Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v3.1
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include "drmP.h"
  29#include "drm.h"
  30#include "i915_drm.h"
  31#include "i915_drv.h"
 
 
  32#include "i915_trace.h"
  33#include "intel_drv.h"
 
 
 
 
 
 
  34#include <linux/shmem_fs.h>
  35#include <linux/slab.h>
 
  36#include <linux/swap.h>
  37#include <linux/pci.h>
 
  38
  39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  42static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  43							  bool write);
  44static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  45								  uint64_t offset,
  46								  uint64_t size);
  47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  48static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  49						    unsigned alignment,
  50						    bool map_and_fenceable);
  51static void i915_gem_clear_fence_reg(struct drm_device *dev,
  52				     struct drm_i915_fence_reg *reg);
  53static int i915_gem_phys_pwrite(struct drm_device *dev,
  54				struct drm_i915_gem_object *obj,
  55				struct drm_i915_gem_pwrite *args,
  56				struct drm_file *file);
  57static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  58
  59static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  60				    struct shrink_control *sc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61
  62/* some bookkeeping */
  63static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  64				  size_t size)
  65{
 
  66	dev_priv->mm.object_count++;
  67	dev_priv->mm.object_memory += size;
 
  68}
  69
  70static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  71				     size_t size)
  72{
 
  73	dev_priv->mm.object_count--;
  74	dev_priv->mm.object_memory -= size;
 
  75}
  76
  77static int
  78i915_gem_wait_for_error(struct drm_device *dev)
  79{
  80	struct drm_i915_private *dev_priv = dev->dev_private;
  81	struct completion *x = &dev_priv->error_completion;
  82	unsigned long flags;
  83	int ret;
  84
  85	if (!atomic_read(&dev_priv->mm.wedged))
  86		return 0;
  87
  88	ret = wait_for_completion_interruptible(x);
  89	if (ret)
 
 
 
 
 
 
 
 
 
 
  90		return ret;
  91
  92	if (atomic_read(&dev_priv->mm.wedged)) {
  93		/* GPU is hung, bump the completion count to account for
  94		 * the token we just consumed so that we never hit zero and
  95		 * end up waiting upon a subsequent completion event that
  96		 * will never happen.
  97		 */
  98		spin_lock_irqsave(&x->wait.lock, flags);
  99		x->done++;
 100		spin_unlock_irqrestore(&x->wait.lock, flags);
 101	}
 102	return 0;
 103}
 104
 105int i915_mutex_lock_interruptible(struct drm_device *dev)
 106{
 
 107	int ret;
 108
 109	ret = i915_gem_wait_for_error(dev);
 110	if (ret)
 111		return ret;
 112
 113	ret = mutex_lock_interruptible(&dev->struct_mutex);
 114	if (ret)
 115		return ret;
 116
 117	WARN_ON(i915_verify_lists(dev));
 118	return 0;
 119}
 120
 121static inline bool
 122i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
 
 123{
 124	return obj->gtt_space && !obj->active && obj->pin_count == 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125}
 126
 127void i915_gem_do_init(struct drm_device *dev,
 128		      unsigned long start,
 129		      unsigned long mappable_end,
 130		      unsigned long end)
 131{
 132	drm_i915_private_t *dev_priv = dev->dev_private;
 
 
 
 
 
 
 133
 134	drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
 
 135
 136	dev_priv->mm.gtt_start = start;
 137	dev_priv->mm.gtt_mappable_end = mappable_end;
 138	dev_priv->mm.gtt_end = end;
 139	dev_priv->mm.gtt_total = end - start;
 140	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141
 142	/* Take over this portion of the GTT */
 143	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144}
 145
 146int
 147i915_gem_init_ioctl(struct drm_device *dev, void *data,
 148		    struct drm_file *file)
 149{
 150	struct drm_i915_gem_init *args = data;
 
 
 
 
 151
 152	if (args->gtt_start >= args->gtt_end ||
 153	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
 154		return -EINVAL;
 
 
 
 155
 156	mutex_lock(&dev->struct_mutex);
 157	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
 158	mutex_unlock(&dev->struct_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160	return 0;
 161}
 162
 
 
 
 
 
 
 
 163int
 164i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 165			    struct drm_file *file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166{
 167	struct drm_i915_private *dev_priv = dev->dev_private;
 168	struct drm_i915_gem_get_aperture *args = data;
 169	struct drm_i915_gem_object *obj;
 170	size_t pinned;
 171
 172	if (!(dev->driver->driver_features & DRIVER_GEM))
 173		return -ENODEV;
 174
 175	pinned = 0;
 176	mutex_lock(&dev->struct_mutex);
 177	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
 178		pinned += obj->gtt_space->size;
 179	mutex_unlock(&dev->struct_mutex);
 
 
 
 
 
 
 
 
 
 180
 181	args->aper_size = dev_priv->mm.gtt_total;
 182	args->aper_available_size = args->aper_size -pinned;
 183
 
 184	return 0;
 185}
 186
 
 
 
 
 
 
 
 
 
 
 
 187static int
 188i915_gem_create(struct drm_file *file,
 189		struct drm_device *dev,
 190		uint64_t size,
 191		uint32_t *handle_p)
 192{
 193	struct drm_i915_gem_object *obj;
 194	int ret;
 195	u32 handle;
 196
 197	size = roundup(size, PAGE_SIZE);
 
 
 198
 199	/* Allocate the new object */
 200	obj = i915_gem_alloc_object(dev, size);
 201	if (obj == NULL)
 202		return -ENOMEM;
 203
 204	ret = drm_gem_handle_create(file, &obj->base, &handle);
 205	if (ret) {
 206		drm_gem_object_release(&obj->base);
 207		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
 208		kfree(obj);
 209		return ret;
 210	}
 211
 212	/* drop reference from allocate - handle holds it now */
 213	drm_gem_object_unreference(&obj->base);
 214	trace_i915_gem_object_create(obj);
 
 215
 216	*handle_p = handle;
 217	return 0;
 218}
 219
 220int
 221i915_gem_dumb_create(struct drm_file *file,
 222		     struct drm_device *dev,
 223		     struct drm_mode_create_dumb *args)
 224{
 225	/* have to work out size/pitch and return them */
 226	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
 227	args->size = args->pitch * args->height;
 228	return i915_gem_create(file, dev,
 229			       args->size, &args->handle);
 230}
 231
 232int i915_gem_dumb_destroy(struct drm_file *file,
 233			  struct drm_device *dev,
 234			  uint32_t handle)
 235{
 236	return drm_gem_handle_delete(file, handle);
 
 237}
 238
 239/**
 240 * Creates a new mm object and returns a handle to it.
 
 
 
 241 */
 242int
 243i915_gem_create_ioctl(struct drm_device *dev, void *data,
 244		      struct drm_file *file)
 245{
 
 246	struct drm_i915_gem_create *args = data;
 247	return i915_gem_create(file, dev,
 
 
 
 248			       args->size, &args->handle);
 249}
 250
 251static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
 
 252{
 253	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
 
 
 254
 255	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
 256		obj->tiling_mode != I915_TILING_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 257}
 258
 259static inline void
 260slow_shmem_copy(struct page *dst_page,
 261		int dst_offset,
 262		struct page *src_page,
 263		int src_offset,
 264		int length)
 265{
 266	char *dst_vaddr, *src_vaddr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267
 268	dst_vaddr = kmap(dst_page);
 269	src_vaddr = kmap(src_page);
 
 270
 271	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
 
 
 272
 273	kunmap(src_page);
 274	kunmap(dst_page);
 
 
 
 
 
 275}
 276
 277static inline void
 278slow_shmem_bit17_copy(struct page *gpu_page,
 279		      int gpu_offset,
 280		      struct page *cpu_page,
 281		      int cpu_offset,
 282		      int length,
 283		      int is_read)
 284{
 285	char *gpu_vaddr, *cpu_vaddr;
 286
 287	/* Use the unswizzled path if this page isn't affected. */
 288	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
 289		if (is_read)
 290			return slow_shmem_copy(cpu_page, cpu_offset,
 291					       gpu_page, gpu_offset, length);
 292		else
 293			return slow_shmem_copy(gpu_page, gpu_offset,
 294					       cpu_page, cpu_offset, length);
 
 
 
 
 
 
 295	}
 296
 297	gpu_vaddr = kmap(gpu_page);
 298	cpu_vaddr = kmap(cpu_page);
 
 
 
 
 
 
 
 299
 300	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
 301	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
 302	 */
 303	while (length > 0) {
 304		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 305		int this_length = min(cacheline_end - gpu_offset, length);
 306		int swizzled_gpu_offset = gpu_offset ^ 64;
 307
 308		if (is_read) {
 309			memcpy(cpu_vaddr + cpu_offset,
 310			       gpu_vaddr + swizzled_gpu_offset,
 311			       this_length);
 312		} else {
 313			memcpy(gpu_vaddr + swizzled_gpu_offset,
 314			       cpu_vaddr + cpu_offset,
 315			       this_length);
 316		}
 317		cpu_offset += this_length;
 318		gpu_offset += this_length;
 319		length -= this_length;
 320	}
 321
 322	kunmap(cpu_page);
 323	kunmap(gpu_page);
 324}
 325
 326/**
 327 * This is the fast shmem pread path, which attempts to copy_from_user directly
 328 * from the backing pages of the object to the user's address space.  On a
 329 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 330 */
 331static int
 332i915_gem_shmem_pread_fast(struct drm_device *dev,
 333			  struct drm_i915_gem_object *obj,
 334			  struct drm_i915_gem_pread *args,
 335			  struct drm_file *file)
 336{
 337	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 338	ssize_t remain;
 339	loff_t offset;
 340	char __user *user_data;
 341	int page_offset, page_length;
 342
 343	user_data = (char __user *) (uintptr_t) args->data_ptr;
 344	remain = args->size;
 345
 346	offset = args->offset;
 
 
 347
 348	while (remain > 0) {
 349		struct page *page;
 350		char *vaddr;
 351		int ret;
 
 
 
 352
 353		/* Operation in this page
 354		 *
 355		 * page_offset = offset within page
 356		 * page_length = bytes to copy for this page
 357		 */
 358		page_offset = offset_in_page(offset);
 359		page_length = remain;
 360		if ((page_offset + remain) > PAGE_SIZE)
 361			page_length = PAGE_SIZE - page_offset;
 362
 363		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 364		if (IS_ERR(page))
 365			return PTR_ERR(page);
 366
 367		vaddr = kmap_atomic(page);
 368		ret = __copy_to_user_inatomic(user_data,
 369					      vaddr + page_offset,
 370					      page_length);
 371		kunmap_atomic(vaddr);
 372
 373		mark_page_accessed(page);
 374		page_cache_release(page);
 
 375		if (ret)
 376			return -EFAULT;
 
 
 
 377
 378		remain -= page_length;
 379		user_data += page_length;
 380		offset += page_length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381	}
 382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383	return 0;
 
 
 
 
 384}
 385
 386/**
 387 * This is the fallback shmem pread path, which allocates temporary storage
 388 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 389 * can copy out of the object's backing pages while holding the struct mutex
 390 * and not take page faults.
 391 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 392static int
 393i915_gem_shmem_pread_slow(struct drm_device *dev,
 394			  struct drm_i915_gem_object *obj,
 395			  struct drm_i915_gem_pread *args,
 396			  struct drm_file *file)
 397{
 398	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 399	struct mm_struct *mm = current->mm;
 400	struct page **user_pages;
 401	ssize_t remain;
 402	loff_t offset, pinned_pages, i;
 403	loff_t first_data_page, last_data_page, num_pages;
 404	int shmem_page_offset;
 405	int data_page_index, data_page_offset;
 406	int page_length;
 407	int ret;
 408	uint64_t data_ptr = args->data_ptr;
 409	int do_bit17_swizzling;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410
 411	remain = args->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412
 413	/* Pin the user pages containing the data.  We can't fault while
 414	 * holding the struct mutex, yet we want to hold it while
 415	 * dereferencing the user data.
 416	 */
 417	first_data_page = data_ptr / PAGE_SIZE;
 418	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
 419	num_pages = last_data_page - first_data_page + 1;
 420
 421	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
 422	if (user_pages == NULL)
 423		return -ENOMEM;
 424
 425	mutex_unlock(&dev->struct_mutex);
 426	down_read(&mm->mmap_sem);
 427	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
 428				      num_pages, 1, 0, user_pages, NULL);
 429	up_read(&mm->mmap_sem);
 430	mutex_lock(&dev->struct_mutex);
 431	if (pinned_pages < num_pages) {
 432		ret = -EFAULT;
 433		goto out;
 
 
 
 
 
 
 
 
 
 
 
 434	}
 
 
 435
 436	ret = i915_gem_object_set_cpu_read_domain_range(obj,
 437							args->offset,
 438							args->size);
 
 
 
 
 
 
 
 
 
 
 439	if (ret)
 440		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441
 442	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 443
 
 
 444	offset = args->offset;
 445
 446	while (remain > 0) {
 447		struct page *page;
 448
 449		/* Operation in this page
 450		 *
 451		 * shmem_page_offset = offset within page in shmem file
 452		 * data_page_index = page number in get_user_pages return
 453		 * data_page_offset = offset with data_page_index page.
 454		 * page_length = bytes to copy for this page
 455		 */
 456		shmem_page_offset = offset_in_page(offset);
 457		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
 458		data_page_offset = offset_in_page(data_ptr);
 459
 460		page_length = remain;
 461		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 462			page_length = PAGE_SIZE - shmem_page_offset;
 463		if ((data_page_offset + page_length) > PAGE_SIZE)
 464			page_length = PAGE_SIZE - data_page_offset;
 465
 466		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 467		if (IS_ERR(page)) {
 468			ret = PTR_ERR(page);
 469			goto out;
 470		}
 471
 472		if (do_bit17_swizzling) {
 473			slow_shmem_bit17_copy(page,
 474					      shmem_page_offset,
 475					      user_pages[data_page_index],
 476					      data_page_offset,
 477					      page_length,
 478					      1);
 479		} else {
 480			slow_shmem_copy(user_pages[data_page_index],
 481					data_page_offset,
 482					page,
 483					shmem_page_offset,
 484					page_length);
 485		}
 486
 487		mark_page_accessed(page);
 488		page_cache_release(page);
 
 
 
 489
 490		remain -= page_length;
 491		data_ptr += page_length;
 492		offset += page_length;
 493	}
 494
 495out:
 496	for (i = 0; i < pinned_pages; i++) {
 497		SetPageDirty(user_pages[i]);
 498		mark_page_accessed(user_pages[i]);
 499		page_cache_release(user_pages[i]);
 
 
 
 
 500	}
 501	drm_free_large(user_pages);
 
 
 502
 503	return ret;
 504}
 505
 506/**
 507 * Reads data from the object referenced by handle.
 
 
 
 508 *
 509 * On error, the contents of *data are undefined.
 510 */
 511int
 512i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 513		     struct drm_file *file)
 514{
 515	struct drm_i915_gem_pread *args = data;
 516	struct drm_i915_gem_object *obj;
 517	int ret = 0;
 518
 519	if (args->size == 0)
 520		return 0;
 521
 522	if (!access_ok(VERIFY_WRITE,
 523		       (char __user *)(uintptr_t)args->data_ptr,
 524		       args->size))
 525		return -EFAULT;
 526
 527	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
 528				       args->size);
 529	if (ret)
 530		return -EFAULT;
 531
 532	ret = i915_mutex_lock_interruptible(dev);
 533	if (ret)
 534		return ret;
 535
 536	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 537	if (&obj->base == NULL) {
 538		ret = -ENOENT;
 539		goto unlock;
 540	}
 541
 542	/* Bounds check source.  */
 543	if (args->offset > obj->base.size ||
 544	    args->size > obj->base.size - args->offset) {
 545		ret = -EINVAL;
 546		goto out;
 547	}
 548
 549	trace_i915_gem_object_pread(obj, args->offset, args->size);
 550
 551	ret = i915_gem_object_set_cpu_read_domain_range(obj,
 552							args->offset,
 553							args->size);
 
 554	if (ret)
 555		goto out;
 556
 557	ret = -EFAULT;
 558	if (!i915_gem_object_needs_bit17_swizzle(obj))
 559		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
 560	if (ret == -EFAULT)
 561		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
 562
 
 
 
 
 
 563out:
 564	drm_gem_object_unreference(&obj->base);
 565unlock:
 566	mutex_unlock(&dev->struct_mutex);
 567	return ret;
 568}
 569
 570/* This is the fast write path which cannot handle
 571 * page faults in the source data
 572 */
 573
 574static inline int
 575fast_user_write(struct io_mapping *mapping,
 576		loff_t page_base, int page_offset,
 577		char __user *user_data,
 578		int length)
 579{
 580	char *vaddr_atomic;
 581	unsigned long unwritten;
 582
 583	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
 584	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
 
 585						      user_data, length);
 586	io_mapping_unmap_atomic(vaddr_atomic);
 587	return unwritten;
 588}
 589
 590/* Here's the write path which can sleep for
 591 * page faults
 592 */
 593
 594static inline void
 595slow_kernel_write(struct io_mapping *mapping,
 596		  loff_t gtt_base, int gtt_offset,
 597		  struct page *user_page, int user_offset,
 598		  int length)
 599{
 600	char __iomem *dst_vaddr;
 601	char *src_vaddr;
 602
 603	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
 604	src_vaddr = kmap(user_page);
 605
 606	memcpy_toio(dst_vaddr + gtt_offset,
 607		    src_vaddr + user_offset,
 608		    length);
 609
 610	kunmap(user_page);
 611	io_mapping_unmap(dst_vaddr);
 612}
 613
 614/**
 615 * This is the fast pwrite path, where we copy the data directly from the
 616 * user into the GTT, uncached.
 
 
 617 */
 618static int
 619i915_gem_gtt_pwrite_fast(struct drm_device *dev,
 620			 struct drm_i915_gem_object *obj,
 621			 struct drm_i915_gem_pwrite *args,
 622			 struct drm_file *file)
 623{
 624	drm_i915_private_t *dev_priv = dev->dev_private;
 625	ssize_t remain;
 626	loff_t offset, page_base;
 627	char __user *user_data;
 628	int page_offset, page_length;
 629
 630	user_data = (char __user *) (uintptr_t) args->data_ptr;
 631	remain = args->size;
 632
 633	offset = obj->gtt_offset + args->offset;
 634
 635	while (remain > 0) {
 636		/* Operation in this page
 637		 *
 638		 * page_base = page offset within aperture
 639		 * page_offset = offset within page
 640		 * page_length = bytes to copy for this page
 641		 */
 642		page_base = offset & PAGE_MASK;
 643		page_offset = offset_in_page(offset);
 644		page_length = remain;
 645		if ((page_offset + remain) > PAGE_SIZE)
 646			page_length = PAGE_SIZE - page_offset;
 647
 648		/* If we get a fault while copying data, then (presumably) our
 649		 * source page isn't available.  Return the error and we'll
 650		 * retry in the slow path.
 
 
 
 
 651		 */
 652		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
 653				    page_offset, user_data, page_length))
 654			return -EFAULT;
 655
 656		remain -= page_length;
 657		user_data += page_length;
 658		offset += page_length;
 659	}
 660
 661	return 0;
 662}
 663
 664/**
 665 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 666 * the memory and maps it using kmap_atomic for copying.
 667 *
 668 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 669 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 670 */
 671static int
 672i915_gem_gtt_pwrite_slow(struct drm_device *dev,
 673			 struct drm_i915_gem_object *obj,
 674			 struct drm_i915_gem_pwrite *args,
 675			 struct drm_file *file)
 676{
 677	drm_i915_private_t *dev_priv = dev->dev_private;
 678	ssize_t remain;
 679	loff_t gtt_page_base, offset;
 680	loff_t first_data_page, last_data_page, num_pages;
 681	loff_t pinned_pages, i;
 682	struct page **user_pages;
 683	struct mm_struct *mm = current->mm;
 684	int gtt_page_offset, data_page_offset, data_page_index, page_length;
 685	int ret;
 686	uint64_t data_ptr = args->data_ptr;
 687
 688	remain = args->size;
 689
 690	/* Pin the user pages containing the data.  We can't fault while
 691	 * holding the struct mutex, and all of the pwrite implementations
 692	 * want to hold it while dereferencing the user data.
 693	 */
 694	first_data_page = data_ptr / PAGE_SIZE;
 695	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
 696	num_pages = last_data_page - first_data_page + 1;
 697
 698	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
 699	if (user_pages == NULL)
 700		return -ENOMEM;
 701
 702	mutex_unlock(&dev->struct_mutex);
 703	down_read(&mm->mmap_sem);
 704	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
 705				      num_pages, 0, 0, user_pages, NULL);
 706	up_read(&mm->mmap_sem);
 707	mutex_lock(&dev->struct_mutex);
 708	if (pinned_pages < num_pages) {
 709		ret = -EFAULT;
 710		goto out_unpin_pages;
 711	}
 712
 713	ret = i915_gem_object_set_to_gtt_domain(obj, true);
 714	if (ret)
 715		goto out_unpin_pages;
 716
 717	ret = i915_gem_object_put_fence(obj);
 718	if (ret)
 719		goto out_unpin_pages;
 720
 721	offset = obj->gtt_offset + args->offset;
 722
 723	while (remain > 0) {
 724		/* Operation in this page
 725		 *
 726		 * gtt_page_base = page offset within aperture
 727		 * gtt_page_offset = offset within page in aperture
 728		 * data_page_index = page number in get_user_pages return
 729		 * data_page_offset = offset with data_page_index page.
 730		 * page_length = bytes to copy for this page
 731		 */
 732		gtt_page_base = offset & PAGE_MASK;
 733		gtt_page_offset = offset_in_page(offset);
 734		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
 735		data_page_offset = offset_in_page(data_ptr);
 736
 737		page_length = remain;
 738		if ((gtt_page_offset + page_length) > PAGE_SIZE)
 739			page_length = PAGE_SIZE - gtt_page_offset;
 740		if ((data_page_offset + page_length) > PAGE_SIZE)
 741			page_length = PAGE_SIZE - data_page_offset;
 742
 743		slow_kernel_write(dev_priv->mm.gtt_mapping,
 744				  gtt_page_base, gtt_page_offset,
 745				  user_pages[data_page_index],
 746				  data_page_offset,
 747				  page_length);
 748
 749		remain -= page_length;
 750		offset += page_length;
 751		data_ptr += page_length;
 752	}
 753
 754out_unpin_pages:
 755	for (i = 0; i < pinned_pages; i++)
 756		page_cache_release(user_pages[i]);
 757	drm_free_large(user_pages);
 758
 759	return ret;
 760}
 761
 762/**
 763 * This is the fast shmem pwrite path, which attempts to directly
 764 * copy_from_user into the kmapped pages backing the object.
 765 */
 766static int
 767i915_gem_shmem_pwrite_fast(struct drm_device *dev,
 768			   struct drm_i915_gem_object *obj,
 769			   struct drm_i915_gem_pwrite *args,
 770			   struct drm_file *file)
 771{
 772	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 773	ssize_t remain;
 774	loff_t offset;
 775	char __user *user_data;
 776	int page_offset, page_length;
 777
 778	user_data = (char __user *) (uintptr_t) args->data_ptr;
 779	remain = args->size;
 780
 
 781	offset = args->offset;
 782	obj->dirty = 1;
 783
 784	while (remain > 0) {
 785		struct page *page;
 786		char *vaddr;
 787		int ret;
 788
 789		/* Operation in this page
 790		 *
 
 791		 * page_offset = offset within page
 792		 * page_length = bytes to copy for this page
 793		 */
 794		page_offset = offset_in_page(offset);
 795		page_length = remain;
 796		if ((page_offset + remain) > PAGE_SIZE)
 797			page_length = PAGE_SIZE - page_offset;
 798
 799		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 800		if (IS_ERR(page))
 801			return PTR_ERR(page);
 802
 803		vaddr = kmap_atomic(page, KM_USER0);
 804		ret = __copy_from_user_inatomic(vaddr + page_offset,
 805						user_data,
 806						page_length);
 807		kunmap_atomic(vaddr, KM_USER0);
 808
 809		set_page_dirty(page);
 810		mark_page_accessed(page);
 811		page_cache_release(page);
 812
 813		/* If we get a fault while copying data, then (presumably) our
 814		 * source page isn't available.  Return the error and we'll
 815		 * retry in the slow path.
 
 
 816		 */
 817		if (ret)
 818			return -EFAULT;
 
 
 
 819
 820		remain -= page_length;
 821		user_data += page_length;
 822		offset += page_length;
 823	}
 
 824
 825	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826}
 827
 828/**
 829 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 830 * the memory and maps it using kmap_atomic for copying.
 831 *
 832 * This avoids taking mmap_sem for faulting on the user's address while the
 833 * struct_mutex is held.
 834 */
 835static int
 836i915_gem_shmem_pwrite_slow(struct drm_device *dev,
 837			   struct drm_i915_gem_object *obj,
 838			   struct drm_i915_gem_pwrite *args,
 839			   struct drm_file *file)
 840{
 841	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 842	struct mm_struct *mm = current->mm;
 843	struct page **user_pages;
 844	ssize_t remain;
 845	loff_t offset, pinned_pages, i;
 846	loff_t first_data_page, last_data_page, num_pages;
 847	int shmem_page_offset;
 848	int data_page_index,  data_page_offset;
 849	int page_length;
 850	int ret;
 851	uint64_t data_ptr = args->data_ptr;
 852	int do_bit17_swizzling;
 853
 854	remain = args->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 855
 856	/* Pin the user pages containing the data.  We can't fault while
 857	 * holding the struct mutex, and all of the pwrite implementations
 858	 * want to hold it while dereferencing the user data.
 859	 */
 860	first_data_page = data_ptr / PAGE_SIZE;
 861	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
 862	num_pages = last_data_page - first_data_page + 1;
 
 
 
 
 
 863
 864	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
 865	if (user_pages == NULL)
 866		return -ENOMEM;
 
 
 
 
 
 
 867
 868	mutex_unlock(&dev->struct_mutex);
 869	down_read(&mm->mmap_sem);
 870	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
 871				      num_pages, 0, 0, user_pages, NULL);
 872	up_read(&mm->mmap_sem);
 873	mutex_lock(&dev->struct_mutex);
 874	if (pinned_pages < num_pages) {
 875		ret = -EFAULT;
 876		goto out;
 877	}
 
 
 878
 879	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
 880	if (ret)
 881		goto out;
 882
 883	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 884
 885	offset = args->offset;
 886	obj->dirty = 1;
 887
 888	while (remain > 0) {
 889		struct page *page;
 
 
 
 
 
 
 
 
 
 
 890
 891		/* Operation in this page
 892		 *
 893		 * shmem_page_offset = offset within page in shmem file
 894		 * data_page_index = page number in get_user_pages return
 895		 * data_page_offset = offset with data_page_index page.
 896		 * page_length = bytes to copy for this page
 897		 */
 898		shmem_page_offset = offset_in_page(offset);
 899		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
 900		data_page_offset = offset_in_page(data_ptr);
 901
 902		page_length = remain;
 903		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 904			page_length = PAGE_SIZE - shmem_page_offset;
 905		if ((data_page_offset + page_length) > PAGE_SIZE)
 906			page_length = PAGE_SIZE - data_page_offset;
 907
 908		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 909		if (IS_ERR(page)) {
 910			ret = PTR_ERR(page);
 911			goto out;
 912		}
 913
 914		if (do_bit17_swizzling) {
 915			slow_shmem_bit17_copy(page,
 916					      shmem_page_offset,
 917					      user_pages[data_page_index],
 918					      data_page_offset,
 919					      page_length,
 920					      0);
 921		} else {
 922			slow_shmem_copy(page,
 923					shmem_page_offset,
 924					user_pages[data_page_index],
 925					data_page_offset,
 926					page_length);
 927		}
 928
 929		set_page_dirty(page);
 930		mark_page_accessed(page);
 931		page_cache_release(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932
 933		remain -= page_length;
 934		data_ptr += page_length;
 935		offset += page_length;
 936	}
 937
 938out:
 939	for (i = 0; i < pinned_pages; i++)
 940		page_cache_release(user_pages[i]);
 941	drm_free_large(user_pages);
 942
 943	return ret;
 944}
 945
 946/**
 947 * Writes data to the object referenced by handle.
 
 
 
 948 *
 949 * On error, the contents of the buffer that were to be modified are undefined.
 950 */
 951int
 952i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 953		      struct drm_file *file)
 954{
 955	struct drm_i915_gem_pwrite *args = data;
 956	struct drm_i915_gem_object *obj;
 957	int ret;
 958
 959	if (args->size == 0)
 960		return 0;
 961
 962	if (!access_ok(VERIFY_READ,
 963		       (char __user *)(uintptr_t)args->data_ptr,
 964		       args->size))
 965		return -EFAULT;
 966
 967	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
 968				      args->size);
 969	if (ret)
 970		return -EFAULT;
 971
 972	ret = i915_mutex_lock_interruptible(dev);
 973	if (ret)
 974		return ret;
 975
 976	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 977	if (&obj->base == NULL) {
 978		ret = -ENOENT;
 979		goto unlock;
 980	}
 981
 982	/* Bounds check destination. */
 983	if (args->offset > obj->base.size ||
 984	    args->size > obj->base.size - args->offset) {
 985		ret = -EINVAL;
 986		goto out;
 987	}
 988
 989	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 991	/* We can only do the GTT pwrite on untiled buffers, as otherwise
 992	 * it would end up going through the fenced access, and we'll get
 993	 * different detiling behavior between reading and writing.
 994	 * pread/pwrite currently are reading and writing from the CPU
 995	 * perspective, requiring manual detiling by the client.
 996	 */
 997	if (obj->phys_obj)
 998		ret = i915_gem_phys_pwrite(dev, obj, args, file);
 999	else if (obj->gtt_space &&
1000		 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1001		ret = i915_gem_object_pin(obj, 0, true);
1002		if (ret)
1003			goto out;
1004
1005		ret = i915_gem_object_set_to_gtt_domain(obj, true);
1006		if (ret)
1007			goto out_unpin;
 
 
 
1008
1009		ret = i915_gem_object_put_fence(obj);
1010		if (ret)
1011			goto out_unpin;
 
 
1012
1013		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1014		if (ret == -EFAULT)
1015			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
 
 
1016
1017out_unpin:
1018		i915_gem_object_unpin(obj);
1019	} else {
1020		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1021		if (ret)
1022			goto out;
1023
1024		ret = -EFAULT;
1025		if (!i915_gem_object_needs_bit17_swizzle(obj))
1026			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1027		if (ret == -EFAULT)
1028			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
 
 
 
1029	}
1030
1031out:
1032	drm_gem_object_unreference(&obj->base);
1033unlock:
1034	mutex_unlock(&dev->struct_mutex);
1035	return ret;
1036}
1037
1038/**
1039 * Called when user space prepares to use an object with the CPU, either
1040 * through the mmap ioctl's mapping or a GTT mapping.
 
 
 
1041 */
1042int
1043i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1044			  struct drm_file *file)
1045{
1046	struct drm_i915_gem_set_domain *args = data;
1047	struct drm_i915_gem_object *obj;
1048	uint32_t read_domains = args->read_domains;
1049	uint32_t write_domain = args->write_domain;
1050	int ret;
1051
1052	if (!(dev->driver->driver_features & DRIVER_GEM))
1053		return -ENODEV;
1054
1055	/* Only handle setting domains to types used by the CPU. */
1056	if (write_domain & I915_GEM_GPU_DOMAINS)
1057		return -EINVAL;
1058
1059	if (read_domains & I915_GEM_GPU_DOMAINS)
1060		return -EINVAL;
1061
1062	/* Having something in the write domain implies it's in the read
1063	 * domain, and only that read domain.  Enforce that in the request.
1064	 */
1065	if (write_domain != 0 && read_domains != write_domain)
1066		return -EINVAL;
1067
1068	ret = i915_mutex_lock_interruptible(dev);
1069	if (ret)
1070		return ret;
1071
1072	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1073	if (&obj->base == NULL) {
1074		ret = -ENOENT;
1075		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076	}
1077
1078	if (read_domains & I915_GEM_DOMAIN_GTT) {
1079		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
 
 
 
 
 
 
 
 
 
 
1080
1081		/* Silently promote "you're not bound, there was nothing to do"
1082		 * to success, since the client was just asking us to
1083		 * make sure everything was done.
1084		 */
1085		if (ret == -EINVAL)
1086			ret = 0;
1087	} else {
1088		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1089	}
 
 
 
 
1090
1091	drm_gem_object_unreference(&obj->base);
1092unlock:
1093	mutex_unlock(&dev->struct_mutex);
1094	return ret;
 
 
 
 
 
 
 
 
 
1095}
1096
1097/**
1098 * Called when user space has done writes to this buffer
 
 
 
1099 */
1100int
1101i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1102			 struct drm_file *file)
1103{
1104	struct drm_i915_gem_sw_finish *args = data;
1105	struct drm_i915_gem_object *obj;
1106	int ret = 0;
1107
1108	if (!(dev->driver->driver_features & DRIVER_GEM))
1109		return -ENODEV;
1110
1111	ret = i915_mutex_lock_interruptible(dev);
1112	if (ret)
1113		return ret;
1114
1115	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1116	if (&obj->base == NULL) {
1117		ret = -ENOENT;
1118		goto unlock;
1119	}
1120
1121	/* Pinned buffers may be scanout, so flush the cache */
1122	if (obj->pin_count)
1123		i915_gem_object_flush_cpu_write_domain(obj);
1124
1125	drm_gem_object_unreference(&obj->base);
1126unlock:
1127	mutex_unlock(&dev->struct_mutex);
1128	return ret;
1129}
1130
1131/**
1132 * Maps the contents of an object, returning the address it is mapped
1133 * into.
 
 
 
1134 *
1135 * While the mapping holds a reference on the contents of the object, it doesn't
1136 * imply a ref on the object itself.
 
 
 
 
 
 
 
 
 
 
1137 */
1138int
1139i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1140		    struct drm_file *file)
1141{
1142	struct drm_i915_private *dev_priv = dev->dev_private;
1143	struct drm_i915_gem_mmap *args = data;
1144	struct drm_gem_object *obj;
1145	unsigned long addr;
1146
1147	if (!(dev->driver->driver_features & DRIVER_GEM))
 
 
 
1148		return -ENODEV;
1149
1150	obj = drm_gem_object_lookup(dev, file, args->handle);
1151	if (obj == NULL)
1152		return -ENOENT;
1153
1154	if (obj->size > dev_priv->mm.gtt_mappable_end) {
1155		drm_gem_object_unreference_unlocked(obj);
1156		return -E2BIG;
 
 
 
1157	}
1158
1159	down_write(&current->mm->mmap_sem);
1160	addr = do_mmap(obj->filp, 0, args->size,
1161		       PROT_READ | PROT_WRITE, MAP_SHARED,
1162		       args->offset);
1163	up_write(&current->mm->mmap_sem);
1164	drm_gem_object_unreference_unlocked(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165	if (IS_ERR((void *)addr))
1166		return addr;
1167
1168	args->addr_ptr = (uint64_t) addr;
1169
1170	return 0;
1171}
1172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173/**
1174 * i915_gem_fault - fault a page into the GTT
1175 * vma: VMA in question
1176 * vmf: fault info
1177 *
1178 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1179 * from userspace.  The fault handler takes care of binding the object to
1180 * the GTT (if needed), allocating and programming a fence register (again,
1181 * only if needed based on whether the old reg is still valid or the object
1182 * is tiled) and inserting a new PTE into the faulting process.
1183 *
1184 * Note that the faulting process may involve evicting existing objects
1185 * from the GTT and/or fence registers to make room.  So performance may
1186 * suffer if the GTT working set is large or there are few fence registers
1187 * left.
 
 
 
1188 */
1189int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1190{
1191	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
 
 
1192	struct drm_device *dev = obj->base.dev;
1193	drm_i915_private_t *dev_priv = dev->dev_private;
1194	pgoff_t page_offset;
1195	unsigned long pfn;
1196	int ret = 0;
1197	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
 
 
 
 
1198
1199	/* We don't use vmf->pgoff since that has the fake offset */
1200	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1201		PAGE_SHIFT;
1202
1203	ret = i915_mutex_lock_interruptible(dev);
 
 
 
 
 
 
 
 
 
 
1204	if (ret)
1205		goto out;
1206
1207	trace_i915_gem_object_fault(obj, page_offset, true, write);
 
 
1208
1209	/* Now bind it into the GTT if needed */
1210	if (!obj->map_and_fenceable) {
1211		ret = i915_gem_object_unbind(obj);
1212		if (ret)
1213			goto unlock;
1214	}
1215	if (!obj->gtt_space) {
1216		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1217		if (ret)
1218			goto unlock;
1219
1220		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1221		if (ret)
1222			goto unlock;
 
 
 
 
 
1223	}
1224
1225	if (obj->tiling_mode == I915_TILING_NONE)
1226		ret = i915_gem_object_put_fence(obj);
1227	else
1228		ret = i915_gem_object_get_fence(obj, NULL);
1229	if (ret)
1230		goto unlock;
 
 
 
 
 
 
 
 
1231
1232	if (i915_gem_object_is_inactive(obj))
1233		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
 
 
1234
1235	obj->fault_mappable = true;
 
 
 
 
 
1236
1237	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1238		page_offset;
 
 
 
 
 
1239
1240	/* Finally, remap it using the new GTT offset */
1241	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1242unlock:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243	mutex_unlock(&dev->struct_mutex);
1244out:
 
 
 
1245	switch (ret) {
1246	case -EIO:
 
 
 
 
 
 
 
 
 
 
1247	case -EAGAIN:
1248		/* Give the error handler a chance to run and move the
1249		 * objects off the GPU active list. Next time we service the
1250		 * fault, we should be able to transition the page into the
1251		 * GTT without touching the GPU (and so avoid further
1252		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1253		 * with coherency, just lost writes.
1254		 */
1255		set_need_resched();
1256	case 0:
1257	case -ERESTARTSYS:
1258	case -EINTR:
1259		return VM_FAULT_NOPAGE;
 
 
 
 
 
 
1260	case -ENOMEM:
1261		return VM_FAULT_OOM;
 
 
 
 
 
1262	default:
1263		return VM_FAULT_SIGBUS;
 
 
1264	}
 
1265}
1266
1267/**
1268 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1269 * @obj: obj in question
1270 *
1271 * GEM memory mapping works by handing back to userspace a fake mmap offset
1272 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1273 * up the object based on the offset and sets up the various memory mapping
1274 * structures.
1275 *
1276 * This routine allocates and attaches a fake offset for @obj.
1277 */
1278static int
1279i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1280{
1281	struct drm_device *dev = obj->base.dev;
1282	struct drm_gem_mm *mm = dev->mm_private;
1283	struct drm_map_list *list;
1284	struct drm_local_map *map;
1285	int ret = 0;
1286
1287	/* Set the object up for mmap'ing */
1288	list = &obj->base.map_list;
1289	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1290	if (!list->map)
1291		return -ENOMEM;
1292
1293	map = list->map;
1294	map->type = _DRM_GEM;
1295	map->size = obj->base.size;
1296	map->handle = obj;
1297
1298	/* Get a DRM GEM mmap offset allocated... */
1299	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1300						    obj->base.size / PAGE_SIZE,
1301						    0, 0);
1302	if (!list->file_offset_node) {
1303		DRM_ERROR("failed to allocate offset for bo %d\n",
1304			  obj->base.name);
1305		ret = -ENOSPC;
1306		goto out_free_list;
1307	}
1308
1309	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1310						  obj->base.size / PAGE_SIZE,
1311						  0);
1312	if (!list->file_offset_node) {
1313		ret = -ENOMEM;
1314		goto out_free_list;
1315	}
1316
1317	list->hash.key = list->file_offset_node->start;
1318	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1319	if (ret) {
1320		DRM_ERROR("failed to add to map hash\n");
1321		goto out_free_mm;
1322	}
1323
1324	return 0;
 
 
 
1325
1326out_free_mm:
1327	drm_mm_put_block(list->file_offset_node);
1328out_free_list:
1329	kfree(list->map);
1330	list->map = NULL;
1331
1332	return ret;
1333}
1334
1335/**
1336 * i915_gem_release_mmap - remove physical page mappings
1337 * @obj: obj in question
1338 *
1339 * Preserve the reservation of the mmapping with the DRM core code, but
1340 * relinquish ownership of the pages back to the system.
1341 *
1342 * It is vital that we remove the page mapping if we have mapped a tiled
1343 * object through the GTT and then lose the fence register due to
1344 * resource pressure. Similarly if the object has been moved out of the
1345 * aperture, than pages mapped into userspace must be revoked. Removing the
1346 * mapping will then trigger a page fault on the next user access, allowing
1347 * fixup by i915_gem_fault().
1348 */
1349void
1350i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1351{
1352	if (!obj->fault_mappable)
1353		return;
1354
1355	if (obj->base.dev->dev_mapping)
1356		unmap_mapping_range(obj->base.dev->dev_mapping,
1357				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1358				    obj->base.size, 1);
 
 
 
 
 
 
1359
1360	obj->fault_mappable = false;
1361}
1362
1363static void
1364i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1365{
1366	struct drm_device *dev = obj->base.dev;
1367	struct drm_gem_mm *mm = dev->mm_private;
1368	struct drm_map_list *list = &obj->base.map_list;
1369
1370	drm_ht_remove_item(&mm->offset_hash, &list->hash);
1371	drm_mm_put_block(list->file_offset_node);
1372	kfree(list->map);
1373	list->map = NULL;
 
 
 
 
 
 
 
1374}
1375
1376static uint32_t
1377i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1378{
1379	uint32_t gtt_size;
 
1380
1381	if (INTEL_INFO(dev)->gen >= 4 ||
1382	    tiling_mode == I915_TILING_NONE)
1383		return size;
 
 
 
1384
1385	/* Previous chips need a power-of-two fence region when tiling */
1386	if (INTEL_INFO(dev)->gen == 3)
1387		gtt_size = 1024*1024;
1388	else
1389		gtt_size = 512*1024;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1390
1391	while (gtt_size < size)
1392		gtt_size <<= 1;
1393
1394	return gtt_size;
 
 
1395}
1396
1397/**
1398 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1399 * @obj: object to check
1400 *
1401 * Return the required GTT alignment for an object, taking into account
1402 * potential fence register mapping.
1403 */
1404static uint32_t
1405i915_gem_get_gtt_alignment(struct drm_device *dev,
1406			   uint32_t size,
1407			   int tiling_mode)
1408{
1409	/*
1410	 * Minimum alignment is 4k (GTT page size), but might be greater
1411	 * if a fence register is needed for the object.
1412	 */
1413	if (INTEL_INFO(dev)->gen >= 4 ||
1414	    tiling_mode == I915_TILING_NONE)
1415		return 4096;
1416
1417	/*
1418	 * Previous chips need to be aligned to the size of the smallest
1419	 * fence register that can contain the object.
1420	 */
1421	return i915_gem_get_gtt_size(dev, size, tiling_mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
1422}
1423
1424/**
1425 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1426 *					 unfenced object
1427 * @dev: the device
1428 * @size: size of the object
1429 * @tiling_mode: tiling mode of the object
1430 *
1431 * Return the required GTT alignment for an object, only taking into account
1432 * unfenced tiled surface requirements.
1433 */
1434uint32_t
1435i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1436				    uint32_t size,
1437				    int tiling_mode)
1438{
1439	/*
1440	 * Minimum alignment is 4k (GTT page size) for sane hw.
1441	 */
1442	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1443	    tiling_mode == I915_TILING_NONE)
1444		return 4096;
1445
1446	/* Previous hardware however needs to be aligned to a power-of-two
1447	 * tile height. The simplest method for determining this is to reuse
1448	 * the power-of-tile object size.
1449	 */
1450	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1451}
1452
1453int
1454i915_gem_mmap_gtt(struct drm_file *file,
1455		  struct drm_device *dev,
1456		  uint32_t handle,
1457		  uint64_t *offset)
1458{
1459	struct drm_i915_private *dev_priv = dev->dev_private;
1460	struct drm_i915_gem_object *obj;
1461	int ret;
1462
1463	if (!(dev->driver->driver_features & DRIVER_GEM))
1464		return -ENODEV;
1465
1466	ret = i915_mutex_lock_interruptible(dev);
1467	if (ret)
1468		return ret;
1469
1470	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1471	if (&obj->base == NULL) {
1472		ret = -ENOENT;
1473		goto unlock;
1474	}
1475
1476	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1477		ret = -E2BIG;
1478		goto unlock;
1479	}
1480
1481	if (obj->madv != I915_MADV_WILLNEED) {
1482		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1483		ret = -EINVAL;
1484		goto out;
1485	}
1486
1487	if (!obj->base.map_list.map) {
1488		ret = i915_gem_create_mmap_offset(obj);
1489		if (ret)
1490			goto out;
1491	}
1492
1493	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
 
 
1494
1495out:
1496	drm_gem_object_unreference(&obj->base);
1497unlock:
1498	mutex_unlock(&dev->struct_mutex);
1499	return ret;
1500}
1501
1502/**
1503 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1504 * @dev: DRM device
1505 * @data: GTT mapping ioctl data
1506 * @file: GEM object info
1507 *
1508 * Simply returns the fake offset to userspace so it can mmap it.
1509 * The mmap call will end up in drm_gem_mmap(), which will set things
1510 * up so we can get faults in the handler above.
1511 *
1512 * The fault handler will take care of binding the object into the GTT
1513 * (since it may have been evicted to make room for something), allocating
1514 * a fence register, and mapping the appropriate aperture address into
1515 * userspace.
1516 */
1517int
1518i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1519			struct drm_file *file)
1520{
1521	struct drm_i915_gem_mmap_gtt *args = data;
1522
1523	if (!(dev->driver->driver_features & DRIVER_GEM))
1524		return -ENODEV;
1525
1526	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1527}
1528
1529
1530static int
1531i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1532			      gfp_t gfpmask)
1533{
1534	int page_count, i;
1535	struct address_space *mapping;
1536	struct inode *inode;
1537	struct page *page;
1538
1539	/* Get the list of pages out of our struct file.  They'll be pinned
1540	 * at this point until we release them.
 
 
 
 
 
1541	 */
1542	page_count = obj->base.size / PAGE_SIZE;
1543	BUG_ON(obj->pages != NULL);
1544	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1545	if (obj->pages == NULL)
1546		return -ENOMEM;
1547
1548	inode = obj->base.filp->f_path.dentry->d_inode;
1549	mapping = inode->i_mapping;
1550	gfpmask |= mapping_gfp_mask(mapping);
 
1551
1552	for (i = 0; i < page_count; i++) {
1553		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1554		if (IS_ERR(page))
1555			goto err_pages;
1556
1557		obj->pages[i] = page;
 
 
 
 
1558	}
1559
1560	if (obj->tiling_mode != I915_TILING_NONE)
1561		i915_gem_object_do_bit_17_swizzle(obj);
1562
1563	return 0;
1564
1565err_pages:
1566	while (i--)
1567		page_cache_release(obj->pages[i]);
1568
1569	drm_free_large(obj->pages);
1570	obj->pages = NULL;
1571	return PTR_ERR(page);
1572}
1573
1574static void
1575i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
 
1576{
1577	int page_count = obj->base.size / PAGE_SIZE;
1578	int i;
1579
1580	BUG_ON(obj->madv == __I915_MADV_PURGED);
1581
1582	if (obj->tiling_mode != I915_TILING_NONE)
1583		i915_gem_object_save_bit_17_swizzle(obj);
1584
1585	if (obj->madv == I915_MADV_DONTNEED)
1586		obj->dirty = 0;
1587
1588	for (i = 0; i < page_count; i++) {
1589		if (obj->dirty)
1590			set_page_dirty(obj->pages[i]);
1591
1592		if (obj->madv == I915_MADV_WILLNEED)
1593			mark_page_accessed(obj->pages[i]);
1594
1595		page_cache_release(obj->pages[i]);
1596	}
1597	obj->dirty = 0;
1598
1599	drm_free_large(obj->pages);
1600	obj->pages = NULL;
1601}
1602
1603void
1604i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1605			       struct intel_ring_buffer *ring,
1606			       u32 seqno)
1607{
1608	struct drm_device *dev = obj->base.dev;
1609	struct drm_i915_private *dev_priv = dev->dev_private;
1610
1611	BUG_ON(ring == NULL);
1612	obj->ring = ring;
 
 
 
1613
1614	/* Add a reference if we're newly entering the active list. */
1615	if (!obj->active) {
1616		drm_gem_object_reference(&obj->base);
1617		obj->active = 1;
1618	}
1619
1620	/* Move from whatever list we were on to the tail of execution. */
1621	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1622	list_move_tail(&obj->ring_list, &ring->active_list);
1623
1624	obj->last_rendering_seqno = seqno;
1625	if (obj->fenced_gpu_access) {
1626		struct drm_i915_fence_reg *reg;
1627
1628		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
 
 
 
1629
1630		obj->last_fenced_seqno = seqno;
1631		obj->last_fenced_ring = ring;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1632
1633		reg = &dev_priv->fence_regs[obj->fence_reg];
1634		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1635	}
1636}
1637
1638static void
1639i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1640{
1641	list_del_init(&obj->ring_list);
1642	obj->last_rendering_seqno = 0;
1643}
1644
1645static void
1646i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1647{
1648	struct drm_device *dev = obj->base.dev;
1649	drm_i915_private_t *dev_priv = dev->dev_private;
1650
1651	BUG_ON(!obj->active);
1652	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1653
1654	i915_gem_object_move_off_active(obj);
 
1655}
1656
1657static void
1658i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1659{
1660	struct drm_device *dev = obj->base.dev;
1661	struct drm_i915_private *dev_priv = dev->dev_private;
 
1662
1663	if (obj->pin_count != 0)
1664		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1665	else
1666		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1667
1668	BUG_ON(!list_empty(&obj->gpu_write_list));
1669	BUG_ON(!obj->active);
1670	obj->ring = NULL;
1671
1672	i915_gem_object_move_off_active(obj);
1673	obj->fenced_gpu_access = false;
 
 
 
 
 
1674
1675	obj->active = 0;
1676	obj->pending_gpu_write = false;
1677	drm_gem_object_unreference(&obj->base);
1678
1679	WARN_ON(i915_verify_lists(dev));
 
1680}
1681
1682/* Immediately discard the backing storage */
1683static void
1684i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1685{
1686	struct inode *inode;
 
 
 
 
 
 
 
 
 
 
 
 
1687
1688	/* Our goal here is to return as much of the memory as
1689	 * is possible back to the system as we are called from OOM.
1690	 * To do this we must instruct the shmfs to drop all of its
1691	 * backing pages, *now*.
1692	 */
1693	inode = obj->base.filp->f_path.dentry->d_inode;
1694	shmem_truncate_range(inode, 0, (loff_t)-1);
1695
1696	obj->madv = __I915_MADV_PURGED;
1697}
1698
1699static inline int
1700i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1701{
1702	return obj->madv == I915_MADV_DONTNEED;
1703}
1704
1705static void
1706i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1707			       uint32_t flush_domains)
1708{
1709	struct drm_i915_gem_object *obj, *next;
1710
1711	list_for_each_entry_safe(obj, next,
1712				 &ring->gpu_write_list,
1713				 gpu_write_list) {
1714		if (obj->base.write_domain & flush_domains) {
1715			uint32_t old_write_domain = obj->base.write_domain;
1716
1717			obj->base.write_domain = 0;
1718			list_del_init(&obj->gpu_write_list);
1719			i915_gem_object_move_to_active(obj, ring,
1720						       i915_gem_next_request_seqno(ring));
1721
1722			trace_i915_gem_object_change_domain(obj,
1723							    obj->base.read_domains,
1724							    old_write_domain);
1725		}
1726	}
1727}
1728
1729int
1730i915_add_request(struct intel_ring_buffer *ring,
1731		 struct drm_file *file,
1732		 struct drm_i915_gem_request *request)
1733{
1734	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1735	uint32_t seqno;
1736	int was_empty;
1737	int ret;
1738
1739	BUG_ON(request == NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1740
1741	ret = ring->add_request(ring, &seqno);
1742	if (ret)
1743	    return ret;
 
1744
1745	trace_i915_gem_request_add(ring, seqno);
 
1746
1747	request->seqno = seqno;
1748	request->ring = ring;
1749	request->emitted_jiffies = jiffies;
1750	was_empty = list_empty(&ring->request_list);
1751	list_add_tail(&request->list, &ring->request_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752
1753	if (file) {
1754		struct drm_i915_file_private *file_priv = file->driver_priv;
 
 
 
 
 
 
 
 
 
 
 
1755
1756		spin_lock(&file_priv->mm.lock);
1757		request->file_priv = file_priv;
1758		list_add_tail(&request->client_list,
1759			      &file_priv->mm.request_list);
1760		spin_unlock(&file_priv->mm.lock);
1761	}
 
 
 
 
 
 
 
1762
1763	ring->outstanding_lazy_request = false;
 
 
 
 
 
 
 
 
 
1764
1765	if (!dev_priv->mm.suspended) {
1766		if (i915_enable_hangcheck) {
1767			mod_timer(&dev_priv->hangcheck_timer,
1768				  jiffies +
1769				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
 
 
1770		}
1771		if (was_empty)
1772			queue_delayed_work(dev_priv->wq,
1773					   &dev_priv->mm.retire_work, HZ);
1774	}
 
 
 
 
 
 
1775	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1776}
1777
1778static inline void
1779i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
 
1780{
1781	struct drm_i915_file_private *file_priv = request->file_priv;
 
 
1782
1783	if (!file_priv)
1784		return;
1785
1786	spin_lock(&file_priv->mm.lock);
1787	if (request->file_priv) {
1788		list_del(&request->client_list);
1789		request->file_priv = NULL;
1790	}
1791	spin_unlock(&file_priv->mm.lock);
1792}
1793
1794static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1795				      struct intel_ring_buffer *ring)
1796{
1797	while (!list_empty(&ring->request_list)) {
1798		struct drm_i915_gem_request *request;
 
 
 
1799
1800		request = list_first_entry(&ring->request_list,
1801					   struct drm_i915_gem_request,
1802					   list);
1803
1804		list_del(&request->list);
1805		i915_gem_request_remove_from_client(request);
1806		kfree(request);
 
 
 
 
 
 
 
 
 
1807	}
 
1808
1809	while (!list_empty(&ring->active_list)) {
1810		struct drm_i915_gem_object *obj;
 
 
1811
1812		obj = list_first_entry(&ring->active_list,
1813				       struct drm_i915_gem_object,
1814				       ring_list);
1815
1816		obj->base.write_domain = 0;
1817		list_del_init(&obj->gpu_write_list);
1818		i915_gem_object_move_to_inactive(obj);
1819	}
 
 
 
 
 
1820}
1821
1822static void i915_gem_reset_fences(struct drm_device *dev)
 
 
 
 
 
 
 
1823{
1824	struct drm_i915_private *dev_priv = dev->dev_private;
1825	int i;
1826
1827	for (i = 0; i < 16; i++) {
1828		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1829		struct drm_i915_gem_object *obj = reg->obj;
1830
1831		if (!obj)
1832			continue;
1833
1834		if (obj->tiling_mode)
1835			i915_gem_release_mmap(obj);
 
1836
1837		reg->obj->fence_reg = I915_FENCE_REG_NONE;
1838		reg->obj->fenced_gpu_access = false;
1839		reg->obj->last_fenced_seqno = 0;
1840		reg->obj->last_fenced_ring = NULL;
1841		i915_gem_clear_fence_reg(dev, reg);
1842	}
 
 
 
 
 
1843}
1844
1845void i915_gem_reset(struct drm_device *dev)
 
 
1846{
1847	struct drm_i915_private *dev_priv = dev->dev_private;
1848	struct drm_i915_gem_object *obj;
1849	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850
1851	for (i = 0; i < I915_NUM_RINGS; i++)
1852		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1853
1854	/* Remove anything from the flushing lists. The GPU cache is likely
1855	 * to be lost on reset along with the data, so simply move the
1856	 * lost bo to the inactive list.
1857	 */
1858	while (!list_empty(&dev_priv->mm.flushing_list)) {
1859		obj= list_first_entry(&dev_priv->mm.flushing_list,
1860				      struct drm_i915_gem_object,
1861				      mm_list);
1862
1863		obj->base.write_domain = 0;
1864		list_del_init(&obj->gpu_write_list);
1865		i915_gem_object_move_to_inactive(obj);
 
 
 
 
 
 
 
1866	}
 
1867
1868	/* Move everything out of the GPU domains to ensure we do any
1869	 * necessary invalidation upon reuse.
1870	 */
1871	list_for_each_entry(obj,
1872			    &dev_priv->mm.inactive_list,
1873			    mm_list)
1874	{
1875		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1876	}
1877
1878	/* The fence registers are invalidated so clear them out */
1879	i915_gem_reset_fences(dev);
1880}
1881
1882/**
1883 * This function clears the request list as sequence numbers are passed.
1884 */
1885static void
1886i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1887{
1888	uint32_t seqno;
1889	int i;
 
 
1890
1891	if (list_empty(&ring->request_list))
1892		return;
1893
1894	WARN_ON(i915_verify_lists(ring->dev));
 
 
1895
1896	seqno = ring->get_seqno(ring);
 
1897
1898	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1899		if (seqno >= ring->sync_seqno[i])
1900			ring->sync_seqno[i] = 0;
1901
1902	while (!list_empty(&ring->request_list)) {
1903		struct drm_i915_gem_request *request;
 
1904
1905		request = list_first_entry(&ring->request_list,
1906					   struct drm_i915_gem_request,
1907					   list);
 
 
 
1908
1909		if (!i915_seqno_passed(seqno, request->seqno))
1910			break;
 
 
 
 
1911
1912		trace_i915_gem_request_retire(ring, request->seqno);
 
 
 
1913
1914		list_del(&request->list);
1915		i915_gem_request_remove_from_client(request);
1916		kfree(request);
1917	}
1918
1919	/* Move any buffers on the active list that are no longer referenced
1920	 * by the ringbuffer to the flushing/inactive lists as appropriate.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1921	 */
1922	while (!list_empty(&ring->active_list)) {
1923		struct drm_i915_gem_object *obj;
1924
1925		obj= list_first_entry(&ring->active_list,
1926				      struct drm_i915_gem_object,
1927				      ring_list);
1928
1929		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1930			break;
 
 
 
 
1931
1932		if (obj->base.write_domain != 0)
1933			i915_gem_object_move_to_flushing(obj);
1934		else
1935			i915_gem_object_move_to_inactive(obj);
1936	}
1937
1938	if (unlikely(ring->trace_irq_seqno &&
1939		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1940		ring->irq_put(ring);
1941		ring->trace_irq_seqno = 0;
1942	}
1943
1944	WARN_ON(i915_verify_lists(ring->dev));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1945}
1946
1947void
1948i915_gem_retire_requests(struct drm_device *dev)
1949{
1950	drm_i915_private_t *dev_priv = dev->dev_private;
1951	int i;
1952
1953	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1954	    struct drm_i915_gem_object *obj, *next;
1955
1956	    /* We must be careful that during unbind() we do not
1957	     * accidentally infinitely recurse into retire requests.
1958	     * Currently:
1959	     *   retire -> free -> unbind -> wait -> retire_ring
1960	     */
1961	    list_for_each_entry_safe(obj, next,
1962				     &dev_priv->mm.deferred_free_list,
1963				     mm_list)
1964		    i915_gem_free_object_tail(obj);
 
1965	}
 
 
1966
1967	for (i = 0; i < I915_NUM_RINGS; i++)
1968		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
 
 
 
 
1969}
1970
1971static void
1972i915_gem_retire_work_handler(struct work_struct *work)
1973{
1974	drm_i915_private_t *dev_priv;
1975	struct drm_device *dev;
1976	bool idle;
1977	int i;
1978
1979	dev_priv = container_of(work, drm_i915_private_t,
1980				mm.retire_work.work);
1981	dev = dev_priv->dev;
 
 
1982
1983	/* Come back later if the device is busy... */
1984	if (!mutex_trylock(&dev->struct_mutex)) {
1985		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1986		return;
1987	}
 
 
 
 
 
 
 
1988
1989	i915_gem_retire_requests(dev);
 
 
1990
1991	/* Send a periodic flush down the ring so we don't hold onto GEM
1992	 * objects indefinitely.
1993	 */
1994	idle = true;
1995	for (i = 0; i < I915_NUM_RINGS; i++) {
1996		struct intel_ring_buffer *ring = &dev_priv->ring[i];
1997
1998		if (!list_empty(&ring->gpu_write_list)) {
1999			struct drm_i915_gem_request *request;
2000			int ret;
2001
2002			ret = i915_gem_flush_ring(ring,
2003						  0, I915_GEM_GPU_DOMAINS);
2004			request = kzalloc(sizeof(*request), GFP_KERNEL);
2005			if (ret || request == NULL ||
2006			    i915_add_request(ring, NULL, request))
2007			    kfree(request);
2008		}
2009
2010		idle &= list_empty(&ring->request_list);
 
 
 
2011	}
2012
2013	if (!dev_priv->mm.suspended && !idle)
2014		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2015
2016	mutex_unlock(&dev->struct_mutex);
2017}
2018
2019/**
2020 * Waits for a sequence number to be signaled, and cleans up the
2021 * request and object lists appropriately for that event.
2022 */
2023int
2024i915_wait_request(struct intel_ring_buffer *ring,
2025		  uint32_t seqno)
2026{
2027	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2028	u32 ier;
2029	int ret = 0;
2030
2031	BUG_ON(seqno == 0);
 
 
 
 
 
 
 
2032
2033	if (atomic_read(&dev_priv->mm.wedged)) {
2034		struct completion *x = &dev_priv->error_completion;
2035		bool recovery_complete;
2036		unsigned long flags;
 
 
 
 
 
 
 
2037
2038		/* Give the error handler a chance to run. */
2039		spin_lock_irqsave(&x->wait.lock, flags);
2040		recovery_complete = x->done > 0;
2041		spin_unlock_irqrestore(&x->wait.lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2042
2043		return recovery_complete ? -EIO : -EAGAIN;
2044	}
 
 
 
 
 
 
 
2045
2046	if (seqno == ring->outstanding_lazy_request) {
2047		struct drm_i915_gem_request *request;
2048
2049		request = kzalloc(sizeof(*request), GFP_KERNEL);
2050		if (request == NULL)
2051			return -ENOMEM;
2052
2053		ret = i915_add_request(ring, NULL, request);
2054		if (ret) {
2055			kfree(request);
2056			return ret;
2057		}
2058
2059		seqno = request->seqno;
2060	}
 
 
 
 
2061
2062	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2063		if (HAS_PCH_SPLIT(ring->dev))
2064			ier = I915_READ(DEIER) | I915_READ(GTIER);
2065		else
2066			ier = I915_READ(IER);
2067		if (!ier) {
2068			DRM_ERROR("something (likely vbetool) disabled "
2069				  "interrupts, re-enabling\n");
2070			ring->dev->driver->irq_preinstall(ring->dev);
2071			ring->dev->driver->irq_postinstall(ring->dev);
2072		}
2073
2074		trace_i915_gem_request_wait_begin(ring, seqno);
2075
2076		ring->waiting_seqno = seqno;
2077		if (ring->irq_get(ring)) {
2078			if (dev_priv->mm.interruptible)
2079				ret = wait_event_interruptible(ring->irq_queue,
2080							       i915_seqno_passed(ring->get_seqno(ring), seqno)
2081							       || atomic_read(&dev_priv->mm.wedged));
2082			else
2083				wait_event(ring->irq_queue,
2084					   i915_seqno_passed(ring->get_seqno(ring), seqno)
2085					   || atomic_read(&dev_priv->mm.wedged));
2086
2087			ring->irq_put(ring);
2088		} else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2089						      seqno) ||
2090				    atomic_read(&dev_priv->mm.wedged), 3000))
2091			ret = -EBUSY;
2092		ring->waiting_seqno = 0;
2093
2094		trace_i915_gem_request_wait_end(ring, seqno);
2095	}
2096	if (atomic_read(&dev_priv->mm.wedged))
2097		ret = -EAGAIN;
2098
2099	if (ret && ret != -ERESTARTSYS)
2100		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2101			  __func__, ret, seqno, ring->get_seqno(ring),
2102			  dev_priv->next_seqno);
2103
2104	/* Directly dispatch request retiring.  While we have the work queue
2105	 * to handle this, the waiter on a request often wants an associated
2106	 * buffer to have made it to the inactive list, and we would need
2107	 * a separate wait queue to handle that.
2108	 */
2109	if (ret == 0)
2110		i915_gem_retire_requests_ring(ring);
2111
2112	return ret;
2113}
2114
2115/**
2116 * Ensures that all rendering to the object has completed and the object is
2117 * safe to unbind from the GTT or access from the CPU.
2118 */
2119int
2120i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2121{
2122	int ret;
2123
2124	/* This function only exists to support waiting for existing rendering,
2125	 * not for emitting required flushes.
2126	 */
2127	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2128
2129	/* If there is rendering queued on the buffer being evicted, wait for
2130	 * it.
 
2131	 */
2132	if (obj->active) {
2133		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2134		if (ret)
2135			return ret;
2136	}
 
2137
2138	return 0;
2139}
2140
2141static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2142{
2143	u32 old_write_domain, old_read_domains;
2144
2145	/* Act a barrier for all accesses through the GTT */
2146	mb();
2147
2148	/* Force a pagefault for domain tracking on next user access */
2149	i915_gem_release_mmap(obj);
2150
2151	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2152		return;
2153
2154	old_read_domains = obj->base.read_domains;
2155	old_write_domain = obj->base.write_domain;
 
2156
2157	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2158	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2159
2160	trace_i915_gem_object_change_domain(obj,
2161					    old_read_domains,
2162					    old_write_domain);
2163}
2164
2165/**
2166 * Unbinds an object from the GTT aperture.
2167 */
2168int
2169i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2170{
2171	int ret = 0;
2172
2173	if (obj->gtt_space == NULL)
2174		return 0;
2175
2176	if (obj->pin_count != 0) {
2177		DRM_ERROR("Attempting to unbind pinned buffer\n");
2178		return -EINVAL;
2179	}
2180
2181	ret = i915_gem_object_finish_gpu(obj);
2182	if (ret == -ERESTARTSYS)
2183		return ret;
2184	/* Continue on if we fail due to EIO, the GPU is hung so we
2185	 * should be safe and we need to cleanup or else we might
2186	 * cause memory corruption through use-after-free.
 
 
 
2187	 */
2188
2189	i915_gem_object_finish_gtt(obj);
2190
2191	/* Move the object to the CPU domain to ensure that
2192	 * any possible CPU writes while it's not in the GTT
2193	 * are flushed when we go to remap it.
2194	 */
2195	if (ret == 0)
2196		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2197	if (ret == -ERESTARTSYS)
2198		return ret;
2199	if (ret) {
2200		/* In the event of a disaster, abandon all caches and
2201		 * hope for the best.
2202		 */
2203		i915_gem_clflush_object(obj);
2204		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
 
 
 
 
 
 
 
 
 
 
2205	}
2206
2207	/* release the fence reg _after_ flushing */
2208	ret = i915_gem_object_put_fence(obj);
2209	if (ret == -ERESTARTSYS)
2210		return ret;
2211
2212	trace_i915_gem_object_unbind(obj);
2213
2214	i915_gem_gtt_unbind_object(obj);
2215	i915_gem_object_put_pages_gtt(obj);
2216
2217	list_del_init(&obj->gtt_list);
2218	list_del_init(&obj->mm_list);
2219	/* Avoid an unnecessary call to unbind on rebind. */
2220	obj->map_and_fenceable = true;
 
 
 
 
 
2221
2222	drm_mm_put_block(obj->gtt_space);
2223	obj->gtt_space = NULL;
2224	obj->gtt_offset = 0;
2225
2226	if (i915_gem_object_is_purgeable(obj))
2227		i915_gem_object_truncate(obj);
 
 
2228
2229	return ret;
 
2230}
2231
2232int
2233i915_gem_flush_ring(struct intel_ring_buffer *ring,
2234		    uint32_t invalidate_domains,
2235		    uint32_t flush_domains)
2236{
2237	int ret;
 
2238
2239	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2240		return 0;
2241
2242	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2243
2244	ret = ring->flush(ring, invalidate_domains, flush_domains);
2245	if (ret)
2246		return ret;
2247
2248	if (flush_domains & I915_GEM_GPU_DOMAINS)
2249		i915_gem_process_flushing_list(ring, flush_domains);
 
 
2250
2251	return 0;
2252}
 
 
 
 
 
 
 
 
 
 
2253
2254static int i915_ring_idle(struct intel_ring_buffer *ring)
2255{
2256	int ret;
 
 
 
2257
2258	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2259		return 0;
2260
2261	if (!list_empty(&ring->gpu_write_list)) {
2262		ret = i915_gem_flush_ring(ring,
2263				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2264		if (ret)
2265			return ret;
2266	}
 
 
 
 
 
 
2267
2268	return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2269}
2270
2271int
2272i915_gpu_idle(struct drm_device *dev)
2273{
2274	drm_i915_private_t *dev_priv = dev->dev_private;
2275	bool lists_empty;
2276	int ret, i;
2277
2278	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2279		       list_empty(&dev_priv->mm.active_list));
2280	if (lists_empty)
2281		return 0;
2282
2283	/* Flush everything onto the inactive list. */
2284	for (i = 0; i < I915_NUM_RINGS; i++) {
2285		ret = i915_ring_idle(&dev_priv->ring[i]);
2286		if (ret)
2287			return ret;
2288	}
2289
2290	return 0;
2291}
2292
2293static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2294				       struct intel_ring_buffer *pipelined)
2295{
2296	struct drm_device *dev = obj->base.dev;
2297	drm_i915_private_t *dev_priv = dev->dev_private;
2298	u32 size = obj->gtt_space->size;
2299	int regnum = obj->fence_reg;
2300	uint64_t val;
2301
2302	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2303			 0xfffff000) << 32;
2304	val |= obj->gtt_offset & 0xfffff000;
2305	val |= (uint64_t)((obj->stride / 128) - 1) <<
2306		SANDYBRIDGE_FENCE_PITCH_SHIFT;
2307
2308	if (obj->tiling_mode == I915_TILING_Y)
2309		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2310	val |= I965_FENCE_REG_VALID;
2311
2312	if (pipelined) {
2313		int ret = intel_ring_begin(pipelined, 6);
2314		if (ret)
2315			return ret;
2316
2317		intel_ring_emit(pipelined, MI_NOOP);
2318		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2319		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2320		intel_ring_emit(pipelined, (u32)val);
2321		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2322		intel_ring_emit(pipelined, (u32)(val >> 32));
2323		intel_ring_advance(pipelined);
2324	} else
2325		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2326
2327	return 0;
2328}
2329
2330static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2331				struct intel_ring_buffer *pipelined)
2332{
2333	struct drm_device *dev = obj->base.dev;
2334	drm_i915_private_t *dev_priv = dev->dev_private;
2335	u32 size = obj->gtt_space->size;
2336	int regnum = obj->fence_reg;
2337	uint64_t val;
2338
2339	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2340		    0xfffff000) << 32;
2341	val |= obj->gtt_offset & 0xfffff000;
2342	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2343	if (obj->tiling_mode == I915_TILING_Y)
2344		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2345	val |= I965_FENCE_REG_VALID;
2346
2347	if (pipelined) {
2348		int ret = intel_ring_begin(pipelined, 6);
2349		if (ret)
2350			return ret;
2351
2352		intel_ring_emit(pipelined, MI_NOOP);
2353		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2354		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2355		intel_ring_emit(pipelined, (u32)val);
2356		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2357		intel_ring_emit(pipelined, (u32)(val >> 32));
2358		intel_ring_advance(pipelined);
2359	} else
2360		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2361
2362	return 0;
 
 
 
2363}
2364
2365static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2366				struct intel_ring_buffer *pipelined)
2367{
2368	struct drm_device *dev = obj->base.dev;
2369	drm_i915_private_t *dev_priv = dev->dev_private;
2370	u32 size = obj->gtt_space->size;
2371	u32 fence_reg, val, pitch_val;
2372	int tile_width;
2373
2374	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2375		 (size & -size) != size ||
2376		 (obj->gtt_offset & (size - 1)),
2377		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2378		 obj->gtt_offset, obj->map_and_fenceable, size))
2379		return -EINVAL;
2380
2381	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2382		tile_width = 128;
2383	else
2384		tile_width = 512;
2385
2386	/* Note: pitch better be a power of two tile widths */
2387	pitch_val = obj->stride / tile_width;
2388	pitch_val = ffs(pitch_val) - 1;
2389
2390	val = obj->gtt_offset;
2391	if (obj->tiling_mode == I915_TILING_Y)
2392		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2393	val |= I915_FENCE_SIZE_BITS(size);
2394	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2395	val |= I830_FENCE_REG_VALID;
2396
2397	fence_reg = obj->fence_reg;
2398	if (fence_reg < 8)
2399		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2400	else
2401		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2402
2403	if (pipelined) {
2404		int ret = intel_ring_begin(pipelined, 4);
2405		if (ret)
2406			return ret;
2407
2408		intel_ring_emit(pipelined, MI_NOOP);
2409		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2410		intel_ring_emit(pipelined, fence_reg);
2411		intel_ring_emit(pipelined, val);
2412		intel_ring_advance(pipelined);
2413	} else
2414		I915_WRITE(fence_reg, val);
2415
2416	return 0;
2417}
 
 
2418
2419static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2420				struct intel_ring_buffer *pipelined)
2421{
2422	struct drm_device *dev = obj->base.dev;
2423	drm_i915_private_t *dev_priv = dev->dev_private;
2424	u32 size = obj->gtt_space->size;
2425	int regnum = obj->fence_reg;
2426	uint32_t val;
2427	uint32_t pitch_val;
2428
2429	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2430		 (size & -size) != size ||
2431		 (obj->gtt_offset & (size - 1)),
2432		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2433		 obj->gtt_offset, size))
2434		return -EINVAL;
2435
2436	pitch_val = obj->stride / 128;
2437	pitch_val = ffs(pitch_val) - 1;
 
 
 
 
2438
2439	val = obj->gtt_offset;
2440	if (obj->tiling_mode == I915_TILING_Y)
2441		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2442	val |= I830_FENCE_SIZE_BITS(size);
2443	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2444	val |= I830_FENCE_REG_VALID;
2445
2446	if (pipelined) {
2447		int ret = intel_ring_begin(pipelined, 4);
2448		if (ret)
2449			return ret;
2450
2451		intel_ring_emit(pipelined, MI_NOOP);
2452		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2453		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2454		intel_ring_emit(pipelined, val);
2455		intel_ring_advance(pipelined);
2456	} else
2457		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
 
 
2458
2459	return 0;
2460}
2461
2462static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2463{
2464	return i915_seqno_passed(ring->get_seqno(ring), seqno);
2465}
2466
2467static int
2468i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2469			    struct intel_ring_buffer *pipelined)
2470{
2471	int ret;
2472
2473	if (obj->fenced_gpu_access) {
2474		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2475			ret = i915_gem_flush_ring(obj->last_fenced_ring,
2476						  0, obj->base.write_domain);
2477			if (ret)
2478				return ret;
2479		}
2480
2481		obj->fenced_gpu_access = false;
2482	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2483
2484	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2485		if (!ring_passed_seqno(obj->last_fenced_ring,
2486				       obj->last_fenced_seqno)) {
2487			ret = i915_wait_request(obj->last_fenced_ring,
2488						obj->last_fenced_seqno);
2489			if (ret)
2490				return ret;
 
 
 
 
 
 
2491		}
2492
2493		obj->last_fenced_seqno = 0;
2494		obj->last_fenced_ring = NULL;
2495	}
2496
2497	/* Ensure that all CPU reads are completed before installing a fence
2498	 * and all writes before removing the fence.
 
 
 
 
 
2499	 */
2500	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2501		mb();
2502
2503	return 0;
 
 
 
2504}
2505
2506int
2507i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2508{
2509	int ret;
2510
2511	if (obj->tiling_mode)
2512		i915_gem_release_mmap(obj);
2513
2514	ret = i915_gem_object_flush_fence(obj, NULL);
2515	if (ret)
2516		return ret;
2517
2518	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2519		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2520		i915_gem_clear_fence_reg(obj->base.dev,
2521					 &dev_priv->fence_regs[obj->fence_reg]);
2522
2523		obj->fence_reg = I915_FENCE_REG_NONE;
 
 
 
2524	}
2525
2526	return 0;
 
 
 
 
 
 
 
 
2527}
2528
2529static struct drm_i915_fence_reg *
2530i915_find_fence_reg(struct drm_device *dev,
2531		    struct intel_ring_buffer *pipelined)
2532{
2533	struct drm_i915_private *dev_priv = dev->dev_private;
2534	struct drm_i915_fence_reg *reg, *first, *avail;
2535	int i;
2536
2537	/* First try to find a free reg */
2538	avail = NULL;
2539	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2540		reg = &dev_priv->fence_regs[i];
2541		if (!reg->obj)
2542			return reg;
2543
2544		if (!reg->obj->pin_count)
2545			avail = reg;
2546	}
2547
2548	if (avail == NULL)
2549		return NULL;
2550
2551	/* None available, try to steal one or wait for a user to finish */
2552	avail = first = NULL;
2553	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2554		if (reg->obj->pin_count)
2555			continue;
2556
2557		if (first == NULL)
2558			first = reg;
2559
2560		if (!pipelined ||
2561		    !reg->obj->last_fenced_ring ||
2562		    reg->obj->last_fenced_ring == pipelined) {
2563			avail = reg;
2564			break;
2565		}
2566	}
 
 
 
2567
2568	if (avail == NULL)
2569		avail = first;
 
 
 
2570
2571	return avail;
 
 
2572}
2573
2574/**
2575 * i915_gem_object_get_fence - set up a fence reg for an object
2576 * @obj: object to map through a fence reg
2577 * @pipelined: ring on which to queue the change, or NULL for CPU access
2578 * @interruptible: must we wait uninterruptibly for the register to retire?
2579 *
2580 * When mapping objects through the GTT, userspace wants to be able to write
2581 * to them without having to worry about swizzling if the object is tiled.
2582 *
2583 * This function walks the fence regs looking for a free one for @obj,
2584 * stealing one if it can't find any.
2585 *
2586 * It then sets up the reg based on the object's properties: address, pitch
2587 * and tiling format.
2588 */
2589int
2590i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2591			  struct intel_ring_buffer *pipelined)
2592{
2593	struct drm_device *dev = obj->base.dev;
2594	struct drm_i915_private *dev_priv = dev->dev_private;
2595	struct drm_i915_fence_reg *reg;
2596	int ret;
2597
2598	/* XXX disable pipelining. There are bugs. Shocking. */
2599	pipelined = NULL;
 
 
 
 
 
2600
2601	/* Just update our place in the LRU if our fence is getting reused. */
2602	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2603		reg = &dev_priv->fence_regs[obj->fence_reg];
2604		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
 
 
2605
2606		if (obj->tiling_changed) {
2607			ret = i915_gem_object_flush_fence(obj, pipelined);
2608			if (ret)
2609				return ret;
 
 
 
2610
2611			if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2612				pipelined = NULL;
2613
2614			if (pipelined) {
2615				reg->setup_seqno =
2616					i915_gem_next_request_seqno(pipelined);
2617				obj->last_fenced_seqno = reg->setup_seqno;
2618				obj->last_fenced_ring = pipelined;
2619			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2620
2621			goto update;
2622		}
 
 
 
 
2623
2624		if (!pipelined) {
2625			if (reg->setup_seqno) {
2626				if (!ring_passed_seqno(obj->last_fenced_ring,
2627						       reg->setup_seqno)) {
2628					ret = i915_wait_request(obj->last_fenced_ring,
2629								reg->setup_seqno);
2630					if (ret)
2631						return ret;
2632				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2633
2634				reg->setup_seqno = 0;
2635			}
2636		} else if (obj->last_fenced_ring &&
2637			   obj->last_fenced_ring != pipelined) {
2638			ret = i915_gem_object_flush_fence(obj, pipelined);
2639			if (ret)
2640				return ret;
 
 
 
 
 
 
 
2641		}
2642
2643		return 0;
2644	}
 
2645
2646	reg = i915_find_fence_reg(dev, pipelined);
2647	if (reg == NULL)
2648		return -ENOSPC;
 
 
 
2649
2650	ret = i915_gem_object_flush_fence(obj, pipelined);
2651	if (ret)
2652		return ret;
2653
2654	if (reg->obj) {
2655		struct drm_i915_gem_object *old = reg->obj;
 
2656
2657		drm_gem_object_reference(&old->base);
 
 
2658
2659		if (old->tiling_mode)
2660			i915_gem_release_mmap(old);
2661
2662		ret = i915_gem_object_flush_fence(old, pipelined);
2663		if (ret) {
2664			drm_gem_object_unreference(&old->base);
2665			return ret;
2666		}
 
2667
2668		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2669			pipelined = NULL;
2670
2671		old->fence_reg = I915_FENCE_REG_NONE;
2672		old->last_fenced_ring = pipelined;
2673		old->last_fenced_seqno =
2674			pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2675
2676		drm_gem_object_unreference(&old->base);
2677	} else if (obj->last_fenced_seqno == 0)
2678		pipelined = NULL;
2679
2680	reg->obj = obj;
2681	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2682	obj->fence_reg = reg - dev_priv->fence_regs;
2683	obj->last_fenced_ring = pipelined;
2684
2685	reg->setup_seqno =
2686		pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2687	obj->last_fenced_seqno = reg->setup_seqno;
2688
2689update:
2690	obj->tiling_changed = false;
2691	switch (INTEL_INFO(dev)->gen) {
2692	case 7:
2693	case 6:
2694		ret = sandybridge_write_fence_reg(obj, pipelined);
2695		break;
2696	case 5:
2697	case 4:
2698		ret = i965_write_fence_reg(obj, pipelined);
2699		break;
2700	case 3:
2701		ret = i915_write_fence_reg(obj, pipelined);
2702		break;
2703	case 2:
2704		ret = i830_write_fence_reg(obj, pipelined);
2705		break;
2706	}
2707
2708	return ret;
2709}
2710
2711/**
2712 * i915_gem_clear_fence_reg - clear out fence register info
2713 * @obj: object to clear
2714 *
2715 * Zeroes out the fence register itself and clears out the associated
2716 * data structures in dev_priv and obj.
2717 */
2718static void
2719i915_gem_clear_fence_reg(struct drm_device *dev,
2720			 struct drm_i915_fence_reg *reg)
2721{
2722	drm_i915_private_t *dev_priv = dev->dev_private;
2723	uint32_t fence_reg = reg - dev_priv->fence_regs;
2724
2725	switch (INTEL_INFO(dev)->gen) {
2726	case 7:
2727	case 6:
2728		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2729		break;
2730	case 5:
2731	case 4:
2732		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2733		break;
2734	case 3:
2735		if (fence_reg >= 8)
2736			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2737		else
2738	case 2:
2739			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2740
2741		I915_WRITE(fence_reg, 0);
2742		break;
2743	}
2744
2745	list_del_init(&reg->lru_list);
2746	reg->obj = NULL;
2747	reg->setup_seqno = 0;
2748}
2749
2750/**
2751 * Finds free space in the GTT aperture and binds the object there.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2752 */
2753static int
2754i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2755			    unsigned alignment,
2756			    bool map_and_fenceable)
2757{
2758	struct drm_device *dev = obj->base.dev;
2759	drm_i915_private_t *dev_priv = dev->dev_private;
2760	struct drm_mm_node *free_space;
2761	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2762	u32 size, fence_size, fence_alignment, unfenced_alignment;
2763	bool mappable, fenceable;
2764	int ret;
2765
2766	if (obj->madv != I915_MADV_WILLNEED) {
2767		DRM_ERROR("Attempting to bind a purgeable object\n");
2768		return -EINVAL;
2769	}
2770
2771	fence_size = i915_gem_get_gtt_size(dev,
2772					   obj->base.size,
2773					   obj->tiling_mode);
2774	fence_alignment = i915_gem_get_gtt_alignment(dev,
2775						     obj->base.size,
2776						     obj->tiling_mode);
2777	unfenced_alignment =
2778		i915_gem_get_unfenced_gtt_alignment(dev,
2779						    obj->base.size,
2780						    obj->tiling_mode);
2781
2782	if (alignment == 0)
2783		alignment = map_and_fenceable ? fence_alignment :
2784						unfenced_alignment;
2785	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2786		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2787		return -EINVAL;
2788	}
2789
2790	size = map_and_fenceable ? fence_size : obj->base.size;
2791
2792	/* If the object is bigger than the entire aperture, reject it early
2793	 * before evicting everything in a vain attempt to find space.
2794	 */
2795	if (obj->base.size >
2796	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2797		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2798		return -E2BIG;
2799	}
2800
2801 search_free:
2802	if (map_and_fenceable)
2803		free_space =
2804			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2805						    size, alignment, 0,
2806						    dev_priv->mm.gtt_mappable_end,
2807						    0);
2808	else
2809		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2810						size, alignment, 0);
2811
2812	if (free_space != NULL) {
2813		if (map_and_fenceable)
2814			obj->gtt_space =
2815				drm_mm_get_block_range_generic(free_space,
2816							       size, alignment, 0,
2817							       dev_priv->mm.gtt_mappable_end,
2818							       0);
2819		else
2820			obj->gtt_space =
2821				drm_mm_get_block(free_space, size, alignment);
2822	}
2823	if (obj->gtt_space == NULL) {
2824		/* If the gtt is empty and we're still having trouble
2825		 * fitting our object in, we're out of memory.
2826		 */
2827		ret = i915_gem_evict_something(dev, size, alignment,
2828					       map_and_fenceable);
2829		if (ret)
2830			return ret;
2831
2832		goto search_free;
 
 
2833	}
2834
2835	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2836	if (ret) {
2837		drm_mm_put_block(obj->gtt_space);
2838		obj->gtt_space = NULL;
2839
2840		if (ret == -ENOMEM) {
2841			/* first try to reclaim some memory by clearing the GTT */
2842			ret = i915_gem_evict_everything(dev, false);
2843			if (ret) {
2844				/* now try to shrink everyone else */
2845				if (gfpmask) {
2846					gfpmask = 0;
2847					goto search_free;
2848				}
2849
2850				return -ENOMEM;
2851			}
2852
2853			goto search_free;
2854		}
 
2855
2856		return ret;
 
 
 
2857	}
2858
2859	ret = i915_gem_gtt_bind_object(obj);
2860	if (ret) {
2861		i915_gem_object_put_pages_gtt(obj);
2862		drm_mm_put_block(obj->gtt_space);
2863		obj->gtt_space = NULL;
2864
2865		if (i915_gem_evict_everything(dev, false))
2866			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
2867
2868		goto search_free;
 
2869	}
2870
2871	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2872	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2873
2874	/* Assert that the object is not currently in any GPU domain. As it
2875	 * wasn't in the GTT, there shouldn't be any way it could have been in
2876	 * a GPU cache
2877	 */
2878	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2879	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2880
2881	obj->gtt_offset = obj->gtt_space->start;
 
 
2882
2883	fenceable =
2884		obj->gtt_space->size == fence_size &&
2885		(obj->gtt_space->start & (fence_alignment -1)) == 0;
2886
2887	mappable =
2888		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2889
2890	obj->map_and_fenceable = mappable && fenceable;
 
 
 
 
 
2891
2892	trace_i915_gem_object_bind(obj, map_and_fenceable);
2893	return 0;
 
 
 
 
2894}
2895
2896void
2897i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2898{
2899	/* If we don't have a page list set up, then we're not pinned
2900	 * to GPU, and we can ignore the cache flush because it'll happen
2901	 * again at bind time.
2902	 */
2903	if (obj->pages == NULL)
2904		return;
 
 
 
2905
2906	/* If the GPU is snooping the contents of the CPU cache,
2907	 * we do not need to manually clear the CPU cache lines.  However,
2908	 * the caches are only snooped when the render cache is
2909	 * flushed/invalidated.  As we always have to emit invalidations
2910	 * and flushes when moving into and out of the RENDER domain, correct
2911	 * snooping behaviour occurs naturally as the result of our domain
2912	 * tracking.
2913	 */
2914	if (obj->cache_level != I915_CACHE_NONE)
2915		return;
2916
2917	trace_i915_gem_object_clflush(obj);
2918
2919	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2920}
2921
2922/** Flushes any GPU write domain for the object if it's dirty. */
2923static int
2924i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
 
 
 
 
 
 
 
2925{
2926	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2927		return 0;
2928
2929	/* Queue the GPU write cache flushing we need. */
2930	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2931}
2932
2933/** Flushes the GTT write domain for the object if it's dirty. */
2934static void
2935i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2936{
2937	uint32_t old_write_domain;
 
 
 
2938
2939	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2940		return;
2941
2942	/* No actual flushing is required for the GTT write domain.  Writes
2943	 * to it immediately go to main memory as far as we know, so there's
2944	 * no chipset flush.  It also doesn't land in render cache.
2945	 *
2946	 * However, we do have to enforce the order so that all writes through
2947	 * the GTT land before any writes to the device, such as updates to
2948	 * the GATT itself.
2949	 */
2950	wmb();
2951
2952	old_write_domain = obj->base.write_domain;
2953	obj->base.write_domain = 0;
2954
2955	trace_i915_gem_object_change_domain(obj,
2956					    obj->base.read_domains,
2957					    old_write_domain);
2958}
2959
2960/** Flushes the CPU write domain for the object if it's dirty. */
2961static void
2962i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2963{
2964	uint32_t old_write_domain;
 
2965
2966	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2967		return;
 
 
 
 
 
 
 
 
2968
2969	i915_gem_clflush_object(obj);
2970	intel_gtt_chipset_flush();
2971	old_write_domain = obj->base.write_domain;
2972	obj->base.write_domain = 0;
2973
2974	trace_i915_gem_object_change_domain(obj,
2975					    obj->base.read_domains,
2976					    old_write_domain);
2977}
2978
2979/**
2980 * Moves a single object to the GTT read, and possibly write domain.
 
 
2981 *
2982 * This function returns when the move is complete, including waiting on
2983 * flushes to occur.
2984 */
2985int
2986i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2987{
2988	uint32_t old_write_domain, old_read_domains;
2989	int ret;
2990
2991	/* Not valid to be called on unbound objects. */
2992	if (obj->gtt_space == NULL)
2993		return -EINVAL;
2994
2995	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
 
 
 
 
 
 
 
 
 
2996		return 0;
2997
2998	ret = i915_gem_object_flush_gpu_write_domain(obj);
 
 
 
 
 
 
 
 
2999	if (ret)
3000		return ret;
3001
3002	if (obj->pending_gpu_write || write) {
3003		ret = i915_gem_object_wait_rendering(obj);
3004		if (ret)
3005			return ret;
3006	}
3007
3008	i915_gem_object_flush_cpu_write_domain(obj);
3009
3010	old_write_domain = obj->base.write_domain;
3011	old_read_domains = obj->base.read_domains;
 
 
 
 
3012
3013	/* It should now be out of any other write domains, and we can update
3014	 * the domain values for our changes.
3015	 */
3016	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3017	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3018	if (write) {
3019		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3020		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3021		obj->dirty = 1;
3022	}
3023
3024	trace_i915_gem_object_change_domain(obj,
3025					    old_read_domains,
3026					    old_write_domain);
3027
3028	return 0;
3029}
3030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3031int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3032				    enum i915_cache_level cache_level)
3033{
 
3034	int ret;
3035
 
 
3036	if (obj->cache_level == cache_level)
3037		return 0;
3038
3039	if (obj->pin_count) {
3040		DRM_DEBUG("can not change the cache level of pinned objects\n");
3041		return -EBUSY;
3042	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3043
3044	if (obj->gtt_space) {
3045		ret = i915_gem_object_finish_gpu(obj);
3046		if (ret)
3047			return ret;
3048
3049		i915_gem_object_finish_gtt(obj);
 
 
 
 
 
3050
3051		/* Before SandyBridge, you could not use tiling or fence
3052		 * registers with snooped memory, so relinquish any fences
3053		 * currently pointing to our region in the aperture.
 
 
 
 
 
 
 
 
3054		 */
3055		if (INTEL_INFO(obj->base.dev)->gen < 6) {
3056			ret = i915_gem_object_put_fence(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3057			if (ret)
3058				return ret;
3059		}
 
 
 
 
 
 
3060
3061		i915_gem_gtt_rebind_object(obj, cache_level);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3062	}
3063
3064	if (cache_level == I915_CACHE_NONE) {
3065		u32 old_read_domains, old_write_domain;
 
 
 
3066
3067		/* If we're coming from LLC cached, then we haven't
3068		 * actually been tracking whether the data is in the
3069		 * CPU cache or not, since we only allow one bit set
3070		 * in obj->write_domain and have been skipping the clflushes.
3071		 * Just set it to the CPU cache for now.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3072		 */
3073		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3074		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3075
3076		old_read_domains = obj->base.read_domains;
3077		old_write_domain = obj->base.write_domain;
 
 
 
 
 
 
3078
3079		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3080		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
 
3081
3082		trace_i915_gem_object_change_domain(obj,
3083						    old_read_domains,
3084						    old_write_domain);
 
 
 
 
3085	}
3086
3087	obj->cache_level = cache_level;
3088	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3089}
3090
3091/*
3092 * Prepare buffer for display plane (scanout, cursors, etc).
3093 * Can be called from an uninterruptible phase (modesetting) and allows
3094 * any flushes to be pipelined (for pageflips).
3095 *
3096 * For the display plane, we want to be in the GTT but out of any write
3097 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
3098 * ability to pipeline the waits, pinning and any additional subtleties
3099 * that may differentiate the display plane from ordinary buffers.
3100 */
3101int
3102i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3103				     u32 alignment,
3104				     struct intel_ring_buffer *pipelined)
 
3105{
3106	u32 old_read_domains, old_write_domain;
3107	int ret;
3108
3109	ret = i915_gem_object_flush_gpu_write_domain(obj);
3110	if (ret)
3111		return ret;
3112
3113	if (pipelined != obj->ring) {
3114		ret = i915_gem_object_wait_rendering(obj);
3115		if (ret == -ERESTARTSYS)
3116			return ret;
3117	}
3118
3119	/* The display engine is not coherent with the LLC cache on gen6.  As
3120	 * a result, we make sure that the pinning that is about to occur is
3121	 * done with uncached PTEs. This is lowest common denominator for all
3122	 * chipsets.
3123	 *
3124	 * However for gen6+, we could do better by using the GFDT bit instead
3125	 * of uncaching, which would allow us to flush all the LLC-cached data
3126	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3127	 */
3128	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3129	if (ret)
3130		return ret;
 
 
 
 
3131
3132	/* As the user may map the buffer once pinned in the display plane
3133	 * (e.g. libkms for the bootup splash), we have to ensure that we
3134	 * always use map_and_fenceable for all scanout buffers.
3135	 */
3136	ret = i915_gem_object_pin(obj, alignment, true);
3137	if (ret)
3138		return ret;
3139
3140	i915_gem_object_flush_cpu_write_domain(obj);
3141
3142	old_write_domain = obj->base.write_domain;
3143	old_read_domains = obj->base.read_domains;
 
 
 
 
 
 
 
 
 
 
 
 
3144
3145	/* It should now be out of any other write domains, and we can update
3146	 * the domain values for our changes.
3147	 */
3148	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3149	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3150
3151	trace_i915_gem_object_change_domain(obj,
3152					    old_read_domains,
3153					    old_write_domain);
3154
3155	return 0;
 
 
3156}
3157
3158int
3159i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3160{
3161	int ret;
3162
3163	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3164		return 0;
3165
3166	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3167		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3168		if (ret)
3169			return ret;
3170	}
3171
3172	/* Ensure that we invalidate the GPU's caches and TLBs. */
3173	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3174
3175	return i915_gem_object_wait_rendering(obj);
3176}
3177
3178/**
3179 * Moves a single object to the CPU read, and possibly write domain.
 
 
3180 *
3181 * This function returns when the move is complete, including waiting on
3182 * flushes to occur.
3183 */
3184static int
3185i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3186{
3187	uint32_t old_write_domain, old_read_domains;
3188	int ret;
3189
3190	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3191		return 0;
3192
3193	ret = i915_gem_object_flush_gpu_write_domain(obj);
 
 
 
 
 
3194	if (ret)
3195		return ret;
3196
3197	ret = i915_gem_object_wait_rendering(obj);
3198	if (ret)
3199		return ret;
3200
3201	i915_gem_object_flush_gtt_write_domain(obj);
3202
3203	/* If we have a partially-valid cache of the object in the CPU,
3204	 * finish invalidating it and free the per-page flags.
3205	 */
3206	i915_gem_object_set_to_full_cpu_read_domain(obj);
3207
3208	old_write_domain = obj->base.write_domain;
3209	old_read_domains = obj->base.read_domains;
3210
3211	/* Flush the CPU cache if it's still invalid. */
3212	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3213		i915_gem_clflush_object(obj);
3214
3215		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3216	}
3217
3218	/* It should now be out of any other write domains, and we can update
3219	 * the domain values for our changes.
3220	 */
3221	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3222
3223	/* If we're writing through the CPU, then the GPU read domains will
3224	 * need to be invalidated at next use.
3225	 */
3226	if (write) {
3227		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3228		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3229	}
3230
3231	trace_i915_gem_object_change_domain(obj,
3232					    old_read_domains,
3233					    old_write_domain);
3234
3235	return 0;
3236}
3237
3238/**
3239 * Moves the object from a partially CPU read to a full one.
3240 *
3241 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3242 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3243 */
3244static void
3245i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3246{
3247	if (!obj->page_cpu_valid)
3248		return;
3249
3250	/* If we're partially in the CPU read domain, finish moving it in.
3251	 */
3252	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3253		int i;
3254
3255		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3256			if (obj->page_cpu_valid[i])
3257				continue;
3258			drm_clflush_pages(obj->pages + i, 1);
3259		}
3260	}
3261
3262	/* Free the page_cpu_valid mappings which are now stale, whether
3263	 * or not we've got I915_GEM_DOMAIN_CPU.
3264	 */
3265	kfree(obj->page_cpu_valid);
3266	obj->page_cpu_valid = NULL;
3267}
3268
3269/**
3270 * Set the CPU read domain on a range of the object.
3271 *
3272 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3273 * not entirely valid.  The page_cpu_valid member of the object flags which
3274 * pages have been flushed, and will be respected by
3275 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3276 * of the whole object.
3277 *
3278 * This function returns when the move is complete, including waiting on
3279 * flushes to occur.
3280 */
3281static int
3282i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3283					  uint64_t offset, uint64_t size)
3284{
3285	uint32_t old_read_domains;
3286	int i, ret;
3287
3288	if (offset == 0 && size == obj->base.size)
3289		return i915_gem_object_set_to_cpu_domain(obj, 0);
3290
3291	ret = i915_gem_object_flush_gpu_write_domain(obj);
3292	if (ret)
3293		return ret;
3294
3295	ret = i915_gem_object_wait_rendering(obj);
3296	if (ret)
3297		return ret;
3298
3299	i915_gem_object_flush_gtt_write_domain(obj);
3300
3301	/* If we're already fully in the CPU read domain, we're done. */
3302	if (obj->page_cpu_valid == NULL &&
3303	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3304		return 0;
3305
3306	/* Otherwise, create/clear the per-page CPU read domain flag if we're
3307	 * newly adding I915_GEM_DOMAIN_CPU
3308	 */
3309	if (obj->page_cpu_valid == NULL) {
3310		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3311					      GFP_KERNEL);
3312		if (obj->page_cpu_valid == NULL)
3313			return -ENOMEM;
3314	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3315		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3316
3317	/* Flush the cache on any pages that are still invalid from the CPU's
3318	 * perspective.
3319	 */
3320	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3321	     i++) {
3322		if (obj->page_cpu_valid[i])
3323			continue;
3324
3325		drm_clflush_pages(obj->pages + i, 1);
3326
3327		obj->page_cpu_valid[i] = 1;
3328	}
3329
3330	/* It should now be out of any other write domains, and we can update
3331	 * the domain values for our changes.
3332	 */
3333	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3334
3335	old_read_domains = obj->base.read_domains;
3336	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3337
3338	trace_i915_gem_object_change_domain(obj,
3339					    old_read_domains,
3340					    obj->base.write_domain);
3341
3342	return 0;
3343}
3344
3345/* Throttle our rendering by waiting until the ring has completed our requests
3346 * emitted over 20 msec ago.
3347 *
3348 * Note that if we were to use the current jiffies each time around the loop,
3349 * we wouldn't escape the function with any frames outstanding if the time to
3350 * render a frame was over 20ms.
3351 *
3352 * This should get us reasonable parallelism between CPU and GPU but also
3353 * relatively low latency when blocking on a particular request to finish.
3354 */
3355static int
3356i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3357{
3358	struct drm_i915_private *dev_priv = dev->dev_private;
3359	struct drm_i915_file_private *file_priv = file->driver_priv;
3360	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3361	struct drm_i915_gem_request *request;
3362	struct intel_ring_buffer *ring = NULL;
3363	u32 seqno = 0;
3364	int ret;
3365
3366	if (atomic_read(&dev_priv->mm.wedged))
 
3367		return -EIO;
3368
3369	spin_lock(&file_priv->mm.lock);
3370	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3371		if (time_after_eq(request->emitted_jiffies, recent_enough))
3372			break;
3373
3374		ring = request->ring;
3375		seqno = request->seqno;
 
 
 
 
3376	}
 
 
3377	spin_unlock(&file_priv->mm.lock);
3378
3379	if (seqno == 0)
3380		return 0;
3381
3382	ret = 0;
3383	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3384		/* And wait for the seqno passing without holding any locks and
3385		 * causing extra latency for others. This is safe as the irq
3386		 * generation is designed to be run atomically and so is
3387		 * lockless.
3388		 */
3389		if (ring->irq_get(ring)) {
3390			ret = wait_event_interruptible(ring->irq_queue,
3391						       i915_seqno_passed(ring->get_seqno(ring), seqno)
3392						       || atomic_read(&dev_priv->mm.wedged));
3393			ring->irq_put(ring);
3394
3395			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3396				ret = -EIO;
3397		}
3398	}
3399
3400	if (ret == 0)
3401		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3402
3403	return ret;
3404}
3405
3406int
3407i915_gem_object_pin(struct drm_i915_gem_object *obj,
3408		    uint32_t alignment,
3409		    bool map_and_fenceable)
3410{
3411	struct drm_device *dev = obj->base.dev;
3412	struct drm_i915_private *dev_priv = dev->dev_private;
3413	int ret;
3414
3415	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3416	WARN_ON(i915_verify_lists(dev));
3417
3418	if (obj->gtt_space != NULL) {
3419		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3420		    (map_and_fenceable && !obj->map_and_fenceable)) {
3421			WARN(obj->pin_count,
3422			     "bo is already pinned with incorrect alignment:"
3423			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3424			     " obj->map_and_fenceable=%d\n",
3425			     obj->gtt_offset, alignment,
3426			     map_and_fenceable,
3427			     obj->map_and_fenceable);
3428			ret = i915_gem_object_unbind(obj);
3429			if (ret)
3430				return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3431		}
3432	}
3433
3434	if (obj->gtt_space == NULL) {
3435		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3436						  map_and_fenceable);
 
 
 
 
 
3437		if (ret)
3438			return ret;
3439	}
3440
3441	if (obj->pin_count++ == 0) {
3442		if (!obj->active)
3443			list_move_tail(&obj->mm_list,
3444				       &dev_priv->mm.pinned_list);
3445	}
3446	obj->pin_mappable |= map_and_fenceable;
3447
3448	WARN_ON(i915_verify_lists(dev));
3449	return 0;
3450}
3451
3452void
3453i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3454{
3455	struct drm_device *dev = obj->base.dev;
3456	drm_i915_private_t *dev_priv = dev->dev_private;
3457
3458	WARN_ON(i915_verify_lists(dev));
3459	BUG_ON(obj->pin_count == 0);
3460	BUG_ON(obj->gtt_space == NULL);
3461
3462	if (--obj->pin_count == 0) {
3463		if (!obj->active)
3464			list_move_tail(&obj->mm_list,
3465				       &dev_priv->mm.inactive_list);
3466		obj->pin_mappable = false;
3467	}
3468	WARN_ON(i915_verify_lists(dev));
3469}
3470
3471int
3472i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3473		   struct drm_file *file)
3474{
3475	struct drm_i915_gem_pin *args = data;
3476	struct drm_i915_gem_object *obj;
3477	int ret;
3478
3479	ret = i915_mutex_lock_interruptible(dev);
3480	if (ret)
3481		return ret;
3482
3483	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3484	if (&obj->base == NULL) {
3485		ret = -ENOENT;
3486		goto unlock;
3487	}
3488
3489	if (obj->madv != I915_MADV_WILLNEED) {
3490		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3491		ret = -EINVAL;
3492		goto out;
3493	}
3494
3495	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3496		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3497			  args->handle);
3498		ret = -EINVAL;
3499		goto out;
3500	}
 
 
 
3501
3502	obj->user_pin_count++;
3503	obj->pin_filp = file;
3504	if (obj->user_pin_count == 1) {
3505		ret = i915_gem_object_pin(obj, args->alignment, true);
3506		if (ret)
3507			goto out;
3508	}
3509
3510	/* XXX - flush the CPU caches for pinned objects
3511	 * as the X server doesn't manage domains yet
3512	 */
3513	i915_gem_object_flush_cpu_write_domain(obj);
3514	args->offset = obj->gtt_offset;
3515out:
3516	drm_gem_object_unreference(&obj->base);
3517unlock:
3518	mutex_unlock(&dev->struct_mutex);
3519	return ret;
3520}
3521
3522int
3523i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3524		     struct drm_file *file)
3525{
3526	struct drm_i915_gem_pin *args = data;
3527	struct drm_i915_gem_object *obj;
3528	int ret;
3529
3530	ret = i915_mutex_lock_interruptible(dev);
3531	if (ret)
3532		return ret;
3533
3534	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3535	if (&obj->base == NULL) {
3536		ret = -ENOENT;
3537		goto unlock;
3538	}
3539
3540	if (obj->pin_filp != file) {
3541		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3542			  args->handle);
3543		ret = -EINVAL;
3544		goto out;
3545	}
3546	obj->user_pin_count--;
3547	if (obj->user_pin_count == 0) {
3548		obj->pin_filp = NULL;
3549		i915_gem_object_unpin(obj);
3550	}
3551
3552out:
3553	drm_gem_object_unreference(&obj->base);
3554unlock:
3555	mutex_unlock(&dev->struct_mutex);
3556	return ret;
3557}
3558
3559int
3560i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3561		    struct drm_file *file)
3562{
3563	struct drm_i915_gem_busy *args = data;
3564	struct drm_i915_gem_object *obj;
3565	int ret;
 
 
 
 
 
 
 
 
3566
3567	ret = i915_mutex_lock_interruptible(dev);
3568	if (ret)
3569		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3570
3571	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3572	if (&obj->base == NULL) {
3573		ret = -ENOENT;
3574		goto unlock;
3575	}
3576
3577	/* Count all active objects as busy, even if they are currently not used
3578	 * by the gpu. Users of this interface expect objects to eventually
3579	 * become non-busy without any further actions, therefore emit any
3580	 * necessary flushes here.
3581	 */
3582	args->busy = obj->active;
3583	if (args->busy) {
3584		/* Unconditionally flush objects, even when the gpu still uses this
3585		 * object. Userspace calling this function indicates that it wants to
3586		 * use this buffer rather sooner than later, so issuing the required
3587		 * flush earlier is beneficial.
3588		 */
3589		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3590			ret = i915_gem_flush_ring(obj->ring,
3591						  0, obj->base.write_domain);
3592		} else if (obj->ring->outstanding_lazy_request ==
3593			   obj->last_rendering_seqno) {
3594			struct drm_i915_gem_request *request;
3595
3596			/* This ring is not being cleared by active usage,
3597			 * so emit a request to do so.
3598			 */
3599			request = kzalloc(sizeof(*request), GFP_KERNEL);
3600			if (request)
3601				ret = i915_add_request(obj->ring, NULL,request);
3602			else
3603				ret = -ENOMEM;
3604		}
3605
3606		/* Update the active list for the hardware's current position.
3607		 * Otherwise this only updates on a delayed timer or when irqs
3608		 * are actually unmasked, and our working set ends up being
3609		 * larger than required.
3610		 */
3611		i915_gem_retire_requests_ring(obj->ring);
3612
3613		args->busy = obj->active;
3614	}
3615
3616	drm_gem_object_unreference(&obj->base);
3617unlock:
3618	mutex_unlock(&dev->struct_mutex);
3619	return ret;
 
 
 
3620}
3621
3622int
3623i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3624			struct drm_file *file_priv)
3625{
3626    return i915_gem_ring_throttle(dev, file_priv);
3627}
3628
3629int
3630i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3631		       struct drm_file *file_priv)
3632{
 
3633	struct drm_i915_gem_madvise *args = data;
3634	struct drm_i915_gem_object *obj;
3635	int ret;
3636
3637	switch (args->madv) {
3638	case I915_MADV_DONTNEED:
3639	case I915_MADV_WILLNEED:
3640	    break;
3641	default:
3642	    return -EINVAL;
3643	}
3644
3645	ret = i915_mutex_lock_interruptible(dev);
3646	if (ret)
3647		return ret;
3648
3649	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3650	if (&obj->base == NULL) {
3651		ret = -ENOENT;
3652		goto unlock;
3653	}
3654
3655	if (obj->pin_count) {
3656		ret = -EINVAL;
3657		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3658	}
3659
3660	if (obj->madv != __I915_MADV_PURGED)
3661		obj->madv = args->madv;
3662
3663	/* if the object is no longer bound, discard its backing storage */
3664	if (i915_gem_object_is_purgeable(obj) &&
3665	    obj->gtt_space == NULL)
3666		i915_gem_object_truncate(obj);
3667
3668	args->retained = obj->madv != __I915_MADV_PURGED;
 
3669
3670out:
3671	drm_gem_object_unreference(&obj->base);
3672unlock:
3673	mutex_unlock(&dev->struct_mutex);
3674	return ret;
3675}
3676
3677struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3678						  size_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3679{
3680	struct drm_i915_private *dev_priv = dev->dev_private;
3681	struct drm_i915_gem_object *obj;
3682	struct address_space *mapping;
 
 
 
3683
3684	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
3685	if (obj == NULL)
3686		return NULL;
 
 
 
 
3687
3688	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3689		kfree(obj);
3690		return NULL;
 
 
3691	}
3692
3693	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3694	mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
 
3695
3696	i915_gem_info_add_obj(dev_priv, size);
3697
3698	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3699	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3700
3701	if (IS_GEN6(dev)) {
3702		/* On Gen6, we can have the GPU use the LLC (the CPU
3703		 * cache) for about a 10% performance improvement
3704		 * compared to uncached.  Graphics requests other than
3705		 * display scanout are coherent with the CPU in
3706		 * accessing this cache.  This means in this mode we
3707		 * don't need to clflush on the CPU side, and on the
3708		 * GPU side we only need to flush internal caches to
3709		 * get data visible to the CPU.
3710		 *
3711		 * However, we maintain the display planes as UC, and so
3712		 * need to rebind when first used as such.
3713		 */
3714		obj->cache_level = I915_CACHE_LLC;
3715	} else
3716		obj->cache_level = I915_CACHE_NONE;
3717
3718	obj->base.driver_private = NULL;
3719	obj->fence_reg = I915_FENCE_REG_NONE;
3720	INIT_LIST_HEAD(&obj->mm_list);
3721	INIT_LIST_HEAD(&obj->gtt_list);
3722	INIT_LIST_HEAD(&obj->ring_list);
3723	INIT_LIST_HEAD(&obj->exec_list);
3724	INIT_LIST_HEAD(&obj->gpu_write_list);
3725	obj->madv = I915_MADV_WILLNEED;
3726	/* Avoid an unnecessary call to unbind on the first bind. */
3727	obj->map_and_fenceable = true;
3728
3729	return obj;
 
 
 
 
3730}
3731
3732int i915_gem_init_object(struct drm_gem_object *obj)
3733{
3734	BUG();
 
 
 
 
3735
3736	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
3737}
3738
3739static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
 
3740{
3741	struct drm_device *dev = obj->base.dev;
3742	drm_i915_private_t *dev_priv = dev->dev_private;
3743	int ret;
3744
3745	ret = i915_gem_object_unbind(obj);
3746	if (ret == -ERESTARTSYS) {
3747		list_move(&obj->mm_list,
3748			  &dev_priv->mm.deferred_free_list);
3749		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3750	}
 
 
 
 
 
3751
3752	trace_i915_gem_object_destroy(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
3753
3754	if (obj->base.map_list.map)
3755		i915_gem_free_mmap_offset(obj);
 
3756
3757	drm_gem_object_release(&obj->base);
3758	i915_gem_info_remove_obj(dev_priv, obj->base.size);
 
3759
3760	kfree(obj->page_cpu_valid);
3761	kfree(obj->bit_17);
3762	kfree(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3763}
3764
3765void i915_gem_free_object(struct drm_gem_object *gem_obj)
3766{
3767	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3768	struct drm_device *dev = obj->base.dev;
3769
3770	while (obj->pin_count > 0)
3771		i915_gem_object_unpin(obj);
3772
3773	if (obj->phys_obj)
3774		i915_gem_detach_phys_object(dev, obj);
3775
3776	i915_gem_free_object_tail(obj);
 
 
 
 
 
 
 
3777}
3778
3779int
3780i915_gem_idle(struct drm_device *dev)
3781{
3782	drm_i915_private_t *dev_priv = dev->dev_private;
3783	int ret;
3784
3785	mutex_lock(&dev->struct_mutex);
 
 
 
 
 
3786
3787	if (dev_priv->mm.suspended) {
3788		mutex_unlock(&dev->struct_mutex);
3789		return 0;
3790	}
 
3791
3792	ret = i915_gpu_idle(dev);
3793	if (ret) {
3794		mutex_unlock(&dev->struct_mutex);
3795		return ret;
3796	}
 
3797
3798	/* Under UMS, be paranoid and evict. */
3799	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3800		ret = i915_gem_evict_inactive(dev, false);
3801		if (ret) {
3802			mutex_unlock(&dev->struct_mutex);
3803			return ret;
3804		}
3805	}
3806
3807	i915_gem_reset_fences(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3808
3809	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3810	 * We need to replace this with a semaphore, or something.
3811	 * And not confound mm.suspended!
 
 
 
 
 
 
 
 
 
3812	 */
3813	dev_priv->mm.suspended = 1;
3814	del_timer_sync(&dev_priv->hangcheck_timer);
 
 
3815
3816	i915_kernel_lost_context(dev);
3817	i915_gem_cleanup_ringbuffer(dev);
 
 
 
3818
 
 
 
3819	mutex_unlock(&dev->struct_mutex);
3820
3821	/* Cancel the retire work handler, which should be idle now. */
3822	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
 
 
 
 
 
 
 
3823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3824	return 0;
 
 
 
 
 
3825}
3826
3827int
3828i915_gem_init_ringbuffer(struct drm_device *dev)
3829{
3830	drm_i915_private_t *dev_priv = dev->dev_private;
3831	int ret;
3832
3833	ret = intel_init_render_ring_buffer(dev);
3834	if (ret)
3835		return ret;
3836
3837	if (HAS_BSD(dev)) {
3838		ret = intel_init_bsd_ring_buffer(dev);
3839		if (ret)
3840			goto cleanup_render_ring;
3841	}
3842
3843	if (HAS_BLT(dev)) {
3844		ret = intel_init_blt_ring_buffer(dev);
3845		if (ret)
3846			goto cleanup_bsd_ring;
3847	}
 
3848
3849	dev_priv->next_seqno = 1;
 
3850
3851	return 0;
3852
3853cleanup_bsd_ring:
3854	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3855cleanup_render_ring:
3856	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3857	return ret;
 
 
 
 
 
 
 
 
 
 
3858}
3859
3860void
3861i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3862{
3863	drm_i915_private_t *dev_priv = dev->dev_private;
3864	int i;
 
3865
3866	for (i = 0; i < I915_NUM_RINGS; i++)
3867		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
3868}
3869
3870int
3871i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3872		       struct drm_file *file_priv)
3873{
3874	drm_i915_private_t *dev_priv = dev->dev_private;
3875	int ret, i;
 
 
 
3876
3877	if (drm_core_check_feature(dev, DRIVER_MODESET))
3878		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3879
3880	if (atomic_read(&dev_priv->mm.wedged)) {
3881		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3882		atomic_set(&dev_priv->mm.wedged, 0);
 
 
 
 
 
 
 
 
 
 
 
3883	}
3884
3885	mutex_lock(&dev->struct_mutex);
3886	dev_priv->mm.suspended = 0;
3887
3888	ret = i915_gem_init_ringbuffer(dev);
3889	if (ret != 0) {
3890		mutex_unlock(&dev->struct_mutex);
3891		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3892	}
3893
3894	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3895	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3896	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3897	for (i = 0; i < I915_NUM_RINGS; i++) {
3898		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3899		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
 
 
 
 
 
 
 
 
3900	}
3901	mutex_unlock(&dev->struct_mutex);
3902
3903	ret = drm_irq_install(dev);
3904	if (ret)
3905		goto cleanup_ringbuffer;
 
 
3906
3907	return 0;
 
 
 
 
 
3908
3909cleanup_ringbuffer:
3910	mutex_lock(&dev->struct_mutex);
3911	i915_gem_cleanup_ringbuffer(dev);
3912	dev_priv->mm.suspended = 1;
3913	mutex_unlock(&dev->struct_mutex);
3914
 
 
 
 
3915	return ret;
3916}
3917
3918int
3919i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3920		       struct drm_file *file_priv)
3921{
3922	if (drm_core_check_feature(dev, DRIVER_MODESET))
3923		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3924
3925	drm_irq_uninstall(dev);
3926	return i915_gem_idle(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3927}
3928
3929void
3930i915_gem_lastclose(struct drm_device *dev)
3931{
3932	int ret;
3933
3934	if (drm_core_check_feature(dev, DRIVER_MODESET))
3935		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3936
3937	ret = i915_gem_idle(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3938	if (ret)
3939		DRM_ERROR("failed to idle hardware: %d\n", ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3940}
3941
3942static void
3943init_ring_lists(struct intel_ring_buffer *ring)
3944{
3945	INIT_LIST_HEAD(&ring->active_list);
3946	INIT_LIST_HEAD(&ring->request_list);
3947	INIT_LIST_HEAD(&ring->gpu_write_list);
3948}
3949
3950void
3951i915_gem_load(struct drm_device *dev)
3952{
3953	int i;
3954	drm_i915_private_t *dev_priv = dev->dev_private;
3955
3956	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3957	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3958	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3959	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3960	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3961	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3962	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3963	for (i = 0; i < I915_NUM_RINGS; i++)
3964		init_ring_lists(&dev_priv->ring[i]);
3965	for (i = 0; i < 16; i++)
3966		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3967	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3968			  i915_gem_retire_work_handler);
3969	init_completion(&dev_priv->error_completion);
3970
3971	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3972	if (IS_GEN3(dev)) {
3973		u32 tmp = I915_READ(MI_ARB_STATE);
3974		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3975			/* arb state is a masked write, so set bit + bit in mask */
3976			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3977			I915_WRITE(MI_ARB_STATE, tmp);
3978		}
3979	}
3980
3981	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3982
3983	/* Old X drivers will take 0-2 for front, back, depth buffers */
3984	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3985		dev_priv->fence_reg_start = 3;
 
3986
3987	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
 
 
 
 
 
3988		dev_priv->num_fence_regs = 16;
3989	else
3990		dev_priv->num_fence_regs = 8;
3991
 
 
 
 
3992	/* Initialize fence registers to zero */
3993	for (i = 0; i < dev_priv->num_fence_regs; i++) {
3994		i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
 
 
 
 
3995	}
 
 
 
 
 
 
 
 
 
 
3996
3997	i915_gem_detect_bit_6_swizzle(dev);
3998	init_waitqueue_head(&dev_priv->pending_flip_queue);
3999
4000	dev_priv->mm.interruptible = true;
 
 
 
4001
4002	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4003	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4004	register_shrinker(&dev_priv->mm.inactive_shrinker);
4005}
4006
4007/*
4008 * Create a physically contiguous memory object for this object
4009 * e.g. for cursor + overlay regs
4010 */
4011static int i915_gem_init_phys_object(struct drm_device *dev,
4012				     int id, int size, int align)
4013{
4014	drm_i915_private_t *dev_priv = dev->dev_private;
4015	struct drm_i915_gem_phys_object *phys_obj;
4016	int ret;
4017
4018	if (dev_priv->mm.phys_objs[id - 1] || !size)
4019		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4020
4021	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4022	if (!phys_obj)
4023		return -ENOMEM;
4024
4025	phys_obj->id = id;
 
 
 
 
 
 
 
 
 
 
 
 
 
4026
4027	phys_obj->handle = drm_pci_alloc(dev, size, align);
4028	if (!phys_obj->handle) {
4029		ret = -ENOMEM;
4030		goto kfree_obj;
4031	}
4032#ifdef CONFIG_X86
4033	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4034#endif
4035
4036	dev_priv->mm.phys_objs[id - 1] = phys_obj;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4037
4038	return 0;
4039kfree_obj:
4040	kfree(phys_obj);
4041	return ret;
4042}
4043
4044static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4045{
4046	drm_i915_private_t *dev_priv = dev->dev_private;
4047	struct drm_i915_gem_phys_object *phys_obj;
 
 
 
 
4048
4049	if (!dev_priv->mm.phys_objs[id - 1])
4050		return;
 
 
 
 
 
 
 
 
 
 
 
4051
4052	phys_obj = dev_priv->mm.phys_objs[id - 1];
4053	if (phys_obj->cur_obj) {
4054		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
 
 
 
 
4055	}
 
4056
4057#ifdef CONFIG_X86
4058	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4059#endif
4060	drm_pci_free(dev, phys_obj->handle);
4061	kfree(phys_obj);
4062	dev_priv->mm.phys_objs[id - 1] = NULL;
4063}
4064
4065void i915_gem_free_all_phys_object(struct drm_device *dev)
4066{
4067	int i;
 
4068
4069	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4070		i915_gem_free_phys_object(dev, i);
 
 
 
 
 
 
4071}
4072
4073void i915_gem_detach_phys_object(struct drm_device *dev,
4074				 struct drm_i915_gem_object *obj)
4075{
4076	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4077	char *vaddr;
4078	int i;
4079	int page_count;
4080
4081	if (!obj->phys_obj)
4082		return;
4083	vaddr = obj->phys_obj->handle->vaddr;
4084
4085	page_count = obj->base.size / PAGE_SIZE;
4086	for (i = 0; i < page_count; i++) {
4087		struct page *page = shmem_read_mapping_page(mapping, i);
4088		if (!IS_ERR(page)) {
4089			char *dst = kmap_atomic(page);
4090			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4091			kunmap_atomic(dst);
4092
4093			drm_clflush_pages(&page, 1);
 
 
4094
4095			set_page_dirty(page);
4096			mark_page_accessed(page);
4097			page_cache_release(page);
4098		}
4099	}
4100	intel_gtt_chipset_flush();
4101
4102	obj->phys_obj->cur_obj = NULL;
4103	obj->phys_obj = NULL;
 
 
 
 
 
4104}
4105
4106int
4107i915_gem_attach_phys_object(struct drm_device *dev,
4108			    struct drm_i915_gem_object *obj,
4109			    int id,
4110			    int align)
 
 
 
 
 
 
 
4111{
4112	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4113	drm_i915_private_t *dev_priv = dev->dev_private;
4114	int ret = 0;
4115	int page_count;
4116	int i;
 
 
 
4117
4118	if (id > I915_MAX_PHYS_OBJECT)
4119		return -EINVAL;
 
 
4120
4121	if (obj->phys_obj) {
4122		if (obj->phys_obj->id == id)
4123			return 0;
4124		i915_gem_detach_phys_object(dev, obj);
4125	}
 
4126
4127	/* create a new object */
4128	if (!dev_priv->mm.phys_objs[id - 1]) {
4129		ret = i915_gem_init_phys_object(dev, id,
4130						obj->base.size, align);
4131		if (ret) {
4132			DRM_ERROR("failed to init phys object %d size: %zu\n",
4133				  id, obj->base.size);
4134			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4135		}
 
 
 
 
4136	}
4137
4138	/* bind to the object */
4139	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4140	obj->phys_obj->cur_obj = obj;
4141
4142	page_count = obj->base.size / PAGE_SIZE;
4143
4144	for (i = 0; i < page_count; i++) {
4145		struct page *page;
4146		char *dst, *src;
4147
4148		page = shmem_read_mapping_page(mapping, i);
4149		if (IS_ERR(page))
4150			return PTR_ERR(page);
 
 
 
 
 
4151
4152		src = kmap_atomic(page);
4153		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4154		memcpy(dst, src, PAGE_SIZE);
4155		kunmap_atomic(src);
4156
4157		mark_page_accessed(page);
4158		page_cache_release(page);
4159	}
4160
4161	return 0;
4162}
4163
4164static int
4165i915_gem_phys_pwrite(struct drm_device *dev,
4166		     struct drm_i915_gem_object *obj,
4167		     struct drm_i915_gem_pwrite *args,
4168		     struct drm_file *file_priv)
4169{
4170	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4171	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
 
 
4172
4173	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4174		unsigned long unwritten;
4175
4176		/* The physical object once assigned is fixed for the lifetime
4177		 * of the obj, so we can safely drop the lock and continue
4178		 * to access vaddr.
4179		 */
4180		mutex_unlock(&dev->struct_mutex);
4181		unwritten = copy_from_user(vaddr, user_data, args->size);
4182		mutex_lock(&dev->struct_mutex);
4183		if (unwritten)
4184			return -EFAULT;
4185	}
4186
4187	intel_gtt_chipset_flush();
4188	return 0;
 
4189}
4190
4191void i915_gem_release(struct drm_device *dev, struct drm_file *file)
 
4192{
4193	struct drm_i915_file_private *file_priv = file->driver_priv;
 
4194
4195	/* Clean up our request list when the client is going away, so that
4196	 * later retire_requests won't dereference our soon-to-be-gone
4197	 * file_priv.
4198	 */
4199	spin_lock(&file_priv->mm.lock);
4200	while (!list_empty(&file_priv->mm.request_list)) {
4201		struct drm_i915_gem_request *request;
4202
4203		request = list_first_entry(&file_priv->mm.request_list,
4204					   struct drm_i915_gem_request,
4205					   client_list);
4206		list_del(&request->client_list);
4207		request->file_priv = NULL;
4208	}
4209	spin_unlock(&file_priv->mm.lock);
4210}
4211
4212static int
4213i915_gpu_is_active(struct drm_device *dev)
 
 
4214{
4215	drm_i915_private_t *dev_priv = dev->dev_private;
4216	int lists_empty;
4217
4218	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4219		      list_empty(&dev_priv->mm.active_list);
 
4220
4221	return !lists_empty;
4222}
4223
4224static int
4225i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
 
4226{
4227	struct drm_i915_private *dev_priv =
4228		container_of(shrinker,
4229			     struct drm_i915_private,
4230			     mm.inactive_shrinker);
4231	struct drm_device *dev = dev_priv->dev;
4232	struct drm_i915_gem_object *obj, *next;
4233	int nr_to_scan = sc->nr_to_scan;
4234	int cnt;
4235
4236	if (!mutex_trylock(&dev->struct_mutex))
 
 
 
 
 
 
 
 
4237		return 0;
4238
4239	/* "fast-path" to count number of available objects */
4240	if (nr_to_scan == 0) {
4241		cnt = 0;
4242		list_for_each_entry(obj,
4243				    &dev_priv->mm.inactive_list,
4244				    mm_list)
4245			cnt++;
4246		mutex_unlock(&dev->struct_mutex);
4247		return cnt / 100 * sysctl_vfs_cache_pressure;
 
 
 
4248	}
4249
4250rescan:
4251	/* first scan for clean buffers */
4252	i915_gem_retire_requests(dev);
4253
4254	list_for_each_entry_safe(obj, next,
4255				 &dev_priv->mm.inactive_list,
4256				 mm_list) {
4257		if (i915_gem_object_is_purgeable(obj)) {
4258			if (i915_gem_object_unbind(obj) == 0 &&
4259			    --nr_to_scan == 0)
4260				break;
4261		}
4262	}
4263
4264	/* second pass, evict/count anything still on the inactive list */
4265	cnt = 0;
4266	list_for_each_entry_safe(obj, next,
4267				 &dev_priv->mm.inactive_list,
4268				 mm_list) {
4269		if (nr_to_scan &&
4270		    i915_gem_object_unbind(obj) == 0)
4271			nr_to_scan--;
4272		else
4273			cnt++;
4274	}
4275
4276	if (nr_to_scan && i915_gpu_is_active(dev)) {
4277		/*
4278		 * We are desperate for pages, so as a last resort, wait
4279		 * for the GPU to finish and discard whatever we can.
4280		 * This has a dramatic impact to reduce the number of
4281		 * OOM-killer events whilst running the GPU aggressively.
4282		 */
4283		if (i915_gpu_idle(dev) == 0)
4284			goto rescan;
4285	}
4286	mutex_unlock(&dev->struct_mutex);
4287	return cnt / 100 * sysctl_vfs_cache_pressure;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4288}
v4.17
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drmP.h>
  29#include <drm/drm_vma_manager.h>
  30#include <drm/i915_drm.h>
  31#include "i915_drv.h"
  32#include "i915_gem_clflush.h"
  33#include "i915_vgpu.h"
  34#include "i915_trace.h"
  35#include "intel_drv.h"
  36#include "intel_frontbuffer.h"
  37#include "intel_mocs.h"
  38#include "i915_gemfs.h"
  39#include <linux/dma-fence-array.h>
  40#include <linux/kthread.h>
  41#include <linux/reservation.h>
  42#include <linux/shmem_fs.h>
  43#include <linux/slab.h>
  44#include <linux/stop_machine.h>
  45#include <linux/swap.h>
  46#include <linux/pci.h>
  47#include <linux/dma-buf.h>
  48
  49static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50
  51static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
  52{
  53	if (obj->cache_dirty)
  54		return false;
  55
  56	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
  57		return true;
  58
  59	return obj->pin_global; /* currently in use by HW, keep flushed */
  60}
  61
  62static int
  63insert_mappable_node(struct i915_ggtt *ggtt,
  64                     struct drm_mm_node *node, u32 size)
  65{
  66	memset(node, 0, sizeof(*node));
  67	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
  68					   size, 0, I915_COLOR_UNEVICTABLE,
  69					   0, ggtt->mappable_end,
  70					   DRM_MM_INSERT_LOW);
  71}
  72
  73static void
  74remove_mappable_node(struct drm_mm_node *node)
  75{
  76	drm_mm_remove_node(node);
  77}
  78
  79/* some bookkeeping */
  80static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  81				  u64 size)
  82{
  83	spin_lock(&dev_priv->mm.object_stat_lock);
  84	dev_priv->mm.object_count++;
  85	dev_priv->mm.object_memory += size;
  86	spin_unlock(&dev_priv->mm.object_stat_lock);
  87}
  88
  89static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  90				     u64 size)
  91{
  92	spin_lock(&dev_priv->mm.object_stat_lock);
  93	dev_priv->mm.object_count--;
  94	dev_priv->mm.object_memory -= size;
  95	spin_unlock(&dev_priv->mm.object_stat_lock);
  96}
  97
  98static int
  99i915_gem_wait_for_error(struct i915_gpu_error *error)
 100{
 
 
 
 101	int ret;
 102
 103	might_sleep();
 
 104
 105	/*
 106	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
 107	 * userspace. If it takes that long something really bad is going on and
 108	 * we should simply try to bail out and fail as gracefully as possible.
 109	 */
 110	ret = wait_event_interruptible_timeout(error->reset_queue,
 111					       !i915_reset_backoff(error),
 112					       I915_RESET_TIMEOUT);
 113	if (ret == 0) {
 114		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
 115		return -EIO;
 116	} else if (ret < 0) {
 117		return ret;
 118	} else {
 119		return 0;
 
 
 
 
 
 
 
 
 120	}
 
 121}
 122
 123int i915_mutex_lock_interruptible(struct drm_device *dev)
 124{
 125	struct drm_i915_private *dev_priv = to_i915(dev);
 126	int ret;
 127
 128	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
 129	if (ret)
 130		return ret;
 131
 132	ret = mutex_lock_interruptible(&dev->struct_mutex);
 133	if (ret)
 134		return ret;
 135
 
 136	return 0;
 137}
 138
 139int
 140i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 141			    struct drm_file *file)
 142{
 143	struct drm_i915_private *dev_priv = to_i915(dev);
 144	struct i915_ggtt *ggtt = &dev_priv->ggtt;
 145	struct drm_i915_gem_get_aperture *args = data;
 146	struct i915_vma *vma;
 147	u64 pinned;
 148
 149	pinned = ggtt->base.reserved;
 150	mutex_lock(&dev->struct_mutex);
 151	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
 152		if (i915_vma_is_pinned(vma))
 153			pinned += vma->node.size;
 154	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
 155		if (i915_vma_is_pinned(vma))
 156			pinned += vma->node.size;
 157	mutex_unlock(&dev->struct_mutex);
 158
 159	args->aper_size = ggtt->base.total;
 160	args->aper_available_size = args->aper_size - pinned;
 161
 162	return 0;
 163}
 164
 165static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
 
 
 
 166{
 167	struct address_space *mapping = obj->base.filp->f_mapping;
 168	drm_dma_handle_t *phys;
 169	struct sg_table *st;
 170	struct scatterlist *sg;
 171	char *vaddr;
 172	int i;
 173	int err;
 174
 175	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
 176		return -EINVAL;
 177
 178	/* Always aligning to the object size, allows a single allocation
 179	 * to handle all possible callers, and given typical object sizes,
 180	 * the alignment of the buddy allocation will naturally match.
 181	 */
 182	phys = drm_pci_alloc(obj->base.dev,
 183			     roundup_pow_of_two(obj->base.size),
 184			     roundup_pow_of_two(obj->base.size));
 185	if (!phys)
 186		return -ENOMEM;
 187
 188	vaddr = phys->vaddr;
 189	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 190		struct page *page;
 191		char *src;
 192
 193		page = shmem_read_mapping_page(mapping, i);
 194		if (IS_ERR(page)) {
 195			err = PTR_ERR(page);
 196			goto err_phys;
 197		}
 198
 199		src = kmap_atomic(page);
 200		memcpy(vaddr, src, PAGE_SIZE);
 201		drm_clflush_virt_range(vaddr, PAGE_SIZE);
 202		kunmap_atomic(src);
 203
 204		put_page(page);
 205		vaddr += PAGE_SIZE;
 206	}
 207
 208	i915_gem_chipset_flush(to_i915(obj->base.dev));
 209
 210	st = kmalloc(sizeof(*st), GFP_KERNEL);
 211	if (!st) {
 212		err = -ENOMEM;
 213		goto err_phys;
 214	}
 215
 216	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
 217		kfree(st);
 218		err = -ENOMEM;
 219		goto err_phys;
 220	}
 221
 222	sg = st->sgl;
 223	sg->offset = 0;
 224	sg->length = obj->base.size;
 225
 226	sg_dma_address(sg) = phys->busaddr;
 227	sg_dma_len(sg) = obj->base.size;
 228
 229	obj->phys_handle = phys;
 230
 231	__i915_gem_object_set_pages(obj, st, sg->length);
 232
 233	return 0;
 234
 235err_phys:
 236	drm_pci_free(obj->base.dev, phys);
 237
 238	return err;
 239}
 240
 241static void __start_cpu_write(struct drm_i915_gem_object *obj)
 
 
 242{
 243	obj->read_domains = I915_GEM_DOMAIN_CPU;
 244	obj->write_domain = I915_GEM_DOMAIN_CPU;
 245	if (cpu_write_needs_clflush(obj))
 246		obj->cache_dirty = true;
 247}
 248
 249static void
 250__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
 251				struct sg_table *pages,
 252				bool needs_clflush)
 253{
 254	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
 255
 256	if (obj->mm.madv == I915_MADV_DONTNEED)
 257		obj->mm.dirty = false;
 258
 259	if (needs_clflush &&
 260	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
 261	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
 262		drm_clflush_sg(pages);
 263
 264	__start_cpu_write(obj);
 265}
 266
 267static void
 268i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
 269			       struct sg_table *pages)
 270{
 271	__i915_gem_object_release_shmem(obj, pages, false);
 272
 273	if (obj->mm.dirty) {
 274		struct address_space *mapping = obj->base.filp->f_mapping;
 275		char *vaddr = obj->phys_handle->vaddr;
 276		int i;
 277
 278		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 279			struct page *page;
 280			char *dst;
 281
 282			page = shmem_read_mapping_page(mapping, i);
 283			if (IS_ERR(page))
 284				continue;
 285
 286			dst = kmap_atomic(page);
 287			drm_clflush_virt_range(vaddr, PAGE_SIZE);
 288			memcpy(dst, vaddr, PAGE_SIZE);
 289			kunmap_atomic(dst);
 290
 291			set_page_dirty(page);
 292			if (obj->mm.madv == I915_MADV_WILLNEED)
 293				mark_page_accessed(page);
 294			put_page(page);
 295			vaddr += PAGE_SIZE;
 296		}
 297		obj->mm.dirty = false;
 298	}
 299
 300	sg_free_table(pages);
 301	kfree(pages);
 302
 303	drm_pci_free(obj->base.dev, obj->phys_handle);
 304}
 305
 306static void
 307i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
 308{
 309	i915_gem_object_unpin_pages(obj);
 310}
 311
 312static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
 313	.get_pages = i915_gem_object_get_pages_phys,
 314	.put_pages = i915_gem_object_put_pages_phys,
 315	.release = i915_gem_object_release_phys,
 316};
 317
 318static const struct drm_i915_gem_object_ops i915_gem_object_ops;
 319
 320int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
 321{
 322	struct i915_vma *vma;
 323	LIST_HEAD(still_in_list);
 324	int ret;
 325
 326	lockdep_assert_held(&obj->base.dev->struct_mutex);
 327
 328	/* Closed vma are removed from the obj->vma_list - but they may
 329	 * still have an active binding on the object. To remove those we
 330	 * must wait for all rendering to complete to the object (as unbinding
 331	 * must anyway), and retire the requests.
 332	 */
 333	ret = i915_gem_object_set_to_cpu_domain(obj, false);
 334	if (ret)
 335		return ret;
 336
 337	while ((vma = list_first_entry_or_null(&obj->vma_list,
 338					       struct i915_vma,
 339					       obj_link))) {
 340		list_move_tail(&vma->obj_link, &still_in_list);
 341		ret = i915_vma_unbind(vma);
 342		if (ret)
 343			break;
 344	}
 345	list_splice(&still_in_list, &obj->vma_list);
 346
 347	return ret;
 348}
 349
 350static long
 351i915_gem_object_wait_fence(struct dma_fence *fence,
 352			   unsigned int flags,
 353			   long timeout,
 354			   struct intel_rps_client *rps_client)
 355{
 356	struct i915_request *rq;
 357
 358	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
 359
 360	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
 361		return timeout;
 362
 363	if (!dma_fence_is_i915(fence))
 364		return dma_fence_wait_timeout(fence,
 365					      flags & I915_WAIT_INTERRUPTIBLE,
 366					      timeout);
 367
 368	rq = to_request(fence);
 369	if (i915_request_completed(rq))
 370		goto out;
 371
 372	/*
 373	 * This client is about to stall waiting for the GPU. In many cases
 374	 * this is undesirable and limits the throughput of the system, as
 375	 * many clients cannot continue processing user input/output whilst
 376	 * blocked. RPS autotuning may take tens of milliseconds to respond
 377	 * to the GPU load and thus incurs additional latency for the client.
 378	 * We can circumvent that by promoting the GPU frequency to maximum
 379	 * before we wait. This makes the GPU throttle up much more quickly
 380	 * (good for benchmarks and user experience, e.g. window animations),
 381	 * but at a cost of spending more power processing the workload
 382	 * (bad for battery). Not all clients even want their results
 383	 * immediately and for them we should just let the GPU select its own
 384	 * frequency to maximise efficiency. To prevent a single client from
 385	 * forcing the clocks too high for the whole system, we only allow
 386	 * each client to waitboost once in a busy period.
 387	 */
 388	if (rps_client && !i915_request_started(rq)) {
 389		if (INTEL_GEN(rq->i915) >= 6)
 390			gen6_rps_boost(rq, rps_client);
 391	}
 392
 393	timeout = i915_request_wait(rq, flags, timeout);
 394
 395out:
 396	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
 397		i915_request_retire_upto(rq);
 398
 399	return timeout;
 400}
 401
 402static long
 403i915_gem_object_wait_reservation(struct reservation_object *resv,
 404				 unsigned int flags,
 405				 long timeout,
 406				 struct intel_rps_client *rps_client)
 407{
 408	unsigned int seq = __read_seqcount_begin(&resv->seq);
 409	struct dma_fence *excl;
 410	bool prune_fences = false;
 411
 412	if (flags & I915_WAIT_ALL) {
 413		struct dma_fence **shared;
 414		unsigned int count, i;
 415		int ret;
 416
 417		ret = reservation_object_get_fences_rcu(resv,
 418							&excl, &count, &shared);
 419		if (ret)
 420			return ret;
 421
 422		for (i = 0; i < count; i++) {
 423			timeout = i915_gem_object_wait_fence(shared[i],
 424							     flags, timeout,
 425							     rps_client);
 426			if (timeout < 0)
 427				break;
 428
 429			dma_fence_put(shared[i]);
 430		}
 431
 432		for (; i < count; i++)
 433			dma_fence_put(shared[i]);
 434		kfree(shared);
 435
 436		/*
 437		 * If both shared fences and an exclusive fence exist,
 438		 * then by construction the shared fences must be later
 439		 * than the exclusive fence. If we successfully wait for
 440		 * all the shared fences, we know that the exclusive fence
 441		 * must all be signaled. If all the shared fences are
 442		 * signaled, we can prune the array and recover the
 443		 * floating references on the fences/requests.
 444		 */
 445		prune_fences = count && timeout >= 0;
 446	} else {
 447		excl = reservation_object_get_excl_rcu(resv);
 448	}
 449
 450	if (excl && timeout >= 0)
 451		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
 452						     rps_client);
 453
 454	dma_fence_put(excl);
 455
 456	/*
 457	 * Opportunistically prune the fences iff we know they have *all* been
 458	 * signaled and that the reservation object has not been changed (i.e.
 459	 * no new fences have been added).
 460	 */
 461	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
 462		if (reservation_object_trylock(resv)) {
 463			if (!__read_seqcount_retry(&resv->seq, seq))
 464				reservation_object_add_excl_fence(resv, NULL);
 465			reservation_object_unlock(resv);
 466		}
 467	}
 468
 469	return timeout;
 470}
 471
 472static void __fence_set_priority(struct dma_fence *fence, int prio)
 473{
 474	struct i915_request *rq;
 475	struct intel_engine_cs *engine;
 476
 477	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
 478		return;
 479
 480	rq = to_request(fence);
 481	engine = rq->engine;
 482
 483	rcu_read_lock();
 484	if (engine->schedule)
 485		engine->schedule(rq, prio);
 486	rcu_read_unlock();
 487}
 488
 489static void fence_set_priority(struct dma_fence *fence, int prio)
 490{
 491	/* Recurse once into a fence-array */
 492	if (dma_fence_is_array(fence)) {
 493		struct dma_fence_array *array = to_dma_fence_array(fence);
 494		int i;
 495
 496		for (i = 0; i < array->num_fences; i++)
 497			__fence_set_priority(array->fences[i], prio);
 498	} else {
 499		__fence_set_priority(fence, prio);
 500	}
 501}
 502
 503int
 504i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
 505			      unsigned int flags,
 506			      int prio)
 507{
 508	struct dma_fence *excl;
 509
 510	if (flags & I915_WAIT_ALL) {
 511		struct dma_fence **shared;
 512		unsigned int count, i;
 513		int ret;
 514
 515		ret = reservation_object_get_fences_rcu(obj->resv,
 516							&excl, &count, &shared);
 517		if (ret)
 518			return ret;
 519
 520		for (i = 0; i < count; i++) {
 521			fence_set_priority(shared[i], prio);
 522			dma_fence_put(shared[i]);
 523		}
 524
 525		kfree(shared);
 526	} else {
 527		excl = reservation_object_get_excl_rcu(obj->resv);
 528	}
 529
 530	if (excl) {
 531		fence_set_priority(excl, prio);
 532		dma_fence_put(excl);
 533	}
 534	return 0;
 535}
 536
 537/**
 538 * Waits for rendering to the object to be completed
 539 * @obj: i915 gem object
 540 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 541 * @timeout: how long to wait
 542 * @rps_client: client (user process) to charge for any waitboosting
 543 */
 544int
 545i915_gem_object_wait(struct drm_i915_gem_object *obj,
 546		     unsigned int flags,
 547		     long timeout,
 548		     struct intel_rps_client *rps_client)
 549{
 550	might_sleep();
 551#if IS_ENABLED(CONFIG_LOCKDEP)
 552	GEM_BUG_ON(debug_locks &&
 553		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
 554		   !!(flags & I915_WAIT_LOCKED));
 555#endif
 556	GEM_BUG_ON(timeout < 0);
 557
 558	timeout = i915_gem_object_wait_reservation(obj->resv,
 559						   flags, timeout,
 560						   rps_client);
 561	return timeout < 0 ? timeout : 0;
 562}
 563
 564static struct intel_rps_client *to_rps_client(struct drm_file *file)
 565{
 566	struct drm_i915_file_private *fpriv = file->driver_priv;
 
 
 
 567
 568	return &fpriv->rps_client;
 569}
 570
 571static int
 572i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
 573		     struct drm_i915_gem_pwrite *args,
 574		     struct drm_file *file)
 575{
 576	void *vaddr = obj->phys_handle->vaddr + args->offset;
 577	char __user *user_data = u64_to_user_ptr(args->data_ptr);
 578
 579	/* We manually control the domain here and pretend that it
 580	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
 581	 */
 582	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 583	if (copy_from_user(vaddr, user_data, args->size))
 584		return -EFAULT;
 585
 586	drm_clflush_virt_range(vaddr, args->size);
 587	i915_gem_chipset_flush(to_i915(obj->base.dev));
 588
 589	intel_fb_obj_flush(obj, ORIGIN_CPU);
 590	return 0;
 591}
 592
 593void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
 594{
 595	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
 596}
 597
 598void i915_gem_object_free(struct drm_i915_gem_object *obj)
 599{
 600	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
 601	kmem_cache_free(dev_priv->objects, obj);
 602}
 603
 604static int
 605i915_gem_create(struct drm_file *file,
 606		struct drm_i915_private *dev_priv,
 607		uint64_t size,
 608		uint32_t *handle_p)
 609{
 610	struct drm_i915_gem_object *obj;
 611	int ret;
 612	u32 handle;
 613
 614	size = roundup(size, PAGE_SIZE);
 615	if (size == 0)
 616		return -EINVAL;
 617
 618	/* Allocate the new object */
 619	obj = i915_gem_object_create(dev_priv, size);
 620	if (IS_ERR(obj))
 621		return PTR_ERR(obj);
 622
 623	ret = drm_gem_handle_create(file, &obj->base, &handle);
 
 
 
 
 
 
 
 624	/* drop reference from allocate - handle holds it now */
 625	i915_gem_object_put(obj);
 626	if (ret)
 627		return ret;
 628
 629	*handle_p = handle;
 630	return 0;
 631}
 632
 633int
 634i915_gem_dumb_create(struct drm_file *file,
 635		     struct drm_device *dev,
 636		     struct drm_mode_create_dumb *args)
 637{
 638	/* have to work out size/pitch and return them */
 639	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
 640	args->size = args->pitch * args->height;
 641	return i915_gem_create(file, to_i915(dev),
 642			       args->size, &args->handle);
 643}
 644
 645static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
 
 
 646{
 647	return !(obj->cache_level == I915_CACHE_NONE ||
 648		 obj->cache_level == I915_CACHE_WT);
 649}
 650
 651/**
 652 * Creates a new mm object and returns a handle to it.
 653 * @dev: drm device pointer
 654 * @data: ioctl data blob
 655 * @file: drm file pointer
 656 */
 657int
 658i915_gem_create_ioctl(struct drm_device *dev, void *data,
 659		      struct drm_file *file)
 660{
 661	struct drm_i915_private *dev_priv = to_i915(dev);
 662	struct drm_i915_gem_create *args = data;
 663
 664	i915_gem_flush_free_objects(dev_priv);
 665
 666	return i915_gem_create(file, dev_priv,
 667			       args->size, &args->handle);
 668}
 669
 670static inline enum fb_op_origin
 671fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
 672{
 673	return (domain == I915_GEM_DOMAIN_GTT ?
 674		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
 675}
 676
 677void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
 678{
 679	/*
 680	 * No actual flushing is required for the GTT write domain for reads
 681	 * from the GTT domain. Writes to it "immediately" go to main memory
 682	 * as far as we know, so there's no chipset flush. It also doesn't
 683	 * land in the GPU render cache.
 684	 *
 685	 * However, we do have to enforce the order so that all writes through
 686	 * the GTT land before any writes to the device, such as updates to
 687	 * the GATT itself.
 688	 *
 689	 * We also have to wait a bit for the writes to land from the GTT.
 690	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
 691	 * timing. This issue has only been observed when switching quickly
 692	 * between GTT writes and CPU reads from inside the kernel on recent hw,
 693	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
 694	 * system agents we cannot reproduce this behaviour, until Cannonlake
 695	 * that was!).
 696	 */
 697
 698	wmb();
 699
 700	intel_runtime_pm_get(dev_priv);
 701	spin_lock_irq(&dev_priv->uncore.lock);
 702
 703	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
 704
 705	spin_unlock_irq(&dev_priv->uncore.lock);
 706	intel_runtime_pm_put(dev_priv);
 707}
 708
 709static void
 710flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
 
 
 
 
 711{
 712	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
 713	struct i915_vma *vma;
 714
 715	if (!(obj->write_domain & flush_domains))
 716		return;
 717
 718	switch (obj->write_domain) {
 719	case I915_GEM_DOMAIN_GTT:
 720		i915_gem_flush_ggtt_writes(dev_priv);
 721
 722		intel_fb_obj_flush(obj,
 723				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
 724
 725		for_each_ggtt_vma(vma, obj) {
 726			if (vma->iomap)
 727				continue;
 728
 729			i915_vma_unset_ggtt_write(vma);
 730		}
 731		break;
 732
 733	case I915_GEM_DOMAIN_CPU:
 734		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
 735		break;
 736
 737	case I915_GEM_DOMAIN_RENDER:
 738		if (gpu_write_needs_clflush(obj))
 739			obj->cache_dirty = true;
 740		break;
 741	}
 742
 743	obj->write_domain = 0;
 744}
 745
 746static inline int
 747__copy_to_user_swizzled(char __user *cpu_vaddr,
 748			const char *gpu_vaddr, int gpu_offset,
 749			int length)
 
 
 
 750{
 751	int ret, cpu_offset = 0;
 752
 753	while (length > 0) {
 754		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 755		int this_length = min(cacheline_end - gpu_offset, length);
 756		int swizzled_gpu_offset = gpu_offset ^ 64;
 757
 758		ret = __copy_to_user(cpu_vaddr + cpu_offset,
 759				     gpu_vaddr + swizzled_gpu_offset,
 760				     this_length);
 761		if (ret)
 762			return ret + length;
 763
 764		cpu_offset += this_length;
 765		gpu_offset += this_length;
 766		length -= this_length;
 767	}
 768
 769	return 0;
 770}
 771
 772static inline int
 773__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
 774			  const char __user *cpu_vaddr,
 775			  int length)
 776{
 777	int ret, cpu_offset = 0;
 778
 
 
 
 779	while (length > 0) {
 780		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 781		int this_length = min(cacheline_end - gpu_offset, length);
 782		int swizzled_gpu_offset = gpu_offset ^ 64;
 783
 784		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
 785				       cpu_vaddr + cpu_offset,
 786				       this_length);
 787		if (ret)
 788			return ret + length;
 789
 
 
 
 790		cpu_offset += this_length;
 791		gpu_offset += this_length;
 792		length -= this_length;
 793	}
 794
 795	return 0;
 
 796}
 797
 798/*
 799 * Pins the specified object's pages and synchronizes the object with
 800 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 801 * flush the object from the CPU cache.
 802 */
 803int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
 804				    unsigned int *needs_clflush)
 
 
 
 805{
 806	int ret;
 
 
 
 
 807
 808	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
 809
 810	*needs_clflush = 0;
 811	if (!i915_gem_object_has_struct_page(obj))
 812		return -ENODEV;
 813
 814	ret = i915_gem_object_wait(obj,
 815				   I915_WAIT_INTERRUPTIBLE |
 816				   I915_WAIT_LOCKED,
 817				   MAX_SCHEDULE_TIMEOUT,
 818				   NULL);
 819	if (ret)
 820		return ret;
 821
 822	ret = i915_gem_object_pin_pages(obj);
 823	if (ret)
 824		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825
 826	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
 827	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 828		ret = i915_gem_object_set_to_cpu_domain(obj, false);
 829		if (ret)
 830			goto err_unpin;
 831		else
 832			goto out;
 833	}
 834
 835	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
 836
 837	/* If we're not in the cpu read domain, set ourself into the gtt
 838	 * read domain and manually flush cachelines (if required). This
 839	 * optimizes for the case when the gpu will dirty the data
 840	 * anyway again before the next pread happens.
 841	 */
 842	if (!obj->cache_dirty &&
 843	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
 844		*needs_clflush = CLFLUSH_BEFORE;
 845
 846out:
 847	/* return with the pages pinned */
 848	return 0;
 849
 850err_unpin:
 851	i915_gem_object_unpin_pages(obj);
 852	return ret;
 853}
 854
 855int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
 856				     unsigned int *needs_clflush)
 857{
 858	int ret;
 859
 860	lockdep_assert_held(&obj->base.dev->struct_mutex);
 861
 862	*needs_clflush = 0;
 863	if (!i915_gem_object_has_struct_page(obj))
 864		return -ENODEV;
 865
 866	ret = i915_gem_object_wait(obj,
 867				   I915_WAIT_INTERRUPTIBLE |
 868				   I915_WAIT_LOCKED |
 869				   I915_WAIT_ALL,
 870				   MAX_SCHEDULE_TIMEOUT,
 871				   NULL);
 872	if (ret)
 873		return ret;
 874
 875	ret = i915_gem_object_pin_pages(obj);
 876	if (ret)
 877		return ret;
 878
 879	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
 880	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 881		ret = i915_gem_object_set_to_cpu_domain(obj, true);
 882		if (ret)
 883			goto err_unpin;
 884		else
 885			goto out;
 886	}
 887
 888	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
 889
 890	/* If we're not in the cpu write domain, set ourself into the
 891	 * gtt write domain and manually flush cachelines (as required).
 892	 * This optimizes for the case when the gpu will use the data
 893	 * right away and we therefore have to clflush anyway.
 894	 */
 895	if (!obj->cache_dirty) {
 896		*needs_clflush |= CLFLUSH_AFTER;
 897
 898		/*
 899		 * Same trick applies to invalidate partially written
 900		 * cachelines read before writing.
 901		 */
 902		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
 903			*needs_clflush |= CLFLUSH_BEFORE;
 904	}
 905
 906out:
 907	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 908	obj->mm.dirty = true;
 909	/* return with the pages pinned */
 910	return 0;
 911
 912err_unpin:
 913	i915_gem_object_unpin_pages(obj);
 914	return ret;
 915}
 916
 917static void
 918shmem_clflush_swizzled_range(char *addr, unsigned long length,
 919			     bool swizzled)
 920{
 921	if (unlikely(swizzled)) {
 922		unsigned long start = (unsigned long) addr;
 923		unsigned long end = (unsigned long) addr + length;
 924
 925		/* For swizzling simply ensure that we always flush both
 926		 * channels. Lame, but simple and it works. Swizzled
 927		 * pwrite/pread is far from a hotpath - current userspace
 928		 * doesn't use it at all. */
 929		start = round_down(start, 128);
 930		end = round_up(end, 128);
 931
 932		drm_clflush_virt_range((void *)start, end - start);
 933	} else {
 934		drm_clflush_virt_range(addr, length);
 935	}
 936
 937}
 938
 939/* Only difference to the fast-path function is that this can handle bit17
 940 * and uses non-atomic copy and kmap functions. */
 941static int
 942shmem_pread_slow(struct page *page, int offset, int length,
 943		 char __user *user_data,
 944		 bool page_do_bit17_swizzling, bool needs_clflush)
 
 945{
 946	char *vaddr;
 
 
 
 
 
 
 
 
 947	int ret;
 948
 949	vaddr = kmap(page);
 950	if (needs_clflush)
 951		shmem_clflush_swizzled_range(vaddr + offset, length,
 952					     page_do_bit17_swizzling);
 953
 954	if (page_do_bit17_swizzling)
 955		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
 956	else
 957		ret = __copy_to_user(user_data, vaddr + offset, length);
 958	kunmap(page);
 959
 960	return ret ? - EFAULT : 0;
 961}
 962
 963static int
 964shmem_pread(struct page *page, int offset, int length, char __user *user_data,
 965	    bool page_do_bit17_swizzling, bool needs_clflush)
 966{
 967	int ret;
 968
 969	ret = -ENODEV;
 970	if (!page_do_bit17_swizzling) {
 971		char *vaddr = kmap_atomic(page);
 972
 973		if (needs_clflush)
 974			drm_clflush_virt_range(vaddr + offset, length);
 975		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
 976		kunmap_atomic(vaddr);
 977	}
 978	if (ret == 0)
 979		return 0;
 980
 981	return shmem_pread_slow(page, offset, length, user_data,
 982				page_do_bit17_swizzling, needs_clflush);
 983}
 984
 985static int
 986i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
 987		     struct drm_i915_gem_pread *args)
 988{
 989	char __user *user_data;
 990	u64 remain;
 991	unsigned int obj_do_bit17_swizzling;
 992	unsigned int needs_clflush;
 993	unsigned int idx, offset;
 994	int ret;
 995
 996	obj_do_bit17_swizzling = 0;
 997	if (i915_gem_object_needs_bit17_swizzle(obj))
 998		obj_do_bit17_swizzling = BIT(17);
 999
1000	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1001	if (ret)
1002		return ret;
1003
1004	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1005	mutex_unlock(&obj->base.dev->struct_mutex);
1006	if (ret)
1007		return ret;
1008
1009	remain = args->size;
1010	user_data = u64_to_user_ptr(args->data_ptr);
1011	offset = offset_in_page(args->offset);
1012	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1013		struct page *page = i915_gem_object_get_page(obj, idx);
1014		int length;
1015
1016		length = remain;
1017		if (offset + length > PAGE_SIZE)
1018			length = PAGE_SIZE - offset;
1019
1020		ret = shmem_pread(page, offset, length, user_data,
1021				  page_to_phys(page) & obj_do_bit17_swizzling,
1022				  needs_clflush);
1023		if (ret)
1024			break;
1025
1026		remain -= length;
1027		user_data += length;
1028		offset = 0;
1029	}
 
 
 
1030
1031	i915_gem_obj_finish_shmem_access(obj);
1032	return ret;
1033}
1034
1035static inline bool
1036gtt_user_read(struct io_mapping *mapping,
1037	      loff_t base, int offset,
1038	      char __user *user_data, int length)
1039{
1040	void __iomem *vaddr;
1041	unsigned long unwritten;
1042
1043	/* We can use the cpu mem copy function because this is X86. */
1044	vaddr = io_mapping_map_atomic_wc(mapping, base);
1045	unwritten = __copy_to_user_inatomic(user_data,
1046					    (void __force *)vaddr + offset,
1047					    length);
1048	io_mapping_unmap_atomic(vaddr);
1049	if (unwritten) {
1050		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1051		unwritten = copy_to_user(user_data,
1052					 (void __force *)vaddr + offset,
1053					 length);
1054		io_mapping_unmap(vaddr);
1055	}
1056	return unwritten;
1057}
1058
1059static int
1060i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1061		   const struct drm_i915_gem_pread *args)
1062{
1063	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1064	struct i915_ggtt *ggtt = &i915->ggtt;
1065	struct drm_mm_node node;
1066	struct i915_vma *vma;
1067	void __user *user_data;
1068	u64 remain, offset;
1069	int ret;
1070
1071	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1072	if (ret)
1073		return ret;
1074
1075	intel_runtime_pm_get(i915);
1076	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1077				       PIN_MAPPABLE |
1078				       PIN_NONFAULT |
1079				       PIN_NONBLOCK);
1080	if (!IS_ERR(vma)) {
1081		node.start = i915_ggtt_offset(vma);
1082		node.allocated = false;
1083		ret = i915_vma_put_fence(vma);
1084		if (ret) {
1085			i915_vma_unpin(vma);
1086			vma = ERR_PTR(ret);
1087		}
1088	}
1089	if (IS_ERR(vma)) {
1090		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1091		if (ret)
1092			goto out_unlock;
1093		GEM_BUG_ON(!node.allocated);
1094	}
1095
1096	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1097	if (ret)
1098		goto out_unpin;
1099
1100	mutex_unlock(&i915->drm.struct_mutex);
1101
1102	user_data = u64_to_user_ptr(args->data_ptr);
1103	remain = args->size;
1104	offset = args->offset;
1105
1106	while (remain > 0) {
 
 
1107		/* Operation in this page
1108		 *
1109		 * page_base = page offset within aperture
1110		 * page_offset = offset within page
 
1111		 * page_length = bytes to copy for this page
1112		 */
1113		u32 page_base = node.start;
1114		unsigned page_offset = offset_in_page(offset);
1115		unsigned page_length = PAGE_SIZE - page_offset;
1116		page_length = remain < page_length ? remain : page_length;
1117		if (node.allocated) {
1118			wmb();
1119			ggtt->base.insert_page(&ggtt->base,
1120					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1121					       node.start, I915_CACHE_NONE, 0);
1122			wmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
1123		} else {
1124			page_base += offset & PAGE_MASK;
 
 
 
 
1125		}
1126
1127		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1128				  user_data, page_length)) {
1129			ret = -EFAULT;
1130			break;
1131		}
1132
1133		remain -= page_length;
1134		user_data += page_length;
1135		offset += page_length;
1136	}
1137
1138	mutex_lock(&i915->drm.struct_mutex);
1139out_unpin:
1140	if (node.allocated) {
1141		wmb();
1142		ggtt->base.clear_range(&ggtt->base,
1143				       node.start, node.size);
1144		remove_mappable_node(&node);
1145	} else {
1146		i915_vma_unpin(vma);
1147	}
1148out_unlock:
1149	intel_runtime_pm_put(i915);
1150	mutex_unlock(&i915->drm.struct_mutex);
1151
1152	return ret;
1153}
1154
1155/**
1156 * Reads data from the object referenced by handle.
1157 * @dev: drm device pointer
1158 * @data: ioctl data blob
1159 * @file: drm file pointer
1160 *
1161 * On error, the contents of *data are undefined.
1162 */
1163int
1164i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1165		     struct drm_file *file)
1166{
1167	struct drm_i915_gem_pread *args = data;
1168	struct drm_i915_gem_object *obj;
1169	int ret;
1170
1171	if (args->size == 0)
1172		return 0;
1173
1174	if (!access_ok(VERIFY_WRITE,
1175		       u64_to_user_ptr(args->data_ptr),
1176		       args->size))
1177		return -EFAULT;
1178
1179	obj = i915_gem_object_lookup(file, args->handle);
1180	if (!obj)
1181		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
1182
1183	/* Bounds check source.  */
1184	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 
1185		ret = -EINVAL;
1186		goto out;
1187	}
1188
1189	trace_i915_gem_object_pread(obj, args->offset, args->size);
1190
1191	ret = i915_gem_object_wait(obj,
1192				   I915_WAIT_INTERRUPTIBLE,
1193				   MAX_SCHEDULE_TIMEOUT,
1194				   to_rps_client(file));
1195	if (ret)
1196		goto out;
1197
1198	ret = i915_gem_object_pin_pages(obj);
1199	if (ret)
1200		goto out;
 
 
1201
1202	ret = i915_gem_shmem_pread(obj, args);
1203	if (ret == -EFAULT || ret == -ENODEV)
1204		ret = i915_gem_gtt_pread(obj, args);
1205
1206	i915_gem_object_unpin_pages(obj);
1207out:
1208	i915_gem_object_put(obj);
 
 
1209	return ret;
1210}
1211
1212/* This is the fast write path which cannot handle
1213 * page faults in the source data
1214 */
1215
1216static inline bool
1217ggtt_write(struct io_mapping *mapping,
1218	   loff_t base, int offset,
1219	   char __user *user_data, int length)
 
1220{
1221	void __iomem *vaddr;
1222	unsigned long unwritten;
1223
1224	/* We can use the cpu mem copy function because this is X86. */
1225	vaddr = io_mapping_map_atomic_wc(mapping, base);
1226	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1227						      user_data, length);
1228	io_mapping_unmap_atomic(vaddr);
1229	if (unwritten) {
1230		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1231		unwritten = copy_from_user((void __force *)vaddr + offset,
1232					   user_data, length);
1233		io_mapping_unmap(vaddr);
1234	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235
1236	return unwritten;
 
1237}
1238
1239/**
1240 * This is the fast pwrite path, where we copy the data directly from the
1241 * user into the GTT, uncached.
1242 * @obj: i915 GEM object
1243 * @args: pwrite arguments structure
1244 */
1245static int
1246i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1247			 const struct drm_i915_gem_pwrite *args)
 
 
1248{
1249	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1250	struct i915_ggtt *ggtt = &i915->ggtt;
1251	struct drm_mm_node node;
1252	struct i915_vma *vma;
1253	u64 remain, offset;
1254	void __user *user_data;
1255	int ret;
 
 
 
1256
1257	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1258	if (ret)
1259		return ret;
 
 
 
 
 
 
 
 
 
1260
1261	if (i915_gem_object_has_struct_page(obj)) {
1262		/*
1263		 * Avoid waking the device up if we can fallback, as
1264		 * waking/resuming is very slow (worst-case 10-100 ms
1265		 * depending on PCI sleeps and our own resume time).
1266		 * This easily dwarfs any performance advantage from
1267		 * using the cache bypass of indirect GGTT access.
1268		 */
1269		if (!intel_runtime_pm_get_if_in_use(i915)) {
1270			ret = -EFAULT;
1271			goto out_unlock;
1272		}
1273	} else {
1274		/* No backing pages, no fallback, we must force GGTT access */
1275		intel_runtime_pm_get(i915);
1276	}
1277
1278	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1279				       PIN_MAPPABLE |
1280				       PIN_NONFAULT |
1281				       PIN_NONBLOCK);
1282	if (!IS_ERR(vma)) {
1283		node.start = i915_ggtt_offset(vma);
1284		node.allocated = false;
1285		ret = i915_vma_put_fence(vma);
1286		if (ret) {
1287			i915_vma_unpin(vma);
1288			vma = ERR_PTR(ret);
1289		}
1290	}
1291	if (IS_ERR(vma)) {
1292		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1293		if (ret)
1294			goto out_rpm;
1295		GEM_BUG_ON(!node.allocated);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296	}
1297
1298	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1299	if (ret)
1300		goto out_unpin;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301
1302	mutex_unlock(&i915->drm.struct_mutex);
 
1303
1304	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1305
1306	user_data = u64_to_user_ptr(args->data_ptr);
1307	offset = args->offset;
1308	remain = args->size;
1309	while (remain) {
 
 
 
 
 
1310		/* Operation in this page
1311		 *
1312		 * page_base = page offset within aperture
1313		 * page_offset = offset within page
1314		 * page_length = bytes to copy for this page
1315		 */
1316		u32 page_base = node.start;
1317		unsigned int page_offset = offset_in_page(offset);
1318		unsigned int page_length = PAGE_SIZE - page_offset;
1319		page_length = remain < page_length ? remain : page_length;
1320		if (node.allocated) {
1321			wmb(); /* flush the write before we modify the GGTT */
1322			ggtt->base.insert_page(&ggtt->base,
1323					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1324					       node.start, I915_CACHE_NONE, 0);
1325			wmb(); /* flush modifications to the GGTT (insert_page) */
1326		} else {
1327			page_base += offset & PAGE_MASK;
1328		}
 
 
 
 
 
 
1329		/* If we get a fault while copying data, then (presumably) our
1330		 * source page isn't available.  Return the error and we'll
1331		 * retry in the slow path.
1332		 * If the object is non-shmem backed, we retry again with the
1333		 * path that handles page fault.
1334		 */
1335		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1336			       user_data, page_length)) {
1337			ret = -EFAULT;
1338			break;
1339		}
1340
1341		remain -= page_length;
1342		user_data += page_length;
1343		offset += page_length;
1344	}
1345	intel_fb_obj_flush(obj, ORIGIN_CPU);
1346
1347	mutex_lock(&i915->drm.struct_mutex);
1348out_unpin:
1349	if (node.allocated) {
1350		wmb();
1351		ggtt->base.clear_range(&ggtt->base,
1352				       node.start, node.size);
1353		remove_mappable_node(&node);
1354	} else {
1355		i915_vma_unpin(vma);
1356	}
1357out_rpm:
1358	intel_runtime_pm_put(i915);
1359out_unlock:
1360	mutex_unlock(&i915->drm.struct_mutex);
1361	return ret;
1362}
1363
 
 
 
 
 
 
 
1364static int
1365shmem_pwrite_slow(struct page *page, int offset, int length,
1366		  char __user *user_data,
1367		  bool page_do_bit17_swizzling,
1368		  bool needs_clflush_before,
1369		  bool needs_clflush_after)
1370{
1371	char *vaddr;
 
 
 
 
 
 
 
1372	int ret;
 
 
1373
1374	vaddr = kmap(page);
1375	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1376		shmem_clflush_swizzled_range(vaddr + offset, length,
1377					     page_do_bit17_swizzling);
1378	if (page_do_bit17_swizzling)
1379		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1380						length);
1381	else
1382		ret = __copy_from_user(vaddr + offset, user_data, length);
1383	if (needs_clflush_after)
1384		shmem_clflush_swizzled_range(vaddr + offset, length,
1385					     page_do_bit17_swizzling);
1386	kunmap(page);
1387
1388	return ret ? -EFAULT : 0;
1389}
1390
1391/* Per-page copy function for the shmem pwrite fastpath.
1392 * Flushes invalid cachelines before writing to the target if
1393 * needs_clflush_before is set and flushes out any written cachelines after
1394 * writing if needs_clflush is set.
1395 */
1396static int
1397shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1398	     bool page_do_bit17_swizzling,
1399	     bool needs_clflush_before,
1400	     bool needs_clflush_after)
1401{
1402	int ret;
1403
1404	ret = -ENODEV;
1405	if (!page_do_bit17_swizzling) {
1406		char *vaddr = kmap_atomic(page);
1407
1408		if (needs_clflush_before)
1409			drm_clflush_virt_range(vaddr + offset, len);
1410		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1411		if (needs_clflush_after)
1412			drm_clflush_virt_range(vaddr + offset, len);
1413
1414		kunmap_atomic(vaddr);
 
 
 
 
 
 
 
 
1415	}
1416	if (ret == 0)
1417		return ret;
1418
1419	return shmem_pwrite_slow(page, offset, len, user_data,
1420				 page_do_bit17_swizzling,
1421				 needs_clflush_before,
1422				 needs_clflush_after);
1423}
 
 
 
1424
1425static int
1426i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1427		      const struct drm_i915_gem_pwrite *args)
1428{
1429	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1430	void __user *user_data;
1431	u64 remain;
1432	unsigned int obj_do_bit17_swizzling;
1433	unsigned int partial_cacheline_write;
1434	unsigned int needs_clflush;
1435	unsigned int offset, idx;
1436	int ret;
1437
1438	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1439	if (ret)
1440		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1441
1442	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1443	mutex_unlock(&i915->drm.struct_mutex);
1444	if (ret)
1445		return ret;
 
1446
1447	obj_do_bit17_swizzling = 0;
1448	if (i915_gem_object_needs_bit17_swizzle(obj))
1449		obj_do_bit17_swizzling = BIT(17);
1450
1451	/* If we don't overwrite a cacheline completely we need to be
1452	 * careful to have up-to-date data by first clflushing. Don't
1453	 * overcomplicate things and flush the entire patch.
1454	 */
1455	partial_cacheline_write = 0;
1456	if (needs_clflush & CLFLUSH_BEFORE)
1457		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
 
 
 
1458
1459	user_data = u64_to_user_ptr(args->data_ptr);
1460	remain = args->size;
1461	offset = offset_in_page(args->offset);
1462	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1463		struct page *page = i915_gem_object_get_page(obj, idx);
1464		int length;
1465
1466		length = remain;
1467		if (offset + length > PAGE_SIZE)
1468			length = PAGE_SIZE - offset;
1469
1470		ret = shmem_pwrite(page, offset, length, user_data,
1471				   page_to_phys(page) & obj_do_bit17_swizzling,
1472				   (offset | length) & partial_cacheline_write,
1473				   needs_clflush & CLFLUSH_AFTER);
1474		if (ret)
1475			break;
1476
1477		remain -= length;
1478		user_data += length;
1479		offset = 0;
1480	}
1481
1482	intel_fb_obj_flush(obj, ORIGIN_CPU);
1483	i915_gem_obj_finish_shmem_access(obj);
 
 
 
1484	return ret;
1485}
1486
1487/**
1488 * Writes data to the object referenced by handle.
1489 * @dev: drm device
1490 * @data: ioctl data blob
1491 * @file: drm file
1492 *
1493 * On error, the contents of the buffer that were to be modified are undefined.
1494 */
1495int
1496i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1497		      struct drm_file *file)
1498{
1499	struct drm_i915_gem_pwrite *args = data;
1500	struct drm_i915_gem_object *obj;
1501	int ret;
1502
1503	if (args->size == 0)
1504		return 0;
1505
1506	if (!access_ok(VERIFY_READ,
1507		       u64_to_user_ptr(args->data_ptr),
1508		       args->size))
1509		return -EFAULT;
1510
1511	obj = i915_gem_object_lookup(file, args->handle);
1512	if (!obj)
1513		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
1514
1515	/* Bounds check destination. */
1516	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 
1517		ret = -EINVAL;
1518		goto err;
1519	}
1520
1521	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1522
1523	ret = -ENODEV;
1524	if (obj->ops->pwrite)
1525		ret = obj->ops->pwrite(obj, args);
1526	if (ret != -ENODEV)
1527		goto err;
1528
1529	ret = i915_gem_object_wait(obj,
1530				   I915_WAIT_INTERRUPTIBLE |
1531				   I915_WAIT_ALL,
1532				   MAX_SCHEDULE_TIMEOUT,
1533				   to_rps_client(file));
1534	if (ret)
1535		goto err;
1536
1537	ret = i915_gem_object_pin_pages(obj);
1538	if (ret)
1539		goto err;
1540
1541	ret = -EFAULT;
1542	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1543	 * it would end up going through the fenced access, and we'll get
1544	 * different detiling behavior between reading and writing.
1545	 * pread/pwrite currently are reading and writing from the CPU
1546	 * perspective, requiring manual detiling by the client.
1547	 */
1548	if (!i915_gem_object_has_struct_page(obj) ||
1549	    cpu_write_needs_clflush(obj))
1550		/* Note that the gtt paths might fail with non-page-backed user
1551		 * pointers (e.g. gtt mappings when moving data between
1552		 * textures). Fallback to the shmem path in that case.
1553		 */
1554		ret = i915_gem_gtt_pwrite_fast(obj, args);
1555
1556	if (ret == -EFAULT || ret == -ENOSPC) {
1557		if (obj->phys_handle)
1558			ret = i915_gem_phys_pwrite(obj, args, file);
1559		else
1560			ret = i915_gem_shmem_pwrite(obj, args);
1561	}
1562
1563	i915_gem_object_unpin_pages(obj);
1564err:
1565	i915_gem_object_put(obj);
1566	return ret;
1567}
1568
1569static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1570{
1571	struct drm_i915_private *i915;
1572	struct list_head *list;
1573	struct i915_vma *vma;
1574
1575	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
 
 
 
 
 
1576
1577	for_each_ggtt_vma(vma, obj) {
1578		if (i915_vma_is_active(vma))
1579			continue;
1580
1581		if (!drm_mm_node_allocated(&vma->node))
1582			continue;
1583
1584		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1585	}
1586
1587	i915 = to_i915(obj->base.dev);
1588	spin_lock(&i915->mm.obj_lock);
1589	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1590	list_move_tail(&obj->mm.link, list);
1591	spin_unlock(&i915->mm.obj_lock);
1592}
1593
1594/**
1595 * Called when user space prepares to use an object with the CPU, either
1596 * through the mmap ioctl's mapping or a GTT mapping.
1597 * @dev: drm device
1598 * @data: ioctl data blob
1599 * @file: drm file
1600 */
1601int
1602i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1603			  struct drm_file *file)
1604{
1605	struct drm_i915_gem_set_domain *args = data;
1606	struct drm_i915_gem_object *obj;
1607	uint32_t read_domains = args->read_domains;
1608	uint32_t write_domain = args->write_domain;
1609	int err;
 
 
 
1610
1611	/* Only handle setting domains to types used by the CPU. */
1612	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
 
 
 
1613		return -EINVAL;
1614
1615	/* Having something in the write domain implies it's in the read
1616	 * domain, and only that read domain.  Enforce that in the request.
1617	 */
1618	if (write_domain != 0 && read_domains != write_domain)
1619		return -EINVAL;
1620
1621	obj = i915_gem_object_lookup(file, args->handle);
1622	if (!obj)
1623		return -ENOENT;
1624
1625	/* Try to flush the object off the GPU without holding the lock.
1626	 * We will repeat the flush holding the lock in the normal manner
1627	 * to catch cases where we are gazumped.
1628	 */
1629	err = i915_gem_object_wait(obj,
1630				   I915_WAIT_INTERRUPTIBLE |
1631				   (write_domain ? I915_WAIT_ALL : 0),
1632				   MAX_SCHEDULE_TIMEOUT,
1633				   to_rps_client(file));
1634	if (err)
1635		goto out;
1636
1637	/*
1638	 * Proxy objects do not control access to the backing storage, ergo
1639	 * they cannot be used as a means to manipulate the cache domain
1640	 * tracking for that backing storage. The proxy object is always
1641	 * considered to be outside of any cache domain.
1642	 */
1643	if (i915_gem_object_is_proxy(obj)) {
1644		err = -ENXIO;
1645		goto out;
1646	}
1647
1648	/*
1649	 * Flush and acquire obj->pages so that we are coherent through
1650	 * direct access in memory with previous cached writes through
1651	 * shmemfs and that our cache domain tracking remains valid.
1652	 * For example, if the obj->filp was moved to swap without us
1653	 * being notified and releasing the pages, we would mistakenly
1654	 * continue to assume that the obj remained out of the CPU cached
1655	 * domain.
1656	 */
1657	err = i915_gem_object_pin_pages(obj);
1658	if (err)
1659		goto out;
1660
1661	err = i915_mutex_lock_interruptible(dev);
1662	if (err)
1663		goto out_unpin;
1664
1665	if (read_domains & I915_GEM_DOMAIN_WC)
1666		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1667	else if (read_domains & I915_GEM_DOMAIN_GTT)
1668		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1669	else
1670		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1671
1672	/* And bump the LRU for this access */
1673	i915_gem_object_bump_inactive_ggtt(obj);
1674
 
 
1675	mutex_unlock(&dev->struct_mutex);
1676
1677	if (write_domain != 0)
1678		intel_fb_obj_invalidate(obj,
1679					fb_write_origin(obj, write_domain));
1680
1681out_unpin:
1682	i915_gem_object_unpin_pages(obj);
1683out:
1684	i915_gem_object_put(obj);
1685	return err;
1686}
1687
1688/**
1689 * Called when user space has done writes to this buffer
1690 * @dev: drm device
1691 * @data: ioctl data blob
1692 * @file: drm file
1693 */
1694int
1695i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1696			 struct drm_file *file)
1697{
1698	struct drm_i915_gem_sw_finish *args = data;
1699	struct drm_i915_gem_object *obj;
 
1700
1701	obj = i915_gem_object_lookup(file, args->handle);
1702	if (!obj)
1703		return -ENOENT;
 
 
 
1704
1705	/*
1706	 * Proxy objects are barred from CPU access, so there is no
1707	 * need to ban sw_finish as it is a nop.
1708	 */
 
1709
1710	/* Pinned buffers may be scanout, so flush the cache */
1711	i915_gem_object_flush_if_display(obj);
1712	i915_gem_object_put(obj);
1713
1714	return 0;
 
 
 
1715}
1716
1717/**
1718 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1719 *			 it is mapped to.
1720 * @dev: drm device
1721 * @data: ioctl data blob
1722 * @file: drm file
1723 *
1724 * While the mapping holds a reference on the contents of the object, it doesn't
1725 * imply a ref on the object itself.
1726 *
1727 * IMPORTANT:
1728 *
1729 * DRM driver writers who look a this function as an example for how to do GEM
1730 * mmap support, please don't implement mmap support like here. The modern way
1731 * to implement DRM mmap support is with an mmap offset ioctl (like
1732 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1733 * That way debug tooling like valgrind will understand what's going on, hiding
1734 * the mmap call in a driver private ioctl will break that. The i915 driver only
1735 * does cpu mmaps this way because we didn't know better.
1736 */
1737int
1738i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1739		    struct drm_file *file)
1740{
 
1741	struct drm_i915_gem_mmap *args = data;
1742	struct drm_i915_gem_object *obj;
1743	unsigned long addr;
1744
1745	if (args->flags & ~(I915_MMAP_WC))
1746		return -EINVAL;
1747
1748	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1749		return -ENODEV;
1750
1751	obj = i915_gem_object_lookup(file, args->handle);
1752	if (!obj)
1753		return -ENOENT;
1754
1755	/* prime objects have no backing filp to GEM mmap
1756	 * pages from.
1757	 */
1758	if (!obj->base.filp) {
1759		i915_gem_object_put(obj);
1760		return -ENXIO;
1761	}
1762
1763	addr = vm_mmap(obj->base.filp, 0, args->size,
 
1764		       PROT_READ | PROT_WRITE, MAP_SHARED,
1765		       args->offset);
1766	if (args->flags & I915_MMAP_WC) {
1767		struct mm_struct *mm = current->mm;
1768		struct vm_area_struct *vma;
1769
1770		if (down_write_killable(&mm->mmap_sem)) {
1771			i915_gem_object_put(obj);
1772			return -EINTR;
1773		}
1774		vma = find_vma(mm, addr);
1775		if (vma)
1776			vma->vm_page_prot =
1777				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1778		else
1779			addr = -ENOMEM;
1780		up_write(&mm->mmap_sem);
1781
1782		/* This may race, but that's ok, it only gets set */
1783		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1784	}
1785	i915_gem_object_put(obj);
1786	if (IS_ERR((void *)addr))
1787		return addr;
1788
1789	args->addr_ptr = (uint64_t) addr;
1790
1791	return 0;
1792}
1793
1794static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1795{
1796	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1797}
1798
1799/**
1800 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1801 *
1802 * A history of the GTT mmap interface:
1803 *
1804 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1805 *     aligned and suitable for fencing, and still fit into the available
1806 *     mappable space left by the pinned display objects. A classic problem
1807 *     we called the page-fault-of-doom where we would ping-pong between
1808 *     two objects that could not fit inside the GTT and so the memcpy
1809 *     would page one object in at the expense of the other between every
1810 *     single byte.
1811 *
1812 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1813 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1814 *     object is too large for the available space (or simply too large
1815 *     for the mappable aperture!), a view is created instead and faulted
1816 *     into userspace. (This view is aligned and sized appropriately for
1817 *     fenced access.)
1818 *
1819 * 2 - Recognise WC as a separate cache domain so that we can flush the
1820 *     delayed writes via GTT before performing direct access via WC.
1821 *
1822 * Restrictions:
1823 *
1824 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1825 *    hangs on some architectures, corruption on others. An attempt to service
1826 *    a GTT page fault from a snoopable object will generate a SIGBUS.
1827 *
1828 *  * the object must be able to fit into RAM (physical memory, though no
1829 *    limited to the mappable aperture).
1830 *
1831 *
1832 * Caveats:
1833 *
1834 *  * a new GTT page fault will synchronize rendering from the GPU and flush
1835 *    all data to system memory. Subsequent access will not be synchronized.
1836 *
1837 *  * all mappings are revoked on runtime device suspend.
1838 *
1839 *  * there are only 8, 16 or 32 fence registers to share between all users
1840 *    (older machines require fence register for display and blitter access
1841 *    as well). Contention of the fence registers will cause the previous users
1842 *    to be unmapped and any new access will generate new page faults.
1843 *
1844 *  * running out of memory while servicing a fault may generate a SIGBUS,
1845 *    rather than the expected SIGSEGV.
1846 */
1847int i915_gem_mmap_gtt_version(void)
1848{
1849	return 2;
1850}
1851
1852static inline struct i915_ggtt_view
1853compute_partial_view(struct drm_i915_gem_object *obj,
1854		     pgoff_t page_offset,
1855		     unsigned int chunk)
1856{
1857	struct i915_ggtt_view view;
1858
1859	if (i915_gem_object_is_tiled(obj))
1860		chunk = roundup(chunk, tile_row_pages(obj));
1861
1862	view.type = I915_GGTT_VIEW_PARTIAL;
1863	view.partial.offset = rounddown(page_offset, chunk);
1864	view.partial.size =
1865		min_t(unsigned int, chunk,
1866		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1867
1868	/* If the partial covers the entire object, just create a normal VMA. */
1869	if (chunk >= obj->base.size >> PAGE_SHIFT)
1870		view.type = I915_GGTT_VIEW_NORMAL;
1871
1872	return view;
1873}
1874
1875/**
1876 * i915_gem_fault - fault a page into the GTT
1877 * @vmf: fault info
 
1878 *
1879 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1880 * from userspace.  The fault handler takes care of binding the object to
1881 * the GTT (if needed), allocating and programming a fence register (again,
1882 * only if needed based on whether the old reg is still valid or the object
1883 * is tiled) and inserting a new PTE into the faulting process.
1884 *
1885 * Note that the faulting process may involve evicting existing objects
1886 * from the GTT and/or fence registers to make room.  So performance may
1887 * suffer if the GTT working set is large or there are few fence registers
1888 * left.
1889 *
1890 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1891 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1892 */
1893int i915_gem_fault(struct vm_fault *vmf)
1894{
1895#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1896	struct vm_area_struct *area = vmf->vma;
1897	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1898	struct drm_device *dev = obj->base.dev;
1899	struct drm_i915_private *dev_priv = to_i915(dev);
1900	struct i915_ggtt *ggtt = &dev_priv->ggtt;
 
 
1901	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1902	struct i915_vma *vma;
1903	pgoff_t page_offset;
1904	unsigned int flags;
1905	int ret;
1906
1907	/* We don't use vmf->pgoff since that has the fake offset */
1908	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
 
1909
1910	trace_i915_gem_object_fault(obj, page_offset, true, write);
1911
1912	/* Try to flush the object off the GPU first without holding the lock.
1913	 * Upon acquiring the lock, we will perform our sanity checks and then
1914	 * repeat the flush holding the lock in the normal manner to catch cases
1915	 * where we are gazumped.
1916	 */
1917	ret = i915_gem_object_wait(obj,
1918				   I915_WAIT_INTERRUPTIBLE,
1919				   MAX_SCHEDULE_TIMEOUT,
1920				   NULL);
1921	if (ret)
1922		goto err;
1923
1924	ret = i915_gem_object_pin_pages(obj);
1925	if (ret)
1926		goto err;
1927
1928	intel_runtime_pm_get(dev_priv);
 
 
 
 
 
 
 
 
 
1929
1930	ret = i915_mutex_lock_interruptible(dev);
1931	if (ret)
1932		goto err_rpm;
1933
1934	/* Access to snoopable pages through the GTT is incoherent. */
1935	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1936		ret = -EFAULT;
1937		goto err_unlock;
1938	}
1939
1940	/* If the object is smaller than a couple of partial vma, it is
1941	 * not worth only creating a single partial vma - we may as well
1942	 * clear enough space for the full object.
1943	 */
1944	flags = PIN_MAPPABLE;
1945	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1946		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1947
1948	/* Now pin it into the GTT as needed */
1949	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1950	if (IS_ERR(vma)) {
1951		/* Use a partial view if it is bigger than available space */
1952		struct i915_ggtt_view view =
1953			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1954
1955		/* Userspace is now writing through an untracked VMA, abandon
1956		 * all hope that the hardware is able to track future writes.
1957		 */
1958		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1959
1960		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1961	}
1962	if (IS_ERR(vma)) {
1963		ret = PTR_ERR(vma);
1964		goto err_unlock;
1965	}
1966
1967	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1968	if (ret)
1969		goto err_unpin;
1970
1971	ret = i915_vma_pin_fence(vma);
1972	if (ret)
1973		goto err_unpin;
1974
1975	/* Finally, remap it using the new GTT offset */
1976	ret = remap_io_mapping(area,
1977			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1978			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1979			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1980			       &ggtt->iomap);
1981	if (ret)
1982		goto err_fence;
1983
1984	/* Mark as being mmapped into userspace for later revocation */
1985	assert_rpm_wakelock_held(dev_priv);
1986	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1987		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1988	GEM_BUG_ON(!obj->userfault_count);
1989
1990	i915_vma_set_ggtt_write(vma);
1991
1992err_fence:
1993	i915_vma_unpin_fence(vma);
1994err_unpin:
1995	__i915_vma_unpin(vma);
1996err_unlock:
1997	mutex_unlock(&dev->struct_mutex);
1998err_rpm:
1999	intel_runtime_pm_put(dev_priv);
2000	i915_gem_object_unpin_pages(obj);
2001err:
2002	switch (ret) {
2003	case -EIO:
2004		/*
2005		 * We eat errors when the gpu is terminally wedged to avoid
2006		 * userspace unduly crashing (gl has no provisions for mmaps to
2007		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2008		 * and so needs to be reported.
2009		 */
2010		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2011			ret = VM_FAULT_SIGBUS;
2012			break;
2013		}
2014	case -EAGAIN:
2015		/*
2016		 * EAGAIN means the gpu is hung and we'll wait for the error
2017		 * handler to reset everything when re-faulting in
2018		 * i915_mutex_lock_interruptible.
 
 
2019		 */
 
2020	case 0:
2021	case -ERESTARTSYS:
2022	case -EINTR:
2023	case -EBUSY:
2024		/*
2025		 * EBUSY is ok: this just means that another thread
2026		 * already did the job.
2027		 */
2028		ret = VM_FAULT_NOPAGE;
2029		break;
2030	case -ENOMEM:
2031		ret = VM_FAULT_OOM;
2032		break;
2033	case -ENOSPC:
2034	case -EFAULT:
2035		ret = VM_FAULT_SIGBUS;
2036		break;
2037	default:
2038		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2039		ret = VM_FAULT_SIGBUS;
2040		break;
2041	}
2042	return ret;
2043}
2044
2045static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
 
 
 
 
 
 
 
 
 
 
 
 
2046{
2047	struct i915_vma *vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2048
2049	GEM_BUG_ON(!obj->userfault_count);
 
 
 
 
 
2050
2051	obj->userfault_count = 0;
2052	list_del(&obj->userfault_link);
2053	drm_vma_node_unmap(&obj->base.vma_node,
2054			   obj->base.dev->anon_inode->i_mapping);
2055
2056	for_each_ggtt_vma(vma, obj)
2057		i915_vma_unset_userfault(vma);
 
 
 
 
 
2058}
2059
2060/**
2061 * i915_gem_release_mmap - remove physical page mappings
2062 * @obj: obj in question
2063 *
2064 * Preserve the reservation of the mmapping with the DRM core code, but
2065 * relinquish ownership of the pages back to the system.
2066 *
2067 * It is vital that we remove the page mapping if we have mapped a tiled
2068 * object through the GTT and then lose the fence register due to
2069 * resource pressure. Similarly if the object has been moved out of the
2070 * aperture, than pages mapped into userspace must be revoked. Removing the
2071 * mapping will then trigger a page fault on the next user access, allowing
2072 * fixup by i915_gem_fault().
2073 */
2074void
2075i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2076{
2077	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 
2078
2079	/* Serialisation between user GTT access and our code depends upon
2080	 * revoking the CPU's PTE whilst the mutex is held. The next user
2081	 * pagefault then has to wait until we release the mutex.
2082	 *
2083	 * Note that RPM complicates somewhat by adding an additional
2084	 * requirement that operations to the GGTT be made holding the RPM
2085	 * wakeref.
2086	 */
2087	lockdep_assert_held(&i915->drm.struct_mutex);
2088	intel_runtime_pm_get(i915);
2089
2090	if (!obj->userfault_count)
2091		goto out;
2092
2093	__i915_gem_object_release_mmap(obj);
 
 
 
 
 
2094
2095	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2096	 * memory transactions from userspace before we return. The TLB
2097	 * flushing implied above by changing the PTE above *should* be
2098	 * sufficient, an extra barrier here just provides us with a bit
2099	 * of paranoid documentation about our requirement to serialise
2100	 * memory writes before touching registers / GSM.
2101	 */
2102	wmb();
2103
2104out:
2105	intel_runtime_pm_put(i915);
2106}
2107
2108void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
 
2109{
2110	struct drm_i915_gem_object *obj, *on;
2111	int i;
2112
2113	/*
2114	 * Only called during RPM suspend. All users of the userfault_list
2115	 * must be holding an RPM wakeref to ensure that this can not
2116	 * run concurrently with themselves (and use the struct_mutex for
2117	 * protection between themselves).
2118	 */
2119
2120	list_for_each_entry_safe(obj, on,
2121				 &dev_priv->mm.userfault_list, userfault_link)
2122		__i915_gem_object_release_mmap(obj);
2123
2124	/* The fence will be lost when the device powers down. If any were
2125	 * in use by hardware (i.e. they are pinned), we should not be powering
2126	 * down! All other fences will be reacquired by the user upon waking.
2127	 */
2128	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2129		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2130
2131		/* Ideally we want to assert that the fence register is not
2132		 * live at this point (i.e. that no piece of code will be
2133		 * trying to write through fence + GTT, as that both violates
2134		 * our tracking of activity and associated locking/barriers,
2135		 * but also is illegal given that the hw is powered down).
2136		 *
2137		 * Previously we used reg->pin_count as a "liveness" indicator.
2138		 * That is not sufficient, and we need a more fine-grained
2139		 * tool if we want to have a sanity check here.
2140		 */
2141
2142		if (!reg->vma)
2143			continue;
2144
2145		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2146		reg->dirty = true;
2147	}
2148}
2149
2150static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
 
 
 
 
 
 
 
 
 
 
2151{
2152	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2153	int err;
 
 
 
 
 
2154
2155	err = drm_gem_create_mmap_offset(&obj->base);
2156	if (likely(!err))
2157		return 0;
2158
2159	/* Attempt to reap some mmap space from dead objects */
2160	do {
2161		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2162		if (err)
2163			break;
2164
2165		i915_gem_drain_freed_objects(dev_priv);
2166		err = drm_gem_create_mmap_offset(&obj->base);
2167		if (!err)
2168			break;
2169
2170	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2171
2172	return err;
2173}
2174
2175static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
 
 
 
 
 
 
 
 
 
 
 
 
 
2176{
2177	drm_gem_free_mmap_offset(&obj->base);
 
 
 
 
 
 
 
 
 
 
 
2178}
2179
2180int
2181i915_gem_mmap_gtt(struct drm_file *file,
2182		  struct drm_device *dev,
2183		  uint32_t handle,
2184		  uint64_t *offset)
2185{
 
2186	struct drm_i915_gem_object *obj;
2187	int ret;
2188
2189	obj = i915_gem_object_lookup(file, handle);
2190	if (!obj)
2191		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2192
2193	ret = i915_gem_object_create_mmap_offset(obj);
2194	if (ret == 0)
2195		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2196
2197	i915_gem_object_put(obj);
 
 
 
2198	return ret;
2199}
2200
2201/**
2202 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2203 * @dev: DRM device
2204 * @data: GTT mapping ioctl data
2205 * @file: GEM object info
2206 *
2207 * Simply returns the fake offset to userspace so it can mmap it.
2208 * The mmap call will end up in drm_gem_mmap(), which will set things
2209 * up so we can get faults in the handler above.
2210 *
2211 * The fault handler will take care of binding the object into the GTT
2212 * (since it may have been evicted to make room for something), allocating
2213 * a fence register, and mapping the appropriate aperture address into
2214 * userspace.
2215 */
2216int
2217i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2218			struct drm_file *file)
2219{
2220	struct drm_i915_gem_mmap_gtt *args = data;
2221
 
 
 
2222	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2223}
2224
2225/* Immediately discard the backing storage */
2226static void
2227i915_gem_object_truncate(struct drm_i915_gem_object *obj)
 
2228{
2229	i915_gem_object_free_mmap_offset(obj);
 
 
 
2230
2231	if (obj->base.filp == NULL)
2232		return;
2233
2234	/* Our goal here is to return as much of the memory as
2235	 * is possible back to the system as we are called from OOM.
2236	 * To do this we must instruct the shmfs to drop all of its
2237	 * backing pages, *now*.
2238	 */
2239	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2240	obj->mm.madv = __I915_MADV_PURGED;
2241	obj->mm.pages = ERR_PTR(-EFAULT);
2242}
 
2243
2244/* Try to discard unwanted pages */
2245void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2246{
2247	struct address_space *mapping;
2248
2249	lockdep_assert_held(&obj->mm.lock);
2250	GEM_BUG_ON(i915_gem_object_has_pages(obj));
 
 
2251
2252	switch (obj->mm.madv) {
2253	case I915_MADV_DONTNEED:
2254		i915_gem_object_truncate(obj);
2255	case __I915_MADV_PURGED:
2256		return;
2257	}
2258
2259	if (obj->base.filp == NULL)
2260		return;
 
 
 
 
 
 
2261
2262	mapping = obj->base.filp->f_mapping,
2263	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
 
2264}
2265
2266static void
2267i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2268			      struct sg_table *pages)
2269{
2270	struct sgt_iter sgt_iter;
2271	struct page *page;
2272
2273	__i915_gem_object_release_shmem(obj, pages, true);
2274
2275	i915_gem_gtt_finish_pages(obj, pages);
 
2276
2277	if (i915_gem_object_needs_bit17_swizzle(obj))
2278		i915_gem_object_save_bit_17_swizzle(obj, pages);
2279
2280	for_each_sgt_page(page, sgt_iter, pages) {
2281		if (obj->mm.dirty)
2282			set_page_dirty(page);
2283
2284		if (obj->mm.madv == I915_MADV_WILLNEED)
2285			mark_page_accessed(page);
2286
2287		put_page(page);
2288	}
2289	obj->mm.dirty = false;
2290
2291	sg_free_table(pages);
2292	kfree(pages);
2293}
2294
2295static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
 
 
 
2296{
2297	struct radix_tree_iter iter;
2298	void __rcu **slot;
2299
2300	rcu_read_lock();
2301	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2302		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2303	rcu_read_unlock();
2304}
2305
2306void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2307				 enum i915_mm_subclass subclass)
2308{
2309	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2310	struct sg_table *pages;
2311
2312	if (i915_gem_object_has_pinned_pages(obj))
2313		return;
 
2314
2315	GEM_BUG_ON(obj->bind_count);
2316	if (!i915_gem_object_has_pages(obj))
2317		return;
2318
2319	/* May be called by shrinker from within get_pages() (on another bo) */
2320	mutex_lock_nested(&obj->mm.lock, subclass);
2321	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2322		goto unlock;
2323
2324	/* ->put_pages might need to allocate memory for the bit17 swizzle
2325	 * array, hence protect them from being reaped by removing them from gtt
2326	 * lists early. */
2327	pages = fetch_and_zero(&obj->mm.pages);
2328	GEM_BUG_ON(!pages);
2329
2330	spin_lock(&i915->mm.obj_lock);
2331	list_del(&obj->mm.link);
2332	spin_unlock(&i915->mm.obj_lock);
2333
2334	if (obj->mm.mapping) {
2335		void *ptr;
2336
2337		ptr = page_mask_bits(obj->mm.mapping);
2338		if (is_vmalloc_addr(ptr))
2339			vunmap(ptr);
2340		else
2341			kunmap(kmap_to_page(ptr));
2342
2343		obj->mm.mapping = NULL;
 
2344	}
 
2345
2346	__i915_gem_object_reset_page_iter(obj);
 
 
 
 
 
2347
2348	if (!IS_ERR(pages))
2349		obj->ops->put_pages(obj, pages);
 
 
 
2350
2351	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
 
2352
2353unlock:
2354	mutex_unlock(&obj->mm.lock);
2355}
2356
2357static bool i915_sg_trim(struct sg_table *orig_st)
 
2358{
2359	struct sg_table new_st;
2360	struct scatterlist *sg, *new_sg;
2361	unsigned int i;
2362
2363	if (orig_st->nents == orig_st->orig_nents)
2364		return false;
 
 
2365
2366	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2367		return false;
 
2368
2369	new_sg = new_st.sgl;
2370	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2371		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2372		/* called before being DMA mapped, no need to copy sg->dma_* */
2373		new_sg = sg_next(new_sg);
2374	}
2375	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2376
2377	sg_free_table(orig_st);
 
 
2378
2379	*orig_st = new_st;
2380	return true;
2381}
2382
2383static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
 
 
2384{
2385	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2386	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2387	unsigned long i;
2388	struct address_space *mapping;
2389	struct sg_table *st;
2390	struct scatterlist *sg;
2391	struct sgt_iter sgt_iter;
2392	struct page *page;
2393	unsigned long last_pfn = 0;	/* suppress gcc warning */
2394	unsigned int max_segment = i915_sg_segment_size();
2395	unsigned int sg_page_sizes;
2396	gfp_t noreclaim;
2397	int ret;
2398
2399	/* Assert that the object is not currently in any GPU domain. As it
2400	 * wasn't in the GTT, there shouldn't be any way it could have been in
2401	 * a GPU cache
 
2402	 */
2403	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2404	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
 
 
 
2405
2406	st = kmalloc(sizeof(*st), GFP_KERNEL);
2407	if (st == NULL)
2408		return -ENOMEM;
 
 
 
 
 
 
 
 
2409
2410rebuild_st:
2411	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2412		kfree(st);
2413		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
2414	}
 
 
 
 
 
 
 
 
 
 
 
2415
2416	/* Get the list of pages out of our struct file.  They'll be pinned
2417	 * at this point until we release them.
2418	 *
2419	 * Fail silently without starting the shrinker
2420	 */
2421	mapping = obj->base.filp->f_mapping;
2422	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2423	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2424
2425	sg = st->sgl;
2426	st->nents = 0;
2427	sg_page_sizes = 0;
2428	for (i = 0; i < page_count; i++) {
2429		const unsigned int shrink[] = {
2430			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2431			0,
2432		}, *s = shrink;
2433		gfp_t gfp = noreclaim;
2434
2435		do {
2436			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2437			if (likely(!IS_ERR(page)))
2438				break;
2439
2440			if (!*s) {
2441				ret = PTR_ERR(page);
2442				goto err_sg;
2443			}
2444
2445			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2446			cond_resched();
2447
2448			/* We've tried hard to allocate the memory by reaping
2449			 * our own buffer, now let the real VM do its job and
2450			 * go down in flames if truly OOM.
2451			 *
2452			 * However, since graphics tend to be disposable,
2453			 * defer the oom here by reporting the ENOMEM back
2454			 * to userspace.
2455			 */
2456			if (!*s) {
2457				/* reclaim and warn, but no oom */
2458				gfp = mapping_gfp_mask(mapping);
2459
2460				/* Our bo are always dirty and so we require
2461				 * kswapd to reclaim our pages (direct reclaim
2462				 * does not effectively begin pageout of our
2463				 * buffers on its own). However, direct reclaim
2464				 * only waits for kswapd when under allocation
2465				 * congestion. So as a result __GFP_RECLAIM is
2466				 * unreliable and fails to actually reclaim our
2467				 * dirty pages -- unless you try over and over
2468				 * again with !__GFP_NORETRY. However, we still
2469				 * want to fail this allocation rather than
2470				 * trigger the out-of-memory killer and for
2471				 * this we want __GFP_RETRY_MAYFAIL.
2472				 */
2473				gfp |= __GFP_RETRY_MAYFAIL;
2474			}
2475		} while (1);
2476
2477		if (!i ||
2478		    sg->length >= max_segment ||
2479		    page_to_pfn(page) != last_pfn + 1) {
2480			if (i) {
2481				sg_page_sizes |= sg->length;
2482				sg = sg_next(sg);
2483			}
2484			st->nents++;
2485			sg_set_page(sg, page, PAGE_SIZE, 0);
2486		} else {
2487			sg->length += PAGE_SIZE;
2488		}
2489		last_pfn = page_to_pfn(page);
2490
2491		/* Check that the i965g/gm workaround works. */
2492		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
 
 
 
2493	}
2494	if (sg) { /* loop terminated early; short sg table */
2495		sg_page_sizes |= sg->length;
2496		sg_mark_end(sg);
2497	}
2498
2499	/* Trim unused sg entries to avoid wasting memory. */
2500	i915_sg_trim(st);
2501
2502	ret = i915_gem_gtt_prepare_pages(obj, st);
2503	if (ret) {
2504		/* DMA remapping failed? One possible cause is that
2505		 * it could not reserve enough large entries, asking
2506		 * for PAGE_SIZE chunks instead may be helpful.
2507		 */
2508		if (max_segment > PAGE_SIZE) {
2509			for_each_sgt_page(page, sgt_iter, st)
2510				put_page(page);
2511			sg_free_table(st);
2512
2513			max_segment = PAGE_SIZE;
2514			goto rebuild_st;
2515		} else {
2516			dev_warn(&dev_priv->drm.pdev->dev,
2517				 "Failed to DMA remap %lu pages\n",
2518				 page_count);
2519			goto err_pages;
2520		}
 
 
 
2521	}
2522
2523	if (i915_gem_object_needs_bit17_swizzle(obj))
2524		i915_gem_object_do_bit_17_swizzle(obj, st);
2525
2526	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2527
2528	return 0;
2529
2530err_sg:
2531	sg_mark_end(sg);
2532err_pages:
2533	for_each_sgt_page(page, sgt_iter, st)
2534		put_page(page);
2535	sg_free_table(st);
2536	kfree(st);
2537
2538	/* shmemfs first checks if there is enough memory to allocate the page
2539	 * and reports ENOSPC should there be insufficient, along with the usual
2540	 * ENOMEM for a genuine allocation failure.
2541	 *
2542	 * We use ENOSPC in our driver to mean that we have run out of aperture
2543	 * space and so want to translate the error from shmemfs back to our
2544	 * usual understanding of ENOMEM.
2545	 */
2546	if (ret == -ENOSPC)
2547		ret = -ENOMEM;
2548
2549	return ret;
2550}
2551
2552void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2553				 struct sg_table *pages,
2554				 unsigned int sg_page_sizes)
2555{
2556	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2557	unsigned long supported = INTEL_INFO(i915)->page_sizes;
2558	int i;
2559
2560	lockdep_assert_held(&obj->mm.lock);
 
2561
2562	obj->mm.get_page.sg_pos = pages->sgl;
2563	obj->mm.get_page.sg_idx = 0;
 
 
 
 
 
2564
2565	obj->mm.pages = pages;
2566
2567	if (i915_gem_object_is_tiled(obj) &&
2568	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2569		GEM_BUG_ON(obj->mm.quirked);
2570		__i915_gem_object_pin_pages(obj);
2571		obj->mm.quirked = true;
2572	}
2573
2574	GEM_BUG_ON(!sg_page_sizes);
2575	obj->mm.page_sizes.phys = sg_page_sizes;
 
2576
2577	/*
2578	 * Calculate the supported page-sizes which fit into the given
2579	 * sg_page_sizes. This will give us the page-sizes which we may be able
2580	 * to use opportunistically when later inserting into the GTT. For
2581	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2582	 * 64K or 4K pages, although in practice this will depend on a number of
2583	 * other factors.
2584	 */
2585	obj->mm.page_sizes.sg = 0;
2586	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2587		if (obj->mm.page_sizes.phys & ~0u << i)
2588			obj->mm.page_sizes.sg |= BIT(i);
2589	}
2590	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2591
2592	spin_lock(&i915->mm.obj_lock);
2593	list_add(&obj->mm.link, &i915->mm.unbound_list);
2594	spin_unlock(&i915->mm.obj_lock);
2595}
2596
2597static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2598{
2599	int err;
2600
2601	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2602		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2603		return -EFAULT;
2604	}
2605
2606	err = obj->ops->get_pages(obj);
2607	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2608
2609	return err;
2610}
2611
2612/* Ensure that the associated pages are gathered from the backing storage
2613 * and pinned into our object. i915_gem_object_pin_pages() may be called
2614 * multiple times before they are released by a single call to
2615 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2616 * either as a result of memory pressure (reaping pages under the shrinker)
2617 * or as the object is itself released.
2618 */
2619int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2620{
2621	int err;
 
2622
2623	err = mutex_lock_interruptible(&obj->mm.lock);
2624	if (err)
2625		return err;
2626
2627	if (unlikely(!i915_gem_object_has_pages(obj))) {
2628		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2629
2630		err = ____i915_gem_object_get_pages(obj);
2631		if (err)
2632			goto unlock;
2633
2634		smp_mb__before_atomic();
 
 
 
 
2635	}
2636	atomic_inc(&obj->mm.pages_pin_count);
2637
2638unlock:
2639	mutex_unlock(&obj->mm.lock);
2640	return err;
2641}
2642
2643/* The 'mapping' part of i915_gem_object_pin_map() below */
2644static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2645				 enum i915_map_type type)
2646{
2647	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2648	struct sg_table *sgt = obj->mm.pages;
2649	struct sgt_iter sgt_iter;
2650	struct page *page;
2651	struct page *stack_pages[32];
2652	struct page **pages = stack_pages;
2653	unsigned long i = 0;
2654	pgprot_t pgprot;
2655	void *addr;
2656
2657	/* A single page can always be kmapped */
2658	if (n_pages == 1 && type == I915_MAP_WB)
2659		return kmap(sg_page(sgt->sgl));
2660
2661	if (n_pages > ARRAY_SIZE(stack_pages)) {
2662		/* Too big for stack -- allocate temporary array instead */
2663		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2664		if (!pages)
2665			return NULL;
2666	}
2667
2668	for_each_sgt_page(page, sgt_iter, sgt)
2669		pages[i++] = page;
2670
2671	/* Check that we have the expected number of pages */
2672	GEM_BUG_ON(i != n_pages);
 
 
 
 
 
 
2673
2674	switch (type) {
2675	default:
2676		MISSING_CASE(type);
2677		/* fallthrough to use PAGE_KERNEL anyway */
2678	case I915_MAP_WB:
2679		pgprot = PAGE_KERNEL;
2680		break;
2681	case I915_MAP_WC:
2682		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2683		break;
2684	}
2685	addr = vmap(pages, n_pages, 0, pgprot);
2686
2687	if (pages != stack_pages)
2688		kvfree(pages);
 
 
 
 
 
 
 
2689
2690	return addr;
 
2691}
2692
2693/* get, pin, and map the pages of the object into kernel space */
2694void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2695			      enum i915_map_type type)
 
 
2696{
2697	enum i915_map_type has_type;
2698	bool pinned;
2699	void *ptr;
2700	int ret;
2701
2702	if (unlikely(!i915_gem_object_has_struct_page(obj)))
2703		return ERR_PTR(-ENXIO);
2704
2705	ret = mutex_lock_interruptible(&obj->mm.lock);
2706	if (ret)
2707		return ERR_PTR(ret);
2708
2709	pinned = !(type & I915_MAP_OVERRIDE);
2710	type &= ~I915_MAP_OVERRIDE;
2711
2712	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2713		if (unlikely(!i915_gem_object_has_pages(obj))) {
2714			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2715
2716			ret = ____i915_gem_object_get_pages(obj);
2717			if (ret)
2718				goto err_unlock;
2719
2720			smp_mb__before_atomic();
2721		}
2722		atomic_inc(&obj->mm.pages_pin_count);
2723		pinned = false;
2724	}
2725	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2726
2727	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2728	if (ptr && has_type != type) {
2729		if (pinned) {
2730			ret = -EBUSY;
2731			goto err_unpin;
2732		}
2733
2734		if (is_vmalloc_addr(ptr))
2735			vunmap(ptr);
2736		else
2737			kunmap(kmap_to_page(ptr));
2738
2739		ptr = obj->mm.mapping = NULL;
 
 
2740	}
2741
2742	if (!ptr) {
2743		ptr = i915_gem_object_map(obj, type);
2744		if (!ptr) {
2745			ret = -ENOMEM;
2746			goto err_unpin;
2747		}
2748
2749		obj->mm.mapping = page_pack_bits(ptr, type);
2750	}
2751
2752out_unlock:
2753	mutex_unlock(&obj->mm.lock);
2754	return ptr;
2755
2756err_unpin:
2757	atomic_dec(&obj->mm.pages_pin_count);
2758err_unlock:
2759	ptr = ERR_PTR(ret);
2760	goto out_unlock;
2761}
2762
2763static int
2764i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2765			   const struct drm_i915_gem_pwrite *arg)
2766{
2767	struct address_space *mapping = obj->base.filp->f_mapping;
2768	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2769	u64 remain, offset;
2770	unsigned int pg;
2771
2772	/* Before we instantiate/pin the backing store for our use, we
2773	 * can prepopulate the shmemfs filp efficiently using a write into
2774	 * the pagecache. We avoid the penalty of instantiating all the
2775	 * pages, important if the user is just writing to a few and never
2776	 * uses the object on the GPU, and using a direct write into shmemfs
2777	 * allows it to avoid the cost of retrieving a page (either swapin
2778	 * or clearing-before-use) before it is overwritten.
2779	 */
2780	if (i915_gem_object_has_pages(obj))
2781		return -ENODEV;
2782
2783	if (obj->mm.madv != I915_MADV_WILLNEED)
2784		return -EFAULT;
 
2785
2786	/* Before the pages are instantiated the object is treated as being
2787	 * in the CPU domain. The pages will be clflushed as required before
2788	 * use, and we can freely write into the pages directly. If userspace
2789	 * races pwrite with any other operation; corruption will ensue -
2790	 * that is userspace's prerogative!
2791	 */
2792
2793	remain = arg->size;
2794	offset = arg->offset;
2795	pg = offset_in_page(offset);
 
 
2796
2797	do {
2798		unsigned int len, unwritten;
2799		struct page *page;
2800		void *data, *vaddr;
2801		int err;
2802
2803		len = PAGE_SIZE - pg;
2804		if (len > remain)
2805			len = remain;
2806
2807		err = pagecache_write_begin(obj->base.filp, mapping,
2808					    offset, len, 0,
2809					    &page, &data);
2810		if (err < 0)
2811			return err;
2812
2813		vaddr = kmap(page);
2814		unwritten = copy_from_user(vaddr + pg, user_data, len);
2815		kunmap(page);
2816
2817		err = pagecache_write_end(obj->base.filp, mapping,
2818					  offset, len, len - unwritten,
2819					  page, data);
2820		if (err < 0)
2821			return err;
2822
2823		if (unwritten)
2824			return -EFAULT;
2825
2826		remain -= len;
2827		user_data += len;
2828		offset += len;
2829		pg = 0;
2830	} while (remain);
2831
2832	return 0;
2833}
2834
2835static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
 
2836{
2837	bool banned;
 
2838
2839	atomic_inc(&ctx->guilty_count);
 
2840
2841	banned = false;
2842	if (i915_gem_context_is_bannable(ctx)) {
2843		unsigned int score;
2844
2845		score = atomic_add_return(CONTEXT_SCORE_GUILTY,
2846					  &ctx->ban_score);
2847		banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
2848
2849		DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2850				 ctx->name, score, yesno(banned));
2851	}
2852	if (!banned)
2853		return;
2854
2855	i915_gem_context_set_banned(ctx);
2856	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2857		atomic_inc(&ctx->file_priv->context_bans);
2858		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2859				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2860	}
2861}
2862
2863static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
 
2864{
2865	atomic_inc(&ctx->active_count);
2866}
 
 
2867
2868struct i915_request *
2869i915_gem_find_active_request(struct intel_engine_cs *engine)
2870{
2871	struct i915_request *request, *active = NULL;
2872	unsigned long flags;
2873
2874	/* We are called by the error capture and reset at a random
2875	 * point in time. In particular, note that neither is crucially
2876	 * ordered with an interrupt. After a hang, the GPU is dead and we
2877	 * assume that no more writes can happen (we waited long enough for
2878	 * all writes that were in transaction to be flushed) - adding an
2879	 * extra delay for a recent interrupt is pointless. Hence, we do
2880	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2881	 */
2882	spin_lock_irqsave(&engine->timeline->lock, flags);
2883	list_for_each_entry(request, &engine->timeline->requests, link) {
2884		if (__i915_request_completed(request, request->global_seqno))
2885			continue;
2886
2887		GEM_BUG_ON(request->engine != engine);
2888		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2889				    &request->fence.flags));
2890
2891		active = request;
2892		break;
2893	}
2894	spin_unlock_irqrestore(&engine->timeline->lock, flags);
 
 
2895
2896	return active;
2897}
 
2898
2899static bool engine_stalled(struct intel_engine_cs *engine)
2900{
2901	if (!engine->hangcheck.stalled)
2902		return false;
 
 
 
2903
2904	/* Check for possible seqno movement after hang declaration */
2905	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2906		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2907		return false;
2908	}
2909
2910	return true;
 
 
 
2911}
2912
2913/*
2914 * Ensure irq handler finishes, and not run again.
2915 * Also return the active request so that we only search for it once.
2916 */
2917struct i915_request *
2918i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
 
2919{
2920	struct i915_request *request = NULL;
 
 
2921
2922	/*
2923	 * During the reset sequence, we must prevent the engine from
2924	 * entering RC6. As the context state is undefined until we restart
2925	 * the engine, if it does enter RC6 during the reset, the state
2926	 * written to the powercontext is undefined and so we may lose
2927	 * GPU state upon resume, i.e. fail to restart after a reset.
2928	 */
2929	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2930
2931	/*
2932	 * Prevent the signaler thread from updating the request
2933	 * state (by calling dma_fence_signal) as we are processing
2934	 * the reset. The write from the GPU of the seqno is
2935	 * asynchronous and the signaler thread may see a different
2936	 * value to us and declare the request complete, even though
2937	 * the reset routine have picked that request as the active
2938	 * (incomplete) request. This conflict is not handled
2939	 * gracefully!
2940	 */
2941	kthread_park(engine->breadcrumbs.signaler);
2942
2943	/*
2944	 * Prevent request submission to the hardware until we have
2945	 * completed the reset in i915_gem_reset_finish(). If a request
2946	 * is completed by one engine, it may then queue a request
2947	 * to a second via its execlists->tasklet *just* as we are
2948	 * calling engine->init_hw() and also writing the ELSP.
2949	 * Turning off the execlists->tasklet until the reset is over
2950	 * prevents the race.
2951	 *
2952	 * Note that this needs to be a single atomic operation on the
2953	 * tasklet (flush existing tasks, prevent new tasks) to prevent
2954	 * a race between reset and set-wedged. It is not, so we do the best
2955	 * we can atm and make sure we don't lock the machine up in the more
2956	 * common case of recursively being called from set-wedged from inside
2957	 * i915_reset.
2958	 */
2959	if (!atomic_read(&engine->execlists.tasklet.count))
2960		tasklet_kill(&engine->execlists.tasklet);
2961	tasklet_disable(&engine->execlists.tasklet);
2962
2963	/*
2964	 * We're using worker to queue preemption requests from the tasklet in
2965	 * GuC submission mode.
2966	 * Even though tasklet was disabled, we may still have a worker queued.
2967	 * Let's make sure that all workers scheduled before disabling the
2968	 * tasklet are completed before continuing with the reset.
2969	 */
2970	if (engine->i915->guc.preempt_wq)
2971		flush_workqueue(engine->i915->guc.preempt_wq);
2972
2973	if (engine->irq_seqno_barrier)
2974		engine->irq_seqno_barrier(engine);
2975
2976	request = i915_gem_find_active_request(engine);
2977	if (request && request->fence.error == -EIO)
2978		request = ERR_PTR(-EIO); /* Previous reset failed! */
2979
2980	return request;
2981}
 
 
 
2982
2983int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2984{
2985	struct intel_engine_cs *engine;
2986	struct i915_request *request;
2987	enum intel_engine_id id;
2988	int err = 0;
2989
2990	for_each_engine(engine, dev_priv, id) {
2991		request = i915_gem_reset_prepare_engine(engine);
2992		if (IS_ERR(request)) {
2993			err = PTR_ERR(request);
2994			continue;
2995		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2996
2997		engine->hangcheck.active_request = request;
2998	}
 
 
2999
3000	i915_gem_revoke_fences(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
3001
3002	return err;
3003}
3004
3005static void skip_request(struct i915_request *request)
 
 
 
 
 
3006{
3007	void *vaddr = request->ring->vaddr;
3008	u32 head;
 
 
 
 
3009
3010	/* As this request likely depends on state from the lost
3011	 * context, clear out all the user operations leaving the
3012	 * breadcrumb at the end (so we get the fence notifications).
3013	 */
3014	head = request->head;
3015	if (request->postfix < head) {
3016		memset(vaddr + head, 0, request->ring->size - head);
3017		head = 0;
3018	}
3019	memset(vaddr + head, 0, request->postfix - head);
3020
3021	dma_fence_set_error(&request->fence, -EIO);
3022}
3023
3024static void engine_skip_context(struct i915_request *request)
3025{
3026	struct intel_engine_cs *engine = request->engine;
3027	struct i915_gem_context *hung_ctx = request->ctx;
3028	struct intel_timeline *timeline;
3029	unsigned long flags;
3030
3031	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
 
3032
3033	spin_lock_irqsave(&engine->timeline->lock, flags);
3034	spin_lock(&timeline->lock);
3035
3036	list_for_each_entry_continue(request, &engine->timeline->requests, link)
3037		if (request->ctx == hung_ctx)
3038			skip_request(request);
3039
3040	list_for_each_entry(request, &timeline->requests, link)
3041		skip_request(request);
3042
3043	spin_unlock(&timeline->lock);
3044	spin_unlock_irqrestore(&engine->timeline->lock, flags);
 
3045}
3046
3047/* Returns the request if it was guilty of the hang */
3048static struct i915_request *
3049i915_gem_reset_request(struct intel_engine_cs *engine,
3050		       struct i915_request *request)
 
3051{
3052	/* The guilty request will get skipped on a hung engine.
3053	 *
3054	 * Users of client default contexts do not rely on logical
3055	 * state preserved between batches so it is safe to execute
3056	 * queued requests following the hang. Non default contexts
3057	 * rely on preserved state, so skipping a batch loses the
3058	 * evolution of the state and it needs to be considered corrupted.
3059	 * Executing more queued batches on top of corrupted state is
3060	 * risky. But we take the risk by trying to advance through
3061	 * the queued requests in order to make the client behaviour
3062	 * more predictable around resets, by not throwing away random
3063	 * amount of batches it has prepared for execution. Sophisticated
3064	 * clients can use gem_reset_stats_ioctl and dma fence status
3065	 * (exported via sync_file info ioctl on explicit fences) to observe
3066	 * when it loses the context state and should rebuild accordingly.
3067	 *
3068	 * The context ban, and ultimately the client ban, mechanism are safety
3069	 * valves if client submission ends up resulting in nothing more than
3070	 * subsequent hangs.
3071	 */
3072
3073	if (engine_stalled(engine)) {
3074		i915_gem_context_mark_guilty(request->ctx);
3075		skip_request(request);
3076
3077		/* If this context is now banned, skip all pending requests. */
3078		if (i915_gem_context_is_banned(request->ctx))
3079			engine_skip_context(request);
3080	} else {
3081		/*
3082		 * Since this is not the hung engine, it may have advanced
3083		 * since the hang declaration. Double check by refinding
3084		 * the active request at the time of the reset.
 
3085		 */
3086		request = i915_gem_find_active_request(engine);
3087		if (request) {
3088			i915_gem_context_mark_innocent(request->ctx);
3089			dma_fence_set_error(&request->fence, -EAGAIN);
3090
3091			/* Rewind the engine to replay the incomplete rq */
3092			spin_lock_irq(&engine->timeline->lock);
3093			request = list_prev_entry(request, link);
3094			if (&request->link == &engine->timeline->requests)
3095				request = NULL;
3096			spin_unlock_irq(&engine->timeline->lock);
3097		}
3098	}
3099
3100	return request;
3101}
 
 
 
 
 
 
 
3102
3103void i915_gem_reset_engine(struct intel_engine_cs *engine,
3104			   struct i915_request *request)
3105{
3106	/*
3107	 * Make sure this write is visible before we re-enable the interrupt
3108	 * handlers on another CPU, as tasklet_enable() resolves to just
3109	 * a compiler barrier which is insufficient for our purpose here.
3110	 */
3111	smp_store_mb(engine->irq_posted, 0);
3112
3113	if (request)
3114		request = i915_gem_reset_request(engine, request);
 
3115
3116	if (request) {
3117		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3118				 engine->name, request->global_seqno);
3119	}
3120
3121	/* Setup the CS to resume from the breadcrumb of the hung request */
3122	engine->reset_hw(engine, request);
3123}
3124
3125void i915_gem_reset(struct drm_i915_private *dev_priv)
 
 
 
3126{
3127	struct intel_engine_cs *engine;
3128	enum intel_engine_id id;
3129
3130	lockdep_assert_held(&dev_priv->drm.struct_mutex);
 
3131
3132	i915_retire_requests(dev_priv);
3133
3134	for_each_engine(engine, dev_priv, id) {
3135		struct i915_gem_context *ctx;
 
3136
3137		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3138		ctx = fetch_and_zero(&engine->last_retired_context);
3139		if (ctx)
3140			engine->context_unpin(engine, ctx);
3141
3142		/*
3143		 * Ostensibily, we always want a context loaded for powersaving,
3144		 * so if the engine is idle after the reset, send a request
3145		 * to load our scratch kernel_context.
3146		 *
3147		 * More mysteriously, if we leave the engine idle after a reset,
3148		 * the next userspace batch may hang, with what appears to be
3149		 * an incoherent read by the CS (presumably stale TLB). An
3150		 * empty request appears sufficient to paper over the glitch.
3151		 */
3152		if (intel_engine_is_idle(engine)) {
3153			struct i915_request *rq;
3154
3155			rq = i915_request_alloc(engine,
3156						dev_priv->kernel_context);
3157			if (!IS_ERR(rq))
3158				__i915_request_add(rq, false);
3159		}
3160	}
3161
3162	i915_gem_restore_fences(dev_priv);
 
3163
3164	if (dev_priv->gt.awake) {
3165		intel_sanitize_gt_powersave(dev_priv);
3166		intel_enable_gt_powersave(dev_priv);
3167		if (INTEL_GEN(dev_priv) >= 6)
3168			gen6_rps_busy(dev_priv);
3169	}
3170}
3171
3172void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3173{
3174	tasklet_enable(&engine->execlists.tasklet);
3175	kthread_unpark(engine->breadcrumbs.signaler);
3176
3177	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3178}
3179
3180void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
 
3181{
3182	struct intel_engine_cs *engine;
3183	enum intel_engine_id id;
 
3184
3185	lockdep_assert_held(&dev_priv->drm.struct_mutex);
 
 
 
3186
3187	for_each_engine(engine, dev_priv, id) {
3188		engine->hangcheck.active_request = NULL;
3189		i915_gem_reset_finish_engine(engine);
 
 
3190	}
 
 
3191}
3192
3193static void nop_submit_request(struct i915_request *request)
 
3194{
3195	dma_fence_set_error(&request->fence, -EIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3196
3197	i915_request_submit(request);
 
 
 
 
 
 
 
 
 
 
3198}
3199
3200static void nop_complete_submit_request(struct i915_request *request)
 
3201{
3202	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3203
3204	dma_fence_set_error(&request->fence, -EIO);
 
 
 
 
 
 
 
 
3205
3206	spin_lock_irqsave(&request->engine->timeline->lock, flags);
3207	__i915_request_submit(request);
3208	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3209	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3210}
3211
3212void i915_gem_set_wedged(struct drm_i915_private *i915)
 
3213{
3214	struct intel_engine_cs *engine;
3215	enum intel_engine_id id;
 
 
 
 
 
 
 
 
 
 
3216
3217	if (drm_debug & DRM_UT_DRIVER) {
3218		struct drm_printer p = drm_debug_printer(__func__);
 
 
3219
3220		for_each_engine(engine, i915, id)
3221			intel_engine_dump(engine, &p, "%s\n", engine->name);
3222	}
 
 
 
 
 
 
 
 
 
 
 
 
 
3223
3224	set_bit(I915_WEDGED, &i915->gpu_error.flags);
3225	smp_mb__after_atomic();
 
 
3226
3227	/*
3228	 * First, stop submission to hw, but do not yet complete requests by
3229	 * rolling the global seqno forward (since this would complete requests
3230	 * for which we haven't set the fence error to EIO yet).
3231	 */
3232	for_each_engine(engine, i915, id) {
3233		i915_gem_reset_prepare_engine(engine);
3234
3235		engine->submit_request = nop_submit_request;
3236		engine->schedule = NULL;
3237	}
3238	i915->caps.scheduler = 0;
3239
3240	/*
3241	 * Make sure no one is running the old callback before we proceed with
3242	 * cancelling requests and resetting the completion tracking. Otherwise
3243	 * we might submit a request to the hardware which never completes.
3244	 */
3245	synchronize_rcu();
3246
3247	for_each_engine(engine, i915, id) {
3248		/* Mark all executing requests as skipped */
3249		engine->cancel_requests(engine);
 
 
 
 
 
 
3250
3251		/*
3252		 * Only once we've force-cancelled all in-flight requests can we
3253		 * start to complete all requests.
3254		 */
3255		engine->submit_request = nop_complete_submit_request;
3256	}
3257
3258	/*
3259	 * Make sure no request can slip through without getting completed by
3260	 * either this call here to intel_engine_init_global_seqno, or the one
3261	 * in nop_complete_submit_request.
3262	 */
3263	synchronize_rcu();
3264
3265	for_each_engine(engine, i915, id) {
3266		unsigned long flags;
 
 
3267
3268		/*
3269		 * Mark all pending requests as complete so that any concurrent
3270		 * (lockless) lookup doesn't try and wait upon the request as we
3271		 * reset it.
3272		 */
3273		spin_lock_irqsave(&engine->timeline->lock, flags);
3274		intel_engine_init_global_seqno(engine,
3275					       intel_engine_last_submit(engine));
3276		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3277
3278		i915_gem_reset_finish_engine(engine);
3279	}
3280
3281	wake_up_all(&i915->gpu_error.reset_queue);
 
 
3282}
3283
3284bool i915_gem_unset_wedged(struct drm_i915_private *i915)
 
 
3285{
3286	struct i915_gem_timeline *tl;
3287	int i;
 
 
 
 
 
 
 
3288
3289	lockdep_assert_held(&i915->drm.struct_mutex);
3290	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3291		return true;
3292
3293	/* Before unwedging, make sure that all pending operations
3294	 * are flushed and errored out - we may have requests waiting upon
3295	 * third party fences. We marked all inflight requests as EIO, and
3296	 * every execbuf since returned EIO, for consistency we want all
3297	 * the currently pending requests to also be marked as EIO, which
3298	 * is done inside our nop_submit_request - and so we must wait.
3299	 *
3300	 * No more can be submitted until we reset the wedged bit.
3301	 */
3302	list_for_each_entry(tl, &i915->gt.timelines, link) {
3303		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3304			struct i915_request *rq;
3305
3306			rq = i915_gem_active_peek(&tl->engine[i].last_request,
3307						  &i915->drm.struct_mutex);
3308			if (!rq)
3309				continue;
3310
3311			/* We can't use our normal waiter as we want to
3312			 * avoid recursively trying to handle the current
3313			 * reset. The basic dma_fence_default_wait() installs
3314			 * a callback for dma_fence_signal(), which is
3315			 * triggered by our nop handler (indirectly, the
3316			 * callback enables the signaler thread which is
3317			 * woken by the nop_submit_request() advancing the seqno
3318			 * and when the seqno passes the fence, the signaler
3319			 * then signals the fence waking us up).
3320			 */
3321			if (dma_fence_default_wait(&rq->fence, true,
3322						   MAX_SCHEDULE_TIMEOUT) < 0)
3323				return false;
3324		}
 
 
 
3325	}
3326
3327	/* Undo nop_submit_request. We prevent all new i915 requests from
3328	 * being queued (by disallowing execbuf whilst wedged) so having
3329	 * waited for all active requests above, we know the system is idle
3330	 * and do not have to worry about a thread being inside
3331	 * engine->submit_request() as we swap over. So unlike installing
3332	 * the nop_submit_request on reset, we can do this from normal
3333	 * context and do not require stop_machine().
3334	 */
3335	intel_engines_reset_default_submission(i915);
3336	i915_gem_contexts_lost(i915);
3337
3338	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3339	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3340
3341	return true;
3342}
3343
3344static void
3345i915_gem_retire_work_handler(struct work_struct *work)
3346{
3347	struct drm_i915_private *dev_priv =
3348		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3349	struct drm_device *dev = &dev_priv->drm;
 
 
 
 
 
 
 
 
 
 
3350
3351	/* Come back later if the device is busy... */
3352	if (mutex_trylock(&dev->struct_mutex)) {
3353		i915_retire_requests(dev_priv);
3354		mutex_unlock(&dev->struct_mutex);
3355	}
3356
3357	/*
3358	 * Keep the retire handler running until we are finally idle.
3359	 * We do not need to do this test under locking as in the worst-case
3360	 * we queue the retire worker once too often.
3361	 */
3362	if (READ_ONCE(dev_priv->gt.awake))
3363		queue_delayed_work(dev_priv->wq,
3364				   &dev_priv->gt.retire_work,
3365				   round_jiffies_up_relative(HZ));
3366}
3367
3368static void shrink_caches(struct drm_i915_private *i915)
 
 
3369{
3370	/*
3371	 * kmem_cache_shrink() discards empty slabs and reorders partially
3372	 * filled slabs to prioritise allocating from the mostly full slabs,
3373	 * with the aim of reducing fragmentation.
3374	 */
3375	kmem_cache_shrink(i915->priorities);
3376	kmem_cache_shrink(i915->dependencies);
3377	kmem_cache_shrink(i915->requests);
3378	kmem_cache_shrink(i915->luts);
3379	kmem_cache_shrink(i915->vmas);
3380	kmem_cache_shrink(i915->objects);
3381}
3382
3383struct sleep_rcu_work {
3384	union {
3385		struct rcu_head rcu;
3386		struct work_struct work;
3387	};
3388	struct drm_i915_private *i915;
3389	unsigned int epoch;
3390};
 
 
 
 
 
3391
3392static inline bool
3393same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3394{
3395	/*
3396	 * There is a small chance that the epoch wrapped since we started
3397	 * sleeping. If we assume that epoch is at least a u32, then it will
3398	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3399	 */
3400	return epoch == READ_ONCE(i915->gt.epoch);
3401}
3402
3403static void __sleep_work(struct work_struct *work)
3404{
3405	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3406	struct drm_i915_private *i915 = s->i915;
3407	unsigned int epoch = s->epoch;
3408
3409	kfree(s);
3410	if (same_epoch(i915, epoch))
3411		shrink_caches(i915);
3412}
3413
3414static void __sleep_rcu(struct rcu_head *rcu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3415{
3416	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3417	struct drm_i915_private *i915 = s->i915;
 
 
3418
3419	if (same_epoch(i915, s->epoch)) {
3420		INIT_WORK(&s->work, __sleep_work);
3421		queue_work(i915->wq, &s->work);
3422	} else {
3423		kfree(s);
3424	}
3425}
3426
3427static inline bool
3428new_requests_since_last_retire(const struct drm_i915_private *i915)
3429{
3430	return (READ_ONCE(i915->gt.active_requests) ||
3431		work_pending(&i915->gt.idle_work.work));
3432}
3433
3434static void
3435i915_gem_idle_work_handler(struct work_struct *work)
3436{
3437	struct drm_i915_private *dev_priv =
3438		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3439	unsigned int epoch = I915_EPOCH_INVALID;
3440	bool rearm_hangcheck;
3441
3442	if (!READ_ONCE(dev_priv->gt.awake))
3443		return;
3444
3445	/*
3446	 * Wait for last execlists context complete, but bail out in case a
3447	 * new request is submitted. As we don't trust the hardware, we
3448	 * continue on if the wait times out. This is necessary to allow
3449	 * the machine to suspend even if the hardware dies, and we will
3450	 * try to recover in resume (after depriving the hardware of power,
3451	 * it may be in a better mmod).
3452	 */
3453	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3454		   intel_engines_are_idle(dev_priv),
3455		   I915_IDLE_ENGINES_TIMEOUT * 1000,
3456		   10, 500);
3457
3458	rearm_hangcheck =
3459		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3460
3461	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3462		/* Currently busy, come back later */
3463		mod_delayed_work(dev_priv->wq,
3464				 &dev_priv->gt.idle_work,
3465				 msecs_to_jiffies(50));
3466		goto out_rearm;
3467	}
3468
3469	/*
3470	 * New request retired after this work handler started, extend active
3471	 * period until next instance of the work.
3472	 */
3473	if (new_requests_since_last_retire(dev_priv))
3474		goto out_unlock;
3475
3476	/*
3477	 * Be paranoid and flush a concurrent interrupt to make sure
3478	 * we don't reactivate any irq tasklets after parking.
3479	 *
3480	 * FIXME: Note that even though we have waited for execlists to be idle,
3481	 * there may still be an in-flight interrupt even though the CSB
3482	 * is now empty. synchronize_irq() makes sure that a residual interrupt
3483	 * is completed before we continue, but it doesn't prevent the HW from
3484	 * raising a spurious interrupt later. To complete the shield we should
3485	 * coordinate disabling the CS irq with flushing the interrupts.
3486	 */
3487	synchronize_irq(dev_priv->drm.irq);
3488
3489	intel_engines_park(dev_priv);
3490	i915_gem_timelines_park(dev_priv);
3491
3492	i915_pmu_gt_parked(dev_priv);
3493
3494	GEM_BUG_ON(!dev_priv->gt.awake);
3495	dev_priv->gt.awake = false;
3496	epoch = dev_priv->gt.epoch;
3497	GEM_BUG_ON(epoch == I915_EPOCH_INVALID);
3498	rearm_hangcheck = false;
3499
3500	if (INTEL_GEN(dev_priv) >= 6)
3501		gen6_rps_idle(dev_priv);
3502
3503	intel_display_power_put(dev_priv, POWER_DOMAIN_GT_IRQ);
3504
3505	intel_runtime_pm_put(dev_priv);
3506out_unlock:
3507	mutex_unlock(&dev_priv->drm.struct_mutex);
3508
3509out_rearm:
3510	if (rearm_hangcheck) {
3511		GEM_BUG_ON(!dev_priv->gt.awake);
3512		i915_queue_hangcheck(dev_priv);
3513	}
3514
3515	/*
3516	 * When we are idle, it is an opportune time to reap our caches.
3517	 * However, we have many objects that utilise RCU and the ordered
3518	 * i915->wq that this work is executing on. To try and flush any
3519	 * pending frees now we are idle, we first wait for an RCU grace
3520	 * period, and then queue a task (that will run last on the wq) to
3521	 * shrink and re-optimize the caches.
3522	 */
3523	if (same_epoch(dev_priv, epoch)) {
3524		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3525		if (s) {
3526			s->i915 = dev_priv;
3527			s->epoch = epoch;
3528			call_rcu(&s->rcu, __sleep_rcu);
3529		}
 
 
3530	}
3531}
3532
3533void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3534{
3535	struct drm_i915_private *i915 = to_i915(gem->dev);
3536	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3537	struct drm_i915_file_private *fpriv = file->driver_priv;
3538	struct i915_lut_handle *lut, *ln;
3539
3540	mutex_lock(&i915->drm.struct_mutex);
 
 
3541
3542	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3543		struct i915_gem_context *ctx = lut->ctx;
3544		struct i915_vma *vma;
3545
3546		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3547		if (ctx->file_priv != fpriv)
3548			continue;
3549
3550		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3551		GEM_BUG_ON(vma->obj != obj);
3552
3553		/* We allow the process to have multiple handles to the same
3554		 * vma, in the same fd namespace, by virtue of flink/open.
3555		 */
3556		GEM_BUG_ON(!vma->open_count);
3557		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3558			i915_vma_close(vma);
3559
3560		list_del(&lut->obj_link);
3561		list_del(&lut->ctx_link);
3562
3563		kmem_cache_free(i915->luts, lut);
3564		__i915_gem_object_release_unless_active(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3565	}
3566
3567	mutex_unlock(&i915->drm.struct_mutex);
3568}
3569
3570static unsigned long to_wait_timeout(s64 timeout_ns)
 
 
 
 
 
 
 
 
 
3571{
3572	if (timeout_ns < 0)
3573		return MAX_SCHEDULE_TIMEOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3574
3575	if (timeout_ns == 0)
3576		return 0;
 
3577
3578	return nsecs_to_jiffies_timeout(timeout_ns);
 
 
3579}
3580
3581/**
3582 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3583 * @dev: drm device pointer
3584 * @data: ioctl data blob
3585 * @file: drm file pointer
3586 *
3587 * Returns 0 if successful, else an error is returned with the remaining time in
3588 * the timeout parameter.
3589 *  -ETIME: object is still busy after timeout
3590 *  -ERESTARTSYS: signal interrupted the wait
3591 *  -ENONENT: object doesn't exist
3592 * Also possible, but rare:
3593 *  -EAGAIN: incomplete, restart syscall
3594 *  -ENOMEM: damn
3595 *  -ENODEV: Internal IRQ fail
3596 *  -E?: The add request failed
3597 *
3598 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3599 * non-zero timeout parameter the wait ioctl will wait for the given number of
3600 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3601 * without holding struct_mutex the object may become re-busied before this
3602 * function completes. A similar but shorter * race condition exists in the busy
3603 * ioctl
3604 */
3605int
3606i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
 
 
3607{
3608	struct drm_i915_gem_wait *args = data;
3609	struct drm_i915_gem_object *obj;
3610	ktime_t start;
3611	long ret;
 
 
 
3612
3613	if (args->flags != 0)
 
3614		return -EINVAL;
 
3615
3616	obj = i915_gem_object_lookup(file, args->bo_handle);
3617	if (!obj)
3618		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3619
3620	start = ktime_get();
3621
3622	ret = i915_gem_object_wait(obj,
3623				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3624				   to_wait_timeout(args->timeout_ns),
3625				   to_rps_client(file));
3626
3627	if (args->timeout_ns > 0) {
3628		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3629		if (args->timeout_ns < 0)
3630			args->timeout_ns = 0;
 
 
 
 
 
 
 
 
 
 
3631
3632		/*
3633		 * Apparently ktime isn't accurate enough and occasionally has a
3634		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3635		 * things up to make the test happy. We allow up to 1 jiffy.
3636		 *
3637		 * This is a regression from the timespec->ktime conversion.
 
 
 
 
 
 
 
 
3638		 */
3639		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3640			args->timeout_ns = 0;
 
 
3641
3642		/* Asked to wait beyond the jiffie/scheduler precision? */
3643		if (ret == -ETIME && args->timeout_ns)
3644			ret = -EAGAIN;
3645	}
3646
3647	i915_gem_object_put(obj);
3648	return ret;
3649}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3650
3651static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3652{
3653	int ret, i;
3654
3655	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3656		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3657		if (ret)
3658			return ret;
3659	}
3660
3661	return 0;
3662}
 
 
 
3663
3664static int wait_for_engines(struct drm_i915_private *i915)
3665{
3666	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3667		dev_err(i915->drm.dev,
3668			"Failed to idle engines, declaring wedged!\n");
3669		if (drm_debug & DRM_UT_DRIVER) {
3670			struct drm_printer p = drm_debug_printer(__func__);
3671			struct intel_engine_cs *engine;
3672			enum intel_engine_id id;
3673
3674			for_each_engine(engine, i915, id)
3675				intel_engine_dump(engine, &p,
3676						  "%s\n", engine->name);
3677		}
3678
3679		i915_gem_set_wedged(i915);
3680		return -EIO;
3681	}
3682
3683	return 0;
3684}
3685
3686int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3687{
3688	int ret;
 
 
 
3689
3690	/* If the device is asleep, we have no requests outstanding */
3691	if (!READ_ONCE(i915->gt.awake))
3692		return 0;
3693
3694	if (flags & I915_WAIT_LOCKED) {
3695		struct i915_gem_timeline *tl;
 
3696
3697		lockdep_assert_held(&i915->drm.struct_mutex);
 
3698
3699		list_for_each_entry(tl, &i915->gt.timelines, link) {
3700			ret = wait_for_timeline(tl, flags);
3701			if (ret)
3702				return ret;
3703		}
3704		i915_retire_requests(i915);
3705
3706		ret = wait_for_engines(i915);
3707	} else {
3708		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3709	}
3710
3711	return ret;
3712}
3713
3714static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
 
3715{
3716	/*
3717	 * We manually flush the CPU domain so that we can override and
3718	 * force the flush for the display, and perform it asyncrhonously.
3719	 */
3720	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3721	if (obj->cache_dirty)
3722		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3723	obj->write_domain = 0;
3724}
3725
3726void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3727{
3728	if (!READ_ONCE(obj->pin_global))
 
 
 
 
 
 
3729		return;
3730
3731	mutex_lock(&obj->base.dev->struct_mutex);
3732	__i915_gem_object_flush_for_display(obj);
3733	mutex_unlock(&obj->base.dev->struct_mutex);
3734}
3735
3736/**
3737 * Moves a single object to the WC read, and possibly write domain.
3738 * @obj: object to act on
3739 * @write: ask for write access or read only
3740 *
3741 * This function returns when the move is complete, including waiting on
3742 * flushes to occur.
3743 */
3744int
3745i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3746{
3747	int ret;
 
3748
3749	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
 
3750
3751	ret = i915_gem_object_wait(obj,
3752				   I915_WAIT_INTERRUPTIBLE |
3753				   I915_WAIT_LOCKED |
3754				   (write ? I915_WAIT_ALL : 0),
3755				   MAX_SCHEDULE_TIMEOUT,
3756				   NULL);
3757	if (ret)
3758		return ret;
3759
3760	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3761		return 0;
3762
3763	/* Flush and acquire obj->pages so that we are coherent through
3764	 * direct access in memory with previous cached writes through
3765	 * shmemfs and that our cache domain tracking remains valid.
3766	 * For example, if the obj->filp was moved to swap without us
3767	 * being notified and releasing the pages, we would mistakenly
3768	 * continue to assume that the obj remained out of the CPU cached
3769	 * domain.
3770	 */
3771	ret = i915_gem_object_pin_pages(obj);
3772	if (ret)
3773		return ret;
 
3774
3775	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
 
 
 
3776
3777	/* Serialise direct access to this object with the barriers for
3778	 * coherent writes from the GPU, by effectively invalidating the
3779	 * WC domain upon first access.
3780	 */
3781	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3782		mb();
3783
3784	/* It should now be out of any other write domains, and we can update
3785	 * the domain values for our changes.
3786	 */
3787	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3788	obj->read_domains |= I915_GEM_DOMAIN_WC;
3789	if (write) {
3790		obj->read_domains = I915_GEM_DOMAIN_WC;
3791		obj->write_domain = I915_GEM_DOMAIN_WC;
3792		obj->mm.dirty = true;
3793	}
3794
3795	i915_gem_object_unpin_pages(obj);
3796	return 0;
 
 
 
 
 
 
3797}
3798
3799/**
3800 * Moves a single object to the GTT read, and possibly write domain.
3801 * @obj: object to act on
3802 * @write: ask for write access or read only
3803 *
3804 * This function returns when the move is complete, including waiting on
3805 * flushes to occur.
3806 */
3807int
3808i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3809{
 
3810	int ret;
3811
3812	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
 
3813
3814	ret = i915_gem_object_wait(obj,
3815				   I915_WAIT_INTERRUPTIBLE |
3816				   I915_WAIT_LOCKED |
3817				   (write ? I915_WAIT_ALL : 0),
3818				   MAX_SCHEDULE_TIMEOUT,
3819				   NULL);
3820	if (ret)
3821		return ret;
3822
3823	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3824		return 0;
3825
3826	/* Flush and acquire obj->pages so that we are coherent through
3827	 * direct access in memory with previous cached writes through
3828	 * shmemfs and that our cache domain tracking remains valid.
3829	 * For example, if the obj->filp was moved to swap without us
3830	 * being notified and releasing the pages, we would mistakenly
3831	 * continue to assume that the obj remained out of the CPU cached
3832	 * domain.
3833	 */
3834	ret = i915_gem_object_pin_pages(obj);
3835	if (ret)
3836		return ret;
3837
3838	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
 
 
 
 
 
 
3839
3840	/* Serialise direct access to this object with the barriers for
3841	 * coherent writes from the GPU, by effectively invalidating the
3842	 * GTT domain upon first access.
3843	 */
3844	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3845		mb();
3846
3847	/* It should now be out of any other write domains, and we can update
3848	 * the domain values for our changes.
3849	 */
3850	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3851	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3852	if (write) {
3853		obj->read_domains = I915_GEM_DOMAIN_GTT;
3854		obj->write_domain = I915_GEM_DOMAIN_GTT;
3855		obj->mm.dirty = true;
3856	}
3857
3858	i915_gem_object_unpin_pages(obj);
 
 
 
3859	return 0;
3860}
3861
3862/**
3863 * Changes the cache-level of an object across all VMA.
3864 * @obj: object to act on
3865 * @cache_level: new cache level to set for the object
3866 *
3867 * After this function returns, the object will be in the new cache-level
3868 * across all GTT and the contents of the backing storage will be coherent,
3869 * with respect to the new cache-level. In order to keep the backing storage
3870 * coherent for all users, we only allow a single cache level to be set
3871 * globally on the object and prevent it from being changed whilst the
3872 * hardware is reading from the object. That is if the object is currently
3873 * on the scanout it will be set to uncached (or equivalent display
3874 * cache coherency) and all non-MOCS GPU access will also be uncached so
3875 * that all direct access to the scanout remains coherent.
3876 */
3877int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3878				    enum i915_cache_level cache_level)
3879{
3880	struct i915_vma *vma;
3881	int ret;
3882
3883	lockdep_assert_held(&obj->base.dev->struct_mutex);
3884
3885	if (obj->cache_level == cache_level)
3886		return 0;
3887
3888	/* Inspect the list of currently bound VMA and unbind any that would
3889	 * be invalid given the new cache-level. This is principally to
3890	 * catch the issue of the CS prefetch crossing page boundaries and
3891	 * reading an invalid PTE on older architectures.
3892	 */
3893restart:
3894	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3895		if (!drm_mm_node_allocated(&vma->node))
3896			continue;
3897
3898		if (i915_vma_is_pinned(vma)) {
3899			DRM_DEBUG("can not change the cache level of pinned objects\n");
3900			return -EBUSY;
3901		}
3902
3903		if (!i915_vma_is_closed(vma) &&
3904		    i915_gem_valid_gtt_space(vma, cache_level))
3905			continue;
3906
3907		ret = i915_vma_unbind(vma);
 
3908		if (ret)
3909			return ret;
3910
3911		/* As unbinding may affect other elements in the
3912		 * obj->vma_list (due to side-effects from retiring
3913		 * an active vma), play safe and restart the iterator.
3914		 */
3915		goto restart;
3916	}
3917
3918	/* We can reuse the existing drm_mm nodes but need to change the
3919	 * cache-level on the PTE. We could simply unbind them all and
3920	 * rebind with the correct cache-level on next use. However since
3921	 * we already have a valid slot, dma mapping, pages etc, we may as
3922	 * rewrite the PTE in the belief that doing so tramples upon less
3923	 * state and so involves less work.
3924	 */
3925	if (obj->bind_count) {
3926		/* Before we change the PTE, the GPU must not be accessing it.
3927		 * If we wait upon the object, we know that all the bound
3928		 * VMA are no longer active.
3929		 */
3930		ret = i915_gem_object_wait(obj,
3931					   I915_WAIT_INTERRUPTIBLE |
3932					   I915_WAIT_LOCKED |
3933					   I915_WAIT_ALL,
3934					   MAX_SCHEDULE_TIMEOUT,
3935					   NULL);
3936		if (ret)
3937			return ret;
3938
3939		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3940		    cache_level != I915_CACHE_NONE) {
3941			/* Access to snoopable pages through the GTT is
3942			 * incoherent and on some machines causes a hard
3943			 * lockup. Relinquish the CPU mmaping to force
3944			 * userspace to refault in the pages and we can
3945			 * then double check if the GTT mapping is still
3946			 * valid for that pointer access.
3947			 */
3948			i915_gem_release_mmap(obj);
3949
3950			/* As we no longer need a fence for GTT access,
3951			 * we can relinquish it now (and so prevent having
3952			 * to steal a fence from someone else on the next
3953			 * fence request). Note GPU activity would have
3954			 * dropped the fence as all snoopable access is
3955			 * supposed to be linear.
3956			 */
3957			for_each_ggtt_vma(vma, obj) {
3958				ret = i915_vma_put_fence(vma);
3959				if (ret)
3960					return ret;
3961			}
3962		} else {
3963			/* We either have incoherent backing store and
3964			 * so no GTT access or the architecture is fully
3965			 * coherent. In such cases, existing GTT mmaps
3966			 * ignore the cache bit in the PTE and we can
3967			 * rewrite it without confusing the GPU or having
3968			 * to force userspace to fault back in its mmaps.
3969			 */
3970		}
3971
3972		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3973			if (!drm_mm_node_allocated(&vma->node))
3974				continue;
3975
3976			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3977			if (ret)
3978				return ret;
3979		}
3980	}
3981
3982	list_for_each_entry(vma, &obj->vma_list, obj_link)
3983		vma->node.color = cache_level;
3984	i915_gem_object_set_cache_coherency(obj, cache_level);
3985	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3986
3987	return 0;
3988}
3989
3990int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3991			       struct drm_file *file)
3992{
3993	struct drm_i915_gem_caching *args = data;
3994	struct drm_i915_gem_object *obj;
3995	int err = 0;
3996
3997	rcu_read_lock();
3998	obj = i915_gem_object_lookup_rcu(file, args->handle);
3999	if (!obj) {
4000		err = -ENOENT;
4001		goto out;
4002	}
4003
4004	switch (obj->cache_level) {
4005	case I915_CACHE_LLC:
4006	case I915_CACHE_L3_LLC:
4007		args->caching = I915_CACHING_CACHED;
4008		break;
4009
4010	case I915_CACHE_WT:
4011		args->caching = I915_CACHING_DISPLAY;
4012		break;
4013
4014	default:
4015		args->caching = I915_CACHING_NONE;
4016		break;
4017	}
4018out:
4019	rcu_read_unlock();
4020	return err;
4021}
4022
4023int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4024			       struct drm_file *file)
4025{
4026	struct drm_i915_private *i915 = to_i915(dev);
4027	struct drm_i915_gem_caching *args = data;
4028	struct drm_i915_gem_object *obj;
4029	enum i915_cache_level level;
4030	int ret = 0;
4031
4032	switch (args->caching) {
4033	case I915_CACHING_NONE:
4034		level = I915_CACHE_NONE;
4035		break;
4036	case I915_CACHING_CACHED:
4037		/*
4038		 * Due to a HW issue on BXT A stepping, GPU stores via a
4039		 * snooped mapping may leave stale data in a corresponding CPU
4040		 * cacheline, whereas normally such cachelines would get
4041		 * invalidated.
4042		 */
4043		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4044			return -ENODEV;
4045
4046		level = I915_CACHE_LLC;
4047		break;
4048	case I915_CACHING_DISPLAY:
4049		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4050		break;
4051	default:
4052		return -EINVAL;
4053	}
4054
4055	obj = i915_gem_object_lookup(file, args->handle);
4056	if (!obj)
4057		return -ENOENT;
4058
4059	/*
4060	 * The caching mode of proxy object is handled by its generator, and
4061	 * not allowed to be changed by userspace.
4062	 */
4063	if (i915_gem_object_is_proxy(obj)) {
4064		ret = -ENXIO;
4065		goto out;
4066	}
4067
4068	if (obj->cache_level == level)
4069		goto out;
4070
4071	ret = i915_gem_object_wait(obj,
4072				   I915_WAIT_INTERRUPTIBLE,
4073				   MAX_SCHEDULE_TIMEOUT,
4074				   to_rps_client(file));
4075	if (ret)
4076		goto out;
4077
4078	ret = i915_mutex_lock_interruptible(dev);
4079	if (ret)
4080		goto out;
4081
4082	ret = i915_gem_object_set_cache_level(obj, level);
4083	mutex_unlock(&dev->struct_mutex);
4084
4085out:
4086	i915_gem_object_put(obj);
4087	return ret;
4088}
4089
4090/*
4091 * Prepare buffer for display plane (scanout, cursors, etc).
4092 * Can be called from an uninterruptible phase (modesetting) and allows
4093 * any flushes to be pipelined (for pageflips).
 
 
 
 
 
4094 */
4095struct i915_vma *
4096i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4097				     u32 alignment,
4098				     const struct i915_ggtt_view *view,
4099				     unsigned int flags)
4100{
4101	struct i915_vma *vma;
4102	int ret;
4103
4104	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
 
4105
4106	/* Mark the global pin early so that we account for the
4107	 * display coherency whilst setting up the cache domains.
4108	 */
4109	obj->pin_global++;
 
4110
4111	/* The display engine is not coherent with the LLC cache on gen6.  As
4112	 * a result, we make sure that the pinning that is about to occur is
4113	 * done with uncached PTEs. This is lowest common denominator for all
4114	 * chipsets.
4115	 *
4116	 * However for gen6+, we could do better by using the GFDT bit instead
4117	 * of uncaching, which would allow us to flush all the LLC-cached data
4118	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4119	 */
4120	ret = i915_gem_object_set_cache_level(obj,
4121					      HAS_WT(to_i915(obj->base.dev)) ?
4122					      I915_CACHE_WT : I915_CACHE_NONE);
4123	if (ret) {
4124		vma = ERR_PTR(ret);
4125		goto err_unpin_global;
4126	}
4127
4128	/* As the user may map the buffer once pinned in the display plane
4129	 * (e.g. libkms for the bootup splash), we have to ensure that we
4130	 * always use map_and_fenceable for all scanout buffers. However,
4131	 * it may simply be too big to fit into mappable, in which case
4132	 * put it anyway and hope that userspace can cope (but always first
4133	 * try to preserve the existing ABI).
4134	 */
4135	vma = ERR_PTR(-ENOSPC);
4136	if ((flags & PIN_MAPPABLE) == 0 &&
4137	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4138		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4139					       flags |
4140					       PIN_MAPPABLE |
4141					       PIN_NONBLOCK);
4142	if (IS_ERR(vma))
4143		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4144	if (IS_ERR(vma))
4145		goto err_unpin_global;
4146
4147	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4148
4149	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
4150	__i915_gem_object_flush_for_display(obj);
4151	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
4152
4153	/* It should now be out of any other write domains, and we can update
4154	 * the domain values for our changes.
4155	 */
4156	obj->read_domains |= I915_GEM_DOMAIN_GTT;
 
4157
4158	return vma;
 
 
4159
4160err_unpin_global:
4161	obj->pin_global--;
4162	return vma;
4163}
4164
4165void
4166i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4167{
4168	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4169
4170	if (WARN_ON(vma->obj->pin_global == 0))
4171		return;
4172
4173	if (--vma->obj->pin_global == 0)
4174		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
 
 
 
4175
4176	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4177	i915_gem_object_bump_inactive_ggtt(vma->obj);
4178
4179	i915_vma_unpin(vma);
4180}
4181
4182/**
4183 * Moves a single object to the CPU read, and possibly write domain.
4184 * @obj: object to act on
4185 * @write: requesting write or read-only access
4186 *
4187 * This function returns when the move is complete, including waiting on
4188 * flushes to occur.
4189 */
4190int
4191i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4192{
 
4193	int ret;
4194
4195	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
4196
4197	ret = i915_gem_object_wait(obj,
4198				   I915_WAIT_INTERRUPTIBLE |
4199				   I915_WAIT_LOCKED |
4200				   (write ? I915_WAIT_ALL : 0),
4201				   MAX_SCHEDULE_TIMEOUT,
4202				   NULL);
4203	if (ret)
4204		return ret;
4205
4206	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
 
 
 
 
 
 
 
 
 
 
 
 
4207
4208	/* Flush the CPU cache if it's still invalid. */
4209	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4210		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4211		obj->read_domains |= I915_GEM_DOMAIN_CPU;
 
4212	}
4213
4214	/* It should now be out of any other write domains, and we can update
4215	 * the domain values for our changes.
4216	 */
4217	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4218
4219	/* If we're writing through the CPU, then the GPU read domains will
4220	 * need to be invalidated at next use.
4221	 */
4222	if (write)
4223		__start_cpu_write(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4224
4225	return 0;
4226}
4227
4228/* Throttle our rendering by waiting until the ring has completed our requests
4229 * emitted over 20 msec ago.
4230 *
4231 * Note that if we were to use the current jiffies each time around the loop,
4232 * we wouldn't escape the function with any frames outstanding if the time to
4233 * render a frame was over 20ms.
4234 *
4235 * This should get us reasonable parallelism between CPU and GPU but also
4236 * relatively low latency when blocking on a particular request to finish.
4237 */
4238static int
4239i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4240{
4241	struct drm_i915_private *dev_priv = to_i915(dev);
4242	struct drm_i915_file_private *file_priv = file->driver_priv;
4243	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4244	struct i915_request *request, *target = NULL;
4245	long ret;
 
 
4246
4247	/* ABI: return -EIO if already wedged */
4248	if (i915_terminally_wedged(&dev_priv->gpu_error))
4249		return -EIO;
4250
4251	spin_lock(&file_priv->mm.lock);
4252	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4253		if (time_after_eq(request->emitted_jiffies, recent_enough))
4254			break;
4255
4256		if (target) {
4257			list_del(&target->client_link);
4258			target->file_priv = NULL;
4259		}
4260
4261		target = request;
4262	}
4263	if (target)
4264		i915_request_get(target);
4265	spin_unlock(&file_priv->mm.lock);
4266
4267	if (target == NULL)
4268		return 0;
4269
4270	ret = i915_request_wait(target,
4271				I915_WAIT_INTERRUPTIBLE,
4272				MAX_SCHEDULE_TIMEOUT);
4273	i915_request_put(target);
4274
4275	return ret < 0 ? ret : 0;
4276}
4277
4278struct i915_vma *
4279i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4280			 const struct i915_ggtt_view *view,
4281			 u64 size,
4282			 u64 alignment,
4283			 u64 flags)
4284{
4285	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4286	struct i915_address_space *vm = &dev_priv->ggtt.base;
4287	struct i915_vma *vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
4288	int ret;
4289
4290	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
4291
4292	if (flags & PIN_MAPPABLE &&
4293	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4294		/* If the required space is larger than the available
4295		 * aperture, we will not able to find a slot for the
4296		 * object and unbinding the object now will be in
4297		 * vain. Worse, doing so may cause us to ping-pong
4298		 * the object in and out of the Global GTT and
4299		 * waste a lot of cycles under the mutex.
4300		 */
4301		if (obj->base.size > dev_priv->ggtt.mappable_end)
4302			return ERR_PTR(-E2BIG);
4303
4304		/* If NONBLOCK is set the caller is optimistically
4305		 * trying to cache the full object within the mappable
4306		 * aperture, and *must* have a fallback in place for
4307		 * situations where we cannot bind the object. We
4308		 * can be a little more lax here and use the fallback
4309		 * more often to avoid costly migrations of ourselves
4310		 * and other objects within the aperture.
4311		 *
4312		 * Half-the-aperture is used as a simple heuristic.
4313		 * More interesting would to do search for a free
4314		 * block prior to making the commitment to unbind.
4315		 * That caters for the self-harm case, and with a
4316		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4317		 * we could try to minimise harm to others.
4318		 */
4319		if (flags & PIN_NONBLOCK &&
4320		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4321			return ERR_PTR(-ENOSPC);
4322	}
4323
4324	vma = i915_vma_instance(obj, vm, view);
4325	if (unlikely(IS_ERR(vma)))
4326		return vma;
4327
4328	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4329		if (flags & PIN_NONBLOCK) {
4330			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4331				return ERR_PTR(-ENOSPC);
4332
4333			if (flags & PIN_MAPPABLE &&
4334			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4335				return ERR_PTR(-ENOSPC);
4336		}
 
4337
4338		WARN(i915_vma_is_pinned(vma),
4339		     "bo is already pinned in ggtt with incorrect alignment:"
4340		     " offset=%08x, req.alignment=%llx,"
4341		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4342		     i915_ggtt_offset(vma), alignment,
4343		     !!(flags & PIN_MAPPABLE),
4344		     i915_vma_is_map_and_fenceable(vma));
4345		ret = i915_vma_unbind(vma);
4346		if (ret)
4347			return ERR_PTR(ret);
4348	}
4349
4350	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4351	if (ret)
4352		return ERR_PTR(ret);
 
 
 
4353
4354	return vma;
 
4355}
4356
4357static __always_inline unsigned int __busy_read_flag(unsigned int id)
 
4358{
4359	/* Note that we could alias engines in the execbuf API, but
4360	 * that would be very unwise as it prevents userspace from
4361	 * fine control over engine selection. Ahem.
4362	 *
4363	 * This should be something like EXEC_MAX_ENGINE instead of
4364	 * I915_NUM_ENGINES.
4365	 */
4366	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4367	return 0x10000 << id;
 
 
 
 
 
4368}
4369
4370static __always_inline unsigned int __busy_write_id(unsigned int id)
 
 
4371{
4372	/* The uABI guarantees an active writer is also amongst the read
4373	 * engines. This would be true if we accessed the activity tracking
4374	 * under the lock, but as we perform the lookup of the object and
4375	 * its activity locklessly we can not guarantee that the last_write
4376	 * being active implies that we have set the same engine flag from
4377	 * last_read - hence we always set both read and write busy for
4378	 * last_write.
4379	 */
4380	return id | __busy_read_flag(id);
4381}
 
 
 
4382
4383static __always_inline unsigned int
4384__busy_set_if_active(const struct dma_fence *fence,
4385		     unsigned int (*flag)(unsigned int id))
4386{
4387	struct i915_request *rq;
4388
4389	/* We have to check the current hw status of the fence as the uABI
4390	 * guarantees forward progress. We could rely on the idle worker
4391	 * to eventually flush us, but to minimise latency just ask the
4392	 * hardware.
4393	 *
4394	 * Note we only report on the status of native fences.
4395	 */
4396	if (!dma_fence_is_i915(fence))
4397		return 0;
4398
4399	/* opencode to_request() in order to avoid const warnings */
4400	rq = container_of(fence, struct i915_request, fence);
4401	if (i915_request_completed(rq))
4402		return 0;
 
 
 
4403
4404	return flag(rq->engine->uabi_id);
 
 
 
 
 
 
 
 
 
4405}
4406
4407static __always_inline unsigned int
4408busy_check_reader(const struct dma_fence *fence)
 
4409{
4410	return __busy_set_if_active(fence, __busy_read_flag);
4411}
 
 
 
 
 
 
 
 
 
 
 
4412
4413static __always_inline unsigned int
4414busy_check_writer(const struct dma_fence *fence)
4415{
4416	if (!fence)
4417		return 0;
 
 
 
 
 
 
4418
4419	return __busy_set_if_active(fence, __busy_write_id);
 
 
 
 
4420}
4421
4422int
4423i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4424		    struct drm_file *file)
4425{
4426	struct drm_i915_gem_busy *args = data;
4427	struct drm_i915_gem_object *obj;
4428	struct reservation_object_list *list;
4429	unsigned int seq;
4430	int err;
4431
4432	err = -ENOENT;
4433	rcu_read_lock();
4434	obj = i915_gem_object_lookup_rcu(file, args->handle);
4435	if (!obj)
4436		goto out;
4437
4438	/* A discrepancy here is that we do not report the status of
4439	 * non-i915 fences, i.e. even though we may report the object as idle,
4440	 * a call to set-domain may still stall waiting for foreign rendering.
4441	 * This also means that wait-ioctl may report an object as busy,
4442	 * where busy-ioctl considers it idle.
4443	 *
4444	 * We trade the ability to warn of foreign fences to report on which
4445	 * i915 engines are active for the object.
4446	 *
4447	 * Alternatively, we can trade that extra information on read/write
4448	 * activity with
4449	 *	args->busy =
4450	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4451	 * to report the overall busyness. This is what the wait-ioctl does.
4452	 *
4453	 */
4454retry:
4455	seq = raw_read_seqcount(&obj->resv->seq);
4456
4457	/* Translate the exclusive fence to the READ *and* WRITE engine */
4458	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
 
 
 
4459
4460	/* Translate shared fences to READ set of engines */
4461	list = rcu_dereference(obj->resv->fence);
4462	if (list) {
4463		unsigned int shared_count = list->shared_count, i;
4464
4465		for (i = 0; i < shared_count; ++i) {
4466			struct dma_fence *fence =
4467				rcu_dereference(list->shared[i]);
 
 
 
 
 
 
 
 
 
 
4468
4469			args->busy |= busy_check_reader(fence);
 
 
 
 
 
 
 
4470		}
 
 
 
 
 
 
 
 
 
4471	}
4472
4473	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4474		goto retry;
4475
4476	err = 0;
4477out:
4478	rcu_read_unlock();
4479	return err;
4480}
4481
4482int
4483i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4484			struct drm_file *file_priv)
4485{
4486	return i915_gem_ring_throttle(dev, file_priv);
4487}
4488
4489int
4490i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4491		       struct drm_file *file_priv)
4492{
4493	struct drm_i915_private *dev_priv = to_i915(dev);
4494	struct drm_i915_gem_madvise *args = data;
4495	struct drm_i915_gem_object *obj;
4496	int err;
4497
4498	switch (args->madv) {
4499	case I915_MADV_DONTNEED:
4500	case I915_MADV_WILLNEED:
4501	    break;
4502	default:
4503	    return -EINVAL;
4504	}
4505
4506	obj = i915_gem_object_lookup(file_priv, args->handle);
4507	if (!obj)
4508		return -ENOENT;
 
 
 
 
 
 
4509
4510	err = mutex_lock_interruptible(&obj->mm.lock);
4511	if (err)
4512		goto out;
4513
4514	if (i915_gem_object_has_pages(obj) &&
4515	    i915_gem_object_is_tiled(obj) &&
4516	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4517		if (obj->mm.madv == I915_MADV_WILLNEED) {
4518			GEM_BUG_ON(!obj->mm.quirked);
4519			__i915_gem_object_unpin_pages(obj);
4520			obj->mm.quirked = false;
4521		}
4522		if (args->madv == I915_MADV_WILLNEED) {
4523			GEM_BUG_ON(obj->mm.quirked);
4524			__i915_gem_object_pin_pages(obj);
4525			obj->mm.quirked = true;
4526		}
4527	}
4528
4529	if (obj->mm.madv != __I915_MADV_PURGED)
4530		obj->mm.madv = args->madv;
4531
4532	/* if the object is no longer attached, discard its backing storage */
4533	if (obj->mm.madv == I915_MADV_DONTNEED &&
4534	    !i915_gem_object_has_pages(obj))
4535		i915_gem_object_truncate(obj);
4536
4537	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4538	mutex_unlock(&obj->mm.lock);
4539
4540out:
4541	i915_gem_object_put(obj);
4542	return err;
 
 
4543}
4544
4545static void
4546frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4547{
4548	struct drm_i915_gem_object *obj =
4549		container_of(active, typeof(*obj), frontbuffer_write);
4550
4551	intel_fb_obj_flush(obj, ORIGIN_CS);
4552}
4553
4554void i915_gem_object_init(struct drm_i915_gem_object *obj,
4555			  const struct drm_i915_gem_object_ops *ops)
4556{
4557	mutex_init(&obj->mm.lock);
4558
4559	INIT_LIST_HEAD(&obj->vma_list);
4560	INIT_LIST_HEAD(&obj->lut_list);
4561	INIT_LIST_HEAD(&obj->batch_pool_link);
4562
4563	obj->ops = ops;
4564
4565	reservation_object_init(&obj->__builtin_resv);
4566	obj->resv = &obj->__builtin_resv;
4567
4568	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4569	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4570
4571	obj->mm.madv = I915_MADV_WILLNEED;
4572	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4573	mutex_init(&obj->mm.get_page.lock);
4574
4575	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4576}
4577
4578static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4579	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4580		 I915_GEM_OBJECT_IS_SHRINKABLE,
4581
4582	.get_pages = i915_gem_object_get_pages_gtt,
4583	.put_pages = i915_gem_object_put_pages_gtt,
4584
4585	.pwrite = i915_gem_object_pwrite_gtt,
4586};
4587
4588static int i915_gem_object_create_shmem(struct drm_device *dev,
4589					struct drm_gem_object *obj,
4590					size_t size)
4591{
4592	struct drm_i915_private *i915 = to_i915(dev);
4593	unsigned long flags = VM_NORESERVE;
4594	struct file *filp;
4595
4596	drm_gem_private_object_init(dev, obj, size);
4597
4598	if (i915->mm.gemfs)
4599		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4600						 flags);
4601	else
4602		filp = shmem_file_setup("i915", size, flags);
4603
4604	if (IS_ERR(filp))
4605		return PTR_ERR(filp);
4606
4607	obj->filp = filp;
4608
4609	return 0;
4610}
4611
4612struct drm_i915_gem_object *
4613i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4614{
 
4615	struct drm_i915_gem_object *obj;
4616	struct address_space *mapping;
4617	unsigned int cache_level;
4618	gfp_t mask;
4619	int ret;
4620
4621	/* There is a prevalence of the assumption that we fit the object's
4622	 * page count inside a 32bit _signed_ variable. Let's document this and
4623	 * catch if we ever need to fix it. In the meantime, if you do spot
4624	 * such a local variable, please consider fixing!
4625	 */
4626	if (size >> PAGE_SHIFT > INT_MAX)
4627		return ERR_PTR(-E2BIG);
4628
4629	if (overflows_type(size, obj->base.size))
4630		return ERR_PTR(-E2BIG);
4631
4632	obj = i915_gem_object_alloc(dev_priv);
4633	if (obj == NULL)
4634		return ERR_PTR(-ENOMEM);
4635
4636	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4637	if (ret)
4638		goto fail;
4639
4640	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4641	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4642		/* 965gm cannot relocate objects above 4GiB. */
4643		mask &= ~__GFP_HIGHMEM;
4644		mask |= __GFP_DMA32;
4645	}
4646
4647	mapping = obj->base.filp->f_mapping;
4648	mapping_set_gfp_mask(mapping, mask);
4649	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4650
4651	i915_gem_object_init(obj, &i915_gem_object_ops);
4652
4653	obj->write_domain = I915_GEM_DOMAIN_CPU;
4654	obj->read_domains = I915_GEM_DOMAIN_CPU;
4655
4656	if (HAS_LLC(dev_priv))
4657		/* On some devices, we can have the GPU use the LLC (the CPU
4658		 * cache) for about a 10% performance improvement
4659		 * compared to uncached.  Graphics requests other than
4660		 * display scanout are coherent with the CPU in
4661		 * accessing this cache.  This means in this mode we
4662		 * don't need to clflush on the CPU side, and on the
4663		 * GPU side we only need to flush internal caches to
4664		 * get data visible to the CPU.
4665		 *
4666		 * However, we maintain the display planes as UC, and so
4667		 * need to rebind when first used as such.
4668		 */
4669		cache_level = I915_CACHE_LLC;
4670	else
4671		cache_level = I915_CACHE_NONE;
4672
4673	i915_gem_object_set_cache_coherency(obj, cache_level);
4674
4675	trace_i915_gem_object_create(obj);
 
 
 
 
 
 
 
4676
4677	return obj;
4678
4679fail:
4680	i915_gem_object_free(obj);
4681	return ERR_PTR(ret);
4682}
4683
4684static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4685{
4686	/* If we are the last user of the backing storage (be it shmemfs
4687	 * pages or stolen etc), we know that the pages are going to be
4688	 * immediately released. In this case, we can then skip copying
4689	 * back the contents from the GPU.
4690	 */
4691
4692	if (obj->mm.madv != I915_MADV_WILLNEED)
4693		return false;
4694
4695	if (obj->base.filp == NULL)
4696		return true;
4697
4698	/* At first glance, this looks racy, but then again so would be
4699	 * userspace racing mmap against close. However, the first external
4700	 * reference to the filp can only be obtained through the
4701	 * i915_gem_mmap_ioctl() which safeguards us against the user
4702	 * acquiring such a reference whilst we are in the middle of
4703	 * freeing the object.
4704	 */
4705	return atomic_long_read(&obj->base.filp->f_count) == 1;
4706}
4707
4708static void __i915_gem_free_objects(struct drm_i915_private *i915,
4709				    struct llist_node *freed)
4710{
4711	struct drm_i915_gem_object *obj, *on;
 
 
4712
4713	intel_runtime_pm_get(i915);
4714	llist_for_each_entry_safe(obj, on, freed, freed) {
4715		struct i915_vma *vma, *vn;
4716
4717		trace_i915_gem_object_destroy(obj);
4718
4719		mutex_lock(&i915->drm.struct_mutex);
4720
4721		GEM_BUG_ON(i915_gem_object_is_active(obj));
4722		list_for_each_entry_safe(vma, vn,
4723					 &obj->vma_list, obj_link) {
4724			GEM_BUG_ON(i915_vma_is_active(vma));
4725			vma->flags &= ~I915_VMA_PIN_MASK;
4726			i915_vma_close(vma);
4727		}
4728		GEM_BUG_ON(!list_empty(&obj->vma_list));
4729		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4730
4731		/* This serializes freeing with the shrinker. Since the free
4732		 * is delayed, first by RCU then by the workqueue, we want the
4733		 * shrinker to be able to free pages of unreferenced objects,
4734		 * or else we may oom whilst there are plenty of deferred
4735		 * freed objects.
4736		 */
4737		if (i915_gem_object_has_pages(obj)) {
4738			spin_lock(&i915->mm.obj_lock);
4739			list_del_init(&obj->mm.link);
4740			spin_unlock(&i915->mm.obj_lock);
4741		}
4742
4743		mutex_unlock(&i915->drm.struct_mutex);
4744
4745		GEM_BUG_ON(obj->bind_count);
4746		GEM_BUG_ON(obj->userfault_count);
4747		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4748		GEM_BUG_ON(!list_empty(&obj->lut_list));
4749
4750		if (obj->ops->release)
4751			obj->ops->release(obj);
4752
4753		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4754			atomic_set(&obj->mm.pages_pin_count, 0);
4755		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4756		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4757
4758		if (obj->base.import_attach)
4759			drm_prime_gem_destroy(&obj->base, NULL);
4760
4761		reservation_object_fini(&obj->__builtin_resv);
4762		drm_gem_object_release(&obj->base);
4763		i915_gem_info_remove_obj(i915, obj->base.size);
4764
4765		kfree(obj->bit_17);
4766		i915_gem_object_free(obj);
4767
4768		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4769		atomic_dec(&i915->mm.free_count);
4770
4771		if (on)
4772			cond_resched();
4773	}
4774	intel_runtime_pm_put(i915);
4775}
4776
4777static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4778{
4779	struct llist_node *freed;
4780
4781	/* Free the oldest, most stale object to keep the free_list short */
4782	freed = NULL;
4783	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4784		/* Only one consumer of llist_del_first() allowed */
4785		spin_lock(&i915->mm.free_lock);
4786		freed = llist_del_first(&i915->mm.free_list);
4787		spin_unlock(&i915->mm.free_lock);
4788	}
4789	if (unlikely(freed)) {
4790		freed->next = NULL;
4791		__i915_gem_free_objects(i915, freed);
4792	}
4793}
4794
4795static void __i915_gem_free_work(struct work_struct *work)
4796{
4797	struct drm_i915_private *i915 =
4798		container_of(work, struct drm_i915_private, mm.free_work);
4799	struct llist_node *freed;
4800
4801	/*
4802	 * All file-owned VMA should have been released by this point through
4803	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4804	 * However, the object may also be bound into the global GTT (e.g.
4805	 * older GPUs without per-process support, or for direct access through
4806	 * the GTT either for the user or for scanout). Those VMA still need to
4807	 * unbound now.
4808	 */
4809
4810	spin_lock(&i915->mm.free_lock);
4811	while ((freed = llist_del_all(&i915->mm.free_list))) {
4812		spin_unlock(&i915->mm.free_lock);
4813
4814		__i915_gem_free_objects(i915, freed);
4815		if (need_resched())
4816			return;
4817
4818		spin_lock(&i915->mm.free_lock);
4819	}
4820	spin_unlock(&i915->mm.free_lock);
4821}
4822
4823static void __i915_gem_free_object_rcu(struct rcu_head *head)
4824{
4825	struct drm_i915_gem_object *obj =
4826		container_of(head, typeof(*obj), rcu);
4827	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4828
4829	/*
4830	 * Since we require blocking on struct_mutex to unbind the freed
4831	 * object from the GPU before releasing resources back to the
4832	 * system, we can not do that directly from the RCU callback (which may
4833	 * be a softirq context), but must instead then defer that work onto a
4834	 * kthread. We use the RCU callback rather than move the freed object
4835	 * directly onto the work queue so that we can mix between using the
4836	 * worker and performing frees directly from subsequent allocations for
4837	 * crude but effective memory throttling.
4838	 */
4839	if (llist_add(&obj->freed, &i915->mm.free_list))
4840		queue_work(i915->wq, &i915->mm.free_work);
4841}
4842
4843void i915_gem_free_object(struct drm_gem_object *gem_obj)
4844{
4845	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
 
4846
4847	if (obj->mm.quirked)
4848		__i915_gem_object_unpin_pages(obj);
4849
4850	if (discard_backing_storage(obj))
4851		obj->mm.madv = I915_MADV_DONTNEED;
4852
4853	/*
4854	 * Before we free the object, make sure any pure RCU-only
4855	 * read-side critical sections are complete, e.g.
4856	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4857	 * lookup see i915_gem_object_lookup_rcu().
4858	 */
4859	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4860	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4861}
4862
4863void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
 
4864{
4865	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
4866
4867	if (!i915_gem_object_has_active_reference(obj) &&
4868	    i915_gem_object_is_active(obj))
4869		i915_gem_object_set_active_reference(obj);
4870	else
4871		i915_gem_object_put(obj);
4872}
4873
4874static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4875{
4876	struct i915_gem_context *kernel_context = i915->kernel_context;
4877	struct intel_engine_cs *engine;
4878	enum intel_engine_id id;
4879
4880	for_each_engine(engine, i915, id) {
4881		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
4882		GEM_BUG_ON(engine->last_retired_context != kernel_context);
 
4883	}
4884}
4885
4886void i915_gem_sanitize(struct drm_i915_private *i915)
4887{
4888	if (i915_terminally_wedged(&i915->gpu_error)) {
4889		mutex_lock(&i915->drm.struct_mutex);
4890		i915_gem_unset_wedged(i915);
4891		mutex_unlock(&i915->drm.struct_mutex);
 
4892	}
4893
4894	/*
4895	 * If we inherit context state from the BIOS or earlier occupants
4896	 * of the GPU, the GPU may be in an inconsistent state when we
4897	 * try to take over. The only way to remove the earlier state
4898	 * is by resetting. However, resetting on earlier gen is tricky as
4899	 * it may impact the display and we are uncertain about the stability
4900	 * of the reset, so this could be applied to even earlier gen.
4901	 */
4902	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
4903		WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4904}
4905
4906int i915_gem_suspend(struct drm_i915_private *dev_priv)
4907{
4908	struct drm_device *dev = &dev_priv->drm;
4909	int ret;
4910
4911	intel_runtime_pm_get(dev_priv);
4912	intel_suspend_gt_powersave(dev_priv);
4913
4914	mutex_lock(&dev->struct_mutex);
4915
4916	/* We have to flush all the executing contexts to main memory so
4917	 * that they can saved in the hibernation image. To ensure the last
4918	 * context image is coherent, we have to switch away from it. That
4919	 * leaves the dev_priv->kernel_context still active when
4920	 * we actually suspend, and its image in memory may not match the GPU
4921	 * state. Fortunately, the kernel_context is disposable and we do
4922	 * not rely on its state.
4923	 */
4924	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4925		ret = i915_gem_switch_to_kernel_context(dev_priv);
4926		if (ret)
4927			goto err_unlock;
4928
4929		ret = i915_gem_wait_for_idle(dev_priv,
4930					     I915_WAIT_INTERRUPTIBLE |
4931					     I915_WAIT_LOCKED);
4932		if (ret && ret != -EIO)
4933			goto err_unlock;
4934
4935		assert_kernel_context_is_current(dev_priv);
4936	}
4937	i915_gem_contexts_lost(dev_priv);
4938	mutex_unlock(&dev->struct_mutex);
4939
4940	intel_uc_suspend(dev_priv);
4941
4942	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4943	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4944
4945	/* As the idle_work is rearming if it detects a race, play safe and
4946	 * repeat the flush until it is definitely idle.
4947	 */
4948	drain_delayed_work(&dev_priv->gt.idle_work);
4949
4950	/* Assert that we sucessfully flushed all the work and
4951	 * reset the GPU back to its idle, low power state.
4952	 */
4953	WARN_ON(dev_priv->gt.awake);
4954	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4955		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4956
4957	/*
4958	 * Neither the BIOS, ourselves or any other kernel
4959	 * expects the system to be in execlists mode on startup,
4960	 * so we need to reset the GPU back to legacy mode. And the only
4961	 * known way to disable logical contexts is through a GPU reset.
4962	 *
4963	 * So in order to leave the system in a known default configuration,
4964	 * always reset the GPU upon unload and suspend. Afterwards we then
4965	 * clean up the GEM state tracking, flushing off the requests and
4966	 * leaving the system in a known idle state.
4967	 *
4968	 * Note that is of the upmost importance that the GPU is idle and
4969	 * all stray writes are flushed *before* we dismantle the backing
4970	 * storage for the pinned objects.
4971	 *
4972	 * However, since we are uncertain that resetting the GPU on older
4973	 * machines is a good idea, we don't - just in case it leaves the
4974	 * machine in an unusable condition.
4975	 */
4976	i915_gem_sanitize(dev_priv);
4977
4978	intel_runtime_pm_put(dev_priv);
4979	return 0;
4980
4981err_unlock:
4982	mutex_unlock(&dev->struct_mutex);
4983	intel_runtime_pm_put(dev_priv);
4984	return ret;
4985}
4986
4987void i915_gem_resume(struct drm_i915_private *i915)
 
4988{
4989	WARN_ON(i915->gt.awake);
 
4990
4991	mutex_lock(&i915->drm.struct_mutex);
4992	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
 
4993
4994	i915_gem_restore_gtt_mappings(i915);
4995	i915_gem_restore_fences(i915);
 
 
 
4996
4997	/*
4998	 * As we didn't flush the kernel context before suspend, we cannot
4999	 * guarantee that the context image is complete. So let's just reset
5000	 * it and start again.
5001	 */
5002	i915->gt.resume(i915);
5003
5004	if (i915_gem_init_hw(i915))
5005		goto err_wedged;
5006
5007	intel_uc_resume(i915);
5008
5009	/* Always reload a context for powersaving. */
5010	if (i915_gem_switch_to_kernel_context(i915))
5011		goto err_wedged;
5012
5013out_unlock:
5014	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5015	mutex_unlock(&i915->drm.struct_mutex);
5016	return;
5017
5018err_wedged:
5019	if (!i915_terminally_wedged(&i915->gpu_error)) {
5020		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5021		i915_gem_set_wedged(i915);
5022	}
5023	goto out_unlock;
5024}
5025
5026void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
 
5027{
5028	if (INTEL_GEN(dev_priv) < 5 ||
5029	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5030		return;
5031
5032	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5033				 DISP_TILE_SURFACE_SWIZZLING);
5034
5035	if (IS_GEN5(dev_priv))
5036		return;
5037
5038	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5039	if (IS_GEN6(dev_priv))
5040		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5041	else if (IS_GEN7(dev_priv))
5042		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5043	else if (IS_GEN8(dev_priv))
5044		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5045	else
5046		BUG();
5047}
5048
5049static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
 
 
5050{
5051	I915_WRITE(RING_CTL(base), 0);
5052	I915_WRITE(RING_HEAD(base), 0);
5053	I915_WRITE(RING_TAIL(base), 0);
5054	I915_WRITE(RING_START(base), 0);
5055}
5056
5057static void init_unused_rings(struct drm_i915_private *dev_priv)
5058{
5059	if (IS_I830(dev_priv)) {
5060		init_unused_ring(dev_priv, PRB1_BASE);
5061		init_unused_ring(dev_priv, SRB0_BASE);
5062		init_unused_ring(dev_priv, SRB1_BASE);
5063		init_unused_ring(dev_priv, SRB2_BASE);
5064		init_unused_ring(dev_priv, SRB3_BASE);
5065	} else if (IS_GEN2(dev_priv)) {
5066		init_unused_ring(dev_priv, SRB0_BASE);
5067		init_unused_ring(dev_priv, SRB1_BASE);
5068	} else if (IS_GEN3(dev_priv)) {
5069		init_unused_ring(dev_priv, PRB1_BASE);
5070		init_unused_ring(dev_priv, PRB2_BASE);
5071	}
5072}
5073
5074static int __i915_gem_restart_engines(void *data)
5075{
5076	struct drm_i915_private *i915 = data;
5077	struct intel_engine_cs *engine;
5078	enum intel_engine_id id;
5079	int err;
5080
5081	for_each_engine(engine, i915, id) {
5082		err = engine->init_hw(engine);
5083		if (err) {
5084			DRM_ERROR("Failed to restart %s (%d)\n",
5085				  engine->name, err);
5086			return err;
5087		}
5088	}
5089
5090	return 0;
5091}
5092
5093int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5094{
5095	int ret;
5096
5097	dev_priv->gt.last_init_time = ktime_get();
5098
5099	/* Double layer security blanket, see i915_gem_init() */
5100	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5101
5102	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5103		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5104
5105	if (IS_HASWELL(dev_priv))
5106		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5107			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5108
5109	if (HAS_PCH_NOP(dev_priv)) {
5110		if (IS_IVYBRIDGE(dev_priv)) {
5111			u32 temp = I915_READ(GEN7_MSG_CTL);
5112			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5113			I915_WRITE(GEN7_MSG_CTL, temp);
5114		} else if (INTEL_GEN(dev_priv) >= 7) {
5115			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5116			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5117			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5118		}
5119	}
5120
5121	i915_gem_init_swizzling(dev_priv);
5122
5123	/*
5124	 * At least 830 can leave some of the unused rings
5125	 * "active" (ie. head != tail) after resume which
5126	 * will prevent c3 entry. Makes sure all unused rings
5127	 * are totally idle.
5128	 */
5129	init_unused_rings(dev_priv);
5130
5131	BUG_ON(!dev_priv->kernel_context);
5132	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5133		ret = -EIO;
5134		goto out;
5135	}
 
5136
5137	ret = i915_ppgtt_init_hw(dev_priv);
5138	if (ret) {
5139		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5140		goto out;
5141	}
5142
5143	/* We can't enable contexts until all firmware is loaded */
5144	ret = intel_uc_init_hw(dev_priv);
5145	if (ret) {
5146		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5147		goto out;
5148	}
5149
5150	intel_mocs_init_l3cc_table(dev_priv);
 
 
 
 
5151
5152	/* Only when the HW is re-initialised, can we replay the requests */
5153	ret = __i915_gem_restart_engines(dev_priv);
5154out:
5155	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5156	return ret;
5157}
5158
5159static int __intel_engines_record_defaults(struct drm_i915_private *i915)
 
 
5160{
5161	struct i915_gem_context *ctx;
5162	struct intel_engine_cs *engine;
5163	enum intel_engine_id id;
5164	int err;
5165
5166	/*
5167	 * As we reset the gpu during very early sanitisation, the current
5168	 * register state on the GPU should reflect its defaults values.
5169	 * We load a context onto the hw (with restore-inhibit), then switch
5170	 * over to a second context to save that default register state. We
5171	 * can then prime every new context with that state so they all start
5172	 * from the same default HW values.
5173	 */
5174
5175	ctx = i915_gem_context_create_kernel(i915, 0);
5176	if (IS_ERR(ctx))
5177		return PTR_ERR(ctx);
5178
5179	for_each_engine(engine, i915, id) {
5180		struct i915_request *rq;
5181
5182		rq = i915_request_alloc(engine, ctx);
5183		if (IS_ERR(rq)) {
5184			err = PTR_ERR(rq);
5185			goto out_ctx;
5186		}
5187
5188		err = 0;
5189		if (engine->init_context)
5190			err = engine->init_context(rq);
5191
5192		__i915_request_add(rq, true);
5193		if (err)
5194			goto err_active;
5195	}
5196
5197	err = i915_gem_switch_to_kernel_context(i915);
5198	if (err)
5199		goto err_active;
5200
5201	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
5202	if (err)
5203		goto err_active;
5204
5205	assert_kernel_context_is_current(i915);
5206
5207	for_each_engine(engine, i915, id) {
5208		struct i915_vma *state;
5209
5210		state = ctx->engine[id].state;
5211		if (!state)
5212			continue;
5213
5214		/*
5215		 * As we will hold a reference to the logical state, it will
5216		 * not be torn down with the context, and importantly the
5217		 * object will hold onto its vma (making it possible for a
5218		 * stray GTT write to corrupt our defaults). Unmap the vma
5219		 * from the GTT to prevent such accidents and reclaim the
5220		 * space.
5221		 */
5222		err = i915_vma_unbind(state);
5223		if (err)
5224			goto err_active;
5225
5226		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5227		if (err)
5228			goto err_active;
5229
5230		engine->default_state = i915_gem_object_get(state->obj);
5231	}
5232
5233	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5234		unsigned int found = intel_engines_has_context_isolation(i915);
5235
5236		/*
5237		 * Make sure that classes with multiple engine instances all
5238		 * share the same basic configuration.
5239		 */
5240		for_each_engine(engine, i915, id) {
5241			unsigned int bit = BIT(engine->uabi_class);
5242			unsigned int expected = engine->default_state ? bit : 0;
5243
5244			if ((found & bit) != expected) {
5245				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5246					  engine->uabi_class, engine->name);
5247			}
5248		}
5249	}
5250
5251out_ctx:
5252	i915_gem_context_set_closed(ctx);
5253	i915_gem_context_put(ctx);
5254	return err;
5255
5256err_active:
5257	/*
5258	 * If we have to abandon now, we expect the engines to be idle
5259	 * and ready to be torn-down. First try to flush any remaining
5260	 * request, ensure we are pointing at the kernel context and
5261	 * then remove it.
5262	 */
5263	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5264		goto out_ctx;
5265
5266	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
5267		goto out_ctx;
5268
5269	i915_gem_contexts_lost(i915);
5270	goto out_ctx;
5271}
5272
5273int i915_gem_init(struct drm_i915_private *dev_priv)
 
5274{
5275	int ret;
5276
5277	/*
5278	 * We need to fallback to 4K pages since gvt gtt handling doesn't
5279	 * support huge page entries - we will need to check either hypervisor
5280	 * mm can support huge guest page or just do emulation in gvt.
5281	 */
5282	if (intel_vgpu_active(dev_priv))
5283		mkwrite_device_info(dev_priv)->page_sizes =
5284			I915_GTT_PAGE_SIZE_4K;
5285
5286	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5287
5288	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5289		dev_priv->gt.resume = intel_lr_context_resume;
5290		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5291	} else {
5292		dev_priv->gt.resume = intel_legacy_submission_resume;
5293		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5294	}
5295
5296	ret = i915_gem_init_userptr(dev_priv);
5297	if (ret)
5298		return ret;
5299
5300	ret = intel_uc_init_misc(dev_priv);
5301	if (ret)
5302		return ret;
5303
5304	/* This is just a security blanket to placate dragons.
5305	 * On some systems, we very sporadically observe that the first TLBs
5306	 * used by the CS may be stale, despite us poking the TLB reset. If
5307	 * we hold the forcewake during initialisation these problems
5308	 * just magically go away.
5309	 */
5310	mutex_lock(&dev_priv->drm.struct_mutex);
5311	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5312
5313	ret = i915_gem_init_ggtt(dev_priv);
5314	if (ret) {
5315		GEM_BUG_ON(ret == -EIO);
5316		goto err_unlock;
5317	}
5318
5319	ret = i915_gem_contexts_init(dev_priv);
5320	if (ret) {
5321		GEM_BUG_ON(ret == -EIO);
5322		goto err_ggtt;
5323	}
5324
5325	ret = intel_engines_init(dev_priv);
5326	if (ret) {
5327		GEM_BUG_ON(ret == -EIO);
5328		goto err_context;
5329	}
5330
5331	intel_init_gt_powersave(dev_priv);
5332
5333	ret = intel_uc_init(dev_priv);
5334	if (ret)
5335		goto err_pm;
5336
5337	ret = i915_gem_init_hw(dev_priv);
5338	if (ret)
5339		goto err_uc_init;
5340
5341	/*
5342	 * Despite its name intel_init_clock_gating applies both display
5343	 * clock gating workarounds; GT mmio workarounds and the occasional
5344	 * GT power context workaround. Worse, sometimes it includes a context
5345	 * register workaround which we need to apply before we record the
5346	 * default HW state for all contexts.
5347	 *
5348	 * FIXME: break up the workarounds and apply them at the right time!
5349	 */
5350	intel_init_clock_gating(dev_priv);
5351
5352	ret = __intel_engines_record_defaults(dev_priv);
5353	if (ret)
5354		goto err_init_hw;
5355
5356	if (i915_inject_load_failure()) {
5357		ret = -ENODEV;
5358		goto err_init_hw;
5359	}
5360
5361	if (i915_inject_load_failure()) {
5362		ret = -EIO;
5363		goto err_init_hw;
5364	}
5365
5366	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5367	mutex_unlock(&dev_priv->drm.struct_mutex);
5368
5369	return 0;
5370
5371	/*
5372	 * Unwinding is complicated by that we want to handle -EIO to mean
5373	 * disable GPU submission but keep KMS alive. We want to mark the
5374	 * HW as irrevisibly wedged, but keep enough state around that the
5375	 * driver doesn't explode during runtime.
5376	 */
5377err_init_hw:
5378	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
5379	i915_gem_contexts_lost(dev_priv);
5380	intel_uc_fini_hw(dev_priv);
5381err_uc_init:
5382	intel_uc_fini(dev_priv);
5383err_pm:
5384	if (ret != -EIO) {
5385		intel_cleanup_gt_powersave(dev_priv);
5386		i915_gem_cleanup_engines(dev_priv);
5387	}
5388err_context:
5389	if (ret != -EIO)
5390		i915_gem_contexts_fini(dev_priv);
5391err_ggtt:
5392err_unlock:
5393	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5394	mutex_unlock(&dev_priv->drm.struct_mutex);
5395
5396	intel_uc_fini_misc(dev_priv);
5397
5398	if (ret != -EIO)
5399		i915_gem_cleanup_userptr(dev_priv);
5400
5401	if (ret == -EIO) {
5402		/*
5403		 * Allow engine initialisation to fail by marking the GPU as
5404		 * wedged. But we only want to do this where the GPU is angry,
5405		 * for all other failure, such as an allocation failure, bail.
5406		 */
5407		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5408			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5409			i915_gem_set_wedged(dev_priv);
5410		}
5411		ret = 0;
5412	}
5413
5414	i915_gem_drain_freed_objects(dev_priv);
5415	return ret;
5416}
5417
5418void i915_gem_init_mmio(struct drm_i915_private *i915)
 
5419{
5420	i915_gem_sanitize(i915);
 
 
5421}
5422
5423void
5424i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5425{
5426	struct intel_engine_cs *engine;
5427	enum intel_engine_id id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5428
5429	for_each_engine(engine, dev_priv, id)
5430		dev_priv->gt.cleanup_engine(engine);
5431}
 
 
 
 
 
 
 
 
5432
5433void
5434i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5435{
5436	int i;
5437
5438	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5439	    !IS_CHERRYVIEW(dev_priv))
5440		dev_priv->num_fence_regs = 32;
5441	else if (INTEL_GEN(dev_priv) >= 4 ||
5442		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5443		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5444		dev_priv->num_fence_regs = 16;
5445	else
5446		dev_priv->num_fence_regs = 8;
5447
5448	if (intel_vgpu_active(dev_priv))
5449		dev_priv->num_fence_regs =
5450				I915_READ(vgtif_reg(avail_rs.fence_num));
5451
5452	/* Initialize fence registers to zero */
5453	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5454		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5455
5456		fence->i915 = dev_priv;
5457		fence->id = i;
5458		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5459	}
5460	i915_gem_restore_fences(dev_priv);
5461
5462	i915_gem_detect_bit_6_swizzle(dev_priv);
5463}
5464
5465static void i915_gem_init__mm(struct drm_i915_private *i915)
5466{
5467	spin_lock_init(&i915->mm.object_stat_lock);
5468	spin_lock_init(&i915->mm.obj_lock);
5469	spin_lock_init(&i915->mm.free_lock);
5470
5471	init_llist_head(&i915->mm.free_list);
 
5472
5473	INIT_LIST_HEAD(&i915->mm.unbound_list);
5474	INIT_LIST_HEAD(&i915->mm.bound_list);
5475	INIT_LIST_HEAD(&i915->mm.fence_list);
5476	INIT_LIST_HEAD(&i915->mm.userfault_list);
5477
5478	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
 
 
5479}
5480
5481int
5482i915_gem_load_init(struct drm_i915_private *dev_priv)
 
 
 
 
5483{
5484	int err = -ENOMEM;
 
 
5485
5486	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5487	if (!dev_priv->objects)
5488		goto err_out;
5489
5490	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5491	if (!dev_priv->vmas)
5492		goto err_objects;
5493
5494	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5495	if (!dev_priv->luts)
5496		goto err_vmas;
5497
5498	dev_priv->requests = KMEM_CACHE(i915_request,
5499					SLAB_HWCACHE_ALIGN |
5500					SLAB_RECLAIM_ACCOUNT |
5501					SLAB_TYPESAFE_BY_RCU);
5502	if (!dev_priv->requests)
5503		goto err_luts;
5504
5505	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5506					    SLAB_HWCACHE_ALIGN |
5507					    SLAB_RECLAIM_ACCOUNT);
5508	if (!dev_priv->dependencies)
5509		goto err_requests;
5510
5511	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5512	if (!dev_priv->priorities)
5513		goto err_dependencies;
5514
5515	mutex_lock(&dev_priv->drm.struct_mutex);
5516	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5517	err = i915_gem_timeline_init__global(dev_priv);
5518	mutex_unlock(&dev_priv->drm.struct_mutex);
5519	if (err)
5520		goto err_priorities;
5521
5522	i915_gem_init__mm(dev_priv);
 
 
5523
5524	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5525			  i915_gem_retire_work_handler);
5526	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5527			  i915_gem_idle_work_handler);
5528	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5529	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5530
5531	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5532
5533	spin_lock_init(&dev_priv->fb_tracking.lock);
5534
5535	err = i915_gemfs_init(dev_priv);
5536	if (err)
5537		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5538
5539	return 0;
 
 
 
 
 
 
 
5540
5541err_priorities:
5542	kmem_cache_destroy(dev_priv->priorities);
5543err_dependencies:
5544	kmem_cache_destroy(dev_priv->dependencies);
5545err_requests:
5546	kmem_cache_destroy(dev_priv->requests);
5547err_luts:
5548	kmem_cache_destroy(dev_priv->luts);
5549err_vmas:
5550	kmem_cache_destroy(dev_priv->vmas);
5551err_objects:
5552	kmem_cache_destroy(dev_priv->objects);
5553err_out:
5554	return err;
5555}
5556
5557void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5558{
5559	i915_gem_drain_freed_objects(dev_priv);
5560	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5561	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5562	WARN_ON(dev_priv->mm.object_count);
5563
5564	mutex_lock(&dev_priv->drm.struct_mutex);
5565	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5566	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5567	mutex_unlock(&dev_priv->drm.struct_mutex);
5568
5569	kmem_cache_destroy(dev_priv->priorities);
5570	kmem_cache_destroy(dev_priv->dependencies);
5571	kmem_cache_destroy(dev_priv->requests);
5572	kmem_cache_destroy(dev_priv->luts);
5573	kmem_cache_destroy(dev_priv->vmas);
5574	kmem_cache_destroy(dev_priv->objects);
5575
5576	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5577	rcu_barrier();
5578
5579	i915_gemfs_fini(dev_priv);
5580}
5581
5582int i915_gem_freeze(struct drm_i915_private *dev_priv)
5583{
5584	/* Discard all purgeable objects, let userspace recover those as
5585	 * required after resuming.
5586	 */
5587	i915_gem_shrink_all(dev_priv);
5588
5589	return 0;
 
 
 
5590}
5591
5592int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5593{
5594	struct drm_i915_gem_object *obj;
5595	struct list_head *phases[] = {
5596		&dev_priv->mm.unbound_list,
5597		&dev_priv->mm.bound_list,
5598		NULL
5599	}, **p;
5600
5601	/* Called just before we write the hibernation image.
5602	 *
5603	 * We need to update the domain tracking to reflect that the CPU
5604	 * will be accessing all the pages to create and restore from the
5605	 * hibernation, and so upon restoration those pages will be in the
5606	 * CPU domain.
5607	 *
5608	 * To make sure the hibernation image contains the latest state,
5609	 * we update that state just before writing out the image.
5610	 *
5611	 * To try and reduce the hibernation image, we manually shrink
5612	 * the objects as well, see i915_gem_freeze()
5613	 */
5614
5615	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5616	i915_gem_drain_freed_objects(dev_priv);
5617
5618	spin_lock(&dev_priv->mm.obj_lock);
5619	for (p = phases; *p; p++) {
5620		list_for_each_entry(obj, *p, mm.link)
5621			__start_cpu_write(obj);
5622	}
5623	spin_unlock(&dev_priv->mm.obj_lock);
5624
5625	return 0;
 
 
 
 
 
5626}
5627
5628void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5629{
5630	struct drm_i915_file_private *file_priv = file->driver_priv;
5631	struct i915_request *request;
5632
5633	/* Clean up our request list when the client is going away, so that
5634	 * later retire_requests won't dereference our soon-to-be-gone
5635	 * file_priv.
5636	 */
5637	spin_lock(&file_priv->mm.lock);
5638	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5639		request->file_priv = NULL;
5640	spin_unlock(&file_priv->mm.lock);
5641}
5642
5643int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
 
5644{
5645	struct drm_i915_file_private *file_priv;
5646	int ret;
 
 
5647
5648	DRM_DEBUG("\n");
 
 
5649
5650	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5651	if (!file_priv)
5652		return -ENOMEM;
 
 
 
 
5653
5654	file->driver_priv = file_priv;
5655	file_priv->dev_priv = i915;
5656	file_priv->file = file;
5657
5658	spin_lock_init(&file_priv->mm.lock);
5659	INIT_LIST_HEAD(&file_priv->mm.request_list);
 
 
 
 
5660
5661	file_priv->bsd_engine = -1;
5662
5663	ret = i915_gem_context_open(i915, file);
5664	if (ret)
5665		kfree(file_priv);
5666
5667	return ret;
5668}
5669
5670/**
5671 * i915_gem_track_fb - update frontbuffer tracking
5672 * @old: current GEM buffer for the frontbuffer slots
5673 * @new: new GEM buffer for the frontbuffer slots
5674 * @frontbuffer_bits: bitmask of frontbuffer slots
5675 *
5676 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5677 * from @old and setting them in @new. Both @old and @new can be NULL.
5678 */
5679void i915_gem_track_fb(struct drm_i915_gem_object *old,
5680		       struct drm_i915_gem_object *new,
5681		       unsigned frontbuffer_bits)
5682{
5683	/* Control of individual bits within the mask are guarded by
5684	 * the owning plane->mutex, i.e. we can never see concurrent
5685	 * manipulation of individual bits. But since the bitfield as a whole
5686	 * is updated using RMW, we need to use atomics in order to update
5687	 * the bits.
5688	 */
5689	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5690		     sizeof(atomic_t) * BITS_PER_BYTE);
5691
5692	if (old) {
5693		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5694		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5695	}
5696
5697	if (new) {
5698		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5699		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
 
5700	}
5701}
5702
5703/* Allocate a new GEM object and fill it with the supplied data */
5704struct drm_i915_gem_object *
5705i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5706			         const void *data, size_t size)
5707{
5708	struct drm_i915_gem_object *obj;
5709	struct file *file;
5710	size_t offset;
5711	int err;
5712
5713	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5714	if (IS_ERR(obj))
5715		return obj;
5716
5717	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5718
5719	file = obj->base.filp;
5720	offset = 0;
5721	do {
5722		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5723		struct page *page;
5724		void *pgdata, *vaddr;
5725
5726		err = pagecache_write_begin(file, file->f_mapping,
5727					    offset, len, 0,
5728					    &page, &pgdata);
5729		if (err < 0)
5730			goto fail;
5731
5732		vaddr = kmap(page);
5733		memcpy(vaddr, data, len);
5734		kunmap(page);
5735
5736		err = pagecache_write_end(file, file->f_mapping,
5737					  offset, len, len,
5738					  page, pgdata);
5739		if (err < 0)
5740			goto fail;
5741
5742		size -= len;
5743		data += len;
5744		offset += len;
5745	} while (size);
5746
5747	return obj;
5748
5749fail:
5750	i915_gem_object_put(obj);
5751	return ERR_PTR(err);
5752}
5753
5754struct scatterlist *
5755i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5756		       unsigned int n,
5757		       unsigned int *offset)
5758{
5759	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5760	struct scatterlist *sg;
5761	unsigned int idx, count;
5762
5763	might_sleep();
5764	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5765	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5766
5767	/* As we iterate forward through the sg, we record each entry in a
5768	 * radixtree for quick repeated (backwards) lookups. If we have seen
5769	 * this index previously, we will have an entry for it.
5770	 *
5771	 * Initial lookup is O(N), but this is amortized to O(1) for
5772	 * sequential page access (where each new request is consecutive
5773	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5774	 * i.e. O(1) with a large constant!
5775	 */
5776	if (n < READ_ONCE(iter->sg_idx))
5777		goto lookup;
5778
5779	mutex_lock(&iter->lock);
5780
5781	/* We prefer to reuse the last sg so that repeated lookup of this
5782	 * (or the subsequent) sg are fast - comparing against the last
5783	 * sg is faster than going through the radixtree.
5784	 */
5785
5786	sg = iter->sg_pos;
5787	idx = iter->sg_idx;
5788	count = __sg_page_count(sg);
5789
5790	while (idx + count <= n) {
5791		unsigned long exception, i;
5792		int ret;
5793
5794		/* If we cannot allocate and insert this entry, or the
5795		 * individual pages from this range, cancel updating the
5796		 * sg_idx so that on this lookup we are forced to linearly
5797		 * scan onwards, but on future lookups we will try the
5798		 * insertion again (in which case we need to be careful of
5799		 * the error return reporting that we have already inserted
5800		 * this index).
5801		 */
5802		ret = radix_tree_insert(&iter->radix, idx, sg);
5803		if (ret && ret != -EEXIST)
5804			goto scan;
5805
5806		exception =
5807			RADIX_TREE_EXCEPTIONAL_ENTRY |
5808			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5809		for (i = 1; i < count; i++) {
5810			ret = radix_tree_insert(&iter->radix, idx + i,
5811						(void *)exception);
5812			if (ret && ret != -EEXIST)
5813				goto scan;
5814		}
5815
5816		idx += count;
5817		sg = ____sg_next(sg);
5818		count = __sg_page_count(sg);
5819	}
5820
5821scan:
5822	iter->sg_pos = sg;
5823	iter->sg_idx = idx;
5824
5825	mutex_unlock(&iter->lock);
5826
5827	if (unlikely(n < idx)) /* insertion completed by another thread */
5828		goto lookup;
 
5829
5830	/* In case we failed to insert the entry into the radixtree, we need
5831	 * to look beyond the current sg.
5832	 */
5833	while (idx + count <= n) {
5834		idx += count;
5835		sg = ____sg_next(sg);
5836		count = __sg_page_count(sg);
5837	}
5838
5839	*offset = n - idx;
5840	return sg;
 
 
5841
5842lookup:
5843	rcu_read_lock();
 
5844
5845	sg = radix_tree_lookup(&iter->radix, n);
5846	GEM_BUG_ON(!sg);
5847
5848	/* If this index is in the middle of multi-page sg entry,
5849	 * the radixtree will contain an exceptional entry that points
5850	 * to the start of that range. We will return the pointer to
5851	 * the base page and the offset of this page within the
5852	 * sg entry's range.
5853	 */
5854	*offset = 0;
5855	if (unlikely(radix_tree_exception(sg))) {
5856		unsigned long base =
5857			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5858
5859		sg = radix_tree_lookup(&iter->radix, base);
5860		GEM_BUG_ON(!sg);
5861
5862		*offset = n - base;
 
 
 
 
 
 
 
 
5863	}
5864
5865	rcu_read_unlock();
5866
5867	return sg;
5868}
5869
5870struct page *
5871i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5872{
5873	struct scatterlist *sg;
5874	unsigned int offset;
5875
5876	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
 
 
 
 
 
 
5877
5878	sg = i915_gem_object_get_sg(obj, n, &offset);
5879	return nth_page(sg_page(sg), offset);
 
 
 
 
 
5880}
5881
5882/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5883struct page *
5884i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5885			       unsigned int n)
5886{
5887	struct page *page;
 
5888
5889	page = i915_gem_object_get_page(obj, n);
5890	if (!obj->mm.dirty)
5891		set_page_dirty(page);
5892
5893	return page;
5894}
5895
5896dma_addr_t
5897i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5898				unsigned long n)
5899{
5900	struct scatterlist *sg;
5901	unsigned int offset;
5902
5903	sg = i915_gem_object_get_sg(obj, n, &offset);
5904	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5905}
 
 
5906
5907int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5908{
5909	struct sg_table *pages;
5910	int err;
5911
5912	if (align > obj->base.size)
5913		return -EINVAL;
5914
5915	if (obj->ops == &i915_gem_phys_ops)
5916		return 0;
5917
5918	if (obj->ops != &i915_gem_object_ops)
5919		return -EINVAL;
5920
5921	err = i915_gem_object_unbind(obj);
5922	if (err)
5923		return err;
5924
5925	mutex_lock(&obj->mm.lock);
5926
5927	if (obj->mm.madv != I915_MADV_WILLNEED) {
5928		err = -EFAULT;
5929		goto err_unlock;
5930	}
5931
5932	if (obj->mm.quirked) {
5933		err = -EFAULT;
5934		goto err_unlock;
 
 
 
 
 
 
 
 
 
5935	}
5936
5937	if (obj->mm.mapping) {
5938		err = -EBUSY;
5939		goto err_unlock;
 
 
 
 
 
 
 
5940	}
5941
5942	pages = fetch_and_zero(&obj->mm.pages);
5943	if (pages) {
5944		struct drm_i915_private *i915 = to_i915(obj->base.dev);
5945
5946		__i915_gem_object_reset_page_iter(obj);
5947
5948		spin_lock(&i915->mm.obj_lock);
5949		list_del(&obj->mm.link);
5950		spin_unlock(&i915->mm.obj_lock);
5951	}
5952
5953	obj->ops = &i915_gem_phys_ops;
5954
5955	err = ____i915_gem_object_get_pages(obj);
5956	if (err)
5957		goto err_xfer;
5958
5959	/* Perma-pin (until release) the physical set of pages */
5960	__i915_gem_object_pin_pages(obj);
5961
5962	if (!IS_ERR_OR_NULL(pages))
5963		i915_gem_object_ops.put_pages(obj, pages);
5964	mutex_unlock(&obj->mm.lock);
5965	return 0;
5966
5967err_xfer:
5968	obj->ops = &i915_gem_object_ops;
5969	obj->mm.pages = pages;
5970err_unlock:
5971	mutex_unlock(&obj->mm.lock);
5972	return err;
5973}
5974
5975#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5976#include "selftests/scatterlist.c"
5977#include "selftests/mock_gem_device.c"
5978#include "selftests/huge_gem_object.c"
5979#include "selftests/huge_pages.c"
5980#include "selftests/i915_gem_object.c"
5981#include "selftests/i915_gem_coherency.c"
5982#endif