Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
 
 
 
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_sb.h"
  26#include "xfs_ag.h"
  27#include "xfs_mount.h"
  28#include "xfs_error.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_alloc_btree.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_dinode.h"
  33#include "xfs_inode.h"
  34#include "xfs_inode_item.h"
  35#include "xfs_alloc.h"
  36#include "xfs_ialloc.h"
  37#include "xfs_log_priv.h"
  38#include "xfs_buf_item.h"
  39#include "xfs_log_recover.h"
 
  40#include "xfs_extfree_item.h"
  41#include "xfs_trans_priv.h"
 
 
  42#include "xfs_quota.h"
  43#include "xfs_rw.h"
  44#include "xfs_utils.h"
  45#include "xfs_trace.h"
 
 
 
 
  46
  47STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  48STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
 
 
 
 
 
 
 
 
  49#if defined(DEBUG)
  50STATIC void	xlog_recover_check_summary(xlog_t *);
 
 
  51#else
  52#define	xlog_recover_check_summary(log)
  53#endif
 
 
 
  54
  55/*
  56 * This structure is used during recovery to record the buf log items which
  57 * have been canceled and should not be replayed.
  58 */
  59struct xfs_buf_cancel {
  60	xfs_daddr_t		bc_blkno;
  61	uint			bc_len;
  62	int			bc_refcount;
  63	struct list_head	bc_list;
  64};
  65
  66/*
  67 * Sector aligned buffer routines for buffer create/read/write/access
  68 */
  69
  70/*
  71 * Verify the given count of basic blocks is valid number of blocks
  72 * to specify for an operation involving the given XFS log buffer.
  73 * Returns nonzero if the count is valid, 0 otherwise.
  74 */
  75
  76static inline int
  77xlog_buf_bbcount_valid(
  78	xlog_t		*log,
  79	int		bbcount)
  80{
  81	return bbcount > 0 && bbcount <= log->l_logBBsize;
  82}
  83
  84/*
  85 * Allocate a buffer to hold log data.  The buffer needs to be able
  86 * to map to a range of nbblks basic blocks at any valid (basic
  87 * block) offset within the log.
  88 */
  89STATIC xfs_buf_t *
  90xlog_get_bp(
  91	xlog_t		*log,
  92	int		nbblks)
  93{
  94	struct xfs_buf	*bp;
  95
  96	if (!xlog_buf_bbcount_valid(log, nbblks)) {
  97		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  98			nbblks);
  99		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 100		return NULL;
 101	}
 102
 103	/*
 104	 * We do log I/O in units of log sectors (a power-of-2
 105	 * multiple of the basic block size), so we round up the
 106	 * requested size to accommodate the basic blocks required
 107	 * for complete log sectors.
 108	 *
 109	 * In addition, the buffer may be used for a non-sector-
 110	 * aligned block offset, in which case an I/O of the
 111	 * requested size could extend beyond the end of the
 112	 * buffer.  If the requested size is only 1 basic block it
 113	 * will never straddle a sector boundary, so this won't be
 114	 * an issue.  Nor will this be a problem if the log I/O is
 115	 * done in basic blocks (sector size 1).  But otherwise we
 116	 * extend the buffer by one extra log sector to ensure
 117	 * there's space to accommodate this possibility.
 118	 */
 119	if (nbblks > 1 && log->l_sectBBsize > 1)
 120		nbblks += log->l_sectBBsize;
 121	nbblks = round_up(nbblks, log->l_sectBBsize);
 122
 123	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, BBTOB(nbblks), 0);
 124	if (bp)
 125		xfs_buf_unlock(bp);
 126	return bp;
 127}
 128
 129STATIC void
 130xlog_put_bp(
 131	xfs_buf_t	*bp)
 132{
 133	xfs_buf_free(bp);
 134}
 135
 136/*
 137 * Return the address of the start of the given block number's data
 138 * in a log buffer.  The buffer covers a log sector-aligned region.
 139 */
 140STATIC xfs_caddr_t
 141xlog_align(
 142	xlog_t		*log,
 143	xfs_daddr_t	blk_no,
 144	int		nbblks,
 145	xfs_buf_t	*bp)
 146{
 147	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
 148
 149	ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
 150	return bp->b_addr + BBTOB(offset);
 151}
 152
 153
 154/*
 155 * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
 156 */
 157STATIC int
 158xlog_bread_noalign(
 159	xlog_t		*log,
 160	xfs_daddr_t	blk_no,
 161	int		nbblks,
 162	xfs_buf_t	*bp)
 163{
 164	int		error;
 165
 166	if (!xlog_buf_bbcount_valid(log, nbblks)) {
 167		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 168			nbblks);
 169		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 170		return EFSCORRUPTED;
 171	}
 172
 173	blk_no = round_down(blk_no, log->l_sectBBsize);
 174	nbblks = round_up(nbblks, log->l_sectBBsize);
 175
 176	ASSERT(nbblks > 0);
 177	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
 178
 179	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 180	XFS_BUF_READ(bp);
 181	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
 182
 183	xfsbdstrat(log->l_mp, bp);
 184	error = xfs_buf_iowait(bp);
 185	if (error)
 186		xfs_ioerror_alert("xlog_bread", log->l_mp,
 187				  bp, XFS_BUF_ADDR(bp));
 188	return error;
 189}
 190
 191STATIC int
 192xlog_bread(
 193	xlog_t		*log,
 194	xfs_daddr_t	blk_no,
 195	int		nbblks,
 196	xfs_buf_t	*bp,
 197	xfs_caddr_t	*offset)
 198{
 199	int		error;
 200
 201	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 202	if (error)
 203		return error;
 204
 205	*offset = xlog_align(log, blk_no, nbblks, bp);
 206	return 0;
 207}
 208
 209/*
 210 * Read at an offset into the buffer. Returns with the buffer in it's original
 211 * state regardless of the result of the read.
 212 */
 213STATIC int
 214xlog_bread_offset(
 215	xlog_t		*log,
 216	xfs_daddr_t	blk_no,		/* block to read from */
 217	int		nbblks,		/* blocks to read */
 218	xfs_buf_t	*bp,
 219	xfs_caddr_t	offset)
 220{
 221	xfs_caddr_t	orig_offset = bp->b_addr;
 222	int		orig_len = bp->b_buffer_length;
 223	int		error, error2;
 224
 225	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
 226	if (error)
 227		return error;
 228
 229	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 230
 231	/* must reset buffer pointer even on error */
 232	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
 233	if (error)
 234		return error;
 235	return error2;
 236}
 237
 238/*
 239 * Write out the buffer at the given block for the given number of blocks.
 240 * The buffer is kept locked across the write and is returned locked.
 241 * This can only be used for synchronous log writes.
 242 */
 243STATIC int
 244xlog_bwrite(
 245	xlog_t		*log,
 246	xfs_daddr_t	blk_no,
 247	int		nbblks,
 248	xfs_buf_t	*bp)
 249{
 250	int		error;
 251
 252	if (!xlog_buf_bbcount_valid(log, nbblks)) {
 253		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 254			nbblks);
 255		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 256		return EFSCORRUPTED;
 257	}
 258
 259	blk_no = round_down(blk_no, log->l_sectBBsize);
 260	nbblks = round_up(nbblks, log->l_sectBBsize);
 261
 262	ASSERT(nbblks > 0);
 263	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
 264
 265	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 266	XFS_BUF_ZEROFLAGS(bp);
 267	xfs_buf_hold(bp);
 268	xfs_buf_lock(bp);
 269	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
 
 270
 271	if ((error = xfs_bwrite(log->l_mp, bp)))
 272		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
 273				  bp, XFS_BUF_ADDR(bp));
 
 274	return error;
 275}
 276
 277#ifdef DEBUG
 278/*
 279 * dump debug superblock and log record information
 280 */
 281STATIC void
 282xlog_header_check_dump(
 283	xfs_mount_t		*mp,
 284	xlog_rec_header_t	*head)
 285{
 286	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d\n",
 287		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 288	xfs_debug(mp, "    log : uuid = %pU, fmt = %d\n",
 289		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 290}
 291#else
 292#define xlog_header_check_dump(mp, head)
 293#endif
 294
 295/*
 296 * check log record header for recovery
 297 */
 298STATIC int
 299xlog_header_check_recover(
 300	xfs_mount_t		*mp,
 301	xlog_rec_header_t	*head)
 302{
 303	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 304
 305	/*
 306	 * IRIX doesn't write the h_fmt field and leaves it zeroed
 307	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 308	 * a dirty log created in IRIX.
 309	 */
 310	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
 311		xfs_warn(mp,
 312	"dirty log written in incompatible format - can't recover");
 313		xlog_header_check_dump(mp, head);
 314		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
 315				 XFS_ERRLEVEL_HIGH, mp);
 316		return XFS_ERROR(EFSCORRUPTED);
 317	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 318		xfs_warn(mp,
 319	"dirty log entry has mismatched uuid - can't recover");
 320		xlog_header_check_dump(mp, head);
 321		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
 322				 XFS_ERRLEVEL_HIGH, mp);
 323		return XFS_ERROR(EFSCORRUPTED);
 324	}
 325	return 0;
 326}
 327
 328/*
 329 * read the head block of the log and check the header
 330 */
 331STATIC int
 332xlog_header_check_mount(
 333	xfs_mount_t		*mp,
 334	xlog_rec_header_t	*head)
 335{
 336	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 337
 338	if (uuid_is_nil(&head->h_fs_uuid)) {
 339		/*
 340		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 341		 * h_fs_uuid is nil, we assume this log was last mounted
 342		 * by IRIX and continue.
 343		 */
 344		xfs_warn(mp, "nil uuid in log - IRIX style log");
 345	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 346		xfs_warn(mp, "log has mismatched uuid - can't recover");
 347		xlog_header_check_dump(mp, head);
 348		XFS_ERROR_REPORT("xlog_header_check_mount",
 349				 XFS_ERRLEVEL_HIGH, mp);
 350		return XFS_ERROR(EFSCORRUPTED);
 351	}
 352	return 0;
 353}
 354
 355STATIC void
 356xlog_recover_iodone(
 357	struct xfs_buf	*bp)
 358{
 359	if (bp->b_error) {
 360		/*
 361		 * We're not going to bother about retrying
 362		 * this during recovery. One strike!
 363		 */
 364		xfs_ioerror_alert("xlog_recover_iodone",
 365					bp->b_target->bt_mount, bp,
 366					XFS_BUF_ADDR(bp));
 367		xfs_force_shutdown(bp->b_target->bt_mount,
 368					SHUTDOWN_META_IO_ERROR);
 369	}
 370	bp->b_iodone = NULL;
 371	xfs_buf_ioend(bp, 0);
 372}
 373
 374/*
 375 * This routine finds (to an approximation) the first block in the physical
 376 * log which contains the given cycle.  It uses a binary search algorithm.
 377 * Note that the algorithm can not be perfect because the disk will not
 378 * necessarily be perfect.
 379 */
 380STATIC int
 381xlog_find_cycle_start(
 382	xlog_t		*log,
 383	xfs_buf_t	*bp,
 384	xfs_daddr_t	first_blk,
 385	xfs_daddr_t	*last_blk,
 386	uint		cycle)
 387{
 388	xfs_caddr_t	offset;
 389	xfs_daddr_t	mid_blk;
 390	xfs_daddr_t	end_blk;
 391	uint		mid_cycle;
 392	int		error;
 393
 394	end_blk = *last_blk;
 395	mid_blk = BLK_AVG(first_blk, end_blk);
 396	while (mid_blk != first_blk && mid_blk != end_blk) {
 397		error = xlog_bread(log, mid_blk, 1, bp, &offset);
 398		if (error)
 399			return error;
 400		mid_cycle = xlog_get_cycle(offset);
 401		if (mid_cycle == cycle)
 402			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 403		else
 404			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 405		mid_blk = BLK_AVG(first_blk, end_blk);
 406	}
 407	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 408	       (mid_blk == end_blk && mid_blk-1 == first_blk));
 409
 410	*last_blk = end_blk;
 411
 412	return 0;
 413}
 414
 415/*
 416 * Check that a range of blocks does not contain stop_on_cycle_no.
 417 * Fill in *new_blk with the block offset where such a block is
 418 * found, or with -1 (an invalid block number) if there is no such
 419 * block in the range.  The scan needs to occur from front to back
 420 * and the pointer into the region must be updated since a later
 421 * routine will need to perform another test.
 422 */
 423STATIC int
 424xlog_find_verify_cycle(
 425	xlog_t		*log,
 426	xfs_daddr_t	start_blk,
 427	int		nbblks,
 428	uint		stop_on_cycle_no,
 429	xfs_daddr_t	*new_blk)
 430{
 431	xfs_daddr_t	i, j;
 432	uint		cycle;
 433	xfs_buf_t	*bp;
 434	xfs_daddr_t	bufblks;
 435	xfs_caddr_t	buf = NULL;
 436	int		error = 0;
 437
 438	/*
 439	 * Greedily allocate a buffer big enough to handle the full
 440	 * range of basic blocks we'll be examining.  If that fails,
 441	 * try a smaller size.  We need to be able to read at least
 442	 * a log sector, or we're out of luck.
 443	 */
 444	bufblks = 1 << ffs(nbblks);
 
 
 445	while (!(bp = xlog_get_bp(log, bufblks))) {
 446		bufblks >>= 1;
 447		if (bufblks < log->l_sectBBsize)
 448			return ENOMEM;
 449	}
 450
 451	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 452		int	bcount;
 453
 454		bcount = min(bufblks, (start_blk + nbblks - i));
 455
 456		error = xlog_bread(log, i, bcount, bp, &buf);
 457		if (error)
 458			goto out;
 459
 460		for (j = 0; j < bcount; j++) {
 461			cycle = xlog_get_cycle(buf);
 462			if (cycle == stop_on_cycle_no) {
 463				*new_blk = i+j;
 464				goto out;
 465			}
 466
 467			buf += BBSIZE;
 468		}
 469	}
 470
 471	*new_blk = -1;
 472
 473out:
 474	xlog_put_bp(bp);
 475	return error;
 476}
 477
 478/*
 479 * Potentially backup over partial log record write.
 480 *
 481 * In the typical case, last_blk is the number of the block directly after
 482 * a good log record.  Therefore, we subtract one to get the block number
 483 * of the last block in the given buffer.  extra_bblks contains the number
 484 * of blocks we would have read on a previous read.  This happens when the
 485 * last log record is split over the end of the physical log.
 486 *
 487 * extra_bblks is the number of blocks potentially verified on a previous
 488 * call to this routine.
 489 */
 490STATIC int
 491xlog_find_verify_log_record(
 492	xlog_t			*log,
 493	xfs_daddr_t		start_blk,
 494	xfs_daddr_t		*last_blk,
 495	int			extra_bblks)
 496{
 497	xfs_daddr_t		i;
 498	xfs_buf_t		*bp;
 499	xfs_caddr_t		offset = NULL;
 500	xlog_rec_header_t	*head = NULL;
 501	int			error = 0;
 502	int			smallmem = 0;
 503	int			num_blks = *last_blk - start_blk;
 504	int			xhdrs;
 505
 506	ASSERT(start_blk != 0 || *last_blk != start_blk);
 507
 508	if (!(bp = xlog_get_bp(log, num_blks))) {
 509		if (!(bp = xlog_get_bp(log, 1)))
 510			return ENOMEM;
 511		smallmem = 1;
 512	} else {
 513		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
 514		if (error)
 515			goto out;
 516		offset += ((num_blks - 1) << BBSHIFT);
 517	}
 518
 519	for (i = (*last_blk) - 1; i >= 0; i--) {
 520		if (i < start_blk) {
 521			/* valid log record not found */
 522			xfs_warn(log->l_mp,
 523		"Log inconsistent (didn't find previous header)");
 524			ASSERT(0);
 525			error = XFS_ERROR(EIO);
 526			goto out;
 527		}
 528
 529		if (smallmem) {
 530			error = xlog_bread(log, i, 1, bp, &offset);
 531			if (error)
 532				goto out;
 533		}
 534
 535		head = (xlog_rec_header_t *)offset;
 536
 537		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
 538			break;
 539
 540		if (!smallmem)
 541			offset -= BBSIZE;
 542	}
 543
 544	/*
 545	 * We hit the beginning of the physical log & still no header.  Return
 546	 * to caller.  If caller can handle a return of -1, then this routine
 547	 * will be called again for the end of the physical log.
 548	 */
 549	if (i == -1) {
 550		error = -1;
 551		goto out;
 552	}
 553
 554	/*
 555	 * We have the final block of the good log (the first block
 556	 * of the log record _before_ the head. So we check the uuid.
 557	 */
 558	if ((error = xlog_header_check_mount(log->l_mp, head)))
 559		goto out;
 560
 561	/*
 562	 * We may have found a log record header before we expected one.
 563	 * last_blk will be the 1st block # with a given cycle #.  We may end
 564	 * up reading an entire log record.  In this case, we don't want to
 565	 * reset last_blk.  Only when last_blk points in the middle of a log
 566	 * record do we update last_blk.
 567	 */
 568	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 569		uint	h_size = be32_to_cpu(head->h_size);
 570
 571		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 572		if (h_size % XLOG_HEADER_CYCLE_SIZE)
 573			xhdrs++;
 574	} else {
 575		xhdrs = 1;
 576	}
 577
 578	if (*last_blk - i + extra_bblks !=
 579	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 580		*last_blk = i;
 581
 582out:
 583	xlog_put_bp(bp);
 584	return error;
 585}
 586
 587/*
 588 * Head is defined to be the point of the log where the next log write
 589 * write could go.  This means that incomplete LR writes at the end are
 590 * eliminated when calculating the head.  We aren't guaranteed that previous
 591 * LR have complete transactions.  We only know that a cycle number of
 592 * current cycle number -1 won't be present in the log if we start writing
 593 * from our current block number.
 594 *
 595 * last_blk contains the block number of the first block with a given
 596 * cycle number.
 597 *
 598 * Return: zero if normal, non-zero if error.
 599 */
 600STATIC int
 601xlog_find_head(
 602	xlog_t 		*log,
 603	xfs_daddr_t	*return_head_blk)
 604{
 605	xfs_buf_t	*bp;
 606	xfs_caddr_t	offset;
 607	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
 608	int		num_scan_bblks;
 609	uint		first_half_cycle, last_half_cycle;
 610	uint		stop_on_cycle;
 611	int		error, log_bbnum = log->l_logBBsize;
 612
 613	/* Is the end of the log device zeroed? */
 614	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
 
 
 
 
 
 615		*return_head_blk = first_blk;
 616
 617		/* Is the whole lot zeroed? */
 618		if (!first_blk) {
 619			/* Linux XFS shouldn't generate totally zeroed logs -
 620			 * mkfs etc write a dummy unmount record to a fresh
 621			 * log so we can store the uuid in there
 622			 */
 623			xfs_warn(log->l_mp, "totally zeroed log");
 624		}
 625
 626		return 0;
 627	} else if (error) {
 628		xfs_warn(log->l_mp, "empty log check failed");
 629		return error;
 630	}
 631
 632	first_blk = 0;			/* get cycle # of 1st block */
 633	bp = xlog_get_bp(log, 1);
 634	if (!bp)
 635		return ENOMEM;
 636
 637	error = xlog_bread(log, 0, 1, bp, &offset);
 638	if (error)
 639		goto bp_err;
 640
 641	first_half_cycle = xlog_get_cycle(offset);
 642
 643	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
 644	error = xlog_bread(log, last_blk, 1, bp, &offset);
 645	if (error)
 646		goto bp_err;
 647
 648	last_half_cycle = xlog_get_cycle(offset);
 649	ASSERT(last_half_cycle != 0);
 650
 651	/*
 652	 * If the 1st half cycle number is equal to the last half cycle number,
 653	 * then the entire log is stamped with the same cycle number.  In this
 654	 * case, head_blk can't be set to zero (which makes sense).  The below
 655	 * math doesn't work out properly with head_blk equal to zero.  Instead,
 656	 * we set it to log_bbnum which is an invalid block number, but this
 657	 * value makes the math correct.  If head_blk doesn't changed through
 658	 * all the tests below, *head_blk is set to zero at the very end rather
 659	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 660	 * in a circular file.
 661	 */
 662	if (first_half_cycle == last_half_cycle) {
 663		/*
 664		 * In this case we believe that the entire log should have
 665		 * cycle number last_half_cycle.  We need to scan backwards
 666		 * from the end verifying that there are no holes still
 667		 * containing last_half_cycle - 1.  If we find such a hole,
 668		 * then the start of that hole will be the new head.  The
 669		 * simple case looks like
 670		 *        x | x ... | x - 1 | x
 671		 * Another case that fits this picture would be
 672		 *        x | x + 1 | x ... | x
 673		 * In this case the head really is somewhere at the end of the
 674		 * log, as one of the latest writes at the beginning was
 675		 * incomplete.
 676		 * One more case is
 677		 *        x | x + 1 | x ... | x - 1 | x
 678		 * This is really the combination of the above two cases, and
 679		 * the head has to end up at the start of the x-1 hole at the
 680		 * end of the log.
 681		 *
 682		 * In the 256k log case, we will read from the beginning to the
 683		 * end of the log and search for cycle numbers equal to x-1.
 684		 * We don't worry about the x+1 blocks that we encounter,
 685		 * because we know that they cannot be the head since the log
 686		 * started with x.
 687		 */
 688		head_blk = log_bbnum;
 689		stop_on_cycle = last_half_cycle - 1;
 690	} else {
 691		/*
 692		 * In this case we want to find the first block with cycle
 693		 * number matching last_half_cycle.  We expect the log to be
 694		 * some variation on
 695		 *        x + 1 ... | x ... | x
 696		 * The first block with cycle number x (last_half_cycle) will
 697		 * be where the new head belongs.  First we do a binary search
 698		 * for the first occurrence of last_half_cycle.  The binary
 699		 * search may not be totally accurate, so then we scan back
 700		 * from there looking for occurrences of last_half_cycle before
 701		 * us.  If that backwards scan wraps around the beginning of
 702		 * the log, then we look for occurrences of last_half_cycle - 1
 703		 * at the end of the log.  The cases we're looking for look
 704		 * like
 705		 *                               v binary search stopped here
 706		 *        x + 1 ... | x | x + 1 | x ... | x
 707		 *                   ^ but we want to locate this spot
 708		 * or
 709		 *        <---------> less than scan distance
 710		 *        x + 1 ... | x ... | x - 1 | x
 711		 *                           ^ we want to locate this spot
 712		 */
 713		stop_on_cycle = last_half_cycle;
 714		if ((error = xlog_find_cycle_start(log, bp, first_blk,
 715						&head_blk, last_half_cycle)))
 716			goto bp_err;
 717	}
 718
 719	/*
 720	 * Now validate the answer.  Scan back some number of maximum possible
 721	 * blocks and make sure each one has the expected cycle number.  The
 722	 * maximum is determined by the total possible amount of buffering
 723	 * in the in-core log.  The following number can be made tighter if
 724	 * we actually look at the block size of the filesystem.
 725	 */
 726	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
 727	if (head_blk >= num_scan_bblks) {
 728		/*
 729		 * We are guaranteed that the entire check can be performed
 730		 * in one buffer.
 731		 */
 732		start_blk = head_blk - num_scan_bblks;
 733		if ((error = xlog_find_verify_cycle(log,
 734						start_blk, num_scan_bblks,
 735						stop_on_cycle, &new_blk)))
 736			goto bp_err;
 737		if (new_blk != -1)
 738			head_blk = new_blk;
 739	} else {		/* need to read 2 parts of log */
 740		/*
 741		 * We are going to scan backwards in the log in two parts.
 742		 * First we scan the physical end of the log.  In this part
 743		 * of the log, we are looking for blocks with cycle number
 744		 * last_half_cycle - 1.
 745		 * If we find one, then we know that the log starts there, as
 746		 * we've found a hole that didn't get written in going around
 747		 * the end of the physical log.  The simple case for this is
 748		 *        x + 1 ... | x ... | x - 1 | x
 749		 *        <---------> less than scan distance
 750		 * If all of the blocks at the end of the log have cycle number
 751		 * last_half_cycle, then we check the blocks at the start of
 752		 * the log looking for occurrences of last_half_cycle.  If we
 753		 * find one, then our current estimate for the location of the
 754		 * first occurrence of last_half_cycle is wrong and we move
 755		 * back to the hole we've found.  This case looks like
 756		 *        x + 1 ... | x | x + 1 | x ...
 757		 *                               ^ binary search stopped here
 758		 * Another case we need to handle that only occurs in 256k
 759		 * logs is
 760		 *        x + 1 ... | x ... | x+1 | x ...
 761		 *                   ^ binary search stops here
 762		 * In a 256k log, the scan at the end of the log will see the
 763		 * x + 1 blocks.  We need to skip past those since that is
 764		 * certainly not the head of the log.  By searching for
 765		 * last_half_cycle-1 we accomplish that.
 766		 */
 767		ASSERT(head_blk <= INT_MAX &&
 768			(xfs_daddr_t) num_scan_bblks >= head_blk);
 769		start_blk = log_bbnum - (num_scan_bblks - head_blk);
 770		if ((error = xlog_find_verify_cycle(log, start_blk,
 771					num_scan_bblks - (int)head_blk,
 772					(stop_on_cycle - 1), &new_blk)))
 773			goto bp_err;
 774		if (new_blk != -1) {
 775			head_blk = new_blk;
 776			goto validate_head;
 777		}
 778
 779		/*
 780		 * Scan beginning of log now.  The last part of the physical
 781		 * log is good.  This scan needs to verify that it doesn't find
 782		 * the last_half_cycle.
 783		 */
 784		start_blk = 0;
 785		ASSERT(head_blk <= INT_MAX);
 786		if ((error = xlog_find_verify_cycle(log,
 787					start_blk, (int)head_blk,
 788					stop_on_cycle, &new_blk)))
 789			goto bp_err;
 790		if (new_blk != -1)
 791			head_blk = new_blk;
 792	}
 793
 794validate_head:
 795	/*
 796	 * Now we need to make sure head_blk is not pointing to a block in
 797	 * the middle of a log record.
 798	 */
 799	num_scan_bblks = XLOG_REC_SHIFT(log);
 800	if (head_blk >= num_scan_bblks) {
 801		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 802
 803		/* start ptr at last block ptr before head_blk */
 804		if ((error = xlog_find_verify_log_record(log, start_blk,
 805							&head_blk, 0)) == -1) {
 806			error = XFS_ERROR(EIO);
 807			goto bp_err;
 808		} else if (error)
 809			goto bp_err;
 810	} else {
 811		start_blk = 0;
 812		ASSERT(head_blk <= INT_MAX);
 813		if ((error = xlog_find_verify_log_record(log, start_blk,
 814							&head_blk, 0)) == -1) {
 
 
 815			/* We hit the beginning of the log during our search */
 816			start_blk = log_bbnum - (num_scan_bblks - head_blk);
 817			new_blk = log_bbnum;
 818			ASSERT(start_blk <= INT_MAX &&
 819				(xfs_daddr_t) log_bbnum-start_blk >= 0);
 820			ASSERT(head_blk <= INT_MAX);
 821			if ((error = xlog_find_verify_log_record(log,
 822							start_blk, &new_blk,
 823							(int)head_blk)) == -1) {
 824				error = XFS_ERROR(EIO);
 825				goto bp_err;
 826			} else if (error)
 827				goto bp_err;
 828			if (new_blk != log_bbnum)
 829				head_blk = new_blk;
 830		} else if (error)
 831			goto bp_err;
 832	}
 833
 834	xlog_put_bp(bp);
 835	if (head_blk == log_bbnum)
 836		*return_head_blk = 0;
 837	else
 838		*return_head_blk = head_blk;
 839	/*
 840	 * When returning here, we have a good block number.  Bad block
 841	 * means that during a previous crash, we didn't have a clean break
 842	 * from cycle number N to cycle number N-1.  In this case, we need
 843	 * to find the first block with cycle number N-1.
 844	 */
 845	return 0;
 846
 847 bp_err:
 848	xlog_put_bp(bp);
 849
 850	if (error)
 851		xfs_warn(log->l_mp, "failed to find log head");
 852	return error;
 853}
 854
 855/*
 856 * Find the sync block number or the tail of the log.
 857 *
 858 * This will be the block number of the last record to have its
 859 * associated buffers synced to disk.  Every log record header has
 860 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
 861 * to get a sync block number.  The only concern is to figure out which
 862 * log record header to believe.
 863 *
 864 * The following algorithm uses the log record header with the largest
 865 * lsn.  The entire log record does not need to be valid.  We only care
 866 * that the header is valid.
 867 *
 868 * We could speed up search by using current head_blk buffer, but it is not
 869 * available.
 870 */
 871STATIC int
 872xlog_find_tail(
 873	xlog_t			*log,
 874	xfs_daddr_t		*head_blk,
 875	xfs_daddr_t		*tail_blk)
 
 
 
 
 
 876{
 877	xlog_rec_header_t	*rhead;
 878	xlog_op_header_t	*op_head;
 879	xfs_caddr_t		offset = NULL;
 880	xfs_buf_t		*bp;
 881	int			error, i, found;
 882	xfs_daddr_t		umount_data_blk;
 883	xfs_daddr_t		after_umount_blk;
 884	xfs_lsn_t		tail_lsn;
 885	int			hblks;
 886
 887	found = 0;
 888
 889	/*
 890	 * Find previous log record
 
 891	 */
 892	if ((error = xlog_find_head(log, head_blk)))
 893		return error;
 894
 895	bp = xlog_get_bp(log, 1);
 896	if (!bp)
 897		return ENOMEM;
 898	if (*head_blk == 0) {				/* special case */
 899		error = xlog_bread(log, 0, 1, bp, &offset);
 900		if (error)
 901			goto done;
 902
 903		if (xlog_get_cycle(offset) == 0) {
 904			*tail_blk = 0;
 905			/* leave all other log inited values alone */
 906			goto done;
 
 907		}
 908	}
 909
 910	/*
 911	 * Search backwards looking for log record header block
 
 
 912	 */
 913	ASSERT(*head_blk < INT_MAX);
 914	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915		error = xlog_bread(log, i, 1, bp, &offset);
 916		if (error)
 917			goto done;
 918
 919		if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 920			found = 1;
 921			break;
 
 
 922		}
 923	}
 
 924	/*
 925	 * If we haven't found the log record header block, start looking
 926	 * again from the end of the physical log.  XXXmiken: There should be
 927	 * a check here to make sure we didn't search more than N blocks in
 928	 * the previous code.
 929	 */
 930	if (!found) {
 931		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
 932			error = xlog_bread(log, i, 1, bp, &offset);
 933			if (error)
 934				goto done;
 935
 936			if (*(__be32 *)offset ==
 937			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 938				found = 2;
 939				break;
 
 
 
 940			}
 941		}
 942	}
 943	if (!found) {
 944		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
 945		ASSERT(0);
 946		return XFS_ERROR(EIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 947	}
 948
 949	/* find blk_no of tail of log */
 950	rhead = (xlog_rec_header_t *)offset;
 951	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
 
 
 
 
 952
 953	/*
 954	 * Reset log values according to the state of the log when we
 955	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
 956	 * one because the next write starts a new cycle rather than
 957	 * continuing the cycle of the last good log record.  At this
 958	 * point we have guaranteed that all partial log records have been
 959	 * accounted for.  Therefore, we know that the last good log record
 960	 * written was complete and ended exactly on the end boundary
 961	 * of the physical log.
 962	 */
 963	log->l_prev_block = i;
 964	log->l_curr_block = (int)*head_blk;
 965	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
 966	if (found == 2)
 967		log->l_curr_cycle++;
 968	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
 969	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
 970	xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
 971					BBTOB(log->l_curr_block));
 972	xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
 973					BBTOB(log->l_curr_block));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974
 975	/*
 976	 * Look for unmount record.  If we find it, then we know there
 977	 * was a clean unmount.  Since 'i' could be the last block in
 978	 * the physical log, we convert to a log block before comparing
 979	 * to the head_blk.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980	 *
 981	 * Save the current tail lsn to use to pass to
 982	 * xlog_clear_stale_blocks() below.  We won't want to clear the
 983	 * unmount record if there is one, so we pass the lsn of the
 984	 * unmount record rather than the block after it.
 985	 */
 986	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 987		int	h_size = be32_to_cpu(rhead->h_size);
 988		int	h_version = be32_to_cpu(rhead->h_version);
 989
 990		if ((h_version & XLOG_VERSION_2) &&
 991		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
 992			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
 993			if (h_size % XLOG_HEADER_CYCLE_SIZE)
 994				hblks++;
 995		} else {
 996			hblks = 1;
 997		}
 998	} else {
 999		hblks = 1;
1000	}
1001	after_umount_blk = (i + hblks + (int)
1002		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1003	tail_lsn = atomic64_read(&log->l_tail_lsn);
1004	if (*head_blk == after_umount_blk &&
1005	    be32_to_cpu(rhead->h_num_logops) == 1) {
1006		umount_data_blk = (i + hblks) % log->l_logBBsize;
 
1007		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1008		if (error)
1009			goto done;
1010
1011		op_head = (xlog_op_header_t *)offset;
1012		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1013			/*
1014			 * Set tail and last sync so that newly written
1015			 * log records will point recovery to after the
1016			 * current unmount record.
1017			 */
1018			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1019					log->l_curr_cycle, after_umount_blk);
1020			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1021					log->l_curr_cycle, after_umount_blk);
1022			*tail_blk = after_umount_blk;
1023
1024			/*
1025			 * Note that the unmount was clean. If the unmount
1026			 * was not clean, we need to know this to rebuild the
1027			 * superblock counters from the perag headers if we
1028			 * have a filesystem using non-persistent counters.
1029			 */
1030			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031		}
1032	}
1033
1034	/*
 
 
 
 
 
 
 
 
1035	 * Make sure that there are no blocks in front of the head
1036	 * with the same cycle number as the head.  This can happen
1037	 * because we allow multiple outstanding log writes concurrently,
1038	 * and the later writes might make it out before earlier ones.
1039	 *
1040	 * We use the lsn from before modifying it so that we'll never
1041	 * overwrite the unmount record after a clean unmount.
1042	 *
1043	 * Do this only if we are going to recover the filesystem
1044	 *
1045	 * NOTE: This used to say "if (!readonly)"
1046	 * However on Linux, we can & do recover a read-only filesystem.
1047	 * We only skip recovery if NORECOVERY is specified on mount,
1048	 * in which case we would not be here.
1049	 *
1050	 * But... if the -device- itself is readonly, just skip this.
1051	 * We can't recover this device anyway, so it won't matter.
1052	 */
1053	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1054		error = xlog_clear_stale_blocks(log, tail_lsn);
1055
1056done:
1057	xlog_put_bp(bp);
1058
1059	if (error)
1060		xfs_warn(log->l_mp, "failed to locate log tail");
1061	return error;
1062}
1063
1064/*
1065 * Is the log zeroed at all?
1066 *
1067 * The last binary search should be changed to perform an X block read
1068 * once X becomes small enough.  You can then search linearly through
1069 * the X blocks.  This will cut down on the number of reads we need to do.
1070 *
1071 * If the log is partially zeroed, this routine will pass back the blkno
1072 * of the first block with cycle number 0.  It won't have a complete LR
1073 * preceding it.
1074 *
1075 * Return:
1076 *	0  => the log is completely written to
1077 *	-1 => use *blk_no as the first block of the log
1078 *	>0 => error has occurred
1079 */
1080STATIC int
1081xlog_find_zeroed(
1082	xlog_t		*log,
1083	xfs_daddr_t	*blk_no)
1084{
1085	xfs_buf_t	*bp;
1086	xfs_caddr_t	offset;
1087	uint	        first_cycle, last_cycle;
1088	xfs_daddr_t	new_blk, last_blk, start_blk;
1089	xfs_daddr_t     num_scan_bblks;
1090	int	        error, log_bbnum = log->l_logBBsize;
1091
1092	*blk_no = 0;
1093
1094	/* check totally zeroed log */
1095	bp = xlog_get_bp(log, 1);
1096	if (!bp)
1097		return ENOMEM;
1098	error = xlog_bread(log, 0, 1, bp, &offset);
1099	if (error)
1100		goto bp_err;
1101
1102	first_cycle = xlog_get_cycle(offset);
1103	if (first_cycle == 0) {		/* completely zeroed log */
1104		*blk_no = 0;
1105		xlog_put_bp(bp);
1106		return -1;
1107	}
1108
1109	/* check partially zeroed log */
1110	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1111	if (error)
1112		goto bp_err;
1113
1114	last_cycle = xlog_get_cycle(offset);
1115	if (last_cycle != 0) {		/* log completely written to */
1116		xlog_put_bp(bp);
1117		return 0;
1118	} else if (first_cycle != 1) {
1119		/*
1120		 * If the cycle of the last block is zero, the cycle of
1121		 * the first block must be 1. If it's not, maybe we're
1122		 * not looking at a log... Bail out.
1123		 */
1124		xfs_warn(log->l_mp,
1125			"Log inconsistent or not a log (last==0, first!=1)");
1126		return XFS_ERROR(EINVAL);
 
1127	}
1128
1129	/* we have a partially zeroed log */
1130	last_blk = log_bbnum-1;
1131	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1132		goto bp_err;
1133
1134	/*
1135	 * Validate the answer.  Because there is no way to guarantee that
1136	 * the entire log is made up of log records which are the same size,
1137	 * we scan over the defined maximum blocks.  At this point, the maximum
1138	 * is not chosen to mean anything special.   XXXmiken
1139	 */
1140	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1141	ASSERT(num_scan_bblks <= INT_MAX);
1142
1143	if (last_blk < num_scan_bblks)
1144		num_scan_bblks = last_blk;
1145	start_blk = last_blk - num_scan_bblks;
1146
1147	/*
1148	 * We search for any instances of cycle number 0 that occur before
1149	 * our current estimate of the head.  What we're trying to detect is
1150	 *        1 ... | 0 | 1 | 0...
1151	 *                       ^ binary search ends here
1152	 */
1153	if ((error = xlog_find_verify_cycle(log, start_blk,
1154					 (int)num_scan_bblks, 0, &new_blk)))
1155		goto bp_err;
1156	if (new_blk != -1)
1157		last_blk = new_blk;
1158
1159	/*
1160	 * Potentially backup over partial log record write.  We don't need
1161	 * to search the end of the log because we know it is zero.
1162	 */
1163	if ((error = xlog_find_verify_log_record(log, start_blk,
1164				&last_blk, 0)) == -1) {
1165	    error = XFS_ERROR(EIO);
1166	    goto bp_err;
1167	} else if (error)
1168	    goto bp_err;
1169
1170	*blk_no = last_blk;
1171bp_err:
1172	xlog_put_bp(bp);
1173	if (error)
1174		return error;
1175	return -1;
1176}
1177
1178/*
1179 * These are simple subroutines used by xlog_clear_stale_blocks() below
1180 * to initialize a buffer full of empty log record headers and write
1181 * them into the log.
1182 */
1183STATIC void
1184xlog_add_record(
1185	xlog_t			*log,
1186	xfs_caddr_t		buf,
1187	int			cycle,
1188	int			block,
1189	int			tail_cycle,
1190	int			tail_block)
1191{
1192	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1193
1194	memset(buf, 0, BBSIZE);
1195	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1196	recp->h_cycle = cpu_to_be32(cycle);
1197	recp->h_version = cpu_to_be32(
1198			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1199	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1200	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1201	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1202	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1203}
1204
1205STATIC int
1206xlog_write_log_records(
1207	xlog_t		*log,
1208	int		cycle,
1209	int		start_block,
1210	int		blocks,
1211	int		tail_cycle,
1212	int		tail_block)
1213{
1214	xfs_caddr_t	offset;
1215	xfs_buf_t	*bp;
1216	int		balign, ealign;
1217	int		sectbb = log->l_sectBBsize;
1218	int		end_block = start_block + blocks;
1219	int		bufblks;
1220	int		error = 0;
1221	int		i, j = 0;
1222
1223	/*
1224	 * Greedily allocate a buffer big enough to handle the full
1225	 * range of basic blocks to be written.  If that fails, try
1226	 * a smaller size.  We need to be able to write at least a
1227	 * log sector, or we're out of luck.
1228	 */
1229	bufblks = 1 << ffs(blocks);
 
 
1230	while (!(bp = xlog_get_bp(log, bufblks))) {
1231		bufblks >>= 1;
1232		if (bufblks < sectbb)
1233			return ENOMEM;
1234	}
1235
1236	/* We may need to do a read at the start to fill in part of
1237	 * the buffer in the starting sector not covered by the first
1238	 * write below.
1239	 */
1240	balign = round_down(start_block, sectbb);
1241	if (balign != start_block) {
1242		error = xlog_bread_noalign(log, start_block, 1, bp);
1243		if (error)
1244			goto out_put_bp;
1245
1246		j = start_block - balign;
1247	}
1248
1249	for (i = start_block; i < end_block; i += bufblks) {
1250		int		bcount, endcount;
1251
1252		bcount = min(bufblks, end_block - start_block);
1253		endcount = bcount - j;
1254
1255		/* We may need to do a read at the end to fill in part of
1256		 * the buffer in the final sector not covered by the write.
1257		 * If this is the same sector as the above read, skip it.
1258		 */
1259		ealign = round_down(end_block, sectbb);
1260		if (j == 0 && (start_block + endcount > ealign)) {
1261			offset = bp->b_addr + BBTOB(ealign - start_block);
1262			error = xlog_bread_offset(log, ealign, sectbb,
1263							bp, offset);
1264			if (error)
1265				break;
1266
1267		}
1268
1269		offset = xlog_align(log, start_block, endcount, bp);
1270		for (; j < endcount; j++) {
1271			xlog_add_record(log, offset, cycle, i+j,
1272					tail_cycle, tail_block);
1273			offset += BBSIZE;
1274		}
1275		error = xlog_bwrite(log, start_block, endcount, bp);
1276		if (error)
1277			break;
1278		start_block += endcount;
1279		j = 0;
1280	}
1281
1282 out_put_bp:
1283	xlog_put_bp(bp);
1284	return error;
1285}
1286
1287/*
1288 * This routine is called to blow away any incomplete log writes out
1289 * in front of the log head.  We do this so that we won't become confused
1290 * if we come up, write only a little bit more, and then crash again.
1291 * If we leave the partial log records out there, this situation could
1292 * cause us to think those partial writes are valid blocks since they
1293 * have the current cycle number.  We get rid of them by overwriting them
1294 * with empty log records with the old cycle number rather than the
1295 * current one.
1296 *
1297 * The tail lsn is passed in rather than taken from
1298 * the log so that we will not write over the unmount record after a
1299 * clean unmount in a 512 block log.  Doing so would leave the log without
1300 * any valid log records in it until a new one was written.  If we crashed
1301 * during that time we would not be able to recover.
1302 */
1303STATIC int
1304xlog_clear_stale_blocks(
1305	xlog_t		*log,
1306	xfs_lsn_t	tail_lsn)
1307{
1308	int		tail_cycle, head_cycle;
1309	int		tail_block, head_block;
1310	int		tail_distance, max_distance;
1311	int		distance;
1312	int		error;
1313
1314	tail_cycle = CYCLE_LSN(tail_lsn);
1315	tail_block = BLOCK_LSN(tail_lsn);
1316	head_cycle = log->l_curr_cycle;
1317	head_block = log->l_curr_block;
1318
1319	/*
1320	 * Figure out the distance between the new head of the log
1321	 * and the tail.  We want to write over any blocks beyond the
1322	 * head that we may have written just before the crash, but
1323	 * we don't want to overwrite the tail of the log.
1324	 */
1325	if (head_cycle == tail_cycle) {
1326		/*
1327		 * The tail is behind the head in the physical log,
1328		 * so the distance from the head to the tail is the
1329		 * distance from the head to the end of the log plus
1330		 * the distance from the beginning of the log to the
1331		 * tail.
1332		 */
1333		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1334			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1335					 XFS_ERRLEVEL_LOW, log->l_mp);
1336			return XFS_ERROR(EFSCORRUPTED);
1337		}
1338		tail_distance = tail_block + (log->l_logBBsize - head_block);
1339	} else {
1340		/*
1341		 * The head is behind the tail in the physical log,
1342		 * so the distance from the head to the tail is just
1343		 * the tail block minus the head block.
1344		 */
1345		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1346			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1347					 XFS_ERRLEVEL_LOW, log->l_mp);
1348			return XFS_ERROR(EFSCORRUPTED);
1349		}
1350		tail_distance = tail_block - head_block;
1351	}
1352
1353	/*
1354	 * If the head is right up against the tail, we can't clear
1355	 * anything.
1356	 */
1357	if (tail_distance <= 0) {
1358		ASSERT(tail_distance == 0);
1359		return 0;
1360	}
1361
1362	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1363	/*
1364	 * Take the smaller of the maximum amount of outstanding I/O
1365	 * we could have and the distance to the tail to clear out.
1366	 * We take the smaller so that we don't overwrite the tail and
1367	 * we don't waste all day writing from the head to the tail
1368	 * for no reason.
1369	 */
1370	max_distance = MIN(max_distance, tail_distance);
1371
1372	if ((head_block + max_distance) <= log->l_logBBsize) {
1373		/*
1374		 * We can stomp all the blocks we need to without
1375		 * wrapping around the end of the log.  Just do it
1376		 * in a single write.  Use the cycle number of the
1377		 * current cycle minus one so that the log will look like:
1378		 *     n ... | n - 1 ...
1379		 */
1380		error = xlog_write_log_records(log, (head_cycle - 1),
1381				head_block, max_distance, tail_cycle,
1382				tail_block);
1383		if (error)
1384			return error;
1385	} else {
1386		/*
1387		 * We need to wrap around the end of the physical log in
1388		 * order to clear all the blocks.  Do it in two separate
1389		 * I/Os.  The first write should be from the head to the
1390		 * end of the physical log, and it should use the current
1391		 * cycle number minus one just like above.
1392		 */
1393		distance = log->l_logBBsize - head_block;
1394		error = xlog_write_log_records(log, (head_cycle - 1),
1395				head_block, distance, tail_cycle,
1396				tail_block);
1397
1398		if (error)
1399			return error;
1400
1401		/*
1402		 * Now write the blocks at the start of the physical log.
1403		 * This writes the remainder of the blocks we want to clear.
1404		 * It uses the current cycle number since we're now on the
1405		 * same cycle as the head so that we get:
1406		 *    n ... n ... | n - 1 ...
1407		 *    ^^^^^ blocks we're writing
1408		 */
1409		distance = max_distance - (log->l_logBBsize - head_block);
1410		error = xlog_write_log_records(log, head_cycle, 0, distance,
1411				tail_cycle, tail_block);
1412		if (error)
1413			return error;
1414	}
1415
1416	return 0;
1417}
1418
1419/******************************************************************************
1420 *
1421 *		Log recover routines
1422 *
1423 ******************************************************************************
1424 */
1425
1426STATIC xlog_recover_t *
1427xlog_recover_find_tid(
1428	struct hlist_head	*head,
1429	xlog_tid_t		tid)
1430{
1431	xlog_recover_t		*trans;
1432	struct hlist_node	*n;
1433
1434	hlist_for_each_entry(trans, n, head, r_list) {
1435		if (trans->r_log_tid == tid)
1436			return trans;
1437	}
1438	return NULL;
1439}
1440
1441STATIC void
1442xlog_recover_new_tid(
1443	struct hlist_head	*head,
1444	xlog_tid_t		tid,
1445	xfs_lsn_t		lsn)
1446{
1447	xlog_recover_t		*trans;
1448
1449	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1450	trans->r_log_tid   = tid;
1451	trans->r_lsn	   = lsn;
1452	INIT_LIST_HEAD(&trans->r_itemq);
1453
1454	INIT_HLIST_NODE(&trans->r_list);
1455	hlist_add_head(&trans->r_list, head);
1456}
1457
1458STATIC void
1459xlog_recover_add_item(
1460	struct list_head	*head)
1461{
1462	xlog_recover_item_t	*item;
1463
1464	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1465	INIT_LIST_HEAD(&item->ri_list);
1466	list_add_tail(&item->ri_list, head);
1467}
1468
1469STATIC int
1470xlog_recover_add_to_cont_trans(
1471	struct log		*log,
1472	xlog_recover_t		*trans,
1473	xfs_caddr_t		dp,
1474	int			len)
1475{
1476	xlog_recover_item_t	*item;
1477	xfs_caddr_t		ptr, old_ptr;
1478	int			old_len;
1479
1480	if (list_empty(&trans->r_itemq)) {
1481		/* finish copying rest of trans header */
1482		xlog_recover_add_item(&trans->r_itemq);
1483		ptr = (xfs_caddr_t) &trans->r_theader +
1484				sizeof(xfs_trans_header_t) - len;
1485		memcpy(ptr, dp, len); /* d, s, l */
1486		return 0;
1487	}
1488	/* take the tail entry */
1489	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1490
1491	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1492	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1493
1494	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1495	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1496	item->ri_buf[item->ri_cnt-1].i_len += len;
1497	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1498	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1499	return 0;
1500}
1501
1502/*
1503 * The next region to add is the start of a new region.  It could be
1504 * a whole region or it could be the first part of a new region.  Because
1505 * of this, the assumption here is that the type and size fields of all
1506 * format structures fit into the first 32 bits of the structure.
1507 *
1508 * This works because all regions must be 32 bit aligned.  Therefore, we
1509 * either have both fields or we have neither field.  In the case we have
1510 * neither field, the data part of the region is zero length.  We only have
1511 * a log_op_header and can throw away the header since a new one will appear
1512 * later.  If we have at least 4 bytes, then we can determine how many regions
1513 * will appear in the current log item.
1514 */
1515STATIC int
1516xlog_recover_add_to_trans(
1517	struct log		*log,
1518	xlog_recover_t		*trans,
1519	xfs_caddr_t		dp,
1520	int			len)
1521{
1522	xfs_inode_log_format_t	*in_f;			/* any will do */
1523	xlog_recover_item_t	*item;
1524	xfs_caddr_t		ptr;
1525
1526	if (!len)
1527		return 0;
1528	if (list_empty(&trans->r_itemq)) {
1529		/* we need to catch log corruptions here */
1530		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1531			xfs_warn(log->l_mp, "%s: bad header magic number",
1532				__func__);
1533			ASSERT(0);
1534			return XFS_ERROR(EIO);
1535		}
1536		if (len == sizeof(xfs_trans_header_t))
1537			xlog_recover_add_item(&trans->r_itemq);
1538		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1539		return 0;
1540	}
1541
1542	ptr = kmem_alloc(len, KM_SLEEP);
1543	memcpy(ptr, dp, len);
1544	in_f = (xfs_inode_log_format_t *)ptr;
1545
1546	/* take the tail entry */
1547	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1548	if (item->ri_total != 0 &&
1549	     item->ri_total == item->ri_cnt) {
1550		/* tail item is in use, get a new one */
1551		xlog_recover_add_item(&trans->r_itemq);
1552		item = list_entry(trans->r_itemq.prev,
1553					xlog_recover_item_t, ri_list);
1554	}
1555
1556	if (item->ri_total == 0) {		/* first region to be added */
1557		if (in_f->ilf_size == 0 ||
1558		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1559			xfs_warn(log->l_mp,
1560		"bad number of regions (%d) in inode log format",
1561				  in_f->ilf_size);
1562			ASSERT(0);
1563			return XFS_ERROR(EIO);
1564		}
1565
1566		item->ri_total = in_f->ilf_size;
1567		item->ri_buf =
1568			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1569				    KM_SLEEP);
1570	}
1571	ASSERT(item->ri_total > item->ri_cnt);
1572	/* Description region is ri_buf[0] */
1573	item->ri_buf[item->ri_cnt].i_addr = ptr;
1574	item->ri_buf[item->ri_cnt].i_len  = len;
1575	item->ri_cnt++;
1576	trace_xfs_log_recover_item_add(log, trans, item, 0);
1577	return 0;
1578}
1579
1580/*
1581 * Sort the log items in the transaction. Cancelled buffers need
1582 * to be put first so they are processed before any items that might
1583 * modify the buffers. If they are cancelled, then the modifications
1584 * don't need to be replayed.
1585 */
1586STATIC int
1587xlog_recover_reorder_trans(
1588	struct log		*log,
1589	xlog_recover_t		*trans,
1590	int			pass)
1591{
1592	xlog_recover_item_t	*item, *n;
 
1593	LIST_HEAD(sort_list);
 
 
 
 
1594
1595	list_splice_init(&trans->r_itemq, &sort_list);
1596	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1597		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1598
1599		switch (ITEM_TYPE(item)) {
 
 
 
1600		case XFS_LI_BUF:
1601			if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1602				trace_xfs_log_recover_item_reorder_head(log,
1603							trans, item, pass);
1604				list_move(&item->ri_list, &trans->r_itemq);
1605				break;
1606			}
 
 
 
 
 
 
1607		case XFS_LI_INODE:
1608		case XFS_LI_DQUOT:
1609		case XFS_LI_QUOTAOFF:
1610		case XFS_LI_EFD:
1611		case XFS_LI_EFI:
1612			trace_xfs_log_recover_item_reorder_tail(log,
1613							trans, item, pass);
1614			list_move_tail(&item->ri_list, &trans->r_itemq);
1615			break;
1616		default:
1617			xfs_warn(log->l_mp,
1618				"%s: unrecognized type of log operation",
1619				__func__);
1620			ASSERT(0);
1621			return XFS_ERROR(EIO);
 
 
 
 
 
 
 
1622		}
1623	}
 
1624	ASSERT(list_empty(&sort_list));
1625	return 0;
 
 
 
 
 
 
 
 
1626}
1627
1628/*
1629 * Build up the table of buf cancel records so that we don't replay
1630 * cancelled data in the second pass.  For buffer records that are
1631 * not cancel records, there is nothing to do here so we just return.
1632 *
1633 * If we get a cancel record which is already in the table, this indicates
1634 * that the buffer was cancelled multiple times.  In order to ensure
1635 * that during pass 2 we keep the record in the table until we reach its
1636 * last occurrence in the log, we keep a reference count in the cancel
1637 * record in the table to tell us how many times we expect to see this
1638 * record during the second pass.
1639 */
1640STATIC int
1641xlog_recover_buffer_pass1(
1642	struct log		*log,
1643	xlog_recover_item_t	*item)
1644{
1645	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1646	struct list_head	*bucket;
1647	struct xfs_buf_cancel	*bcp;
1648
1649	/*
1650	 * If this isn't a cancel buffer item, then just return.
1651	 */
1652	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1653		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1654		return 0;
1655	}
1656
1657	/*
1658	 * Insert an xfs_buf_cancel record into the hash table of them.
1659	 * If there is already an identical record, bump its reference count.
1660	 */
1661	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1662	list_for_each_entry(bcp, bucket, bc_list) {
1663		if (bcp->bc_blkno == buf_f->blf_blkno &&
1664		    bcp->bc_len == buf_f->blf_len) {
1665			bcp->bc_refcount++;
1666			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1667			return 0;
1668		}
1669	}
1670
1671	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1672	bcp->bc_blkno = buf_f->blf_blkno;
1673	bcp->bc_len = buf_f->blf_len;
1674	bcp->bc_refcount = 1;
1675	list_add_tail(&bcp->bc_list, bucket);
1676
1677	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1678	return 0;
1679}
1680
1681/*
1682 * Check to see whether the buffer being recovered has a corresponding
1683 * entry in the buffer cancel record table.  If it does then return 1
1684 * so that it will be cancelled, otherwise return 0.  If the buffer is
1685 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1686 * the refcount on the entry in the table and remove it from the table
1687 * if this is the last reference.
1688 *
1689 * We remove the cancel record from the table when we encounter its
1690 * last occurrence in the log so that if the same buffer is re-used
1691 * again after its last cancellation we actually replay the changes
1692 * made at that point.
1693 */
1694STATIC int
1695xlog_check_buffer_cancelled(
1696	struct log		*log,
1697	xfs_daddr_t		blkno,
1698	uint			len,
1699	ushort			flags)
1700{
1701	struct list_head	*bucket;
1702	struct xfs_buf_cancel	*bcp;
1703
1704	if (log->l_buf_cancel_table == NULL) {
1705		/*
1706		 * There is nothing in the table built in pass one,
1707		 * so this buffer must not be cancelled.
1708		 */
1709		ASSERT(!(flags & XFS_BLF_CANCEL));
1710		return 0;
1711	}
1712
1713	/*
1714	 * Search for an entry in the  cancel table that matches our buffer.
1715	 */
1716	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1717	list_for_each_entry(bcp, bucket, bc_list) {
1718		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1719			goto found;
1720	}
1721
1722	/*
1723	 * We didn't find a corresponding entry in the table, so return 0 so
1724	 * that the buffer is NOT cancelled.
1725	 */
1726	ASSERT(!(flags & XFS_BLF_CANCEL));
1727	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1728
1729found:
1730	/*
1731	 * We've go a match, so return 1 so that the recovery of this buffer
1732	 * is cancelled.  If this buffer is actually a buffer cancel log
1733	 * item, then decrement the refcount on the one in the table and
1734	 * remove it if this is the last reference.
1735	 */
1736	if (flags & XFS_BLF_CANCEL) {
1737		if (--bcp->bc_refcount == 0) {
1738			list_del(&bcp->bc_list);
1739			kmem_free(bcp);
1740		}
1741	}
1742	return 1;
1743}
1744
1745/*
1746 * Perform recovery for a buffer full of inodes.  In these buffers, the only
1747 * data which should be recovered is that which corresponds to the
1748 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1749 * data for the inodes is always logged through the inodes themselves rather
1750 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1751 *
1752 * The only time when buffers full of inodes are fully recovered is when the
1753 * buffer is full of newly allocated inodes.  In this case the buffer will
1754 * not be marked as an inode buffer and so will be sent to
1755 * xlog_recover_do_reg_buffer() below during recovery.
1756 */
1757STATIC int
1758xlog_recover_do_inode_buffer(
1759	struct xfs_mount	*mp,
1760	xlog_recover_item_t	*item,
1761	struct xfs_buf		*bp,
1762	xfs_buf_log_format_t	*buf_f)
1763{
1764	int			i;
1765	int			item_index = 0;
1766	int			bit = 0;
1767	int			nbits = 0;
1768	int			reg_buf_offset = 0;
1769	int			reg_buf_bytes = 0;
1770	int			next_unlinked_offset;
1771	int			inodes_per_buf;
1772	xfs_agino_t		*logged_nextp;
1773	xfs_agino_t		*buffer_nextp;
1774
1775	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1776
1777	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
 
 
 
 
 
 
 
1778	for (i = 0; i < inodes_per_buf; i++) {
1779		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1780			offsetof(xfs_dinode_t, di_next_unlinked);
1781
1782		while (next_unlinked_offset >=
1783		       (reg_buf_offset + reg_buf_bytes)) {
1784			/*
1785			 * The next di_next_unlinked field is beyond
1786			 * the current logged region.  Find the next
1787			 * logged region that contains or is beyond
1788			 * the current di_next_unlinked field.
1789			 */
1790			bit += nbits;
1791			bit = xfs_next_bit(buf_f->blf_data_map,
1792					   buf_f->blf_map_size, bit);
1793
1794			/*
1795			 * If there are no more logged regions in the
1796			 * buffer, then we're done.
1797			 */
1798			if (bit == -1)
1799				return 0;
1800
1801			nbits = xfs_contig_bits(buf_f->blf_data_map,
1802						buf_f->blf_map_size, bit);
1803			ASSERT(nbits > 0);
1804			reg_buf_offset = bit << XFS_BLF_SHIFT;
1805			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1806			item_index++;
1807		}
1808
1809		/*
1810		 * If the current logged region starts after the current
1811		 * di_next_unlinked field, then move on to the next
1812		 * di_next_unlinked field.
1813		 */
1814		if (next_unlinked_offset < reg_buf_offset)
1815			continue;
1816
1817		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1818		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1819		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
 
1820
1821		/*
1822		 * The current logged region contains a copy of the
1823		 * current di_next_unlinked field.  Extract its value
1824		 * and copy it to the buffer copy.
1825		 */
1826		logged_nextp = item->ri_buf[item_index].i_addr +
1827				next_unlinked_offset - reg_buf_offset;
1828		if (unlikely(*logged_nextp == 0)) {
1829			xfs_alert(mp,
1830		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1831		"Trying to replay bad (0) inode di_next_unlinked field.",
1832				item, bp);
1833			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1834					 XFS_ERRLEVEL_LOW, mp);
1835			return XFS_ERROR(EFSCORRUPTED);
1836		}
1837
1838		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1839					      next_unlinked_offset);
1840		*buffer_nextp = *logged_nextp;
 
 
 
 
 
 
 
 
 
1841	}
1842
1843	return 0;
1844}
1845
1846/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1847 * Perform a 'normal' buffer recovery.  Each logged region of the
1848 * buffer should be copied over the corresponding region in the
1849 * given buffer.  The bitmap in the buf log format structure indicates
1850 * where to place the logged data.
1851 */
1852STATIC void
1853xlog_recover_do_reg_buffer(
1854	struct xfs_mount	*mp,
1855	xlog_recover_item_t	*item,
1856	struct xfs_buf		*bp,
1857	xfs_buf_log_format_t	*buf_f)
1858{
1859	int			i;
1860	int			bit;
1861	int			nbits;
1862	int                     error;
1863
1864	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1865
1866	bit = 0;
1867	i = 1;  /* 0 is the buf format structure */
1868	while (1) {
1869		bit = xfs_next_bit(buf_f->blf_data_map,
1870				   buf_f->blf_map_size, bit);
1871		if (bit == -1)
1872			break;
1873		nbits = xfs_contig_bits(buf_f->blf_data_map,
1874					buf_f->blf_map_size, bit);
1875		ASSERT(nbits > 0);
1876		ASSERT(item->ri_buf[i].i_addr != NULL);
1877		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1878		ASSERT(XFS_BUF_COUNT(bp) >=
1879		       ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
 
 
 
 
 
 
 
 
 
 
 
1880
1881		/*
1882		 * Do a sanity check if this is a dquot buffer. Just checking
1883		 * the first dquot in the buffer should do. XXXThis is
1884		 * probably a good thing to do for other buf types also.
1885		 */
1886		error = 0;
1887		if (buf_f->blf_flags &
1888		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1889			if (item->ri_buf[i].i_addr == NULL) {
1890				xfs_alert(mp,
1891					"XFS: NULL dquot in %s.", __func__);
1892				goto next;
1893			}
1894			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1895				xfs_alert(mp,
1896					"XFS: dquot too small (%d) in %s.",
1897					item->ri_buf[i].i_len, __func__);
1898				goto next;
1899			}
1900			error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1901					       -1, 0, XFS_QMOPT_DOWARN,
1902					       "dquot_buf_recover");
1903			if (error)
1904				goto next;
1905		}
1906
1907		memcpy(xfs_buf_offset(bp,
1908			(uint)bit << XFS_BLF_SHIFT),	/* dest */
1909			item->ri_buf[i].i_addr,		/* source */
1910			nbits<<XFS_BLF_SHIFT);		/* length */
1911 next:
1912		i++;
1913		bit += nbits;
1914	}
1915
1916	/* Shouldn't be any more regions */
1917	ASSERT(i == item->ri_total);
1918}
1919
1920/*
1921 * Do some primitive error checking on ondisk dquot data structures.
1922 */
1923int
1924xfs_qm_dqcheck(
1925	struct xfs_mount *mp,
1926	xfs_disk_dquot_t *ddq,
1927	xfs_dqid_t	 id,
1928	uint		 type,	  /* used only when IO_dorepair is true */
1929	uint		 flags,
1930	char		 *str)
1931{
1932	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
1933	int		errs = 0;
1934
1935	/*
1936	 * We can encounter an uninitialized dquot buffer for 2 reasons:
1937	 * 1. If we crash while deleting the quotainode(s), and those blks got
1938	 *    used for user data. This is because we take the path of regular
1939	 *    file deletion; however, the size field of quotainodes is never
1940	 *    updated, so all the tricks that we play in itruncate_finish
1941	 *    don't quite matter.
1942	 *
1943	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1944	 *    But the allocation will be replayed so we'll end up with an
1945	 *    uninitialized quota block.
1946	 *
1947	 * This is all fine; things are still consistent, and we haven't lost
1948	 * any quota information. Just don't complain about bad dquot blks.
1949	 */
1950	if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1951		if (flags & XFS_QMOPT_DOWARN)
1952			xfs_alert(mp,
1953			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1954			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1955		errs++;
1956	}
1957	if (ddq->d_version != XFS_DQUOT_VERSION) {
1958		if (flags & XFS_QMOPT_DOWARN)
1959			xfs_alert(mp,
1960			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1961			str, id, ddq->d_version, XFS_DQUOT_VERSION);
1962		errs++;
1963	}
1964
1965	if (ddq->d_flags != XFS_DQ_USER &&
1966	    ddq->d_flags != XFS_DQ_PROJ &&
1967	    ddq->d_flags != XFS_DQ_GROUP) {
1968		if (flags & XFS_QMOPT_DOWARN)
1969			xfs_alert(mp,
1970			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1971			str, id, ddq->d_flags);
1972		errs++;
1973	}
1974
1975	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1976		if (flags & XFS_QMOPT_DOWARN)
1977			xfs_alert(mp,
1978			"%s : ondisk-dquot 0x%p, ID mismatch: "
1979			"0x%x expected, found id 0x%x",
1980			str, ddq, id, be32_to_cpu(ddq->d_id));
1981		errs++;
1982	}
1983
1984	if (!errs && ddq->d_id) {
1985		if (ddq->d_blk_softlimit &&
1986		    be64_to_cpu(ddq->d_bcount) >=
1987				be64_to_cpu(ddq->d_blk_softlimit)) {
1988			if (!ddq->d_btimer) {
1989				if (flags & XFS_QMOPT_DOWARN)
1990					xfs_alert(mp,
1991			"%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1992					str, (int)be32_to_cpu(ddq->d_id), ddq);
1993				errs++;
1994			}
1995		}
1996		if (ddq->d_ino_softlimit &&
1997		    be64_to_cpu(ddq->d_icount) >=
1998				be64_to_cpu(ddq->d_ino_softlimit)) {
1999			if (!ddq->d_itimer) {
2000				if (flags & XFS_QMOPT_DOWARN)
2001					xfs_alert(mp,
2002			"%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2003					str, (int)be32_to_cpu(ddq->d_id), ddq);
2004				errs++;
2005			}
2006		}
2007		if (ddq->d_rtb_softlimit &&
2008		    be64_to_cpu(ddq->d_rtbcount) >=
2009				be64_to_cpu(ddq->d_rtb_softlimit)) {
2010			if (!ddq->d_rtbtimer) {
2011				if (flags & XFS_QMOPT_DOWARN)
2012					xfs_alert(mp,
2013			"%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2014					str, (int)be32_to_cpu(ddq->d_id), ddq);
2015				errs++;
2016			}
2017		}
2018	}
2019
2020	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2021		return errs;
2022
2023	if (flags & XFS_QMOPT_DOWARN)
2024		xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2025
2026	/*
2027	 * Typically, a repair is only requested by quotacheck.
2028	 */
2029	ASSERT(id != -1);
2030	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2031	memset(d, 0, sizeof(xfs_dqblk_t));
2032
2033	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2034	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2035	d->dd_diskdq.d_flags = type;
2036	d->dd_diskdq.d_id = cpu_to_be32(id);
2037
2038	return errs;
2039}
2040
2041/*
2042 * Perform a dquot buffer recovery.
2043 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2044 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2045 * Else, treat it as a regular buffer and do recovery.
 
 
 
2046 */
2047STATIC void
2048xlog_recover_do_dquot_buffer(
2049	xfs_mount_t		*mp,
2050	xlog_t			*log,
2051	xlog_recover_item_t	*item,
2052	xfs_buf_t		*bp,
2053	xfs_buf_log_format_t	*buf_f)
2054{
2055	uint			type;
2056
2057	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2058
2059	/*
2060	 * Filesystems are required to send in quota flags at mount time.
2061	 */
2062	if (mp->m_qflags == 0) {
2063		return;
2064	}
2065
2066	type = 0;
2067	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2068		type |= XFS_DQ_USER;
2069	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2070		type |= XFS_DQ_PROJ;
2071	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2072		type |= XFS_DQ_GROUP;
2073	/*
2074	 * This type of quotas was turned off, so ignore this buffer
2075	 */
2076	if (log->l_quotaoffs_flag & type)
2077		return;
2078
2079	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
 
2080}
2081
2082/*
2083 * This routine replays a modification made to a buffer at runtime.
2084 * There are actually two types of buffer, regular and inode, which
2085 * are handled differently.  Inode buffers are handled differently
2086 * in that we only recover a specific set of data from them, namely
2087 * the inode di_next_unlinked fields.  This is because all other inode
2088 * data is actually logged via inode records and any data we replay
2089 * here which overlaps that may be stale.
2090 *
2091 * When meta-data buffers are freed at run time we log a buffer item
2092 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2093 * of the buffer in the log should not be replayed at recovery time.
2094 * This is so that if the blocks covered by the buffer are reused for
2095 * file data before we crash we don't end up replaying old, freed
2096 * meta-data into a user's file.
2097 *
2098 * To handle the cancellation of buffer log items, we make two passes
2099 * over the log during recovery.  During the first we build a table of
2100 * those buffers which have been cancelled, and during the second we
2101 * only replay those buffers which do not have corresponding cancel
2102 * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2103 * for more details on the implementation of the table of cancel records.
2104 */
2105STATIC int
2106xlog_recover_buffer_pass2(
2107	xlog_t			*log,
2108	xlog_recover_item_t	*item)
 
 
2109{
2110	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2111	xfs_mount_t		*mp = log->l_mp;
2112	xfs_buf_t		*bp;
2113	int			error;
2114	uint			buf_flags;
 
2115
2116	/*
2117	 * In this pass we only want to recover all the buffers which have
2118	 * not been cancelled and are not cancellation buffers themselves.
2119	 */
2120	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2121			buf_f->blf_len, buf_f->blf_flags)) {
2122		trace_xfs_log_recover_buf_cancel(log, buf_f);
2123		return 0;
2124	}
2125
2126	trace_xfs_log_recover_buf_recover(log, buf_f);
2127
2128	buf_flags = XBF_LOCK;
2129	if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
2130		buf_flags |= XBF_MAPPED;
2131
2132	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2133			  buf_flags);
2134	if (!bp)
2135		return XFS_ERROR(ENOMEM);
2136	error = bp->b_error;
2137	if (error) {
2138		xfs_ioerror_alert("xlog_recover_do..(read#1)", mp,
2139				  bp, buf_f->blf_blkno);
2140		xfs_buf_relse(bp);
2141		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2142	}
2143
2144	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2145		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
 
 
2146	} else if (buf_f->blf_flags &
2147		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2148		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
 
 
 
 
2149	} else {
2150		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2151	}
2152	if (error)
2153		return XFS_ERROR(error);
2154
2155	/*
2156	 * Perform delayed write on the buffer.  Asynchronous writes will be
2157	 * slower when taking into account all the buffers to be flushed.
2158	 *
2159	 * Also make sure that only inode buffers with good sizes stay in
2160	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2161	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2162	 * buffers in the log can be a different size if the log was generated
2163	 * by an older kernel using unclustered inode buffers or a newer kernel
2164	 * running with a different inode cluster size.  Regardless, if the
2165	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2166	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2167	 * the buffer out of the buffer cache so that the buffer won't
2168	 * overlap with future reads of those inodes.
2169	 */
2170	if (XFS_DINODE_MAGIC ==
2171	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2172	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2173			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2174		XFS_BUF_STALE(bp);
2175		error = xfs_bwrite(mp, bp);
2176	} else {
2177		ASSERT(bp->b_target->bt_mount == mp);
2178		bp->b_iodone = xlog_recover_iodone;
2179		xfs_bdwrite(mp, bp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180	}
2181
2182	return (error);
 
 
2183}
2184
2185STATIC int
2186xlog_recover_inode_pass2(
2187	xlog_t			*log,
2188	xlog_recover_item_t	*item)
 
 
2189{
2190	xfs_inode_log_format_t	*in_f;
2191	xfs_mount_t		*mp = log->l_mp;
2192	xfs_buf_t		*bp;
2193	xfs_dinode_t		*dip;
2194	int			len;
2195	xfs_caddr_t		src;
2196	xfs_caddr_t		dest;
2197	int			error;
2198	int			attr_index;
2199	uint			fields;
2200	xfs_icdinode_t		*dicp;
 
2201	int			need_free = 0;
2202
2203	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2204		in_f = item->ri_buf[0].i_addr;
2205	} else {
2206		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2207		need_free = 1;
2208		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2209		if (error)
2210			goto error;
2211	}
2212
2213	/*
2214	 * Inode buffers can be freed, look out for it,
2215	 * and do not replay the inode.
2216	 */
2217	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2218					in_f->ilf_len, 0)) {
2219		error = 0;
2220		trace_xfs_log_recover_inode_cancel(log, in_f);
2221		goto error;
2222	}
2223	trace_xfs_log_recover_inode_recover(log, in_f);
2224
2225	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2226			  XBF_LOCK);
2227	if (!bp) {
2228		error = ENOMEM;
2229		goto error;
2230	}
2231	error = bp->b_error;
2232	if (error) {
2233		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2234				  bp, in_f->ilf_blkno);
2235		xfs_buf_relse(bp);
2236		goto error;
2237	}
2238	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2239	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2240
2241	/*
2242	 * Make sure the place we're flushing out to really looks
2243	 * like an inode!
2244	 */
2245	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2246		xfs_buf_relse(bp);
2247		xfs_alert(mp,
2248	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2249			__func__, dip, bp, in_f->ilf_ino);
2250		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2251				 XFS_ERRLEVEL_LOW, mp);
2252		error = EFSCORRUPTED;
2253		goto error;
2254	}
2255	dicp = item->ri_buf[1].i_addr;
2256	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2257		xfs_buf_relse(bp);
2258		xfs_alert(mp,
2259			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2260			__func__, item, in_f->ilf_ino);
2261		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2262				 XFS_ERRLEVEL_LOW, mp);
2263		error = EFSCORRUPTED;
2264		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2265	}
2266
2267	/* Skip replay when the on disk inode is newer than the log one */
2268	if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
 
 
 
 
 
 
 
 
2269		/*
2270		 * Deal with the wrap case, DI_MAX_FLUSH is less
2271		 * than smaller numbers
2272		 */
2273		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2274		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2275			/* do nothing */
2276		} else {
2277			xfs_buf_relse(bp);
2278			trace_xfs_log_recover_inode_skip(log, in_f);
2279			error = 0;
2280			goto error;
2281		}
2282	}
 
2283	/* Take the opportunity to reset the flush iteration count */
2284	dicp->di_flushiter = 0;
2285
2286	if (unlikely(S_ISREG(dicp->di_mode))) {
2287		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2288		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2289			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2290					 XFS_ERRLEVEL_LOW, mp, dicp);
2291			xfs_buf_relse(bp);
2292			xfs_alert(mp,
2293		"%s: Bad regular inode log record, rec ptr 0x%p, "
2294		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2295				__func__, item, dip, bp, in_f->ilf_ino);
2296			error = EFSCORRUPTED;
2297			goto error;
2298		}
2299	} else if (unlikely(S_ISDIR(dicp->di_mode))) {
2300		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2301		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2302		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2303			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2304					     XFS_ERRLEVEL_LOW, mp, dicp);
2305			xfs_buf_relse(bp);
2306			xfs_alert(mp,
2307		"%s: Bad dir inode log record, rec ptr 0x%p, "
2308		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2309				__func__, item, dip, bp, in_f->ilf_ino);
2310			error = EFSCORRUPTED;
2311			goto error;
2312		}
2313	}
2314	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2315		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2316				     XFS_ERRLEVEL_LOW, mp, dicp);
2317		xfs_buf_relse(bp);
2318		xfs_alert(mp,
2319	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2320	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2321			__func__, item, dip, bp, in_f->ilf_ino,
2322			dicp->di_nextents + dicp->di_anextents,
2323			dicp->di_nblocks);
2324		error = EFSCORRUPTED;
2325		goto error;
2326	}
2327	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2328		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2329				     XFS_ERRLEVEL_LOW, mp, dicp);
2330		xfs_buf_relse(bp);
2331		xfs_alert(mp,
2332	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2333	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2334			item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2335		error = EFSCORRUPTED;
2336		goto error;
2337	}
2338	if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
 
2339		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2340				     XFS_ERRLEVEL_LOW, mp, dicp);
2341		xfs_buf_relse(bp);
2342		xfs_alert(mp,
2343			"%s: Bad inode log record length %d, rec ptr 0x%p",
2344			__func__, item->ri_buf[1].i_len, item);
2345		error = EFSCORRUPTED;
2346		goto error;
2347	}
2348
2349	/* The core is in in-core format */
2350	xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2351
2352	/* the rest is in on-disk format */
2353	if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2354		memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2355			item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2356			item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2357	}
2358
2359	fields = in_f->ilf_fields;
2360	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2361	case XFS_ILOG_DEV:
2362		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2363		break;
2364	case XFS_ILOG_UUID:
2365		memcpy(XFS_DFORK_DPTR(dip),
2366		       &in_f->ilf_u.ilfu_uuid,
2367		       sizeof(uuid_t));
2368		break;
2369	}
2370
2371	if (in_f->ilf_size == 2)
2372		goto write_inode_buffer;
2373	len = item->ri_buf[2].i_len;
2374	src = item->ri_buf[2].i_addr;
2375	ASSERT(in_f->ilf_size <= 4);
2376	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2377	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2378	       (len == in_f->ilf_dsize));
2379
2380	switch (fields & XFS_ILOG_DFORK) {
2381	case XFS_ILOG_DDATA:
2382	case XFS_ILOG_DEXT:
2383		memcpy(XFS_DFORK_DPTR(dip), src, len);
2384		break;
2385
2386	case XFS_ILOG_DBROOT:
2387		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2388				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2389				 XFS_DFORK_DSIZE(dip, mp));
2390		break;
2391
2392	default:
2393		/*
2394		 * There are no data fork flags set.
2395		 */
2396		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2397		break;
2398	}
2399
2400	/*
2401	 * If we logged any attribute data, recover it.  There may or
2402	 * may not have been any other non-core data logged in this
2403	 * transaction.
2404	 */
2405	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2406		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2407			attr_index = 3;
2408		} else {
2409			attr_index = 2;
2410		}
2411		len = item->ri_buf[attr_index].i_len;
2412		src = item->ri_buf[attr_index].i_addr;
2413		ASSERT(len == in_f->ilf_asize);
2414
2415		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2416		case XFS_ILOG_ADATA:
2417		case XFS_ILOG_AEXT:
2418			dest = XFS_DFORK_APTR(dip);
2419			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2420			memcpy(dest, src, len);
2421			break;
2422
2423		case XFS_ILOG_ABROOT:
2424			dest = XFS_DFORK_APTR(dip);
2425			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2426					 len, (xfs_bmdr_block_t*)dest,
2427					 XFS_DFORK_ASIZE(dip, mp));
2428			break;
2429
2430		default:
2431			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2432			ASSERT(0);
2433			xfs_buf_relse(bp);
2434			error = EIO;
2435			goto error;
2436		}
2437	}
2438
2439write_inode_buffer:
 
 
 
 
 
 
2440	ASSERT(bp->b_target->bt_mount == mp);
2441	bp->b_iodone = xlog_recover_iodone;
2442	xfs_bdwrite(mp, bp);
 
 
 
2443error:
2444	if (need_free)
2445		kmem_free(in_f);
2446	return XFS_ERROR(error);
2447}
2448
2449/*
2450 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2451 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2452 * of that type.
2453 */
2454STATIC int
2455xlog_recover_quotaoff_pass1(
2456	xlog_t			*log,
2457	xlog_recover_item_t	*item)
2458{
2459	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
2460	ASSERT(qoff_f);
2461
2462	/*
2463	 * The logitem format's flag tells us if this was user quotaoff,
2464	 * group/project quotaoff or both.
2465	 */
2466	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2467		log->l_quotaoffs_flag |= XFS_DQ_USER;
2468	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2469		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2470	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2471		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2472
2473	return (0);
2474}
2475
2476/*
2477 * Recover a dquot record
2478 */
2479STATIC int
2480xlog_recover_dquot_pass2(
2481	xlog_t			*log,
2482	xlog_recover_item_t	*item)
 
 
2483{
2484	xfs_mount_t		*mp = log->l_mp;
2485	xfs_buf_t		*bp;
2486	struct xfs_disk_dquot	*ddq, *recddq;
2487	int			error;
2488	xfs_dq_logformat_t	*dq_f;
2489	uint			type;
2490
2491
2492	/*
2493	 * Filesystems are required to send in quota flags at mount time.
2494	 */
2495	if (mp->m_qflags == 0)
2496		return (0);
2497
2498	recddq = item->ri_buf[1].i_addr;
2499	if (recddq == NULL) {
2500		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2501		return XFS_ERROR(EIO);
2502	}
2503	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2504		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2505			item->ri_buf[1].i_len, __func__);
2506		return XFS_ERROR(EIO);
2507	}
2508
2509	/*
2510	 * This type of quotas was turned off, so ignore this record.
2511	 */
2512	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2513	ASSERT(type);
2514	if (log->l_quotaoffs_flag & type)
2515		return (0);
2516
2517	/*
2518	 * At this point we know that quota was _not_ turned off.
2519	 * Since the mount flags are not indicating to us otherwise, this
2520	 * must mean that quota is on, and the dquot needs to be replayed.
2521	 * Remember that we may not have fully recovered the superblock yet,
2522	 * so we can't do the usual trick of looking at the SB quota bits.
2523	 *
2524	 * The other possibility, of course, is that the quota subsystem was
2525	 * removed since the last mount - ENOSYS.
2526	 */
2527	dq_f = item->ri_buf[0].i_addr;
2528	ASSERT(dq_f);
2529	error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2530			   "xlog_recover_dquot_pass2 (log copy)");
2531	if (error)
2532		return XFS_ERROR(EIO);
2533	ASSERT(dq_f->qlf_len == 1);
2534
2535	error = xfs_read_buf(mp, mp->m_ddev_targp,
2536			     dq_f->qlf_blkno,
2537			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2538			     0, &bp);
2539	if (error) {
2540		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2541				  bp, dq_f->qlf_blkno);
 
 
 
 
2542		return error;
2543	}
2544	ASSERT(bp);
2545	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2546
2547	/*
2548	 * At least the magic num portion should be on disk because this
2549	 * was among a chunk of dquots created earlier, and we did some
2550	 * minimal initialization then.
2551	 */
2552	error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2553			   "xlog_recover_dquot_pass2");
2554	if (error) {
2555		xfs_buf_relse(bp);
2556		return XFS_ERROR(EIO);
 
 
2557	}
2558
2559	memcpy(ddq, recddq, item->ri_buf[1].i_len);
 
 
 
 
2560
2561	ASSERT(dq_f->qlf_size == 2);
2562	ASSERT(bp->b_target->bt_mount == mp);
2563	bp->b_iodone = xlog_recover_iodone;
2564	xfs_bdwrite(mp, bp);
2565
2566	return (0);
 
 
2567}
2568
2569/*
2570 * This routine is called to create an in-core extent free intent
2571 * item from the efi format structure which was logged on disk.
2572 * It allocates an in-core efi, copies the extents from the format
2573 * structure into it, and adds the efi to the AIL with the given
2574 * LSN.
2575 */
2576STATIC int
2577xlog_recover_efi_pass2(
2578	xlog_t			*log,
2579	xlog_recover_item_t	*item,
2580	xfs_lsn_t		lsn)
2581{
2582	int			error;
2583	xfs_mount_t		*mp = log->l_mp;
2584	xfs_efi_log_item_t	*efip;
2585	xfs_efi_log_format_t	*efi_formatp;
2586
2587	efi_formatp = item->ri_buf[0].i_addr;
2588
2589	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2590	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2591					 &(efip->efi_format)))) {
2592		xfs_efi_item_free(efip);
2593		return error;
2594	}
2595	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2596
2597	spin_lock(&log->l_ailp->xa_lock);
2598	/*
2599	 * xfs_trans_ail_update() drops the AIL lock.
 
 
 
2600	 */
2601	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
 
2602	return 0;
2603}
2604
2605
2606/*
2607 * This routine is called when an efd format structure is found in
2608 * a committed transaction in the log.  It's purpose is to cancel
2609 * the corresponding efi if it was still in the log.  To do this
2610 * it searches the AIL for the efi with an id equal to that in the
2611 * efd format structure.  If we find it, we remove the efi from the
2612 * AIL and free it.
2613 */
2614STATIC int
2615xlog_recover_efd_pass2(
2616	xlog_t			*log,
2617	xlog_recover_item_t	*item)
2618{
2619	xfs_efd_log_format_t	*efd_formatp;
2620	xfs_efi_log_item_t	*efip = NULL;
2621	xfs_log_item_t		*lip;
2622	__uint64_t		efi_id;
2623	struct xfs_ail_cursor	cur;
2624	struct xfs_ail		*ailp = log->l_ailp;
2625
2626	efd_formatp = item->ri_buf[0].i_addr;
2627	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2628		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2629	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2630		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2631	efi_id = efd_formatp->efd_efi_id;
2632
2633	/*
2634	 * Search for the efi with the id in the efd format structure
2635	 * in the AIL.
2636	 */
2637	spin_lock(&ailp->xa_lock);
2638	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2639	while (lip != NULL) {
2640		if (lip->li_type == XFS_LI_EFI) {
2641			efip = (xfs_efi_log_item_t *)lip;
2642			if (efip->efi_format.efi_id == efi_id) {
2643				/*
2644				 * xfs_trans_ail_delete() drops the
2645				 * AIL lock.
2646				 */
2647				xfs_trans_ail_delete(ailp, lip);
2648				xfs_efi_item_free(efip);
2649				spin_lock(&ailp->xa_lock);
2650				break;
2651			}
2652		}
2653		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2654	}
2655	xfs_trans_ail_cursor_done(ailp, &cur);
 
2656	spin_unlock(&ailp->xa_lock);
2657
2658	return 0;
2659}
2660
2661/*
2662 * Free up any resources allocated by the transaction
2663 *
2664 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
 
 
 
2665 */
2666STATIC void
2667xlog_recover_free_trans(
2668	struct xlog_recover	*trans)
 
 
2669{
2670	xlog_recover_item_t	*item, *n;
 
 
 
 
 
 
 
 
 
 
2671	int			i;
2672
2673	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2674		/* Free the regions in the item. */
2675		list_del(&item->ri_list);
2676		for (i = 0; i < item->ri_cnt; i++)
2677			kmem_free(item->ri_buf[i].i_addr);
2678		/* Free the item itself */
2679		kmem_free(item->ri_buf);
2680		kmem_free(item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2681	}
2682	/* Free the transaction recover structure */
2683	kmem_free(trans);
2684}
2685
2686STATIC int
2687xlog_recover_commit_pass1(
2688	struct log		*log,
2689	struct xlog_recover	*trans,
2690	xlog_recover_item_t	*item)
2691{
2692	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2693
2694	switch (ITEM_TYPE(item)) {
2695	case XFS_LI_BUF:
2696		return xlog_recover_buffer_pass1(log, item);
2697	case XFS_LI_QUOTAOFF:
2698		return xlog_recover_quotaoff_pass1(log, item);
2699	case XFS_LI_INODE:
2700	case XFS_LI_EFI:
2701	case XFS_LI_EFD:
2702	case XFS_LI_DQUOT:
 
2703		/* nothing to do in pass 1 */
2704		return 0;
2705	default:
2706		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2707			__func__, ITEM_TYPE(item));
2708		ASSERT(0);
2709		return XFS_ERROR(EIO);
2710	}
2711}
2712
2713STATIC int
2714xlog_recover_commit_pass2(
2715	struct log		*log,
2716	struct xlog_recover	*trans,
2717	xlog_recover_item_t	*item)
 
2718{
2719	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2720
2721	switch (ITEM_TYPE(item)) {
2722	case XFS_LI_BUF:
2723		return xlog_recover_buffer_pass2(log, item);
 
2724	case XFS_LI_INODE:
2725		return xlog_recover_inode_pass2(log, item);
 
2726	case XFS_LI_EFI:
2727		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2728	case XFS_LI_EFD:
2729		return xlog_recover_efd_pass2(log, item);
2730	case XFS_LI_DQUOT:
2731		return xlog_recover_dquot_pass2(log, item);
 
 
 
2732	case XFS_LI_QUOTAOFF:
2733		/* nothing to do in pass2 */
2734		return 0;
2735	default:
2736		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2737			__func__, ITEM_TYPE(item));
2738		ASSERT(0);
2739		return XFS_ERROR(EIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2740	}
 
 
2741}
2742
2743/*
2744 * Perform the transaction.
2745 *
2746 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2747 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2748 */
2749STATIC int
2750xlog_recover_commit_trans(
2751	struct log		*log,
2752	struct xlog_recover	*trans,
2753	int			pass)
2754{
2755	int			error = 0;
2756	xlog_recover_item_t	*item;
 
 
 
 
 
 
 
 
2757
2758	hlist_del(&trans->r_list);
2759
2760	error = xlog_recover_reorder_trans(log, trans, pass);
2761	if (error)
2762		return error;
2763
2764	list_for_each_entry(item, &trans->r_itemq, ri_list) {
2765		if (pass == XLOG_RECOVER_PASS1)
 
2766			error = xlog_recover_commit_pass1(log, trans, item);
2767		else
2768			error = xlog_recover_commit_pass2(log, trans, item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2769		if (error)
2770			return error;
2771	}
2772
2773	xlog_recover_free_trans(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2774	return 0;
2775}
2776
 
 
 
 
 
 
 
 
 
 
 
 
 
2777STATIC int
2778xlog_recover_unmount_trans(
2779	struct log		*log,
2780	xlog_recover_t		*trans)
 
 
2781{
2782	/* Do nothing now */
2783	xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2784	return 0;
2785}
2786
2787/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2788 * There are two valid states of the r_state field.  0 indicates that the
2789 * transaction structure is in a normal state.  We have either seen the
2790 * start of the transaction or the last operation we added was not a partial
2791 * operation.  If the last operation we added to the transaction was a
2792 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2793 *
2794 * NOTE: skip LRs with 0 data length.
2795 */
2796STATIC int
2797xlog_recover_process_data(
2798	xlog_t			*log,
2799	struct hlist_head	rhash[],
2800	xlog_rec_header_t	*rhead,
2801	xfs_caddr_t		dp,
2802	int			pass)
2803{
2804	xfs_caddr_t		lp;
 
2805	int			num_logops;
2806	xlog_op_header_t	*ohead;
2807	xlog_recover_t		*trans;
2808	xlog_tid_t		tid;
2809	int			error;
2810	unsigned long		hash;
2811	uint			flags;
2812
2813	lp = dp + be32_to_cpu(rhead->h_len);
2814	num_logops = be32_to_cpu(rhead->h_num_logops);
2815
2816	/* check the log format matches our own - else we can't recover */
2817	if (xlog_header_check_recover(log->l_mp, rhead))
2818		return (XFS_ERROR(EIO));
 
 
 
 
 
 
 
 
 
 
 
 
2819
2820	while ((dp < lp) && num_logops) {
2821		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2822		ohead = (xlog_op_header_t *)dp;
2823		dp += sizeof(xlog_op_header_t);
2824		if (ohead->oh_clientid != XFS_TRANSACTION &&
2825		    ohead->oh_clientid != XFS_LOG) {
2826			xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2827					__func__, ohead->oh_clientid);
2828			ASSERT(0);
2829			return (XFS_ERROR(EIO));
2830		}
2831		tid = be32_to_cpu(ohead->oh_tid);
2832		hash = XLOG_RHASH(tid);
2833		trans = xlog_recover_find_tid(&rhash[hash], tid);
2834		if (trans == NULL) {		   /* not found; add new tid */
2835			if (ohead->oh_flags & XLOG_START_TRANS)
2836				xlog_recover_new_tid(&rhash[hash], tid,
2837					be64_to_cpu(rhead->h_lsn));
2838		} else {
2839			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2840				xfs_warn(log->l_mp, "%s: bad length 0x%x",
2841					__func__, be32_to_cpu(ohead->oh_len));
2842				WARN_ON(1);
2843				return (XFS_ERROR(EIO));
2844			}
2845			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2846			if (flags & XLOG_WAS_CONT_TRANS)
2847				flags &= ~XLOG_CONTINUE_TRANS;
2848			switch (flags) {
2849			case XLOG_COMMIT_TRANS:
2850				error = xlog_recover_commit_trans(log,
2851								trans, pass);
2852				break;
2853			case XLOG_UNMOUNT_TRANS:
2854				error = xlog_recover_unmount_trans(log, trans);
2855				break;
2856			case XLOG_WAS_CONT_TRANS:
2857				error = xlog_recover_add_to_cont_trans(log,
2858						trans, dp,
2859						be32_to_cpu(ohead->oh_len));
2860				break;
2861			case XLOG_START_TRANS:
2862				xfs_warn(log->l_mp, "%s: bad transaction",
2863					__func__);
2864				ASSERT(0);
2865				error = XFS_ERROR(EIO);
2866				break;
2867			case 0:
2868			case XLOG_CONTINUE_TRANS:
2869				error = xlog_recover_add_to_trans(log, trans,
2870						dp, be32_to_cpu(ohead->oh_len));
2871				break;
2872			default:
2873				xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2874					__func__, flags);
2875				ASSERT(0);
2876				error = XFS_ERROR(EIO);
2877				break;
2878			}
2879			if (error)
2880				return error;
2881		}
2882		dp += be32_to_cpu(ohead->oh_len);
2883		num_logops--;
2884	}
2885	return 0;
2886}
2887
2888/*
2889 * Process an extent free intent item that was recovered from
2890 * the log.  We need to free the extents that it describes.
2891 */
2892STATIC int
2893xlog_recover_process_efi(
2894	xfs_mount_t		*mp,
2895	xfs_efi_log_item_t	*efip)
2896{
2897	xfs_efd_log_item_t	*efdp;
2898	xfs_trans_t		*tp;
2899	int			i;
2900	int			error = 0;
2901	xfs_extent_t		*extp;
2902	xfs_fsblock_t		startblock_fsb;
2903
2904	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2905
2906	/*
2907	 * First check the validity of the extents described by the
2908	 * EFI.  If any are bad, then assume that all are bad and
2909	 * just toss the EFI.
2910	 */
2911	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2912		extp = &(efip->efi_format.efi_extents[i]);
2913		startblock_fsb = XFS_BB_TO_FSB(mp,
2914				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
2915		if ((startblock_fsb == 0) ||
2916		    (extp->ext_len == 0) ||
2917		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2918		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2919			/*
2920			 * This will pull the EFI from the AIL and
2921			 * free the memory associated with it.
2922			 */
2923			xfs_efi_release(efip, efip->efi_format.efi_nextents);
2924			return XFS_ERROR(EIO);
 
2925		}
2926	}
2927
2928	tp = xfs_trans_alloc(mp, 0);
2929	error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2930	if (error)
2931		goto abort_error;
2932	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2933
2934	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2935		extp = &(efip->efi_format.efi_extents[i]);
2936		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
 
2937		if (error)
2938			goto abort_error;
2939		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2940					 extp->ext_len);
2941	}
2942
2943	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2944	error = xfs_trans_commit(tp, 0);
2945	return error;
2946
2947abort_error:
2948	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2949	return error;
2950}
2951
2952/*
2953 * When this is called, all of the EFIs which did not have
2954 * corresponding EFDs should be in the AIL.  What we do now
2955 * is free the extents associated with each one.
2956 *
2957 * Since we process the EFIs in normal transactions, they
2958 * will be removed at some point after the commit.  This prevents
2959 * us from just walking down the list processing each one.
2960 * We'll use a flag in the EFI to skip those that we've already
2961 * processed and use the AIL iteration mechanism's generation
2962 * count to try to speed this up at least a bit.
2963 *
2964 * When we start, we know that the EFIs are the only things in
2965 * the AIL.  As we process them, however, other items are added
2966 * to the AIL.  Since everything added to the AIL must come after
2967 * everything already in the AIL, we stop processing as soon as
2968 * we see something other than an EFI in the AIL.
2969 */
2970STATIC int
2971xlog_recover_process_efis(
2972	xlog_t			*log)
2973{
2974	xfs_log_item_t		*lip;
2975	xfs_efi_log_item_t	*efip;
2976	int			error = 0;
2977	struct xfs_ail_cursor	cur;
2978	struct xfs_ail		*ailp;
2979
2980	ailp = log->l_ailp;
2981	spin_lock(&ailp->xa_lock);
2982	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2983	while (lip != NULL) {
2984		/*
2985		 * We're done when we see something other than an EFI.
2986		 * There should be no EFIs left in the AIL now.
2987		 */
2988		if (lip->li_type != XFS_LI_EFI) {
2989#ifdef DEBUG
2990			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2991				ASSERT(lip->li_type != XFS_LI_EFI);
2992#endif
2993			break;
2994		}
2995
2996		/*
2997		 * Skip EFIs that we've already processed.
2998		 */
2999		efip = (xfs_efi_log_item_t *)lip;
3000		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3001			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3002			continue;
3003		}
3004
3005		spin_unlock(&ailp->xa_lock);
3006		error = xlog_recover_process_efi(log->l_mp, efip);
3007		spin_lock(&ailp->xa_lock);
3008		if (error)
3009			goto out;
3010		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3011	}
3012out:
3013	xfs_trans_ail_cursor_done(ailp, &cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3014	spin_unlock(&ailp->xa_lock);
3015	return error;
3016}
3017
3018/*
3019 * This routine performs a transaction to null out a bad inode pointer
3020 * in an agi unlinked inode hash bucket.
3021 */
3022STATIC void
3023xlog_recover_clear_agi_bucket(
3024	xfs_mount_t	*mp,
3025	xfs_agnumber_t	agno,
3026	int		bucket)
3027{
3028	xfs_trans_t	*tp;
3029	xfs_agi_t	*agi;
3030	xfs_buf_t	*agibp;
3031	int		offset;
3032	int		error;
3033
3034	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3035	error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3036				  0, 0, 0);
3037	if (error)
3038		goto out_abort;
3039
3040	error = xfs_read_agi(mp, tp, agno, &agibp);
3041	if (error)
3042		goto out_abort;
3043
3044	agi = XFS_BUF_TO_AGI(agibp);
3045	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3046	offset = offsetof(xfs_agi_t, agi_unlinked) +
3047		 (sizeof(xfs_agino_t) * bucket);
3048	xfs_trans_log_buf(tp, agibp, offset,
3049			  (offset + sizeof(xfs_agino_t) - 1));
3050
3051	error = xfs_trans_commit(tp, 0);
3052	if (error)
3053		goto out_error;
3054	return;
3055
3056out_abort:
3057	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3058out_error:
3059	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3060	return;
3061}
3062
3063STATIC xfs_agino_t
3064xlog_recover_process_one_iunlink(
3065	struct xfs_mount		*mp,
3066	xfs_agnumber_t			agno,
3067	xfs_agino_t			agino,
3068	int				bucket)
3069{
3070	struct xfs_buf			*ibp;
3071	struct xfs_dinode		*dip;
3072	struct xfs_inode		*ip;
3073	xfs_ino_t			ino;
3074	int				error;
3075
3076	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3077	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3078	if (error)
3079		goto fail;
3080
3081	/*
3082	 * Get the on disk inode to find the next inode in the bucket.
3083	 */
3084	error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3085	if (error)
3086		goto fail_iput;
3087
3088	ASSERT(ip->i_d.di_nlink == 0);
3089	ASSERT(ip->i_d.di_mode != 0);
3090
3091	/* setup for the next pass */
3092	agino = be32_to_cpu(dip->di_next_unlinked);
3093	xfs_buf_relse(ibp);
3094
3095	/*
3096	 * Prevent any DMAPI event from being sent when the reference on
3097	 * the inode is dropped.
3098	 */
3099	ip->i_d.di_dmevmask = 0;
3100
3101	IRELE(ip);
3102	return agino;
3103
3104 fail_iput:
3105	IRELE(ip);
3106 fail:
3107	/*
3108	 * We can't read in the inode this bucket points to, or this inode
3109	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3110	 * some inodes and space, but at least we won't hang.
3111	 *
3112	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3113	 * clear the inode pointer in the bucket.
3114	 */
3115	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3116	return NULLAGINO;
3117}
3118
3119/*
3120 * xlog_iunlink_recover
3121 *
3122 * This is called during recovery to process any inodes which
3123 * we unlinked but not freed when the system crashed.  These
3124 * inodes will be on the lists in the AGI blocks.  What we do
3125 * here is scan all the AGIs and fully truncate and free any
3126 * inodes found on the lists.  Each inode is removed from the
3127 * lists when it has been fully truncated and is freed.  The
3128 * freeing of the inode and its removal from the list must be
3129 * atomic.
3130 */
3131STATIC void
3132xlog_recover_process_iunlinks(
3133	xlog_t		*log)
3134{
3135	xfs_mount_t	*mp;
3136	xfs_agnumber_t	agno;
3137	xfs_agi_t	*agi;
3138	xfs_buf_t	*agibp;
3139	xfs_agino_t	agino;
3140	int		bucket;
3141	int		error;
3142	uint		mp_dmevmask;
3143
3144	mp = log->l_mp;
3145
3146	/*
3147	 * Prevent any DMAPI event from being sent while in this function.
3148	 */
3149	mp_dmevmask = mp->m_dmevmask;
3150	mp->m_dmevmask = 0;
3151
3152	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3153		/*
3154		 * Find the agi for this ag.
3155		 */
3156		error = xfs_read_agi(mp, NULL, agno, &agibp);
3157		if (error) {
3158			/*
3159			 * AGI is b0rked. Don't process it.
3160			 *
3161			 * We should probably mark the filesystem as corrupt
3162			 * after we've recovered all the ag's we can....
3163			 */
3164			continue;
3165		}
 
 
 
 
 
 
 
 
 
3166		agi = XFS_BUF_TO_AGI(agibp);
 
3167
3168		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3169			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3170			while (agino != NULLAGINO) {
3171				/*
3172				 * Release the agi buffer so that it can
3173				 * be acquired in the normal course of the
3174				 * transaction to truncate and free the inode.
3175				 */
3176				xfs_buf_relse(agibp);
3177
3178				agino = xlog_recover_process_one_iunlink(mp,
3179							agno, agino, bucket);
3180
3181				/*
3182				 * Reacquire the agibuffer and continue around
3183				 * the loop. This should never fail as we know
3184				 * the buffer was good earlier on.
3185				 */
3186				error = xfs_read_agi(mp, NULL, agno, &agibp);
3187				ASSERT(error == 0);
3188				agi = XFS_BUF_TO_AGI(agibp);
3189			}
3190		}
3191
3192		/*
3193		 * Release the buffer for the current agi so we can
3194		 * go on to the next one.
3195		 */
3196		xfs_buf_relse(agibp);
3197	}
3198
3199	mp->m_dmevmask = mp_dmevmask;
3200}
3201
3202
3203#ifdef DEBUG
3204STATIC void
3205xlog_pack_data_checksum(
3206	xlog_t		*log,
3207	xlog_in_core_t	*iclog,
3208	int		size)
3209{
3210	int		i;
3211	__be32		*up;
3212	uint		chksum = 0;
3213
3214	up = (__be32 *)iclog->ic_datap;
3215	/* divide length by 4 to get # words */
3216	for (i = 0; i < (size >> 2); i++) {
3217		chksum ^= be32_to_cpu(*up);
3218		up++;
3219	}
3220	iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3221}
3222#else
3223#define xlog_pack_data_checksum(log, iclog, size)
3224#endif
3225
3226/*
3227 * Stamp cycle number in every block
3228 */
3229void
3230xlog_pack_data(
3231	xlog_t			*log,
3232	xlog_in_core_t		*iclog,
3233	int			roundoff)
3234{
3235	int			i, j, k;
3236	int			size = iclog->ic_offset + roundoff;
3237	__be32			cycle_lsn;
3238	xfs_caddr_t		dp;
3239
3240	xlog_pack_data_checksum(log, iclog, size);
3241
3242	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3243
3244	dp = iclog->ic_datap;
3245	for (i = 0; i < BTOBB(size) &&
3246		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3247		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3248		*(__be32 *)dp = cycle_lsn;
3249		dp += BBSIZE;
3250	}
3251
3252	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3253		xlog_in_core_2_t *xhdr = iclog->ic_data;
3254
3255		for ( ; i < BTOBB(size); i++) {
3256			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3257			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3258			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3259			*(__be32 *)dp = cycle_lsn;
3260			dp += BBSIZE;
3261		}
3262
3263		for (i = 1; i < log->l_iclog_heads; i++) {
3264			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3265		}
3266	}
3267}
3268
3269STATIC void
3270xlog_unpack_data(
3271	xlog_rec_header_t	*rhead,
3272	xfs_caddr_t		dp,
3273	xlog_t			*log)
3274{
3275	int			i, j, k;
3276
3277	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3278		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3279		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3280		dp += BBSIZE;
3281	}
3282
3283	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3284		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3285		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3286			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3287			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3288			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3289			dp += BBSIZE;
3290		}
3291	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3292}
3293
3294STATIC int
3295xlog_valid_rec_header(
3296	xlog_t			*log,
3297	xlog_rec_header_t	*rhead,
3298	xfs_daddr_t		blkno)
3299{
3300	int			hlen;
3301
3302	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3303		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3304				XFS_ERRLEVEL_LOW, log->l_mp);
3305		return XFS_ERROR(EFSCORRUPTED);
3306	}
3307	if (unlikely(
3308	    (!rhead->h_version ||
3309	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3310		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3311			__func__, be32_to_cpu(rhead->h_version));
3312		return XFS_ERROR(EIO);
3313	}
3314
3315	/* LR body must have data or it wouldn't have been written */
3316	hlen = be32_to_cpu(rhead->h_len);
3317	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3318		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3319				XFS_ERRLEVEL_LOW, log->l_mp);
3320		return XFS_ERROR(EFSCORRUPTED);
3321	}
3322	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3323		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3324				XFS_ERRLEVEL_LOW, log->l_mp);
3325		return XFS_ERROR(EFSCORRUPTED);
3326	}
3327	return 0;
3328}
3329
3330/*
3331 * Read the log from tail to head and process the log records found.
3332 * Handle the two cases where the tail and head are in the same cycle
3333 * and where the active portion of the log wraps around the end of
3334 * the physical log separately.  The pass parameter is passed through
3335 * to the routines called to process the data and is not looked at
3336 * here.
3337 */
3338STATIC int
3339xlog_do_recovery_pass(
3340	xlog_t			*log,
3341	xfs_daddr_t		head_blk,
3342	xfs_daddr_t		tail_blk,
3343	int			pass)
 
3344{
3345	xlog_rec_header_t	*rhead;
3346	xfs_daddr_t		blk_no;
3347	xfs_caddr_t		offset;
 
3348	xfs_buf_t		*hbp, *dbp;
3349	int			error = 0, h_size;
3350	int			bblks, split_bblks;
3351	int			hblks, split_hblks, wrapped_hblks;
3352	struct hlist_head	rhash[XLOG_RHASH_SIZE];
3353
3354	ASSERT(head_blk != tail_blk);
 
3355
3356	/*
3357	 * Read the header of the tail block and get the iclog buffer size from
3358	 * h_size.  Use this to tell how many sectors make up the log header.
3359	 */
3360	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3361		/*
3362		 * When using variable length iclogs, read first sector of
3363		 * iclog header and extract the header size from it.  Get a
3364		 * new hbp that is the correct size.
3365		 */
3366		hbp = xlog_get_bp(log, 1);
3367		if (!hbp)
3368			return ENOMEM;
3369
3370		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3371		if (error)
3372			goto bread_err1;
3373
3374		rhead = (xlog_rec_header_t *)offset;
3375		error = xlog_valid_rec_header(log, rhead, tail_blk);
3376		if (error)
3377			goto bread_err1;
 
 
 
 
 
 
 
 
 
 
 
 
3378		h_size = be32_to_cpu(rhead->h_size);
 
 
 
 
 
 
 
 
 
 
 
 
3379		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3380		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3381			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3382			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3383				hblks++;
3384			xlog_put_bp(hbp);
3385			hbp = xlog_get_bp(log, hblks);
3386		} else {
3387			hblks = 1;
3388		}
3389	} else {
3390		ASSERT(log->l_sectBBsize == 1);
3391		hblks = 1;
3392		hbp = xlog_get_bp(log, 1);
3393		h_size = XLOG_BIG_RECORD_BSIZE;
3394	}
3395
3396	if (!hbp)
3397		return ENOMEM;
3398	dbp = xlog_get_bp(log, BTOBB(h_size));
3399	if (!dbp) {
3400		xlog_put_bp(hbp);
3401		return ENOMEM;
3402	}
3403
3404	memset(rhash, 0, sizeof(rhash));
3405	if (tail_blk <= head_blk) {
3406		for (blk_no = tail_blk; blk_no < head_blk; ) {
3407			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3408			if (error)
3409				goto bread_err2;
3410
3411			rhead = (xlog_rec_header_t *)offset;
3412			error = xlog_valid_rec_header(log, rhead, blk_no);
3413			if (error)
3414				goto bread_err2;
3415
3416			/* blocks in data section */
3417			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3418			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3419					   &offset);
3420			if (error)
3421				goto bread_err2;
3422
3423			xlog_unpack_data(rhead, offset, log);
3424			if ((error = xlog_recover_process_data(log,
3425						rhash, rhead, offset, pass)))
3426				goto bread_err2;
3427			blk_no += bblks + hblks;
3428		}
3429	} else {
3430		/*
3431		 * Perform recovery around the end of the physical log.
3432		 * When the head is not on the same cycle number as the tail,
3433		 * we can't do a sequential recovery as above.
3434		 */
3435		blk_no = tail_blk;
3436		while (blk_no < log->l_logBBsize) {
3437			/*
3438			 * Check for header wrapping around physical end-of-log
3439			 */
3440			offset = hbp->b_addr;
3441			split_hblks = 0;
3442			wrapped_hblks = 0;
3443			if (blk_no + hblks <= log->l_logBBsize) {
3444				/* Read header in one read */
3445				error = xlog_bread(log, blk_no, hblks, hbp,
3446						   &offset);
3447				if (error)
3448					goto bread_err2;
3449			} else {
3450				/* This LR is split across physical log end */
3451				if (blk_no != log->l_logBBsize) {
3452					/* some data before physical log end */
3453					ASSERT(blk_no <= INT_MAX);
3454					split_hblks = log->l_logBBsize - (int)blk_no;
3455					ASSERT(split_hblks > 0);
3456					error = xlog_bread(log, blk_no,
3457							   split_hblks, hbp,
3458							   &offset);
3459					if (error)
3460						goto bread_err2;
3461				}
3462
3463				/*
3464				 * Note: this black magic still works with
3465				 * large sector sizes (non-512) only because:
3466				 * - we increased the buffer size originally
3467				 *   by 1 sector giving us enough extra space
3468				 *   for the second read;
3469				 * - the log start is guaranteed to be sector
3470				 *   aligned;
3471				 * - we read the log end (LR header start)
3472				 *   _first_, then the log start (LR header end)
3473				 *   - order is important.
3474				 */
3475				wrapped_hblks = hblks - split_hblks;
3476				error = xlog_bread_offset(log, 0,
3477						wrapped_hblks, hbp,
3478						offset + BBTOB(split_hblks));
3479				if (error)
3480					goto bread_err2;
3481			}
3482			rhead = (xlog_rec_header_t *)offset;
3483			error = xlog_valid_rec_header(log, rhead,
3484						split_hblks ? blk_no : 0);
3485			if (error)
3486				goto bread_err2;
3487
3488			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3489			blk_no += hblks;
3490
3491			/* Read in data for log record */
3492			if (blk_no + bblks <= log->l_logBBsize) {
3493				error = xlog_bread(log, blk_no, bblks, dbp,
3494						   &offset);
3495				if (error)
3496					goto bread_err2;
3497			} else {
3498				/* This log record is split across the
3499				 * physical end of log */
3500				offset = dbp->b_addr;
3501				split_bblks = 0;
3502				if (blk_no != log->l_logBBsize) {
3503					/* some data is before the physical
3504					 * end of log */
3505					ASSERT(!wrapped_hblks);
3506					ASSERT(blk_no <= INT_MAX);
3507					split_bblks =
3508						log->l_logBBsize - (int)blk_no;
3509					ASSERT(split_bblks > 0);
3510					error = xlog_bread(log, blk_no,
3511							split_bblks, dbp,
3512							&offset);
3513					if (error)
3514						goto bread_err2;
3515				}
3516
3517				/*
3518				 * Note: this black magic still works with
3519				 * large sector sizes (non-512) only because:
3520				 * - we increased the buffer size originally
3521				 *   by 1 sector giving us enough extra space
3522				 *   for the second read;
3523				 * - the log start is guaranteed to be sector
3524				 *   aligned;
3525				 * - we read the log end (LR header start)
3526				 *   _first_, then the log start (LR header end)
3527				 *   - order is important.
3528				 */
3529				error = xlog_bread_offset(log, 0,
3530						bblks - split_bblks, hbp,
3531						offset + BBTOB(split_bblks));
3532				if (error)
3533					goto bread_err2;
3534			}
3535			xlog_unpack_data(rhead, offset, log);
3536			if ((error = xlog_recover_process_data(log, rhash,
3537							rhead, offset, pass)))
 
3538				goto bread_err2;
 
3539			blk_no += bblks;
 
3540		}
3541
3542		ASSERT(blk_no >= log->l_logBBsize);
3543		blk_no -= log->l_logBBsize;
 
 
3544
3545		/* read first part of physical log */
3546		while (blk_no < head_blk) {
3547			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3548			if (error)
3549				goto bread_err2;
3550
3551			rhead = (xlog_rec_header_t *)offset;
3552			error = xlog_valid_rec_header(log, rhead, blk_no);
3553			if (error)
3554				goto bread_err2;
3555
3556			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3557			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3558					   &offset);
3559			if (error)
3560				goto bread_err2;
 
3561
3562			xlog_unpack_data(rhead, offset, log);
3563			if ((error = xlog_recover_process_data(log, rhash,
3564							rhead, offset, pass)))
3565				goto bread_err2;
3566			blk_no += bblks + hblks;
3567		}
3568	}
3569
3570 bread_err2:
3571	xlog_put_bp(dbp);
3572 bread_err1:
3573	xlog_put_bp(hbp);
 
 
 
 
3574	return error;
3575}
3576
3577/*
3578 * Do the recovery of the log.  We actually do this in two phases.
3579 * The two passes are necessary in order to implement the function
3580 * of cancelling a record written into the log.  The first pass
3581 * determines those things which have been cancelled, and the
3582 * second pass replays log items normally except for those which
3583 * have been cancelled.  The handling of the replay and cancellations
3584 * takes place in the log item type specific routines.
3585 *
3586 * The table of items which have cancel records in the log is allocated
3587 * and freed at this level, since only here do we know when all of
3588 * the log recovery has been completed.
3589 */
3590STATIC int
3591xlog_do_log_recovery(
3592	xlog_t		*log,
3593	xfs_daddr_t	head_blk,
3594	xfs_daddr_t	tail_blk)
3595{
3596	int		error, i;
3597
3598	ASSERT(head_blk != tail_blk);
3599
3600	/*
3601	 * First do a pass to find all of the cancelled buf log items.
3602	 * Store them in the buf_cancel_table for use in the second pass.
3603	 */
3604	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3605						 sizeof(struct list_head),
3606						 KM_SLEEP);
3607	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3608		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3609
3610	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3611				      XLOG_RECOVER_PASS1);
3612	if (error != 0) {
3613		kmem_free(log->l_buf_cancel_table);
3614		log->l_buf_cancel_table = NULL;
3615		return error;
3616	}
3617	/*
3618	 * Then do a second pass to actually recover the items in the log.
3619	 * When it is complete free the table of buf cancel items.
3620	 */
3621	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3622				      XLOG_RECOVER_PASS2);
3623#ifdef DEBUG
3624	if (!error) {
3625		int	i;
3626
3627		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3628			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3629	}
3630#endif	/* DEBUG */
3631
3632	kmem_free(log->l_buf_cancel_table);
3633	log->l_buf_cancel_table = NULL;
3634
3635	return error;
3636}
3637
3638/*
3639 * Do the actual recovery
3640 */
3641STATIC int
3642xlog_do_recover(
3643	xlog_t		*log,
3644	xfs_daddr_t	head_blk,
3645	xfs_daddr_t	tail_blk)
3646{
 
3647	int		error;
3648	xfs_buf_t	*bp;
3649	xfs_sb_t	*sbp;
3650
3651	/*
3652	 * First replay the images in the log.
3653	 */
3654	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3655	if (error) {
3656		return error;
3657	}
3658
3659	XFS_bflush(log->l_mp->m_ddev_targp);
3660
3661	/*
3662	 * If IO errors happened during recovery, bail out.
3663	 */
3664	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3665		return (EIO);
3666	}
3667
3668	/*
3669	 * We now update the tail_lsn since much of the recovery has completed
3670	 * and there may be space available to use.  If there were no extent
3671	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3672	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3673	 * lsn of the last known good LR on disk.  If there are extent frees
3674	 * or iunlinks they will have some entries in the AIL; so we look at
3675	 * the AIL to determine how to set the tail_lsn.
3676	 */
3677	xlog_assign_tail_lsn(log->l_mp);
3678
3679	/*
3680	 * Now that we've finished replaying all buffer and inode
3681	 * updates, re-read in the superblock.
3682	 */
3683	bp = xfs_getsb(log->l_mp, 0);
3684	XFS_BUF_UNDONE(bp);
3685	ASSERT(!(XFS_BUF_ISWRITE(bp)));
3686	ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3687	XFS_BUF_READ(bp);
3688	XFS_BUF_UNASYNC(bp);
3689	xfsbdstrat(log->l_mp, bp);
3690	error = xfs_buf_iowait(bp);
3691	if (error) {
3692		xfs_ioerror_alert("xlog_do_recover",
3693				  log->l_mp, bp, XFS_BUF_ADDR(bp));
3694		ASSERT(0);
 
3695		xfs_buf_relse(bp);
3696		return error;
3697	}
3698
3699	/* Convert superblock from on-disk format */
3700	sbp = &log->l_mp->m_sb;
3701	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3702	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3703	ASSERT(xfs_sb_good_version(sbp));
3704	xfs_buf_relse(bp);
3705
3706	/* We've re-read the superblock so re-initialize per-cpu counters */
3707	xfs_icsb_reinit_counters(log->l_mp);
 
 
 
 
 
3708
3709	xlog_recover_check_summary(log);
3710
3711	/* Normal transactions can now occur */
3712	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3713	return 0;
3714}
3715
3716/*
3717 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3718 *
3719 * Return error or zero.
3720 */
3721int
3722xlog_recover(
3723	xlog_t		*log)
3724{
3725	xfs_daddr_t	head_blk, tail_blk;
3726	int		error;
3727
3728	/* find the tail of the log */
3729	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
 
3730		return error;
3731
 
 
 
 
 
 
 
 
 
3732	if (tail_blk != head_blk) {
3733		/* There used to be a comment here:
3734		 *
3735		 * disallow recovery on read-only mounts.  note -- mount
3736		 * checks for ENOSPC and turns it into an intelligent
3737		 * error message.
3738		 * ...but this is no longer true.  Now, unless you specify
3739		 * NORECOVERY (in which case this function would never be
3740		 * called), we just go ahead and recover.  We do this all
3741		 * under the vfs layer, so we can get away with it unless
3742		 * the device itself is read-only, in which case we fail.
3743		 */
3744		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3745			return error;
3746		}
3747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3748		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3749				log->l_mp->m_logname ? log->l_mp->m_logname
3750						     : "internal");
3751
3752		error = xlog_do_recover(log, head_blk, tail_blk);
3753		log->l_flags |= XLOG_RECOVERY_NEEDED;
3754	}
3755	return error;
3756}
3757
3758/*
3759 * In the first part of recovery we replay inodes and buffers and build
3760 * up the list of extent free items which need to be processed.  Here
3761 * we process the extent free items and clean up the on disk unlinked
3762 * inode lists.  This is separated from the first part of recovery so
3763 * that the root and real-time bitmap inodes can be read in from disk in
3764 * between the two stages.  This is necessary so that we can free space
3765 * in the real-time portion of the file system.
3766 */
3767int
3768xlog_recover_finish(
3769	xlog_t		*log)
3770{
3771	/*
3772	 * Now we're ready to do the transactions needed for the
3773	 * rest of recovery.  Start with completing all the extent
3774	 * free intent records and then process the unlinked inode
3775	 * lists.  At this point, we essentially run in normal mode
3776	 * except that we're still performing recovery actions
3777	 * rather than accepting new requests.
3778	 */
3779	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3780		int	error;
3781		error = xlog_recover_process_efis(log);
3782		if (error) {
3783			xfs_alert(log->l_mp, "Failed to recover EFIs");
3784			return error;
3785		}
3786		/*
3787		 * Sync the log to get all the EFIs out of the AIL.
3788		 * This isn't absolutely necessary, but it helps in
3789		 * case the unlink transactions would have problems
3790		 * pushing the EFIs out of the way.
3791		 */
3792		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3793
3794		xlog_recover_process_iunlinks(log);
3795
3796		xlog_recover_check_summary(log);
3797
3798		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3799				log->l_mp->m_logname ? log->l_mp->m_logname
3800						     : "internal");
3801		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3802	} else {
3803		xfs_info(log->l_mp, "Ending clean mount");
3804	}
3805	return 0;
3806}
3807
 
 
 
 
 
 
 
 
 
 
 
3808
3809#if defined(DEBUG)
3810/*
3811 * Read all of the agf and agi counters and check that they
3812 * are consistent with the superblock counters.
3813 */
3814void
3815xlog_recover_check_summary(
3816	xlog_t		*log)
3817{
3818	xfs_mount_t	*mp;
3819	xfs_agf_t	*agfp;
3820	xfs_buf_t	*agfbp;
3821	xfs_buf_t	*agibp;
3822	xfs_agnumber_t	agno;
3823	__uint64_t	freeblks;
3824	__uint64_t	itotal;
3825	__uint64_t	ifree;
3826	int		error;
3827
3828	mp = log->l_mp;
3829
3830	freeblks = 0LL;
3831	itotal = 0LL;
3832	ifree = 0LL;
3833	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3834		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3835		if (error) {
3836			xfs_alert(mp, "%s agf read failed agno %d error %d",
3837						__func__, agno, error);
3838		} else {
3839			agfp = XFS_BUF_TO_AGF(agfbp);
3840			freeblks += be32_to_cpu(agfp->agf_freeblks) +
3841				    be32_to_cpu(agfp->agf_flcount);
3842			xfs_buf_relse(agfbp);
3843		}
3844
3845		error = xfs_read_agi(mp, NULL, agno, &agibp);
3846		if (error) {
3847			xfs_alert(mp, "%s agi read failed agno %d error %d",
3848						__func__, agno, error);
3849		} else {
3850			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
3851
3852			itotal += be32_to_cpu(agi->agi_count);
3853			ifree += be32_to_cpu(agi->agi_freecount);
3854			xfs_buf_relse(agibp);
3855		}
3856	}
3857}
3858#endif /* DEBUG */
v4.6
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
 
 
 
  25#include "xfs_sb.h"
 
  26#include "xfs_mount.h"
  27#include "xfs_da_format.h"
  28#include "xfs_da_btree.h"
 
 
 
  29#include "xfs_inode.h"
  30#include "xfs_trans.h"
  31#include "xfs_log.h"
 
  32#include "xfs_log_priv.h"
 
  33#include "xfs_log_recover.h"
  34#include "xfs_inode_item.h"
  35#include "xfs_extfree_item.h"
  36#include "xfs_trans_priv.h"
  37#include "xfs_alloc.h"
  38#include "xfs_ialloc.h"
  39#include "xfs_quota.h"
  40#include "xfs_cksum.h"
 
  41#include "xfs_trace.h"
  42#include "xfs_icache.h"
  43#include "xfs_bmap_btree.h"
  44#include "xfs_error.h"
  45#include "xfs_dir2.h"
  46
  47#define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
  48
  49STATIC int
  50xlog_find_zeroed(
  51	struct xlog	*,
  52	xfs_daddr_t	*);
  53STATIC int
  54xlog_clear_stale_blocks(
  55	struct xlog	*,
  56	xfs_lsn_t);
  57#if defined(DEBUG)
  58STATIC void
  59xlog_recover_check_summary(
  60	struct xlog *);
  61#else
  62#define	xlog_recover_check_summary(log)
  63#endif
  64STATIC int
  65xlog_do_recovery_pass(
  66        struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
  67
  68/*
  69 * This structure is used during recovery to record the buf log items which
  70 * have been canceled and should not be replayed.
  71 */
  72struct xfs_buf_cancel {
  73	xfs_daddr_t		bc_blkno;
  74	uint			bc_len;
  75	int			bc_refcount;
  76	struct list_head	bc_list;
  77};
  78
  79/*
  80 * Sector aligned buffer routines for buffer create/read/write/access
  81 */
  82
  83/*
  84 * Verify the given count of basic blocks is valid number of blocks
  85 * to specify for an operation involving the given XFS log buffer.
  86 * Returns nonzero if the count is valid, 0 otherwise.
  87 */
  88
  89static inline int
  90xlog_buf_bbcount_valid(
  91	struct xlog	*log,
  92	int		bbcount)
  93{
  94	return bbcount > 0 && bbcount <= log->l_logBBsize;
  95}
  96
  97/*
  98 * Allocate a buffer to hold log data.  The buffer needs to be able
  99 * to map to a range of nbblks basic blocks at any valid (basic
 100 * block) offset within the log.
 101 */
 102STATIC xfs_buf_t *
 103xlog_get_bp(
 104	struct xlog	*log,
 105	int		nbblks)
 106{
 107	struct xfs_buf	*bp;
 108
 109	if (!xlog_buf_bbcount_valid(log, nbblks)) {
 110		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 111			nbblks);
 112		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 113		return NULL;
 114	}
 115
 116	/*
 117	 * We do log I/O in units of log sectors (a power-of-2
 118	 * multiple of the basic block size), so we round up the
 119	 * requested size to accommodate the basic blocks required
 120	 * for complete log sectors.
 121	 *
 122	 * In addition, the buffer may be used for a non-sector-
 123	 * aligned block offset, in which case an I/O of the
 124	 * requested size could extend beyond the end of the
 125	 * buffer.  If the requested size is only 1 basic block it
 126	 * will never straddle a sector boundary, so this won't be
 127	 * an issue.  Nor will this be a problem if the log I/O is
 128	 * done in basic blocks (sector size 1).  But otherwise we
 129	 * extend the buffer by one extra log sector to ensure
 130	 * there's space to accommodate this possibility.
 131	 */
 132	if (nbblks > 1 && log->l_sectBBsize > 1)
 133		nbblks += log->l_sectBBsize;
 134	nbblks = round_up(nbblks, log->l_sectBBsize);
 135
 136	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
 137	if (bp)
 138		xfs_buf_unlock(bp);
 139	return bp;
 140}
 141
 142STATIC void
 143xlog_put_bp(
 144	xfs_buf_t	*bp)
 145{
 146	xfs_buf_free(bp);
 147}
 148
 149/*
 150 * Return the address of the start of the given block number's data
 151 * in a log buffer.  The buffer covers a log sector-aligned region.
 152 */
 153STATIC char *
 154xlog_align(
 155	struct xlog	*log,
 156	xfs_daddr_t	blk_no,
 157	int		nbblks,
 158	struct xfs_buf	*bp)
 159{
 160	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
 161
 162	ASSERT(offset + nbblks <= bp->b_length);
 163	return bp->b_addr + BBTOB(offset);
 164}
 165
 166
 167/*
 168 * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
 169 */
 170STATIC int
 171xlog_bread_noalign(
 172	struct xlog	*log,
 173	xfs_daddr_t	blk_no,
 174	int		nbblks,
 175	struct xfs_buf	*bp)
 176{
 177	int		error;
 178
 179	if (!xlog_buf_bbcount_valid(log, nbblks)) {
 180		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 181			nbblks);
 182		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 183		return -EFSCORRUPTED;
 184	}
 185
 186	blk_no = round_down(blk_no, log->l_sectBBsize);
 187	nbblks = round_up(nbblks, log->l_sectBBsize);
 188
 189	ASSERT(nbblks > 0);
 190	ASSERT(nbblks <= bp->b_length);
 191
 192	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 193	bp->b_flags |= XBF_READ;
 194	bp->b_io_length = nbblks;
 195	bp->b_error = 0;
 196
 197	error = xfs_buf_submit_wait(bp);
 198	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
 199		xfs_buf_ioerror_alert(bp, __func__);
 
 200	return error;
 201}
 202
 203STATIC int
 204xlog_bread(
 205	struct xlog	*log,
 206	xfs_daddr_t	blk_no,
 207	int		nbblks,
 208	struct xfs_buf	*bp,
 209	char		**offset)
 210{
 211	int		error;
 212
 213	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 214	if (error)
 215		return error;
 216
 217	*offset = xlog_align(log, blk_no, nbblks, bp);
 218	return 0;
 219}
 220
 221/*
 222 * Read at an offset into the buffer. Returns with the buffer in it's original
 223 * state regardless of the result of the read.
 224 */
 225STATIC int
 226xlog_bread_offset(
 227	struct xlog	*log,
 228	xfs_daddr_t	blk_no,		/* block to read from */
 229	int		nbblks,		/* blocks to read */
 230	struct xfs_buf	*bp,
 231	char		*offset)
 232{
 233	char		*orig_offset = bp->b_addr;
 234	int		orig_len = BBTOB(bp->b_length);
 235	int		error, error2;
 236
 237	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
 238	if (error)
 239		return error;
 240
 241	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 242
 243	/* must reset buffer pointer even on error */
 244	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
 245	if (error)
 246		return error;
 247	return error2;
 248}
 249
 250/*
 251 * Write out the buffer at the given block for the given number of blocks.
 252 * The buffer is kept locked across the write and is returned locked.
 253 * This can only be used for synchronous log writes.
 254 */
 255STATIC int
 256xlog_bwrite(
 257	struct xlog	*log,
 258	xfs_daddr_t	blk_no,
 259	int		nbblks,
 260	struct xfs_buf	*bp)
 261{
 262	int		error;
 263
 264	if (!xlog_buf_bbcount_valid(log, nbblks)) {
 265		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 266			nbblks);
 267		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 268		return -EFSCORRUPTED;
 269	}
 270
 271	blk_no = round_down(blk_no, log->l_sectBBsize);
 272	nbblks = round_up(nbblks, log->l_sectBBsize);
 273
 274	ASSERT(nbblks > 0);
 275	ASSERT(nbblks <= bp->b_length);
 276
 277	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 
 278	xfs_buf_hold(bp);
 279	xfs_buf_lock(bp);
 280	bp->b_io_length = nbblks;
 281	bp->b_error = 0;
 282
 283	error = xfs_bwrite(bp);
 284	if (error)
 285		xfs_buf_ioerror_alert(bp, __func__);
 286	xfs_buf_relse(bp);
 287	return error;
 288}
 289
 290#ifdef DEBUG
 291/*
 292 * dump debug superblock and log record information
 293 */
 294STATIC void
 295xlog_header_check_dump(
 296	xfs_mount_t		*mp,
 297	xlog_rec_header_t	*head)
 298{
 299	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
 300		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 301	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
 302		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 303}
 304#else
 305#define xlog_header_check_dump(mp, head)
 306#endif
 307
 308/*
 309 * check log record header for recovery
 310 */
 311STATIC int
 312xlog_header_check_recover(
 313	xfs_mount_t		*mp,
 314	xlog_rec_header_t	*head)
 315{
 316	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 317
 318	/*
 319	 * IRIX doesn't write the h_fmt field and leaves it zeroed
 320	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 321	 * a dirty log created in IRIX.
 322	 */
 323	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
 324		xfs_warn(mp,
 325	"dirty log written in incompatible format - can't recover");
 326		xlog_header_check_dump(mp, head);
 327		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
 328				 XFS_ERRLEVEL_HIGH, mp);
 329		return -EFSCORRUPTED;
 330	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 331		xfs_warn(mp,
 332	"dirty log entry has mismatched uuid - can't recover");
 333		xlog_header_check_dump(mp, head);
 334		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
 335				 XFS_ERRLEVEL_HIGH, mp);
 336		return -EFSCORRUPTED;
 337	}
 338	return 0;
 339}
 340
 341/*
 342 * read the head block of the log and check the header
 343 */
 344STATIC int
 345xlog_header_check_mount(
 346	xfs_mount_t		*mp,
 347	xlog_rec_header_t	*head)
 348{
 349	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 350
 351	if (uuid_is_nil(&head->h_fs_uuid)) {
 352		/*
 353		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 354		 * h_fs_uuid is nil, we assume this log was last mounted
 355		 * by IRIX and continue.
 356		 */
 357		xfs_warn(mp, "nil uuid in log - IRIX style log");
 358	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 359		xfs_warn(mp, "log has mismatched uuid - can't recover");
 360		xlog_header_check_dump(mp, head);
 361		XFS_ERROR_REPORT("xlog_header_check_mount",
 362				 XFS_ERRLEVEL_HIGH, mp);
 363		return -EFSCORRUPTED;
 364	}
 365	return 0;
 366}
 367
 368STATIC void
 369xlog_recover_iodone(
 370	struct xfs_buf	*bp)
 371{
 372	if (bp->b_error) {
 373		/*
 374		 * We're not going to bother about retrying
 375		 * this during recovery. One strike!
 376		 */
 377		if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
 378			xfs_buf_ioerror_alert(bp, __func__);
 379			xfs_force_shutdown(bp->b_target->bt_mount,
 380						SHUTDOWN_META_IO_ERROR);
 381		}
 382	}
 383	bp->b_iodone = NULL;
 384	xfs_buf_ioend(bp);
 385}
 386
 387/*
 388 * This routine finds (to an approximation) the first block in the physical
 389 * log which contains the given cycle.  It uses a binary search algorithm.
 390 * Note that the algorithm can not be perfect because the disk will not
 391 * necessarily be perfect.
 392 */
 393STATIC int
 394xlog_find_cycle_start(
 395	struct xlog	*log,
 396	struct xfs_buf	*bp,
 397	xfs_daddr_t	first_blk,
 398	xfs_daddr_t	*last_blk,
 399	uint		cycle)
 400{
 401	char		*offset;
 402	xfs_daddr_t	mid_blk;
 403	xfs_daddr_t	end_blk;
 404	uint		mid_cycle;
 405	int		error;
 406
 407	end_blk = *last_blk;
 408	mid_blk = BLK_AVG(first_blk, end_blk);
 409	while (mid_blk != first_blk && mid_blk != end_blk) {
 410		error = xlog_bread(log, mid_blk, 1, bp, &offset);
 411		if (error)
 412			return error;
 413		mid_cycle = xlog_get_cycle(offset);
 414		if (mid_cycle == cycle)
 415			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 416		else
 417			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 418		mid_blk = BLK_AVG(first_blk, end_blk);
 419	}
 420	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 421	       (mid_blk == end_blk && mid_blk-1 == first_blk));
 422
 423	*last_blk = end_blk;
 424
 425	return 0;
 426}
 427
 428/*
 429 * Check that a range of blocks does not contain stop_on_cycle_no.
 430 * Fill in *new_blk with the block offset where such a block is
 431 * found, or with -1 (an invalid block number) if there is no such
 432 * block in the range.  The scan needs to occur from front to back
 433 * and the pointer into the region must be updated since a later
 434 * routine will need to perform another test.
 435 */
 436STATIC int
 437xlog_find_verify_cycle(
 438	struct xlog	*log,
 439	xfs_daddr_t	start_blk,
 440	int		nbblks,
 441	uint		stop_on_cycle_no,
 442	xfs_daddr_t	*new_blk)
 443{
 444	xfs_daddr_t	i, j;
 445	uint		cycle;
 446	xfs_buf_t	*bp;
 447	xfs_daddr_t	bufblks;
 448	char		*buf = NULL;
 449	int		error = 0;
 450
 451	/*
 452	 * Greedily allocate a buffer big enough to handle the full
 453	 * range of basic blocks we'll be examining.  If that fails,
 454	 * try a smaller size.  We need to be able to read at least
 455	 * a log sector, or we're out of luck.
 456	 */
 457	bufblks = 1 << ffs(nbblks);
 458	while (bufblks > log->l_logBBsize)
 459		bufblks >>= 1;
 460	while (!(bp = xlog_get_bp(log, bufblks))) {
 461		bufblks >>= 1;
 462		if (bufblks < log->l_sectBBsize)
 463			return -ENOMEM;
 464	}
 465
 466	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 467		int	bcount;
 468
 469		bcount = min(bufblks, (start_blk + nbblks - i));
 470
 471		error = xlog_bread(log, i, bcount, bp, &buf);
 472		if (error)
 473			goto out;
 474
 475		for (j = 0; j < bcount; j++) {
 476			cycle = xlog_get_cycle(buf);
 477			if (cycle == stop_on_cycle_no) {
 478				*new_blk = i+j;
 479				goto out;
 480			}
 481
 482			buf += BBSIZE;
 483		}
 484	}
 485
 486	*new_blk = -1;
 487
 488out:
 489	xlog_put_bp(bp);
 490	return error;
 491}
 492
 493/*
 494 * Potentially backup over partial log record write.
 495 *
 496 * In the typical case, last_blk is the number of the block directly after
 497 * a good log record.  Therefore, we subtract one to get the block number
 498 * of the last block in the given buffer.  extra_bblks contains the number
 499 * of blocks we would have read on a previous read.  This happens when the
 500 * last log record is split over the end of the physical log.
 501 *
 502 * extra_bblks is the number of blocks potentially verified on a previous
 503 * call to this routine.
 504 */
 505STATIC int
 506xlog_find_verify_log_record(
 507	struct xlog		*log,
 508	xfs_daddr_t		start_blk,
 509	xfs_daddr_t		*last_blk,
 510	int			extra_bblks)
 511{
 512	xfs_daddr_t		i;
 513	xfs_buf_t		*bp;
 514	char			*offset = NULL;
 515	xlog_rec_header_t	*head = NULL;
 516	int			error = 0;
 517	int			smallmem = 0;
 518	int			num_blks = *last_blk - start_blk;
 519	int			xhdrs;
 520
 521	ASSERT(start_blk != 0 || *last_blk != start_blk);
 522
 523	if (!(bp = xlog_get_bp(log, num_blks))) {
 524		if (!(bp = xlog_get_bp(log, 1)))
 525			return -ENOMEM;
 526		smallmem = 1;
 527	} else {
 528		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
 529		if (error)
 530			goto out;
 531		offset += ((num_blks - 1) << BBSHIFT);
 532	}
 533
 534	for (i = (*last_blk) - 1; i >= 0; i--) {
 535		if (i < start_blk) {
 536			/* valid log record not found */
 537			xfs_warn(log->l_mp,
 538		"Log inconsistent (didn't find previous header)");
 539			ASSERT(0);
 540			error = -EIO;
 541			goto out;
 542		}
 543
 544		if (smallmem) {
 545			error = xlog_bread(log, i, 1, bp, &offset);
 546			if (error)
 547				goto out;
 548		}
 549
 550		head = (xlog_rec_header_t *)offset;
 551
 552		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
 553			break;
 554
 555		if (!smallmem)
 556			offset -= BBSIZE;
 557	}
 558
 559	/*
 560	 * We hit the beginning of the physical log & still no header.  Return
 561	 * to caller.  If caller can handle a return of -1, then this routine
 562	 * will be called again for the end of the physical log.
 563	 */
 564	if (i == -1) {
 565		error = 1;
 566		goto out;
 567	}
 568
 569	/*
 570	 * We have the final block of the good log (the first block
 571	 * of the log record _before_ the head. So we check the uuid.
 572	 */
 573	if ((error = xlog_header_check_mount(log->l_mp, head)))
 574		goto out;
 575
 576	/*
 577	 * We may have found a log record header before we expected one.
 578	 * last_blk will be the 1st block # with a given cycle #.  We may end
 579	 * up reading an entire log record.  In this case, we don't want to
 580	 * reset last_blk.  Only when last_blk points in the middle of a log
 581	 * record do we update last_blk.
 582	 */
 583	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 584		uint	h_size = be32_to_cpu(head->h_size);
 585
 586		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 587		if (h_size % XLOG_HEADER_CYCLE_SIZE)
 588			xhdrs++;
 589	} else {
 590		xhdrs = 1;
 591	}
 592
 593	if (*last_blk - i + extra_bblks !=
 594	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 595		*last_blk = i;
 596
 597out:
 598	xlog_put_bp(bp);
 599	return error;
 600}
 601
 602/*
 603 * Head is defined to be the point of the log where the next log write
 604 * could go.  This means that incomplete LR writes at the end are
 605 * eliminated when calculating the head.  We aren't guaranteed that previous
 606 * LR have complete transactions.  We only know that a cycle number of
 607 * current cycle number -1 won't be present in the log if we start writing
 608 * from our current block number.
 609 *
 610 * last_blk contains the block number of the first block with a given
 611 * cycle number.
 612 *
 613 * Return: zero if normal, non-zero if error.
 614 */
 615STATIC int
 616xlog_find_head(
 617	struct xlog	*log,
 618	xfs_daddr_t	*return_head_blk)
 619{
 620	xfs_buf_t	*bp;
 621	char		*offset;
 622	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
 623	int		num_scan_bblks;
 624	uint		first_half_cycle, last_half_cycle;
 625	uint		stop_on_cycle;
 626	int		error, log_bbnum = log->l_logBBsize;
 627
 628	/* Is the end of the log device zeroed? */
 629	error = xlog_find_zeroed(log, &first_blk);
 630	if (error < 0) {
 631		xfs_warn(log->l_mp, "empty log check failed");
 632		return error;
 633	}
 634	if (error == 1) {
 635		*return_head_blk = first_blk;
 636
 637		/* Is the whole lot zeroed? */
 638		if (!first_blk) {
 639			/* Linux XFS shouldn't generate totally zeroed logs -
 640			 * mkfs etc write a dummy unmount record to a fresh
 641			 * log so we can store the uuid in there
 642			 */
 643			xfs_warn(log->l_mp, "totally zeroed log");
 644		}
 645
 646		return 0;
 
 
 
 647	}
 648
 649	first_blk = 0;			/* get cycle # of 1st block */
 650	bp = xlog_get_bp(log, 1);
 651	if (!bp)
 652		return -ENOMEM;
 653
 654	error = xlog_bread(log, 0, 1, bp, &offset);
 655	if (error)
 656		goto bp_err;
 657
 658	first_half_cycle = xlog_get_cycle(offset);
 659
 660	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
 661	error = xlog_bread(log, last_blk, 1, bp, &offset);
 662	if (error)
 663		goto bp_err;
 664
 665	last_half_cycle = xlog_get_cycle(offset);
 666	ASSERT(last_half_cycle != 0);
 667
 668	/*
 669	 * If the 1st half cycle number is equal to the last half cycle number,
 670	 * then the entire log is stamped with the same cycle number.  In this
 671	 * case, head_blk can't be set to zero (which makes sense).  The below
 672	 * math doesn't work out properly with head_blk equal to zero.  Instead,
 673	 * we set it to log_bbnum which is an invalid block number, but this
 674	 * value makes the math correct.  If head_blk doesn't changed through
 675	 * all the tests below, *head_blk is set to zero at the very end rather
 676	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 677	 * in a circular file.
 678	 */
 679	if (first_half_cycle == last_half_cycle) {
 680		/*
 681		 * In this case we believe that the entire log should have
 682		 * cycle number last_half_cycle.  We need to scan backwards
 683		 * from the end verifying that there are no holes still
 684		 * containing last_half_cycle - 1.  If we find such a hole,
 685		 * then the start of that hole will be the new head.  The
 686		 * simple case looks like
 687		 *        x | x ... | x - 1 | x
 688		 * Another case that fits this picture would be
 689		 *        x | x + 1 | x ... | x
 690		 * In this case the head really is somewhere at the end of the
 691		 * log, as one of the latest writes at the beginning was
 692		 * incomplete.
 693		 * One more case is
 694		 *        x | x + 1 | x ... | x - 1 | x
 695		 * This is really the combination of the above two cases, and
 696		 * the head has to end up at the start of the x-1 hole at the
 697		 * end of the log.
 698		 *
 699		 * In the 256k log case, we will read from the beginning to the
 700		 * end of the log and search for cycle numbers equal to x-1.
 701		 * We don't worry about the x+1 blocks that we encounter,
 702		 * because we know that they cannot be the head since the log
 703		 * started with x.
 704		 */
 705		head_blk = log_bbnum;
 706		stop_on_cycle = last_half_cycle - 1;
 707	} else {
 708		/*
 709		 * In this case we want to find the first block with cycle
 710		 * number matching last_half_cycle.  We expect the log to be
 711		 * some variation on
 712		 *        x + 1 ... | x ... | x
 713		 * The first block with cycle number x (last_half_cycle) will
 714		 * be where the new head belongs.  First we do a binary search
 715		 * for the first occurrence of last_half_cycle.  The binary
 716		 * search may not be totally accurate, so then we scan back
 717		 * from there looking for occurrences of last_half_cycle before
 718		 * us.  If that backwards scan wraps around the beginning of
 719		 * the log, then we look for occurrences of last_half_cycle - 1
 720		 * at the end of the log.  The cases we're looking for look
 721		 * like
 722		 *                               v binary search stopped here
 723		 *        x + 1 ... | x | x + 1 | x ... | x
 724		 *                   ^ but we want to locate this spot
 725		 * or
 726		 *        <---------> less than scan distance
 727		 *        x + 1 ... | x ... | x - 1 | x
 728		 *                           ^ we want to locate this spot
 729		 */
 730		stop_on_cycle = last_half_cycle;
 731		if ((error = xlog_find_cycle_start(log, bp, first_blk,
 732						&head_blk, last_half_cycle)))
 733			goto bp_err;
 734	}
 735
 736	/*
 737	 * Now validate the answer.  Scan back some number of maximum possible
 738	 * blocks and make sure each one has the expected cycle number.  The
 739	 * maximum is determined by the total possible amount of buffering
 740	 * in the in-core log.  The following number can be made tighter if
 741	 * we actually look at the block size of the filesystem.
 742	 */
 743	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
 744	if (head_blk >= num_scan_bblks) {
 745		/*
 746		 * We are guaranteed that the entire check can be performed
 747		 * in one buffer.
 748		 */
 749		start_blk = head_blk - num_scan_bblks;
 750		if ((error = xlog_find_verify_cycle(log,
 751						start_blk, num_scan_bblks,
 752						stop_on_cycle, &new_blk)))
 753			goto bp_err;
 754		if (new_blk != -1)
 755			head_blk = new_blk;
 756	} else {		/* need to read 2 parts of log */
 757		/*
 758		 * We are going to scan backwards in the log in two parts.
 759		 * First we scan the physical end of the log.  In this part
 760		 * of the log, we are looking for blocks with cycle number
 761		 * last_half_cycle - 1.
 762		 * If we find one, then we know that the log starts there, as
 763		 * we've found a hole that didn't get written in going around
 764		 * the end of the physical log.  The simple case for this is
 765		 *        x + 1 ... | x ... | x - 1 | x
 766		 *        <---------> less than scan distance
 767		 * If all of the blocks at the end of the log have cycle number
 768		 * last_half_cycle, then we check the blocks at the start of
 769		 * the log looking for occurrences of last_half_cycle.  If we
 770		 * find one, then our current estimate for the location of the
 771		 * first occurrence of last_half_cycle is wrong and we move
 772		 * back to the hole we've found.  This case looks like
 773		 *        x + 1 ... | x | x + 1 | x ...
 774		 *                               ^ binary search stopped here
 775		 * Another case we need to handle that only occurs in 256k
 776		 * logs is
 777		 *        x + 1 ... | x ... | x+1 | x ...
 778		 *                   ^ binary search stops here
 779		 * In a 256k log, the scan at the end of the log will see the
 780		 * x + 1 blocks.  We need to skip past those since that is
 781		 * certainly not the head of the log.  By searching for
 782		 * last_half_cycle-1 we accomplish that.
 783		 */
 784		ASSERT(head_blk <= INT_MAX &&
 785			(xfs_daddr_t) num_scan_bblks >= head_blk);
 786		start_blk = log_bbnum - (num_scan_bblks - head_blk);
 787		if ((error = xlog_find_verify_cycle(log, start_blk,
 788					num_scan_bblks - (int)head_blk,
 789					(stop_on_cycle - 1), &new_blk)))
 790			goto bp_err;
 791		if (new_blk != -1) {
 792			head_blk = new_blk;
 793			goto validate_head;
 794		}
 795
 796		/*
 797		 * Scan beginning of log now.  The last part of the physical
 798		 * log is good.  This scan needs to verify that it doesn't find
 799		 * the last_half_cycle.
 800		 */
 801		start_blk = 0;
 802		ASSERT(head_blk <= INT_MAX);
 803		if ((error = xlog_find_verify_cycle(log,
 804					start_blk, (int)head_blk,
 805					stop_on_cycle, &new_blk)))
 806			goto bp_err;
 807		if (new_blk != -1)
 808			head_blk = new_blk;
 809	}
 810
 811validate_head:
 812	/*
 813	 * Now we need to make sure head_blk is not pointing to a block in
 814	 * the middle of a log record.
 815	 */
 816	num_scan_bblks = XLOG_REC_SHIFT(log);
 817	if (head_blk >= num_scan_bblks) {
 818		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 819
 820		/* start ptr at last block ptr before head_blk */
 821		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
 822		if (error == 1)
 823			error = -EIO;
 824		if (error)
 
 825			goto bp_err;
 826	} else {
 827		start_blk = 0;
 828		ASSERT(head_blk <= INT_MAX);
 829		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
 830		if (error < 0)
 831			goto bp_err;
 832		if (error == 1) {
 833			/* We hit the beginning of the log during our search */
 834			start_blk = log_bbnum - (num_scan_bblks - head_blk);
 835			new_blk = log_bbnum;
 836			ASSERT(start_blk <= INT_MAX &&
 837				(xfs_daddr_t) log_bbnum-start_blk >= 0);
 838			ASSERT(head_blk <= INT_MAX);
 839			error = xlog_find_verify_log_record(log, start_blk,
 840							&new_blk, (int)head_blk);
 841			if (error == 1)
 842				error = -EIO;
 843			if (error)
 
 844				goto bp_err;
 845			if (new_blk != log_bbnum)
 846				head_blk = new_blk;
 847		} else if (error)
 848			goto bp_err;
 849	}
 850
 851	xlog_put_bp(bp);
 852	if (head_blk == log_bbnum)
 853		*return_head_blk = 0;
 854	else
 855		*return_head_blk = head_blk;
 856	/*
 857	 * When returning here, we have a good block number.  Bad block
 858	 * means that during a previous crash, we didn't have a clean break
 859	 * from cycle number N to cycle number N-1.  In this case, we need
 860	 * to find the first block with cycle number N-1.
 861	 */
 862	return 0;
 863
 864 bp_err:
 865	xlog_put_bp(bp);
 866
 867	if (error)
 868		xfs_warn(log->l_mp, "failed to find log head");
 869	return error;
 870}
 871
 872/*
 873 * Seek backwards in the log for log record headers.
 874 *
 875 * Given a starting log block, walk backwards until we find the provided number
 876 * of records or hit the provided tail block. The return value is the number of
 877 * records encountered or a negative error code. The log block and buffer
 878 * pointer of the last record seen are returned in rblk and rhead respectively.
 
 
 
 
 
 
 
 
 879 */
 880STATIC int
 881xlog_rseek_logrec_hdr(
 882	struct xlog		*log,
 883	xfs_daddr_t		head_blk,
 884	xfs_daddr_t		tail_blk,
 885	int			count,
 886	struct xfs_buf		*bp,
 887	xfs_daddr_t		*rblk,
 888	struct xlog_rec_header	**rhead,
 889	bool			*wrapped)
 890{
 891	int			i;
 892	int			error;
 893	int			found = 0;
 894	char			*offset = NULL;
 895	xfs_daddr_t		end_blk;
 
 
 
 
 896
 897	*wrapped = false;
 898
 899	/*
 900	 * Walk backwards from the head block until we hit the tail or the first
 901	 * block in the log.
 902	 */
 903	end_blk = head_blk > tail_blk ? tail_blk : 0;
 904	for (i = (int) head_blk - 1; i >= end_blk; i--) {
 905		error = xlog_bread(log, i, 1, bp, &offset);
 
 
 
 
 
 906		if (error)
 907			goto out_error;
 908
 909		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 910			*rblk = i;
 911			*rhead = (struct xlog_rec_header *) offset;
 912			if (++found == count)
 913				break;
 914		}
 915	}
 916
 917	/*
 918	 * If we haven't hit the tail block or the log record header count,
 919	 * start looking again from the end of the physical log. Note that
 920	 * callers can pass head == tail if the tail is not yet known.
 921	 */
 922	if (tail_blk >= head_blk && found != count) {
 923		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
 924			error = xlog_bread(log, i, 1, bp, &offset);
 925			if (error)
 926				goto out_error;
 927
 928			if (*(__be32 *)offset ==
 929			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 930				*wrapped = true;
 931				*rblk = i;
 932				*rhead = (struct xlog_rec_header *) offset;
 933				if (++found == count)
 934					break;
 935			}
 936		}
 937	}
 938
 939	return found;
 940
 941out_error:
 942	return error;
 943}
 944
 945/*
 946 * Seek forward in the log for log record headers.
 947 *
 948 * Given head and tail blocks, walk forward from the tail block until we find
 949 * the provided number of records or hit the head block. The return value is the
 950 * number of records encountered or a negative error code. The log block and
 951 * buffer pointer of the last record seen are returned in rblk and rhead
 952 * respectively.
 953 */
 954STATIC int
 955xlog_seek_logrec_hdr(
 956	struct xlog		*log,
 957	xfs_daddr_t		head_blk,
 958	xfs_daddr_t		tail_blk,
 959	int			count,
 960	struct xfs_buf		*bp,
 961	xfs_daddr_t		*rblk,
 962	struct xlog_rec_header	**rhead,
 963	bool			*wrapped)
 964{
 965	int			i;
 966	int			error;
 967	int			found = 0;
 968	char			*offset = NULL;
 969	xfs_daddr_t		end_blk;
 970
 971	*wrapped = false;
 972
 973	/*
 974	 * Walk forward from the tail block until we hit the head or the last
 975	 * block in the log.
 976	 */
 977	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
 978	for (i = (int) tail_blk; i <= end_blk; i++) {
 979		error = xlog_bread(log, i, 1, bp, &offset);
 980		if (error)
 981			goto out_error;
 982
 983		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 984			*rblk = i;
 985			*rhead = (struct xlog_rec_header *) offset;
 986			if (++found == count)
 987				break;
 988		}
 989	}
 990
 991	/*
 992	 * If we haven't hit the head block or the log record header count,
 993	 * start looking again from the start of the physical log.
 
 
 994	 */
 995	if (tail_blk > head_blk && found != count) {
 996		for (i = 0; i < (int) head_blk; i++) {
 997			error = xlog_bread(log, i, 1, bp, &offset);
 998			if (error)
 999				goto out_error;
1000
1001			if (*(__be32 *)offset ==
1002			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1003				*wrapped = true;
1004				*rblk = i;
1005				*rhead = (struct xlog_rec_header *) offset;
1006				if (++found == count)
1007					break;
1008			}
1009		}
1010	}
1011
1012	return found;
1013
1014out_error:
1015	return error;
1016}
1017
1018/*
1019 * Check the log tail for torn writes. This is required when torn writes are
1020 * detected at the head and the head had to be walked back to a previous record.
1021 * The tail of the previous record must now be verified to ensure the torn
1022 * writes didn't corrupt the previous tail.
1023 *
1024 * Return an error if CRC verification fails as recovery cannot proceed.
1025 */
1026STATIC int
1027xlog_verify_tail(
1028	struct xlog		*log,
1029	xfs_daddr_t		head_blk,
1030	xfs_daddr_t		tail_blk)
1031{
1032	struct xlog_rec_header	*thead;
1033	struct xfs_buf		*bp;
1034	xfs_daddr_t		first_bad;
1035	int			count;
1036	int			error = 0;
1037	bool			wrapped;
1038	xfs_daddr_t		tmp_head;
1039
1040	bp = xlog_get_bp(log, 1);
1041	if (!bp)
1042		return -ENOMEM;
1043
1044	/*
1045	 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1046	 * a temporary head block that points after the last possible
1047	 * concurrently written record of the tail.
1048	 */
1049	count = xlog_seek_logrec_hdr(log, head_blk, tail_blk,
1050				     XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead,
1051				     &wrapped);
1052	if (count < 0) {
1053		error = count;
1054		goto out;
1055	}
1056
1057	/*
1058	 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1059	 * into the actual log head. tmp_head points to the start of the record
1060	 * so update it to the actual head block.
1061	 */
1062	if (count < XLOG_MAX_ICLOGS + 1)
1063		tmp_head = head_blk;
1064
1065	/*
1066	 * We now have a tail and temporary head block that covers at least
1067	 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1068	 * records were completely written. Run a CRC verification pass from
1069	 * tail to head and return the result.
 
 
 
 
1070	 */
1071	error = xlog_do_recovery_pass(log, tmp_head, tail_blk,
1072				      XLOG_RECOVER_CRCPASS, &first_bad);
1073
1074out:
1075	xlog_put_bp(bp);
1076	return error;
1077}
1078
1079/*
1080 * Detect and trim torn writes from the head of the log.
1081 *
1082 * Storage without sector atomicity guarantees can result in torn writes in the
1083 * log in the event of a crash. Our only means to detect this scenario is via
1084 * CRC verification. While we can't always be certain that CRC verification
1085 * failure is due to a torn write vs. an unrelated corruption, we do know that
1086 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1087 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1088 * the log and treat failures in this range as torn writes as a matter of
1089 * policy. In the event of CRC failure, the head is walked back to the last good
1090 * record in the log and the tail is updated from that record and verified.
1091 */
1092STATIC int
1093xlog_verify_head(
1094	struct xlog		*log,
1095	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1096	xfs_daddr_t		*tail_blk,	/* out: tail block */
1097	struct xfs_buf		*bp,
1098	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1099	struct xlog_rec_header	**rhead,	/* ptr to last record */
1100	bool			*wrapped)	/* last rec. wraps phys. log */
1101{
1102	struct xlog_rec_header	*tmp_rhead;
1103	struct xfs_buf		*tmp_bp;
1104	xfs_daddr_t		first_bad;
1105	xfs_daddr_t		tmp_rhead_blk;
1106	int			found;
1107	int			error;
1108	bool			tmp_wrapped;
1109
1110	/*
1111	 * Check the head of the log for torn writes. Search backwards from the
1112	 * head until we hit the tail or the maximum number of log record I/Os
1113	 * that could have been in flight at one time. Use a temporary buffer so
1114	 * we don't trash the rhead/bp pointers from the caller.
1115	 */
1116	tmp_bp = xlog_get_bp(log, 1);
1117	if (!tmp_bp)
1118		return -ENOMEM;
1119	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1120				      XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1121				      &tmp_rhead, &tmp_wrapped);
1122	xlog_put_bp(tmp_bp);
1123	if (error < 0)
1124		return error;
1125
1126	/*
1127	 * Now run a CRC verification pass over the records starting at the
1128	 * block found above to the current head. If a CRC failure occurs, the
1129	 * log block of the first bad record is saved in first_bad.
1130	 */
1131	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1132				      XLOG_RECOVER_CRCPASS, &first_bad);
1133	if (error == -EFSBADCRC) {
1134		/*
1135		 * We've hit a potential torn write. Reset the error and warn
1136		 * about it.
1137		 */
1138		error = 0;
1139		xfs_warn(log->l_mp,
1140"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1141			 first_bad, *head_blk);
1142
1143		/*
1144		 * Get the header block and buffer pointer for the last good
1145		 * record before the bad record.
1146		 *
1147		 * Note that xlog_find_tail() clears the blocks at the new head
1148		 * (i.e., the records with invalid CRC) if the cycle number
1149		 * matches the the current cycle.
1150		 */
1151		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1152					      rhead_blk, rhead, wrapped);
1153		if (found < 0)
1154			return found;
1155		if (found == 0)		/* XXX: right thing to do here? */
1156			return -EIO;
1157
1158		/*
1159		 * Reset the head block to the starting block of the first bad
1160		 * log record and set the tail block based on the last good
1161		 * record.
1162		 *
1163		 * Bail out if the updated head/tail match as this indicates
1164		 * possible corruption outside of the acceptable
1165		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1166		 */
1167		*head_blk = first_bad;
1168		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1169		if (*head_blk == *tail_blk) {
1170			ASSERT(0);
1171			return 0;
1172		}
1173
1174		/*
1175		 * Now verify the tail based on the updated head. This is
1176		 * required because the torn writes trimmed from the head could
1177		 * have been written over the tail of a previous record. Return
1178		 * any errors since recovery cannot proceed if the tail is
1179		 * corrupt.
1180		 *
1181		 * XXX: This leaves a gap in truly robust protection from torn
1182		 * writes in the log. If the head is behind the tail, the tail
1183		 * pushes forward to create some space and then a crash occurs
1184		 * causing the writes into the previous record's tail region to
1185		 * tear, log recovery isn't able to recover.
1186		 *
1187		 * How likely is this to occur? If possible, can we do something
1188		 * more intelligent here? Is it safe to push the tail forward if
1189		 * we can determine that the tail is within the range of the
1190		 * torn write (e.g., the kernel can only overwrite the tail if
1191		 * it has actually been pushed forward)? Alternatively, could we
1192		 * somehow prevent this condition at runtime?
1193		 */
1194		error = xlog_verify_tail(log, *head_blk, *tail_blk);
1195	}
1196
1197	return error;
1198}
1199
1200/*
1201 * Check whether the head of the log points to an unmount record. In other
1202 * words, determine whether the log is clean. If so, update the in-core state
1203 * appropriately.
1204 */
1205static int
1206xlog_check_unmount_rec(
1207	struct xlog		*log,
1208	xfs_daddr_t		*head_blk,
1209	xfs_daddr_t		*tail_blk,
1210	struct xlog_rec_header	*rhead,
1211	xfs_daddr_t		rhead_blk,
1212	struct xfs_buf		*bp,
1213	bool			*clean)
1214{
1215	struct xlog_op_header	*op_head;
1216	xfs_daddr_t		umount_data_blk;
1217	xfs_daddr_t		after_umount_blk;
1218	int			hblks;
1219	int			error;
1220	char			*offset;
1221
1222	*clean = false;
1223
1224	/*
1225	 * Look for unmount record. If we find it, then we know there was a
1226	 * clean unmount. Since 'i' could be the last block in the physical
1227	 * log, we convert to a log block before comparing to the head_blk.
1228	 *
1229	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1230	 * below. We won't want to clear the unmount record if there is one, so
1231	 * we pass the lsn of the unmount record rather than the block after it.
 
1232	 */
1233	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1234		int	h_size = be32_to_cpu(rhead->h_size);
1235		int	h_version = be32_to_cpu(rhead->h_version);
1236
1237		if ((h_version & XLOG_VERSION_2) &&
1238		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1239			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1240			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1241				hblks++;
1242		} else {
1243			hblks = 1;
1244		}
1245	} else {
1246		hblks = 1;
1247	}
1248	after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1249	after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
 
1250	if (*head_blk == after_umount_blk &&
1251	    be32_to_cpu(rhead->h_num_logops) == 1) {
1252		umount_data_blk = rhead_blk + hblks;
1253		umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1254		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1255		if (error)
1256			return error;
1257
1258		op_head = (struct xlog_op_header *)offset;
1259		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1260			/*
1261			 * Set tail and last sync so that newly written log
1262			 * records will point recovery to after the current
1263			 * unmount record.
1264			 */
1265			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1266					log->l_curr_cycle, after_umount_blk);
1267			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1268					log->l_curr_cycle, after_umount_blk);
1269			*tail_blk = after_umount_blk;
1270
1271			*clean = true;
1272		}
1273	}
1274
1275	return 0;
1276}
1277
1278static void
1279xlog_set_state(
1280	struct xlog		*log,
1281	xfs_daddr_t		head_blk,
1282	struct xlog_rec_header	*rhead,
1283	xfs_daddr_t		rhead_blk,
1284	bool			bump_cycle)
1285{
1286	/*
1287	 * Reset log values according to the state of the log when we
1288	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1289	 * one because the next write starts a new cycle rather than
1290	 * continuing the cycle of the last good log record.  At this
1291	 * point we have guaranteed that all partial log records have been
1292	 * accounted for.  Therefore, we know that the last good log record
1293	 * written was complete and ended exactly on the end boundary
1294	 * of the physical log.
1295	 */
1296	log->l_prev_block = rhead_blk;
1297	log->l_curr_block = (int)head_blk;
1298	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1299	if (bump_cycle)
1300		log->l_curr_cycle++;
1301	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1302	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1303	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1304					BBTOB(log->l_curr_block));
1305	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1306					BBTOB(log->l_curr_block));
1307}
1308
1309/*
1310 * Find the sync block number or the tail of the log.
1311 *
1312 * This will be the block number of the last record to have its
1313 * associated buffers synced to disk.  Every log record header has
1314 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1315 * to get a sync block number.  The only concern is to figure out which
1316 * log record header to believe.
1317 *
1318 * The following algorithm uses the log record header with the largest
1319 * lsn.  The entire log record does not need to be valid.  We only care
1320 * that the header is valid.
1321 *
1322 * We could speed up search by using current head_blk buffer, but it is not
1323 * available.
1324 */
1325STATIC int
1326xlog_find_tail(
1327	struct xlog		*log,
1328	xfs_daddr_t		*head_blk,
1329	xfs_daddr_t		*tail_blk)
1330{
1331	xlog_rec_header_t	*rhead;
1332	char			*offset = NULL;
1333	xfs_buf_t		*bp;
1334	int			error;
1335	xfs_daddr_t		rhead_blk;
1336	xfs_lsn_t		tail_lsn;
1337	bool			wrapped = false;
1338	bool			clean = false;
1339
1340	/*
1341	 * Find previous log record
1342	 */
1343	if ((error = xlog_find_head(log, head_blk)))
1344		return error;
1345	ASSERT(*head_blk < INT_MAX);
1346
1347	bp = xlog_get_bp(log, 1);
1348	if (!bp)
1349		return -ENOMEM;
1350	if (*head_blk == 0) {				/* special case */
1351		error = xlog_bread(log, 0, 1, bp, &offset);
1352		if (error)
1353			goto done;
1354
1355		if (xlog_get_cycle(offset) == 0) {
1356			*tail_blk = 0;
1357			/* leave all other log inited values alone */
1358			goto done;
1359		}
1360	}
1361
1362	/*
1363	 * Search backwards through the log looking for the log record header
1364	 * block. This wraps all the way back around to the head so something is
1365	 * seriously wrong if we can't find it.
1366	 */
1367	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1368				      &rhead_blk, &rhead, &wrapped);
1369	if (error < 0)
1370		return error;
1371	if (!error) {
1372		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1373		return -EIO;
1374	}
1375	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1376
1377	/*
1378	 * Set the log state based on the current head record.
1379	 */
1380	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1381	tail_lsn = atomic64_read(&log->l_tail_lsn);
1382
1383	/*
1384	 * Look for an unmount record at the head of the log. This sets the log
1385	 * state to determine whether recovery is necessary.
1386	 */
1387	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1388				       rhead_blk, bp, &clean);
1389	if (error)
1390		goto done;
1391
1392	/*
1393	 * Verify the log head if the log is not clean (e.g., we have anything
1394	 * but an unmount record at the head). This uses CRC verification to
1395	 * detect and trim torn writes. If discovered, CRC failures are
1396	 * considered torn writes and the log head is trimmed accordingly.
1397	 *
1398	 * Note that we can only run CRC verification when the log is dirty
1399	 * because there's no guarantee that the log data behind an unmount
1400	 * record is compatible with the current architecture.
1401	 */
1402	if (!clean) {
1403		xfs_daddr_t	orig_head = *head_blk;
1404
1405		error = xlog_verify_head(log, head_blk, tail_blk, bp,
1406					 &rhead_blk, &rhead, &wrapped);
1407		if (error)
1408			goto done;
1409
1410		/* update in-core state again if the head changed */
1411		if (*head_blk != orig_head) {
1412			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1413				       wrapped);
1414			tail_lsn = atomic64_read(&log->l_tail_lsn);
1415			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1416						       rhead, rhead_blk, bp,
1417						       &clean);
1418			if (error)
1419				goto done;
1420		}
1421	}
1422
1423	/*
1424	 * Note that the unmount was clean. If the unmount was not clean, we
1425	 * need to know this to rebuild the superblock counters from the perag
1426	 * headers if we have a filesystem using non-persistent counters.
1427	 */
1428	if (clean)
1429		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1430
1431	/*
1432	 * Make sure that there are no blocks in front of the head
1433	 * with the same cycle number as the head.  This can happen
1434	 * because we allow multiple outstanding log writes concurrently,
1435	 * and the later writes might make it out before earlier ones.
1436	 *
1437	 * We use the lsn from before modifying it so that we'll never
1438	 * overwrite the unmount record after a clean unmount.
1439	 *
1440	 * Do this only if we are going to recover the filesystem
1441	 *
1442	 * NOTE: This used to say "if (!readonly)"
1443	 * However on Linux, we can & do recover a read-only filesystem.
1444	 * We only skip recovery if NORECOVERY is specified on mount,
1445	 * in which case we would not be here.
1446	 *
1447	 * But... if the -device- itself is readonly, just skip this.
1448	 * We can't recover this device anyway, so it won't matter.
1449	 */
1450	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1451		error = xlog_clear_stale_blocks(log, tail_lsn);
1452
1453done:
1454	xlog_put_bp(bp);
1455
1456	if (error)
1457		xfs_warn(log->l_mp, "failed to locate log tail");
1458	return error;
1459}
1460
1461/*
1462 * Is the log zeroed at all?
1463 *
1464 * The last binary search should be changed to perform an X block read
1465 * once X becomes small enough.  You can then search linearly through
1466 * the X blocks.  This will cut down on the number of reads we need to do.
1467 *
1468 * If the log is partially zeroed, this routine will pass back the blkno
1469 * of the first block with cycle number 0.  It won't have a complete LR
1470 * preceding it.
1471 *
1472 * Return:
1473 *	0  => the log is completely written to
1474 *	1 => use *blk_no as the first block of the log
1475 *	<0 => error has occurred
1476 */
1477STATIC int
1478xlog_find_zeroed(
1479	struct xlog	*log,
1480	xfs_daddr_t	*blk_no)
1481{
1482	xfs_buf_t	*bp;
1483	char		*offset;
1484	uint	        first_cycle, last_cycle;
1485	xfs_daddr_t	new_blk, last_blk, start_blk;
1486	xfs_daddr_t     num_scan_bblks;
1487	int	        error, log_bbnum = log->l_logBBsize;
1488
1489	*blk_no = 0;
1490
1491	/* check totally zeroed log */
1492	bp = xlog_get_bp(log, 1);
1493	if (!bp)
1494		return -ENOMEM;
1495	error = xlog_bread(log, 0, 1, bp, &offset);
1496	if (error)
1497		goto bp_err;
1498
1499	first_cycle = xlog_get_cycle(offset);
1500	if (first_cycle == 0) {		/* completely zeroed log */
1501		*blk_no = 0;
1502		xlog_put_bp(bp);
1503		return 1;
1504	}
1505
1506	/* check partially zeroed log */
1507	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1508	if (error)
1509		goto bp_err;
1510
1511	last_cycle = xlog_get_cycle(offset);
1512	if (last_cycle != 0) {		/* log completely written to */
1513		xlog_put_bp(bp);
1514		return 0;
1515	} else if (first_cycle != 1) {
1516		/*
1517		 * If the cycle of the last block is zero, the cycle of
1518		 * the first block must be 1. If it's not, maybe we're
1519		 * not looking at a log... Bail out.
1520		 */
1521		xfs_warn(log->l_mp,
1522			"Log inconsistent or not a log (last==0, first!=1)");
1523		error = -EINVAL;
1524		goto bp_err;
1525	}
1526
1527	/* we have a partially zeroed log */
1528	last_blk = log_bbnum-1;
1529	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1530		goto bp_err;
1531
1532	/*
1533	 * Validate the answer.  Because there is no way to guarantee that
1534	 * the entire log is made up of log records which are the same size,
1535	 * we scan over the defined maximum blocks.  At this point, the maximum
1536	 * is not chosen to mean anything special.   XXXmiken
1537	 */
1538	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1539	ASSERT(num_scan_bblks <= INT_MAX);
1540
1541	if (last_blk < num_scan_bblks)
1542		num_scan_bblks = last_blk;
1543	start_blk = last_blk - num_scan_bblks;
1544
1545	/*
1546	 * We search for any instances of cycle number 0 that occur before
1547	 * our current estimate of the head.  What we're trying to detect is
1548	 *        1 ... | 0 | 1 | 0...
1549	 *                       ^ binary search ends here
1550	 */
1551	if ((error = xlog_find_verify_cycle(log, start_blk,
1552					 (int)num_scan_bblks, 0, &new_blk)))
1553		goto bp_err;
1554	if (new_blk != -1)
1555		last_blk = new_blk;
1556
1557	/*
1558	 * Potentially backup over partial log record write.  We don't need
1559	 * to search the end of the log because we know it is zero.
1560	 */
1561	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1562	if (error == 1)
1563		error = -EIO;
1564	if (error)
1565		goto bp_err;
 
1566
1567	*blk_no = last_blk;
1568bp_err:
1569	xlog_put_bp(bp);
1570	if (error)
1571		return error;
1572	return 1;
1573}
1574
1575/*
1576 * These are simple subroutines used by xlog_clear_stale_blocks() below
1577 * to initialize a buffer full of empty log record headers and write
1578 * them into the log.
1579 */
1580STATIC void
1581xlog_add_record(
1582	struct xlog		*log,
1583	char			*buf,
1584	int			cycle,
1585	int			block,
1586	int			tail_cycle,
1587	int			tail_block)
1588{
1589	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1590
1591	memset(buf, 0, BBSIZE);
1592	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1593	recp->h_cycle = cpu_to_be32(cycle);
1594	recp->h_version = cpu_to_be32(
1595			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1596	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1597	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1598	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1599	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1600}
1601
1602STATIC int
1603xlog_write_log_records(
1604	struct xlog	*log,
1605	int		cycle,
1606	int		start_block,
1607	int		blocks,
1608	int		tail_cycle,
1609	int		tail_block)
1610{
1611	char		*offset;
1612	xfs_buf_t	*bp;
1613	int		balign, ealign;
1614	int		sectbb = log->l_sectBBsize;
1615	int		end_block = start_block + blocks;
1616	int		bufblks;
1617	int		error = 0;
1618	int		i, j = 0;
1619
1620	/*
1621	 * Greedily allocate a buffer big enough to handle the full
1622	 * range of basic blocks to be written.  If that fails, try
1623	 * a smaller size.  We need to be able to write at least a
1624	 * log sector, or we're out of luck.
1625	 */
1626	bufblks = 1 << ffs(blocks);
1627	while (bufblks > log->l_logBBsize)
1628		bufblks >>= 1;
1629	while (!(bp = xlog_get_bp(log, bufblks))) {
1630		bufblks >>= 1;
1631		if (bufblks < sectbb)
1632			return -ENOMEM;
1633	}
1634
1635	/* We may need to do a read at the start to fill in part of
1636	 * the buffer in the starting sector not covered by the first
1637	 * write below.
1638	 */
1639	balign = round_down(start_block, sectbb);
1640	if (balign != start_block) {
1641		error = xlog_bread_noalign(log, start_block, 1, bp);
1642		if (error)
1643			goto out_put_bp;
1644
1645		j = start_block - balign;
1646	}
1647
1648	for (i = start_block; i < end_block; i += bufblks) {
1649		int		bcount, endcount;
1650
1651		bcount = min(bufblks, end_block - start_block);
1652		endcount = bcount - j;
1653
1654		/* We may need to do a read at the end to fill in part of
1655		 * the buffer in the final sector not covered by the write.
1656		 * If this is the same sector as the above read, skip it.
1657		 */
1658		ealign = round_down(end_block, sectbb);
1659		if (j == 0 && (start_block + endcount > ealign)) {
1660			offset = bp->b_addr + BBTOB(ealign - start_block);
1661			error = xlog_bread_offset(log, ealign, sectbb,
1662							bp, offset);
1663			if (error)
1664				break;
1665
1666		}
1667
1668		offset = xlog_align(log, start_block, endcount, bp);
1669		for (; j < endcount; j++) {
1670			xlog_add_record(log, offset, cycle, i+j,
1671					tail_cycle, tail_block);
1672			offset += BBSIZE;
1673		}
1674		error = xlog_bwrite(log, start_block, endcount, bp);
1675		if (error)
1676			break;
1677		start_block += endcount;
1678		j = 0;
1679	}
1680
1681 out_put_bp:
1682	xlog_put_bp(bp);
1683	return error;
1684}
1685
1686/*
1687 * This routine is called to blow away any incomplete log writes out
1688 * in front of the log head.  We do this so that we won't become confused
1689 * if we come up, write only a little bit more, and then crash again.
1690 * If we leave the partial log records out there, this situation could
1691 * cause us to think those partial writes are valid blocks since they
1692 * have the current cycle number.  We get rid of them by overwriting them
1693 * with empty log records with the old cycle number rather than the
1694 * current one.
1695 *
1696 * The tail lsn is passed in rather than taken from
1697 * the log so that we will not write over the unmount record after a
1698 * clean unmount in a 512 block log.  Doing so would leave the log without
1699 * any valid log records in it until a new one was written.  If we crashed
1700 * during that time we would not be able to recover.
1701 */
1702STATIC int
1703xlog_clear_stale_blocks(
1704	struct xlog	*log,
1705	xfs_lsn_t	tail_lsn)
1706{
1707	int		tail_cycle, head_cycle;
1708	int		tail_block, head_block;
1709	int		tail_distance, max_distance;
1710	int		distance;
1711	int		error;
1712
1713	tail_cycle = CYCLE_LSN(tail_lsn);
1714	tail_block = BLOCK_LSN(tail_lsn);
1715	head_cycle = log->l_curr_cycle;
1716	head_block = log->l_curr_block;
1717
1718	/*
1719	 * Figure out the distance between the new head of the log
1720	 * and the tail.  We want to write over any blocks beyond the
1721	 * head that we may have written just before the crash, but
1722	 * we don't want to overwrite the tail of the log.
1723	 */
1724	if (head_cycle == tail_cycle) {
1725		/*
1726		 * The tail is behind the head in the physical log,
1727		 * so the distance from the head to the tail is the
1728		 * distance from the head to the end of the log plus
1729		 * the distance from the beginning of the log to the
1730		 * tail.
1731		 */
1732		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1733			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1734					 XFS_ERRLEVEL_LOW, log->l_mp);
1735			return -EFSCORRUPTED;
1736		}
1737		tail_distance = tail_block + (log->l_logBBsize - head_block);
1738	} else {
1739		/*
1740		 * The head is behind the tail in the physical log,
1741		 * so the distance from the head to the tail is just
1742		 * the tail block minus the head block.
1743		 */
1744		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1745			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1746					 XFS_ERRLEVEL_LOW, log->l_mp);
1747			return -EFSCORRUPTED;
1748		}
1749		tail_distance = tail_block - head_block;
1750	}
1751
1752	/*
1753	 * If the head is right up against the tail, we can't clear
1754	 * anything.
1755	 */
1756	if (tail_distance <= 0) {
1757		ASSERT(tail_distance == 0);
1758		return 0;
1759	}
1760
1761	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1762	/*
1763	 * Take the smaller of the maximum amount of outstanding I/O
1764	 * we could have and the distance to the tail to clear out.
1765	 * We take the smaller so that we don't overwrite the tail and
1766	 * we don't waste all day writing from the head to the tail
1767	 * for no reason.
1768	 */
1769	max_distance = MIN(max_distance, tail_distance);
1770
1771	if ((head_block + max_distance) <= log->l_logBBsize) {
1772		/*
1773		 * We can stomp all the blocks we need to without
1774		 * wrapping around the end of the log.  Just do it
1775		 * in a single write.  Use the cycle number of the
1776		 * current cycle minus one so that the log will look like:
1777		 *     n ... | n - 1 ...
1778		 */
1779		error = xlog_write_log_records(log, (head_cycle - 1),
1780				head_block, max_distance, tail_cycle,
1781				tail_block);
1782		if (error)
1783			return error;
1784	} else {
1785		/*
1786		 * We need to wrap around the end of the physical log in
1787		 * order to clear all the blocks.  Do it in two separate
1788		 * I/Os.  The first write should be from the head to the
1789		 * end of the physical log, and it should use the current
1790		 * cycle number minus one just like above.
1791		 */
1792		distance = log->l_logBBsize - head_block;
1793		error = xlog_write_log_records(log, (head_cycle - 1),
1794				head_block, distance, tail_cycle,
1795				tail_block);
1796
1797		if (error)
1798			return error;
1799
1800		/*
1801		 * Now write the blocks at the start of the physical log.
1802		 * This writes the remainder of the blocks we want to clear.
1803		 * It uses the current cycle number since we're now on the
1804		 * same cycle as the head so that we get:
1805		 *    n ... n ... | n - 1 ...
1806		 *    ^^^^^ blocks we're writing
1807		 */
1808		distance = max_distance - (log->l_logBBsize - head_block);
1809		error = xlog_write_log_records(log, head_cycle, 0, distance,
1810				tail_cycle, tail_block);
1811		if (error)
1812			return error;
1813	}
1814
1815	return 0;
1816}
1817
1818/******************************************************************************
1819 *
1820 *		Log recover routines
1821 *
1822 ******************************************************************************
1823 */
1824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1825/*
1826 * Sort the log items in the transaction.
 
 
 
1827 *
1828 * The ordering constraints are defined by the inode allocation and unlink
1829 * behaviour. The rules are:
1830 *
1831 *	1. Every item is only logged once in a given transaction. Hence it
1832 *	   represents the last logged state of the item. Hence ordering is
1833 *	   dependent on the order in which operations need to be performed so
1834 *	   required initial conditions are always met.
1835 *
1836 *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1837 *	   there's nothing to replay from them so we can simply cull them
1838 *	   from the transaction. However, we can't do that until after we've
1839 *	   replayed all the other items because they may be dependent on the
1840 *	   cancelled buffer and replaying the cancelled buffer can remove it
1841 *	   form the cancelled buffer table. Hence they have tobe done last.
1842 *
1843 *	3. Inode allocation buffers must be replayed before inode items that
1844 *	   read the buffer and replay changes into it. For filesystems using the
1845 *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1846 *	   treated the same as inode allocation buffers as they create and
1847 *	   initialise the buffers directly.
1848 *
1849 *	4. Inode unlink buffers must be replayed after inode items are replayed.
1850 *	   This ensures that inodes are completely flushed to the inode buffer
1851 *	   in a "free" state before we remove the unlinked inode list pointer.
1852 *
1853 * Hence the ordering needs to be inode allocation buffers first, inode items
1854 * second, inode unlink buffers third and cancelled buffers last.
1855 *
1856 * But there's a problem with that - we can't tell an inode allocation buffer
1857 * apart from a regular buffer, so we can't separate them. We can, however,
1858 * tell an inode unlink buffer from the others, and so we can separate them out
1859 * from all the other buffers and move them to last.
1860 *
1861 * Hence, 4 lists, in order from head to tail:
1862 *	- buffer_list for all buffers except cancelled/inode unlink buffers
1863 *	- item_list for all non-buffer items
1864 *	- inode_buffer_list for inode unlink buffers
1865 *	- cancel_list for the cancelled buffers
1866 *
1867 * Note that we add objects to the tail of the lists so that first-to-last
1868 * ordering is preserved within the lists. Adding objects to the head of the
1869 * list means when we traverse from the head we walk them in last-to-first
1870 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1871 * but for all other items there may be specific ordering that we need to
1872 * preserve.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1873 */
1874STATIC int
1875xlog_recover_reorder_trans(
1876	struct xlog		*log,
1877	struct xlog_recover	*trans,
1878	int			pass)
1879{
1880	xlog_recover_item_t	*item, *n;
1881	int			error = 0;
1882	LIST_HEAD(sort_list);
1883	LIST_HEAD(cancel_list);
1884	LIST_HEAD(buffer_list);
1885	LIST_HEAD(inode_buffer_list);
1886	LIST_HEAD(inode_list);
1887
1888	list_splice_init(&trans->r_itemq, &sort_list);
1889	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1890		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1891
1892		switch (ITEM_TYPE(item)) {
1893		case XFS_LI_ICREATE:
1894			list_move_tail(&item->ri_list, &buffer_list);
1895			break;
1896		case XFS_LI_BUF:
1897			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1898				trace_xfs_log_recover_item_reorder_head(log,
1899							trans, item, pass);
1900				list_move(&item->ri_list, &cancel_list);
1901				break;
1902			}
1903			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1904				list_move(&item->ri_list, &inode_buffer_list);
1905				break;
1906			}
1907			list_move_tail(&item->ri_list, &buffer_list);
1908			break;
1909		case XFS_LI_INODE:
1910		case XFS_LI_DQUOT:
1911		case XFS_LI_QUOTAOFF:
1912		case XFS_LI_EFD:
1913		case XFS_LI_EFI:
1914			trace_xfs_log_recover_item_reorder_tail(log,
1915							trans, item, pass);
1916			list_move_tail(&item->ri_list, &inode_list);
1917			break;
1918		default:
1919			xfs_warn(log->l_mp,
1920				"%s: unrecognized type of log operation",
1921				__func__);
1922			ASSERT(0);
1923			/*
1924			 * return the remaining items back to the transaction
1925			 * item list so they can be freed in caller.
1926			 */
1927			if (!list_empty(&sort_list))
1928				list_splice_init(&sort_list, &trans->r_itemq);
1929			error = -EIO;
1930			goto out;
1931		}
1932	}
1933out:
1934	ASSERT(list_empty(&sort_list));
1935	if (!list_empty(&buffer_list))
1936		list_splice(&buffer_list, &trans->r_itemq);
1937	if (!list_empty(&inode_list))
1938		list_splice_tail(&inode_list, &trans->r_itemq);
1939	if (!list_empty(&inode_buffer_list))
1940		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1941	if (!list_empty(&cancel_list))
1942		list_splice_tail(&cancel_list, &trans->r_itemq);
1943	return error;
1944}
1945
1946/*
1947 * Build up the table of buf cancel records so that we don't replay
1948 * cancelled data in the second pass.  For buffer records that are
1949 * not cancel records, there is nothing to do here so we just return.
1950 *
1951 * If we get a cancel record which is already in the table, this indicates
1952 * that the buffer was cancelled multiple times.  In order to ensure
1953 * that during pass 2 we keep the record in the table until we reach its
1954 * last occurrence in the log, we keep a reference count in the cancel
1955 * record in the table to tell us how many times we expect to see this
1956 * record during the second pass.
1957 */
1958STATIC int
1959xlog_recover_buffer_pass1(
1960	struct xlog			*log,
1961	struct xlog_recover_item	*item)
1962{
1963	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1964	struct list_head	*bucket;
1965	struct xfs_buf_cancel	*bcp;
1966
1967	/*
1968	 * If this isn't a cancel buffer item, then just return.
1969	 */
1970	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1971		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1972		return 0;
1973	}
1974
1975	/*
1976	 * Insert an xfs_buf_cancel record into the hash table of them.
1977	 * If there is already an identical record, bump its reference count.
1978	 */
1979	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1980	list_for_each_entry(bcp, bucket, bc_list) {
1981		if (bcp->bc_blkno == buf_f->blf_blkno &&
1982		    bcp->bc_len == buf_f->blf_len) {
1983			bcp->bc_refcount++;
1984			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1985			return 0;
1986		}
1987	}
1988
1989	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1990	bcp->bc_blkno = buf_f->blf_blkno;
1991	bcp->bc_len = buf_f->blf_len;
1992	bcp->bc_refcount = 1;
1993	list_add_tail(&bcp->bc_list, bucket);
1994
1995	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1996	return 0;
1997}
1998
1999/*
2000 * Check to see whether the buffer being recovered has a corresponding
2001 * entry in the buffer cancel record table. If it is, return the cancel
2002 * buffer structure to the caller.
 
 
 
 
 
 
 
 
2003 */
2004STATIC struct xfs_buf_cancel *
2005xlog_peek_buffer_cancelled(
2006	struct xlog		*log,
2007	xfs_daddr_t		blkno,
2008	uint			len,
2009	ushort			flags)
2010{
2011	struct list_head	*bucket;
2012	struct xfs_buf_cancel	*bcp;
2013
2014	if (!log->l_buf_cancel_table) {
2015		/* empty table means no cancelled buffers in the log */
 
 
 
2016		ASSERT(!(flags & XFS_BLF_CANCEL));
2017		return NULL;
2018	}
2019
 
 
 
2020	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2021	list_for_each_entry(bcp, bucket, bc_list) {
2022		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2023			return bcp;
2024	}
2025
2026	/*
2027	 * We didn't find a corresponding entry in the table, so return 0 so
2028	 * that the buffer is NOT cancelled.
2029	 */
2030	ASSERT(!(flags & XFS_BLF_CANCEL));
2031	return NULL;
2032}
2033
2034/*
2035 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2036 * otherwise return 0.  If the buffer is actually a buffer cancel item
2037 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2038 * table and remove it from the table if this is the last reference.
2039 *
2040 * We remove the cancel record from the table when we encounter its last
2041 * occurrence in the log so that if the same buffer is re-used again after its
2042 * last cancellation we actually replay the changes made at that point.
2043 */
2044STATIC int
2045xlog_check_buffer_cancelled(
2046	struct xlog		*log,
2047	xfs_daddr_t		blkno,
2048	uint			len,
2049	ushort			flags)
2050{
2051	struct xfs_buf_cancel	*bcp;
2052
2053	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2054	if (!bcp)
2055		return 0;
2056
 
2057	/*
2058	 * We've go a match, so return 1 so that the recovery of this buffer
2059	 * is cancelled.  If this buffer is actually a buffer cancel log
2060	 * item, then decrement the refcount on the one in the table and
2061	 * remove it if this is the last reference.
2062	 */
2063	if (flags & XFS_BLF_CANCEL) {
2064		if (--bcp->bc_refcount == 0) {
2065			list_del(&bcp->bc_list);
2066			kmem_free(bcp);
2067		}
2068	}
2069	return 1;
2070}
2071
2072/*
2073 * Perform recovery for a buffer full of inodes.  In these buffers, the only
2074 * data which should be recovered is that which corresponds to the
2075 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2076 * data for the inodes is always logged through the inodes themselves rather
2077 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2078 *
2079 * The only time when buffers full of inodes are fully recovered is when the
2080 * buffer is full of newly allocated inodes.  In this case the buffer will
2081 * not be marked as an inode buffer and so will be sent to
2082 * xlog_recover_do_reg_buffer() below during recovery.
2083 */
2084STATIC int
2085xlog_recover_do_inode_buffer(
2086	struct xfs_mount	*mp,
2087	xlog_recover_item_t	*item,
2088	struct xfs_buf		*bp,
2089	xfs_buf_log_format_t	*buf_f)
2090{
2091	int			i;
2092	int			item_index = 0;
2093	int			bit = 0;
2094	int			nbits = 0;
2095	int			reg_buf_offset = 0;
2096	int			reg_buf_bytes = 0;
2097	int			next_unlinked_offset;
2098	int			inodes_per_buf;
2099	xfs_agino_t		*logged_nextp;
2100	xfs_agino_t		*buffer_nextp;
2101
2102	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2103
2104	/*
2105	 * Post recovery validation only works properly on CRC enabled
2106	 * filesystems.
2107	 */
2108	if (xfs_sb_version_hascrc(&mp->m_sb))
2109		bp->b_ops = &xfs_inode_buf_ops;
2110
2111	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2112	for (i = 0; i < inodes_per_buf; i++) {
2113		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2114			offsetof(xfs_dinode_t, di_next_unlinked);
2115
2116		while (next_unlinked_offset >=
2117		       (reg_buf_offset + reg_buf_bytes)) {
2118			/*
2119			 * The next di_next_unlinked field is beyond
2120			 * the current logged region.  Find the next
2121			 * logged region that contains or is beyond
2122			 * the current di_next_unlinked field.
2123			 */
2124			bit += nbits;
2125			bit = xfs_next_bit(buf_f->blf_data_map,
2126					   buf_f->blf_map_size, bit);
2127
2128			/*
2129			 * If there are no more logged regions in the
2130			 * buffer, then we're done.
2131			 */
2132			if (bit == -1)
2133				return 0;
2134
2135			nbits = xfs_contig_bits(buf_f->blf_data_map,
2136						buf_f->blf_map_size, bit);
2137			ASSERT(nbits > 0);
2138			reg_buf_offset = bit << XFS_BLF_SHIFT;
2139			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2140			item_index++;
2141		}
2142
2143		/*
2144		 * If the current logged region starts after the current
2145		 * di_next_unlinked field, then move on to the next
2146		 * di_next_unlinked field.
2147		 */
2148		if (next_unlinked_offset < reg_buf_offset)
2149			continue;
2150
2151		ASSERT(item->ri_buf[item_index].i_addr != NULL);
2152		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2153		ASSERT((reg_buf_offset + reg_buf_bytes) <=
2154							BBTOB(bp->b_io_length));
2155
2156		/*
2157		 * The current logged region contains a copy of the
2158		 * current di_next_unlinked field.  Extract its value
2159		 * and copy it to the buffer copy.
2160		 */
2161		logged_nextp = item->ri_buf[item_index].i_addr +
2162				next_unlinked_offset - reg_buf_offset;
2163		if (unlikely(*logged_nextp == 0)) {
2164			xfs_alert(mp,
2165		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2166		"Trying to replay bad (0) inode di_next_unlinked field.",
2167				item, bp);
2168			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2169					 XFS_ERRLEVEL_LOW, mp);
2170			return -EFSCORRUPTED;
2171		}
2172
2173		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
 
2174		*buffer_nextp = *logged_nextp;
2175
2176		/*
2177		 * If necessary, recalculate the CRC in the on-disk inode. We
2178		 * have to leave the inode in a consistent state for whoever
2179		 * reads it next....
2180		 */
2181		xfs_dinode_calc_crc(mp,
2182				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2183
2184	}
2185
2186	return 0;
2187}
2188
2189/*
2190 * V5 filesystems know the age of the buffer on disk being recovered. We can
2191 * have newer objects on disk than we are replaying, and so for these cases we
2192 * don't want to replay the current change as that will make the buffer contents
2193 * temporarily invalid on disk.
2194 *
2195 * The magic number might not match the buffer type we are going to recover
2196 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2197 * extract the LSN of the existing object in the buffer based on it's current
2198 * magic number.  If we don't recognise the magic number in the buffer, then
2199 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2200 * so can recover the buffer.
2201 *
2202 * Note: we cannot rely solely on magic number matches to determine that the
2203 * buffer has a valid LSN - we also need to verify that it belongs to this
2204 * filesystem, so we need to extract the object's LSN and compare it to that
2205 * which we read from the superblock. If the UUIDs don't match, then we've got a
2206 * stale metadata block from an old filesystem instance that we need to recover
2207 * over the top of.
2208 */
2209static xfs_lsn_t
2210xlog_recover_get_buf_lsn(
2211	struct xfs_mount	*mp,
2212	struct xfs_buf		*bp)
2213{
2214	__uint32_t		magic32;
2215	__uint16_t		magic16;
2216	__uint16_t		magicda;
2217	void			*blk = bp->b_addr;
2218	uuid_t			*uuid;
2219	xfs_lsn_t		lsn = -1;
2220
2221	/* v4 filesystems always recover immediately */
2222	if (!xfs_sb_version_hascrc(&mp->m_sb))
2223		goto recover_immediately;
2224
2225	magic32 = be32_to_cpu(*(__be32 *)blk);
2226	switch (magic32) {
2227	case XFS_ABTB_CRC_MAGIC:
2228	case XFS_ABTC_CRC_MAGIC:
2229	case XFS_ABTB_MAGIC:
2230	case XFS_ABTC_MAGIC:
2231	case XFS_IBT_CRC_MAGIC:
2232	case XFS_IBT_MAGIC: {
2233		struct xfs_btree_block *btb = blk;
2234
2235		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2236		uuid = &btb->bb_u.s.bb_uuid;
2237		break;
2238	}
2239	case XFS_BMAP_CRC_MAGIC:
2240	case XFS_BMAP_MAGIC: {
2241		struct xfs_btree_block *btb = blk;
2242
2243		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2244		uuid = &btb->bb_u.l.bb_uuid;
2245		break;
2246	}
2247	case XFS_AGF_MAGIC:
2248		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2249		uuid = &((struct xfs_agf *)blk)->agf_uuid;
2250		break;
2251	case XFS_AGFL_MAGIC:
2252		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2253		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2254		break;
2255	case XFS_AGI_MAGIC:
2256		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2257		uuid = &((struct xfs_agi *)blk)->agi_uuid;
2258		break;
2259	case XFS_SYMLINK_MAGIC:
2260		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2261		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2262		break;
2263	case XFS_DIR3_BLOCK_MAGIC:
2264	case XFS_DIR3_DATA_MAGIC:
2265	case XFS_DIR3_FREE_MAGIC:
2266		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2267		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2268		break;
2269	case XFS_ATTR3_RMT_MAGIC:
2270		/*
2271		 * Remote attr blocks are written synchronously, rather than
2272		 * being logged. That means they do not contain a valid LSN
2273		 * (i.e. transactionally ordered) in them, and hence any time we
2274		 * see a buffer to replay over the top of a remote attribute
2275		 * block we should simply do so.
2276		 */
2277		goto recover_immediately;
2278	case XFS_SB_MAGIC:
2279		/*
2280		 * superblock uuids are magic. We may or may not have a
2281		 * sb_meta_uuid on disk, but it will be set in the in-core
2282		 * superblock. We set the uuid pointer for verification
2283		 * according to the superblock feature mask to ensure we check
2284		 * the relevant UUID in the superblock.
2285		 */
2286		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2287		if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2288			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2289		else
2290			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2291		break;
2292	default:
2293		break;
2294	}
2295
2296	if (lsn != (xfs_lsn_t)-1) {
2297		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2298			goto recover_immediately;
2299		return lsn;
2300	}
2301
2302	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2303	switch (magicda) {
2304	case XFS_DIR3_LEAF1_MAGIC:
2305	case XFS_DIR3_LEAFN_MAGIC:
2306	case XFS_DA3_NODE_MAGIC:
2307		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2308		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2309		break;
2310	default:
2311		break;
2312	}
2313
2314	if (lsn != (xfs_lsn_t)-1) {
2315		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2316			goto recover_immediately;
2317		return lsn;
2318	}
2319
2320	/*
2321	 * We do individual object checks on dquot and inode buffers as they
2322	 * have their own individual LSN records. Also, we could have a stale
2323	 * buffer here, so we have to at least recognise these buffer types.
2324	 *
2325	 * A notd complexity here is inode unlinked list processing - it logs
2326	 * the inode directly in the buffer, but we don't know which inodes have
2327	 * been modified, and there is no global buffer LSN. Hence we need to
2328	 * recover all inode buffer types immediately. This problem will be
2329	 * fixed by logical logging of the unlinked list modifications.
2330	 */
2331	magic16 = be16_to_cpu(*(__be16 *)blk);
2332	switch (magic16) {
2333	case XFS_DQUOT_MAGIC:
2334	case XFS_DINODE_MAGIC:
2335		goto recover_immediately;
2336	default:
2337		break;
2338	}
2339
2340	/* unknown buffer contents, recover immediately */
2341
2342recover_immediately:
2343	return (xfs_lsn_t)-1;
2344
2345}
2346
2347/*
2348 * Validate the recovered buffer is of the correct type and attach the
2349 * appropriate buffer operations to them for writeback. Magic numbers are in a
2350 * few places:
2351 *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2352 *	the first 32 bits of the buffer (most blocks),
2353 *	inside a struct xfs_da_blkinfo at the start of the buffer.
2354 */
2355static void
2356xlog_recover_validate_buf_type(
2357	struct xfs_mount	*mp,
2358	struct xfs_buf		*bp,
2359	xfs_buf_log_format_t	*buf_f)
2360{
2361	struct xfs_da_blkinfo	*info = bp->b_addr;
2362	__uint32_t		magic32;
2363	__uint16_t		magic16;
2364	__uint16_t		magicda;
2365
2366	/*
2367	 * We can only do post recovery validation on items on CRC enabled
2368	 * fielsystems as we need to know when the buffer was written to be able
2369	 * to determine if we should have replayed the item. If we replay old
2370	 * metadata over a newer buffer, then it will enter a temporarily
2371	 * inconsistent state resulting in verification failures. Hence for now
2372	 * just avoid the verification stage for non-crc filesystems
2373	 */
2374	if (!xfs_sb_version_hascrc(&mp->m_sb))
2375		return;
2376
2377	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2378	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2379	magicda = be16_to_cpu(info->magic);
2380	switch (xfs_blft_from_flags(buf_f)) {
2381	case XFS_BLFT_BTREE_BUF:
2382		switch (magic32) {
2383		case XFS_ABTB_CRC_MAGIC:
2384		case XFS_ABTC_CRC_MAGIC:
2385		case XFS_ABTB_MAGIC:
2386		case XFS_ABTC_MAGIC:
2387			bp->b_ops = &xfs_allocbt_buf_ops;
2388			break;
2389		case XFS_IBT_CRC_MAGIC:
2390		case XFS_FIBT_CRC_MAGIC:
2391		case XFS_IBT_MAGIC:
2392		case XFS_FIBT_MAGIC:
2393			bp->b_ops = &xfs_inobt_buf_ops;
2394			break;
2395		case XFS_BMAP_CRC_MAGIC:
2396		case XFS_BMAP_MAGIC:
2397			bp->b_ops = &xfs_bmbt_buf_ops;
2398			break;
2399		default:
2400			xfs_warn(mp, "Bad btree block magic!");
2401			ASSERT(0);
2402			break;
2403		}
2404		break;
2405	case XFS_BLFT_AGF_BUF:
2406		if (magic32 != XFS_AGF_MAGIC) {
2407			xfs_warn(mp, "Bad AGF block magic!");
2408			ASSERT(0);
2409			break;
2410		}
2411		bp->b_ops = &xfs_agf_buf_ops;
2412		break;
2413	case XFS_BLFT_AGFL_BUF:
2414		if (magic32 != XFS_AGFL_MAGIC) {
2415			xfs_warn(mp, "Bad AGFL block magic!");
2416			ASSERT(0);
2417			break;
2418		}
2419		bp->b_ops = &xfs_agfl_buf_ops;
2420		break;
2421	case XFS_BLFT_AGI_BUF:
2422		if (magic32 != XFS_AGI_MAGIC) {
2423			xfs_warn(mp, "Bad AGI block magic!");
2424			ASSERT(0);
2425			break;
2426		}
2427		bp->b_ops = &xfs_agi_buf_ops;
2428		break;
2429	case XFS_BLFT_UDQUOT_BUF:
2430	case XFS_BLFT_PDQUOT_BUF:
2431	case XFS_BLFT_GDQUOT_BUF:
2432#ifdef CONFIG_XFS_QUOTA
2433		if (magic16 != XFS_DQUOT_MAGIC) {
2434			xfs_warn(mp, "Bad DQUOT block magic!");
2435			ASSERT(0);
2436			break;
2437		}
2438		bp->b_ops = &xfs_dquot_buf_ops;
2439#else
2440		xfs_alert(mp,
2441	"Trying to recover dquots without QUOTA support built in!");
2442		ASSERT(0);
2443#endif
2444		break;
2445	case XFS_BLFT_DINO_BUF:
2446		if (magic16 != XFS_DINODE_MAGIC) {
2447			xfs_warn(mp, "Bad INODE block magic!");
2448			ASSERT(0);
2449			break;
2450		}
2451		bp->b_ops = &xfs_inode_buf_ops;
2452		break;
2453	case XFS_BLFT_SYMLINK_BUF:
2454		if (magic32 != XFS_SYMLINK_MAGIC) {
2455			xfs_warn(mp, "Bad symlink block magic!");
2456			ASSERT(0);
2457			break;
2458		}
2459		bp->b_ops = &xfs_symlink_buf_ops;
2460		break;
2461	case XFS_BLFT_DIR_BLOCK_BUF:
2462		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2463		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2464			xfs_warn(mp, "Bad dir block magic!");
2465			ASSERT(0);
2466			break;
2467		}
2468		bp->b_ops = &xfs_dir3_block_buf_ops;
2469		break;
2470	case XFS_BLFT_DIR_DATA_BUF:
2471		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2472		    magic32 != XFS_DIR3_DATA_MAGIC) {
2473			xfs_warn(mp, "Bad dir data magic!");
2474			ASSERT(0);
2475			break;
2476		}
2477		bp->b_ops = &xfs_dir3_data_buf_ops;
2478		break;
2479	case XFS_BLFT_DIR_FREE_BUF:
2480		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2481		    magic32 != XFS_DIR3_FREE_MAGIC) {
2482			xfs_warn(mp, "Bad dir3 free magic!");
2483			ASSERT(0);
2484			break;
2485		}
2486		bp->b_ops = &xfs_dir3_free_buf_ops;
2487		break;
2488	case XFS_BLFT_DIR_LEAF1_BUF:
2489		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2490		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2491			xfs_warn(mp, "Bad dir leaf1 magic!");
2492			ASSERT(0);
2493			break;
2494		}
2495		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2496		break;
2497	case XFS_BLFT_DIR_LEAFN_BUF:
2498		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2499		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2500			xfs_warn(mp, "Bad dir leafn magic!");
2501			ASSERT(0);
2502			break;
2503		}
2504		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2505		break;
2506	case XFS_BLFT_DA_NODE_BUF:
2507		if (magicda != XFS_DA_NODE_MAGIC &&
2508		    magicda != XFS_DA3_NODE_MAGIC) {
2509			xfs_warn(mp, "Bad da node magic!");
2510			ASSERT(0);
2511			break;
2512		}
2513		bp->b_ops = &xfs_da3_node_buf_ops;
2514		break;
2515	case XFS_BLFT_ATTR_LEAF_BUF:
2516		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2517		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2518			xfs_warn(mp, "Bad attr leaf magic!");
2519			ASSERT(0);
2520			break;
2521		}
2522		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2523		break;
2524	case XFS_BLFT_ATTR_RMT_BUF:
2525		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2526			xfs_warn(mp, "Bad attr remote magic!");
2527			ASSERT(0);
2528			break;
2529		}
2530		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2531		break;
2532	case XFS_BLFT_SB_BUF:
2533		if (magic32 != XFS_SB_MAGIC) {
2534			xfs_warn(mp, "Bad SB block magic!");
2535			ASSERT(0);
2536			break;
2537		}
2538		bp->b_ops = &xfs_sb_buf_ops;
2539		break;
2540#ifdef CONFIG_XFS_RT
2541	case XFS_BLFT_RTBITMAP_BUF:
2542	case XFS_BLFT_RTSUMMARY_BUF:
2543		/* no magic numbers for verification of RT buffers */
2544		bp->b_ops = &xfs_rtbuf_ops;
2545		break;
2546#endif /* CONFIG_XFS_RT */
2547	default:
2548		xfs_warn(mp, "Unknown buffer type %d!",
2549			 xfs_blft_from_flags(buf_f));
2550		break;
2551	}
2552}
2553
2554/*
2555 * Perform a 'normal' buffer recovery.  Each logged region of the
2556 * buffer should be copied over the corresponding region in the
2557 * given buffer.  The bitmap in the buf log format structure indicates
2558 * where to place the logged data.
2559 */
2560STATIC void
2561xlog_recover_do_reg_buffer(
2562	struct xfs_mount	*mp,
2563	xlog_recover_item_t	*item,
2564	struct xfs_buf		*bp,
2565	xfs_buf_log_format_t	*buf_f)
2566{
2567	int			i;
2568	int			bit;
2569	int			nbits;
2570	int                     error;
2571
2572	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2573
2574	bit = 0;
2575	i = 1;  /* 0 is the buf format structure */
2576	while (1) {
2577		bit = xfs_next_bit(buf_f->blf_data_map,
2578				   buf_f->blf_map_size, bit);
2579		if (bit == -1)
2580			break;
2581		nbits = xfs_contig_bits(buf_f->blf_data_map,
2582					buf_f->blf_map_size, bit);
2583		ASSERT(nbits > 0);
2584		ASSERT(item->ri_buf[i].i_addr != NULL);
2585		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2586		ASSERT(BBTOB(bp->b_io_length) >=
2587		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2588
2589		/*
2590		 * The dirty regions logged in the buffer, even though
2591		 * contiguous, may span multiple chunks. This is because the
2592		 * dirty region may span a physical page boundary in a buffer
2593		 * and hence be split into two separate vectors for writing into
2594		 * the log. Hence we need to trim nbits back to the length of
2595		 * the current region being copied out of the log.
2596		 */
2597		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2598			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2599
2600		/*
2601		 * Do a sanity check if this is a dquot buffer. Just checking
2602		 * the first dquot in the buffer should do. XXXThis is
2603		 * probably a good thing to do for other buf types also.
2604		 */
2605		error = 0;
2606		if (buf_f->blf_flags &
2607		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2608			if (item->ri_buf[i].i_addr == NULL) {
2609				xfs_alert(mp,
2610					"XFS: NULL dquot in %s.", __func__);
2611				goto next;
2612			}
2613			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2614				xfs_alert(mp,
2615					"XFS: dquot too small (%d) in %s.",
2616					item->ri_buf[i].i_len, __func__);
2617				goto next;
2618			}
2619			error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2620					       -1, 0, XFS_QMOPT_DOWARN,
2621					       "dquot_buf_recover");
2622			if (error)
2623				goto next;
2624		}
2625
2626		memcpy(xfs_buf_offset(bp,
2627			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2628			item->ri_buf[i].i_addr,		/* source */
2629			nbits<<XFS_BLF_SHIFT);		/* length */
2630 next:
2631		i++;
2632		bit += nbits;
2633	}
2634
2635	/* Shouldn't be any more regions */
2636	ASSERT(i == item->ri_total);
 
2637
2638	xlog_recover_validate_buf_type(mp, bp, buf_f);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2639}
2640
2641/*
2642 * Perform a dquot buffer recovery.
2643 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2644 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2645 * Else, treat it as a regular buffer and do recovery.
2646 *
2647 * Return false if the buffer was tossed and true if we recovered the buffer to
2648 * indicate to the caller if the buffer needs writing.
2649 */
2650STATIC bool
2651xlog_recover_do_dquot_buffer(
2652	struct xfs_mount		*mp,
2653	struct xlog			*log,
2654	struct xlog_recover_item	*item,
2655	struct xfs_buf			*bp,
2656	struct xfs_buf_log_format	*buf_f)
2657{
2658	uint			type;
2659
2660	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2661
2662	/*
2663	 * Filesystems are required to send in quota flags at mount time.
2664	 */
2665	if (!mp->m_qflags)
2666		return false;
 
2667
2668	type = 0;
2669	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2670		type |= XFS_DQ_USER;
2671	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2672		type |= XFS_DQ_PROJ;
2673	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2674		type |= XFS_DQ_GROUP;
2675	/*
2676	 * This type of quotas was turned off, so ignore this buffer
2677	 */
2678	if (log->l_quotaoffs_flag & type)
2679		return false;
2680
2681	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2682	return true;
2683}
2684
2685/*
2686 * This routine replays a modification made to a buffer at runtime.
2687 * There are actually two types of buffer, regular and inode, which
2688 * are handled differently.  Inode buffers are handled differently
2689 * in that we only recover a specific set of data from them, namely
2690 * the inode di_next_unlinked fields.  This is because all other inode
2691 * data is actually logged via inode records and any data we replay
2692 * here which overlaps that may be stale.
2693 *
2694 * When meta-data buffers are freed at run time we log a buffer item
2695 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2696 * of the buffer in the log should not be replayed at recovery time.
2697 * This is so that if the blocks covered by the buffer are reused for
2698 * file data before we crash we don't end up replaying old, freed
2699 * meta-data into a user's file.
2700 *
2701 * To handle the cancellation of buffer log items, we make two passes
2702 * over the log during recovery.  During the first we build a table of
2703 * those buffers which have been cancelled, and during the second we
2704 * only replay those buffers which do not have corresponding cancel
2705 * records in the table.  See xlog_recover_buffer_pass[1,2] above
2706 * for more details on the implementation of the table of cancel records.
2707 */
2708STATIC int
2709xlog_recover_buffer_pass2(
2710	struct xlog			*log,
2711	struct list_head		*buffer_list,
2712	struct xlog_recover_item	*item,
2713	xfs_lsn_t			current_lsn)
2714{
2715	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2716	xfs_mount_t		*mp = log->l_mp;
2717	xfs_buf_t		*bp;
2718	int			error;
2719	uint			buf_flags;
2720	xfs_lsn_t		lsn;
2721
2722	/*
2723	 * In this pass we only want to recover all the buffers which have
2724	 * not been cancelled and are not cancellation buffers themselves.
2725	 */
2726	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2727			buf_f->blf_len, buf_f->blf_flags)) {
2728		trace_xfs_log_recover_buf_cancel(log, buf_f);
2729		return 0;
2730	}
2731
2732	trace_xfs_log_recover_buf_recover(log, buf_f);
2733
2734	buf_flags = 0;
2735	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2736		buf_flags |= XBF_UNMAPPED;
2737
2738	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2739			  buf_flags, NULL);
2740	if (!bp)
2741		return -ENOMEM;
2742	error = bp->b_error;
2743	if (error) {
2744		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2745		goto out_release;
2746	}
2747
2748	/*
2749	 * Recover the buffer only if we get an LSN from it and it's less than
2750	 * the lsn of the transaction we are replaying.
2751	 *
2752	 * Note that we have to be extremely careful of readahead here.
2753	 * Readahead does not attach verfiers to the buffers so if we don't
2754	 * actually do any replay after readahead because of the LSN we found
2755	 * in the buffer if more recent than that current transaction then we
2756	 * need to attach the verifier directly. Failure to do so can lead to
2757	 * future recovery actions (e.g. EFI and unlinked list recovery) can
2758	 * operate on the buffers and they won't get the verifier attached. This
2759	 * can lead to blocks on disk having the correct content but a stale
2760	 * CRC.
2761	 *
2762	 * It is safe to assume these clean buffers are currently up to date.
2763	 * If the buffer is dirtied by a later transaction being replayed, then
2764	 * the verifier will be reset to match whatever recover turns that
2765	 * buffer into.
2766	 */
2767	lsn = xlog_recover_get_buf_lsn(mp, bp);
2768	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2769		xlog_recover_validate_buf_type(mp, bp, buf_f);
2770		goto out_release;
2771	}
2772
2773	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2774		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2775		if (error)
2776			goto out_release;
2777	} else if (buf_f->blf_flags &
2778		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2779		bool	dirty;
2780
2781		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2782		if (!dirty)
2783			goto out_release;
2784	} else {
2785		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2786	}
 
 
2787
2788	/*
2789	 * Perform delayed write on the buffer.  Asynchronous writes will be
2790	 * slower when taking into account all the buffers to be flushed.
2791	 *
2792	 * Also make sure that only inode buffers with good sizes stay in
2793	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2794	 * or mp->m_inode_cluster_size bytes, whichever is bigger.  The inode
2795	 * buffers in the log can be a different size if the log was generated
2796	 * by an older kernel using unclustered inode buffers or a newer kernel
2797	 * running with a different inode cluster size.  Regardless, if the
2798	 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2799	 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2800	 * the buffer out of the buffer cache so that the buffer won't
2801	 * overlap with future reads of those inodes.
2802	 */
2803	if (XFS_DINODE_MAGIC ==
2804	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2805	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2806			(__uint32_t)log->l_mp->m_inode_cluster_size))) {
2807		xfs_buf_stale(bp);
2808		error = xfs_bwrite(bp);
2809	} else {
2810		ASSERT(bp->b_target->bt_mount == mp);
2811		bp->b_iodone = xlog_recover_iodone;
2812		xfs_buf_delwri_queue(bp, buffer_list);
2813	}
2814
2815out_release:
2816	xfs_buf_relse(bp);
2817	return error;
2818}
2819
2820/*
2821 * Inode fork owner changes
2822 *
2823 * If we have been told that we have to reparent the inode fork, it's because an
2824 * extent swap operation on a CRC enabled filesystem has been done and we are
2825 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2826 * owners of it.
2827 *
2828 * The complexity here is that we don't have an inode context to work with, so
2829 * after we've replayed the inode we need to instantiate one.  This is where the
2830 * fun begins.
2831 *
2832 * We are in the middle of log recovery, so we can't run transactions. That
2833 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2834 * that will result in the corresponding iput() running the inode through
2835 * xfs_inactive(). If we've just replayed an inode core that changes the link
2836 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2837 * transactions (bad!).
2838 *
2839 * So, to avoid this, we instantiate an inode directly from the inode core we've
2840 * just recovered. We have the buffer still locked, and all we really need to
2841 * instantiate is the inode core and the forks being modified. We can do this
2842 * manually, then run the inode btree owner change, and then tear down the
2843 * xfs_inode without having to run any transactions at all.
2844 *
2845 * Also, because we don't have a transaction context available here but need to
2846 * gather all the buffers we modify for writeback so we pass the buffer_list
2847 * instead for the operation to use.
2848 */
2849
2850STATIC int
2851xfs_recover_inode_owner_change(
2852	struct xfs_mount	*mp,
2853	struct xfs_dinode	*dip,
2854	struct xfs_inode_log_format *in_f,
2855	struct list_head	*buffer_list)
2856{
2857	struct xfs_inode	*ip;
2858	int			error;
2859
2860	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2861
2862	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2863	if (!ip)
2864		return -ENOMEM;
2865
2866	/* instantiate the inode */
2867	xfs_inode_from_disk(ip, dip);
2868	ASSERT(ip->i_d.di_version >= 3);
2869
2870	error = xfs_iformat_fork(ip, dip);
2871	if (error)
2872		goto out_free_ip;
2873
2874
2875	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2876		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2877		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2878					      ip->i_ino, buffer_list);
2879		if (error)
2880			goto out_free_ip;
2881	}
2882
2883	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2884		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2885		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2886					      ip->i_ino, buffer_list);
2887		if (error)
2888			goto out_free_ip;
2889	}
2890
2891out_free_ip:
2892	xfs_inode_free(ip);
2893	return error;
2894}
2895
2896STATIC int
2897xlog_recover_inode_pass2(
2898	struct xlog			*log,
2899	struct list_head		*buffer_list,
2900	struct xlog_recover_item	*item,
2901	xfs_lsn_t			current_lsn)
2902{
2903	xfs_inode_log_format_t	*in_f;
2904	xfs_mount_t		*mp = log->l_mp;
2905	xfs_buf_t		*bp;
2906	xfs_dinode_t		*dip;
2907	int			len;
2908	char			*src;
2909	char			*dest;
2910	int			error;
2911	int			attr_index;
2912	uint			fields;
2913	struct xfs_log_dinode	*ldip;
2914	uint			isize;
2915	int			need_free = 0;
2916
2917	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2918		in_f = item->ri_buf[0].i_addr;
2919	} else {
2920		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2921		need_free = 1;
2922		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2923		if (error)
2924			goto error;
2925	}
2926
2927	/*
2928	 * Inode buffers can be freed, look out for it,
2929	 * and do not replay the inode.
2930	 */
2931	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2932					in_f->ilf_len, 0)) {
2933		error = 0;
2934		trace_xfs_log_recover_inode_cancel(log, in_f);
2935		goto error;
2936	}
2937	trace_xfs_log_recover_inode_recover(log, in_f);
2938
2939	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2940			  &xfs_inode_buf_ops);
2941	if (!bp) {
2942		error = -ENOMEM;
2943		goto error;
2944	}
2945	error = bp->b_error;
2946	if (error) {
2947		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2948		goto out_release;
 
 
2949	}
2950	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2951	dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2952
2953	/*
2954	 * Make sure the place we're flushing out to really looks
2955	 * like an inode!
2956	 */
2957	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
 
2958		xfs_alert(mp,
2959	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2960			__func__, dip, bp, in_f->ilf_ino);
2961		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2962				 XFS_ERRLEVEL_LOW, mp);
2963		error = -EFSCORRUPTED;
2964		goto out_release;
2965	}
2966	ldip = item->ri_buf[1].i_addr;
2967	if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
 
2968		xfs_alert(mp,
2969			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2970			__func__, item, in_f->ilf_ino);
2971		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2972				 XFS_ERRLEVEL_LOW, mp);
2973		error = -EFSCORRUPTED;
2974		goto out_release;
2975	}
2976
2977	/*
2978	 * If the inode has an LSN in it, recover the inode only if it's less
2979	 * than the lsn of the transaction we are replaying. Note: we still
2980	 * need to replay an owner change even though the inode is more recent
2981	 * than the transaction as there is no guarantee that all the btree
2982	 * blocks are more recent than this transaction, too.
2983	 */
2984	if (dip->di_version >= 3) {
2985		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
2986
2987		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2988			trace_xfs_log_recover_inode_skip(log, in_f);
2989			error = 0;
2990			goto out_owner_change;
2991		}
2992	}
2993
2994	/*
2995	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2996	 * are transactional and if ordering is necessary we can determine that
2997	 * more accurately by the LSN field in the V3 inode core. Don't trust
2998	 * the inode versions we might be changing them here - use the
2999	 * superblock flag to determine whether we need to look at di_flushiter
3000	 * to skip replay when the on disk inode is newer than the log one
3001	 */
3002	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3003	    ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3004		/*
3005		 * Deal with the wrap case, DI_MAX_FLUSH is less
3006		 * than smaller numbers
3007		 */
3008		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3009		    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3010			/* do nothing */
3011		} else {
 
3012			trace_xfs_log_recover_inode_skip(log, in_f);
3013			error = 0;
3014			goto out_release;
3015		}
3016	}
3017
3018	/* Take the opportunity to reset the flush iteration count */
3019	ldip->di_flushiter = 0;
3020
3021	if (unlikely(S_ISREG(ldip->di_mode))) {
3022		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3023		    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3024			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3025					 XFS_ERRLEVEL_LOW, mp, ldip);
 
3026			xfs_alert(mp,
3027		"%s: Bad regular inode log record, rec ptr 0x%p, "
3028		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3029				__func__, item, dip, bp, in_f->ilf_ino);
3030			error = -EFSCORRUPTED;
3031			goto out_release;
3032		}
3033	} else if (unlikely(S_ISDIR(ldip->di_mode))) {
3034		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3035		    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3036		    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3037			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3038					     XFS_ERRLEVEL_LOW, mp, ldip);
 
3039			xfs_alert(mp,
3040		"%s: Bad dir inode log record, rec ptr 0x%p, "
3041		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3042				__func__, item, dip, bp, in_f->ilf_ino);
3043			error = -EFSCORRUPTED;
3044			goto out_release;
3045		}
3046	}
3047	if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3048		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3049				     XFS_ERRLEVEL_LOW, mp, ldip);
 
3050		xfs_alert(mp,
3051	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3052	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3053			__func__, item, dip, bp, in_f->ilf_ino,
3054			ldip->di_nextents + ldip->di_anextents,
3055			ldip->di_nblocks);
3056		error = -EFSCORRUPTED;
3057		goto out_release;
3058	}
3059	if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3060		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3061				     XFS_ERRLEVEL_LOW, mp, ldip);
 
3062		xfs_alert(mp,
3063	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3064	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
3065			item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3066		error = -EFSCORRUPTED;
3067		goto out_release;
3068	}
3069	isize = xfs_log_dinode_size(ldip->di_version);
3070	if (unlikely(item->ri_buf[1].i_len > isize)) {
3071		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3072				     XFS_ERRLEVEL_LOW, mp, ldip);
 
3073		xfs_alert(mp,
3074			"%s: Bad inode log record length %d, rec ptr 0x%p",
3075			__func__, item->ri_buf[1].i_len, item);
3076		error = -EFSCORRUPTED;
3077		goto out_release;
3078	}
3079
3080	/* recover the log dinode inode into the on disk inode */
3081	xfs_log_dinode_to_disk(ldip, dip);
3082
3083	/* the rest is in on-disk format */
3084	if (item->ri_buf[1].i_len > isize) {
3085		memcpy((char *)dip + isize,
3086			item->ri_buf[1].i_addr + isize,
3087			item->ri_buf[1].i_len - isize);
3088	}
3089
3090	fields = in_f->ilf_fields;
3091	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
3092	case XFS_ILOG_DEV:
3093		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3094		break;
3095	case XFS_ILOG_UUID:
3096		memcpy(XFS_DFORK_DPTR(dip),
3097		       &in_f->ilf_u.ilfu_uuid,
3098		       sizeof(uuid_t));
3099		break;
3100	}
3101
3102	if (in_f->ilf_size == 2)
3103		goto out_owner_change;
3104	len = item->ri_buf[2].i_len;
3105	src = item->ri_buf[2].i_addr;
3106	ASSERT(in_f->ilf_size <= 4);
3107	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3108	ASSERT(!(fields & XFS_ILOG_DFORK) ||
3109	       (len == in_f->ilf_dsize));
3110
3111	switch (fields & XFS_ILOG_DFORK) {
3112	case XFS_ILOG_DDATA:
3113	case XFS_ILOG_DEXT:
3114		memcpy(XFS_DFORK_DPTR(dip), src, len);
3115		break;
3116
3117	case XFS_ILOG_DBROOT:
3118		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3119				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3120				 XFS_DFORK_DSIZE(dip, mp));
3121		break;
3122
3123	default:
3124		/*
3125		 * There are no data fork flags set.
3126		 */
3127		ASSERT((fields & XFS_ILOG_DFORK) == 0);
3128		break;
3129	}
3130
3131	/*
3132	 * If we logged any attribute data, recover it.  There may or
3133	 * may not have been any other non-core data logged in this
3134	 * transaction.
3135	 */
3136	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3137		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3138			attr_index = 3;
3139		} else {
3140			attr_index = 2;
3141		}
3142		len = item->ri_buf[attr_index].i_len;
3143		src = item->ri_buf[attr_index].i_addr;
3144		ASSERT(len == in_f->ilf_asize);
3145
3146		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3147		case XFS_ILOG_ADATA:
3148		case XFS_ILOG_AEXT:
3149			dest = XFS_DFORK_APTR(dip);
3150			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3151			memcpy(dest, src, len);
3152			break;
3153
3154		case XFS_ILOG_ABROOT:
3155			dest = XFS_DFORK_APTR(dip);
3156			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3157					 len, (xfs_bmdr_block_t*)dest,
3158					 XFS_DFORK_ASIZE(dip, mp));
3159			break;
3160
3161		default:
3162			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3163			ASSERT(0);
3164			error = -EIO;
3165			goto out_release;
 
3166		}
3167	}
3168
3169out_owner_change:
3170	if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3171		error = xfs_recover_inode_owner_change(mp, dip, in_f,
3172						       buffer_list);
3173	/* re-generate the checksum. */
3174	xfs_dinode_calc_crc(log->l_mp, dip);
3175
3176	ASSERT(bp->b_target->bt_mount == mp);
3177	bp->b_iodone = xlog_recover_iodone;
3178	xfs_buf_delwri_queue(bp, buffer_list);
3179
3180out_release:
3181	xfs_buf_relse(bp);
3182error:
3183	if (need_free)
3184		kmem_free(in_f);
3185	return error;
3186}
3187
3188/*
3189 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3190 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3191 * of that type.
3192 */
3193STATIC int
3194xlog_recover_quotaoff_pass1(
3195	struct xlog			*log,
3196	struct xlog_recover_item	*item)
3197{
3198	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
3199	ASSERT(qoff_f);
3200
3201	/*
3202	 * The logitem format's flag tells us if this was user quotaoff,
3203	 * group/project quotaoff or both.
3204	 */
3205	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3206		log->l_quotaoffs_flag |= XFS_DQ_USER;
3207	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3208		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3209	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3210		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3211
3212	return 0;
3213}
3214
3215/*
3216 * Recover a dquot record
3217 */
3218STATIC int
3219xlog_recover_dquot_pass2(
3220	struct xlog			*log,
3221	struct list_head		*buffer_list,
3222	struct xlog_recover_item	*item,
3223	xfs_lsn_t			current_lsn)
3224{
3225	xfs_mount_t		*mp = log->l_mp;
3226	xfs_buf_t		*bp;
3227	struct xfs_disk_dquot	*ddq, *recddq;
3228	int			error;
3229	xfs_dq_logformat_t	*dq_f;
3230	uint			type;
3231
3232
3233	/*
3234	 * Filesystems are required to send in quota flags at mount time.
3235	 */
3236	if (mp->m_qflags == 0)
3237		return 0;
3238
3239	recddq = item->ri_buf[1].i_addr;
3240	if (recddq == NULL) {
3241		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3242		return -EIO;
3243	}
3244	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3245		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3246			item->ri_buf[1].i_len, __func__);
3247		return -EIO;
3248	}
3249
3250	/*
3251	 * This type of quotas was turned off, so ignore this record.
3252	 */
3253	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3254	ASSERT(type);
3255	if (log->l_quotaoffs_flag & type)
3256		return 0;
3257
3258	/*
3259	 * At this point we know that quota was _not_ turned off.
3260	 * Since the mount flags are not indicating to us otherwise, this
3261	 * must mean that quota is on, and the dquot needs to be replayed.
3262	 * Remember that we may not have fully recovered the superblock yet,
3263	 * so we can't do the usual trick of looking at the SB quota bits.
3264	 *
3265	 * The other possibility, of course, is that the quota subsystem was
3266	 * removed since the last mount - ENOSYS.
3267	 */
3268	dq_f = item->ri_buf[0].i_addr;
3269	ASSERT(dq_f);
3270	error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3271			   "xlog_recover_dquot_pass2 (log copy)");
3272	if (error)
3273		return -EIO;
3274	ASSERT(dq_f->qlf_len == 1);
3275
3276	/*
3277	 * At this point we are assuming that the dquots have been allocated
3278	 * and hence the buffer has valid dquots stamped in it. It should,
3279	 * therefore, pass verifier validation. If the dquot is bad, then the
3280	 * we'll return an error here, so we don't need to specifically check
3281	 * the dquot in the buffer after the verifier has run.
3282	 */
3283	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3284				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3285				   &xfs_dquot_buf_ops);
3286	if (error)
3287		return error;
3288
3289	ASSERT(bp);
3290	ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3291
3292	/*
3293	 * If the dquot has an LSN in it, recover the dquot only if it's less
3294	 * than the lsn of the transaction we are replaying.
 
3295	 */
3296	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3297		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3298		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3299
3300		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3301			goto out_release;
3302		}
3303	}
3304
3305	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3306	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3307		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3308				 XFS_DQUOT_CRC_OFF);
3309	}
3310
3311	ASSERT(dq_f->qlf_size == 2);
3312	ASSERT(bp->b_target->bt_mount == mp);
3313	bp->b_iodone = xlog_recover_iodone;
3314	xfs_buf_delwri_queue(bp, buffer_list);
3315
3316out_release:
3317	xfs_buf_relse(bp);
3318	return 0;
3319}
3320
3321/*
3322 * This routine is called to create an in-core extent free intent
3323 * item from the efi format structure which was logged on disk.
3324 * It allocates an in-core efi, copies the extents from the format
3325 * structure into it, and adds the efi to the AIL with the given
3326 * LSN.
3327 */
3328STATIC int
3329xlog_recover_efi_pass2(
3330	struct xlog			*log,
3331	struct xlog_recover_item	*item,
3332	xfs_lsn_t			lsn)
3333{
3334	int				error;
3335	struct xfs_mount		*mp = log->l_mp;
3336	struct xfs_efi_log_item		*efip;
3337	struct xfs_efi_log_format	*efi_formatp;
3338
3339	efi_formatp = item->ri_buf[0].i_addr;
3340
3341	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3342	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3343	if (error) {
3344		xfs_efi_item_free(efip);
3345		return error;
3346	}
3347	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3348
3349	spin_lock(&log->l_ailp->xa_lock);
3350	/*
3351	 * The EFI has two references. One for the EFD and one for EFI to ensure
3352	 * it makes it into the AIL. Insert the EFI into the AIL directly and
3353	 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3354	 * AIL lock.
3355	 */
3356	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3357	xfs_efi_release(efip);
3358	return 0;
3359}
3360
3361
3362/*
3363 * This routine is called when an EFD format structure is found in a committed
3364 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3365 * was still in the log. To do this it searches the AIL for the EFI with an id
3366 * equal to that in the EFD format structure. If we find it we drop the EFD
3367 * reference, which removes the EFI from the AIL and frees it.
 
3368 */
3369STATIC int
3370xlog_recover_efd_pass2(
3371	struct xlog			*log,
3372	struct xlog_recover_item	*item)
3373{
3374	xfs_efd_log_format_t	*efd_formatp;
3375	xfs_efi_log_item_t	*efip = NULL;
3376	xfs_log_item_t		*lip;
3377	__uint64_t		efi_id;
3378	struct xfs_ail_cursor	cur;
3379	struct xfs_ail		*ailp = log->l_ailp;
3380
3381	efd_formatp = item->ri_buf[0].i_addr;
3382	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3383		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3384	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3385		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3386	efi_id = efd_formatp->efd_efi_id;
3387
3388	/*
3389	 * Search for the EFI with the id in the EFD format structure in the
3390	 * AIL.
3391	 */
3392	spin_lock(&ailp->xa_lock);
3393	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3394	while (lip != NULL) {
3395		if (lip->li_type == XFS_LI_EFI) {
3396			efip = (xfs_efi_log_item_t *)lip;
3397			if (efip->efi_format.efi_id == efi_id) {
3398				/*
3399				 * Drop the EFD reference to the EFI. This
3400				 * removes the EFI from the AIL and frees it.
3401				 */
3402				spin_unlock(&ailp->xa_lock);
3403				xfs_efi_release(efip);
3404				spin_lock(&ailp->xa_lock);
3405				break;
3406			}
3407		}
3408		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3409	}
3410
3411	xfs_trans_ail_cursor_done(&cur);
3412	spin_unlock(&ailp->xa_lock);
3413
3414	return 0;
3415}
3416
3417/*
3418 * This routine is called when an inode create format structure is found in a
3419 * committed transaction in the log.  It's purpose is to initialise the inodes
3420 * being allocated on disk. This requires us to get inode cluster buffers that
3421 * match the range to be intialised, stamped with inode templates and written
3422 * by delayed write so that subsequent modifications will hit the cached buffer
3423 * and only need writing out at the end of recovery.
3424 */
3425STATIC int
3426xlog_recover_do_icreate_pass2(
3427	struct xlog		*log,
3428	struct list_head	*buffer_list,
3429	xlog_recover_item_t	*item)
3430{
3431	struct xfs_mount	*mp = log->l_mp;
3432	struct xfs_icreate_log	*icl;
3433	xfs_agnumber_t		agno;
3434	xfs_agblock_t		agbno;
3435	unsigned int		count;
3436	unsigned int		isize;
3437	xfs_agblock_t		length;
3438	int			blks_per_cluster;
3439	int			bb_per_cluster;
3440	int			cancel_count;
3441	int			nbufs;
3442	int			i;
3443
3444	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3445	if (icl->icl_type != XFS_LI_ICREATE) {
3446		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3447		return -EINVAL;
3448	}
3449
3450	if (icl->icl_size != 1) {
3451		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3452		return -EINVAL;
3453	}
3454
3455	agno = be32_to_cpu(icl->icl_ag);
3456	if (agno >= mp->m_sb.sb_agcount) {
3457		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3458		return -EINVAL;
3459	}
3460	agbno = be32_to_cpu(icl->icl_agbno);
3461	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3462		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3463		return -EINVAL;
3464	}
3465	isize = be32_to_cpu(icl->icl_isize);
3466	if (isize != mp->m_sb.sb_inodesize) {
3467		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3468		return -EINVAL;
3469	}
3470	count = be32_to_cpu(icl->icl_count);
3471	if (!count) {
3472		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3473		return -EINVAL;
3474	}
3475	length = be32_to_cpu(icl->icl_length);
3476	if (!length || length >= mp->m_sb.sb_agblocks) {
3477		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3478		return -EINVAL;
3479	}
3480
3481	/*
3482	 * The inode chunk is either full or sparse and we only support
3483	 * m_ialloc_min_blks sized sparse allocations at this time.
3484	 */
3485	if (length != mp->m_ialloc_blks &&
3486	    length != mp->m_ialloc_min_blks) {
3487		xfs_warn(log->l_mp,
3488			 "%s: unsupported chunk length", __FUNCTION__);
3489		return -EINVAL;
3490	}
3491
3492	/* verify inode count is consistent with extent length */
3493	if ((count >> mp->m_sb.sb_inopblog) != length) {
3494		xfs_warn(log->l_mp,
3495			 "%s: inconsistent inode count and chunk length",
3496			 __FUNCTION__);
3497		return -EINVAL;
3498	}
3499
3500	/*
3501	 * The icreate transaction can cover multiple cluster buffers and these
3502	 * buffers could have been freed and reused. Check the individual
3503	 * buffers for cancellation so we don't overwrite anything written after
3504	 * a cancellation.
3505	 */
3506	blks_per_cluster = xfs_icluster_size_fsb(mp);
3507	bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3508	nbufs = length / blks_per_cluster;
3509	for (i = 0, cancel_count = 0; i < nbufs; i++) {
3510		xfs_daddr_t	daddr;
3511
3512		daddr = XFS_AGB_TO_DADDR(mp, agno,
3513					 agbno + i * blks_per_cluster);
3514		if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3515			cancel_count++;
3516	}
3517
3518	/*
3519	 * We currently only use icreate for a single allocation at a time. This
3520	 * means we should expect either all or none of the buffers to be
3521	 * cancelled. Be conservative and skip replay if at least one buffer is
3522	 * cancelled, but warn the user that something is awry if the buffers
3523	 * are not consistent.
3524	 *
3525	 * XXX: This must be refined to only skip cancelled clusters once we use
3526	 * icreate for multiple chunk allocations.
3527	 */
3528	ASSERT(!cancel_count || cancel_count == nbufs);
3529	if (cancel_count) {
3530		if (cancel_count != nbufs)
3531			xfs_warn(mp,
3532	"WARNING: partial inode chunk cancellation, skipped icreate.");
3533		trace_xfs_log_recover_icreate_cancel(log, icl);
3534		return 0;
3535	}
3536
3537	trace_xfs_log_recover_icreate_recover(log, icl);
3538	return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3539				     length, be32_to_cpu(icl->icl_gen));
3540}
3541
3542STATIC void
3543xlog_recover_buffer_ra_pass2(
3544	struct xlog                     *log,
3545	struct xlog_recover_item        *item)
3546{
3547	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3548	struct xfs_mount		*mp = log->l_mp;
3549
3550	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3551			buf_f->blf_len, buf_f->blf_flags)) {
3552		return;
3553	}
3554
3555	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3556				buf_f->blf_len, NULL);
3557}
3558
3559STATIC void
3560xlog_recover_inode_ra_pass2(
3561	struct xlog                     *log,
3562	struct xlog_recover_item        *item)
3563{
3564	struct xfs_inode_log_format	ilf_buf;
3565	struct xfs_inode_log_format	*ilfp;
3566	struct xfs_mount		*mp = log->l_mp;
3567	int			error;
3568
3569	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3570		ilfp = item->ri_buf[0].i_addr;
3571	} else {
3572		ilfp = &ilf_buf;
3573		memset(ilfp, 0, sizeof(*ilfp));
3574		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3575		if (error)
3576			return;
3577	}
3578
3579	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3580		return;
3581
3582	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3583				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3584}
3585
3586STATIC void
3587xlog_recover_dquot_ra_pass2(
3588	struct xlog			*log,
3589	struct xlog_recover_item	*item)
3590{
3591	struct xfs_mount	*mp = log->l_mp;
3592	struct xfs_disk_dquot	*recddq;
3593	struct xfs_dq_logformat	*dq_f;
3594	uint			type;
3595	int			len;
3596
3597
3598	if (mp->m_qflags == 0)
3599		return;
3600
3601	recddq = item->ri_buf[1].i_addr;
3602	if (recddq == NULL)
3603		return;
3604	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3605		return;
3606
3607	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3608	ASSERT(type);
3609	if (log->l_quotaoffs_flag & type)
3610		return;
3611
3612	dq_f = item->ri_buf[0].i_addr;
3613	ASSERT(dq_f);
3614	ASSERT(dq_f->qlf_len == 1);
3615
3616	len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3617	if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3618		return;
3619
3620	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3621			  &xfs_dquot_buf_ra_ops);
3622}
3623
3624STATIC void
3625xlog_recover_ra_pass2(
3626	struct xlog			*log,
3627	struct xlog_recover_item	*item)
3628{
3629	switch (ITEM_TYPE(item)) {
3630	case XFS_LI_BUF:
3631		xlog_recover_buffer_ra_pass2(log, item);
3632		break;
3633	case XFS_LI_INODE:
3634		xlog_recover_inode_ra_pass2(log, item);
3635		break;
3636	case XFS_LI_DQUOT:
3637		xlog_recover_dquot_ra_pass2(log, item);
3638		break;
3639	case XFS_LI_EFI:
3640	case XFS_LI_EFD:
3641	case XFS_LI_QUOTAOFF:
3642	default:
3643		break;
3644	}
 
 
3645}
3646
3647STATIC int
3648xlog_recover_commit_pass1(
3649	struct xlog			*log,
3650	struct xlog_recover		*trans,
3651	struct xlog_recover_item	*item)
3652{
3653	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3654
3655	switch (ITEM_TYPE(item)) {
3656	case XFS_LI_BUF:
3657		return xlog_recover_buffer_pass1(log, item);
3658	case XFS_LI_QUOTAOFF:
3659		return xlog_recover_quotaoff_pass1(log, item);
3660	case XFS_LI_INODE:
3661	case XFS_LI_EFI:
3662	case XFS_LI_EFD:
3663	case XFS_LI_DQUOT:
3664	case XFS_LI_ICREATE:
3665		/* nothing to do in pass 1 */
3666		return 0;
3667	default:
3668		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3669			__func__, ITEM_TYPE(item));
3670		ASSERT(0);
3671		return -EIO;
3672	}
3673}
3674
3675STATIC int
3676xlog_recover_commit_pass2(
3677	struct xlog			*log,
3678	struct xlog_recover		*trans,
3679	struct list_head		*buffer_list,
3680	struct xlog_recover_item	*item)
3681{
3682	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3683
3684	switch (ITEM_TYPE(item)) {
3685	case XFS_LI_BUF:
3686		return xlog_recover_buffer_pass2(log, buffer_list, item,
3687						 trans->r_lsn);
3688	case XFS_LI_INODE:
3689		return xlog_recover_inode_pass2(log, buffer_list, item,
3690						 trans->r_lsn);
3691	case XFS_LI_EFI:
3692		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3693	case XFS_LI_EFD:
3694		return xlog_recover_efd_pass2(log, item);
3695	case XFS_LI_DQUOT:
3696		return xlog_recover_dquot_pass2(log, buffer_list, item,
3697						trans->r_lsn);
3698	case XFS_LI_ICREATE:
3699		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3700	case XFS_LI_QUOTAOFF:
3701		/* nothing to do in pass2 */
3702		return 0;
3703	default:
3704		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3705			__func__, ITEM_TYPE(item));
3706		ASSERT(0);
3707		return -EIO;
3708	}
3709}
3710
3711STATIC int
3712xlog_recover_items_pass2(
3713	struct xlog                     *log,
3714	struct xlog_recover             *trans,
3715	struct list_head                *buffer_list,
3716	struct list_head                *item_list)
3717{
3718	struct xlog_recover_item	*item;
3719	int				error = 0;
3720
3721	list_for_each_entry(item, item_list, ri_list) {
3722		error = xlog_recover_commit_pass2(log, trans,
3723					  buffer_list, item);
3724		if (error)
3725			return error;
3726	}
3727
3728	return error;
3729}
3730
3731/*
3732 * Perform the transaction.
3733 *
3734 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
3735 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3736 */
3737STATIC int
3738xlog_recover_commit_trans(
3739	struct xlog		*log,
3740	struct xlog_recover	*trans,
3741	int			pass)
3742{
3743	int				error = 0;
3744	int				error2;
3745	int				items_queued = 0;
3746	struct xlog_recover_item	*item;
3747	struct xlog_recover_item	*next;
3748	LIST_HEAD			(buffer_list);
3749	LIST_HEAD			(ra_list);
3750	LIST_HEAD			(done_list);
3751
3752	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3753
3754	hlist_del(&trans->r_list);
3755
3756	error = xlog_recover_reorder_trans(log, trans, pass);
3757	if (error)
3758		return error;
3759
3760	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3761		switch (pass) {
3762		case XLOG_RECOVER_PASS1:
3763			error = xlog_recover_commit_pass1(log, trans, item);
3764			break;
3765		case XLOG_RECOVER_PASS2:
3766			xlog_recover_ra_pass2(log, item);
3767			list_move_tail(&item->ri_list, &ra_list);
3768			items_queued++;
3769			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3770				error = xlog_recover_items_pass2(log, trans,
3771						&buffer_list, &ra_list);
3772				list_splice_tail_init(&ra_list, &done_list);
3773				items_queued = 0;
3774			}
3775
3776			break;
3777		default:
3778			ASSERT(0);
3779		}
3780
3781		if (error)
3782			goto out;
3783	}
3784
3785out:
3786	if (!list_empty(&ra_list)) {
3787		if (!error)
3788			error = xlog_recover_items_pass2(log, trans,
3789					&buffer_list, &ra_list);
3790		list_splice_tail_init(&ra_list, &done_list);
3791	}
3792
3793	if (!list_empty(&done_list))
3794		list_splice_init(&done_list, &trans->r_itemq);
3795
3796	error2 = xfs_buf_delwri_submit(&buffer_list);
3797	return error ? error : error2;
3798}
3799
3800STATIC void
3801xlog_recover_add_item(
3802	struct list_head	*head)
3803{
3804	xlog_recover_item_t	*item;
3805
3806	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3807	INIT_LIST_HEAD(&item->ri_list);
3808	list_add_tail(&item->ri_list, head);
3809}
3810
3811STATIC int
3812xlog_recover_add_to_cont_trans(
3813	struct xlog		*log,
3814	struct xlog_recover	*trans,
3815	char			*dp,
3816	int			len)
3817{
3818	xlog_recover_item_t	*item;
3819	char			*ptr, *old_ptr;
3820	int			old_len;
3821
3822	/*
3823	 * If the transaction is empty, the header was split across this and the
3824	 * previous record. Copy the rest of the header.
3825	 */
3826	if (list_empty(&trans->r_itemq)) {
3827		ASSERT(len <= sizeof(struct xfs_trans_header));
3828		if (len > sizeof(struct xfs_trans_header)) {
3829			xfs_warn(log->l_mp, "%s: bad header length", __func__);
3830			return -EIO;
3831		}
3832
3833		xlog_recover_add_item(&trans->r_itemq);
3834		ptr = (char *)&trans->r_theader +
3835				sizeof(struct xfs_trans_header) - len;
3836		memcpy(ptr, dp, len);
3837		return 0;
3838	}
3839
3840	/* take the tail entry */
3841	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3842
3843	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3844	old_len = item->ri_buf[item->ri_cnt-1].i_len;
3845
3846	ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
3847	memcpy(&ptr[old_len], dp, len);
3848	item->ri_buf[item->ri_cnt-1].i_len += len;
3849	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3850	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
3851	return 0;
3852}
3853
3854/*
3855 * The next region to add is the start of a new region.  It could be
3856 * a whole region or it could be the first part of a new region.  Because
3857 * of this, the assumption here is that the type and size fields of all
3858 * format structures fit into the first 32 bits of the structure.
3859 *
3860 * This works because all regions must be 32 bit aligned.  Therefore, we
3861 * either have both fields or we have neither field.  In the case we have
3862 * neither field, the data part of the region is zero length.  We only have
3863 * a log_op_header and can throw away the header since a new one will appear
3864 * later.  If we have at least 4 bytes, then we can determine how many regions
3865 * will appear in the current log item.
3866 */
3867STATIC int
3868xlog_recover_add_to_trans(
3869	struct xlog		*log,
3870	struct xlog_recover	*trans,
3871	char			*dp,
3872	int			len)
3873{
3874	xfs_inode_log_format_t	*in_f;			/* any will do */
3875	xlog_recover_item_t	*item;
3876	char			*ptr;
3877
3878	if (!len)
3879		return 0;
3880	if (list_empty(&trans->r_itemq)) {
3881		/* we need to catch log corruptions here */
3882		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
3883			xfs_warn(log->l_mp, "%s: bad header magic number",
3884				__func__);
3885			ASSERT(0);
3886			return -EIO;
3887		}
3888
3889		if (len > sizeof(struct xfs_trans_header)) {
3890			xfs_warn(log->l_mp, "%s: bad header length", __func__);
3891			ASSERT(0);
3892			return -EIO;
3893		}
3894
3895		/*
3896		 * The transaction header can be arbitrarily split across op
3897		 * records. If we don't have the whole thing here, copy what we
3898		 * do have and handle the rest in the next record.
3899		 */
3900		if (len == sizeof(struct xfs_trans_header))
3901			xlog_recover_add_item(&trans->r_itemq);
3902		memcpy(&trans->r_theader, dp, len);
3903		return 0;
3904	}
3905
3906	ptr = kmem_alloc(len, KM_SLEEP);
3907	memcpy(ptr, dp, len);
3908	in_f = (xfs_inode_log_format_t *)ptr;
3909
3910	/* take the tail entry */
3911	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3912	if (item->ri_total != 0 &&
3913	     item->ri_total == item->ri_cnt) {
3914		/* tail item is in use, get a new one */
3915		xlog_recover_add_item(&trans->r_itemq);
3916		item = list_entry(trans->r_itemq.prev,
3917					xlog_recover_item_t, ri_list);
3918	}
3919
3920	if (item->ri_total == 0) {		/* first region to be added */
3921		if (in_f->ilf_size == 0 ||
3922		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
3923			xfs_warn(log->l_mp,
3924		"bad number of regions (%d) in inode log format",
3925				  in_f->ilf_size);
3926			ASSERT(0);
3927			kmem_free(ptr);
3928			return -EIO;
3929		}
3930
3931		item->ri_total = in_f->ilf_size;
3932		item->ri_buf =
3933			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
3934				    KM_SLEEP);
3935	}
3936	ASSERT(item->ri_total > item->ri_cnt);
3937	/* Description region is ri_buf[0] */
3938	item->ri_buf[item->ri_cnt].i_addr = ptr;
3939	item->ri_buf[item->ri_cnt].i_len  = len;
3940	item->ri_cnt++;
3941	trace_xfs_log_recover_item_add(log, trans, item, 0);
3942	return 0;
3943}
3944
3945/*
3946 * Free up any resources allocated by the transaction
3947 *
3948 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3949 */
3950STATIC void
3951xlog_recover_free_trans(
3952	struct xlog_recover	*trans)
3953{
3954	xlog_recover_item_t	*item, *n;
3955	int			i;
3956
3957	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3958		/* Free the regions in the item. */
3959		list_del(&item->ri_list);
3960		for (i = 0; i < item->ri_cnt; i++)
3961			kmem_free(item->ri_buf[i].i_addr);
3962		/* Free the item itself */
3963		kmem_free(item->ri_buf);
3964		kmem_free(item);
3965	}
3966	/* Free the transaction recover structure */
3967	kmem_free(trans);
3968}
3969
3970/*
3971 * On error or completion, trans is freed.
3972 */
3973STATIC int
3974xlog_recovery_process_trans(
3975	struct xlog		*log,
3976	struct xlog_recover	*trans,
3977	char			*dp,
3978	unsigned int		len,
3979	unsigned int		flags,
3980	int			pass)
3981{
3982	int			error = 0;
3983	bool			freeit = false;
3984
3985	/* mask off ophdr transaction container flags */
3986	flags &= ~XLOG_END_TRANS;
3987	if (flags & XLOG_WAS_CONT_TRANS)
3988		flags &= ~XLOG_CONTINUE_TRANS;
3989
3990	/*
3991	 * Callees must not free the trans structure. We'll decide if we need to
3992	 * free it or not based on the operation being done and it's result.
3993	 */
3994	switch (flags) {
3995	/* expected flag values */
3996	case 0:
3997	case XLOG_CONTINUE_TRANS:
3998		error = xlog_recover_add_to_trans(log, trans, dp, len);
3999		break;
4000	case XLOG_WAS_CONT_TRANS:
4001		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4002		break;
4003	case XLOG_COMMIT_TRANS:
4004		error = xlog_recover_commit_trans(log, trans, pass);
4005		/* success or fail, we are now done with this transaction. */
4006		freeit = true;
4007		break;
4008
4009	/* unexpected flag values */
4010	case XLOG_UNMOUNT_TRANS:
4011		/* just skip trans */
4012		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4013		freeit = true;
4014		break;
4015	case XLOG_START_TRANS:
4016	default:
4017		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4018		ASSERT(0);
4019		error = -EIO;
4020		break;
4021	}
4022	if (error || freeit)
4023		xlog_recover_free_trans(trans);
4024	return error;
4025}
4026
4027/*
4028 * Lookup the transaction recovery structure associated with the ID in the
4029 * current ophdr. If the transaction doesn't exist and the start flag is set in
4030 * the ophdr, then allocate a new transaction for future ID matches to find.
4031 * Either way, return what we found during the lookup - an existing transaction
4032 * or nothing.
4033 */
4034STATIC struct xlog_recover *
4035xlog_recover_ophdr_to_trans(
4036	struct hlist_head	rhash[],
4037	struct xlog_rec_header	*rhead,
4038	struct xlog_op_header	*ohead)
4039{
4040	struct xlog_recover	*trans;
4041	xlog_tid_t		tid;
4042	struct hlist_head	*rhp;
4043
4044	tid = be32_to_cpu(ohead->oh_tid);
4045	rhp = &rhash[XLOG_RHASH(tid)];
4046	hlist_for_each_entry(trans, rhp, r_list) {
4047		if (trans->r_log_tid == tid)
4048			return trans;
4049	}
4050
4051	/*
4052	 * skip over non-start transaction headers - we could be
4053	 * processing slack space before the next transaction starts
4054	 */
4055	if (!(ohead->oh_flags & XLOG_START_TRANS))
4056		return NULL;
4057
4058	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4059
4060	/*
4061	 * This is a new transaction so allocate a new recovery container to
4062	 * hold the recovery ops that will follow.
4063	 */
4064	trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4065	trans->r_log_tid = tid;
4066	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4067	INIT_LIST_HEAD(&trans->r_itemq);
4068	INIT_HLIST_NODE(&trans->r_list);
4069	hlist_add_head(&trans->r_list, rhp);
4070
4071	/*
4072	 * Nothing more to do for this ophdr. Items to be added to this new
4073	 * transaction will be in subsequent ophdr containers.
4074	 */
4075	return NULL;
4076}
4077
4078STATIC int
4079xlog_recover_process_ophdr(
4080	struct xlog		*log,
4081	struct hlist_head	rhash[],
4082	struct xlog_rec_header	*rhead,
4083	struct xlog_op_header	*ohead,
4084	char			*dp,
4085	char			*end,
4086	int			pass)
4087{
4088	struct xlog_recover	*trans;
4089	unsigned int		len;
4090
4091	/* Do we understand who wrote this op? */
4092	if (ohead->oh_clientid != XFS_TRANSACTION &&
4093	    ohead->oh_clientid != XFS_LOG) {
4094		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4095			__func__, ohead->oh_clientid);
4096		ASSERT(0);
4097		return -EIO;
4098	}
4099
4100	/*
4101	 * Check the ophdr contains all the data it is supposed to contain.
4102	 */
4103	len = be32_to_cpu(ohead->oh_len);
4104	if (dp + len > end) {
4105		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4106		WARN_ON(1);
4107		return -EIO;
4108	}
4109
4110	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4111	if (!trans) {
4112		/* nothing to do, so skip over this ophdr */
4113		return 0;
4114	}
4115
4116	return xlog_recovery_process_trans(log, trans, dp, len,
4117					   ohead->oh_flags, pass);
4118}
4119
4120/*
4121 * There are two valid states of the r_state field.  0 indicates that the
4122 * transaction structure is in a normal state.  We have either seen the
4123 * start of the transaction or the last operation we added was not a partial
4124 * operation.  If the last operation we added to the transaction was a
4125 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4126 *
4127 * NOTE: skip LRs with 0 data length.
4128 */
4129STATIC int
4130xlog_recover_process_data(
4131	struct xlog		*log,
4132	struct hlist_head	rhash[],
4133	struct xlog_rec_header	*rhead,
4134	char			*dp,
4135	int			pass)
4136{
4137	struct xlog_op_header	*ohead;
4138	char			*end;
4139	int			num_logops;
 
 
 
4140	int			error;
 
 
4141
4142	end = dp + be32_to_cpu(rhead->h_len);
4143	num_logops = be32_to_cpu(rhead->h_num_logops);
4144
4145	/* check the log format matches our own - else we can't recover */
4146	if (xlog_header_check_recover(log->l_mp, rhead))
4147		return -EIO;
4148
4149	while ((dp < end) && num_logops) {
4150
4151		ohead = (struct xlog_op_header *)dp;
4152		dp += sizeof(*ohead);
4153		ASSERT(dp <= end);
4154
4155		/* errors will abort recovery */
4156		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4157						    dp, end, pass);
4158		if (error)
4159			return error;
4160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4161		dp += be32_to_cpu(ohead->oh_len);
4162		num_logops--;
4163	}
4164	return 0;
4165}
4166
4167/*
4168 * Process an extent free intent item that was recovered from
4169 * the log.  We need to free the extents that it describes.
4170 */
4171STATIC int
4172xlog_recover_process_efi(
4173	xfs_mount_t		*mp,
4174	xfs_efi_log_item_t	*efip)
4175{
4176	xfs_efd_log_item_t	*efdp;
4177	xfs_trans_t		*tp;
4178	int			i;
4179	int			error = 0;
4180	xfs_extent_t		*extp;
4181	xfs_fsblock_t		startblock_fsb;
4182
4183	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
4184
4185	/*
4186	 * First check the validity of the extents described by the
4187	 * EFI.  If any are bad, then assume that all are bad and
4188	 * just toss the EFI.
4189	 */
4190	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
4191		extp = &(efip->efi_format.efi_extents[i]);
4192		startblock_fsb = XFS_BB_TO_FSB(mp,
4193				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
4194		if ((startblock_fsb == 0) ||
4195		    (extp->ext_len == 0) ||
4196		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
4197		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
4198			/*
4199			 * This will pull the EFI from the AIL and
4200			 * free the memory associated with it.
4201			 */
4202			set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
4203			xfs_efi_release(efip);
4204			return -EIO;
4205		}
4206	}
4207
4208	tp = xfs_trans_alloc(mp, 0);
4209	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
4210	if (error)
4211		goto abort_error;
4212	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
4213
4214	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
4215		extp = &(efip->efi_format.efi_extents[i]);
4216		error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
4217					      extp->ext_len);
4218		if (error)
4219			goto abort_error;
4220
 
4221	}
4222
4223	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
4224	error = xfs_trans_commit(tp);
4225	return error;
4226
4227abort_error:
4228	xfs_trans_cancel(tp);
4229	return error;
4230}
4231
4232/*
4233 * When this is called, all of the EFIs which did not have
4234 * corresponding EFDs should be in the AIL.  What we do now
4235 * is free the extents associated with each one.
4236 *
4237 * Since we process the EFIs in normal transactions, they
4238 * will be removed at some point after the commit.  This prevents
4239 * us from just walking down the list processing each one.
4240 * We'll use a flag in the EFI to skip those that we've already
4241 * processed and use the AIL iteration mechanism's generation
4242 * count to try to speed this up at least a bit.
4243 *
4244 * When we start, we know that the EFIs are the only things in
4245 * the AIL.  As we process them, however, other items are added
4246 * to the AIL.  Since everything added to the AIL must come after
4247 * everything already in the AIL, we stop processing as soon as
4248 * we see something other than an EFI in the AIL.
4249 */
4250STATIC int
4251xlog_recover_process_efis(
4252	struct xlog		*log)
4253{
4254	struct xfs_log_item	*lip;
4255	struct xfs_efi_log_item	*efip;
4256	int			error = 0;
4257	struct xfs_ail_cursor	cur;
4258	struct xfs_ail		*ailp;
4259
4260	ailp = log->l_ailp;
4261	spin_lock(&ailp->xa_lock);
4262	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4263	while (lip != NULL) {
4264		/*
4265		 * We're done when we see something other than an EFI.
4266		 * There should be no EFIs left in the AIL now.
4267		 */
4268		if (lip->li_type != XFS_LI_EFI) {
4269#ifdef DEBUG
4270			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4271				ASSERT(lip->li_type != XFS_LI_EFI);
4272#endif
4273			break;
4274		}
4275
4276		/*
4277		 * Skip EFIs that we've already processed.
4278		 */
4279		efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4280		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
4281			lip = xfs_trans_ail_cursor_next(ailp, &cur);
4282			continue;
4283		}
4284
4285		spin_unlock(&ailp->xa_lock);
4286		error = xlog_recover_process_efi(log->l_mp, efip);
4287		spin_lock(&ailp->xa_lock);
4288		if (error)
4289			goto out;
4290		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4291	}
4292out:
4293	xfs_trans_ail_cursor_done(&cur);
4294	spin_unlock(&ailp->xa_lock);
4295	return error;
4296}
4297
4298/*
4299 * A cancel occurs when the mount has failed and we're bailing out. Release all
4300 * pending EFIs so they don't pin the AIL.
4301 */
4302STATIC int
4303xlog_recover_cancel_efis(
4304	struct xlog		*log)
4305{
4306	struct xfs_log_item	*lip;
4307	struct xfs_efi_log_item	*efip;
4308	int			error = 0;
4309	struct xfs_ail_cursor	cur;
4310	struct xfs_ail		*ailp;
4311
4312	ailp = log->l_ailp;
4313	spin_lock(&ailp->xa_lock);
4314	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4315	while (lip != NULL) {
4316		/*
4317		 * We're done when we see something other than an EFI.
4318		 * There should be no EFIs left in the AIL now.
4319		 */
4320		if (lip->li_type != XFS_LI_EFI) {
4321#ifdef DEBUG
4322			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4323				ASSERT(lip->li_type != XFS_LI_EFI);
4324#endif
4325			break;
4326		}
4327
4328		efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4329
4330		spin_unlock(&ailp->xa_lock);
4331		xfs_efi_release(efip);
4332		spin_lock(&ailp->xa_lock);
4333
4334		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4335	}
4336
4337	xfs_trans_ail_cursor_done(&cur);
4338	spin_unlock(&ailp->xa_lock);
4339	return error;
4340}
4341
4342/*
4343 * This routine performs a transaction to null out a bad inode pointer
4344 * in an agi unlinked inode hash bucket.
4345 */
4346STATIC void
4347xlog_recover_clear_agi_bucket(
4348	xfs_mount_t	*mp,
4349	xfs_agnumber_t	agno,
4350	int		bucket)
4351{
4352	xfs_trans_t	*tp;
4353	xfs_agi_t	*agi;
4354	xfs_buf_t	*agibp;
4355	int		offset;
4356	int		error;
4357
4358	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
4359	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
 
4360	if (error)
4361		goto out_abort;
4362
4363	error = xfs_read_agi(mp, tp, agno, &agibp);
4364	if (error)
4365		goto out_abort;
4366
4367	agi = XFS_BUF_TO_AGI(agibp);
4368	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4369	offset = offsetof(xfs_agi_t, agi_unlinked) +
4370		 (sizeof(xfs_agino_t) * bucket);
4371	xfs_trans_log_buf(tp, agibp, offset,
4372			  (offset + sizeof(xfs_agino_t) - 1));
4373
4374	error = xfs_trans_commit(tp);
4375	if (error)
4376		goto out_error;
4377	return;
4378
4379out_abort:
4380	xfs_trans_cancel(tp);
4381out_error:
4382	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4383	return;
4384}
4385
4386STATIC xfs_agino_t
4387xlog_recover_process_one_iunlink(
4388	struct xfs_mount		*mp,
4389	xfs_agnumber_t			agno,
4390	xfs_agino_t			agino,
4391	int				bucket)
4392{
4393	struct xfs_buf			*ibp;
4394	struct xfs_dinode		*dip;
4395	struct xfs_inode		*ip;
4396	xfs_ino_t			ino;
4397	int				error;
4398
4399	ino = XFS_AGINO_TO_INO(mp, agno, agino);
4400	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4401	if (error)
4402		goto fail;
4403
4404	/*
4405	 * Get the on disk inode to find the next inode in the bucket.
4406	 */
4407	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4408	if (error)
4409		goto fail_iput;
4410
4411	ASSERT(VFS_I(ip)->i_nlink == 0);
4412	ASSERT(VFS_I(ip)->i_mode != 0);
4413
4414	/* setup for the next pass */
4415	agino = be32_to_cpu(dip->di_next_unlinked);
4416	xfs_buf_relse(ibp);
4417
4418	/*
4419	 * Prevent any DMAPI event from being sent when the reference on
4420	 * the inode is dropped.
4421	 */
4422	ip->i_d.di_dmevmask = 0;
4423
4424	IRELE(ip);
4425	return agino;
4426
4427 fail_iput:
4428	IRELE(ip);
4429 fail:
4430	/*
4431	 * We can't read in the inode this bucket points to, or this inode
4432	 * is messed up.  Just ditch this bucket of inodes.  We will lose
4433	 * some inodes and space, but at least we won't hang.
4434	 *
4435	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4436	 * clear the inode pointer in the bucket.
4437	 */
4438	xlog_recover_clear_agi_bucket(mp, agno, bucket);
4439	return NULLAGINO;
4440}
4441
4442/*
4443 * xlog_iunlink_recover
4444 *
4445 * This is called during recovery to process any inodes which
4446 * we unlinked but not freed when the system crashed.  These
4447 * inodes will be on the lists in the AGI blocks.  What we do
4448 * here is scan all the AGIs and fully truncate and free any
4449 * inodes found on the lists.  Each inode is removed from the
4450 * lists when it has been fully truncated and is freed.  The
4451 * freeing of the inode and its removal from the list must be
4452 * atomic.
4453 */
4454STATIC void
4455xlog_recover_process_iunlinks(
4456	struct xlog	*log)
4457{
4458	xfs_mount_t	*mp;
4459	xfs_agnumber_t	agno;
4460	xfs_agi_t	*agi;
4461	xfs_buf_t	*agibp;
4462	xfs_agino_t	agino;
4463	int		bucket;
4464	int		error;
4465	uint		mp_dmevmask;
4466
4467	mp = log->l_mp;
4468
4469	/*
4470	 * Prevent any DMAPI event from being sent while in this function.
4471	 */
4472	mp_dmevmask = mp->m_dmevmask;
4473	mp->m_dmevmask = 0;
4474
4475	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4476		/*
4477		 * Find the agi for this ag.
4478		 */
4479		error = xfs_read_agi(mp, NULL, agno, &agibp);
4480		if (error) {
4481			/*
4482			 * AGI is b0rked. Don't process it.
4483			 *
4484			 * We should probably mark the filesystem as corrupt
4485			 * after we've recovered all the ag's we can....
4486			 */
4487			continue;
4488		}
4489		/*
4490		 * Unlock the buffer so that it can be acquired in the normal
4491		 * course of the transaction to truncate and free each inode.
4492		 * Because we are not racing with anyone else here for the AGI
4493		 * buffer, we don't even need to hold it locked to read the
4494		 * initial unlinked bucket entries out of the buffer. We keep
4495		 * buffer reference though, so that it stays pinned in memory
4496		 * while we need the buffer.
4497		 */
4498		agi = XFS_BUF_TO_AGI(agibp);
4499		xfs_buf_unlock(agibp);
4500
4501		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
4502			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
4503			while (agino != NULLAGINO) {
 
 
 
 
 
 
 
4504				agino = xlog_recover_process_one_iunlink(mp,
4505							agno, agino, bucket);
 
 
 
 
 
 
 
 
 
4506			}
4507		}
4508		xfs_buf_rele(agibp);
 
 
 
 
 
4509	}
4510
4511	mp->m_dmevmask = mp_dmevmask;
4512}
4513
4514STATIC int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4515xlog_unpack_data(
4516	struct xlog_rec_header	*rhead,
4517	char			*dp,
4518	struct xlog		*log)
4519{
4520	int			i, j, k;
4521
4522	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
4523		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
4524		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
4525		dp += BBSIZE;
4526	}
4527
4528	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4529		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
4530		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4531			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4532			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4533			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4534			dp += BBSIZE;
4535		}
4536	}
4537
4538	return 0;
4539}
4540
4541/*
4542 * CRC check, unpack and process a log record.
4543 */
4544STATIC int
4545xlog_recover_process(
4546	struct xlog		*log,
4547	struct hlist_head	rhash[],
4548	struct xlog_rec_header	*rhead,
4549	char			*dp,
4550	int			pass)
4551{
4552	int			error;
4553	__le32			crc;
4554
4555	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4556
4557	/*
4558	 * Nothing else to do if this is a CRC verification pass. Just return
4559	 * if this a record with a non-zero crc. Unfortunately, mkfs always
4560	 * sets h_crc to 0 so we must consider this valid even on v5 supers.
4561	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
4562	 * know precisely what failed.
4563	 */
4564	if (pass == XLOG_RECOVER_CRCPASS) {
4565		if (rhead->h_crc && crc != rhead->h_crc)
4566			return -EFSBADCRC;
4567		return 0;
4568	}
4569
4570	/*
4571	 * We're in the normal recovery path. Issue a warning if and only if the
4572	 * CRC in the header is non-zero. This is an advisory warning and the
4573	 * zero CRC check prevents warnings from being emitted when upgrading
4574	 * the kernel from one that does not add CRCs by default.
4575	 */
4576	if (crc != rhead->h_crc) {
4577		if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4578			xfs_alert(log->l_mp,
4579		"log record CRC mismatch: found 0x%x, expected 0x%x.",
4580					le32_to_cpu(rhead->h_crc),
4581					le32_to_cpu(crc));
4582			xfs_hex_dump(dp, 32);
4583		}
4584
4585		/*
4586		 * If the filesystem is CRC enabled, this mismatch becomes a
4587		 * fatal log corruption failure.
4588		 */
4589		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4590			return -EFSCORRUPTED;
4591	}
4592
4593	error = xlog_unpack_data(rhead, dp, log);
4594	if (error)
4595		return error;
4596
4597	return xlog_recover_process_data(log, rhash, rhead, dp, pass);
4598}
4599
4600STATIC int
4601xlog_valid_rec_header(
4602	struct xlog		*log,
4603	struct xlog_rec_header	*rhead,
4604	xfs_daddr_t		blkno)
4605{
4606	int			hlen;
4607
4608	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4609		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4610				XFS_ERRLEVEL_LOW, log->l_mp);
4611		return -EFSCORRUPTED;
4612	}
4613	if (unlikely(
4614	    (!rhead->h_version ||
4615	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4616		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4617			__func__, be32_to_cpu(rhead->h_version));
4618		return -EIO;
4619	}
4620
4621	/* LR body must have data or it wouldn't have been written */
4622	hlen = be32_to_cpu(rhead->h_len);
4623	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4624		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4625				XFS_ERRLEVEL_LOW, log->l_mp);
4626		return -EFSCORRUPTED;
4627	}
4628	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4629		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4630				XFS_ERRLEVEL_LOW, log->l_mp);
4631		return -EFSCORRUPTED;
4632	}
4633	return 0;
4634}
4635
4636/*
4637 * Read the log from tail to head and process the log records found.
4638 * Handle the two cases where the tail and head are in the same cycle
4639 * and where the active portion of the log wraps around the end of
4640 * the physical log separately.  The pass parameter is passed through
4641 * to the routines called to process the data and is not looked at
4642 * here.
4643 */
4644STATIC int
4645xlog_do_recovery_pass(
4646	struct xlog		*log,
4647	xfs_daddr_t		head_blk,
4648	xfs_daddr_t		tail_blk,
4649	int			pass,
4650	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
4651{
4652	xlog_rec_header_t	*rhead;
4653	xfs_daddr_t		blk_no;
4654	xfs_daddr_t		rhead_blk;
4655	char			*offset;
4656	xfs_buf_t		*hbp, *dbp;
4657	int			error = 0, h_size, h_len;
4658	int			bblks, split_bblks;
4659	int			hblks, split_hblks, wrapped_hblks;
4660	struct hlist_head	rhash[XLOG_RHASH_SIZE];
4661
4662	ASSERT(head_blk != tail_blk);
4663	rhead_blk = 0;
4664
4665	/*
4666	 * Read the header of the tail block and get the iclog buffer size from
4667	 * h_size.  Use this to tell how many sectors make up the log header.
4668	 */
4669	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4670		/*
4671		 * When using variable length iclogs, read first sector of
4672		 * iclog header and extract the header size from it.  Get a
4673		 * new hbp that is the correct size.
4674		 */
4675		hbp = xlog_get_bp(log, 1);
4676		if (!hbp)
4677			return -ENOMEM;
4678
4679		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4680		if (error)
4681			goto bread_err1;
4682
4683		rhead = (xlog_rec_header_t *)offset;
4684		error = xlog_valid_rec_header(log, rhead, tail_blk);
4685		if (error)
4686			goto bread_err1;
4687
4688		/*
4689		 * xfsprogs has a bug where record length is based on lsunit but
4690		 * h_size (iclog size) is hardcoded to 32k. Now that we
4691		 * unconditionally CRC verify the unmount record, this means the
4692		 * log buffer can be too small for the record and cause an
4693		 * overrun.
4694		 *
4695		 * Detect this condition here. Use lsunit for the buffer size as
4696		 * long as this looks like the mkfs case. Otherwise, return an
4697		 * error to avoid a buffer overrun.
4698		 */
4699		h_size = be32_to_cpu(rhead->h_size);
4700		h_len = be32_to_cpu(rhead->h_len);
4701		if (h_len > h_size) {
4702			if (h_len <= log->l_mp->m_logbsize &&
4703			    be32_to_cpu(rhead->h_num_logops) == 1) {
4704				xfs_warn(log->l_mp,
4705		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
4706					 h_size, log->l_mp->m_logbsize);
4707				h_size = log->l_mp->m_logbsize;
4708			} else
4709				return -EFSCORRUPTED;
4710		}
4711
4712		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4713		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4714			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4715			if (h_size % XLOG_HEADER_CYCLE_SIZE)
4716				hblks++;
4717			xlog_put_bp(hbp);
4718			hbp = xlog_get_bp(log, hblks);
4719		} else {
4720			hblks = 1;
4721		}
4722	} else {
4723		ASSERT(log->l_sectBBsize == 1);
4724		hblks = 1;
4725		hbp = xlog_get_bp(log, 1);
4726		h_size = XLOG_BIG_RECORD_BSIZE;
4727	}
4728
4729	if (!hbp)
4730		return -ENOMEM;
4731	dbp = xlog_get_bp(log, BTOBB(h_size));
4732	if (!dbp) {
4733		xlog_put_bp(hbp);
4734		return -ENOMEM;
4735	}
4736
4737	memset(rhash, 0, sizeof(rhash));
4738	blk_no = rhead_blk = tail_blk;
4739	if (tail_blk > head_blk) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4740		/*
4741		 * Perform recovery around the end of the physical log.
4742		 * When the head is not on the same cycle number as the tail,
4743		 * we can't do a sequential recovery.
4744		 */
 
4745		while (blk_no < log->l_logBBsize) {
4746			/*
4747			 * Check for header wrapping around physical end-of-log
4748			 */
4749			offset = hbp->b_addr;
4750			split_hblks = 0;
4751			wrapped_hblks = 0;
4752			if (blk_no + hblks <= log->l_logBBsize) {
4753				/* Read header in one read */
4754				error = xlog_bread(log, blk_no, hblks, hbp,
4755						   &offset);
4756				if (error)
4757					goto bread_err2;
4758			} else {
4759				/* This LR is split across physical log end */
4760				if (blk_no != log->l_logBBsize) {
4761					/* some data before physical log end */
4762					ASSERT(blk_no <= INT_MAX);
4763					split_hblks = log->l_logBBsize - (int)blk_no;
4764					ASSERT(split_hblks > 0);
4765					error = xlog_bread(log, blk_no,
4766							   split_hblks, hbp,
4767							   &offset);
4768					if (error)
4769						goto bread_err2;
4770				}
4771
4772				/*
4773				 * Note: this black magic still works with
4774				 * large sector sizes (non-512) only because:
4775				 * - we increased the buffer size originally
4776				 *   by 1 sector giving us enough extra space
4777				 *   for the second read;
4778				 * - the log start is guaranteed to be sector
4779				 *   aligned;
4780				 * - we read the log end (LR header start)
4781				 *   _first_, then the log start (LR header end)
4782				 *   - order is important.
4783				 */
4784				wrapped_hblks = hblks - split_hblks;
4785				error = xlog_bread_offset(log, 0,
4786						wrapped_hblks, hbp,
4787						offset + BBTOB(split_hblks));
4788				if (error)
4789					goto bread_err2;
4790			}
4791			rhead = (xlog_rec_header_t *)offset;
4792			error = xlog_valid_rec_header(log, rhead,
4793						split_hblks ? blk_no : 0);
4794			if (error)
4795				goto bread_err2;
4796
4797			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4798			blk_no += hblks;
4799
4800			/* Read in data for log record */
4801			if (blk_no + bblks <= log->l_logBBsize) {
4802				error = xlog_bread(log, blk_no, bblks, dbp,
4803						   &offset);
4804				if (error)
4805					goto bread_err2;
4806			} else {
4807				/* This log record is split across the
4808				 * physical end of log */
4809				offset = dbp->b_addr;
4810				split_bblks = 0;
4811				if (blk_no != log->l_logBBsize) {
4812					/* some data is before the physical
4813					 * end of log */
4814					ASSERT(!wrapped_hblks);
4815					ASSERT(blk_no <= INT_MAX);
4816					split_bblks =
4817						log->l_logBBsize - (int)blk_no;
4818					ASSERT(split_bblks > 0);
4819					error = xlog_bread(log, blk_no,
4820							split_bblks, dbp,
4821							&offset);
4822					if (error)
4823						goto bread_err2;
4824				}
4825
4826				/*
4827				 * Note: this black magic still works with
4828				 * large sector sizes (non-512) only because:
4829				 * - we increased the buffer size originally
4830				 *   by 1 sector giving us enough extra space
4831				 *   for the second read;
4832				 * - the log start is guaranteed to be sector
4833				 *   aligned;
4834				 * - we read the log end (LR header start)
4835				 *   _first_, then the log start (LR header end)
4836				 *   - order is important.
4837				 */
4838				error = xlog_bread_offset(log, 0,
4839						bblks - split_bblks, dbp,
4840						offset + BBTOB(split_bblks));
4841				if (error)
4842					goto bread_err2;
4843			}
4844
4845			error = xlog_recover_process(log, rhash, rhead, offset,
4846						     pass);
4847			if (error)
4848				goto bread_err2;
4849
4850			blk_no += bblks;
4851			rhead_blk = blk_no;
4852		}
4853
4854		ASSERT(blk_no >= log->l_logBBsize);
4855		blk_no -= log->l_logBBsize;
4856		rhead_blk = blk_no;
4857	}
4858
4859	/* read first part of physical log */
4860	while (blk_no < head_blk) {
4861		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4862		if (error)
4863			goto bread_err2;
4864
4865		rhead = (xlog_rec_header_t *)offset;
4866		error = xlog_valid_rec_header(log, rhead, blk_no);
4867		if (error)
4868			goto bread_err2;
4869
4870		/* blocks in data section */
4871		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4872		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4873				   &offset);
4874		if (error)
4875			goto bread_err2;
4876
4877		error = xlog_recover_process(log, rhash, rhead, offset, pass);
4878		if (error)
4879			goto bread_err2;
4880
4881		blk_no += bblks + hblks;
4882		rhead_blk = blk_no;
4883	}
4884
4885 bread_err2:
4886	xlog_put_bp(dbp);
4887 bread_err1:
4888	xlog_put_bp(hbp);
4889
4890	if (error && first_bad)
4891		*first_bad = rhead_blk;
4892
4893	return error;
4894}
4895
4896/*
4897 * Do the recovery of the log.  We actually do this in two phases.
4898 * The two passes are necessary in order to implement the function
4899 * of cancelling a record written into the log.  The first pass
4900 * determines those things which have been cancelled, and the
4901 * second pass replays log items normally except for those which
4902 * have been cancelled.  The handling of the replay and cancellations
4903 * takes place in the log item type specific routines.
4904 *
4905 * The table of items which have cancel records in the log is allocated
4906 * and freed at this level, since only here do we know when all of
4907 * the log recovery has been completed.
4908 */
4909STATIC int
4910xlog_do_log_recovery(
4911	struct xlog	*log,
4912	xfs_daddr_t	head_blk,
4913	xfs_daddr_t	tail_blk)
4914{
4915	int		error, i;
4916
4917	ASSERT(head_blk != tail_blk);
4918
4919	/*
4920	 * First do a pass to find all of the cancelled buf log items.
4921	 * Store them in the buf_cancel_table for use in the second pass.
4922	 */
4923	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4924						 sizeof(struct list_head),
4925						 KM_SLEEP);
4926	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4927		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4928
4929	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4930				      XLOG_RECOVER_PASS1, NULL);
4931	if (error != 0) {
4932		kmem_free(log->l_buf_cancel_table);
4933		log->l_buf_cancel_table = NULL;
4934		return error;
4935	}
4936	/*
4937	 * Then do a second pass to actually recover the items in the log.
4938	 * When it is complete free the table of buf cancel items.
4939	 */
4940	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4941				      XLOG_RECOVER_PASS2, NULL);
4942#ifdef DEBUG
4943	if (!error) {
4944		int	i;
4945
4946		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4947			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4948	}
4949#endif	/* DEBUG */
4950
4951	kmem_free(log->l_buf_cancel_table);
4952	log->l_buf_cancel_table = NULL;
4953
4954	return error;
4955}
4956
4957/*
4958 * Do the actual recovery
4959 */
4960STATIC int
4961xlog_do_recover(
4962	struct xlog	*log,
4963	xfs_daddr_t	head_blk,
4964	xfs_daddr_t	tail_blk)
4965{
4966	struct xfs_mount *mp = log->l_mp;
4967	int		error;
4968	xfs_buf_t	*bp;
4969	xfs_sb_t	*sbp;
4970
4971	/*
4972	 * First replay the images in the log.
4973	 */
4974	error = xlog_do_log_recovery(log, head_blk, tail_blk);
4975	if (error)
4976		return error;
 
 
 
4977
4978	/*
4979	 * If IO errors happened during recovery, bail out.
4980	 */
4981	if (XFS_FORCED_SHUTDOWN(mp)) {
4982		return -EIO;
4983	}
4984
4985	/*
4986	 * We now update the tail_lsn since much of the recovery has completed
4987	 * and there may be space available to use.  If there were no extent
4988	 * or iunlinks, we can free up the entire log and set the tail_lsn to
4989	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
4990	 * lsn of the last known good LR on disk.  If there are extent frees
4991	 * or iunlinks they will have some entries in the AIL; so we look at
4992	 * the AIL to determine how to set the tail_lsn.
4993	 */
4994	xlog_assign_tail_lsn(mp);
4995
4996	/*
4997	 * Now that we've finished replaying all buffer and inode
4998	 * updates, re-read in the superblock and reverify it.
4999	 */
5000	bp = xfs_getsb(mp, 0);
5001	bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5002	ASSERT(!(bp->b_flags & XBF_WRITE));
5003	bp->b_flags |= XBF_READ;
5004	bp->b_ops = &xfs_sb_buf_ops;
5005
5006	error = xfs_buf_submit_wait(bp);
 
5007	if (error) {
5008		if (!XFS_FORCED_SHUTDOWN(mp)) {
5009			xfs_buf_ioerror_alert(bp, __func__);
5010			ASSERT(0);
5011		}
5012		xfs_buf_relse(bp);
5013		return error;
5014	}
5015
5016	/* Convert superblock from on-disk format */
5017	sbp = &mp->m_sb;
5018	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
 
 
5019	xfs_buf_relse(bp);
5020
5021	/* re-initialise in-core superblock and geometry structures */
5022	xfs_reinit_percpu_counters(mp);
5023	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5024	if (error) {
5025		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5026		return error;
5027	}
5028
5029	xlog_recover_check_summary(log);
5030
5031	/* Normal transactions can now occur */
5032	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5033	return 0;
5034}
5035
5036/*
5037 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5038 *
5039 * Return error or zero.
5040 */
5041int
5042xlog_recover(
5043	struct xlog	*log)
5044{
5045	xfs_daddr_t	head_blk, tail_blk;
5046	int		error;
5047
5048	/* find the tail of the log */
5049	error = xlog_find_tail(log, &head_blk, &tail_blk);
5050	if (error)
5051		return error;
5052
5053	/*
5054	 * The superblock was read before the log was available and thus the LSN
5055	 * could not be verified. Check the superblock LSN against the current
5056	 * LSN now that it's known.
5057	 */
5058	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5059	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5060		return -EINVAL;
5061
5062	if (tail_blk != head_blk) {
5063		/* There used to be a comment here:
5064		 *
5065		 * disallow recovery on read-only mounts.  note -- mount
5066		 * checks for ENOSPC and turns it into an intelligent
5067		 * error message.
5068		 * ...but this is no longer true.  Now, unless you specify
5069		 * NORECOVERY (in which case this function would never be
5070		 * called), we just go ahead and recover.  We do this all
5071		 * under the vfs layer, so we can get away with it unless
5072		 * the device itself is read-only, in which case we fail.
5073		 */
5074		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5075			return error;
5076		}
5077
5078		/*
5079		 * Version 5 superblock log feature mask validation. We know the
5080		 * log is dirty so check if there are any unknown log features
5081		 * in what we need to recover. If there are unknown features
5082		 * (e.g. unsupported transactions, then simply reject the
5083		 * attempt at recovery before touching anything.
5084		 */
5085		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5086		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5087					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5088			xfs_warn(log->l_mp,
5089"Superblock has unknown incompatible log features (0x%x) enabled.",
5090				(log->l_mp->m_sb.sb_features_log_incompat &
5091					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5092			xfs_warn(log->l_mp,
5093"The log can not be fully and/or safely recovered by this kernel.");
5094			xfs_warn(log->l_mp,
5095"Please recover the log on a kernel that supports the unknown features.");
5096			return -EINVAL;
5097		}
5098
5099		/*
5100		 * Delay log recovery if the debug hook is set. This is debug
5101		 * instrumention to coordinate simulation of I/O failures with
5102		 * log recovery.
5103		 */
5104		if (xfs_globals.log_recovery_delay) {
5105			xfs_notice(log->l_mp,
5106				"Delaying log recovery for %d seconds.",
5107				xfs_globals.log_recovery_delay);
5108			msleep(xfs_globals.log_recovery_delay * 1000);
5109		}
5110
5111		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5112				log->l_mp->m_logname ? log->l_mp->m_logname
5113						     : "internal");
5114
5115		error = xlog_do_recover(log, head_blk, tail_blk);
5116		log->l_flags |= XLOG_RECOVERY_NEEDED;
5117	}
5118	return error;
5119}
5120
5121/*
5122 * In the first part of recovery we replay inodes and buffers and build
5123 * up the list of extent free items which need to be processed.  Here
5124 * we process the extent free items and clean up the on disk unlinked
5125 * inode lists.  This is separated from the first part of recovery so
5126 * that the root and real-time bitmap inodes can be read in from disk in
5127 * between the two stages.  This is necessary so that we can free space
5128 * in the real-time portion of the file system.
5129 */
5130int
5131xlog_recover_finish(
5132	struct xlog	*log)
5133{
5134	/*
5135	 * Now we're ready to do the transactions needed for the
5136	 * rest of recovery.  Start with completing all the extent
5137	 * free intent records and then process the unlinked inode
5138	 * lists.  At this point, we essentially run in normal mode
5139	 * except that we're still performing recovery actions
5140	 * rather than accepting new requests.
5141	 */
5142	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5143		int	error;
5144		error = xlog_recover_process_efis(log);
5145		if (error) {
5146			xfs_alert(log->l_mp, "Failed to recover EFIs");
5147			return error;
5148		}
5149		/*
5150		 * Sync the log to get all the EFIs out of the AIL.
5151		 * This isn't absolutely necessary, but it helps in
5152		 * case the unlink transactions would have problems
5153		 * pushing the EFIs out of the way.
5154		 */
5155		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5156
5157		xlog_recover_process_iunlinks(log);
5158
5159		xlog_recover_check_summary(log);
5160
5161		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5162				log->l_mp->m_logname ? log->l_mp->m_logname
5163						     : "internal");
5164		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5165	} else {
5166		xfs_info(log->l_mp, "Ending clean mount");
5167	}
5168	return 0;
5169}
5170
5171int
5172xlog_recover_cancel(
5173	struct xlog	*log)
5174{
5175	int		error = 0;
5176
5177	if (log->l_flags & XLOG_RECOVERY_NEEDED)
5178		error = xlog_recover_cancel_efis(log);
5179
5180	return error;
5181}
5182
5183#if defined(DEBUG)
5184/*
5185 * Read all of the agf and agi counters and check that they
5186 * are consistent with the superblock counters.
5187 */
5188void
5189xlog_recover_check_summary(
5190	struct xlog	*log)
5191{
5192	xfs_mount_t	*mp;
5193	xfs_agf_t	*agfp;
5194	xfs_buf_t	*agfbp;
5195	xfs_buf_t	*agibp;
5196	xfs_agnumber_t	agno;
5197	__uint64_t	freeblks;
5198	__uint64_t	itotal;
5199	__uint64_t	ifree;
5200	int		error;
5201
5202	mp = log->l_mp;
5203
5204	freeblks = 0LL;
5205	itotal = 0LL;
5206	ifree = 0LL;
5207	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5208		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5209		if (error) {
5210			xfs_alert(mp, "%s agf read failed agno %d error %d",
5211						__func__, agno, error);
5212		} else {
5213			agfp = XFS_BUF_TO_AGF(agfbp);
5214			freeblks += be32_to_cpu(agfp->agf_freeblks) +
5215				    be32_to_cpu(agfp->agf_flcount);
5216			xfs_buf_relse(agfbp);
5217		}
5218
5219		error = xfs_read_agi(mp, NULL, agno, &agibp);
5220		if (error) {
5221			xfs_alert(mp, "%s agi read failed agno %d error %d",
5222						__func__, agno, error);
5223		} else {
5224			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
5225
5226			itotal += be32_to_cpu(agi->agi_count);
5227			ifree += be32_to_cpu(agi->agi_freecount);
5228			xfs_buf_relse(agibp);
5229		}
5230	}
5231}
5232#endif /* DEBUG */