Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  arch/sparc64/mm/init.c
   3 *
   4 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   5 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   6 */
   7 
   8#include <linux/module.h>
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/string.h>
  12#include <linux/init.h>
  13#include <linux/bootmem.h>
  14#include <linux/mm.h>
  15#include <linux/hugetlb.h>
  16#include <linux/initrd.h>
  17#include <linux/swap.h>
  18#include <linux/pagemap.h>
  19#include <linux/poison.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/kprobes.h>
  23#include <linux/cache.h>
  24#include <linux/sort.h>
 
  25#include <linux/percpu.h>
  26#include <linux/memblock.h>
  27#include <linux/mmzone.h>
  28#include <linux/gfp.h>
  29
  30#include <asm/head.h>
  31#include <asm/system.h>
  32#include <asm/page.h>
  33#include <asm/pgalloc.h>
  34#include <asm/pgtable.h>
  35#include <asm/oplib.h>
  36#include <asm/iommu.h>
  37#include <asm/io.h>
  38#include <asm/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/tlbflush.h>
  41#include <asm/dma.h>
  42#include <asm/starfire.h>
  43#include <asm/tlb.h>
  44#include <asm/spitfire.h>
  45#include <asm/sections.h>
  46#include <asm/tsb.h>
  47#include <asm/hypervisor.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/cpudata.h>
 
  51#include <asm/irq.h>
  52
  53#include "init_64.h"
  54
  55unsigned long kern_linear_pte_xor[2] __read_mostly;
 
  56
  57/* A bitmap, one bit for every 256MB of physical memory.  If the bit
  58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60 */
  61unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  62
  63#ifndef CONFIG_DEBUG_PAGEALLOC
  64/* A special kernel TSB for 4MB and 256MB linear mappings.
  65 * Space is allocated for this right after the trap table
  66 * in arch/sparc64/kernel/head.S
  67 */
  68extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  69#endif
 
  70
  71#define MAX_BANKS	32
  72
  73static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
  74static int pavail_ents __devinitdata;
 
 
 
 
  75
  76static int cmp_p64(const void *a, const void *b)
  77{
  78	const struct linux_prom64_registers *x = a, *y = b;
  79
  80	if (x->phys_addr > y->phys_addr)
  81		return 1;
  82	if (x->phys_addr < y->phys_addr)
  83		return -1;
  84	return 0;
  85}
  86
  87static void __init read_obp_memory(const char *property,
  88				   struct linux_prom64_registers *regs,
  89				   int *num_ents)
  90{
  91	phandle node = prom_finddevice("/memory");
  92	int prop_size = prom_getproplen(node, property);
  93	int ents, ret, i;
  94
  95	ents = prop_size / sizeof(struct linux_prom64_registers);
  96	if (ents > MAX_BANKS) {
  97		prom_printf("The machine has more %s property entries than "
  98			    "this kernel can support (%d).\n",
  99			    property, MAX_BANKS);
 100		prom_halt();
 101	}
 102
 103	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 104	if (ret == -1) {
 105		prom_printf("Couldn't get %s property from /memory.\n");
 
 106		prom_halt();
 107	}
 108
 109	/* Sanitize what we got from the firmware, by page aligning
 110	 * everything.
 111	 */
 112	for (i = 0; i < ents; i++) {
 113		unsigned long base, size;
 114
 115		base = regs[i].phys_addr;
 116		size = regs[i].reg_size;
 117
 118		size &= PAGE_MASK;
 119		if (base & ~PAGE_MASK) {
 120			unsigned long new_base = PAGE_ALIGN(base);
 121
 122			size -= new_base - base;
 123			if ((long) size < 0L)
 124				size = 0UL;
 125			base = new_base;
 126		}
 127		if (size == 0UL) {
 128			/* If it is empty, simply get rid of it.
 129			 * This simplifies the logic of the other
 130			 * functions that process these arrays.
 131			 */
 132			memmove(&regs[i], &regs[i + 1],
 133				(ents - i - 1) * sizeof(regs[0]));
 134			i--;
 135			ents--;
 136			continue;
 137		}
 138		regs[i].phys_addr = base;
 139		regs[i].reg_size = size;
 140	}
 141
 142	*num_ents = ents;
 143
 144	sort(regs, ents, sizeof(struct linux_prom64_registers),
 145	     cmp_p64, NULL);
 146}
 147
 148unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
 149					sizeof(unsigned long)];
 150EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
 151
 152/* Kernel physical address base and size in bytes.  */
 153unsigned long kern_base __read_mostly;
 154unsigned long kern_size __read_mostly;
 155
 156/* Initial ramdisk setup */
 157extern unsigned long sparc_ramdisk_image64;
 158extern unsigned int sparc_ramdisk_image;
 159extern unsigned int sparc_ramdisk_size;
 160
 161struct page *mem_map_zero __read_mostly;
 162EXPORT_SYMBOL(mem_map_zero);
 163
 164unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 165
 166unsigned long sparc64_kern_pri_context __read_mostly;
 167unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 168unsigned long sparc64_kern_sec_context __read_mostly;
 169
 170int num_kernel_image_mappings;
 171
 172#ifdef CONFIG_DEBUG_DCFLUSH
 173atomic_t dcpage_flushes = ATOMIC_INIT(0);
 174#ifdef CONFIG_SMP
 175atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 176#endif
 177#endif
 178
 179inline void flush_dcache_page_impl(struct page *page)
 180{
 181	BUG_ON(tlb_type == hypervisor);
 182#ifdef CONFIG_DEBUG_DCFLUSH
 183	atomic_inc(&dcpage_flushes);
 184#endif
 185
 186#ifdef DCACHE_ALIASING_POSSIBLE
 187	__flush_dcache_page(page_address(page),
 188			    ((tlb_type == spitfire) &&
 189			     page_mapping(page) != NULL));
 190#else
 191	if (page_mapping(page) != NULL &&
 192	    tlb_type == spitfire)
 193		__flush_icache_page(__pa(page_address(page)));
 194#endif
 195}
 196
 197#define PG_dcache_dirty		PG_arch_1
 198#define PG_dcache_cpu_shift	32UL
 199#define PG_dcache_cpu_mask	\
 200	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 201
 202#define dcache_dirty_cpu(page) \
 203	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 204
 205static inline void set_dcache_dirty(struct page *page, int this_cpu)
 206{
 207	unsigned long mask = this_cpu;
 208	unsigned long non_cpu_bits;
 209
 210	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 211	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 212
 213	__asm__ __volatile__("1:\n\t"
 214			     "ldx	[%2], %%g7\n\t"
 215			     "and	%%g7, %1, %%g1\n\t"
 216			     "or	%%g1, %0, %%g1\n\t"
 217			     "casx	[%2], %%g7, %%g1\n\t"
 218			     "cmp	%%g7, %%g1\n\t"
 219			     "bne,pn	%%xcc, 1b\n\t"
 220			     " nop"
 221			     : /* no outputs */
 222			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 223			     : "g1", "g7");
 224}
 225
 226static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 227{
 228	unsigned long mask = (1UL << PG_dcache_dirty);
 229
 230	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 231			     "1:\n\t"
 232			     "ldx	[%2], %%g7\n\t"
 233			     "srlx	%%g7, %4, %%g1\n\t"
 234			     "and	%%g1, %3, %%g1\n\t"
 235			     "cmp	%%g1, %0\n\t"
 236			     "bne,pn	%%icc, 2f\n\t"
 237			     " andn	%%g7, %1, %%g1\n\t"
 238			     "casx	[%2], %%g7, %%g1\n\t"
 239			     "cmp	%%g7, %%g1\n\t"
 240			     "bne,pn	%%xcc, 1b\n\t"
 241			     " nop\n"
 242			     "2:"
 243			     : /* no outputs */
 244			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 245			       "i" (PG_dcache_cpu_mask),
 246			       "i" (PG_dcache_cpu_shift)
 247			     : "g1", "g7");
 248}
 249
 250static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 251{
 252	unsigned long tsb_addr = (unsigned long) ent;
 253
 254	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 255		tsb_addr = __pa(tsb_addr);
 256
 257	__tsb_insert(tsb_addr, tag, pte);
 258}
 259
 260unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 261unsigned long _PAGE_SZBITS __read_mostly;
 262
 263static void flush_dcache(unsigned long pfn)
 264{
 265	struct page *page;
 266
 267	page = pfn_to_page(pfn);
 268	if (page) {
 269		unsigned long pg_flags;
 270
 271		pg_flags = page->flags;
 272		if (pg_flags & (1UL << PG_dcache_dirty)) {
 273			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 274				   PG_dcache_cpu_mask);
 275			int this_cpu = get_cpu();
 276
 277			/* This is just to optimize away some function calls
 278			 * in the SMP case.
 279			 */
 280			if (cpu == this_cpu)
 281				flush_dcache_page_impl(page);
 282			else
 283				smp_flush_dcache_page_impl(page, cpu);
 284
 285			clear_dcache_dirty_cpu(page, cpu);
 286
 287			put_cpu();
 288		}
 289	}
 290}
 291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 293{
 294	struct mm_struct *mm;
 295	struct tsb *tsb;
 296	unsigned long tag, flags;
 297	unsigned long tsb_index, tsb_hash_shift;
 298	pte_t pte = *ptep;
 299
 300	if (tlb_type != hypervisor) {
 301		unsigned long pfn = pte_pfn(pte);
 302
 303		if (pfn_valid(pfn))
 304			flush_dcache(pfn);
 305	}
 306
 307	mm = vma->vm_mm;
 308
 309	tsb_index = MM_TSB_BASE;
 310	tsb_hash_shift = PAGE_SHIFT;
 
 311
 312	spin_lock_irqsave(&mm->context.lock, flags);
 313
 314#ifdef CONFIG_HUGETLB_PAGE
 315	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
 316		if ((tlb_type == hypervisor &&
 317		     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
 318		    (tlb_type != hypervisor &&
 319		     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
 320			tsb_index = MM_TSB_HUGE;
 321			tsb_hash_shift = HPAGE_SHIFT;
 322		}
 323	}
 324#endif
 325
 326	tsb = mm->context.tsb_block[tsb_index].tsb;
 327	tsb += ((address >> tsb_hash_shift) &
 328		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 329	tag = (address >> 22UL);
 330	tsb_insert(tsb, tag, pte_val(pte));
 331
 332	spin_unlock_irqrestore(&mm->context.lock, flags);
 333}
 334
 335void flush_dcache_page(struct page *page)
 336{
 337	struct address_space *mapping;
 338	int this_cpu;
 339
 340	if (tlb_type == hypervisor)
 341		return;
 342
 343	/* Do not bother with the expensive D-cache flush if it
 344	 * is merely the zero page.  The 'bigcore' testcase in GDB
 345	 * causes this case to run millions of times.
 346	 */
 347	if (page == ZERO_PAGE(0))
 348		return;
 349
 350	this_cpu = get_cpu();
 351
 352	mapping = page_mapping(page);
 353	if (mapping && !mapping_mapped(mapping)) {
 354		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 355		if (dirty) {
 356			int dirty_cpu = dcache_dirty_cpu(page);
 357
 358			if (dirty_cpu == this_cpu)
 359				goto out;
 360			smp_flush_dcache_page_impl(page, dirty_cpu);
 361		}
 362		set_dcache_dirty(page, this_cpu);
 363	} else {
 364		/* We could delay the flush for the !page_mapping
 365		 * case too.  But that case is for exec env/arg
 366		 * pages and those are %99 certainly going to get
 367		 * faulted into the tlb (and thus flushed) anyways.
 368		 */
 369		flush_dcache_page_impl(page);
 370	}
 371
 372out:
 373	put_cpu();
 374}
 375EXPORT_SYMBOL(flush_dcache_page);
 376
 377void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 378{
 379	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 380	if (tlb_type == spitfire) {
 381		unsigned long kaddr;
 382
 383		/* This code only runs on Spitfire cpus so this is
 384		 * why we can assume _PAGE_PADDR_4U.
 385		 */
 386		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 387			unsigned long paddr, mask = _PAGE_PADDR_4U;
 388
 389			if (kaddr >= PAGE_OFFSET)
 390				paddr = kaddr & mask;
 391			else {
 392				pgd_t *pgdp = pgd_offset_k(kaddr);
 393				pud_t *pudp = pud_offset(pgdp, kaddr);
 394				pmd_t *pmdp = pmd_offset(pudp, kaddr);
 395				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 396
 397				paddr = pte_val(*ptep) & mask;
 398			}
 399			__flush_icache_page(paddr);
 400		}
 401	}
 402}
 403EXPORT_SYMBOL(flush_icache_range);
 404
 405void mmu_info(struct seq_file *m)
 406{
 
 
 
 
 
 
 407	if (tlb_type == cheetah)
 408		seq_printf(m, "MMU Type\t: Cheetah\n");
 409	else if (tlb_type == cheetah_plus)
 410		seq_printf(m, "MMU Type\t: Cheetah+\n");
 411	else if (tlb_type == spitfire)
 412		seq_printf(m, "MMU Type\t: Spitfire\n");
 413	else if (tlb_type == hypervisor)
 414		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 415	else
 416		seq_printf(m, "MMU Type\t: ???\n");
 417
 
 
 
 
 
 
 
 
 
 
 
 418#ifdef CONFIG_DEBUG_DCFLUSH
 419	seq_printf(m, "DCPageFlushes\t: %d\n",
 420		   atomic_read(&dcpage_flushes));
 421#ifdef CONFIG_SMP
 422	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 423		   atomic_read(&dcpage_flushes_xcall));
 424#endif /* CONFIG_SMP */
 425#endif /* CONFIG_DEBUG_DCFLUSH */
 426}
 427
 428struct linux_prom_translation prom_trans[512] __read_mostly;
 429unsigned int prom_trans_ents __read_mostly;
 430
 431unsigned long kern_locked_tte_data;
 432
 433/* The obp translations are saved based on 8k pagesize, since obp can
 434 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 435 * HI_OBP_ADDRESS range are handled in ktlb.S.
 436 */
 437static inline int in_obp_range(unsigned long vaddr)
 438{
 439	return (vaddr >= LOW_OBP_ADDRESS &&
 440		vaddr < HI_OBP_ADDRESS);
 441}
 442
 443static int cmp_ptrans(const void *a, const void *b)
 444{
 445	const struct linux_prom_translation *x = a, *y = b;
 446
 447	if (x->virt > y->virt)
 448		return 1;
 449	if (x->virt < y->virt)
 450		return -1;
 451	return 0;
 452}
 453
 454/* Read OBP translations property into 'prom_trans[]'.  */
 455static void __init read_obp_translations(void)
 456{
 457	int n, node, ents, first, last, i;
 458
 459	node = prom_finddevice("/virtual-memory");
 460	n = prom_getproplen(node, "translations");
 461	if (unlikely(n == 0 || n == -1)) {
 462		prom_printf("prom_mappings: Couldn't get size.\n");
 463		prom_halt();
 464	}
 465	if (unlikely(n > sizeof(prom_trans))) {
 466		prom_printf("prom_mappings: Size %Zd is too big.\n", n);
 467		prom_halt();
 468	}
 469
 470	if ((n = prom_getproperty(node, "translations",
 471				  (char *)&prom_trans[0],
 472				  sizeof(prom_trans))) == -1) {
 473		prom_printf("prom_mappings: Couldn't get property.\n");
 474		prom_halt();
 475	}
 476
 477	n = n / sizeof(struct linux_prom_translation);
 478
 479	ents = n;
 480
 481	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 482	     cmp_ptrans, NULL);
 483
 484	/* Now kick out all the non-OBP entries.  */
 485	for (i = 0; i < ents; i++) {
 486		if (in_obp_range(prom_trans[i].virt))
 487			break;
 488	}
 489	first = i;
 490	for (; i < ents; i++) {
 491		if (!in_obp_range(prom_trans[i].virt))
 492			break;
 493	}
 494	last = i;
 495
 496	for (i = 0; i < (last - first); i++) {
 497		struct linux_prom_translation *src = &prom_trans[i + first];
 498		struct linux_prom_translation *dest = &prom_trans[i];
 499
 500		*dest = *src;
 501	}
 502	for (; i < ents; i++) {
 503		struct linux_prom_translation *dest = &prom_trans[i];
 504		dest->virt = dest->size = dest->data = 0x0UL;
 505	}
 506
 507	prom_trans_ents = last - first;
 508
 509	if (tlb_type == spitfire) {
 510		/* Clear diag TTE bits. */
 511		for (i = 0; i < prom_trans_ents; i++)
 512			prom_trans[i].data &= ~0x0003fe0000000000UL;
 513	}
 514
 515	/* Force execute bit on.  */
 516	for (i = 0; i < prom_trans_ents; i++)
 517		prom_trans[i].data |= (tlb_type == hypervisor ?
 518				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 519}
 520
 521static void __init hypervisor_tlb_lock(unsigned long vaddr,
 522				       unsigned long pte,
 523				       unsigned long mmu)
 524{
 525	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 526
 527	if (ret != 0) {
 528		prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
 529			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 530		prom_halt();
 531	}
 532}
 533
 534static unsigned long kern_large_tte(unsigned long paddr);
 535
 536static void __init remap_kernel(void)
 537{
 538	unsigned long phys_page, tte_vaddr, tte_data;
 539	int i, tlb_ent = sparc64_highest_locked_tlbent();
 540
 541	tte_vaddr = (unsigned long) KERNBASE;
 542	phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
 543	tte_data = kern_large_tte(phys_page);
 544
 545	kern_locked_tte_data = tte_data;
 546
 547	/* Now lock us into the TLBs via Hypervisor or OBP. */
 548	if (tlb_type == hypervisor) {
 549		for (i = 0; i < num_kernel_image_mappings; i++) {
 550			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 551			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 552			tte_vaddr += 0x400000;
 553			tte_data += 0x400000;
 554		}
 555	} else {
 556		for (i = 0; i < num_kernel_image_mappings; i++) {
 557			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 558			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 559			tte_vaddr += 0x400000;
 560			tte_data += 0x400000;
 561		}
 562		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 563	}
 564	if (tlb_type == cheetah_plus) {
 565		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 566					    CTX_CHEETAH_PLUS_NUC);
 567		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 568		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 569	}
 570}
 571
 572
 573static void __init inherit_prom_mappings(void)
 574{
 575	/* Now fixup OBP's idea about where we really are mapped. */
 576	printk("Remapping the kernel... ");
 577	remap_kernel();
 578	printk("done.\n");
 579}
 580
 581void prom_world(int enter)
 582{
 583	if (!enter)
 584		set_fs((mm_segment_t) { get_thread_current_ds() });
 585
 586	__asm__ __volatile__("flushw");
 587}
 588
 589void __flush_dcache_range(unsigned long start, unsigned long end)
 590{
 591	unsigned long va;
 592
 593	if (tlb_type == spitfire) {
 594		int n = 0;
 595
 596		for (va = start; va < end; va += 32) {
 597			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 598			if (++n >= 512)
 599				break;
 600		}
 601	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 602		start = __pa(start);
 603		end = __pa(end);
 604		for (va = start; va < end; va += 32)
 605			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 606					     "membar #Sync"
 607					     : /* no outputs */
 608					     : "r" (va),
 609					       "i" (ASI_DCACHE_INVALIDATE));
 610	}
 611}
 612EXPORT_SYMBOL(__flush_dcache_range);
 613
 614/* get_new_mmu_context() uses "cache + 1".  */
 615DEFINE_SPINLOCK(ctx_alloc_lock);
 616unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
 617#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 618#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 619DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 620
 621/* Caller does TLB context flushing on local CPU if necessary.
 622 * The caller also ensures that CTX_VALID(mm->context) is false.
 623 *
 624 * We must be careful about boundary cases so that we never
 625 * let the user have CTX 0 (nucleus) or we ever use a CTX
 626 * version of zero (and thus NO_CONTEXT would not be caught
 627 * by version mis-match tests in mmu_context.h).
 628 *
 629 * Always invoked with interrupts disabled.
 630 */
 631void get_new_mmu_context(struct mm_struct *mm)
 632{
 633	unsigned long ctx, new_ctx;
 634	unsigned long orig_pgsz_bits;
 635	unsigned long flags;
 636	int new_version;
 637
 638	spin_lock_irqsave(&ctx_alloc_lock, flags);
 639	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 640	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 641	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 642	new_version = 0;
 643	if (new_ctx >= (1 << CTX_NR_BITS)) {
 644		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 645		if (new_ctx >= ctx) {
 646			int i;
 647			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
 648				CTX_FIRST_VERSION;
 649			if (new_ctx == 1)
 650				new_ctx = CTX_FIRST_VERSION;
 651
 652			/* Don't call memset, for 16 entries that's just
 653			 * plain silly...
 654			 */
 655			mmu_context_bmap[0] = 3;
 656			mmu_context_bmap[1] = 0;
 657			mmu_context_bmap[2] = 0;
 658			mmu_context_bmap[3] = 0;
 659			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
 660				mmu_context_bmap[i + 0] = 0;
 661				mmu_context_bmap[i + 1] = 0;
 662				mmu_context_bmap[i + 2] = 0;
 663				mmu_context_bmap[i + 3] = 0;
 664			}
 665			new_version = 1;
 666			goto out;
 667		}
 668	}
 669	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 670	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 671out:
 672	tlb_context_cache = new_ctx;
 673	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 674	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
 675
 676	if (unlikely(new_version))
 677		smp_new_mmu_context_version();
 678}
 679
 680static int numa_enabled = 1;
 681static int numa_debug;
 682
 683static int __init early_numa(char *p)
 684{
 685	if (!p)
 686		return 0;
 687
 688	if (strstr(p, "off"))
 689		numa_enabled = 0;
 690
 691	if (strstr(p, "debug"))
 692		numa_debug = 1;
 693
 694	return 0;
 695}
 696early_param("numa", early_numa);
 697
 698#define numadbg(f, a...) \
 699do {	if (numa_debug) \
 700		printk(KERN_INFO f, ## a); \
 701} while (0)
 702
 703static void __init find_ramdisk(unsigned long phys_base)
 704{
 705#ifdef CONFIG_BLK_DEV_INITRD
 706	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 707		unsigned long ramdisk_image;
 708
 709		/* Older versions of the bootloader only supported a
 710		 * 32-bit physical address for the ramdisk image
 711		 * location, stored at sparc_ramdisk_image.  Newer
 712		 * SILO versions set sparc_ramdisk_image to zero and
 713		 * provide a full 64-bit physical address at
 714		 * sparc_ramdisk_image64.
 715		 */
 716		ramdisk_image = sparc_ramdisk_image;
 717		if (!ramdisk_image)
 718			ramdisk_image = sparc_ramdisk_image64;
 719
 720		/* Another bootloader quirk.  The bootloader normalizes
 721		 * the physical address to KERNBASE, so we have to
 722		 * factor that back out and add in the lowest valid
 723		 * physical page address to get the true physical address.
 724		 */
 725		ramdisk_image -= KERNBASE;
 726		ramdisk_image += phys_base;
 727
 728		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 729			ramdisk_image, sparc_ramdisk_size);
 730
 731		initrd_start = ramdisk_image;
 732		initrd_end = ramdisk_image + sparc_ramdisk_size;
 733
 734		memblock_reserve(initrd_start, sparc_ramdisk_size);
 735
 736		initrd_start += PAGE_OFFSET;
 737		initrd_end += PAGE_OFFSET;
 738	}
 739#endif
 740}
 741
 742struct node_mem_mask {
 743	unsigned long mask;
 744	unsigned long val;
 745	unsigned long bootmem_paddr;
 746};
 747static struct node_mem_mask node_masks[MAX_NUMNODES];
 748static int num_node_masks;
 749
 
 
 750int numa_cpu_lookup_table[NR_CPUS];
 751cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 752
 753#ifdef CONFIG_NEED_MULTIPLE_NODES
 754
 755struct mdesc_mblock {
 756	u64	base;
 757	u64	size;
 758	u64	offset; /* RA-to-PA */
 759};
 760static struct mdesc_mblock *mblocks;
 761static int num_mblocks;
 762
 763static unsigned long ra_to_pa(unsigned long addr)
 764{
 765	int i;
 766
 767	for (i = 0; i < num_mblocks; i++) {
 768		struct mdesc_mblock *m = &mblocks[i];
 769
 770		if (addr >= m->base &&
 771		    addr < (m->base + m->size)) {
 772			addr += m->offset;
 773			break;
 774		}
 775	}
 776	return addr;
 777}
 778
 779static int find_node(unsigned long addr)
 780{
 781	int i;
 782
 783	addr = ra_to_pa(addr);
 784	for (i = 0; i < num_node_masks; i++) {
 785		struct node_mem_mask *p = &node_masks[i];
 786
 787		if ((addr & p->mask) == p->val)
 788			return i;
 789	}
 790	return -1;
 
 
 
 791}
 792
 793u64 memblock_nid_range(u64 start, u64 end, int *nid)
 794{
 795	*nid = find_node(start);
 796	start += PAGE_SIZE;
 797	while (start < end) {
 798		int n = find_node(start);
 799
 800		if (n != *nid)
 801			break;
 802		start += PAGE_SIZE;
 803	}
 804
 805	if (start > end)
 806		start = end;
 807
 808	return start;
 809}
 810#else
 811u64 memblock_nid_range(u64 start, u64 end, int *nid)
 812{
 813	*nid = 0;
 814	return end;
 815}
 816#endif
 817
 818/* This must be invoked after performing all of the necessary
 819 * add_active_range() calls for 'nid'.  We need to be able to get
 820 * correct data from get_pfn_range_for_nid().
 821 */
 822static void __init allocate_node_data(int nid)
 823{
 824	unsigned long paddr, num_pages, start_pfn, end_pfn;
 825	struct pglist_data *p;
 826
 827#ifdef CONFIG_NEED_MULTIPLE_NODES
 
 
 828	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
 829	if (!paddr) {
 830		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
 831		prom_halt();
 832	}
 833	NODE_DATA(nid) = __va(paddr);
 834	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 835
 836	NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
 837#endif
 838
 839	p = NODE_DATA(nid);
 840
 841	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 842	p->node_start_pfn = start_pfn;
 843	p->node_spanned_pages = end_pfn - start_pfn;
 844
 845	if (p->node_spanned_pages) {
 846		num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
 847
 848		paddr = memblock_alloc_try_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid);
 849		if (!paddr) {
 850			prom_printf("Cannot allocate bootmap for nid[%d]\n",
 851				  nid);
 852			prom_halt();
 853		}
 854		node_masks[nid].bootmem_paddr = paddr;
 855	}
 856}
 857
 858static void init_node_masks_nonnuma(void)
 859{
 
 860	int i;
 
 861
 862	numadbg("Initializing tables for non-numa.\n");
 863
 864	node_masks[0].mask = node_masks[0].val = 0;
 865	num_node_masks = 1;
 866
 
 867	for (i = 0; i < NR_CPUS; i++)
 868		numa_cpu_lookup_table[i] = 0;
 869
 870	cpumask_setall(&numa_cpumask_lookup_table[0]);
 
 871}
 872
 873#ifdef CONFIG_NEED_MULTIPLE_NODES
 874struct pglist_data *node_data[MAX_NUMNODES];
 875
 876EXPORT_SYMBOL(numa_cpu_lookup_table);
 877EXPORT_SYMBOL(numa_cpumask_lookup_table);
 878EXPORT_SYMBOL(node_data);
 879
 880struct mdesc_mlgroup {
 881	u64	node;
 882	u64	latency;
 883	u64	match;
 884	u64	mask;
 885};
 886static struct mdesc_mlgroup *mlgroups;
 887static int num_mlgroups;
 888
 889static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
 890				   u32 cfg_handle)
 891{
 892	u64 arc;
 893
 894	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
 895		u64 target = mdesc_arc_target(md, arc);
 896		const u64 *val;
 897
 898		val = mdesc_get_property(md, target,
 899					 "cfg-handle", NULL);
 900		if (val && *val == cfg_handle)
 901			return 0;
 902	}
 903	return -ENODEV;
 904}
 905
 906static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
 907				    u32 cfg_handle)
 908{
 909	u64 arc, candidate, best_latency = ~(u64)0;
 910
 911	candidate = MDESC_NODE_NULL;
 912	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 913		u64 target = mdesc_arc_target(md, arc);
 914		const char *name = mdesc_node_name(md, target);
 915		const u64 *val;
 916
 917		if (strcmp(name, "pio-latency-group"))
 918			continue;
 919
 920		val = mdesc_get_property(md, target, "latency", NULL);
 921		if (!val)
 922			continue;
 923
 924		if (*val < best_latency) {
 925			candidate = target;
 926			best_latency = *val;
 927		}
 928	}
 929
 930	if (candidate == MDESC_NODE_NULL)
 931		return -ENODEV;
 932
 933	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
 934}
 935
 936int of_node_to_nid(struct device_node *dp)
 937{
 938	const struct linux_prom64_registers *regs;
 939	struct mdesc_handle *md;
 940	u32 cfg_handle;
 941	int count, nid;
 942	u64 grp;
 943
 944	/* This is the right thing to do on currently supported
 945	 * SUN4U NUMA platforms as well, as the PCI controller does
 946	 * not sit behind any particular memory controller.
 947	 */
 948	if (!mlgroups)
 949		return -1;
 950
 951	regs = of_get_property(dp, "reg", NULL);
 952	if (!regs)
 953		return -1;
 954
 955	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
 956
 957	md = mdesc_grab();
 958
 959	count = 0;
 960	nid = -1;
 961	mdesc_for_each_node_by_name(md, grp, "group") {
 962		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
 963			nid = count;
 964			break;
 965		}
 966		count++;
 967	}
 968
 969	mdesc_release(md);
 970
 971	return nid;
 972}
 973
 974static void __init add_node_ranges(void)
 975{
 976	struct memblock_region *reg;
 977
 978	for_each_memblock(memory, reg) {
 979		unsigned long size = reg->size;
 980		unsigned long start, end;
 981
 982		start = reg->base;
 983		end = start + size;
 984		while (start < end) {
 985			unsigned long this_end;
 986			int nid;
 987
 988			this_end = memblock_nid_range(start, end, &nid);
 989
 990			numadbg("Adding active range nid[%d] "
 991				"start[%lx] end[%lx]\n",
 992				nid, start, this_end);
 993
 994			add_active_range(nid,
 995					 start >> PAGE_SHIFT,
 996					 this_end >> PAGE_SHIFT);
 997
 998			start = this_end;
 999		}
1000	}
1001}
1002
1003static int __init grab_mlgroups(struct mdesc_handle *md)
1004{
1005	unsigned long paddr;
1006	int count = 0;
1007	u64 node;
1008
1009	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1010		count++;
1011	if (!count)
1012		return -ENOENT;
1013
1014	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1015			  SMP_CACHE_BYTES);
1016	if (!paddr)
1017		return -ENOMEM;
1018
1019	mlgroups = __va(paddr);
1020	num_mlgroups = count;
1021
1022	count = 0;
1023	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1024		struct mdesc_mlgroup *m = &mlgroups[count++];
1025		const u64 *val;
1026
1027		m->node = node;
1028
1029		val = mdesc_get_property(md, node, "latency", NULL);
1030		m->latency = *val;
1031		val = mdesc_get_property(md, node, "address-match", NULL);
1032		m->match = *val;
1033		val = mdesc_get_property(md, node, "address-mask", NULL);
1034		m->mask = *val;
1035
1036		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1037			"match[%llx] mask[%llx]\n",
1038			count - 1, m->node, m->latency, m->match, m->mask);
1039	}
1040
1041	return 0;
1042}
1043
1044static int __init grab_mblocks(struct mdesc_handle *md)
1045{
1046	unsigned long paddr;
1047	int count = 0;
1048	u64 node;
1049
1050	mdesc_for_each_node_by_name(md, node, "mblock")
1051		count++;
1052	if (!count)
1053		return -ENOENT;
1054
1055	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1056			  SMP_CACHE_BYTES);
1057	if (!paddr)
1058		return -ENOMEM;
1059
1060	mblocks = __va(paddr);
1061	num_mblocks = count;
1062
1063	count = 0;
1064	mdesc_for_each_node_by_name(md, node, "mblock") {
1065		struct mdesc_mblock *m = &mblocks[count++];
1066		const u64 *val;
1067
1068		val = mdesc_get_property(md, node, "base", NULL);
1069		m->base = *val;
1070		val = mdesc_get_property(md, node, "size", NULL);
1071		m->size = *val;
1072		val = mdesc_get_property(md, node,
1073					 "address-congruence-offset", NULL);
1074		m->offset = *val;
 
 
 
 
 
 
 
1075
1076		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1077			count - 1, m->base, m->size, m->offset);
1078	}
1079
1080	return 0;
1081}
1082
1083static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1084					       u64 grp, cpumask_t *mask)
1085{
1086	u64 arc;
1087
1088	cpumask_clear(mask);
1089
1090	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1091		u64 target = mdesc_arc_target(md, arc);
1092		const char *name = mdesc_node_name(md, target);
1093		const u64 *id;
1094
1095		if (strcmp(name, "cpu"))
1096			continue;
1097		id = mdesc_get_property(md, target, "id", NULL);
1098		if (*id < nr_cpu_ids)
1099			cpumask_set_cpu(*id, mask);
1100	}
1101}
1102
1103static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1104{
1105	int i;
1106
1107	for (i = 0; i < num_mlgroups; i++) {
1108		struct mdesc_mlgroup *m = &mlgroups[i];
1109		if (m->node == node)
1110			return m;
1111	}
1112	return NULL;
1113}
1114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1115static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1116				      int index)
1117{
1118	struct mdesc_mlgroup *candidate = NULL;
1119	u64 arc, best_latency = ~(u64)0;
1120	struct node_mem_mask *n;
1121
1122	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1123		u64 target = mdesc_arc_target(md, arc);
1124		struct mdesc_mlgroup *m = find_mlgroup(target);
1125		if (!m)
1126			continue;
1127		if (m->latency < best_latency) {
1128			candidate = m;
1129			best_latency = m->latency;
1130		}
1131	}
1132	if (!candidate)
1133		return -ENOENT;
1134
1135	if (num_node_masks != index) {
1136		printk(KERN_ERR "Inconsistent NUMA state, "
1137		       "index[%d] != num_node_masks[%d]\n",
1138		       index, num_node_masks);
1139		return -EINVAL;
1140	}
1141
1142	n = &node_masks[num_node_masks++];
1143
1144	n->mask = candidate->mask;
1145	n->val = candidate->match;
1146
1147	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1148		index, n->mask, n->val, candidate->latency);
1149
1150	return 0;
1151}
1152
1153static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1154					 int index)
1155{
1156	cpumask_t mask;
1157	int cpu;
1158
1159	numa_parse_mdesc_group_cpus(md, grp, &mask);
1160
1161	for_each_cpu(cpu, &mask)
1162		numa_cpu_lookup_table[cpu] = index;
1163	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1164
1165	if (numa_debug) {
1166		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1167		for_each_cpu(cpu, &mask)
1168			printk("%d ", cpu);
1169		printk("]\n");
1170	}
1171
1172	return numa_attach_mlgroup(md, grp, index);
1173}
1174
1175static int __init numa_parse_mdesc(void)
1176{
1177	struct mdesc_handle *md = mdesc_grab();
1178	int i, err, count;
1179	u64 node;
1180
1181	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1182	if (node == MDESC_NODE_NULL) {
1183		mdesc_release(md);
1184		return -ENOENT;
1185	}
1186
1187	err = grab_mblocks(md);
1188	if (err < 0)
1189		goto out;
1190
1191	err = grab_mlgroups(md);
1192	if (err < 0)
1193		goto out;
1194
1195	count = 0;
1196	mdesc_for_each_node_by_name(md, node, "group") {
1197		err = numa_parse_mdesc_group(md, node, count);
1198		if (err < 0)
1199			break;
1200		count++;
1201	}
1202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203	add_node_ranges();
1204
1205	for (i = 0; i < num_node_masks; i++) {
1206		allocate_node_data(i);
1207		node_set_online(i);
1208	}
1209
1210	err = 0;
1211out:
1212	mdesc_release(md);
1213	return err;
1214}
1215
1216static int __init numa_parse_jbus(void)
1217{
1218	unsigned long cpu, index;
1219
1220	/* NUMA node id is encoded in bits 36 and higher, and there is
1221	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1222	 */
1223	index = 0;
1224	for_each_present_cpu(cpu) {
1225		numa_cpu_lookup_table[cpu] = index;
1226		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1227		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1228		node_masks[index].val = cpu << 36UL;
1229
1230		index++;
1231	}
1232	num_node_masks = index;
1233
1234	add_node_ranges();
1235
1236	for (index = 0; index < num_node_masks; index++) {
1237		allocate_node_data(index);
1238		node_set_online(index);
1239	}
1240
1241	return 0;
1242}
1243
1244static int __init numa_parse_sun4u(void)
1245{
1246	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1247		unsigned long ver;
1248
1249		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1250		if ((ver >> 32UL) == __JALAPENO_ID ||
1251		    (ver >> 32UL) == __SERRANO_ID)
1252			return numa_parse_jbus();
1253	}
1254	return -1;
1255}
1256
1257static int __init bootmem_init_numa(void)
1258{
 
1259	int err = -1;
1260
1261	numadbg("bootmem_init_numa()\n");
1262
 
 
 
 
 
 
 
1263	if (numa_enabled) {
1264		if (tlb_type == hypervisor)
1265			err = numa_parse_mdesc();
1266		else
1267			err = numa_parse_sun4u();
1268	}
1269	return err;
1270}
1271
1272#else
1273
1274static int bootmem_init_numa(void)
1275{
1276	return -1;
1277}
1278
1279#endif
1280
1281static void __init bootmem_init_nonnuma(void)
1282{
1283	unsigned long top_of_ram = memblock_end_of_DRAM();
1284	unsigned long total_ram = memblock_phys_mem_size();
1285	struct memblock_region *reg;
1286
1287	numadbg("bootmem_init_nonnuma()\n");
1288
1289	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1290	       top_of_ram, total_ram);
1291	printk(KERN_INFO "Memory hole size: %ldMB\n",
1292	       (top_of_ram - total_ram) >> 20);
1293
1294	init_node_masks_nonnuma();
 
 
 
 
1295
1296	for_each_memblock(memory, reg) {
1297		unsigned long start_pfn, end_pfn;
 
1298
1299		if (!reg->size)
1300			continue;
 
1301
1302		start_pfn = memblock_region_memory_base_pfn(reg);
1303		end_pfn = memblock_region_memory_end_pfn(reg);
1304		add_active_range(0, start_pfn, end_pfn);
1305	}
1306
1307	allocate_node_data(0);
 
1308
1309	node_set_online(0);
 
 
 
 
 
1310}
1311
1312static void __init reserve_range_in_node(int nid, unsigned long start,
1313					 unsigned long end)
 
 
 
 
1314{
1315	numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1316		nid, start, end);
1317	while (start < end) {
1318		unsigned long this_end;
1319		int n;
1320
1321		this_end = memblock_nid_range(start, end, &n);
1322		if (n == nid) {
1323			numadbg("      MATCH reserving range [%lx:%lx]\n",
1324				start, this_end);
1325			reserve_bootmem_node(NODE_DATA(nid), start,
1326					     (this_end - start), BOOTMEM_DEFAULT);
1327		} else
1328			numadbg("      NO MATCH, advancing start to %lx\n",
1329				this_end);
1330
1331		start = this_end;
 
 
 
1332	}
1333}
1334
1335static void __init trim_reserved_in_node(int nid)
1336{
1337	struct memblock_region *reg;
1338
1339	numadbg("  trim_reserved_in_node(%d)\n", nid);
 
 
1340
1341	for_each_memblock(reserved, reg)
1342		reserve_range_in_node(nid, reg->base, reg->base + reg->size);
1343}
1344
1345static void __init bootmem_init_one_node(int nid)
1346{
1347	struct pglist_data *p;
1348
1349	numadbg("bootmem_init_one_node(%d)\n", nid);
 
 
1350
1351	p = NODE_DATA(nid);
 
1352
1353	if (p->node_spanned_pages) {
1354		unsigned long paddr = node_masks[nid].bootmem_paddr;
1355		unsigned long end_pfn;
 
 
 
 
1356
1357		end_pfn = p->node_start_pfn + p->node_spanned_pages;
 
 
 
 
 
1358
1359		numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1360			nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
 
 
 
1361
1362		init_bootmem_node(p, paddr >> PAGE_SHIFT,
1363				  p->node_start_pfn, end_pfn);
1364
1365		numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1366			nid, end_pfn);
1367		free_bootmem_with_active_regions(nid, end_pfn);
1368
1369		trim_reserved_in_node(nid);
 
 
1370
1371		numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1372			nid);
1373		sparse_memory_present_with_active_regions(nid);
1374	}
 
1375}
1376
1377static unsigned long __init bootmem_init(unsigned long phys_base)
 
1378{
1379	unsigned long end_pfn;
1380	int nid;
1381
1382	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1383	max_pfn = max_low_pfn = end_pfn;
1384	min_low_pfn = (phys_base >> PAGE_SHIFT);
1385
1386	if (bootmem_init_numa() < 0)
1387		bootmem_init_nonnuma();
 
 
 
 
 
1388
1389	/* XXX cpu notifier XXX */
 
 
 
 
1390
1391	for_each_online_node(nid)
1392		bootmem_init_one_node(nid);
1393
1394	sparse_init();
 
 
 
 
 
 
 
 
 
1395
1396	return end_pfn;
 
 
 
 
 
 
 
 
1397}
1398
1399static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1400static int pall_ents __initdata;
 
 
 
 
 
 
1401
1402#ifdef CONFIG_DEBUG_PAGEALLOC
1403static unsigned long __ref kernel_map_range(unsigned long pstart,
1404					    unsigned long pend, pgprot_t prot)
 
1405{
1406	unsigned long vstart = PAGE_OFFSET + pstart;
1407	unsigned long vend = PAGE_OFFSET + pend;
1408	unsigned long alloc_bytes = 0UL;
1409
1410	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1411		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1412			    vstart, vend);
1413		prom_halt();
1414	}
1415
1416	while (vstart < vend) {
1417		unsigned long this_end, paddr = __pa(vstart);
1418		pgd_t *pgd = pgd_offset_k(vstart);
1419		pud_t *pud;
1420		pmd_t *pmd;
1421		pte_t *pte;
1422
 
 
 
 
 
 
 
1423		pud = pud_offset(pgd, vstart);
1424		if (pud_none(*pud)) {
1425			pmd_t *new;
1426
 
 
 
 
1427			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1428			alloc_bytes += PAGE_SIZE;
1429			pud_populate(&init_mm, pud, new);
1430		}
1431
1432		pmd = pmd_offset(pud, vstart);
1433		if (!pmd_present(*pmd)) {
1434			pte_t *new;
1435
 
 
 
 
1436			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1437			alloc_bytes += PAGE_SIZE;
1438			pmd_populate_kernel(&init_mm, pmd, new);
1439		}
1440
1441		pte = pte_offset_kernel(pmd, vstart);
1442		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1443		if (this_end > vend)
1444			this_end = vend;
1445
1446		while (vstart < this_end) {
1447			pte_val(*pte) = (paddr | pgprot_val(prot));
1448
1449			vstart += PAGE_SIZE;
1450			paddr += PAGE_SIZE;
1451			pte++;
1452		}
1453	}
1454
1455	return alloc_bytes;
1456}
1457
1458extern unsigned int kvmap_linear_patch[1];
1459#endif /* CONFIG_DEBUG_PAGEALLOC */
1460
1461static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1462{
1463	const unsigned long shift_256MB = 28;
1464	const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1465	const unsigned long size_256MB = (1UL << shift_256MB);
1466
1467	while (start < end) {
1468		long remains;
1469
1470		remains = end - start;
1471		if (remains < size_256MB)
1472			break;
1473
1474		if (start & mask_256MB) {
1475			start = (start + size_256MB) & ~mask_256MB;
1476			continue;
1477		}
1478
1479		while (remains >= size_256MB) {
1480			unsigned long index = start >> shift_256MB;
1481
1482			__set_bit(index, kpte_linear_bitmap);
 
1483
1484			start += size_256MB;
1485			remains -= size_256MB;
1486		}
1487	}
1488}
1489
1490static void __init init_kpte_bitmap(void)
1491{
1492	unsigned long i;
1493
1494	for (i = 0; i < pall_ents; i++) {
1495		unsigned long phys_start, phys_end;
1496
1497		phys_start = pall[i].phys_addr;
1498		phys_end = phys_start + pall[i].reg_size;
1499
1500		mark_kpte_bitmap(phys_start, phys_end);
1501	}
 
1502}
1503
 
 
1504static void __init kernel_physical_mapping_init(void)
1505{
1506#ifdef CONFIG_DEBUG_PAGEALLOC
1507	unsigned long i, mem_alloced = 0UL;
 
1508
 
 
 
1509	for (i = 0; i < pall_ents; i++) {
1510		unsigned long phys_start, phys_end;
1511
1512		phys_start = pall[i].phys_addr;
1513		phys_end = phys_start + pall[i].reg_size;
1514
1515		mem_alloced += kernel_map_range(phys_start, phys_end,
1516						PAGE_KERNEL);
1517	}
1518
1519	printk("Allocated %ld bytes for kernel page tables.\n",
1520	       mem_alloced);
1521
1522	kvmap_linear_patch[0] = 0x01000000; /* nop */
1523	flushi(&kvmap_linear_patch[0]);
1524
 
 
1525	__flush_tlb_all();
1526#endif
1527}
1528
1529#ifdef CONFIG_DEBUG_PAGEALLOC
1530void kernel_map_pages(struct page *page, int numpages, int enable)
1531{
1532	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1533	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1534
1535	kernel_map_range(phys_start, phys_end,
1536			 (enable ? PAGE_KERNEL : __pgprot(0)));
1537
1538	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1539			       PAGE_OFFSET + phys_end);
1540
1541	/* we should perform an IPI and flush all tlbs,
1542	 * but that can deadlock->flush only current cpu.
1543	 */
1544	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1545				 PAGE_OFFSET + phys_end);
1546}
1547#endif
1548
1549unsigned long __init find_ecache_flush_span(unsigned long size)
1550{
1551	int i;
1552
1553	for (i = 0; i < pavail_ents; i++) {
1554		if (pavail[i].reg_size >= size)
1555			return pavail[i].phys_addr;
1556	}
1557
1558	return ~0UL;
1559}
1560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1561static void __init tsb_phys_patch(void)
1562{
1563	struct tsb_ldquad_phys_patch_entry *pquad;
1564	struct tsb_phys_patch_entry *p;
1565
1566	pquad = &__tsb_ldquad_phys_patch;
1567	while (pquad < &__tsb_ldquad_phys_patch_end) {
1568		unsigned long addr = pquad->addr;
1569
1570		if (tlb_type == hypervisor)
1571			*(unsigned int *) addr = pquad->sun4v_insn;
1572		else
1573			*(unsigned int *) addr = pquad->sun4u_insn;
1574		wmb();
1575		__asm__ __volatile__("flush	%0"
1576				     : /* no outputs */
1577				     : "r" (addr));
1578
1579		pquad++;
1580	}
1581
1582	p = &__tsb_phys_patch;
1583	while (p < &__tsb_phys_patch_end) {
1584		unsigned long addr = p->addr;
1585
1586		*(unsigned int *) addr = p->insn;
1587		wmb();
1588		__asm__ __volatile__("flush	%0"
1589				     : /* no outputs */
1590				     : "r" (addr));
1591
1592		p++;
1593	}
1594}
1595
1596/* Don't mark as init, we give this to the Hypervisor.  */
1597#ifndef CONFIG_DEBUG_PAGEALLOC
1598#define NUM_KTSB_DESCR	2
1599#else
1600#define NUM_KTSB_DESCR	1
1601#endif
1602static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1603extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
 
 
 
 
 
 
 
 
 
 
 
 
1604
1605static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1606{
1607	pa >>= KTSB_PHYS_SHIFT;
 
 
 
1608
1609	while (start < end) {
1610		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1611
1612		ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1613		__asm__ __volatile__("flush	%0" : : "r" (ia));
1614
1615		ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1616		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1617
 
 
 
 
 
 
1618		start++;
1619	}
1620}
1621
1622static void ktsb_phys_patch(void)
1623{
1624	extern unsigned int __swapper_tsb_phys_patch;
1625	extern unsigned int __swapper_tsb_phys_patch_end;
1626	unsigned long ktsb_pa;
1627
1628	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1629	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1630			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1631#ifndef CONFIG_DEBUG_PAGEALLOC
1632	{
1633	extern unsigned int __swapper_4m_tsb_phys_patch;
1634	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1635	ktsb_pa = (kern_base +
1636		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1637	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1638			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1639	}
1640#endif
1641}
1642
1643static void __init sun4v_ktsb_init(void)
1644{
1645	unsigned long ktsb_pa;
1646
1647	/* First KTSB for PAGE_SIZE mappings.  */
1648	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1649
1650	switch (PAGE_SIZE) {
1651	case 8 * 1024:
1652	default:
1653		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1654		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1655		break;
1656
1657	case 64 * 1024:
1658		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1659		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1660		break;
1661
1662	case 512 * 1024:
1663		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1664		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1665		break;
1666
1667	case 4 * 1024 * 1024:
1668		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1669		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1670		break;
1671	}
1672
1673	ktsb_descr[0].assoc = 1;
1674	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1675	ktsb_descr[0].ctx_idx = 0;
1676	ktsb_descr[0].tsb_base = ktsb_pa;
1677	ktsb_descr[0].resv = 0;
1678
1679#ifndef CONFIG_DEBUG_PAGEALLOC
1680	/* Second KTSB for 4MB/256MB mappings.  */
1681	ktsb_pa = (kern_base +
1682		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1683
1684	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1685	ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1686				   HV_PGSZ_MASK_256MB);
 
 
 
1687	ktsb_descr[1].assoc = 1;
1688	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1689	ktsb_descr[1].ctx_idx = 0;
1690	ktsb_descr[1].tsb_base = ktsb_pa;
1691	ktsb_descr[1].resv = 0;
1692#endif
1693}
1694
1695void __cpuinit sun4v_ktsb_register(void)
1696{
1697	unsigned long pa, ret;
1698
1699	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1700
1701	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1702	if (ret != 0) {
1703		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1704			    "errors with %lx\n", pa, ret);
1705		prom_halt();
1706	}
1707}
1708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709/* paging_init() sets up the page tables */
1710
1711static unsigned long last_valid_pfn;
1712pgd_t swapper_pg_dir[2048];
1713
1714static void sun4u_pgprot_init(void);
1715static void sun4v_pgprot_init(void);
1716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1717void __init paging_init(void)
1718{
1719	unsigned long end_pfn, shift, phys_base;
1720	unsigned long real_end, i;
 
 
 
1721
1722	/* These build time checkes make sure that the dcache_dirty_cpu()
1723	 * page->flags usage will work.
1724	 *
1725	 * When a page gets marked as dcache-dirty, we store the
1726	 * cpu number starting at bit 32 in the page->flags.  Also,
1727	 * functions like clear_dcache_dirty_cpu use the cpu mask
1728	 * in 13-bit signed-immediate instruction fields.
1729	 */
1730
1731	/*
1732	 * Page flags must not reach into upper 32 bits that are used
1733	 * for the cpu number
1734	 */
1735	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1736
1737	/*
1738	 * The bit fields placed in the high range must not reach below
1739	 * the 32 bit boundary. Otherwise we cannot place the cpu field
1740	 * at the 32 bit boundary.
1741	 */
1742	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1743		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1744
1745	BUILD_BUG_ON(NR_CPUS > 4096);
1746
1747	kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1748	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1749
1750	/* Invalidate both kernel TSBs.  */
1751	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1752#ifndef CONFIG_DEBUG_PAGEALLOC
1753	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1754#endif
1755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756	if (tlb_type == hypervisor)
1757		sun4v_pgprot_init();
1758	else
1759		sun4u_pgprot_init();
1760
1761	if (tlb_type == cheetah_plus ||
1762	    tlb_type == hypervisor) {
1763		tsb_phys_patch();
1764		ktsb_phys_patch();
1765	}
1766
1767	if (tlb_type == hypervisor) {
1768		sun4v_patch_tlb_handlers();
1769		sun4v_ktsb_init();
1770	}
1771
1772	memblock_init();
1773
1774	/* Find available physical memory...
1775	 *
1776	 * Read it twice in order to work around a bug in openfirmware.
1777	 * The call to grab this table itself can cause openfirmware to
1778	 * allocate memory, which in turn can take away some space from
1779	 * the list of available memory.  Reading it twice makes sure
1780	 * we really do get the final value.
1781	 */
1782	read_obp_translations();
1783	read_obp_memory("reg", &pall[0], &pall_ents);
1784	read_obp_memory("available", &pavail[0], &pavail_ents);
1785	read_obp_memory("available", &pavail[0], &pavail_ents);
1786
1787	phys_base = 0xffffffffffffffffUL;
1788	for (i = 0; i < pavail_ents; i++) {
1789		phys_base = min(phys_base, pavail[i].phys_addr);
1790		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1791	}
1792
1793	memblock_reserve(kern_base, kern_size);
1794
1795	find_ramdisk(phys_base);
1796
1797	memblock_enforce_memory_limit(cmdline_memory_size);
 
1798
1799	memblock_analyze();
1800	memblock_dump_all();
1801
1802	set_bit(0, mmu_context_bmap);
1803
1804	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1805
1806	real_end = (unsigned long)_end;
1807	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1808	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1809	       num_kernel_image_mappings);
1810
1811	/* Set kernel pgd to upper alias so physical page computations
1812	 * work.
1813	 */
1814	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1815	
1816	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1817
1818	/* Now can init the kernel/bad page tables. */
1819	pud_set(pud_offset(&swapper_pg_dir[0], 0),
1820		swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1821	
1822	inherit_prom_mappings();
1823	
1824	init_kpte_bitmap();
1825
1826	/* Ok, we can use our TLB miss and window trap handlers safely.  */
1827	setup_tba();
1828
1829	__flush_tlb_all();
1830
1831	if (tlb_type == hypervisor)
1832		sun4v_ktsb_register();
1833
1834	prom_build_devicetree();
1835	of_populate_present_mask();
1836#ifndef CONFIG_SMP
1837	of_fill_in_cpu_data();
1838#endif
1839
1840	if (tlb_type == hypervisor) {
1841		sun4v_mdesc_init();
1842		mdesc_populate_present_mask(cpu_all_mask);
1843#ifndef CONFIG_SMP
1844		mdesc_fill_in_cpu_data(cpu_all_mask);
1845#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1846	}
1847
 
 
 
 
 
 
 
 
 
 
 
 
1848	/* Once the OF device tree and MDESC have been setup, we know
1849	 * the list of possible cpus.  Therefore we can allocate the
1850	 * IRQ stacks.
1851	 */
1852	for_each_possible_cpu(i) {
1853		/* XXX Use node local allocations... XXX */
1854		softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1855		hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1856	}
1857
1858	/* Setup bootmem... */
1859	last_valid_pfn = end_pfn = bootmem_init(phys_base);
 
 
 
 
 
1860
1861#ifndef CONFIG_NEED_MULTIPLE_NODES
1862	max_mapnr = last_valid_pfn;
1863#endif
1864	kernel_physical_mapping_init();
1865
1866	{
1867		unsigned long max_zone_pfns[MAX_NR_ZONES];
1868
1869		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1870
1871		max_zone_pfns[ZONE_NORMAL] = end_pfn;
1872
1873		free_area_init_nodes(max_zone_pfns);
1874	}
1875
1876	printk("Booting Linux...\n");
1877}
1878
1879int __devinit page_in_phys_avail(unsigned long paddr)
1880{
1881	int i;
1882
1883	paddr &= PAGE_MASK;
1884
1885	for (i = 0; i < pavail_ents; i++) {
1886		unsigned long start, end;
1887
1888		start = pavail[i].phys_addr;
1889		end = start + pavail[i].reg_size;
1890
1891		if (paddr >= start && paddr < end)
1892			return 1;
1893	}
1894	if (paddr >= kern_base && paddr < (kern_base + kern_size))
1895		return 1;
1896#ifdef CONFIG_BLK_DEV_INITRD
1897	if (paddr >= __pa(initrd_start) &&
1898	    paddr < __pa(PAGE_ALIGN(initrd_end)))
1899		return 1;
1900#endif
1901
1902	return 0;
1903}
1904
1905static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1906static int pavail_rescan_ents __initdata;
1907
1908/* Certain OBP calls, such as fetching "available" properties, can
1909 * claim physical memory.  So, along with initializing the valid
1910 * address bitmap, what we do here is refetch the physical available
1911 * memory list again, and make sure it provides at least as much
1912 * memory as 'pavail' does.
1913 */
1914static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1915{
 
1916	int i;
1917
1918	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1919
1920	for (i = 0; i < pavail_ents; i++) {
1921		unsigned long old_start, old_end;
1922
1923		old_start = pavail[i].phys_addr;
1924		old_end = old_start + pavail[i].reg_size;
1925		while (old_start < old_end) {
1926			int n;
1927
1928			for (n = 0; n < pavail_rescan_ents; n++) {
1929				unsigned long new_start, new_end;
1930
1931				new_start = pavail_rescan[n].phys_addr;
1932				new_end = new_start +
1933					pavail_rescan[n].reg_size;
1934
1935				if (new_start <= old_start &&
1936				    new_end >= (old_start + PAGE_SIZE)) {
1937					set_bit(old_start >> 22, bitmap);
1938					goto do_next_page;
1939				}
1940			}
1941
1942			prom_printf("mem_init: Lost memory in pavail\n");
1943			prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1944				    pavail[i].phys_addr,
1945				    pavail[i].reg_size);
1946			prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1947				    pavail_rescan[i].phys_addr,
1948				    pavail_rescan[i].reg_size);
1949			prom_printf("mem_init: Cannot continue, aborting.\n");
1950			prom_halt();
1951
1952		do_next_page:
1953			old_start += PAGE_SIZE;
1954		}
1955	}
1956}
1957
1958static void __init patch_tlb_miss_handler_bitmap(void)
1959{
1960	extern unsigned int valid_addr_bitmap_insn[];
1961	extern unsigned int valid_addr_bitmap_patch[];
1962
1963	valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1964	mb();
1965	valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1966	flushi(&valid_addr_bitmap_insn[0]);
1967}
1968
1969void __init mem_init(void)
1970{
1971	unsigned long codepages, datapages, initpages;
1972	unsigned long addr, last;
1973
1974	addr = PAGE_OFFSET + kern_base;
1975	last = PAGE_ALIGN(kern_size) + addr;
1976	while (addr < last) {
1977		set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1978		addr += PAGE_SIZE;
1979	}
1980
1981	setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1982	patch_tlb_miss_handler_bitmap();
1983
1984	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1985
1986#ifdef CONFIG_NEED_MULTIPLE_NODES
1987	{
1988		int i;
1989		for_each_online_node(i) {
1990			if (NODE_DATA(i)->node_spanned_pages != 0) {
1991				totalram_pages +=
1992					free_all_bootmem_node(NODE_DATA(i));
1993			}
1994		}
1995	}
1996#else
1997	totalram_pages = free_all_bootmem();
1998#endif
1999
2000	/* We subtract one to account for the mem_map_zero page
2001	 * allocated below.
2002	 */
2003	totalram_pages -= 1;
2004	num_physpages = totalram_pages;
2005
2006	/*
2007	 * Set up the zero page, mark it reserved, so that page count
2008	 * is not manipulated when freeing the page from user ptes.
2009	 */
2010	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2011	if (mem_map_zero == NULL) {
2012		prom_printf("paging_init: Cannot alloc zero page.\n");
2013		prom_halt();
2014	}
2015	SetPageReserved(mem_map_zero);
2016
2017	codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2018	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2019	datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2020	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2021	initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2022	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2023
2024	printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2025	       nr_free_pages() << (PAGE_SHIFT-10),
2026	       codepages << (PAGE_SHIFT-10),
2027	       datapages << (PAGE_SHIFT-10), 
2028	       initpages << (PAGE_SHIFT-10), 
2029	       PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2030
2031	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2032		cheetah_ecache_flush_init();
2033}
2034
2035void free_initmem(void)
2036{
2037	unsigned long addr, initend;
2038	int do_free = 1;
2039
2040	/* If the physical memory maps were trimmed by kernel command
2041	 * line options, don't even try freeing this initmem stuff up.
2042	 * The kernel image could have been in the trimmed out region
2043	 * and if so the freeing below will free invalid page structs.
2044	 */
2045	if (cmdline_memory_size)
2046		do_free = 0;
2047
2048	/*
2049	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2050	 */
2051	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2052	initend = (unsigned long)(__init_end) & PAGE_MASK;
2053	for (; addr < initend; addr += PAGE_SIZE) {
2054		unsigned long page;
2055		struct page *p;
2056
2057		page = (addr +
2058			((unsigned long) __va(kern_base)) -
2059			((unsigned long) KERNBASE));
2060		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2061
2062		if (do_free) {
2063			p = virt_to_page(page);
2064
2065			ClearPageReserved(p);
2066			init_page_count(p);
2067			__free_page(p);
2068			num_physpages++;
2069			totalram_pages++;
2070		}
2071	}
2072}
2073
2074#ifdef CONFIG_BLK_DEV_INITRD
2075void free_initrd_mem(unsigned long start, unsigned long end)
2076{
2077	if (start < end)
2078		printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2079	for (; start < end; start += PAGE_SIZE) {
2080		struct page *p = virt_to_page(start);
2081
2082		ClearPageReserved(p);
2083		init_page_count(p);
2084		__free_page(p);
2085		num_physpages++;
2086		totalram_pages++;
2087	}
2088}
2089#endif
2090
2091#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2092#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2093#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2094#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2095#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2096#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2097
2098pgprot_t PAGE_KERNEL __read_mostly;
2099EXPORT_SYMBOL(PAGE_KERNEL);
2100
2101pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2102pgprot_t PAGE_COPY __read_mostly;
2103
2104pgprot_t PAGE_SHARED __read_mostly;
2105EXPORT_SYMBOL(PAGE_SHARED);
2106
2107unsigned long pg_iobits __read_mostly;
2108
2109unsigned long _PAGE_IE __read_mostly;
2110EXPORT_SYMBOL(_PAGE_IE);
2111
2112unsigned long _PAGE_E __read_mostly;
2113EXPORT_SYMBOL(_PAGE_E);
2114
2115unsigned long _PAGE_CACHE __read_mostly;
2116EXPORT_SYMBOL(_PAGE_CACHE);
2117
2118#ifdef CONFIG_SPARSEMEM_VMEMMAP
2119unsigned long vmemmap_table[VMEMMAP_SIZE];
2120
2121int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2122{
2123	unsigned long vstart = (unsigned long) start;
2124	unsigned long vend = (unsigned long) (start + nr);
2125	unsigned long phys_start = (vstart - VMEMMAP_BASE);
2126	unsigned long phys_end = (vend - VMEMMAP_BASE);
2127	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2128	unsigned long end = VMEMMAP_ALIGN(phys_end);
2129	unsigned long pte_base;
2130
2131	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2132		    _PAGE_CP_4U | _PAGE_CV_4U |
2133		    _PAGE_P_4U | _PAGE_W_4U);
2134	if (tlb_type == hypervisor)
2135		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2136			    _PAGE_CP_4V | _PAGE_CV_4V |
2137			    _PAGE_P_4V | _PAGE_W_4V);
2138
2139	for (; addr < end; addr += VMEMMAP_CHUNK) {
2140		unsigned long *vmem_pp =
2141			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2142		void *block;
2143
2144		if (!(*vmem_pp & _PAGE_VALID)) {
2145			block = vmemmap_alloc_block(1UL << 22, node);
2146			if (!block)
 
 
 
 
 
 
 
 
 
2147				return -ENOMEM;
 
 
2148
2149			*vmem_pp = pte_base | __pa(block);
 
 
2150
2151			printk(KERN_INFO "[%p-%p] page_structs=%lu "
2152			       "node=%d entry=%lu/%lu\n", start, block, nr,
2153			       node,
2154			       addr >> VMEMMAP_CHUNK_SHIFT,
2155			       VMEMMAP_SIZE);
 
 
 
 
 
 
 
 
 
 
2156		}
2157	}
 
2158	return 0;
2159}
 
 
 
 
2160#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2161
2162static void prot_init_common(unsigned long page_none,
2163			     unsigned long page_shared,
2164			     unsigned long page_copy,
2165			     unsigned long page_readonly,
2166			     unsigned long page_exec_bit)
2167{
2168	PAGE_COPY = __pgprot(page_copy);
2169	PAGE_SHARED = __pgprot(page_shared);
2170
2171	protection_map[0x0] = __pgprot(page_none);
2172	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2173	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2174	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2175	protection_map[0x4] = __pgprot(page_readonly);
2176	protection_map[0x5] = __pgprot(page_readonly);
2177	protection_map[0x6] = __pgprot(page_copy);
2178	protection_map[0x7] = __pgprot(page_copy);
2179	protection_map[0x8] = __pgprot(page_none);
2180	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2181	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2182	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2183	protection_map[0xc] = __pgprot(page_readonly);
2184	protection_map[0xd] = __pgprot(page_readonly);
2185	protection_map[0xe] = __pgprot(page_shared);
2186	protection_map[0xf] = __pgprot(page_shared);
2187}
2188
2189static void __init sun4u_pgprot_init(void)
2190{
2191	unsigned long page_none, page_shared, page_copy, page_readonly;
2192	unsigned long page_exec_bit;
 
2193
2194	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2195				_PAGE_CACHE_4U | _PAGE_P_4U |
2196				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2197				_PAGE_EXEC_4U);
2198	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2199				       _PAGE_CACHE_4U | _PAGE_P_4U |
2200				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2201				       _PAGE_EXEC_4U | _PAGE_L_4U);
2202
2203	_PAGE_IE = _PAGE_IE_4U;
2204	_PAGE_E = _PAGE_E_4U;
2205	_PAGE_CACHE = _PAGE_CACHE_4U;
2206
2207	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2208		     __ACCESS_BITS_4U | _PAGE_E_4U);
2209
2210#ifdef CONFIG_DEBUG_PAGEALLOC
2211	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2212		0xfffff80000000000UL;
2213#else
2214	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2215		0xfffff80000000000UL;
2216#endif
2217	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2218				   _PAGE_P_4U | _PAGE_W_4U);
2219
2220	/* XXX Should use 256MB on Panther. XXX */
2221	kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2222
2223	_PAGE_SZBITS = _PAGE_SZBITS_4U;
2224	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2225			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2226			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2227
2228
2229	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2230	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2231		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2232	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2233		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2234	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2235			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2236
2237	page_exec_bit = _PAGE_EXEC_4U;
2238
2239	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2240			 page_exec_bit);
2241}
2242
2243static void __init sun4v_pgprot_init(void)
2244{
2245	unsigned long page_none, page_shared, page_copy, page_readonly;
2246	unsigned long page_exec_bit;
 
2247
2248	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2249				_PAGE_CACHE_4V | _PAGE_P_4V |
2250				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2251				_PAGE_EXEC_4V);
2252	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2253
2254	_PAGE_IE = _PAGE_IE_4V;
2255	_PAGE_E = _PAGE_E_4V;
2256	_PAGE_CACHE = _PAGE_CACHE_4V;
2257
2258#ifdef CONFIG_DEBUG_PAGEALLOC
2259	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2260		0xfffff80000000000UL;
2261#else
2262	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2263		0xfffff80000000000UL;
2264#endif
2265	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2266				   _PAGE_P_4V | _PAGE_W_4V);
2267
2268#ifdef CONFIG_DEBUG_PAGEALLOC
2269	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2270		0xfffff80000000000UL;
2271#else
2272	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2273		0xfffff80000000000UL;
2274#endif
2275	kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2276				   _PAGE_P_4V | _PAGE_W_4V);
2277
2278	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2279		     __ACCESS_BITS_4V | _PAGE_E_4V);
2280
2281	_PAGE_SZBITS = _PAGE_SZBITS_4V;
2282	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2283			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2284			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2285			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2286
2287	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2288	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2289		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2290	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2291		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2292	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2293			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2294
2295	page_exec_bit = _PAGE_EXEC_4V;
2296
2297	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2298			 page_exec_bit);
2299}
2300
2301unsigned long pte_sz_bits(unsigned long sz)
2302{
2303	if (tlb_type == hypervisor) {
2304		switch (sz) {
2305		case 8 * 1024:
2306		default:
2307			return _PAGE_SZ8K_4V;
2308		case 64 * 1024:
2309			return _PAGE_SZ64K_4V;
2310		case 512 * 1024:
2311			return _PAGE_SZ512K_4V;
2312		case 4 * 1024 * 1024:
2313			return _PAGE_SZ4MB_4V;
2314		}
2315	} else {
2316		switch (sz) {
2317		case 8 * 1024:
2318		default:
2319			return _PAGE_SZ8K_4U;
2320		case 64 * 1024:
2321			return _PAGE_SZ64K_4U;
2322		case 512 * 1024:
2323			return _PAGE_SZ512K_4U;
2324		case 4 * 1024 * 1024:
2325			return _PAGE_SZ4MB_4U;
2326		}
2327	}
2328}
2329
2330pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2331{
2332	pte_t pte;
2333
2334	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2335	pte_val(pte) |= (((unsigned long)space) << 32);
2336	pte_val(pte) |= pte_sz_bits(page_size);
2337
2338	return pte;
2339}
2340
2341static unsigned long kern_large_tte(unsigned long paddr)
2342{
2343	unsigned long val;
2344
2345	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2346	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2347	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2348	if (tlb_type == hypervisor)
2349		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2350		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2351		       _PAGE_EXEC_4V | _PAGE_W_4V);
2352
2353	return val | paddr;
2354}
2355
2356/* If not locked, zap it. */
2357void __flush_tlb_all(void)
2358{
2359	unsigned long pstate;
2360	int i;
2361
2362	__asm__ __volatile__("flushw\n\t"
2363			     "rdpr	%%pstate, %0\n\t"
2364			     "wrpr	%0, %1, %%pstate"
2365			     : "=r" (pstate)
2366			     : "i" (PSTATE_IE));
2367	if (tlb_type == hypervisor) {
2368		sun4v_mmu_demap_all();
2369	} else if (tlb_type == spitfire) {
2370		for (i = 0; i < 64; i++) {
2371			/* Spitfire Errata #32 workaround */
2372			/* NOTE: Always runs on spitfire, so no
2373			 *       cheetah+ page size encodings.
2374			 */
2375			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2376					     "flush	%%g6"
2377					     : /* No outputs */
2378					     : "r" (0),
2379					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2380
2381			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2382				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2383						     "membar #Sync"
2384						     : /* no outputs */
2385						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2386				spitfire_put_dtlb_data(i, 0x0UL);
2387			}
2388
2389			/* Spitfire Errata #32 workaround */
2390			/* NOTE: Always runs on spitfire, so no
2391			 *       cheetah+ page size encodings.
2392			 */
2393			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2394					     "flush	%%g6"
2395					     : /* No outputs */
2396					     : "r" (0),
2397					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2398
2399			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2400				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2401						     "membar #Sync"
2402						     : /* no outputs */
2403						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2404				spitfire_put_itlb_data(i, 0x0UL);
2405			}
2406		}
2407	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2408		cheetah_flush_dtlb_all();
2409		cheetah_flush_itlb_all();
2410	}
2411	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2412			     : : "r" (pstate));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2413}
v4.6
   1/*
   2 *  arch/sparc64/mm/init.c
   3 *
   4 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   5 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   6 */
   7 
   8#include <linux/module.h>
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/string.h>
  12#include <linux/init.h>
  13#include <linux/bootmem.h>
  14#include <linux/mm.h>
  15#include <linux/hugetlb.h>
  16#include <linux/initrd.h>
  17#include <linux/swap.h>
  18#include <linux/pagemap.h>
  19#include <linux/poison.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/kprobes.h>
  23#include <linux/cache.h>
  24#include <linux/sort.h>
  25#include <linux/ioport.h>
  26#include <linux/percpu.h>
  27#include <linux/memblock.h>
  28#include <linux/mmzone.h>
  29#include <linux/gfp.h>
  30
  31#include <asm/head.h>
 
  32#include <asm/page.h>
  33#include <asm/pgalloc.h>
  34#include <asm/pgtable.h>
  35#include <asm/oplib.h>
  36#include <asm/iommu.h>
  37#include <asm/io.h>
  38#include <asm/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/tlbflush.h>
  41#include <asm/dma.h>
  42#include <asm/starfire.h>
  43#include <asm/tlb.h>
  44#include <asm/spitfire.h>
  45#include <asm/sections.h>
  46#include <asm/tsb.h>
  47#include <asm/hypervisor.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/cpudata.h>
  51#include <asm/setup.h>
  52#include <asm/irq.h>
  53
  54#include "init_64.h"
  55
  56unsigned long kern_linear_pte_xor[4] __read_mostly;
  57static unsigned long page_cache4v_flag;
  58
  59/* A bitmap, two bits for every 256MB of physical memory.  These two
  60 * bits determine what page size we use for kernel linear
  61 * translations.  They form an index into kern_linear_pte_xor[].  The
  62 * value in the indexed slot is XOR'd with the TLB miss virtual
  63 * address to form the resulting TTE.  The mapping is:
  64 *
  65 *	0	==>	4MB
  66 *	1	==>	256MB
  67 *	2	==>	2GB
  68 *	3	==>	16GB
  69 *
  70 * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
  71 * support 2GB pages, and hopefully future cpus will support the 16GB
  72 * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
  73 * if these larger page sizes are not supported by the cpu.
  74 *
  75 * It would be nice to determine this from the machine description
  76 * 'cpu' properties, but we need to have this table setup before the
  77 * MDESC is initialized.
  78 */
 
  79
  80#ifndef CONFIG_DEBUG_PAGEALLOC
  81/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
  82 * Space is allocated for this right after the trap table in
  83 * arch/sparc64/kernel/head.S
  84 */
  85extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  86#endif
  87extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  88
  89static unsigned long cpu_pgsz_mask;
  90
  91#define MAX_BANKS	1024
  92
  93static struct linux_prom64_registers pavail[MAX_BANKS];
  94static int pavail_ents;
  95
  96u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
  97
  98static int cmp_p64(const void *a, const void *b)
  99{
 100	const struct linux_prom64_registers *x = a, *y = b;
 101
 102	if (x->phys_addr > y->phys_addr)
 103		return 1;
 104	if (x->phys_addr < y->phys_addr)
 105		return -1;
 106	return 0;
 107}
 108
 109static void __init read_obp_memory(const char *property,
 110				   struct linux_prom64_registers *regs,
 111				   int *num_ents)
 112{
 113	phandle node = prom_finddevice("/memory");
 114	int prop_size = prom_getproplen(node, property);
 115	int ents, ret, i;
 116
 117	ents = prop_size / sizeof(struct linux_prom64_registers);
 118	if (ents > MAX_BANKS) {
 119		prom_printf("The machine has more %s property entries than "
 120			    "this kernel can support (%d).\n",
 121			    property, MAX_BANKS);
 122		prom_halt();
 123	}
 124
 125	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 126	if (ret == -1) {
 127		prom_printf("Couldn't get %s property from /memory.\n",
 128				property);
 129		prom_halt();
 130	}
 131
 132	/* Sanitize what we got from the firmware, by page aligning
 133	 * everything.
 134	 */
 135	for (i = 0; i < ents; i++) {
 136		unsigned long base, size;
 137
 138		base = regs[i].phys_addr;
 139		size = regs[i].reg_size;
 140
 141		size &= PAGE_MASK;
 142		if (base & ~PAGE_MASK) {
 143			unsigned long new_base = PAGE_ALIGN(base);
 144
 145			size -= new_base - base;
 146			if ((long) size < 0L)
 147				size = 0UL;
 148			base = new_base;
 149		}
 150		if (size == 0UL) {
 151			/* If it is empty, simply get rid of it.
 152			 * This simplifies the logic of the other
 153			 * functions that process these arrays.
 154			 */
 155			memmove(&regs[i], &regs[i + 1],
 156				(ents - i - 1) * sizeof(regs[0]));
 157			i--;
 158			ents--;
 159			continue;
 160		}
 161		regs[i].phys_addr = base;
 162		regs[i].reg_size = size;
 163	}
 164
 165	*num_ents = ents;
 166
 167	sort(regs, ents, sizeof(struct linux_prom64_registers),
 168	     cmp_p64, NULL);
 169}
 170
 
 
 
 
 171/* Kernel physical address base and size in bytes.  */
 172unsigned long kern_base __read_mostly;
 173unsigned long kern_size __read_mostly;
 174
 175/* Initial ramdisk setup */
 176extern unsigned long sparc_ramdisk_image64;
 177extern unsigned int sparc_ramdisk_image;
 178extern unsigned int sparc_ramdisk_size;
 179
 180struct page *mem_map_zero __read_mostly;
 181EXPORT_SYMBOL(mem_map_zero);
 182
 183unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 184
 185unsigned long sparc64_kern_pri_context __read_mostly;
 186unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 187unsigned long sparc64_kern_sec_context __read_mostly;
 188
 189int num_kernel_image_mappings;
 190
 191#ifdef CONFIG_DEBUG_DCFLUSH
 192atomic_t dcpage_flushes = ATOMIC_INIT(0);
 193#ifdef CONFIG_SMP
 194atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 195#endif
 196#endif
 197
 198inline void flush_dcache_page_impl(struct page *page)
 199{
 200	BUG_ON(tlb_type == hypervisor);
 201#ifdef CONFIG_DEBUG_DCFLUSH
 202	atomic_inc(&dcpage_flushes);
 203#endif
 204
 205#ifdef DCACHE_ALIASING_POSSIBLE
 206	__flush_dcache_page(page_address(page),
 207			    ((tlb_type == spitfire) &&
 208			     page_mapping(page) != NULL));
 209#else
 210	if (page_mapping(page) != NULL &&
 211	    tlb_type == spitfire)
 212		__flush_icache_page(__pa(page_address(page)));
 213#endif
 214}
 215
 216#define PG_dcache_dirty		PG_arch_1
 217#define PG_dcache_cpu_shift	32UL
 218#define PG_dcache_cpu_mask	\
 219	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 220
 221#define dcache_dirty_cpu(page) \
 222	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 223
 224static inline void set_dcache_dirty(struct page *page, int this_cpu)
 225{
 226	unsigned long mask = this_cpu;
 227	unsigned long non_cpu_bits;
 228
 229	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 230	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 231
 232	__asm__ __volatile__("1:\n\t"
 233			     "ldx	[%2], %%g7\n\t"
 234			     "and	%%g7, %1, %%g1\n\t"
 235			     "or	%%g1, %0, %%g1\n\t"
 236			     "casx	[%2], %%g7, %%g1\n\t"
 237			     "cmp	%%g7, %%g1\n\t"
 238			     "bne,pn	%%xcc, 1b\n\t"
 239			     " nop"
 240			     : /* no outputs */
 241			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 242			     : "g1", "g7");
 243}
 244
 245static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 246{
 247	unsigned long mask = (1UL << PG_dcache_dirty);
 248
 249	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 250			     "1:\n\t"
 251			     "ldx	[%2], %%g7\n\t"
 252			     "srlx	%%g7, %4, %%g1\n\t"
 253			     "and	%%g1, %3, %%g1\n\t"
 254			     "cmp	%%g1, %0\n\t"
 255			     "bne,pn	%%icc, 2f\n\t"
 256			     " andn	%%g7, %1, %%g1\n\t"
 257			     "casx	[%2], %%g7, %%g1\n\t"
 258			     "cmp	%%g7, %%g1\n\t"
 259			     "bne,pn	%%xcc, 1b\n\t"
 260			     " nop\n"
 261			     "2:"
 262			     : /* no outputs */
 263			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 264			       "i" (PG_dcache_cpu_mask),
 265			       "i" (PG_dcache_cpu_shift)
 266			     : "g1", "g7");
 267}
 268
 269static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 270{
 271	unsigned long tsb_addr = (unsigned long) ent;
 272
 273	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 274		tsb_addr = __pa(tsb_addr);
 275
 276	__tsb_insert(tsb_addr, tag, pte);
 277}
 278
 279unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 
 280
 281static void flush_dcache(unsigned long pfn)
 282{
 283	struct page *page;
 284
 285	page = pfn_to_page(pfn);
 286	if (page) {
 287		unsigned long pg_flags;
 288
 289		pg_flags = page->flags;
 290		if (pg_flags & (1UL << PG_dcache_dirty)) {
 291			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 292				   PG_dcache_cpu_mask);
 293			int this_cpu = get_cpu();
 294
 295			/* This is just to optimize away some function calls
 296			 * in the SMP case.
 297			 */
 298			if (cpu == this_cpu)
 299				flush_dcache_page_impl(page);
 300			else
 301				smp_flush_dcache_page_impl(page, cpu);
 302
 303			clear_dcache_dirty_cpu(page, cpu);
 304
 305			put_cpu();
 306		}
 307	}
 308}
 309
 310/* mm->context.lock must be held */
 311static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
 312				    unsigned long tsb_hash_shift, unsigned long address,
 313				    unsigned long tte)
 314{
 315	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
 316	unsigned long tag;
 317
 318	if (unlikely(!tsb))
 319		return;
 320
 321	tsb += ((address >> tsb_hash_shift) &
 322		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 323	tag = (address >> 22UL);
 324	tsb_insert(tsb, tag, tte);
 325}
 326
 327#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 328static inline bool is_hugetlb_pte(pte_t pte)
 329{
 330	if ((tlb_type == hypervisor &&
 331	     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
 332	    (tlb_type != hypervisor &&
 333	     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
 334		return true;
 335	return false;
 336}
 337#endif
 338
 339void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 340{
 341	struct mm_struct *mm;
 342	unsigned long flags;
 
 
 343	pte_t pte = *ptep;
 344
 345	if (tlb_type != hypervisor) {
 346		unsigned long pfn = pte_pfn(pte);
 347
 348		if (pfn_valid(pfn))
 349			flush_dcache(pfn);
 350	}
 351
 352	mm = vma->vm_mm;
 353
 354	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
 355	if (!pte_accessible(mm, pte))
 356		return;
 357
 358	spin_lock_irqsave(&mm->context.lock, flags);
 359
 360#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 361	if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
 362		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
 363					address, pte_val(pte));
 364	else
 
 
 
 
 
 365#endif
 366		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
 367					address, pte_val(pte));
 
 
 
 
 368
 369	spin_unlock_irqrestore(&mm->context.lock, flags);
 370}
 371
 372void flush_dcache_page(struct page *page)
 373{
 374	struct address_space *mapping;
 375	int this_cpu;
 376
 377	if (tlb_type == hypervisor)
 378		return;
 379
 380	/* Do not bother with the expensive D-cache flush if it
 381	 * is merely the zero page.  The 'bigcore' testcase in GDB
 382	 * causes this case to run millions of times.
 383	 */
 384	if (page == ZERO_PAGE(0))
 385		return;
 386
 387	this_cpu = get_cpu();
 388
 389	mapping = page_mapping(page);
 390	if (mapping && !mapping_mapped(mapping)) {
 391		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 392		if (dirty) {
 393			int dirty_cpu = dcache_dirty_cpu(page);
 394
 395			if (dirty_cpu == this_cpu)
 396				goto out;
 397			smp_flush_dcache_page_impl(page, dirty_cpu);
 398		}
 399		set_dcache_dirty(page, this_cpu);
 400	} else {
 401		/* We could delay the flush for the !page_mapping
 402		 * case too.  But that case is for exec env/arg
 403		 * pages and those are %99 certainly going to get
 404		 * faulted into the tlb (and thus flushed) anyways.
 405		 */
 406		flush_dcache_page_impl(page);
 407	}
 408
 409out:
 410	put_cpu();
 411}
 412EXPORT_SYMBOL(flush_dcache_page);
 413
 414void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 415{
 416	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 417	if (tlb_type == spitfire) {
 418		unsigned long kaddr;
 419
 420		/* This code only runs on Spitfire cpus so this is
 421		 * why we can assume _PAGE_PADDR_4U.
 422		 */
 423		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 424			unsigned long paddr, mask = _PAGE_PADDR_4U;
 425
 426			if (kaddr >= PAGE_OFFSET)
 427				paddr = kaddr & mask;
 428			else {
 429				pgd_t *pgdp = pgd_offset_k(kaddr);
 430				pud_t *pudp = pud_offset(pgdp, kaddr);
 431				pmd_t *pmdp = pmd_offset(pudp, kaddr);
 432				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 433
 434				paddr = pte_val(*ptep) & mask;
 435			}
 436			__flush_icache_page(paddr);
 437		}
 438	}
 439}
 440EXPORT_SYMBOL(flush_icache_range);
 441
 442void mmu_info(struct seq_file *m)
 443{
 444	static const char *pgsz_strings[] = {
 445		"8K", "64K", "512K", "4MB", "32MB",
 446		"256MB", "2GB", "16GB",
 447	};
 448	int i, printed;
 449
 450	if (tlb_type == cheetah)
 451		seq_printf(m, "MMU Type\t: Cheetah\n");
 452	else if (tlb_type == cheetah_plus)
 453		seq_printf(m, "MMU Type\t: Cheetah+\n");
 454	else if (tlb_type == spitfire)
 455		seq_printf(m, "MMU Type\t: Spitfire\n");
 456	else if (tlb_type == hypervisor)
 457		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 458	else
 459		seq_printf(m, "MMU Type\t: ???\n");
 460
 461	seq_printf(m, "MMU PGSZs\t: ");
 462	printed = 0;
 463	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
 464		if (cpu_pgsz_mask & (1UL << i)) {
 465			seq_printf(m, "%s%s",
 466				   printed ? "," : "", pgsz_strings[i]);
 467			printed++;
 468		}
 469	}
 470	seq_putc(m, '\n');
 471
 472#ifdef CONFIG_DEBUG_DCFLUSH
 473	seq_printf(m, "DCPageFlushes\t: %d\n",
 474		   atomic_read(&dcpage_flushes));
 475#ifdef CONFIG_SMP
 476	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 477		   atomic_read(&dcpage_flushes_xcall));
 478#endif /* CONFIG_SMP */
 479#endif /* CONFIG_DEBUG_DCFLUSH */
 480}
 481
 482struct linux_prom_translation prom_trans[512] __read_mostly;
 483unsigned int prom_trans_ents __read_mostly;
 484
 485unsigned long kern_locked_tte_data;
 486
 487/* The obp translations are saved based on 8k pagesize, since obp can
 488 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 489 * HI_OBP_ADDRESS range are handled in ktlb.S.
 490 */
 491static inline int in_obp_range(unsigned long vaddr)
 492{
 493	return (vaddr >= LOW_OBP_ADDRESS &&
 494		vaddr < HI_OBP_ADDRESS);
 495}
 496
 497static int cmp_ptrans(const void *a, const void *b)
 498{
 499	const struct linux_prom_translation *x = a, *y = b;
 500
 501	if (x->virt > y->virt)
 502		return 1;
 503	if (x->virt < y->virt)
 504		return -1;
 505	return 0;
 506}
 507
 508/* Read OBP translations property into 'prom_trans[]'.  */
 509static void __init read_obp_translations(void)
 510{
 511	int n, node, ents, first, last, i;
 512
 513	node = prom_finddevice("/virtual-memory");
 514	n = prom_getproplen(node, "translations");
 515	if (unlikely(n == 0 || n == -1)) {
 516		prom_printf("prom_mappings: Couldn't get size.\n");
 517		prom_halt();
 518	}
 519	if (unlikely(n > sizeof(prom_trans))) {
 520		prom_printf("prom_mappings: Size %d is too big.\n", n);
 521		prom_halt();
 522	}
 523
 524	if ((n = prom_getproperty(node, "translations",
 525				  (char *)&prom_trans[0],
 526				  sizeof(prom_trans))) == -1) {
 527		prom_printf("prom_mappings: Couldn't get property.\n");
 528		prom_halt();
 529	}
 530
 531	n = n / sizeof(struct linux_prom_translation);
 532
 533	ents = n;
 534
 535	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 536	     cmp_ptrans, NULL);
 537
 538	/* Now kick out all the non-OBP entries.  */
 539	for (i = 0; i < ents; i++) {
 540		if (in_obp_range(prom_trans[i].virt))
 541			break;
 542	}
 543	first = i;
 544	for (; i < ents; i++) {
 545		if (!in_obp_range(prom_trans[i].virt))
 546			break;
 547	}
 548	last = i;
 549
 550	for (i = 0; i < (last - first); i++) {
 551		struct linux_prom_translation *src = &prom_trans[i + first];
 552		struct linux_prom_translation *dest = &prom_trans[i];
 553
 554		*dest = *src;
 555	}
 556	for (; i < ents; i++) {
 557		struct linux_prom_translation *dest = &prom_trans[i];
 558		dest->virt = dest->size = dest->data = 0x0UL;
 559	}
 560
 561	prom_trans_ents = last - first;
 562
 563	if (tlb_type == spitfire) {
 564		/* Clear diag TTE bits. */
 565		for (i = 0; i < prom_trans_ents; i++)
 566			prom_trans[i].data &= ~0x0003fe0000000000UL;
 567	}
 568
 569	/* Force execute bit on.  */
 570	for (i = 0; i < prom_trans_ents; i++)
 571		prom_trans[i].data |= (tlb_type == hypervisor ?
 572				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 573}
 574
 575static void __init hypervisor_tlb_lock(unsigned long vaddr,
 576				       unsigned long pte,
 577				       unsigned long mmu)
 578{
 579	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 580
 581	if (ret != 0) {
 582		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
 583			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 584		prom_halt();
 585	}
 586}
 587
 588static unsigned long kern_large_tte(unsigned long paddr);
 589
 590static void __init remap_kernel(void)
 591{
 592	unsigned long phys_page, tte_vaddr, tte_data;
 593	int i, tlb_ent = sparc64_highest_locked_tlbent();
 594
 595	tte_vaddr = (unsigned long) KERNBASE;
 596	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
 597	tte_data = kern_large_tte(phys_page);
 598
 599	kern_locked_tte_data = tte_data;
 600
 601	/* Now lock us into the TLBs via Hypervisor or OBP. */
 602	if (tlb_type == hypervisor) {
 603		for (i = 0; i < num_kernel_image_mappings; i++) {
 604			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 605			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 606			tte_vaddr += 0x400000;
 607			tte_data += 0x400000;
 608		}
 609	} else {
 610		for (i = 0; i < num_kernel_image_mappings; i++) {
 611			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 612			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 613			tte_vaddr += 0x400000;
 614			tte_data += 0x400000;
 615		}
 616		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 617	}
 618	if (tlb_type == cheetah_plus) {
 619		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 620					    CTX_CHEETAH_PLUS_NUC);
 621		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 622		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 623	}
 624}
 625
 626
 627static void __init inherit_prom_mappings(void)
 628{
 629	/* Now fixup OBP's idea about where we really are mapped. */
 630	printk("Remapping the kernel... ");
 631	remap_kernel();
 632	printk("done.\n");
 633}
 634
 635void prom_world(int enter)
 636{
 637	if (!enter)
 638		set_fs(get_fs());
 639
 640	__asm__ __volatile__("flushw");
 641}
 642
 643void __flush_dcache_range(unsigned long start, unsigned long end)
 644{
 645	unsigned long va;
 646
 647	if (tlb_type == spitfire) {
 648		int n = 0;
 649
 650		for (va = start; va < end; va += 32) {
 651			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 652			if (++n >= 512)
 653				break;
 654		}
 655	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 656		start = __pa(start);
 657		end = __pa(end);
 658		for (va = start; va < end; va += 32)
 659			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 660					     "membar #Sync"
 661					     : /* no outputs */
 662					     : "r" (va),
 663					       "i" (ASI_DCACHE_INVALIDATE));
 664	}
 665}
 666EXPORT_SYMBOL(__flush_dcache_range);
 667
 668/* get_new_mmu_context() uses "cache + 1".  */
 669DEFINE_SPINLOCK(ctx_alloc_lock);
 670unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
 671#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 672#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 673DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 674
 675/* Caller does TLB context flushing on local CPU if necessary.
 676 * The caller also ensures that CTX_VALID(mm->context) is false.
 677 *
 678 * We must be careful about boundary cases so that we never
 679 * let the user have CTX 0 (nucleus) or we ever use a CTX
 680 * version of zero (and thus NO_CONTEXT would not be caught
 681 * by version mis-match tests in mmu_context.h).
 682 *
 683 * Always invoked with interrupts disabled.
 684 */
 685void get_new_mmu_context(struct mm_struct *mm)
 686{
 687	unsigned long ctx, new_ctx;
 688	unsigned long orig_pgsz_bits;
 
 689	int new_version;
 690
 691	spin_lock(&ctx_alloc_lock);
 692	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 693	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 694	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 695	new_version = 0;
 696	if (new_ctx >= (1 << CTX_NR_BITS)) {
 697		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 698		if (new_ctx >= ctx) {
 699			int i;
 700			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
 701				CTX_FIRST_VERSION;
 702			if (new_ctx == 1)
 703				new_ctx = CTX_FIRST_VERSION;
 704
 705			/* Don't call memset, for 16 entries that's just
 706			 * plain silly...
 707			 */
 708			mmu_context_bmap[0] = 3;
 709			mmu_context_bmap[1] = 0;
 710			mmu_context_bmap[2] = 0;
 711			mmu_context_bmap[3] = 0;
 712			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
 713				mmu_context_bmap[i + 0] = 0;
 714				mmu_context_bmap[i + 1] = 0;
 715				mmu_context_bmap[i + 2] = 0;
 716				mmu_context_bmap[i + 3] = 0;
 717			}
 718			new_version = 1;
 719			goto out;
 720		}
 721	}
 722	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 723	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 724out:
 725	tlb_context_cache = new_ctx;
 726	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 727	spin_unlock(&ctx_alloc_lock);
 728
 729	if (unlikely(new_version))
 730		smp_new_mmu_context_version();
 731}
 732
 733static int numa_enabled = 1;
 734static int numa_debug;
 735
 736static int __init early_numa(char *p)
 737{
 738	if (!p)
 739		return 0;
 740
 741	if (strstr(p, "off"))
 742		numa_enabled = 0;
 743
 744	if (strstr(p, "debug"))
 745		numa_debug = 1;
 746
 747	return 0;
 748}
 749early_param("numa", early_numa);
 750
 751#define numadbg(f, a...) \
 752do {	if (numa_debug) \
 753		printk(KERN_INFO f, ## a); \
 754} while (0)
 755
 756static void __init find_ramdisk(unsigned long phys_base)
 757{
 758#ifdef CONFIG_BLK_DEV_INITRD
 759	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 760		unsigned long ramdisk_image;
 761
 762		/* Older versions of the bootloader only supported a
 763		 * 32-bit physical address for the ramdisk image
 764		 * location, stored at sparc_ramdisk_image.  Newer
 765		 * SILO versions set sparc_ramdisk_image to zero and
 766		 * provide a full 64-bit physical address at
 767		 * sparc_ramdisk_image64.
 768		 */
 769		ramdisk_image = sparc_ramdisk_image;
 770		if (!ramdisk_image)
 771			ramdisk_image = sparc_ramdisk_image64;
 772
 773		/* Another bootloader quirk.  The bootloader normalizes
 774		 * the physical address to KERNBASE, so we have to
 775		 * factor that back out and add in the lowest valid
 776		 * physical page address to get the true physical address.
 777		 */
 778		ramdisk_image -= KERNBASE;
 779		ramdisk_image += phys_base;
 780
 781		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 782			ramdisk_image, sparc_ramdisk_size);
 783
 784		initrd_start = ramdisk_image;
 785		initrd_end = ramdisk_image + sparc_ramdisk_size;
 786
 787		memblock_reserve(initrd_start, sparc_ramdisk_size);
 788
 789		initrd_start += PAGE_OFFSET;
 790		initrd_end += PAGE_OFFSET;
 791	}
 792#endif
 793}
 794
 795struct node_mem_mask {
 796	unsigned long mask;
 797	unsigned long val;
 
 798};
 799static struct node_mem_mask node_masks[MAX_NUMNODES];
 800static int num_node_masks;
 801
 802#ifdef CONFIG_NEED_MULTIPLE_NODES
 803
 804int numa_cpu_lookup_table[NR_CPUS];
 805cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 806
 
 
 807struct mdesc_mblock {
 808	u64	base;
 809	u64	size;
 810	u64	offset; /* RA-to-PA */
 811};
 812static struct mdesc_mblock *mblocks;
 813static int num_mblocks;
 814
 815static unsigned long ra_to_pa(unsigned long addr)
 816{
 817	int i;
 818
 819	for (i = 0; i < num_mblocks; i++) {
 820		struct mdesc_mblock *m = &mblocks[i];
 821
 822		if (addr >= m->base &&
 823		    addr < (m->base + m->size)) {
 824			addr += m->offset;
 825			break;
 826		}
 827	}
 828	return addr;
 829}
 830
 831static int find_node(unsigned long addr)
 832{
 833	int i;
 834
 835	addr = ra_to_pa(addr);
 836	for (i = 0; i < num_node_masks; i++) {
 837		struct node_mem_mask *p = &node_masks[i];
 838
 839		if ((addr & p->mask) == p->val)
 840			return i;
 841	}
 842	/* The following condition has been observed on LDOM guests.*/
 843	WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
 844		" rule. Some physical memory will be owned by node 0.");
 845	return 0;
 846}
 847
 848static u64 memblock_nid_range(u64 start, u64 end, int *nid)
 849{
 850	*nid = find_node(start);
 851	start += PAGE_SIZE;
 852	while (start < end) {
 853		int n = find_node(start);
 854
 855		if (n != *nid)
 856			break;
 857		start += PAGE_SIZE;
 858	}
 859
 860	if (start > end)
 861		start = end;
 862
 863	return start;
 864}
 
 
 
 
 
 
 865#endif
 866
 867/* This must be invoked after performing all of the necessary
 868 * memblock_set_node() calls for 'nid'.  We need to be able to get
 869 * correct data from get_pfn_range_for_nid().
 870 */
 871static void __init allocate_node_data(int nid)
 872{
 
 873	struct pglist_data *p;
 874	unsigned long start_pfn, end_pfn;
 875#ifdef CONFIG_NEED_MULTIPLE_NODES
 876	unsigned long paddr;
 877
 878	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
 879	if (!paddr) {
 880		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
 881		prom_halt();
 882	}
 883	NODE_DATA(nid) = __va(paddr);
 884	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 885
 886	NODE_DATA(nid)->node_id = nid;
 887#endif
 888
 889	p = NODE_DATA(nid);
 890
 891	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 892	p->node_start_pfn = start_pfn;
 893	p->node_spanned_pages = end_pfn - start_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 894}
 895
 896static void init_node_masks_nonnuma(void)
 897{
 898#ifdef CONFIG_NEED_MULTIPLE_NODES
 899	int i;
 900#endif
 901
 902	numadbg("Initializing tables for non-numa.\n");
 903
 904	node_masks[0].mask = node_masks[0].val = 0;
 905	num_node_masks = 1;
 906
 907#ifdef CONFIG_NEED_MULTIPLE_NODES
 908	for (i = 0; i < NR_CPUS; i++)
 909		numa_cpu_lookup_table[i] = 0;
 910
 911	cpumask_setall(&numa_cpumask_lookup_table[0]);
 912#endif
 913}
 914
 915#ifdef CONFIG_NEED_MULTIPLE_NODES
 916struct pglist_data *node_data[MAX_NUMNODES];
 917
 918EXPORT_SYMBOL(numa_cpu_lookup_table);
 919EXPORT_SYMBOL(numa_cpumask_lookup_table);
 920EXPORT_SYMBOL(node_data);
 921
 922struct mdesc_mlgroup {
 923	u64	node;
 924	u64	latency;
 925	u64	match;
 926	u64	mask;
 927};
 928static struct mdesc_mlgroup *mlgroups;
 929static int num_mlgroups;
 930
 931static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
 932				   u32 cfg_handle)
 933{
 934	u64 arc;
 935
 936	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
 937		u64 target = mdesc_arc_target(md, arc);
 938		const u64 *val;
 939
 940		val = mdesc_get_property(md, target,
 941					 "cfg-handle", NULL);
 942		if (val && *val == cfg_handle)
 943			return 0;
 944	}
 945	return -ENODEV;
 946}
 947
 948static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
 949				    u32 cfg_handle)
 950{
 951	u64 arc, candidate, best_latency = ~(u64)0;
 952
 953	candidate = MDESC_NODE_NULL;
 954	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 955		u64 target = mdesc_arc_target(md, arc);
 956		const char *name = mdesc_node_name(md, target);
 957		const u64 *val;
 958
 959		if (strcmp(name, "pio-latency-group"))
 960			continue;
 961
 962		val = mdesc_get_property(md, target, "latency", NULL);
 963		if (!val)
 964			continue;
 965
 966		if (*val < best_latency) {
 967			candidate = target;
 968			best_latency = *val;
 969		}
 970	}
 971
 972	if (candidate == MDESC_NODE_NULL)
 973		return -ENODEV;
 974
 975	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
 976}
 977
 978int of_node_to_nid(struct device_node *dp)
 979{
 980	const struct linux_prom64_registers *regs;
 981	struct mdesc_handle *md;
 982	u32 cfg_handle;
 983	int count, nid;
 984	u64 grp;
 985
 986	/* This is the right thing to do on currently supported
 987	 * SUN4U NUMA platforms as well, as the PCI controller does
 988	 * not sit behind any particular memory controller.
 989	 */
 990	if (!mlgroups)
 991		return -1;
 992
 993	regs = of_get_property(dp, "reg", NULL);
 994	if (!regs)
 995		return -1;
 996
 997	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
 998
 999	md = mdesc_grab();
1000
1001	count = 0;
1002	nid = -1;
1003	mdesc_for_each_node_by_name(md, grp, "group") {
1004		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1005			nid = count;
1006			break;
1007		}
1008		count++;
1009	}
1010
1011	mdesc_release(md);
1012
1013	return nid;
1014}
1015
1016static void __init add_node_ranges(void)
1017{
1018	struct memblock_region *reg;
1019
1020	for_each_memblock(memory, reg) {
1021		unsigned long size = reg->size;
1022		unsigned long start, end;
1023
1024		start = reg->base;
1025		end = start + size;
1026		while (start < end) {
1027			unsigned long this_end;
1028			int nid;
1029
1030			this_end = memblock_nid_range(start, end, &nid);
1031
1032			numadbg("Setting memblock NUMA node nid[%d] "
1033				"start[%lx] end[%lx]\n",
1034				nid, start, this_end);
1035
1036			memblock_set_node(start, this_end - start,
1037					  &memblock.memory, nid);
 
 
1038			start = this_end;
1039		}
1040	}
1041}
1042
1043static int __init grab_mlgroups(struct mdesc_handle *md)
1044{
1045	unsigned long paddr;
1046	int count = 0;
1047	u64 node;
1048
1049	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1050		count++;
1051	if (!count)
1052		return -ENOENT;
1053
1054	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1055			  SMP_CACHE_BYTES);
1056	if (!paddr)
1057		return -ENOMEM;
1058
1059	mlgroups = __va(paddr);
1060	num_mlgroups = count;
1061
1062	count = 0;
1063	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1064		struct mdesc_mlgroup *m = &mlgroups[count++];
1065		const u64 *val;
1066
1067		m->node = node;
1068
1069		val = mdesc_get_property(md, node, "latency", NULL);
1070		m->latency = *val;
1071		val = mdesc_get_property(md, node, "address-match", NULL);
1072		m->match = *val;
1073		val = mdesc_get_property(md, node, "address-mask", NULL);
1074		m->mask = *val;
1075
1076		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1077			"match[%llx] mask[%llx]\n",
1078			count - 1, m->node, m->latency, m->match, m->mask);
1079	}
1080
1081	return 0;
1082}
1083
1084static int __init grab_mblocks(struct mdesc_handle *md)
1085{
1086	unsigned long paddr;
1087	int count = 0;
1088	u64 node;
1089
1090	mdesc_for_each_node_by_name(md, node, "mblock")
1091		count++;
1092	if (!count)
1093		return -ENOENT;
1094
1095	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1096			  SMP_CACHE_BYTES);
1097	if (!paddr)
1098		return -ENOMEM;
1099
1100	mblocks = __va(paddr);
1101	num_mblocks = count;
1102
1103	count = 0;
1104	mdesc_for_each_node_by_name(md, node, "mblock") {
1105		struct mdesc_mblock *m = &mblocks[count++];
1106		const u64 *val;
1107
1108		val = mdesc_get_property(md, node, "base", NULL);
1109		m->base = *val;
1110		val = mdesc_get_property(md, node, "size", NULL);
1111		m->size = *val;
1112		val = mdesc_get_property(md, node,
1113					 "address-congruence-offset", NULL);
1114
1115		/* The address-congruence-offset property is optional.
1116		 * Explicity zero it be identifty this.
1117		 */
1118		if (val)
1119			m->offset = *val;
1120		else
1121			m->offset = 0UL;
1122
1123		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1124			count - 1, m->base, m->size, m->offset);
1125	}
1126
1127	return 0;
1128}
1129
1130static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1131					       u64 grp, cpumask_t *mask)
1132{
1133	u64 arc;
1134
1135	cpumask_clear(mask);
1136
1137	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1138		u64 target = mdesc_arc_target(md, arc);
1139		const char *name = mdesc_node_name(md, target);
1140		const u64 *id;
1141
1142		if (strcmp(name, "cpu"))
1143			continue;
1144		id = mdesc_get_property(md, target, "id", NULL);
1145		if (*id < nr_cpu_ids)
1146			cpumask_set_cpu(*id, mask);
1147	}
1148}
1149
1150static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1151{
1152	int i;
1153
1154	for (i = 0; i < num_mlgroups; i++) {
1155		struct mdesc_mlgroup *m = &mlgroups[i];
1156		if (m->node == node)
1157			return m;
1158	}
1159	return NULL;
1160}
1161
1162int __node_distance(int from, int to)
1163{
1164	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1165		pr_warn("Returning default NUMA distance value for %d->%d\n",
1166			from, to);
1167		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1168	}
1169	return numa_latency[from][to];
1170}
1171
1172static int find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1173{
1174	int i;
1175
1176	for (i = 0; i < MAX_NUMNODES; i++) {
1177		struct node_mem_mask *n = &node_masks[i];
1178
1179		if ((grp->mask == n->mask) && (grp->match == n->val))
1180			break;
1181	}
1182	return i;
1183}
1184
1185static void find_numa_latencies_for_group(struct mdesc_handle *md, u64 grp,
1186					  int index)
1187{
1188	u64 arc;
1189
1190	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1191		int tnode;
1192		u64 target = mdesc_arc_target(md, arc);
1193		struct mdesc_mlgroup *m = find_mlgroup(target);
1194
1195		if (!m)
1196			continue;
1197		tnode = find_best_numa_node_for_mlgroup(m);
1198		if (tnode == MAX_NUMNODES)
1199			continue;
1200		numa_latency[index][tnode] = m->latency;
1201	}
1202}
1203
1204static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1205				      int index)
1206{
1207	struct mdesc_mlgroup *candidate = NULL;
1208	u64 arc, best_latency = ~(u64)0;
1209	struct node_mem_mask *n;
1210
1211	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1212		u64 target = mdesc_arc_target(md, arc);
1213		struct mdesc_mlgroup *m = find_mlgroup(target);
1214		if (!m)
1215			continue;
1216		if (m->latency < best_latency) {
1217			candidate = m;
1218			best_latency = m->latency;
1219		}
1220	}
1221	if (!candidate)
1222		return -ENOENT;
1223
1224	if (num_node_masks != index) {
1225		printk(KERN_ERR "Inconsistent NUMA state, "
1226		       "index[%d] != num_node_masks[%d]\n",
1227		       index, num_node_masks);
1228		return -EINVAL;
1229	}
1230
1231	n = &node_masks[num_node_masks++];
1232
1233	n->mask = candidate->mask;
1234	n->val = candidate->match;
1235
1236	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1237		index, n->mask, n->val, candidate->latency);
1238
1239	return 0;
1240}
1241
1242static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1243					 int index)
1244{
1245	cpumask_t mask;
1246	int cpu;
1247
1248	numa_parse_mdesc_group_cpus(md, grp, &mask);
1249
1250	for_each_cpu(cpu, &mask)
1251		numa_cpu_lookup_table[cpu] = index;
1252	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1253
1254	if (numa_debug) {
1255		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1256		for_each_cpu(cpu, &mask)
1257			printk("%d ", cpu);
1258		printk("]\n");
1259	}
1260
1261	return numa_attach_mlgroup(md, grp, index);
1262}
1263
1264static int __init numa_parse_mdesc(void)
1265{
1266	struct mdesc_handle *md = mdesc_grab();
1267	int i, j, err, count;
1268	u64 node;
1269
1270	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1271	if (node == MDESC_NODE_NULL) {
1272		mdesc_release(md);
1273		return -ENOENT;
1274	}
1275
1276	err = grab_mblocks(md);
1277	if (err < 0)
1278		goto out;
1279
1280	err = grab_mlgroups(md);
1281	if (err < 0)
1282		goto out;
1283
1284	count = 0;
1285	mdesc_for_each_node_by_name(md, node, "group") {
1286		err = numa_parse_mdesc_group(md, node, count);
1287		if (err < 0)
1288			break;
1289		count++;
1290	}
1291
1292	count = 0;
1293	mdesc_for_each_node_by_name(md, node, "group") {
1294		find_numa_latencies_for_group(md, node, count);
1295		count++;
1296	}
1297
1298	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1299	for (i = 0; i < MAX_NUMNODES; i++) {
1300		u64 self_latency = numa_latency[i][i];
1301
1302		for (j = 0; j < MAX_NUMNODES; j++) {
1303			numa_latency[i][j] =
1304				(numa_latency[i][j] * LOCAL_DISTANCE) /
1305				self_latency;
1306		}
1307	}
1308
1309	add_node_ranges();
1310
1311	for (i = 0; i < num_node_masks; i++) {
1312		allocate_node_data(i);
1313		node_set_online(i);
1314	}
1315
1316	err = 0;
1317out:
1318	mdesc_release(md);
1319	return err;
1320}
1321
1322static int __init numa_parse_jbus(void)
1323{
1324	unsigned long cpu, index;
1325
1326	/* NUMA node id is encoded in bits 36 and higher, and there is
1327	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1328	 */
1329	index = 0;
1330	for_each_present_cpu(cpu) {
1331		numa_cpu_lookup_table[cpu] = index;
1332		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1333		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1334		node_masks[index].val = cpu << 36UL;
1335
1336		index++;
1337	}
1338	num_node_masks = index;
1339
1340	add_node_ranges();
1341
1342	for (index = 0; index < num_node_masks; index++) {
1343		allocate_node_data(index);
1344		node_set_online(index);
1345	}
1346
1347	return 0;
1348}
1349
1350static int __init numa_parse_sun4u(void)
1351{
1352	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1353		unsigned long ver;
1354
1355		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1356		if ((ver >> 32UL) == __JALAPENO_ID ||
1357		    (ver >> 32UL) == __SERRANO_ID)
1358			return numa_parse_jbus();
1359	}
1360	return -1;
1361}
1362
1363static int __init bootmem_init_numa(void)
1364{
1365	int i, j;
1366	int err = -1;
1367
1368	numadbg("bootmem_init_numa()\n");
1369
1370	/* Some sane defaults for numa latency values */
1371	for (i = 0; i < MAX_NUMNODES; i++) {
1372		for (j = 0; j < MAX_NUMNODES; j++)
1373			numa_latency[i][j] = (i == j) ?
1374				LOCAL_DISTANCE : REMOTE_DISTANCE;
1375	}
1376
1377	if (numa_enabled) {
1378		if (tlb_type == hypervisor)
1379			err = numa_parse_mdesc();
1380		else
1381			err = numa_parse_sun4u();
1382	}
1383	return err;
1384}
1385
1386#else
1387
1388static int bootmem_init_numa(void)
1389{
1390	return -1;
1391}
1392
1393#endif
1394
1395static void __init bootmem_init_nonnuma(void)
1396{
1397	unsigned long top_of_ram = memblock_end_of_DRAM();
1398	unsigned long total_ram = memblock_phys_mem_size();
 
1399
1400	numadbg("bootmem_init_nonnuma()\n");
1401
1402	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1403	       top_of_ram, total_ram);
1404	printk(KERN_INFO "Memory hole size: %ldMB\n",
1405	       (top_of_ram - total_ram) >> 20);
1406
1407	init_node_masks_nonnuma();
1408	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1409	allocate_node_data(0);
1410	node_set_online(0);
1411}
1412
1413static unsigned long __init bootmem_init(unsigned long phys_base)
1414{
1415	unsigned long end_pfn;
1416
1417	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1418	max_pfn = max_low_pfn = end_pfn;
1419	min_low_pfn = (phys_base >> PAGE_SHIFT);
1420
1421	if (bootmem_init_numa() < 0)
1422		bootmem_init_nonnuma();
 
 
1423
1424	/* Dump memblock with node info. */
1425	memblock_dump_all();
1426
1427	/* XXX cpu notifier XXX */
1428
1429	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1430	sparse_init();
1431
1432	return end_pfn;
1433}
1434
1435static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1436static int pall_ents __initdata;
1437
1438static unsigned long max_phys_bits = 40;
1439
1440bool kern_addr_valid(unsigned long addr)
1441{
1442	pgd_t *pgd;
1443	pud_t *pud;
1444	pmd_t *pmd;
1445	pte_t *pte;
 
1446
1447	if ((long)addr < 0L) {
1448		unsigned long pa = __pa(addr);
 
 
 
 
 
 
 
1449
1450		if ((addr >> max_phys_bits) != 0UL)
1451			return false;
1452
1453		return pfn_valid(pa >> PAGE_SHIFT);
1454	}
 
1455
1456	if (addr >= (unsigned long) KERNBASE &&
1457	    addr < (unsigned long)&_end)
1458		return true;
1459
1460	pgd = pgd_offset_k(addr);
1461	if (pgd_none(*pgd))
1462		return 0;
1463
1464	pud = pud_offset(pgd, addr);
1465	if (pud_none(*pud))
1466		return 0;
1467
1468	if (pud_large(*pud))
1469		return pfn_valid(pud_pfn(*pud));
 
1470
1471	pmd = pmd_offset(pud, addr);
1472	if (pmd_none(*pmd))
1473		return 0;
1474
1475	if (pmd_large(*pmd))
1476		return pfn_valid(pmd_pfn(*pmd));
1477
1478	pte = pte_offset_kernel(pmd, addr);
1479	if (pte_none(*pte))
1480		return 0;
1481
1482	return pfn_valid(pte_pfn(*pte));
1483}
1484EXPORT_SYMBOL(kern_addr_valid);
1485
1486static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1487					      unsigned long vend,
1488					      pud_t *pud)
1489{
1490	const unsigned long mask16gb = (1UL << 34) - 1UL;
1491	u64 pte_val = vstart;
1492
1493	/* Each PUD is 8GB */
1494	if ((vstart & mask16gb) ||
1495	    (vend - vstart <= mask16gb)) {
1496		pte_val ^= kern_linear_pte_xor[2];
1497		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1498
1499		return vstart + PUD_SIZE;
1500	}
1501
1502	pte_val ^= kern_linear_pte_xor[3];
1503	pte_val |= _PAGE_PUD_HUGE;
 
1504
1505	vend = vstart + mask16gb + 1UL;
1506	while (vstart < vend) {
1507		pud_val(*pud) = pte_val;
1508
1509		pte_val += PUD_SIZE;
1510		vstart += PUD_SIZE;
1511		pud++;
1512	}
1513	return vstart;
1514}
1515
1516static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1517				   bool guard)
1518{
1519	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1520		return true;
1521
1522	return false;
1523}
 
1524
1525static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1526					      unsigned long vend,
1527					      pmd_t *pmd)
1528{
1529	const unsigned long mask256mb = (1UL << 28) - 1UL;
1530	const unsigned long mask2gb = (1UL << 31) - 1UL;
1531	u64 pte_val = vstart;
1532
1533	/* Each PMD is 8MB */
1534	if ((vstart & mask256mb) ||
1535	    (vend - vstart <= mask256mb)) {
1536		pte_val ^= kern_linear_pte_xor[0];
1537		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1538
1539		return vstart + PMD_SIZE;
1540	}
1541
1542	if ((vstart & mask2gb) ||
1543	    (vend - vstart <= mask2gb)) {
1544		pte_val ^= kern_linear_pte_xor[1];
1545		pte_val |= _PAGE_PMD_HUGE;
1546		vend = vstart + mask256mb + 1UL;
1547	} else {
1548		pte_val ^= kern_linear_pte_xor[2];
1549		pte_val |= _PAGE_PMD_HUGE;
1550		vend = vstart + mask2gb + 1UL;
1551	}
1552
1553	while (vstart < vend) {
1554		pmd_val(*pmd) = pte_val;
1555
1556		pte_val += PMD_SIZE;
1557		vstart += PMD_SIZE;
1558		pmd++;
1559	}
1560
1561	return vstart;
1562}
1563
1564static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1565				   bool guard)
1566{
1567	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1568		return true;
1569
1570	return false;
1571}
1572
 
1573static unsigned long __ref kernel_map_range(unsigned long pstart,
1574					    unsigned long pend, pgprot_t prot,
1575					    bool use_huge)
1576{
1577	unsigned long vstart = PAGE_OFFSET + pstart;
1578	unsigned long vend = PAGE_OFFSET + pend;
1579	unsigned long alloc_bytes = 0UL;
1580
1581	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1582		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1583			    vstart, vend);
1584		prom_halt();
1585	}
1586
1587	while (vstart < vend) {
1588		unsigned long this_end, paddr = __pa(vstart);
1589		pgd_t *pgd = pgd_offset_k(vstart);
1590		pud_t *pud;
1591		pmd_t *pmd;
1592		pte_t *pte;
1593
1594		if (pgd_none(*pgd)) {
1595			pud_t *new;
1596
1597			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1598			alloc_bytes += PAGE_SIZE;
1599			pgd_populate(&init_mm, pgd, new);
1600		}
1601		pud = pud_offset(pgd, vstart);
1602		if (pud_none(*pud)) {
1603			pmd_t *new;
1604
1605			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1606				vstart = kernel_map_hugepud(vstart, vend, pud);
1607				continue;
1608			}
1609			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1610			alloc_bytes += PAGE_SIZE;
1611			pud_populate(&init_mm, pud, new);
1612		}
1613
1614		pmd = pmd_offset(pud, vstart);
1615		if (pmd_none(*pmd)) {
1616			pte_t *new;
1617
1618			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1619				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1620				continue;
1621			}
1622			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1623			alloc_bytes += PAGE_SIZE;
1624			pmd_populate_kernel(&init_mm, pmd, new);
1625		}
1626
1627		pte = pte_offset_kernel(pmd, vstart);
1628		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1629		if (this_end > vend)
1630			this_end = vend;
1631
1632		while (vstart < this_end) {
1633			pte_val(*pte) = (paddr | pgprot_val(prot));
1634
1635			vstart += PAGE_SIZE;
1636			paddr += PAGE_SIZE;
1637			pte++;
1638		}
1639	}
1640
1641	return alloc_bytes;
1642}
1643
1644static void __init flush_all_kernel_tsbs(void)
 
 
 
1645{
1646	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1647
1648	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1649		struct tsb *ent = &swapper_tsb[i];
1650
1651		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
 
 
1652	}
1653#ifndef CONFIG_DEBUG_PAGEALLOC
1654	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1655		struct tsb *ent = &swapper_4m_tsb[i];
 
 
 
 
 
 
 
 
1656
1657		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1658	}
1659#endif
1660}
1661
1662extern unsigned int kvmap_linear_patch[1];
1663
1664static void __init kernel_physical_mapping_init(void)
1665{
 
1666	unsigned long i, mem_alloced = 0UL;
1667	bool use_huge = true;
1668
1669#ifdef CONFIG_DEBUG_PAGEALLOC
1670	use_huge = false;
1671#endif
1672	for (i = 0; i < pall_ents; i++) {
1673		unsigned long phys_start, phys_end;
1674
1675		phys_start = pall[i].phys_addr;
1676		phys_end = phys_start + pall[i].reg_size;
1677
1678		mem_alloced += kernel_map_range(phys_start, phys_end,
1679						PAGE_KERNEL, use_huge);
1680	}
1681
1682	printk("Allocated %ld bytes for kernel page tables.\n",
1683	       mem_alloced);
1684
1685	kvmap_linear_patch[0] = 0x01000000; /* nop */
1686	flushi(&kvmap_linear_patch[0]);
1687
1688	flush_all_kernel_tsbs();
1689
1690	__flush_tlb_all();
 
1691}
1692
1693#ifdef CONFIG_DEBUG_PAGEALLOC
1694void __kernel_map_pages(struct page *page, int numpages, int enable)
1695{
1696	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1697	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1698
1699	kernel_map_range(phys_start, phys_end,
1700			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1701
1702	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1703			       PAGE_OFFSET + phys_end);
1704
1705	/* we should perform an IPI and flush all tlbs,
1706	 * but that can deadlock->flush only current cpu.
1707	 */
1708	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1709				 PAGE_OFFSET + phys_end);
1710}
1711#endif
1712
1713unsigned long __init find_ecache_flush_span(unsigned long size)
1714{
1715	int i;
1716
1717	for (i = 0; i < pavail_ents; i++) {
1718		if (pavail[i].reg_size >= size)
1719			return pavail[i].phys_addr;
1720	}
1721
1722	return ~0UL;
1723}
1724
1725unsigned long PAGE_OFFSET;
1726EXPORT_SYMBOL(PAGE_OFFSET);
1727
1728unsigned long VMALLOC_END   = 0x0000010000000000UL;
1729EXPORT_SYMBOL(VMALLOC_END);
1730
1731unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1732unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1733
1734static void __init setup_page_offset(void)
1735{
1736	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1737		/* Cheetah/Panther support a full 64-bit virtual
1738		 * address, so we can use all that our page tables
1739		 * support.
1740		 */
1741		sparc64_va_hole_top =    0xfff0000000000000UL;
1742		sparc64_va_hole_bottom = 0x0010000000000000UL;
1743
1744		max_phys_bits = 42;
1745	} else if (tlb_type == hypervisor) {
1746		switch (sun4v_chip_type) {
1747		case SUN4V_CHIP_NIAGARA1:
1748		case SUN4V_CHIP_NIAGARA2:
1749			/* T1 and T2 support 48-bit virtual addresses.  */
1750			sparc64_va_hole_top =    0xffff800000000000UL;
1751			sparc64_va_hole_bottom = 0x0000800000000000UL;
1752
1753			max_phys_bits = 39;
1754			break;
1755		case SUN4V_CHIP_NIAGARA3:
1756			/* T3 supports 48-bit virtual addresses.  */
1757			sparc64_va_hole_top =    0xffff800000000000UL;
1758			sparc64_va_hole_bottom = 0x0000800000000000UL;
1759
1760			max_phys_bits = 43;
1761			break;
1762		case SUN4V_CHIP_NIAGARA4:
1763		case SUN4V_CHIP_NIAGARA5:
1764		case SUN4V_CHIP_SPARC64X:
1765		case SUN4V_CHIP_SPARC_M6:
1766			/* T4 and later support 52-bit virtual addresses.  */
1767			sparc64_va_hole_top =    0xfff8000000000000UL;
1768			sparc64_va_hole_bottom = 0x0008000000000000UL;
1769			max_phys_bits = 47;
1770			break;
1771		case SUN4V_CHIP_SPARC_M7:
1772		case SUN4V_CHIP_SPARC_SN:
1773		default:
1774			/* M7 and later support 52-bit virtual addresses.  */
1775			sparc64_va_hole_top =    0xfff8000000000000UL;
1776			sparc64_va_hole_bottom = 0x0008000000000000UL;
1777			max_phys_bits = 49;
1778			break;
1779		}
1780	}
1781
1782	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1783		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1784			    max_phys_bits);
1785		prom_halt();
1786	}
1787
1788	PAGE_OFFSET = sparc64_va_hole_top;
1789	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1790		       (sparc64_va_hole_bottom >> 2));
1791
1792	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1793		PAGE_OFFSET, max_phys_bits);
1794	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1795		VMALLOC_START, VMALLOC_END);
1796	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1797		VMEMMAP_BASE, VMEMMAP_BASE << 1);
1798}
1799
1800static void __init tsb_phys_patch(void)
1801{
1802	struct tsb_ldquad_phys_patch_entry *pquad;
1803	struct tsb_phys_patch_entry *p;
1804
1805	pquad = &__tsb_ldquad_phys_patch;
1806	while (pquad < &__tsb_ldquad_phys_patch_end) {
1807		unsigned long addr = pquad->addr;
1808
1809		if (tlb_type == hypervisor)
1810			*(unsigned int *) addr = pquad->sun4v_insn;
1811		else
1812			*(unsigned int *) addr = pquad->sun4u_insn;
1813		wmb();
1814		__asm__ __volatile__("flush	%0"
1815				     : /* no outputs */
1816				     : "r" (addr));
1817
1818		pquad++;
1819	}
1820
1821	p = &__tsb_phys_patch;
1822	while (p < &__tsb_phys_patch_end) {
1823		unsigned long addr = p->addr;
1824
1825		*(unsigned int *) addr = p->insn;
1826		wmb();
1827		__asm__ __volatile__("flush	%0"
1828				     : /* no outputs */
1829				     : "r" (addr));
1830
1831		p++;
1832	}
1833}
1834
1835/* Don't mark as init, we give this to the Hypervisor.  */
1836#ifndef CONFIG_DEBUG_PAGEALLOC
1837#define NUM_KTSB_DESCR	2
1838#else
1839#define NUM_KTSB_DESCR	1
1840#endif
1841static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1842
1843/* The swapper TSBs are loaded with a base sequence of:
1844 *
1845 *	sethi	%uhi(SYMBOL), REG1
1846 *	sethi	%hi(SYMBOL), REG2
1847 *	or	REG1, %ulo(SYMBOL), REG1
1848 *	or	REG2, %lo(SYMBOL), REG2
1849 *	sllx	REG1, 32, REG1
1850 *	or	REG1, REG2, REG1
1851 *
1852 * When we use physical addressing for the TSB accesses, we patch the
1853 * first four instructions in the above sequence.
1854 */
1855
1856static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1857{
1858	unsigned long high_bits, low_bits;
1859
1860	high_bits = (pa >> 32) & 0xffffffff;
1861	low_bits = (pa >> 0) & 0xffffffff;
1862
1863	while (start < end) {
1864		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1865
1866		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1867		__asm__ __volatile__("flush	%0" : : "r" (ia));
1868
1869		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1870		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1871
1872		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1873		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
1874
1875		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1876		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
1877
1878		start++;
1879	}
1880}
1881
1882static void ktsb_phys_patch(void)
1883{
1884	extern unsigned int __swapper_tsb_phys_patch;
1885	extern unsigned int __swapper_tsb_phys_patch_end;
1886	unsigned long ktsb_pa;
1887
1888	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1889	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1890			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1891#ifndef CONFIG_DEBUG_PAGEALLOC
1892	{
1893	extern unsigned int __swapper_4m_tsb_phys_patch;
1894	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1895	ktsb_pa = (kern_base +
1896		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1897	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1898			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1899	}
1900#endif
1901}
1902
1903static void __init sun4v_ktsb_init(void)
1904{
1905	unsigned long ktsb_pa;
1906
1907	/* First KTSB for PAGE_SIZE mappings.  */
1908	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1909
1910	switch (PAGE_SIZE) {
1911	case 8 * 1024:
1912	default:
1913		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1914		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1915		break;
1916
1917	case 64 * 1024:
1918		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1919		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1920		break;
1921
1922	case 512 * 1024:
1923		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1924		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1925		break;
1926
1927	case 4 * 1024 * 1024:
1928		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1929		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1930		break;
1931	}
1932
1933	ktsb_descr[0].assoc = 1;
1934	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1935	ktsb_descr[0].ctx_idx = 0;
1936	ktsb_descr[0].tsb_base = ktsb_pa;
1937	ktsb_descr[0].resv = 0;
1938
1939#ifndef CONFIG_DEBUG_PAGEALLOC
1940	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1941	ktsb_pa = (kern_base +
1942		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1943
1944	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1945	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1946				    HV_PGSZ_MASK_256MB |
1947				    HV_PGSZ_MASK_2GB |
1948				    HV_PGSZ_MASK_16GB) &
1949				   cpu_pgsz_mask);
1950	ktsb_descr[1].assoc = 1;
1951	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1952	ktsb_descr[1].ctx_idx = 0;
1953	ktsb_descr[1].tsb_base = ktsb_pa;
1954	ktsb_descr[1].resv = 0;
1955#endif
1956}
1957
1958void sun4v_ktsb_register(void)
1959{
1960	unsigned long pa, ret;
1961
1962	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1963
1964	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1965	if (ret != 0) {
1966		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1967			    "errors with %lx\n", pa, ret);
1968		prom_halt();
1969	}
1970}
1971
1972static void __init sun4u_linear_pte_xor_finalize(void)
1973{
1974#ifndef CONFIG_DEBUG_PAGEALLOC
1975	/* This is where we would add Panther support for
1976	 * 32MB and 256MB pages.
1977	 */
1978#endif
1979}
1980
1981static void __init sun4v_linear_pte_xor_finalize(void)
1982{
1983	unsigned long pagecv_flag;
1984
1985	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
1986	 * enables MCD error. Do not set bit 9 on M7 processor.
1987	 */
1988	switch (sun4v_chip_type) {
1989	case SUN4V_CHIP_SPARC_M7:
1990	case SUN4V_CHIP_SPARC_SN:
1991		pagecv_flag = 0x00;
1992		break;
1993	default:
1994		pagecv_flag = _PAGE_CV_4V;
1995		break;
1996	}
1997#ifndef CONFIG_DEBUG_PAGEALLOC
1998	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1999		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2000			PAGE_OFFSET;
2001		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2002					   _PAGE_P_4V | _PAGE_W_4V);
2003	} else {
2004		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2005	}
2006
2007	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2008		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2009			PAGE_OFFSET;
2010		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2011					   _PAGE_P_4V | _PAGE_W_4V);
2012	} else {
2013		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2014	}
2015
2016	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2017		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2018			PAGE_OFFSET;
2019		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2020					   _PAGE_P_4V | _PAGE_W_4V);
2021	} else {
2022		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2023	}
2024#endif
2025}
2026
2027/* paging_init() sets up the page tables */
2028
2029static unsigned long last_valid_pfn;
 
2030
2031static void sun4u_pgprot_init(void);
2032static void sun4v_pgprot_init(void);
2033
2034static phys_addr_t __init available_memory(void)
2035{
2036	phys_addr_t available = 0ULL;
2037	phys_addr_t pa_start, pa_end;
2038	u64 i;
2039
2040	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2041				&pa_end, NULL)
2042		available = available + (pa_end  - pa_start);
2043
2044	return available;
2045}
2046
2047#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2048#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2049#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2050#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2051#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2052#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2053
2054/* We need to exclude reserved regions. This exclusion will include
2055 * vmlinux and initrd. To be more precise the initrd size could be used to
2056 * compute a new lower limit because it is freed later during initialization.
2057 */
2058static void __init reduce_memory(phys_addr_t limit_ram)
2059{
2060	phys_addr_t avail_ram = available_memory();
2061	phys_addr_t pa_start, pa_end;
2062	u64 i;
2063
2064	if (limit_ram >= avail_ram)
2065		return;
2066
2067	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2068				&pa_end, NULL) {
2069		phys_addr_t region_size = pa_end - pa_start;
2070		phys_addr_t clip_start = pa_start;
2071
2072		avail_ram = avail_ram - region_size;
2073		/* Are we consuming too much? */
2074		if (avail_ram < limit_ram) {
2075			phys_addr_t give_back = limit_ram - avail_ram;
2076
2077			region_size = region_size - give_back;
2078			clip_start = clip_start + give_back;
2079		}
2080
2081		memblock_remove(clip_start, region_size);
2082
2083		if (avail_ram <= limit_ram)
2084			break;
2085		i = 0UL;
2086	}
2087}
2088
2089void __init paging_init(void)
2090{
2091	unsigned long end_pfn, shift, phys_base;
2092	unsigned long real_end, i;
2093	int node;
2094
2095	setup_page_offset();
2096
2097	/* These build time checkes make sure that the dcache_dirty_cpu()
2098	 * page->flags usage will work.
2099	 *
2100	 * When a page gets marked as dcache-dirty, we store the
2101	 * cpu number starting at bit 32 in the page->flags.  Also,
2102	 * functions like clear_dcache_dirty_cpu use the cpu mask
2103	 * in 13-bit signed-immediate instruction fields.
2104	 */
2105
2106	/*
2107	 * Page flags must not reach into upper 32 bits that are used
2108	 * for the cpu number
2109	 */
2110	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2111
2112	/*
2113	 * The bit fields placed in the high range must not reach below
2114	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2115	 * at the 32 bit boundary.
2116	 */
2117	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2118		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2119
2120	BUILD_BUG_ON(NR_CPUS > 4096);
2121
2122	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2123	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2124
2125	/* Invalidate both kernel TSBs.  */
2126	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2127#ifndef CONFIG_DEBUG_PAGEALLOC
2128	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2129#endif
2130
2131	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2132	 * bit on M7 processor. This is a conflicting usage of the same
2133	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2134	 * Detection error on all pages and this will lead to problems
2135	 * later. Kernel does not run with MCD enabled and hence rest
2136	 * of the required steps to fully configure memory corruption
2137	 * detection are not taken. We need to ensure TTE.mcde is not
2138	 * set on M7 processor. Compute the value of cacheability
2139	 * flag for use later taking this into consideration.
2140	 */
2141	switch (sun4v_chip_type) {
2142	case SUN4V_CHIP_SPARC_M7:
2143	case SUN4V_CHIP_SPARC_SN:
2144		page_cache4v_flag = _PAGE_CP_4V;
2145		break;
2146	default:
2147		page_cache4v_flag = _PAGE_CACHE_4V;
2148		break;
2149	}
2150
2151	if (tlb_type == hypervisor)
2152		sun4v_pgprot_init();
2153	else
2154		sun4u_pgprot_init();
2155
2156	if (tlb_type == cheetah_plus ||
2157	    tlb_type == hypervisor) {
2158		tsb_phys_patch();
2159		ktsb_phys_patch();
2160	}
2161
2162	if (tlb_type == hypervisor)
2163		sun4v_patch_tlb_handlers();
 
 
 
 
2164
2165	/* Find available physical memory...
2166	 *
2167	 * Read it twice in order to work around a bug in openfirmware.
2168	 * The call to grab this table itself can cause openfirmware to
2169	 * allocate memory, which in turn can take away some space from
2170	 * the list of available memory.  Reading it twice makes sure
2171	 * we really do get the final value.
2172	 */
2173	read_obp_translations();
2174	read_obp_memory("reg", &pall[0], &pall_ents);
2175	read_obp_memory("available", &pavail[0], &pavail_ents);
2176	read_obp_memory("available", &pavail[0], &pavail_ents);
2177
2178	phys_base = 0xffffffffffffffffUL;
2179	for (i = 0; i < pavail_ents; i++) {
2180		phys_base = min(phys_base, pavail[i].phys_addr);
2181		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2182	}
2183
2184	memblock_reserve(kern_base, kern_size);
2185
2186	find_ramdisk(phys_base);
2187
2188	if (cmdline_memory_size)
2189		reduce_memory(cmdline_memory_size);
2190
2191	memblock_allow_resize();
2192	memblock_dump_all();
2193
2194	set_bit(0, mmu_context_bmap);
2195
2196	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2197
2198	real_end = (unsigned long)_end;
2199	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2200	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2201	       num_kernel_image_mappings);
2202
2203	/* Set kernel pgd to upper alias so physical page computations
2204	 * work.
2205	 */
2206	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2207	
2208	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2209
 
 
 
 
2210	inherit_prom_mappings();
2211	
 
 
2212	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2213	setup_tba();
2214
2215	__flush_tlb_all();
2216
 
 
 
2217	prom_build_devicetree();
2218	of_populate_present_mask();
2219#ifndef CONFIG_SMP
2220	of_fill_in_cpu_data();
2221#endif
2222
2223	if (tlb_type == hypervisor) {
2224		sun4v_mdesc_init();
2225		mdesc_populate_present_mask(cpu_all_mask);
2226#ifndef CONFIG_SMP
2227		mdesc_fill_in_cpu_data(cpu_all_mask);
2228#endif
2229		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2230
2231		sun4v_linear_pte_xor_finalize();
2232
2233		sun4v_ktsb_init();
2234		sun4v_ktsb_register();
2235	} else {
2236		unsigned long impl, ver;
2237
2238		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2239				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2240
2241		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2242		impl = ((ver >> 32) & 0xffff);
2243		if (impl == PANTHER_IMPL)
2244			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2245					  HV_PGSZ_MASK_256MB);
2246
2247		sun4u_linear_pte_xor_finalize();
2248	}
2249
2250	/* Flush the TLBs and the 4M TSB so that the updated linear
2251	 * pte XOR settings are realized for all mappings.
2252	 */
2253	__flush_tlb_all();
2254#ifndef CONFIG_DEBUG_PAGEALLOC
2255	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2256#endif
2257	__flush_tlb_all();
2258
2259	/* Setup bootmem... */
2260	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2261
2262	/* Once the OF device tree and MDESC have been setup, we know
2263	 * the list of possible cpus.  Therefore we can allocate the
2264	 * IRQ stacks.
2265	 */
2266	for_each_possible_cpu(i) {
2267		node = cpu_to_node(i);
 
 
 
2268
2269		softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2270							THREAD_SIZE,
2271							THREAD_SIZE, 0);
2272		hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2273							THREAD_SIZE,
2274							THREAD_SIZE, 0);
2275	}
2276
 
 
 
2277	kernel_physical_mapping_init();
2278
2279	{
2280		unsigned long max_zone_pfns[MAX_NR_ZONES];
2281
2282		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2283
2284		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2285
2286		free_area_init_nodes(max_zone_pfns);
2287	}
2288
2289	printk("Booting Linux...\n");
2290}
2291
2292int page_in_phys_avail(unsigned long paddr)
2293{
2294	int i;
2295
2296	paddr &= PAGE_MASK;
2297
2298	for (i = 0; i < pavail_ents; i++) {
2299		unsigned long start, end;
2300
2301		start = pavail[i].phys_addr;
2302		end = start + pavail[i].reg_size;
2303
2304		if (paddr >= start && paddr < end)
2305			return 1;
2306	}
2307	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2308		return 1;
2309#ifdef CONFIG_BLK_DEV_INITRD
2310	if (paddr >= __pa(initrd_start) &&
2311	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2312		return 1;
2313#endif
2314
2315	return 0;
2316}
2317
2318static void __init register_page_bootmem_info(void)
 
 
 
 
 
 
 
 
 
2319{
2320#ifdef CONFIG_NEED_MULTIPLE_NODES
2321	int i;
2322
2323	for_each_online_node(i)
2324		if (NODE_DATA(i)->node_spanned_pages)
2325			register_page_bootmem_info_node(NODE_DATA(i));
2326#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2327}
 
2328void __init mem_init(void)
2329{
 
 
 
 
 
 
 
 
 
 
 
 
 
2330	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2331
2332	register_page_bootmem_info();
2333	free_all_bootmem();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2334
2335	/*
2336	 * Set up the zero page, mark it reserved, so that page count
2337	 * is not manipulated when freeing the page from user ptes.
2338	 */
2339	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2340	if (mem_map_zero == NULL) {
2341		prom_printf("paging_init: Cannot alloc zero page.\n");
2342		prom_halt();
2343	}
2344	mark_page_reserved(mem_map_zero);
2345
2346	mem_init_print_info(NULL);
 
 
 
 
 
 
 
 
 
 
 
 
2347
2348	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2349		cheetah_ecache_flush_init();
2350}
2351
2352void free_initmem(void)
2353{
2354	unsigned long addr, initend;
2355	int do_free = 1;
2356
2357	/* If the physical memory maps were trimmed by kernel command
2358	 * line options, don't even try freeing this initmem stuff up.
2359	 * The kernel image could have been in the trimmed out region
2360	 * and if so the freeing below will free invalid page structs.
2361	 */
2362	if (cmdline_memory_size)
2363		do_free = 0;
2364
2365	/*
2366	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2367	 */
2368	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2369	initend = (unsigned long)(__init_end) & PAGE_MASK;
2370	for (; addr < initend; addr += PAGE_SIZE) {
2371		unsigned long page;
 
2372
2373		page = (addr +
2374			((unsigned long) __va(kern_base)) -
2375			((unsigned long) KERNBASE));
2376		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2377
2378		if (do_free)
2379			free_reserved_page(virt_to_page(page));
 
 
 
 
 
 
 
2380	}
2381}
2382
2383#ifdef CONFIG_BLK_DEV_INITRD
2384void free_initrd_mem(unsigned long start, unsigned long end)
2385{
2386	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2387			   "initrd");
 
 
 
 
 
 
 
 
 
2388}
2389#endif
2390
 
 
 
 
 
 
 
2391pgprot_t PAGE_KERNEL __read_mostly;
2392EXPORT_SYMBOL(PAGE_KERNEL);
2393
2394pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2395pgprot_t PAGE_COPY __read_mostly;
2396
2397pgprot_t PAGE_SHARED __read_mostly;
2398EXPORT_SYMBOL(PAGE_SHARED);
2399
2400unsigned long pg_iobits __read_mostly;
2401
2402unsigned long _PAGE_IE __read_mostly;
2403EXPORT_SYMBOL(_PAGE_IE);
2404
2405unsigned long _PAGE_E __read_mostly;
2406EXPORT_SYMBOL(_PAGE_E);
2407
2408unsigned long _PAGE_CACHE __read_mostly;
2409EXPORT_SYMBOL(_PAGE_CACHE);
2410
2411#ifdef CONFIG_SPARSEMEM_VMEMMAP
2412int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2413			       int node)
 
2414{
 
 
 
 
 
 
2415	unsigned long pte_base;
2416
2417	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2418		    _PAGE_CP_4U | _PAGE_CV_4U |
2419		    _PAGE_P_4U | _PAGE_W_4U);
2420	if (tlb_type == hypervisor)
2421		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2422			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
 
2423
2424	pte_base |= _PAGE_PMD_HUGE;
 
 
 
2425
2426	vstart = vstart & PMD_MASK;
2427	vend = ALIGN(vend, PMD_SIZE);
2428	for (; vstart < vend; vstart += PMD_SIZE) {
2429		pgd_t *pgd = pgd_offset_k(vstart);
2430		unsigned long pte;
2431		pud_t *pud;
2432		pmd_t *pmd;
2433
2434		if (pgd_none(*pgd)) {
2435			pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2436
2437			if (!new)
2438				return -ENOMEM;
2439			pgd_populate(&init_mm, pgd, new);
2440		}
2441
2442		pud = pud_offset(pgd, vstart);
2443		if (pud_none(*pud)) {
2444			pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2445
2446			if (!new)
2447				return -ENOMEM;
2448			pud_populate(&init_mm, pud, new);
2449		}
2450
2451		pmd = pmd_offset(pud, vstart);
2452
2453		pte = pmd_val(*pmd);
2454		if (!(pte & _PAGE_VALID)) {
2455			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2456
2457			if (!block)
2458				return -ENOMEM;
2459
2460			pmd_val(*pmd) = pte_base | __pa(block);
2461		}
2462	}
2463
2464	return 0;
2465}
2466
2467void vmemmap_free(unsigned long start, unsigned long end)
2468{
2469}
2470#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2471
2472static void prot_init_common(unsigned long page_none,
2473			     unsigned long page_shared,
2474			     unsigned long page_copy,
2475			     unsigned long page_readonly,
2476			     unsigned long page_exec_bit)
2477{
2478	PAGE_COPY = __pgprot(page_copy);
2479	PAGE_SHARED = __pgprot(page_shared);
2480
2481	protection_map[0x0] = __pgprot(page_none);
2482	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2483	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2484	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2485	protection_map[0x4] = __pgprot(page_readonly);
2486	protection_map[0x5] = __pgprot(page_readonly);
2487	protection_map[0x6] = __pgprot(page_copy);
2488	protection_map[0x7] = __pgprot(page_copy);
2489	protection_map[0x8] = __pgprot(page_none);
2490	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2491	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2492	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2493	protection_map[0xc] = __pgprot(page_readonly);
2494	protection_map[0xd] = __pgprot(page_readonly);
2495	protection_map[0xe] = __pgprot(page_shared);
2496	protection_map[0xf] = __pgprot(page_shared);
2497}
2498
2499static void __init sun4u_pgprot_init(void)
2500{
2501	unsigned long page_none, page_shared, page_copy, page_readonly;
2502	unsigned long page_exec_bit;
2503	int i;
2504
2505	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2506				_PAGE_CACHE_4U | _PAGE_P_4U |
2507				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2508				_PAGE_EXEC_4U);
2509	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2510				       _PAGE_CACHE_4U | _PAGE_P_4U |
2511				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2512				       _PAGE_EXEC_4U | _PAGE_L_4U);
2513
2514	_PAGE_IE = _PAGE_IE_4U;
2515	_PAGE_E = _PAGE_E_4U;
2516	_PAGE_CACHE = _PAGE_CACHE_4U;
2517
2518	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2519		     __ACCESS_BITS_4U | _PAGE_E_4U);
2520
2521#ifdef CONFIG_DEBUG_PAGEALLOC
2522	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
 
2523#else
2524	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2525		PAGE_OFFSET;
2526#endif
2527	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2528				   _PAGE_P_4U | _PAGE_W_4U);
2529
2530	for (i = 1; i < 4; i++)
2531		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2532
 
2533	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2534			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2535			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2536
2537
2538	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2539	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2540		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2541	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2542		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2543	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2544			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2545
2546	page_exec_bit = _PAGE_EXEC_4U;
2547
2548	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2549			 page_exec_bit);
2550}
2551
2552static void __init sun4v_pgprot_init(void)
2553{
2554	unsigned long page_none, page_shared, page_copy, page_readonly;
2555	unsigned long page_exec_bit;
2556	int i;
2557
2558	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2559				page_cache4v_flag | _PAGE_P_4V |
2560				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2561				_PAGE_EXEC_4V);
2562	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2563
2564	_PAGE_IE = _PAGE_IE_4V;
2565	_PAGE_E = _PAGE_E_4V;
2566	_PAGE_CACHE = page_cache4v_flag;
2567
2568#ifdef CONFIG_DEBUG_PAGEALLOC
2569	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
 
2570#else
2571	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2572		PAGE_OFFSET;
2573#endif
2574	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2575				   _PAGE_W_4V);
2576
2577	for (i = 1; i < 4; i++)
2578		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
 
 
 
 
 
 
 
2579
2580	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2581		     __ACCESS_BITS_4V | _PAGE_E_4V);
2582
 
2583	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2584			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2585			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2586			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2587
2588	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2589	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2590		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2591	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2592		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2593	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2594			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2595
2596	page_exec_bit = _PAGE_EXEC_4V;
2597
2598	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2599			 page_exec_bit);
2600}
2601
2602unsigned long pte_sz_bits(unsigned long sz)
2603{
2604	if (tlb_type == hypervisor) {
2605		switch (sz) {
2606		case 8 * 1024:
2607		default:
2608			return _PAGE_SZ8K_4V;
2609		case 64 * 1024:
2610			return _PAGE_SZ64K_4V;
2611		case 512 * 1024:
2612			return _PAGE_SZ512K_4V;
2613		case 4 * 1024 * 1024:
2614			return _PAGE_SZ4MB_4V;
2615		}
2616	} else {
2617		switch (sz) {
2618		case 8 * 1024:
2619		default:
2620			return _PAGE_SZ8K_4U;
2621		case 64 * 1024:
2622			return _PAGE_SZ64K_4U;
2623		case 512 * 1024:
2624			return _PAGE_SZ512K_4U;
2625		case 4 * 1024 * 1024:
2626			return _PAGE_SZ4MB_4U;
2627		}
2628	}
2629}
2630
2631pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2632{
2633	pte_t pte;
2634
2635	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2636	pte_val(pte) |= (((unsigned long)space) << 32);
2637	pte_val(pte) |= pte_sz_bits(page_size);
2638
2639	return pte;
2640}
2641
2642static unsigned long kern_large_tte(unsigned long paddr)
2643{
2644	unsigned long val;
2645
2646	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2647	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2648	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2649	if (tlb_type == hypervisor)
2650		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2651		       page_cache4v_flag | _PAGE_P_4V |
2652		       _PAGE_EXEC_4V | _PAGE_W_4V);
2653
2654	return val | paddr;
2655}
2656
2657/* If not locked, zap it. */
2658void __flush_tlb_all(void)
2659{
2660	unsigned long pstate;
2661	int i;
2662
2663	__asm__ __volatile__("flushw\n\t"
2664			     "rdpr	%%pstate, %0\n\t"
2665			     "wrpr	%0, %1, %%pstate"
2666			     : "=r" (pstate)
2667			     : "i" (PSTATE_IE));
2668	if (tlb_type == hypervisor) {
2669		sun4v_mmu_demap_all();
2670	} else if (tlb_type == spitfire) {
2671		for (i = 0; i < 64; i++) {
2672			/* Spitfire Errata #32 workaround */
2673			/* NOTE: Always runs on spitfire, so no
2674			 *       cheetah+ page size encodings.
2675			 */
2676			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2677					     "flush	%%g6"
2678					     : /* No outputs */
2679					     : "r" (0),
2680					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2681
2682			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2683				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2684						     "membar #Sync"
2685						     : /* no outputs */
2686						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2687				spitfire_put_dtlb_data(i, 0x0UL);
2688			}
2689
2690			/* Spitfire Errata #32 workaround */
2691			/* NOTE: Always runs on spitfire, so no
2692			 *       cheetah+ page size encodings.
2693			 */
2694			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2695					     "flush	%%g6"
2696					     : /* No outputs */
2697					     : "r" (0),
2698					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2699
2700			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2701				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2702						     "membar #Sync"
2703						     : /* no outputs */
2704						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2705				spitfire_put_itlb_data(i, 0x0UL);
2706			}
2707		}
2708	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2709		cheetah_flush_dtlb_all();
2710		cheetah_flush_itlb_all();
2711	}
2712	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2713			     : : "r" (pstate));
2714}
2715
2716pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2717			    unsigned long address)
2718{
2719	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2720				       __GFP_REPEAT | __GFP_ZERO);
2721	pte_t *pte = NULL;
2722
2723	if (page)
2724		pte = (pte_t *) page_address(page);
2725
2726	return pte;
2727}
2728
2729pgtable_t pte_alloc_one(struct mm_struct *mm,
2730			unsigned long address)
2731{
2732	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2733				       __GFP_REPEAT | __GFP_ZERO);
2734	if (!page)
2735		return NULL;
2736	if (!pgtable_page_ctor(page)) {
2737		free_hot_cold_page(page, 0);
2738		return NULL;
2739	}
2740	return (pte_t *) page_address(page);
2741}
2742
2743void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2744{
2745	free_page((unsigned long)pte);
2746}
2747
2748static void __pte_free(pgtable_t pte)
2749{
2750	struct page *page = virt_to_page(pte);
2751
2752	pgtable_page_dtor(page);
2753	__free_page(page);
2754}
2755
2756void pte_free(struct mm_struct *mm, pgtable_t pte)
2757{
2758	__pte_free(pte);
2759}
2760
2761void pgtable_free(void *table, bool is_page)
2762{
2763	if (is_page)
2764		__pte_free(table);
2765	else
2766		kmem_cache_free(pgtable_cache, table);
2767}
2768
2769#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2770void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2771			  pmd_t *pmd)
2772{
2773	unsigned long pte, flags;
2774	struct mm_struct *mm;
2775	pmd_t entry = *pmd;
2776
2777	if (!pmd_large(entry) || !pmd_young(entry))
2778		return;
2779
2780	pte = pmd_val(entry);
2781
2782	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2783	if (!(pte & _PAGE_VALID))
2784		return;
2785
2786	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2787	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2788
2789	mm = vma->vm_mm;
2790
2791	spin_lock_irqsave(&mm->context.lock, flags);
2792
2793	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2794		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2795					addr, pte);
2796
2797	spin_unlock_irqrestore(&mm->context.lock, flags);
2798}
2799#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2800
2801#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2802static void context_reload(void *__data)
2803{
2804	struct mm_struct *mm = __data;
2805
2806	if (mm == current->mm)
2807		load_secondary_context(mm);
2808}
2809
2810void hugetlb_setup(struct pt_regs *regs)
2811{
2812	struct mm_struct *mm = current->mm;
2813	struct tsb_config *tp;
2814
2815	if (faulthandler_disabled() || !mm) {
2816		const struct exception_table_entry *entry;
2817
2818		entry = search_exception_tables(regs->tpc);
2819		if (entry) {
2820			regs->tpc = entry->fixup;
2821			regs->tnpc = regs->tpc + 4;
2822			return;
2823		}
2824		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2825		die_if_kernel("HugeTSB in atomic", regs);
2826	}
2827
2828	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2829	if (likely(tp->tsb == NULL))
2830		tsb_grow(mm, MM_TSB_HUGE, 0);
2831
2832	tsb_context_switch(mm);
2833	smp_tsb_sync(mm);
2834
2835	/* On UltraSPARC-III+ and later, configure the second half of
2836	 * the Data-TLB for huge pages.
2837	 */
2838	if (tlb_type == cheetah_plus) {
2839		unsigned long ctx;
2840
2841		spin_lock(&ctx_alloc_lock);
2842		ctx = mm->context.sparc64_ctx_val;
2843		ctx &= ~CTX_PGSZ_MASK;
2844		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2845		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2846
2847		if (ctx != mm->context.sparc64_ctx_val) {
2848			/* When changing the page size fields, we
2849			 * must perform a context flush so that no
2850			 * stale entries match.  This flush must
2851			 * occur with the original context register
2852			 * settings.
2853			 */
2854			do_flush_tlb_mm(mm);
2855
2856			/* Reload the context register of all processors
2857			 * also executing in this address space.
2858			 */
2859			mm->context.sparc64_ctx_val = ctx;
2860			on_each_cpu(context_reload, mm, 0);
2861		}
2862		spin_unlock(&ctx_alloc_lock);
2863	}
2864}
2865#endif
2866
2867static struct resource code_resource = {
2868	.name	= "Kernel code",
2869	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2870};
2871
2872static struct resource data_resource = {
2873	.name	= "Kernel data",
2874	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2875};
2876
2877static struct resource bss_resource = {
2878	.name	= "Kernel bss",
2879	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2880};
2881
2882static inline resource_size_t compute_kern_paddr(void *addr)
2883{
2884	return (resource_size_t) (addr - KERNBASE + kern_base);
2885}
2886
2887static void __init kernel_lds_init(void)
2888{
2889	code_resource.start = compute_kern_paddr(_text);
2890	code_resource.end   = compute_kern_paddr(_etext - 1);
2891	data_resource.start = compute_kern_paddr(_etext);
2892	data_resource.end   = compute_kern_paddr(_edata - 1);
2893	bss_resource.start  = compute_kern_paddr(__bss_start);
2894	bss_resource.end    = compute_kern_paddr(_end - 1);
2895}
2896
2897static int __init report_memory(void)
2898{
2899	int i;
2900	struct resource *res;
2901
2902	kernel_lds_init();
2903
2904	for (i = 0; i < pavail_ents; i++) {
2905		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2906
2907		if (!res) {
2908			pr_warn("Failed to allocate source.\n");
2909			break;
2910		}
2911
2912		res->name = "System RAM";
2913		res->start = pavail[i].phys_addr;
2914		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2915		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
2916
2917		if (insert_resource(&iomem_resource, res) < 0) {
2918			pr_warn("Resource insertion failed.\n");
2919			break;
2920		}
2921
2922		insert_resource(res, &code_resource);
2923		insert_resource(res, &data_resource);
2924		insert_resource(res, &bss_resource);
2925	}
2926
2927	return 0;
2928}
2929arch_initcall(report_memory);
2930
2931#ifdef CONFIG_SMP
2932#define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
2933#else
2934#define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
2935#endif
2936
2937void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2938{
2939	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2940		if (start < LOW_OBP_ADDRESS) {
2941			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2942			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2943		}
2944		if (end > HI_OBP_ADDRESS) {
2945			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2946			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2947		}
2948	} else {
2949		flush_tsb_kernel_range(start, end);
2950		do_flush_tlb_kernel_range(start, end);
2951	}
2952}