Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_sb.h"
  26#include "xfs_ag.h"
  27#include "xfs_mount.h"
  28#include "xfs_error.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_alloc_btree.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_dinode.h"
  33#include "xfs_inode.h"
  34#include "xfs_inode_item.h"
  35#include "xfs_alloc.h"
  36#include "xfs_ialloc.h"
  37#include "xfs_log_priv.h"
  38#include "xfs_buf_item.h"
  39#include "xfs_log_recover.h"
  40#include "xfs_extfree_item.h"
  41#include "xfs_trans_priv.h"
  42#include "xfs_quota.h"
  43#include "xfs_rw.h"
  44#include "xfs_utils.h"
  45#include "xfs_trace.h"
  46
  47STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  48STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  49#if defined(DEBUG)
  50STATIC void	xlog_recover_check_summary(xlog_t *);
  51#else
  52#define	xlog_recover_check_summary(log)
  53#endif
  54
  55/*
  56 * This structure is used during recovery to record the buf log items which
  57 * have been canceled and should not be replayed.
  58 */
  59struct xfs_buf_cancel {
  60	xfs_daddr_t		bc_blkno;
  61	uint			bc_len;
  62	int			bc_refcount;
  63	struct list_head	bc_list;
  64};
  65
  66/*
  67 * Sector aligned buffer routines for buffer create/read/write/access
  68 */
  69
  70/*
  71 * Verify the given count of basic blocks is valid number of blocks
  72 * to specify for an operation involving the given XFS log buffer.
  73 * Returns nonzero if the count is valid, 0 otherwise.
  74 */
  75
  76static inline int
  77xlog_buf_bbcount_valid(
  78	xlog_t		*log,
  79	int		bbcount)
  80{
  81	return bbcount > 0 && bbcount <= log->l_logBBsize;
  82}
  83
  84/*
  85 * Allocate a buffer to hold log data.  The buffer needs to be able
  86 * to map to a range of nbblks basic blocks at any valid (basic
  87 * block) offset within the log.
  88 */
  89STATIC xfs_buf_t *
  90xlog_get_bp(
  91	xlog_t		*log,
  92	int		nbblks)
  93{
  94	struct xfs_buf	*bp;
  95
  96	if (!xlog_buf_bbcount_valid(log, nbblks)) {
  97		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  98			nbblks);
  99		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 100		return NULL;
 101	}
 102
 103	/*
 104	 * We do log I/O in units of log sectors (a power-of-2
 105	 * multiple of the basic block size), so we round up the
 106	 * requested size to accommodate the basic blocks required
 107	 * for complete log sectors.
 108	 *
 109	 * In addition, the buffer may be used for a non-sector-
 110	 * aligned block offset, in which case an I/O of the
 111	 * requested size could extend beyond the end of the
 112	 * buffer.  If the requested size is only 1 basic block it
 113	 * will never straddle a sector boundary, so this won't be
 114	 * an issue.  Nor will this be a problem if the log I/O is
 115	 * done in basic blocks (sector size 1).  But otherwise we
 116	 * extend the buffer by one extra log sector to ensure
 117	 * there's space to accommodate this possibility.
 118	 */
 119	if (nbblks > 1 && log->l_sectBBsize > 1)
 120		nbblks += log->l_sectBBsize;
 121	nbblks = round_up(nbblks, log->l_sectBBsize);
 122
 123	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, BBTOB(nbblks), 0);
 124	if (bp)
 125		xfs_buf_unlock(bp);
 126	return bp;
 127}
 128
 129STATIC void
 130xlog_put_bp(
 131	xfs_buf_t	*bp)
 132{
 133	xfs_buf_free(bp);
 134}
 135
 136/*
 137 * Return the address of the start of the given block number's data
 138 * in a log buffer.  The buffer covers a log sector-aligned region.
 139 */
 140STATIC xfs_caddr_t
 141xlog_align(
 142	xlog_t		*log,
 143	xfs_daddr_t	blk_no,
 144	int		nbblks,
 145	xfs_buf_t	*bp)
 146{
 147	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
 148
 149	ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
 150	return bp->b_addr + BBTOB(offset);
 151}
 152
 153
 154/*
 155 * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
 156 */
 157STATIC int
 158xlog_bread_noalign(
 159	xlog_t		*log,
 160	xfs_daddr_t	blk_no,
 161	int		nbblks,
 162	xfs_buf_t	*bp)
 163{
 164	int		error;
 165
 166	if (!xlog_buf_bbcount_valid(log, nbblks)) {
 167		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 168			nbblks);
 169		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 170		return EFSCORRUPTED;
 171	}
 172
 173	blk_no = round_down(blk_no, log->l_sectBBsize);
 174	nbblks = round_up(nbblks, log->l_sectBBsize);
 175
 176	ASSERT(nbblks > 0);
 177	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
 178
 179	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 180	XFS_BUF_READ(bp);
 181	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
 
 182
 183	xfsbdstrat(log->l_mp, bp);
 184	error = xfs_buf_iowait(bp);
 185	if (error)
 186		xfs_ioerror_alert("xlog_bread", log->l_mp,
 187				  bp, XFS_BUF_ADDR(bp));
 188	return error;
 189}
 190
 191STATIC int
 192xlog_bread(
 193	xlog_t		*log,
 194	xfs_daddr_t	blk_no,
 195	int		nbblks,
 196	xfs_buf_t	*bp,
 197	xfs_caddr_t	*offset)
 198{
 199	int		error;
 200
 201	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 202	if (error)
 203		return error;
 204
 205	*offset = xlog_align(log, blk_no, nbblks, bp);
 206	return 0;
 207}
 208
 209/*
 210 * Read at an offset into the buffer. Returns with the buffer in it's original
 211 * state regardless of the result of the read.
 212 */
 213STATIC int
 214xlog_bread_offset(
 215	xlog_t		*log,
 216	xfs_daddr_t	blk_no,		/* block to read from */
 217	int		nbblks,		/* blocks to read */
 218	xfs_buf_t	*bp,
 219	xfs_caddr_t	offset)
 220{
 221	xfs_caddr_t	orig_offset = bp->b_addr;
 222	int		orig_len = bp->b_buffer_length;
 223	int		error, error2;
 224
 225	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
 226	if (error)
 227		return error;
 228
 229	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 230
 231	/* must reset buffer pointer even on error */
 232	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
 233	if (error)
 234		return error;
 235	return error2;
 236}
 237
 238/*
 239 * Write out the buffer at the given block for the given number of blocks.
 240 * The buffer is kept locked across the write and is returned locked.
 241 * This can only be used for synchronous log writes.
 242 */
 243STATIC int
 244xlog_bwrite(
 245	xlog_t		*log,
 246	xfs_daddr_t	blk_no,
 247	int		nbblks,
 248	xfs_buf_t	*bp)
 249{
 250	int		error;
 251
 252	if (!xlog_buf_bbcount_valid(log, nbblks)) {
 253		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 254			nbblks);
 255		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 256		return EFSCORRUPTED;
 257	}
 258
 259	blk_no = round_down(blk_no, log->l_sectBBsize);
 260	nbblks = round_up(nbblks, log->l_sectBBsize);
 261
 262	ASSERT(nbblks > 0);
 263	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
 264
 265	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 266	XFS_BUF_ZEROFLAGS(bp);
 267	xfs_buf_hold(bp);
 268	xfs_buf_lock(bp);
 269	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
 
 270
 271	if ((error = xfs_bwrite(log->l_mp, bp)))
 272		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
 273				  bp, XFS_BUF_ADDR(bp));
 
 274	return error;
 275}
 276
 277#ifdef DEBUG
 278/*
 279 * dump debug superblock and log record information
 280 */
 281STATIC void
 282xlog_header_check_dump(
 283	xfs_mount_t		*mp,
 284	xlog_rec_header_t	*head)
 285{
 286	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d\n",
 287		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 288	xfs_debug(mp, "    log : uuid = %pU, fmt = %d\n",
 289		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 290}
 291#else
 292#define xlog_header_check_dump(mp, head)
 293#endif
 294
 295/*
 296 * check log record header for recovery
 297 */
 298STATIC int
 299xlog_header_check_recover(
 300	xfs_mount_t		*mp,
 301	xlog_rec_header_t	*head)
 302{
 303	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 304
 305	/*
 306	 * IRIX doesn't write the h_fmt field and leaves it zeroed
 307	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 308	 * a dirty log created in IRIX.
 309	 */
 310	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
 311		xfs_warn(mp,
 312	"dirty log written in incompatible format - can't recover");
 313		xlog_header_check_dump(mp, head);
 314		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
 315				 XFS_ERRLEVEL_HIGH, mp);
 316		return XFS_ERROR(EFSCORRUPTED);
 317	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 318		xfs_warn(mp,
 319	"dirty log entry has mismatched uuid - can't recover");
 320		xlog_header_check_dump(mp, head);
 321		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
 322				 XFS_ERRLEVEL_HIGH, mp);
 323		return XFS_ERROR(EFSCORRUPTED);
 324	}
 325	return 0;
 326}
 327
 328/*
 329 * read the head block of the log and check the header
 330 */
 331STATIC int
 332xlog_header_check_mount(
 333	xfs_mount_t		*mp,
 334	xlog_rec_header_t	*head)
 335{
 336	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 337
 338	if (uuid_is_nil(&head->h_fs_uuid)) {
 339		/*
 340		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 341		 * h_fs_uuid is nil, we assume this log was last mounted
 342		 * by IRIX and continue.
 343		 */
 344		xfs_warn(mp, "nil uuid in log - IRIX style log");
 345	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 346		xfs_warn(mp, "log has mismatched uuid - can't recover");
 347		xlog_header_check_dump(mp, head);
 348		XFS_ERROR_REPORT("xlog_header_check_mount",
 349				 XFS_ERRLEVEL_HIGH, mp);
 350		return XFS_ERROR(EFSCORRUPTED);
 351	}
 352	return 0;
 353}
 354
 355STATIC void
 356xlog_recover_iodone(
 357	struct xfs_buf	*bp)
 358{
 359	if (bp->b_error) {
 360		/*
 361		 * We're not going to bother about retrying
 362		 * this during recovery. One strike!
 363		 */
 364		xfs_ioerror_alert("xlog_recover_iodone",
 365					bp->b_target->bt_mount, bp,
 366					XFS_BUF_ADDR(bp));
 367		xfs_force_shutdown(bp->b_target->bt_mount,
 368					SHUTDOWN_META_IO_ERROR);
 369	}
 370	bp->b_iodone = NULL;
 371	xfs_buf_ioend(bp, 0);
 372}
 373
 374/*
 375 * This routine finds (to an approximation) the first block in the physical
 376 * log which contains the given cycle.  It uses a binary search algorithm.
 377 * Note that the algorithm can not be perfect because the disk will not
 378 * necessarily be perfect.
 379 */
 380STATIC int
 381xlog_find_cycle_start(
 382	xlog_t		*log,
 383	xfs_buf_t	*bp,
 384	xfs_daddr_t	first_blk,
 385	xfs_daddr_t	*last_blk,
 386	uint		cycle)
 387{
 388	xfs_caddr_t	offset;
 389	xfs_daddr_t	mid_blk;
 390	xfs_daddr_t	end_blk;
 391	uint		mid_cycle;
 392	int		error;
 393
 394	end_blk = *last_blk;
 395	mid_blk = BLK_AVG(first_blk, end_blk);
 396	while (mid_blk != first_blk && mid_blk != end_blk) {
 397		error = xlog_bread(log, mid_blk, 1, bp, &offset);
 398		if (error)
 399			return error;
 400		mid_cycle = xlog_get_cycle(offset);
 401		if (mid_cycle == cycle)
 402			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 403		else
 404			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 405		mid_blk = BLK_AVG(first_blk, end_blk);
 406	}
 407	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 408	       (mid_blk == end_blk && mid_blk-1 == first_blk));
 409
 410	*last_blk = end_blk;
 411
 412	return 0;
 413}
 414
 415/*
 416 * Check that a range of blocks does not contain stop_on_cycle_no.
 417 * Fill in *new_blk with the block offset where such a block is
 418 * found, or with -1 (an invalid block number) if there is no such
 419 * block in the range.  The scan needs to occur from front to back
 420 * and the pointer into the region must be updated since a later
 421 * routine will need to perform another test.
 422 */
 423STATIC int
 424xlog_find_verify_cycle(
 425	xlog_t		*log,
 426	xfs_daddr_t	start_blk,
 427	int		nbblks,
 428	uint		stop_on_cycle_no,
 429	xfs_daddr_t	*new_blk)
 430{
 431	xfs_daddr_t	i, j;
 432	uint		cycle;
 433	xfs_buf_t	*bp;
 434	xfs_daddr_t	bufblks;
 435	xfs_caddr_t	buf = NULL;
 436	int		error = 0;
 437
 438	/*
 439	 * Greedily allocate a buffer big enough to handle the full
 440	 * range of basic blocks we'll be examining.  If that fails,
 441	 * try a smaller size.  We need to be able to read at least
 442	 * a log sector, or we're out of luck.
 443	 */
 444	bufblks = 1 << ffs(nbblks);
 
 
 445	while (!(bp = xlog_get_bp(log, bufblks))) {
 446		bufblks >>= 1;
 447		if (bufblks < log->l_sectBBsize)
 448			return ENOMEM;
 449	}
 450
 451	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 452		int	bcount;
 453
 454		bcount = min(bufblks, (start_blk + nbblks - i));
 455
 456		error = xlog_bread(log, i, bcount, bp, &buf);
 457		if (error)
 458			goto out;
 459
 460		for (j = 0; j < bcount; j++) {
 461			cycle = xlog_get_cycle(buf);
 462			if (cycle == stop_on_cycle_no) {
 463				*new_blk = i+j;
 464				goto out;
 465			}
 466
 467			buf += BBSIZE;
 468		}
 469	}
 470
 471	*new_blk = -1;
 472
 473out:
 474	xlog_put_bp(bp);
 475	return error;
 476}
 477
 478/*
 479 * Potentially backup over partial log record write.
 480 *
 481 * In the typical case, last_blk is the number of the block directly after
 482 * a good log record.  Therefore, we subtract one to get the block number
 483 * of the last block in the given buffer.  extra_bblks contains the number
 484 * of blocks we would have read on a previous read.  This happens when the
 485 * last log record is split over the end of the physical log.
 486 *
 487 * extra_bblks is the number of blocks potentially verified on a previous
 488 * call to this routine.
 489 */
 490STATIC int
 491xlog_find_verify_log_record(
 492	xlog_t			*log,
 493	xfs_daddr_t		start_blk,
 494	xfs_daddr_t		*last_blk,
 495	int			extra_bblks)
 496{
 497	xfs_daddr_t		i;
 498	xfs_buf_t		*bp;
 499	xfs_caddr_t		offset = NULL;
 500	xlog_rec_header_t	*head = NULL;
 501	int			error = 0;
 502	int			smallmem = 0;
 503	int			num_blks = *last_blk - start_blk;
 504	int			xhdrs;
 505
 506	ASSERT(start_blk != 0 || *last_blk != start_blk);
 507
 508	if (!(bp = xlog_get_bp(log, num_blks))) {
 509		if (!(bp = xlog_get_bp(log, 1)))
 510			return ENOMEM;
 511		smallmem = 1;
 512	} else {
 513		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
 514		if (error)
 515			goto out;
 516		offset += ((num_blks - 1) << BBSHIFT);
 517	}
 518
 519	for (i = (*last_blk) - 1; i >= 0; i--) {
 520		if (i < start_blk) {
 521			/* valid log record not found */
 522			xfs_warn(log->l_mp,
 523		"Log inconsistent (didn't find previous header)");
 524			ASSERT(0);
 525			error = XFS_ERROR(EIO);
 526			goto out;
 527		}
 528
 529		if (smallmem) {
 530			error = xlog_bread(log, i, 1, bp, &offset);
 531			if (error)
 532				goto out;
 533		}
 534
 535		head = (xlog_rec_header_t *)offset;
 536
 537		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
 538			break;
 539
 540		if (!smallmem)
 541			offset -= BBSIZE;
 542	}
 543
 544	/*
 545	 * We hit the beginning of the physical log & still no header.  Return
 546	 * to caller.  If caller can handle a return of -1, then this routine
 547	 * will be called again for the end of the physical log.
 548	 */
 549	if (i == -1) {
 550		error = -1;
 551		goto out;
 552	}
 553
 554	/*
 555	 * We have the final block of the good log (the first block
 556	 * of the log record _before_ the head. So we check the uuid.
 557	 */
 558	if ((error = xlog_header_check_mount(log->l_mp, head)))
 559		goto out;
 560
 561	/*
 562	 * We may have found a log record header before we expected one.
 563	 * last_blk will be the 1st block # with a given cycle #.  We may end
 564	 * up reading an entire log record.  In this case, we don't want to
 565	 * reset last_blk.  Only when last_blk points in the middle of a log
 566	 * record do we update last_blk.
 567	 */
 568	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 569		uint	h_size = be32_to_cpu(head->h_size);
 570
 571		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 572		if (h_size % XLOG_HEADER_CYCLE_SIZE)
 573			xhdrs++;
 574	} else {
 575		xhdrs = 1;
 576	}
 577
 578	if (*last_blk - i + extra_bblks !=
 579	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 580		*last_blk = i;
 581
 582out:
 583	xlog_put_bp(bp);
 584	return error;
 585}
 586
 587/*
 588 * Head is defined to be the point of the log where the next log write
 589 * write could go.  This means that incomplete LR writes at the end are
 590 * eliminated when calculating the head.  We aren't guaranteed that previous
 591 * LR have complete transactions.  We only know that a cycle number of
 592 * current cycle number -1 won't be present in the log if we start writing
 593 * from our current block number.
 594 *
 595 * last_blk contains the block number of the first block with a given
 596 * cycle number.
 597 *
 598 * Return: zero if normal, non-zero if error.
 599 */
 600STATIC int
 601xlog_find_head(
 602	xlog_t 		*log,
 603	xfs_daddr_t	*return_head_blk)
 604{
 605	xfs_buf_t	*bp;
 606	xfs_caddr_t	offset;
 607	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
 608	int		num_scan_bblks;
 609	uint		first_half_cycle, last_half_cycle;
 610	uint		stop_on_cycle;
 611	int		error, log_bbnum = log->l_logBBsize;
 612
 613	/* Is the end of the log device zeroed? */
 614	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
 615		*return_head_blk = first_blk;
 616
 617		/* Is the whole lot zeroed? */
 618		if (!first_blk) {
 619			/* Linux XFS shouldn't generate totally zeroed logs -
 620			 * mkfs etc write a dummy unmount record to a fresh
 621			 * log so we can store the uuid in there
 622			 */
 623			xfs_warn(log->l_mp, "totally zeroed log");
 624		}
 625
 626		return 0;
 627	} else if (error) {
 628		xfs_warn(log->l_mp, "empty log check failed");
 629		return error;
 630	}
 631
 632	first_blk = 0;			/* get cycle # of 1st block */
 633	bp = xlog_get_bp(log, 1);
 634	if (!bp)
 635		return ENOMEM;
 636
 637	error = xlog_bread(log, 0, 1, bp, &offset);
 638	if (error)
 639		goto bp_err;
 640
 641	first_half_cycle = xlog_get_cycle(offset);
 642
 643	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
 644	error = xlog_bread(log, last_blk, 1, bp, &offset);
 645	if (error)
 646		goto bp_err;
 647
 648	last_half_cycle = xlog_get_cycle(offset);
 649	ASSERT(last_half_cycle != 0);
 650
 651	/*
 652	 * If the 1st half cycle number is equal to the last half cycle number,
 653	 * then the entire log is stamped with the same cycle number.  In this
 654	 * case, head_blk can't be set to zero (which makes sense).  The below
 655	 * math doesn't work out properly with head_blk equal to zero.  Instead,
 656	 * we set it to log_bbnum which is an invalid block number, but this
 657	 * value makes the math correct.  If head_blk doesn't changed through
 658	 * all the tests below, *head_blk is set to zero at the very end rather
 659	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 660	 * in a circular file.
 661	 */
 662	if (first_half_cycle == last_half_cycle) {
 663		/*
 664		 * In this case we believe that the entire log should have
 665		 * cycle number last_half_cycle.  We need to scan backwards
 666		 * from the end verifying that there are no holes still
 667		 * containing last_half_cycle - 1.  If we find such a hole,
 668		 * then the start of that hole will be the new head.  The
 669		 * simple case looks like
 670		 *        x | x ... | x - 1 | x
 671		 * Another case that fits this picture would be
 672		 *        x | x + 1 | x ... | x
 673		 * In this case the head really is somewhere at the end of the
 674		 * log, as one of the latest writes at the beginning was
 675		 * incomplete.
 676		 * One more case is
 677		 *        x | x + 1 | x ... | x - 1 | x
 678		 * This is really the combination of the above two cases, and
 679		 * the head has to end up at the start of the x-1 hole at the
 680		 * end of the log.
 681		 *
 682		 * In the 256k log case, we will read from the beginning to the
 683		 * end of the log and search for cycle numbers equal to x-1.
 684		 * We don't worry about the x+1 blocks that we encounter,
 685		 * because we know that they cannot be the head since the log
 686		 * started with x.
 687		 */
 688		head_blk = log_bbnum;
 689		stop_on_cycle = last_half_cycle - 1;
 690	} else {
 691		/*
 692		 * In this case we want to find the first block with cycle
 693		 * number matching last_half_cycle.  We expect the log to be
 694		 * some variation on
 695		 *        x + 1 ... | x ... | x
 696		 * The first block with cycle number x (last_half_cycle) will
 697		 * be where the new head belongs.  First we do a binary search
 698		 * for the first occurrence of last_half_cycle.  The binary
 699		 * search may not be totally accurate, so then we scan back
 700		 * from there looking for occurrences of last_half_cycle before
 701		 * us.  If that backwards scan wraps around the beginning of
 702		 * the log, then we look for occurrences of last_half_cycle - 1
 703		 * at the end of the log.  The cases we're looking for look
 704		 * like
 705		 *                               v binary search stopped here
 706		 *        x + 1 ... | x | x + 1 | x ... | x
 707		 *                   ^ but we want to locate this spot
 708		 * or
 709		 *        <---------> less than scan distance
 710		 *        x + 1 ... | x ... | x - 1 | x
 711		 *                           ^ we want to locate this spot
 712		 */
 713		stop_on_cycle = last_half_cycle;
 714		if ((error = xlog_find_cycle_start(log, bp, first_blk,
 715						&head_blk, last_half_cycle)))
 716			goto bp_err;
 717	}
 718
 719	/*
 720	 * Now validate the answer.  Scan back some number of maximum possible
 721	 * blocks and make sure each one has the expected cycle number.  The
 722	 * maximum is determined by the total possible amount of buffering
 723	 * in the in-core log.  The following number can be made tighter if
 724	 * we actually look at the block size of the filesystem.
 725	 */
 726	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
 727	if (head_blk >= num_scan_bblks) {
 728		/*
 729		 * We are guaranteed that the entire check can be performed
 730		 * in one buffer.
 731		 */
 732		start_blk = head_blk - num_scan_bblks;
 733		if ((error = xlog_find_verify_cycle(log,
 734						start_blk, num_scan_bblks,
 735						stop_on_cycle, &new_blk)))
 736			goto bp_err;
 737		if (new_blk != -1)
 738			head_blk = new_blk;
 739	} else {		/* need to read 2 parts of log */
 740		/*
 741		 * We are going to scan backwards in the log in two parts.
 742		 * First we scan the physical end of the log.  In this part
 743		 * of the log, we are looking for blocks with cycle number
 744		 * last_half_cycle - 1.
 745		 * If we find one, then we know that the log starts there, as
 746		 * we've found a hole that didn't get written in going around
 747		 * the end of the physical log.  The simple case for this is
 748		 *        x + 1 ... | x ... | x - 1 | x
 749		 *        <---------> less than scan distance
 750		 * If all of the blocks at the end of the log have cycle number
 751		 * last_half_cycle, then we check the blocks at the start of
 752		 * the log looking for occurrences of last_half_cycle.  If we
 753		 * find one, then our current estimate for the location of the
 754		 * first occurrence of last_half_cycle is wrong and we move
 755		 * back to the hole we've found.  This case looks like
 756		 *        x + 1 ... | x | x + 1 | x ...
 757		 *                               ^ binary search stopped here
 758		 * Another case we need to handle that only occurs in 256k
 759		 * logs is
 760		 *        x + 1 ... | x ... | x+1 | x ...
 761		 *                   ^ binary search stops here
 762		 * In a 256k log, the scan at the end of the log will see the
 763		 * x + 1 blocks.  We need to skip past those since that is
 764		 * certainly not the head of the log.  By searching for
 765		 * last_half_cycle-1 we accomplish that.
 766		 */
 767		ASSERT(head_blk <= INT_MAX &&
 768			(xfs_daddr_t) num_scan_bblks >= head_blk);
 769		start_blk = log_bbnum - (num_scan_bblks - head_blk);
 770		if ((error = xlog_find_verify_cycle(log, start_blk,
 771					num_scan_bblks - (int)head_blk,
 772					(stop_on_cycle - 1), &new_blk)))
 773			goto bp_err;
 774		if (new_blk != -1) {
 775			head_blk = new_blk;
 776			goto validate_head;
 777		}
 778
 779		/*
 780		 * Scan beginning of log now.  The last part of the physical
 781		 * log is good.  This scan needs to verify that it doesn't find
 782		 * the last_half_cycle.
 783		 */
 784		start_blk = 0;
 785		ASSERT(head_blk <= INT_MAX);
 786		if ((error = xlog_find_verify_cycle(log,
 787					start_blk, (int)head_blk,
 788					stop_on_cycle, &new_blk)))
 789			goto bp_err;
 790		if (new_blk != -1)
 791			head_blk = new_blk;
 792	}
 793
 794validate_head:
 795	/*
 796	 * Now we need to make sure head_blk is not pointing to a block in
 797	 * the middle of a log record.
 798	 */
 799	num_scan_bblks = XLOG_REC_SHIFT(log);
 800	if (head_blk >= num_scan_bblks) {
 801		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 802
 803		/* start ptr at last block ptr before head_blk */
 804		if ((error = xlog_find_verify_log_record(log, start_blk,
 805							&head_blk, 0)) == -1) {
 806			error = XFS_ERROR(EIO);
 807			goto bp_err;
 808		} else if (error)
 809			goto bp_err;
 810	} else {
 811		start_blk = 0;
 812		ASSERT(head_blk <= INT_MAX);
 813		if ((error = xlog_find_verify_log_record(log, start_blk,
 814							&head_blk, 0)) == -1) {
 815			/* We hit the beginning of the log during our search */
 816			start_blk = log_bbnum - (num_scan_bblks - head_blk);
 817			new_blk = log_bbnum;
 818			ASSERT(start_blk <= INT_MAX &&
 819				(xfs_daddr_t) log_bbnum-start_blk >= 0);
 820			ASSERT(head_blk <= INT_MAX);
 821			if ((error = xlog_find_verify_log_record(log,
 822							start_blk, &new_blk,
 823							(int)head_blk)) == -1) {
 824				error = XFS_ERROR(EIO);
 825				goto bp_err;
 826			} else if (error)
 827				goto bp_err;
 828			if (new_blk != log_bbnum)
 829				head_blk = new_blk;
 830		} else if (error)
 831			goto bp_err;
 832	}
 833
 834	xlog_put_bp(bp);
 835	if (head_blk == log_bbnum)
 836		*return_head_blk = 0;
 837	else
 838		*return_head_blk = head_blk;
 839	/*
 840	 * When returning here, we have a good block number.  Bad block
 841	 * means that during a previous crash, we didn't have a clean break
 842	 * from cycle number N to cycle number N-1.  In this case, we need
 843	 * to find the first block with cycle number N-1.
 844	 */
 845	return 0;
 846
 847 bp_err:
 848	xlog_put_bp(bp);
 849
 850	if (error)
 851		xfs_warn(log->l_mp, "failed to find log head");
 852	return error;
 853}
 854
 855/*
 856 * Find the sync block number or the tail of the log.
 857 *
 858 * This will be the block number of the last record to have its
 859 * associated buffers synced to disk.  Every log record header has
 860 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
 861 * to get a sync block number.  The only concern is to figure out which
 862 * log record header to believe.
 863 *
 864 * The following algorithm uses the log record header with the largest
 865 * lsn.  The entire log record does not need to be valid.  We only care
 866 * that the header is valid.
 867 *
 868 * We could speed up search by using current head_blk buffer, but it is not
 869 * available.
 870 */
 871STATIC int
 872xlog_find_tail(
 873	xlog_t			*log,
 874	xfs_daddr_t		*head_blk,
 875	xfs_daddr_t		*tail_blk)
 876{
 877	xlog_rec_header_t	*rhead;
 878	xlog_op_header_t	*op_head;
 879	xfs_caddr_t		offset = NULL;
 880	xfs_buf_t		*bp;
 881	int			error, i, found;
 882	xfs_daddr_t		umount_data_blk;
 883	xfs_daddr_t		after_umount_blk;
 884	xfs_lsn_t		tail_lsn;
 885	int			hblks;
 886
 887	found = 0;
 888
 889	/*
 890	 * Find previous log record
 891	 */
 892	if ((error = xlog_find_head(log, head_blk)))
 893		return error;
 894
 895	bp = xlog_get_bp(log, 1);
 896	if (!bp)
 897		return ENOMEM;
 898	if (*head_blk == 0) {				/* special case */
 899		error = xlog_bread(log, 0, 1, bp, &offset);
 900		if (error)
 901			goto done;
 902
 903		if (xlog_get_cycle(offset) == 0) {
 904			*tail_blk = 0;
 905			/* leave all other log inited values alone */
 906			goto done;
 907		}
 908	}
 909
 910	/*
 911	 * Search backwards looking for log record header block
 912	 */
 913	ASSERT(*head_blk < INT_MAX);
 914	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
 915		error = xlog_bread(log, i, 1, bp, &offset);
 916		if (error)
 917			goto done;
 918
 919		if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 920			found = 1;
 921			break;
 922		}
 923	}
 924	/*
 925	 * If we haven't found the log record header block, start looking
 926	 * again from the end of the physical log.  XXXmiken: There should be
 927	 * a check here to make sure we didn't search more than N blocks in
 928	 * the previous code.
 929	 */
 930	if (!found) {
 931		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
 932			error = xlog_bread(log, i, 1, bp, &offset);
 933			if (error)
 934				goto done;
 935
 936			if (*(__be32 *)offset ==
 937			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 938				found = 2;
 939				break;
 940			}
 941		}
 942	}
 943	if (!found) {
 944		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
 945		ASSERT(0);
 946		return XFS_ERROR(EIO);
 947	}
 948
 949	/* find blk_no of tail of log */
 950	rhead = (xlog_rec_header_t *)offset;
 951	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
 952
 953	/*
 954	 * Reset log values according to the state of the log when we
 955	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
 956	 * one because the next write starts a new cycle rather than
 957	 * continuing the cycle of the last good log record.  At this
 958	 * point we have guaranteed that all partial log records have been
 959	 * accounted for.  Therefore, we know that the last good log record
 960	 * written was complete and ended exactly on the end boundary
 961	 * of the physical log.
 962	 */
 963	log->l_prev_block = i;
 964	log->l_curr_block = (int)*head_blk;
 965	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
 966	if (found == 2)
 967		log->l_curr_cycle++;
 968	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
 969	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
 970	xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
 971					BBTOB(log->l_curr_block));
 972	xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
 973					BBTOB(log->l_curr_block));
 974
 975	/*
 976	 * Look for unmount record.  If we find it, then we know there
 977	 * was a clean unmount.  Since 'i' could be the last block in
 978	 * the physical log, we convert to a log block before comparing
 979	 * to the head_blk.
 980	 *
 981	 * Save the current tail lsn to use to pass to
 982	 * xlog_clear_stale_blocks() below.  We won't want to clear the
 983	 * unmount record if there is one, so we pass the lsn of the
 984	 * unmount record rather than the block after it.
 985	 */
 986	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 987		int	h_size = be32_to_cpu(rhead->h_size);
 988		int	h_version = be32_to_cpu(rhead->h_version);
 989
 990		if ((h_version & XLOG_VERSION_2) &&
 991		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
 992			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
 993			if (h_size % XLOG_HEADER_CYCLE_SIZE)
 994				hblks++;
 995		} else {
 996			hblks = 1;
 997		}
 998	} else {
 999		hblks = 1;
1000	}
1001	after_umount_blk = (i + hblks + (int)
1002		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1003	tail_lsn = atomic64_read(&log->l_tail_lsn);
1004	if (*head_blk == after_umount_blk &&
1005	    be32_to_cpu(rhead->h_num_logops) == 1) {
1006		umount_data_blk = (i + hblks) % log->l_logBBsize;
1007		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1008		if (error)
1009			goto done;
1010
1011		op_head = (xlog_op_header_t *)offset;
1012		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1013			/*
1014			 * Set tail and last sync so that newly written
1015			 * log records will point recovery to after the
1016			 * current unmount record.
1017			 */
1018			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1019					log->l_curr_cycle, after_umount_blk);
1020			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1021					log->l_curr_cycle, after_umount_blk);
1022			*tail_blk = after_umount_blk;
1023
1024			/*
1025			 * Note that the unmount was clean. If the unmount
1026			 * was not clean, we need to know this to rebuild the
1027			 * superblock counters from the perag headers if we
1028			 * have a filesystem using non-persistent counters.
1029			 */
1030			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1031		}
1032	}
1033
1034	/*
1035	 * Make sure that there are no blocks in front of the head
1036	 * with the same cycle number as the head.  This can happen
1037	 * because we allow multiple outstanding log writes concurrently,
1038	 * and the later writes might make it out before earlier ones.
1039	 *
1040	 * We use the lsn from before modifying it so that we'll never
1041	 * overwrite the unmount record after a clean unmount.
1042	 *
1043	 * Do this only if we are going to recover the filesystem
1044	 *
1045	 * NOTE: This used to say "if (!readonly)"
1046	 * However on Linux, we can & do recover a read-only filesystem.
1047	 * We only skip recovery if NORECOVERY is specified on mount,
1048	 * in which case we would not be here.
1049	 *
1050	 * But... if the -device- itself is readonly, just skip this.
1051	 * We can't recover this device anyway, so it won't matter.
1052	 */
1053	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1054		error = xlog_clear_stale_blocks(log, tail_lsn);
1055
1056done:
1057	xlog_put_bp(bp);
1058
1059	if (error)
1060		xfs_warn(log->l_mp, "failed to locate log tail");
1061	return error;
1062}
1063
1064/*
1065 * Is the log zeroed at all?
1066 *
1067 * The last binary search should be changed to perform an X block read
1068 * once X becomes small enough.  You can then search linearly through
1069 * the X blocks.  This will cut down on the number of reads we need to do.
1070 *
1071 * If the log is partially zeroed, this routine will pass back the blkno
1072 * of the first block with cycle number 0.  It won't have a complete LR
1073 * preceding it.
1074 *
1075 * Return:
1076 *	0  => the log is completely written to
1077 *	-1 => use *blk_no as the first block of the log
1078 *	>0 => error has occurred
1079 */
1080STATIC int
1081xlog_find_zeroed(
1082	xlog_t		*log,
1083	xfs_daddr_t	*blk_no)
1084{
1085	xfs_buf_t	*bp;
1086	xfs_caddr_t	offset;
1087	uint	        first_cycle, last_cycle;
1088	xfs_daddr_t	new_blk, last_blk, start_blk;
1089	xfs_daddr_t     num_scan_bblks;
1090	int	        error, log_bbnum = log->l_logBBsize;
1091
1092	*blk_no = 0;
1093
1094	/* check totally zeroed log */
1095	bp = xlog_get_bp(log, 1);
1096	if (!bp)
1097		return ENOMEM;
1098	error = xlog_bread(log, 0, 1, bp, &offset);
1099	if (error)
1100		goto bp_err;
1101
1102	first_cycle = xlog_get_cycle(offset);
1103	if (first_cycle == 0) {		/* completely zeroed log */
1104		*blk_no = 0;
1105		xlog_put_bp(bp);
1106		return -1;
1107	}
1108
1109	/* check partially zeroed log */
1110	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1111	if (error)
1112		goto bp_err;
1113
1114	last_cycle = xlog_get_cycle(offset);
1115	if (last_cycle != 0) {		/* log completely written to */
1116		xlog_put_bp(bp);
1117		return 0;
1118	} else if (first_cycle != 1) {
1119		/*
1120		 * If the cycle of the last block is zero, the cycle of
1121		 * the first block must be 1. If it's not, maybe we're
1122		 * not looking at a log... Bail out.
1123		 */
1124		xfs_warn(log->l_mp,
1125			"Log inconsistent or not a log (last==0, first!=1)");
1126		return XFS_ERROR(EINVAL);
1127	}
1128
1129	/* we have a partially zeroed log */
1130	last_blk = log_bbnum-1;
1131	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1132		goto bp_err;
1133
1134	/*
1135	 * Validate the answer.  Because there is no way to guarantee that
1136	 * the entire log is made up of log records which are the same size,
1137	 * we scan over the defined maximum blocks.  At this point, the maximum
1138	 * is not chosen to mean anything special.   XXXmiken
1139	 */
1140	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1141	ASSERT(num_scan_bblks <= INT_MAX);
1142
1143	if (last_blk < num_scan_bblks)
1144		num_scan_bblks = last_blk;
1145	start_blk = last_blk - num_scan_bblks;
1146
1147	/*
1148	 * We search for any instances of cycle number 0 that occur before
1149	 * our current estimate of the head.  What we're trying to detect is
1150	 *        1 ... | 0 | 1 | 0...
1151	 *                       ^ binary search ends here
1152	 */
1153	if ((error = xlog_find_verify_cycle(log, start_blk,
1154					 (int)num_scan_bblks, 0, &new_blk)))
1155		goto bp_err;
1156	if (new_blk != -1)
1157		last_blk = new_blk;
1158
1159	/*
1160	 * Potentially backup over partial log record write.  We don't need
1161	 * to search the end of the log because we know it is zero.
1162	 */
1163	if ((error = xlog_find_verify_log_record(log, start_blk,
1164				&last_blk, 0)) == -1) {
1165	    error = XFS_ERROR(EIO);
1166	    goto bp_err;
1167	} else if (error)
1168	    goto bp_err;
1169
1170	*blk_no = last_blk;
1171bp_err:
1172	xlog_put_bp(bp);
1173	if (error)
1174		return error;
1175	return -1;
1176}
1177
1178/*
1179 * These are simple subroutines used by xlog_clear_stale_blocks() below
1180 * to initialize a buffer full of empty log record headers and write
1181 * them into the log.
1182 */
1183STATIC void
1184xlog_add_record(
1185	xlog_t			*log,
1186	xfs_caddr_t		buf,
1187	int			cycle,
1188	int			block,
1189	int			tail_cycle,
1190	int			tail_block)
1191{
1192	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1193
1194	memset(buf, 0, BBSIZE);
1195	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1196	recp->h_cycle = cpu_to_be32(cycle);
1197	recp->h_version = cpu_to_be32(
1198			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1199	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1200	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1201	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1202	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1203}
1204
1205STATIC int
1206xlog_write_log_records(
1207	xlog_t		*log,
1208	int		cycle,
1209	int		start_block,
1210	int		blocks,
1211	int		tail_cycle,
1212	int		tail_block)
1213{
1214	xfs_caddr_t	offset;
1215	xfs_buf_t	*bp;
1216	int		balign, ealign;
1217	int		sectbb = log->l_sectBBsize;
1218	int		end_block = start_block + blocks;
1219	int		bufblks;
1220	int		error = 0;
1221	int		i, j = 0;
1222
1223	/*
1224	 * Greedily allocate a buffer big enough to handle the full
1225	 * range of basic blocks to be written.  If that fails, try
1226	 * a smaller size.  We need to be able to write at least a
1227	 * log sector, or we're out of luck.
1228	 */
1229	bufblks = 1 << ffs(blocks);
 
 
1230	while (!(bp = xlog_get_bp(log, bufblks))) {
1231		bufblks >>= 1;
1232		if (bufblks < sectbb)
1233			return ENOMEM;
1234	}
1235
1236	/* We may need to do a read at the start to fill in part of
1237	 * the buffer in the starting sector not covered by the first
1238	 * write below.
1239	 */
1240	balign = round_down(start_block, sectbb);
1241	if (balign != start_block) {
1242		error = xlog_bread_noalign(log, start_block, 1, bp);
1243		if (error)
1244			goto out_put_bp;
1245
1246		j = start_block - balign;
1247	}
1248
1249	for (i = start_block; i < end_block; i += bufblks) {
1250		int		bcount, endcount;
1251
1252		bcount = min(bufblks, end_block - start_block);
1253		endcount = bcount - j;
1254
1255		/* We may need to do a read at the end to fill in part of
1256		 * the buffer in the final sector not covered by the write.
1257		 * If this is the same sector as the above read, skip it.
1258		 */
1259		ealign = round_down(end_block, sectbb);
1260		if (j == 0 && (start_block + endcount > ealign)) {
1261			offset = bp->b_addr + BBTOB(ealign - start_block);
1262			error = xlog_bread_offset(log, ealign, sectbb,
1263							bp, offset);
1264			if (error)
1265				break;
1266
1267		}
1268
1269		offset = xlog_align(log, start_block, endcount, bp);
1270		for (; j < endcount; j++) {
1271			xlog_add_record(log, offset, cycle, i+j,
1272					tail_cycle, tail_block);
1273			offset += BBSIZE;
1274		}
1275		error = xlog_bwrite(log, start_block, endcount, bp);
1276		if (error)
1277			break;
1278		start_block += endcount;
1279		j = 0;
1280	}
1281
1282 out_put_bp:
1283	xlog_put_bp(bp);
1284	return error;
1285}
1286
1287/*
1288 * This routine is called to blow away any incomplete log writes out
1289 * in front of the log head.  We do this so that we won't become confused
1290 * if we come up, write only a little bit more, and then crash again.
1291 * If we leave the partial log records out there, this situation could
1292 * cause us to think those partial writes are valid blocks since they
1293 * have the current cycle number.  We get rid of them by overwriting them
1294 * with empty log records with the old cycle number rather than the
1295 * current one.
1296 *
1297 * The tail lsn is passed in rather than taken from
1298 * the log so that we will not write over the unmount record after a
1299 * clean unmount in a 512 block log.  Doing so would leave the log without
1300 * any valid log records in it until a new one was written.  If we crashed
1301 * during that time we would not be able to recover.
1302 */
1303STATIC int
1304xlog_clear_stale_blocks(
1305	xlog_t		*log,
1306	xfs_lsn_t	tail_lsn)
1307{
1308	int		tail_cycle, head_cycle;
1309	int		tail_block, head_block;
1310	int		tail_distance, max_distance;
1311	int		distance;
1312	int		error;
1313
1314	tail_cycle = CYCLE_LSN(tail_lsn);
1315	tail_block = BLOCK_LSN(tail_lsn);
1316	head_cycle = log->l_curr_cycle;
1317	head_block = log->l_curr_block;
1318
1319	/*
1320	 * Figure out the distance between the new head of the log
1321	 * and the tail.  We want to write over any blocks beyond the
1322	 * head that we may have written just before the crash, but
1323	 * we don't want to overwrite the tail of the log.
1324	 */
1325	if (head_cycle == tail_cycle) {
1326		/*
1327		 * The tail is behind the head in the physical log,
1328		 * so the distance from the head to the tail is the
1329		 * distance from the head to the end of the log plus
1330		 * the distance from the beginning of the log to the
1331		 * tail.
1332		 */
1333		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1334			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1335					 XFS_ERRLEVEL_LOW, log->l_mp);
1336			return XFS_ERROR(EFSCORRUPTED);
1337		}
1338		tail_distance = tail_block + (log->l_logBBsize - head_block);
1339	} else {
1340		/*
1341		 * The head is behind the tail in the physical log,
1342		 * so the distance from the head to the tail is just
1343		 * the tail block minus the head block.
1344		 */
1345		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1346			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1347					 XFS_ERRLEVEL_LOW, log->l_mp);
1348			return XFS_ERROR(EFSCORRUPTED);
1349		}
1350		tail_distance = tail_block - head_block;
1351	}
1352
1353	/*
1354	 * If the head is right up against the tail, we can't clear
1355	 * anything.
1356	 */
1357	if (tail_distance <= 0) {
1358		ASSERT(tail_distance == 0);
1359		return 0;
1360	}
1361
1362	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1363	/*
1364	 * Take the smaller of the maximum amount of outstanding I/O
1365	 * we could have and the distance to the tail to clear out.
1366	 * We take the smaller so that we don't overwrite the tail and
1367	 * we don't waste all day writing from the head to the tail
1368	 * for no reason.
1369	 */
1370	max_distance = MIN(max_distance, tail_distance);
1371
1372	if ((head_block + max_distance) <= log->l_logBBsize) {
1373		/*
1374		 * We can stomp all the blocks we need to without
1375		 * wrapping around the end of the log.  Just do it
1376		 * in a single write.  Use the cycle number of the
1377		 * current cycle minus one so that the log will look like:
1378		 *     n ... | n - 1 ...
1379		 */
1380		error = xlog_write_log_records(log, (head_cycle - 1),
1381				head_block, max_distance, tail_cycle,
1382				tail_block);
1383		if (error)
1384			return error;
1385	} else {
1386		/*
1387		 * We need to wrap around the end of the physical log in
1388		 * order to clear all the blocks.  Do it in two separate
1389		 * I/Os.  The first write should be from the head to the
1390		 * end of the physical log, and it should use the current
1391		 * cycle number minus one just like above.
1392		 */
1393		distance = log->l_logBBsize - head_block;
1394		error = xlog_write_log_records(log, (head_cycle - 1),
1395				head_block, distance, tail_cycle,
1396				tail_block);
1397
1398		if (error)
1399			return error;
1400
1401		/*
1402		 * Now write the blocks at the start of the physical log.
1403		 * This writes the remainder of the blocks we want to clear.
1404		 * It uses the current cycle number since we're now on the
1405		 * same cycle as the head so that we get:
1406		 *    n ... n ... | n - 1 ...
1407		 *    ^^^^^ blocks we're writing
1408		 */
1409		distance = max_distance - (log->l_logBBsize - head_block);
1410		error = xlog_write_log_records(log, head_cycle, 0, distance,
1411				tail_cycle, tail_block);
1412		if (error)
1413			return error;
1414	}
1415
1416	return 0;
1417}
1418
1419/******************************************************************************
1420 *
1421 *		Log recover routines
1422 *
1423 ******************************************************************************
1424 */
1425
1426STATIC xlog_recover_t *
1427xlog_recover_find_tid(
1428	struct hlist_head	*head,
1429	xlog_tid_t		tid)
1430{
1431	xlog_recover_t		*trans;
1432	struct hlist_node	*n;
1433
1434	hlist_for_each_entry(trans, n, head, r_list) {
1435		if (trans->r_log_tid == tid)
1436			return trans;
1437	}
1438	return NULL;
1439}
1440
1441STATIC void
1442xlog_recover_new_tid(
1443	struct hlist_head	*head,
1444	xlog_tid_t		tid,
1445	xfs_lsn_t		lsn)
1446{
1447	xlog_recover_t		*trans;
1448
1449	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1450	trans->r_log_tid   = tid;
1451	trans->r_lsn	   = lsn;
1452	INIT_LIST_HEAD(&trans->r_itemq);
1453
1454	INIT_HLIST_NODE(&trans->r_list);
1455	hlist_add_head(&trans->r_list, head);
1456}
1457
1458STATIC void
1459xlog_recover_add_item(
1460	struct list_head	*head)
1461{
1462	xlog_recover_item_t	*item;
1463
1464	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1465	INIT_LIST_HEAD(&item->ri_list);
1466	list_add_tail(&item->ri_list, head);
1467}
1468
1469STATIC int
1470xlog_recover_add_to_cont_trans(
1471	struct log		*log,
1472	xlog_recover_t		*trans,
1473	xfs_caddr_t		dp,
1474	int			len)
1475{
1476	xlog_recover_item_t	*item;
1477	xfs_caddr_t		ptr, old_ptr;
1478	int			old_len;
1479
1480	if (list_empty(&trans->r_itemq)) {
1481		/* finish copying rest of trans header */
1482		xlog_recover_add_item(&trans->r_itemq);
1483		ptr = (xfs_caddr_t) &trans->r_theader +
1484				sizeof(xfs_trans_header_t) - len;
1485		memcpy(ptr, dp, len); /* d, s, l */
1486		return 0;
1487	}
1488	/* take the tail entry */
1489	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1490
1491	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1492	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1493
1494	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1495	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1496	item->ri_buf[item->ri_cnt-1].i_len += len;
1497	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1498	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1499	return 0;
1500}
1501
1502/*
1503 * The next region to add is the start of a new region.  It could be
1504 * a whole region or it could be the first part of a new region.  Because
1505 * of this, the assumption here is that the type and size fields of all
1506 * format structures fit into the first 32 bits of the structure.
1507 *
1508 * This works because all regions must be 32 bit aligned.  Therefore, we
1509 * either have both fields or we have neither field.  In the case we have
1510 * neither field, the data part of the region is zero length.  We only have
1511 * a log_op_header and can throw away the header since a new one will appear
1512 * later.  If we have at least 4 bytes, then we can determine how many regions
1513 * will appear in the current log item.
1514 */
1515STATIC int
1516xlog_recover_add_to_trans(
1517	struct log		*log,
1518	xlog_recover_t		*trans,
1519	xfs_caddr_t		dp,
1520	int			len)
1521{
1522	xfs_inode_log_format_t	*in_f;			/* any will do */
1523	xlog_recover_item_t	*item;
1524	xfs_caddr_t		ptr;
1525
1526	if (!len)
1527		return 0;
1528	if (list_empty(&trans->r_itemq)) {
1529		/* we need to catch log corruptions here */
1530		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1531			xfs_warn(log->l_mp, "%s: bad header magic number",
1532				__func__);
1533			ASSERT(0);
1534			return XFS_ERROR(EIO);
1535		}
1536		if (len == sizeof(xfs_trans_header_t))
1537			xlog_recover_add_item(&trans->r_itemq);
1538		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1539		return 0;
1540	}
1541
1542	ptr = kmem_alloc(len, KM_SLEEP);
1543	memcpy(ptr, dp, len);
1544	in_f = (xfs_inode_log_format_t *)ptr;
1545
1546	/* take the tail entry */
1547	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1548	if (item->ri_total != 0 &&
1549	     item->ri_total == item->ri_cnt) {
1550		/* tail item is in use, get a new one */
1551		xlog_recover_add_item(&trans->r_itemq);
1552		item = list_entry(trans->r_itemq.prev,
1553					xlog_recover_item_t, ri_list);
1554	}
1555
1556	if (item->ri_total == 0) {		/* first region to be added */
1557		if (in_f->ilf_size == 0 ||
1558		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1559			xfs_warn(log->l_mp,
1560		"bad number of regions (%d) in inode log format",
1561				  in_f->ilf_size);
1562			ASSERT(0);
1563			return XFS_ERROR(EIO);
1564		}
1565
1566		item->ri_total = in_f->ilf_size;
1567		item->ri_buf =
1568			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1569				    KM_SLEEP);
1570	}
1571	ASSERT(item->ri_total > item->ri_cnt);
1572	/* Description region is ri_buf[0] */
1573	item->ri_buf[item->ri_cnt].i_addr = ptr;
1574	item->ri_buf[item->ri_cnt].i_len  = len;
1575	item->ri_cnt++;
1576	trace_xfs_log_recover_item_add(log, trans, item, 0);
1577	return 0;
1578}
1579
1580/*
1581 * Sort the log items in the transaction. Cancelled buffers need
1582 * to be put first so they are processed before any items that might
1583 * modify the buffers. If they are cancelled, then the modifications
1584 * don't need to be replayed.
1585 */
1586STATIC int
1587xlog_recover_reorder_trans(
1588	struct log		*log,
1589	xlog_recover_t		*trans,
1590	int			pass)
1591{
1592	xlog_recover_item_t	*item, *n;
1593	LIST_HEAD(sort_list);
1594
1595	list_splice_init(&trans->r_itemq, &sort_list);
1596	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1597		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1598
1599		switch (ITEM_TYPE(item)) {
1600		case XFS_LI_BUF:
1601			if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1602				trace_xfs_log_recover_item_reorder_head(log,
1603							trans, item, pass);
1604				list_move(&item->ri_list, &trans->r_itemq);
1605				break;
1606			}
1607		case XFS_LI_INODE:
1608		case XFS_LI_DQUOT:
1609		case XFS_LI_QUOTAOFF:
1610		case XFS_LI_EFD:
1611		case XFS_LI_EFI:
1612			trace_xfs_log_recover_item_reorder_tail(log,
1613							trans, item, pass);
1614			list_move_tail(&item->ri_list, &trans->r_itemq);
1615			break;
1616		default:
1617			xfs_warn(log->l_mp,
1618				"%s: unrecognized type of log operation",
1619				__func__);
1620			ASSERT(0);
1621			return XFS_ERROR(EIO);
1622		}
1623	}
1624	ASSERT(list_empty(&sort_list));
1625	return 0;
1626}
1627
1628/*
1629 * Build up the table of buf cancel records so that we don't replay
1630 * cancelled data in the second pass.  For buffer records that are
1631 * not cancel records, there is nothing to do here so we just return.
1632 *
1633 * If we get a cancel record which is already in the table, this indicates
1634 * that the buffer was cancelled multiple times.  In order to ensure
1635 * that during pass 2 we keep the record in the table until we reach its
1636 * last occurrence in the log, we keep a reference count in the cancel
1637 * record in the table to tell us how many times we expect to see this
1638 * record during the second pass.
1639 */
1640STATIC int
1641xlog_recover_buffer_pass1(
1642	struct log		*log,
1643	xlog_recover_item_t	*item)
1644{
1645	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1646	struct list_head	*bucket;
1647	struct xfs_buf_cancel	*bcp;
1648
1649	/*
1650	 * If this isn't a cancel buffer item, then just return.
1651	 */
1652	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1653		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1654		return 0;
1655	}
1656
1657	/*
1658	 * Insert an xfs_buf_cancel record into the hash table of them.
1659	 * If there is already an identical record, bump its reference count.
1660	 */
1661	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1662	list_for_each_entry(bcp, bucket, bc_list) {
1663		if (bcp->bc_blkno == buf_f->blf_blkno &&
1664		    bcp->bc_len == buf_f->blf_len) {
1665			bcp->bc_refcount++;
1666			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1667			return 0;
1668		}
1669	}
1670
1671	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1672	bcp->bc_blkno = buf_f->blf_blkno;
1673	bcp->bc_len = buf_f->blf_len;
1674	bcp->bc_refcount = 1;
1675	list_add_tail(&bcp->bc_list, bucket);
1676
1677	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1678	return 0;
1679}
1680
1681/*
1682 * Check to see whether the buffer being recovered has a corresponding
1683 * entry in the buffer cancel record table.  If it does then return 1
1684 * so that it will be cancelled, otherwise return 0.  If the buffer is
1685 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1686 * the refcount on the entry in the table and remove it from the table
1687 * if this is the last reference.
1688 *
1689 * We remove the cancel record from the table when we encounter its
1690 * last occurrence in the log so that if the same buffer is re-used
1691 * again after its last cancellation we actually replay the changes
1692 * made at that point.
1693 */
1694STATIC int
1695xlog_check_buffer_cancelled(
1696	struct log		*log,
1697	xfs_daddr_t		blkno,
1698	uint			len,
1699	ushort			flags)
1700{
1701	struct list_head	*bucket;
1702	struct xfs_buf_cancel	*bcp;
1703
1704	if (log->l_buf_cancel_table == NULL) {
1705		/*
1706		 * There is nothing in the table built in pass one,
1707		 * so this buffer must not be cancelled.
1708		 */
1709		ASSERT(!(flags & XFS_BLF_CANCEL));
1710		return 0;
1711	}
1712
1713	/*
1714	 * Search for an entry in the  cancel table that matches our buffer.
1715	 */
1716	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1717	list_for_each_entry(bcp, bucket, bc_list) {
1718		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1719			goto found;
1720	}
1721
1722	/*
1723	 * We didn't find a corresponding entry in the table, so return 0 so
1724	 * that the buffer is NOT cancelled.
1725	 */
1726	ASSERT(!(flags & XFS_BLF_CANCEL));
1727	return 0;
1728
1729found:
1730	/*
1731	 * We've go a match, so return 1 so that the recovery of this buffer
1732	 * is cancelled.  If this buffer is actually a buffer cancel log
1733	 * item, then decrement the refcount on the one in the table and
1734	 * remove it if this is the last reference.
1735	 */
1736	if (flags & XFS_BLF_CANCEL) {
1737		if (--bcp->bc_refcount == 0) {
1738			list_del(&bcp->bc_list);
1739			kmem_free(bcp);
1740		}
1741	}
1742	return 1;
1743}
1744
1745/*
1746 * Perform recovery for a buffer full of inodes.  In these buffers, the only
1747 * data which should be recovered is that which corresponds to the
1748 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1749 * data for the inodes is always logged through the inodes themselves rather
1750 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1751 *
1752 * The only time when buffers full of inodes are fully recovered is when the
1753 * buffer is full of newly allocated inodes.  In this case the buffer will
1754 * not be marked as an inode buffer and so will be sent to
1755 * xlog_recover_do_reg_buffer() below during recovery.
1756 */
1757STATIC int
1758xlog_recover_do_inode_buffer(
1759	struct xfs_mount	*mp,
1760	xlog_recover_item_t	*item,
1761	struct xfs_buf		*bp,
1762	xfs_buf_log_format_t	*buf_f)
1763{
1764	int			i;
1765	int			item_index = 0;
1766	int			bit = 0;
1767	int			nbits = 0;
1768	int			reg_buf_offset = 0;
1769	int			reg_buf_bytes = 0;
1770	int			next_unlinked_offset;
1771	int			inodes_per_buf;
1772	xfs_agino_t		*logged_nextp;
1773	xfs_agino_t		*buffer_nextp;
1774
1775	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1776
1777	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1778	for (i = 0; i < inodes_per_buf; i++) {
1779		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1780			offsetof(xfs_dinode_t, di_next_unlinked);
1781
1782		while (next_unlinked_offset >=
1783		       (reg_buf_offset + reg_buf_bytes)) {
1784			/*
1785			 * The next di_next_unlinked field is beyond
1786			 * the current logged region.  Find the next
1787			 * logged region that contains or is beyond
1788			 * the current di_next_unlinked field.
1789			 */
1790			bit += nbits;
1791			bit = xfs_next_bit(buf_f->blf_data_map,
1792					   buf_f->blf_map_size, bit);
1793
1794			/*
1795			 * If there are no more logged regions in the
1796			 * buffer, then we're done.
1797			 */
1798			if (bit == -1)
1799				return 0;
1800
1801			nbits = xfs_contig_bits(buf_f->blf_data_map,
1802						buf_f->blf_map_size, bit);
1803			ASSERT(nbits > 0);
1804			reg_buf_offset = bit << XFS_BLF_SHIFT;
1805			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1806			item_index++;
1807		}
1808
1809		/*
1810		 * If the current logged region starts after the current
1811		 * di_next_unlinked field, then move on to the next
1812		 * di_next_unlinked field.
1813		 */
1814		if (next_unlinked_offset < reg_buf_offset)
1815			continue;
1816
1817		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1818		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1819		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
 
1820
1821		/*
1822		 * The current logged region contains a copy of the
1823		 * current di_next_unlinked field.  Extract its value
1824		 * and copy it to the buffer copy.
1825		 */
1826		logged_nextp = item->ri_buf[item_index].i_addr +
1827				next_unlinked_offset - reg_buf_offset;
1828		if (unlikely(*logged_nextp == 0)) {
1829			xfs_alert(mp,
1830		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1831		"Trying to replay bad (0) inode di_next_unlinked field.",
1832				item, bp);
1833			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1834					 XFS_ERRLEVEL_LOW, mp);
1835			return XFS_ERROR(EFSCORRUPTED);
1836		}
1837
1838		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1839					      next_unlinked_offset);
1840		*buffer_nextp = *logged_nextp;
1841	}
1842
1843	return 0;
1844}
1845
1846/*
1847 * Perform a 'normal' buffer recovery.  Each logged region of the
1848 * buffer should be copied over the corresponding region in the
1849 * given buffer.  The bitmap in the buf log format structure indicates
1850 * where to place the logged data.
1851 */
1852STATIC void
1853xlog_recover_do_reg_buffer(
1854	struct xfs_mount	*mp,
1855	xlog_recover_item_t	*item,
1856	struct xfs_buf		*bp,
1857	xfs_buf_log_format_t	*buf_f)
1858{
1859	int			i;
1860	int			bit;
1861	int			nbits;
1862	int                     error;
1863
1864	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1865
1866	bit = 0;
1867	i = 1;  /* 0 is the buf format structure */
1868	while (1) {
1869		bit = xfs_next_bit(buf_f->blf_data_map,
1870				   buf_f->blf_map_size, bit);
1871		if (bit == -1)
1872			break;
1873		nbits = xfs_contig_bits(buf_f->blf_data_map,
1874					buf_f->blf_map_size, bit);
1875		ASSERT(nbits > 0);
1876		ASSERT(item->ri_buf[i].i_addr != NULL);
1877		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1878		ASSERT(XFS_BUF_COUNT(bp) >=
1879		       ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1880
1881		/*
1882		 * Do a sanity check if this is a dquot buffer. Just checking
1883		 * the first dquot in the buffer should do. XXXThis is
1884		 * probably a good thing to do for other buf types also.
1885		 */
1886		error = 0;
1887		if (buf_f->blf_flags &
1888		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1889			if (item->ri_buf[i].i_addr == NULL) {
1890				xfs_alert(mp,
1891					"XFS: NULL dquot in %s.", __func__);
1892				goto next;
1893			}
1894			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1895				xfs_alert(mp,
1896					"XFS: dquot too small (%d) in %s.",
1897					item->ri_buf[i].i_len, __func__);
1898				goto next;
1899			}
1900			error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1901					       -1, 0, XFS_QMOPT_DOWARN,
1902					       "dquot_buf_recover");
1903			if (error)
1904				goto next;
1905		}
1906
1907		memcpy(xfs_buf_offset(bp,
1908			(uint)bit << XFS_BLF_SHIFT),	/* dest */
1909			item->ri_buf[i].i_addr,		/* source */
1910			nbits<<XFS_BLF_SHIFT);		/* length */
1911 next:
1912		i++;
1913		bit += nbits;
1914	}
1915
1916	/* Shouldn't be any more regions */
1917	ASSERT(i == item->ri_total);
1918}
1919
1920/*
1921 * Do some primitive error checking on ondisk dquot data structures.
1922 */
1923int
1924xfs_qm_dqcheck(
1925	struct xfs_mount *mp,
1926	xfs_disk_dquot_t *ddq,
1927	xfs_dqid_t	 id,
1928	uint		 type,	  /* used only when IO_dorepair is true */
1929	uint		 flags,
1930	char		 *str)
1931{
1932	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
1933	int		errs = 0;
1934
1935	/*
1936	 * We can encounter an uninitialized dquot buffer for 2 reasons:
1937	 * 1. If we crash while deleting the quotainode(s), and those blks got
1938	 *    used for user data. This is because we take the path of regular
1939	 *    file deletion; however, the size field of quotainodes is never
1940	 *    updated, so all the tricks that we play in itruncate_finish
1941	 *    don't quite matter.
1942	 *
1943	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1944	 *    But the allocation will be replayed so we'll end up with an
1945	 *    uninitialized quota block.
1946	 *
1947	 * This is all fine; things are still consistent, and we haven't lost
1948	 * any quota information. Just don't complain about bad dquot blks.
1949	 */
1950	if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1951		if (flags & XFS_QMOPT_DOWARN)
1952			xfs_alert(mp,
1953			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1954			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1955		errs++;
1956	}
1957	if (ddq->d_version != XFS_DQUOT_VERSION) {
1958		if (flags & XFS_QMOPT_DOWARN)
1959			xfs_alert(mp,
1960			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1961			str, id, ddq->d_version, XFS_DQUOT_VERSION);
1962		errs++;
1963	}
1964
1965	if (ddq->d_flags != XFS_DQ_USER &&
1966	    ddq->d_flags != XFS_DQ_PROJ &&
1967	    ddq->d_flags != XFS_DQ_GROUP) {
1968		if (flags & XFS_QMOPT_DOWARN)
1969			xfs_alert(mp,
1970			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1971			str, id, ddq->d_flags);
1972		errs++;
1973	}
1974
1975	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1976		if (flags & XFS_QMOPT_DOWARN)
1977			xfs_alert(mp,
1978			"%s : ondisk-dquot 0x%p, ID mismatch: "
1979			"0x%x expected, found id 0x%x",
1980			str, ddq, id, be32_to_cpu(ddq->d_id));
1981		errs++;
1982	}
1983
1984	if (!errs && ddq->d_id) {
1985		if (ddq->d_blk_softlimit &&
1986		    be64_to_cpu(ddq->d_bcount) >=
1987				be64_to_cpu(ddq->d_blk_softlimit)) {
1988			if (!ddq->d_btimer) {
1989				if (flags & XFS_QMOPT_DOWARN)
1990					xfs_alert(mp,
1991			"%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1992					str, (int)be32_to_cpu(ddq->d_id), ddq);
1993				errs++;
1994			}
1995		}
1996		if (ddq->d_ino_softlimit &&
1997		    be64_to_cpu(ddq->d_icount) >=
1998				be64_to_cpu(ddq->d_ino_softlimit)) {
1999			if (!ddq->d_itimer) {
2000				if (flags & XFS_QMOPT_DOWARN)
2001					xfs_alert(mp,
2002			"%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2003					str, (int)be32_to_cpu(ddq->d_id), ddq);
2004				errs++;
2005			}
2006		}
2007		if (ddq->d_rtb_softlimit &&
2008		    be64_to_cpu(ddq->d_rtbcount) >=
2009				be64_to_cpu(ddq->d_rtb_softlimit)) {
2010			if (!ddq->d_rtbtimer) {
2011				if (flags & XFS_QMOPT_DOWARN)
2012					xfs_alert(mp,
2013			"%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2014					str, (int)be32_to_cpu(ddq->d_id), ddq);
2015				errs++;
2016			}
2017		}
2018	}
2019
2020	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2021		return errs;
2022
2023	if (flags & XFS_QMOPT_DOWARN)
2024		xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2025
2026	/*
2027	 * Typically, a repair is only requested by quotacheck.
2028	 */
2029	ASSERT(id != -1);
2030	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2031	memset(d, 0, sizeof(xfs_dqblk_t));
2032
2033	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2034	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2035	d->dd_diskdq.d_flags = type;
2036	d->dd_diskdq.d_id = cpu_to_be32(id);
2037
2038	return errs;
2039}
2040
2041/*
2042 * Perform a dquot buffer recovery.
2043 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2044 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2045 * Else, treat it as a regular buffer and do recovery.
2046 */
2047STATIC void
2048xlog_recover_do_dquot_buffer(
2049	xfs_mount_t		*mp,
2050	xlog_t			*log,
2051	xlog_recover_item_t	*item,
2052	xfs_buf_t		*bp,
2053	xfs_buf_log_format_t	*buf_f)
2054{
2055	uint			type;
2056
2057	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2058
2059	/*
2060	 * Filesystems are required to send in quota flags at mount time.
2061	 */
2062	if (mp->m_qflags == 0) {
2063		return;
2064	}
2065
2066	type = 0;
2067	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2068		type |= XFS_DQ_USER;
2069	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2070		type |= XFS_DQ_PROJ;
2071	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2072		type |= XFS_DQ_GROUP;
2073	/*
2074	 * This type of quotas was turned off, so ignore this buffer
2075	 */
2076	if (log->l_quotaoffs_flag & type)
2077		return;
2078
2079	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2080}
2081
2082/*
2083 * This routine replays a modification made to a buffer at runtime.
2084 * There are actually two types of buffer, regular and inode, which
2085 * are handled differently.  Inode buffers are handled differently
2086 * in that we only recover a specific set of data from them, namely
2087 * the inode di_next_unlinked fields.  This is because all other inode
2088 * data is actually logged via inode records and any data we replay
2089 * here which overlaps that may be stale.
2090 *
2091 * When meta-data buffers are freed at run time we log a buffer item
2092 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2093 * of the buffer in the log should not be replayed at recovery time.
2094 * This is so that if the blocks covered by the buffer are reused for
2095 * file data before we crash we don't end up replaying old, freed
2096 * meta-data into a user's file.
2097 *
2098 * To handle the cancellation of buffer log items, we make two passes
2099 * over the log during recovery.  During the first we build a table of
2100 * those buffers which have been cancelled, and during the second we
2101 * only replay those buffers which do not have corresponding cancel
2102 * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2103 * for more details on the implementation of the table of cancel records.
2104 */
2105STATIC int
2106xlog_recover_buffer_pass2(
2107	xlog_t			*log,
 
2108	xlog_recover_item_t	*item)
2109{
2110	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2111	xfs_mount_t		*mp = log->l_mp;
2112	xfs_buf_t		*bp;
2113	int			error;
2114	uint			buf_flags;
2115
2116	/*
2117	 * In this pass we only want to recover all the buffers which have
2118	 * not been cancelled and are not cancellation buffers themselves.
2119	 */
2120	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2121			buf_f->blf_len, buf_f->blf_flags)) {
2122		trace_xfs_log_recover_buf_cancel(log, buf_f);
2123		return 0;
2124	}
2125
2126	trace_xfs_log_recover_buf_recover(log, buf_f);
2127
2128	buf_flags = XBF_LOCK;
2129	if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
2130		buf_flags |= XBF_MAPPED;
2131
2132	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2133			  buf_flags);
2134	if (!bp)
2135		return XFS_ERROR(ENOMEM);
2136	error = bp->b_error;
2137	if (error) {
2138		xfs_ioerror_alert("xlog_recover_do..(read#1)", mp,
2139				  bp, buf_f->blf_blkno);
2140		xfs_buf_relse(bp);
2141		return error;
2142	}
2143
2144	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2145		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2146	} else if (buf_f->blf_flags &
2147		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2148		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2149	} else {
2150		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2151	}
2152	if (error)
2153		return XFS_ERROR(error);
2154
2155	/*
2156	 * Perform delayed write on the buffer.  Asynchronous writes will be
2157	 * slower when taking into account all the buffers to be flushed.
2158	 *
2159	 * Also make sure that only inode buffers with good sizes stay in
2160	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2161	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2162	 * buffers in the log can be a different size if the log was generated
2163	 * by an older kernel using unclustered inode buffers or a newer kernel
2164	 * running with a different inode cluster size.  Regardless, if the
2165	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2166	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2167	 * the buffer out of the buffer cache so that the buffer won't
2168	 * overlap with future reads of those inodes.
2169	 */
2170	if (XFS_DINODE_MAGIC ==
2171	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2172	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2173			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2174		XFS_BUF_STALE(bp);
2175		error = xfs_bwrite(mp, bp);
2176	} else {
2177		ASSERT(bp->b_target->bt_mount == mp);
2178		bp->b_iodone = xlog_recover_iodone;
2179		xfs_bdwrite(mp, bp);
2180	}
2181
2182	return (error);
 
2183}
2184
2185STATIC int
2186xlog_recover_inode_pass2(
2187	xlog_t			*log,
 
2188	xlog_recover_item_t	*item)
2189{
2190	xfs_inode_log_format_t	*in_f;
2191	xfs_mount_t		*mp = log->l_mp;
2192	xfs_buf_t		*bp;
2193	xfs_dinode_t		*dip;
2194	int			len;
2195	xfs_caddr_t		src;
2196	xfs_caddr_t		dest;
2197	int			error;
2198	int			attr_index;
2199	uint			fields;
2200	xfs_icdinode_t		*dicp;
2201	int			need_free = 0;
2202
2203	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2204		in_f = item->ri_buf[0].i_addr;
2205	} else {
2206		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2207		need_free = 1;
2208		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2209		if (error)
2210			goto error;
2211	}
2212
2213	/*
2214	 * Inode buffers can be freed, look out for it,
2215	 * and do not replay the inode.
2216	 */
2217	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2218					in_f->ilf_len, 0)) {
2219		error = 0;
2220		trace_xfs_log_recover_inode_cancel(log, in_f);
2221		goto error;
2222	}
2223	trace_xfs_log_recover_inode_recover(log, in_f);
2224
2225	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2226			  XBF_LOCK);
2227	if (!bp) {
2228		error = ENOMEM;
2229		goto error;
2230	}
2231	error = bp->b_error;
2232	if (error) {
2233		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2234				  bp, in_f->ilf_blkno);
2235		xfs_buf_relse(bp);
2236		goto error;
2237	}
2238	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2239	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2240
2241	/*
2242	 * Make sure the place we're flushing out to really looks
2243	 * like an inode!
2244	 */
2245	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2246		xfs_buf_relse(bp);
2247		xfs_alert(mp,
2248	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2249			__func__, dip, bp, in_f->ilf_ino);
2250		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2251				 XFS_ERRLEVEL_LOW, mp);
2252		error = EFSCORRUPTED;
2253		goto error;
2254	}
2255	dicp = item->ri_buf[1].i_addr;
2256	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2257		xfs_buf_relse(bp);
2258		xfs_alert(mp,
2259			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2260			__func__, item, in_f->ilf_ino);
2261		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2262				 XFS_ERRLEVEL_LOW, mp);
2263		error = EFSCORRUPTED;
2264		goto error;
2265	}
2266
2267	/* Skip replay when the on disk inode is newer than the log one */
2268	if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2269		/*
2270		 * Deal with the wrap case, DI_MAX_FLUSH is less
2271		 * than smaller numbers
2272		 */
2273		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2274		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2275			/* do nothing */
2276		} else {
2277			xfs_buf_relse(bp);
2278			trace_xfs_log_recover_inode_skip(log, in_f);
2279			error = 0;
2280			goto error;
2281		}
2282	}
2283	/* Take the opportunity to reset the flush iteration count */
2284	dicp->di_flushiter = 0;
2285
2286	if (unlikely(S_ISREG(dicp->di_mode))) {
2287		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2288		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2289			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2290					 XFS_ERRLEVEL_LOW, mp, dicp);
2291			xfs_buf_relse(bp);
2292			xfs_alert(mp,
2293		"%s: Bad regular inode log record, rec ptr 0x%p, "
2294		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2295				__func__, item, dip, bp, in_f->ilf_ino);
2296			error = EFSCORRUPTED;
2297			goto error;
2298		}
2299	} else if (unlikely(S_ISDIR(dicp->di_mode))) {
2300		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2301		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2302		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2303			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2304					     XFS_ERRLEVEL_LOW, mp, dicp);
2305			xfs_buf_relse(bp);
2306			xfs_alert(mp,
2307		"%s: Bad dir inode log record, rec ptr 0x%p, "
2308		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2309				__func__, item, dip, bp, in_f->ilf_ino);
2310			error = EFSCORRUPTED;
2311			goto error;
2312		}
2313	}
2314	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2315		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2316				     XFS_ERRLEVEL_LOW, mp, dicp);
2317		xfs_buf_relse(bp);
2318		xfs_alert(mp,
2319	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2320	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2321			__func__, item, dip, bp, in_f->ilf_ino,
2322			dicp->di_nextents + dicp->di_anextents,
2323			dicp->di_nblocks);
2324		error = EFSCORRUPTED;
2325		goto error;
2326	}
2327	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2328		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2329				     XFS_ERRLEVEL_LOW, mp, dicp);
2330		xfs_buf_relse(bp);
2331		xfs_alert(mp,
2332	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2333	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2334			item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2335		error = EFSCORRUPTED;
2336		goto error;
2337	}
2338	if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2339		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2340				     XFS_ERRLEVEL_LOW, mp, dicp);
2341		xfs_buf_relse(bp);
2342		xfs_alert(mp,
2343			"%s: Bad inode log record length %d, rec ptr 0x%p",
2344			__func__, item->ri_buf[1].i_len, item);
2345		error = EFSCORRUPTED;
2346		goto error;
2347	}
2348
2349	/* The core is in in-core format */
2350	xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2351
2352	/* the rest is in on-disk format */
2353	if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2354		memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2355			item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2356			item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2357	}
2358
2359	fields = in_f->ilf_fields;
2360	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2361	case XFS_ILOG_DEV:
2362		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2363		break;
2364	case XFS_ILOG_UUID:
2365		memcpy(XFS_DFORK_DPTR(dip),
2366		       &in_f->ilf_u.ilfu_uuid,
2367		       sizeof(uuid_t));
2368		break;
2369	}
2370
2371	if (in_f->ilf_size == 2)
2372		goto write_inode_buffer;
2373	len = item->ri_buf[2].i_len;
2374	src = item->ri_buf[2].i_addr;
2375	ASSERT(in_f->ilf_size <= 4);
2376	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2377	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2378	       (len == in_f->ilf_dsize));
2379
2380	switch (fields & XFS_ILOG_DFORK) {
2381	case XFS_ILOG_DDATA:
2382	case XFS_ILOG_DEXT:
2383		memcpy(XFS_DFORK_DPTR(dip), src, len);
2384		break;
2385
2386	case XFS_ILOG_DBROOT:
2387		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2388				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2389				 XFS_DFORK_DSIZE(dip, mp));
2390		break;
2391
2392	default:
2393		/*
2394		 * There are no data fork flags set.
2395		 */
2396		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2397		break;
2398	}
2399
2400	/*
2401	 * If we logged any attribute data, recover it.  There may or
2402	 * may not have been any other non-core data logged in this
2403	 * transaction.
2404	 */
2405	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2406		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2407			attr_index = 3;
2408		} else {
2409			attr_index = 2;
2410		}
2411		len = item->ri_buf[attr_index].i_len;
2412		src = item->ri_buf[attr_index].i_addr;
2413		ASSERT(len == in_f->ilf_asize);
2414
2415		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2416		case XFS_ILOG_ADATA:
2417		case XFS_ILOG_AEXT:
2418			dest = XFS_DFORK_APTR(dip);
2419			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2420			memcpy(dest, src, len);
2421			break;
2422
2423		case XFS_ILOG_ABROOT:
2424			dest = XFS_DFORK_APTR(dip);
2425			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2426					 len, (xfs_bmdr_block_t*)dest,
2427					 XFS_DFORK_ASIZE(dip, mp));
2428			break;
2429
2430		default:
2431			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2432			ASSERT(0);
2433			xfs_buf_relse(bp);
2434			error = EIO;
2435			goto error;
2436		}
2437	}
2438
2439write_inode_buffer:
2440	ASSERT(bp->b_target->bt_mount == mp);
2441	bp->b_iodone = xlog_recover_iodone;
2442	xfs_bdwrite(mp, bp);
 
2443error:
2444	if (need_free)
2445		kmem_free(in_f);
2446	return XFS_ERROR(error);
2447}
2448
2449/*
2450 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2451 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2452 * of that type.
2453 */
2454STATIC int
2455xlog_recover_quotaoff_pass1(
2456	xlog_t			*log,
2457	xlog_recover_item_t	*item)
2458{
2459	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
2460	ASSERT(qoff_f);
2461
2462	/*
2463	 * The logitem format's flag tells us if this was user quotaoff,
2464	 * group/project quotaoff or both.
2465	 */
2466	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2467		log->l_quotaoffs_flag |= XFS_DQ_USER;
2468	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2469		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2470	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2471		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2472
2473	return (0);
2474}
2475
2476/*
2477 * Recover a dquot record
2478 */
2479STATIC int
2480xlog_recover_dquot_pass2(
2481	xlog_t			*log,
 
2482	xlog_recover_item_t	*item)
2483{
2484	xfs_mount_t		*mp = log->l_mp;
2485	xfs_buf_t		*bp;
2486	struct xfs_disk_dquot	*ddq, *recddq;
2487	int			error;
2488	xfs_dq_logformat_t	*dq_f;
2489	uint			type;
2490
2491
2492	/*
2493	 * Filesystems are required to send in quota flags at mount time.
2494	 */
2495	if (mp->m_qflags == 0)
2496		return (0);
2497
2498	recddq = item->ri_buf[1].i_addr;
2499	if (recddq == NULL) {
2500		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2501		return XFS_ERROR(EIO);
2502	}
2503	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2504		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2505			item->ri_buf[1].i_len, __func__);
2506		return XFS_ERROR(EIO);
2507	}
2508
2509	/*
2510	 * This type of quotas was turned off, so ignore this record.
2511	 */
2512	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2513	ASSERT(type);
2514	if (log->l_quotaoffs_flag & type)
2515		return (0);
2516
2517	/*
2518	 * At this point we know that quota was _not_ turned off.
2519	 * Since the mount flags are not indicating to us otherwise, this
2520	 * must mean that quota is on, and the dquot needs to be replayed.
2521	 * Remember that we may not have fully recovered the superblock yet,
2522	 * so we can't do the usual trick of looking at the SB quota bits.
2523	 *
2524	 * The other possibility, of course, is that the quota subsystem was
2525	 * removed since the last mount - ENOSYS.
2526	 */
2527	dq_f = item->ri_buf[0].i_addr;
2528	ASSERT(dq_f);
2529	error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2530			   "xlog_recover_dquot_pass2 (log copy)");
2531	if (error)
2532		return XFS_ERROR(EIO);
2533	ASSERT(dq_f->qlf_len == 1);
2534
2535	error = xfs_read_buf(mp, mp->m_ddev_targp,
2536			     dq_f->qlf_blkno,
2537			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2538			     0, &bp);
2539	if (error) {
2540		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2541				  bp, dq_f->qlf_blkno);
2542		return error;
2543	}
2544	ASSERT(bp);
2545	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2546
2547	/*
2548	 * At least the magic num portion should be on disk because this
2549	 * was among a chunk of dquots created earlier, and we did some
2550	 * minimal initialization then.
2551	 */
2552	error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2553			   "xlog_recover_dquot_pass2");
2554	if (error) {
2555		xfs_buf_relse(bp);
2556		return XFS_ERROR(EIO);
2557	}
2558
2559	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2560
2561	ASSERT(dq_f->qlf_size == 2);
2562	ASSERT(bp->b_target->bt_mount == mp);
2563	bp->b_iodone = xlog_recover_iodone;
2564	xfs_bdwrite(mp, bp);
 
2565
2566	return (0);
2567}
2568
2569/*
2570 * This routine is called to create an in-core extent free intent
2571 * item from the efi format structure which was logged on disk.
2572 * It allocates an in-core efi, copies the extents from the format
2573 * structure into it, and adds the efi to the AIL with the given
2574 * LSN.
2575 */
2576STATIC int
2577xlog_recover_efi_pass2(
2578	xlog_t			*log,
2579	xlog_recover_item_t	*item,
2580	xfs_lsn_t		lsn)
2581{
2582	int			error;
2583	xfs_mount_t		*mp = log->l_mp;
2584	xfs_efi_log_item_t	*efip;
2585	xfs_efi_log_format_t	*efi_formatp;
2586
2587	efi_formatp = item->ri_buf[0].i_addr;
2588
2589	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2590	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2591					 &(efip->efi_format)))) {
2592		xfs_efi_item_free(efip);
2593		return error;
2594	}
2595	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2596
2597	spin_lock(&log->l_ailp->xa_lock);
2598	/*
2599	 * xfs_trans_ail_update() drops the AIL lock.
2600	 */
2601	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2602	return 0;
2603}
2604
2605
2606/*
2607 * This routine is called when an efd format structure is found in
2608 * a committed transaction in the log.  It's purpose is to cancel
2609 * the corresponding efi if it was still in the log.  To do this
2610 * it searches the AIL for the efi with an id equal to that in the
2611 * efd format structure.  If we find it, we remove the efi from the
2612 * AIL and free it.
2613 */
2614STATIC int
2615xlog_recover_efd_pass2(
2616	xlog_t			*log,
2617	xlog_recover_item_t	*item)
2618{
2619	xfs_efd_log_format_t	*efd_formatp;
2620	xfs_efi_log_item_t	*efip = NULL;
2621	xfs_log_item_t		*lip;
2622	__uint64_t		efi_id;
2623	struct xfs_ail_cursor	cur;
2624	struct xfs_ail		*ailp = log->l_ailp;
2625
2626	efd_formatp = item->ri_buf[0].i_addr;
2627	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2628		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2629	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2630		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2631	efi_id = efd_formatp->efd_efi_id;
2632
2633	/*
2634	 * Search for the efi with the id in the efd format structure
2635	 * in the AIL.
2636	 */
2637	spin_lock(&ailp->xa_lock);
2638	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2639	while (lip != NULL) {
2640		if (lip->li_type == XFS_LI_EFI) {
2641			efip = (xfs_efi_log_item_t *)lip;
2642			if (efip->efi_format.efi_id == efi_id) {
2643				/*
2644				 * xfs_trans_ail_delete() drops the
2645				 * AIL lock.
2646				 */
2647				xfs_trans_ail_delete(ailp, lip);
 
2648				xfs_efi_item_free(efip);
2649				spin_lock(&ailp->xa_lock);
2650				break;
2651			}
2652		}
2653		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2654	}
2655	xfs_trans_ail_cursor_done(ailp, &cur);
2656	spin_unlock(&ailp->xa_lock);
2657
2658	return 0;
2659}
2660
2661/*
2662 * Free up any resources allocated by the transaction
2663 *
2664 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2665 */
2666STATIC void
2667xlog_recover_free_trans(
2668	struct xlog_recover	*trans)
2669{
2670	xlog_recover_item_t	*item, *n;
2671	int			i;
2672
2673	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2674		/* Free the regions in the item. */
2675		list_del(&item->ri_list);
2676		for (i = 0; i < item->ri_cnt; i++)
2677			kmem_free(item->ri_buf[i].i_addr);
2678		/* Free the item itself */
2679		kmem_free(item->ri_buf);
2680		kmem_free(item);
2681	}
2682	/* Free the transaction recover structure */
2683	kmem_free(trans);
2684}
2685
2686STATIC int
2687xlog_recover_commit_pass1(
2688	struct log		*log,
2689	struct xlog_recover	*trans,
2690	xlog_recover_item_t	*item)
2691{
2692	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2693
2694	switch (ITEM_TYPE(item)) {
2695	case XFS_LI_BUF:
2696		return xlog_recover_buffer_pass1(log, item);
2697	case XFS_LI_QUOTAOFF:
2698		return xlog_recover_quotaoff_pass1(log, item);
2699	case XFS_LI_INODE:
2700	case XFS_LI_EFI:
2701	case XFS_LI_EFD:
2702	case XFS_LI_DQUOT:
2703		/* nothing to do in pass 1 */
2704		return 0;
2705	default:
2706		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2707			__func__, ITEM_TYPE(item));
2708		ASSERT(0);
2709		return XFS_ERROR(EIO);
2710	}
2711}
2712
2713STATIC int
2714xlog_recover_commit_pass2(
2715	struct log		*log,
2716	struct xlog_recover	*trans,
2717	xlog_recover_item_t	*item)
 
2718{
2719	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2720
2721	switch (ITEM_TYPE(item)) {
2722	case XFS_LI_BUF:
2723		return xlog_recover_buffer_pass2(log, item);
2724	case XFS_LI_INODE:
2725		return xlog_recover_inode_pass2(log, item);
2726	case XFS_LI_EFI:
2727		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2728	case XFS_LI_EFD:
2729		return xlog_recover_efd_pass2(log, item);
2730	case XFS_LI_DQUOT:
2731		return xlog_recover_dquot_pass2(log, item);
2732	case XFS_LI_QUOTAOFF:
2733		/* nothing to do in pass2 */
2734		return 0;
2735	default:
2736		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2737			__func__, ITEM_TYPE(item));
2738		ASSERT(0);
2739		return XFS_ERROR(EIO);
2740	}
2741}
2742
2743/*
2744 * Perform the transaction.
2745 *
2746 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2747 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2748 */
2749STATIC int
2750xlog_recover_commit_trans(
2751	struct log		*log,
2752	struct xlog_recover	*trans,
2753	int			pass)
2754{
2755	int			error = 0;
2756	xlog_recover_item_t	*item;
 
2757
2758	hlist_del(&trans->r_list);
2759
2760	error = xlog_recover_reorder_trans(log, trans, pass);
2761	if (error)
2762		return error;
2763
2764	list_for_each_entry(item, &trans->r_itemq, ri_list) {
2765		if (pass == XLOG_RECOVER_PASS1)
 
2766			error = xlog_recover_commit_pass1(log, trans, item);
2767		else
2768			error = xlog_recover_commit_pass2(log, trans, item);
 
 
 
 
 
 
 
2769		if (error)
2770			return error;
2771	}
2772
2773	xlog_recover_free_trans(trans);
2774	return 0;
 
 
 
2775}
2776
2777STATIC int
2778xlog_recover_unmount_trans(
2779	struct log		*log,
2780	xlog_recover_t		*trans)
2781{
2782	/* Do nothing now */
2783	xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2784	return 0;
2785}
2786
2787/*
2788 * There are two valid states of the r_state field.  0 indicates that the
2789 * transaction structure is in a normal state.  We have either seen the
2790 * start of the transaction or the last operation we added was not a partial
2791 * operation.  If the last operation we added to the transaction was a
2792 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2793 *
2794 * NOTE: skip LRs with 0 data length.
2795 */
2796STATIC int
2797xlog_recover_process_data(
2798	xlog_t			*log,
2799	struct hlist_head	rhash[],
2800	xlog_rec_header_t	*rhead,
2801	xfs_caddr_t		dp,
2802	int			pass)
2803{
2804	xfs_caddr_t		lp;
2805	int			num_logops;
2806	xlog_op_header_t	*ohead;
2807	xlog_recover_t		*trans;
2808	xlog_tid_t		tid;
2809	int			error;
2810	unsigned long		hash;
2811	uint			flags;
2812
2813	lp = dp + be32_to_cpu(rhead->h_len);
2814	num_logops = be32_to_cpu(rhead->h_num_logops);
2815
2816	/* check the log format matches our own - else we can't recover */
2817	if (xlog_header_check_recover(log->l_mp, rhead))
2818		return (XFS_ERROR(EIO));
2819
2820	while ((dp < lp) && num_logops) {
2821		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2822		ohead = (xlog_op_header_t *)dp;
2823		dp += sizeof(xlog_op_header_t);
2824		if (ohead->oh_clientid != XFS_TRANSACTION &&
2825		    ohead->oh_clientid != XFS_LOG) {
2826			xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2827					__func__, ohead->oh_clientid);
2828			ASSERT(0);
2829			return (XFS_ERROR(EIO));
2830		}
2831		tid = be32_to_cpu(ohead->oh_tid);
2832		hash = XLOG_RHASH(tid);
2833		trans = xlog_recover_find_tid(&rhash[hash], tid);
2834		if (trans == NULL) {		   /* not found; add new tid */
2835			if (ohead->oh_flags & XLOG_START_TRANS)
2836				xlog_recover_new_tid(&rhash[hash], tid,
2837					be64_to_cpu(rhead->h_lsn));
2838		} else {
2839			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2840				xfs_warn(log->l_mp, "%s: bad length 0x%x",
2841					__func__, be32_to_cpu(ohead->oh_len));
2842				WARN_ON(1);
2843				return (XFS_ERROR(EIO));
2844			}
2845			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2846			if (flags & XLOG_WAS_CONT_TRANS)
2847				flags &= ~XLOG_CONTINUE_TRANS;
2848			switch (flags) {
2849			case XLOG_COMMIT_TRANS:
2850				error = xlog_recover_commit_trans(log,
2851								trans, pass);
2852				break;
2853			case XLOG_UNMOUNT_TRANS:
2854				error = xlog_recover_unmount_trans(log, trans);
2855				break;
2856			case XLOG_WAS_CONT_TRANS:
2857				error = xlog_recover_add_to_cont_trans(log,
2858						trans, dp,
2859						be32_to_cpu(ohead->oh_len));
2860				break;
2861			case XLOG_START_TRANS:
2862				xfs_warn(log->l_mp, "%s: bad transaction",
2863					__func__);
2864				ASSERT(0);
2865				error = XFS_ERROR(EIO);
2866				break;
2867			case 0:
2868			case XLOG_CONTINUE_TRANS:
2869				error = xlog_recover_add_to_trans(log, trans,
2870						dp, be32_to_cpu(ohead->oh_len));
2871				break;
2872			default:
2873				xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2874					__func__, flags);
2875				ASSERT(0);
2876				error = XFS_ERROR(EIO);
2877				break;
2878			}
2879			if (error)
2880				return error;
2881		}
2882		dp += be32_to_cpu(ohead->oh_len);
2883		num_logops--;
2884	}
2885	return 0;
2886}
2887
2888/*
2889 * Process an extent free intent item that was recovered from
2890 * the log.  We need to free the extents that it describes.
2891 */
2892STATIC int
2893xlog_recover_process_efi(
2894	xfs_mount_t		*mp,
2895	xfs_efi_log_item_t	*efip)
2896{
2897	xfs_efd_log_item_t	*efdp;
2898	xfs_trans_t		*tp;
2899	int			i;
2900	int			error = 0;
2901	xfs_extent_t		*extp;
2902	xfs_fsblock_t		startblock_fsb;
2903
2904	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2905
2906	/*
2907	 * First check the validity of the extents described by the
2908	 * EFI.  If any are bad, then assume that all are bad and
2909	 * just toss the EFI.
2910	 */
2911	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2912		extp = &(efip->efi_format.efi_extents[i]);
2913		startblock_fsb = XFS_BB_TO_FSB(mp,
2914				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
2915		if ((startblock_fsb == 0) ||
2916		    (extp->ext_len == 0) ||
2917		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2918		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2919			/*
2920			 * This will pull the EFI from the AIL and
2921			 * free the memory associated with it.
2922			 */
2923			xfs_efi_release(efip, efip->efi_format.efi_nextents);
2924			return XFS_ERROR(EIO);
2925		}
2926	}
2927
2928	tp = xfs_trans_alloc(mp, 0);
2929	error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2930	if (error)
2931		goto abort_error;
2932	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2933
2934	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2935		extp = &(efip->efi_format.efi_extents[i]);
2936		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2937		if (error)
2938			goto abort_error;
2939		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2940					 extp->ext_len);
2941	}
2942
2943	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2944	error = xfs_trans_commit(tp, 0);
2945	return error;
2946
2947abort_error:
2948	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2949	return error;
2950}
2951
2952/*
2953 * When this is called, all of the EFIs which did not have
2954 * corresponding EFDs should be in the AIL.  What we do now
2955 * is free the extents associated with each one.
2956 *
2957 * Since we process the EFIs in normal transactions, they
2958 * will be removed at some point after the commit.  This prevents
2959 * us from just walking down the list processing each one.
2960 * We'll use a flag in the EFI to skip those that we've already
2961 * processed and use the AIL iteration mechanism's generation
2962 * count to try to speed this up at least a bit.
2963 *
2964 * When we start, we know that the EFIs are the only things in
2965 * the AIL.  As we process them, however, other items are added
2966 * to the AIL.  Since everything added to the AIL must come after
2967 * everything already in the AIL, we stop processing as soon as
2968 * we see something other than an EFI in the AIL.
2969 */
2970STATIC int
2971xlog_recover_process_efis(
2972	xlog_t			*log)
2973{
2974	xfs_log_item_t		*lip;
2975	xfs_efi_log_item_t	*efip;
2976	int			error = 0;
2977	struct xfs_ail_cursor	cur;
2978	struct xfs_ail		*ailp;
2979
2980	ailp = log->l_ailp;
2981	spin_lock(&ailp->xa_lock);
2982	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2983	while (lip != NULL) {
2984		/*
2985		 * We're done when we see something other than an EFI.
2986		 * There should be no EFIs left in the AIL now.
2987		 */
2988		if (lip->li_type != XFS_LI_EFI) {
2989#ifdef DEBUG
2990			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2991				ASSERT(lip->li_type != XFS_LI_EFI);
2992#endif
2993			break;
2994		}
2995
2996		/*
2997		 * Skip EFIs that we've already processed.
2998		 */
2999		efip = (xfs_efi_log_item_t *)lip;
3000		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3001			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3002			continue;
3003		}
3004
3005		spin_unlock(&ailp->xa_lock);
3006		error = xlog_recover_process_efi(log->l_mp, efip);
3007		spin_lock(&ailp->xa_lock);
3008		if (error)
3009			goto out;
3010		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3011	}
3012out:
3013	xfs_trans_ail_cursor_done(ailp, &cur);
3014	spin_unlock(&ailp->xa_lock);
3015	return error;
3016}
3017
3018/*
3019 * This routine performs a transaction to null out a bad inode pointer
3020 * in an agi unlinked inode hash bucket.
3021 */
3022STATIC void
3023xlog_recover_clear_agi_bucket(
3024	xfs_mount_t	*mp,
3025	xfs_agnumber_t	agno,
3026	int		bucket)
3027{
3028	xfs_trans_t	*tp;
3029	xfs_agi_t	*agi;
3030	xfs_buf_t	*agibp;
3031	int		offset;
3032	int		error;
3033
3034	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3035	error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3036				  0, 0, 0);
3037	if (error)
3038		goto out_abort;
3039
3040	error = xfs_read_agi(mp, tp, agno, &agibp);
3041	if (error)
3042		goto out_abort;
3043
3044	agi = XFS_BUF_TO_AGI(agibp);
3045	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3046	offset = offsetof(xfs_agi_t, agi_unlinked) +
3047		 (sizeof(xfs_agino_t) * bucket);
3048	xfs_trans_log_buf(tp, agibp, offset,
3049			  (offset + sizeof(xfs_agino_t) - 1));
3050
3051	error = xfs_trans_commit(tp, 0);
3052	if (error)
3053		goto out_error;
3054	return;
3055
3056out_abort:
3057	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3058out_error:
3059	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3060	return;
3061}
3062
3063STATIC xfs_agino_t
3064xlog_recover_process_one_iunlink(
3065	struct xfs_mount		*mp,
3066	xfs_agnumber_t			agno,
3067	xfs_agino_t			agino,
3068	int				bucket)
3069{
3070	struct xfs_buf			*ibp;
3071	struct xfs_dinode		*dip;
3072	struct xfs_inode		*ip;
3073	xfs_ino_t			ino;
3074	int				error;
3075
3076	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3077	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3078	if (error)
3079		goto fail;
3080
3081	/*
3082	 * Get the on disk inode to find the next inode in the bucket.
3083	 */
3084	error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3085	if (error)
3086		goto fail_iput;
3087
3088	ASSERT(ip->i_d.di_nlink == 0);
3089	ASSERT(ip->i_d.di_mode != 0);
3090
3091	/* setup for the next pass */
3092	agino = be32_to_cpu(dip->di_next_unlinked);
3093	xfs_buf_relse(ibp);
3094
3095	/*
3096	 * Prevent any DMAPI event from being sent when the reference on
3097	 * the inode is dropped.
3098	 */
3099	ip->i_d.di_dmevmask = 0;
3100
3101	IRELE(ip);
3102	return agino;
3103
3104 fail_iput:
3105	IRELE(ip);
3106 fail:
3107	/*
3108	 * We can't read in the inode this bucket points to, or this inode
3109	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3110	 * some inodes and space, but at least we won't hang.
3111	 *
3112	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3113	 * clear the inode pointer in the bucket.
3114	 */
3115	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3116	return NULLAGINO;
3117}
3118
3119/*
3120 * xlog_iunlink_recover
3121 *
3122 * This is called during recovery to process any inodes which
3123 * we unlinked but not freed when the system crashed.  These
3124 * inodes will be on the lists in the AGI blocks.  What we do
3125 * here is scan all the AGIs and fully truncate and free any
3126 * inodes found on the lists.  Each inode is removed from the
3127 * lists when it has been fully truncated and is freed.  The
3128 * freeing of the inode and its removal from the list must be
3129 * atomic.
3130 */
3131STATIC void
3132xlog_recover_process_iunlinks(
3133	xlog_t		*log)
3134{
3135	xfs_mount_t	*mp;
3136	xfs_agnumber_t	agno;
3137	xfs_agi_t	*agi;
3138	xfs_buf_t	*agibp;
3139	xfs_agino_t	agino;
3140	int		bucket;
3141	int		error;
3142	uint		mp_dmevmask;
3143
3144	mp = log->l_mp;
3145
3146	/*
3147	 * Prevent any DMAPI event from being sent while in this function.
3148	 */
3149	mp_dmevmask = mp->m_dmevmask;
3150	mp->m_dmevmask = 0;
3151
3152	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3153		/*
3154		 * Find the agi for this ag.
3155		 */
3156		error = xfs_read_agi(mp, NULL, agno, &agibp);
3157		if (error) {
3158			/*
3159			 * AGI is b0rked. Don't process it.
3160			 *
3161			 * We should probably mark the filesystem as corrupt
3162			 * after we've recovered all the ag's we can....
3163			 */
3164			continue;
3165		}
 
 
 
 
 
 
 
 
 
3166		agi = XFS_BUF_TO_AGI(agibp);
 
3167
3168		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3169			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3170			while (agino != NULLAGINO) {
3171				/*
3172				 * Release the agi buffer so that it can
3173				 * be acquired in the normal course of the
3174				 * transaction to truncate and free the inode.
3175				 */
3176				xfs_buf_relse(agibp);
3177
3178				agino = xlog_recover_process_one_iunlink(mp,
3179							agno, agino, bucket);
3180
3181				/*
3182				 * Reacquire the agibuffer and continue around
3183				 * the loop. This should never fail as we know
3184				 * the buffer was good earlier on.
3185				 */
3186				error = xfs_read_agi(mp, NULL, agno, &agibp);
3187				ASSERT(error == 0);
3188				agi = XFS_BUF_TO_AGI(agibp);
3189			}
3190		}
3191
3192		/*
3193		 * Release the buffer for the current agi so we can
3194		 * go on to the next one.
3195		 */
3196		xfs_buf_relse(agibp);
3197	}
3198
3199	mp->m_dmevmask = mp_dmevmask;
3200}
3201
3202
3203#ifdef DEBUG
3204STATIC void
3205xlog_pack_data_checksum(
3206	xlog_t		*log,
3207	xlog_in_core_t	*iclog,
3208	int		size)
3209{
3210	int		i;
3211	__be32		*up;
3212	uint		chksum = 0;
3213
3214	up = (__be32 *)iclog->ic_datap;
3215	/* divide length by 4 to get # words */
3216	for (i = 0; i < (size >> 2); i++) {
3217		chksum ^= be32_to_cpu(*up);
3218		up++;
3219	}
3220	iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3221}
3222#else
3223#define xlog_pack_data_checksum(log, iclog, size)
3224#endif
3225
3226/*
3227 * Stamp cycle number in every block
3228 */
3229void
3230xlog_pack_data(
3231	xlog_t			*log,
3232	xlog_in_core_t		*iclog,
3233	int			roundoff)
3234{
3235	int			i, j, k;
3236	int			size = iclog->ic_offset + roundoff;
3237	__be32			cycle_lsn;
3238	xfs_caddr_t		dp;
3239
3240	xlog_pack_data_checksum(log, iclog, size);
3241
3242	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3243
3244	dp = iclog->ic_datap;
3245	for (i = 0; i < BTOBB(size) &&
3246		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3247		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3248		*(__be32 *)dp = cycle_lsn;
3249		dp += BBSIZE;
3250	}
3251
3252	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3253		xlog_in_core_2_t *xhdr = iclog->ic_data;
3254
3255		for ( ; i < BTOBB(size); i++) {
3256			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3257			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3258			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3259			*(__be32 *)dp = cycle_lsn;
3260			dp += BBSIZE;
3261		}
3262
3263		for (i = 1; i < log->l_iclog_heads; i++) {
3264			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3265		}
3266	}
3267}
3268
3269STATIC void
3270xlog_unpack_data(
3271	xlog_rec_header_t	*rhead,
3272	xfs_caddr_t		dp,
3273	xlog_t			*log)
3274{
3275	int			i, j, k;
3276
3277	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3278		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3279		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3280		dp += BBSIZE;
3281	}
3282
3283	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3284		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3285		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3286			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3287			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3288			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3289			dp += BBSIZE;
3290		}
3291	}
3292}
3293
3294STATIC int
3295xlog_valid_rec_header(
3296	xlog_t			*log,
3297	xlog_rec_header_t	*rhead,
3298	xfs_daddr_t		blkno)
3299{
3300	int			hlen;
3301
3302	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3303		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3304				XFS_ERRLEVEL_LOW, log->l_mp);
3305		return XFS_ERROR(EFSCORRUPTED);
3306	}
3307	if (unlikely(
3308	    (!rhead->h_version ||
3309	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3310		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3311			__func__, be32_to_cpu(rhead->h_version));
3312		return XFS_ERROR(EIO);
3313	}
3314
3315	/* LR body must have data or it wouldn't have been written */
3316	hlen = be32_to_cpu(rhead->h_len);
3317	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3318		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3319				XFS_ERRLEVEL_LOW, log->l_mp);
3320		return XFS_ERROR(EFSCORRUPTED);
3321	}
3322	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3323		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3324				XFS_ERRLEVEL_LOW, log->l_mp);
3325		return XFS_ERROR(EFSCORRUPTED);
3326	}
3327	return 0;
3328}
3329
3330/*
3331 * Read the log from tail to head and process the log records found.
3332 * Handle the two cases where the tail and head are in the same cycle
3333 * and where the active portion of the log wraps around the end of
3334 * the physical log separately.  The pass parameter is passed through
3335 * to the routines called to process the data and is not looked at
3336 * here.
3337 */
3338STATIC int
3339xlog_do_recovery_pass(
3340	xlog_t			*log,
3341	xfs_daddr_t		head_blk,
3342	xfs_daddr_t		tail_blk,
3343	int			pass)
3344{
3345	xlog_rec_header_t	*rhead;
3346	xfs_daddr_t		blk_no;
3347	xfs_caddr_t		offset;
3348	xfs_buf_t		*hbp, *dbp;
3349	int			error = 0, h_size;
3350	int			bblks, split_bblks;
3351	int			hblks, split_hblks, wrapped_hblks;
3352	struct hlist_head	rhash[XLOG_RHASH_SIZE];
3353
3354	ASSERT(head_blk != tail_blk);
3355
3356	/*
3357	 * Read the header of the tail block and get the iclog buffer size from
3358	 * h_size.  Use this to tell how many sectors make up the log header.
3359	 */
3360	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3361		/*
3362		 * When using variable length iclogs, read first sector of
3363		 * iclog header and extract the header size from it.  Get a
3364		 * new hbp that is the correct size.
3365		 */
3366		hbp = xlog_get_bp(log, 1);
3367		if (!hbp)
3368			return ENOMEM;
3369
3370		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3371		if (error)
3372			goto bread_err1;
3373
3374		rhead = (xlog_rec_header_t *)offset;
3375		error = xlog_valid_rec_header(log, rhead, tail_blk);
3376		if (error)
3377			goto bread_err1;
3378		h_size = be32_to_cpu(rhead->h_size);
3379		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3380		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3381			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3382			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3383				hblks++;
3384			xlog_put_bp(hbp);
3385			hbp = xlog_get_bp(log, hblks);
3386		} else {
3387			hblks = 1;
3388		}
3389	} else {
3390		ASSERT(log->l_sectBBsize == 1);
3391		hblks = 1;
3392		hbp = xlog_get_bp(log, 1);
3393		h_size = XLOG_BIG_RECORD_BSIZE;
3394	}
3395
3396	if (!hbp)
3397		return ENOMEM;
3398	dbp = xlog_get_bp(log, BTOBB(h_size));
3399	if (!dbp) {
3400		xlog_put_bp(hbp);
3401		return ENOMEM;
3402	}
3403
3404	memset(rhash, 0, sizeof(rhash));
3405	if (tail_blk <= head_blk) {
3406		for (blk_no = tail_blk; blk_no < head_blk; ) {
3407			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3408			if (error)
3409				goto bread_err2;
3410
3411			rhead = (xlog_rec_header_t *)offset;
3412			error = xlog_valid_rec_header(log, rhead, blk_no);
3413			if (error)
3414				goto bread_err2;
3415
3416			/* blocks in data section */
3417			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3418			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3419					   &offset);
3420			if (error)
3421				goto bread_err2;
3422
3423			xlog_unpack_data(rhead, offset, log);
3424			if ((error = xlog_recover_process_data(log,
3425						rhash, rhead, offset, pass)))
3426				goto bread_err2;
3427			blk_no += bblks + hblks;
3428		}
3429	} else {
3430		/*
3431		 * Perform recovery around the end of the physical log.
3432		 * When the head is not on the same cycle number as the tail,
3433		 * we can't do a sequential recovery as above.
3434		 */
3435		blk_no = tail_blk;
3436		while (blk_no < log->l_logBBsize) {
3437			/*
3438			 * Check for header wrapping around physical end-of-log
3439			 */
3440			offset = hbp->b_addr;
3441			split_hblks = 0;
3442			wrapped_hblks = 0;
3443			if (blk_no + hblks <= log->l_logBBsize) {
3444				/* Read header in one read */
3445				error = xlog_bread(log, blk_no, hblks, hbp,
3446						   &offset);
3447				if (error)
3448					goto bread_err2;
3449			} else {
3450				/* This LR is split across physical log end */
3451				if (blk_no != log->l_logBBsize) {
3452					/* some data before physical log end */
3453					ASSERT(blk_no <= INT_MAX);
3454					split_hblks = log->l_logBBsize - (int)blk_no;
3455					ASSERT(split_hblks > 0);
3456					error = xlog_bread(log, blk_no,
3457							   split_hblks, hbp,
3458							   &offset);
3459					if (error)
3460						goto bread_err2;
3461				}
3462
3463				/*
3464				 * Note: this black magic still works with
3465				 * large sector sizes (non-512) only because:
3466				 * - we increased the buffer size originally
3467				 *   by 1 sector giving us enough extra space
3468				 *   for the second read;
3469				 * - the log start is guaranteed to be sector
3470				 *   aligned;
3471				 * - we read the log end (LR header start)
3472				 *   _first_, then the log start (LR header end)
3473				 *   - order is important.
3474				 */
3475				wrapped_hblks = hblks - split_hblks;
3476				error = xlog_bread_offset(log, 0,
3477						wrapped_hblks, hbp,
3478						offset + BBTOB(split_hblks));
3479				if (error)
3480					goto bread_err2;
3481			}
3482			rhead = (xlog_rec_header_t *)offset;
3483			error = xlog_valid_rec_header(log, rhead,
3484						split_hblks ? blk_no : 0);
3485			if (error)
3486				goto bread_err2;
3487
3488			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3489			blk_no += hblks;
3490
3491			/* Read in data for log record */
3492			if (blk_no + bblks <= log->l_logBBsize) {
3493				error = xlog_bread(log, blk_no, bblks, dbp,
3494						   &offset);
3495				if (error)
3496					goto bread_err2;
3497			} else {
3498				/* This log record is split across the
3499				 * physical end of log */
3500				offset = dbp->b_addr;
3501				split_bblks = 0;
3502				if (blk_no != log->l_logBBsize) {
3503					/* some data is before the physical
3504					 * end of log */
3505					ASSERT(!wrapped_hblks);
3506					ASSERT(blk_no <= INT_MAX);
3507					split_bblks =
3508						log->l_logBBsize - (int)blk_no;
3509					ASSERT(split_bblks > 0);
3510					error = xlog_bread(log, blk_no,
3511							split_bblks, dbp,
3512							&offset);
3513					if (error)
3514						goto bread_err2;
3515				}
3516
3517				/*
3518				 * Note: this black magic still works with
3519				 * large sector sizes (non-512) only because:
3520				 * - we increased the buffer size originally
3521				 *   by 1 sector giving us enough extra space
3522				 *   for the second read;
3523				 * - the log start is guaranteed to be sector
3524				 *   aligned;
3525				 * - we read the log end (LR header start)
3526				 *   _first_, then the log start (LR header end)
3527				 *   - order is important.
3528				 */
3529				error = xlog_bread_offset(log, 0,
3530						bblks - split_bblks, hbp,
3531						offset + BBTOB(split_bblks));
3532				if (error)
3533					goto bread_err2;
3534			}
3535			xlog_unpack_data(rhead, offset, log);
3536			if ((error = xlog_recover_process_data(log, rhash,
3537							rhead, offset, pass)))
3538				goto bread_err2;
3539			blk_no += bblks;
3540		}
3541
3542		ASSERT(blk_no >= log->l_logBBsize);
3543		blk_no -= log->l_logBBsize;
3544
3545		/* read first part of physical log */
3546		while (blk_no < head_blk) {
3547			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3548			if (error)
3549				goto bread_err2;
3550
3551			rhead = (xlog_rec_header_t *)offset;
3552			error = xlog_valid_rec_header(log, rhead, blk_no);
3553			if (error)
3554				goto bread_err2;
3555
3556			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3557			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3558					   &offset);
3559			if (error)
3560				goto bread_err2;
3561
3562			xlog_unpack_data(rhead, offset, log);
3563			if ((error = xlog_recover_process_data(log, rhash,
3564							rhead, offset, pass)))
3565				goto bread_err2;
3566			blk_no += bblks + hblks;
3567		}
3568	}
3569
3570 bread_err2:
3571	xlog_put_bp(dbp);
3572 bread_err1:
3573	xlog_put_bp(hbp);
3574	return error;
3575}
3576
3577/*
3578 * Do the recovery of the log.  We actually do this in two phases.
3579 * The two passes are necessary in order to implement the function
3580 * of cancelling a record written into the log.  The first pass
3581 * determines those things which have been cancelled, and the
3582 * second pass replays log items normally except for those which
3583 * have been cancelled.  The handling of the replay and cancellations
3584 * takes place in the log item type specific routines.
3585 *
3586 * The table of items which have cancel records in the log is allocated
3587 * and freed at this level, since only here do we know when all of
3588 * the log recovery has been completed.
3589 */
3590STATIC int
3591xlog_do_log_recovery(
3592	xlog_t		*log,
3593	xfs_daddr_t	head_blk,
3594	xfs_daddr_t	tail_blk)
3595{
3596	int		error, i;
3597
3598	ASSERT(head_blk != tail_blk);
3599
3600	/*
3601	 * First do a pass to find all of the cancelled buf log items.
3602	 * Store them in the buf_cancel_table for use in the second pass.
3603	 */
3604	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3605						 sizeof(struct list_head),
3606						 KM_SLEEP);
3607	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3608		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3609
3610	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3611				      XLOG_RECOVER_PASS1);
3612	if (error != 0) {
3613		kmem_free(log->l_buf_cancel_table);
3614		log->l_buf_cancel_table = NULL;
3615		return error;
3616	}
3617	/*
3618	 * Then do a second pass to actually recover the items in the log.
3619	 * When it is complete free the table of buf cancel items.
3620	 */
3621	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3622				      XLOG_RECOVER_PASS2);
3623#ifdef DEBUG
3624	if (!error) {
3625		int	i;
3626
3627		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3628			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3629	}
3630#endif	/* DEBUG */
3631
3632	kmem_free(log->l_buf_cancel_table);
3633	log->l_buf_cancel_table = NULL;
3634
3635	return error;
3636}
3637
3638/*
3639 * Do the actual recovery
3640 */
3641STATIC int
3642xlog_do_recover(
3643	xlog_t		*log,
3644	xfs_daddr_t	head_blk,
3645	xfs_daddr_t	tail_blk)
3646{
3647	int		error;
3648	xfs_buf_t	*bp;
3649	xfs_sb_t	*sbp;
3650
3651	/*
3652	 * First replay the images in the log.
3653	 */
3654	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3655	if (error) {
3656		return error;
3657	}
3658
3659	XFS_bflush(log->l_mp->m_ddev_targp);
3660
3661	/*
3662	 * If IO errors happened during recovery, bail out.
3663	 */
3664	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3665		return (EIO);
3666	}
3667
3668	/*
3669	 * We now update the tail_lsn since much of the recovery has completed
3670	 * and there may be space available to use.  If there were no extent
3671	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3672	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3673	 * lsn of the last known good LR on disk.  If there are extent frees
3674	 * or iunlinks they will have some entries in the AIL; so we look at
3675	 * the AIL to determine how to set the tail_lsn.
3676	 */
3677	xlog_assign_tail_lsn(log->l_mp);
3678
3679	/*
3680	 * Now that we've finished replaying all buffer and inode
3681	 * updates, re-read in the superblock.
3682	 */
3683	bp = xfs_getsb(log->l_mp, 0);
3684	XFS_BUF_UNDONE(bp);
3685	ASSERT(!(XFS_BUF_ISWRITE(bp)));
3686	ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3687	XFS_BUF_READ(bp);
3688	XFS_BUF_UNASYNC(bp);
3689	xfsbdstrat(log->l_mp, bp);
3690	error = xfs_buf_iowait(bp);
3691	if (error) {
3692		xfs_ioerror_alert("xlog_do_recover",
3693				  log->l_mp, bp, XFS_BUF_ADDR(bp));
3694		ASSERT(0);
3695		xfs_buf_relse(bp);
3696		return error;
3697	}
3698
3699	/* Convert superblock from on-disk format */
3700	sbp = &log->l_mp->m_sb;
3701	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3702	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3703	ASSERT(xfs_sb_good_version(sbp));
3704	xfs_buf_relse(bp);
3705
3706	/* We've re-read the superblock so re-initialize per-cpu counters */
3707	xfs_icsb_reinit_counters(log->l_mp);
3708
3709	xlog_recover_check_summary(log);
3710
3711	/* Normal transactions can now occur */
3712	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3713	return 0;
3714}
3715
3716/*
3717 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3718 *
3719 * Return error or zero.
3720 */
3721int
3722xlog_recover(
3723	xlog_t		*log)
3724{
3725	xfs_daddr_t	head_blk, tail_blk;
3726	int		error;
3727
3728	/* find the tail of the log */
3729	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3730		return error;
3731
3732	if (tail_blk != head_blk) {
3733		/* There used to be a comment here:
3734		 *
3735		 * disallow recovery on read-only mounts.  note -- mount
3736		 * checks for ENOSPC and turns it into an intelligent
3737		 * error message.
3738		 * ...but this is no longer true.  Now, unless you specify
3739		 * NORECOVERY (in which case this function would never be
3740		 * called), we just go ahead and recover.  We do this all
3741		 * under the vfs layer, so we can get away with it unless
3742		 * the device itself is read-only, in which case we fail.
3743		 */
3744		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3745			return error;
3746		}
3747
3748		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3749				log->l_mp->m_logname ? log->l_mp->m_logname
3750						     : "internal");
3751
3752		error = xlog_do_recover(log, head_blk, tail_blk);
3753		log->l_flags |= XLOG_RECOVERY_NEEDED;
3754	}
3755	return error;
3756}
3757
3758/*
3759 * In the first part of recovery we replay inodes and buffers and build
3760 * up the list of extent free items which need to be processed.  Here
3761 * we process the extent free items and clean up the on disk unlinked
3762 * inode lists.  This is separated from the first part of recovery so
3763 * that the root and real-time bitmap inodes can be read in from disk in
3764 * between the two stages.  This is necessary so that we can free space
3765 * in the real-time portion of the file system.
3766 */
3767int
3768xlog_recover_finish(
3769	xlog_t		*log)
3770{
3771	/*
3772	 * Now we're ready to do the transactions needed for the
3773	 * rest of recovery.  Start with completing all the extent
3774	 * free intent records and then process the unlinked inode
3775	 * lists.  At this point, we essentially run in normal mode
3776	 * except that we're still performing recovery actions
3777	 * rather than accepting new requests.
3778	 */
3779	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3780		int	error;
3781		error = xlog_recover_process_efis(log);
3782		if (error) {
3783			xfs_alert(log->l_mp, "Failed to recover EFIs");
3784			return error;
3785		}
3786		/*
3787		 * Sync the log to get all the EFIs out of the AIL.
3788		 * This isn't absolutely necessary, but it helps in
3789		 * case the unlink transactions would have problems
3790		 * pushing the EFIs out of the way.
3791		 */
3792		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3793
3794		xlog_recover_process_iunlinks(log);
3795
3796		xlog_recover_check_summary(log);
3797
3798		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3799				log->l_mp->m_logname ? log->l_mp->m_logname
3800						     : "internal");
3801		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3802	} else {
3803		xfs_info(log->l_mp, "Ending clean mount");
3804	}
3805	return 0;
3806}
3807
3808
3809#if defined(DEBUG)
3810/*
3811 * Read all of the agf and agi counters and check that they
3812 * are consistent with the superblock counters.
3813 */
3814void
3815xlog_recover_check_summary(
3816	xlog_t		*log)
3817{
3818	xfs_mount_t	*mp;
3819	xfs_agf_t	*agfp;
3820	xfs_buf_t	*agfbp;
3821	xfs_buf_t	*agibp;
3822	xfs_agnumber_t	agno;
3823	__uint64_t	freeblks;
3824	__uint64_t	itotal;
3825	__uint64_t	ifree;
3826	int		error;
3827
3828	mp = log->l_mp;
3829
3830	freeblks = 0LL;
3831	itotal = 0LL;
3832	ifree = 0LL;
3833	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3834		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3835		if (error) {
3836			xfs_alert(mp, "%s agf read failed agno %d error %d",
3837						__func__, agno, error);
3838		} else {
3839			agfp = XFS_BUF_TO_AGF(agfbp);
3840			freeblks += be32_to_cpu(agfp->agf_freeblks) +
3841				    be32_to_cpu(agfp->agf_flcount);
3842			xfs_buf_relse(agfbp);
3843		}
3844
3845		error = xfs_read_agi(mp, NULL, agno, &agibp);
3846		if (error) {
3847			xfs_alert(mp, "%s agi read failed agno %d error %d",
3848						__func__, agno, error);
3849		} else {
3850			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
3851
3852			itotal += be32_to_cpu(agi->agi_count);
3853			ifree += be32_to_cpu(agi->agi_freecount);
3854			xfs_buf_relse(agibp);
3855		}
3856	}
3857}
3858#endif /* DEBUG */
v3.5.6
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_sb.h"
  26#include "xfs_ag.h"
  27#include "xfs_mount.h"
  28#include "xfs_error.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_alloc_btree.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_dinode.h"
  33#include "xfs_inode.h"
  34#include "xfs_inode_item.h"
  35#include "xfs_alloc.h"
  36#include "xfs_ialloc.h"
  37#include "xfs_log_priv.h"
  38#include "xfs_buf_item.h"
  39#include "xfs_log_recover.h"
  40#include "xfs_extfree_item.h"
  41#include "xfs_trans_priv.h"
  42#include "xfs_quota.h"
 
  43#include "xfs_utils.h"
  44#include "xfs_trace.h"
  45
  46STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  47STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  48#if defined(DEBUG)
  49STATIC void	xlog_recover_check_summary(xlog_t *);
  50#else
  51#define	xlog_recover_check_summary(log)
  52#endif
  53
  54/*
  55 * This structure is used during recovery to record the buf log items which
  56 * have been canceled and should not be replayed.
  57 */
  58struct xfs_buf_cancel {
  59	xfs_daddr_t		bc_blkno;
  60	uint			bc_len;
  61	int			bc_refcount;
  62	struct list_head	bc_list;
  63};
  64
  65/*
  66 * Sector aligned buffer routines for buffer create/read/write/access
  67 */
  68
  69/*
  70 * Verify the given count of basic blocks is valid number of blocks
  71 * to specify for an operation involving the given XFS log buffer.
  72 * Returns nonzero if the count is valid, 0 otherwise.
  73 */
  74
  75static inline int
  76xlog_buf_bbcount_valid(
  77	xlog_t		*log,
  78	int		bbcount)
  79{
  80	return bbcount > 0 && bbcount <= log->l_logBBsize;
  81}
  82
  83/*
  84 * Allocate a buffer to hold log data.  The buffer needs to be able
  85 * to map to a range of nbblks basic blocks at any valid (basic
  86 * block) offset within the log.
  87 */
  88STATIC xfs_buf_t *
  89xlog_get_bp(
  90	xlog_t		*log,
  91	int		nbblks)
  92{
  93	struct xfs_buf	*bp;
  94
  95	if (!xlog_buf_bbcount_valid(log, nbblks)) {
  96		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  97			nbblks);
  98		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  99		return NULL;
 100	}
 101
 102	/*
 103	 * We do log I/O in units of log sectors (a power-of-2
 104	 * multiple of the basic block size), so we round up the
 105	 * requested size to accommodate the basic blocks required
 106	 * for complete log sectors.
 107	 *
 108	 * In addition, the buffer may be used for a non-sector-
 109	 * aligned block offset, in which case an I/O of the
 110	 * requested size could extend beyond the end of the
 111	 * buffer.  If the requested size is only 1 basic block it
 112	 * will never straddle a sector boundary, so this won't be
 113	 * an issue.  Nor will this be a problem if the log I/O is
 114	 * done in basic blocks (sector size 1).  But otherwise we
 115	 * extend the buffer by one extra log sector to ensure
 116	 * there's space to accommodate this possibility.
 117	 */
 118	if (nbblks > 1 && log->l_sectBBsize > 1)
 119		nbblks += log->l_sectBBsize;
 120	nbblks = round_up(nbblks, log->l_sectBBsize);
 121
 122	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
 123	if (bp)
 124		xfs_buf_unlock(bp);
 125	return bp;
 126}
 127
 128STATIC void
 129xlog_put_bp(
 130	xfs_buf_t	*bp)
 131{
 132	xfs_buf_free(bp);
 133}
 134
 135/*
 136 * Return the address of the start of the given block number's data
 137 * in a log buffer.  The buffer covers a log sector-aligned region.
 138 */
 139STATIC xfs_caddr_t
 140xlog_align(
 141	xlog_t		*log,
 142	xfs_daddr_t	blk_no,
 143	int		nbblks,
 144	xfs_buf_t	*bp)
 145{
 146	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
 147
 148	ASSERT(offset + nbblks <= bp->b_length);
 149	return bp->b_addr + BBTOB(offset);
 150}
 151
 152
 153/*
 154 * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
 155 */
 156STATIC int
 157xlog_bread_noalign(
 158	xlog_t		*log,
 159	xfs_daddr_t	blk_no,
 160	int		nbblks,
 161	xfs_buf_t	*bp)
 162{
 163	int		error;
 164
 165	if (!xlog_buf_bbcount_valid(log, nbblks)) {
 166		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 167			nbblks);
 168		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 169		return EFSCORRUPTED;
 170	}
 171
 172	blk_no = round_down(blk_no, log->l_sectBBsize);
 173	nbblks = round_up(nbblks, log->l_sectBBsize);
 174
 175	ASSERT(nbblks > 0);
 176	ASSERT(nbblks <= bp->b_length);
 177
 178	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 179	XFS_BUF_READ(bp);
 180	bp->b_io_length = nbblks;
 181	bp->b_error = 0;
 182
 183	xfsbdstrat(log->l_mp, bp);
 184	error = xfs_buf_iowait(bp);
 185	if (error)
 186		xfs_buf_ioerror_alert(bp, __func__);
 
 187	return error;
 188}
 189
 190STATIC int
 191xlog_bread(
 192	xlog_t		*log,
 193	xfs_daddr_t	blk_no,
 194	int		nbblks,
 195	xfs_buf_t	*bp,
 196	xfs_caddr_t	*offset)
 197{
 198	int		error;
 199
 200	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 201	if (error)
 202		return error;
 203
 204	*offset = xlog_align(log, blk_no, nbblks, bp);
 205	return 0;
 206}
 207
 208/*
 209 * Read at an offset into the buffer. Returns with the buffer in it's original
 210 * state regardless of the result of the read.
 211 */
 212STATIC int
 213xlog_bread_offset(
 214	xlog_t		*log,
 215	xfs_daddr_t	blk_no,		/* block to read from */
 216	int		nbblks,		/* blocks to read */
 217	xfs_buf_t	*bp,
 218	xfs_caddr_t	offset)
 219{
 220	xfs_caddr_t	orig_offset = bp->b_addr;
 221	int		orig_len = BBTOB(bp->b_length);
 222	int		error, error2;
 223
 224	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
 225	if (error)
 226		return error;
 227
 228	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 229
 230	/* must reset buffer pointer even on error */
 231	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
 232	if (error)
 233		return error;
 234	return error2;
 235}
 236
 237/*
 238 * Write out the buffer at the given block for the given number of blocks.
 239 * The buffer is kept locked across the write and is returned locked.
 240 * This can only be used for synchronous log writes.
 241 */
 242STATIC int
 243xlog_bwrite(
 244	xlog_t		*log,
 245	xfs_daddr_t	blk_no,
 246	int		nbblks,
 247	xfs_buf_t	*bp)
 248{
 249	int		error;
 250
 251	if (!xlog_buf_bbcount_valid(log, nbblks)) {
 252		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 253			nbblks);
 254		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 255		return EFSCORRUPTED;
 256	}
 257
 258	blk_no = round_down(blk_no, log->l_sectBBsize);
 259	nbblks = round_up(nbblks, log->l_sectBBsize);
 260
 261	ASSERT(nbblks > 0);
 262	ASSERT(nbblks <= bp->b_length);
 263
 264	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 265	XFS_BUF_ZEROFLAGS(bp);
 266	xfs_buf_hold(bp);
 267	xfs_buf_lock(bp);
 268	bp->b_io_length = nbblks;
 269	bp->b_error = 0;
 270
 271	error = xfs_bwrite(bp);
 272	if (error)
 273		xfs_buf_ioerror_alert(bp, __func__);
 274	xfs_buf_relse(bp);
 275	return error;
 276}
 277
 278#ifdef DEBUG
 279/*
 280 * dump debug superblock and log record information
 281 */
 282STATIC void
 283xlog_header_check_dump(
 284	xfs_mount_t		*mp,
 285	xlog_rec_header_t	*head)
 286{
 287	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d\n",
 288		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 289	xfs_debug(mp, "    log : uuid = %pU, fmt = %d\n",
 290		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 291}
 292#else
 293#define xlog_header_check_dump(mp, head)
 294#endif
 295
 296/*
 297 * check log record header for recovery
 298 */
 299STATIC int
 300xlog_header_check_recover(
 301	xfs_mount_t		*mp,
 302	xlog_rec_header_t	*head)
 303{
 304	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 305
 306	/*
 307	 * IRIX doesn't write the h_fmt field and leaves it zeroed
 308	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 309	 * a dirty log created in IRIX.
 310	 */
 311	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
 312		xfs_warn(mp,
 313	"dirty log written in incompatible format - can't recover");
 314		xlog_header_check_dump(mp, head);
 315		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
 316				 XFS_ERRLEVEL_HIGH, mp);
 317		return XFS_ERROR(EFSCORRUPTED);
 318	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 319		xfs_warn(mp,
 320	"dirty log entry has mismatched uuid - can't recover");
 321		xlog_header_check_dump(mp, head);
 322		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
 323				 XFS_ERRLEVEL_HIGH, mp);
 324		return XFS_ERROR(EFSCORRUPTED);
 325	}
 326	return 0;
 327}
 328
 329/*
 330 * read the head block of the log and check the header
 331 */
 332STATIC int
 333xlog_header_check_mount(
 334	xfs_mount_t		*mp,
 335	xlog_rec_header_t	*head)
 336{
 337	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 338
 339	if (uuid_is_nil(&head->h_fs_uuid)) {
 340		/*
 341		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 342		 * h_fs_uuid is nil, we assume this log was last mounted
 343		 * by IRIX and continue.
 344		 */
 345		xfs_warn(mp, "nil uuid in log - IRIX style log");
 346	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 347		xfs_warn(mp, "log has mismatched uuid - can't recover");
 348		xlog_header_check_dump(mp, head);
 349		XFS_ERROR_REPORT("xlog_header_check_mount",
 350				 XFS_ERRLEVEL_HIGH, mp);
 351		return XFS_ERROR(EFSCORRUPTED);
 352	}
 353	return 0;
 354}
 355
 356STATIC void
 357xlog_recover_iodone(
 358	struct xfs_buf	*bp)
 359{
 360	if (bp->b_error) {
 361		/*
 362		 * We're not going to bother about retrying
 363		 * this during recovery. One strike!
 364		 */
 365		xfs_buf_ioerror_alert(bp, __func__);
 
 
 366		xfs_force_shutdown(bp->b_target->bt_mount,
 367					SHUTDOWN_META_IO_ERROR);
 368	}
 369	bp->b_iodone = NULL;
 370	xfs_buf_ioend(bp, 0);
 371}
 372
 373/*
 374 * This routine finds (to an approximation) the first block in the physical
 375 * log which contains the given cycle.  It uses a binary search algorithm.
 376 * Note that the algorithm can not be perfect because the disk will not
 377 * necessarily be perfect.
 378 */
 379STATIC int
 380xlog_find_cycle_start(
 381	xlog_t		*log,
 382	xfs_buf_t	*bp,
 383	xfs_daddr_t	first_blk,
 384	xfs_daddr_t	*last_blk,
 385	uint		cycle)
 386{
 387	xfs_caddr_t	offset;
 388	xfs_daddr_t	mid_blk;
 389	xfs_daddr_t	end_blk;
 390	uint		mid_cycle;
 391	int		error;
 392
 393	end_blk = *last_blk;
 394	mid_blk = BLK_AVG(first_blk, end_blk);
 395	while (mid_blk != first_blk && mid_blk != end_blk) {
 396		error = xlog_bread(log, mid_blk, 1, bp, &offset);
 397		if (error)
 398			return error;
 399		mid_cycle = xlog_get_cycle(offset);
 400		if (mid_cycle == cycle)
 401			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 402		else
 403			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 404		mid_blk = BLK_AVG(first_blk, end_blk);
 405	}
 406	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 407	       (mid_blk == end_blk && mid_blk-1 == first_blk));
 408
 409	*last_blk = end_blk;
 410
 411	return 0;
 412}
 413
 414/*
 415 * Check that a range of blocks does not contain stop_on_cycle_no.
 416 * Fill in *new_blk with the block offset where such a block is
 417 * found, or with -1 (an invalid block number) if there is no such
 418 * block in the range.  The scan needs to occur from front to back
 419 * and the pointer into the region must be updated since a later
 420 * routine will need to perform another test.
 421 */
 422STATIC int
 423xlog_find_verify_cycle(
 424	xlog_t		*log,
 425	xfs_daddr_t	start_blk,
 426	int		nbblks,
 427	uint		stop_on_cycle_no,
 428	xfs_daddr_t	*new_blk)
 429{
 430	xfs_daddr_t	i, j;
 431	uint		cycle;
 432	xfs_buf_t	*bp;
 433	xfs_daddr_t	bufblks;
 434	xfs_caddr_t	buf = NULL;
 435	int		error = 0;
 436
 437	/*
 438	 * Greedily allocate a buffer big enough to handle the full
 439	 * range of basic blocks we'll be examining.  If that fails,
 440	 * try a smaller size.  We need to be able to read at least
 441	 * a log sector, or we're out of luck.
 442	 */
 443	bufblks = 1 << ffs(nbblks);
 444	while (bufblks > log->l_logBBsize)
 445		bufblks >>= 1;
 446	while (!(bp = xlog_get_bp(log, bufblks))) {
 447		bufblks >>= 1;
 448		if (bufblks < log->l_sectBBsize)
 449			return ENOMEM;
 450	}
 451
 452	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 453		int	bcount;
 454
 455		bcount = min(bufblks, (start_blk + nbblks - i));
 456
 457		error = xlog_bread(log, i, bcount, bp, &buf);
 458		if (error)
 459			goto out;
 460
 461		for (j = 0; j < bcount; j++) {
 462			cycle = xlog_get_cycle(buf);
 463			if (cycle == stop_on_cycle_no) {
 464				*new_blk = i+j;
 465				goto out;
 466			}
 467
 468			buf += BBSIZE;
 469		}
 470	}
 471
 472	*new_blk = -1;
 473
 474out:
 475	xlog_put_bp(bp);
 476	return error;
 477}
 478
 479/*
 480 * Potentially backup over partial log record write.
 481 *
 482 * In the typical case, last_blk is the number of the block directly after
 483 * a good log record.  Therefore, we subtract one to get the block number
 484 * of the last block in the given buffer.  extra_bblks contains the number
 485 * of blocks we would have read on a previous read.  This happens when the
 486 * last log record is split over the end of the physical log.
 487 *
 488 * extra_bblks is the number of blocks potentially verified on a previous
 489 * call to this routine.
 490 */
 491STATIC int
 492xlog_find_verify_log_record(
 493	xlog_t			*log,
 494	xfs_daddr_t		start_blk,
 495	xfs_daddr_t		*last_blk,
 496	int			extra_bblks)
 497{
 498	xfs_daddr_t		i;
 499	xfs_buf_t		*bp;
 500	xfs_caddr_t		offset = NULL;
 501	xlog_rec_header_t	*head = NULL;
 502	int			error = 0;
 503	int			smallmem = 0;
 504	int			num_blks = *last_blk - start_blk;
 505	int			xhdrs;
 506
 507	ASSERT(start_blk != 0 || *last_blk != start_blk);
 508
 509	if (!(bp = xlog_get_bp(log, num_blks))) {
 510		if (!(bp = xlog_get_bp(log, 1)))
 511			return ENOMEM;
 512		smallmem = 1;
 513	} else {
 514		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
 515		if (error)
 516			goto out;
 517		offset += ((num_blks - 1) << BBSHIFT);
 518	}
 519
 520	for (i = (*last_blk) - 1; i >= 0; i--) {
 521		if (i < start_blk) {
 522			/* valid log record not found */
 523			xfs_warn(log->l_mp,
 524		"Log inconsistent (didn't find previous header)");
 525			ASSERT(0);
 526			error = XFS_ERROR(EIO);
 527			goto out;
 528		}
 529
 530		if (smallmem) {
 531			error = xlog_bread(log, i, 1, bp, &offset);
 532			if (error)
 533				goto out;
 534		}
 535
 536		head = (xlog_rec_header_t *)offset;
 537
 538		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
 539			break;
 540
 541		if (!smallmem)
 542			offset -= BBSIZE;
 543	}
 544
 545	/*
 546	 * We hit the beginning of the physical log & still no header.  Return
 547	 * to caller.  If caller can handle a return of -1, then this routine
 548	 * will be called again for the end of the physical log.
 549	 */
 550	if (i == -1) {
 551		error = -1;
 552		goto out;
 553	}
 554
 555	/*
 556	 * We have the final block of the good log (the first block
 557	 * of the log record _before_ the head. So we check the uuid.
 558	 */
 559	if ((error = xlog_header_check_mount(log->l_mp, head)))
 560		goto out;
 561
 562	/*
 563	 * We may have found a log record header before we expected one.
 564	 * last_blk will be the 1st block # with a given cycle #.  We may end
 565	 * up reading an entire log record.  In this case, we don't want to
 566	 * reset last_blk.  Only when last_blk points in the middle of a log
 567	 * record do we update last_blk.
 568	 */
 569	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 570		uint	h_size = be32_to_cpu(head->h_size);
 571
 572		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 573		if (h_size % XLOG_HEADER_CYCLE_SIZE)
 574			xhdrs++;
 575	} else {
 576		xhdrs = 1;
 577	}
 578
 579	if (*last_blk - i + extra_bblks !=
 580	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 581		*last_blk = i;
 582
 583out:
 584	xlog_put_bp(bp);
 585	return error;
 586}
 587
 588/*
 589 * Head is defined to be the point of the log where the next log write
 590 * write could go.  This means that incomplete LR writes at the end are
 591 * eliminated when calculating the head.  We aren't guaranteed that previous
 592 * LR have complete transactions.  We only know that a cycle number of
 593 * current cycle number -1 won't be present in the log if we start writing
 594 * from our current block number.
 595 *
 596 * last_blk contains the block number of the first block with a given
 597 * cycle number.
 598 *
 599 * Return: zero if normal, non-zero if error.
 600 */
 601STATIC int
 602xlog_find_head(
 603	xlog_t 		*log,
 604	xfs_daddr_t	*return_head_blk)
 605{
 606	xfs_buf_t	*bp;
 607	xfs_caddr_t	offset;
 608	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
 609	int		num_scan_bblks;
 610	uint		first_half_cycle, last_half_cycle;
 611	uint		stop_on_cycle;
 612	int		error, log_bbnum = log->l_logBBsize;
 613
 614	/* Is the end of the log device zeroed? */
 615	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
 616		*return_head_blk = first_blk;
 617
 618		/* Is the whole lot zeroed? */
 619		if (!first_blk) {
 620			/* Linux XFS shouldn't generate totally zeroed logs -
 621			 * mkfs etc write a dummy unmount record to a fresh
 622			 * log so we can store the uuid in there
 623			 */
 624			xfs_warn(log->l_mp, "totally zeroed log");
 625		}
 626
 627		return 0;
 628	} else if (error) {
 629		xfs_warn(log->l_mp, "empty log check failed");
 630		return error;
 631	}
 632
 633	first_blk = 0;			/* get cycle # of 1st block */
 634	bp = xlog_get_bp(log, 1);
 635	if (!bp)
 636		return ENOMEM;
 637
 638	error = xlog_bread(log, 0, 1, bp, &offset);
 639	if (error)
 640		goto bp_err;
 641
 642	first_half_cycle = xlog_get_cycle(offset);
 643
 644	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
 645	error = xlog_bread(log, last_blk, 1, bp, &offset);
 646	if (error)
 647		goto bp_err;
 648
 649	last_half_cycle = xlog_get_cycle(offset);
 650	ASSERT(last_half_cycle != 0);
 651
 652	/*
 653	 * If the 1st half cycle number is equal to the last half cycle number,
 654	 * then the entire log is stamped with the same cycle number.  In this
 655	 * case, head_blk can't be set to zero (which makes sense).  The below
 656	 * math doesn't work out properly with head_blk equal to zero.  Instead,
 657	 * we set it to log_bbnum which is an invalid block number, but this
 658	 * value makes the math correct.  If head_blk doesn't changed through
 659	 * all the tests below, *head_blk is set to zero at the very end rather
 660	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 661	 * in a circular file.
 662	 */
 663	if (first_half_cycle == last_half_cycle) {
 664		/*
 665		 * In this case we believe that the entire log should have
 666		 * cycle number last_half_cycle.  We need to scan backwards
 667		 * from the end verifying that there are no holes still
 668		 * containing last_half_cycle - 1.  If we find such a hole,
 669		 * then the start of that hole will be the new head.  The
 670		 * simple case looks like
 671		 *        x | x ... | x - 1 | x
 672		 * Another case that fits this picture would be
 673		 *        x | x + 1 | x ... | x
 674		 * In this case the head really is somewhere at the end of the
 675		 * log, as one of the latest writes at the beginning was
 676		 * incomplete.
 677		 * One more case is
 678		 *        x | x + 1 | x ... | x - 1 | x
 679		 * This is really the combination of the above two cases, and
 680		 * the head has to end up at the start of the x-1 hole at the
 681		 * end of the log.
 682		 *
 683		 * In the 256k log case, we will read from the beginning to the
 684		 * end of the log and search for cycle numbers equal to x-1.
 685		 * We don't worry about the x+1 blocks that we encounter,
 686		 * because we know that they cannot be the head since the log
 687		 * started with x.
 688		 */
 689		head_blk = log_bbnum;
 690		stop_on_cycle = last_half_cycle - 1;
 691	} else {
 692		/*
 693		 * In this case we want to find the first block with cycle
 694		 * number matching last_half_cycle.  We expect the log to be
 695		 * some variation on
 696		 *        x + 1 ... | x ... | x
 697		 * The first block with cycle number x (last_half_cycle) will
 698		 * be where the new head belongs.  First we do a binary search
 699		 * for the first occurrence of last_half_cycle.  The binary
 700		 * search may not be totally accurate, so then we scan back
 701		 * from there looking for occurrences of last_half_cycle before
 702		 * us.  If that backwards scan wraps around the beginning of
 703		 * the log, then we look for occurrences of last_half_cycle - 1
 704		 * at the end of the log.  The cases we're looking for look
 705		 * like
 706		 *                               v binary search stopped here
 707		 *        x + 1 ... | x | x + 1 | x ... | x
 708		 *                   ^ but we want to locate this spot
 709		 * or
 710		 *        <---------> less than scan distance
 711		 *        x + 1 ... | x ... | x - 1 | x
 712		 *                           ^ we want to locate this spot
 713		 */
 714		stop_on_cycle = last_half_cycle;
 715		if ((error = xlog_find_cycle_start(log, bp, first_blk,
 716						&head_blk, last_half_cycle)))
 717			goto bp_err;
 718	}
 719
 720	/*
 721	 * Now validate the answer.  Scan back some number of maximum possible
 722	 * blocks and make sure each one has the expected cycle number.  The
 723	 * maximum is determined by the total possible amount of buffering
 724	 * in the in-core log.  The following number can be made tighter if
 725	 * we actually look at the block size of the filesystem.
 726	 */
 727	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
 728	if (head_blk >= num_scan_bblks) {
 729		/*
 730		 * We are guaranteed that the entire check can be performed
 731		 * in one buffer.
 732		 */
 733		start_blk = head_blk - num_scan_bblks;
 734		if ((error = xlog_find_verify_cycle(log,
 735						start_blk, num_scan_bblks,
 736						stop_on_cycle, &new_blk)))
 737			goto bp_err;
 738		if (new_blk != -1)
 739			head_blk = new_blk;
 740	} else {		/* need to read 2 parts of log */
 741		/*
 742		 * We are going to scan backwards in the log in two parts.
 743		 * First we scan the physical end of the log.  In this part
 744		 * of the log, we are looking for blocks with cycle number
 745		 * last_half_cycle - 1.
 746		 * If we find one, then we know that the log starts there, as
 747		 * we've found a hole that didn't get written in going around
 748		 * the end of the physical log.  The simple case for this is
 749		 *        x + 1 ... | x ... | x - 1 | x
 750		 *        <---------> less than scan distance
 751		 * If all of the blocks at the end of the log have cycle number
 752		 * last_half_cycle, then we check the blocks at the start of
 753		 * the log looking for occurrences of last_half_cycle.  If we
 754		 * find one, then our current estimate for the location of the
 755		 * first occurrence of last_half_cycle is wrong and we move
 756		 * back to the hole we've found.  This case looks like
 757		 *        x + 1 ... | x | x + 1 | x ...
 758		 *                               ^ binary search stopped here
 759		 * Another case we need to handle that only occurs in 256k
 760		 * logs is
 761		 *        x + 1 ... | x ... | x+1 | x ...
 762		 *                   ^ binary search stops here
 763		 * In a 256k log, the scan at the end of the log will see the
 764		 * x + 1 blocks.  We need to skip past those since that is
 765		 * certainly not the head of the log.  By searching for
 766		 * last_half_cycle-1 we accomplish that.
 767		 */
 768		ASSERT(head_blk <= INT_MAX &&
 769			(xfs_daddr_t) num_scan_bblks >= head_blk);
 770		start_blk = log_bbnum - (num_scan_bblks - head_blk);
 771		if ((error = xlog_find_verify_cycle(log, start_blk,
 772					num_scan_bblks - (int)head_blk,
 773					(stop_on_cycle - 1), &new_blk)))
 774			goto bp_err;
 775		if (new_blk != -1) {
 776			head_blk = new_blk;
 777			goto validate_head;
 778		}
 779
 780		/*
 781		 * Scan beginning of log now.  The last part of the physical
 782		 * log is good.  This scan needs to verify that it doesn't find
 783		 * the last_half_cycle.
 784		 */
 785		start_blk = 0;
 786		ASSERT(head_blk <= INT_MAX);
 787		if ((error = xlog_find_verify_cycle(log,
 788					start_blk, (int)head_blk,
 789					stop_on_cycle, &new_blk)))
 790			goto bp_err;
 791		if (new_blk != -1)
 792			head_blk = new_blk;
 793	}
 794
 795validate_head:
 796	/*
 797	 * Now we need to make sure head_blk is not pointing to a block in
 798	 * the middle of a log record.
 799	 */
 800	num_scan_bblks = XLOG_REC_SHIFT(log);
 801	if (head_blk >= num_scan_bblks) {
 802		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 803
 804		/* start ptr at last block ptr before head_blk */
 805		if ((error = xlog_find_verify_log_record(log, start_blk,
 806							&head_blk, 0)) == -1) {
 807			error = XFS_ERROR(EIO);
 808			goto bp_err;
 809		} else if (error)
 810			goto bp_err;
 811	} else {
 812		start_blk = 0;
 813		ASSERT(head_blk <= INT_MAX);
 814		if ((error = xlog_find_verify_log_record(log, start_blk,
 815							&head_blk, 0)) == -1) {
 816			/* We hit the beginning of the log during our search */
 817			start_blk = log_bbnum - (num_scan_bblks - head_blk);
 818			new_blk = log_bbnum;
 819			ASSERT(start_blk <= INT_MAX &&
 820				(xfs_daddr_t) log_bbnum-start_blk >= 0);
 821			ASSERT(head_blk <= INT_MAX);
 822			if ((error = xlog_find_verify_log_record(log,
 823							start_blk, &new_blk,
 824							(int)head_blk)) == -1) {
 825				error = XFS_ERROR(EIO);
 826				goto bp_err;
 827			} else if (error)
 828				goto bp_err;
 829			if (new_blk != log_bbnum)
 830				head_blk = new_blk;
 831		} else if (error)
 832			goto bp_err;
 833	}
 834
 835	xlog_put_bp(bp);
 836	if (head_blk == log_bbnum)
 837		*return_head_blk = 0;
 838	else
 839		*return_head_blk = head_blk;
 840	/*
 841	 * When returning here, we have a good block number.  Bad block
 842	 * means that during a previous crash, we didn't have a clean break
 843	 * from cycle number N to cycle number N-1.  In this case, we need
 844	 * to find the first block with cycle number N-1.
 845	 */
 846	return 0;
 847
 848 bp_err:
 849	xlog_put_bp(bp);
 850
 851	if (error)
 852		xfs_warn(log->l_mp, "failed to find log head");
 853	return error;
 854}
 855
 856/*
 857 * Find the sync block number or the tail of the log.
 858 *
 859 * This will be the block number of the last record to have its
 860 * associated buffers synced to disk.  Every log record header has
 861 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
 862 * to get a sync block number.  The only concern is to figure out which
 863 * log record header to believe.
 864 *
 865 * The following algorithm uses the log record header with the largest
 866 * lsn.  The entire log record does not need to be valid.  We only care
 867 * that the header is valid.
 868 *
 869 * We could speed up search by using current head_blk buffer, but it is not
 870 * available.
 871 */
 872STATIC int
 873xlog_find_tail(
 874	xlog_t			*log,
 875	xfs_daddr_t		*head_blk,
 876	xfs_daddr_t		*tail_blk)
 877{
 878	xlog_rec_header_t	*rhead;
 879	xlog_op_header_t	*op_head;
 880	xfs_caddr_t		offset = NULL;
 881	xfs_buf_t		*bp;
 882	int			error, i, found;
 883	xfs_daddr_t		umount_data_blk;
 884	xfs_daddr_t		after_umount_blk;
 885	xfs_lsn_t		tail_lsn;
 886	int			hblks;
 887
 888	found = 0;
 889
 890	/*
 891	 * Find previous log record
 892	 */
 893	if ((error = xlog_find_head(log, head_blk)))
 894		return error;
 895
 896	bp = xlog_get_bp(log, 1);
 897	if (!bp)
 898		return ENOMEM;
 899	if (*head_blk == 0) {				/* special case */
 900		error = xlog_bread(log, 0, 1, bp, &offset);
 901		if (error)
 902			goto done;
 903
 904		if (xlog_get_cycle(offset) == 0) {
 905			*tail_blk = 0;
 906			/* leave all other log inited values alone */
 907			goto done;
 908		}
 909	}
 910
 911	/*
 912	 * Search backwards looking for log record header block
 913	 */
 914	ASSERT(*head_blk < INT_MAX);
 915	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
 916		error = xlog_bread(log, i, 1, bp, &offset);
 917		if (error)
 918			goto done;
 919
 920		if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 921			found = 1;
 922			break;
 923		}
 924	}
 925	/*
 926	 * If we haven't found the log record header block, start looking
 927	 * again from the end of the physical log.  XXXmiken: There should be
 928	 * a check here to make sure we didn't search more than N blocks in
 929	 * the previous code.
 930	 */
 931	if (!found) {
 932		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
 933			error = xlog_bread(log, i, 1, bp, &offset);
 934			if (error)
 935				goto done;
 936
 937			if (*(__be32 *)offset ==
 938			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 939				found = 2;
 940				break;
 941			}
 942		}
 943	}
 944	if (!found) {
 945		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
 946		ASSERT(0);
 947		return XFS_ERROR(EIO);
 948	}
 949
 950	/* find blk_no of tail of log */
 951	rhead = (xlog_rec_header_t *)offset;
 952	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
 953
 954	/*
 955	 * Reset log values according to the state of the log when we
 956	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
 957	 * one because the next write starts a new cycle rather than
 958	 * continuing the cycle of the last good log record.  At this
 959	 * point we have guaranteed that all partial log records have been
 960	 * accounted for.  Therefore, we know that the last good log record
 961	 * written was complete and ended exactly on the end boundary
 962	 * of the physical log.
 963	 */
 964	log->l_prev_block = i;
 965	log->l_curr_block = (int)*head_blk;
 966	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
 967	if (found == 2)
 968		log->l_curr_cycle++;
 969	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
 970	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
 971	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
 972					BBTOB(log->l_curr_block));
 973	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
 974					BBTOB(log->l_curr_block));
 975
 976	/*
 977	 * Look for unmount record.  If we find it, then we know there
 978	 * was a clean unmount.  Since 'i' could be the last block in
 979	 * the physical log, we convert to a log block before comparing
 980	 * to the head_blk.
 981	 *
 982	 * Save the current tail lsn to use to pass to
 983	 * xlog_clear_stale_blocks() below.  We won't want to clear the
 984	 * unmount record if there is one, so we pass the lsn of the
 985	 * unmount record rather than the block after it.
 986	 */
 987	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 988		int	h_size = be32_to_cpu(rhead->h_size);
 989		int	h_version = be32_to_cpu(rhead->h_version);
 990
 991		if ((h_version & XLOG_VERSION_2) &&
 992		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
 993			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
 994			if (h_size % XLOG_HEADER_CYCLE_SIZE)
 995				hblks++;
 996		} else {
 997			hblks = 1;
 998		}
 999	} else {
1000		hblks = 1;
1001	}
1002	after_umount_blk = (i + hblks + (int)
1003		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1004	tail_lsn = atomic64_read(&log->l_tail_lsn);
1005	if (*head_blk == after_umount_blk &&
1006	    be32_to_cpu(rhead->h_num_logops) == 1) {
1007		umount_data_blk = (i + hblks) % log->l_logBBsize;
1008		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1009		if (error)
1010			goto done;
1011
1012		op_head = (xlog_op_header_t *)offset;
1013		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1014			/*
1015			 * Set tail and last sync so that newly written
1016			 * log records will point recovery to after the
1017			 * current unmount record.
1018			 */
1019			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1020					log->l_curr_cycle, after_umount_blk);
1021			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1022					log->l_curr_cycle, after_umount_blk);
1023			*tail_blk = after_umount_blk;
1024
1025			/*
1026			 * Note that the unmount was clean. If the unmount
1027			 * was not clean, we need to know this to rebuild the
1028			 * superblock counters from the perag headers if we
1029			 * have a filesystem using non-persistent counters.
1030			 */
1031			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1032		}
1033	}
1034
1035	/*
1036	 * Make sure that there are no blocks in front of the head
1037	 * with the same cycle number as the head.  This can happen
1038	 * because we allow multiple outstanding log writes concurrently,
1039	 * and the later writes might make it out before earlier ones.
1040	 *
1041	 * We use the lsn from before modifying it so that we'll never
1042	 * overwrite the unmount record after a clean unmount.
1043	 *
1044	 * Do this only if we are going to recover the filesystem
1045	 *
1046	 * NOTE: This used to say "if (!readonly)"
1047	 * However on Linux, we can & do recover a read-only filesystem.
1048	 * We only skip recovery if NORECOVERY is specified on mount,
1049	 * in which case we would not be here.
1050	 *
1051	 * But... if the -device- itself is readonly, just skip this.
1052	 * We can't recover this device anyway, so it won't matter.
1053	 */
1054	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1055		error = xlog_clear_stale_blocks(log, tail_lsn);
1056
1057done:
1058	xlog_put_bp(bp);
1059
1060	if (error)
1061		xfs_warn(log->l_mp, "failed to locate log tail");
1062	return error;
1063}
1064
1065/*
1066 * Is the log zeroed at all?
1067 *
1068 * The last binary search should be changed to perform an X block read
1069 * once X becomes small enough.  You can then search linearly through
1070 * the X blocks.  This will cut down on the number of reads we need to do.
1071 *
1072 * If the log is partially zeroed, this routine will pass back the blkno
1073 * of the first block with cycle number 0.  It won't have a complete LR
1074 * preceding it.
1075 *
1076 * Return:
1077 *	0  => the log is completely written to
1078 *	-1 => use *blk_no as the first block of the log
1079 *	>0 => error has occurred
1080 */
1081STATIC int
1082xlog_find_zeroed(
1083	xlog_t		*log,
1084	xfs_daddr_t	*blk_no)
1085{
1086	xfs_buf_t	*bp;
1087	xfs_caddr_t	offset;
1088	uint	        first_cycle, last_cycle;
1089	xfs_daddr_t	new_blk, last_blk, start_blk;
1090	xfs_daddr_t     num_scan_bblks;
1091	int	        error, log_bbnum = log->l_logBBsize;
1092
1093	*blk_no = 0;
1094
1095	/* check totally zeroed log */
1096	bp = xlog_get_bp(log, 1);
1097	if (!bp)
1098		return ENOMEM;
1099	error = xlog_bread(log, 0, 1, bp, &offset);
1100	if (error)
1101		goto bp_err;
1102
1103	first_cycle = xlog_get_cycle(offset);
1104	if (first_cycle == 0) {		/* completely zeroed log */
1105		*blk_no = 0;
1106		xlog_put_bp(bp);
1107		return -1;
1108	}
1109
1110	/* check partially zeroed log */
1111	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1112	if (error)
1113		goto bp_err;
1114
1115	last_cycle = xlog_get_cycle(offset);
1116	if (last_cycle != 0) {		/* log completely written to */
1117		xlog_put_bp(bp);
1118		return 0;
1119	} else if (first_cycle != 1) {
1120		/*
1121		 * If the cycle of the last block is zero, the cycle of
1122		 * the first block must be 1. If it's not, maybe we're
1123		 * not looking at a log... Bail out.
1124		 */
1125		xfs_warn(log->l_mp,
1126			"Log inconsistent or not a log (last==0, first!=1)");
1127		return XFS_ERROR(EINVAL);
1128	}
1129
1130	/* we have a partially zeroed log */
1131	last_blk = log_bbnum-1;
1132	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1133		goto bp_err;
1134
1135	/*
1136	 * Validate the answer.  Because there is no way to guarantee that
1137	 * the entire log is made up of log records which are the same size,
1138	 * we scan over the defined maximum blocks.  At this point, the maximum
1139	 * is not chosen to mean anything special.   XXXmiken
1140	 */
1141	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1142	ASSERT(num_scan_bblks <= INT_MAX);
1143
1144	if (last_blk < num_scan_bblks)
1145		num_scan_bblks = last_blk;
1146	start_blk = last_blk - num_scan_bblks;
1147
1148	/*
1149	 * We search for any instances of cycle number 0 that occur before
1150	 * our current estimate of the head.  What we're trying to detect is
1151	 *        1 ... | 0 | 1 | 0...
1152	 *                       ^ binary search ends here
1153	 */
1154	if ((error = xlog_find_verify_cycle(log, start_blk,
1155					 (int)num_scan_bblks, 0, &new_blk)))
1156		goto bp_err;
1157	if (new_blk != -1)
1158		last_blk = new_blk;
1159
1160	/*
1161	 * Potentially backup over partial log record write.  We don't need
1162	 * to search the end of the log because we know it is zero.
1163	 */
1164	if ((error = xlog_find_verify_log_record(log, start_blk,
1165				&last_blk, 0)) == -1) {
1166	    error = XFS_ERROR(EIO);
1167	    goto bp_err;
1168	} else if (error)
1169	    goto bp_err;
1170
1171	*blk_no = last_blk;
1172bp_err:
1173	xlog_put_bp(bp);
1174	if (error)
1175		return error;
1176	return -1;
1177}
1178
1179/*
1180 * These are simple subroutines used by xlog_clear_stale_blocks() below
1181 * to initialize a buffer full of empty log record headers and write
1182 * them into the log.
1183 */
1184STATIC void
1185xlog_add_record(
1186	xlog_t			*log,
1187	xfs_caddr_t		buf,
1188	int			cycle,
1189	int			block,
1190	int			tail_cycle,
1191	int			tail_block)
1192{
1193	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1194
1195	memset(buf, 0, BBSIZE);
1196	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1197	recp->h_cycle = cpu_to_be32(cycle);
1198	recp->h_version = cpu_to_be32(
1199			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1200	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1201	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1202	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1203	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1204}
1205
1206STATIC int
1207xlog_write_log_records(
1208	xlog_t		*log,
1209	int		cycle,
1210	int		start_block,
1211	int		blocks,
1212	int		tail_cycle,
1213	int		tail_block)
1214{
1215	xfs_caddr_t	offset;
1216	xfs_buf_t	*bp;
1217	int		balign, ealign;
1218	int		sectbb = log->l_sectBBsize;
1219	int		end_block = start_block + blocks;
1220	int		bufblks;
1221	int		error = 0;
1222	int		i, j = 0;
1223
1224	/*
1225	 * Greedily allocate a buffer big enough to handle the full
1226	 * range of basic blocks to be written.  If that fails, try
1227	 * a smaller size.  We need to be able to write at least a
1228	 * log sector, or we're out of luck.
1229	 */
1230	bufblks = 1 << ffs(blocks);
1231	while (bufblks > log->l_logBBsize)
1232		bufblks >>= 1;
1233	while (!(bp = xlog_get_bp(log, bufblks))) {
1234		bufblks >>= 1;
1235		if (bufblks < sectbb)
1236			return ENOMEM;
1237	}
1238
1239	/* We may need to do a read at the start to fill in part of
1240	 * the buffer in the starting sector not covered by the first
1241	 * write below.
1242	 */
1243	balign = round_down(start_block, sectbb);
1244	if (balign != start_block) {
1245		error = xlog_bread_noalign(log, start_block, 1, bp);
1246		if (error)
1247			goto out_put_bp;
1248
1249		j = start_block - balign;
1250	}
1251
1252	for (i = start_block; i < end_block; i += bufblks) {
1253		int		bcount, endcount;
1254
1255		bcount = min(bufblks, end_block - start_block);
1256		endcount = bcount - j;
1257
1258		/* We may need to do a read at the end to fill in part of
1259		 * the buffer in the final sector not covered by the write.
1260		 * If this is the same sector as the above read, skip it.
1261		 */
1262		ealign = round_down(end_block, sectbb);
1263		if (j == 0 && (start_block + endcount > ealign)) {
1264			offset = bp->b_addr + BBTOB(ealign - start_block);
1265			error = xlog_bread_offset(log, ealign, sectbb,
1266							bp, offset);
1267			if (error)
1268				break;
1269
1270		}
1271
1272		offset = xlog_align(log, start_block, endcount, bp);
1273		for (; j < endcount; j++) {
1274			xlog_add_record(log, offset, cycle, i+j,
1275					tail_cycle, tail_block);
1276			offset += BBSIZE;
1277		}
1278		error = xlog_bwrite(log, start_block, endcount, bp);
1279		if (error)
1280			break;
1281		start_block += endcount;
1282		j = 0;
1283	}
1284
1285 out_put_bp:
1286	xlog_put_bp(bp);
1287	return error;
1288}
1289
1290/*
1291 * This routine is called to blow away any incomplete log writes out
1292 * in front of the log head.  We do this so that we won't become confused
1293 * if we come up, write only a little bit more, and then crash again.
1294 * If we leave the partial log records out there, this situation could
1295 * cause us to think those partial writes are valid blocks since they
1296 * have the current cycle number.  We get rid of them by overwriting them
1297 * with empty log records with the old cycle number rather than the
1298 * current one.
1299 *
1300 * The tail lsn is passed in rather than taken from
1301 * the log so that we will not write over the unmount record after a
1302 * clean unmount in a 512 block log.  Doing so would leave the log without
1303 * any valid log records in it until a new one was written.  If we crashed
1304 * during that time we would not be able to recover.
1305 */
1306STATIC int
1307xlog_clear_stale_blocks(
1308	xlog_t		*log,
1309	xfs_lsn_t	tail_lsn)
1310{
1311	int		tail_cycle, head_cycle;
1312	int		tail_block, head_block;
1313	int		tail_distance, max_distance;
1314	int		distance;
1315	int		error;
1316
1317	tail_cycle = CYCLE_LSN(tail_lsn);
1318	tail_block = BLOCK_LSN(tail_lsn);
1319	head_cycle = log->l_curr_cycle;
1320	head_block = log->l_curr_block;
1321
1322	/*
1323	 * Figure out the distance between the new head of the log
1324	 * and the tail.  We want to write over any blocks beyond the
1325	 * head that we may have written just before the crash, but
1326	 * we don't want to overwrite the tail of the log.
1327	 */
1328	if (head_cycle == tail_cycle) {
1329		/*
1330		 * The tail is behind the head in the physical log,
1331		 * so the distance from the head to the tail is the
1332		 * distance from the head to the end of the log plus
1333		 * the distance from the beginning of the log to the
1334		 * tail.
1335		 */
1336		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1337			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1338					 XFS_ERRLEVEL_LOW, log->l_mp);
1339			return XFS_ERROR(EFSCORRUPTED);
1340		}
1341		tail_distance = tail_block + (log->l_logBBsize - head_block);
1342	} else {
1343		/*
1344		 * The head is behind the tail in the physical log,
1345		 * so the distance from the head to the tail is just
1346		 * the tail block minus the head block.
1347		 */
1348		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1349			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1350					 XFS_ERRLEVEL_LOW, log->l_mp);
1351			return XFS_ERROR(EFSCORRUPTED);
1352		}
1353		tail_distance = tail_block - head_block;
1354	}
1355
1356	/*
1357	 * If the head is right up against the tail, we can't clear
1358	 * anything.
1359	 */
1360	if (tail_distance <= 0) {
1361		ASSERT(tail_distance == 0);
1362		return 0;
1363	}
1364
1365	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1366	/*
1367	 * Take the smaller of the maximum amount of outstanding I/O
1368	 * we could have and the distance to the tail to clear out.
1369	 * We take the smaller so that we don't overwrite the tail and
1370	 * we don't waste all day writing from the head to the tail
1371	 * for no reason.
1372	 */
1373	max_distance = MIN(max_distance, tail_distance);
1374
1375	if ((head_block + max_distance) <= log->l_logBBsize) {
1376		/*
1377		 * We can stomp all the blocks we need to without
1378		 * wrapping around the end of the log.  Just do it
1379		 * in a single write.  Use the cycle number of the
1380		 * current cycle minus one so that the log will look like:
1381		 *     n ... | n - 1 ...
1382		 */
1383		error = xlog_write_log_records(log, (head_cycle - 1),
1384				head_block, max_distance, tail_cycle,
1385				tail_block);
1386		if (error)
1387			return error;
1388	} else {
1389		/*
1390		 * We need to wrap around the end of the physical log in
1391		 * order to clear all the blocks.  Do it in two separate
1392		 * I/Os.  The first write should be from the head to the
1393		 * end of the physical log, and it should use the current
1394		 * cycle number minus one just like above.
1395		 */
1396		distance = log->l_logBBsize - head_block;
1397		error = xlog_write_log_records(log, (head_cycle - 1),
1398				head_block, distance, tail_cycle,
1399				tail_block);
1400
1401		if (error)
1402			return error;
1403
1404		/*
1405		 * Now write the blocks at the start of the physical log.
1406		 * This writes the remainder of the blocks we want to clear.
1407		 * It uses the current cycle number since we're now on the
1408		 * same cycle as the head so that we get:
1409		 *    n ... n ... | n - 1 ...
1410		 *    ^^^^^ blocks we're writing
1411		 */
1412		distance = max_distance - (log->l_logBBsize - head_block);
1413		error = xlog_write_log_records(log, head_cycle, 0, distance,
1414				tail_cycle, tail_block);
1415		if (error)
1416			return error;
1417	}
1418
1419	return 0;
1420}
1421
1422/******************************************************************************
1423 *
1424 *		Log recover routines
1425 *
1426 ******************************************************************************
1427 */
1428
1429STATIC xlog_recover_t *
1430xlog_recover_find_tid(
1431	struct hlist_head	*head,
1432	xlog_tid_t		tid)
1433{
1434	xlog_recover_t		*trans;
1435	struct hlist_node	*n;
1436
1437	hlist_for_each_entry(trans, n, head, r_list) {
1438		if (trans->r_log_tid == tid)
1439			return trans;
1440	}
1441	return NULL;
1442}
1443
1444STATIC void
1445xlog_recover_new_tid(
1446	struct hlist_head	*head,
1447	xlog_tid_t		tid,
1448	xfs_lsn_t		lsn)
1449{
1450	xlog_recover_t		*trans;
1451
1452	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1453	trans->r_log_tid   = tid;
1454	trans->r_lsn	   = lsn;
1455	INIT_LIST_HEAD(&trans->r_itemq);
1456
1457	INIT_HLIST_NODE(&trans->r_list);
1458	hlist_add_head(&trans->r_list, head);
1459}
1460
1461STATIC void
1462xlog_recover_add_item(
1463	struct list_head	*head)
1464{
1465	xlog_recover_item_t	*item;
1466
1467	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1468	INIT_LIST_HEAD(&item->ri_list);
1469	list_add_tail(&item->ri_list, head);
1470}
1471
1472STATIC int
1473xlog_recover_add_to_cont_trans(
1474	struct xlog		*log,
1475	struct xlog_recover	*trans,
1476	xfs_caddr_t		dp,
1477	int			len)
1478{
1479	xlog_recover_item_t	*item;
1480	xfs_caddr_t		ptr, old_ptr;
1481	int			old_len;
1482
1483	if (list_empty(&trans->r_itemq)) {
1484		/* finish copying rest of trans header */
1485		xlog_recover_add_item(&trans->r_itemq);
1486		ptr = (xfs_caddr_t) &trans->r_theader +
1487				sizeof(xfs_trans_header_t) - len;
1488		memcpy(ptr, dp, len); /* d, s, l */
1489		return 0;
1490	}
1491	/* take the tail entry */
1492	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1493
1494	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1495	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1496
1497	ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1498	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1499	item->ri_buf[item->ri_cnt-1].i_len += len;
1500	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1501	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1502	return 0;
1503}
1504
1505/*
1506 * The next region to add is the start of a new region.  It could be
1507 * a whole region or it could be the first part of a new region.  Because
1508 * of this, the assumption here is that the type and size fields of all
1509 * format structures fit into the first 32 bits of the structure.
1510 *
1511 * This works because all regions must be 32 bit aligned.  Therefore, we
1512 * either have both fields or we have neither field.  In the case we have
1513 * neither field, the data part of the region is zero length.  We only have
1514 * a log_op_header and can throw away the header since a new one will appear
1515 * later.  If we have at least 4 bytes, then we can determine how many regions
1516 * will appear in the current log item.
1517 */
1518STATIC int
1519xlog_recover_add_to_trans(
1520	struct xlog		*log,
1521	struct xlog_recover	*trans,
1522	xfs_caddr_t		dp,
1523	int			len)
1524{
1525	xfs_inode_log_format_t	*in_f;			/* any will do */
1526	xlog_recover_item_t	*item;
1527	xfs_caddr_t		ptr;
1528
1529	if (!len)
1530		return 0;
1531	if (list_empty(&trans->r_itemq)) {
1532		/* we need to catch log corruptions here */
1533		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1534			xfs_warn(log->l_mp, "%s: bad header magic number",
1535				__func__);
1536			ASSERT(0);
1537			return XFS_ERROR(EIO);
1538		}
1539		if (len == sizeof(xfs_trans_header_t))
1540			xlog_recover_add_item(&trans->r_itemq);
1541		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1542		return 0;
1543	}
1544
1545	ptr = kmem_alloc(len, KM_SLEEP);
1546	memcpy(ptr, dp, len);
1547	in_f = (xfs_inode_log_format_t *)ptr;
1548
1549	/* take the tail entry */
1550	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1551	if (item->ri_total != 0 &&
1552	     item->ri_total == item->ri_cnt) {
1553		/* tail item is in use, get a new one */
1554		xlog_recover_add_item(&trans->r_itemq);
1555		item = list_entry(trans->r_itemq.prev,
1556					xlog_recover_item_t, ri_list);
1557	}
1558
1559	if (item->ri_total == 0) {		/* first region to be added */
1560		if (in_f->ilf_size == 0 ||
1561		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1562			xfs_warn(log->l_mp,
1563		"bad number of regions (%d) in inode log format",
1564				  in_f->ilf_size);
1565			ASSERT(0);
1566			return XFS_ERROR(EIO);
1567		}
1568
1569		item->ri_total = in_f->ilf_size;
1570		item->ri_buf =
1571			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1572				    KM_SLEEP);
1573	}
1574	ASSERT(item->ri_total > item->ri_cnt);
1575	/* Description region is ri_buf[0] */
1576	item->ri_buf[item->ri_cnt].i_addr = ptr;
1577	item->ri_buf[item->ri_cnt].i_len  = len;
1578	item->ri_cnt++;
1579	trace_xfs_log_recover_item_add(log, trans, item, 0);
1580	return 0;
1581}
1582
1583/*
1584 * Sort the log items in the transaction. Cancelled buffers need
1585 * to be put first so they are processed before any items that might
1586 * modify the buffers. If they are cancelled, then the modifications
1587 * don't need to be replayed.
1588 */
1589STATIC int
1590xlog_recover_reorder_trans(
1591	struct xlog		*log,
1592	struct xlog_recover	*trans,
1593	int			pass)
1594{
1595	xlog_recover_item_t	*item, *n;
1596	LIST_HEAD(sort_list);
1597
1598	list_splice_init(&trans->r_itemq, &sort_list);
1599	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1600		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1601
1602		switch (ITEM_TYPE(item)) {
1603		case XFS_LI_BUF:
1604			if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1605				trace_xfs_log_recover_item_reorder_head(log,
1606							trans, item, pass);
1607				list_move(&item->ri_list, &trans->r_itemq);
1608				break;
1609			}
1610		case XFS_LI_INODE:
1611		case XFS_LI_DQUOT:
1612		case XFS_LI_QUOTAOFF:
1613		case XFS_LI_EFD:
1614		case XFS_LI_EFI:
1615			trace_xfs_log_recover_item_reorder_tail(log,
1616							trans, item, pass);
1617			list_move_tail(&item->ri_list, &trans->r_itemq);
1618			break;
1619		default:
1620			xfs_warn(log->l_mp,
1621				"%s: unrecognized type of log operation",
1622				__func__);
1623			ASSERT(0);
1624			return XFS_ERROR(EIO);
1625		}
1626	}
1627	ASSERT(list_empty(&sort_list));
1628	return 0;
1629}
1630
1631/*
1632 * Build up the table of buf cancel records so that we don't replay
1633 * cancelled data in the second pass.  For buffer records that are
1634 * not cancel records, there is nothing to do here so we just return.
1635 *
1636 * If we get a cancel record which is already in the table, this indicates
1637 * that the buffer was cancelled multiple times.  In order to ensure
1638 * that during pass 2 we keep the record in the table until we reach its
1639 * last occurrence in the log, we keep a reference count in the cancel
1640 * record in the table to tell us how many times we expect to see this
1641 * record during the second pass.
1642 */
1643STATIC int
1644xlog_recover_buffer_pass1(
1645	struct xlog			*log,
1646	struct xlog_recover_item	*item)
1647{
1648	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1649	struct list_head	*bucket;
1650	struct xfs_buf_cancel	*bcp;
1651
1652	/*
1653	 * If this isn't a cancel buffer item, then just return.
1654	 */
1655	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1656		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1657		return 0;
1658	}
1659
1660	/*
1661	 * Insert an xfs_buf_cancel record into the hash table of them.
1662	 * If there is already an identical record, bump its reference count.
1663	 */
1664	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1665	list_for_each_entry(bcp, bucket, bc_list) {
1666		if (bcp->bc_blkno == buf_f->blf_blkno &&
1667		    bcp->bc_len == buf_f->blf_len) {
1668			bcp->bc_refcount++;
1669			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1670			return 0;
1671		}
1672	}
1673
1674	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1675	bcp->bc_blkno = buf_f->blf_blkno;
1676	bcp->bc_len = buf_f->blf_len;
1677	bcp->bc_refcount = 1;
1678	list_add_tail(&bcp->bc_list, bucket);
1679
1680	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1681	return 0;
1682}
1683
1684/*
1685 * Check to see whether the buffer being recovered has a corresponding
1686 * entry in the buffer cancel record table.  If it does then return 1
1687 * so that it will be cancelled, otherwise return 0.  If the buffer is
1688 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1689 * the refcount on the entry in the table and remove it from the table
1690 * if this is the last reference.
1691 *
1692 * We remove the cancel record from the table when we encounter its
1693 * last occurrence in the log so that if the same buffer is re-used
1694 * again after its last cancellation we actually replay the changes
1695 * made at that point.
1696 */
1697STATIC int
1698xlog_check_buffer_cancelled(
1699	struct xlog		*log,
1700	xfs_daddr_t		blkno,
1701	uint			len,
1702	ushort			flags)
1703{
1704	struct list_head	*bucket;
1705	struct xfs_buf_cancel	*bcp;
1706
1707	if (log->l_buf_cancel_table == NULL) {
1708		/*
1709		 * There is nothing in the table built in pass one,
1710		 * so this buffer must not be cancelled.
1711		 */
1712		ASSERT(!(flags & XFS_BLF_CANCEL));
1713		return 0;
1714	}
1715
1716	/*
1717	 * Search for an entry in the  cancel table that matches our buffer.
1718	 */
1719	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1720	list_for_each_entry(bcp, bucket, bc_list) {
1721		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1722			goto found;
1723	}
1724
1725	/*
1726	 * We didn't find a corresponding entry in the table, so return 0 so
1727	 * that the buffer is NOT cancelled.
1728	 */
1729	ASSERT(!(flags & XFS_BLF_CANCEL));
1730	return 0;
1731
1732found:
1733	/*
1734	 * We've go a match, so return 1 so that the recovery of this buffer
1735	 * is cancelled.  If this buffer is actually a buffer cancel log
1736	 * item, then decrement the refcount on the one in the table and
1737	 * remove it if this is the last reference.
1738	 */
1739	if (flags & XFS_BLF_CANCEL) {
1740		if (--bcp->bc_refcount == 0) {
1741			list_del(&bcp->bc_list);
1742			kmem_free(bcp);
1743		}
1744	}
1745	return 1;
1746}
1747
1748/*
1749 * Perform recovery for a buffer full of inodes.  In these buffers, the only
1750 * data which should be recovered is that which corresponds to the
1751 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1752 * data for the inodes is always logged through the inodes themselves rather
1753 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1754 *
1755 * The only time when buffers full of inodes are fully recovered is when the
1756 * buffer is full of newly allocated inodes.  In this case the buffer will
1757 * not be marked as an inode buffer and so will be sent to
1758 * xlog_recover_do_reg_buffer() below during recovery.
1759 */
1760STATIC int
1761xlog_recover_do_inode_buffer(
1762	struct xfs_mount	*mp,
1763	xlog_recover_item_t	*item,
1764	struct xfs_buf		*bp,
1765	xfs_buf_log_format_t	*buf_f)
1766{
1767	int			i;
1768	int			item_index = 0;
1769	int			bit = 0;
1770	int			nbits = 0;
1771	int			reg_buf_offset = 0;
1772	int			reg_buf_bytes = 0;
1773	int			next_unlinked_offset;
1774	int			inodes_per_buf;
1775	xfs_agino_t		*logged_nextp;
1776	xfs_agino_t		*buffer_nextp;
1777
1778	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1779
1780	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1781	for (i = 0; i < inodes_per_buf; i++) {
1782		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1783			offsetof(xfs_dinode_t, di_next_unlinked);
1784
1785		while (next_unlinked_offset >=
1786		       (reg_buf_offset + reg_buf_bytes)) {
1787			/*
1788			 * The next di_next_unlinked field is beyond
1789			 * the current logged region.  Find the next
1790			 * logged region that contains or is beyond
1791			 * the current di_next_unlinked field.
1792			 */
1793			bit += nbits;
1794			bit = xfs_next_bit(buf_f->blf_data_map,
1795					   buf_f->blf_map_size, bit);
1796
1797			/*
1798			 * If there are no more logged regions in the
1799			 * buffer, then we're done.
1800			 */
1801			if (bit == -1)
1802				return 0;
1803
1804			nbits = xfs_contig_bits(buf_f->blf_data_map,
1805						buf_f->blf_map_size, bit);
1806			ASSERT(nbits > 0);
1807			reg_buf_offset = bit << XFS_BLF_SHIFT;
1808			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1809			item_index++;
1810		}
1811
1812		/*
1813		 * If the current logged region starts after the current
1814		 * di_next_unlinked field, then move on to the next
1815		 * di_next_unlinked field.
1816		 */
1817		if (next_unlinked_offset < reg_buf_offset)
1818			continue;
1819
1820		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1821		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1822		ASSERT((reg_buf_offset + reg_buf_bytes) <=
1823							BBTOB(bp->b_io_length));
1824
1825		/*
1826		 * The current logged region contains a copy of the
1827		 * current di_next_unlinked field.  Extract its value
1828		 * and copy it to the buffer copy.
1829		 */
1830		logged_nextp = item->ri_buf[item_index].i_addr +
1831				next_unlinked_offset - reg_buf_offset;
1832		if (unlikely(*logged_nextp == 0)) {
1833			xfs_alert(mp,
1834		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1835		"Trying to replay bad (0) inode di_next_unlinked field.",
1836				item, bp);
1837			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1838					 XFS_ERRLEVEL_LOW, mp);
1839			return XFS_ERROR(EFSCORRUPTED);
1840		}
1841
1842		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1843					      next_unlinked_offset);
1844		*buffer_nextp = *logged_nextp;
1845	}
1846
1847	return 0;
1848}
1849
1850/*
1851 * Perform a 'normal' buffer recovery.  Each logged region of the
1852 * buffer should be copied over the corresponding region in the
1853 * given buffer.  The bitmap in the buf log format structure indicates
1854 * where to place the logged data.
1855 */
1856STATIC void
1857xlog_recover_do_reg_buffer(
1858	struct xfs_mount	*mp,
1859	xlog_recover_item_t	*item,
1860	struct xfs_buf		*bp,
1861	xfs_buf_log_format_t	*buf_f)
1862{
1863	int			i;
1864	int			bit;
1865	int			nbits;
1866	int                     error;
1867
1868	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1869
1870	bit = 0;
1871	i = 1;  /* 0 is the buf format structure */
1872	while (1) {
1873		bit = xfs_next_bit(buf_f->blf_data_map,
1874				   buf_f->blf_map_size, bit);
1875		if (bit == -1)
1876			break;
1877		nbits = xfs_contig_bits(buf_f->blf_data_map,
1878					buf_f->blf_map_size, bit);
1879		ASSERT(nbits > 0);
1880		ASSERT(item->ri_buf[i].i_addr != NULL);
1881		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1882		ASSERT(BBTOB(bp->b_io_length) >=
1883		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
1884
1885		/*
1886		 * Do a sanity check if this is a dquot buffer. Just checking
1887		 * the first dquot in the buffer should do. XXXThis is
1888		 * probably a good thing to do for other buf types also.
1889		 */
1890		error = 0;
1891		if (buf_f->blf_flags &
1892		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1893			if (item->ri_buf[i].i_addr == NULL) {
1894				xfs_alert(mp,
1895					"XFS: NULL dquot in %s.", __func__);
1896				goto next;
1897			}
1898			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1899				xfs_alert(mp,
1900					"XFS: dquot too small (%d) in %s.",
1901					item->ri_buf[i].i_len, __func__);
1902				goto next;
1903			}
1904			error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1905					       -1, 0, XFS_QMOPT_DOWARN,
1906					       "dquot_buf_recover");
1907			if (error)
1908				goto next;
1909		}
1910
1911		memcpy(xfs_buf_offset(bp,
1912			(uint)bit << XFS_BLF_SHIFT),	/* dest */
1913			item->ri_buf[i].i_addr,		/* source */
1914			nbits<<XFS_BLF_SHIFT);		/* length */
1915 next:
1916		i++;
1917		bit += nbits;
1918	}
1919
1920	/* Shouldn't be any more regions */
1921	ASSERT(i == item->ri_total);
1922}
1923
1924/*
1925 * Do some primitive error checking on ondisk dquot data structures.
1926 */
1927int
1928xfs_qm_dqcheck(
1929	struct xfs_mount *mp,
1930	xfs_disk_dquot_t *ddq,
1931	xfs_dqid_t	 id,
1932	uint		 type,	  /* used only when IO_dorepair is true */
1933	uint		 flags,
1934	char		 *str)
1935{
1936	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
1937	int		errs = 0;
1938
1939	/*
1940	 * We can encounter an uninitialized dquot buffer for 2 reasons:
1941	 * 1. If we crash while deleting the quotainode(s), and those blks got
1942	 *    used for user data. This is because we take the path of regular
1943	 *    file deletion; however, the size field of quotainodes is never
1944	 *    updated, so all the tricks that we play in itruncate_finish
1945	 *    don't quite matter.
1946	 *
1947	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1948	 *    But the allocation will be replayed so we'll end up with an
1949	 *    uninitialized quota block.
1950	 *
1951	 * This is all fine; things are still consistent, and we haven't lost
1952	 * any quota information. Just don't complain about bad dquot blks.
1953	 */
1954	if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1955		if (flags & XFS_QMOPT_DOWARN)
1956			xfs_alert(mp,
1957			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1958			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1959		errs++;
1960	}
1961	if (ddq->d_version != XFS_DQUOT_VERSION) {
1962		if (flags & XFS_QMOPT_DOWARN)
1963			xfs_alert(mp,
1964			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1965			str, id, ddq->d_version, XFS_DQUOT_VERSION);
1966		errs++;
1967	}
1968
1969	if (ddq->d_flags != XFS_DQ_USER &&
1970	    ddq->d_flags != XFS_DQ_PROJ &&
1971	    ddq->d_flags != XFS_DQ_GROUP) {
1972		if (flags & XFS_QMOPT_DOWARN)
1973			xfs_alert(mp,
1974			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1975			str, id, ddq->d_flags);
1976		errs++;
1977	}
1978
1979	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1980		if (flags & XFS_QMOPT_DOWARN)
1981			xfs_alert(mp,
1982			"%s : ondisk-dquot 0x%p, ID mismatch: "
1983			"0x%x expected, found id 0x%x",
1984			str, ddq, id, be32_to_cpu(ddq->d_id));
1985		errs++;
1986	}
1987
1988	if (!errs && ddq->d_id) {
1989		if (ddq->d_blk_softlimit &&
1990		    be64_to_cpu(ddq->d_bcount) >
1991				be64_to_cpu(ddq->d_blk_softlimit)) {
1992			if (!ddq->d_btimer) {
1993				if (flags & XFS_QMOPT_DOWARN)
1994					xfs_alert(mp,
1995			"%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1996					str, (int)be32_to_cpu(ddq->d_id), ddq);
1997				errs++;
1998			}
1999		}
2000		if (ddq->d_ino_softlimit &&
2001		    be64_to_cpu(ddq->d_icount) >
2002				be64_to_cpu(ddq->d_ino_softlimit)) {
2003			if (!ddq->d_itimer) {
2004				if (flags & XFS_QMOPT_DOWARN)
2005					xfs_alert(mp,
2006			"%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2007					str, (int)be32_to_cpu(ddq->d_id), ddq);
2008				errs++;
2009			}
2010		}
2011		if (ddq->d_rtb_softlimit &&
2012		    be64_to_cpu(ddq->d_rtbcount) >
2013				be64_to_cpu(ddq->d_rtb_softlimit)) {
2014			if (!ddq->d_rtbtimer) {
2015				if (flags & XFS_QMOPT_DOWARN)
2016					xfs_alert(mp,
2017			"%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2018					str, (int)be32_to_cpu(ddq->d_id), ddq);
2019				errs++;
2020			}
2021		}
2022	}
2023
2024	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2025		return errs;
2026
2027	if (flags & XFS_QMOPT_DOWARN)
2028		xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2029
2030	/*
2031	 * Typically, a repair is only requested by quotacheck.
2032	 */
2033	ASSERT(id != -1);
2034	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2035	memset(d, 0, sizeof(xfs_dqblk_t));
2036
2037	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2038	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2039	d->dd_diskdq.d_flags = type;
2040	d->dd_diskdq.d_id = cpu_to_be32(id);
2041
2042	return errs;
2043}
2044
2045/*
2046 * Perform a dquot buffer recovery.
2047 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2048 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2049 * Else, treat it as a regular buffer and do recovery.
2050 */
2051STATIC void
2052xlog_recover_do_dquot_buffer(
2053	xfs_mount_t		*mp,
2054	xlog_t			*log,
2055	xlog_recover_item_t	*item,
2056	xfs_buf_t		*bp,
2057	xfs_buf_log_format_t	*buf_f)
2058{
2059	uint			type;
2060
2061	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2062
2063	/*
2064	 * Filesystems are required to send in quota flags at mount time.
2065	 */
2066	if (mp->m_qflags == 0) {
2067		return;
2068	}
2069
2070	type = 0;
2071	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2072		type |= XFS_DQ_USER;
2073	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2074		type |= XFS_DQ_PROJ;
2075	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2076		type |= XFS_DQ_GROUP;
2077	/*
2078	 * This type of quotas was turned off, so ignore this buffer
2079	 */
2080	if (log->l_quotaoffs_flag & type)
2081		return;
2082
2083	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2084}
2085
2086/*
2087 * This routine replays a modification made to a buffer at runtime.
2088 * There are actually two types of buffer, regular and inode, which
2089 * are handled differently.  Inode buffers are handled differently
2090 * in that we only recover a specific set of data from them, namely
2091 * the inode di_next_unlinked fields.  This is because all other inode
2092 * data is actually logged via inode records and any data we replay
2093 * here which overlaps that may be stale.
2094 *
2095 * When meta-data buffers are freed at run time we log a buffer item
2096 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2097 * of the buffer in the log should not be replayed at recovery time.
2098 * This is so that if the blocks covered by the buffer are reused for
2099 * file data before we crash we don't end up replaying old, freed
2100 * meta-data into a user's file.
2101 *
2102 * To handle the cancellation of buffer log items, we make two passes
2103 * over the log during recovery.  During the first we build a table of
2104 * those buffers which have been cancelled, and during the second we
2105 * only replay those buffers which do not have corresponding cancel
2106 * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2107 * for more details on the implementation of the table of cancel records.
2108 */
2109STATIC int
2110xlog_recover_buffer_pass2(
2111	xlog_t			*log,
2112	struct list_head	*buffer_list,
2113	xlog_recover_item_t	*item)
2114{
2115	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2116	xfs_mount_t		*mp = log->l_mp;
2117	xfs_buf_t		*bp;
2118	int			error;
2119	uint			buf_flags;
2120
2121	/*
2122	 * In this pass we only want to recover all the buffers which have
2123	 * not been cancelled and are not cancellation buffers themselves.
2124	 */
2125	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2126			buf_f->blf_len, buf_f->blf_flags)) {
2127		trace_xfs_log_recover_buf_cancel(log, buf_f);
2128		return 0;
2129	}
2130
2131	trace_xfs_log_recover_buf_recover(log, buf_f);
2132
2133	buf_flags = 0;
2134	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2135		buf_flags |= XBF_UNMAPPED;
2136
2137	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2138			  buf_flags);
2139	if (!bp)
2140		return XFS_ERROR(ENOMEM);
2141	error = bp->b_error;
2142	if (error) {
2143		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
 
2144		xfs_buf_relse(bp);
2145		return error;
2146	}
2147
2148	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2149		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2150	} else if (buf_f->blf_flags &
2151		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2152		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2153	} else {
2154		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2155	}
2156	if (error)
2157		return XFS_ERROR(error);
2158
2159	/*
2160	 * Perform delayed write on the buffer.  Asynchronous writes will be
2161	 * slower when taking into account all the buffers to be flushed.
2162	 *
2163	 * Also make sure that only inode buffers with good sizes stay in
2164	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2165	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2166	 * buffers in the log can be a different size if the log was generated
2167	 * by an older kernel using unclustered inode buffers or a newer kernel
2168	 * running with a different inode cluster size.  Regardless, if the
2169	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2170	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2171	 * the buffer out of the buffer cache so that the buffer won't
2172	 * overlap with future reads of those inodes.
2173	 */
2174	if (XFS_DINODE_MAGIC ==
2175	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2176	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2177			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2178		xfs_buf_stale(bp);
2179		error = xfs_bwrite(bp);
2180	} else {
2181		ASSERT(bp->b_target->bt_mount == mp);
2182		bp->b_iodone = xlog_recover_iodone;
2183		xfs_buf_delwri_queue(bp, buffer_list);
2184	}
2185
2186	xfs_buf_relse(bp);
2187	return error;
2188}
2189
2190STATIC int
2191xlog_recover_inode_pass2(
2192	xlog_t			*log,
2193	struct list_head	*buffer_list,
2194	xlog_recover_item_t	*item)
2195{
2196	xfs_inode_log_format_t	*in_f;
2197	xfs_mount_t		*mp = log->l_mp;
2198	xfs_buf_t		*bp;
2199	xfs_dinode_t		*dip;
2200	int			len;
2201	xfs_caddr_t		src;
2202	xfs_caddr_t		dest;
2203	int			error;
2204	int			attr_index;
2205	uint			fields;
2206	xfs_icdinode_t		*dicp;
2207	int			need_free = 0;
2208
2209	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2210		in_f = item->ri_buf[0].i_addr;
2211	} else {
2212		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2213		need_free = 1;
2214		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2215		if (error)
2216			goto error;
2217	}
2218
2219	/*
2220	 * Inode buffers can be freed, look out for it,
2221	 * and do not replay the inode.
2222	 */
2223	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2224					in_f->ilf_len, 0)) {
2225		error = 0;
2226		trace_xfs_log_recover_inode_cancel(log, in_f);
2227		goto error;
2228	}
2229	trace_xfs_log_recover_inode_recover(log, in_f);
2230
2231	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0);
 
2232	if (!bp) {
2233		error = ENOMEM;
2234		goto error;
2235	}
2236	error = bp->b_error;
2237	if (error) {
2238		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
 
2239		xfs_buf_relse(bp);
2240		goto error;
2241	}
2242	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2243	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2244
2245	/*
2246	 * Make sure the place we're flushing out to really looks
2247	 * like an inode!
2248	 */
2249	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2250		xfs_buf_relse(bp);
2251		xfs_alert(mp,
2252	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2253			__func__, dip, bp, in_f->ilf_ino);
2254		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2255				 XFS_ERRLEVEL_LOW, mp);
2256		error = EFSCORRUPTED;
2257		goto error;
2258	}
2259	dicp = item->ri_buf[1].i_addr;
2260	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2261		xfs_buf_relse(bp);
2262		xfs_alert(mp,
2263			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2264			__func__, item, in_f->ilf_ino);
2265		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2266				 XFS_ERRLEVEL_LOW, mp);
2267		error = EFSCORRUPTED;
2268		goto error;
2269	}
2270
2271	/* Skip replay when the on disk inode is newer than the log one */
2272	if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2273		/*
2274		 * Deal with the wrap case, DI_MAX_FLUSH is less
2275		 * than smaller numbers
2276		 */
2277		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2278		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2279			/* do nothing */
2280		} else {
2281			xfs_buf_relse(bp);
2282			trace_xfs_log_recover_inode_skip(log, in_f);
2283			error = 0;
2284			goto error;
2285		}
2286	}
2287	/* Take the opportunity to reset the flush iteration count */
2288	dicp->di_flushiter = 0;
2289
2290	if (unlikely(S_ISREG(dicp->di_mode))) {
2291		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2292		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2293			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2294					 XFS_ERRLEVEL_LOW, mp, dicp);
2295			xfs_buf_relse(bp);
2296			xfs_alert(mp,
2297		"%s: Bad regular inode log record, rec ptr 0x%p, "
2298		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2299				__func__, item, dip, bp, in_f->ilf_ino);
2300			error = EFSCORRUPTED;
2301			goto error;
2302		}
2303	} else if (unlikely(S_ISDIR(dicp->di_mode))) {
2304		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2305		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2306		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2307			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2308					     XFS_ERRLEVEL_LOW, mp, dicp);
2309			xfs_buf_relse(bp);
2310			xfs_alert(mp,
2311		"%s: Bad dir inode log record, rec ptr 0x%p, "
2312		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2313				__func__, item, dip, bp, in_f->ilf_ino);
2314			error = EFSCORRUPTED;
2315			goto error;
2316		}
2317	}
2318	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2319		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2320				     XFS_ERRLEVEL_LOW, mp, dicp);
2321		xfs_buf_relse(bp);
2322		xfs_alert(mp,
2323	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2324	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2325			__func__, item, dip, bp, in_f->ilf_ino,
2326			dicp->di_nextents + dicp->di_anextents,
2327			dicp->di_nblocks);
2328		error = EFSCORRUPTED;
2329		goto error;
2330	}
2331	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2332		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2333				     XFS_ERRLEVEL_LOW, mp, dicp);
2334		xfs_buf_relse(bp);
2335		xfs_alert(mp,
2336	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2337	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2338			item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2339		error = EFSCORRUPTED;
2340		goto error;
2341	}
2342	if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2343		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2344				     XFS_ERRLEVEL_LOW, mp, dicp);
2345		xfs_buf_relse(bp);
2346		xfs_alert(mp,
2347			"%s: Bad inode log record length %d, rec ptr 0x%p",
2348			__func__, item->ri_buf[1].i_len, item);
2349		error = EFSCORRUPTED;
2350		goto error;
2351	}
2352
2353	/* The core is in in-core format */
2354	xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2355
2356	/* the rest is in on-disk format */
2357	if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2358		memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2359			item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2360			item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2361	}
2362
2363	fields = in_f->ilf_fields;
2364	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2365	case XFS_ILOG_DEV:
2366		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2367		break;
2368	case XFS_ILOG_UUID:
2369		memcpy(XFS_DFORK_DPTR(dip),
2370		       &in_f->ilf_u.ilfu_uuid,
2371		       sizeof(uuid_t));
2372		break;
2373	}
2374
2375	if (in_f->ilf_size == 2)
2376		goto write_inode_buffer;
2377	len = item->ri_buf[2].i_len;
2378	src = item->ri_buf[2].i_addr;
2379	ASSERT(in_f->ilf_size <= 4);
2380	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2381	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2382	       (len == in_f->ilf_dsize));
2383
2384	switch (fields & XFS_ILOG_DFORK) {
2385	case XFS_ILOG_DDATA:
2386	case XFS_ILOG_DEXT:
2387		memcpy(XFS_DFORK_DPTR(dip), src, len);
2388		break;
2389
2390	case XFS_ILOG_DBROOT:
2391		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2392				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2393				 XFS_DFORK_DSIZE(dip, mp));
2394		break;
2395
2396	default:
2397		/*
2398		 * There are no data fork flags set.
2399		 */
2400		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2401		break;
2402	}
2403
2404	/*
2405	 * If we logged any attribute data, recover it.  There may or
2406	 * may not have been any other non-core data logged in this
2407	 * transaction.
2408	 */
2409	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2410		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2411			attr_index = 3;
2412		} else {
2413			attr_index = 2;
2414		}
2415		len = item->ri_buf[attr_index].i_len;
2416		src = item->ri_buf[attr_index].i_addr;
2417		ASSERT(len == in_f->ilf_asize);
2418
2419		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2420		case XFS_ILOG_ADATA:
2421		case XFS_ILOG_AEXT:
2422			dest = XFS_DFORK_APTR(dip);
2423			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2424			memcpy(dest, src, len);
2425			break;
2426
2427		case XFS_ILOG_ABROOT:
2428			dest = XFS_DFORK_APTR(dip);
2429			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2430					 len, (xfs_bmdr_block_t*)dest,
2431					 XFS_DFORK_ASIZE(dip, mp));
2432			break;
2433
2434		default:
2435			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2436			ASSERT(0);
2437			xfs_buf_relse(bp);
2438			error = EIO;
2439			goto error;
2440		}
2441	}
2442
2443write_inode_buffer:
2444	ASSERT(bp->b_target->bt_mount == mp);
2445	bp->b_iodone = xlog_recover_iodone;
2446	xfs_buf_delwri_queue(bp, buffer_list);
2447	xfs_buf_relse(bp);
2448error:
2449	if (need_free)
2450		kmem_free(in_f);
2451	return XFS_ERROR(error);
2452}
2453
2454/*
2455 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2456 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2457 * of that type.
2458 */
2459STATIC int
2460xlog_recover_quotaoff_pass1(
2461	xlog_t			*log,
2462	xlog_recover_item_t	*item)
2463{
2464	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
2465	ASSERT(qoff_f);
2466
2467	/*
2468	 * The logitem format's flag tells us if this was user quotaoff,
2469	 * group/project quotaoff or both.
2470	 */
2471	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2472		log->l_quotaoffs_flag |= XFS_DQ_USER;
2473	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2474		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2475	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2476		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2477
2478	return (0);
2479}
2480
2481/*
2482 * Recover a dquot record
2483 */
2484STATIC int
2485xlog_recover_dquot_pass2(
2486	xlog_t			*log,
2487	struct list_head	*buffer_list,
2488	xlog_recover_item_t	*item)
2489{
2490	xfs_mount_t		*mp = log->l_mp;
2491	xfs_buf_t		*bp;
2492	struct xfs_disk_dquot	*ddq, *recddq;
2493	int			error;
2494	xfs_dq_logformat_t	*dq_f;
2495	uint			type;
2496
2497
2498	/*
2499	 * Filesystems are required to send in quota flags at mount time.
2500	 */
2501	if (mp->m_qflags == 0)
2502		return (0);
2503
2504	recddq = item->ri_buf[1].i_addr;
2505	if (recddq == NULL) {
2506		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2507		return XFS_ERROR(EIO);
2508	}
2509	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2510		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2511			item->ri_buf[1].i_len, __func__);
2512		return XFS_ERROR(EIO);
2513	}
2514
2515	/*
2516	 * This type of quotas was turned off, so ignore this record.
2517	 */
2518	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2519	ASSERT(type);
2520	if (log->l_quotaoffs_flag & type)
2521		return (0);
2522
2523	/*
2524	 * At this point we know that quota was _not_ turned off.
2525	 * Since the mount flags are not indicating to us otherwise, this
2526	 * must mean that quota is on, and the dquot needs to be replayed.
2527	 * Remember that we may not have fully recovered the superblock yet,
2528	 * so we can't do the usual trick of looking at the SB quota bits.
2529	 *
2530	 * The other possibility, of course, is that the quota subsystem was
2531	 * removed since the last mount - ENOSYS.
2532	 */
2533	dq_f = item->ri_buf[0].i_addr;
2534	ASSERT(dq_f);
2535	error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2536			   "xlog_recover_dquot_pass2 (log copy)");
2537	if (error)
2538		return XFS_ERROR(EIO);
2539	ASSERT(dq_f->qlf_len == 1);
2540
2541	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2542				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp);
2543	if (error)
 
 
 
 
2544		return error;
2545
2546	ASSERT(bp);
2547	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2548
2549	/*
2550	 * At least the magic num portion should be on disk because this
2551	 * was among a chunk of dquots created earlier, and we did some
2552	 * minimal initialization then.
2553	 */
2554	error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2555			   "xlog_recover_dquot_pass2");
2556	if (error) {
2557		xfs_buf_relse(bp);
2558		return XFS_ERROR(EIO);
2559	}
2560
2561	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2562
2563	ASSERT(dq_f->qlf_size == 2);
2564	ASSERT(bp->b_target->bt_mount == mp);
2565	bp->b_iodone = xlog_recover_iodone;
2566	xfs_buf_delwri_queue(bp, buffer_list);
2567	xfs_buf_relse(bp);
2568
2569	return (0);
2570}
2571
2572/*
2573 * This routine is called to create an in-core extent free intent
2574 * item from the efi format structure which was logged on disk.
2575 * It allocates an in-core efi, copies the extents from the format
2576 * structure into it, and adds the efi to the AIL with the given
2577 * LSN.
2578 */
2579STATIC int
2580xlog_recover_efi_pass2(
2581	xlog_t			*log,
2582	xlog_recover_item_t	*item,
2583	xfs_lsn_t		lsn)
2584{
2585	int			error;
2586	xfs_mount_t		*mp = log->l_mp;
2587	xfs_efi_log_item_t	*efip;
2588	xfs_efi_log_format_t	*efi_formatp;
2589
2590	efi_formatp = item->ri_buf[0].i_addr;
2591
2592	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2593	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2594					 &(efip->efi_format)))) {
2595		xfs_efi_item_free(efip);
2596		return error;
2597	}
2598	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2599
2600	spin_lock(&log->l_ailp->xa_lock);
2601	/*
2602	 * xfs_trans_ail_update() drops the AIL lock.
2603	 */
2604	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2605	return 0;
2606}
2607
2608
2609/*
2610 * This routine is called when an efd format structure is found in
2611 * a committed transaction in the log.  It's purpose is to cancel
2612 * the corresponding efi if it was still in the log.  To do this
2613 * it searches the AIL for the efi with an id equal to that in the
2614 * efd format structure.  If we find it, we remove the efi from the
2615 * AIL and free it.
2616 */
2617STATIC int
2618xlog_recover_efd_pass2(
2619	xlog_t			*log,
2620	xlog_recover_item_t	*item)
2621{
2622	xfs_efd_log_format_t	*efd_formatp;
2623	xfs_efi_log_item_t	*efip = NULL;
2624	xfs_log_item_t		*lip;
2625	__uint64_t		efi_id;
2626	struct xfs_ail_cursor	cur;
2627	struct xfs_ail		*ailp = log->l_ailp;
2628
2629	efd_formatp = item->ri_buf[0].i_addr;
2630	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2631		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2632	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2633		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2634	efi_id = efd_formatp->efd_efi_id;
2635
2636	/*
2637	 * Search for the efi with the id in the efd format structure
2638	 * in the AIL.
2639	 */
2640	spin_lock(&ailp->xa_lock);
2641	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2642	while (lip != NULL) {
2643		if (lip->li_type == XFS_LI_EFI) {
2644			efip = (xfs_efi_log_item_t *)lip;
2645			if (efip->efi_format.efi_id == efi_id) {
2646				/*
2647				 * xfs_trans_ail_delete() drops the
2648				 * AIL lock.
2649				 */
2650				xfs_trans_ail_delete(ailp, lip,
2651						     SHUTDOWN_CORRUPT_INCORE);
2652				xfs_efi_item_free(efip);
2653				spin_lock(&ailp->xa_lock);
2654				break;
2655			}
2656		}
2657		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2658	}
2659	xfs_trans_ail_cursor_done(ailp, &cur);
2660	spin_unlock(&ailp->xa_lock);
2661
2662	return 0;
2663}
2664
2665/*
2666 * Free up any resources allocated by the transaction
2667 *
2668 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2669 */
2670STATIC void
2671xlog_recover_free_trans(
2672	struct xlog_recover	*trans)
2673{
2674	xlog_recover_item_t	*item, *n;
2675	int			i;
2676
2677	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2678		/* Free the regions in the item. */
2679		list_del(&item->ri_list);
2680		for (i = 0; i < item->ri_cnt; i++)
2681			kmem_free(item->ri_buf[i].i_addr);
2682		/* Free the item itself */
2683		kmem_free(item->ri_buf);
2684		kmem_free(item);
2685	}
2686	/* Free the transaction recover structure */
2687	kmem_free(trans);
2688}
2689
2690STATIC int
2691xlog_recover_commit_pass1(
2692	struct xlog			*log,
2693	struct xlog_recover		*trans,
2694	struct xlog_recover_item	*item)
2695{
2696	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2697
2698	switch (ITEM_TYPE(item)) {
2699	case XFS_LI_BUF:
2700		return xlog_recover_buffer_pass1(log, item);
2701	case XFS_LI_QUOTAOFF:
2702		return xlog_recover_quotaoff_pass1(log, item);
2703	case XFS_LI_INODE:
2704	case XFS_LI_EFI:
2705	case XFS_LI_EFD:
2706	case XFS_LI_DQUOT:
2707		/* nothing to do in pass 1 */
2708		return 0;
2709	default:
2710		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2711			__func__, ITEM_TYPE(item));
2712		ASSERT(0);
2713		return XFS_ERROR(EIO);
2714	}
2715}
2716
2717STATIC int
2718xlog_recover_commit_pass2(
2719	struct xlog			*log,
2720	struct xlog_recover		*trans,
2721	struct list_head		*buffer_list,
2722	struct xlog_recover_item	*item)
2723{
2724	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2725
2726	switch (ITEM_TYPE(item)) {
2727	case XFS_LI_BUF:
2728		return xlog_recover_buffer_pass2(log, buffer_list, item);
2729	case XFS_LI_INODE:
2730		return xlog_recover_inode_pass2(log, buffer_list, item);
2731	case XFS_LI_EFI:
2732		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2733	case XFS_LI_EFD:
2734		return xlog_recover_efd_pass2(log, item);
2735	case XFS_LI_DQUOT:
2736		return xlog_recover_dquot_pass2(log, buffer_list, item);
2737	case XFS_LI_QUOTAOFF:
2738		/* nothing to do in pass2 */
2739		return 0;
2740	default:
2741		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2742			__func__, ITEM_TYPE(item));
2743		ASSERT(0);
2744		return XFS_ERROR(EIO);
2745	}
2746}
2747
2748/*
2749 * Perform the transaction.
2750 *
2751 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2752 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2753 */
2754STATIC int
2755xlog_recover_commit_trans(
2756	struct xlog		*log,
2757	struct xlog_recover	*trans,
2758	int			pass)
2759{
2760	int			error = 0, error2;
2761	xlog_recover_item_t	*item;
2762	LIST_HEAD		(buffer_list);
2763
2764	hlist_del(&trans->r_list);
2765
2766	error = xlog_recover_reorder_trans(log, trans, pass);
2767	if (error)
2768		return error;
2769
2770	list_for_each_entry(item, &trans->r_itemq, ri_list) {
2771		switch (pass) {
2772		case XLOG_RECOVER_PASS1:
2773			error = xlog_recover_commit_pass1(log, trans, item);
2774			break;
2775		case XLOG_RECOVER_PASS2:
2776			error = xlog_recover_commit_pass2(log, trans,
2777							  &buffer_list, item);
2778			break;
2779		default:
2780			ASSERT(0);
2781		}
2782
2783		if (error)
2784			goto out;
2785	}
2786
2787	xlog_recover_free_trans(trans);
2788
2789out:
2790	error2 = xfs_buf_delwri_submit(&buffer_list);
2791	return error ? error : error2;
2792}
2793
2794STATIC int
2795xlog_recover_unmount_trans(
2796	struct xlog		*log,
2797	struct xlog_recover	*trans)
2798{
2799	/* Do nothing now */
2800	xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2801	return 0;
2802}
2803
2804/*
2805 * There are two valid states of the r_state field.  0 indicates that the
2806 * transaction structure is in a normal state.  We have either seen the
2807 * start of the transaction or the last operation we added was not a partial
2808 * operation.  If the last operation we added to the transaction was a
2809 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2810 *
2811 * NOTE: skip LRs with 0 data length.
2812 */
2813STATIC int
2814xlog_recover_process_data(
2815	xlog_t			*log,
2816	struct hlist_head	rhash[],
2817	xlog_rec_header_t	*rhead,
2818	xfs_caddr_t		dp,
2819	int			pass)
2820{
2821	xfs_caddr_t		lp;
2822	int			num_logops;
2823	xlog_op_header_t	*ohead;
2824	xlog_recover_t		*trans;
2825	xlog_tid_t		tid;
2826	int			error;
2827	unsigned long		hash;
2828	uint			flags;
2829
2830	lp = dp + be32_to_cpu(rhead->h_len);
2831	num_logops = be32_to_cpu(rhead->h_num_logops);
2832
2833	/* check the log format matches our own - else we can't recover */
2834	if (xlog_header_check_recover(log->l_mp, rhead))
2835		return (XFS_ERROR(EIO));
2836
2837	while ((dp < lp) && num_logops) {
2838		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2839		ohead = (xlog_op_header_t *)dp;
2840		dp += sizeof(xlog_op_header_t);
2841		if (ohead->oh_clientid != XFS_TRANSACTION &&
2842		    ohead->oh_clientid != XFS_LOG) {
2843			xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2844					__func__, ohead->oh_clientid);
2845			ASSERT(0);
2846			return (XFS_ERROR(EIO));
2847		}
2848		tid = be32_to_cpu(ohead->oh_tid);
2849		hash = XLOG_RHASH(tid);
2850		trans = xlog_recover_find_tid(&rhash[hash], tid);
2851		if (trans == NULL) {		   /* not found; add new tid */
2852			if (ohead->oh_flags & XLOG_START_TRANS)
2853				xlog_recover_new_tid(&rhash[hash], tid,
2854					be64_to_cpu(rhead->h_lsn));
2855		} else {
2856			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2857				xfs_warn(log->l_mp, "%s: bad length 0x%x",
2858					__func__, be32_to_cpu(ohead->oh_len));
2859				WARN_ON(1);
2860				return (XFS_ERROR(EIO));
2861			}
2862			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2863			if (flags & XLOG_WAS_CONT_TRANS)
2864				flags &= ~XLOG_CONTINUE_TRANS;
2865			switch (flags) {
2866			case XLOG_COMMIT_TRANS:
2867				error = xlog_recover_commit_trans(log,
2868								trans, pass);
2869				break;
2870			case XLOG_UNMOUNT_TRANS:
2871				error = xlog_recover_unmount_trans(log, trans);
2872				break;
2873			case XLOG_WAS_CONT_TRANS:
2874				error = xlog_recover_add_to_cont_trans(log,
2875						trans, dp,
2876						be32_to_cpu(ohead->oh_len));
2877				break;
2878			case XLOG_START_TRANS:
2879				xfs_warn(log->l_mp, "%s: bad transaction",
2880					__func__);
2881				ASSERT(0);
2882				error = XFS_ERROR(EIO);
2883				break;
2884			case 0:
2885			case XLOG_CONTINUE_TRANS:
2886				error = xlog_recover_add_to_trans(log, trans,
2887						dp, be32_to_cpu(ohead->oh_len));
2888				break;
2889			default:
2890				xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2891					__func__, flags);
2892				ASSERT(0);
2893				error = XFS_ERROR(EIO);
2894				break;
2895			}
2896			if (error)
2897				return error;
2898		}
2899		dp += be32_to_cpu(ohead->oh_len);
2900		num_logops--;
2901	}
2902	return 0;
2903}
2904
2905/*
2906 * Process an extent free intent item that was recovered from
2907 * the log.  We need to free the extents that it describes.
2908 */
2909STATIC int
2910xlog_recover_process_efi(
2911	xfs_mount_t		*mp,
2912	xfs_efi_log_item_t	*efip)
2913{
2914	xfs_efd_log_item_t	*efdp;
2915	xfs_trans_t		*tp;
2916	int			i;
2917	int			error = 0;
2918	xfs_extent_t		*extp;
2919	xfs_fsblock_t		startblock_fsb;
2920
2921	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2922
2923	/*
2924	 * First check the validity of the extents described by the
2925	 * EFI.  If any are bad, then assume that all are bad and
2926	 * just toss the EFI.
2927	 */
2928	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2929		extp = &(efip->efi_format.efi_extents[i]);
2930		startblock_fsb = XFS_BB_TO_FSB(mp,
2931				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
2932		if ((startblock_fsb == 0) ||
2933		    (extp->ext_len == 0) ||
2934		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2935		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2936			/*
2937			 * This will pull the EFI from the AIL and
2938			 * free the memory associated with it.
2939			 */
2940			xfs_efi_release(efip, efip->efi_format.efi_nextents);
2941			return XFS_ERROR(EIO);
2942		}
2943	}
2944
2945	tp = xfs_trans_alloc(mp, 0);
2946	error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2947	if (error)
2948		goto abort_error;
2949	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2950
2951	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2952		extp = &(efip->efi_format.efi_extents[i]);
2953		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2954		if (error)
2955			goto abort_error;
2956		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2957					 extp->ext_len);
2958	}
2959
2960	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2961	error = xfs_trans_commit(tp, 0);
2962	return error;
2963
2964abort_error:
2965	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2966	return error;
2967}
2968
2969/*
2970 * When this is called, all of the EFIs which did not have
2971 * corresponding EFDs should be in the AIL.  What we do now
2972 * is free the extents associated with each one.
2973 *
2974 * Since we process the EFIs in normal transactions, they
2975 * will be removed at some point after the commit.  This prevents
2976 * us from just walking down the list processing each one.
2977 * We'll use a flag in the EFI to skip those that we've already
2978 * processed and use the AIL iteration mechanism's generation
2979 * count to try to speed this up at least a bit.
2980 *
2981 * When we start, we know that the EFIs are the only things in
2982 * the AIL.  As we process them, however, other items are added
2983 * to the AIL.  Since everything added to the AIL must come after
2984 * everything already in the AIL, we stop processing as soon as
2985 * we see something other than an EFI in the AIL.
2986 */
2987STATIC int
2988xlog_recover_process_efis(
2989	xlog_t			*log)
2990{
2991	xfs_log_item_t		*lip;
2992	xfs_efi_log_item_t	*efip;
2993	int			error = 0;
2994	struct xfs_ail_cursor	cur;
2995	struct xfs_ail		*ailp;
2996
2997	ailp = log->l_ailp;
2998	spin_lock(&ailp->xa_lock);
2999	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3000	while (lip != NULL) {
3001		/*
3002		 * We're done when we see something other than an EFI.
3003		 * There should be no EFIs left in the AIL now.
3004		 */
3005		if (lip->li_type != XFS_LI_EFI) {
3006#ifdef DEBUG
3007			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3008				ASSERT(lip->li_type != XFS_LI_EFI);
3009#endif
3010			break;
3011		}
3012
3013		/*
3014		 * Skip EFIs that we've already processed.
3015		 */
3016		efip = (xfs_efi_log_item_t *)lip;
3017		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3018			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3019			continue;
3020		}
3021
3022		spin_unlock(&ailp->xa_lock);
3023		error = xlog_recover_process_efi(log->l_mp, efip);
3024		spin_lock(&ailp->xa_lock);
3025		if (error)
3026			goto out;
3027		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3028	}
3029out:
3030	xfs_trans_ail_cursor_done(ailp, &cur);
3031	spin_unlock(&ailp->xa_lock);
3032	return error;
3033}
3034
3035/*
3036 * This routine performs a transaction to null out a bad inode pointer
3037 * in an agi unlinked inode hash bucket.
3038 */
3039STATIC void
3040xlog_recover_clear_agi_bucket(
3041	xfs_mount_t	*mp,
3042	xfs_agnumber_t	agno,
3043	int		bucket)
3044{
3045	xfs_trans_t	*tp;
3046	xfs_agi_t	*agi;
3047	xfs_buf_t	*agibp;
3048	int		offset;
3049	int		error;
3050
3051	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3052	error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3053				  0, 0, 0);
3054	if (error)
3055		goto out_abort;
3056
3057	error = xfs_read_agi(mp, tp, agno, &agibp);
3058	if (error)
3059		goto out_abort;
3060
3061	agi = XFS_BUF_TO_AGI(agibp);
3062	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3063	offset = offsetof(xfs_agi_t, agi_unlinked) +
3064		 (sizeof(xfs_agino_t) * bucket);
3065	xfs_trans_log_buf(tp, agibp, offset,
3066			  (offset + sizeof(xfs_agino_t) - 1));
3067
3068	error = xfs_trans_commit(tp, 0);
3069	if (error)
3070		goto out_error;
3071	return;
3072
3073out_abort:
3074	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3075out_error:
3076	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3077	return;
3078}
3079
3080STATIC xfs_agino_t
3081xlog_recover_process_one_iunlink(
3082	struct xfs_mount		*mp,
3083	xfs_agnumber_t			agno,
3084	xfs_agino_t			agino,
3085	int				bucket)
3086{
3087	struct xfs_buf			*ibp;
3088	struct xfs_dinode		*dip;
3089	struct xfs_inode		*ip;
3090	xfs_ino_t			ino;
3091	int				error;
3092
3093	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3094	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3095	if (error)
3096		goto fail;
3097
3098	/*
3099	 * Get the on disk inode to find the next inode in the bucket.
3100	 */
3101	error = xfs_itobp(mp, NULL, ip, &dip, &ibp, 0);
3102	if (error)
3103		goto fail_iput;
3104
3105	ASSERT(ip->i_d.di_nlink == 0);
3106	ASSERT(ip->i_d.di_mode != 0);
3107
3108	/* setup for the next pass */
3109	agino = be32_to_cpu(dip->di_next_unlinked);
3110	xfs_buf_relse(ibp);
3111
3112	/*
3113	 * Prevent any DMAPI event from being sent when the reference on
3114	 * the inode is dropped.
3115	 */
3116	ip->i_d.di_dmevmask = 0;
3117
3118	IRELE(ip);
3119	return agino;
3120
3121 fail_iput:
3122	IRELE(ip);
3123 fail:
3124	/*
3125	 * We can't read in the inode this bucket points to, or this inode
3126	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3127	 * some inodes and space, but at least we won't hang.
3128	 *
3129	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3130	 * clear the inode pointer in the bucket.
3131	 */
3132	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3133	return NULLAGINO;
3134}
3135
3136/*
3137 * xlog_iunlink_recover
3138 *
3139 * This is called during recovery to process any inodes which
3140 * we unlinked but not freed when the system crashed.  These
3141 * inodes will be on the lists in the AGI blocks.  What we do
3142 * here is scan all the AGIs and fully truncate and free any
3143 * inodes found on the lists.  Each inode is removed from the
3144 * lists when it has been fully truncated and is freed.  The
3145 * freeing of the inode and its removal from the list must be
3146 * atomic.
3147 */
3148STATIC void
3149xlog_recover_process_iunlinks(
3150	xlog_t		*log)
3151{
3152	xfs_mount_t	*mp;
3153	xfs_agnumber_t	agno;
3154	xfs_agi_t	*agi;
3155	xfs_buf_t	*agibp;
3156	xfs_agino_t	agino;
3157	int		bucket;
3158	int		error;
3159	uint		mp_dmevmask;
3160
3161	mp = log->l_mp;
3162
3163	/*
3164	 * Prevent any DMAPI event from being sent while in this function.
3165	 */
3166	mp_dmevmask = mp->m_dmevmask;
3167	mp->m_dmevmask = 0;
3168
3169	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3170		/*
3171		 * Find the agi for this ag.
3172		 */
3173		error = xfs_read_agi(mp, NULL, agno, &agibp);
3174		if (error) {
3175			/*
3176			 * AGI is b0rked. Don't process it.
3177			 *
3178			 * We should probably mark the filesystem as corrupt
3179			 * after we've recovered all the ag's we can....
3180			 */
3181			continue;
3182		}
3183		/*
3184		 * Unlock the buffer so that it can be acquired in the normal
3185		 * course of the transaction to truncate and free each inode.
3186		 * Because we are not racing with anyone else here for the AGI
3187		 * buffer, we don't even need to hold it locked to read the
3188		 * initial unlinked bucket entries out of the buffer. We keep
3189		 * buffer reference though, so that it stays pinned in memory
3190		 * while we need the buffer.
3191		 */
3192		agi = XFS_BUF_TO_AGI(agibp);
3193		xfs_buf_unlock(agibp);
3194
3195		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3196			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3197			while (agino != NULLAGINO) {
 
 
 
 
 
 
 
3198				agino = xlog_recover_process_one_iunlink(mp,
3199							agno, agino, bucket);
 
 
 
 
 
 
 
 
 
3200			}
3201		}
3202		xfs_buf_rele(agibp);
 
 
 
 
 
3203	}
3204
3205	mp->m_dmevmask = mp_dmevmask;
3206}
3207
3208
3209#ifdef DEBUG
3210STATIC void
3211xlog_pack_data_checksum(
3212	xlog_t		*log,
3213	xlog_in_core_t	*iclog,
3214	int		size)
3215{
3216	int		i;
3217	__be32		*up;
3218	uint		chksum = 0;
3219
3220	up = (__be32 *)iclog->ic_datap;
3221	/* divide length by 4 to get # words */
3222	for (i = 0; i < (size >> 2); i++) {
3223		chksum ^= be32_to_cpu(*up);
3224		up++;
3225	}
3226	iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3227}
3228#else
3229#define xlog_pack_data_checksum(log, iclog, size)
3230#endif
3231
3232/*
3233 * Stamp cycle number in every block
3234 */
3235void
3236xlog_pack_data(
3237	xlog_t			*log,
3238	xlog_in_core_t		*iclog,
3239	int			roundoff)
3240{
3241	int			i, j, k;
3242	int			size = iclog->ic_offset + roundoff;
3243	__be32			cycle_lsn;
3244	xfs_caddr_t		dp;
3245
3246	xlog_pack_data_checksum(log, iclog, size);
3247
3248	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3249
3250	dp = iclog->ic_datap;
3251	for (i = 0; i < BTOBB(size) &&
3252		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3253		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3254		*(__be32 *)dp = cycle_lsn;
3255		dp += BBSIZE;
3256	}
3257
3258	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3259		xlog_in_core_2_t *xhdr = iclog->ic_data;
3260
3261		for ( ; i < BTOBB(size); i++) {
3262			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3263			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3264			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3265			*(__be32 *)dp = cycle_lsn;
3266			dp += BBSIZE;
3267		}
3268
3269		for (i = 1; i < log->l_iclog_heads; i++) {
3270			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3271		}
3272	}
3273}
3274
3275STATIC void
3276xlog_unpack_data(
3277	xlog_rec_header_t	*rhead,
3278	xfs_caddr_t		dp,
3279	xlog_t			*log)
3280{
3281	int			i, j, k;
3282
3283	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3284		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3285		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3286		dp += BBSIZE;
3287	}
3288
3289	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3290		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3291		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3292			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3293			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3294			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3295			dp += BBSIZE;
3296		}
3297	}
3298}
3299
3300STATIC int
3301xlog_valid_rec_header(
3302	xlog_t			*log,
3303	xlog_rec_header_t	*rhead,
3304	xfs_daddr_t		blkno)
3305{
3306	int			hlen;
3307
3308	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3309		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3310				XFS_ERRLEVEL_LOW, log->l_mp);
3311		return XFS_ERROR(EFSCORRUPTED);
3312	}
3313	if (unlikely(
3314	    (!rhead->h_version ||
3315	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3316		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3317			__func__, be32_to_cpu(rhead->h_version));
3318		return XFS_ERROR(EIO);
3319	}
3320
3321	/* LR body must have data or it wouldn't have been written */
3322	hlen = be32_to_cpu(rhead->h_len);
3323	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3324		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3325				XFS_ERRLEVEL_LOW, log->l_mp);
3326		return XFS_ERROR(EFSCORRUPTED);
3327	}
3328	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3329		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3330				XFS_ERRLEVEL_LOW, log->l_mp);
3331		return XFS_ERROR(EFSCORRUPTED);
3332	}
3333	return 0;
3334}
3335
3336/*
3337 * Read the log from tail to head and process the log records found.
3338 * Handle the two cases where the tail and head are in the same cycle
3339 * and where the active portion of the log wraps around the end of
3340 * the physical log separately.  The pass parameter is passed through
3341 * to the routines called to process the data and is not looked at
3342 * here.
3343 */
3344STATIC int
3345xlog_do_recovery_pass(
3346	xlog_t			*log,
3347	xfs_daddr_t		head_blk,
3348	xfs_daddr_t		tail_blk,
3349	int			pass)
3350{
3351	xlog_rec_header_t	*rhead;
3352	xfs_daddr_t		blk_no;
3353	xfs_caddr_t		offset;
3354	xfs_buf_t		*hbp, *dbp;
3355	int			error = 0, h_size;
3356	int			bblks, split_bblks;
3357	int			hblks, split_hblks, wrapped_hblks;
3358	struct hlist_head	rhash[XLOG_RHASH_SIZE];
3359
3360	ASSERT(head_blk != tail_blk);
3361
3362	/*
3363	 * Read the header of the tail block and get the iclog buffer size from
3364	 * h_size.  Use this to tell how many sectors make up the log header.
3365	 */
3366	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3367		/*
3368		 * When using variable length iclogs, read first sector of
3369		 * iclog header and extract the header size from it.  Get a
3370		 * new hbp that is the correct size.
3371		 */
3372		hbp = xlog_get_bp(log, 1);
3373		if (!hbp)
3374			return ENOMEM;
3375
3376		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3377		if (error)
3378			goto bread_err1;
3379
3380		rhead = (xlog_rec_header_t *)offset;
3381		error = xlog_valid_rec_header(log, rhead, tail_blk);
3382		if (error)
3383			goto bread_err1;
3384		h_size = be32_to_cpu(rhead->h_size);
3385		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3386		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3387			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3388			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3389				hblks++;
3390			xlog_put_bp(hbp);
3391			hbp = xlog_get_bp(log, hblks);
3392		} else {
3393			hblks = 1;
3394		}
3395	} else {
3396		ASSERT(log->l_sectBBsize == 1);
3397		hblks = 1;
3398		hbp = xlog_get_bp(log, 1);
3399		h_size = XLOG_BIG_RECORD_BSIZE;
3400	}
3401
3402	if (!hbp)
3403		return ENOMEM;
3404	dbp = xlog_get_bp(log, BTOBB(h_size));
3405	if (!dbp) {
3406		xlog_put_bp(hbp);
3407		return ENOMEM;
3408	}
3409
3410	memset(rhash, 0, sizeof(rhash));
3411	if (tail_blk <= head_blk) {
3412		for (blk_no = tail_blk; blk_no < head_blk; ) {
3413			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3414			if (error)
3415				goto bread_err2;
3416
3417			rhead = (xlog_rec_header_t *)offset;
3418			error = xlog_valid_rec_header(log, rhead, blk_no);
3419			if (error)
3420				goto bread_err2;
3421
3422			/* blocks in data section */
3423			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3424			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3425					   &offset);
3426			if (error)
3427				goto bread_err2;
3428
3429			xlog_unpack_data(rhead, offset, log);
3430			if ((error = xlog_recover_process_data(log,
3431						rhash, rhead, offset, pass)))
3432				goto bread_err2;
3433			blk_no += bblks + hblks;
3434		}
3435	} else {
3436		/*
3437		 * Perform recovery around the end of the physical log.
3438		 * When the head is not on the same cycle number as the tail,
3439		 * we can't do a sequential recovery as above.
3440		 */
3441		blk_no = tail_blk;
3442		while (blk_no < log->l_logBBsize) {
3443			/*
3444			 * Check for header wrapping around physical end-of-log
3445			 */
3446			offset = hbp->b_addr;
3447			split_hblks = 0;
3448			wrapped_hblks = 0;
3449			if (blk_no + hblks <= log->l_logBBsize) {
3450				/* Read header in one read */
3451				error = xlog_bread(log, blk_no, hblks, hbp,
3452						   &offset);
3453				if (error)
3454					goto bread_err2;
3455			} else {
3456				/* This LR is split across physical log end */
3457				if (blk_no != log->l_logBBsize) {
3458					/* some data before physical log end */
3459					ASSERT(blk_no <= INT_MAX);
3460					split_hblks = log->l_logBBsize - (int)blk_no;
3461					ASSERT(split_hblks > 0);
3462					error = xlog_bread(log, blk_no,
3463							   split_hblks, hbp,
3464							   &offset);
3465					if (error)
3466						goto bread_err2;
3467				}
3468
3469				/*
3470				 * Note: this black magic still works with
3471				 * large sector sizes (non-512) only because:
3472				 * - we increased the buffer size originally
3473				 *   by 1 sector giving us enough extra space
3474				 *   for the second read;
3475				 * - the log start is guaranteed to be sector
3476				 *   aligned;
3477				 * - we read the log end (LR header start)
3478				 *   _first_, then the log start (LR header end)
3479				 *   - order is important.
3480				 */
3481				wrapped_hblks = hblks - split_hblks;
3482				error = xlog_bread_offset(log, 0,
3483						wrapped_hblks, hbp,
3484						offset + BBTOB(split_hblks));
3485				if (error)
3486					goto bread_err2;
3487			}
3488			rhead = (xlog_rec_header_t *)offset;
3489			error = xlog_valid_rec_header(log, rhead,
3490						split_hblks ? blk_no : 0);
3491			if (error)
3492				goto bread_err2;
3493
3494			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3495			blk_no += hblks;
3496
3497			/* Read in data for log record */
3498			if (blk_no + bblks <= log->l_logBBsize) {
3499				error = xlog_bread(log, blk_no, bblks, dbp,
3500						   &offset);
3501				if (error)
3502					goto bread_err2;
3503			} else {
3504				/* This log record is split across the
3505				 * physical end of log */
3506				offset = dbp->b_addr;
3507				split_bblks = 0;
3508				if (blk_no != log->l_logBBsize) {
3509					/* some data is before the physical
3510					 * end of log */
3511					ASSERT(!wrapped_hblks);
3512					ASSERT(blk_no <= INT_MAX);
3513					split_bblks =
3514						log->l_logBBsize - (int)blk_no;
3515					ASSERT(split_bblks > 0);
3516					error = xlog_bread(log, blk_no,
3517							split_bblks, dbp,
3518							&offset);
3519					if (error)
3520						goto bread_err2;
3521				}
3522
3523				/*
3524				 * Note: this black magic still works with
3525				 * large sector sizes (non-512) only because:
3526				 * - we increased the buffer size originally
3527				 *   by 1 sector giving us enough extra space
3528				 *   for the second read;
3529				 * - the log start is guaranteed to be sector
3530				 *   aligned;
3531				 * - we read the log end (LR header start)
3532				 *   _first_, then the log start (LR header end)
3533				 *   - order is important.
3534				 */
3535				error = xlog_bread_offset(log, 0,
3536						bblks - split_bblks, hbp,
3537						offset + BBTOB(split_bblks));
3538				if (error)
3539					goto bread_err2;
3540			}
3541			xlog_unpack_data(rhead, offset, log);
3542			if ((error = xlog_recover_process_data(log, rhash,
3543							rhead, offset, pass)))
3544				goto bread_err2;
3545			blk_no += bblks;
3546		}
3547
3548		ASSERT(blk_no >= log->l_logBBsize);
3549		blk_no -= log->l_logBBsize;
3550
3551		/* read first part of physical log */
3552		while (blk_no < head_blk) {
3553			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3554			if (error)
3555				goto bread_err2;
3556
3557			rhead = (xlog_rec_header_t *)offset;
3558			error = xlog_valid_rec_header(log, rhead, blk_no);
3559			if (error)
3560				goto bread_err2;
3561
3562			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3563			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3564					   &offset);
3565			if (error)
3566				goto bread_err2;
3567
3568			xlog_unpack_data(rhead, offset, log);
3569			if ((error = xlog_recover_process_data(log, rhash,
3570							rhead, offset, pass)))
3571				goto bread_err2;
3572			blk_no += bblks + hblks;
3573		}
3574	}
3575
3576 bread_err2:
3577	xlog_put_bp(dbp);
3578 bread_err1:
3579	xlog_put_bp(hbp);
3580	return error;
3581}
3582
3583/*
3584 * Do the recovery of the log.  We actually do this in two phases.
3585 * The two passes are necessary in order to implement the function
3586 * of cancelling a record written into the log.  The first pass
3587 * determines those things which have been cancelled, and the
3588 * second pass replays log items normally except for those which
3589 * have been cancelled.  The handling of the replay and cancellations
3590 * takes place in the log item type specific routines.
3591 *
3592 * The table of items which have cancel records in the log is allocated
3593 * and freed at this level, since only here do we know when all of
3594 * the log recovery has been completed.
3595 */
3596STATIC int
3597xlog_do_log_recovery(
3598	xlog_t		*log,
3599	xfs_daddr_t	head_blk,
3600	xfs_daddr_t	tail_blk)
3601{
3602	int		error, i;
3603
3604	ASSERT(head_blk != tail_blk);
3605
3606	/*
3607	 * First do a pass to find all of the cancelled buf log items.
3608	 * Store them in the buf_cancel_table for use in the second pass.
3609	 */
3610	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3611						 sizeof(struct list_head),
3612						 KM_SLEEP);
3613	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3614		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3615
3616	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3617				      XLOG_RECOVER_PASS1);
3618	if (error != 0) {
3619		kmem_free(log->l_buf_cancel_table);
3620		log->l_buf_cancel_table = NULL;
3621		return error;
3622	}
3623	/*
3624	 * Then do a second pass to actually recover the items in the log.
3625	 * When it is complete free the table of buf cancel items.
3626	 */
3627	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3628				      XLOG_RECOVER_PASS2);
3629#ifdef DEBUG
3630	if (!error) {
3631		int	i;
3632
3633		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3634			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3635	}
3636#endif	/* DEBUG */
3637
3638	kmem_free(log->l_buf_cancel_table);
3639	log->l_buf_cancel_table = NULL;
3640
3641	return error;
3642}
3643
3644/*
3645 * Do the actual recovery
3646 */
3647STATIC int
3648xlog_do_recover(
3649	xlog_t		*log,
3650	xfs_daddr_t	head_blk,
3651	xfs_daddr_t	tail_blk)
3652{
3653	int		error;
3654	xfs_buf_t	*bp;
3655	xfs_sb_t	*sbp;
3656
3657	/*
3658	 * First replay the images in the log.
3659	 */
3660	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3661	if (error)
3662		return error;
 
 
 
3663
3664	/*
3665	 * If IO errors happened during recovery, bail out.
3666	 */
3667	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3668		return (EIO);
3669	}
3670
3671	/*
3672	 * We now update the tail_lsn since much of the recovery has completed
3673	 * and there may be space available to use.  If there were no extent
3674	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3675	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3676	 * lsn of the last known good LR on disk.  If there are extent frees
3677	 * or iunlinks they will have some entries in the AIL; so we look at
3678	 * the AIL to determine how to set the tail_lsn.
3679	 */
3680	xlog_assign_tail_lsn(log->l_mp);
3681
3682	/*
3683	 * Now that we've finished replaying all buffer and inode
3684	 * updates, re-read in the superblock.
3685	 */
3686	bp = xfs_getsb(log->l_mp, 0);
3687	XFS_BUF_UNDONE(bp);
3688	ASSERT(!(XFS_BUF_ISWRITE(bp)));
 
3689	XFS_BUF_READ(bp);
3690	XFS_BUF_UNASYNC(bp);
3691	xfsbdstrat(log->l_mp, bp);
3692	error = xfs_buf_iowait(bp);
3693	if (error) {
3694		xfs_buf_ioerror_alert(bp, __func__);
 
3695		ASSERT(0);
3696		xfs_buf_relse(bp);
3697		return error;
3698	}
3699
3700	/* Convert superblock from on-disk format */
3701	sbp = &log->l_mp->m_sb;
3702	xfs_sb_from_disk(log->l_mp, XFS_BUF_TO_SBP(bp));
3703	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3704	ASSERT(xfs_sb_good_version(sbp));
3705	xfs_buf_relse(bp);
3706
3707	/* We've re-read the superblock so re-initialize per-cpu counters */
3708	xfs_icsb_reinit_counters(log->l_mp);
3709
3710	xlog_recover_check_summary(log);
3711
3712	/* Normal transactions can now occur */
3713	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3714	return 0;
3715}
3716
3717/*
3718 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3719 *
3720 * Return error or zero.
3721 */
3722int
3723xlog_recover(
3724	xlog_t		*log)
3725{
3726	xfs_daddr_t	head_blk, tail_blk;
3727	int		error;
3728
3729	/* find the tail of the log */
3730	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3731		return error;
3732
3733	if (tail_blk != head_blk) {
3734		/* There used to be a comment here:
3735		 *
3736		 * disallow recovery on read-only mounts.  note -- mount
3737		 * checks for ENOSPC and turns it into an intelligent
3738		 * error message.
3739		 * ...but this is no longer true.  Now, unless you specify
3740		 * NORECOVERY (in which case this function would never be
3741		 * called), we just go ahead and recover.  We do this all
3742		 * under the vfs layer, so we can get away with it unless
3743		 * the device itself is read-only, in which case we fail.
3744		 */
3745		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3746			return error;
3747		}
3748
3749		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3750				log->l_mp->m_logname ? log->l_mp->m_logname
3751						     : "internal");
3752
3753		error = xlog_do_recover(log, head_blk, tail_blk);
3754		log->l_flags |= XLOG_RECOVERY_NEEDED;
3755	}
3756	return error;
3757}
3758
3759/*
3760 * In the first part of recovery we replay inodes and buffers and build
3761 * up the list of extent free items which need to be processed.  Here
3762 * we process the extent free items and clean up the on disk unlinked
3763 * inode lists.  This is separated from the first part of recovery so
3764 * that the root and real-time bitmap inodes can be read in from disk in
3765 * between the two stages.  This is necessary so that we can free space
3766 * in the real-time portion of the file system.
3767 */
3768int
3769xlog_recover_finish(
3770	xlog_t		*log)
3771{
3772	/*
3773	 * Now we're ready to do the transactions needed for the
3774	 * rest of recovery.  Start with completing all the extent
3775	 * free intent records and then process the unlinked inode
3776	 * lists.  At this point, we essentially run in normal mode
3777	 * except that we're still performing recovery actions
3778	 * rather than accepting new requests.
3779	 */
3780	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3781		int	error;
3782		error = xlog_recover_process_efis(log);
3783		if (error) {
3784			xfs_alert(log->l_mp, "Failed to recover EFIs");
3785			return error;
3786		}
3787		/*
3788		 * Sync the log to get all the EFIs out of the AIL.
3789		 * This isn't absolutely necessary, but it helps in
3790		 * case the unlink transactions would have problems
3791		 * pushing the EFIs out of the way.
3792		 */
3793		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3794
3795		xlog_recover_process_iunlinks(log);
3796
3797		xlog_recover_check_summary(log);
3798
3799		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3800				log->l_mp->m_logname ? log->l_mp->m_logname
3801						     : "internal");
3802		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3803	} else {
3804		xfs_info(log->l_mp, "Ending clean mount");
3805	}
3806	return 0;
3807}
3808
3809
3810#if defined(DEBUG)
3811/*
3812 * Read all of the agf and agi counters and check that they
3813 * are consistent with the superblock counters.
3814 */
3815void
3816xlog_recover_check_summary(
3817	xlog_t		*log)
3818{
3819	xfs_mount_t	*mp;
3820	xfs_agf_t	*agfp;
3821	xfs_buf_t	*agfbp;
3822	xfs_buf_t	*agibp;
3823	xfs_agnumber_t	agno;
3824	__uint64_t	freeblks;
3825	__uint64_t	itotal;
3826	__uint64_t	ifree;
3827	int		error;
3828
3829	mp = log->l_mp;
3830
3831	freeblks = 0LL;
3832	itotal = 0LL;
3833	ifree = 0LL;
3834	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3835		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3836		if (error) {
3837			xfs_alert(mp, "%s agf read failed agno %d error %d",
3838						__func__, agno, error);
3839		} else {
3840			agfp = XFS_BUF_TO_AGF(agfbp);
3841			freeblks += be32_to_cpu(agfp->agf_freeblks) +
3842				    be32_to_cpu(agfp->agf_flcount);
3843			xfs_buf_relse(agfbp);
3844		}
3845
3846		error = xfs_read_agi(mp, NULL, agno, &agibp);
3847		if (error) {
3848			xfs_alert(mp, "%s agi read failed agno %d error %d",
3849						__func__, agno, error);
3850		} else {
3851			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
3852
3853			itotal += be32_to_cpu(agi->agi_count);
3854			ifree += be32_to_cpu(agi->agi_freecount);
3855			xfs_buf_relse(agibp);
3856		}
3857	}
3858}
3859#endif /* DEBUG */