Loading...
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
27#include "xfs_mount.h"
28#include "xfs_error.h"
29#include "xfs_bmap_btree.h"
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
32#include "xfs_dinode.h"
33#include "xfs_inode.h"
34#include "xfs_inode_item.h"
35#include "xfs_alloc.h"
36#include "xfs_ialloc.h"
37#include "xfs_log_priv.h"
38#include "xfs_buf_item.h"
39#include "xfs_log_recover.h"
40#include "xfs_extfree_item.h"
41#include "xfs_trans_priv.h"
42#include "xfs_quota.h"
43#include "xfs_rw.h"
44#include "xfs_utils.h"
45#include "xfs_trace.h"
46
47STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
48STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
49#if defined(DEBUG)
50STATIC void xlog_recover_check_summary(xlog_t *);
51#else
52#define xlog_recover_check_summary(log)
53#endif
54
55/*
56 * This structure is used during recovery to record the buf log items which
57 * have been canceled and should not be replayed.
58 */
59struct xfs_buf_cancel {
60 xfs_daddr_t bc_blkno;
61 uint bc_len;
62 int bc_refcount;
63 struct list_head bc_list;
64};
65
66/*
67 * Sector aligned buffer routines for buffer create/read/write/access
68 */
69
70/*
71 * Verify the given count of basic blocks is valid number of blocks
72 * to specify for an operation involving the given XFS log buffer.
73 * Returns nonzero if the count is valid, 0 otherwise.
74 */
75
76static inline int
77xlog_buf_bbcount_valid(
78 xlog_t *log,
79 int bbcount)
80{
81 return bbcount > 0 && bbcount <= log->l_logBBsize;
82}
83
84/*
85 * Allocate a buffer to hold log data. The buffer needs to be able
86 * to map to a range of nbblks basic blocks at any valid (basic
87 * block) offset within the log.
88 */
89STATIC xfs_buf_t *
90xlog_get_bp(
91 xlog_t *log,
92 int nbblks)
93{
94 struct xfs_buf *bp;
95
96 if (!xlog_buf_bbcount_valid(log, nbblks)) {
97 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
98 nbblks);
99 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
100 return NULL;
101 }
102
103 /*
104 * We do log I/O in units of log sectors (a power-of-2
105 * multiple of the basic block size), so we round up the
106 * requested size to accommodate the basic blocks required
107 * for complete log sectors.
108 *
109 * In addition, the buffer may be used for a non-sector-
110 * aligned block offset, in which case an I/O of the
111 * requested size could extend beyond the end of the
112 * buffer. If the requested size is only 1 basic block it
113 * will never straddle a sector boundary, so this won't be
114 * an issue. Nor will this be a problem if the log I/O is
115 * done in basic blocks (sector size 1). But otherwise we
116 * extend the buffer by one extra log sector to ensure
117 * there's space to accommodate this possibility.
118 */
119 if (nbblks > 1 && log->l_sectBBsize > 1)
120 nbblks += log->l_sectBBsize;
121 nbblks = round_up(nbblks, log->l_sectBBsize);
122
123 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, BBTOB(nbblks), 0);
124 if (bp)
125 xfs_buf_unlock(bp);
126 return bp;
127}
128
129STATIC void
130xlog_put_bp(
131 xfs_buf_t *bp)
132{
133 xfs_buf_free(bp);
134}
135
136/*
137 * Return the address of the start of the given block number's data
138 * in a log buffer. The buffer covers a log sector-aligned region.
139 */
140STATIC xfs_caddr_t
141xlog_align(
142 xlog_t *log,
143 xfs_daddr_t blk_no,
144 int nbblks,
145 xfs_buf_t *bp)
146{
147 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
148
149 ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
150 return bp->b_addr + BBTOB(offset);
151}
152
153
154/*
155 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
156 */
157STATIC int
158xlog_bread_noalign(
159 xlog_t *log,
160 xfs_daddr_t blk_no,
161 int nbblks,
162 xfs_buf_t *bp)
163{
164 int error;
165
166 if (!xlog_buf_bbcount_valid(log, nbblks)) {
167 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
168 nbblks);
169 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
170 return EFSCORRUPTED;
171 }
172
173 blk_no = round_down(blk_no, log->l_sectBBsize);
174 nbblks = round_up(nbblks, log->l_sectBBsize);
175
176 ASSERT(nbblks > 0);
177 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
178
179 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
180 XFS_BUF_READ(bp);
181 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
182
183 xfsbdstrat(log->l_mp, bp);
184 error = xfs_buf_iowait(bp);
185 if (error)
186 xfs_ioerror_alert("xlog_bread", log->l_mp,
187 bp, XFS_BUF_ADDR(bp));
188 return error;
189}
190
191STATIC int
192xlog_bread(
193 xlog_t *log,
194 xfs_daddr_t blk_no,
195 int nbblks,
196 xfs_buf_t *bp,
197 xfs_caddr_t *offset)
198{
199 int error;
200
201 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
202 if (error)
203 return error;
204
205 *offset = xlog_align(log, blk_no, nbblks, bp);
206 return 0;
207}
208
209/*
210 * Read at an offset into the buffer. Returns with the buffer in it's original
211 * state regardless of the result of the read.
212 */
213STATIC int
214xlog_bread_offset(
215 xlog_t *log,
216 xfs_daddr_t blk_no, /* block to read from */
217 int nbblks, /* blocks to read */
218 xfs_buf_t *bp,
219 xfs_caddr_t offset)
220{
221 xfs_caddr_t orig_offset = bp->b_addr;
222 int orig_len = bp->b_buffer_length;
223 int error, error2;
224
225 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
226 if (error)
227 return error;
228
229 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
230
231 /* must reset buffer pointer even on error */
232 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
233 if (error)
234 return error;
235 return error2;
236}
237
238/*
239 * Write out the buffer at the given block for the given number of blocks.
240 * The buffer is kept locked across the write and is returned locked.
241 * This can only be used for synchronous log writes.
242 */
243STATIC int
244xlog_bwrite(
245 xlog_t *log,
246 xfs_daddr_t blk_no,
247 int nbblks,
248 xfs_buf_t *bp)
249{
250 int error;
251
252 if (!xlog_buf_bbcount_valid(log, nbblks)) {
253 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
254 nbblks);
255 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
256 return EFSCORRUPTED;
257 }
258
259 blk_no = round_down(blk_no, log->l_sectBBsize);
260 nbblks = round_up(nbblks, log->l_sectBBsize);
261
262 ASSERT(nbblks > 0);
263 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
264
265 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
266 XFS_BUF_ZEROFLAGS(bp);
267 xfs_buf_hold(bp);
268 xfs_buf_lock(bp);
269 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
270
271 if ((error = xfs_bwrite(log->l_mp, bp)))
272 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
273 bp, XFS_BUF_ADDR(bp));
274 return error;
275}
276
277#ifdef DEBUG
278/*
279 * dump debug superblock and log record information
280 */
281STATIC void
282xlog_header_check_dump(
283 xfs_mount_t *mp,
284 xlog_rec_header_t *head)
285{
286 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
287 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
288 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
289 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
290}
291#else
292#define xlog_header_check_dump(mp, head)
293#endif
294
295/*
296 * check log record header for recovery
297 */
298STATIC int
299xlog_header_check_recover(
300 xfs_mount_t *mp,
301 xlog_rec_header_t *head)
302{
303 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
304
305 /*
306 * IRIX doesn't write the h_fmt field and leaves it zeroed
307 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
308 * a dirty log created in IRIX.
309 */
310 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
311 xfs_warn(mp,
312 "dirty log written in incompatible format - can't recover");
313 xlog_header_check_dump(mp, head);
314 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
315 XFS_ERRLEVEL_HIGH, mp);
316 return XFS_ERROR(EFSCORRUPTED);
317 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
318 xfs_warn(mp,
319 "dirty log entry has mismatched uuid - can't recover");
320 xlog_header_check_dump(mp, head);
321 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
322 XFS_ERRLEVEL_HIGH, mp);
323 return XFS_ERROR(EFSCORRUPTED);
324 }
325 return 0;
326}
327
328/*
329 * read the head block of the log and check the header
330 */
331STATIC int
332xlog_header_check_mount(
333 xfs_mount_t *mp,
334 xlog_rec_header_t *head)
335{
336 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
337
338 if (uuid_is_nil(&head->h_fs_uuid)) {
339 /*
340 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
341 * h_fs_uuid is nil, we assume this log was last mounted
342 * by IRIX and continue.
343 */
344 xfs_warn(mp, "nil uuid in log - IRIX style log");
345 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
346 xfs_warn(mp, "log has mismatched uuid - can't recover");
347 xlog_header_check_dump(mp, head);
348 XFS_ERROR_REPORT("xlog_header_check_mount",
349 XFS_ERRLEVEL_HIGH, mp);
350 return XFS_ERROR(EFSCORRUPTED);
351 }
352 return 0;
353}
354
355STATIC void
356xlog_recover_iodone(
357 struct xfs_buf *bp)
358{
359 if (bp->b_error) {
360 /*
361 * We're not going to bother about retrying
362 * this during recovery. One strike!
363 */
364 xfs_ioerror_alert("xlog_recover_iodone",
365 bp->b_target->bt_mount, bp,
366 XFS_BUF_ADDR(bp));
367 xfs_force_shutdown(bp->b_target->bt_mount,
368 SHUTDOWN_META_IO_ERROR);
369 }
370 bp->b_iodone = NULL;
371 xfs_buf_ioend(bp, 0);
372}
373
374/*
375 * This routine finds (to an approximation) the first block in the physical
376 * log which contains the given cycle. It uses a binary search algorithm.
377 * Note that the algorithm can not be perfect because the disk will not
378 * necessarily be perfect.
379 */
380STATIC int
381xlog_find_cycle_start(
382 xlog_t *log,
383 xfs_buf_t *bp,
384 xfs_daddr_t first_blk,
385 xfs_daddr_t *last_blk,
386 uint cycle)
387{
388 xfs_caddr_t offset;
389 xfs_daddr_t mid_blk;
390 xfs_daddr_t end_blk;
391 uint mid_cycle;
392 int error;
393
394 end_blk = *last_blk;
395 mid_blk = BLK_AVG(first_blk, end_blk);
396 while (mid_blk != first_blk && mid_blk != end_blk) {
397 error = xlog_bread(log, mid_blk, 1, bp, &offset);
398 if (error)
399 return error;
400 mid_cycle = xlog_get_cycle(offset);
401 if (mid_cycle == cycle)
402 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
403 else
404 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
405 mid_blk = BLK_AVG(first_blk, end_blk);
406 }
407 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
408 (mid_blk == end_blk && mid_blk-1 == first_blk));
409
410 *last_blk = end_blk;
411
412 return 0;
413}
414
415/*
416 * Check that a range of blocks does not contain stop_on_cycle_no.
417 * Fill in *new_blk with the block offset where such a block is
418 * found, or with -1 (an invalid block number) if there is no such
419 * block in the range. The scan needs to occur from front to back
420 * and the pointer into the region must be updated since a later
421 * routine will need to perform another test.
422 */
423STATIC int
424xlog_find_verify_cycle(
425 xlog_t *log,
426 xfs_daddr_t start_blk,
427 int nbblks,
428 uint stop_on_cycle_no,
429 xfs_daddr_t *new_blk)
430{
431 xfs_daddr_t i, j;
432 uint cycle;
433 xfs_buf_t *bp;
434 xfs_daddr_t bufblks;
435 xfs_caddr_t buf = NULL;
436 int error = 0;
437
438 /*
439 * Greedily allocate a buffer big enough to handle the full
440 * range of basic blocks we'll be examining. If that fails,
441 * try a smaller size. We need to be able to read at least
442 * a log sector, or we're out of luck.
443 */
444 bufblks = 1 << ffs(nbblks);
445 while (!(bp = xlog_get_bp(log, bufblks))) {
446 bufblks >>= 1;
447 if (bufblks < log->l_sectBBsize)
448 return ENOMEM;
449 }
450
451 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
452 int bcount;
453
454 bcount = min(bufblks, (start_blk + nbblks - i));
455
456 error = xlog_bread(log, i, bcount, bp, &buf);
457 if (error)
458 goto out;
459
460 for (j = 0; j < bcount; j++) {
461 cycle = xlog_get_cycle(buf);
462 if (cycle == stop_on_cycle_no) {
463 *new_blk = i+j;
464 goto out;
465 }
466
467 buf += BBSIZE;
468 }
469 }
470
471 *new_blk = -1;
472
473out:
474 xlog_put_bp(bp);
475 return error;
476}
477
478/*
479 * Potentially backup over partial log record write.
480 *
481 * In the typical case, last_blk is the number of the block directly after
482 * a good log record. Therefore, we subtract one to get the block number
483 * of the last block in the given buffer. extra_bblks contains the number
484 * of blocks we would have read on a previous read. This happens when the
485 * last log record is split over the end of the physical log.
486 *
487 * extra_bblks is the number of blocks potentially verified on a previous
488 * call to this routine.
489 */
490STATIC int
491xlog_find_verify_log_record(
492 xlog_t *log,
493 xfs_daddr_t start_blk,
494 xfs_daddr_t *last_blk,
495 int extra_bblks)
496{
497 xfs_daddr_t i;
498 xfs_buf_t *bp;
499 xfs_caddr_t offset = NULL;
500 xlog_rec_header_t *head = NULL;
501 int error = 0;
502 int smallmem = 0;
503 int num_blks = *last_blk - start_blk;
504 int xhdrs;
505
506 ASSERT(start_blk != 0 || *last_blk != start_blk);
507
508 if (!(bp = xlog_get_bp(log, num_blks))) {
509 if (!(bp = xlog_get_bp(log, 1)))
510 return ENOMEM;
511 smallmem = 1;
512 } else {
513 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
514 if (error)
515 goto out;
516 offset += ((num_blks - 1) << BBSHIFT);
517 }
518
519 for (i = (*last_blk) - 1; i >= 0; i--) {
520 if (i < start_blk) {
521 /* valid log record not found */
522 xfs_warn(log->l_mp,
523 "Log inconsistent (didn't find previous header)");
524 ASSERT(0);
525 error = XFS_ERROR(EIO);
526 goto out;
527 }
528
529 if (smallmem) {
530 error = xlog_bread(log, i, 1, bp, &offset);
531 if (error)
532 goto out;
533 }
534
535 head = (xlog_rec_header_t *)offset;
536
537 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
538 break;
539
540 if (!smallmem)
541 offset -= BBSIZE;
542 }
543
544 /*
545 * We hit the beginning of the physical log & still no header. Return
546 * to caller. If caller can handle a return of -1, then this routine
547 * will be called again for the end of the physical log.
548 */
549 if (i == -1) {
550 error = -1;
551 goto out;
552 }
553
554 /*
555 * We have the final block of the good log (the first block
556 * of the log record _before_ the head. So we check the uuid.
557 */
558 if ((error = xlog_header_check_mount(log->l_mp, head)))
559 goto out;
560
561 /*
562 * We may have found a log record header before we expected one.
563 * last_blk will be the 1st block # with a given cycle #. We may end
564 * up reading an entire log record. In this case, we don't want to
565 * reset last_blk. Only when last_blk points in the middle of a log
566 * record do we update last_blk.
567 */
568 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
569 uint h_size = be32_to_cpu(head->h_size);
570
571 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
572 if (h_size % XLOG_HEADER_CYCLE_SIZE)
573 xhdrs++;
574 } else {
575 xhdrs = 1;
576 }
577
578 if (*last_blk - i + extra_bblks !=
579 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
580 *last_blk = i;
581
582out:
583 xlog_put_bp(bp);
584 return error;
585}
586
587/*
588 * Head is defined to be the point of the log where the next log write
589 * write could go. This means that incomplete LR writes at the end are
590 * eliminated when calculating the head. We aren't guaranteed that previous
591 * LR have complete transactions. We only know that a cycle number of
592 * current cycle number -1 won't be present in the log if we start writing
593 * from our current block number.
594 *
595 * last_blk contains the block number of the first block with a given
596 * cycle number.
597 *
598 * Return: zero if normal, non-zero if error.
599 */
600STATIC int
601xlog_find_head(
602 xlog_t *log,
603 xfs_daddr_t *return_head_blk)
604{
605 xfs_buf_t *bp;
606 xfs_caddr_t offset;
607 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
608 int num_scan_bblks;
609 uint first_half_cycle, last_half_cycle;
610 uint stop_on_cycle;
611 int error, log_bbnum = log->l_logBBsize;
612
613 /* Is the end of the log device zeroed? */
614 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
615 *return_head_blk = first_blk;
616
617 /* Is the whole lot zeroed? */
618 if (!first_blk) {
619 /* Linux XFS shouldn't generate totally zeroed logs -
620 * mkfs etc write a dummy unmount record to a fresh
621 * log so we can store the uuid in there
622 */
623 xfs_warn(log->l_mp, "totally zeroed log");
624 }
625
626 return 0;
627 } else if (error) {
628 xfs_warn(log->l_mp, "empty log check failed");
629 return error;
630 }
631
632 first_blk = 0; /* get cycle # of 1st block */
633 bp = xlog_get_bp(log, 1);
634 if (!bp)
635 return ENOMEM;
636
637 error = xlog_bread(log, 0, 1, bp, &offset);
638 if (error)
639 goto bp_err;
640
641 first_half_cycle = xlog_get_cycle(offset);
642
643 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
644 error = xlog_bread(log, last_blk, 1, bp, &offset);
645 if (error)
646 goto bp_err;
647
648 last_half_cycle = xlog_get_cycle(offset);
649 ASSERT(last_half_cycle != 0);
650
651 /*
652 * If the 1st half cycle number is equal to the last half cycle number,
653 * then the entire log is stamped with the same cycle number. In this
654 * case, head_blk can't be set to zero (which makes sense). The below
655 * math doesn't work out properly with head_blk equal to zero. Instead,
656 * we set it to log_bbnum which is an invalid block number, but this
657 * value makes the math correct. If head_blk doesn't changed through
658 * all the tests below, *head_blk is set to zero at the very end rather
659 * than log_bbnum. In a sense, log_bbnum and zero are the same block
660 * in a circular file.
661 */
662 if (first_half_cycle == last_half_cycle) {
663 /*
664 * In this case we believe that the entire log should have
665 * cycle number last_half_cycle. We need to scan backwards
666 * from the end verifying that there are no holes still
667 * containing last_half_cycle - 1. If we find such a hole,
668 * then the start of that hole will be the new head. The
669 * simple case looks like
670 * x | x ... | x - 1 | x
671 * Another case that fits this picture would be
672 * x | x + 1 | x ... | x
673 * In this case the head really is somewhere at the end of the
674 * log, as one of the latest writes at the beginning was
675 * incomplete.
676 * One more case is
677 * x | x + 1 | x ... | x - 1 | x
678 * This is really the combination of the above two cases, and
679 * the head has to end up at the start of the x-1 hole at the
680 * end of the log.
681 *
682 * In the 256k log case, we will read from the beginning to the
683 * end of the log and search for cycle numbers equal to x-1.
684 * We don't worry about the x+1 blocks that we encounter,
685 * because we know that they cannot be the head since the log
686 * started with x.
687 */
688 head_blk = log_bbnum;
689 stop_on_cycle = last_half_cycle - 1;
690 } else {
691 /*
692 * In this case we want to find the first block with cycle
693 * number matching last_half_cycle. We expect the log to be
694 * some variation on
695 * x + 1 ... | x ... | x
696 * The first block with cycle number x (last_half_cycle) will
697 * be where the new head belongs. First we do a binary search
698 * for the first occurrence of last_half_cycle. The binary
699 * search may not be totally accurate, so then we scan back
700 * from there looking for occurrences of last_half_cycle before
701 * us. If that backwards scan wraps around the beginning of
702 * the log, then we look for occurrences of last_half_cycle - 1
703 * at the end of the log. The cases we're looking for look
704 * like
705 * v binary search stopped here
706 * x + 1 ... | x | x + 1 | x ... | x
707 * ^ but we want to locate this spot
708 * or
709 * <---------> less than scan distance
710 * x + 1 ... | x ... | x - 1 | x
711 * ^ we want to locate this spot
712 */
713 stop_on_cycle = last_half_cycle;
714 if ((error = xlog_find_cycle_start(log, bp, first_blk,
715 &head_blk, last_half_cycle)))
716 goto bp_err;
717 }
718
719 /*
720 * Now validate the answer. Scan back some number of maximum possible
721 * blocks and make sure each one has the expected cycle number. The
722 * maximum is determined by the total possible amount of buffering
723 * in the in-core log. The following number can be made tighter if
724 * we actually look at the block size of the filesystem.
725 */
726 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
727 if (head_blk >= num_scan_bblks) {
728 /*
729 * We are guaranteed that the entire check can be performed
730 * in one buffer.
731 */
732 start_blk = head_blk - num_scan_bblks;
733 if ((error = xlog_find_verify_cycle(log,
734 start_blk, num_scan_bblks,
735 stop_on_cycle, &new_blk)))
736 goto bp_err;
737 if (new_blk != -1)
738 head_blk = new_blk;
739 } else { /* need to read 2 parts of log */
740 /*
741 * We are going to scan backwards in the log in two parts.
742 * First we scan the physical end of the log. In this part
743 * of the log, we are looking for blocks with cycle number
744 * last_half_cycle - 1.
745 * If we find one, then we know that the log starts there, as
746 * we've found a hole that didn't get written in going around
747 * the end of the physical log. The simple case for this is
748 * x + 1 ... | x ... | x - 1 | x
749 * <---------> less than scan distance
750 * If all of the blocks at the end of the log have cycle number
751 * last_half_cycle, then we check the blocks at the start of
752 * the log looking for occurrences of last_half_cycle. If we
753 * find one, then our current estimate for the location of the
754 * first occurrence of last_half_cycle is wrong and we move
755 * back to the hole we've found. This case looks like
756 * x + 1 ... | x | x + 1 | x ...
757 * ^ binary search stopped here
758 * Another case we need to handle that only occurs in 256k
759 * logs is
760 * x + 1 ... | x ... | x+1 | x ...
761 * ^ binary search stops here
762 * In a 256k log, the scan at the end of the log will see the
763 * x + 1 blocks. We need to skip past those since that is
764 * certainly not the head of the log. By searching for
765 * last_half_cycle-1 we accomplish that.
766 */
767 ASSERT(head_blk <= INT_MAX &&
768 (xfs_daddr_t) num_scan_bblks >= head_blk);
769 start_blk = log_bbnum - (num_scan_bblks - head_blk);
770 if ((error = xlog_find_verify_cycle(log, start_blk,
771 num_scan_bblks - (int)head_blk,
772 (stop_on_cycle - 1), &new_blk)))
773 goto bp_err;
774 if (new_blk != -1) {
775 head_blk = new_blk;
776 goto validate_head;
777 }
778
779 /*
780 * Scan beginning of log now. The last part of the physical
781 * log is good. This scan needs to verify that it doesn't find
782 * the last_half_cycle.
783 */
784 start_blk = 0;
785 ASSERT(head_blk <= INT_MAX);
786 if ((error = xlog_find_verify_cycle(log,
787 start_blk, (int)head_blk,
788 stop_on_cycle, &new_blk)))
789 goto bp_err;
790 if (new_blk != -1)
791 head_blk = new_blk;
792 }
793
794validate_head:
795 /*
796 * Now we need to make sure head_blk is not pointing to a block in
797 * the middle of a log record.
798 */
799 num_scan_bblks = XLOG_REC_SHIFT(log);
800 if (head_blk >= num_scan_bblks) {
801 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
802
803 /* start ptr at last block ptr before head_blk */
804 if ((error = xlog_find_verify_log_record(log, start_blk,
805 &head_blk, 0)) == -1) {
806 error = XFS_ERROR(EIO);
807 goto bp_err;
808 } else if (error)
809 goto bp_err;
810 } else {
811 start_blk = 0;
812 ASSERT(head_blk <= INT_MAX);
813 if ((error = xlog_find_verify_log_record(log, start_blk,
814 &head_blk, 0)) == -1) {
815 /* We hit the beginning of the log during our search */
816 start_blk = log_bbnum - (num_scan_bblks - head_blk);
817 new_blk = log_bbnum;
818 ASSERT(start_blk <= INT_MAX &&
819 (xfs_daddr_t) log_bbnum-start_blk >= 0);
820 ASSERT(head_blk <= INT_MAX);
821 if ((error = xlog_find_verify_log_record(log,
822 start_blk, &new_blk,
823 (int)head_blk)) == -1) {
824 error = XFS_ERROR(EIO);
825 goto bp_err;
826 } else if (error)
827 goto bp_err;
828 if (new_blk != log_bbnum)
829 head_blk = new_blk;
830 } else if (error)
831 goto bp_err;
832 }
833
834 xlog_put_bp(bp);
835 if (head_blk == log_bbnum)
836 *return_head_blk = 0;
837 else
838 *return_head_blk = head_blk;
839 /*
840 * When returning here, we have a good block number. Bad block
841 * means that during a previous crash, we didn't have a clean break
842 * from cycle number N to cycle number N-1. In this case, we need
843 * to find the first block with cycle number N-1.
844 */
845 return 0;
846
847 bp_err:
848 xlog_put_bp(bp);
849
850 if (error)
851 xfs_warn(log->l_mp, "failed to find log head");
852 return error;
853}
854
855/*
856 * Find the sync block number or the tail of the log.
857 *
858 * This will be the block number of the last record to have its
859 * associated buffers synced to disk. Every log record header has
860 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
861 * to get a sync block number. The only concern is to figure out which
862 * log record header to believe.
863 *
864 * The following algorithm uses the log record header with the largest
865 * lsn. The entire log record does not need to be valid. We only care
866 * that the header is valid.
867 *
868 * We could speed up search by using current head_blk buffer, but it is not
869 * available.
870 */
871STATIC int
872xlog_find_tail(
873 xlog_t *log,
874 xfs_daddr_t *head_blk,
875 xfs_daddr_t *tail_blk)
876{
877 xlog_rec_header_t *rhead;
878 xlog_op_header_t *op_head;
879 xfs_caddr_t offset = NULL;
880 xfs_buf_t *bp;
881 int error, i, found;
882 xfs_daddr_t umount_data_blk;
883 xfs_daddr_t after_umount_blk;
884 xfs_lsn_t tail_lsn;
885 int hblks;
886
887 found = 0;
888
889 /*
890 * Find previous log record
891 */
892 if ((error = xlog_find_head(log, head_blk)))
893 return error;
894
895 bp = xlog_get_bp(log, 1);
896 if (!bp)
897 return ENOMEM;
898 if (*head_blk == 0) { /* special case */
899 error = xlog_bread(log, 0, 1, bp, &offset);
900 if (error)
901 goto done;
902
903 if (xlog_get_cycle(offset) == 0) {
904 *tail_blk = 0;
905 /* leave all other log inited values alone */
906 goto done;
907 }
908 }
909
910 /*
911 * Search backwards looking for log record header block
912 */
913 ASSERT(*head_blk < INT_MAX);
914 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
915 error = xlog_bread(log, i, 1, bp, &offset);
916 if (error)
917 goto done;
918
919 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
920 found = 1;
921 break;
922 }
923 }
924 /*
925 * If we haven't found the log record header block, start looking
926 * again from the end of the physical log. XXXmiken: There should be
927 * a check here to make sure we didn't search more than N blocks in
928 * the previous code.
929 */
930 if (!found) {
931 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
932 error = xlog_bread(log, i, 1, bp, &offset);
933 if (error)
934 goto done;
935
936 if (*(__be32 *)offset ==
937 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
938 found = 2;
939 break;
940 }
941 }
942 }
943 if (!found) {
944 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
945 ASSERT(0);
946 return XFS_ERROR(EIO);
947 }
948
949 /* find blk_no of tail of log */
950 rhead = (xlog_rec_header_t *)offset;
951 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
952
953 /*
954 * Reset log values according to the state of the log when we
955 * crashed. In the case where head_blk == 0, we bump curr_cycle
956 * one because the next write starts a new cycle rather than
957 * continuing the cycle of the last good log record. At this
958 * point we have guaranteed that all partial log records have been
959 * accounted for. Therefore, we know that the last good log record
960 * written was complete and ended exactly on the end boundary
961 * of the physical log.
962 */
963 log->l_prev_block = i;
964 log->l_curr_block = (int)*head_blk;
965 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
966 if (found == 2)
967 log->l_curr_cycle++;
968 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
969 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
970 xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
971 BBTOB(log->l_curr_block));
972 xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
973 BBTOB(log->l_curr_block));
974
975 /*
976 * Look for unmount record. If we find it, then we know there
977 * was a clean unmount. Since 'i' could be the last block in
978 * the physical log, we convert to a log block before comparing
979 * to the head_blk.
980 *
981 * Save the current tail lsn to use to pass to
982 * xlog_clear_stale_blocks() below. We won't want to clear the
983 * unmount record if there is one, so we pass the lsn of the
984 * unmount record rather than the block after it.
985 */
986 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
987 int h_size = be32_to_cpu(rhead->h_size);
988 int h_version = be32_to_cpu(rhead->h_version);
989
990 if ((h_version & XLOG_VERSION_2) &&
991 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
992 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
993 if (h_size % XLOG_HEADER_CYCLE_SIZE)
994 hblks++;
995 } else {
996 hblks = 1;
997 }
998 } else {
999 hblks = 1;
1000 }
1001 after_umount_blk = (i + hblks + (int)
1002 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1003 tail_lsn = atomic64_read(&log->l_tail_lsn);
1004 if (*head_blk == after_umount_blk &&
1005 be32_to_cpu(rhead->h_num_logops) == 1) {
1006 umount_data_blk = (i + hblks) % log->l_logBBsize;
1007 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1008 if (error)
1009 goto done;
1010
1011 op_head = (xlog_op_header_t *)offset;
1012 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1013 /*
1014 * Set tail and last sync so that newly written
1015 * log records will point recovery to after the
1016 * current unmount record.
1017 */
1018 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1019 log->l_curr_cycle, after_umount_blk);
1020 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1021 log->l_curr_cycle, after_umount_blk);
1022 *tail_blk = after_umount_blk;
1023
1024 /*
1025 * Note that the unmount was clean. If the unmount
1026 * was not clean, we need to know this to rebuild the
1027 * superblock counters from the perag headers if we
1028 * have a filesystem using non-persistent counters.
1029 */
1030 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1031 }
1032 }
1033
1034 /*
1035 * Make sure that there are no blocks in front of the head
1036 * with the same cycle number as the head. This can happen
1037 * because we allow multiple outstanding log writes concurrently,
1038 * and the later writes might make it out before earlier ones.
1039 *
1040 * We use the lsn from before modifying it so that we'll never
1041 * overwrite the unmount record after a clean unmount.
1042 *
1043 * Do this only if we are going to recover the filesystem
1044 *
1045 * NOTE: This used to say "if (!readonly)"
1046 * However on Linux, we can & do recover a read-only filesystem.
1047 * We only skip recovery if NORECOVERY is specified on mount,
1048 * in which case we would not be here.
1049 *
1050 * But... if the -device- itself is readonly, just skip this.
1051 * We can't recover this device anyway, so it won't matter.
1052 */
1053 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1054 error = xlog_clear_stale_blocks(log, tail_lsn);
1055
1056done:
1057 xlog_put_bp(bp);
1058
1059 if (error)
1060 xfs_warn(log->l_mp, "failed to locate log tail");
1061 return error;
1062}
1063
1064/*
1065 * Is the log zeroed at all?
1066 *
1067 * The last binary search should be changed to perform an X block read
1068 * once X becomes small enough. You can then search linearly through
1069 * the X blocks. This will cut down on the number of reads we need to do.
1070 *
1071 * If the log is partially zeroed, this routine will pass back the blkno
1072 * of the first block with cycle number 0. It won't have a complete LR
1073 * preceding it.
1074 *
1075 * Return:
1076 * 0 => the log is completely written to
1077 * -1 => use *blk_no as the first block of the log
1078 * >0 => error has occurred
1079 */
1080STATIC int
1081xlog_find_zeroed(
1082 xlog_t *log,
1083 xfs_daddr_t *blk_no)
1084{
1085 xfs_buf_t *bp;
1086 xfs_caddr_t offset;
1087 uint first_cycle, last_cycle;
1088 xfs_daddr_t new_blk, last_blk, start_blk;
1089 xfs_daddr_t num_scan_bblks;
1090 int error, log_bbnum = log->l_logBBsize;
1091
1092 *blk_no = 0;
1093
1094 /* check totally zeroed log */
1095 bp = xlog_get_bp(log, 1);
1096 if (!bp)
1097 return ENOMEM;
1098 error = xlog_bread(log, 0, 1, bp, &offset);
1099 if (error)
1100 goto bp_err;
1101
1102 first_cycle = xlog_get_cycle(offset);
1103 if (first_cycle == 0) { /* completely zeroed log */
1104 *blk_no = 0;
1105 xlog_put_bp(bp);
1106 return -1;
1107 }
1108
1109 /* check partially zeroed log */
1110 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1111 if (error)
1112 goto bp_err;
1113
1114 last_cycle = xlog_get_cycle(offset);
1115 if (last_cycle != 0) { /* log completely written to */
1116 xlog_put_bp(bp);
1117 return 0;
1118 } else if (first_cycle != 1) {
1119 /*
1120 * If the cycle of the last block is zero, the cycle of
1121 * the first block must be 1. If it's not, maybe we're
1122 * not looking at a log... Bail out.
1123 */
1124 xfs_warn(log->l_mp,
1125 "Log inconsistent or not a log (last==0, first!=1)");
1126 return XFS_ERROR(EINVAL);
1127 }
1128
1129 /* we have a partially zeroed log */
1130 last_blk = log_bbnum-1;
1131 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1132 goto bp_err;
1133
1134 /*
1135 * Validate the answer. Because there is no way to guarantee that
1136 * the entire log is made up of log records which are the same size,
1137 * we scan over the defined maximum blocks. At this point, the maximum
1138 * is not chosen to mean anything special. XXXmiken
1139 */
1140 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1141 ASSERT(num_scan_bblks <= INT_MAX);
1142
1143 if (last_blk < num_scan_bblks)
1144 num_scan_bblks = last_blk;
1145 start_blk = last_blk - num_scan_bblks;
1146
1147 /*
1148 * We search for any instances of cycle number 0 that occur before
1149 * our current estimate of the head. What we're trying to detect is
1150 * 1 ... | 0 | 1 | 0...
1151 * ^ binary search ends here
1152 */
1153 if ((error = xlog_find_verify_cycle(log, start_blk,
1154 (int)num_scan_bblks, 0, &new_blk)))
1155 goto bp_err;
1156 if (new_blk != -1)
1157 last_blk = new_blk;
1158
1159 /*
1160 * Potentially backup over partial log record write. We don't need
1161 * to search the end of the log because we know it is zero.
1162 */
1163 if ((error = xlog_find_verify_log_record(log, start_blk,
1164 &last_blk, 0)) == -1) {
1165 error = XFS_ERROR(EIO);
1166 goto bp_err;
1167 } else if (error)
1168 goto bp_err;
1169
1170 *blk_no = last_blk;
1171bp_err:
1172 xlog_put_bp(bp);
1173 if (error)
1174 return error;
1175 return -1;
1176}
1177
1178/*
1179 * These are simple subroutines used by xlog_clear_stale_blocks() below
1180 * to initialize a buffer full of empty log record headers and write
1181 * them into the log.
1182 */
1183STATIC void
1184xlog_add_record(
1185 xlog_t *log,
1186 xfs_caddr_t buf,
1187 int cycle,
1188 int block,
1189 int tail_cycle,
1190 int tail_block)
1191{
1192 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1193
1194 memset(buf, 0, BBSIZE);
1195 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1196 recp->h_cycle = cpu_to_be32(cycle);
1197 recp->h_version = cpu_to_be32(
1198 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1199 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1200 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1201 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1202 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1203}
1204
1205STATIC int
1206xlog_write_log_records(
1207 xlog_t *log,
1208 int cycle,
1209 int start_block,
1210 int blocks,
1211 int tail_cycle,
1212 int tail_block)
1213{
1214 xfs_caddr_t offset;
1215 xfs_buf_t *bp;
1216 int balign, ealign;
1217 int sectbb = log->l_sectBBsize;
1218 int end_block = start_block + blocks;
1219 int bufblks;
1220 int error = 0;
1221 int i, j = 0;
1222
1223 /*
1224 * Greedily allocate a buffer big enough to handle the full
1225 * range of basic blocks to be written. If that fails, try
1226 * a smaller size. We need to be able to write at least a
1227 * log sector, or we're out of luck.
1228 */
1229 bufblks = 1 << ffs(blocks);
1230 while (!(bp = xlog_get_bp(log, bufblks))) {
1231 bufblks >>= 1;
1232 if (bufblks < sectbb)
1233 return ENOMEM;
1234 }
1235
1236 /* We may need to do a read at the start to fill in part of
1237 * the buffer in the starting sector not covered by the first
1238 * write below.
1239 */
1240 balign = round_down(start_block, sectbb);
1241 if (balign != start_block) {
1242 error = xlog_bread_noalign(log, start_block, 1, bp);
1243 if (error)
1244 goto out_put_bp;
1245
1246 j = start_block - balign;
1247 }
1248
1249 for (i = start_block; i < end_block; i += bufblks) {
1250 int bcount, endcount;
1251
1252 bcount = min(bufblks, end_block - start_block);
1253 endcount = bcount - j;
1254
1255 /* We may need to do a read at the end to fill in part of
1256 * the buffer in the final sector not covered by the write.
1257 * If this is the same sector as the above read, skip it.
1258 */
1259 ealign = round_down(end_block, sectbb);
1260 if (j == 0 && (start_block + endcount > ealign)) {
1261 offset = bp->b_addr + BBTOB(ealign - start_block);
1262 error = xlog_bread_offset(log, ealign, sectbb,
1263 bp, offset);
1264 if (error)
1265 break;
1266
1267 }
1268
1269 offset = xlog_align(log, start_block, endcount, bp);
1270 for (; j < endcount; j++) {
1271 xlog_add_record(log, offset, cycle, i+j,
1272 tail_cycle, tail_block);
1273 offset += BBSIZE;
1274 }
1275 error = xlog_bwrite(log, start_block, endcount, bp);
1276 if (error)
1277 break;
1278 start_block += endcount;
1279 j = 0;
1280 }
1281
1282 out_put_bp:
1283 xlog_put_bp(bp);
1284 return error;
1285}
1286
1287/*
1288 * This routine is called to blow away any incomplete log writes out
1289 * in front of the log head. We do this so that we won't become confused
1290 * if we come up, write only a little bit more, and then crash again.
1291 * If we leave the partial log records out there, this situation could
1292 * cause us to think those partial writes are valid blocks since they
1293 * have the current cycle number. We get rid of them by overwriting them
1294 * with empty log records with the old cycle number rather than the
1295 * current one.
1296 *
1297 * The tail lsn is passed in rather than taken from
1298 * the log so that we will not write over the unmount record after a
1299 * clean unmount in a 512 block log. Doing so would leave the log without
1300 * any valid log records in it until a new one was written. If we crashed
1301 * during that time we would not be able to recover.
1302 */
1303STATIC int
1304xlog_clear_stale_blocks(
1305 xlog_t *log,
1306 xfs_lsn_t tail_lsn)
1307{
1308 int tail_cycle, head_cycle;
1309 int tail_block, head_block;
1310 int tail_distance, max_distance;
1311 int distance;
1312 int error;
1313
1314 tail_cycle = CYCLE_LSN(tail_lsn);
1315 tail_block = BLOCK_LSN(tail_lsn);
1316 head_cycle = log->l_curr_cycle;
1317 head_block = log->l_curr_block;
1318
1319 /*
1320 * Figure out the distance between the new head of the log
1321 * and the tail. We want to write over any blocks beyond the
1322 * head that we may have written just before the crash, but
1323 * we don't want to overwrite the tail of the log.
1324 */
1325 if (head_cycle == tail_cycle) {
1326 /*
1327 * The tail is behind the head in the physical log,
1328 * so the distance from the head to the tail is the
1329 * distance from the head to the end of the log plus
1330 * the distance from the beginning of the log to the
1331 * tail.
1332 */
1333 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1334 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1335 XFS_ERRLEVEL_LOW, log->l_mp);
1336 return XFS_ERROR(EFSCORRUPTED);
1337 }
1338 tail_distance = tail_block + (log->l_logBBsize - head_block);
1339 } else {
1340 /*
1341 * The head is behind the tail in the physical log,
1342 * so the distance from the head to the tail is just
1343 * the tail block minus the head block.
1344 */
1345 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1346 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1347 XFS_ERRLEVEL_LOW, log->l_mp);
1348 return XFS_ERROR(EFSCORRUPTED);
1349 }
1350 tail_distance = tail_block - head_block;
1351 }
1352
1353 /*
1354 * If the head is right up against the tail, we can't clear
1355 * anything.
1356 */
1357 if (tail_distance <= 0) {
1358 ASSERT(tail_distance == 0);
1359 return 0;
1360 }
1361
1362 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1363 /*
1364 * Take the smaller of the maximum amount of outstanding I/O
1365 * we could have and the distance to the tail to clear out.
1366 * We take the smaller so that we don't overwrite the tail and
1367 * we don't waste all day writing from the head to the tail
1368 * for no reason.
1369 */
1370 max_distance = MIN(max_distance, tail_distance);
1371
1372 if ((head_block + max_distance) <= log->l_logBBsize) {
1373 /*
1374 * We can stomp all the blocks we need to without
1375 * wrapping around the end of the log. Just do it
1376 * in a single write. Use the cycle number of the
1377 * current cycle minus one so that the log will look like:
1378 * n ... | n - 1 ...
1379 */
1380 error = xlog_write_log_records(log, (head_cycle - 1),
1381 head_block, max_distance, tail_cycle,
1382 tail_block);
1383 if (error)
1384 return error;
1385 } else {
1386 /*
1387 * We need to wrap around the end of the physical log in
1388 * order to clear all the blocks. Do it in two separate
1389 * I/Os. The first write should be from the head to the
1390 * end of the physical log, and it should use the current
1391 * cycle number minus one just like above.
1392 */
1393 distance = log->l_logBBsize - head_block;
1394 error = xlog_write_log_records(log, (head_cycle - 1),
1395 head_block, distance, tail_cycle,
1396 tail_block);
1397
1398 if (error)
1399 return error;
1400
1401 /*
1402 * Now write the blocks at the start of the physical log.
1403 * This writes the remainder of the blocks we want to clear.
1404 * It uses the current cycle number since we're now on the
1405 * same cycle as the head so that we get:
1406 * n ... n ... | n - 1 ...
1407 * ^^^^^ blocks we're writing
1408 */
1409 distance = max_distance - (log->l_logBBsize - head_block);
1410 error = xlog_write_log_records(log, head_cycle, 0, distance,
1411 tail_cycle, tail_block);
1412 if (error)
1413 return error;
1414 }
1415
1416 return 0;
1417}
1418
1419/******************************************************************************
1420 *
1421 * Log recover routines
1422 *
1423 ******************************************************************************
1424 */
1425
1426STATIC xlog_recover_t *
1427xlog_recover_find_tid(
1428 struct hlist_head *head,
1429 xlog_tid_t tid)
1430{
1431 xlog_recover_t *trans;
1432 struct hlist_node *n;
1433
1434 hlist_for_each_entry(trans, n, head, r_list) {
1435 if (trans->r_log_tid == tid)
1436 return trans;
1437 }
1438 return NULL;
1439}
1440
1441STATIC void
1442xlog_recover_new_tid(
1443 struct hlist_head *head,
1444 xlog_tid_t tid,
1445 xfs_lsn_t lsn)
1446{
1447 xlog_recover_t *trans;
1448
1449 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1450 trans->r_log_tid = tid;
1451 trans->r_lsn = lsn;
1452 INIT_LIST_HEAD(&trans->r_itemq);
1453
1454 INIT_HLIST_NODE(&trans->r_list);
1455 hlist_add_head(&trans->r_list, head);
1456}
1457
1458STATIC void
1459xlog_recover_add_item(
1460 struct list_head *head)
1461{
1462 xlog_recover_item_t *item;
1463
1464 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1465 INIT_LIST_HEAD(&item->ri_list);
1466 list_add_tail(&item->ri_list, head);
1467}
1468
1469STATIC int
1470xlog_recover_add_to_cont_trans(
1471 struct log *log,
1472 xlog_recover_t *trans,
1473 xfs_caddr_t dp,
1474 int len)
1475{
1476 xlog_recover_item_t *item;
1477 xfs_caddr_t ptr, old_ptr;
1478 int old_len;
1479
1480 if (list_empty(&trans->r_itemq)) {
1481 /* finish copying rest of trans header */
1482 xlog_recover_add_item(&trans->r_itemq);
1483 ptr = (xfs_caddr_t) &trans->r_theader +
1484 sizeof(xfs_trans_header_t) - len;
1485 memcpy(ptr, dp, len); /* d, s, l */
1486 return 0;
1487 }
1488 /* take the tail entry */
1489 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1490
1491 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1492 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1493
1494 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1495 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1496 item->ri_buf[item->ri_cnt-1].i_len += len;
1497 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1498 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1499 return 0;
1500}
1501
1502/*
1503 * The next region to add is the start of a new region. It could be
1504 * a whole region or it could be the first part of a new region. Because
1505 * of this, the assumption here is that the type and size fields of all
1506 * format structures fit into the first 32 bits of the structure.
1507 *
1508 * This works because all regions must be 32 bit aligned. Therefore, we
1509 * either have both fields or we have neither field. In the case we have
1510 * neither field, the data part of the region is zero length. We only have
1511 * a log_op_header and can throw away the header since a new one will appear
1512 * later. If we have at least 4 bytes, then we can determine how many regions
1513 * will appear in the current log item.
1514 */
1515STATIC int
1516xlog_recover_add_to_trans(
1517 struct log *log,
1518 xlog_recover_t *trans,
1519 xfs_caddr_t dp,
1520 int len)
1521{
1522 xfs_inode_log_format_t *in_f; /* any will do */
1523 xlog_recover_item_t *item;
1524 xfs_caddr_t ptr;
1525
1526 if (!len)
1527 return 0;
1528 if (list_empty(&trans->r_itemq)) {
1529 /* we need to catch log corruptions here */
1530 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1531 xfs_warn(log->l_mp, "%s: bad header magic number",
1532 __func__);
1533 ASSERT(0);
1534 return XFS_ERROR(EIO);
1535 }
1536 if (len == sizeof(xfs_trans_header_t))
1537 xlog_recover_add_item(&trans->r_itemq);
1538 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1539 return 0;
1540 }
1541
1542 ptr = kmem_alloc(len, KM_SLEEP);
1543 memcpy(ptr, dp, len);
1544 in_f = (xfs_inode_log_format_t *)ptr;
1545
1546 /* take the tail entry */
1547 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1548 if (item->ri_total != 0 &&
1549 item->ri_total == item->ri_cnt) {
1550 /* tail item is in use, get a new one */
1551 xlog_recover_add_item(&trans->r_itemq);
1552 item = list_entry(trans->r_itemq.prev,
1553 xlog_recover_item_t, ri_list);
1554 }
1555
1556 if (item->ri_total == 0) { /* first region to be added */
1557 if (in_f->ilf_size == 0 ||
1558 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1559 xfs_warn(log->l_mp,
1560 "bad number of regions (%d) in inode log format",
1561 in_f->ilf_size);
1562 ASSERT(0);
1563 return XFS_ERROR(EIO);
1564 }
1565
1566 item->ri_total = in_f->ilf_size;
1567 item->ri_buf =
1568 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1569 KM_SLEEP);
1570 }
1571 ASSERT(item->ri_total > item->ri_cnt);
1572 /* Description region is ri_buf[0] */
1573 item->ri_buf[item->ri_cnt].i_addr = ptr;
1574 item->ri_buf[item->ri_cnt].i_len = len;
1575 item->ri_cnt++;
1576 trace_xfs_log_recover_item_add(log, trans, item, 0);
1577 return 0;
1578}
1579
1580/*
1581 * Sort the log items in the transaction. Cancelled buffers need
1582 * to be put first so they are processed before any items that might
1583 * modify the buffers. If they are cancelled, then the modifications
1584 * don't need to be replayed.
1585 */
1586STATIC int
1587xlog_recover_reorder_trans(
1588 struct log *log,
1589 xlog_recover_t *trans,
1590 int pass)
1591{
1592 xlog_recover_item_t *item, *n;
1593 LIST_HEAD(sort_list);
1594
1595 list_splice_init(&trans->r_itemq, &sort_list);
1596 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1597 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1598
1599 switch (ITEM_TYPE(item)) {
1600 case XFS_LI_BUF:
1601 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1602 trace_xfs_log_recover_item_reorder_head(log,
1603 trans, item, pass);
1604 list_move(&item->ri_list, &trans->r_itemq);
1605 break;
1606 }
1607 case XFS_LI_INODE:
1608 case XFS_LI_DQUOT:
1609 case XFS_LI_QUOTAOFF:
1610 case XFS_LI_EFD:
1611 case XFS_LI_EFI:
1612 trace_xfs_log_recover_item_reorder_tail(log,
1613 trans, item, pass);
1614 list_move_tail(&item->ri_list, &trans->r_itemq);
1615 break;
1616 default:
1617 xfs_warn(log->l_mp,
1618 "%s: unrecognized type of log operation",
1619 __func__);
1620 ASSERT(0);
1621 return XFS_ERROR(EIO);
1622 }
1623 }
1624 ASSERT(list_empty(&sort_list));
1625 return 0;
1626}
1627
1628/*
1629 * Build up the table of buf cancel records so that we don't replay
1630 * cancelled data in the second pass. For buffer records that are
1631 * not cancel records, there is nothing to do here so we just return.
1632 *
1633 * If we get a cancel record which is already in the table, this indicates
1634 * that the buffer was cancelled multiple times. In order to ensure
1635 * that during pass 2 we keep the record in the table until we reach its
1636 * last occurrence in the log, we keep a reference count in the cancel
1637 * record in the table to tell us how many times we expect to see this
1638 * record during the second pass.
1639 */
1640STATIC int
1641xlog_recover_buffer_pass1(
1642 struct log *log,
1643 xlog_recover_item_t *item)
1644{
1645 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1646 struct list_head *bucket;
1647 struct xfs_buf_cancel *bcp;
1648
1649 /*
1650 * If this isn't a cancel buffer item, then just return.
1651 */
1652 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1653 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1654 return 0;
1655 }
1656
1657 /*
1658 * Insert an xfs_buf_cancel record into the hash table of them.
1659 * If there is already an identical record, bump its reference count.
1660 */
1661 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1662 list_for_each_entry(bcp, bucket, bc_list) {
1663 if (bcp->bc_blkno == buf_f->blf_blkno &&
1664 bcp->bc_len == buf_f->blf_len) {
1665 bcp->bc_refcount++;
1666 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1667 return 0;
1668 }
1669 }
1670
1671 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1672 bcp->bc_blkno = buf_f->blf_blkno;
1673 bcp->bc_len = buf_f->blf_len;
1674 bcp->bc_refcount = 1;
1675 list_add_tail(&bcp->bc_list, bucket);
1676
1677 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1678 return 0;
1679}
1680
1681/*
1682 * Check to see whether the buffer being recovered has a corresponding
1683 * entry in the buffer cancel record table. If it does then return 1
1684 * so that it will be cancelled, otherwise return 0. If the buffer is
1685 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1686 * the refcount on the entry in the table and remove it from the table
1687 * if this is the last reference.
1688 *
1689 * We remove the cancel record from the table when we encounter its
1690 * last occurrence in the log so that if the same buffer is re-used
1691 * again after its last cancellation we actually replay the changes
1692 * made at that point.
1693 */
1694STATIC int
1695xlog_check_buffer_cancelled(
1696 struct log *log,
1697 xfs_daddr_t blkno,
1698 uint len,
1699 ushort flags)
1700{
1701 struct list_head *bucket;
1702 struct xfs_buf_cancel *bcp;
1703
1704 if (log->l_buf_cancel_table == NULL) {
1705 /*
1706 * There is nothing in the table built in pass one,
1707 * so this buffer must not be cancelled.
1708 */
1709 ASSERT(!(flags & XFS_BLF_CANCEL));
1710 return 0;
1711 }
1712
1713 /*
1714 * Search for an entry in the cancel table that matches our buffer.
1715 */
1716 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1717 list_for_each_entry(bcp, bucket, bc_list) {
1718 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1719 goto found;
1720 }
1721
1722 /*
1723 * We didn't find a corresponding entry in the table, so return 0 so
1724 * that the buffer is NOT cancelled.
1725 */
1726 ASSERT(!(flags & XFS_BLF_CANCEL));
1727 return 0;
1728
1729found:
1730 /*
1731 * We've go a match, so return 1 so that the recovery of this buffer
1732 * is cancelled. If this buffer is actually a buffer cancel log
1733 * item, then decrement the refcount on the one in the table and
1734 * remove it if this is the last reference.
1735 */
1736 if (flags & XFS_BLF_CANCEL) {
1737 if (--bcp->bc_refcount == 0) {
1738 list_del(&bcp->bc_list);
1739 kmem_free(bcp);
1740 }
1741 }
1742 return 1;
1743}
1744
1745/*
1746 * Perform recovery for a buffer full of inodes. In these buffers, the only
1747 * data which should be recovered is that which corresponds to the
1748 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1749 * data for the inodes is always logged through the inodes themselves rather
1750 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1751 *
1752 * The only time when buffers full of inodes are fully recovered is when the
1753 * buffer is full of newly allocated inodes. In this case the buffer will
1754 * not be marked as an inode buffer and so will be sent to
1755 * xlog_recover_do_reg_buffer() below during recovery.
1756 */
1757STATIC int
1758xlog_recover_do_inode_buffer(
1759 struct xfs_mount *mp,
1760 xlog_recover_item_t *item,
1761 struct xfs_buf *bp,
1762 xfs_buf_log_format_t *buf_f)
1763{
1764 int i;
1765 int item_index = 0;
1766 int bit = 0;
1767 int nbits = 0;
1768 int reg_buf_offset = 0;
1769 int reg_buf_bytes = 0;
1770 int next_unlinked_offset;
1771 int inodes_per_buf;
1772 xfs_agino_t *logged_nextp;
1773 xfs_agino_t *buffer_nextp;
1774
1775 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1776
1777 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1778 for (i = 0; i < inodes_per_buf; i++) {
1779 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1780 offsetof(xfs_dinode_t, di_next_unlinked);
1781
1782 while (next_unlinked_offset >=
1783 (reg_buf_offset + reg_buf_bytes)) {
1784 /*
1785 * The next di_next_unlinked field is beyond
1786 * the current logged region. Find the next
1787 * logged region that contains or is beyond
1788 * the current di_next_unlinked field.
1789 */
1790 bit += nbits;
1791 bit = xfs_next_bit(buf_f->blf_data_map,
1792 buf_f->blf_map_size, bit);
1793
1794 /*
1795 * If there are no more logged regions in the
1796 * buffer, then we're done.
1797 */
1798 if (bit == -1)
1799 return 0;
1800
1801 nbits = xfs_contig_bits(buf_f->blf_data_map,
1802 buf_f->blf_map_size, bit);
1803 ASSERT(nbits > 0);
1804 reg_buf_offset = bit << XFS_BLF_SHIFT;
1805 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1806 item_index++;
1807 }
1808
1809 /*
1810 * If the current logged region starts after the current
1811 * di_next_unlinked field, then move on to the next
1812 * di_next_unlinked field.
1813 */
1814 if (next_unlinked_offset < reg_buf_offset)
1815 continue;
1816
1817 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1818 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1819 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1820
1821 /*
1822 * The current logged region contains a copy of the
1823 * current di_next_unlinked field. Extract its value
1824 * and copy it to the buffer copy.
1825 */
1826 logged_nextp = item->ri_buf[item_index].i_addr +
1827 next_unlinked_offset - reg_buf_offset;
1828 if (unlikely(*logged_nextp == 0)) {
1829 xfs_alert(mp,
1830 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1831 "Trying to replay bad (0) inode di_next_unlinked field.",
1832 item, bp);
1833 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1834 XFS_ERRLEVEL_LOW, mp);
1835 return XFS_ERROR(EFSCORRUPTED);
1836 }
1837
1838 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1839 next_unlinked_offset);
1840 *buffer_nextp = *logged_nextp;
1841 }
1842
1843 return 0;
1844}
1845
1846/*
1847 * Perform a 'normal' buffer recovery. Each logged region of the
1848 * buffer should be copied over the corresponding region in the
1849 * given buffer. The bitmap in the buf log format structure indicates
1850 * where to place the logged data.
1851 */
1852STATIC void
1853xlog_recover_do_reg_buffer(
1854 struct xfs_mount *mp,
1855 xlog_recover_item_t *item,
1856 struct xfs_buf *bp,
1857 xfs_buf_log_format_t *buf_f)
1858{
1859 int i;
1860 int bit;
1861 int nbits;
1862 int error;
1863
1864 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1865
1866 bit = 0;
1867 i = 1; /* 0 is the buf format structure */
1868 while (1) {
1869 bit = xfs_next_bit(buf_f->blf_data_map,
1870 buf_f->blf_map_size, bit);
1871 if (bit == -1)
1872 break;
1873 nbits = xfs_contig_bits(buf_f->blf_data_map,
1874 buf_f->blf_map_size, bit);
1875 ASSERT(nbits > 0);
1876 ASSERT(item->ri_buf[i].i_addr != NULL);
1877 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1878 ASSERT(XFS_BUF_COUNT(bp) >=
1879 ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1880
1881 /*
1882 * Do a sanity check if this is a dquot buffer. Just checking
1883 * the first dquot in the buffer should do. XXXThis is
1884 * probably a good thing to do for other buf types also.
1885 */
1886 error = 0;
1887 if (buf_f->blf_flags &
1888 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1889 if (item->ri_buf[i].i_addr == NULL) {
1890 xfs_alert(mp,
1891 "XFS: NULL dquot in %s.", __func__);
1892 goto next;
1893 }
1894 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1895 xfs_alert(mp,
1896 "XFS: dquot too small (%d) in %s.",
1897 item->ri_buf[i].i_len, __func__);
1898 goto next;
1899 }
1900 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1901 -1, 0, XFS_QMOPT_DOWARN,
1902 "dquot_buf_recover");
1903 if (error)
1904 goto next;
1905 }
1906
1907 memcpy(xfs_buf_offset(bp,
1908 (uint)bit << XFS_BLF_SHIFT), /* dest */
1909 item->ri_buf[i].i_addr, /* source */
1910 nbits<<XFS_BLF_SHIFT); /* length */
1911 next:
1912 i++;
1913 bit += nbits;
1914 }
1915
1916 /* Shouldn't be any more regions */
1917 ASSERT(i == item->ri_total);
1918}
1919
1920/*
1921 * Do some primitive error checking on ondisk dquot data structures.
1922 */
1923int
1924xfs_qm_dqcheck(
1925 struct xfs_mount *mp,
1926 xfs_disk_dquot_t *ddq,
1927 xfs_dqid_t id,
1928 uint type, /* used only when IO_dorepair is true */
1929 uint flags,
1930 char *str)
1931{
1932 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1933 int errs = 0;
1934
1935 /*
1936 * We can encounter an uninitialized dquot buffer for 2 reasons:
1937 * 1. If we crash while deleting the quotainode(s), and those blks got
1938 * used for user data. This is because we take the path of regular
1939 * file deletion; however, the size field of quotainodes is never
1940 * updated, so all the tricks that we play in itruncate_finish
1941 * don't quite matter.
1942 *
1943 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1944 * But the allocation will be replayed so we'll end up with an
1945 * uninitialized quota block.
1946 *
1947 * This is all fine; things are still consistent, and we haven't lost
1948 * any quota information. Just don't complain about bad dquot blks.
1949 */
1950 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1951 if (flags & XFS_QMOPT_DOWARN)
1952 xfs_alert(mp,
1953 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1954 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1955 errs++;
1956 }
1957 if (ddq->d_version != XFS_DQUOT_VERSION) {
1958 if (flags & XFS_QMOPT_DOWARN)
1959 xfs_alert(mp,
1960 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1961 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1962 errs++;
1963 }
1964
1965 if (ddq->d_flags != XFS_DQ_USER &&
1966 ddq->d_flags != XFS_DQ_PROJ &&
1967 ddq->d_flags != XFS_DQ_GROUP) {
1968 if (flags & XFS_QMOPT_DOWARN)
1969 xfs_alert(mp,
1970 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1971 str, id, ddq->d_flags);
1972 errs++;
1973 }
1974
1975 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1976 if (flags & XFS_QMOPT_DOWARN)
1977 xfs_alert(mp,
1978 "%s : ondisk-dquot 0x%p, ID mismatch: "
1979 "0x%x expected, found id 0x%x",
1980 str, ddq, id, be32_to_cpu(ddq->d_id));
1981 errs++;
1982 }
1983
1984 if (!errs && ddq->d_id) {
1985 if (ddq->d_blk_softlimit &&
1986 be64_to_cpu(ddq->d_bcount) >=
1987 be64_to_cpu(ddq->d_blk_softlimit)) {
1988 if (!ddq->d_btimer) {
1989 if (flags & XFS_QMOPT_DOWARN)
1990 xfs_alert(mp,
1991 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1992 str, (int)be32_to_cpu(ddq->d_id), ddq);
1993 errs++;
1994 }
1995 }
1996 if (ddq->d_ino_softlimit &&
1997 be64_to_cpu(ddq->d_icount) >=
1998 be64_to_cpu(ddq->d_ino_softlimit)) {
1999 if (!ddq->d_itimer) {
2000 if (flags & XFS_QMOPT_DOWARN)
2001 xfs_alert(mp,
2002 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2003 str, (int)be32_to_cpu(ddq->d_id), ddq);
2004 errs++;
2005 }
2006 }
2007 if (ddq->d_rtb_softlimit &&
2008 be64_to_cpu(ddq->d_rtbcount) >=
2009 be64_to_cpu(ddq->d_rtb_softlimit)) {
2010 if (!ddq->d_rtbtimer) {
2011 if (flags & XFS_QMOPT_DOWARN)
2012 xfs_alert(mp,
2013 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2014 str, (int)be32_to_cpu(ddq->d_id), ddq);
2015 errs++;
2016 }
2017 }
2018 }
2019
2020 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2021 return errs;
2022
2023 if (flags & XFS_QMOPT_DOWARN)
2024 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2025
2026 /*
2027 * Typically, a repair is only requested by quotacheck.
2028 */
2029 ASSERT(id != -1);
2030 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2031 memset(d, 0, sizeof(xfs_dqblk_t));
2032
2033 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2034 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2035 d->dd_diskdq.d_flags = type;
2036 d->dd_diskdq.d_id = cpu_to_be32(id);
2037
2038 return errs;
2039}
2040
2041/*
2042 * Perform a dquot buffer recovery.
2043 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2044 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2045 * Else, treat it as a regular buffer and do recovery.
2046 */
2047STATIC void
2048xlog_recover_do_dquot_buffer(
2049 xfs_mount_t *mp,
2050 xlog_t *log,
2051 xlog_recover_item_t *item,
2052 xfs_buf_t *bp,
2053 xfs_buf_log_format_t *buf_f)
2054{
2055 uint type;
2056
2057 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2058
2059 /*
2060 * Filesystems are required to send in quota flags at mount time.
2061 */
2062 if (mp->m_qflags == 0) {
2063 return;
2064 }
2065
2066 type = 0;
2067 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2068 type |= XFS_DQ_USER;
2069 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2070 type |= XFS_DQ_PROJ;
2071 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2072 type |= XFS_DQ_GROUP;
2073 /*
2074 * This type of quotas was turned off, so ignore this buffer
2075 */
2076 if (log->l_quotaoffs_flag & type)
2077 return;
2078
2079 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2080}
2081
2082/*
2083 * This routine replays a modification made to a buffer at runtime.
2084 * There are actually two types of buffer, regular and inode, which
2085 * are handled differently. Inode buffers are handled differently
2086 * in that we only recover a specific set of data from them, namely
2087 * the inode di_next_unlinked fields. This is because all other inode
2088 * data is actually logged via inode records and any data we replay
2089 * here which overlaps that may be stale.
2090 *
2091 * When meta-data buffers are freed at run time we log a buffer item
2092 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2093 * of the buffer in the log should not be replayed at recovery time.
2094 * This is so that if the blocks covered by the buffer are reused for
2095 * file data before we crash we don't end up replaying old, freed
2096 * meta-data into a user's file.
2097 *
2098 * To handle the cancellation of buffer log items, we make two passes
2099 * over the log during recovery. During the first we build a table of
2100 * those buffers which have been cancelled, and during the second we
2101 * only replay those buffers which do not have corresponding cancel
2102 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2103 * for more details on the implementation of the table of cancel records.
2104 */
2105STATIC int
2106xlog_recover_buffer_pass2(
2107 xlog_t *log,
2108 xlog_recover_item_t *item)
2109{
2110 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2111 xfs_mount_t *mp = log->l_mp;
2112 xfs_buf_t *bp;
2113 int error;
2114 uint buf_flags;
2115
2116 /*
2117 * In this pass we only want to recover all the buffers which have
2118 * not been cancelled and are not cancellation buffers themselves.
2119 */
2120 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2121 buf_f->blf_len, buf_f->blf_flags)) {
2122 trace_xfs_log_recover_buf_cancel(log, buf_f);
2123 return 0;
2124 }
2125
2126 trace_xfs_log_recover_buf_recover(log, buf_f);
2127
2128 buf_flags = XBF_LOCK;
2129 if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
2130 buf_flags |= XBF_MAPPED;
2131
2132 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2133 buf_flags);
2134 if (!bp)
2135 return XFS_ERROR(ENOMEM);
2136 error = bp->b_error;
2137 if (error) {
2138 xfs_ioerror_alert("xlog_recover_do..(read#1)", mp,
2139 bp, buf_f->blf_blkno);
2140 xfs_buf_relse(bp);
2141 return error;
2142 }
2143
2144 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2145 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2146 } else if (buf_f->blf_flags &
2147 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2148 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2149 } else {
2150 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2151 }
2152 if (error)
2153 return XFS_ERROR(error);
2154
2155 /*
2156 * Perform delayed write on the buffer. Asynchronous writes will be
2157 * slower when taking into account all the buffers to be flushed.
2158 *
2159 * Also make sure that only inode buffers with good sizes stay in
2160 * the buffer cache. The kernel moves inodes in buffers of 1 block
2161 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2162 * buffers in the log can be a different size if the log was generated
2163 * by an older kernel using unclustered inode buffers or a newer kernel
2164 * running with a different inode cluster size. Regardless, if the
2165 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2166 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2167 * the buffer out of the buffer cache so that the buffer won't
2168 * overlap with future reads of those inodes.
2169 */
2170 if (XFS_DINODE_MAGIC ==
2171 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2172 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2173 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2174 XFS_BUF_STALE(bp);
2175 error = xfs_bwrite(mp, bp);
2176 } else {
2177 ASSERT(bp->b_target->bt_mount == mp);
2178 bp->b_iodone = xlog_recover_iodone;
2179 xfs_bdwrite(mp, bp);
2180 }
2181
2182 return (error);
2183}
2184
2185STATIC int
2186xlog_recover_inode_pass2(
2187 xlog_t *log,
2188 xlog_recover_item_t *item)
2189{
2190 xfs_inode_log_format_t *in_f;
2191 xfs_mount_t *mp = log->l_mp;
2192 xfs_buf_t *bp;
2193 xfs_dinode_t *dip;
2194 int len;
2195 xfs_caddr_t src;
2196 xfs_caddr_t dest;
2197 int error;
2198 int attr_index;
2199 uint fields;
2200 xfs_icdinode_t *dicp;
2201 int need_free = 0;
2202
2203 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2204 in_f = item->ri_buf[0].i_addr;
2205 } else {
2206 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2207 need_free = 1;
2208 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2209 if (error)
2210 goto error;
2211 }
2212
2213 /*
2214 * Inode buffers can be freed, look out for it,
2215 * and do not replay the inode.
2216 */
2217 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2218 in_f->ilf_len, 0)) {
2219 error = 0;
2220 trace_xfs_log_recover_inode_cancel(log, in_f);
2221 goto error;
2222 }
2223 trace_xfs_log_recover_inode_recover(log, in_f);
2224
2225 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2226 XBF_LOCK);
2227 if (!bp) {
2228 error = ENOMEM;
2229 goto error;
2230 }
2231 error = bp->b_error;
2232 if (error) {
2233 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2234 bp, in_f->ilf_blkno);
2235 xfs_buf_relse(bp);
2236 goto error;
2237 }
2238 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2239 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2240
2241 /*
2242 * Make sure the place we're flushing out to really looks
2243 * like an inode!
2244 */
2245 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2246 xfs_buf_relse(bp);
2247 xfs_alert(mp,
2248 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2249 __func__, dip, bp, in_f->ilf_ino);
2250 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2251 XFS_ERRLEVEL_LOW, mp);
2252 error = EFSCORRUPTED;
2253 goto error;
2254 }
2255 dicp = item->ri_buf[1].i_addr;
2256 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2257 xfs_buf_relse(bp);
2258 xfs_alert(mp,
2259 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2260 __func__, item, in_f->ilf_ino);
2261 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2262 XFS_ERRLEVEL_LOW, mp);
2263 error = EFSCORRUPTED;
2264 goto error;
2265 }
2266
2267 /* Skip replay when the on disk inode is newer than the log one */
2268 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2269 /*
2270 * Deal with the wrap case, DI_MAX_FLUSH is less
2271 * than smaller numbers
2272 */
2273 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2274 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2275 /* do nothing */
2276 } else {
2277 xfs_buf_relse(bp);
2278 trace_xfs_log_recover_inode_skip(log, in_f);
2279 error = 0;
2280 goto error;
2281 }
2282 }
2283 /* Take the opportunity to reset the flush iteration count */
2284 dicp->di_flushiter = 0;
2285
2286 if (unlikely(S_ISREG(dicp->di_mode))) {
2287 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2288 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2289 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2290 XFS_ERRLEVEL_LOW, mp, dicp);
2291 xfs_buf_relse(bp);
2292 xfs_alert(mp,
2293 "%s: Bad regular inode log record, rec ptr 0x%p, "
2294 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2295 __func__, item, dip, bp, in_f->ilf_ino);
2296 error = EFSCORRUPTED;
2297 goto error;
2298 }
2299 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2300 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2301 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2302 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2303 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2304 XFS_ERRLEVEL_LOW, mp, dicp);
2305 xfs_buf_relse(bp);
2306 xfs_alert(mp,
2307 "%s: Bad dir inode log record, rec ptr 0x%p, "
2308 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2309 __func__, item, dip, bp, in_f->ilf_ino);
2310 error = EFSCORRUPTED;
2311 goto error;
2312 }
2313 }
2314 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2315 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2316 XFS_ERRLEVEL_LOW, mp, dicp);
2317 xfs_buf_relse(bp);
2318 xfs_alert(mp,
2319 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2320 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2321 __func__, item, dip, bp, in_f->ilf_ino,
2322 dicp->di_nextents + dicp->di_anextents,
2323 dicp->di_nblocks);
2324 error = EFSCORRUPTED;
2325 goto error;
2326 }
2327 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2328 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2329 XFS_ERRLEVEL_LOW, mp, dicp);
2330 xfs_buf_relse(bp);
2331 xfs_alert(mp,
2332 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2333 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2334 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2335 error = EFSCORRUPTED;
2336 goto error;
2337 }
2338 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2339 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2340 XFS_ERRLEVEL_LOW, mp, dicp);
2341 xfs_buf_relse(bp);
2342 xfs_alert(mp,
2343 "%s: Bad inode log record length %d, rec ptr 0x%p",
2344 __func__, item->ri_buf[1].i_len, item);
2345 error = EFSCORRUPTED;
2346 goto error;
2347 }
2348
2349 /* The core is in in-core format */
2350 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2351
2352 /* the rest is in on-disk format */
2353 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2354 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2355 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2356 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2357 }
2358
2359 fields = in_f->ilf_fields;
2360 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2361 case XFS_ILOG_DEV:
2362 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2363 break;
2364 case XFS_ILOG_UUID:
2365 memcpy(XFS_DFORK_DPTR(dip),
2366 &in_f->ilf_u.ilfu_uuid,
2367 sizeof(uuid_t));
2368 break;
2369 }
2370
2371 if (in_f->ilf_size == 2)
2372 goto write_inode_buffer;
2373 len = item->ri_buf[2].i_len;
2374 src = item->ri_buf[2].i_addr;
2375 ASSERT(in_f->ilf_size <= 4);
2376 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2377 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2378 (len == in_f->ilf_dsize));
2379
2380 switch (fields & XFS_ILOG_DFORK) {
2381 case XFS_ILOG_DDATA:
2382 case XFS_ILOG_DEXT:
2383 memcpy(XFS_DFORK_DPTR(dip), src, len);
2384 break;
2385
2386 case XFS_ILOG_DBROOT:
2387 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2388 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2389 XFS_DFORK_DSIZE(dip, mp));
2390 break;
2391
2392 default:
2393 /*
2394 * There are no data fork flags set.
2395 */
2396 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2397 break;
2398 }
2399
2400 /*
2401 * If we logged any attribute data, recover it. There may or
2402 * may not have been any other non-core data logged in this
2403 * transaction.
2404 */
2405 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2406 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2407 attr_index = 3;
2408 } else {
2409 attr_index = 2;
2410 }
2411 len = item->ri_buf[attr_index].i_len;
2412 src = item->ri_buf[attr_index].i_addr;
2413 ASSERT(len == in_f->ilf_asize);
2414
2415 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2416 case XFS_ILOG_ADATA:
2417 case XFS_ILOG_AEXT:
2418 dest = XFS_DFORK_APTR(dip);
2419 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2420 memcpy(dest, src, len);
2421 break;
2422
2423 case XFS_ILOG_ABROOT:
2424 dest = XFS_DFORK_APTR(dip);
2425 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2426 len, (xfs_bmdr_block_t*)dest,
2427 XFS_DFORK_ASIZE(dip, mp));
2428 break;
2429
2430 default:
2431 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2432 ASSERT(0);
2433 xfs_buf_relse(bp);
2434 error = EIO;
2435 goto error;
2436 }
2437 }
2438
2439write_inode_buffer:
2440 ASSERT(bp->b_target->bt_mount == mp);
2441 bp->b_iodone = xlog_recover_iodone;
2442 xfs_bdwrite(mp, bp);
2443error:
2444 if (need_free)
2445 kmem_free(in_f);
2446 return XFS_ERROR(error);
2447}
2448
2449/*
2450 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2451 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2452 * of that type.
2453 */
2454STATIC int
2455xlog_recover_quotaoff_pass1(
2456 xlog_t *log,
2457 xlog_recover_item_t *item)
2458{
2459 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2460 ASSERT(qoff_f);
2461
2462 /*
2463 * The logitem format's flag tells us if this was user quotaoff,
2464 * group/project quotaoff or both.
2465 */
2466 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2467 log->l_quotaoffs_flag |= XFS_DQ_USER;
2468 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2469 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2470 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2471 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2472
2473 return (0);
2474}
2475
2476/*
2477 * Recover a dquot record
2478 */
2479STATIC int
2480xlog_recover_dquot_pass2(
2481 xlog_t *log,
2482 xlog_recover_item_t *item)
2483{
2484 xfs_mount_t *mp = log->l_mp;
2485 xfs_buf_t *bp;
2486 struct xfs_disk_dquot *ddq, *recddq;
2487 int error;
2488 xfs_dq_logformat_t *dq_f;
2489 uint type;
2490
2491
2492 /*
2493 * Filesystems are required to send in quota flags at mount time.
2494 */
2495 if (mp->m_qflags == 0)
2496 return (0);
2497
2498 recddq = item->ri_buf[1].i_addr;
2499 if (recddq == NULL) {
2500 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2501 return XFS_ERROR(EIO);
2502 }
2503 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2504 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2505 item->ri_buf[1].i_len, __func__);
2506 return XFS_ERROR(EIO);
2507 }
2508
2509 /*
2510 * This type of quotas was turned off, so ignore this record.
2511 */
2512 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2513 ASSERT(type);
2514 if (log->l_quotaoffs_flag & type)
2515 return (0);
2516
2517 /*
2518 * At this point we know that quota was _not_ turned off.
2519 * Since the mount flags are not indicating to us otherwise, this
2520 * must mean that quota is on, and the dquot needs to be replayed.
2521 * Remember that we may not have fully recovered the superblock yet,
2522 * so we can't do the usual trick of looking at the SB quota bits.
2523 *
2524 * The other possibility, of course, is that the quota subsystem was
2525 * removed since the last mount - ENOSYS.
2526 */
2527 dq_f = item->ri_buf[0].i_addr;
2528 ASSERT(dq_f);
2529 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2530 "xlog_recover_dquot_pass2 (log copy)");
2531 if (error)
2532 return XFS_ERROR(EIO);
2533 ASSERT(dq_f->qlf_len == 1);
2534
2535 error = xfs_read_buf(mp, mp->m_ddev_targp,
2536 dq_f->qlf_blkno,
2537 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2538 0, &bp);
2539 if (error) {
2540 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2541 bp, dq_f->qlf_blkno);
2542 return error;
2543 }
2544 ASSERT(bp);
2545 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2546
2547 /*
2548 * At least the magic num portion should be on disk because this
2549 * was among a chunk of dquots created earlier, and we did some
2550 * minimal initialization then.
2551 */
2552 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2553 "xlog_recover_dquot_pass2");
2554 if (error) {
2555 xfs_buf_relse(bp);
2556 return XFS_ERROR(EIO);
2557 }
2558
2559 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2560
2561 ASSERT(dq_f->qlf_size == 2);
2562 ASSERT(bp->b_target->bt_mount == mp);
2563 bp->b_iodone = xlog_recover_iodone;
2564 xfs_bdwrite(mp, bp);
2565
2566 return (0);
2567}
2568
2569/*
2570 * This routine is called to create an in-core extent free intent
2571 * item from the efi format structure which was logged on disk.
2572 * It allocates an in-core efi, copies the extents from the format
2573 * structure into it, and adds the efi to the AIL with the given
2574 * LSN.
2575 */
2576STATIC int
2577xlog_recover_efi_pass2(
2578 xlog_t *log,
2579 xlog_recover_item_t *item,
2580 xfs_lsn_t lsn)
2581{
2582 int error;
2583 xfs_mount_t *mp = log->l_mp;
2584 xfs_efi_log_item_t *efip;
2585 xfs_efi_log_format_t *efi_formatp;
2586
2587 efi_formatp = item->ri_buf[0].i_addr;
2588
2589 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2590 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2591 &(efip->efi_format)))) {
2592 xfs_efi_item_free(efip);
2593 return error;
2594 }
2595 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2596
2597 spin_lock(&log->l_ailp->xa_lock);
2598 /*
2599 * xfs_trans_ail_update() drops the AIL lock.
2600 */
2601 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2602 return 0;
2603}
2604
2605
2606/*
2607 * This routine is called when an efd format structure is found in
2608 * a committed transaction in the log. It's purpose is to cancel
2609 * the corresponding efi if it was still in the log. To do this
2610 * it searches the AIL for the efi with an id equal to that in the
2611 * efd format structure. If we find it, we remove the efi from the
2612 * AIL and free it.
2613 */
2614STATIC int
2615xlog_recover_efd_pass2(
2616 xlog_t *log,
2617 xlog_recover_item_t *item)
2618{
2619 xfs_efd_log_format_t *efd_formatp;
2620 xfs_efi_log_item_t *efip = NULL;
2621 xfs_log_item_t *lip;
2622 __uint64_t efi_id;
2623 struct xfs_ail_cursor cur;
2624 struct xfs_ail *ailp = log->l_ailp;
2625
2626 efd_formatp = item->ri_buf[0].i_addr;
2627 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2628 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2629 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2630 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2631 efi_id = efd_formatp->efd_efi_id;
2632
2633 /*
2634 * Search for the efi with the id in the efd format structure
2635 * in the AIL.
2636 */
2637 spin_lock(&ailp->xa_lock);
2638 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2639 while (lip != NULL) {
2640 if (lip->li_type == XFS_LI_EFI) {
2641 efip = (xfs_efi_log_item_t *)lip;
2642 if (efip->efi_format.efi_id == efi_id) {
2643 /*
2644 * xfs_trans_ail_delete() drops the
2645 * AIL lock.
2646 */
2647 xfs_trans_ail_delete(ailp, lip);
2648 xfs_efi_item_free(efip);
2649 spin_lock(&ailp->xa_lock);
2650 break;
2651 }
2652 }
2653 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2654 }
2655 xfs_trans_ail_cursor_done(ailp, &cur);
2656 spin_unlock(&ailp->xa_lock);
2657
2658 return 0;
2659}
2660
2661/*
2662 * Free up any resources allocated by the transaction
2663 *
2664 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2665 */
2666STATIC void
2667xlog_recover_free_trans(
2668 struct xlog_recover *trans)
2669{
2670 xlog_recover_item_t *item, *n;
2671 int i;
2672
2673 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2674 /* Free the regions in the item. */
2675 list_del(&item->ri_list);
2676 for (i = 0; i < item->ri_cnt; i++)
2677 kmem_free(item->ri_buf[i].i_addr);
2678 /* Free the item itself */
2679 kmem_free(item->ri_buf);
2680 kmem_free(item);
2681 }
2682 /* Free the transaction recover structure */
2683 kmem_free(trans);
2684}
2685
2686STATIC int
2687xlog_recover_commit_pass1(
2688 struct log *log,
2689 struct xlog_recover *trans,
2690 xlog_recover_item_t *item)
2691{
2692 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2693
2694 switch (ITEM_TYPE(item)) {
2695 case XFS_LI_BUF:
2696 return xlog_recover_buffer_pass1(log, item);
2697 case XFS_LI_QUOTAOFF:
2698 return xlog_recover_quotaoff_pass1(log, item);
2699 case XFS_LI_INODE:
2700 case XFS_LI_EFI:
2701 case XFS_LI_EFD:
2702 case XFS_LI_DQUOT:
2703 /* nothing to do in pass 1 */
2704 return 0;
2705 default:
2706 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2707 __func__, ITEM_TYPE(item));
2708 ASSERT(0);
2709 return XFS_ERROR(EIO);
2710 }
2711}
2712
2713STATIC int
2714xlog_recover_commit_pass2(
2715 struct log *log,
2716 struct xlog_recover *trans,
2717 xlog_recover_item_t *item)
2718{
2719 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2720
2721 switch (ITEM_TYPE(item)) {
2722 case XFS_LI_BUF:
2723 return xlog_recover_buffer_pass2(log, item);
2724 case XFS_LI_INODE:
2725 return xlog_recover_inode_pass2(log, item);
2726 case XFS_LI_EFI:
2727 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2728 case XFS_LI_EFD:
2729 return xlog_recover_efd_pass2(log, item);
2730 case XFS_LI_DQUOT:
2731 return xlog_recover_dquot_pass2(log, item);
2732 case XFS_LI_QUOTAOFF:
2733 /* nothing to do in pass2 */
2734 return 0;
2735 default:
2736 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2737 __func__, ITEM_TYPE(item));
2738 ASSERT(0);
2739 return XFS_ERROR(EIO);
2740 }
2741}
2742
2743/*
2744 * Perform the transaction.
2745 *
2746 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2747 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2748 */
2749STATIC int
2750xlog_recover_commit_trans(
2751 struct log *log,
2752 struct xlog_recover *trans,
2753 int pass)
2754{
2755 int error = 0;
2756 xlog_recover_item_t *item;
2757
2758 hlist_del(&trans->r_list);
2759
2760 error = xlog_recover_reorder_trans(log, trans, pass);
2761 if (error)
2762 return error;
2763
2764 list_for_each_entry(item, &trans->r_itemq, ri_list) {
2765 if (pass == XLOG_RECOVER_PASS1)
2766 error = xlog_recover_commit_pass1(log, trans, item);
2767 else
2768 error = xlog_recover_commit_pass2(log, trans, item);
2769 if (error)
2770 return error;
2771 }
2772
2773 xlog_recover_free_trans(trans);
2774 return 0;
2775}
2776
2777STATIC int
2778xlog_recover_unmount_trans(
2779 struct log *log,
2780 xlog_recover_t *trans)
2781{
2782 /* Do nothing now */
2783 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2784 return 0;
2785}
2786
2787/*
2788 * There are two valid states of the r_state field. 0 indicates that the
2789 * transaction structure is in a normal state. We have either seen the
2790 * start of the transaction or the last operation we added was not a partial
2791 * operation. If the last operation we added to the transaction was a
2792 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2793 *
2794 * NOTE: skip LRs with 0 data length.
2795 */
2796STATIC int
2797xlog_recover_process_data(
2798 xlog_t *log,
2799 struct hlist_head rhash[],
2800 xlog_rec_header_t *rhead,
2801 xfs_caddr_t dp,
2802 int pass)
2803{
2804 xfs_caddr_t lp;
2805 int num_logops;
2806 xlog_op_header_t *ohead;
2807 xlog_recover_t *trans;
2808 xlog_tid_t tid;
2809 int error;
2810 unsigned long hash;
2811 uint flags;
2812
2813 lp = dp + be32_to_cpu(rhead->h_len);
2814 num_logops = be32_to_cpu(rhead->h_num_logops);
2815
2816 /* check the log format matches our own - else we can't recover */
2817 if (xlog_header_check_recover(log->l_mp, rhead))
2818 return (XFS_ERROR(EIO));
2819
2820 while ((dp < lp) && num_logops) {
2821 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2822 ohead = (xlog_op_header_t *)dp;
2823 dp += sizeof(xlog_op_header_t);
2824 if (ohead->oh_clientid != XFS_TRANSACTION &&
2825 ohead->oh_clientid != XFS_LOG) {
2826 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2827 __func__, ohead->oh_clientid);
2828 ASSERT(0);
2829 return (XFS_ERROR(EIO));
2830 }
2831 tid = be32_to_cpu(ohead->oh_tid);
2832 hash = XLOG_RHASH(tid);
2833 trans = xlog_recover_find_tid(&rhash[hash], tid);
2834 if (trans == NULL) { /* not found; add new tid */
2835 if (ohead->oh_flags & XLOG_START_TRANS)
2836 xlog_recover_new_tid(&rhash[hash], tid,
2837 be64_to_cpu(rhead->h_lsn));
2838 } else {
2839 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2840 xfs_warn(log->l_mp, "%s: bad length 0x%x",
2841 __func__, be32_to_cpu(ohead->oh_len));
2842 WARN_ON(1);
2843 return (XFS_ERROR(EIO));
2844 }
2845 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2846 if (flags & XLOG_WAS_CONT_TRANS)
2847 flags &= ~XLOG_CONTINUE_TRANS;
2848 switch (flags) {
2849 case XLOG_COMMIT_TRANS:
2850 error = xlog_recover_commit_trans(log,
2851 trans, pass);
2852 break;
2853 case XLOG_UNMOUNT_TRANS:
2854 error = xlog_recover_unmount_trans(log, trans);
2855 break;
2856 case XLOG_WAS_CONT_TRANS:
2857 error = xlog_recover_add_to_cont_trans(log,
2858 trans, dp,
2859 be32_to_cpu(ohead->oh_len));
2860 break;
2861 case XLOG_START_TRANS:
2862 xfs_warn(log->l_mp, "%s: bad transaction",
2863 __func__);
2864 ASSERT(0);
2865 error = XFS_ERROR(EIO);
2866 break;
2867 case 0:
2868 case XLOG_CONTINUE_TRANS:
2869 error = xlog_recover_add_to_trans(log, trans,
2870 dp, be32_to_cpu(ohead->oh_len));
2871 break;
2872 default:
2873 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2874 __func__, flags);
2875 ASSERT(0);
2876 error = XFS_ERROR(EIO);
2877 break;
2878 }
2879 if (error)
2880 return error;
2881 }
2882 dp += be32_to_cpu(ohead->oh_len);
2883 num_logops--;
2884 }
2885 return 0;
2886}
2887
2888/*
2889 * Process an extent free intent item that was recovered from
2890 * the log. We need to free the extents that it describes.
2891 */
2892STATIC int
2893xlog_recover_process_efi(
2894 xfs_mount_t *mp,
2895 xfs_efi_log_item_t *efip)
2896{
2897 xfs_efd_log_item_t *efdp;
2898 xfs_trans_t *tp;
2899 int i;
2900 int error = 0;
2901 xfs_extent_t *extp;
2902 xfs_fsblock_t startblock_fsb;
2903
2904 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2905
2906 /*
2907 * First check the validity of the extents described by the
2908 * EFI. If any are bad, then assume that all are bad and
2909 * just toss the EFI.
2910 */
2911 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2912 extp = &(efip->efi_format.efi_extents[i]);
2913 startblock_fsb = XFS_BB_TO_FSB(mp,
2914 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2915 if ((startblock_fsb == 0) ||
2916 (extp->ext_len == 0) ||
2917 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2918 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2919 /*
2920 * This will pull the EFI from the AIL and
2921 * free the memory associated with it.
2922 */
2923 xfs_efi_release(efip, efip->efi_format.efi_nextents);
2924 return XFS_ERROR(EIO);
2925 }
2926 }
2927
2928 tp = xfs_trans_alloc(mp, 0);
2929 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2930 if (error)
2931 goto abort_error;
2932 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2933
2934 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2935 extp = &(efip->efi_format.efi_extents[i]);
2936 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2937 if (error)
2938 goto abort_error;
2939 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2940 extp->ext_len);
2941 }
2942
2943 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2944 error = xfs_trans_commit(tp, 0);
2945 return error;
2946
2947abort_error:
2948 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2949 return error;
2950}
2951
2952/*
2953 * When this is called, all of the EFIs which did not have
2954 * corresponding EFDs should be in the AIL. What we do now
2955 * is free the extents associated with each one.
2956 *
2957 * Since we process the EFIs in normal transactions, they
2958 * will be removed at some point after the commit. This prevents
2959 * us from just walking down the list processing each one.
2960 * We'll use a flag in the EFI to skip those that we've already
2961 * processed and use the AIL iteration mechanism's generation
2962 * count to try to speed this up at least a bit.
2963 *
2964 * When we start, we know that the EFIs are the only things in
2965 * the AIL. As we process them, however, other items are added
2966 * to the AIL. Since everything added to the AIL must come after
2967 * everything already in the AIL, we stop processing as soon as
2968 * we see something other than an EFI in the AIL.
2969 */
2970STATIC int
2971xlog_recover_process_efis(
2972 xlog_t *log)
2973{
2974 xfs_log_item_t *lip;
2975 xfs_efi_log_item_t *efip;
2976 int error = 0;
2977 struct xfs_ail_cursor cur;
2978 struct xfs_ail *ailp;
2979
2980 ailp = log->l_ailp;
2981 spin_lock(&ailp->xa_lock);
2982 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2983 while (lip != NULL) {
2984 /*
2985 * We're done when we see something other than an EFI.
2986 * There should be no EFIs left in the AIL now.
2987 */
2988 if (lip->li_type != XFS_LI_EFI) {
2989#ifdef DEBUG
2990 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2991 ASSERT(lip->li_type != XFS_LI_EFI);
2992#endif
2993 break;
2994 }
2995
2996 /*
2997 * Skip EFIs that we've already processed.
2998 */
2999 efip = (xfs_efi_log_item_t *)lip;
3000 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3001 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3002 continue;
3003 }
3004
3005 spin_unlock(&ailp->xa_lock);
3006 error = xlog_recover_process_efi(log->l_mp, efip);
3007 spin_lock(&ailp->xa_lock);
3008 if (error)
3009 goto out;
3010 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3011 }
3012out:
3013 xfs_trans_ail_cursor_done(ailp, &cur);
3014 spin_unlock(&ailp->xa_lock);
3015 return error;
3016}
3017
3018/*
3019 * This routine performs a transaction to null out a bad inode pointer
3020 * in an agi unlinked inode hash bucket.
3021 */
3022STATIC void
3023xlog_recover_clear_agi_bucket(
3024 xfs_mount_t *mp,
3025 xfs_agnumber_t agno,
3026 int bucket)
3027{
3028 xfs_trans_t *tp;
3029 xfs_agi_t *agi;
3030 xfs_buf_t *agibp;
3031 int offset;
3032 int error;
3033
3034 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3035 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3036 0, 0, 0);
3037 if (error)
3038 goto out_abort;
3039
3040 error = xfs_read_agi(mp, tp, agno, &agibp);
3041 if (error)
3042 goto out_abort;
3043
3044 agi = XFS_BUF_TO_AGI(agibp);
3045 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3046 offset = offsetof(xfs_agi_t, agi_unlinked) +
3047 (sizeof(xfs_agino_t) * bucket);
3048 xfs_trans_log_buf(tp, agibp, offset,
3049 (offset + sizeof(xfs_agino_t) - 1));
3050
3051 error = xfs_trans_commit(tp, 0);
3052 if (error)
3053 goto out_error;
3054 return;
3055
3056out_abort:
3057 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3058out_error:
3059 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3060 return;
3061}
3062
3063STATIC xfs_agino_t
3064xlog_recover_process_one_iunlink(
3065 struct xfs_mount *mp,
3066 xfs_agnumber_t agno,
3067 xfs_agino_t agino,
3068 int bucket)
3069{
3070 struct xfs_buf *ibp;
3071 struct xfs_dinode *dip;
3072 struct xfs_inode *ip;
3073 xfs_ino_t ino;
3074 int error;
3075
3076 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3077 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3078 if (error)
3079 goto fail;
3080
3081 /*
3082 * Get the on disk inode to find the next inode in the bucket.
3083 */
3084 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3085 if (error)
3086 goto fail_iput;
3087
3088 ASSERT(ip->i_d.di_nlink == 0);
3089 ASSERT(ip->i_d.di_mode != 0);
3090
3091 /* setup for the next pass */
3092 agino = be32_to_cpu(dip->di_next_unlinked);
3093 xfs_buf_relse(ibp);
3094
3095 /*
3096 * Prevent any DMAPI event from being sent when the reference on
3097 * the inode is dropped.
3098 */
3099 ip->i_d.di_dmevmask = 0;
3100
3101 IRELE(ip);
3102 return agino;
3103
3104 fail_iput:
3105 IRELE(ip);
3106 fail:
3107 /*
3108 * We can't read in the inode this bucket points to, or this inode
3109 * is messed up. Just ditch this bucket of inodes. We will lose
3110 * some inodes and space, but at least we won't hang.
3111 *
3112 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3113 * clear the inode pointer in the bucket.
3114 */
3115 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3116 return NULLAGINO;
3117}
3118
3119/*
3120 * xlog_iunlink_recover
3121 *
3122 * This is called during recovery to process any inodes which
3123 * we unlinked but not freed when the system crashed. These
3124 * inodes will be on the lists in the AGI blocks. What we do
3125 * here is scan all the AGIs and fully truncate and free any
3126 * inodes found on the lists. Each inode is removed from the
3127 * lists when it has been fully truncated and is freed. The
3128 * freeing of the inode and its removal from the list must be
3129 * atomic.
3130 */
3131STATIC void
3132xlog_recover_process_iunlinks(
3133 xlog_t *log)
3134{
3135 xfs_mount_t *mp;
3136 xfs_agnumber_t agno;
3137 xfs_agi_t *agi;
3138 xfs_buf_t *agibp;
3139 xfs_agino_t agino;
3140 int bucket;
3141 int error;
3142 uint mp_dmevmask;
3143
3144 mp = log->l_mp;
3145
3146 /*
3147 * Prevent any DMAPI event from being sent while in this function.
3148 */
3149 mp_dmevmask = mp->m_dmevmask;
3150 mp->m_dmevmask = 0;
3151
3152 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3153 /*
3154 * Find the agi for this ag.
3155 */
3156 error = xfs_read_agi(mp, NULL, agno, &agibp);
3157 if (error) {
3158 /*
3159 * AGI is b0rked. Don't process it.
3160 *
3161 * We should probably mark the filesystem as corrupt
3162 * after we've recovered all the ag's we can....
3163 */
3164 continue;
3165 }
3166 agi = XFS_BUF_TO_AGI(agibp);
3167
3168 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3169 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3170 while (agino != NULLAGINO) {
3171 /*
3172 * Release the agi buffer so that it can
3173 * be acquired in the normal course of the
3174 * transaction to truncate and free the inode.
3175 */
3176 xfs_buf_relse(agibp);
3177
3178 agino = xlog_recover_process_one_iunlink(mp,
3179 agno, agino, bucket);
3180
3181 /*
3182 * Reacquire the agibuffer and continue around
3183 * the loop. This should never fail as we know
3184 * the buffer was good earlier on.
3185 */
3186 error = xfs_read_agi(mp, NULL, agno, &agibp);
3187 ASSERT(error == 0);
3188 agi = XFS_BUF_TO_AGI(agibp);
3189 }
3190 }
3191
3192 /*
3193 * Release the buffer for the current agi so we can
3194 * go on to the next one.
3195 */
3196 xfs_buf_relse(agibp);
3197 }
3198
3199 mp->m_dmevmask = mp_dmevmask;
3200}
3201
3202
3203#ifdef DEBUG
3204STATIC void
3205xlog_pack_data_checksum(
3206 xlog_t *log,
3207 xlog_in_core_t *iclog,
3208 int size)
3209{
3210 int i;
3211 __be32 *up;
3212 uint chksum = 0;
3213
3214 up = (__be32 *)iclog->ic_datap;
3215 /* divide length by 4 to get # words */
3216 for (i = 0; i < (size >> 2); i++) {
3217 chksum ^= be32_to_cpu(*up);
3218 up++;
3219 }
3220 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3221}
3222#else
3223#define xlog_pack_data_checksum(log, iclog, size)
3224#endif
3225
3226/*
3227 * Stamp cycle number in every block
3228 */
3229void
3230xlog_pack_data(
3231 xlog_t *log,
3232 xlog_in_core_t *iclog,
3233 int roundoff)
3234{
3235 int i, j, k;
3236 int size = iclog->ic_offset + roundoff;
3237 __be32 cycle_lsn;
3238 xfs_caddr_t dp;
3239
3240 xlog_pack_data_checksum(log, iclog, size);
3241
3242 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3243
3244 dp = iclog->ic_datap;
3245 for (i = 0; i < BTOBB(size) &&
3246 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3247 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3248 *(__be32 *)dp = cycle_lsn;
3249 dp += BBSIZE;
3250 }
3251
3252 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3253 xlog_in_core_2_t *xhdr = iclog->ic_data;
3254
3255 for ( ; i < BTOBB(size); i++) {
3256 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3257 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3258 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3259 *(__be32 *)dp = cycle_lsn;
3260 dp += BBSIZE;
3261 }
3262
3263 for (i = 1; i < log->l_iclog_heads; i++) {
3264 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3265 }
3266 }
3267}
3268
3269STATIC void
3270xlog_unpack_data(
3271 xlog_rec_header_t *rhead,
3272 xfs_caddr_t dp,
3273 xlog_t *log)
3274{
3275 int i, j, k;
3276
3277 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3278 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3279 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3280 dp += BBSIZE;
3281 }
3282
3283 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3284 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3285 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3286 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3287 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3288 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3289 dp += BBSIZE;
3290 }
3291 }
3292}
3293
3294STATIC int
3295xlog_valid_rec_header(
3296 xlog_t *log,
3297 xlog_rec_header_t *rhead,
3298 xfs_daddr_t blkno)
3299{
3300 int hlen;
3301
3302 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3303 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3304 XFS_ERRLEVEL_LOW, log->l_mp);
3305 return XFS_ERROR(EFSCORRUPTED);
3306 }
3307 if (unlikely(
3308 (!rhead->h_version ||
3309 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3310 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3311 __func__, be32_to_cpu(rhead->h_version));
3312 return XFS_ERROR(EIO);
3313 }
3314
3315 /* LR body must have data or it wouldn't have been written */
3316 hlen = be32_to_cpu(rhead->h_len);
3317 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3318 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3319 XFS_ERRLEVEL_LOW, log->l_mp);
3320 return XFS_ERROR(EFSCORRUPTED);
3321 }
3322 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3323 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3324 XFS_ERRLEVEL_LOW, log->l_mp);
3325 return XFS_ERROR(EFSCORRUPTED);
3326 }
3327 return 0;
3328}
3329
3330/*
3331 * Read the log from tail to head and process the log records found.
3332 * Handle the two cases where the tail and head are in the same cycle
3333 * and where the active portion of the log wraps around the end of
3334 * the physical log separately. The pass parameter is passed through
3335 * to the routines called to process the data and is not looked at
3336 * here.
3337 */
3338STATIC int
3339xlog_do_recovery_pass(
3340 xlog_t *log,
3341 xfs_daddr_t head_blk,
3342 xfs_daddr_t tail_blk,
3343 int pass)
3344{
3345 xlog_rec_header_t *rhead;
3346 xfs_daddr_t blk_no;
3347 xfs_caddr_t offset;
3348 xfs_buf_t *hbp, *dbp;
3349 int error = 0, h_size;
3350 int bblks, split_bblks;
3351 int hblks, split_hblks, wrapped_hblks;
3352 struct hlist_head rhash[XLOG_RHASH_SIZE];
3353
3354 ASSERT(head_blk != tail_blk);
3355
3356 /*
3357 * Read the header of the tail block and get the iclog buffer size from
3358 * h_size. Use this to tell how many sectors make up the log header.
3359 */
3360 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3361 /*
3362 * When using variable length iclogs, read first sector of
3363 * iclog header and extract the header size from it. Get a
3364 * new hbp that is the correct size.
3365 */
3366 hbp = xlog_get_bp(log, 1);
3367 if (!hbp)
3368 return ENOMEM;
3369
3370 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3371 if (error)
3372 goto bread_err1;
3373
3374 rhead = (xlog_rec_header_t *)offset;
3375 error = xlog_valid_rec_header(log, rhead, tail_blk);
3376 if (error)
3377 goto bread_err1;
3378 h_size = be32_to_cpu(rhead->h_size);
3379 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3380 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3381 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3382 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3383 hblks++;
3384 xlog_put_bp(hbp);
3385 hbp = xlog_get_bp(log, hblks);
3386 } else {
3387 hblks = 1;
3388 }
3389 } else {
3390 ASSERT(log->l_sectBBsize == 1);
3391 hblks = 1;
3392 hbp = xlog_get_bp(log, 1);
3393 h_size = XLOG_BIG_RECORD_BSIZE;
3394 }
3395
3396 if (!hbp)
3397 return ENOMEM;
3398 dbp = xlog_get_bp(log, BTOBB(h_size));
3399 if (!dbp) {
3400 xlog_put_bp(hbp);
3401 return ENOMEM;
3402 }
3403
3404 memset(rhash, 0, sizeof(rhash));
3405 if (tail_blk <= head_blk) {
3406 for (blk_no = tail_blk; blk_no < head_blk; ) {
3407 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3408 if (error)
3409 goto bread_err2;
3410
3411 rhead = (xlog_rec_header_t *)offset;
3412 error = xlog_valid_rec_header(log, rhead, blk_no);
3413 if (error)
3414 goto bread_err2;
3415
3416 /* blocks in data section */
3417 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3418 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3419 &offset);
3420 if (error)
3421 goto bread_err2;
3422
3423 xlog_unpack_data(rhead, offset, log);
3424 if ((error = xlog_recover_process_data(log,
3425 rhash, rhead, offset, pass)))
3426 goto bread_err2;
3427 blk_no += bblks + hblks;
3428 }
3429 } else {
3430 /*
3431 * Perform recovery around the end of the physical log.
3432 * When the head is not on the same cycle number as the tail,
3433 * we can't do a sequential recovery as above.
3434 */
3435 blk_no = tail_blk;
3436 while (blk_no < log->l_logBBsize) {
3437 /*
3438 * Check for header wrapping around physical end-of-log
3439 */
3440 offset = hbp->b_addr;
3441 split_hblks = 0;
3442 wrapped_hblks = 0;
3443 if (blk_no + hblks <= log->l_logBBsize) {
3444 /* Read header in one read */
3445 error = xlog_bread(log, blk_no, hblks, hbp,
3446 &offset);
3447 if (error)
3448 goto bread_err2;
3449 } else {
3450 /* This LR is split across physical log end */
3451 if (blk_no != log->l_logBBsize) {
3452 /* some data before physical log end */
3453 ASSERT(blk_no <= INT_MAX);
3454 split_hblks = log->l_logBBsize - (int)blk_no;
3455 ASSERT(split_hblks > 0);
3456 error = xlog_bread(log, blk_no,
3457 split_hblks, hbp,
3458 &offset);
3459 if (error)
3460 goto bread_err2;
3461 }
3462
3463 /*
3464 * Note: this black magic still works with
3465 * large sector sizes (non-512) only because:
3466 * - we increased the buffer size originally
3467 * by 1 sector giving us enough extra space
3468 * for the second read;
3469 * - the log start is guaranteed to be sector
3470 * aligned;
3471 * - we read the log end (LR header start)
3472 * _first_, then the log start (LR header end)
3473 * - order is important.
3474 */
3475 wrapped_hblks = hblks - split_hblks;
3476 error = xlog_bread_offset(log, 0,
3477 wrapped_hblks, hbp,
3478 offset + BBTOB(split_hblks));
3479 if (error)
3480 goto bread_err2;
3481 }
3482 rhead = (xlog_rec_header_t *)offset;
3483 error = xlog_valid_rec_header(log, rhead,
3484 split_hblks ? blk_no : 0);
3485 if (error)
3486 goto bread_err2;
3487
3488 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3489 blk_no += hblks;
3490
3491 /* Read in data for log record */
3492 if (blk_no + bblks <= log->l_logBBsize) {
3493 error = xlog_bread(log, blk_no, bblks, dbp,
3494 &offset);
3495 if (error)
3496 goto bread_err2;
3497 } else {
3498 /* This log record is split across the
3499 * physical end of log */
3500 offset = dbp->b_addr;
3501 split_bblks = 0;
3502 if (blk_no != log->l_logBBsize) {
3503 /* some data is before the physical
3504 * end of log */
3505 ASSERT(!wrapped_hblks);
3506 ASSERT(blk_no <= INT_MAX);
3507 split_bblks =
3508 log->l_logBBsize - (int)blk_no;
3509 ASSERT(split_bblks > 0);
3510 error = xlog_bread(log, blk_no,
3511 split_bblks, dbp,
3512 &offset);
3513 if (error)
3514 goto bread_err2;
3515 }
3516
3517 /*
3518 * Note: this black magic still works with
3519 * large sector sizes (non-512) only because:
3520 * - we increased the buffer size originally
3521 * by 1 sector giving us enough extra space
3522 * for the second read;
3523 * - the log start is guaranteed to be sector
3524 * aligned;
3525 * - we read the log end (LR header start)
3526 * _first_, then the log start (LR header end)
3527 * - order is important.
3528 */
3529 error = xlog_bread_offset(log, 0,
3530 bblks - split_bblks, hbp,
3531 offset + BBTOB(split_bblks));
3532 if (error)
3533 goto bread_err2;
3534 }
3535 xlog_unpack_data(rhead, offset, log);
3536 if ((error = xlog_recover_process_data(log, rhash,
3537 rhead, offset, pass)))
3538 goto bread_err2;
3539 blk_no += bblks;
3540 }
3541
3542 ASSERT(blk_no >= log->l_logBBsize);
3543 blk_no -= log->l_logBBsize;
3544
3545 /* read first part of physical log */
3546 while (blk_no < head_blk) {
3547 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3548 if (error)
3549 goto bread_err2;
3550
3551 rhead = (xlog_rec_header_t *)offset;
3552 error = xlog_valid_rec_header(log, rhead, blk_no);
3553 if (error)
3554 goto bread_err2;
3555
3556 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3557 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3558 &offset);
3559 if (error)
3560 goto bread_err2;
3561
3562 xlog_unpack_data(rhead, offset, log);
3563 if ((error = xlog_recover_process_data(log, rhash,
3564 rhead, offset, pass)))
3565 goto bread_err2;
3566 blk_no += bblks + hblks;
3567 }
3568 }
3569
3570 bread_err2:
3571 xlog_put_bp(dbp);
3572 bread_err1:
3573 xlog_put_bp(hbp);
3574 return error;
3575}
3576
3577/*
3578 * Do the recovery of the log. We actually do this in two phases.
3579 * The two passes are necessary in order to implement the function
3580 * of cancelling a record written into the log. The first pass
3581 * determines those things which have been cancelled, and the
3582 * second pass replays log items normally except for those which
3583 * have been cancelled. The handling of the replay and cancellations
3584 * takes place in the log item type specific routines.
3585 *
3586 * The table of items which have cancel records in the log is allocated
3587 * and freed at this level, since only here do we know when all of
3588 * the log recovery has been completed.
3589 */
3590STATIC int
3591xlog_do_log_recovery(
3592 xlog_t *log,
3593 xfs_daddr_t head_blk,
3594 xfs_daddr_t tail_blk)
3595{
3596 int error, i;
3597
3598 ASSERT(head_blk != tail_blk);
3599
3600 /*
3601 * First do a pass to find all of the cancelled buf log items.
3602 * Store them in the buf_cancel_table for use in the second pass.
3603 */
3604 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3605 sizeof(struct list_head),
3606 KM_SLEEP);
3607 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3608 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3609
3610 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3611 XLOG_RECOVER_PASS1);
3612 if (error != 0) {
3613 kmem_free(log->l_buf_cancel_table);
3614 log->l_buf_cancel_table = NULL;
3615 return error;
3616 }
3617 /*
3618 * Then do a second pass to actually recover the items in the log.
3619 * When it is complete free the table of buf cancel items.
3620 */
3621 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3622 XLOG_RECOVER_PASS2);
3623#ifdef DEBUG
3624 if (!error) {
3625 int i;
3626
3627 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3628 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3629 }
3630#endif /* DEBUG */
3631
3632 kmem_free(log->l_buf_cancel_table);
3633 log->l_buf_cancel_table = NULL;
3634
3635 return error;
3636}
3637
3638/*
3639 * Do the actual recovery
3640 */
3641STATIC int
3642xlog_do_recover(
3643 xlog_t *log,
3644 xfs_daddr_t head_blk,
3645 xfs_daddr_t tail_blk)
3646{
3647 int error;
3648 xfs_buf_t *bp;
3649 xfs_sb_t *sbp;
3650
3651 /*
3652 * First replay the images in the log.
3653 */
3654 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3655 if (error) {
3656 return error;
3657 }
3658
3659 XFS_bflush(log->l_mp->m_ddev_targp);
3660
3661 /*
3662 * If IO errors happened during recovery, bail out.
3663 */
3664 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3665 return (EIO);
3666 }
3667
3668 /*
3669 * We now update the tail_lsn since much of the recovery has completed
3670 * and there may be space available to use. If there were no extent
3671 * or iunlinks, we can free up the entire log and set the tail_lsn to
3672 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3673 * lsn of the last known good LR on disk. If there are extent frees
3674 * or iunlinks they will have some entries in the AIL; so we look at
3675 * the AIL to determine how to set the tail_lsn.
3676 */
3677 xlog_assign_tail_lsn(log->l_mp);
3678
3679 /*
3680 * Now that we've finished replaying all buffer and inode
3681 * updates, re-read in the superblock.
3682 */
3683 bp = xfs_getsb(log->l_mp, 0);
3684 XFS_BUF_UNDONE(bp);
3685 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3686 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3687 XFS_BUF_READ(bp);
3688 XFS_BUF_UNASYNC(bp);
3689 xfsbdstrat(log->l_mp, bp);
3690 error = xfs_buf_iowait(bp);
3691 if (error) {
3692 xfs_ioerror_alert("xlog_do_recover",
3693 log->l_mp, bp, XFS_BUF_ADDR(bp));
3694 ASSERT(0);
3695 xfs_buf_relse(bp);
3696 return error;
3697 }
3698
3699 /* Convert superblock from on-disk format */
3700 sbp = &log->l_mp->m_sb;
3701 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3702 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3703 ASSERT(xfs_sb_good_version(sbp));
3704 xfs_buf_relse(bp);
3705
3706 /* We've re-read the superblock so re-initialize per-cpu counters */
3707 xfs_icsb_reinit_counters(log->l_mp);
3708
3709 xlog_recover_check_summary(log);
3710
3711 /* Normal transactions can now occur */
3712 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3713 return 0;
3714}
3715
3716/*
3717 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3718 *
3719 * Return error or zero.
3720 */
3721int
3722xlog_recover(
3723 xlog_t *log)
3724{
3725 xfs_daddr_t head_blk, tail_blk;
3726 int error;
3727
3728 /* find the tail of the log */
3729 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3730 return error;
3731
3732 if (tail_blk != head_blk) {
3733 /* There used to be a comment here:
3734 *
3735 * disallow recovery on read-only mounts. note -- mount
3736 * checks for ENOSPC and turns it into an intelligent
3737 * error message.
3738 * ...but this is no longer true. Now, unless you specify
3739 * NORECOVERY (in which case this function would never be
3740 * called), we just go ahead and recover. We do this all
3741 * under the vfs layer, so we can get away with it unless
3742 * the device itself is read-only, in which case we fail.
3743 */
3744 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3745 return error;
3746 }
3747
3748 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3749 log->l_mp->m_logname ? log->l_mp->m_logname
3750 : "internal");
3751
3752 error = xlog_do_recover(log, head_blk, tail_blk);
3753 log->l_flags |= XLOG_RECOVERY_NEEDED;
3754 }
3755 return error;
3756}
3757
3758/*
3759 * In the first part of recovery we replay inodes and buffers and build
3760 * up the list of extent free items which need to be processed. Here
3761 * we process the extent free items and clean up the on disk unlinked
3762 * inode lists. This is separated from the first part of recovery so
3763 * that the root and real-time bitmap inodes can be read in from disk in
3764 * between the two stages. This is necessary so that we can free space
3765 * in the real-time portion of the file system.
3766 */
3767int
3768xlog_recover_finish(
3769 xlog_t *log)
3770{
3771 /*
3772 * Now we're ready to do the transactions needed for the
3773 * rest of recovery. Start with completing all the extent
3774 * free intent records and then process the unlinked inode
3775 * lists. At this point, we essentially run in normal mode
3776 * except that we're still performing recovery actions
3777 * rather than accepting new requests.
3778 */
3779 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3780 int error;
3781 error = xlog_recover_process_efis(log);
3782 if (error) {
3783 xfs_alert(log->l_mp, "Failed to recover EFIs");
3784 return error;
3785 }
3786 /*
3787 * Sync the log to get all the EFIs out of the AIL.
3788 * This isn't absolutely necessary, but it helps in
3789 * case the unlink transactions would have problems
3790 * pushing the EFIs out of the way.
3791 */
3792 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3793
3794 xlog_recover_process_iunlinks(log);
3795
3796 xlog_recover_check_summary(log);
3797
3798 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3799 log->l_mp->m_logname ? log->l_mp->m_logname
3800 : "internal");
3801 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3802 } else {
3803 xfs_info(log->l_mp, "Ending clean mount");
3804 }
3805 return 0;
3806}
3807
3808
3809#if defined(DEBUG)
3810/*
3811 * Read all of the agf and agi counters and check that they
3812 * are consistent with the superblock counters.
3813 */
3814void
3815xlog_recover_check_summary(
3816 xlog_t *log)
3817{
3818 xfs_mount_t *mp;
3819 xfs_agf_t *agfp;
3820 xfs_buf_t *agfbp;
3821 xfs_buf_t *agibp;
3822 xfs_agnumber_t agno;
3823 __uint64_t freeblks;
3824 __uint64_t itotal;
3825 __uint64_t ifree;
3826 int error;
3827
3828 mp = log->l_mp;
3829
3830 freeblks = 0LL;
3831 itotal = 0LL;
3832 ifree = 0LL;
3833 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3834 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3835 if (error) {
3836 xfs_alert(mp, "%s agf read failed agno %d error %d",
3837 __func__, agno, error);
3838 } else {
3839 agfp = XFS_BUF_TO_AGF(agfbp);
3840 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3841 be32_to_cpu(agfp->agf_flcount);
3842 xfs_buf_relse(agfbp);
3843 }
3844
3845 error = xfs_read_agi(mp, NULL, agno, &agibp);
3846 if (error) {
3847 xfs_alert(mp, "%s agi read failed agno %d error %d",
3848 __func__, agno, error);
3849 } else {
3850 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3851
3852 itotal += be32_to_cpu(agi->agi_count);
3853 ifree += be32_to_cpu(agi->agi_freecount);
3854 xfs_buf_relse(agibp);
3855 }
3856 }
3857}
3858#endif /* DEBUG */
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_inum.h"
26#include "xfs_sb.h"
27#include "xfs_ag.h"
28#include "xfs_mount.h"
29#include "xfs_da_format.h"
30#include "xfs_inode.h"
31#include "xfs_trans.h"
32#include "xfs_log.h"
33#include "xfs_log_priv.h"
34#include "xfs_log_recover.h"
35#include "xfs_inode_item.h"
36#include "xfs_extfree_item.h"
37#include "xfs_trans_priv.h"
38#include "xfs_alloc.h"
39#include "xfs_ialloc.h"
40#include "xfs_quota.h"
41#include "xfs_cksum.h"
42#include "xfs_trace.h"
43#include "xfs_icache.h"
44#include "xfs_bmap_btree.h"
45#include "xfs_dinode.h"
46#include "xfs_error.h"
47#include "xfs_dir2.h"
48
49#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
50
51STATIC int
52xlog_find_zeroed(
53 struct xlog *,
54 xfs_daddr_t *);
55STATIC int
56xlog_clear_stale_blocks(
57 struct xlog *,
58 xfs_lsn_t);
59#if defined(DEBUG)
60STATIC void
61xlog_recover_check_summary(
62 struct xlog *);
63#else
64#define xlog_recover_check_summary(log)
65#endif
66
67/*
68 * This structure is used during recovery to record the buf log items which
69 * have been canceled and should not be replayed.
70 */
71struct xfs_buf_cancel {
72 xfs_daddr_t bc_blkno;
73 uint bc_len;
74 int bc_refcount;
75 struct list_head bc_list;
76};
77
78/*
79 * Sector aligned buffer routines for buffer create/read/write/access
80 */
81
82/*
83 * Verify the given count of basic blocks is valid number of blocks
84 * to specify for an operation involving the given XFS log buffer.
85 * Returns nonzero if the count is valid, 0 otherwise.
86 */
87
88static inline int
89xlog_buf_bbcount_valid(
90 struct xlog *log,
91 int bbcount)
92{
93 return bbcount > 0 && bbcount <= log->l_logBBsize;
94}
95
96/*
97 * Allocate a buffer to hold log data. The buffer needs to be able
98 * to map to a range of nbblks basic blocks at any valid (basic
99 * block) offset within the log.
100 */
101STATIC xfs_buf_t *
102xlog_get_bp(
103 struct xlog *log,
104 int nbblks)
105{
106 struct xfs_buf *bp;
107
108 if (!xlog_buf_bbcount_valid(log, nbblks)) {
109 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
110 nbblks);
111 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
112 return NULL;
113 }
114
115 /*
116 * We do log I/O in units of log sectors (a power-of-2
117 * multiple of the basic block size), so we round up the
118 * requested size to accommodate the basic blocks required
119 * for complete log sectors.
120 *
121 * In addition, the buffer may be used for a non-sector-
122 * aligned block offset, in which case an I/O of the
123 * requested size could extend beyond the end of the
124 * buffer. If the requested size is only 1 basic block it
125 * will never straddle a sector boundary, so this won't be
126 * an issue. Nor will this be a problem if the log I/O is
127 * done in basic blocks (sector size 1). But otherwise we
128 * extend the buffer by one extra log sector to ensure
129 * there's space to accommodate this possibility.
130 */
131 if (nbblks > 1 && log->l_sectBBsize > 1)
132 nbblks += log->l_sectBBsize;
133 nbblks = round_up(nbblks, log->l_sectBBsize);
134
135 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
136 if (bp)
137 xfs_buf_unlock(bp);
138 return bp;
139}
140
141STATIC void
142xlog_put_bp(
143 xfs_buf_t *bp)
144{
145 xfs_buf_free(bp);
146}
147
148/*
149 * Return the address of the start of the given block number's data
150 * in a log buffer. The buffer covers a log sector-aligned region.
151 */
152STATIC xfs_caddr_t
153xlog_align(
154 struct xlog *log,
155 xfs_daddr_t blk_no,
156 int nbblks,
157 struct xfs_buf *bp)
158{
159 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
160
161 ASSERT(offset + nbblks <= bp->b_length);
162 return bp->b_addr + BBTOB(offset);
163}
164
165
166/*
167 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
168 */
169STATIC int
170xlog_bread_noalign(
171 struct xlog *log,
172 xfs_daddr_t blk_no,
173 int nbblks,
174 struct xfs_buf *bp)
175{
176 int error;
177
178 if (!xlog_buf_bbcount_valid(log, nbblks)) {
179 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
180 nbblks);
181 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
182 return EFSCORRUPTED;
183 }
184
185 blk_no = round_down(blk_no, log->l_sectBBsize);
186 nbblks = round_up(nbblks, log->l_sectBBsize);
187
188 ASSERT(nbblks > 0);
189 ASSERT(nbblks <= bp->b_length);
190
191 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
192 XFS_BUF_READ(bp);
193 bp->b_io_length = nbblks;
194 bp->b_error = 0;
195
196 if (XFS_FORCED_SHUTDOWN(log->l_mp))
197 return XFS_ERROR(EIO);
198
199 xfs_buf_iorequest(bp);
200 error = xfs_buf_iowait(bp);
201 if (error)
202 xfs_buf_ioerror_alert(bp, __func__);
203 return error;
204}
205
206STATIC int
207xlog_bread(
208 struct xlog *log,
209 xfs_daddr_t blk_no,
210 int nbblks,
211 struct xfs_buf *bp,
212 xfs_caddr_t *offset)
213{
214 int error;
215
216 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
217 if (error)
218 return error;
219
220 *offset = xlog_align(log, blk_no, nbblks, bp);
221 return 0;
222}
223
224/*
225 * Read at an offset into the buffer. Returns with the buffer in it's original
226 * state regardless of the result of the read.
227 */
228STATIC int
229xlog_bread_offset(
230 struct xlog *log,
231 xfs_daddr_t blk_no, /* block to read from */
232 int nbblks, /* blocks to read */
233 struct xfs_buf *bp,
234 xfs_caddr_t offset)
235{
236 xfs_caddr_t orig_offset = bp->b_addr;
237 int orig_len = BBTOB(bp->b_length);
238 int error, error2;
239
240 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
241 if (error)
242 return error;
243
244 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
245
246 /* must reset buffer pointer even on error */
247 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
248 if (error)
249 return error;
250 return error2;
251}
252
253/*
254 * Write out the buffer at the given block for the given number of blocks.
255 * The buffer is kept locked across the write and is returned locked.
256 * This can only be used for synchronous log writes.
257 */
258STATIC int
259xlog_bwrite(
260 struct xlog *log,
261 xfs_daddr_t blk_no,
262 int nbblks,
263 struct xfs_buf *bp)
264{
265 int error;
266
267 if (!xlog_buf_bbcount_valid(log, nbblks)) {
268 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
269 nbblks);
270 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
271 return EFSCORRUPTED;
272 }
273
274 blk_no = round_down(blk_no, log->l_sectBBsize);
275 nbblks = round_up(nbblks, log->l_sectBBsize);
276
277 ASSERT(nbblks > 0);
278 ASSERT(nbblks <= bp->b_length);
279
280 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
281 XFS_BUF_ZEROFLAGS(bp);
282 xfs_buf_hold(bp);
283 xfs_buf_lock(bp);
284 bp->b_io_length = nbblks;
285 bp->b_error = 0;
286
287 error = xfs_bwrite(bp);
288 if (error)
289 xfs_buf_ioerror_alert(bp, __func__);
290 xfs_buf_relse(bp);
291 return error;
292}
293
294#ifdef DEBUG
295/*
296 * dump debug superblock and log record information
297 */
298STATIC void
299xlog_header_check_dump(
300 xfs_mount_t *mp,
301 xlog_rec_header_t *head)
302{
303 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
304 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
305 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
306 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
307}
308#else
309#define xlog_header_check_dump(mp, head)
310#endif
311
312/*
313 * check log record header for recovery
314 */
315STATIC int
316xlog_header_check_recover(
317 xfs_mount_t *mp,
318 xlog_rec_header_t *head)
319{
320 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
321
322 /*
323 * IRIX doesn't write the h_fmt field and leaves it zeroed
324 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
325 * a dirty log created in IRIX.
326 */
327 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
328 xfs_warn(mp,
329 "dirty log written in incompatible format - can't recover");
330 xlog_header_check_dump(mp, head);
331 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
332 XFS_ERRLEVEL_HIGH, mp);
333 return XFS_ERROR(EFSCORRUPTED);
334 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
335 xfs_warn(mp,
336 "dirty log entry has mismatched uuid - can't recover");
337 xlog_header_check_dump(mp, head);
338 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
339 XFS_ERRLEVEL_HIGH, mp);
340 return XFS_ERROR(EFSCORRUPTED);
341 }
342 return 0;
343}
344
345/*
346 * read the head block of the log and check the header
347 */
348STATIC int
349xlog_header_check_mount(
350 xfs_mount_t *mp,
351 xlog_rec_header_t *head)
352{
353 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
354
355 if (uuid_is_nil(&head->h_fs_uuid)) {
356 /*
357 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
358 * h_fs_uuid is nil, we assume this log was last mounted
359 * by IRIX and continue.
360 */
361 xfs_warn(mp, "nil uuid in log - IRIX style log");
362 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
363 xfs_warn(mp, "log has mismatched uuid - can't recover");
364 xlog_header_check_dump(mp, head);
365 XFS_ERROR_REPORT("xlog_header_check_mount",
366 XFS_ERRLEVEL_HIGH, mp);
367 return XFS_ERROR(EFSCORRUPTED);
368 }
369 return 0;
370}
371
372STATIC void
373xlog_recover_iodone(
374 struct xfs_buf *bp)
375{
376 if (bp->b_error) {
377 /*
378 * We're not going to bother about retrying
379 * this during recovery. One strike!
380 */
381 xfs_buf_ioerror_alert(bp, __func__);
382 xfs_force_shutdown(bp->b_target->bt_mount,
383 SHUTDOWN_META_IO_ERROR);
384 }
385 bp->b_iodone = NULL;
386 xfs_buf_ioend(bp, 0);
387}
388
389/*
390 * This routine finds (to an approximation) the first block in the physical
391 * log which contains the given cycle. It uses a binary search algorithm.
392 * Note that the algorithm can not be perfect because the disk will not
393 * necessarily be perfect.
394 */
395STATIC int
396xlog_find_cycle_start(
397 struct xlog *log,
398 struct xfs_buf *bp,
399 xfs_daddr_t first_blk,
400 xfs_daddr_t *last_blk,
401 uint cycle)
402{
403 xfs_caddr_t offset;
404 xfs_daddr_t mid_blk;
405 xfs_daddr_t end_blk;
406 uint mid_cycle;
407 int error;
408
409 end_blk = *last_blk;
410 mid_blk = BLK_AVG(first_blk, end_blk);
411 while (mid_blk != first_blk && mid_blk != end_blk) {
412 error = xlog_bread(log, mid_blk, 1, bp, &offset);
413 if (error)
414 return error;
415 mid_cycle = xlog_get_cycle(offset);
416 if (mid_cycle == cycle)
417 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
418 else
419 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
420 mid_blk = BLK_AVG(first_blk, end_blk);
421 }
422 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
423 (mid_blk == end_blk && mid_blk-1 == first_blk));
424
425 *last_blk = end_blk;
426
427 return 0;
428}
429
430/*
431 * Check that a range of blocks does not contain stop_on_cycle_no.
432 * Fill in *new_blk with the block offset where such a block is
433 * found, or with -1 (an invalid block number) if there is no such
434 * block in the range. The scan needs to occur from front to back
435 * and the pointer into the region must be updated since a later
436 * routine will need to perform another test.
437 */
438STATIC int
439xlog_find_verify_cycle(
440 struct xlog *log,
441 xfs_daddr_t start_blk,
442 int nbblks,
443 uint stop_on_cycle_no,
444 xfs_daddr_t *new_blk)
445{
446 xfs_daddr_t i, j;
447 uint cycle;
448 xfs_buf_t *bp;
449 xfs_daddr_t bufblks;
450 xfs_caddr_t buf = NULL;
451 int error = 0;
452
453 /*
454 * Greedily allocate a buffer big enough to handle the full
455 * range of basic blocks we'll be examining. If that fails,
456 * try a smaller size. We need to be able to read at least
457 * a log sector, or we're out of luck.
458 */
459 bufblks = 1 << ffs(nbblks);
460 while (bufblks > log->l_logBBsize)
461 bufblks >>= 1;
462 while (!(bp = xlog_get_bp(log, bufblks))) {
463 bufblks >>= 1;
464 if (bufblks < log->l_sectBBsize)
465 return ENOMEM;
466 }
467
468 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
469 int bcount;
470
471 bcount = min(bufblks, (start_blk + nbblks - i));
472
473 error = xlog_bread(log, i, bcount, bp, &buf);
474 if (error)
475 goto out;
476
477 for (j = 0; j < bcount; j++) {
478 cycle = xlog_get_cycle(buf);
479 if (cycle == stop_on_cycle_no) {
480 *new_blk = i+j;
481 goto out;
482 }
483
484 buf += BBSIZE;
485 }
486 }
487
488 *new_blk = -1;
489
490out:
491 xlog_put_bp(bp);
492 return error;
493}
494
495/*
496 * Potentially backup over partial log record write.
497 *
498 * In the typical case, last_blk is the number of the block directly after
499 * a good log record. Therefore, we subtract one to get the block number
500 * of the last block in the given buffer. extra_bblks contains the number
501 * of blocks we would have read on a previous read. This happens when the
502 * last log record is split over the end of the physical log.
503 *
504 * extra_bblks is the number of blocks potentially verified on a previous
505 * call to this routine.
506 */
507STATIC int
508xlog_find_verify_log_record(
509 struct xlog *log,
510 xfs_daddr_t start_blk,
511 xfs_daddr_t *last_blk,
512 int extra_bblks)
513{
514 xfs_daddr_t i;
515 xfs_buf_t *bp;
516 xfs_caddr_t offset = NULL;
517 xlog_rec_header_t *head = NULL;
518 int error = 0;
519 int smallmem = 0;
520 int num_blks = *last_blk - start_blk;
521 int xhdrs;
522
523 ASSERT(start_blk != 0 || *last_blk != start_blk);
524
525 if (!(bp = xlog_get_bp(log, num_blks))) {
526 if (!(bp = xlog_get_bp(log, 1)))
527 return ENOMEM;
528 smallmem = 1;
529 } else {
530 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
531 if (error)
532 goto out;
533 offset += ((num_blks - 1) << BBSHIFT);
534 }
535
536 for (i = (*last_blk) - 1; i >= 0; i--) {
537 if (i < start_blk) {
538 /* valid log record not found */
539 xfs_warn(log->l_mp,
540 "Log inconsistent (didn't find previous header)");
541 ASSERT(0);
542 error = XFS_ERROR(EIO);
543 goto out;
544 }
545
546 if (smallmem) {
547 error = xlog_bread(log, i, 1, bp, &offset);
548 if (error)
549 goto out;
550 }
551
552 head = (xlog_rec_header_t *)offset;
553
554 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
555 break;
556
557 if (!smallmem)
558 offset -= BBSIZE;
559 }
560
561 /*
562 * We hit the beginning of the physical log & still no header. Return
563 * to caller. If caller can handle a return of -1, then this routine
564 * will be called again for the end of the physical log.
565 */
566 if (i == -1) {
567 error = -1;
568 goto out;
569 }
570
571 /*
572 * We have the final block of the good log (the first block
573 * of the log record _before_ the head. So we check the uuid.
574 */
575 if ((error = xlog_header_check_mount(log->l_mp, head)))
576 goto out;
577
578 /*
579 * We may have found a log record header before we expected one.
580 * last_blk will be the 1st block # with a given cycle #. We may end
581 * up reading an entire log record. In this case, we don't want to
582 * reset last_blk. Only when last_blk points in the middle of a log
583 * record do we update last_blk.
584 */
585 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
586 uint h_size = be32_to_cpu(head->h_size);
587
588 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
589 if (h_size % XLOG_HEADER_CYCLE_SIZE)
590 xhdrs++;
591 } else {
592 xhdrs = 1;
593 }
594
595 if (*last_blk - i + extra_bblks !=
596 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
597 *last_blk = i;
598
599out:
600 xlog_put_bp(bp);
601 return error;
602}
603
604/*
605 * Head is defined to be the point of the log where the next log write
606 * could go. This means that incomplete LR writes at the end are
607 * eliminated when calculating the head. We aren't guaranteed that previous
608 * LR have complete transactions. We only know that a cycle number of
609 * current cycle number -1 won't be present in the log if we start writing
610 * from our current block number.
611 *
612 * last_blk contains the block number of the first block with a given
613 * cycle number.
614 *
615 * Return: zero if normal, non-zero if error.
616 */
617STATIC int
618xlog_find_head(
619 struct xlog *log,
620 xfs_daddr_t *return_head_blk)
621{
622 xfs_buf_t *bp;
623 xfs_caddr_t offset;
624 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
625 int num_scan_bblks;
626 uint first_half_cycle, last_half_cycle;
627 uint stop_on_cycle;
628 int error, log_bbnum = log->l_logBBsize;
629
630 /* Is the end of the log device zeroed? */
631 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
632 *return_head_blk = first_blk;
633
634 /* Is the whole lot zeroed? */
635 if (!first_blk) {
636 /* Linux XFS shouldn't generate totally zeroed logs -
637 * mkfs etc write a dummy unmount record to a fresh
638 * log so we can store the uuid in there
639 */
640 xfs_warn(log->l_mp, "totally zeroed log");
641 }
642
643 return 0;
644 } else if (error) {
645 xfs_warn(log->l_mp, "empty log check failed");
646 return error;
647 }
648
649 first_blk = 0; /* get cycle # of 1st block */
650 bp = xlog_get_bp(log, 1);
651 if (!bp)
652 return ENOMEM;
653
654 error = xlog_bread(log, 0, 1, bp, &offset);
655 if (error)
656 goto bp_err;
657
658 first_half_cycle = xlog_get_cycle(offset);
659
660 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
661 error = xlog_bread(log, last_blk, 1, bp, &offset);
662 if (error)
663 goto bp_err;
664
665 last_half_cycle = xlog_get_cycle(offset);
666 ASSERT(last_half_cycle != 0);
667
668 /*
669 * If the 1st half cycle number is equal to the last half cycle number,
670 * then the entire log is stamped with the same cycle number. In this
671 * case, head_blk can't be set to zero (which makes sense). The below
672 * math doesn't work out properly with head_blk equal to zero. Instead,
673 * we set it to log_bbnum which is an invalid block number, but this
674 * value makes the math correct. If head_blk doesn't changed through
675 * all the tests below, *head_blk is set to zero at the very end rather
676 * than log_bbnum. In a sense, log_bbnum and zero are the same block
677 * in a circular file.
678 */
679 if (first_half_cycle == last_half_cycle) {
680 /*
681 * In this case we believe that the entire log should have
682 * cycle number last_half_cycle. We need to scan backwards
683 * from the end verifying that there are no holes still
684 * containing last_half_cycle - 1. If we find such a hole,
685 * then the start of that hole will be the new head. The
686 * simple case looks like
687 * x | x ... | x - 1 | x
688 * Another case that fits this picture would be
689 * x | x + 1 | x ... | x
690 * In this case the head really is somewhere at the end of the
691 * log, as one of the latest writes at the beginning was
692 * incomplete.
693 * One more case is
694 * x | x + 1 | x ... | x - 1 | x
695 * This is really the combination of the above two cases, and
696 * the head has to end up at the start of the x-1 hole at the
697 * end of the log.
698 *
699 * In the 256k log case, we will read from the beginning to the
700 * end of the log and search for cycle numbers equal to x-1.
701 * We don't worry about the x+1 blocks that we encounter,
702 * because we know that they cannot be the head since the log
703 * started with x.
704 */
705 head_blk = log_bbnum;
706 stop_on_cycle = last_half_cycle - 1;
707 } else {
708 /*
709 * In this case we want to find the first block with cycle
710 * number matching last_half_cycle. We expect the log to be
711 * some variation on
712 * x + 1 ... | x ... | x
713 * The first block with cycle number x (last_half_cycle) will
714 * be where the new head belongs. First we do a binary search
715 * for the first occurrence of last_half_cycle. The binary
716 * search may not be totally accurate, so then we scan back
717 * from there looking for occurrences of last_half_cycle before
718 * us. If that backwards scan wraps around the beginning of
719 * the log, then we look for occurrences of last_half_cycle - 1
720 * at the end of the log. The cases we're looking for look
721 * like
722 * v binary search stopped here
723 * x + 1 ... | x | x + 1 | x ... | x
724 * ^ but we want to locate this spot
725 * or
726 * <---------> less than scan distance
727 * x + 1 ... | x ... | x - 1 | x
728 * ^ we want to locate this spot
729 */
730 stop_on_cycle = last_half_cycle;
731 if ((error = xlog_find_cycle_start(log, bp, first_blk,
732 &head_blk, last_half_cycle)))
733 goto bp_err;
734 }
735
736 /*
737 * Now validate the answer. Scan back some number of maximum possible
738 * blocks and make sure each one has the expected cycle number. The
739 * maximum is determined by the total possible amount of buffering
740 * in the in-core log. The following number can be made tighter if
741 * we actually look at the block size of the filesystem.
742 */
743 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
744 if (head_blk >= num_scan_bblks) {
745 /*
746 * We are guaranteed that the entire check can be performed
747 * in one buffer.
748 */
749 start_blk = head_blk - num_scan_bblks;
750 if ((error = xlog_find_verify_cycle(log,
751 start_blk, num_scan_bblks,
752 stop_on_cycle, &new_blk)))
753 goto bp_err;
754 if (new_blk != -1)
755 head_blk = new_blk;
756 } else { /* need to read 2 parts of log */
757 /*
758 * We are going to scan backwards in the log in two parts.
759 * First we scan the physical end of the log. In this part
760 * of the log, we are looking for blocks with cycle number
761 * last_half_cycle - 1.
762 * If we find one, then we know that the log starts there, as
763 * we've found a hole that didn't get written in going around
764 * the end of the physical log. The simple case for this is
765 * x + 1 ... | x ... | x - 1 | x
766 * <---------> less than scan distance
767 * If all of the blocks at the end of the log have cycle number
768 * last_half_cycle, then we check the blocks at the start of
769 * the log looking for occurrences of last_half_cycle. If we
770 * find one, then our current estimate for the location of the
771 * first occurrence of last_half_cycle is wrong and we move
772 * back to the hole we've found. This case looks like
773 * x + 1 ... | x | x + 1 | x ...
774 * ^ binary search stopped here
775 * Another case we need to handle that only occurs in 256k
776 * logs is
777 * x + 1 ... | x ... | x+1 | x ...
778 * ^ binary search stops here
779 * In a 256k log, the scan at the end of the log will see the
780 * x + 1 blocks. We need to skip past those since that is
781 * certainly not the head of the log. By searching for
782 * last_half_cycle-1 we accomplish that.
783 */
784 ASSERT(head_blk <= INT_MAX &&
785 (xfs_daddr_t) num_scan_bblks >= head_blk);
786 start_blk = log_bbnum - (num_scan_bblks - head_blk);
787 if ((error = xlog_find_verify_cycle(log, start_blk,
788 num_scan_bblks - (int)head_blk,
789 (stop_on_cycle - 1), &new_blk)))
790 goto bp_err;
791 if (new_blk != -1) {
792 head_blk = new_blk;
793 goto validate_head;
794 }
795
796 /*
797 * Scan beginning of log now. The last part of the physical
798 * log is good. This scan needs to verify that it doesn't find
799 * the last_half_cycle.
800 */
801 start_blk = 0;
802 ASSERT(head_blk <= INT_MAX);
803 if ((error = xlog_find_verify_cycle(log,
804 start_blk, (int)head_blk,
805 stop_on_cycle, &new_blk)))
806 goto bp_err;
807 if (new_blk != -1)
808 head_blk = new_blk;
809 }
810
811validate_head:
812 /*
813 * Now we need to make sure head_blk is not pointing to a block in
814 * the middle of a log record.
815 */
816 num_scan_bblks = XLOG_REC_SHIFT(log);
817 if (head_blk >= num_scan_bblks) {
818 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
819
820 /* start ptr at last block ptr before head_blk */
821 if ((error = xlog_find_verify_log_record(log, start_blk,
822 &head_blk, 0)) == -1) {
823 error = XFS_ERROR(EIO);
824 goto bp_err;
825 } else if (error)
826 goto bp_err;
827 } else {
828 start_blk = 0;
829 ASSERT(head_blk <= INT_MAX);
830 if ((error = xlog_find_verify_log_record(log, start_blk,
831 &head_blk, 0)) == -1) {
832 /* We hit the beginning of the log during our search */
833 start_blk = log_bbnum - (num_scan_bblks - head_blk);
834 new_blk = log_bbnum;
835 ASSERT(start_blk <= INT_MAX &&
836 (xfs_daddr_t) log_bbnum-start_blk >= 0);
837 ASSERT(head_blk <= INT_MAX);
838 if ((error = xlog_find_verify_log_record(log,
839 start_blk, &new_blk,
840 (int)head_blk)) == -1) {
841 error = XFS_ERROR(EIO);
842 goto bp_err;
843 } else if (error)
844 goto bp_err;
845 if (new_blk != log_bbnum)
846 head_blk = new_blk;
847 } else if (error)
848 goto bp_err;
849 }
850
851 xlog_put_bp(bp);
852 if (head_blk == log_bbnum)
853 *return_head_blk = 0;
854 else
855 *return_head_blk = head_blk;
856 /*
857 * When returning here, we have a good block number. Bad block
858 * means that during a previous crash, we didn't have a clean break
859 * from cycle number N to cycle number N-1. In this case, we need
860 * to find the first block with cycle number N-1.
861 */
862 return 0;
863
864 bp_err:
865 xlog_put_bp(bp);
866
867 if (error)
868 xfs_warn(log->l_mp, "failed to find log head");
869 return error;
870}
871
872/*
873 * Find the sync block number or the tail of the log.
874 *
875 * This will be the block number of the last record to have its
876 * associated buffers synced to disk. Every log record header has
877 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
878 * to get a sync block number. The only concern is to figure out which
879 * log record header to believe.
880 *
881 * The following algorithm uses the log record header with the largest
882 * lsn. The entire log record does not need to be valid. We only care
883 * that the header is valid.
884 *
885 * We could speed up search by using current head_blk buffer, but it is not
886 * available.
887 */
888STATIC int
889xlog_find_tail(
890 struct xlog *log,
891 xfs_daddr_t *head_blk,
892 xfs_daddr_t *tail_blk)
893{
894 xlog_rec_header_t *rhead;
895 xlog_op_header_t *op_head;
896 xfs_caddr_t offset = NULL;
897 xfs_buf_t *bp;
898 int error, i, found;
899 xfs_daddr_t umount_data_blk;
900 xfs_daddr_t after_umount_blk;
901 xfs_lsn_t tail_lsn;
902 int hblks;
903
904 found = 0;
905
906 /*
907 * Find previous log record
908 */
909 if ((error = xlog_find_head(log, head_blk)))
910 return error;
911
912 bp = xlog_get_bp(log, 1);
913 if (!bp)
914 return ENOMEM;
915 if (*head_blk == 0) { /* special case */
916 error = xlog_bread(log, 0, 1, bp, &offset);
917 if (error)
918 goto done;
919
920 if (xlog_get_cycle(offset) == 0) {
921 *tail_blk = 0;
922 /* leave all other log inited values alone */
923 goto done;
924 }
925 }
926
927 /*
928 * Search backwards looking for log record header block
929 */
930 ASSERT(*head_blk < INT_MAX);
931 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
932 error = xlog_bread(log, i, 1, bp, &offset);
933 if (error)
934 goto done;
935
936 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
937 found = 1;
938 break;
939 }
940 }
941 /*
942 * If we haven't found the log record header block, start looking
943 * again from the end of the physical log. XXXmiken: There should be
944 * a check here to make sure we didn't search more than N blocks in
945 * the previous code.
946 */
947 if (!found) {
948 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
949 error = xlog_bread(log, i, 1, bp, &offset);
950 if (error)
951 goto done;
952
953 if (*(__be32 *)offset ==
954 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
955 found = 2;
956 break;
957 }
958 }
959 }
960 if (!found) {
961 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
962 xlog_put_bp(bp);
963 ASSERT(0);
964 return XFS_ERROR(EIO);
965 }
966
967 /* find blk_no of tail of log */
968 rhead = (xlog_rec_header_t *)offset;
969 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
970
971 /*
972 * Reset log values according to the state of the log when we
973 * crashed. In the case where head_blk == 0, we bump curr_cycle
974 * one because the next write starts a new cycle rather than
975 * continuing the cycle of the last good log record. At this
976 * point we have guaranteed that all partial log records have been
977 * accounted for. Therefore, we know that the last good log record
978 * written was complete and ended exactly on the end boundary
979 * of the physical log.
980 */
981 log->l_prev_block = i;
982 log->l_curr_block = (int)*head_blk;
983 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
984 if (found == 2)
985 log->l_curr_cycle++;
986 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
987 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
988 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
989 BBTOB(log->l_curr_block));
990 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
991 BBTOB(log->l_curr_block));
992
993 /*
994 * Look for unmount record. If we find it, then we know there
995 * was a clean unmount. Since 'i' could be the last block in
996 * the physical log, we convert to a log block before comparing
997 * to the head_blk.
998 *
999 * Save the current tail lsn to use to pass to
1000 * xlog_clear_stale_blocks() below. We won't want to clear the
1001 * unmount record if there is one, so we pass the lsn of the
1002 * unmount record rather than the block after it.
1003 */
1004 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1005 int h_size = be32_to_cpu(rhead->h_size);
1006 int h_version = be32_to_cpu(rhead->h_version);
1007
1008 if ((h_version & XLOG_VERSION_2) &&
1009 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1010 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1011 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1012 hblks++;
1013 } else {
1014 hblks = 1;
1015 }
1016 } else {
1017 hblks = 1;
1018 }
1019 after_umount_blk = (i + hblks + (int)
1020 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1021 tail_lsn = atomic64_read(&log->l_tail_lsn);
1022 if (*head_blk == after_umount_blk &&
1023 be32_to_cpu(rhead->h_num_logops) == 1) {
1024 umount_data_blk = (i + hblks) % log->l_logBBsize;
1025 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1026 if (error)
1027 goto done;
1028
1029 op_head = (xlog_op_header_t *)offset;
1030 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1031 /*
1032 * Set tail and last sync so that newly written
1033 * log records will point recovery to after the
1034 * current unmount record.
1035 */
1036 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1037 log->l_curr_cycle, after_umount_blk);
1038 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1039 log->l_curr_cycle, after_umount_blk);
1040 *tail_blk = after_umount_blk;
1041
1042 /*
1043 * Note that the unmount was clean. If the unmount
1044 * was not clean, we need to know this to rebuild the
1045 * superblock counters from the perag headers if we
1046 * have a filesystem using non-persistent counters.
1047 */
1048 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1049 }
1050 }
1051
1052 /*
1053 * Make sure that there are no blocks in front of the head
1054 * with the same cycle number as the head. This can happen
1055 * because we allow multiple outstanding log writes concurrently,
1056 * and the later writes might make it out before earlier ones.
1057 *
1058 * We use the lsn from before modifying it so that we'll never
1059 * overwrite the unmount record after a clean unmount.
1060 *
1061 * Do this only if we are going to recover the filesystem
1062 *
1063 * NOTE: This used to say "if (!readonly)"
1064 * However on Linux, we can & do recover a read-only filesystem.
1065 * We only skip recovery if NORECOVERY is specified on mount,
1066 * in which case we would not be here.
1067 *
1068 * But... if the -device- itself is readonly, just skip this.
1069 * We can't recover this device anyway, so it won't matter.
1070 */
1071 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1072 error = xlog_clear_stale_blocks(log, tail_lsn);
1073
1074done:
1075 xlog_put_bp(bp);
1076
1077 if (error)
1078 xfs_warn(log->l_mp, "failed to locate log tail");
1079 return error;
1080}
1081
1082/*
1083 * Is the log zeroed at all?
1084 *
1085 * The last binary search should be changed to perform an X block read
1086 * once X becomes small enough. You can then search linearly through
1087 * the X blocks. This will cut down on the number of reads we need to do.
1088 *
1089 * If the log is partially zeroed, this routine will pass back the blkno
1090 * of the first block with cycle number 0. It won't have a complete LR
1091 * preceding it.
1092 *
1093 * Return:
1094 * 0 => the log is completely written to
1095 * -1 => use *blk_no as the first block of the log
1096 * >0 => error has occurred
1097 */
1098STATIC int
1099xlog_find_zeroed(
1100 struct xlog *log,
1101 xfs_daddr_t *blk_no)
1102{
1103 xfs_buf_t *bp;
1104 xfs_caddr_t offset;
1105 uint first_cycle, last_cycle;
1106 xfs_daddr_t new_blk, last_blk, start_blk;
1107 xfs_daddr_t num_scan_bblks;
1108 int error, log_bbnum = log->l_logBBsize;
1109
1110 *blk_no = 0;
1111
1112 /* check totally zeroed log */
1113 bp = xlog_get_bp(log, 1);
1114 if (!bp)
1115 return ENOMEM;
1116 error = xlog_bread(log, 0, 1, bp, &offset);
1117 if (error)
1118 goto bp_err;
1119
1120 first_cycle = xlog_get_cycle(offset);
1121 if (first_cycle == 0) { /* completely zeroed log */
1122 *blk_no = 0;
1123 xlog_put_bp(bp);
1124 return -1;
1125 }
1126
1127 /* check partially zeroed log */
1128 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1129 if (error)
1130 goto bp_err;
1131
1132 last_cycle = xlog_get_cycle(offset);
1133 if (last_cycle != 0) { /* log completely written to */
1134 xlog_put_bp(bp);
1135 return 0;
1136 } else if (first_cycle != 1) {
1137 /*
1138 * If the cycle of the last block is zero, the cycle of
1139 * the first block must be 1. If it's not, maybe we're
1140 * not looking at a log... Bail out.
1141 */
1142 xfs_warn(log->l_mp,
1143 "Log inconsistent or not a log (last==0, first!=1)");
1144 error = XFS_ERROR(EINVAL);
1145 goto bp_err;
1146 }
1147
1148 /* we have a partially zeroed log */
1149 last_blk = log_bbnum-1;
1150 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1151 goto bp_err;
1152
1153 /*
1154 * Validate the answer. Because there is no way to guarantee that
1155 * the entire log is made up of log records which are the same size,
1156 * we scan over the defined maximum blocks. At this point, the maximum
1157 * is not chosen to mean anything special. XXXmiken
1158 */
1159 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1160 ASSERT(num_scan_bblks <= INT_MAX);
1161
1162 if (last_blk < num_scan_bblks)
1163 num_scan_bblks = last_blk;
1164 start_blk = last_blk - num_scan_bblks;
1165
1166 /*
1167 * We search for any instances of cycle number 0 that occur before
1168 * our current estimate of the head. What we're trying to detect is
1169 * 1 ... | 0 | 1 | 0...
1170 * ^ binary search ends here
1171 */
1172 if ((error = xlog_find_verify_cycle(log, start_blk,
1173 (int)num_scan_bblks, 0, &new_blk)))
1174 goto bp_err;
1175 if (new_blk != -1)
1176 last_blk = new_blk;
1177
1178 /*
1179 * Potentially backup over partial log record write. We don't need
1180 * to search the end of the log because we know it is zero.
1181 */
1182 if ((error = xlog_find_verify_log_record(log, start_blk,
1183 &last_blk, 0)) == -1) {
1184 error = XFS_ERROR(EIO);
1185 goto bp_err;
1186 } else if (error)
1187 goto bp_err;
1188
1189 *blk_no = last_blk;
1190bp_err:
1191 xlog_put_bp(bp);
1192 if (error)
1193 return error;
1194 return -1;
1195}
1196
1197/*
1198 * These are simple subroutines used by xlog_clear_stale_blocks() below
1199 * to initialize a buffer full of empty log record headers and write
1200 * them into the log.
1201 */
1202STATIC void
1203xlog_add_record(
1204 struct xlog *log,
1205 xfs_caddr_t buf,
1206 int cycle,
1207 int block,
1208 int tail_cycle,
1209 int tail_block)
1210{
1211 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1212
1213 memset(buf, 0, BBSIZE);
1214 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1215 recp->h_cycle = cpu_to_be32(cycle);
1216 recp->h_version = cpu_to_be32(
1217 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1218 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1219 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1220 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1221 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1222}
1223
1224STATIC int
1225xlog_write_log_records(
1226 struct xlog *log,
1227 int cycle,
1228 int start_block,
1229 int blocks,
1230 int tail_cycle,
1231 int tail_block)
1232{
1233 xfs_caddr_t offset;
1234 xfs_buf_t *bp;
1235 int balign, ealign;
1236 int sectbb = log->l_sectBBsize;
1237 int end_block = start_block + blocks;
1238 int bufblks;
1239 int error = 0;
1240 int i, j = 0;
1241
1242 /*
1243 * Greedily allocate a buffer big enough to handle the full
1244 * range of basic blocks to be written. If that fails, try
1245 * a smaller size. We need to be able to write at least a
1246 * log sector, or we're out of luck.
1247 */
1248 bufblks = 1 << ffs(blocks);
1249 while (bufblks > log->l_logBBsize)
1250 bufblks >>= 1;
1251 while (!(bp = xlog_get_bp(log, bufblks))) {
1252 bufblks >>= 1;
1253 if (bufblks < sectbb)
1254 return ENOMEM;
1255 }
1256
1257 /* We may need to do a read at the start to fill in part of
1258 * the buffer in the starting sector not covered by the first
1259 * write below.
1260 */
1261 balign = round_down(start_block, sectbb);
1262 if (balign != start_block) {
1263 error = xlog_bread_noalign(log, start_block, 1, bp);
1264 if (error)
1265 goto out_put_bp;
1266
1267 j = start_block - balign;
1268 }
1269
1270 for (i = start_block; i < end_block; i += bufblks) {
1271 int bcount, endcount;
1272
1273 bcount = min(bufblks, end_block - start_block);
1274 endcount = bcount - j;
1275
1276 /* We may need to do a read at the end to fill in part of
1277 * the buffer in the final sector not covered by the write.
1278 * If this is the same sector as the above read, skip it.
1279 */
1280 ealign = round_down(end_block, sectbb);
1281 if (j == 0 && (start_block + endcount > ealign)) {
1282 offset = bp->b_addr + BBTOB(ealign - start_block);
1283 error = xlog_bread_offset(log, ealign, sectbb,
1284 bp, offset);
1285 if (error)
1286 break;
1287
1288 }
1289
1290 offset = xlog_align(log, start_block, endcount, bp);
1291 for (; j < endcount; j++) {
1292 xlog_add_record(log, offset, cycle, i+j,
1293 tail_cycle, tail_block);
1294 offset += BBSIZE;
1295 }
1296 error = xlog_bwrite(log, start_block, endcount, bp);
1297 if (error)
1298 break;
1299 start_block += endcount;
1300 j = 0;
1301 }
1302
1303 out_put_bp:
1304 xlog_put_bp(bp);
1305 return error;
1306}
1307
1308/*
1309 * This routine is called to blow away any incomplete log writes out
1310 * in front of the log head. We do this so that we won't become confused
1311 * if we come up, write only a little bit more, and then crash again.
1312 * If we leave the partial log records out there, this situation could
1313 * cause us to think those partial writes are valid blocks since they
1314 * have the current cycle number. We get rid of them by overwriting them
1315 * with empty log records with the old cycle number rather than the
1316 * current one.
1317 *
1318 * The tail lsn is passed in rather than taken from
1319 * the log so that we will not write over the unmount record after a
1320 * clean unmount in a 512 block log. Doing so would leave the log without
1321 * any valid log records in it until a new one was written. If we crashed
1322 * during that time we would not be able to recover.
1323 */
1324STATIC int
1325xlog_clear_stale_blocks(
1326 struct xlog *log,
1327 xfs_lsn_t tail_lsn)
1328{
1329 int tail_cycle, head_cycle;
1330 int tail_block, head_block;
1331 int tail_distance, max_distance;
1332 int distance;
1333 int error;
1334
1335 tail_cycle = CYCLE_LSN(tail_lsn);
1336 tail_block = BLOCK_LSN(tail_lsn);
1337 head_cycle = log->l_curr_cycle;
1338 head_block = log->l_curr_block;
1339
1340 /*
1341 * Figure out the distance between the new head of the log
1342 * and the tail. We want to write over any blocks beyond the
1343 * head that we may have written just before the crash, but
1344 * we don't want to overwrite the tail of the log.
1345 */
1346 if (head_cycle == tail_cycle) {
1347 /*
1348 * The tail is behind the head in the physical log,
1349 * so the distance from the head to the tail is the
1350 * distance from the head to the end of the log plus
1351 * the distance from the beginning of the log to the
1352 * tail.
1353 */
1354 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1355 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1356 XFS_ERRLEVEL_LOW, log->l_mp);
1357 return XFS_ERROR(EFSCORRUPTED);
1358 }
1359 tail_distance = tail_block + (log->l_logBBsize - head_block);
1360 } else {
1361 /*
1362 * The head is behind the tail in the physical log,
1363 * so the distance from the head to the tail is just
1364 * the tail block minus the head block.
1365 */
1366 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1367 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1368 XFS_ERRLEVEL_LOW, log->l_mp);
1369 return XFS_ERROR(EFSCORRUPTED);
1370 }
1371 tail_distance = tail_block - head_block;
1372 }
1373
1374 /*
1375 * If the head is right up against the tail, we can't clear
1376 * anything.
1377 */
1378 if (tail_distance <= 0) {
1379 ASSERT(tail_distance == 0);
1380 return 0;
1381 }
1382
1383 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1384 /*
1385 * Take the smaller of the maximum amount of outstanding I/O
1386 * we could have and the distance to the tail to clear out.
1387 * We take the smaller so that we don't overwrite the tail and
1388 * we don't waste all day writing from the head to the tail
1389 * for no reason.
1390 */
1391 max_distance = MIN(max_distance, tail_distance);
1392
1393 if ((head_block + max_distance) <= log->l_logBBsize) {
1394 /*
1395 * We can stomp all the blocks we need to without
1396 * wrapping around the end of the log. Just do it
1397 * in a single write. Use the cycle number of the
1398 * current cycle minus one so that the log will look like:
1399 * n ... | n - 1 ...
1400 */
1401 error = xlog_write_log_records(log, (head_cycle - 1),
1402 head_block, max_distance, tail_cycle,
1403 tail_block);
1404 if (error)
1405 return error;
1406 } else {
1407 /*
1408 * We need to wrap around the end of the physical log in
1409 * order to clear all the blocks. Do it in two separate
1410 * I/Os. The first write should be from the head to the
1411 * end of the physical log, and it should use the current
1412 * cycle number minus one just like above.
1413 */
1414 distance = log->l_logBBsize - head_block;
1415 error = xlog_write_log_records(log, (head_cycle - 1),
1416 head_block, distance, tail_cycle,
1417 tail_block);
1418
1419 if (error)
1420 return error;
1421
1422 /*
1423 * Now write the blocks at the start of the physical log.
1424 * This writes the remainder of the blocks we want to clear.
1425 * It uses the current cycle number since we're now on the
1426 * same cycle as the head so that we get:
1427 * n ... n ... | n - 1 ...
1428 * ^^^^^ blocks we're writing
1429 */
1430 distance = max_distance - (log->l_logBBsize - head_block);
1431 error = xlog_write_log_records(log, head_cycle, 0, distance,
1432 tail_cycle, tail_block);
1433 if (error)
1434 return error;
1435 }
1436
1437 return 0;
1438}
1439
1440/******************************************************************************
1441 *
1442 * Log recover routines
1443 *
1444 ******************************************************************************
1445 */
1446
1447STATIC xlog_recover_t *
1448xlog_recover_find_tid(
1449 struct hlist_head *head,
1450 xlog_tid_t tid)
1451{
1452 xlog_recover_t *trans;
1453
1454 hlist_for_each_entry(trans, head, r_list) {
1455 if (trans->r_log_tid == tid)
1456 return trans;
1457 }
1458 return NULL;
1459}
1460
1461STATIC void
1462xlog_recover_new_tid(
1463 struct hlist_head *head,
1464 xlog_tid_t tid,
1465 xfs_lsn_t lsn)
1466{
1467 xlog_recover_t *trans;
1468
1469 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1470 trans->r_log_tid = tid;
1471 trans->r_lsn = lsn;
1472 INIT_LIST_HEAD(&trans->r_itemq);
1473
1474 INIT_HLIST_NODE(&trans->r_list);
1475 hlist_add_head(&trans->r_list, head);
1476}
1477
1478STATIC void
1479xlog_recover_add_item(
1480 struct list_head *head)
1481{
1482 xlog_recover_item_t *item;
1483
1484 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1485 INIT_LIST_HEAD(&item->ri_list);
1486 list_add_tail(&item->ri_list, head);
1487}
1488
1489STATIC int
1490xlog_recover_add_to_cont_trans(
1491 struct xlog *log,
1492 struct xlog_recover *trans,
1493 xfs_caddr_t dp,
1494 int len)
1495{
1496 xlog_recover_item_t *item;
1497 xfs_caddr_t ptr, old_ptr;
1498 int old_len;
1499
1500 if (list_empty(&trans->r_itemq)) {
1501 /* finish copying rest of trans header */
1502 xlog_recover_add_item(&trans->r_itemq);
1503 ptr = (xfs_caddr_t) &trans->r_theader +
1504 sizeof(xfs_trans_header_t) - len;
1505 memcpy(ptr, dp, len); /* d, s, l */
1506 return 0;
1507 }
1508 /* take the tail entry */
1509 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1510
1511 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1512 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1513
1514 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1515 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1516 item->ri_buf[item->ri_cnt-1].i_len += len;
1517 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1518 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1519 return 0;
1520}
1521
1522/*
1523 * The next region to add is the start of a new region. It could be
1524 * a whole region or it could be the first part of a new region. Because
1525 * of this, the assumption here is that the type and size fields of all
1526 * format structures fit into the first 32 bits of the structure.
1527 *
1528 * This works because all regions must be 32 bit aligned. Therefore, we
1529 * either have both fields or we have neither field. In the case we have
1530 * neither field, the data part of the region is zero length. We only have
1531 * a log_op_header and can throw away the header since a new one will appear
1532 * later. If we have at least 4 bytes, then we can determine how many regions
1533 * will appear in the current log item.
1534 */
1535STATIC int
1536xlog_recover_add_to_trans(
1537 struct xlog *log,
1538 struct xlog_recover *trans,
1539 xfs_caddr_t dp,
1540 int len)
1541{
1542 xfs_inode_log_format_t *in_f; /* any will do */
1543 xlog_recover_item_t *item;
1544 xfs_caddr_t ptr;
1545
1546 if (!len)
1547 return 0;
1548 if (list_empty(&trans->r_itemq)) {
1549 /* we need to catch log corruptions here */
1550 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1551 xfs_warn(log->l_mp, "%s: bad header magic number",
1552 __func__);
1553 ASSERT(0);
1554 return XFS_ERROR(EIO);
1555 }
1556 if (len == sizeof(xfs_trans_header_t))
1557 xlog_recover_add_item(&trans->r_itemq);
1558 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1559 return 0;
1560 }
1561
1562 ptr = kmem_alloc(len, KM_SLEEP);
1563 memcpy(ptr, dp, len);
1564 in_f = (xfs_inode_log_format_t *)ptr;
1565
1566 /* take the tail entry */
1567 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1568 if (item->ri_total != 0 &&
1569 item->ri_total == item->ri_cnt) {
1570 /* tail item is in use, get a new one */
1571 xlog_recover_add_item(&trans->r_itemq);
1572 item = list_entry(trans->r_itemq.prev,
1573 xlog_recover_item_t, ri_list);
1574 }
1575
1576 if (item->ri_total == 0) { /* first region to be added */
1577 if (in_f->ilf_size == 0 ||
1578 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1579 xfs_warn(log->l_mp,
1580 "bad number of regions (%d) in inode log format",
1581 in_f->ilf_size);
1582 ASSERT(0);
1583 kmem_free(ptr);
1584 return XFS_ERROR(EIO);
1585 }
1586
1587 item->ri_total = in_f->ilf_size;
1588 item->ri_buf =
1589 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1590 KM_SLEEP);
1591 }
1592 ASSERT(item->ri_total > item->ri_cnt);
1593 /* Description region is ri_buf[0] */
1594 item->ri_buf[item->ri_cnt].i_addr = ptr;
1595 item->ri_buf[item->ri_cnt].i_len = len;
1596 item->ri_cnt++;
1597 trace_xfs_log_recover_item_add(log, trans, item, 0);
1598 return 0;
1599}
1600
1601/*
1602 * Sort the log items in the transaction.
1603 *
1604 * The ordering constraints are defined by the inode allocation and unlink
1605 * behaviour. The rules are:
1606 *
1607 * 1. Every item is only logged once in a given transaction. Hence it
1608 * represents the last logged state of the item. Hence ordering is
1609 * dependent on the order in which operations need to be performed so
1610 * required initial conditions are always met.
1611 *
1612 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1613 * there's nothing to replay from them so we can simply cull them
1614 * from the transaction. However, we can't do that until after we've
1615 * replayed all the other items because they may be dependent on the
1616 * cancelled buffer and replaying the cancelled buffer can remove it
1617 * form the cancelled buffer table. Hence they have tobe done last.
1618 *
1619 * 3. Inode allocation buffers must be replayed before inode items that
1620 * read the buffer and replay changes into it. For filesystems using the
1621 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1622 * treated the same as inode allocation buffers as they create and
1623 * initialise the buffers directly.
1624 *
1625 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1626 * This ensures that inodes are completely flushed to the inode buffer
1627 * in a "free" state before we remove the unlinked inode list pointer.
1628 *
1629 * Hence the ordering needs to be inode allocation buffers first, inode items
1630 * second, inode unlink buffers third and cancelled buffers last.
1631 *
1632 * But there's a problem with that - we can't tell an inode allocation buffer
1633 * apart from a regular buffer, so we can't separate them. We can, however,
1634 * tell an inode unlink buffer from the others, and so we can separate them out
1635 * from all the other buffers and move them to last.
1636 *
1637 * Hence, 4 lists, in order from head to tail:
1638 * - buffer_list for all buffers except cancelled/inode unlink buffers
1639 * - item_list for all non-buffer items
1640 * - inode_buffer_list for inode unlink buffers
1641 * - cancel_list for the cancelled buffers
1642 *
1643 * Note that we add objects to the tail of the lists so that first-to-last
1644 * ordering is preserved within the lists. Adding objects to the head of the
1645 * list means when we traverse from the head we walk them in last-to-first
1646 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1647 * but for all other items there may be specific ordering that we need to
1648 * preserve.
1649 */
1650STATIC int
1651xlog_recover_reorder_trans(
1652 struct xlog *log,
1653 struct xlog_recover *trans,
1654 int pass)
1655{
1656 xlog_recover_item_t *item, *n;
1657 int error = 0;
1658 LIST_HEAD(sort_list);
1659 LIST_HEAD(cancel_list);
1660 LIST_HEAD(buffer_list);
1661 LIST_HEAD(inode_buffer_list);
1662 LIST_HEAD(inode_list);
1663
1664 list_splice_init(&trans->r_itemq, &sort_list);
1665 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1666 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1667
1668 switch (ITEM_TYPE(item)) {
1669 case XFS_LI_ICREATE:
1670 list_move_tail(&item->ri_list, &buffer_list);
1671 break;
1672 case XFS_LI_BUF:
1673 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1674 trace_xfs_log_recover_item_reorder_head(log,
1675 trans, item, pass);
1676 list_move(&item->ri_list, &cancel_list);
1677 break;
1678 }
1679 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1680 list_move(&item->ri_list, &inode_buffer_list);
1681 break;
1682 }
1683 list_move_tail(&item->ri_list, &buffer_list);
1684 break;
1685 case XFS_LI_INODE:
1686 case XFS_LI_DQUOT:
1687 case XFS_LI_QUOTAOFF:
1688 case XFS_LI_EFD:
1689 case XFS_LI_EFI:
1690 trace_xfs_log_recover_item_reorder_tail(log,
1691 trans, item, pass);
1692 list_move_tail(&item->ri_list, &inode_list);
1693 break;
1694 default:
1695 xfs_warn(log->l_mp,
1696 "%s: unrecognized type of log operation",
1697 __func__);
1698 ASSERT(0);
1699 /*
1700 * return the remaining items back to the transaction
1701 * item list so they can be freed in caller.
1702 */
1703 if (!list_empty(&sort_list))
1704 list_splice_init(&sort_list, &trans->r_itemq);
1705 error = XFS_ERROR(EIO);
1706 goto out;
1707 }
1708 }
1709out:
1710 ASSERT(list_empty(&sort_list));
1711 if (!list_empty(&buffer_list))
1712 list_splice(&buffer_list, &trans->r_itemq);
1713 if (!list_empty(&inode_list))
1714 list_splice_tail(&inode_list, &trans->r_itemq);
1715 if (!list_empty(&inode_buffer_list))
1716 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1717 if (!list_empty(&cancel_list))
1718 list_splice_tail(&cancel_list, &trans->r_itemq);
1719 return error;
1720}
1721
1722/*
1723 * Build up the table of buf cancel records so that we don't replay
1724 * cancelled data in the second pass. For buffer records that are
1725 * not cancel records, there is nothing to do here so we just return.
1726 *
1727 * If we get a cancel record which is already in the table, this indicates
1728 * that the buffer was cancelled multiple times. In order to ensure
1729 * that during pass 2 we keep the record in the table until we reach its
1730 * last occurrence in the log, we keep a reference count in the cancel
1731 * record in the table to tell us how many times we expect to see this
1732 * record during the second pass.
1733 */
1734STATIC int
1735xlog_recover_buffer_pass1(
1736 struct xlog *log,
1737 struct xlog_recover_item *item)
1738{
1739 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1740 struct list_head *bucket;
1741 struct xfs_buf_cancel *bcp;
1742
1743 /*
1744 * If this isn't a cancel buffer item, then just return.
1745 */
1746 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1747 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1748 return 0;
1749 }
1750
1751 /*
1752 * Insert an xfs_buf_cancel record into the hash table of them.
1753 * If there is already an identical record, bump its reference count.
1754 */
1755 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1756 list_for_each_entry(bcp, bucket, bc_list) {
1757 if (bcp->bc_blkno == buf_f->blf_blkno &&
1758 bcp->bc_len == buf_f->blf_len) {
1759 bcp->bc_refcount++;
1760 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1761 return 0;
1762 }
1763 }
1764
1765 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1766 bcp->bc_blkno = buf_f->blf_blkno;
1767 bcp->bc_len = buf_f->blf_len;
1768 bcp->bc_refcount = 1;
1769 list_add_tail(&bcp->bc_list, bucket);
1770
1771 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1772 return 0;
1773}
1774
1775/*
1776 * Check to see whether the buffer being recovered has a corresponding
1777 * entry in the buffer cancel record table. If it is, return the cancel
1778 * buffer structure to the caller.
1779 */
1780STATIC struct xfs_buf_cancel *
1781xlog_peek_buffer_cancelled(
1782 struct xlog *log,
1783 xfs_daddr_t blkno,
1784 uint len,
1785 ushort flags)
1786{
1787 struct list_head *bucket;
1788 struct xfs_buf_cancel *bcp;
1789
1790 if (!log->l_buf_cancel_table) {
1791 /* empty table means no cancelled buffers in the log */
1792 ASSERT(!(flags & XFS_BLF_CANCEL));
1793 return NULL;
1794 }
1795
1796 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1797 list_for_each_entry(bcp, bucket, bc_list) {
1798 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1799 return bcp;
1800 }
1801
1802 /*
1803 * We didn't find a corresponding entry in the table, so return 0 so
1804 * that the buffer is NOT cancelled.
1805 */
1806 ASSERT(!(flags & XFS_BLF_CANCEL));
1807 return NULL;
1808}
1809
1810/*
1811 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1812 * otherwise return 0. If the buffer is actually a buffer cancel item
1813 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1814 * table and remove it from the table if this is the last reference.
1815 *
1816 * We remove the cancel record from the table when we encounter its last
1817 * occurrence in the log so that if the same buffer is re-used again after its
1818 * last cancellation we actually replay the changes made at that point.
1819 */
1820STATIC int
1821xlog_check_buffer_cancelled(
1822 struct xlog *log,
1823 xfs_daddr_t blkno,
1824 uint len,
1825 ushort flags)
1826{
1827 struct xfs_buf_cancel *bcp;
1828
1829 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1830 if (!bcp)
1831 return 0;
1832
1833 /*
1834 * We've go a match, so return 1 so that the recovery of this buffer
1835 * is cancelled. If this buffer is actually a buffer cancel log
1836 * item, then decrement the refcount on the one in the table and
1837 * remove it if this is the last reference.
1838 */
1839 if (flags & XFS_BLF_CANCEL) {
1840 if (--bcp->bc_refcount == 0) {
1841 list_del(&bcp->bc_list);
1842 kmem_free(bcp);
1843 }
1844 }
1845 return 1;
1846}
1847
1848/*
1849 * Perform recovery for a buffer full of inodes. In these buffers, the only
1850 * data which should be recovered is that which corresponds to the
1851 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1852 * data for the inodes is always logged through the inodes themselves rather
1853 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1854 *
1855 * The only time when buffers full of inodes are fully recovered is when the
1856 * buffer is full of newly allocated inodes. In this case the buffer will
1857 * not be marked as an inode buffer and so will be sent to
1858 * xlog_recover_do_reg_buffer() below during recovery.
1859 */
1860STATIC int
1861xlog_recover_do_inode_buffer(
1862 struct xfs_mount *mp,
1863 xlog_recover_item_t *item,
1864 struct xfs_buf *bp,
1865 xfs_buf_log_format_t *buf_f)
1866{
1867 int i;
1868 int item_index = 0;
1869 int bit = 0;
1870 int nbits = 0;
1871 int reg_buf_offset = 0;
1872 int reg_buf_bytes = 0;
1873 int next_unlinked_offset;
1874 int inodes_per_buf;
1875 xfs_agino_t *logged_nextp;
1876 xfs_agino_t *buffer_nextp;
1877
1878 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1879
1880 /*
1881 * Post recovery validation only works properly on CRC enabled
1882 * filesystems.
1883 */
1884 if (xfs_sb_version_hascrc(&mp->m_sb))
1885 bp->b_ops = &xfs_inode_buf_ops;
1886
1887 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1888 for (i = 0; i < inodes_per_buf; i++) {
1889 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1890 offsetof(xfs_dinode_t, di_next_unlinked);
1891
1892 while (next_unlinked_offset >=
1893 (reg_buf_offset + reg_buf_bytes)) {
1894 /*
1895 * The next di_next_unlinked field is beyond
1896 * the current logged region. Find the next
1897 * logged region that contains or is beyond
1898 * the current di_next_unlinked field.
1899 */
1900 bit += nbits;
1901 bit = xfs_next_bit(buf_f->blf_data_map,
1902 buf_f->blf_map_size, bit);
1903
1904 /*
1905 * If there are no more logged regions in the
1906 * buffer, then we're done.
1907 */
1908 if (bit == -1)
1909 return 0;
1910
1911 nbits = xfs_contig_bits(buf_f->blf_data_map,
1912 buf_f->blf_map_size, bit);
1913 ASSERT(nbits > 0);
1914 reg_buf_offset = bit << XFS_BLF_SHIFT;
1915 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1916 item_index++;
1917 }
1918
1919 /*
1920 * If the current logged region starts after the current
1921 * di_next_unlinked field, then move on to the next
1922 * di_next_unlinked field.
1923 */
1924 if (next_unlinked_offset < reg_buf_offset)
1925 continue;
1926
1927 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1928 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1929 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1930 BBTOB(bp->b_io_length));
1931
1932 /*
1933 * The current logged region contains a copy of the
1934 * current di_next_unlinked field. Extract its value
1935 * and copy it to the buffer copy.
1936 */
1937 logged_nextp = item->ri_buf[item_index].i_addr +
1938 next_unlinked_offset - reg_buf_offset;
1939 if (unlikely(*logged_nextp == 0)) {
1940 xfs_alert(mp,
1941 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1942 "Trying to replay bad (0) inode di_next_unlinked field.",
1943 item, bp);
1944 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1945 XFS_ERRLEVEL_LOW, mp);
1946 return XFS_ERROR(EFSCORRUPTED);
1947 }
1948
1949 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1950 next_unlinked_offset);
1951 *buffer_nextp = *logged_nextp;
1952
1953 /*
1954 * If necessary, recalculate the CRC in the on-disk inode. We
1955 * have to leave the inode in a consistent state for whoever
1956 * reads it next....
1957 */
1958 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1959 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1960
1961 }
1962
1963 return 0;
1964}
1965
1966/*
1967 * V5 filesystems know the age of the buffer on disk being recovered. We can
1968 * have newer objects on disk than we are replaying, and so for these cases we
1969 * don't want to replay the current change as that will make the buffer contents
1970 * temporarily invalid on disk.
1971 *
1972 * The magic number might not match the buffer type we are going to recover
1973 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1974 * extract the LSN of the existing object in the buffer based on it's current
1975 * magic number. If we don't recognise the magic number in the buffer, then
1976 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1977 * so can recover the buffer.
1978 *
1979 * Note: we cannot rely solely on magic number matches to determine that the
1980 * buffer has a valid LSN - we also need to verify that it belongs to this
1981 * filesystem, so we need to extract the object's LSN and compare it to that
1982 * which we read from the superblock. If the UUIDs don't match, then we've got a
1983 * stale metadata block from an old filesystem instance that we need to recover
1984 * over the top of.
1985 */
1986static xfs_lsn_t
1987xlog_recover_get_buf_lsn(
1988 struct xfs_mount *mp,
1989 struct xfs_buf *bp)
1990{
1991 __uint32_t magic32;
1992 __uint16_t magic16;
1993 __uint16_t magicda;
1994 void *blk = bp->b_addr;
1995 uuid_t *uuid;
1996 xfs_lsn_t lsn = -1;
1997
1998 /* v4 filesystems always recover immediately */
1999 if (!xfs_sb_version_hascrc(&mp->m_sb))
2000 goto recover_immediately;
2001
2002 magic32 = be32_to_cpu(*(__be32 *)blk);
2003 switch (magic32) {
2004 case XFS_ABTB_CRC_MAGIC:
2005 case XFS_ABTC_CRC_MAGIC:
2006 case XFS_ABTB_MAGIC:
2007 case XFS_ABTC_MAGIC:
2008 case XFS_IBT_CRC_MAGIC:
2009 case XFS_IBT_MAGIC: {
2010 struct xfs_btree_block *btb = blk;
2011
2012 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2013 uuid = &btb->bb_u.s.bb_uuid;
2014 break;
2015 }
2016 case XFS_BMAP_CRC_MAGIC:
2017 case XFS_BMAP_MAGIC: {
2018 struct xfs_btree_block *btb = blk;
2019
2020 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2021 uuid = &btb->bb_u.l.bb_uuid;
2022 break;
2023 }
2024 case XFS_AGF_MAGIC:
2025 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2026 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2027 break;
2028 case XFS_AGFL_MAGIC:
2029 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2030 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2031 break;
2032 case XFS_AGI_MAGIC:
2033 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2034 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2035 break;
2036 case XFS_SYMLINK_MAGIC:
2037 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2038 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2039 break;
2040 case XFS_DIR3_BLOCK_MAGIC:
2041 case XFS_DIR3_DATA_MAGIC:
2042 case XFS_DIR3_FREE_MAGIC:
2043 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2044 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2045 break;
2046 case XFS_ATTR3_RMT_MAGIC:
2047 lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
2048 uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
2049 break;
2050 case XFS_SB_MAGIC:
2051 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2052 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2053 break;
2054 default:
2055 break;
2056 }
2057
2058 if (lsn != (xfs_lsn_t)-1) {
2059 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2060 goto recover_immediately;
2061 return lsn;
2062 }
2063
2064 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2065 switch (magicda) {
2066 case XFS_DIR3_LEAF1_MAGIC:
2067 case XFS_DIR3_LEAFN_MAGIC:
2068 case XFS_DA3_NODE_MAGIC:
2069 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2070 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2071 break;
2072 default:
2073 break;
2074 }
2075
2076 if (lsn != (xfs_lsn_t)-1) {
2077 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2078 goto recover_immediately;
2079 return lsn;
2080 }
2081
2082 /*
2083 * We do individual object checks on dquot and inode buffers as they
2084 * have their own individual LSN records. Also, we could have a stale
2085 * buffer here, so we have to at least recognise these buffer types.
2086 *
2087 * A notd complexity here is inode unlinked list processing - it logs
2088 * the inode directly in the buffer, but we don't know which inodes have
2089 * been modified, and there is no global buffer LSN. Hence we need to
2090 * recover all inode buffer types immediately. This problem will be
2091 * fixed by logical logging of the unlinked list modifications.
2092 */
2093 magic16 = be16_to_cpu(*(__be16 *)blk);
2094 switch (magic16) {
2095 case XFS_DQUOT_MAGIC:
2096 case XFS_DINODE_MAGIC:
2097 goto recover_immediately;
2098 default:
2099 break;
2100 }
2101
2102 /* unknown buffer contents, recover immediately */
2103
2104recover_immediately:
2105 return (xfs_lsn_t)-1;
2106
2107}
2108
2109/*
2110 * Validate the recovered buffer is of the correct type and attach the
2111 * appropriate buffer operations to them for writeback. Magic numbers are in a
2112 * few places:
2113 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2114 * the first 32 bits of the buffer (most blocks),
2115 * inside a struct xfs_da_blkinfo at the start of the buffer.
2116 */
2117static void
2118xlog_recover_validate_buf_type(
2119 struct xfs_mount *mp,
2120 struct xfs_buf *bp,
2121 xfs_buf_log_format_t *buf_f)
2122{
2123 struct xfs_da_blkinfo *info = bp->b_addr;
2124 __uint32_t magic32;
2125 __uint16_t magic16;
2126 __uint16_t magicda;
2127
2128 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2129 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2130 magicda = be16_to_cpu(info->magic);
2131 switch (xfs_blft_from_flags(buf_f)) {
2132 case XFS_BLFT_BTREE_BUF:
2133 switch (magic32) {
2134 case XFS_ABTB_CRC_MAGIC:
2135 case XFS_ABTC_CRC_MAGIC:
2136 case XFS_ABTB_MAGIC:
2137 case XFS_ABTC_MAGIC:
2138 bp->b_ops = &xfs_allocbt_buf_ops;
2139 break;
2140 case XFS_IBT_CRC_MAGIC:
2141 case XFS_IBT_MAGIC:
2142 bp->b_ops = &xfs_inobt_buf_ops;
2143 break;
2144 case XFS_BMAP_CRC_MAGIC:
2145 case XFS_BMAP_MAGIC:
2146 bp->b_ops = &xfs_bmbt_buf_ops;
2147 break;
2148 default:
2149 xfs_warn(mp, "Bad btree block magic!");
2150 ASSERT(0);
2151 break;
2152 }
2153 break;
2154 case XFS_BLFT_AGF_BUF:
2155 if (magic32 != XFS_AGF_MAGIC) {
2156 xfs_warn(mp, "Bad AGF block magic!");
2157 ASSERT(0);
2158 break;
2159 }
2160 bp->b_ops = &xfs_agf_buf_ops;
2161 break;
2162 case XFS_BLFT_AGFL_BUF:
2163 if (!xfs_sb_version_hascrc(&mp->m_sb))
2164 break;
2165 if (magic32 != XFS_AGFL_MAGIC) {
2166 xfs_warn(mp, "Bad AGFL block magic!");
2167 ASSERT(0);
2168 break;
2169 }
2170 bp->b_ops = &xfs_agfl_buf_ops;
2171 break;
2172 case XFS_BLFT_AGI_BUF:
2173 if (magic32 != XFS_AGI_MAGIC) {
2174 xfs_warn(mp, "Bad AGI block magic!");
2175 ASSERT(0);
2176 break;
2177 }
2178 bp->b_ops = &xfs_agi_buf_ops;
2179 break;
2180 case XFS_BLFT_UDQUOT_BUF:
2181 case XFS_BLFT_PDQUOT_BUF:
2182 case XFS_BLFT_GDQUOT_BUF:
2183#ifdef CONFIG_XFS_QUOTA
2184 if (magic16 != XFS_DQUOT_MAGIC) {
2185 xfs_warn(mp, "Bad DQUOT block magic!");
2186 ASSERT(0);
2187 break;
2188 }
2189 bp->b_ops = &xfs_dquot_buf_ops;
2190#else
2191 xfs_alert(mp,
2192 "Trying to recover dquots without QUOTA support built in!");
2193 ASSERT(0);
2194#endif
2195 break;
2196 case XFS_BLFT_DINO_BUF:
2197 /*
2198 * we get here with inode allocation buffers, not buffers that
2199 * track unlinked list changes.
2200 */
2201 if (magic16 != XFS_DINODE_MAGIC) {
2202 xfs_warn(mp, "Bad INODE block magic!");
2203 ASSERT(0);
2204 break;
2205 }
2206 bp->b_ops = &xfs_inode_buf_ops;
2207 break;
2208 case XFS_BLFT_SYMLINK_BUF:
2209 if (magic32 != XFS_SYMLINK_MAGIC) {
2210 xfs_warn(mp, "Bad symlink block magic!");
2211 ASSERT(0);
2212 break;
2213 }
2214 bp->b_ops = &xfs_symlink_buf_ops;
2215 break;
2216 case XFS_BLFT_DIR_BLOCK_BUF:
2217 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2218 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2219 xfs_warn(mp, "Bad dir block magic!");
2220 ASSERT(0);
2221 break;
2222 }
2223 bp->b_ops = &xfs_dir3_block_buf_ops;
2224 break;
2225 case XFS_BLFT_DIR_DATA_BUF:
2226 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2227 magic32 != XFS_DIR3_DATA_MAGIC) {
2228 xfs_warn(mp, "Bad dir data magic!");
2229 ASSERT(0);
2230 break;
2231 }
2232 bp->b_ops = &xfs_dir3_data_buf_ops;
2233 break;
2234 case XFS_BLFT_DIR_FREE_BUF:
2235 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2236 magic32 != XFS_DIR3_FREE_MAGIC) {
2237 xfs_warn(mp, "Bad dir3 free magic!");
2238 ASSERT(0);
2239 break;
2240 }
2241 bp->b_ops = &xfs_dir3_free_buf_ops;
2242 break;
2243 case XFS_BLFT_DIR_LEAF1_BUF:
2244 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2245 magicda != XFS_DIR3_LEAF1_MAGIC) {
2246 xfs_warn(mp, "Bad dir leaf1 magic!");
2247 ASSERT(0);
2248 break;
2249 }
2250 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2251 break;
2252 case XFS_BLFT_DIR_LEAFN_BUF:
2253 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2254 magicda != XFS_DIR3_LEAFN_MAGIC) {
2255 xfs_warn(mp, "Bad dir leafn magic!");
2256 ASSERT(0);
2257 break;
2258 }
2259 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2260 break;
2261 case XFS_BLFT_DA_NODE_BUF:
2262 if (magicda != XFS_DA_NODE_MAGIC &&
2263 magicda != XFS_DA3_NODE_MAGIC) {
2264 xfs_warn(mp, "Bad da node magic!");
2265 ASSERT(0);
2266 break;
2267 }
2268 bp->b_ops = &xfs_da3_node_buf_ops;
2269 break;
2270 case XFS_BLFT_ATTR_LEAF_BUF:
2271 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2272 magicda != XFS_ATTR3_LEAF_MAGIC) {
2273 xfs_warn(mp, "Bad attr leaf magic!");
2274 ASSERT(0);
2275 break;
2276 }
2277 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2278 break;
2279 case XFS_BLFT_ATTR_RMT_BUF:
2280 if (!xfs_sb_version_hascrc(&mp->m_sb))
2281 break;
2282 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2283 xfs_warn(mp, "Bad attr remote magic!");
2284 ASSERT(0);
2285 break;
2286 }
2287 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2288 break;
2289 case XFS_BLFT_SB_BUF:
2290 if (magic32 != XFS_SB_MAGIC) {
2291 xfs_warn(mp, "Bad SB block magic!");
2292 ASSERT(0);
2293 break;
2294 }
2295 bp->b_ops = &xfs_sb_buf_ops;
2296 break;
2297 default:
2298 xfs_warn(mp, "Unknown buffer type %d!",
2299 xfs_blft_from_flags(buf_f));
2300 break;
2301 }
2302}
2303
2304/*
2305 * Perform a 'normal' buffer recovery. Each logged region of the
2306 * buffer should be copied over the corresponding region in the
2307 * given buffer. The bitmap in the buf log format structure indicates
2308 * where to place the logged data.
2309 */
2310STATIC void
2311xlog_recover_do_reg_buffer(
2312 struct xfs_mount *mp,
2313 xlog_recover_item_t *item,
2314 struct xfs_buf *bp,
2315 xfs_buf_log_format_t *buf_f)
2316{
2317 int i;
2318 int bit;
2319 int nbits;
2320 int error;
2321
2322 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2323
2324 bit = 0;
2325 i = 1; /* 0 is the buf format structure */
2326 while (1) {
2327 bit = xfs_next_bit(buf_f->blf_data_map,
2328 buf_f->blf_map_size, bit);
2329 if (bit == -1)
2330 break;
2331 nbits = xfs_contig_bits(buf_f->blf_data_map,
2332 buf_f->blf_map_size, bit);
2333 ASSERT(nbits > 0);
2334 ASSERT(item->ri_buf[i].i_addr != NULL);
2335 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2336 ASSERT(BBTOB(bp->b_io_length) >=
2337 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2338
2339 /*
2340 * The dirty regions logged in the buffer, even though
2341 * contiguous, may span multiple chunks. This is because the
2342 * dirty region may span a physical page boundary in a buffer
2343 * and hence be split into two separate vectors for writing into
2344 * the log. Hence we need to trim nbits back to the length of
2345 * the current region being copied out of the log.
2346 */
2347 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2348 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2349
2350 /*
2351 * Do a sanity check if this is a dquot buffer. Just checking
2352 * the first dquot in the buffer should do. XXXThis is
2353 * probably a good thing to do for other buf types also.
2354 */
2355 error = 0;
2356 if (buf_f->blf_flags &
2357 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2358 if (item->ri_buf[i].i_addr == NULL) {
2359 xfs_alert(mp,
2360 "XFS: NULL dquot in %s.", __func__);
2361 goto next;
2362 }
2363 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2364 xfs_alert(mp,
2365 "XFS: dquot too small (%d) in %s.",
2366 item->ri_buf[i].i_len, __func__);
2367 goto next;
2368 }
2369 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2370 -1, 0, XFS_QMOPT_DOWARN,
2371 "dquot_buf_recover");
2372 if (error)
2373 goto next;
2374 }
2375
2376 memcpy(xfs_buf_offset(bp,
2377 (uint)bit << XFS_BLF_SHIFT), /* dest */
2378 item->ri_buf[i].i_addr, /* source */
2379 nbits<<XFS_BLF_SHIFT); /* length */
2380 next:
2381 i++;
2382 bit += nbits;
2383 }
2384
2385 /* Shouldn't be any more regions */
2386 ASSERT(i == item->ri_total);
2387
2388 /*
2389 * We can only do post recovery validation on items on CRC enabled
2390 * fielsystems as we need to know when the buffer was written to be able
2391 * to determine if we should have replayed the item. If we replay old
2392 * metadata over a newer buffer, then it will enter a temporarily
2393 * inconsistent state resulting in verification failures. Hence for now
2394 * just avoid the verification stage for non-crc filesystems
2395 */
2396 if (xfs_sb_version_hascrc(&mp->m_sb))
2397 xlog_recover_validate_buf_type(mp, bp, buf_f);
2398}
2399
2400/*
2401 * Perform a dquot buffer recovery.
2402 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2403 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2404 * Else, treat it as a regular buffer and do recovery.
2405 */
2406STATIC void
2407xlog_recover_do_dquot_buffer(
2408 struct xfs_mount *mp,
2409 struct xlog *log,
2410 struct xlog_recover_item *item,
2411 struct xfs_buf *bp,
2412 struct xfs_buf_log_format *buf_f)
2413{
2414 uint type;
2415
2416 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2417
2418 /*
2419 * Filesystems are required to send in quota flags at mount time.
2420 */
2421 if (mp->m_qflags == 0) {
2422 return;
2423 }
2424
2425 type = 0;
2426 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2427 type |= XFS_DQ_USER;
2428 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2429 type |= XFS_DQ_PROJ;
2430 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2431 type |= XFS_DQ_GROUP;
2432 /*
2433 * This type of quotas was turned off, so ignore this buffer
2434 */
2435 if (log->l_quotaoffs_flag & type)
2436 return;
2437
2438 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2439}
2440
2441/*
2442 * This routine replays a modification made to a buffer at runtime.
2443 * There are actually two types of buffer, regular and inode, which
2444 * are handled differently. Inode buffers are handled differently
2445 * in that we only recover a specific set of data from them, namely
2446 * the inode di_next_unlinked fields. This is because all other inode
2447 * data is actually logged via inode records and any data we replay
2448 * here which overlaps that may be stale.
2449 *
2450 * When meta-data buffers are freed at run time we log a buffer item
2451 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2452 * of the buffer in the log should not be replayed at recovery time.
2453 * This is so that if the blocks covered by the buffer are reused for
2454 * file data before we crash we don't end up replaying old, freed
2455 * meta-data into a user's file.
2456 *
2457 * To handle the cancellation of buffer log items, we make two passes
2458 * over the log during recovery. During the first we build a table of
2459 * those buffers which have been cancelled, and during the second we
2460 * only replay those buffers which do not have corresponding cancel
2461 * records in the table. See xlog_recover_buffer_pass[1,2] above
2462 * for more details on the implementation of the table of cancel records.
2463 */
2464STATIC int
2465xlog_recover_buffer_pass2(
2466 struct xlog *log,
2467 struct list_head *buffer_list,
2468 struct xlog_recover_item *item,
2469 xfs_lsn_t current_lsn)
2470{
2471 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2472 xfs_mount_t *mp = log->l_mp;
2473 xfs_buf_t *bp;
2474 int error;
2475 uint buf_flags;
2476 xfs_lsn_t lsn;
2477
2478 /*
2479 * In this pass we only want to recover all the buffers which have
2480 * not been cancelled and are not cancellation buffers themselves.
2481 */
2482 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2483 buf_f->blf_len, buf_f->blf_flags)) {
2484 trace_xfs_log_recover_buf_cancel(log, buf_f);
2485 return 0;
2486 }
2487
2488 trace_xfs_log_recover_buf_recover(log, buf_f);
2489
2490 buf_flags = 0;
2491 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2492 buf_flags |= XBF_UNMAPPED;
2493
2494 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2495 buf_flags, NULL);
2496 if (!bp)
2497 return XFS_ERROR(ENOMEM);
2498 error = bp->b_error;
2499 if (error) {
2500 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2501 goto out_release;
2502 }
2503
2504 /*
2505 * recover the buffer only if we get an LSN from it and it's less than
2506 * the lsn of the transaction we are replaying.
2507 */
2508 lsn = xlog_recover_get_buf_lsn(mp, bp);
2509 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0)
2510 goto out_release;
2511
2512 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2513 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2514 } else if (buf_f->blf_flags &
2515 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2516 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2517 } else {
2518 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2519 }
2520 if (error)
2521 goto out_release;
2522
2523 /*
2524 * Perform delayed write on the buffer. Asynchronous writes will be
2525 * slower when taking into account all the buffers to be flushed.
2526 *
2527 * Also make sure that only inode buffers with good sizes stay in
2528 * the buffer cache. The kernel moves inodes in buffers of 1 block
2529 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2530 * buffers in the log can be a different size if the log was generated
2531 * by an older kernel using unclustered inode buffers or a newer kernel
2532 * running with a different inode cluster size. Regardless, if the
2533 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2534 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2535 * the buffer out of the buffer cache so that the buffer won't
2536 * overlap with future reads of those inodes.
2537 */
2538 if (XFS_DINODE_MAGIC ==
2539 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2540 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2541 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
2542 xfs_buf_stale(bp);
2543 error = xfs_bwrite(bp);
2544 } else {
2545 ASSERT(bp->b_target->bt_mount == mp);
2546 bp->b_iodone = xlog_recover_iodone;
2547 xfs_buf_delwri_queue(bp, buffer_list);
2548 }
2549
2550out_release:
2551 xfs_buf_relse(bp);
2552 return error;
2553}
2554
2555/*
2556 * Inode fork owner changes
2557 *
2558 * If we have been told that we have to reparent the inode fork, it's because an
2559 * extent swap operation on a CRC enabled filesystem has been done and we are
2560 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2561 * owners of it.
2562 *
2563 * The complexity here is that we don't have an inode context to work with, so
2564 * after we've replayed the inode we need to instantiate one. This is where the
2565 * fun begins.
2566 *
2567 * We are in the middle of log recovery, so we can't run transactions. That
2568 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2569 * that will result in the corresponding iput() running the inode through
2570 * xfs_inactive(). If we've just replayed an inode core that changes the link
2571 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2572 * transactions (bad!).
2573 *
2574 * So, to avoid this, we instantiate an inode directly from the inode core we've
2575 * just recovered. We have the buffer still locked, and all we really need to
2576 * instantiate is the inode core and the forks being modified. We can do this
2577 * manually, then run the inode btree owner change, and then tear down the
2578 * xfs_inode without having to run any transactions at all.
2579 *
2580 * Also, because we don't have a transaction context available here but need to
2581 * gather all the buffers we modify for writeback so we pass the buffer_list
2582 * instead for the operation to use.
2583 */
2584
2585STATIC int
2586xfs_recover_inode_owner_change(
2587 struct xfs_mount *mp,
2588 struct xfs_dinode *dip,
2589 struct xfs_inode_log_format *in_f,
2590 struct list_head *buffer_list)
2591{
2592 struct xfs_inode *ip;
2593 int error;
2594
2595 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2596
2597 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2598 if (!ip)
2599 return ENOMEM;
2600
2601 /* instantiate the inode */
2602 xfs_dinode_from_disk(&ip->i_d, dip);
2603 ASSERT(ip->i_d.di_version >= 3);
2604
2605 error = xfs_iformat_fork(ip, dip);
2606 if (error)
2607 goto out_free_ip;
2608
2609
2610 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2611 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2612 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2613 ip->i_ino, buffer_list);
2614 if (error)
2615 goto out_free_ip;
2616 }
2617
2618 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2619 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2620 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2621 ip->i_ino, buffer_list);
2622 if (error)
2623 goto out_free_ip;
2624 }
2625
2626out_free_ip:
2627 xfs_inode_free(ip);
2628 return error;
2629}
2630
2631STATIC int
2632xlog_recover_inode_pass2(
2633 struct xlog *log,
2634 struct list_head *buffer_list,
2635 struct xlog_recover_item *item,
2636 xfs_lsn_t current_lsn)
2637{
2638 xfs_inode_log_format_t *in_f;
2639 xfs_mount_t *mp = log->l_mp;
2640 xfs_buf_t *bp;
2641 xfs_dinode_t *dip;
2642 int len;
2643 xfs_caddr_t src;
2644 xfs_caddr_t dest;
2645 int error;
2646 int attr_index;
2647 uint fields;
2648 xfs_icdinode_t *dicp;
2649 uint isize;
2650 int need_free = 0;
2651
2652 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2653 in_f = item->ri_buf[0].i_addr;
2654 } else {
2655 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2656 need_free = 1;
2657 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2658 if (error)
2659 goto error;
2660 }
2661
2662 /*
2663 * Inode buffers can be freed, look out for it,
2664 * and do not replay the inode.
2665 */
2666 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2667 in_f->ilf_len, 0)) {
2668 error = 0;
2669 trace_xfs_log_recover_inode_cancel(log, in_f);
2670 goto error;
2671 }
2672 trace_xfs_log_recover_inode_recover(log, in_f);
2673
2674 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2675 &xfs_inode_buf_ops);
2676 if (!bp) {
2677 error = ENOMEM;
2678 goto error;
2679 }
2680 error = bp->b_error;
2681 if (error) {
2682 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2683 goto out_release;
2684 }
2685 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2686 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2687
2688 /*
2689 * Make sure the place we're flushing out to really looks
2690 * like an inode!
2691 */
2692 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2693 xfs_alert(mp,
2694 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2695 __func__, dip, bp, in_f->ilf_ino);
2696 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2697 XFS_ERRLEVEL_LOW, mp);
2698 error = EFSCORRUPTED;
2699 goto out_release;
2700 }
2701 dicp = item->ri_buf[1].i_addr;
2702 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2703 xfs_alert(mp,
2704 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2705 __func__, item, in_f->ilf_ino);
2706 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2707 XFS_ERRLEVEL_LOW, mp);
2708 error = EFSCORRUPTED;
2709 goto out_release;
2710 }
2711
2712 /*
2713 * If the inode has an LSN in it, recover the inode only if it's less
2714 * than the lsn of the transaction we are replaying. Note: we still
2715 * need to replay an owner change even though the inode is more recent
2716 * than the transaction as there is no guarantee that all the btree
2717 * blocks are more recent than this transaction, too.
2718 */
2719 if (dip->di_version >= 3) {
2720 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2721
2722 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2723 trace_xfs_log_recover_inode_skip(log, in_f);
2724 error = 0;
2725 goto out_owner_change;
2726 }
2727 }
2728
2729 /*
2730 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2731 * are transactional and if ordering is necessary we can determine that
2732 * more accurately by the LSN field in the V3 inode core. Don't trust
2733 * the inode versions we might be changing them here - use the
2734 * superblock flag to determine whether we need to look at di_flushiter
2735 * to skip replay when the on disk inode is newer than the log one
2736 */
2737 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2738 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2739 /*
2740 * Deal with the wrap case, DI_MAX_FLUSH is less
2741 * than smaller numbers
2742 */
2743 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2744 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2745 /* do nothing */
2746 } else {
2747 trace_xfs_log_recover_inode_skip(log, in_f);
2748 error = 0;
2749 goto out_release;
2750 }
2751 }
2752
2753 /* Take the opportunity to reset the flush iteration count */
2754 dicp->di_flushiter = 0;
2755
2756 if (unlikely(S_ISREG(dicp->di_mode))) {
2757 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2758 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2759 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2760 XFS_ERRLEVEL_LOW, mp, dicp);
2761 xfs_alert(mp,
2762 "%s: Bad regular inode log record, rec ptr 0x%p, "
2763 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2764 __func__, item, dip, bp, in_f->ilf_ino);
2765 error = EFSCORRUPTED;
2766 goto out_release;
2767 }
2768 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2769 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2770 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2771 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2772 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2773 XFS_ERRLEVEL_LOW, mp, dicp);
2774 xfs_alert(mp,
2775 "%s: Bad dir inode log record, rec ptr 0x%p, "
2776 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2777 __func__, item, dip, bp, in_f->ilf_ino);
2778 error = EFSCORRUPTED;
2779 goto out_release;
2780 }
2781 }
2782 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2783 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2784 XFS_ERRLEVEL_LOW, mp, dicp);
2785 xfs_alert(mp,
2786 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2787 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2788 __func__, item, dip, bp, in_f->ilf_ino,
2789 dicp->di_nextents + dicp->di_anextents,
2790 dicp->di_nblocks);
2791 error = EFSCORRUPTED;
2792 goto out_release;
2793 }
2794 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2795 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2796 XFS_ERRLEVEL_LOW, mp, dicp);
2797 xfs_alert(mp,
2798 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2799 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2800 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2801 error = EFSCORRUPTED;
2802 goto out_release;
2803 }
2804 isize = xfs_icdinode_size(dicp->di_version);
2805 if (unlikely(item->ri_buf[1].i_len > isize)) {
2806 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2807 XFS_ERRLEVEL_LOW, mp, dicp);
2808 xfs_alert(mp,
2809 "%s: Bad inode log record length %d, rec ptr 0x%p",
2810 __func__, item->ri_buf[1].i_len, item);
2811 error = EFSCORRUPTED;
2812 goto out_release;
2813 }
2814
2815 /* The core is in in-core format */
2816 xfs_dinode_to_disk(dip, dicp);
2817
2818 /* the rest is in on-disk format */
2819 if (item->ri_buf[1].i_len > isize) {
2820 memcpy((char *)dip + isize,
2821 item->ri_buf[1].i_addr + isize,
2822 item->ri_buf[1].i_len - isize);
2823 }
2824
2825 fields = in_f->ilf_fields;
2826 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2827 case XFS_ILOG_DEV:
2828 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2829 break;
2830 case XFS_ILOG_UUID:
2831 memcpy(XFS_DFORK_DPTR(dip),
2832 &in_f->ilf_u.ilfu_uuid,
2833 sizeof(uuid_t));
2834 break;
2835 }
2836
2837 if (in_f->ilf_size == 2)
2838 goto out_owner_change;
2839 len = item->ri_buf[2].i_len;
2840 src = item->ri_buf[2].i_addr;
2841 ASSERT(in_f->ilf_size <= 4);
2842 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2843 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2844 (len == in_f->ilf_dsize));
2845
2846 switch (fields & XFS_ILOG_DFORK) {
2847 case XFS_ILOG_DDATA:
2848 case XFS_ILOG_DEXT:
2849 memcpy(XFS_DFORK_DPTR(dip), src, len);
2850 break;
2851
2852 case XFS_ILOG_DBROOT:
2853 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2854 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2855 XFS_DFORK_DSIZE(dip, mp));
2856 break;
2857
2858 default:
2859 /*
2860 * There are no data fork flags set.
2861 */
2862 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2863 break;
2864 }
2865
2866 /*
2867 * If we logged any attribute data, recover it. There may or
2868 * may not have been any other non-core data logged in this
2869 * transaction.
2870 */
2871 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2872 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2873 attr_index = 3;
2874 } else {
2875 attr_index = 2;
2876 }
2877 len = item->ri_buf[attr_index].i_len;
2878 src = item->ri_buf[attr_index].i_addr;
2879 ASSERT(len == in_f->ilf_asize);
2880
2881 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2882 case XFS_ILOG_ADATA:
2883 case XFS_ILOG_AEXT:
2884 dest = XFS_DFORK_APTR(dip);
2885 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2886 memcpy(dest, src, len);
2887 break;
2888
2889 case XFS_ILOG_ABROOT:
2890 dest = XFS_DFORK_APTR(dip);
2891 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2892 len, (xfs_bmdr_block_t*)dest,
2893 XFS_DFORK_ASIZE(dip, mp));
2894 break;
2895
2896 default:
2897 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2898 ASSERT(0);
2899 error = EIO;
2900 goto out_release;
2901 }
2902 }
2903
2904out_owner_change:
2905 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2906 error = xfs_recover_inode_owner_change(mp, dip, in_f,
2907 buffer_list);
2908 /* re-generate the checksum. */
2909 xfs_dinode_calc_crc(log->l_mp, dip);
2910
2911 ASSERT(bp->b_target->bt_mount == mp);
2912 bp->b_iodone = xlog_recover_iodone;
2913 xfs_buf_delwri_queue(bp, buffer_list);
2914
2915out_release:
2916 xfs_buf_relse(bp);
2917error:
2918 if (need_free)
2919 kmem_free(in_f);
2920 return XFS_ERROR(error);
2921}
2922
2923/*
2924 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2925 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2926 * of that type.
2927 */
2928STATIC int
2929xlog_recover_quotaoff_pass1(
2930 struct xlog *log,
2931 struct xlog_recover_item *item)
2932{
2933 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2934 ASSERT(qoff_f);
2935
2936 /*
2937 * The logitem format's flag tells us if this was user quotaoff,
2938 * group/project quotaoff or both.
2939 */
2940 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2941 log->l_quotaoffs_flag |= XFS_DQ_USER;
2942 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2943 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2944 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2945 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2946
2947 return (0);
2948}
2949
2950/*
2951 * Recover a dquot record
2952 */
2953STATIC int
2954xlog_recover_dquot_pass2(
2955 struct xlog *log,
2956 struct list_head *buffer_list,
2957 struct xlog_recover_item *item,
2958 xfs_lsn_t current_lsn)
2959{
2960 xfs_mount_t *mp = log->l_mp;
2961 xfs_buf_t *bp;
2962 struct xfs_disk_dquot *ddq, *recddq;
2963 int error;
2964 xfs_dq_logformat_t *dq_f;
2965 uint type;
2966
2967
2968 /*
2969 * Filesystems are required to send in quota flags at mount time.
2970 */
2971 if (mp->m_qflags == 0)
2972 return (0);
2973
2974 recddq = item->ri_buf[1].i_addr;
2975 if (recddq == NULL) {
2976 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2977 return XFS_ERROR(EIO);
2978 }
2979 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2980 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2981 item->ri_buf[1].i_len, __func__);
2982 return XFS_ERROR(EIO);
2983 }
2984
2985 /*
2986 * This type of quotas was turned off, so ignore this record.
2987 */
2988 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2989 ASSERT(type);
2990 if (log->l_quotaoffs_flag & type)
2991 return (0);
2992
2993 /*
2994 * At this point we know that quota was _not_ turned off.
2995 * Since the mount flags are not indicating to us otherwise, this
2996 * must mean that quota is on, and the dquot needs to be replayed.
2997 * Remember that we may not have fully recovered the superblock yet,
2998 * so we can't do the usual trick of looking at the SB quota bits.
2999 *
3000 * The other possibility, of course, is that the quota subsystem was
3001 * removed since the last mount - ENOSYS.
3002 */
3003 dq_f = item->ri_buf[0].i_addr;
3004 ASSERT(dq_f);
3005 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3006 "xlog_recover_dquot_pass2 (log copy)");
3007 if (error)
3008 return XFS_ERROR(EIO);
3009 ASSERT(dq_f->qlf_len == 1);
3010
3011 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3012 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3013 NULL);
3014 if (error)
3015 return error;
3016
3017 ASSERT(bp);
3018 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
3019
3020 /*
3021 * At least the magic num portion should be on disk because this
3022 * was among a chunk of dquots created earlier, and we did some
3023 * minimal initialization then.
3024 */
3025 error = xfs_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3026 "xlog_recover_dquot_pass2");
3027 if (error) {
3028 xfs_buf_relse(bp);
3029 return XFS_ERROR(EIO);
3030 }
3031
3032 /*
3033 * If the dquot has an LSN in it, recover the dquot only if it's less
3034 * than the lsn of the transaction we are replaying.
3035 */
3036 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3037 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3038 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3039
3040 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3041 goto out_release;
3042 }
3043 }
3044
3045 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3046 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3047 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3048 XFS_DQUOT_CRC_OFF);
3049 }
3050
3051 ASSERT(dq_f->qlf_size == 2);
3052 ASSERT(bp->b_target->bt_mount == mp);
3053 bp->b_iodone = xlog_recover_iodone;
3054 xfs_buf_delwri_queue(bp, buffer_list);
3055
3056out_release:
3057 xfs_buf_relse(bp);
3058 return 0;
3059}
3060
3061/*
3062 * This routine is called to create an in-core extent free intent
3063 * item from the efi format structure which was logged on disk.
3064 * It allocates an in-core efi, copies the extents from the format
3065 * structure into it, and adds the efi to the AIL with the given
3066 * LSN.
3067 */
3068STATIC int
3069xlog_recover_efi_pass2(
3070 struct xlog *log,
3071 struct xlog_recover_item *item,
3072 xfs_lsn_t lsn)
3073{
3074 int error;
3075 xfs_mount_t *mp = log->l_mp;
3076 xfs_efi_log_item_t *efip;
3077 xfs_efi_log_format_t *efi_formatp;
3078
3079 efi_formatp = item->ri_buf[0].i_addr;
3080
3081 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3082 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
3083 &(efip->efi_format)))) {
3084 xfs_efi_item_free(efip);
3085 return error;
3086 }
3087 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3088
3089 spin_lock(&log->l_ailp->xa_lock);
3090 /*
3091 * xfs_trans_ail_update() drops the AIL lock.
3092 */
3093 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3094 return 0;
3095}
3096
3097
3098/*
3099 * This routine is called when an efd format structure is found in
3100 * a committed transaction in the log. It's purpose is to cancel
3101 * the corresponding efi if it was still in the log. To do this
3102 * it searches the AIL for the efi with an id equal to that in the
3103 * efd format structure. If we find it, we remove the efi from the
3104 * AIL and free it.
3105 */
3106STATIC int
3107xlog_recover_efd_pass2(
3108 struct xlog *log,
3109 struct xlog_recover_item *item)
3110{
3111 xfs_efd_log_format_t *efd_formatp;
3112 xfs_efi_log_item_t *efip = NULL;
3113 xfs_log_item_t *lip;
3114 __uint64_t efi_id;
3115 struct xfs_ail_cursor cur;
3116 struct xfs_ail *ailp = log->l_ailp;
3117
3118 efd_formatp = item->ri_buf[0].i_addr;
3119 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3120 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3121 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3122 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3123 efi_id = efd_formatp->efd_efi_id;
3124
3125 /*
3126 * Search for the efi with the id in the efd format structure
3127 * in the AIL.
3128 */
3129 spin_lock(&ailp->xa_lock);
3130 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3131 while (lip != NULL) {
3132 if (lip->li_type == XFS_LI_EFI) {
3133 efip = (xfs_efi_log_item_t *)lip;
3134 if (efip->efi_format.efi_id == efi_id) {
3135 /*
3136 * xfs_trans_ail_delete() drops the
3137 * AIL lock.
3138 */
3139 xfs_trans_ail_delete(ailp, lip,
3140 SHUTDOWN_CORRUPT_INCORE);
3141 xfs_efi_item_free(efip);
3142 spin_lock(&ailp->xa_lock);
3143 break;
3144 }
3145 }
3146 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3147 }
3148 xfs_trans_ail_cursor_done(ailp, &cur);
3149 spin_unlock(&ailp->xa_lock);
3150
3151 return 0;
3152}
3153
3154/*
3155 * This routine is called when an inode create format structure is found in a
3156 * committed transaction in the log. It's purpose is to initialise the inodes
3157 * being allocated on disk. This requires us to get inode cluster buffers that
3158 * match the range to be intialised, stamped with inode templates and written
3159 * by delayed write so that subsequent modifications will hit the cached buffer
3160 * and only need writing out at the end of recovery.
3161 */
3162STATIC int
3163xlog_recover_do_icreate_pass2(
3164 struct xlog *log,
3165 struct list_head *buffer_list,
3166 xlog_recover_item_t *item)
3167{
3168 struct xfs_mount *mp = log->l_mp;
3169 struct xfs_icreate_log *icl;
3170 xfs_agnumber_t agno;
3171 xfs_agblock_t agbno;
3172 unsigned int count;
3173 unsigned int isize;
3174 xfs_agblock_t length;
3175
3176 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3177 if (icl->icl_type != XFS_LI_ICREATE) {
3178 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3179 return EINVAL;
3180 }
3181
3182 if (icl->icl_size != 1) {
3183 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3184 return EINVAL;
3185 }
3186
3187 agno = be32_to_cpu(icl->icl_ag);
3188 if (agno >= mp->m_sb.sb_agcount) {
3189 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3190 return EINVAL;
3191 }
3192 agbno = be32_to_cpu(icl->icl_agbno);
3193 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3194 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3195 return EINVAL;
3196 }
3197 isize = be32_to_cpu(icl->icl_isize);
3198 if (isize != mp->m_sb.sb_inodesize) {
3199 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3200 return EINVAL;
3201 }
3202 count = be32_to_cpu(icl->icl_count);
3203 if (!count) {
3204 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3205 return EINVAL;
3206 }
3207 length = be32_to_cpu(icl->icl_length);
3208 if (!length || length >= mp->m_sb.sb_agblocks) {
3209 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3210 return EINVAL;
3211 }
3212
3213 /* existing allocation is fixed value */
3214 ASSERT(count == mp->m_ialloc_inos);
3215 ASSERT(length == mp->m_ialloc_blks);
3216 if (count != mp->m_ialloc_inos ||
3217 length != mp->m_ialloc_blks) {
3218 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3219 return EINVAL;
3220 }
3221
3222 /*
3223 * Inode buffers can be freed. Do not replay the inode initialisation as
3224 * we could be overwriting something written after this inode buffer was
3225 * cancelled.
3226 *
3227 * XXX: we need to iterate all buffers and only init those that are not
3228 * cancelled. I think that a more fine grained factoring of
3229 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3230 * done easily.
3231 */
3232 if (xlog_check_buffer_cancelled(log,
3233 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3234 return 0;
3235
3236 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3237 be32_to_cpu(icl->icl_gen));
3238 return 0;
3239}
3240
3241/*
3242 * Free up any resources allocated by the transaction
3243 *
3244 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3245 */
3246STATIC void
3247xlog_recover_free_trans(
3248 struct xlog_recover *trans)
3249{
3250 xlog_recover_item_t *item, *n;
3251 int i;
3252
3253 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3254 /* Free the regions in the item. */
3255 list_del(&item->ri_list);
3256 for (i = 0; i < item->ri_cnt; i++)
3257 kmem_free(item->ri_buf[i].i_addr);
3258 /* Free the item itself */
3259 kmem_free(item->ri_buf);
3260 kmem_free(item);
3261 }
3262 /* Free the transaction recover structure */
3263 kmem_free(trans);
3264}
3265
3266STATIC void
3267xlog_recover_buffer_ra_pass2(
3268 struct xlog *log,
3269 struct xlog_recover_item *item)
3270{
3271 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3272 struct xfs_mount *mp = log->l_mp;
3273
3274 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3275 buf_f->blf_len, buf_f->blf_flags)) {
3276 return;
3277 }
3278
3279 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3280 buf_f->blf_len, NULL);
3281}
3282
3283STATIC void
3284xlog_recover_inode_ra_pass2(
3285 struct xlog *log,
3286 struct xlog_recover_item *item)
3287{
3288 struct xfs_inode_log_format ilf_buf;
3289 struct xfs_inode_log_format *ilfp;
3290 struct xfs_mount *mp = log->l_mp;
3291 int error;
3292
3293 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3294 ilfp = item->ri_buf[0].i_addr;
3295 } else {
3296 ilfp = &ilf_buf;
3297 memset(ilfp, 0, sizeof(*ilfp));
3298 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3299 if (error)
3300 return;
3301 }
3302
3303 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3304 return;
3305
3306 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3307 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3308}
3309
3310STATIC void
3311xlog_recover_dquot_ra_pass2(
3312 struct xlog *log,
3313 struct xlog_recover_item *item)
3314{
3315 struct xfs_mount *mp = log->l_mp;
3316 struct xfs_disk_dquot *recddq;
3317 struct xfs_dq_logformat *dq_f;
3318 uint type;
3319
3320
3321 if (mp->m_qflags == 0)
3322 return;
3323
3324 recddq = item->ri_buf[1].i_addr;
3325 if (recddq == NULL)
3326 return;
3327 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3328 return;
3329
3330 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3331 ASSERT(type);
3332 if (log->l_quotaoffs_flag & type)
3333 return;
3334
3335 dq_f = item->ri_buf[0].i_addr;
3336 ASSERT(dq_f);
3337 ASSERT(dq_f->qlf_len == 1);
3338
3339 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
3340 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
3341}
3342
3343STATIC void
3344xlog_recover_ra_pass2(
3345 struct xlog *log,
3346 struct xlog_recover_item *item)
3347{
3348 switch (ITEM_TYPE(item)) {
3349 case XFS_LI_BUF:
3350 xlog_recover_buffer_ra_pass2(log, item);
3351 break;
3352 case XFS_LI_INODE:
3353 xlog_recover_inode_ra_pass2(log, item);
3354 break;
3355 case XFS_LI_DQUOT:
3356 xlog_recover_dquot_ra_pass2(log, item);
3357 break;
3358 case XFS_LI_EFI:
3359 case XFS_LI_EFD:
3360 case XFS_LI_QUOTAOFF:
3361 default:
3362 break;
3363 }
3364}
3365
3366STATIC int
3367xlog_recover_commit_pass1(
3368 struct xlog *log,
3369 struct xlog_recover *trans,
3370 struct xlog_recover_item *item)
3371{
3372 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3373
3374 switch (ITEM_TYPE(item)) {
3375 case XFS_LI_BUF:
3376 return xlog_recover_buffer_pass1(log, item);
3377 case XFS_LI_QUOTAOFF:
3378 return xlog_recover_quotaoff_pass1(log, item);
3379 case XFS_LI_INODE:
3380 case XFS_LI_EFI:
3381 case XFS_LI_EFD:
3382 case XFS_LI_DQUOT:
3383 case XFS_LI_ICREATE:
3384 /* nothing to do in pass 1 */
3385 return 0;
3386 default:
3387 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3388 __func__, ITEM_TYPE(item));
3389 ASSERT(0);
3390 return XFS_ERROR(EIO);
3391 }
3392}
3393
3394STATIC int
3395xlog_recover_commit_pass2(
3396 struct xlog *log,
3397 struct xlog_recover *trans,
3398 struct list_head *buffer_list,
3399 struct xlog_recover_item *item)
3400{
3401 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3402
3403 switch (ITEM_TYPE(item)) {
3404 case XFS_LI_BUF:
3405 return xlog_recover_buffer_pass2(log, buffer_list, item,
3406 trans->r_lsn);
3407 case XFS_LI_INODE:
3408 return xlog_recover_inode_pass2(log, buffer_list, item,
3409 trans->r_lsn);
3410 case XFS_LI_EFI:
3411 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3412 case XFS_LI_EFD:
3413 return xlog_recover_efd_pass2(log, item);
3414 case XFS_LI_DQUOT:
3415 return xlog_recover_dquot_pass2(log, buffer_list, item,
3416 trans->r_lsn);
3417 case XFS_LI_ICREATE:
3418 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3419 case XFS_LI_QUOTAOFF:
3420 /* nothing to do in pass2 */
3421 return 0;
3422 default:
3423 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3424 __func__, ITEM_TYPE(item));
3425 ASSERT(0);
3426 return XFS_ERROR(EIO);
3427 }
3428}
3429
3430STATIC int
3431xlog_recover_items_pass2(
3432 struct xlog *log,
3433 struct xlog_recover *trans,
3434 struct list_head *buffer_list,
3435 struct list_head *item_list)
3436{
3437 struct xlog_recover_item *item;
3438 int error = 0;
3439
3440 list_for_each_entry(item, item_list, ri_list) {
3441 error = xlog_recover_commit_pass2(log, trans,
3442 buffer_list, item);
3443 if (error)
3444 return error;
3445 }
3446
3447 return error;
3448}
3449
3450/*
3451 * Perform the transaction.
3452 *
3453 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3454 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3455 */
3456STATIC int
3457xlog_recover_commit_trans(
3458 struct xlog *log,
3459 struct xlog_recover *trans,
3460 int pass)
3461{
3462 int error = 0;
3463 int error2;
3464 int items_queued = 0;
3465 struct xlog_recover_item *item;
3466 struct xlog_recover_item *next;
3467 LIST_HEAD (buffer_list);
3468 LIST_HEAD (ra_list);
3469 LIST_HEAD (done_list);
3470
3471 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3472
3473 hlist_del(&trans->r_list);
3474
3475 error = xlog_recover_reorder_trans(log, trans, pass);
3476 if (error)
3477 return error;
3478
3479 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3480 switch (pass) {
3481 case XLOG_RECOVER_PASS1:
3482 error = xlog_recover_commit_pass1(log, trans, item);
3483 break;
3484 case XLOG_RECOVER_PASS2:
3485 xlog_recover_ra_pass2(log, item);
3486 list_move_tail(&item->ri_list, &ra_list);
3487 items_queued++;
3488 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3489 error = xlog_recover_items_pass2(log, trans,
3490 &buffer_list, &ra_list);
3491 list_splice_tail_init(&ra_list, &done_list);
3492 items_queued = 0;
3493 }
3494
3495 break;
3496 default:
3497 ASSERT(0);
3498 }
3499
3500 if (error)
3501 goto out;
3502 }
3503
3504out:
3505 if (!list_empty(&ra_list)) {
3506 if (!error)
3507 error = xlog_recover_items_pass2(log, trans,
3508 &buffer_list, &ra_list);
3509 list_splice_tail_init(&ra_list, &done_list);
3510 }
3511
3512 if (!list_empty(&done_list))
3513 list_splice_init(&done_list, &trans->r_itemq);
3514
3515 xlog_recover_free_trans(trans);
3516
3517 error2 = xfs_buf_delwri_submit(&buffer_list);
3518 return error ? error : error2;
3519}
3520
3521STATIC int
3522xlog_recover_unmount_trans(
3523 struct xlog *log,
3524 struct xlog_recover *trans)
3525{
3526 /* Do nothing now */
3527 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3528 return 0;
3529}
3530
3531/*
3532 * There are two valid states of the r_state field. 0 indicates that the
3533 * transaction structure is in a normal state. We have either seen the
3534 * start of the transaction or the last operation we added was not a partial
3535 * operation. If the last operation we added to the transaction was a
3536 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3537 *
3538 * NOTE: skip LRs with 0 data length.
3539 */
3540STATIC int
3541xlog_recover_process_data(
3542 struct xlog *log,
3543 struct hlist_head rhash[],
3544 struct xlog_rec_header *rhead,
3545 xfs_caddr_t dp,
3546 int pass)
3547{
3548 xfs_caddr_t lp;
3549 int num_logops;
3550 xlog_op_header_t *ohead;
3551 xlog_recover_t *trans;
3552 xlog_tid_t tid;
3553 int error;
3554 unsigned long hash;
3555 uint flags;
3556
3557 lp = dp + be32_to_cpu(rhead->h_len);
3558 num_logops = be32_to_cpu(rhead->h_num_logops);
3559
3560 /* check the log format matches our own - else we can't recover */
3561 if (xlog_header_check_recover(log->l_mp, rhead))
3562 return (XFS_ERROR(EIO));
3563
3564 while ((dp < lp) && num_logops) {
3565 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3566 ohead = (xlog_op_header_t *)dp;
3567 dp += sizeof(xlog_op_header_t);
3568 if (ohead->oh_clientid != XFS_TRANSACTION &&
3569 ohead->oh_clientid != XFS_LOG) {
3570 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3571 __func__, ohead->oh_clientid);
3572 ASSERT(0);
3573 return (XFS_ERROR(EIO));
3574 }
3575 tid = be32_to_cpu(ohead->oh_tid);
3576 hash = XLOG_RHASH(tid);
3577 trans = xlog_recover_find_tid(&rhash[hash], tid);
3578 if (trans == NULL) { /* not found; add new tid */
3579 if (ohead->oh_flags & XLOG_START_TRANS)
3580 xlog_recover_new_tid(&rhash[hash], tid,
3581 be64_to_cpu(rhead->h_lsn));
3582 } else {
3583 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
3584 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3585 __func__, be32_to_cpu(ohead->oh_len));
3586 WARN_ON(1);
3587 return (XFS_ERROR(EIO));
3588 }
3589 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3590 if (flags & XLOG_WAS_CONT_TRANS)
3591 flags &= ~XLOG_CONTINUE_TRANS;
3592 switch (flags) {
3593 case XLOG_COMMIT_TRANS:
3594 error = xlog_recover_commit_trans(log,
3595 trans, pass);
3596 break;
3597 case XLOG_UNMOUNT_TRANS:
3598 error = xlog_recover_unmount_trans(log, trans);
3599 break;
3600 case XLOG_WAS_CONT_TRANS:
3601 error = xlog_recover_add_to_cont_trans(log,
3602 trans, dp,
3603 be32_to_cpu(ohead->oh_len));
3604 break;
3605 case XLOG_START_TRANS:
3606 xfs_warn(log->l_mp, "%s: bad transaction",
3607 __func__);
3608 ASSERT(0);
3609 error = XFS_ERROR(EIO);
3610 break;
3611 case 0:
3612 case XLOG_CONTINUE_TRANS:
3613 error = xlog_recover_add_to_trans(log, trans,
3614 dp, be32_to_cpu(ohead->oh_len));
3615 break;
3616 default:
3617 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3618 __func__, flags);
3619 ASSERT(0);
3620 error = XFS_ERROR(EIO);
3621 break;
3622 }
3623 if (error) {
3624 xlog_recover_free_trans(trans);
3625 return error;
3626 }
3627 }
3628 dp += be32_to_cpu(ohead->oh_len);
3629 num_logops--;
3630 }
3631 return 0;
3632}
3633
3634/*
3635 * Process an extent free intent item that was recovered from
3636 * the log. We need to free the extents that it describes.
3637 */
3638STATIC int
3639xlog_recover_process_efi(
3640 xfs_mount_t *mp,
3641 xfs_efi_log_item_t *efip)
3642{
3643 xfs_efd_log_item_t *efdp;
3644 xfs_trans_t *tp;
3645 int i;
3646 int error = 0;
3647 xfs_extent_t *extp;
3648 xfs_fsblock_t startblock_fsb;
3649
3650 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3651
3652 /*
3653 * First check the validity of the extents described by the
3654 * EFI. If any are bad, then assume that all are bad and
3655 * just toss the EFI.
3656 */
3657 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3658 extp = &(efip->efi_format.efi_extents[i]);
3659 startblock_fsb = XFS_BB_TO_FSB(mp,
3660 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3661 if ((startblock_fsb == 0) ||
3662 (extp->ext_len == 0) ||
3663 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3664 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3665 /*
3666 * This will pull the EFI from the AIL and
3667 * free the memory associated with it.
3668 */
3669 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3670 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3671 return XFS_ERROR(EIO);
3672 }
3673 }
3674
3675 tp = xfs_trans_alloc(mp, 0);
3676 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
3677 if (error)
3678 goto abort_error;
3679 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3680
3681 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3682 extp = &(efip->efi_format.efi_extents[i]);
3683 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3684 if (error)
3685 goto abort_error;
3686 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3687 extp->ext_len);
3688 }
3689
3690 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3691 error = xfs_trans_commit(tp, 0);
3692 return error;
3693
3694abort_error:
3695 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3696 return error;
3697}
3698
3699/*
3700 * When this is called, all of the EFIs which did not have
3701 * corresponding EFDs should be in the AIL. What we do now
3702 * is free the extents associated with each one.
3703 *
3704 * Since we process the EFIs in normal transactions, they
3705 * will be removed at some point after the commit. This prevents
3706 * us from just walking down the list processing each one.
3707 * We'll use a flag in the EFI to skip those that we've already
3708 * processed and use the AIL iteration mechanism's generation
3709 * count to try to speed this up at least a bit.
3710 *
3711 * When we start, we know that the EFIs are the only things in
3712 * the AIL. As we process them, however, other items are added
3713 * to the AIL. Since everything added to the AIL must come after
3714 * everything already in the AIL, we stop processing as soon as
3715 * we see something other than an EFI in the AIL.
3716 */
3717STATIC int
3718xlog_recover_process_efis(
3719 struct xlog *log)
3720{
3721 xfs_log_item_t *lip;
3722 xfs_efi_log_item_t *efip;
3723 int error = 0;
3724 struct xfs_ail_cursor cur;
3725 struct xfs_ail *ailp;
3726
3727 ailp = log->l_ailp;
3728 spin_lock(&ailp->xa_lock);
3729 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3730 while (lip != NULL) {
3731 /*
3732 * We're done when we see something other than an EFI.
3733 * There should be no EFIs left in the AIL now.
3734 */
3735 if (lip->li_type != XFS_LI_EFI) {
3736#ifdef DEBUG
3737 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3738 ASSERT(lip->li_type != XFS_LI_EFI);
3739#endif
3740 break;
3741 }
3742
3743 /*
3744 * Skip EFIs that we've already processed.
3745 */
3746 efip = (xfs_efi_log_item_t *)lip;
3747 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3748 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3749 continue;
3750 }
3751
3752 spin_unlock(&ailp->xa_lock);
3753 error = xlog_recover_process_efi(log->l_mp, efip);
3754 spin_lock(&ailp->xa_lock);
3755 if (error)
3756 goto out;
3757 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3758 }
3759out:
3760 xfs_trans_ail_cursor_done(ailp, &cur);
3761 spin_unlock(&ailp->xa_lock);
3762 return error;
3763}
3764
3765/*
3766 * This routine performs a transaction to null out a bad inode pointer
3767 * in an agi unlinked inode hash bucket.
3768 */
3769STATIC void
3770xlog_recover_clear_agi_bucket(
3771 xfs_mount_t *mp,
3772 xfs_agnumber_t agno,
3773 int bucket)
3774{
3775 xfs_trans_t *tp;
3776 xfs_agi_t *agi;
3777 xfs_buf_t *agibp;
3778 int offset;
3779 int error;
3780
3781 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3782 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
3783 if (error)
3784 goto out_abort;
3785
3786 error = xfs_read_agi(mp, tp, agno, &agibp);
3787 if (error)
3788 goto out_abort;
3789
3790 agi = XFS_BUF_TO_AGI(agibp);
3791 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3792 offset = offsetof(xfs_agi_t, agi_unlinked) +
3793 (sizeof(xfs_agino_t) * bucket);
3794 xfs_trans_log_buf(tp, agibp, offset,
3795 (offset + sizeof(xfs_agino_t) - 1));
3796
3797 error = xfs_trans_commit(tp, 0);
3798 if (error)
3799 goto out_error;
3800 return;
3801
3802out_abort:
3803 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3804out_error:
3805 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3806 return;
3807}
3808
3809STATIC xfs_agino_t
3810xlog_recover_process_one_iunlink(
3811 struct xfs_mount *mp,
3812 xfs_agnumber_t agno,
3813 xfs_agino_t agino,
3814 int bucket)
3815{
3816 struct xfs_buf *ibp;
3817 struct xfs_dinode *dip;
3818 struct xfs_inode *ip;
3819 xfs_ino_t ino;
3820 int error;
3821
3822 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3823 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3824 if (error)
3825 goto fail;
3826
3827 /*
3828 * Get the on disk inode to find the next inode in the bucket.
3829 */
3830 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3831 if (error)
3832 goto fail_iput;
3833
3834 ASSERT(ip->i_d.di_nlink == 0);
3835 ASSERT(ip->i_d.di_mode != 0);
3836
3837 /* setup for the next pass */
3838 agino = be32_to_cpu(dip->di_next_unlinked);
3839 xfs_buf_relse(ibp);
3840
3841 /*
3842 * Prevent any DMAPI event from being sent when the reference on
3843 * the inode is dropped.
3844 */
3845 ip->i_d.di_dmevmask = 0;
3846
3847 IRELE(ip);
3848 return agino;
3849
3850 fail_iput:
3851 IRELE(ip);
3852 fail:
3853 /*
3854 * We can't read in the inode this bucket points to, or this inode
3855 * is messed up. Just ditch this bucket of inodes. We will lose
3856 * some inodes and space, but at least we won't hang.
3857 *
3858 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3859 * clear the inode pointer in the bucket.
3860 */
3861 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3862 return NULLAGINO;
3863}
3864
3865/*
3866 * xlog_iunlink_recover
3867 *
3868 * This is called during recovery to process any inodes which
3869 * we unlinked but not freed when the system crashed. These
3870 * inodes will be on the lists in the AGI blocks. What we do
3871 * here is scan all the AGIs and fully truncate and free any
3872 * inodes found on the lists. Each inode is removed from the
3873 * lists when it has been fully truncated and is freed. The
3874 * freeing of the inode and its removal from the list must be
3875 * atomic.
3876 */
3877STATIC void
3878xlog_recover_process_iunlinks(
3879 struct xlog *log)
3880{
3881 xfs_mount_t *mp;
3882 xfs_agnumber_t agno;
3883 xfs_agi_t *agi;
3884 xfs_buf_t *agibp;
3885 xfs_agino_t agino;
3886 int bucket;
3887 int error;
3888 uint mp_dmevmask;
3889
3890 mp = log->l_mp;
3891
3892 /*
3893 * Prevent any DMAPI event from being sent while in this function.
3894 */
3895 mp_dmevmask = mp->m_dmevmask;
3896 mp->m_dmevmask = 0;
3897
3898 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3899 /*
3900 * Find the agi for this ag.
3901 */
3902 error = xfs_read_agi(mp, NULL, agno, &agibp);
3903 if (error) {
3904 /*
3905 * AGI is b0rked. Don't process it.
3906 *
3907 * We should probably mark the filesystem as corrupt
3908 * after we've recovered all the ag's we can....
3909 */
3910 continue;
3911 }
3912 /*
3913 * Unlock the buffer so that it can be acquired in the normal
3914 * course of the transaction to truncate and free each inode.
3915 * Because we are not racing with anyone else here for the AGI
3916 * buffer, we don't even need to hold it locked to read the
3917 * initial unlinked bucket entries out of the buffer. We keep
3918 * buffer reference though, so that it stays pinned in memory
3919 * while we need the buffer.
3920 */
3921 agi = XFS_BUF_TO_AGI(agibp);
3922 xfs_buf_unlock(agibp);
3923
3924 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3925 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3926 while (agino != NULLAGINO) {
3927 agino = xlog_recover_process_one_iunlink(mp,
3928 agno, agino, bucket);
3929 }
3930 }
3931 xfs_buf_rele(agibp);
3932 }
3933
3934 mp->m_dmevmask = mp_dmevmask;
3935}
3936
3937/*
3938 * Upack the log buffer data and crc check it. If the check fails, issue a
3939 * warning if and only if the CRC in the header is non-zero. This makes the
3940 * check an advisory warning, and the zero CRC check will prevent failure
3941 * warnings from being emitted when upgrading the kernel from one that does not
3942 * add CRCs by default.
3943 *
3944 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3945 * corruption failure
3946 */
3947STATIC int
3948xlog_unpack_data_crc(
3949 struct xlog_rec_header *rhead,
3950 xfs_caddr_t dp,
3951 struct xlog *log)
3952{
3953 __le32 crc;
3954
3955 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3956 if (crc != rhead->h_crc) {
3957 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3958 xfs_alert(log->l_mp,
3959 "log record CRC mismatch: found 0x%x, expected 0x%x.",
3960 le32_to_cpu(rhead->h_crc),
3961 le32_to_cpu(crc));
3962 xfs_hex_dump(dp, 32);
3963 }
3964
3965 /*
3966 * If we've detected a log record corruption, then we can't
3967 * recover past this point. Abort recovery if we are enforcing
3968 * CRC protection by punting an error back up the stack.
3969 */
3970 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3971 return EFSCORRUPTED;
3972 }
3973
3974 return 0;
3975}
3976
3977STATIC int
3978xlog_unpack_data(
3979 struct xlog_rec_header *rhead,
3980 xfs_caddr_t dp,
3981 struct xlog *log)
3982{
3983 int i, j, k;
3984 int error;
3985
3986 error = xlog_unpack_data_crc(rhead, dp, log);
3987 if (error)
3988 return error;
3989
3990 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3991 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3992 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3993 dp += BBSIZE;
3994 }
3995
3996 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3997 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3998 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3999 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4000 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4001 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4002 dp += BBSIZE;
4003 }
4004 }
4005
4006 return 0;
4007}
4008
4009STATIC int
4010xlog_valid_rec_header(
4011 struct xlog *log,
4012 struct xlog_rec_header *rhead,
4013 xfs_daddr_t blkno)
4014{
4015 int hlen;
4016
4017 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4018 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4019 XFS_ERRLEVEL_LOW, log->l_mp);
4020 return XFS_ERROR(EFSCORRUPTED);
4021 }
4022 if (unlikely(
4023 (!rhead->h_version ||
4024 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4025 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4026 __func__, be32_to_cpu(rhead->h_version));
4027 return XFS_ERROR(EIO);
4028 }
4029
4030 /* LR body must have data or it wouldn't have been written */
4031 hlen = be32_to_cpu(rhead->h_len);
4032 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4033 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4034 XFS_ERRLEVEL_LOW, log->l_mp);
4035 return XFS_ERROR(EFSCORRUPTED);
4036 }
4037 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4038 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4039 XFS_ERRLEVEL_LOW, log->l_mp);
4040 return XFS_ERROR(EFSCORRUPTED);
4041 }
4042 return 0;
4043}
4044
4045/*
4046 * Read the log from tail to head and process the log records found.
4047 * Handle the two cases where the tail and head are in the same cycle
4048 * and where the active portion of the log wraps around the end of
4049 * the physical log separately. The pass parameter is passed through
4050 * to the routines called to process the data and is not looked at
4051 * here.
4052 */
4053STATIC int
4054xlog_do_recovery_pass(
4055 struct xlog *log,
4056 xfs_daddr_t head_blk,
4057 xfs_daddr_t tail_blk,
4058 int pass)
4059{
4060 xlog_rec_header_t *rhead;
4061 xfs_daddr_t blk_no;
4062 xfs_caddr_t offset;
4063 xfs_buf_t *hbp, *dbp;
4064 int error = 0, h_size;
4065 int bblks, split_bblks;
4066 int hblks, split_hblks, wrapped_hblks;
4067 struct hlist_head rhash[XLOG_RHASH_SIZE];
4068
4069 ASSERT(head_blk != tail_blk);
4070
4071 /*
4072 * Read the header of the tail block and get the iclog buffer size from
4073 * h_size. Use this to tell how many sectors make up the log header.
4074 */
4075 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4076 /*
4077 * When using variable length iclogs, read first sector of
4078 * iclog header and extract the header size from it. Get a
4079 * new hbp that is the correct size.
4080 */
4081 hbp = xlog_get_bp(log, 1);
4082 if (!hbp)
4083 return ENOMEM;
4084
4085 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4086 if (error)
4087 goto bread_err1;
4088
4089 rhead = (xlog_rec_header_t *)offset;
4090 error = xlog_valid_rec_header(log, rhead, tail_blk);
4091 if (error)
4092 goto bread_err1;
4093 h_size = be32_to_cpu(rhead->h_size);
4094 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4095 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4096 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4097 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4098 hblks++;
4099 xlog_put_bp(hbp);
4100 hbp = xlog_get_bp(log, hblks);
4101 } else {
4102 hblks = 1;
4103 }
4104 } else {
4105 ASSERT(log->l_sectBBsize == 1);
4106 hblks = 1;
4107 hbp = xlog_get_bp(log, 1);
4108 h_size = XLOG_BIG_RECORD_BSIZE;
4109 }
4110
4111 if (!hbp)
4112 return ENOMEM;
4113 dbp = xlog_get_bp(log, BTOBB(h_size));
4114 if (!dbp) {
4115 xlog_put_bp(hbp);
4116 return ENOMEM;
4117 }
4118
4119 memset(rhash, 0, sizeof(rhash));
4120 if (tail_blk <= head_blk) {
4121 for (blk_no = tail_blk; blk_no < head_blk; ) {
4122 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4123 if (error)
4124 goto bread_err2;
4125
4126 rhead = (xlog_rec_header_t *)offset;
4127 error = xlog_valid_rec_header(log, rhead, blk_no);
4128 if (error)
4129 goto bread_err2;
4130
4131 /* blocks in data section */
4132 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4133 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
4134 &offset);
4135 if (error)
4136 goto bread_err2;
4137
4138 error = xlog_unpack_data(rhead, offset, log);
4139 if (error)
4140 goto bread_err2;
4141
4142 error = xlog_recover_process_data(log,
4143 rhash, rhead, offset, pass);
4144 if (error)
4145 goto bread_err2;
4146 blk_no += bblks + hblks;
4147 }
4148 } else {
4149 /*
4150 * Perform recovery around the end of the physical log.
4151 * When the head is not on the same cycle number as the tail,
4152 * we can't do a sequential recovery as above.
4153 */
4154 blk_no = tail_blk;
4155 while (blk_no < log->l_logBBsize) {
4156 /*
4157 * Check for header wrapping around physical end-of-log
4158 */
4159 offset = hbp->b_addr;
4160 split_hblks = 0;
4161 wrapped_hblks = 0;
4162 if (blk_no + hblks <= log->l_logBBsize) {
4163 /* Read header in one read */
4164 error = xlog_bread(log, blk_no, hblks, hbp,
4165 &offset);
4166 if (error)
4167 goto bread_err2;
4168 } else {
4169 /* This LR is split across physical log end */
4170 if (blk_no != log->l_logBBsize) {
4171 /* some data before physical log end */
4172 ASSERT(blk_no <= INT_MAX);
4173 split_hblks = log->l_logBBsize - (int)blk_no;
4174 ASSERT(split_hblks > 0);
4175 error = xlog_bread(log, blk_no,
4176 split_hblks, hbp,
4177 &offset);
4178 if (error)
4179 goto bread_err2;
4180 }
4181
4182 /*
4183 * Note: this black magic still works with
4184 * large sector sizes (non-512) only because:
4185 * - we increased the buffer size originally
4186 * by 1 sector giving us enough extra space
4187 * for the second read;
4188 * - the log start is guaranteed to be sector
4189 * aligned;
4190 * - we read the log end (LR header start)
4191 * _first_, then the log start (LR header end)
4192 * - order is important.
4193 */
4194 wrapped_hblks = hblks - split_hblks;
4195 error = xlog_bread_offset(log, 0,
4196 wrapped_hblks, hbp,
4197 offset + BBTOB(split_hblks));
4198 if (error)
4199 goto bread_err2;
4200 }
4201 rhead = (xlog_rec_header_t *)offset;
4202 error = xlog_valid_rec_header(log, rhead,
4203 split_hblks ? blk_no : 0);
4204 if (error)
4205 goto bread_err2;
4206
4207 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4208 blk_no += hblks;
4209
4210 /* Read in data for log record */
4211 if (blk_no + bblks <= log->l_logBBsize) {
4212 error = xlog_bread(log, blk_no, bblks, dbp,
4213 &offset);
4214 if (error)
4215 goto bread_err2;
4216 } else {
4217 /* This log record is split across the
4218 * physical end of log */
4219 offset = dbp->b_addr;
4220 split_bblks = 0;
4221 if (blk_no != log->l_logBBsize) {
4222 /* some data is before the physical
4223 * end of log */
4224 ASSERT(!wrapped_hblks);
4225 ASSERT(blk_no <= INT_MAX);
4226 split_bblks =
4227 log->l_logBBsize - (int)blk_no;
4228 ASSERT(split_bblks > 0);
4229 error = xlog_bread(log, blk_no,
4230 split_bblks, dbp,
4231 &offset);
4232 if (error)
4233 goto bread_err2;
4234 }
4235
4236 /*
4237 * Note: this black magic still works with
4238 * large sector sizes (non-512) only because:
4239 * - we increased the buffer size originally
4240 * by 1 sector giving us enough extra space
4241 * for the second read;
4242 * - the log start is guaranteed to be sector
4243 * aligned;
4244 * - we read the log end (LR header start)
4245 * _first_, then the log start (LR header end)
4246 * - order is important.
4247 */
4248 error = xlog_bread_offset(log, 0,
4249 bblks - split_bblks, dbp,
4250 offset + BBTOB(split_bblks));
4251 if (error)
4252 goto bread_err2;
4253 }
4254
4255 error = xlog_unpack_data(rhead, offset, log);
4256 if (error)
4257 goto bread_err2;
4258
4259 error = xlog_recover_process_data(log, rhash,
4260 rhead, offset, pass);
4261 if (error)
4262 goto bread_err2;
4263 blk_no += bblks;
4264 }
4265
4266 ASSERT(blk_no >= log->l_logBBsize);
4267 blk_no -= log->l_logBBsize;
4268
4269 /* read first part of physical log */
4270 while (blk_no < head_blk) {
4271 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4272 if (error)
4273 goto bread_err2;
4274
4275 rhead = (xlog_rec_header_t *)offset;
4276 error = xlog_valid_rec_header(log, rhead, blk_no);
4277 if (error)
4278 goto bread_err2;
4279
4280 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4281 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4282 &offset);
4283 if (error)
4284 goto bread_err2;
4285
4286 error = xlog_unpack_data(rhead, offset, log);
4287 if (error)
4288 goto bread_err2;
4289
4290 error = xlog_recover_process_data(log, rhash,
4291 rhead, offset, pass);
4292 if (error)
4293 goto bread_err2;
4294 blk_no += bblks + hblks;
4295 }
4296 }
4297
4298 bread_err2:
4299 xlog_put_bp(dbp);
4300 bread_err1:
4301 xlog_put_bp(hbp);
4302 return error;
4303}
4304
4305/*
4306 * Do the recovery of the log. We actually do this in two phases.
4307 * The two passes are necessary in order to implement the function
4308 * of cancelling a record written into the log. The first pass
4309 * determines those things which have been cancelled, and the
4310 * second pass replays log items normally except for those which
4311 * have been cancelled. The handling of the replay and cancellations
4312 * takes place in the log item type specific routines.
4313 *
4314 * The table of items which have cancel records in the log is allocated
4315 * and freed at this level, since only here do we know when all of
4316 * the log recovery has been completed.
4317 */
4318STATIC int
4319xlog_do_log_recovery(
4320 struct xlog *log,
4321 xfs_daddr_t head_blk,
4322 xfs_daddr_t tail_blk)
4323{
4324 int error, i;
4325
4326 ASSERT(head_blk != tail_blk);
4327
4328 /*
4329 * First do a pass to find all of the cancelled buf log items.
4330 * Store them in the buf_cancel_table for use in the second pass.
4331 */
4332 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4333 sizeof(struct list_head),
4334 KM_SLEEP);
4335 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4336 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4337
4338 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4339 XLOG_RECOVER_PASS1);
4340 if (error != 0) {
4341 kmem_free(log->l_buf_cancel_table);
4342 log->l_buf_cancel_table = NULL;
4343 return error;
4344 }
4345 /*
4346 * Then do a second pass to actually recover the items in the log.
4347 * When it is complete free the table of buf cancel items.
4348 */
4349 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4350 XLOG_RECOVER_PASS2);
4351#ifdef DEBUG
4352 if (!error) {
4353 int i;
4354
4355 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4356 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4357 }
4358#endif /* DEBUG */
4359
4360 kmem_free(log->l_buf_cancel_table);
4361 log->l_buf_cancel_table = NULL;
4362
4363 return error;
4364}
4365
4366/*
4367 * Do the actual recovery
4368 */
4369STATIC int
4370xlog_do_recover(
4371 struct xlog *log,
4372 xfs_daddr_t head_blk,
4373 xfs_daddr_t tail_blk)
4374{
4375 int error;
4376 xfs_buf_t *bp;
4377 xfs_sb_t *sbp;
4378
4379 /*
4380 * First replay the images in the log.
4381 */
4382 error = xlog_do_log_recovery(log, head_blk, tail_blk);
4383 if (error)
4384 return error;
4385
4386 /*
4387 * If IO errors happened during recovery, bail out.
4388 */
4389 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4390 return (EIO);
4391 }
4392
4393 /*
4394 * We now update the tail_lsn since much of the recovery has completed
4395 * and there may be space available to use. If there were no extent
4396 * or iunlinks, we can free up the entire log and set the tail_lsn to
4397 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4398 * lsn of the last known good LR on disk. If there are extent frees
4399 * or iunlinks they will have some entries in the AIL; so we look at
4400 * the AIL to determine how to set the tail_lsn.
4401 */
4402 xlog_assign_tail_lsn(log->l_mp);
4403
4404 /*
4405 * Now that we've finished replaying all buffer and inode
4406 * updates, re-read in the superblock and reverify it.
4407 */
4408 bp = xfs_getsb(log->l_mp, 0);
4409 XFS_BUF_UNDONE(bp);
4410 ASSERT(!(XFS_BUF_ISWRITE(bp)));
4411 XFS_BUF_READ(bp);
4412 XFS_BUF_UNASYNC(bp);
4413 bp->b_ops = &xfs_sb_buf_ops;
4414
4415 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4416 xfs_buf_relse(bp);
4417 return XFS_ERROR(EIO);
4418 }
4419
4420 xfs_buf_iorequest(bp);
4421 error = xfs_buf_iowait(bp);
4422 if (error) {
4423 xfs_buf_ioerror_alert(bp, __func__);
4424 ASSERT(0);
4425 xfs_buf_relse(bp);
4426 return error;
4427 }
4428
4429 /* Convert superblock from on-disk format */
4430 sbp = &log->l_mp->m_sb;
4431 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4432 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4433 ASSERT(xfs_sb_good_version(sbp));
4434 xfs_buf_relse(bp);
4435
4436 /* We've re-read the superblock so re-initialize per-cpu counters */
4437 xfs_icsb_reinit_counters(log->l_mp);
4438
4439 xlog_recover_check_summary(log);
4440
4441 /* Normal transactions can now occur */
4442 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4443 return 0;
4444}
4445
4446/*
4447 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4448 *
4449 * Return error or zero.
4450 */
4451int
4452xlog_recover(
4453 struct xlog *log)
4454{
4455 xfs_daddr_t head_blk, tail_blk;
4456 int error;
4457
4458 /* find the tail of the log */
4459 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4460 return error;
4461
4462 if (tail_blk != head_blk) {
4463 /* There used to be a comment here:
4464 *
4465 * disallow recovery on read-only mounts. note -- mount
4466 * checks for ENOSPC and turns it into an intelligent
4467 * error message.
4468 * ...but this is no longer true. Now, unless you specify
4469 * NORECOVERY (in which case this function would never be
4470 * called), we just go ahead and recover. We do this all
4471 * under the vfs layer, so we can get away with it unless
4472 * the device itself is read-only, in which case we fail.
4473 */
4474 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4475 return error;
4476 }
4477
4478 /*
4479 * Version 5 superblock log feature mask validation. We know the
4480 * log is dirty so check if there are any unknown log features
4481 * in what we need to recover. If there are unknown features
4482 * (e.g. unsupported transactions, then simply reject the
4483 * attempt at recovery before touching anything.
4484 */
4485 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4486 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4487 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4488 xfs_warn(log->l_mp,
4489"Superblock has unknown incompatible log features (0x%x) enabled.\n"
4490"The log can not be fully and/or safely recovered by this kernel.\n"
4491"Please recover the log on a kernel that supports the unknown features.",
4492 (log->l_mp->m_sb.sb_features_log_incompat &
4493 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4494 return EINVAL;
4495 }
4496
4497 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4498 log->l_mp->m_logname ? log->l_mp->m_logname
4499 : "internal");
4500
4501 error = xlog_do_recover(log, head_blk, tail_blk);
4502 log->l_flags |= XLOG_RECOVERY_NEEDED;
4503 }
4504 return error;
4505}
4506
4507/*
4508 * In the first part of recovery we replay inodes and buffers and build
4509 * up the list of extent free items which need to be processed. Here
4510 * we process the extent free items and clean up the on disk unlinked
4511 * inode lists. This is separated from the first part of recovery so
4512 * that the root and real-time bitmap inodes can be read in from disk in
4513 * between the two stages. This is necessary so that we can free space
4514 * in the real-time portion of the file system.
4515 */
4516int
4517xlog_recover_finish(
4518 struct xlog *log)
4519{
4520 /*
4521 * Now we're ready to do the transactions needed for the
4522 * rest of recovery. Start with completing all the extent
4523 * free intent records and then process the unlinked inode
4524 * lists. At this point, we essentially run in normal mode
4525 * except that we're still performing recovery actions
4526 * rather than accepting new requests.
4527 */
4528 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4529 int error;
4530 error = xlog_recover_process_efis(log);
4531 if (error) {
4532 xfs_alert(log->l_mp, "Failed to recover EFIs");
4533 return error;
4534 }
4535 /*
4536 * Sync the log to get all the EFIs out of the AIL.
4537 * This isn't absolutely necessary, but it helps in
4538 * case the unlink transactions would have problems
4539 * pushing the EFIs out of the way.
4540 */
4541 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4542
4543 xlog_recover_process_iunlinks(log);
4544
4545 xlog_recover_check_summary(log);
4546
4547 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4548 log->l_mp->m_logname ? log->l_mp->m_logname
4549 : "internal");
4550 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4551 } else {
4552 xfs_info(log->l_mp, "Ending clean mount");
4553 }
4554 return 0;
4555}
4556
4557
4558#if defined(DEBUG)
4559/*
4560 * Read all of the agf and agi counters and check that they
4561 * are consistent with the superblock counters.
4562 */
4563void
4564xlog_recover_check_summary(
4565 struct xlog *log)
4566{
4567 xfs_mount_t *mp;
4568 xfs_agf_t *agfp;
4569 xfs_buf_t *agfbp;
4570 xfs_buf_t *agibp;
4571 xfs_agnumber_t agno;
4572 __uint64_t freeblks;
4573 __uint64_t itotal;
4574 __uint64_t ifree;
4575 int error;
4576
4577 mp = log->l_mp;
4578
4579 freeblks = 0LL;
4580 itotal = 0LL;
4581 ifree = 0LL;
4582 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4583 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4584 if (error) {
4585 xfs_alert(mp, "%s agf read failed agno %d error %d",
4586 __func__, agno, error);
4587 } else {
4588 agfp = XFS_BUF_TO_AGF(agfbp);
4589 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4590 be32_to_cpu(agfp->agf_flcount);
4591 xfs_buf_relse(agfbp);
4592 }
4593
4594 error = xfs_read_agi(mp, NULL, agno, &agibp);
4595 if (error) {
4596 xfs_alert(mp, "%s agi read failed agno %d error %d",
4597 __func__, agno, error);
4598 } else {
4599 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
4600
4601 itotal += be32_to_cpu(agi->agi_count);
4602 ifree += be32_to_cpu(agi->agi_freecount);
4603 xfs_buf_relse(agibp);
4604 }
4605 }
4606}
4607#endif /* DEBUG */