)
 453			offset -= BBSIZE;
 454	}
 455
 456	/*
 457	 * We hit the beginning of the physical log & still no header.  Return
 458	 * to caller.  If caller can handle a return of -1, then this routine
 459	 * will be called again for the end of the physical log.
 460	 */
 461	if (i == -1) {
 462		error = 1;
 463		goto out;
 464	}
 465
 466	/*
 467	 * We have the final block of the good log (the first block
 468	 * of the log record _before_ the head. So we check the uuid.
 469	 */
 470	if ((error = xlog_header_check_mount(log->l_mp, head)))
 471		goto out;
 472
 473	/*
 474	 * We may have found a log record header before we expected one.
 475	 * last_blk will be the 1st block # with a given cycle #.  We may end
 476	 * up reading an entire log record.  In this case, we don't want to
 477	 * reset last_blk.  Only when last_blk points in the middle of a log
 478	 * record do we update last_blk.
 479	 */
 480	xhdrs = xlog_logrec_hblks(log, head);
 
 
 
 
 
 
 
 
 481
 482	if (*last_blk - i + extra_bblks !=
 483	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 484		*last_blk = i;
 485
 486out:
 487	kmem_free(buffer);
 488	return error;
 489}
 490
 491/*
 492 * Head is defined to be the point of the log where the next log write
 493 * could go.  This means that incomplete LR writes at the end are
 494 * eliminated when calculating the head.  We aren't guaranteed that previous
 495 * LR have complete transactions.  We only know that a cycle number of
 496 * current cycle number -1 won't be present in the log if we start writing
 497 * from our current block number.
 498 *
 499 * last_blk contains the block number of the first block with a given
 500 * cycle number.
 501 *
 502 * Return: zero if normal, non-zero if error.
 503 */
 504STATIC int
 505xlog_find_head(
 506	struct xlog	*log,
 507	xfs_daddr_t	*return_head_blk)
 508{
 509	char		*buffer;
 510	char		*offset;
 511	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
 512	int		num_scan_bblks;
 513	uint		first_half_cycle, last_half_cycle;
 514	uint		stop_on_cycle;
 515	int		error, log_bbnum = log->l_logBBsize;
 516
 517	/* Is the end of the log device zeroed? */
 518	error = xlog_find_zeroed(log, &first_blk);
 519	if (error < 0) {
 520		xfs_warn(log->l_mp, "empty log check failed");
 521		return error;
 522	}
 523	if (error == 1) {
 524		*return_head_blk = first_blk;
 525
 526		/* Is the whole lot zeroed? */
 527		if (!first_blk) {
 528			/* Linux XFS shouldn't generate totally zeroed logs -
 529			 * mkfs etc write a dummy unmount record to a fresh
 530			 * log so we can store the uuid in there
 531			 */
 532			xfs_warn(log->l_mp, "totally zeroed log");
 533		}
 534
 535		return 0;
 
 
 
 536	}
 537
 538	first_blk = 0;			/* get cycle # of 1st block */
 539	buffer = xlog_alloc_buffer(log, 1);
 540	if (!buffer)
 541		return -ENOMEM;
 542
 543	error = xlog_bread(log, 0, 1, buffer, &offset);
 544	if (error)
 545		goto out_free_buffer;
 546
 547	first_half_cycle = xlog_get_cycle(offset);
 548
 549	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
 550	error = xlog_bread(log, last_blk, 1, buffer, &offset);
 551	if (error)
 552		goto out_free_buffer;
 553
 554	last_half_cycle = xlog_get_cycle(offset);
 555	ASSERT(last_half_cycle != 0);
 556
 557	/*
 558	 * If the 1st half cycle number is equal to the last half cycle number,
 559	 * then the entire log is stamped with the same cycle number.  In this
 560	 * case, head_blk can't be set to zero (which makes sense).  The below
 561	 * math doesn't work out properly with head_blk equal to zero.  Instead,
 562	 * we set it to log_bbnum which is an invalid block number, but this
 563	 * value makes the math correct.  If head_blk doesn't changed through
 564	 * all the tests below, *head_blk is set to zero at the very end rather
 565	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 566	 * in a circular file.
 567	 */
 568	if (first_half_cycle == last_half_cycle) {
 569		/*
 570		 * In this case we believe that the entire log should have
 571		 * cycle number last_half_cycle.  We need to scan backwards
 572		 * from the end verifying that there are no holes still
 573		 * containing last_half_cycle - 1.  If we find such a hole,
 574		 * then the start of that hole will be the new head.  The
 575		 * simple case looks like
 576		 *        x | x ... | x - 1 | x
 577		 * Another case that fits this picture would be
 578		 *        x | x + 1 | x ... | x
 579		 * In this case the head really is somewhere at the end of the
 580		 * log, as one of the latest writes at the beginning was
 581		 * incomplete.
 582		 * One more case is
 583		 *        x | x + 1 | x ... | x - 1 | x
 584		 * This is really the combination of the above two cases, and
 585		 * the head has to end up at the start of the x-1 hole at the
 586		 * end of the log.
 587		 *
 588		 * In the 256k log case, we will read from the beginning to the
 589		 * end of the log and search for cycle numbers equal to x-1.
 590		 * We don't worry about the x+1 blocks that we encounter,
 591		 * because we know that they cannot be the head since the log
 592		 * started with x.
 593		 */
 594		head_blk = log_bbnum;
 595		stop_on_cycle = last_half_cycle - 1;
 596	} else {
 597		/*
 598		 * In this case we want to find the first block with cycle
 599		 * number matching last_half_cycle.  We expect the log to be
 600		 * some variation on
 601		 *        x + 1 ... | x ... | x
 602		 * The first block with cycle number x (last_half_cycle) will
 603		 * be where the new head belongs.  First we do a binary search
 604		 * for the first occurrence of last_half_cycle.  The binary
 605		 * search may not be totally accurate, so then we scan back
 606		 * from there looking for occurrences of last_half_cycle before
 607		 * us.  If that backwards scan wraps around the beginning of
 608		 * the log, then we look for occurrences of last_half_cycle - 1
 609		 * at the end of the log.  The cases we're looking for look
 610		 * like
 611		 *                               v binary search stopped here
 612		 *        x + 1 ... | x | x + 1 | x ... | x
 613		 *                   ^ but we want to locate this spot
 614		 * or
 615		 *        <---------> less than scan distance
 616		 *        x + 1 ... | x ... | x - 1 | x
 617		 *                           ^ we want to locate this spot
 618		 */
 619		stop_on_cycle = last_half_cycle;
 620		error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
 621				last_half_cycle);
 622		if (error)
 623			goto out_free_buffer;
 624	}
 625
 626	/*
 627	 * Now validate the answer.  Scan back some number of maximum possible
 628	 * blocks and make sure each one has the expected cycle number.  The
 629	 * maximum is determined by the total possible amount of buffering
 630	 * in the in-core log.  The following number can be made tighter if
 631	 * we actually look at the block size of the filesystem.
 632	 */
 633	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
 634	if (head_blk >= num_scan_bblks) {
 635		/*
 636		 * We are guaranteed that the entire check can be performed
 637		 * in one buffer.
 638		 */
 639		start_blk = head_blk - num_scan_bblks;
 640		if ((error = xlog_find_verify_cycle(log,
 641						start_blk, num_scan_bblks,
 642						stop_on_cycle, &new_blk)))
 643			goto out_free_buffer;
 644		if (new_blk != -1)
 645			head_blk = new_blk;
 646	} else {		/* need to read 2 parts of log */
 647		/*
 648		 * We are going to scan backwards in the log in two parts.
 649		 * First we scan the physical end of the log.  In this part
 650		 * of the log, we are looking for blocks with cycle number
 651		 * last_half_cycle - 1.
 652		 * If we find one, then we know that the log starts there, as
 653		 * we've found a hole that didn't get written in going around
 654		 * the end of the physical log.  The simple case for this is
 655		 *        x + 1 ... | x ... | x - 1 | x
 656		 *        <---------> less than scan distance
 657		 * If all of the blocks at the end of the log have cycle number
 658		 * last_half_cycle, then we check the blocks at the start of
 659		 * the log looking for occurrences of last_half_cycle.  If we
 660		 * find one, then our current estimate for the location of the
 661		 * first occurrence of last_half_cycle is wrong and we move
 662		 * back to the hole we've found.  This case looks like
 663		 *        x + 1 ... | x | x + 1 | x ...
 664		 *                               ^ binary search stopped here
 665		 * Another case we need to handle that only occurs in 256k
 666		 * logs is
 667		 *        x + 1 ... | x ... | x+1 | x ...
 668		 *                   ^ binary search stops here
 669		 * In a 256k log, the scan at the end of the log will see the
 670		 * x + 1 blocks.  We need to skip past those since that is
 671		 * certainly not the head of the log.  By searching for
 672		 * last_half_cycle-1 we accomplish that.
 673		 */
 674		ASSERT(head_blk <= INT_MAX &&
 675			(xfs_daddr_t) num_scan_bblks >= head_blk);
 676		start_blk = log_bbnum - (num_scan_bblks - head_blk);
 677		if ((error = xlog_find_verify_cycle(log, start_blk,
 678					num_scan_bblks - (int)head_blk,
 679					(stop_on_cycle - 1), &new_blk)))
 680			goto out_free_buffer;
 681		if (new_blk != -1) {
 682			head_blk = new_blk;
 683			goto validate_head;
 684		}
 685
 686		/*
 687		 * Scan beginning of log now.  The last part of the physical
 688		 * log is good.  This scan needs to verify that it doesn't find
 689		 * the last_half_cycle.
 690		 */
 691		start_blk = 0;
 692		ASSERT(head_blk <= INT_MAX);
 693		if ((error = xlog_find_verify_cycle(log,
 694					start_blk, (int)head_blk,
 695					stop_on_cycle, &new_blk)))
 696			goto out_free_buffer;
 697		if (new_blk != -1)
 698			head_blk = new_blk;
 699	}
 700
 701validate_head:
 702	/*
 703	 * Now we need to make sure head_blk is not pointing to a block in
 704	 * the middle of a log record.
 705	 */
 706	num_scan_bblks = XLOG_REC_SHIFT(log);
 707	if (head_blk >= num_scan_bblks) {
 708		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 709
 710		/* start ptr at last block ptr before head_blk */
 711		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
 712		if (error == 1)
 713			error = -EIO;
 714		if (error)
 715			goto out_free_buffer;
 
 716	} else {
 717		start_blk = 0;
 718		ASSERT(head_blk <= INT_MAX);
 719		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
 720		if (error < 0)
 721			goto out_free_buffer;
 722		if (error == 1) {
 723			/* We hit the beginning of the log during our search */
 724			start_blk = log_bbnum - (num_scan_bblks - head_blk);
 725			new_blk = log_bbnum;
 726			ASSERT(start_blk <= INT_MAX &&
 727				(xfs_daddr_t) log_bbnum-start_blk >= 0);
 728			ASSERT(head_blk <= INT_MAX);
 729			error = xlog_find_verify_log_record(log, start_blk,
 730							&new_blk, (int)head_blk);
 731			if (error == 1)
 732				error = -EIO;
 733			if (error)
 734				goto out_free_buffer;
 
 735			if (new_blk != log_bbnum)
 736				head_blk = new_blk;
 737		} else if (error)
 738			goto out_free_buffer;
 739	}
 740
 741	kmem_free(buffer);
 742	if (head_blk == log_bbnum)
 743		*return_head_blk = 0;
 744	else
 745		*return_head_blk = head_blk;
 746	/*
 747	 * When returning here, we have a good block number.  Bad block
 748	 * means that during a previous crash, we didn't have a clean break
 749	 * from cycle number N to cycle number N-1.  In this case, we need
 750	 * to find the first block with cycle number N-1.
 751	 */
 752	return 0;
 753
 754out_free_buffer:
 755	kmem_free(buffer);
 
 756	if (error)
 757		xfs_warn(log->l_mp, "failed to find log head");
 758	return error;
 759}
 760
 761/*
 762 * Seek backwards in the log for log record headers.
 
 
 
 
 
 
 
 
 
 
 763 *
 764 * Given a starting log block, walk backwards until we find the provided number
 765 * of records or hit the provided tail block. The return value is the number of
 766 * records encountered or a negative error code. The log block and buffer
 767 * pointer of the last record seen are returned in rblk and rhead respectively.
 768 */
 769STATIC int
 770xlog_rseek_logrec_hdr(
 771	struct xlog		*log,
 772	xfs_daddr_t		head_blk,
 773	xfs_daddr_t		tail_blk,
 774	int			count,
 775	char			*buffer,
 776	xfs_daddr_t		*rblk,
 777	struct xlog_rec_header	**rhead,
 778	bool			*wrapped)
 779{
 780	int			i;
 781	int			error;
 782	int			found = 0;
 783	char			*offset = NULL;
 784	xfs_daddr_t		end_blk;
 
 
 
 
 785
 786	*wrapped = false;
 787
 788	/*
 789	 * Walk backwards from the head block until we hit the tail or the first
 790	 * block in the log.
 791	 */
 792	end_blk = head_blk > tail_blk ? tail_blk : 0;
 793	for (i = (int) head_blk - 1; i >= end_blk; i--) {
 794		error = xlog_bread(log, i, 1, buffer, &offset);
 
 
 
 
 
 795		if (error)
 796			goto out_error;
 797
 798		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 799			*rblk = i;
 800			*rhead = (struct xlog_rec_header *) offset;
 801			if (++found == count)
 802				break;
 803		}
 804	}
 805
 806	/*
 807	 * If we haven't hit the tail block or the log record header count,
 808	 * start looking again from the end of the physical log. Note that
 809	 * callers can pass head == tail if the tail is not yet known.
 810	 */
 811	if (tail_blk >= head_blk && found != count) {
 812		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
 813			error = xlog_bread(log, i, 1, buffer, &offset);
 814			if (error)
 815				goto out_error;
 816
 817			if (*(__be32 *)offset ==
 818			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 819				*wrapped = true;
 820				*rblk = i;
 821				*rhead = (struct xlog_rec_header *) offset;
 822				if (++found == count)
 823					break;
 824			}
 825		}
 826	}
 827
 828	return found;
 829
 830out_error:
 831	return error;
 832}
 833
 834/*
 835 * Seek forward in the log for log record headers.
 836 *
 837 * Given head and tail blocks, walk forward from the tail block until we find
 838 * the provided number of records or hit the head block. The return value is the
 839 * number of records encountered or a negative error code. The log block and
 840 * buffer pointer of the last record seen are returned in rblk and rhead
 841 * respectively.
 842 */
 843STATIC int
 844xlog_seek_logrec_hdr(
 845	struct xlog		*log,
 846	xfs_daddr_t		head_blk,
 847	xfs_daddr_t		tail_blk,
 848	int			count,
 849	char			*buffer,
 850	xfs_daddr_t		*rblk,
 851	struct xlog_rec_header	**rhead,
 852	bool			*wrapped)
 853{
 854	int			i;
 855	int			error;
 856	int			found = 0;
 857	char			*offset = NULL;
 858	xfs_daddr_t		end_blk;
 859
 860	*wrapped = false;
 861
 862	/*
 863	 * Walk forward from the tail block until we hit the head or the last
 864	 * block in the log.
 865	 */
 866	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
 867	for (i = (int) tail_blk; i <= end_blk; i++) {
 868		error = xlog_bread(log, i, 1, buffer, &offset);
 869		if (error)
 870			goto out_error;
 871
 872		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 873			*rblk = i;
 874			*rhead = (struct xlog_rec_header *) offset;
 875			if (++found == count)
 876				break;
 877		}
 878	}
 879
 880	/*
 881	 * If we haven't hit the head block or the log record header count,
 882	 * start looking again from the start of the physical log.
 883	 */
 884	if (tail_blk > head_blk && found != count) {
 885		for (i = 0; i < (int) head_blk; i++) {
 886			error = xlog_bread(log, i, 1, buffer, &offset);
 
 
 887			if (error)
 888				goto out_error;
 889
 890			if (*(__be32 *)offset ==
 891			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 892				*wrapped = true;
 893				*rblk = i;
 894				*rhead = (struct xlog_rec_header *) offset;
 895				if (++found == count)
 896					break;
 897			}
 898		}
 899	}
 900
 901	return found;
 902
 903out_error:
 904	return error;
 905}
 906
 907/*
 908 * Calculate distance from head to tail (i.e., unused space in the log).
 909 */
 910static inline int
 911xlog_tail_distance(
 912	struct xlog	*log,
 913	xfs_daddr_t	head_blk,
 914	xfs_daddr_t	tail_blk)
 915{
 916	if (head_blk < tail_blk)
 917		return tail_blk - head_blk;
 918
 919	return tail_blk + (log->l_logBBsize - head_blk);
 920}
 921
 922/*
 923 * Verify the log tail. This is particularly important when torn or incomplete
 924 * writes have been detected near the front of the log and the head has been
 925 * walked back accordingly.
 926 *
 927 * We also have to handle the case where the tail was pinned and the head
 928 * blocked behind the tail right before a crash. If the tail had been pushed
 929 * immediately prior to the crash and the subsequent checkpoint was only
 930 * partially written, it's possible it overwrote the last referenced tail in the
 931 * log with garbage. This is not a coherency problem because the tail must have
 932 * been pushed before it can be overwritten, but appears as log corruption to
 933 * recovery because we have no way to know the tail was updated if the
 934 * subsequent checkpoint didn't write successfully.
 935 *
 936 * Therefore, CRC check the log from tail to head. If a failure occurs and the
 937 * offending record is within max iclog bufs from the head, walk the tail
 938 * forward and retry until a valid tail is found or corruption is detected out
 939 * of the range of a possible overwrite.
 940 */
 941STATIC int
 942xlog_verify_tail(
 943	struct xlog		*log,
 944	xfs_daddr_t		head_blk,
 945	xfs_daddr_t		*tail_blk,
 946	int			hsize)
 947{
 948	struct xlog_rec_header	*thead;
 949	char			*buffer;
 950	xfs_daddr_t		first_bad;
 951	int			error = 0;
 952	bool			wrapped;
 953	xfs_daddr_t		tmp_tail;
 954	xfs_daddr_t		orig_tail = *tail_blk;
 955
 956	buffer = xlog_alloc_buffer(log, 1);
 957	if (!buffer)
 958		return -ENOMEM;
 959
 960	/*
 961	 * Make sure the tail points to a record (returns positive count on
 962	 * success).
 963	 */
 964	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
 965			&tmp_tail, &thead, &wrapped);
 966	if (error < 0)
 967		goto out;
 968	if (*tail_blk != tmp_tail)
 969		*tail_blk = tmp_tail;
 970
 971	/*
 972	 * Run a CRC check from the tail to the head. We can't just check
 973	 * MAX_ICLOGS records past the tail because the tail may point to stale
 974	 * blocks cleared during the search for the head/tail. These blocks are
 975	 * overwritten with zero-length records and thus record count is not a
 976	 * reliable indicator of the iclog state before a crash.
 977	 */
 978	first_bad = 0;
 979	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
 980				      XLOG_RECOVER_CRCPASS, &first_bad);
 981	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
 982		int	tail_distance;
 983
 984		/*
 985		 * Is corruption within range of the head? If so, retry from
 986		 * the next record. Otherwise return an error.
 987		 */
 988		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
 989		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
 990			break;
 991
 992		/* skip to the next record; returns positive count on success */
 993		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
 994				buffer, &tmp_tail, &thead, &wrapped);
 995		if (error < 0)
 996			goto out;
 997
 998		*tail_blk = tmp_tail;
 999		first_bad = 0;
1000		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1001					      XLOG_RECOVER_CRCPASS, &first_bad);
1002	}
1003
1004	if (!error && *tail_blk != orig_tail)
1005		xfs_warn(log->l_mp,
1006		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1007			 orig_tail, *tail_blk);
1008out:
1009	kmem_free(buffer);
1010	return error;
1011}
1012
1013/*
1014 * Detect and trim torn writes from the head of the log.
1015 *
1016 * Storage without sector atomicity guarantees can result in torn writes in the
1017 * log in the event of a crash. Our only means to detect this scenario is via
1018 * CRC verification. While we can't always be certain that CRC verification
1019 * failure is due to a torn write vs. an unrelated corruption, we do know that
1020 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1021 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1022 * the log and treat failures in this range as torn writes as a matter of
1023 * policy. In the event of CRC failure, the head is walked back to the last good
1024 * record in the log and the tail is updated from that record and verified.
1025 */
1026STATIC int
1027xlog_verify_head(
1028	struct xlog		*log,
1029	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1030	xfs_daddr_t		*tail_blk,	/* out: tail block */
1031	char			*buffer,
1032	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1033	struct xlog_rec_header	**rhead,	/* ptr to last record */
1034	bool			*wrapped)	/* last rec. wraps phys. log */
1035{
1036	struct xlog_rec_header	*tmp_rhead;
1037	char			*tmp_buffer;
1038	xfs_daddr_t		first_bad;
1039	xfs_daddr_t		tmp_rhead_blk;
1040	int			found;
1041	int			error;
1042	bool			tmp_wrapped;
1043
1044	/*
1045	 * Check the head of the log for torn writes. Search backwards from the
1046	 * head until we hit the tail or the maximum number of log record I/Os
1047	 * that could have been in flight at one time. Use a temporary buffer so
1048	 * we don't trash the rhead/buffer pointers from the caller.
1049	 */
1050	tmp_buffer = xlog_alloc_buffer(log, 1);
1051	if (!tmp_buffer)
1052		return -ENOMEM;
1053	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1054				      XLOG_MAX_ICLOGS, tmp_buffer,
1055				      &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1056	kmem_free(tmp_buffer);
1057	if (error < 0)
1058		return error;
1059
1060	/*
1061	 * Now run a CRC verification pass over the records starting at the
1062	 * block found above to the current head. If a CRC failure occurs, the
1063	 * log block of the first bad record is saved in first_bad.
1064	 */
1065	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1066				      XLOG_RECOVER_CRCPASS, &first_bad);
1067	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1068		/*
1069		 * We've hit a potential torn write. Reset the error and warn
1070		 * about it.
1071		 */
1072		error = 0;
1073		xfs_warn(log->l_mp,
1074"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1075			 first_bad, *head_blk);
1076
1077		/*
1078		 * Get the header block and buffer pointer for the last good
1079		 * record before the bad record.
1080		 *
1081		 * Note that xlog_find_tail() clears the blocks at the new head
1082		 * (i.e., the records with invalid CRC) if the cycle number
1083		 * matches the current cycle.
1084		 */
1085		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1086				buffer, rhead_blk, rhead, wrapped);
1087		if (found < 0)
1088			return found;
1089		if (found == 0)		/* XXX: right thing to do here? */
1090			return -EIO;
1091
1092		/*
1093		 * Reset the head block to the starting block of the first bad
1094		 * log record and set the tail block based on the last good
1095		 * record.
1096		 *
1097		 * Bail out if the updated head/tail match as this indicates
1098		 * possible corruption outside of the acceptable
1099		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1100		 */
1101		*head_blk = first_bad;
1102		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1103		if (*head_blk == *tail_blk) {
1104			ASSERT(0);
1105			return 0;
1106		}
1107	}
1108	if (error)
1109		return error;
1110
1111	return xlog_verify_tail(log, *head_blk, tail_blk,
1112				be32_to_cpu((*rhead)->h_size));
1113}
1114
1115/*
1116 * We need to make sure we handle log wrapping properly, so we can't use the
1117 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1118 * log.
1119 *
1120 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1121 * operation here and cast it back to a 64 bit daddr on return.
1122 */
1123static inline xfs_daddr_t
1124xlog_wrap_logbno(
1125	struct xlog		*log,
1126	xfs_daddr_t		bno)
1127{
1128	int			mod;
1129
1130	div_s64_rem(bno, log->l_logBBsize, &mod);
1131	return mod;
1132}
1133
1134/*
1135 * Check whether the head of the log points to an unmount record. In other
1136 * words, determine whether the log is clean. If so, update the in-core state
1137 * appropriately.
1138 */
1139static int
1140xlog_check_unmount_rec(
1141	struct xlog		*log,
1142	xfs_daddr_t		*head_blk,
1143	xfs_daddr_t		*tail_blk,
1144	struct xlog_rec_header	*rhead,
1145	xfs_daddr_t		rhead_blk,
1146	char			*buffer,
1147	bool			*clean)
1148{
1149	struct xlog_op_header	*op_head;
1150	xfs_daddr_t		umount_data_blk;
1151	xfs_daddr_t		after_umount_blk;
1152	int			hblks;
1153	int			error;
1154	char			*offset;
1155
1156	*clean = false;
1157
1158	/*
1159	 * Look for unmount record. If we find it, then we know there was a
1160	 * clean unmount. Since 'i' could be the last block in the physical
1161	 * log, we convert to a log block before comparing to the head_blk.
1162	 *
1163	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1164	 * below. We won't want to clear the unmount record if there is one, so
1165	 * we pass the lsn of the unmount record rather than the block after it.
1166	 */
1167	hblks = xlog_logrec_hblks(log, rhead);
1168	after_umount_blk = xlog_wrap_logbno(log,
1169			rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1170
1171	if (*head_blk == after_umount_blk &&
1172	    be32_to_cpu(rhead->h_num_logops) == 1) {
1173		umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1174		error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1175		if (error)
1176			return error;
1177
1178		op_head = (struct xlog_op_header *)offset;
1179		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1180			/*
1181			 * Set tail and last sync so that newly written log
1182			 * records will point recovery to after the current
1183			 * unmount record.
1184			 */
1185			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1186					log->l_curr_cycle, after_umount_blk);
1187			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1188					log->l_curr_cycle, after_umount_blk);
1189			*tail_blk = after_umount_blk;
1190
1191			*clean = true;
1192		}
1193	}
1194
1195	return 0;
1196}
1197
1198static void
1199xlog_set_state(
1200	struct xlog		*log,
1201	xfs_daddr_t		head_blk,
1202	struct xlog_rec_header	*rhead,
1203	xfs_daddr_t		rhead_blk,
1204	bool			bump_cycle)
1205{
1206	/*
1207	 * Reset log values according to the state of the log when we
1208	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1209	 * one because the next write starts a new cycle rather than
1210	 * continuing the cycle of the last good log record.  At this
1211	 * point we have guaranteed that all partial log records have been
1212	 * accounted for.  Therefore, we know that the last good log record
1213	 * written was complete and ended exactly on the end boundary
1214	 * of the physical log.
1215	 */
1216	log->l_prev_block = rhead_blk;
1217	log->l_curr_block = (int)head_blk;
1218	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1219	if (bump_cycle)
1220		log->l_curr_cycle++;
1221	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1222	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1223	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1224					BBTOB(log->l_curr_block));
1225	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1226					BBTOB(log->l_curr_block));
1227}
1228
1229/*
1230 * Find the sync block number or the tail of the log.
1231 *
1232 * This will be the block number of the last record to have its
1233 * associated buffers synced to disk.  Every log record header has
1234 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1235 * to get a sync block number.  The only concern is to figure out which
1236 * log record header to believe.
1237 *
1238 * The following algorithm uses the log record header with the largest
1239 * lsn.  The entire log record does not need to be valid.  We only care
1240 * that the header is valid.
1241 *
1242 * We could speed up search by using current head_blk buffer, but it is not
1243 * available.
1244 */
1245STATIC int
1246xlog_find_tail(
1247	struct xlog		*log,
1248	xfs_daddr_t		*head_blk,
1249	xfs_daddr_t		*tail_blk)
1250{
1251	xlog_rec_header_t	*rhead;
1252	char			*offset = NULL;
1253	char			*buffer;
1254	int			error;
1255	xfs_daddr_t		rhead_blk;
1256	xfs_lsn_t		tail_lsn;
1257	bool			wrapped = false;
1258	bool			clean = false;
1259
1260	/*
1261	 * Find previous log record
 
 
 
 
 
 
 
 
1262	 */
1263	if ((error = xlog_find_head(log, head_blk)))
1264		return error;
1265	ASSERT(*head_blk < INT_MAX);
1266
1267	buffer = xlog_alloc_buffer(log, 1);
1268	if (!buffer)
1269		return -ENOMEM;
1270	if (*head_blk == 0) {				/* special case */
1271		error = xlog_bread(log, 0, 1, buffer, &offset);
1272		if (error)
1273			goto done;
1274
1275		if (xlog_get_cycle(offset) == 0) {
1276			*tail_blk = 0;
1277			/* leave all other log inited values alone */
1278			goto done;
1279		}
 
 
1280	}
1281
1282	/*
1283	 * Search backwards through the log looking for the log record header
1284	 * block. This wraps all the way back around to the head so something is
1285	 * seriously wrong if we can't find it.
1286	 */
1287	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1288				      &rhead_blk, &rhead, &wrapped);
1289	if (error < 0)
1290		goto done;
1291	if (!error) {
1292		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1293		error = -EFSCORRUPTED;
1294		goto done;
1295	}
1296	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1297
1298	/*
1299	 * Set the log state based on the current head record.
1300	 */
1301	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1302	tail_lsn = atomic64_read(&log->l_tail_lsn);
1303
1304	/*
1305	 * Look for an unmount record at the head of the log. This sets the log
1306	 * state to determine whether recovery is necessary.
1307	 */
1308	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1309				       rhead_blk, buffer, &clean);
1310	if (error)
1311		goto done;
1312
1313	/*
1314	 * Verify the log head if the log is not clean (e.g., we have anything
1315	 * but an unmount record at the head). This uses CRC verification to
1316	 * detect and trim torn writes. If discovered, CRC failures are
1317	 * considered torn writes and the log head is trimmed accordingly.
1318	 *
1319	 * Note that we can only run CRC verification when the log is dirty
1320	 * because there's no guarantee that the log data behind an unmount
1321	 * record is compatible with the current architecture.
1322	 */
1323	if (!clean) {
1324		xfs_daddr_t	orig_head = *head_blk;
1325
1326		error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1327					 &rhead_blk, &rhead, &wrapped);
1328		if (error)
1329			goto done;
1330
1331		/* update in-core state again if the head changed */
1332		if (*head_blk != orig_head) {
1333			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1334				       wrapped);
1335			tail_lsn = atomic64_read(&log->l_tail_lsn);
1336			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1337						       rhead, rhead_blk, buffer,
1338						       &clean);
1339			if (error)
1340				goto done;
 
 
 
 
 
 
 
 
 
 
1341		}
1342	}
1343
1344	/*
1345	 * Note that the unmount was clean. If the unmount was not clean, we
1346	 * need to know this to rebuild the superblock counters from the perag
1347	 * headers if we have a filesystem using non-persistent counters.
1348	 */
1349	if (clean)
1350		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1351
1352	/*
1353	 * Make sure that there are no blocks in front of the head
1354	 * with the same cycle number as the head.  This can happen
1355	 * because we allow multiple outstanding log writes concurrently,
1356	 * and the later writes might make it out before earlier ones.
1357	 *
1358	 * We use the lsn from before modifying it so that we'll never
1359	 * overwrite the unmount record after a clean unmount.
1360	 *
1361	 * Do this only if we are going to recover the filesystem
1362	 *
1363	 * NOTE: This used to say "if (!readonly)"
1364	 * However on Linux, we can & do recover a read-only filesystem.
1365	 * We only skip recovery if NORECOVERY is specified on mount,
1366	 * in which case we would not be here.
1367	 *
1368	 * But... if the -device- itself is readonly, just skip this.
1369	 * We can't recover this device anyway, so it won't matter.
1370	 */
1371	if (!xfs_readonly_buftarg(log->l_targ))
1372		error = xlog_clear_stale_blocks(log, tail_lsn);
1373
1374done:
1375	kmem_free(buffer);
1376
1377	if (error)
1378		xfs_warn(log->l_mp, "failed to locate log tail");
1379	return error;
1380}
1381
1382/*
1383 * Is the log zeroed at all?
1384 *
1385 * The last binary search should be changed to perform an X block read
1386 * once X becomes small enough.  You can then search linearly through
1387 * the X blocks.  This will cut down on the number of reads we need to do.
1388 *
1389 * If the log is partially zeroed, this routine will pass back the blkno
1390 * of the first block with cycle number 0.  It won't have a complete LR
1391 * preceding it.
1392 *
1393 * Return:
1394 *	0  => the log is completely written to
1395 *	1 => use *blk_no as the first block of the log
1396 *	<0 => error has occurred
1397 */
1398STATIC int
1399xlog_find_zeroed(
1400	struct xlog	*log,
1401	xfs_daddr_t	*blk_no)
1402{
1403	char		*buffer;
1404	char		*offset;
1405	uint	        first_cycle, last_cycle;
1406	xfs_daddr_t	new_blk, last_blk, start_blk;
1407	xfs_daddr_t     num_scan_bblks;
1408	int	        error, log_bbnum = log->l_logBBsize;
1409
1410	*blk_no = 0;
1411
1412	/* check totally zeroed log */
1413	buffer = xlog_alloc_buffer(log, 1);
1414	if (!buffer)
1415		return -ENOMEM;
1416	error = xlog_bread(log, 0, 1, buffer, &offset);
1417	if (error)
1418		goto out_free_buffer;
1419
1420	first_cycle = xlog_get_cycle(offset);
1421	if (first_cycle == 0) {		/* completely zeroed log */
1422		*blk_no = 0;
1423		kmem_free(buffer);
1424		return 1;
1425	}
1426
1427	/* check partially zeroed log */
1428	error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1429	if (error)
1430		goto out_free_buffer;
1431
1432	last_cycle = xlog_get_cycle(offset);
1433	if (last_cycle != 0) {		/* log completely written to */
1434		kmem_free(buffer);
1435		return 0;
 
 
 
 
 
 
 
 
 
1436	}
1437
1438	/* we have a partially zeroed log */
1439	last_blk = log_bbnum-1;
1440	error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1441	if (error)
1442		goto out_free_buffer;
1443
1444	/*
1445	 * Validate the answer.  Because there is no way to guarantee that
1446	 * the entire log is made up of log records which are the same size,
1447	 * we scan over the defined maximum blocks.  At this point, the maximum
1448	 * is not chosen to mean anything special.   XXXmiken
1449	 */
1450	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1451	ASSERT(num_scan_bblks <= INT_MAX);
1452
1453	if (last_blk < num_scan_bblks)
1454		num_scan_bblks = last_blk;
1455	start_blk = last_blk - num_scan_bblks;
1456
1457	/*
1458	 * We search for any instances of cycle number 0 that occur before
1459	 * our current estimate of the head.  What we're trying to detect is
1460	 *        1 ... | 0 | 1 | 0...
1461	 *                       ^ binary search ends here
1462	 */
1463	if ((error = xlog_find_verify_cycle(log, start_blk,
1464					 (int)num_scan_bblks, 0, &new_blk)))
1465		goto out_free_buffer;
1466	if (new_blk != -1)
1467		last_blk = new_blk;
1468
1469	/*
1470	 * Potentially backup over partial log record write.  We don't need
1471	 * to search the end of the log because we know it is zero.
1472	 */
1473	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1474	if (error == 1)
1475		error = -EIO;
1476	if (error)
1477		goto out_free_buffer;
 
1478
1479	*blk_no = last_blk;
1480out_free_buffer:
1481	kmem_free(buffer);
1482	if (error)
1483		return error;
1484	return 1;
1485}
1486
1487/*
1488 * These are simple subroutines used by xlog_clear_stale_blocks() below
1489 * to initialize a buffer full of empty log record headers and write
1490 * them into the log.
1491 */
1492STATIC void
1493xlog_add_record(
1494	struct xlog		*log,
1495	char			*buf,
1496	int			cycle,
1497	int			block,
1498	int			tail_cycle,
1499	int			tail_block)
1500{
1501	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1502
1503	memset(buf, 0, BBSIZE);
1504	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1505	recp->h_cycle = cpu_to_be32(cycle);
1506	recp->h_version = cpu_to_be32(
1507			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1508	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1509	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1510	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1511	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1512}
1513
1514STATIC int
1515xlog_write_log_records(
1516	struct xlog	*log,
1517	int		cycle,
1518	int		start_block,
1519	int		blocks,
1520	int		tail_cycle,
1521	int		tail_block)
1522{
1523	char		*offset;
1524	char		*buffer;
1525	int		balign, ealign;
1526	int		sectbb = log->l_sectBBsize;
1527	int		end_block = start_block + blocks;
1528	int		bufblks;
1529	int		error = 0;
1530	int		i, j = 0;
1531
1532	/*
1533	 * Greedily allocate a buffer big enough to handle the full
1534	 * range of basic blocks to be written.  If that fails, try
1535	 * a smaller size.  We need to be able to write at least a
1536	 * log sector, or we're out of luck.
1537	 */
1538	bufblks = 1 << ffs(blocks);
1539	while (bufblks > log->l_logBBsize)
1540		bufblks >>= 1;
1541	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1542		bufblks >>= 1;
1543		if (bufblks < sectbb)
1544			return -ENOMEM;
1545	}
1546
1547	/* We may need to do a read at the start to fill in part of
1548	 * the buffer in the starting sector not covered by the first
1549	 * write below.
1550	 */
1551	balign = round_down(start_block, sectbb);
1552	if (balign != start_block) {
1553		error = xlog_bread_noalign(log, start_block, 1, buffer);
1554		if (error)
1555			goto out_free_buffer;
1556
1557		j = start_block - balign;
1558	}
1559
1560	for (i = start_block; i < end_block; i += bufblks) {
1561		int		bcount, endcount;
1562
1563		bcount = min(bufblks, end_block - start_block);
1564		endcount = bcount - j;
1565
1566		/* We may need to do a read at the end to fill in part of
1567		 * the buffer in the final sector not covered by the write.
1568		 * If this is the same sector as the above read, skip it.
1569		 */
1570		ealign = round_down(end_block, sectbb);
1571		if (j == 0 && (start_block + endcount > ealign)) {
1572			error = xlog_bread_noalign(log, ealign, sectbb,
1573					buffer + BBTOB(ealign - start_block));
 
1574			if (error)
1575				break;
1576
1577		}
1578
1579		offset = buffer + xlog_align(log, start_block);
1580		for (; j < endcount; j++) {
1581			xlog_add_record(log, offset, cycle, i+j,
1582					tail_cycle, tail_block);
1583			offset += BBSIZE;
1584		}
1585		error = xlog_bwrite(log, start_block, endcount, buffer);
1586		if (error)
1587			break;
1588		start_block += endcount;
1589		j = 0;
1590	}
1591
1592out_free_buffer:
1593	kmem_free(buffer);
1594	return error;
1595}
1596
1597/*
1598 * This routine is called to blow away any incomplete log writes out
1599 * in front of the log head.  We do this so that we won't become confused
1600 * if we come up, write only a little bit more, and then crash again.
1601 * If we leave the partial log records out there, this situation could
1602 * cause us to think those partial writes are valid blocks since they
1603 * have the current cycle number.  We get rid of them by overwriting them
1604 * with empty log records with the old cycle number rather than the
1605 * current one.
1606 *
1607 * The tail lsn is passed in rather than taken from
1608 * the log so that we will not write over the unmount record after a
1609 * clean unmount in a 512 block log.  Doing so would leave the log without
1610 * any valid log records in it until a new one was written.  If we crashed
1611 * during that time we would not be able to recover.
1612 */
1613STATIC int
1614xlog_clear_stale_blocks(
1615	struct xlog	*log,
1616	xfs_lsn_t	tail_lsn)
1617{
1618	int		tail_cycle, head_cycle;
1619	int		tail_block, head_block;
1620	int		tail_distance, max_distance;
1621	int		distance;
1622	int		error;
1623
1624	tail_cycle = CYCLE_LSN(tail_lsn);
1625	tail_block = BLOCK_LSN(tail_lsn);
1626	head_cycle = log->l_curr_cycle;
1627	head_block = log->l_curr_block;
1628
1629	/*
1630	 * Figure out the distance between the new head of the log
1631	 * and the tail.  We want to write over any blocks beyond the
1632	 * head that we may have written just before the crash, but
1633	 * we don't want to overwrite the tail of the log.
1634	 */
1635	if (head_cycle == tail_cycle) {
1636		/*
1637		 * The tail is behind the head in the physical log,
1638		 * so the distance from the head to the tail is the
1639		 * distance from the head to the end of the log plus
1640		 * the distance from the beginning of the log to the
1641		 * tail.
1642		 */
1643		if (XFS_IS_CORRUPT(log->l_mp,
1644				   head_block < tail_block ||
1645				   head_block >= log->l_logBBsize))
1646			return -EFSCORRUPTED;
 
1647		tail_distance = tail_block + (log->l_logBBsize - head_block);
1648	} else {
1649		/*
1650		 * The head is behind the tail in the physical log,
1651		 * so the distance from the head to the tail is just
1652		 * the tail block minus the head block.
1653		 */
1654		if (XFS_IS_CORRUPT(log->l_mp,
1655				   head_block >= tail_block ||
1656				   head_cycle != tail_cycle + 1))
1657			return -EFSCORRUPTED;
 
1658		tail_distance = tail_block - head_block;
1659	}
1660
1661	/*
1662	 * If the head is right up against the tail, we can't clear
1663	 * anything.
1664	 */
1665	if (tail_distance <= 0) {
1666		ASSERT(tail_distance == 0);
1667		return 0;
1668	}
1669
1670	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1671	/*
1672	 * Take the smaller of the maximum amount of outstanding I/O
1673	 * we could have and the distance to the tail to clear out.
1674	 * We take the smaller so that we don't overwrite the tail and
1675	 * we don't waste all day writing from the head to the tail
1676	 * for no reason.
1677	 */
1678	max_distance = min(max_distance, tail_distance);
1679
1680	if ((head_block + max_distance) <= log->l_logBBsize) {
1681		/*
1682		 * We can stomp all the blocks we need to without
1683		 * wrapping around the end of the log.  Just do it
1684		 * in a single write.  Use the cycle number of the
1685		 * current cycle minus one so that the log will look like:
1686		 *     n ... | n - 1 ...
1687		 */
1688		error = xlog_write_log_records(log, (head_cycle - 1),
1689				head_block, max_distance, tail_cycle,
1690				tail_block);
1691		if (error)
1692			return error;
1693	} else {
1694		/*
1695		 * We need to wrap around the end of the physical log in
1696		 * order to clear all the blocks.  Do it in two separate
1697		 * I/Os.  The first write should be from the head to the
1698		 * end of the physical log, and it should use the current
1699		 * cycle number minus one just like above.
1700		 */
1701		distance = log->l_logBBsize - head_block;
1702		error = xlog_write_log_records(log, (head_cycle - 1),
1703				head_block, distance, tail_cycle,
1704				tail_block);
1705
1706		if (error)
1707			return error;
1708
1709		/*
1710		 * Now write the blocks at the start of the physical log.
1711		 * This writes the remainder of the blocks we want to clear.
1712		 * It uses the current cycle number since we're now on the
1713		 * same cycle as the head so that we get:
1714		 *    n ... n ... | n - 1 ...
1715		 *    ^^^^^ blocks we're writing
1716		 */
1717		distance = max_distance - (log->l_logBBsize - head_block);
1718		error = xlog_write_log_records(log, head_cycle, 0, distance,
1719				tail_cycle, tail_block);
1720		if (error)
1721			return error;
1722	}
1723
1724	return 0;
1725}
1726
1727/*
1728 * Release the recovered intent item in the AIL that matches the given intent
1729 * type and intent id.
1730 */
1731void
1732xlog_recover_release_intent(
1733	struct xlog		*log,
1734	unsigned short		intent_type,
1735	uint64_t		intent_id)
1736{
1737	struct xfs_ail_cursor	cur;
1738	struct xfs_log_item	*lip;
1739	struct xfs_ail		*ailp = log->l_ailp;
1740
1741	spin_lock(&ailp->ail_lock);
1742	for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); lip != NULL;
1743	     lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
1744		if (lip->li_type != intent_type)
1745			continue;
1746		if (!lip->li_ops->iop_match(lip, intent_id))
1747			continue;
1748
1749		spin_unlock(&ailp->ail_lock);
1750		lip->li_ops->iop_release(lip);
1751		spin_lock(&ailp->ail_lock);
1752		break;
1753	}
1754
1755	xfs_trans_ail_cursor_done(&cur);
1756	spin_unlock(&ailp->ail_lock);
1757}
1758
1759/******************************************************************************
1760 *
1761 *		Log recover routines
1762 *
1763 ******************************************************************************
1764 */
1765static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
1766	&xlog_buf_item_ops,
1767	&xlog_inode_item_ops,
1768	&xlog_dquot_item_ops,
1769	&xlog_quotaoff_item_ops,
1770	&xlog_icreate_item_ops,
1771	&xlog_efi_item_ops,
1772	&xlog_efd_item_ops,
1773	&xlog_rui_item_ops,
1774	&xlog_rud_item_ops,
1775	&xlog_cui_item_ops,
1776	&xlog_cud_item_ops,
1777	&xlog_bui_item_ops,
1778	&xlog_bud_item_ops,
1779};
1780
1781static const struct xlog_recover_item_ops *
1782xlog_find_item_ops(
1783	struct xlog_recover_item		*item)
1784{
1785	unsigned int				i;
1786
1787	for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
1788		if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
1789			return xlog_recover_item_ops[i];
1790
1791	return NULL;
1792}
1793
1794/*
1795 * Sort the log items in the transaction.
1796 *
1797 * The ordering constraints are defined by the inode allocation and unlink
1798 * behaviour. The rules are:
1799 *
1800 *	1. Every item is only logged once in a given transaction. Hence it
1801 *	   represents the last logged state of the item. Hence ordering is
1802 *	   dependent on the order in which operations need to be performed so
1803 *	   required initial conditions are always met.
1804 *
1805 *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1806 *	   there's nothing to replay from them so we can simply cull them
1807 *	   from the transaction. However, we can't do that until after we've
1808 *	   replayed all the other items because they may be dependent on the
1809 *	   cancelled buffer and replaying the cancelled buffer can remove it
1810 *	   form the cancelled buffer table. Hence they have tobe done last.
1811 *
1812 *	3. Inode allocation buffers must be replayed before inode items that
1813 *	   read the buffer and replay changes into it. For filesystems using the
1814 *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1815 *	   treated the same as inode allocation buffers as they create and
1816 *	   initialise the buffers directly.
1817 *
1818 *	4. Inode unlink buffers must be replayed after inode items are replayed.
1819 *	   This ensures that inodes are completely flushed to the inode buffer
1820 *	   in a "free" state before we remove the unlinked inode list pointer.
1821 *
1822 * Hence the ordering needs to be inode allocation buffers first, inode items
1823 * second, inode unlink buffers third and cancelled buffers last.
1824 *
1825 * But there's a problem with that - we can't tell an inode allocation buffer
1826 * apart from a regular buffer, so we can't separate them. We can, however,
1827 * tell an inode unlink buffer from the others, and so we can separate them out
1828 * from all the other buffers and move them to last.
1829 *
1830 * Hence, 4 lists, in order from head to tail:
1831 *	- buffer_list for all buffers except cancelled/inode unlink buffers
1832 *	- item_list for all non-buffer items
1833 *	- inode_buffer_list for inode unlink buffers
1834 *	- cancel_list for the cancelled buffers
1835 *
1836 * Note that we add objects to the tail of the lists so that first-to-last
1837 * ordering is preserved within the lists. Adding objects to the head of the
1838 * list means when we traverse from the head we walk them in last-to-first
1839 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1840 * but for all other items there may be specific ordering that we need to
1841 * preserve.
1842 */
1843STATIC int
1844xlog_recover_reorder_trans(
1845	struct xlog		*log,
1846	struct xlog_recover	*trans,
1847	int			pass)
1848{
1849	struct xlog_recover_item *item, *n;
1850	int			error = 0;
1851	LIST_HEAD(sort_list);
1852	LIST_HEAD(cancel_list);
1853	LIST_HEAD(buffer_list);
1854	LIST_HEAD(inode_buffer_list);
1855	LIST_HEAD(item_list);
1856
1857	list_splice_init(&trans->r_itemq, &sort_list);
1858	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1859		enum xlog_recover_reorder	fate = XLOG_REORDER_ITEM_LIST;
1860
1861		item->ri_ops = xlog_find_item_ops(item);
1862		if (!item->ri_ops) {
1863			xfs_warn(log->l_mp,
1864				"%s: unrecognized type of log operation (%d)",
1865				__func__, ITEM_TYPE(item));
1866			ASSERT(0);
1867			/*
1868			 * return the remaining items back to the transaction
1869			 * item list so they can be freed in caller.
1870			 */
1871			if (!list_empty(&sort_list))
1872				list_splice_init(&sort_list, &trans->r_itemq);
1873			error = -EFSCORRUPTED;
1874			break;
1875		}
1876
1877		if (item->ri_ops->reorder)
1878			fate = item->ri_ops->reorder(item);
1879
1880		switch (fate) {
1881		case XLOG_REORDER_BUFFER_LIST:
1882			list_move_tail(&item->ri_list, &buffer_list);
1883			break;
1884		case XLOG_REORDER_CANCEL_LIST:
1885			trace_xfs_log_recover_item_reorder_head(log,
1886					trans, item, pass);
1887			list_move(&item->ri_list, &cancel_list);
1888			break;
1889		case XLOG_REORDER_INODE_BUFFER_LIST:
1890			list_move(&item->ri_list, &inode_buffer_list);
1891			break;
1892		case XLOG_REORDER_ITEM_LIST:
1893			trace_xfs_log_recover_item_reorder_tail(log,
1894							trans, item, pass);
1895			list_move_tail(&item->ri_list, &item_list);
1896			break;
1897		}
1898	}
1899
1900	ASSERT(list_empty(&sort_list));
1901	if (!list_empty(&buffer_list))
1902		list_splice(&buffer_list, &trans->r_itemq);
1903	if (!list_empty(&item_list))
1904		list_splice_tail(&item_list, &trans->r_itemq);
1905	if (!list_empty(&inode_buffer_list))
1906		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1907	if (!list_empty(&cancel_list))
1908		list_splice_tail(&cancel_list, &trans->r_itemq);
1909	return error;
1910}
1911
1912void
1913xlog_buf_readahead(
1914	struct xlog		*log,
1915	xfs_daddr_t		blkno,
1916	uint			len,
1917	const struct xfs_buf_ops *ops)
1918{
1919	if (!xlog_is_buffer_cancelled(log, blkno, len))
1920		xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
1921}
 
 
1922
1923STATIC int
1924xlog_recover_items_pass2(
1925	struct xlog                     *log,
1926	struct xlog_recover             *trans,
1927	struct list_head                *buffer_list,
1928	struct list_head                *item_list)
1929{
1930	struct xlog_recover_item	*item;
1931	int				error = 0;
1932
1933	list_for_each_entry(item, item_list, ri_list) {
1934		trace_xfs_log_recover_item_recover(log, trans, item,
1935				XLOG_RECOVER_PASS2);
1936
1937		if (item->ri_ops->commit_pass2)
1938			error = item->ri_ops->commit_pass2(log, buffer_list,
1939					item, trans->r_lsn);
1940		if (error)
1941			return error;
1942	}
1943
1944	return error;
1945}
1946
1947/*
1948 * Perform the transaction.
1949 *
1950 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
1951 * EFIs and EFDs get queued up by adding entries into the AIL for them.
1952 */
1953STATIC int
1954xlog_recover_commit_trans(
1955	struct xlog		*log,
1956	struct xlog_recover	*trans,
1957	int			pass,
1958	struct list_head	*buffer_list)
1959{
1960	int				error = 0;
1961	int				items_queued = 0;
1962	struct xlog_recover_item	*item;
1963	struct xlog_recover_item	*next;
1964	LIST_HEAD			(ra_list);
1965	LIST_HEAD			(done_list);
1966
1967	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1968
1969	hlist_del_init(&trans->r_list);
1970
1971	error = xlog_recover_reorder_trans(log, trans, pass);
1972	if (error)
1973		return error;
1974
1975	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
1976		trace_xfs_log_recover_item_recover(log, trans, item, pass);
1977
1978		switch (pass) {
1979		case XLOG_RECOVER_PASS1:
1980			if (item->ri_ops->commit_pass1)
1981				error = item->ri_ops->commit_pass1(log, item);
1982			break;
1983		case XLOG_RECOVER_PASS2:
1984			if (item->ri_ops->ra_pass2)
1985				item->ri_ops->ra_pass2(log, item);
1986			list_move_tail(&item->ri_list, &ra_list);
1987			items_queued++;
1988			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
1989				error = xlog_recover_items_pass2(log, trans,
1990						buffer_list, &ra_list);
1991				list_splice_tail_init(&ra_list, &done_list);
1992				items_queued = 0;
1993			}
1994
1995			break;
1996		default:
1997			ASSERT(0);
1998		}
1999
2000		if (error)
2001			goto out;
2002	}
2003
2004out:
2005	if (!list_empty(&ra_list)) {
2006		if (!error)
2007			error = xlog_recover_items_pass2(log, trans,
2008					buffer_list, &ra_list);
2009		list_splice_tail_init(&ra_list, &done_list);
2010	}
2011
2012	if (!list_empty(&done_list))
2013		list_splice_init(&done_list, &trans->r_itemq);
2014
2015	return error;
2016}
2017
2018STATIC void
2019xlog_recover_add_item(
2020	struct list_head	*head)
2021{
2022	struct xlog_recover_item *item;
2023
2024	item = kmem_zalloc(sizeof(struct xlog_recover_item), 0);
2025	INIT_LIST_HEAD(&item->ri_list);
2026	list_add_tail(&item->ri_list, head);
2027}
2028
2029STATIC int
2030xlog_recover_add_to_cont_trans(
2031	struct xlog		*log,
2032	struct xlog_recover	*trans,
2033	char			*dp,
2034	int			len)
2035{
2036	struct xlog_recover_item *item;
2037	char			*ptr, *old_ptr;
2038	int			old_len;
2039
2040	/*
2041	 * If the transaction is empty, the header was split across this and the
2042	 * previous record. Copy the rest of the header.
2043	 */
2044	if (list_empty(&trans->r_itemq)) {
2045		ASSERT(len <= sizeof(struct xfs_trans_header));
2046		if (len > sizeof(struct xfs_trans_header)) {
2047			xfs_warn(log->l_mp, "%s: bad header length", __func__);
2048			return -EFSCORRUPTED;
2049		}
2050
2051		xlog_recover_add_item(&trans->r_itemq);
2052		ptr = (char *)&trans->r_theader +
2053				sizeof(struct xfs_trans_header) - len;
2054		memcpy(ptr, dp, len);
2055		return 0;
2056	}
2057
2058	/* take the tail entry */
2059	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2060			  ri_list);
2061
2062	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
2063	old_len = item->ri_buf[item->ri_cnt-1].i_len;
2064
2065	ptr = krealloc(old_ptr, len + old_len, GFP_KERNEL | __GFP_NOFAIL);
2066	memcpy(&ptr[old_len], dp, len);
2067	item->ri_buf[item->ri_cnt-1].i_len += len;
2068	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
2069	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
2070	return 0;
2071}
2072
2073/*
2074 * The next region to add is the start of a new region.  It could be
2075 * a whole region or it could be the first part of a new region.  Because
2076 * of this, the assumption here is that the type and size fields of all
2077 * format structures fit into the first 32 bits of the structure.
2078 *
2079 * This works because all regions must be 32 bit aligned.  Therefore, we
2080 * either have both fields or we have neither field.  In the case we have
2081 * neither field, the data part of the region is zero length.  We only have
2082 * a log_op_header and can throw away the header since a new one will appear
2083 * later.  If we have at least 4 bytes, then we can determine how many regions
2084 * will appear in the current log item.
2085 */
2086STATIC int
2087xlog_recover_add_to_trans(
2088	struct xlog		*log,
2089	struct xlog_recover	*trans,
2090	char			*dp,
2091	int			len)
2092{
2093	struct xfs_inode_log_format	*in_f;			/* any will do */
2094	struct xlog_recover_item *item;
2095	char			*ptr;
2096
2097	if (!len)
2098		return 0;
2099	if (list_empty(&trans->r_itemq)) {
2100		/* we need to catch log corruptions here */
2101		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
2102			xfs_warn(log->l_mp, "%s: bad header magic number",
2103				__func__);
2104			ASSERT(0);
2105			return -EFSCORRUPTED;
2106		}
2107
2108		if (len > sizeof(struct xfs_trans_header)) {
2109			xfs_warn(log->l_mp, "%s: bad header length", __func__);
2110			ASSERT(0);
2111			return -EFSCORRUPTED;
2112		}
2113
2114		/*
2115		 * The transaction header can be arbitrarily split across op
2116		 * records. If we don't have the whole thing here, copy what we
2117		 * do have and handle the rest in the next record.
2118		 */
2119		if (len == sizeof(struct xfs_trans_header))
2120			xlog_recover_add_item(&trans->r_itemq);
2121		memcpy(&trans->r_theader, dp, len);
2122		return 0;
2123	}
2124
2125	ptr = kmem_alloc(len, 0);
2126	memcpy(ptr, dp, len);
2127	in_f = (struct xfs_inode_log_format *)ptr;
2128
2129	/* take the tail entry */
2130	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2131			  ri_list);
2132	if (item->ri_total != 0 &&
2133	     item->ri_total == item->ri_cnt) {
2134		/* tail item is in use, get a new one */
2135		xlog_recover_add_item(&trans->r_itemq);
2136		item = list_entry(trans->r_itemq.prev,
2137					struct xlog_recover_item, ri_list);
2138	}
2139
2140	if (item->ri_total == 0) {		/* first region to be added */
2141		if (in_f->ilf_size == 0 ||
2142		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
2143			xfs_warn(log->l_mp,
2144		"bad number of regions (%d) in inode log format",
2145				  in_f->ilf_size);
2146			ASSERT(0);
2147			kmem_free(ptr);
2148			return -EFSCORRUPTED;
2149		}
2150
2151		item->ri_total = in_f->ilf_size;
2152		item->ri_buf =
2153			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
2154				    0);
2155	}
2156
2157	if (item->ri_total <= item->ri_cnt) {
2158		xfs_warn(log->l_mp,
2159	"log item region count (%d) overflowed size (%d)",
2160				item->ri_cnt, item->ri_total);
2161		ASSERT(0);
2162		kmem_free(ptr);
2163		return -EFSCORRUPTED;
2164	}
2165
2166	/* Description region is ri_buf[0] */
2167	item->ri_buf[item->ri_cnt].i_addr = ptr;
2168	item->ri_buf[item->ri_cnt].i_len  = len;
2169	item->ri_cnt++;
2170	trace_xfs_log_recover_item_add(log, trans, item, 0);
2171	return 0;
2172}
2173
2174/*
2175 * Free up any resources allocated by the transaction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2176 *
2177 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2178 */
2179STATIC void
2180xlog_recover_free_trans(
2181	struct xlog_recover	*trans)
 
 
 
2182{
2183	struct xlog_recover_item *item, *n;
2184	int			i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2185
2186	hlist_del_init(&trans->r_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
2187
2188	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2189		/* Free the regions in the item. */
2190		list_del(&item->ri_list);
2191		for (i = 0; i < item->ri_cnt; i++)
2192			kmem_free(item->ri_buf[i].i_addr);
2193		/* Free the item itself */
2194		kmem_free(item->ri_buf);
2195		kmem_free(item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2196	}
2197	/* Free the transaction recover structure */
2198	kmem_free(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
2199}
2200
2201/*
2202 * On error or completion, trans is freed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203 */
2204STATIC int
2205xlog_recovery_process_trans(
2206	struct xlog		*log,
2207	struct xlog_recover	*trans,
2208	char			*dp,
2209	unsigned int		len,
2210	unsigned int		flags,
2211	int			pass,
2212	struct list_head	*buffer_list)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2213{
2214	int			error = 0;
2215	bool			freeit = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2216
2217	/* mask off ophdr transaction container flags */
2218	flags &= ~XLOG_END_TRANS;
2219	if (flags & XLOG_WAS_CONT_TRANS)
2220		flags &= ~XLOG_CONTINUE_TRANS;
2221
2222	/*
2223	 * Callees must not free the trans structure. We'll decide if we need to
2224	 * free it or not based on the operation being done and it's result.
2225	 */
2226	switch (flags) {
2227	/* expected flag values */
2228	case 0:
2229	case XLOG_CONTINUE_TRANS:
2230		error = xlog_recover_add_to_trans(log, trans, dp, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2231		break;
2232	case XLOG_WAS_CONT_TRANS:
2233		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
 
 
2234		break;
2235	case XLOG_COMMIT_TRANS:
2236		error = xlog_recover_commit_trans(log, trans, pass,
2237						  buffer_list);
2238		/* success or fail, we are now done with this transaction. */
2239		freeit = true;
 
 
 
 
 
 
 
 
 
 
2240		break;
2241
2242	/* unexpected flag values */
2243	case XLOG_UNMOUNT_TRANS:
2244		/* just skip trans */
2245		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2246		freeit = true;
2247		break;
2248	case XLOG_START_TRANS:
2249	default:
2250		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
2251		ASSERT(0);
2252		error = -EFSCORRUPTED;
 
2253		break;
2254	}
2255	if (error || freeit)
2256		xlog_recover_free_trans(trans);
2257	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2258}
2259
2260/*
2261 * Lookup the transaction recovery structure associated with the ID in the
2262 * current ophdr. If the transaction doesn't exist and the start flag is set in
2263 * the ophdr, then allocate a new transaction for future ID matches to find.
2264 * Either way, return what we found during the lookup - an existing transaction
2265 * or nothing.
2266 */
2267STATIC struct xlog_recover *
2268xlog_recover_ophdr_to_trans(
2269	struct hlist_head	rhash[],
2270	struct xlog_rec_header	*rhead,
2271	struct xlog_op_header	*ohead)
2272{
2273	struct xlog_recover	*trans;
2274	xlog_tid_t		tid;
2275	struct hlist_head	*rhp;
 
 
 
 
 
 
 
 
 
 
2276
2277	tid = be32_to_cpu(ohead->oh_tid);
2278	rhp = &rhash[XLOG_RHASH(tid)];
2279	hlist_for_each_entry(trans, rhp, r_list) {
2280		if (trans->r_log_tid == tid)
2281			return trans;
 
 
 
 
2282	}
2283
2284	/*
2285	 * skip over non-start transaction headers - we could be
2286	 * processing slack space before the next transaction starts
2287	 */
2288	if (!(ohead->oh_flags & XLOG_START_TRANS))
2289		return NULL;
2290
2291	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
2292
2293	/*
2294	 * This is a new transaction so allocate a new recovery container to
2295	 * hold the recovery ops that will follow.
 
 
 
 
 
 
2296	 */
2297	trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
2298	trans->r_log_tid = tid;
2299	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
2300	INIT_LIST_HEAD(&trans->r_itemq);
2301	INIT_HLIST_NODE(&trans->r_list);
2302	hlist_add_head(&trans->r_list, rhp);
 
 
 
 
 
 
 
 
 
 
 
 
 
2303
2304	/*
2305	 * Nothing more to do for this ophdr. Items to be added to this new
2306	 * transaction will be in subsequent ophdr containers.
 
2307	 */
2308	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2309}
2310
 
 
 
 
 
 
 
2311STATIC int
2312xlog_recover_process_ophdr(
2313	struct xlog		*log,
2314	struct hlist_head	rhash[],
2315	struct xlog_rec_header	*rhead,
2316	struct xlog_op_header	*ohead,
2317	char			*dp,
2318	char			*end,
2319	int			pass,
2320	struct list_head	*buffer_list)
2321{
2322	struct xlog_recover	*trans;
2323	unsigned int		len;
2324	int			error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2325
2326	/* Do we understand who wrote this op? */
2327	if (ohead->oh_clientid != XFS_TRANSACTION &&
2328	    ohead->oh_clientid != XFS_LOG) {
2329		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2330			__func__, ohead->oh_clientid);
2331		ASSERT(0);
2332		return -EFSCORRUPTED;
2333	}
2334
2335	/*
2336	 * Check the ophdr contains all the data it is supposed to contain.
 
2337	 */
2338	len = be32_to_cpu(ohead->oh_len);
2339	if (dp + len > end) {
2340		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
2341		WARN_ON(1);
2342		return -EFSCORRUPTED;
 
 
 
 
 
 
 
 
 
 
 
 
2343	}
 
 
2344
2345	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
2346	if (!trans) {
2347		/* nothing to do, so skip over this ophdr */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2348		return 0;
 
 
 
 
 
2349	}
 
2350
2351	/*
2352	 * The recovered buffer queue is drained only once we know that all
2353	 * recovery items for the current LSN have been processed. This is
2354	 * required because:
2355	 *
2356	 * - Buffer write submission updates the metadata LSN of the buffer.
2357	 * - Log recovery skips items with a metadata LSN >= the current LSN of
2358	 *   the recovery item.
2359	 * - Separate recovery items against the same metadata buffer can share
2360	 *   a current LSN. I.e., consider that the LSN of a recovery item is
2361	 *   defined as the starting LSN of the first record in which its
2362	 *   transaction appears, that a record can hold multiple transactions,
2363	 *   and/or that a transaction can span multiple records.
2364	 *
2365	 * In other words, we are allowed to submit a buffer from log recovery
2366	 * once per current LSN. Otherwise, we may incorrectly skip recovery
2367	 * items and cause corruption.
2368	 *
2369	 * We don't know up front whether buffers are updated multiple times per
2370	 * LSN. Therefore, track the current LSN of each commit log record as it
2371	 * is processed and drain the queue when it changes. Use commit records
2372	 * because they are ordered correctly by the logging code.
2373	 */
2374	if (log->l_recovery_lsn != trans->r_lsn &&
2375	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
2376		error = xfs_buf_delwri_submit(buffer_list);
2377		if (error)
2378			return error;
2379		log->l_recovery_lsn = trans->r_lsn;
2380	}
2381
2382	return xlog_recovery_process_trans(log, trans, dp, len,
2383					   ohead->oh_flags, pass, buffer_list);
 
 
 
 
 
 
 
 
 
 
2384}
2385
2386/*
2387 * There are two valid states of the r_state field.  0 indicates that the
2388 * transaction structure is in a normal state.  We have either seen the
2389 * start of the transaction or the last operation we added was not a partial
2390 * operation.  If the last operation we added to the transaction was a
2391 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2392 *
2393 * NOTE: skip LRs with 0 data length.
2394 */
2395STATIC int
2396xlog_recover_process_data(
2397	struct xlog		*log,
2398	struct hlist_head	rhash[],
2399	struct xlog_rec_header	*rhead,
2400	char			*dp,
2401	int			pass,
2402	struct list_head	*buffer_list)
2403{
2404	struct xlog_op_header	*ohead;
2405	char			*end;
2406	int			num_logops;
 
 
 
2407	int			error;
 
 
2408
2409	end = dp + be32_to_cpu(rhead->h_len);
2410	num_logops = be32_to_cpu(rhead->h_num_logops);
2411
2412	/* check the log format matches our own - else we can't recover */
2413	if (xlog_header_check_recover(log->l_mp, rhead))
2414		return -EIO;
2415
2416	trace_xfs_log_recover_record(log, rhead, pass);
2417	while ((dp < end) && num_logops) {
2418
2419		ohead = (struct xlog_op_header *)dp;
2420		dp += sizeof(*ohead);
2421		ASSERT(dp <= end);
2422
2423		/* errors will abort recovery */
2424		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
2425						   dp, end, pass, buffer_list);
2426		if (error)
2427			return error;
2428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2429		dp += be32_to_cpu(ohead->oh_len);
2430		num_logops--;
2431	}
2432	return 0;
2433}
2434
2435/* Take all the collected deferred ops and finish them in order. */
2436static int
2437xlog_finish_defer_ops(
2438	struct xfs_mount	*mp,
2439	struct list_head	*capture_list)
2440{
2441	struct xfs_defer_capture *dfc, *next;
2442	struct xfs_trans	*tp;
2443	struct xfs_inode	*ip;
2444	int			error = 0;
2445
2446	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2447		struct xfs_trans_res	resv;
2448
2449		/*
2450		 * Create a new transaction reservation from the captured
2451		 * information.  Set logcount to 1 to force the new transaction
2452		 * to regrant every roll so that we can make forward progress
2453		 * in recovery no matter how full the log might be.
2454		 */
2455		resv.tr_logres = dfc->dfc_logres;
2456		resv.tr_logcount = 1;
2457		resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;
2458
2459		error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
2460				dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
2461		if (error) {
2462			xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2463			return error;
2464		}
2465
2466		/*
2467		 * Transfer to this new transaction all the dfops we captured
2468		 * from recovering a single intent item.
2469		 */
2470		list_del_init(&dfc->dfc_list);
2471		xfs_defer_ops_continue(dfc, tp, &ip);
2472
2473		error = xfs_trans_commit(tp);
2474		if (ip) {
2475			xfs_iunlock(ip, XFS_ILOCK_EXCL);
2476			xfs_irele(ip);
2477		}
2478		if (error)
2479			return error;
2480	}
2481
2482	ASSERT(list_empty(capture_list));
2483	return 0;
2484}
2485
2486/* Release all the captured defer ops and capture structures in this list. */
2487static void
2488xlog_abort_defer_ops(
2489	struct xfs_mount		*mp,
2490	struct list_head		*capture_list)
2491{
2492	struct xfs_defer_capture	*dfc;
2493	struct xfs_defer_capture	*next;
2494
2495	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2496		list_del_init(&dfc->dfc_list);
2497		xfs_defer_ops_release(mp, dfc);
2498	}
2499}
2500/*
2501 * When this is called, all of the log intent items which did not have
2502 * corresponding log done items should be in the AIL.  What we do now
2503 * is update the data structures associated with each one.
2504 *
2505 * Since we process the log intent items in normal transactions, they
2506 * will be removed at some point after the commit.  This prevents us
2507 * from just walking down the list processing each one.  We'll use a
2508 * flag in the intent item to skip those that we've already processed
2509 * and use the AIL iteration mechanism's generation count to try to
2510 * speed this up at least a bit.
2511 *
2512 * When we start, we know that the intents are the only things in the
2513 * AIL.  As we process them, however, other items are added to the
2514 * AIL.
2515 */
2516STATIC int
2517xlog_recover_process_intents(
2518	struct xlog		*log)
 
2519{
2520	LIST_HEAD(capture_list);
2521	struct xfs_ail_cursor	cur;
2522	struct xfs_log_item	*lip;
2523	struct xfs_ail		*ailp;
2524	int			error = 0;
2525#if defined(DEBUG) || defined(XFS_WARN)
2526	xfs_lsn_t		last_lsn;
2527#endif
2528
2529	ailp = log->l_ailp;
2530	spin_lock(&ailp->ail_lock);
2531#if defined(DEBUG) || defined(XFS_WARN)
2532	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
2533#endif
2534	for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2535	     lip != NULL;
2536	     lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
2537		/*
2538		 * We're done when we see something other than an intent.
2539		 * There should be no intents left in the AIL now.
2540		 */
2541		if (!xlog_item_is_intent(lip)) {
2542#ifdef DEBUG
2543			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2544				ASSERT(!xlog_item_is_intent(lip));
2545#endif
2546			break;
2547		}
2548
2549		/*
2550		 * We should never see a redo item with a LSN higher than
2551		 * the last transaction we found in the log at the start
2552		 * of recovery.
2553		 */
2554		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
2555
2556		/*
2557		 * NOTE: If your intent processing routine can create more
2558		 * deferred ops, you /must/ attach them to the capture list in
2559		 * the recover routine or else those subsequent intents will be
2560		 * replayed in the wrong order!
2561		 */
2562		spin_unlock(&ailp->ail_lock);
2563		error = lip->li_ops->iop_recover(lip, &capture_list);
2564		spin_lock(&ailp->ail_lock);
2565		if (error) {
2566			trace_xlog_intent_recovery_failed(log->l_mp, error,
2567					lip->li_ops->iop_recover);
2568			break;
 
 
 
 
 
 
2569		}
2570	}
2571
2572	xfs_trans_ail_cursor_done(&cur);
2573	spin_unlock(&ailp->ail_lock);
2574	if (error)
2575		goto err;
 
2576
2577	error = xlog_finish_defer_ops(log->l_mp, &capture_list);
2578	if (error)
2579		goto err;
 
 
 
 
 
 
 
 
 
2580
2581	return 0;
2582err:
2583	xlog_abort_defer_ops(log->l_mp, &capture_list);
2584	return error;
2585}
2586
2587/*
2588 * A cancel occurs when the mount has failed and we're bailing out.
2589 * Release all pending log intent items so they don't pin the AIL.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2590 */
2591STATIC void
2592xlog_recover_cancel_intents(
2593	struct xlog		*log)
2594{
2595	struct xfs_log_item	*lip;
 
 
2596	struct xfs_ail_cursor	cur;
2597	struct xfs_ail		*ailp;
2598
2599	ailp = log->l_ailp;
2600	spin_lock(&ailp->ail_lock);
2601	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2602	while (lip != NULL) {
2603		/*
2604		 * We're done when we see something other than an intent.
2605		 * There should be no intents left in the AIL now.
2606		 */
2607		if (!xlog_item_is_intent(lip)) {
2608#ifdef DEBUG
2609			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2610				ASSERT(!xlog_item_is_intent(lip));
2611#endif
2612			break;
2613		}
2614
2615		spin_unlock(&ailp->ail_lock);
2616		lip->li_ops->iop_release(lip);
2617		spin_lock(&ailp->ail_lock);
 
 
 
 
 
 
 
 
 
 
 
2618		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2619	}
2620
2621	xfs_trans_ail_cursor_done(&cur);
2622	spin_unlock(&ailp->ail_lock);
 
2623}
2624
2625/*
2626 * This routine performs a transaction to null out a bad inode pointer
2627 * in an agi unlinked inode hash bucket.
2628 */
2629STATIC void
2630xlog_recover_clear_agi_bucket(
2631	xfs_mount_t	*mp,
2632	xfs_agnumber_t	agno,
2633	int		bucket)
2634{
2635	xfs_trans_t	*tp;
2636	xfs_agi_t	*agi;
2637	struct xfs_buf	*agibp;
2638	int		offset;
2639	int		error;
2640
2641	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
 
 
2642	if (error)
2643		goto out_error;
2644
2645	error = xfs_read_agi(mp, tp, agno, &agibp);
2646	if (error)
2647		goto out_abort;
2648
2649	agi = agibp->b_addr;
2650	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
2651	offset = offsetof(xfs_agi_t, agi_unlinked) +
2652		 (sizeof(xfs_agino_t) * bucket);
2653	xfs_trans_log_buf(tp, agibp, offset,
2654			  (offset + sizeof(xfs_agino_t) - 1));
2655
2656	error = xfs_trans_commit(tp);
2657	if (error)
2658		goto out_error;
2659	return;
2660
2661out_abort:
2662	xfs_trans_cancel(tp);
2663out_error:
2664	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
2665	return;
2666}
2667
2668STATIC xfs_agino_t
2669xlog_recover_process_one_iunlink(
2670	struct xfs_mount		*mp,
2671	xfs_agnumber_t			agno,
2672	xfs_agino_t			agino,
2673	int				bucket)
2674{
2675	struct xfs_buf			*ibp;
2676	struct xfs_dinode		*dip;
2677	struct xfs_inode		*ip;
2678	xfs_ino_t			ino;
2679	int				error;
2680
2681	ino = XFS_AGINO_TO_INO(mp, agno, agino);
2682	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
2683	if (error)
2684		goto fail;
2685
2686	/*
2687	 * Get the on disk inode to find the next inode in the bucket.
2688	 */
2689	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &ibp);
2690	if (error)
2691		goto fail_iput;
2692	dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2693
2694	xfs_iflags_clear(ip, XFS_IRECOVERY);
2695	ASSERT(VFS_I(ip)->i_nlink == 0);
2696	ASSERT(VFS_I(ip)->i_mode != 0);
2697
2698	/* setup for the next pass */
2699	agino = be32_to_cpu(dip->di_next_unlinked);
2700	xfs_buf_relse(ibp);
2701
2702	xfs_irele(ip);
 
 
 
 
 
 
2703	return agino;
2704
2705 fail_iput:
2706	xfs_irele(ip);
2707 fail:
2708	/*
2709	 * We can't read in the inode this bucket points to, or this inode
2710	 * is messed up.  Just ditch this bucket of inodes.  We will lose
2711	 * some inodes and space, but at least we won't hang.
2712	 *
2713	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
2714	 * clear the inode pointer in the bucket.
2715	 */
2716	xlog_recover_clear_agi_bucket(mp, agno, bucket);
2717	return NULLAGINO;
2718}
2719
2720/*
2721 * Recover AGI unlinked lists
2722 *
2723 * This is called during recovery to process any inodes which we unlinked but
2724 * not freed when the system crashed.  These inodes will be on the lists in the
2725 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
2726 * any inodes found on the lists. Each inode is removed from the lists when it
2727 * has been fully truncated and is freed. The freeing of the inode and its
2728 * removal from the list must be atomic.
2729 *
2730 * If everything we touch in the agi processing loop is already in memory, this
2731 * loop can hold the cpu for a long time. It runs without lock contention,
2732 * memory allocation contention, the need wait for IO, etc, and so will run
2733 * until we either run out of inodes to process, run low on memory or we run out
2734 * of log space.
2735 *
2736 * This behaviour is bad for latency on single CPU and non-preemptible kernels,
2737 * and can prevent other filesystem work (such as CIL pushes) from running. This
2738 * can lead to deadlocks if the recovery process runs out of log reservation
2739 * space. Hence we need to yield the CPU when there is other kernel work
2740 * scheduled on this CPU to ensure other scheduled work can run without undue
2741 * latency.
2742 */
2743STATIC void
2744xlog_recover_process_iunlinks(
2745	struct xlog	*log)
2746{
2747	struct xfs_mount	*mp = log->l_mp;
2748	struct xfs_perag	*pag;
2749	xfs_agnumber_t		agno;
2750	struct xfs_agi		*agi;
2751	struct xfs_buf		*agibp;
2752	xfs_agino_t		agino;
2753	int			bucket;
2754	int			error;
 
 
 
 
 
 
 
 
2755
2756	for_each_perag(mp, agno, pag) {
2757		error = xfs_read_agi(mp, NULL, pag->pag_agno, &agibp);
 
 
 
2758		if (error) {
2759			/*
2760			 * AGI is b0rked. Don't process it.
2761			 *
2762			 * We should probably mark the filesystem as corrupt
2763			 * after we've recovered all the ag's we can....
2764			 */
2765			continue;
2766		}
2767		/*
2768		 * Unlock the buffer so that it can be acquired in the normal
2769		 * course of the transaction to truncate and free each inode.
2770		 * Because we are not racing with anyone else here for the AGI
2771		 * buffer, we don't even need to hold it locked to read the
2772		 * initial unlinked bucket entries out of the buffer. We keep
2773		 * buffer reference though, so that it stays pinned in memory
2774		 * while we need the buffer.
2775		 */
2776		agi = agibp->b_addr;
2777		xfs_buf_unlock(agibp);
2778
2779		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
2780			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2781			while (agino != NULLAGINO) {
 
 
 
 
 
 
 
2782				agino = xlog_recover_process_one_iunlink(mp,
2783						pag->pag_agno, agino, bucket);
2784				cond_resched();
 
 
 
 
 
 
 
 
2785			}
2786		}
2787		xfs_buf_rele(agibp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2788	}
2789}
2790
2791STATIC void
2792xlog_unpack_data(
2793	struct xlog_rec_header	*rhead,
2794	char			*dp,
2795	struct xlog		*log)
2796{
2797	int			i, j, k;
2798
2799	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
2800		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
2801		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
2802		dp += BBSIZE;
2803	}
2804
2805	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
2806		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
2807		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
2808			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2809			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2810			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
2811			dp += BBSIZE;
2812		}
2813	}
2814}
2815
2816/*
2817 * CRC check, unpack and process a log record.
2818 */
2819STATIC int
2820xlog_recover_process(
2821	struct xlog		*log,
2822	struct hlist_head	rhash[],
2823	struct xlog_rec_header	*rhead,
2824	char			*dp,
2825	int			pass,
2826	struct list_head	*buffer_list)
2827{
2828	__le32			old_crc = rhead->h_crc;
2829	__le32			crc;
2830
2831	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
2832
2833	/*
2834	 * Nothing else to do if this is a CRC verification pass. Just return
2835	 * if this a record with a non-zero crc. Unfortunately, mkfs always
2836	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
2837	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
2838	 * know precisely what failed.
2839	 */
2840	if (pass == XLOG_RECOVER_CRCPASS) {
2841		if (old_crc && crc != old_crc)
2842			return -EFSBADCRC;
2843		return 0;
2844	}
2845
2846	/*
2847	 * We're in the normal recovery path. Issue a warning if and only if the
2848	 * CRC in the header is non-zero. This is an advisory warning and the
2849	 * zero CRC check prevents warnings from being emitted when upgrading
2850	 * the kernel from one that does not add CRCs by default.
2851	 */
2852	if (crc != old_crc) {
2853		if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
2854			xfs_alert(log->l_mp,
2855		"log record CRC mismatch: found 0x%x, expected 0x%x.",
2856					le32_to_cpu(old_crc),
2857					le32_to_cpu(crc));
2858			xfs_hex_dump(dp, 32);
2859		}
2860
2861		/*
2862		 * If the filesystem is CRC enabled, this mismatch becomes a
2863		 * fatal log corruption failure.
2864		 */
2865		if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
2866			XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
2867			return -EFSCORRUPTED;
2868		}
2869	}
2870
2871	xlog_unpack_data(rhead, dp, log);
2872
2873	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
2874					 buffer_list);
2875}
2876
2877STATIC int
2878xlog_valid_rec_header(
2879	struct xlog		*log,
2880	struct xlog_rec_header	*rhead,
2881	xfs_daddr_t		blkno,
2882	int			bufsize)
2883{
2884	int			hlen;
2885
2886	if (XFS_IS_CORRUPT(log->l_mp,
2887			   rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
2888		return -EFSCORRUPTED;
2889	if (XFS_IS_CORRUPT(log->l_mp,
2890			   (!rhead->h_version ||
2891			   (be32_to_cpu(rhead->h_version) &
2892			    (~XLOG_VERSION_OKBITS))))) {
 
2893		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
2894			__func__, be32_to_cpu(rhead->h_version));
2895		return -EFSCORRUPTED;
2896	}
2897
2898	/*
2899	 * LR body must have data (or it wouldn't have been written)
2900	 * and h_len must not be greater than LR buffer size.
2901	 */
2902	hlen = be32_to_cpu(rhead->h_len);
2903	if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize))
2904		return -EFSCORRUPTED;
2905
2906	if (XFS_IS_CORRUPT(log->l_mp,
2907			   blkno > log->l_logBBsize || blkno > INT_MAX))
2908		return -EFSCORRUPTED;
 
 
 
 
2909	return 0;
2910}
2911
2912/*
2913 * Read the log from tail to head and process the log records found.
2914 * Handle the two cases where the tail and head are in the same cycle
2915 * and where the active portion of the log wraps around the end of
2916 * the physical log separately.  The pass parameter is passed through
2917 * to the routines called to process the data and is not looked at
2918 * here.
2919 */
2920STATIC int
2921xlog_do_recovery_pass(
2922	struct xlog		*log,
2923	xfs_daddr_t		head_blk,
2924	xfs_daddr_t		tail_blk,
2925	int			pass,
2926	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
2927{
2928	xlog_rec_header_t	*rhead;
2929	xfs_daddr_t		blk_no, rblk_no;
2930	xfs_daddr_t		rhead_blk;
2931	char			*offset;
2932	char			*hbp, *dbp;
2933	int			error = 0, h_size, h_len;
2934	int			error2 = 0;
2935	int			bblks, split_bblks;
2936	int			hblks, split_hblks, wrapped_hblks;
2937	int			i;
2938	struct hlist_head	rhash[XLOG_RHASH_SIZE];
2939	LIST_HEAD		(buffer_list);
2940
2941	ASSERT(head_blk != tail_blk);
2942	blk_no = rhead_blk = tail_blk;
2943
2944	for (i = 0; i < XLOG_RHASH_SIZE; i++)
2945		INIT_HLIST_HEAD(&rhash[i]);
2946
2947	/*
2948	 * Read the header of the tail block and get the iclog buffer size from
2949	 * h_size.  Use this to tell how many sectors make up the log header.
2950	 */
2951	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
2952		/*
2953		 * When using variable length iclogs, read first sector of
2954		 * iclog header and extract the header size from it.  Get a
2955		 * new hbp that is the correct size.
2956		 */
2957		hbp = xlog_alloc_buffer(log, 1);
2958		if (!hbp)
2959			return -ENOMEM;
2960
2961		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
2962		if (error)
2963			goto bread_err1;
2964
2965		rhead = (xlog_rec_header_t *)offset;
2966
2967		/*
2968		 * xfsprogs has a bug where record length is based on lsunit but
2969		 * h_size (iclog size) is hardcoded to 32k. Now that we
2970		 * unconditionally CRC verify the unmount record, this means the
2971		 * log buffer can be too small for the record and cause an
2972		 * overrun.
2973		 *
2974		 * Detect this condition here. Use lsunit for the buffer size as
2975		 * long as this looks like the mkfs case. Otherwise, return an
2976		 * error to avoid a buffer overrun.
2977		 */
2978		h_size = be32_to_cpu(rhead->h_size);
2979		h_len = be32_to_cpu(rhead->h_len);
2980		if (h_len > h_size && h_len <= log->l_mp->m_logbsize &&
2981		    rhead->h_num_logops == cpu_to_be32(1)) {
2982			xfs_warn(log->l_mp,
2983		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
2984				 h_size, log->l_mp->m_logbsize);
2985			h_size = log->l_mp->m_logbsize;
2986		}
2987
2988		error = xlog_valid_rec_header(log, rhead, tail_blk, h_size);
2989		if (error)
2990			goto bread_err1;
2991
2992		hblks = xlog_logrec_hblks(log, rhead);
2993		if (hblks != 1) {
2994			kmem_free(hbp);
2995			hbp = xlog_alloc_buffer(log, hblks);
 
 
 
 
 
2996		}
2997	} else {
2998		ASSERT(log->l_sectBBsize == 1);
2999		hblks = 1;
3000		hbp = xlog_alloc_buffer(log, 1);
3001		h_size = XLOG_BIG_RECORD_BSIZE;
3002	}
3003
3004	if (!hbp)
3005		return -ENOMEM;
3006	dbp = xlog_alloc_buffer(log, BTOBB(h_size));
3007	if (!dbp) {
3008		kmem_free(hbp);
3009		return -ENOMEM;
3010	}
3011
3012	memset(rhash, 0, sizeof(rhash));
3013	if (tail_blk > head_blk) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3014		/*
3015		 * Perform recovery around the end of the physical log.
3016		 * When the head is not on the same cycle number as the tail,
3017		 * we can't do a sequential recovery.
3018		 */
 
3019		while (blk_no < log->l_logBBsize) {
3020			/*
3021			 * Check for header wrapping around physical end-of-log
3022			 */
3023			offset = hbp;
3024			split_hblks = 0;
3025			wrapped_hblks = 0;
3026			if (blk_no + hblks <= log->l_logBBsize) {
3027				/* Read header in one read */
3028				error = xlog_bread(log, blk_no, hblks, hbp,
3029						   &offset);
3030				if (error)
3031					goto bread_err2;
3032			} else {
3033				/* This LR is split across physical log end */
3034				if (blk_no != log->l_logBBsize) {
3035					/* some data before physical log end */
3036					ASSERT(blk_no <= INT_MAX);
3037					split_hblks = log->l_logBBsize - (int)blk_no;
3038					ASSERT(split_hblks > 0);
3039					error = xlog_bread(log, blk_no,
3040							   split_hblks, hbp,
3041							   &offset);
3042					if (error)
3043						goto bread_err2;
3044				}
3045
3046				/*
3047				 * Note: this black magic still works with
3048				 * large sector sizes (non-512) only because:
3049				 * - we increased the buffer size originally
3050				 *   by 1 sector giving us enough extra space
3051				 *   for the second read;
3052				 * - the log start is guaranteed to be sector
3053				 *   aligned;
3054				 * - we read the log end (LR header start)
3055				 *   _first_, then the log start (LR header end)
3056				 *   - order is important.
3057				 */
3058				wrapped_hblks = hblks - split_hblks;
3059				error = xlog_bread_noalign(log, 0,
3060						wrapped_hblks,
3061						offset + BBTOB(split_hblks));
3062				if (error)
3063					goto bread_err2;
3064			}
3065			rhead = (xlog_rec_header_t *)offset;
3066			error = xlog_valid_rec_header(log, rhead,
3067					split_hblks ? blk_no : 0, h_size);
3068			if (error)
3069				goto bread_err2;
3070
3071			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3072			blk_no += hblks;
3073
3074			/*
3075			 * Read the log record data in multiple reads if it
3076			 * wraps around the end of the log. Note that if the
3077			 * header already wrapped, blk_no could point past the
3078			 * end of the log. The record data is contiguous in
3079			 * that case.
3080			 */
3081			if (blk_no + bblks <= log->l_logBBsize ||
3082			    blk_no >= log->l_logBBsize) {
3083				rblk_no = xlog_wrap_logbno(log, blk_no);
3084				error = xlog_bread(log, rblk_no, bblks, dbp,
3085						   &offset);
3086				if (error)
3087					goto bread_err2;
3088			} else {
3089				/* This log record is split across the
3090				 * physical end of log */
3091				offset = dbp;
3092				split_bblks = 0;
3093				if (blk_no != log->l_logBBsize) {
3094					/* some data is before the physical
3095					 * end of log */
3096					ASSERT(!wrapped_hblks);
3097					ASSERT(blk_no <= INT_MAX);
3098					split_bblks =
3099						log->l_logBBsize - (int)blk_no;
3100					ASSERT(split_bblks > 0);
3101					error = xlog_bread(log, blk_no,
3102							split_bblks, dbp,
3103							&offset);
3104					if (error)
3105						goto bread_err2;
3106				}
3107
3108				/*
3109				 * Note: this black magic still works with
3110				 * large sector sizes (non-512) only because:
3111				 * - we increased the buffer size originally
3112				 *   by 1 sector giving us enough extra space
3113				 *   for the second read;
3114				 * - the log start is guaranteed to be sector
3115				 *   aligned;
3116				 * - we read the log end (LR header start)
3117				 *   _first_, then the log start (LR header end)
3118				 *   - order is important.
3119				 */
3120				error = xlog_bread_noalign(log, 0,
3121						bblks - split_bblks,
3122						offset + BBTOB(split_bblks));
3123				if (error)
3124					goto bread_err2;
3125			}
3126
3127			error = xlog_recover_process(log, rhash, rhead, offset,
3128						     pass, &buffer_list);
3129			if (error)
3130				goto bread_err2;
3131
3132			blk_no += bblks;
3133			rhead_blk = blk_no;
3134		}
3135
3136		ASSERT(blk_no >= log->l_logBBsize);
3137		blk_no -= log->l_logBBsize;
3138		rhead_blk = blk_no;
3139	}
3140
3141	/* read first part of physical log */
3142	while (blk_no < head_blk) {
3143		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3144		if (error)
3145			goto bread_err2;
3146
3147		rhead = (xlog_rec_header_t *)offset;
3148		error = xlog_valid_rec_header(log, rhead, blk_no, h_size);
3149		if (error)
3150			goto bread_err2;
3151
3152		/* blocks in data section */
3153		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3154		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3155				   &offset);
3156		if (error)
3157			goto bread_err2;
3158
3159		error = xlog_recover_process(log, rhash, rhead, offset, pass,
3160					     &buffer_list);
3161		if (error)
3162			goto bread_err2;
3163
3164		blk_no += bblks + hblks;
3165		rhead_blk = blk_no;
3166	}
3167
3168 bread_err2:
3169	kmem_free(dbp);
3170 bread_err1:
3171	kmem_free(hbp);
3172
3173	/*
3174	 * Submit buffers that have been added from the last record processed,
3175	 * regardless of error status.
3176	 */
3177	if (!list_empty(&buffer_list))
3178		error2 = xfs_buf_delwri_submit(&buffer_list);
3179
3180	if (error && first_bad)
3181		*first_bad = rhead_blk;
3182
3183	/*
3184	 * Transactions are freed at commit time but transactions without commit
3185	 * records on disk are never committed. Free any that may be left in the
3186	 * hash table.
3187	 */
3188	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
3189		struct hlist_node	*tmp;
3190		struct xlog_recover	*trans;
3191
3192		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
3193			xlog_recover_free_trans(trans);
3194	}
3195
3196	return error ? error : error2;
3197}
3198
3199/*
3200 * Do the recovery of the log.  We actually do this in two phases.
3201 * The two passes are necessary in order to implement the function
3202 * of cancelling a record written into the log.  The first pass
3203 * determines those things which have been cancelled, and the
3204 * second pass replays log items normally except for those which
3205 * have been cancelled.  The handling of the replay and cancellations
3206 * takes place in the log item type specific routines.
3207 *
3208 * The table of items which have cancel records in the log is allocated
3209 * and freed at this level, since only here do we know when all of
3210 * the log recovery has been completed.
3211 */
3212STATIC int
3213xlog_do_log_recovery(
3214	struct xlog	*log,
3215	xfs_daddr_t	head_blk,
3216	xfs_daddr_t	tail_blk)
3217{
3218	int		error, i;
3219
3220	ASSERT(head_blk != tail_blk);
3221
3222	/*
3223	 * First do a pass to find all of the cancelled buf log items.
3224	 * Store them in the buf_cancel_table for use in the second pass.
3225	 */
3226	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3227						 sizeof(struct list_head),
3228						 0);
3229	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3230		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3231
3232	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3233				      XLOG_RECOVER_PASS1, NULL);
3234	if (error != 0) {
3235		kmem_free(log->l_buf_cancel_table);
3236		log->l_buf_cancel_table = NULL;
3237		return error;
3238	}
3239	/*
3240	 * Then do a second pass to actually recover the items in the log.
3241	 * When it is complete free the table of buf cancel items.
3242	 */
3243	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3244				      XLOG_RECOVER_PASS2, NULL);
3245#ifdef DEBUG
3246	if (!error) {
3247		int	i;
3248
3249		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3250			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3251	}
3252#endif	/* DEBUG */
3253
3254	kmem_free(log->l_buf_cancel_table);
3255	log->l_buf_cancel_table = NULL;
3256
3257	return error;
3258}
3259
3260/*
3261 * Do the actual recovery
3262 */
3263STATIC int
3264xlog_do_recover(
3265	struct xlog		*log,
3266	xfs_daddr_t		head_blk,
3267	xfs_daddr_t		tail_blk)
3268{
3269	struct xfs_mount	*mp = log->l_mp;
3270	struct xfs_buf		*bp = mp->m_sb_bp;
3271	struct xfs_sb		*sbp = &mp->m_sb;
3272	int			error;
3273
3274	trace_xfs_log_recover(log, head_blk, tail_blk);
3275
3276	/*
3277	 * First replay the images in the log.
3278	 */
3279	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3280	if (error)
3281		return error;
 
 
 
3282
3283	/*
3284	 * If IO errors happened during recovery, bail out.
3285	 */
3286	if (XFS_FORCED_SHUTDOWN(mp))
3287		return -EIO;
 
3288
3289	/*
3290	 * We now update the tail_lsn since much of the recovery has completed
3291	 * and there may be space available to use.  If there were no extent
3292	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3293	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3294	 * lsn of the last known good LR on disk.  If there are extent frees
3295	 * or iunlinks they will have some entries in the AIL; so we look at
3296	 * the AIL to determine how to set the tail_lsn.
3297	 */
3298	xlog_assign_tail_lsn(mp);
3299
3300	/*
3301	 * Now that we've finished replaying all buffer and inode updates,
3302	 * re-read the superblock and reverify it.
3303	 */
3304	xfs_buf_lock(bp);
3305	xfs_buf_hold(bp);
3306	error = _xfs_buf_read(bp, XBF_READ);
 
 
 
 
 
3307	if (error) {
3308		if (!XFS_FORCED_SHUTDOWN(mp)) {
3309			xfs_buf_ioerror_alert(bp, __this_address);
3310			ASSERT(0);
3311		}
3312		xfs_buf_relse(bp);
3313		return error;
3314	}
3315
3316	/* Convert superblock from on-disk format */
3317	xfs_sb_from_disk(sbp, bp->b_addr);
 
 
 
3318	xfs_buf_relse(bp);
3319
3320	/* re-initialise in-core superblock and geometry structures */
3321	xfs_reinit_percpu_counters(mp);
3322	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
3323	if (error) {
3324		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
3325		return error;
3326	}
3327	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
3328
3329	xlog_recover_check_summary(log);
3330
3331	/* Normal transactions can now occur */
3332	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3333	return 0;
3334}
3335
3336/*
3337 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3338 *
3339 * Return error or zero.
3340 */
3341int
3342xlog_recover(
3343	struct xlog	*log)
3344{
3345	xfs_daddr_t	head_blk, tail_blk;
3346	int		error;
3347
3348	/* find the tail of the log */
3349	error = xlog_find_tail(log, &head_blk, &tail_blk);
3350	if (error)
3351		return error;
3352
3353	/*
3354	 * The superblock was read before the log was available and thus the LSN
3355	 * could not be verified. Check the superblock LSN against the current
3356	 * LSN now that it's known.
3357	 */
3358	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
3359	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
3360		return -EINVAL;
3361
3362	if (tail_blk != head_blk) {
3363		/* There used to be a comment here:
3364		 *
3365		 * disallow recovery on read-only mounts.  note -- mount
3366		 * checks for ENOSPC and turns it into an intelligent
3367		 * error message.
3368		 * ...but this is no longer true.  Now, unless you specify
3369		 * NORECOVERY (in which case this function would never be
3370		 * called), we just go ahead and recover.  We do this all
3371		 * under the vfs layer, so we can get away with it unless
3372		 * the device itself is read-only, in which case we fail.
3373		 */
3374		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3375			return error;
3376		}
3377
3378		/*
3379		 * Version 5 superblock log feature mask validation. We know the
3380		 * log is dirty so check if there are any unknown log features
3381		 * in what we need to recover. If there are unknown features
3382		 * (e.g. unsupported transactions, then simply reject the
3383		 * attempt at recovery before touching anything.
3384		 */
3385		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
3386		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
3387					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
3388			xfs_warn(log->l_mp,
3389"Superblock has unknown incompatible log features (0x%x) enabled.",
3390				(log->l_mp->m_sb.sb_features_log_incompat &
3391					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
3392			xfs_warn(log->l_mp,
3393"The log can not be fully and/or safely recovered by this kernel.");
3394			xfs_warn(log->l_mp,
3395"Please recover the log on a kernel that supports the unknown features.");
3396			return -EINVAL;
3397		}
3398
3399		/*
3400		 * Delay log recovery if the debug hook is set. This is debug
3401		 * instrumentation to coordinate simulation of I/O failures with
3402		 * log recovery.
3403		 */
3404		if (xfs_globals.log_recovery_delay) {
3405			xfs_notice(log->l_mp,
3406				"Delaying log recovery for %d seconds.",
3407				xfs_globals.log_recovery_delay);
3408			msleep(xfs_globals.log_recovery_delay * 1000);
3409		}
3410
3411		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3412				log->l_mp->m_logname ? log->l_mp->m_logname
3413						     : "internal");
3414
3415		error = xlog_do_recover(log, head_blk, tail_blk);
3416		log->l_flags |= XLOG_RECOVERY_NEEDED;
3417	}
3418	return error;
3419}
3420
3421/*
3422 * In the first part of recovery we replay inodes and buffers and build
3423 * up the list of extent free items which need to be processed.  Here
3424 * we process the extent free items and clean up the on disk unlinked
3425 * inode lists.  This is separated from the first part of recovery so
3426 * that the root and real-time bitmap inodes can be read in from disk in
3427 * between the two stages.  This is necessary so that we can free space
3428 * in the real-time portion of the file system.
3429 */
3430int
3431xlog_recover_finish(
3432	struct xlog	*log)
3433{
3434	/*
3435	 * Now we're ready to do the transactions needed for the
3436	 * rest of recovery.  Start with completing all the extent
3437	 * free intent records and then process the unlinked inode
3438	 * lists.  At this point, we essentially run in normal mode
3439	 * except that we're still performing recovery actions
3440	 * rather than accepting new requests.
3441	 */
3442	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3443		int	error;
3444		error = xlog_recover_process_intents(log);
3445		if (error) {
3446			/*
3447			 * Cancel all the unprocessed intent items now so that
3448			 * we don't leave them pinned in the AIL.  This can
3449			 * cause the AIL to livelock on the pinned item if
3450			 * anyone tries to push the AIL (inode reclaim does
3451			 * this) before we get around to xfs_log_mount_cancel.
3452			 */
3453			xlog_recover_cancel_intents(log);
3454			xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
3455			xfs_alert(log->l_mp, "Failed to recover intents");
3456			return error;
3457		}
3458
3459		/*
3460		 * Sync the log to get all the intents out of the AIL.
3461		 * This isn't absolutely necessary, but it helps in
3462		 * case the unlink transactions would have problems
3463		 * pushing the intents out of the way.
3464		 */
3465		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3466
3467		xlog_recover_process_iunlinks(log);
3468
3469		xlog_recover_check_summary(log);
3470
3471		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3472				log->l_mp->m_logname ? log->l_mp->m_logname
3473						     : "internal");
3474		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3475	} else {
3476		xfs_info(log->l_mp, "Ending clean mount");
3477	}
3478	return 0;
3479}
3480
3481void
3482xlog_recover_cancel(
3483	struct xlog	*log)
3484{
3485	if (log->l_flags & XLOG_RECOVERY_NEEDED)
3486		xlog_recover_cancel_intents(log);
3487}
3488
3489#if defined(DEBUG)
3490/*
3491 * Read all of the agf and agi counters and check that they
3492 * are consistent with the superblock counters.
3493 */
3494STATIC void
3495xlog_recover_check_summary(
3496	struct xlog		*log)
3497{
3498	struct xfs_mount	*mp = log->l_mp;
3499	struct xfs_perag	*pag;
3500	struct xfs_buf		*agfbp;
3501	struct xfs_buf		*agibp;
3502	xfs_agnumber_t		agno;
3503	uint64_t		freeblks;
3504	uint64_t		itotal;
3505	uint64_t		ifree;
3506	int			error;
3507
3508	mp = log->l_mp;
3509
3510	freeblks = 0LL;
3511	itotal = 0LL;
3512	ifree = 0LL;
3513	for_each_perag(mp, agno, pag) {
3514		error = xfs_read_agf(mp, NULL, pag->pag_agno, 0, &agfbp);
3515		if (error) {
3516			xfs_alert(mp, "%s agf read failed agno %d error %d",
3517						__func__, pag->pag_agno, error);
3518		} else {
3519			struct xfs_agf	*agfp = agfbp->b_addr;
3520
3521			freeblks += be32_to_cpu(agfp->agf_freeblks) +
3522				    be32_to_cpu(agfp->agf_flcount);
3523			xfs_buf_relse(agfbp);
3524		}
3525
3526		error = xfs_read_agi(mp, NULL, pag->pag_agno, &agibp);
3527		if (error) {
3528			xfs_alert(mp, "%s agi read failed agno %d error %d",
3529						__func__, pag->pag_agno, error);
3530		} else {
3531			struct xfs_agi	*agi = agibp->b_addr;
3532
3533			itotal += be32_to_cpu(agi->agi_count);
3534			ifree += be32_to_cpu(agi->agi_freecount);
3535			xfs_buf_relse(agibp);
3536		}
3537	}
3538}
3539#endif /* DEBUG */