Loading...
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
24#include <linux/pci.h>
25#include <linux/slab.h>
26#include <linux/dmapool.h>
27
28#include "xhci.h"
29
30/*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38{
39 struct xhci_segment *seg;
40 dma_addr_t dma;
41
42 seg = kzalloc(sizeof *seg, flags);
43 if (!seg)
44 return NULL;
45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46
47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 if (!seg->trbs) {
49 kfree(seg);
50 return NULL;
51 }
52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg->trbs, (unsigned long long)dma);
54
55 memset(seg->trbs, 0, SEGMENT_SIZE);
56 seg->dma = dma;
57 seg->next = NULL;
58
59 return seg;
60}
61
62static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63{
64 if (!seg)
65 return;
66 if (seg->trbs) {
67 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 seg->trbs, (unsigned long long)seg->dma);
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
72 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73 kfree(seg);
74}
75
76/*
77 * Make the prev segment point to the next segment.
78 *
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment. The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
82 */
83static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84 struct xhci_segment *next, bool link_trbs)
85{
86 u32 val;
87
88 if (!prev || !next)
89 return;
90 prev->next = next;
91 if (link_trbs) {
92 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
93 cpu_to_le64(next->dma);
94
95 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
96 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
97 val &= ~TRB_TYPE_BITMASK;
98 val |= TRB_TYPE(TRB_LINK);
99 /* Always set the chain bit with 0.95 hardware */
100 if (xhci_link_trb_quirk(xhci))
101 val |= TRB_CHAIN;
102 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
103 }
104 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
105 (unsigned long long)prev->dma,
106 (unsigned long long)next->dma);
107}
108
109/* XXX: Do we need the hcd structure in all these functions? */
110void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
111{
112 struct xhci_segment *seg;
113 struct xhci_segment *first_seg;
114
115 if (!ring || !ring->first_seg)
116 return;
117 first_seg = ring->first_seg;
118 seg = first_seg->next;
119 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
120 while (seg != first_seg) {
121 struct xhci_segment *next = seg->next;
122 xhci_segment_free(xhci, seg);
123 seg = next;
124 }
125 xhci_segment_free(xhci, first_seg);
126 ring->first_seg = NULL;
127 kfree(ring);
128}
129
130static void xhci_initialize_ring_info(struct xhci_ring *ring)
131{
132 /* The ring is empty, so the enqueue pointer == dequeue pointer */
133 ring->enqueue = ring->first_seg->trbs;
134 ring->enq_seg = ring->first_seg;
135 ring->dequeue = ring->enqueue;
136 ring->deq_seg = ring->first_seg;
137 /* The ring is initialized to 0. The producer must write 1 to the cycle
138 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
139 * compare CCS to the cycle bit to check ownership, so CCS = 1.
140 */
141 ring->cycle_state = 1;
142 /* Not necessary for new rings, but needed for re-initialized rings */
143 ring->enq_updates = 0;
144 ring->deq_updates = 0;
145}
146
147/**
148 * Create a new ring with zero or more segments.
149 *
150 * Link each segment together into a ring.
151 * Set the end flag and the cycle toggle bit on the last segment.
152 * See section 4.9.1 and figures 15 and 16.
153 */
154static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
155 unsigned int num_segs, bool link_trbs, gfp_t flags)
156{
157 struct xhci_ring *ring;
158 struct xhci_segment *prev;
159
160 ring = kzalloc(sizeof *(ring), flags);
161 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
162 if (!ring)
163 return NULL;
164
165 INIT_LIST_HEAD(&ring->td_list);
166 if (num_segs == 0)
167 return ring;
168
169 ring->first_seg = xhci_segment_alloc(xhci, flags);
170 if (!ring->first_seg)
171 goto fail;
172 num_segs--;
173
174 prev = ring->first_seg;
175 while (num_segs > 0) {
176 struct xhci_segment *next;
177
178 next = xhci_segment_alloc(xhci, flags);
179 if (!next)
180 goto fail;
181 xhci_link_segments(xhci, prev, next, link_trbs);
182
183 prev = next;
184 num_segs--;
185 }
186 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
187
188 if (link_trbs) {
189 /* See section 4.9.2.1 and 6.4.4.1 */
190 prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
191 cpu_to_le32(LINK_TOGGLE);
192 xhci_dbg(xhci, "Wrote link toggle flag to"
193 " segment %p (virtual), 0x%llx (DMA)\n",
194 prev, (unsigned long long)prev->dma);
195 }
196 xhci_initialize_ring_info(ring);
197 return ring;
198
199fail:
200 xhci_ring_free(xhci, ring);
201 return NULL;
202}
203
204void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
205 struct xhci_virt_device *virt_dev,
206 unsigned int ep_index)
207{
208 int rings_cached;
209
210 rings_cached = virt_dev->num_rings_cached;
211 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
212 virt_dev->ring_cache[rings_cached] =
213 virt_dev->eps[ep_index].ring;
214 virt_dev->num_rings_cached++;
215 xhci_dbg(xhci, "Cached old ring, "
216 "%d ring%s cached\n",
217 virt_dev->num_rings_cached,
218 (virt_dev->num_rings_cached > 1) ? "s" : "");
219 } else {
220 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
221 xhci_dbg(xhci, "Ring cache full (%d rings), "
222 "freeing ring\n",
223 virt_dev->num_rings_cached);
224 }
225 virt_dev->eps[ep_index].ring = NULL;
226}
227
228/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
229 * pointers to the beginning of the ring.
230 */
231static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
232 struct xhci_ring *ring)
233{
234 struct xhci_segment *seg = ring->first_seg;
235 do {
236 memset(seg->trbs, 0,
237 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
238 /* All endpoint rings have link TRBs */
239 xhci_link_segments(xhci, seg, seg->next, 1);
240 seg = seg->next;
241 } while (seg != ring->first_seg);
242 xhci_initialize_ring_info(ring);
243 /* td list should be empty since all URBs have been cancelled,
244 * but just in case...
245 */
246 INIT_LIST_HEAD(&ring->td_list);
247}
248
249#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
250
251static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
252 int type, gfp_t flags)
253{
254 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
255 if (!ctx)
256 return NULL;
257
258 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
259 ctx->type = type;
260 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
261 if (type == XHCI_CTX_TYPE_INPUT)
262 ctx->size += CTX_SIZE(xhci->hcc_params);
263
264 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
265 memset(ctx->bytes, 0, ctx->size);
266 return ctx;
267}
268
269static void xhci_free_container_ctx(struct xhci_hcd *xhci,
270 struct xhci_container_ctx *ctx)
271{
272 if (!ctx)
273 return;
274 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
275 kfree(ctx);
276}
277
278struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
279 struct xhci_container_ctx *ctx)
280{
281 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
282 return (struct xhci_input_control_ctx *)ctx->bytes;
283}
284
285struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
286 struct xhci_container_ctx *ctx)
287{
288 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
289 return (struct xhci_slot_ctx *)ctx->bytes;
290
291 return (struct xhci_slot_ctx *)
292 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
293}
294
295struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
296 struct xhci_container_ctx *ctx,
297 unsigned int ep_index)
298{
299 /* increment ep index by offset of start of ep ctx array */
300 ep_index++;
301 if (ctx->type == XHCI_CTX_TYPE_INPUT)
302 ep_index++;
303
304 return (struct xhci_ep_ctx *)
305 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
306}
307
308
309/***************** Streams structures manipulation *************************/
310
311static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
312 unsigned int num_stream_ctxs,
313 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
314{
315 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
316
317 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
318 pci_free_consistent(pdev,
319 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
320 stream_ctx, dma);
321 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
322 return dma_pool_free(xhci->small_streams_pool,
323 stream_ctx, dma);
324 else
325 return dma_pool_free(xhci->medium_streams_pool,
326 stream_ctx, dma);
327}
328
329/*
330 * The stream context array for each endpoint with bulk streams enabled can
331 * vary in size, based on:
332 * - how many streams the endpoint supports,
333 * - the maximum primary stream array size the host controller supports,
334 * - and how many streams the device driver asks for.
335 *
336 * The stream context array must be a power of 2, and can be as small as
337 * 64 bytes or as large as 1MB.
338 */
339static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
340 unsigned int num_stream_ctxs, dma_addr_t *dma,
341 gfp_t mem_flags)
342{
343 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
344
345 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
346 return pci_alloc_consistent(pdev,
347 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
348 dma);
349 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
350 return dma_pool_alloc(xhci->small_streams_pool,
351 mem_flags, dma);
352 else
353 return dma_pool_alloc(xhci->medium_streams_pool,
354 mem_flags, dma);
355}
356
357struct xhci_ring *xhci_dma_to_transfer_ring(
358 struct xhci_virt_ep *ep,
359 u64 address)
360{
361 if (ep->ep_state & EP_HAS_STREAMS)
362 return radix_tree_lookup(&ep->stream_info->trb_address_map,
363 address >> SEGMENT_SHIFT);
364 return ep->ring;
365}
366
367/* Only use this when you know stream_info is valid */
368#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
369static struct xhci_ring *dma_to_stream_ring(
370 struct xhci_stream_info *stream_info,
371 u64 address)
372{
373 return radix_tree_lookup(&stream_info->trb_address_map,
374 address >> SEGMENT_SHIFT);
375}
376#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
377
378struct xhci_ring *xhci_stream_id_to_ring(
379 struct xhci_virt_device *dev,
380 unsigned int ep_index,
381 unsigned int stream_id)
382{
383 struct xhci_virt_ep *ep = &dev->eps[ep_index];
384
385 if (stream_id == 0)
386 return ep->ring;
387 if (!ep->stream_info)
388 return NULL;
389
390 if (stream_id > ep->stream_info->num_streams)
391 return NULL;
392 return ep->stream_info->stream_rings[stream_id];
393}
394
395#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
396static int xhci_test_radix_tree(struct xhci_hcd *xhci,
397 unsigned int num_streams,
398 struct xhci_stream_info *stream_info)
399{
400 u32 cur_stream;
401 struct xhci_ring *cur_ring;
402 u64 addr;
403
404 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
405 struct xhci_ring *mapped_ring;
406 int trb_size = sizeof(union xhci_trb);
407
408 cur_ring = stream_info->stream_rings[cur_stream];
409 for (addr = cur_ring->first_seg->dma;
410 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
411 addr += trb_size) {
412 mapped_ring = dma_to_stream_ring(stream_info, addr);
413 if (cur_ring != mapped_ring) {
414 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
415 "didn't map to stream ID %u; "
416 "mapped to ring %p\n",
417 (unsigned long long) addr,
418 cur_stream,
419 mapped_ring);
420 return -EINVAL;
421 }
422 }
423 /* One TRB after the end of the ring segment shouldn't return a
424 * pointer to the current ring (although it may be a part of a
425 * different ring).
426 */
427 mapped_ring = dma_to_stream_ring(stream_info, addr);
428 if (mapped_ring != cur_ring) {
429 /* One TRB before should also fail */
430 addr = cur_ring->first_seg->dma - trb_size;
431 mapped_ring = dma_to_stream_ring(stream_info, addr);
432 }
433 if (mapped_ring == cur_ring) {
434 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
435 "mapped to valid stream ID %u; "
436 "mapped ring = %p\n",
437 (unsigned long long) addr,
438 cur_stream,
439 mapped_ring);
440 return -EINVAL;
441 }
442 }
443 return 0;
444}
445#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
446
447/*
448 * Change an endpoint's internal structure so it supports stream IDs. The
449 * number of requested streams includes stream 0, which cannot be used by device
450 * drivers.
451 *
452 * The number of stream contexts in the stream context array may be bigger than
453 * the number of streams the driver wants to use. This is because the number of
454 * stream context array entries must be a power of two.
455 *
456 * We need a radix tree for mapping physical addresses of TRBs to which stream
457 * ID they belong to. We need to do this because the host controller won't tell
458 * us which stream ring the TRB came from. We could store the stream ID in an
459 * event data TRB, but that doesn't help us for the cancellation case, since the
460 * endpoint may stop before it reaches that event data TRB.
461 *
462 * The radix tree maps the upper portion of the TRB DMA address to a ring
463 * segment that has the same upper portion of DMA addresses. For example, say I
464 * have segments of size 1KB, that are always 64-byte aligned. A segment may
465 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
466 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
467 * pass the radix tree a key to get the right stream ID:
468 *
469 * 0x10c90fff >> 10 = 0x43243
470 * 0x10c912c0 >> 10 = 0x43244
471 * 0x10c91400 >> 10 = 0x43245
472 *
473 * Obviously, only those TRBs with DMA addresses that are within the segment
474 * will make the radix tree return the stream ID for that ring.
475 *
476 * Caveats for the radix tree:
477 *
478 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
479 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
480 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
481 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
482 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
483 * extended systems (where the DMA address can be bigger than 32-bits),
484 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
485 */
486struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
487 unsigned int num_stream_ctxs,
488 unsigned int num_streams, gfp_t mem_flags)
489{
490 struct xhci_stream_info *stream_info;
491 u32 cur_stream;
492 struct xhci_ring *cur_ring;
493 unsigned long key;
494 u64 addr;
495 int ret;
496
497 xhci_dbg(xhci, "Allocating %u streams and %u "
498 "stream context array entries.\n",
499 num_streams, num_stream_ctxs);
500 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
501 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
502 return NULL;
503 }
504 xhci->cmd_ring_reserved_trbs++;
505
506 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
507 if (!stream_info)
508 goto cleanup_trbs;
509
510 stream_info->num_streams = num_streams;
511 stream_info->num_stream_ctxs = num_stream_ctxs;
512
513 /* Initialize the array of virtual pointers to stream rings. */
514 stream_info->stream_rings = kzalloc(
515 sizeof(struct xhci_ring *)*num_streams,
516 mem_flags);
517 if (!stream_info->stream_rings)
518 goto cleanup_info;
519
520 /* Initialize the array of DMA addresses for stream rings for the HW. */
521 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
522 num_stream_ctxs, &stream_info->ctx_array_dma,
523 mem_flags);
524 if (!stream_info->stream_ctx_array)
525 goto cleanup_ctx;
526 memset(stream_info->stream_ctx_array, 0,
527 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
528
529 /* Allocate everything needed to free the stream rings later */
530 stream_info->free_streams_command =
531 xhci_alloc_command(xhci, true, true, mem_flags);
532 if (!stream_info->free_streams_command)
533 goto cleanup_ctx;
534
535 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
536
537 /* Allocate rings for all the streams that the driver will use,
538 * and add their segment DMA addresses to the radix tree.
539 * Stream 0 is reserved.
540 */
541 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
542 stream_info->stream_rings[cur_stream] =
543 xhci_ring_alloc(xhci, 1, true, mem_flags);
544 cur_ring = stream_info->stream_rings[cur_stream];
545 if (!cur_ring)
546 goto cleanup_rings;
547 cur_ring->stream_id = cur_stream;
548 /* Set deq ptr, cycle bit, and stream context type */
549 addr = cur_ring->first_seg->dma |
550 SCT_FOR_CTX(SCT_PRI_TR) |
551 cur_ring->cycle_state;
552 stream_info->stream_ctx_array[cur_stream].stream_ring =
553 cpu_to_le64(addr);
554 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
555 cur_stream, (unsigned long long) addr);
556
557 key = (unsigned long)
558 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
559 ret = radix_tree_insert(&stream_info->trb_address_map,
560 key, cur_ring);
561 if (ret) {
562 xhci_ring_free(xhci, cur_ring);
563 stream_info->stream_rings[cur_stream] = NULL;
564 goto cleanup_rings;
565 }
566 }
567 /* Leave the other unused stream ring pointers in the stream context
568 * array initialized to zero. This will cause the xHC to give us an
569 * error if the device asks for a stream ID we don't have setup (if it
570 * was any other way, the host controller would assume the ring is
571 * "empty" and wait forever for data to be queued to that stream ID).
572 */
573#if XHCI_DEBUG
574 /* Do a little test on the radix tree to make sure it returns the
575 * correct values.
576 */
577 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
578 goto cleanup_rings;
579#endif
580
581 return stream_info;
582
583cleanup_rings:
584 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
585 cur_ring = stream_info->stream_rings[cur_stream];
586 if (cur_ring) {
587 addr = cur_ring->first_seg->dma;
588 radix_tree_delete(&stream_info->trb_address_map,
589 addr >> SEGMENT_SHIFT);
590 xhci_ring_free(xhci, cur_ring);
591 stream_info->stream_rings[cur_stream] = NULL;
592 }
593 }
594 xhci_free_command(xhci, stream_info->free_streams_command);
595cleanup_ctx:
596 kfree(stream_info->stream_rings);
597cleanup_info:
598 kfree(stream_info);
599cleanup_trbs:
600 xhci->cmd_ring_reserved_trbs--;
601 return NULL;
602}
603/*
604 * Sets the MaxPStreams field and the Linear Stream Array field.
605 * Sets the dequeue pointer to the stream context array.
606 */
607void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
608 struct xhci_ep_ctx *ep_ctx,
609 struct xhci_stream_info *stream_info)
610{
611 u32 max_primary_streams;
612 /* MaxPStreams is the number of stream context array entries, not the
613 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
614 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
615 */
616 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
617 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
618 1 << (max_primary_streams + 1));
619 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
620 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
621 | EP_HAS_LSA);
622 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
623}
624
625/*
626 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
627 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
628 * not at the beginning of the ring).
629 */
630void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
631 struct xhci_ep_ctx *ep_ctx,
632 struct xhci_virt_ep *ep)
633{
634 dma_addr_t addr;
635 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
636 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
637 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
638}
639
640/* Frees all stream contexts associated with the endpoint,
641 *
642 * Caller should fix the endpoint context streams fields.
643 */
644void xhci_free_stream_info(struct xhci_hcd *xhci,
645 struct xhci_stream_info *stream_info)
646{
647 int cur_stream;
648 struct xhci_ring *cur_ring;
649 dma_addr_t addr;
650
651 if (!stream_info)
652 return;
653
654 for (cur_stream = 1; cur_stream < stream_info->num_streams;
655 cur_stream++) {
656 cur_ring = stream_info->stream_rings[cur_stream];
657 if (cur_ring) {
658 addr = cur_ring->first_seg->dma;
659 radix_tree_delete(&stream_info->trb_address_map,
660 addr >> SEGMENT_SHIFT);
661 xhci_ring_free(xhci, cur_ring);
662 stream_info->stream_rings[cur_stream] = NULL;
663 }
664 }
665 xhci_free_command(xhci, stream_info->free_streams_command);
666 xhci->cmd_ring_reserved_trbs--;
667 if (stream_info->stream_ctx_array)
668 xhci_free_stream_ctx(xhci,
669 stream_info->num_stream_ctxs,
670 stream_info->stream_ctx_array,
671 stream_info->ctx_array_dma);
672
673 if (stream_info)
674 kfree(stream_info->stream_rings);
675 kfree(stream_info);
676}
677
678
679/***************** Device context manipulation *************************/
680
681static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
682 struct xhci_virt_ep *ep)
683{
684 init_timer(&ep->stop_cmd_timer);
685 ep->stop_cmd_timer.data = (unsigned long) ep;
686 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
687 ep->xhci = xhci;
688}
689
690/* All the xhci_tds in the ring's TD list should be freed at this point */
691void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
692{
693 struct xhci_virt_device *dev;
694 int i;
695
696 /* Slot ID 0 is reserved */
697 if (slot_id == 0 || !xhci->devs[slot_id])
698 return;
699
700 dev = xhci->devs[slot_id];
701 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
702 if (!dev)
703 return;
704
705 for (i = 0; i < 31; ++i) {
706 if (dev->eps[i].ring)
707 xhci_ring_free(xhci, dev->eps[i].ring);
708 if (dev->eps[i].stream_info)
709 xhci_free_stream_info(xhci,
710 dev->eps[i].stream_info);
711 }
712
713 if (dev->ring_cache) {
714 for (i = 0; i < dev->num_rings_cached; i++)
715 xhci_ring_free(xhci, dev->ring_cache[i]);
716 kfree(dev->ring_cache);
717 }
718
719 if (dev->in_ctx)
720 xhci_free_container_ctx(xhci, dev->in_ctx);
721 if (dev->out_ctx)
722 xhci_free_container_ctx(xhci, dev->out_ctx);
723
724 kfree(xhci->devs[slot_id]);
725 xhci->devs[slot_id] = NULL;
726}
727
728int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
729 struct usb_device *udev, gfp_t flags)
730{
731 struct xhci_virt_device *dev;
732 int i;
733
734 /* Slot ID 0 is reserved */
735 if (slot_id == 0 || xhci->devs[slot_id]) {
736 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
737 return 0;
738 }
739
740 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
741 if (!xhci->devs[slot_id])
742 return 0;
743 dev = xhci->devs[slot_id];
744
745 /* Allocate the (output) device context that will be used in the HC. */
746 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
747 if (!dev->out_ctx)
748 goto fail;
749
750 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
751 (unsigned long long)dev->out_ctx->dma);
752
753 /* Allocate the (input) device context for address device command */
754 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
755 if (!dev->in_ctx)
756 goto fail;
757
758 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
759 (unsigned long long)dev->in_ctx->dma);
760
761 /* Initialize the cancellation list and watchdog timers for each ep */
762 for (i = 0; i < 31; i++) {
763 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
764 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
765 }
766
767 /* Allocate endpoint 0 ring */
768 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
769 if (!dev->eps[0].ring)
770 goto fail;
771
772 /* Allocate pointers to the ring cache */
773 dev->ring_cache = kzalloc(
774 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
775 flags);
776 if (!dev->ring_cache)
777 goto fail;
778 dev->num_rings_cached = 0;
779
780 init_completion(&dev->cmd_completion);
781 INIT_LIST_HEAD(&dev->cmd_list);
782 dev->udev = udev;
783
784 /* Point to output device context in dcbaa. */
785 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
786 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
787 slot_id,
788 &xhci->dcbaa->dev_context_ptrs[slot_id],
789 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
790
791 return 1;
792fail:
793 xhci_free_virt_device(xhci, slot_id);
794 return 0;
795}
796
797void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
798 struct usb_device *udev)
799{
800 struct xhci_virt_device *virt_dev;
801 struct xhci_ep_ctx *ep0_ctx;
802 struct xhci_ring *ep_ring;
803
804 virt_dev = xhci->devs[udev->slot_id];
805 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
806 ep_ring = virt_dev->eps[0].ring;
807 /*
808 * FIXME we don't keep track of the dequeue pointer very well after a
809 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
810 * host to our enqueue pointer. This should only be called after a
811 * configured device has reset, so all control transfers should have
812 * been completed or cancelled before the reset.
813 */
814 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
815 ep_ring->enqueue)
816 | ep_ring->cycle_state);
817}
818
819/*
820 * The xHCI roothub may have ports of differing speeds in any order in the port
821 * status registers. xhci->port_array provides an array of the port speed for
822 * each offset into the port status registers.
823 *
824 * The xHCI hardware wants to know the roothub port number that the USB device
825 * is attached to (or the roothub port its ancestor hub is attached to). All we
826 * know is the index of that port under either the USB 2.0 or the USB 3.0
827 * roothub, but that doesn't give us the real index into the HW port status
828 * registers. Scan through the xHCI roothub port array, looking for the Nth
829 * entry of the correct port speed. Return the port number of that entry.
830 */
831static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
832 struct usb_device *udev)
833{
834 struct usb_device *top_dev;
835 unsigned int num_similar_speed_ports;
836 unsigned int faked_port_num;
837 int i;
838
839 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
840 top_dev = top_dev->parent)
841 /* Found device below root hub */;
842 faked_port_num = top_dev->portnum;
843 for (i = 0, num_similar_speed_ports = 0;
844 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
845 u8 port_speed = xhci->port_array[i];
846
847 /*
848 * Skip ports that don't have known speeds, or have duplicate
849 * Extended Capabilities port speed entries.
850 */
851 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
852 continue;
853
854 /*
855 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
856 * 1.1 ports are under the USB 2.0 hub. If the port speed
857 * matches the device speed, it's a similar speed port.
858 */
859 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
860 num_similar_speed_ports++;
861 if (num_similar_speed_ports == faked_port_num)
862 /* Roothub ports are numbered from 1 to N */
863 return i+1;
864 }
865 return 0;
866}
867
868/* Setup an xHCI virtual device for a Set Address command */
869int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
870{
871 struct xhci_virt_device *dev;
872 struct xhci_ep_ctx *ep0_ctx;
873 struct xhci_slot_ctx *slot_ctx;
874 struct xhci_input_control_ctx *ctrl_ctx;
875 u32 port_num;
876 struct usb_device *top_dev;
877
878 dev = xhci->devs[udev->slot_id];
879 /* Slot ID 0 is reserved */
880 if (udev->slot_id == 0 || !dev) {
881 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
882 udev->slot_id);
883 return -EINVAL;
884 }
885 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
886 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
887 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
888
889 /* 2) New slot context and endpoint 0 context are valid*/
890 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
891
892 /* 3) Only the control endpoint is valid - one endpoint context */
893 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
894 switch (udev->speed) {
895 case USB_SPEED_SUPER:
896 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
897 break;
898 case USB_SPEED_HIGH:
899 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
900 break;
901 case USB_SPEED_FULL:
902 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
903 break;
904 case USB_SPEED_LOW:
905 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
906 break;
907 case USB_SPEED_WIRELESS:
908 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
909 return -EINVAL;
910 break;
911 default:
912 /* Speed was set earlier, this shouldn't happen. */
913 BUG();
914 }
915 /* Find the root hub port this device is under */
916 port_num = xhci_find_real_port_number(xhci, udev);
917 if (!port_num)
918 return -EINVAL;
919 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
920 /* Set the port number in the virtual_device to the faked port number */
921 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
922 top_dev = top_dev->parent)
923 /* Found device below root hub */;
924 dev->port = top_dev->portnum;
925 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
926 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
927
928 /* Is this a LS/FS device under an external HS hub? */
929 if (udev->tt && udev->tt->hub->parent) {
930 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
931 (udev->ttport << 8));
932 if (udev->tt->multi)
933 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
934 }
935 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
936 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
937
938 /* Step 4 - ring already allocated */
939 /* Step 5 */
940 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
941 /*
942 * XXX: Not sure about wireless USB devices.
943 */
944 switch (udev->speed) {
945 case USB_SPEED_SUPER:
946 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
947 break;
948 case USB_SPEED_HIGH:
949 /* USB core guesses at a 64-byte max packet first for FS devices */
950 case USB_SPEED_FULL:
951 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
952 break;
953 case USB_SPEED_LOW:
954 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
955 break;
956 case USB_SPEED_WIRELESS:
957 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
958 return -EINVAL;
959 break;
960 default:
961 /* New speed? */
962 BUG();
963 }
964 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
965 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
966
967 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
968 dev->eps[0].ring->cycle_state);
969
970 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
971
972 return 0;
973}
974
975/*
976 * Convert interval expressed as 2^(bInterval - 1) == interval into
977 * straight exponent value 2^n == interval.
978 *
979 */
980static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
981 struct usb_host_endpoint *ep)
982{
983 unsigned int interval;
984
985 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
986 if (interval != ep->desc.bInterval - 1)
987 dev_warn(&udev->dev,
988 "ep %#x - rounding interval to %d %sframes\n",
989 ep->desc.bEndpointAddress,
990 1 << interval,
991 udev->speed == USB_SPEED_FULL ? "" : "micro");
992
993 if (udev->speed == USB_SPEED_FULL) {
994 /*
995 * Full speed isoc endpoints specify interval in frames,
996 * not microframes. We are using microframes everywhere,
997 * so adjust accordingly.
998 */
999 interval += 3; /* 1 frame = 2^3 uframes */
1000 }
1001
1002 return interval;
1003}
1004
1005/*
1006 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1007 * microframes, rounded down to nearest power of 2.
1008 */
1009static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1010 struct usb_host_endpoint *ep)
1011{
1012 unsigned int interval;
1013
1014 interval = fls(8 * ep->desc.bInterval) - 1;
1015 interval = clamp_val(interval, 3, 10);
1016 if ((1 << interval) != 8 * ep->desc.bInterval)
1017 dev_warn(&udev->dev,
1018 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1019 ep->desc.bEndpointAddress,
1020 1 << interval,
1021 8 * ep->desc.bInterval);
1022
1023 return interval;
1024}
1025
1026/* Return the polling or NAK interval.
1027 *
1028 * The polling interval is expressed in "microframes". If xHCI's Interval field
1029 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1030 *
1031 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1032 * is set to 0.
1033 */
1034static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1035 struct usb_host_endpoint *ep)
1036{
1037 unsigned int interval = 0;
1038
1039 switch (udev->speed) {
1040 case USB_SPEED_HIGH:
1041 /* Max NAK rate */
1042 if (usb_endpoint_xfer_control(&ep->desc) ||
1043 usb_endpoint_xfer_bulk(&ep->desc)) {
1044 interval = ep->desc.bInterval;
1045 break;
1046 }
1047 /* Fall through - SS and HS isoc/int have same decoding */
1048
1049 case USB_SPEED_SUPER:
1050 if (usb_endpoint_xfer_int(&ep->desc) ||
1051 usb_endpoint_xfer_isoc(&ep->desc)) {
1052 interval = xhci_parse_exponent_interval(udev, ep);
1053 }
1054 break;
1055
1056 case USB_SPEED_FULL:
1057 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1058 interval = xhci_parse_exponent_interval(udev, ep);
1059 break;
1060 }
1061 /*
1062 * Fall through for interrupt endpoint interval decoding
1063 * since it uses the same rules as low speed interrupt
1064 * endpoints.
1065 */
1066
1067 case USB_SPEED_LOW:
1068 if (usb_endpoint_xfer_int(&ep->desc) ||
1069 usb_endpoint_xfer_isoc(&ep->desc)) {
1070
1071 interval = xhci_parse_frame_interval(udev, ep);
1072 }
1073 break;
1074
1075 default:
1076 BUG();
1077 }
1078 return EP_INTERVAL(interval);
1079}
1080
1081/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1082 * High speed endpoint descriptors can define "the number of additional
1083 * transaction opportunities per microframe", but that goes in the Max Burst
1084 * endpoint context field.
1085 */
1086static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1087 struct usb_host_endpoint *ep)
1088{
1089 if (udev->speed != USB_SPEED_SUPER ||
1090 !usb_endpoint_xfer_isoc(&ep->desc))
1091 return 0;
1092 return ep->ss_ep_comp.bmAttributes;
1093}
1094
1095static u32 xhci_get_endpoint_type(struct usb_device *udev,
1096 struct usb_host_endpoint *ep)
1097{
1098 int in;
1099 u32 type;
1100
1101 in = usb_endpoint_dir_in(&ep->desc);
1102 if (usb_endpoint_xfer_control(&ep->desc)) {
1103 type = EP_TYPE(CTRL_EP);
1104 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1105 if (in)
1106 type = EP_TYPE(BULK_IN_EP);
1107 else
1108 type = EP_TYPE(BULK_OUT_EP);
1109 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1110 if (in)
1111 type = EP_TYPE(ISOC_IN_EP);
1112 else
1113 type = EP_TYPE(ISOC_OUT_EP);
1114 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1115 if (in)
1116 type = EP_TYPE(INT_IN_EP);
1117 else
1118 type = EP_TYPE(INT_OUT_EP);
1119 } else {
1120 BUG();
1121 }
1122 return type;
1123}
1124
1125/* Return the maximum endpoint service interval time (ESIT) payload.
1126 * Basically, this is the maxpacket size, multiplied by the burst size
1127 * and mult size.
1128 */
1129static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1130 struct usb_device *udev,
1131 struct usb_host_endpoint *ep)
1132{
1133 int max_burst;
1134 int max_packet;
1135
1136 /* Only applies for interrupt or isochronous endpoints */
1137 if (usb_endpoint_xfer_control(&ep->desc) ||
1138 usb_endpoint_xfer_bulk(&ep->desc))
1139 return 0;
1140
1141 if (udev->speed == USB_SPEED_SUPER)
1142 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1143
1144 max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1145 max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize) & 0x1800) >> 11;
1146 /* A 0 in max burst means 1 transfer per ESIT */
1147 return max_packet * (max_burst + 1);
1148}
1149
1150/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1151 * Drivers will have to call usb_alloc_streams() to do that.
1152 */
1153int xhci_endpoint_init(struct xhci_hcd *xhci,
1154 struct xhci_virt_device *virt_dev,
1155 struct usb_device *udev,
1156 struct usb_host_endpoint *ep,
1157 gfp_t mem_flags)
1158{
1159 unsigned int ep_index;
1160 struct xhci_ep_ctx *ep_ctx;
1161 struct xhci_ring *ep_ring;
1162 unsigned int max_packet;
1163 unsigned int max_burst;
1164 u32 max_esit_payload;
1165
1166 ep_index = xhci_get_endpoint_index(&ep->desc);
1167 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1168
1169 /* Set up the endpoint ring */
1170 /*
1171 * Isochronous endpoint ring needs bigger size because one isoc URB
1172 * carries multiple packets and it will insert multiple tds to the
1173 * ring.
1174 * This should be replaced with dynamic ring resizing in the future.
1175 */
1176 if (usb_endpoint_xfer_isoc(&ep->desc))
1177 virt_dev->eps[ep_index].new_ring =
1178 xhci_ring_alloc(xhci, 8, true, mem_flags);
1179 else
1180 virt_dev->eps[ep_index].new_ring =
1181 xhci_ring_alloc(xhci, 1, true, mem_flags);
1182 if (!virt_dev->eps[ep_index].new_ring) {
1183 /* Attempt to use the ring cache */
1184 if (virt_dev->num_rings_cached == 0)
1185 return -ENOMEM;
1186 virt_dev->eps[ep_index].new_ring =
1187 virt_dev->ring_cache[virt_dev->num_rings_cached];
1188 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1189 virt_dev->num_rings_cached--;
1190 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1191 }
1192 virt_dev->eps[ep_index].skip = false;
1193 ep_ring = virt_dev->eps[ep_index].new_ring;
1194 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1195
1196 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1197 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1198
1199 /* FIXME dig Mult and streams info out of ep companion desc */
1200
1201 /* Allow 3 retries for everything but isoc;
1202 * CErr shall be set to 0 for Isoch endpoints.
1203 */
1204 if (!usb_endpoint_xfer_isoc(&ep->desc))
1205 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1206 else
1207 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1208
1209 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1210
1211 /* Set the max packet size and max burst */
1212 switch (udev->speed) {
1213 case USB_SPEED_SUPER:
1214 max_packet = le16_to_cpu(ep->desc.wMaxPacketSize);
1215 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1216 /* dig out max burst from ep companion desc */
1217 max_packet = ep->ss_ep_comp.bMaxBurst;
1218 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1219 break;
1220 case USB_SPEED_HIGH:
1221 /* bits 11:12 specify the number of additional transaction
1222 * opportunities per microframe (USB 2.0, section 9.6.6)
1223 */
1224 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1225 usb_endpoint_xfer_int(&ep->desc)) {
1226 max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize)
1227 & 0x1800) >> 11;
1228 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1229 }
1230 /* Fall through */
1231 case USB_SPEED_FULL:
1232 case USB_SPEED_LOW:
1233 max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1234 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1235 break;
1236 default:
1237 BUG();
1238 }
1239 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1240 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1241
1242 /*
1243 * XXX no idea how to calculate the average TRB buffer length for bulk
1244 * endpoints, as the driver gives us no clue how big each scatter gather
1245 * list entry (or buffer) is going to be.
1246 *
1247 * For isochronous and interrupt endpoints, we set it to the max
1248 * available, until we have new API in the USB core to allow drivers to
1249 * declare how much bandwidth they actually need.
1250 *
1251 * Normally, it would be calculated by taking the total of the buffer
1252 * lengths in the TD and then dividing by the number of TRBs in a TD,
1253 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1254 * use Event Data TRBs, and we don't chain in a link TRB on short
1255 * transfers, we're basically dividing by 1.
1256 *
1257 * xHCI 1.0 specification indicates that the Average TRB Length should
1258 * be set to 8 for control endpoints.
1259 */
1260 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1261 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1262 else
1263 ep_ctx->tx_info |=
1264 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1265
1266 /* FIXME Debug endpoint context */
1267 return 0;
1268}
1269
1270void xhci_endpoint_zero(struct xhci_hcd *xhci,
1271 struct xhci_virt_device *virt_dev,
1272 struct usb_host_endpoint *ep)
1273{
1274 unsigned int ep_index;
1275 struct xhci_ep_ctx *ep_ctx;
1276
1277 ep_index = xhci_get_endpoint_index(&ep->desc);
1278 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1279
1280 ep_ctx->ep_info = 0;
1281 ep_ctx->ep_info2 = 0;
1282 ep_ctx->deq = 0;
1283 ep_ctx->tx_info = 0;
1284 /* Don't free the endpoint ring until the set interface or configuration
1285 * request succeeds.
1286 */
1287}
1288
1289/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1290 * Useful when you want to change one particular aspect of the endpoint and then
1291 * issue a configure endpoint command.
1292 */
1293void xhci_endpoint_copy(struct xhci_hcd *xhci,
1294 struct xhci_container_ctx *in_ctx,
1295 struct xhci_container_ctx *out_ctx,
1296 unsigned int ep_index)
1297{
1298 struct xhci_ep_ctx *out_ep_ctx;
1299 struct xhci_ep_ctx *in_ep_ctx;
1300
1301 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1302 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1303
1304 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1305 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1306 in_ep_ctx->deq = out_ep_ctx->deq;
1307 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1308}
1309
1310/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1311 * Useful when you want to change one particular aspect of the endpoint and then
1312 * issue a configure endpoint command. Only the context entries field matters,
1313 * but we'll copy the whole thing anyway.
1314 */
1315void xhci_slot_copy(struct xhci_hcd *xhci,
1316 struct xhci_container_ctx *in_ctx,
1317 struct xhci_container_ctx *out_ctx)
1318{
1319 struct xhci_slot_ctx *in_slot_ctx;
1320 struct xhci_slot_ctx *out_slot_ctx;
1321
1322 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1323 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1324
1325 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1326 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1327 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1328 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1329}
1330
1331/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1332static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1333{
1334 int i;
1335 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1336 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1337
1338 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1339
1340 if (!num_sp)
1341 return 0;
1342
1343 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1344 if (!xhci->scratchpad)
1345 goto fail_sp;
1346
1347 xhci->scratchpad->sp_array =
1348 pci_alloc_consistent(to_pci_dev(dev),
1349 num_sp * sizeof(u64),
1350 &xhci->scratchpad->sp_dma);
1351 if (!xhci->scratchpad->sp_array)
1352 goto fail_sp2;
1353
1354 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1355 if (!xhci->scratchpad->sp_buffers)
1356 goto fail_sp3;
1357
1358 xhci->scratchpad->sp_dma_buffers =
1359 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1360
1361 if (!xhci->scratchpad->sp_dma_buffers)
1362 goto fail_sp4;
1363
1364 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1365 for (i = 0; i < num_sp; i++) {
1366 dma_addr_t dma;
1367 void *buf = pci_alloc_consistent(to_pci_dev(dev),
1368 xhci->page_size, &dma);
1369 if (!buf)
1370 goto fail_sp5;
1371
1372 xhci->scratchpad->sp_array[i] = dma;
1373 xhci->scratchpad->sp_buffers[i] = buf;
1374 xhci->scratchpad->sp_dma_buffers[i] = dma;
1375 }
1376
1377 return 0;
1378
1379 fail_sp5:
1380 for (i = i - 1; i >= 0; i--) {
1381 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1382 xhci->scratchpad->sp_buffers[i],
1383 xhci->scratchpad->sp_dma_buffers[i]);
1384 }
1385 kfree(xhci->scratchpad->sp_dma_buffers);
1386
1387 fail_sp4:
1388 kfree(xhci->scratchpad->sp_buffers);
1389
1390 fail_sp3:
1391 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1392 xhci->scratchpad->sp_array,
1393 xhci->scratchpad->sp_dma);
1394
1395 fail_sp2:
1396 kfree(xhci->scratchpad);
1397 xhci->scratchpad = NULL;
1398
1399 fail_sp:
1400 return -ENOMEM;
1401}
1402
1403static void scratchpad_free(struct xhci_hcd *xhci)
1404{
1405 int num_sp;
1406 int i;
1407 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1408
1409 if (!xhci->scratchpad)
1410 return;
1411
1412 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1413
1414 for (i = 0; i < num_sp; i++) {
1415 pci_free_consistent(pdev, xhci->page_size,
1416 xhci->scratchpad->sp_buffers[i],
1417 xhci->scratchpad->sp_dma_buffers[i]);
1418 }
1419 kfree(xhci->scratchpad->sp_dma_buffers);
1420 kfree(xhci->scratchpad->sp_buffers);
1421 pci_free_consistent(pdev, num_sp * sizeof(u64),
1422 xhci->scratchpad->sp_array,
1423 xhci->scratchpad->sp_dma);
1424 kfree(xhci->scratchpad);
1425 xhci->scratchpad = NULL;
1426}
1427
1428struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1429 bool allocate_in_ctx, bool allocate_completion,
1430 gfp_t mem_flags)
1431{
1432 struct xhci_command *command;
1433
1434 command = kzalloc(sizeof(*command), mem_flags);
1435 if (!command)
1436 return NULL;
1437
1438 if (allocate_in_ctx) {
1439 command->in_ctx =
1440 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1441 mem_flags);
1442 if (!command->in_ctx) {
1443 kfree(command);
1444 return NULL;
1445 }
1446 }
1447
1448 if (allocate_completion) {
1449 command->completion =
1450 kzalloc(sizeof(struct completion), mem_flags);
1451 if (!command->completion) {
1452 xhci_free_container_ctx(xhci, command->in_ctx);
1453 kfree(command);
1454 return NULL;
1455 }
1456 init_completion(command->completion);
1457 }
1458
1459 command->status = 0;
1460 INIT_LIST_HEAD(&command->cmd_list);
1461 return command;
1462}
1463
1464void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1465{
1466 int last;
1467
1468 if (!urb_priv)
1469 return;
1470
1471 last = urb_priv->length - 1;
1472 if (last >= 0) {
1473 int i;
1474 for (i = 0; i <= last; i++)
1475 kfree(urb_priv->td[i]);
1476 }
1477 kfree(urb_priv);
1478}
1479
1480void xhci_free_command(struct xhci_hcd *xhci,
1481 struct xhci_command *command)
1482{
1483 xhci_free_container_ctx(xhci,
1484 command->in_ctx);
1485 kfree(command->completion);
1486 kfree(command);
1487}
1488
1489void xhci_mem_cleanup(struct xhci_hcd *xhci)
1490{
1491 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1492 int size;
1493 int i;
1494
1495 /* Free the Event Ring Segment Table and the actual Event Ring */
1496 if (xhci->ir_set) {
1497 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1498 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1499 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1500 }
1501 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1502 if (xhci->erst.entries)
1503 pci_free_consistent(pdev, size,
1504 xhci->erst.entries, xhci->erst.erst_dma_addr);
1505 xhci->erst.entries = NULL;
1506 xhci_dbg(xhci, "Freed ERST\n");
1507 if (xhci->event_ring)
1508 xhci_ring_free(xhci, xhci->event_ring);
1509 xhci->event_ring = NULL;
1510 xhci_dbg(xhci, "Freed event ring\n");
1511
1512 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1513 if (xhci->cmd_ring)
1514 xhci_ring_free(xhci, xhci->cmd_ring);
1515 xhci->cmd_ring = NULL;
1516 xhci_dbg(xhci, "Freed command ring\n");
1517
1518 for (i = 1; i < MAX_HC_SLOTS; ++i)
1519 xhci_free_virt_device(xhci, i);
1520
1521 if (xhci->segment_pool)
1522 dma_pool_destroy(xhci->segment_pool);
1523 xhci->segment_pool = NULL;
1524 xhci_dbg(xhci, "Freed segment pool\n");
1525
1526 if (xhci->device_pool)
1527 dma_pool_destroy(xhci->device_pool);
1528 xhci->device_pool = NULL;
1529 xhci_dbg(xhci, "Freed device context pool\n");
1530
1531 if (xhci->small_streams_pool)
1532 dma_pool_destroy(xhci->small_streams_pool);
1533 xhci->small_streams_pool = NULL;
1534 xhci_dbg(xhci, "Freed small stream array pool\n");
1535
1536 if (xhci->medium_streams_pool)
1537 dma_pool_destroy(xhci->medium_streams_pool);
1538 xhci->medium_streams_pool = NULL;
1539 xhci_dbg(xhci, "Freed medium stream array pool\n");
1540
1541 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1542 if (xhci->dcbaa)
1543 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1544 xhci->dcbaa, xhci->dcbaa->dma);
1545 xhci->dcbaa = NULL;
1546
1547 scratchpad_free(xhci);
1548
1549 xhci->num_usb2_ports = 0;
1550 xhci->num_usb3_ports = 0;
1551 kfree(xhci->usb2_ports);
1552 kfree(xhci->usb3_ports);
1553 kfree(xhci->port_array);
1554
1555 xhci->page_size = 0;
1556 xhci->page_shift = 0;
1557 xhci->bus_state[0].bus_suspended = 0;
1558 xhci->bus_state[1].bus_suspended = 0;
1559}
1560
1561static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1562 struct xhci_segment *input_seg,
1563 union xhci_trb *start_trb,
1564 union xhci_trb *end_trb,
1565 dma_addr_t input_dma,
1566 struct xhci_segment *result_seg,
1567 char *test_name, int test_number)
1568{
1569 unsigned long long start_dma;
1570 unsigned long long end_dma;
1571 struct xhci_segment *seg;
1572
1573 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1574 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1575
1576 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1577 if (seg != result_seg) {
1578 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1579 test_name, test_number);
1580 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1581 "input DMA 0x%llx\n",
1582 input_seg,
1583 (unsigned long long) input_dma);
1584 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1585 "ending TRB %p (0x%llx DMA)\n",
1586 start_trb, start_dma,
1587 end_trb, end_dma);
1588 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1589 result_seg, seg);
1590 return -1;
1591 }
1592 return 0;
1593}
1594
1595/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1596static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1597{
1598 struct {
1599 dma_addr_t input_dma;
1600 struct xhci_segment *result_seg;
1601 } simple_test_vector [] = {
1602 /* A zeroed DMA field should fail */
1603 { 0, NULL },
1604 /* One TRB before the ring start should fail */
1605 { xhci->event_ring->first_seg->dma - 16, NULL },
1606 /* One byte before the ring start should fail */
1607 { xhci->event_ring->first_seg->dma - 1, NULL },
1608 /* Starting TRB should succeed */
1609 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1610 /* Ending TRB should succeed */
1611 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1612 xhci->event_ring->first_seg },
1613 /* One byte after the ring end should fail */
1614 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1615 /* One TRB after the ring end should fail */
1616 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1617 /* An address of all ones should fail */
1618 { (dma_addr_t) (~0), NULL },
1619 };
1620 struct {
1621 struct xhci_segment *input_seg;
1622 union xhci_trb *start_trb;
1623 union xhci_trb *end_trb;
1624 dma_addr_t input_dma;
1625 struct xhci_segment *result_seg;
1626 } complex_test_vector [] = {
1627 /* Test feeding a valid DMA address from a different ring */
1628 { .input_seg = xhci->event_ring->first_seg,
1629 .start_trb = xhci->event_ring->first_seg->trbs,
1630 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1631 .input_dma = xhci->cmd_ring->first_seg->dma,
1632 .result_seg = NULL,
1633 },
1634 /* Test feeding a valid end TRB from a different ring */
1635 { .input_seg = xhci->event_ring->first_seg,
1636 .start_trb = xhci->event_ring->first_seg->trbs,
1637 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1638 .input_dma = xhci->cmd_ring->first_seg->dma,
1639 .result_seg = NULL,
1640 },
1641 /* Test feeding a valid start and end TRB from a different ring */
1642 { .input_seg = xhci->event_ring->first_seg,
1643 .start_trb = xhci->cmd_ring->first_seg->trbs,
1644 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1645 .input_dma = xhci->cmd_ring->first_seg->dma,
1646 .result_seg = NULL,
1647 },
1648 /* TRB in this ring, but after this TD */
1649 { .input_seg = xhci->event_ring->first_seg,
1650 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1651 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1652 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1653 .result_seg = NULL,
1654 },
1655 /* TRB in this ring, but before this TD */
1656 { .input_seg = xhci->event_ring->first_seg,
1657 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1658 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1659 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1660 .result_seg = NULL,
1661 },
1662 /* TRB in this ring, but after this wrapped TD */
1663 { .input_seg = xhci->event_ring->first_seg,
1664 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1665 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1666 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1667 .result_seg = NULL,
1668 },
1669 /* TRB in this ring, but before this wrapped TD */
1670 { .input_seg = xhci->event_ring->first_seg,
1671 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1672 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1673 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1674 .result_seg = NULL,
1675 },
1676 /* TRB not in this ring, and we have a wrapped TD */
1677 { .input_seg = xhci->event_ring->first_seg,
1678 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1679 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1680 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1681 .result_seg = NULL,
1682 },
1683 };
1684
1685 unsigned int num_tests;
1686 int i, ret;
1687
1688 num_tests = ARRAY_SIZE(simple_test_vector);
1689 for (i = 0; i < num_tests; i++) {
1690 ret = xhci_test_trb_in_td(xhci,
1691 xhci->event_ring->first_seg,
1692 xhci->event_ring->first_seg->trbs,
1693 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1694 simple_test_vector[i].input_dma,
1695 simple_test_vector[i].result_seg,
1696 "Simple", i);
1697 if (ret < 0)
1698 return ret;
1699 }
1700
1701 num_tests = ARRAY_SIZE(complex_test_vector);
1702 for (i = 0; i < num_tests; i++) {
1703 ret = xhci_test_trb_in_td(xhci,
1704 complex_test_vector[i].input_seg,
1705 complex_test_vector[i].start_trb,
1706 complex_test_vector[i].end_trb,
1707 complex_test_vector[i].input_dma,
1708 complex_test_vector[i].result_seg,
1709 "Complex", i);
1710 if (ret < 0)
1711 return ret;
1712 }
1713 xhci_dbg(xhci, "TRB math tests passed.\n");
1714 return 0;
1715}
1716
1717static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1718{
1719 u64 temp;
1720 dma_addr_t deq;
1721
1722 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1723 xhci->event_ring->dequeue);
1724 if (deq == 0 && !in_interrupt())
1725 xhci_warn(xhci, "WARN something wrong with SW event ring "
1726 "dequeue ptr.\n");
1727 /* Update HC event ring dequeue pointer */
1728 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1729 temp &= ERST_PTR_MASK;
1730 /* Don't clear the EHB bit (which is RW1C) because
1731 * there might be more events to service.
1732 */
1733 temp &= ~ERST_EHB;
1734 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1735 "preserving EHB bit\n");
1736 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1737 &xhci->ir_set->erst_dequeue);
1738}
1739
1740static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1741 __le32 __iomem *addr, u8 major_revision)
1742{
1743 u32 temp, port_offset, port_count;
1744 int i;
1745
1746 if (major_revision > 0x03) {
1747 xhci_warn(xhci, "Ignoring unknown port speed, "
1748 "Ext Cap %p, revision = 0x%x\n",
1749 addr, major_revision);
1750 /* Ignoring port protocol we can't understand. FIXME */
1751 return;
1752 }
1753
1754 /* Port offset and count in the third dword, see section 7.2 */
1755 temp = xhci_readl(xhci, addr + 2);
1756 port_offset = XHCI_EXT_PORT_OFF(temp);
1757 port_count = XHCI_EXT_PORT_COUNT(temp);
1758 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1759 "count = %u, revision = 0x%x\n",
1760 addr, port_offset, port_count, major_revision);
1761 /* Port count includes the current port offset */
1762 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1763 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1764 return;
1765 port_offset--;
1766 for (i = port_offset; i < (port_offset + port_count); i++) {
1767 /* Duplicate entry. Ignore the port if the revisions differ. */
1768 if (xhci->port_array[i] != 0) {
1769 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1770 " port %u\n", addr, i);
1771 xhci_warn(xhci, "Port was marked as USB %u, "
1772 "duplicated as USB %u\n",
1773 xhci->port_array[i], major_revision);
1774 /* Only adjust the roothub port counts if we haven't
1775 * found a similar duplicate.
1776 */
1777 if (xhci->port_array[i] != major_revision &&
1778 xhci->port_array[i] != DUPLICATE_ENTRY) {
1779 if (xhci->port_array[i] == 0x03)
1780 xhci->num_usb3_ports--;
1781 else
1782 xhci->num_usb2_ports--;
1783 xhci->port_array[i] = DUPLICATE_ENTRY;
1784 }
1785 /* FIXME: Should we disable the port? */
1786 continue;
1787 }
1788 xhci->port_array[i] = major_revision;
1789 if (major_revision == 0x03)
1790 xhci->num_usb3_ports++;
1791 else
1792 xhci->num_usb2_ports++;
1793 }
1794 /* FIXME: Should we disable ports not in the Extended Capabilities? */
1795}
1796
1797/*
1798 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1799 * specify what speeds each port is supposed to be. We can't count on the port
1800 * speed bits in the PORTSC register being correct until a device is connected,
1801 * but we need to set up the two fake roothubs with the correct number of USB
1802 * 3.0 and USB 2.0 ports at host controller initialization time.
1803 */
1804static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1805{
1806 __le32 __iomem *addr;
1807 u32 offset;
1808 unsigned int num_ports;
1809 int i, port_index;
1810
1811 addr = &xhci->cap_regs->hcc_params;
1812 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1813 if (offset == 0) {
1814 xhci_err(xhci, "No Extended Capability registers, "
1815 "unable to set up roothub.\n");
1816 return -ENODEV;
1817 }
1818
1819 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1820 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1821 if (!xhci->port_array)
1822 return -ENOMEM;
1823
1824 /*
1825 * For whatever reason, the first capability offset is from the
1826 * capability register base, not from the HCCPARAMS register.
1827 * See section 5.3.6 for offset calculation.
1828 */
1829 addr = &xhci->cap_regs->hc_capbase + offset;
1830 while (1) {
1831 u32 cap_id;
1832
1833 cap_id = xhci_readl(xhci, addr);
1834 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1835 xhci_add_in_port(xhci, num_ports, addr,
1836 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
1837 offset = XHCI_EXT_CAPS_NEXT(cap_id);
1838 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1839 == num_ports)
1840 break;
1841 /*
1842 * Once you're into the Extended Capabilities, the offset is
1843 * always relative to the register holding the offset.
1844 */
1845 addr += offset;
1846 }
1847
1848 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1849 xhci_warn(xhci, "No ports on the roothubs?\n");
1850 return -ENODEV;
1851 }
1852 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1853 xhci->num_usb2_ports, xhci->num_usb3_ports);
1854
1855 /* Place limits on the number of roothub ports so that the hub
1856 * descriptors aren't longer than the USB core will allocate.
1857 */
1858 if (xhci->num_usb3_ports > 15) {
1859 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
1860 xhci->num_usb3_ports = 15;
1861 }
1862 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
1863 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
1864 USB_MAXCHILDREN);
1865 xhci->num_usb2_ports = USB_MAXCHILDREN;
1866 }
1867
1868 /*
1869 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1870 * Not sure how the USB core will handle a hub with no ports...
1871 */
1872 if (xhci->num_usb2_ports) {
1873 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1874 xhci->num_usb2_ports, flags);
1875 if (!xhci->usb2_ports)
1876 return -ENOMEM;
1877
1878 port_index = 0;
1879 for (i = 0; i < num_ports; i++) {
1880 if (xhci->port_array[i] == 0x03 ||
1881 xhci->port_array[i] == 0 ||
1882 xhci->port_array[i] == DUPLICATE_ENTRY)
1883 continue;
1884
1885 xhci->usb2_ports[port_index] =
1886 &xhci->op_regs->port_status_base +
1887 NUM_PORT_REGS*i;
1888 xhci_dbg(xhci, "USB 2.0 port at index %u, "
1889 "addr = %p\n", i,
1890 xhci->usb2_ports[port_index]);
1891 port_index++;
1892 if (port_index == xhci->num_usb2_ports)
1893 break;
1894 }
1895 }
1896 if (xhci->num_usb3_ports) {
1897 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1898 xhci->num_usb3_ports, flags);
1899 if (!xhci->usb3_ports)
1900 return -ENOMEM;
1901
1902 port_index = 0;
1903 for (i = 0; i < num_ports; i++)
1904 if (xhci->port_array[i] == 0x03) {
1905 xhci->usb3_ports[port_index] =
1906 &xhci->op_regs->port_status_base +
1907 NUM_PORT_REGS*i;
1908 xhci_dbg(xhci, "USB 3.0 port at index %u, "
1909 "addr = %p\n", i,
1910 xhci->usb3_ports[port_index]);
1911 port_index++;
1912 if (port_index == xhci->num_usb3_ports)
1913 break;
1914 }
1915 }
1916 return 0;
1917}
1918
1919int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1920{
1921 dma_addr_t dma;
1922 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1923 unsigned int val, val2;
1924 u64 val_64;
1925 struct xhci_segment *seg;
1926 u32 page_size;
1927 int i;
1928
1929 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1930 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1931 for (i = 0; i < 16; i++) {
1932 if ((0x1 & page_size) != 0)
1933 break;
1934 page_size = page_size >> 1;
1935 }
1936 if (i < 16)
1937 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1938 else
1939 xhci_warn(xhci, "WARN: no supported page size\n");
1940 /* Use 4K pages, since that's common and the minimum the HC supports */
1941 xhci->page_shift = 12;
1942 xhci->page_size = 1 << xhci->page_shift;
1943 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1944
1945 /*
1946 * Program the Number of Device Slots Enabled field in the CONFIG
1947 * register with the max value of slots the HC can handle.
1948 */
1949 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1950 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1951 (unsigned int) val);
1952 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1953 val |= (val2 & ~HCS_SLOTS_MASK);
1954 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1955 (unsigned int) val);
1956 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1957
1958 /*
1959 * Section 5.4.8 - doorbell array must be
1960 * "physically contiguous and 64-byte (cache line) aligned".
1961 */
1962 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1963 sizeof(*xhci->dcbaa), &dma);
1964 if (!xhci->dcbaa)
1965 goto fail;
1966 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1967 xhci->dcbaa->dma = dma;
1968 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1969 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1970 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1971
1972 /*
1973 * Initialize the ring segment pool. The ring must be a contiguous
1974 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
1975 * however, the command ring segment needs 64-byte aligned segments,
1976 * so we pick the greater alignment need.
1977 */
1978 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1979 SEGMENT_SIZE, 64, xhci->page_size);
1980
1981 /* See Table 46 and Note on Figure 55 */
1982 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1983 2112, 64, xhci->page_size);
1984 if (!xhci->segment_pool || !xhci->device_pool)
1985 goto fail;
1986
1987 /* Linear stream context arrays don't have any boundary restrictions,
1988 * and only need to be 16-byte aligned.
1989 */
1990 xhci->small_streams_pool =
1991 dma_pool_create("xHCI 256 byte stream ctx arrays",
1992 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1993 xhci->medium_streams_pool =
1994 dma_pool_create("xHCI 1KB stream ctx arrays",
1995 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1996 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1997 * will be allocated with pci_alloc_consistent()
1998 */
1999
2000 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2001 goto fail;
2002
2003 /* Set up the command ring to have one segments for now. */
2004 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
2005 if (!xhci->cmd_ring)
2006 goto fail;
2007 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2008 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2009 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2010
2011 /* Set the address in the Command Ring Control register */
2012 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2013 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2014 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2015 xhci->cmd_ring->cycle_state;
2016 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2017 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2018 xhci_dbg_cmd_ptrs(xhci);
2019
2020 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2021 val &= DBOFF_MASK;
2022 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2023 " from cap regs base addr\n", val);
2024 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2025 xhci_dbg_regs(xhci);
2026 xhci_print_run_regs(xhci);
2027 /* Set ir_set to interrupt register set 0 */
2028 xhci->ir_set = &xhci->run_regs->ir_set[0];
2029
2030 /*
2031 * Event ring setup: Allocate a normal ring, but also setup
2032 * the event ring segment table (ERST). Section 4.9.3.
2033 */
2034 xhci_dbg(xhci, "// Allocating event ring\n");
2035 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
2036 if (!xhci->event_ring)
2037 goto fail;
2038 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2039 goto fail;
2040
2041 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
2042 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
2043 if (!xhci->erst.entries)
2044 goto fail;
2045 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2046 (unsigned long long)dma);
2047
2048 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2049 xhci->erst.num_entries = ERST_NUM_SEGS;
2050 xhci->erst.erst_dma_addr = dma;
2051 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2052 xhci->erst.num_entries,
2053 xhci->erst.entries,
2054 (unsigned long long)xhci->erst.erst_dma_addr);
2055
2056 /* set ring base address and size for each segment table entry */
2057 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2058 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2059 entry->seg_addr = cpu_to_le64(seg->dma);
2060 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2061 entry->rsvd = 0;
2062 seg = seg->next;
2063 }
2064
2065 /* set ERST count with the number of entries in the segment table */
2066 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2067 val &= ERST_SIZE_MASK;
2068 val |= ERST_NUM_SEGS;
2069 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2070 val);
2071 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2072
2073 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2074 /* set the segment table base address */
2075 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2076 (unsigned long long)xhci->erst.erst_dma_addr);
2077 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2078 val_64 &= ERST_PTR_MASK;
2079 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2080 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2081
2082 /* Set the event ring dequeue address */
2083 xhci_set_hc_event_deq(xhci);
2084 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2085 xhci_print_ir_set(xhci, 0);
2086
2087 /*
2088 * XXX: Might need to set the Interrupter Moderation Register to
2089 * something other than the default (~1ms minimum between interrupts).
2090 * See section 5.5.1.2.
2091 */
2092 init_completion(&xhci->addr_dev);
2093 for (i = 0; i < MAX_HC_SLOTS; ++i)
2094 xhci->devs[i] = NULL;
2095 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2096 xhci->bus_state[0].resume_done[i] = 0;
2097 xhci->bus_state[1].resume_done[i] = 0;
2098 }
2099
2100 if (scratchpad_alloc(xhci, flags))
2101 goto fail;
2102 if (xhci_setup_port_arrays(xhci, flags))
2103 goto fail;
2104
2105 return 0;
2106
2107fail:
2108 xhci_warn(xhci, "Couldn't initialize memory\n");
2109 xhci_mem_cleanup(xhci);
2110 return -ENOMEM;
2111}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/usb.h>
12#include <linux/pci.h>
13#include <linux/slab.h>
14#include <linux/dmapool.h>
15#include <linux/dma-mapping.h>
16
17#include "xhci.h"
18#include "xhci-trace.h"
19#include "xhci-debugfs.h"
20
21/*
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
24 *
25 * Section 4.11.1.1:
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27 */
28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 unsigned int cycle_state,
30 unsigned int max_packet,
31 gfp_t flags)
32{
33 struct xhci_segment *seg;
34 dma_addr_t dma;
35 int i;
36
37 seg = kzalloc(sizeof *seg, flags);
38 if (!seg)
39 return NULL;
40
41 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
42 if (!seg->trbs) {
43 kfree(seg);
44 return NULL;
45 }
46
47 if (max_packet) {
48 seg->bounce_buf = kzalloc(max_packet, flags);
49 if (!seg->bounce_buf) {
50 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
51 kfree(seg);
52 return NULL;
53 }
54 }
55 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 if (cycle_state == 0) {
57 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
59 }
60 seg->dma = dma;
61 seg->next = NULL;
62
63 return seg;
64}
65
66static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67{
68 if (seg->trbs) {
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
72 kfree(seg->bounce_buf);
73 kfree(seg);
74}
75
76static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
77 struct xhci_segment *first)
78{
79 struct xhci_segment *seg;
80
81 seg = first->next;
82 while (seg != first) {
83 struct xhci_segment *next = seg->next;
84 xhci_segment_free(xhci, seg);
85 seg = next;
86 }
87 xhci_segment_free(xhci, first);
88}
89
90/*
91 * Make the prev segment point to the next segment.
92 *
93 * Change the last TRB in the prev segment to be a Link TRB which points to the
94 * DMA address of the next segment. The caller needs to set any Link TRB
95 * related flags, such as End TRB, Toggle Cycle, and no snoop.
96 */
97static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
98 struct xhci_segment *next, enum xhci_ring_type type)
99{
100 u32 val;
101
102 if (!prev || !next)
103 return;
104 prev->next = next;
105 if (type != TYPE_EVENT) {
106 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
107 cpu_to_le64(next->dma);
108
109 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
110 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
111 val &= ~TRB_TYPE_BITMASK;
112 val |= TRB_TYPE(TRB_LINK);
113 /* Always set the chain bit with 0.95 hardware */
114 /* Set chain bit for isoc rings on AMD 0.96 host */
115 if (xhci_link_trb_quirk(xhci) ||
116 (type == TYPE_ISOC &&
117 (xhci->quirks & XHCI_AMD_0x96_HOST)))
118 val |= TRB_CHAIN;
119 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120 }
121}
122
123/*
124 * Link the ring to the new segments.
125 * Set Toggle Cycle for the new ring if needed.
126 */
127static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128 struct xhci_segment *first, struct xhci_segment *last,
129 unsigned int num_segs)
130{
131 struct xhci_segment *next;
132
133 if (!ring || !first || !last)
134 return;
135
136 next = ring->enq_seg->next;
137 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
138 xhci_link_segments(xhci, last, next, ring->type);
139 ring->num_segs += num_segs;
140 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
141
142 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
143 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144 &= ~cpu_to_le32(LINK_TOGGLE);
145 last->trbs[TRBS_PER_SEGMENT-1].link.control
146 |= cpu_to_le32(LINK_TOGGLE);
147 ring->last_seg = last;
148 }
149}
150
151/*
152 * We need a radix tree for mapping physical addresses of TRBs to which stream
153 * ID they belong to. We need to do this because the host controller won't tell
154 * us which stream ring the TRB came from. We could store the stream ID in an
155 * event data TRB, but that doesn't help us for the cancellation case, since the
156 * endpoint may stop before it reaches that event data TRB.
157 *
158 * The radix tree maps the upper portion of the TRB DMA address to a ring
159 * segment that has the same upper portion of DMA addresses. For example, say I
160 * have segments of size 1KB, that are always 1KB aligned. A segment may
161 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
162 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
163 * pass the radix tree a key to get the right stream ID:
164 *
165 * 0x10c90fff >> 10 = 0x43243
166 * 0x10c912c0 >> 10 = 0x43244
167 * 0x10c91400 >> 10 = 0x43245
168 *
169 * Obviously, only those TRBs with DMA addresses that are within the segment
170 * will make the radix tree return the stream ID for that ring.
171 *
172 * Caveats for the radix tree:
173 *
174 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
175 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
176 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
177 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
178 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
179 * extended systems (where the DMA address can be bigger than 32-bits),
180 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
181 */
182static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
183 struct xhci_ring *ring,
184 struct xhci_segment *seg,
185 gfp_t mem_flags)
186{
187 unsigned long key;
188 int ret;
189
190 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
191 /* Skip any segments that were already added. */
192 if (radix_tree_lookup(trb_address_map, key))
193 return 0;
194
195 ret = radix_tree_maybe_preload(mem_flags);
196 if (ret)
197 return ret;
198 ret = radix_tree_insert(trb_address_map,
199 key, ring);
200 radix_tree_preload_end();
201 return ret;
202}
203
204static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
205 struct xhci_segment *seg)
206{
207 unsigned long key;
208
209 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
210 if (radix_tree_lookup(trb_address_map, key))
211 radix_tree_delete(trb_address_map, key);
212}
213
214static int xhci_update_stream_segment_mapping(
215 struct radix_tree_root *trb_address_map,
216 struct xhci_ring *ring,
217 struct xhci_segment *first_seg,
218 struct xhci_segment *last_seg,
219 gfp_t mem_flags)
220{
221 struct xhci_segment *seg;
222 struct xhci_segment *failed_seg;
223 int ret;
224
225 if (WARN_ON_ONCE(trb_address_map == NULL))
226 return 0;
227
228 seg = first_seg;
229 do {
230 ret = xhci_insert_segment_mapping(trb_address_map,
231 ring, seg, mem_flags);
232 if (ret)
233 goto remove_streams;
234 if (seg == last_seg)
235 return 0;
236 seg = seg->next;
237 } while (seg != first_seg);
238
239 return 0;
240
241remove_streams:
242 failed_seg = seg;
243 seg = first_seg;
244 do {
245 xhci_remove_segment_mapping(trb_address_map, seg);
246 if (seg == failed_seg)
247 return ret;
248 seg = seg->next;
249 } while (seg != first_seg);
250
251 return ret;
252}
253
254static void xhci_remove_stream_mapping(struct xhci_ring *ring)
255{
256 struct xhci_segment *seg;
257
258 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
259 return;
260
261 seg = ring->first_seg;
262 do {
263 xhci_remove_segment_mapping(ring->trb_address_map, seg);
264 seg = seg->next;
265 } while (seg != ring->first_seg);
266}
267
268static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
269{
270 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
271 ring->first_seg, ring->last_seg, mem_flags);
272}
273
274/* XXX: Do we need the hcd structure in all these functions? */
275void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
276{
277 if (!ring)
278 return;
279
280 trace_xhci_ring_free(ring);
281
282 if (ring->first_seg) {
283 if (ring->type == TYPE_STREAM)
284 xhci_remove_stream_mapping(ring);
285 xhci_free_segments_for_ring(xhci, ring->first_seg);
286 }
287
288 kfree(ring);
289}
290
291static void xhci_initialize_ring_info(struct xhci_ring *ring,
292 unsigned int cycle_state)
293{
294 /* The ring is empty, so the enqueue pointer == dequeue pointer */
295 ring->enqueue = ring->first_seg->trbs;
296 ring->enq_seg = ring->first_seg;
297 ring->dequeue = ring->enqueue;
298 ring->deq_seg = ring->first_seg;
299 /* The ring is initialized to 0. The producer must write 1 to the cycle
300 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
301 * compare CCS to the cycle bit to check ownership, so CCS = 1.
302 *
303 * New rings are initialized with cycle state equal to 1; if we are
304 * handling ring expansion, set the cycle state equal to the old ring.
305 */
306 ring->cycle_state = cycle_state;
307
308 /*
309 * Each segment has a link TRB, and leave an extra TRB for SW
310 * accounting purpose
311 */
312 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
313}
314
315/* Allocate segments and link them for a ring */
316static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
317 struct xhci_segment **first, struct xhci_segment **last,
318 unsigned int num_segs, unsigned int cycle_state,
319 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
320{
321 struct xhci_segment *prev;
322
323 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
324 if (!prev)
325 return -ENOMEM;
326 num_segs--;
327
328 *first = prev;
329 while (num_segs > 0) {
330 struct xhci_segment *next;
331
332 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
333 if (!next) {
334 prev = *first;
335 while (prev) {
336 next = prev->next;
337 xhci_segment_free(xhci, prev);
338 prev = next;
339 }
340 return -ENOMEM;
341 }
342 xhci_link_segments(xhci, prev, next, type);
343
344 prev = next;
345 num_segs--;
346 }
347 xhci_link_segments(xhci, prev, *first, type);
348 *last = prev;
349
350 return 0;
351}
352
353/**
354 * Create a new ring with zero or more segments.
355 *
356 * Link each segment together into a ring.
357 * Set the end flag and the cycle toggle bit on the last segment.
358 * See section 4.9.1 and figures 15 and 16.
359 */
360struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
361 unsigned int num_segs, unsigned int cycle_state,
362 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
363{
364 struct xhci_ring *ring;
365 int ret;
366
367 ring = kzalloc(sizeof *(ring), flags);
368 if (!ring)
369 return NULL;
370
371 ring->num_segs = num_segs;
372 ring->bounce_buf_len = max_packet;
373 INIT_LIST_HEAD(&ring->td_list);
374 ring->type = type;
375 if (num_segs == 0)
376 return ring;
377
378 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
379 &ring->last_seg, num_segs, cycle_state, type,
380 max_packet, flags);
381 if (ret)
382 goto fail;
383
384 /* Only event ring does not use link TRB */
385 if (type != TYPE_EVENT) {
386 /* See section 4.9.2.1 and 6.4.4.1 */
387 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
388 cpu_to_le32(LINK_TOGGLE);
389 }
390 xhci_initialize_ring_info(ring, cycle_state);
391 trace_xhci_ring_alloc(ring);
392 return ring;
393
394fail:
395 kfree(ring);
396 return NULL;
397}
398
399void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
400 struct xhci_virt_device *virt_dev,
401 unsigned int ep_index)
402{
403 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
404 virt_dev->eps[ep_index].ring = NULL;
405}
406
407/*
408 * Expand an existing ring.
409 * Allocate a new ring which has same segment numbers and link the two rings.
410 */
411int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
412 unsigned int num_trbs, gfp_t flags)
413{
414 struct xhci_segment *first;
415 struct xhci_segment *last;
416 unsigned int num_segs;
417 unsigned int num_segs_needed;
418 int ret;
419
420 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
421 (TRBS_PER_SEGMENT - 1);
422
423 /* Allocate number of segments we needed, or double the ring size */
424 num_segs = ring->num_segs > num_segs_needed ?
425 ring->num_segs : num_segs_needed;
426
427 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
428 num_segs, ring->cycle_state, ring->type,
429 ring->bounce_buf_len, flags);
430 if (ret)
431 return -ENOMEM;
432
433 if (ring->type == TYPE_STREAM)
434 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
435 ring, first, last, flags);
436 if (ret) {
437 struct xhci_segment *next;
438 do {
439 next = first->next;
440 xhci_segment_free(xhci, first);
441 if (first == last)
442 break;
443 first = next;
444 } while (true);
445 return ret;
446 }
447
448 xhci_link_rings(xhci, ring, first, last, num_segs);
449 trace_xhci_ring_expansion(ring);
450 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
451 "ring expansion succeed, now has %d segments",
452 ring->num_segs);
453
454 return 0;
455}
456
457struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
458 int type, gfp_t flags)
459{
460 struct xhci_container_ctx *ctx;
461
462 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
463 return NULL;
464
465 ctx = kzalloc(sizeof(*ctx), flags);
466 if (!ctx)
467 return NULL;
468
469 ctx->type = type;
470 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
471 if (type == XHCI_CTX_TYPE_INPUT)
472 ctx->size += CTX_SIZE(xhci->hcc_params);
473
474 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
475 if (!ctx->bytes) {
476 kfree(ctx);
477 return NULL;
478 }
479 return ctx;
480}
481
482void xhci_free_container_ctx(struct xhci_hcd *xhci,
483 struct xhci_container_ctx *ctx)
484{
485 if (!ctx)
486 return;
487 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
488 kfree(ctx);
489}
490
491struct xhci_input_control_ctx *xhci_get_input_control_ctx(
492 struct xhci_container_ctx *ctx)
493{
494 if (ctx->type != XHCI_CTX_TYPE_INPUT)
495 return NULL;
496
497 return (struct xhci_input_control_ctx *)ctx->bytes;
498}
499
500struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
501 struct xhci_container_ctx *ctx)
502{
503 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
504 return (struct xhci_slot_ctx *)ctx->bytes;
505
506 return (struct xhci_slot_ctx *)
507 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
508}
509
510struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
511 struct xhci_container_ctx *ctx,
512 unsigned int ep_index)
513{
514 /* increment ep index by offset of start of ep ctx array */
515 ep_index++;
516 if (ctx->type == XHCI_CTX_TYPE_INPUT)
517 ep_index++;
518
519 return (struct xhci_ep_ctx *)
520 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
521}
522
523
524/***************** Streams structures manipulation *************************/
525
526static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
527 unsigned int num_stream_ctxs,
528 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
529{
530 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
531 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
532
533 if (size > MEDIUM_STREAM_ARRAY_SIZE)
534 dma_free_coherent(dev, size,
535 stream_ctx, dma);
536 else if (size <= SMALL_STREAM_ARRAY_SIZE)
537 return dma_pool_free(xhci->small_streams_pool,
538 stream_ctx, dma);
539 else
540 return dma_pool_free(xhci->medium_streams_pool,
541 stream_ctx, dma);
542}
543
544/*
545 * The stream context array for each endpoint with bulk streams enabled can
546 * vary in size, based on:
547 * - how many streams the endpoint supports,
548 * - the maximum primary stream array size the host controller supports,
549 * - and how many streams the device driver asks for.
550 *
551 * The stream context array must be a power of 2, and can be as small as
552 * 64 bytes or as large as 1MB.
553 */
554static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
555 unsigned int num_stream_ctxs, dma_addr_t *dma,
556 gfp_t mem_flags)
557{
558 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
559 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
560
561 if (size > MEDIUM_STREAM_ARRAY_SIZE)
562 return dma_alloc_coherent(dev, size,
563 dma, mem_flags);
564 else if (size <= SMALL_STREAM_ARRAY_SIZE)
565 return dma_pool_alloc(xhci->small_streams_pool,
566 mem_flags, dma);
567 else
568 return dma_pool_alloc(xhci->medium_streams_pool,
569 mem_flags, dma);
570}
571
572struct xhci_ring *xhci_dma_to_transfer_ring(
573 struct xhci_virt_ep *ep,
574 u64 address)
575{
576 if (ep->ep_state & EP_HAS_STREAMS)
577 return radix_tree_lookup(&ep->stream_info->trb_address_map,
578 address >> TRB_SEGMENT_SHIFT);
579 return ep->ring;
580}
581
582struct xhci_ring *xhci_stream_id_to_ring(
583 struct xhci_virt_device *dev,
584 unsigned int ep_index,
585 unsigned int stream_id)
586{
587 struct xhci_virt_ep *ep = &dev->eps[ep_index];
588
589 if (stream_id == 0)
590 return ep->ring;
591 if (!ep->stream_info)
592 return NULL;
593
594 if (stream_id > ep->stream_info->num_streams)
595 return NULL;
596 return ep->stream_info->stream_rings[stream_id];
597}
598
599/*
600 * Change an endpoint's internal structure so it supports stream IDs. The
601 * number of requested streams includes stream 0, which cannot be used by device
602 * drivers.
603 *
604 * The number of stream contexts in the stream context array may be bigger than
605 * the number of streams the driver wants to use. This is because the number of
606 * stream context array entries must be a power of two.
607 */
608struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
609 unsigned int num_stream_ctxs,
610 unsigned int num_streams,
611 unsigned int max_packet, gfp_t mem_flags)
612{
613 struct xhci_stream_info *stream_info;
614 u32 cur_stream;
615 struct xhci_ring *cur_ring;
616 u64 addr;
617 int ret;
618
619 xhci_dbg(xhci, "Allocating %u streams and %u "
620 "stream context array entries.\n",
621 num_streams, num_stream_ctxs);
622 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
623 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
624 return NULL;
625 }
626 xhci->cmd_ring_reserved_trbs++;
627
628 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
629 if (!stream_info)
630 goto cleanup_trbs;
631
632 stream_info->num_streams = num_streams;
633 stream_info->num_stream_ctxs = num_stream_ctxs;
634
635 /* Initialize the array of virtual pointers to stream rings. */
636 stream_info->stream_rings = kzalloc(
637 sizeof(struct xhci_ring *)*num_streams,
638 mem_flags);
639 if (!stream_info->stream_rings)
640 goto cleanup_info;
641
642 /* Initialize the array of DMA addresses for stream rings for the HW. */
643 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
644 num_stream_ctxs, &stream_info->ctx_array_dma,
645 mem_flags);
646 if (!stream_info->stream_ctx_array)
647 goto cleanup_ctx;
648 memset(stream_info->stream_ctx_array, 0,
649 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
650
651 /* Allocate everything needed to free the stream rings later */
652 stream_info->free_streams_command =
653 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
654 if (!stream_info->free_streams_command)
655 goto cleanup_ctx;
656
657 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
658
659 /* Allocate rings for all the streams that the driver will use,
660 * and add their segment DMA addresses to the radix tree.
661 * Stream 0 is reserved.
662 */
663
664 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
665 stream_info->stream_rings[cur_stream] =
666 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
667 mem_flags);
668 cur_ring = stream_info->stream_rings[cur_stream];
669 if (!cur_ring)
670 goto cleanup_rings;
671 cur_ring->stream_id = cur_stream;
672 cur_ring->trb_address_map = &stream_info->trb_address_map;
673 /* Set deq ptr, cycle bit, and stream context type */
674 addr = cur_ring->first_seg->dma |
675 SCT_FOR_CTX(SCT_PRI_TR) |
676 cur_ring->cycle_state;
677 stream_info->stream_ctx_array[cur_stream].stream_ring =
678 cpu_to_le64(addr);
679 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
680 cur_stream, (unsigned long long) addr);
681
682 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
683 if (ret) {
684 xhci_ring_free(xhci, cur_ring);
685 stream_info->stream_rings[cur_stream] = NULL;
686 goto cleanup_rings;
687 }
688 }
689 /* Leave the other unused stream ring pointers in the stream context
690 * array initialized to zero. This will cause the xHC to give us an
691 * error if the device asks for a stream ID we don't have setup (if it
692 * was any other way, the host controller would assume the ring is
693 * "empty" and wait forever for data to be queued to that stream ID).
694 */
695
696 return stream_info;
697
698cleanup_rings:
699 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
700 cur_ring = stream_info->stream_rings[cur_stream];
701 if (cur_ring) {
702 xhci_ring_free(xhci, cur_ring);
703 stream_info->stream_rings[cur_stream] = NULL;
704 }
705 }
706 xhci_free_command(xhci, stream_info->free_streams_command);
707cleanup_ctx:
708 kfree(stream_info->stream_rings);
709cleanup_info:
710 kfree(stream_info);
711cleanup_trbs:
712 xhci->cmd_ring_reserved_trbs--;
713 return NULL;
714}
715/*
716 * Sets the MaxPStreams field and the Linear Stream Array field.
717 * Sets the dequeue pointer to the stream context array.
718 */
719void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
720 struct xhci_ep_ctx *ep_ctx,
721 struct xhci_stream_info *stream_info)
722{
723 u32 max_primary_streams;
724 /* MaxPStreams is the number of stream context array entries, not the
725 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
726 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
727 */
728 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
729 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
730 "Setting number of stream ctx array entries to %u",
731 1 << (max_primary_streams + 1));
732 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
733 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
734 | EP_HAS_LSA);
735 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
736}
737
738/*
739 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
740 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
741 * not at the beginning of the ring).
742 */
743void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
744 struct xhci_virt_ep *ep)
745{
746 dma_addr_t addr;
747 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
748 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
749 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
750}
751
752/* Frees all stream contexts associated with the endpoint,
753 *
754 * Caller should fix the endpoint context streams fields.
755 */
756void xhci_free_stream_info(struct xhci_hcd *xhci,
757 struct xhci_stream_info *stream_info)
758{
759 int cur_stream;
760 struct xhci_ring *cur_ring;
761
762 if (!stream_info)
763 return;
764
765 for (cur_stream = 1; cur_stream < stream_info->num_streams;
766 cur_stream++) {
767 cur_ring = stream_info->stream_rings[cur_stream];
768 if (cur_ring) {
769 xhci_ring_free(xhci, cur_ring);
770 stream_info->stream_rings[cur_stream] = NULL;
771 }
772 }
773 xhci_free_command(xhci, stream_info->free_streams_command);
774 xhci->cmd_ring_reserved_trbs--;
775 if (stream_info->stream_ctx_array)
776 xhci_free_stream_ctx(xhci,
777 stream_info->num_stream_ctxs,
778 stream_info->stream_ctx_array,
779 stream_info->ctx_array_dma);
780
781 kfree(stream_info->stream_rings);
782 kfree(stream_info);
783}
784
785
786/***************** Device context manipulation *************************/
787
788static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
789 struct xhci_virt_ep *ep)
790{
791 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
792 0);
793 ep->xhci = xhci;
794}
795
796static void xhci_free_tt_info(struct xhci_hcd *xhci,
797 struct xhci_virt_device *virt_dev,
798 int slot_id)
799{
800 struct list_head *tt_list_head;
801 struct xhci_tt_bw_info *tt_info, *next;
802 bool slot_found = false;
803
804 /* If the device never made it past the Set Address stage,
805 * it may not have the real_port set correctly.
806 */
807 if (virt_dev->real_port == 0 ||
808 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
809 xhci_dbg(xhci, "Bad real port.\n");
810 return;
811 }
812
813 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
814 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
815 /* Multi-TT hubs will have more than one entry */
816 if (tt_info->slot_id == slot_id) {
817 slot_found = true;
818 list_del(&tt_info->tt_list);
819 kfree(tt_info);
820 } else if (slot_found) {
821 break;
822 }
823 }
824}
825
826int xhci_alloc_tt_info(struct xhci_hcd *xhci,
827 struct xhci_virt_device *virt_dev,
828 struct usb_device *hdev,
829 struct usb_tt *tt, gfp_t mem_flags)
830{
831 struct xhci_tt_bw_info *tt_info;
832 unsigned int num_ports;
833 int i, j;
834
835 if (!tt->multi)
836 num_ports = 1;
837 else
838 num_ports = hdev->maxchild;
839
840 for (i = 0; i < num_ports; i++, tt_info++) {
841 struct xhci_interval_bw_table *bw_table;
842
843 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
844 if (!tt_info)
845 goto free_tts;
846 INIT_LIST_HEAD(&tt_info->tt_list);
847 list_add(&tt_info->tt_list,
848 &xhci->rh_bw[virt_dev->real_port - 1].tts);
849 tt_info->slot_id = virt_dev->udev->slot_id;
850 if (tt->multi)
851 tt_info->ttport = i+1;
852 bw_table = &tt_info->bw_table;
853 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
854 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
855 }
856 return 0;
857
858free_tts:
859 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
860 return -ENOMEM;
861}
862
863
864/* All the xhci_tds in the ring's TD list should be freed at this point.
865 * Should be called with xhci->lock held if there is any chance the TT lists
866 * will be manipulated by the configure endpoint, allocate device, or update
867 * hub functions while this function is removing the TT entries from the list.
868 */
869void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
870{
871 struct xhci_virt_device *dev;
872 int i;
873 int old_active_eps = 0;
874
875 /* Slot ID 0 is reserved */
876 if (slot_id == 0 || !xhci->devs[slot_id])
877 return;
878
879 dev = xhci->devs[slot_id];
880
881 trace_xhci_free_virt_device(dev);
882
883 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
884 if (!dev)
885 return;
886
887 if (dev->tt_info)
888 old_active_eps = dev->tt_info->active_eps;
889
890 for (i = 0; i < 31; i++) {
891 if (dev->eps[i].ring)
892 xhci_ring_free(xhci, dev->eps[i].ring);
893 if (dev->eps[i].stream_info)
894 xhci_free_stream_info(xhci,
895 dev->eps[i].stream_info);
896 /* Endpoints on the TT/root port lists should have been removed
897 * when usb_disable_device() was called for the device.
898 * We can't drop them anyway, because the udev might have gone
899 * away by this point, and we can't tell what speed it was.
900 */
901 if (!list_empty(&dev->eps[i].bw_endpoint_list))
902 xhci_warn(xhci, "Slot %u endpoint %u "
903 "not removed from BW list!\n",
904 slot_id, i);
905 }
906 /* If this is a hub, free the TT(s) from the TT list */
907 xhci_free_tt_info(xhci, dev, slot_id);
908 /* If necessary, update the number of active TTs on this root port */
909 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
910
911 if (dev->in_ctx)
912 xhci_free_container_ctx(xhci, dev->in_ctx);
913 if (dev->out_ctx)
914 xhci_free_container_ctx(xhci, dev->out_ctx);
915
916 if (dev->udev && dev->udev->slot_id)
917 dev->udev->slot_id = 0;
918 kfree(xhci->devs[slot_id]);
919 xhci->devs[slot_id] = NULL;
920}
921
922/*
923 * Free a virt_device structure.
924 * If the virt_device added a tt_info (a hub) and has children pointing to
925 * that tt_info, then free the child first. Recursive.
926 * We can't rely on udev at this point to find child-parent relationships.
927 */
928void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
929{
930 struct xhci_virt_device *vdev;
931 struct list_head *tt_list_head;
932 struct xhci_tt_bw_info *tt_info, *next;
933 int i;
934
935 vdev = xhci->devs[slot_id];
936 if (!vdev)
937 return;
938
939 if (vdev->real_port == 0 ||
940 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
941 xhci_dbg(xhci, "Bad vdev->real_port.\n");
942 goto out;
943 }
944
945 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
946 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
947 /* is this a hub device that added a tt_info to the tts list */
948 if (tt_info->slot_id == slot_id) {
949 /* are any devices using this tt_info? */
950 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
951 vdev = xhci->devs[i];
952 if (vdev && (vdev->tt_info == tt_info))
953 xhci_free_virt_devices_depth_first(
954 xhci, i);
955 }
956 }
957 }
958out:
959 /* we are now at a leaf device */
960 xhci_debugfs_remove_slot(xhci, slot_id);
961 xhci_free_virt_device(xhci, slot_id);
962}
963
964int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
965 struct usb_device *udev, gfp_t flags)
966{
967 struct xhci_virt_device *dev;
968 int i;
969
970 /* Slot ID 0 is reserved */
971 if (slot_id == 0 || xhci->devs[slot_id]) {
972 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
973 return 0;
974 }
975
976 dev = kzalloc(sizeof(*dev), flags);
977 if (!dev)
978 return 0;
979
980 /* Allocate the (output) device context that will be used in the HC. */
981 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
982 if (!dev->out_ctx)
983 goto fail;
984
985 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
986 (unsigned long long)dev->out_ctx->dma);
987
988 /* Allocate the (input) device context for address device command */
989 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
990 if (!dev->in_ctx)
991 goto fail;
992
993 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
994 (unsigned long long)dev->in_ctx->dma);
995
996 /* Initialize the cancellation list and watchdog timers for each ep */
997 for (i = 0; i < 31; i++) {
998 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
999 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1000 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1001 }
1002
1003 /* Allocate endpoint 0 ring */
1004 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1005 if (!dev->eps[0].ring)
1006 goto fail;
1007
1008 dev->udev = udev;
1009
1010 /* Point to output device context in dcbaa. */
1011 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1012 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1013 slot_id,
1014 &xhci->dcbaa->dev_context_ptrs[slot_id],
1015 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1016
1017 trace_xhci_alloc_virt_device(dev);
1018
1019 xhci->devs[slot_id] = dev;
1020
1021 return 1;
1022fail:
1023
1024 if (dev->in_ctx)
1025 xhci_free_container_ctx(xhci, dev->in_ctx);
1026 if (dev->out_ctx)
1027 xhci_free_container_ctx(xhci, dev->out_ctx);
1028 kfree(dev);
1029
1030 return 0;
1031}
1032
1033void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1034 struct usb_device *udev)
1035{
1036 struct xhci_virt_device *virt_dev;
1037 struct xhci_ep_ctx *ep0_ctx;
1038 struct xhci_ring *ep_ring;
1039
1040 virt_dev = xhci->devs[udev->slot_id];
1041 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1042 ep_ring = virt_dev->eps[0].ring;
1043 /*
1044 * FIXME we don't keep track of the dequeue pointer very well after a
1045 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1046 * host to our enqueue pointer. This should only be called after a
1047 * configured device has reset, so all control transfers should have
1048 * been completed or cancelled before the reset.
1049 */
1050 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1051 ep_ring->enqueue)
1052 | ep_ring->cycle_state);
1053}
1054
1055/*
1056 * The xHCI roothub may have ports of differing speeds in any order in the port
1057 * status registers. xhci->port_array provides an array of the port speed for
1058 * each offset into the port status registers.
1059 *
1060 * The xHCI hardware wants to know the roothub port number that the USB device
1061 * is attached to (or the roothub port its ancestor hub is attached to). All we
1062 * know is the index of that port under either the USB 2.0 or the USB 3.0
1063 * roothub, but that doesn't give us the real index into the HW port status
1064 * registers. Call xhci_find_raw_port_number() to get real index.
1065 */
1066static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1067 struct usb_device *udev)
1068{
1069 struct usb_device *top_dev;
1070 struct usb_hcd *hcd;
1071
1072 if (udev->speed >= USB_SPEED_SUPER)
1073 hcd = xhci->shared_hcd;
1074 else
1075 hcd = xhci->main_hcd;
1076
1077 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1078 top_dev = top_dev->parent)
1079 /* Found device below root hub */;
1080
1081 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1082}
1083
1084/* Setup an xHCI virtual device for a Set Address command */
1085int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1086{
1087 struct xhci_virt_device *dev;
1088 struct xhci_ep_ctx *ep0_ctx;
1089 struct xhci_slot_ctx *slot_ctx;
1090 u32 port_num;
1091 u32 max_packets;
1092 struct usb_device *top_dev;
1093
1094 dev = xhci->devs[udev->slot_id];
1095 /* Slot ID 0 is reserved */
1096 if (udev->slot_id == 0 || !dev) {
1097 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1098 udev->slot_id);
1099 return -EINVAL;
1100 }
1101 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1102 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1103
1104 /* 3) Only the control endpoint is valid - one endpoint context */
1105 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1106 switch (udev->speed) {
1107 case USB_SPEED_SUPER_PLUS:
1108 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1109 max_packets = MAX_PACKET(512);
1110 break;
1111 case USB_SPEED_SUPER:
1112 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1113 max_packets = MAX_PACKET(512);
1114 break;
1115 case USB_SPEED_HIGH:
1116 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1117 max_packets = MAX_PACKET(64);
1118 break;
1119 /* USB core guesses at a 64-byte max packet first for FS devices */
1120 case USB_SPEED_FULL:
1121 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1122 max_packets = MAX_PACKET(64);
1123 break;
1124 case USB_SPEED_LOW:
1125 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1126 max_packets = MAX_PACKET(8);
1127 break;
1128 case USB_SPEED_WIRELESS:
1129 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1130 return -EINVAL;
1131 break;
1132 default:
1133 /* Speed was set earlier, this shouldn't happen. */
1134 return -EINVAL;
1135 }
1136 /* Find the root hub port this device is under */
1137 port_num = xhci_find_real_port_number(xhci, udev);
1138 if (!port_num)
1139 return -EINVAL;
1140 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1141 /* Set the port number in the virtual_device to the faked port number */
1142 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1143 top_dev = top_dev->parent)
1144 /* Found device below root hub */;
1145 dev->fake_port = top_dev->portnum;
1146 dev->real_port = port_num;
1147 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1148 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1149
1150 /* Find the right bandwidth table that this device will be a part of.
1151 * If this is a full speed device attached directly to a root port (or a
1152 * decendent of one), it counts as a primary bandwidth domain, not a
1153 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1154 * will never be created for the HS root hub.
1155 */
1156 if (!udev->tt || !udev->tt->hub->parent) {
1157 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1158 } else {
1159 struct xhci_root_port_bw_info *rh_bw;
1160 struct xhci_tt_bw_info *tt_bw;
1161
1162 rh_bw = &xhci->rh_bw[port_num - 1];
1163 /* Find the right TT. */
1164 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1165 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1166 continue;
1167
1168 if (!dev->udev->tt->multi ||
1169 (udev->tt->multi &&
1170 tt_bw->ttport == dev->udev->ttport)) {
1171 dev->bw_table = &tt_bw->bw_table;
1172 dev->tt_info = tt_bw;
1173 break;
1174 }
1175 }
1176 if (!dev->tt_info)
1177 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1178 }
1179
1180 /* Is this a LS/FS device under an external HS hub? */
1181 if (udev->tt && udev->tt->hub->parent) {
1182 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1183 (udev->ttport << 8));
1184 if (udev->tt->multi)
1185 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1186 }
1187 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1188 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1189
1190 /* Step 4 - ring already allocated */
1191 /* Step 5 */
1192 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1193
1194 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1195 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1196 max_packets);
1197
1198 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1199 dev->eps[0].ring->cycle_state);
1200
1201 trace_xhci_setup_addressable_virt_device(dev);
1202
1203 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1204
1205 return 0;
1206}
1207
1208/*
1209 * Convert interval expressed as 2^(bInterval - 1) == interval into
1210 * straight exponent value 2^n == interval.
1211 *
1212 */
1213static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1214 struct usb_host_endpoint *ep)
1215{
1216 unsigned int interval;
1217
1218 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1219 if (interval != ep->desc.bInterval - 1)
1220 dev_warn(&udev->dev,
1221 "ep %#x - rounding interval to %d %sframes\n",
1222 ep->desc.bEndpointAddress,
1223 1 << interval,
1224 udev->speed == USB_SPEED_FULL ? "" : "micro");
1225
1226 if (udev->speed == USB_SPEED_FULL) {
1227 /*
1228 * Full speed isoc endpoints specify interval in frames,
1229 * not microframes. We are using microframes everywhere,
1230 * so adjust accordingly.
1231 */
1232 interval += 3; /* 1 frame = 2^3 uframes */
1233 }
1234
1235 return interval;
1236}
1237
1238/*
1239 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1240 * microframes, rounded down to nearest power of 2.
1241 */
1242static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1243 struct usb_host_endpoint *ep, unsigned int desc_interval,
1244 unsigned int min_exponent, unsigned int max_exponent)
1245{
1246 unsigned int interval;
1247
1248 interval = fls(desc_interval) - 1;
1249 interval = clamp_val(interval, min_exponent, max_exponent);
1250 if ((1 << interval) != desc_interval)
1251 dev_dbg(&udev->dev,
1252 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1253 ep->desc.bEndpointAddress,
1254 1 << interval,
1255 desc_interval);
1256
1257 return interval;
1258}
1259
1260static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1261 struct usb_host_endpoint *ep)
1262{
1263 if (ep->desc.bInterval == 0)
1264 return 0;
1265 return xhci_microframes_to_exponent(udev, ep,
1266 ep->desc.bInterval, 0, 15);
1267}
1268
1269
1270static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1271 struct usb_host_endpoint *ep)
1272{
1273 return xhci_microframes_to_exponent(udev, ep,
1274 ep->desc.bInterval * 8, 3, 10);
1275}
1276
1277/* Return the polling or NAK interval.
1278 *
1279 * The polling interval is expressed in "microframes". If xHCI's Interval field
1280 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1281 *
1282 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1283 * is set to 0.
1284 */
1285static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1286 struct usb_host_endpoint *ep)
1287{
1288 unsigned int interval = 0;
1289
1290 switch (udev->speed) {
1291 case USB_SPEED_HIGH:
1292 /* Max NAK rate */
1293 if (usb_endpoint_xfer_control(&ep->desc) ||
1294 usb_endpoint_xfer_bulk(&ep->desc)) {
1295 interval = xhci_parse_microframe_interval(udev, ep);
1296 break;
1297 }
1298 /* Fall through - SS and HS isoc/int have same decoding */
1299
1300 case USB_SPEED_SUPER_PLUS:
1301 case USB_SPEED_SUPER:
1302 if (usb_endpoint_xfer_int(&ep->desc) ||
1303 usb_endpoint_xfer_isoc(&ep->desc)) {
1304 interval = xhci_parse_exponent_interval(udev, ep);
1305 }
1306 break;
1307
1308 case USB_SPEED_FULL:
1309 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1310 interval = xhci_parse_exponent_interval(udev, ep);
1311 break;
1312 }
1313 /*
1314 * Fall through for interrupt endpoint interval decoding
1315 * since it uses the same rules as low speed interrupt
1316 * endpoints.
1317 */
1318 /* fall through */
1319
1320 case USB_SPEED_LOW:
1321 if (usb_endpoint_xfer_int(&ep->desc) ||
1322 usb_endpoint_xfer_isoc(&ep->desc)) {
1323
1324 interval = xhci_parse_frame_interval(udev, ep);
1325 }
1326 break;
1327
1328 default:
1329 BUG();
1330 }
1331 return interval;
1332}
1333
1334/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1335 * High speed endpoint descriptors can define "the number of additional
1336 * transaction opportunities per microframe", but that goes in the Max Burst
1337 * endpoint context field.
1338 */
1339static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1340 struct usb_host_endpoint *ep)
1341{
1342 if (udev->speed < USB_SPEED_SUPER ||
1343 !usb_endpoint_xfer_isoc(&ep->desc))
1344 return 0;
1345 return ep->ss_ep_comp.bmAttributes;
1346}
1347
1348static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1349 struct usb_host_endpoint *ep)
1350{
1351 /* Super speed and Plus have max burst in ep companion desc */
1352 if (udev->speed >= USB_SPEED_SUPER)
1353 return ep->ss_ep_comp.bMaxBurst;
1354
1355 if (udev->speed == USB_SPEED_HIGH &&
1356 (usb_endpoint_xfer_isoc(&ep->desc) ||
1357 usb_endpoint_xfer_int(&ep->desc)))
1358 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1359
1360 return 0;
1361}
1362
1363static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1364{
1365 int in;
1366
1367 in = usb_endpoint_dir_in(&ep->desc);
1368
1369 switch (usb_endpoint_type(&ep->desc)) {
1370 case USB_ENDPOINT_XFER_CONTROL:
1371 return CTRL_EP;
1372 case USB_ENDPOINT_XFER_BULK:
1373 return in ? BULK_IN_EP : BULK_OUT_EP;
1374 case USB_ENDPOINT_XFER_ISOC:
1375 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1376 case USB_ENDPOINT_XFER_INT:
1377 return in ? INT_IN_EP : INT_OUT_EP;
1378 }
1379 return 0;
1380}
1381
1382/* Return the maximum endpoint service interval time (ESIT) payload.
1383 * Basically, this is the maxpacket size, multiplied by the burst size
1384 * and mult size.
1385 */
1386static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1387 struct usb_host_endpoint *ep)
1388{
1389 int max_burst;
1390 int max_packet;
1391
1392 /* Only applies for interrupt or isochronous endpoints */
1393 if (usb_endpoint_xfer_control(&ep->desc) ||
1394 usb_endpoint_xfer_bulk(&ep->desc))
1395 return 0;
1396
1397 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1398 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1399 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1400 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1401 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1402 else if (udev->speed >= USB_SPEED_SUPER)
1403 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1404
1405 max_packet = usb_endpoint_maxp(&ep->desc);
1406 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1407 /* A 0 in max burst means 1 transfer per ESIT */
1408 return max_packet * max_burst;
1409}
1410
1411/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1412 * Drivers will have to call usb_alloc_streams() to do that.
1413 */
1414int xhci_endpoint_init(struct xhci_hcd *xhci,
1415 struct xhci_virt_device *virt_dev,
1416 struct usb_device *udev,
1417 struct usb_host_endpoint *ep,
1418 gfp_t mem_flags)
1419{
1420 unsigned int ep_index;
1421 struct xhci_ep_ctx *ep_ctx;
1422 struct xhci_ring *ep_ring;
1423 unsigned int max_packet;
1424 enum xhci_ring_type ring_type;
1425 u32 max_esit_payload;
1426 u32 endpoint_type;
1427 unsigned int max_burst;
1428 unsigned int interval;
1429 unsigned int mult;
1430 unsigned int avg_trb_len;
1431 unsigned int err_count = 0;
1432
1433 ep_index = xhci_get_endpoint_index(&ep->desc);
1434 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1435
1436 endpoint_type = xhci_get_endpoint_type(ep);
1437 if (!endpoint_type)
1438 return -EINVAL;
1439
1440 ring_type = usb_endpoint_type(&ep->desc);
1441
1442 /*
1443 * Get values to fill the endpoint context, mostly from ep descriptor.
1444 * The average TRB buffer lengt for bulk endpoints is unclear as we
1445 * have no clue on scatter gather list entry size. For Isoc and Int,
1446 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1447 */
1448 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1449 interval = xhci_get_endpoint_interval(udev, ep);
1450
1451 /* Periodic endpoint bInterval limit quirk */
1452 if (usb_endpoint_xfer_int(&ep->desc) ||
1453 usb_endpoint_xfer_isoc(&ep->desc)) {
1454 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1455 udev->speed >= USB_SPEED_HIGH &&
1456 interval >= 7) {
1457 interval = 6;
1458 }
1459 }
1460
1461 mult = xhci_get_endpoint_mult(udev, ep);
1462 max_packet = usb_endpoint_maxp(&ep->desc);
1463 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1464 avg_trb_len = max_esit_payload;
1465
1466 /* FIXME dig Mult and streams info out of ep companion desc */
1467
1468 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1469 if (!usb_endpoint_xfer_isoc(&ep->desc))
1470 err_count = 3;
1471 /* Some devices get this wrong */
1472 if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1473 max_packet = 512;
1474 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1475 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1476 avg_trb_len = 8;
1477 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1478 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1479 mult = 0;
1480
1481 /* Set up the endpoint ring */
1482 virt_dev->eps[ep_index].new_ring =
1483 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1484 if (!virt_dev->eps[ep_index].new_ring)
1485 return -ENOMEM;
1486
1487 virt_dev->eps[ep_index].skip = false;
1488 ep_ring = virt_dev->eps[ep_index].new_ring;
1489
1490 /* Fill the endpoint context */
1491 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1492 EP_INTERVAL(interval) |
1493 EP_MULT(mult));
1494 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1495 MAX_PACKET(max_packet) |
1496 MAX_BURST(max_burst) |
1497 ERROR_COUNT(err_count));
1498 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1499 ep_ring->cycle_state);
1500
1501 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1502 EP_AVG_TRB_LENGTH(avg_trb_len));
1503
1504 return 0;
1505}
1506
1507void xhci_endpoint_zero(struct xhci_hcd *xhci,
1508 struct xhci_virt_device *virt_dev,
1509 struct usb_host_endpoint *ep)
1510{
1511 unsigned int ep_index;
1512 struct xhci_ep_ctx *ep_ctx;
1513
1514 ep_index = xhci_get_endpoint_index(&ep->desc);
1515 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1516
1517 ep_ctx->ep_info = 0;
1518 ep_ctx->ep_info2 = 0;
1519 ep_ctx->deq = 0;
1520 ep_ctx->tx_info = 0;
1521 /* Don't free the endpoint ring until the set interface or configuration
1522 * request succeeds.
1523 */
1524}
1525
1526void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1527{
1528 bw_info->ep_interval = 0;
1529 bw_info->mult = 0;
1530 bw_info->num_packets = 0;
1531 bw_info->max_packet_size = 0;
1532 bw_info->type = 0;
1533 bw_info->max_esit_payload = 0;
1534}
1535
1536void xhci_update_bw_info(struct xhci_hcd *xhci,
1537 struct xhci_container_ctx *in_ctx,
1538 struct xhci_input_control_ctx *ctrl_ctx,
1539 struct xhci_virt_device *virt_dev)
1540{
1541 struct xhci_bw_info *bw_info;
1542 struct xhci_ep_ctx *ep_ctx;
1543 unsigned int ep_type;
1544 int i;
1545
1546 for (i = 1; i < 31; i++) {
1547 bw_info = &virt_dev->eps[i].bw_info;
1548
1549 /* We can't tell what endpoint type is being dropped, but
1550 * unconditionally clearing the bandwidth info for non-periodic
1551 * endpoints should be harmless because the info will never be
1552 * set in the first place.
1553 */
1554 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1555 /* Dropped endpoint */
1556 xhci_clear_endpoint_bw_info(bw_info);
1557 continue;
1558 }
1559
1560 if (EP_IS_ADDED(ctrl_ctx, i)) {
1561 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1562 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1563
1564 /* Ignore non-periodic endpoints */
1565 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1566 ep_type != ISOC_IN_EP &&
1567 ep_type != INT_IN_EP)
1568 continue;
1569
1570 /* Added or changed endpoint */
1571 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1572 le32_to_cpu(ep_ctx->ep_info));
1573 /* Number of packets and mult are zero-based in the
1574 * input context, but we want one-based for the
1575 * interval table.
1576 */
1577 bw_info->mult = CTX_TO_EP_MULT(
1578 le32_to_cpu(ep_ctx->ep_info)) + 1;
1579 bw_info->num_packets = CTX_TO_MAX_BURST(
1580 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1581 bw_info->max_packet_size = MAX_PACKET_DECODED(
1582 le32_to_cpu(ep_ctx->ep_info2));
1583 bw_info->type = ep_type;
1584 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1585 le32_to_cpu(ep_ctx->tx_info));
1586 }
1587 }
1588}
1589
1590/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1591 * Useful when you want to change one particular aspect of the endpoint and then
1592 * issue a configure endpoint command.
1593 */
1594void xhci_endpoint_copy(struct xhci_hcd *xhci,
1595 struct xhci_container_ctx *in_ctx,
1596 struct xhci_container_ctx *out_ctx,
1597 unsigned int ep_index)
1598{
1599 struct xhci_ep_ctx *out_ep_ctx;
1600 struct xhci_ep_ctx *in_ep_ctx;
1601
1602 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1603 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1604
1605 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1606 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1607 in_ep_ctx->deq = out_ep_ctx->deq;
1608 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1609}
1610
1611/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1612 * Useful when you want to change one particular aspect of the endpoint and then
1613 * issue a configure endpoint command. Only the context entries field matters,
1614 * but we'll copy the whole thing anyway.
1615 */
1616void xhci_slot_copy(struct xhci_hcd *xhci,
1617 struct xhci_container_ctx *in_ctx,
1618 struct xhci_container_ctx *out_ctx)
1619{
1620 struct xhci_slot_ctx *in_slot_ctx;
1621 struct xhci_slot_ctx *out_slot_ctx;
1622
1623 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1624 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1625
1626 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1627 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1628 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1629 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1630}
1631
1632/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1633static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1634{
1635 int i;
1636 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1637 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1638
1639 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1640 "Allocating %d scratchpad buffers", num_sp);
1641
1642 if (!num_sp)
1643 return 0;
1644
1645 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1646 if (!xhci->scratchpad)
1647 goto fail_sp;
1648
1649 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1650 num_sp * sizeof(u64),
1651 &xhci->scratchpad->sp_dma, flags);
1652 if (!xhci->scratchpad->sp_array)
1653 goto fail_sp2;
1654
1655 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1656 if (!xhci->scratchpad->sp_buffers)
1657 goto fail_sp3;
1658
1659 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1660 for (i = 0; i < num_sp; i++) {
1661 dma_addr_t dma;
1662 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1663 flags);
1664 if (!buf)
1665 goto fail_sp4;
1666
1667 xhci->scratchpad->sp_array[i] = dma;
1668 xhci->scratchpad->sp_buffers[i] = buf;
1669 }
1670
1671 return 0;
1672
1673 fail_sp4:
1674 for (i = i - 1; i >= 0; i--) {
1675 dma_free_coherent(dev, xhci->page_size,
1676 xhci->scratchpad->sp_buffers[i],
1677 xhci->scratchpad->sp_array[i]);
1678 }
1679
1680 kfree(xhci->scratchpad->sp_buffers);
1681
1682 fail_sp3:
1683 dma_free_coherent(dev, num_sp * sizeof(u64),
1684 xhci->scratchpad->sp_array,
1685 xhci->scratchpad->sp_dma);
1686
1687 fail_sp2:
1688 kfree(xhci->scratchpad);
1689 xhci->scratchpad = NULL;
1690
1691 fail_sp:
1692 return -ENOMEM;
1693}
1694
1695static void scratchpad_free(struct xhci_hcd *xhci)
1696{
1697 int num_sp;
1698 int i;
1699 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1700
1701 if (!xhci->scratchpad)
1702 return;
1703
1704 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1705
1706 for (i = 0; i < num_sp; i++) {
1707 dma_free_coherent(dev, xhci->page_size,
1708 xhci->scratchpad->sp_buffers[i],
1709 xhci->scratchpad->sp_array[i]);
1710 }
1711 kfree(xhci->scratchpad->sp_buffers);
1712 dma_free_coherent(dev, num_sp * sizeof(u64),
1713 xhci->scratchpad->sp_array,
1714 xhci->scratchpad->sp_dma);
1715 kfree(xhci->scratchpad);
1716 xhci->scratchpad = NULL;
1717}
1718
1719struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1720 bool allocate_completion, gfp_t mem_flags)
1721{
1722 struct xhci_command *command;
1723
1724 command = kzalloc(sizeof(*command), mem_flags);
1725 if (!command)
1726 return NULL;
1727
1728 if (allocate_completion) {
1729 command->completion =
1730 kzalloc(sizeof(struct completion), mem_flags);
1731 if (!command->completion) {
1732 kfree(command);
1733 return NULL;
1734 }
1735 init_completion(command->completion);
1736 }
1737
1738 command->status = 0;
1739 INIT_LIST_HEAD(&command->cmd_list);
1740 return command;
1741}
1742
1743struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1744 bool allocate_completion, gfp_t mem_flags)
1745{
1746 struct xhci_command *command;
1747
1748 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1749 if (!command)
1750 return NULL;
1751
1752 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1753 mem_flags);
1754 if (!command->in_ctx) {
1755 kfree(command->completion);
1756 kfree(command);
1757 return NULL;
1758 }
1759 return command;
1760}
1761
1762void xhci_urb_free_priv(struct urb_priv *urb_priv)
1763{
1764 kfree(urb_priv);
1765}
1766
1767void xhci_free_command(struct xhci_hcd *xhci,
1768 struct xhci_command *command)
1769{
1770 xhci_free_container_ctx(xhci,
1771 command->in_ctx);
1772 kfree(command->completion);
1773 kfree(command);
1774}
1775
1776int xhci_alloc_erst(struct xhci_hcd *xhci,
1777 struct xhci_ring *evt_ring,
1778 struct xhci_erst *erst,
1779 gfp_t flags)
1780{
1781 size_t size;
1782 unsigned int val;
1783 struct xhci_segment *seg;
1784 struct xhci_erst_entry *entry;
1785
1786 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1787 erst->entries = dma_zalloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1788 size, &erst->erst_dma_addr, flags);
1789 if (!erst->entries)
1790 return -ENOMEM;
1791
1792 erst->num_entries = evt_ring->num_segs;
1793
1794 seg = evt_ring->first_seg;
1795 for (val = 0; val < evt_ring->num_segs; val++) {
1796 entry = &erst->entries[val];
1797 entry->seg_addr = cpu_to_le64(seg->dma);
1798 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1799 entry->rsvd = 0;
1800 seg = seg->next;
1801 }
1802
1803 return 0;
1804}
1805
1806void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1807{
1808 size_t size;
1809 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1810
1811 size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1812 if (erst->entries)
1813 dma_free_coherent(dev, size,
1814 erst->entries,
1815 erst->erst_dma_addr);
1816 erst->entries = NULL;
1817}
1818
1819void xhci_mem_cleanup(struct xhci_hcd *xhci)
1820{
1821 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1822 int i, j, num_ports;
1823
1824 cancel_delayed_work_sync(&xhci->cmd_timer);
1825
1826 xhci_free_erst(xhci, &xhci->erst);
1827
1828 if (xhci->event_ring)
1829 xhci_ring_free(xhci, xhci->event_ring);
1830 xhci->event_ring = NULL;
1831 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1832
1833 if (xhci->lpm_command)
1834 xhci_free_command(xhci, xhci->lpm_command);
1835 xhci->lpm_command = NULL;
1836 if (xhci->cmd_ring)
1837 xhci_ring_free(xhci, xhci->cmd_ring);
1838 xhci->cmd_ring = NULL;
1839 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1840 xhci_cleanup_command_queue(xhci);
1841
1842 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1843 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1844 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1845 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1846 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1847 while (!list_empty(ep))
1848 list_del_init(ep->next);
1849 }
1850 }
1851
1852 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1853 xhci_free_virt_devices_depth_first(xhci, i);
1854
1855 dma_pool_destroy(xhci->segment_pool);
1856 xhci->segment_pool = NULL;
1857 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1858
1859 dma_pool_destroy(xhci->device_pool);
1860 xhci->device_pool = NULL;
1861 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1862
1863 dma_pool_destroy(xhci->small_streams_pool);
1864 xhci->small_streams_pool = NULL;
1865 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1866 "Freed small stream array pool");
1867
1868 dma_pool_destroy(xhci->medium_streams_pool);
1869 xhci->medium_streams_pool = NULL;
1870 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1871 "Freed medium stream array pool");
1872
1873 if (xhci->dcbaa)
1874 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1875 xhci->dcbaa, xhci->dcbaa->dma);
1876 xhci->dcbaa = NULL;
1877
1878 scratchpad_free(xhci);
1879
1880 if (!xhci->rh_bw)
1881 goto no_bw;
1882
1883 for (i = 0; i < num_ports; i++) {
1884 struct xhci_tt_bw_info *tt, *n;
1885 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1886 list_del(&tt->tt_list);
1887 kfree(tt);
1888 }
1889 }
1890
1891no_bw:
1892 xhci->cmd_ring_reserved_trbs = 0;
1893 xhci->num_usb2_ports = 0;
1894 xhci->num_usb3_ports = 0;
1895 xhci->num_active_eps = 0;
1896 kfree(xhci->usb2_ports);
1897 kfree(xhci->usb3_ports);
1898 kfree(xhci->port_array);
1899 kfree(xhci->rh_bw);
1900 kfree(xhci->ext_caps);
1901
1902 xhci->usb2_ports = NULL;
1903 xhci->usb3_ports = NULL;
1904 xhci->port_array = NULL;
1905 xhci->rh_bw = NULL;
1906 xhci->ext_caps = NULL;
1907
1908 xhci->page_size = 0;
1909 xhci->page_shift = 0;
1910 xhci->bus_state[0].bus_suspended = 0;
1911 xhci->bus_state[1].bus_suspended = 0;
1912}
1913
1914static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1915 struct xhci_segment *input_seg,
1916 union xhci_trb *start_trb,
1917 union xhci_trb *end_trb,
1918 dma_addr_t input_dma,
1919 struct xhci_segment *result_seg,
1920 char *test_name, int test_number)
1921{
1922 unsigned long long start_dma;
1923 unsigned long long end_dma;
1924 struct xhci_segment *seg;
1925
1926 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1927 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1928
1929 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1930 if (seg != result_seg) {
1931 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1932 test_name, test_number);
1933 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1934 "input DMA 0x%llx\n",
1935 input_seg,
1936 (unsigned long long) input_dma);
1937 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1938 "ending TRB %p (0x%llx DMA)\n",
1939 start_trb, start_dma,
1940 end_trb, end_dma);
1941 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1942 result_seg, seg);
1943 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1944 true);
1945 return -1;
1946 }
1947 return 0;
1948}
1949
1950/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1951static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1952{
1953 struct {
1954 dma_addr_t input_dma;
1955 struct xhci_segment *result_seg;
1956 } simple_test_vector [] = {
1957 /* A zeroed DMA field should fail */
1958 { 0, NULL },
1959 /* One TRB before the ring start should fail */
1960 { xhci->event_ring->first_seg->dma - 16, NULL },
1961 /* One byte before the ring start should fail */
1962 { xhci->event_ring->first_seg->dma - 1, NULL },
1963 /* Starting TRB should succeed */
1964 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1965 /* Ending TRB should succeed */
1966 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1967 xhci->event_ring->first_seg },
1968 /* One byte after the ring end should fail */
1969 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1970 /* One TRB after the ring end should fail */
1971 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1972 /* An address of all ones should fail */
1973 { (dma_addr_t) (~0), NULL },
1974 };
1975 struct {
1976 struct xhci_segment *input_seg;
1977 union xhci_trb *start_trb;
1978 union xhci_trb *end_trb;
1979 dma_addr_t input_dma;
1980 struct xhci_segment *result_seg;
1981 } complex_test_vector [] = {
1982 /* Test feeding a valid DMA address from a different ring */
1983 { .input_seg = xhci->event_ring->first_seg,
1984 .start_trb = xhci->event_ring->first_seg->trbs,
1985 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1986 .input_dma = xhci->cmd_ring->first_seg->dma,
1987 .result_seg = NULL,
1988 },
1989 /* Test feeding a valid end TRB from a different ring */
1990 { .input_seg = xhci->event_ring->first_seg,
1991 .start_trb = xhci->event_ring->first_seg->trbs,
1992 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1993 .input_dma = xhci->cmd_ring->first_seg->dma,
1994 .result_seg = NULL,
1995 },
1996 /* Test feeding a valid start and end TRB from a different ring */
1997 { .input_seg = xhci->event_ring->first_seg,
1998 .start_trb = xhci->cmd_ring->first_seg->trbs,
1999 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2000 .input_dma = xhci->cmd_ring->first_seg->dma,
2001 .result_seg = NULL,
2002 },
2003 /* TRB in this ring, but after this TD */
2004 { .input_seg = xhci->event_ring->first_seg,
2005 .start_trb = &xhci->event_ring->first_seg->trbs[0],
2006 .end_trb = &xhci->event_ring->first_seg->trbs[3],
2007 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2008 .result_seg = NULL,
2009 },
2010 /* TRB in this ring, but before this TD */
2011 { .input_seg = xhci->event_ring->first_seg,
2012 .start_trb = &xhci->event_ring->first_seg->trbs[3],
2013 .end_trb = &xhci->event_ring->first_seg->trbs[6],
2014 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2015 .result_seg = NULL,
2016 },
2017 /* TRB in this ring, but after this wrapped TD */
2018 { .input_seg = xhci->event_ring->first_seg,
2019 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2020 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2021 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2022 .result_seg = NULL,
2023 },
2024 /* TRB in this ring, but before this wrapped TD */
2025 { .input_seg = xhci->event_ring->first_seg,
2026 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2027 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2028 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2029 .result_seg = NULL,
2030 },
2031 /* TRB not in this ring, and we have a wrapped TD */
2032 { .input_seg = xhci->event_ring->first_seg,
2033 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2034 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2035 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2036 .result_seg = NULL,
2037 },
2038 };
2039
2040 unsigned int num_tests;
2041 int i, ret;
2042
2043 num_tests = ARRAY_SIZE(simple_test_vector);
2044 for (i = 0; i < num_tests; i++) {
2045 ret = xhci_test_trb_in_td(xhci,
2046 xhci->event_ring->first_seg,
2047 xhci->event_ring->first_seg->trbs,
2048 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2049 simple_test_vector[i].input_dma,
2050 simple_test_vector[i].result_seg,
2051 "Simple", i);
2052 if (ret < 0)
2053 return ret;
2054 }
2055
2056 num_tests = ARRAY_SIZE(complex_test_vector);
2057 for (i = 0; i < num_tests; i++) {
2058 ret = xhci_test_trb_in_td(xhci,
2059 complex_test_vector[i].input_seg,
2060 complex_test_vector[i].start_trb,
2061 complex_test_vector[i].end_trb,
2062 complex_test_vector[i].input_dma,
2063 complex_test_vector[i].result_seg,
2064 "Complex", i);
2065 if (ret < 0)
2066 return ret;
2067 }
2068 xhci_dbg(xhci, "TRB math tests passed.\n");
2069 return 0;
2070}
2071
2072static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2073{
2074 u64 temp;
2075 dma_addr_t deq;
2076
2077 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2078 xhci->event_ring->dequeue);
2079 if (deq == 0 && !in_interrupt())
2080 xhci_warn(xhci, "WARN something wrong with SW event ring "
2081 "dequeue ptr.\n");
2082 /* Update HC event ring dequeue pointer */
2083 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2084 temp &= ERST_PTR_MASK;
2085 /* Don't clear the EHB bit (which is RW1C) because
2086 * there might be more events to service.
2087 */
2088 temp &= ~ERST_EHB;
2089 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2090 "// Write event ring dequeue pointer, "
2091 "preserving EHB bit");
2092 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2093 &xhci->ir_set->erst_dequeue);
2094}
2095
2096static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2097 __le32 __iomem *addr, int max_caps)
2098{
2099 u32 temp, port_offset, port_count;
2100 int i;
2101 u8 major_revision, minor_revision;
2102 struct xhci_hub *rhub;
2103
2104 temp = readl(addr);
2105 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2106 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2107
2108 if (major_revision == 0x03) {
2109 rhub = &xhci->usb3_rhub;
2110 } else if (major_revision <= 0x02) {
2111 rhub = &xhci->usb2_rhub;
2112 } else {
2113 xhci_warn(xhci, "Ignoring unknown port speed, "
2114 "Ext Cap %p, revision = 0x%x\n",
2115 addr, major_revision);
2116 /* Ignoring port protocol we can't understand. FIXME */
2117 return;
2118 }
2119 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2120
2121 if (rhub->min_rev < minor_revision)
2122 rhub->min_rev = minor_revision;
2123
2124 /* Port offset and count in the third dword, see section 7.2 */
2125 temp = readl(addr + 2);
2126 port_offset = XHCI_EXT_PORT_OFF(temp);
2127 port_count = XHCI_EXT_PORT_COUNT(temp);
2128 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2129 "Ext Cap %p, port offset = %u, "
2130 "count = %u, revision = 0x%x",
2131 addr, port_offset, port_count, major_revision);
2132 /* Port count includes the current port offset */
2133 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2134 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2135 return;
2136
2137 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2138 if (rhub->psi_count) {
2139 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2140 GFP_KERNEL);
2141 if (!rhub->psi)
2142 rhub->psi_count = 0;
2143
2144 rhub->psi_uid_count++;
2145 for (i = 0; i < rhub->psi_count; i++) {
2146 rhub->psi[i] = readl(addr + 4 + i);
2147
2148 /* count unique ID values, two consecutive entries can
2149 * have the same ID if link is assymetric
2150 */
2151 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2152 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2153 rhub->psi_uid_count++;
2154
2155 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2156 XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2157 XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2158 XHCI_EXT_PORT_PLT(rhub->psi[i]),
2159 XHCI_EXT_PORT_PFD(rhub->psi[i]),
2160 XHCI_EXT_PORT_LP(rhub->psi[i]),
2161 XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2162 }
2163 }
2164 /* cache usb2 port capabilities */
2165 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2166 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2167
2168 /* Check the host's USB2 LPM capability */
2169 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2170 (temp & XHCI_L1C)) {
2171 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2172 "xHCI 0.96: support USB2 software lpm");
2173 xhci->sw_lpm_support = 1;
2174 }
2175
2176 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2177 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2178 "xHCI 1.0: support USB2 software lpm");
2179 xhci->sw_lpm_support = 1;
2180 if (temp & XHCI_HLC) {
2181 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2182 "xHCI 1.0: support USB2 hardware lpm");
2183 xhci->hw_lpm_support = 1;
2184 }
2185 }
2186
2187 port_offset--;
2188 for (i = port_offset; i < (port_offset + port_count); i++) {
2189 /* Duplicate entry. Ignore the port if the revisions differ. */
2190 if (xhci->port_array[i] != 0) {
2191 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2192 " port %u\n", addr, i);
2193 xhci_warn(xhci, "Port was marked as USB %u, "
2194 "duplicated as USB %u\n",
2195 xhci->port_array[i], major_revision);
2196 /* Only adjust the roothub port counts if we haven't
2197 * found a similar duplicate.
2198 */
2199 if (xhci->port_array[i] != major_revision &&
2200 xhci->port_array[i] != DUPLICATE_ENTRY) {
2201 if (xhci->port_array[i] == 0x03)
2202 xhci->num_usb3_ports--;
2203 else
2204 xhci->num_usb2_ports--;
2205 xhci->port_array[i] = DUPLICATE_ENTRY;
2206 }
2207 /* FIXME: Should we disable the port? */
2208 continue;
2209 }
2210 xhci->port_array[i] = major_revision;
2211 if (major_revision == 0x03)
2212 xhci->num_usb3_ports++;
2213 else
2214 xhci->num_usb2_ports++;
2215 }
2216 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2217}
2218
2219/*
2220 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2221 * specify what speeds each port is supposed to be. We can't count on the port
2222 * speed bits in the PORTSC register being correct until a device is connected,
2223 * but we need to set up the two fake roothubs with the correct number of USB
2224 * 3.0 and USB 2.0 ports at host controller initialization time.
2225 */
2226static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2227{
2228 void __iomem *base;
2229 u32 offset;
2230 unsigned int num_ports;
2231 int i, j, port_index;
2232 int cap_count = 0;
2233 u32 cap_start;
2234
2235 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2236 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2237 if (!xhci->port_array)
2238 return -ENOMEM;
2239
2240 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2241 if (!xhci->rh_bw)
2242 return -ENOMEM;
2243 for (i = 0; i < num_ports; i++) {
2244 struct xhci_interval_bw_table *bw_table;
2245
2246 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2247 bw_table = &xhci->rh_bw[i].bw_table;
2248 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2249 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2250 }
2251 base = &xhci->cap_regs->hc_capbase;
2252
2253 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2254 if (!cap_start) {
2255 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2256 return -ENODEV;
2257 }
2258
2259 offset = cap_start;
2260 /* count extended protocol capability entries for later caching */
2261 while (offset) {
2262 cap_count++;
2263 offset = xhci_find_next_ext_cap(base, offset,
2264 XHCI_EXT_CAPS_PROTOCOL);
2265 }
2266
2267 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2268 if (!xhci->ext_caps)
2269 return -ENOMEM;
2270
2271 offset = cap_start;
2272
2273 while (offset) {
2274 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2275 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2276 break;
2277 offset = xhci_find_next_ext_cap(base, offset,
2278 XHCI_EXT_CAPS_PROTOCOL);
2279 }
2280
2281 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2282 xhci_warn(xhci, "No ports on the roothubs?\n");
2283 return -ENODEV;
2284 }
2285 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2286 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2287 xhci->num_usb2_ports, xhci->num_usb3_ports);
2288
2289 /* Place limits on the number of roothub ports so that the hub
2290 * descriptors aren't longer than the USB core will allocate.
2291 */
2292 if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2293 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2294 "Limiting USB 3.0 roothub ports to %u.",
2295 USB_SS_MAXPORTS);
2296 xhci->num_usb3_ports = USB_SS_MAXPORTS;
2297 }
2298 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2299 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2300 "Limiting USB 2.0 roothub ports to %u.",
2301 USB_MAXCHILDREN);
2302 xhci->num_usb2_ports = USB_MAXCHILDREN;
2303 }
2304
2305 /*
2306 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2307 * Not sure how the USB core will handle a hub with no ports...
2308 */
2309 if (xhci->num_usb2_ports) {
2310 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2311 xhci->num_usb2_ports, flags);
2312 if (!xhci->usb2_ports)
2313 return -ENOMEM;
2314
2315 port_index = 0;
2316 for (i = 0; i < num_ports; i++) {
2317 if (xhci->port_array[i] == 0x03 ||
2318 xhci->port_array[i] == 0 ||
2319 xhci->port_array[i] == DUPLICATE_ENTRY)
2320 continue;
2321
2322 xhci->usb2_ports[port_index] =
2323 &xhci->op_regs->port_status_base +
2324 NUM_PORT_REGS*i;
2325 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2326 "USB 2.0 port at index %u, "
2327 "addr = %p", i,
2328 xhci->usb2_ports[port_index]);
2329 port_index++;
2330 if (port_index == xhci->num_usb2_ports)
2331 break;
2332 }
2333 }
2334 if (xhci->num_usb3_ports) {
2335 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2336 xhci->num_usb3_ports, flags);
2337 if (!xhci->usb3_ports)
2338 return -ENOMEM;
2339
2340 port_index = 0;
2341 for (i = 0; i < num_ports; i++)
2342 if (xhci->port_array[i] == 0x03) {
2343 xhci->usb3_ports[port_index] =
2344 &xhci->op_regs->port_status_base +
2345 NUM_PORT_REGS*i;
2346 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2347 "USB 3.0 port at index %u, "
2348 "addr = %p", i,
2349 xhci->usb3_ports[port_index]);
2350 port_index++;
2351 if (port_index == xhci->num_usb3_ports)
2352 break;
2353 }
2354 }
2355 return 0;
2356}
2357
2358int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2359{
2360 dma_addr_t dma;
2361 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2362 unsigned int val, val2;
2363 u64 val_64;
2364 u32 page_size, temp;
2365 int i, ret;
2366
2367 INIT_LIST_HEAD(&xhci->cmd_list);
2368
2369 /* init command timeout work */
2370 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2371 init_completion(&xhci->cmd_ring_stop_completion);
2372
2373 page_size = readl(&xhci->op_regs->page_size);
2374 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2375 "Supported page size register = 0x%x", page_size);
2376 for (i = 0; i < 16; i++) {
2377 if ((0x1 & page_size) != 0)
2378 break;
2379 page_size = page_size >> 1;
2380 }
2381 if (i < 16)
2382 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2383 "Supported page size of %iK", (1 << (i+12)) / 1024);
2384 else
2385 xhci_warn(xhci, "WARN: no supported page size\n");
2386 /* Use 4K pages, since that's common and the minimum the HC supports */
2387 xhci->page_shift = 12;
2388 xhci->page_size = 1 << xhci->page_shift;
2389 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2390 "HCD page size set to %iK", xhci->page_size / 1024);
2391
2392 /*
2393 * Program the Number of Device Slots Enabled field in the CONFIG
2394 * register with the max value of slots the HC can handle.
2395 */
2396 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2397 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2398 "// xHC can handle at most %d device slots.", val);
2399 val2 = readl(&xhci->op_regs->config_reg);
2400 val |= (val2 & ~HCS_SLOTS_MASK);
2401 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2402 "// Setting Max device slots reg = 0x%x.", val);
2403 writel(val, &xhci->op_regs->config_reg);
2404
2405 /*
2406 * xHCI section 5.4.6 - doorbell array must be
2407 * "physically contiguous and 64-byte (cache line) aligned".
2408 */
2409 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2410 flags);
2411 if (!xhci->dcbaa)
2412 goto fail;
2413 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2414 xhci->dcbaa->dma = dma;
2415 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2417 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2418 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2419
2420 /*
2421 * Initialize the ring segment pool. The ring must be a contiguous
2422 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2423 * however, the command ring segment needs 64-byte aligned segments
2424 * and our use of dma addresses in the trb_address_map radix tree needs
2425 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2426 */
2427 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2428 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2429
2430 /* See Table 46 and Note on Figure 55 */
2431 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2432 2112, 64, xhci->page_size);
2433 if (!xhci->segment_pool || !xhci->device_pool)
2434 goto fail;
2435
2436 /* Linear stream context arrays don't have any boundary restrictions,
2437 * and only need to be 16-byte aligned.
2438 */
2439 xhci->small_streams_pool =
2440 dma_pool_create("xHCI 256 byte stream ctx arrays",
2441 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2442 xhci->medium_streams_pool =
2443 dma_pool_create("xHCI 1KB stream ctx arrays",
2444 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2445 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2446 * will be allocated with dma_alloc_coherent()
2447 */
2448
2449 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2450 goto fail;
2451
2452 /* Set up the command ring to have one segments for now. */
2453 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2454 if (!xhci->cmd_ring)
2455 goto fail;
2456 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2457 "Allocated command ring at %p", xhci->cmd_ring);
2458 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2459 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2460
2461 /* Set the address in the Command Ring Control register */
2462 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2463 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2464 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2465 xhci->cmd_ring->cycle_state;
2466 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2467 "// Setting command ring address to 0x%016llx", val_64);
2468 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2469
2470 xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2471 if (!xhci->lpm_command)
2472 goto fail;
2473
2474 /* Reserve one command ring TRB for disabling LPM.
2475 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2476 * disabling LPM, we only need to reserve one TRB for all devices.
2477 */
2478 xhci->cmd_ring_reserved_trbs++;
2479
2480 val = readl(&xhci->cap_regs->db_off);
2481 val &= DBOFF_MASK;
2482 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2483 "// Doorbell array is located at offset 0x%x"
2484 " from cap regs base addr", val);
2485 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2486 /* Set ir_set to interrupt register set 0 */
2487 xhci->ir_set = &xhci->run_regs->ir_set[0];
2488
2489 /*
2490 * Event ring setup: Allocate a normal ring, but also setup
2491 * the event ring segment table (ERST). Section 4.9.3.
2492 */
2493 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2494 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2495 0, flags);
2496 if (!xhci->event_ring)
2497 goto fail;
2498 if (xhci_check_trb_in_td_math(xhci) < 0)
2499 goto fail;
2500
2501 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2502 if (ret)
2503 goto fail;
2504
2505 /* set ERST count with the number of entries in the segment table */
2506 val = readl(&xhci->ir_set->erst_size);
2507 val &= ERST_SIZE_MASK;
2508 val |= ERST_NUM_SEGS;
2509 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2510 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2511 val);
2512 writel(val, &xhci->ir_set->erst_size);
2513
2514 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2515 "// Set ERST entries to point to event ring.");
2516 /* set the segment table base address */
2517 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2518 "// Set ERST base address for ir_set 0 = 0x%llx",
2519 (unsigned long long)xhci->erst.erst_dma_addr);
2520 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2521 val_64 &= ERST_PTR_MASK;
2522 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2523 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2524
2525 /* Set the event ring dequeue address */
2526 xhci_set_hc_event_deq(xhci);
2527 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2528 "Wrote ERST address to ir_set 0.");
2529
2530 /*
2531 * XXX: Might need to set the Interrupter Moderation Register to
2532 * something other than the default (~1ms minimum between interrupts).
2533 * See section 5.5.1.2.
2534 */
2535 for (i = 0; i < MAX_HC_SLOTS; i++)
2536 xhci->devs[i] = NULL;
2537 for (i = 0; i < USB_MAXCHILDREN; i++) {
2538 xhci->bus_state[0].resume_done[i] = 0;
2539 xhci->bus_state[1].resume_done[i] = 0;
2540 /* Only the USB 2.0 completions will ever be used. */
2541 init_completion(&xhci->bus_state[1].rexit_done[i]);
2542 }
2543
2544 if (scratchpad_alloc(xhci, flags))
2545 goto fail;
2546 if (xhci_setup_port_arrays(xhci, flags))
2547 goto fail;
2548
2549 /* Enable USB 3.0 device notifications for function remote wake, which
2550 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2551 * U3 (device suspend).
2552 */
2553 temp = readl(&xhci->op_regs->dev_notification);
2554 temp &= ~DEV_NOTE_MASK;
2555 temp |= DEV_NOTE_FWAKE;
2556 writel(temp, &xhci->op_regs->dev_notification);
2557
2558 return 0;
2559
2560fail:
2561 xhci_halt(xhci);
2562 xhci_reset(xhci);
2563 xhci_mem_cleanup(xhci);
2564 return -ENOMEM;
2565}