Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include "drmP.h"
  29#include "drm.h"
  30#include "i915_drm.h"
  31#include "i915_drv.h"
  32#include "i915_trace.h"
  33#include "intel_drv.h"
  34#include <linux/shmem_fs.h>
  35#include <linux/slab.h>
  36#include <linux/swap.h>
  37#include <linux/pci.h>
 
  38
  39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  42static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  43							  bool write);
  44static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  45								  uint64_t offset,
  46								  uint64_t size);
  47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  48static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  49						    unsigned alignment,
  50						    bool map_and_fenceable);
  51static void i915_gem_clear_fence_reg(struct drm_device *dev,
  52				     struct drm_i915_fence_reg *reg);
  53static int i915_gem_phys_pwrite(struct drm_device *dev,
  54				struct drm_i915_gem_object *obj,
  55				struct drm_i915_gem_pwrite *args,
  56				struct drm_file *file);
  57static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
 
 
 
 
 
  58
  59static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  60				    struct shrink_control *sc);
 
 
 
 
 
 
 
 
 
 
 
 
 
  61
  62/* some bookkeeping */
  63static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  64				  size_t size)
  65{
  66	dev_priv->mm.object_count++;
  67	dev_priv->mm.object_memory += size;
  68}
  69
  70static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  71				     size_t size)
  72{
  73	dev_priv->mm.object_count--;
  74	dev_priv->mm.object_memory -= size;
  75}
  76
  77static int
  78i915_gem_wait_for_error(struct drm_device *dev)
  79{
  80	struct drm_i915_private *dev_priv = dev->dev_private;
  81	struct completion *x = &dev_priv->error_completion;
  82	unsigned long flags;
  83	int ret;
  84
  85	if (!atomic_read(&dev_priv->mm.wedged))
  86		return 0;
  87
  88	ret = wait_for_completion_interruptible(x);
  89	if (ret)
  90		return ret;
  91
  92	if (atomic_read(&dev_priv->mm.wedged)) {
  93		/* GPU is hung, bump the completion count to account for
  94		 * the token we just consumed so that we never hit zero and
  95		 * end up waiting upon a subsequent completion event that
  96		 * will never happen.
  97		 */
  98		spin_lock_irqsave(&x->wait.lock, flags);
  99		x->done++;
 100		spin_unlock_irqrestore(&x->wait.lock, flags);
 101	}
 102	return 0;
 103}
 104
 105int i915_mutex_lock_interruptible(struct drm_device *dev)
 106{
 107	int ret;
 108
 109	ret = i915_gem_wait_for_error(dev);
 110	if (ret)
 111		return ret;
 112
 113	ret = mutex_lock_interruptible(&dev->struct_mutex);
 114	if (ret)
 115		return ret;
 116
 117	WARN_ON(i915_verify_lists(dev));
 118	return 0;
 119}
 120
 121static inline bool
 122i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
 123{
 124	return obj->gtt_space && !obj->active && obj->pin_count == 0;
 125}
 126
 127void i915_gem_do_init(struct drm_device *dev,
 128		      unsigned long start,
 129		      unsigned long mappable_end,
 130		      unsigned long end)
 131{
 132	drm_i915_private_t *dev_priv = dev->dev_private;
 133
 134	drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
 135
 136	dev_priv->mm.gtt_start = start;
 137	dev_priv->mm.gtt_mappable_end = mappable_end;
 138	dev_priv->mm.gtt_end = end;
 139	dev_priv->mm.gtt_total = end - start;
 140	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
 141
 142	/* Take over this portion of the GTT */
 143	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
 144}
 145
 146int
 147i915_gem_init_ioctl(struct drm_device *dev, void *data,
 148		    struct drm_file *file)
 149{
 150	struct drm_i915_gem_init *args = data;
 151
 
 
 
 152	if (args->gtt_start >= args->gtt_end ||
 153	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
 154		return -EINVAL;
 155
 
 
 
 
 156	mutex_lock(&dev->struct_mutex);
 157	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
 
 158	mutex_unlock(&dev->struct_mutex);
 159
 160	return 0;
 161}
 162
 163int
 164i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 165			    struct drm_file *file)
 166{
 167	struct drm_i915_private *dev_priv = dev->dev_private;
 168	struct drm_i915_gem_get_aperture *args = data;
 169	struct drm_i915_gem_object *obj;
 170	size_t pinned;
 171
 172	if (!(dev->driver->driver_features & DRIVER_GEM))
 173		return -ENODEV;
 174
 175	pinned = 0;
 176	mutex_lock(&dev->struct_mutex);
 177	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
 178		pinned += obj->gtt_space->size;
 
 179	mutex_unlock(&dev->struct_mutex);
 180
 181	args->aper_size = dev_priv->mm.gtt_total;
 182	args->aper_available_size = args->aper_size -pinned;
 183
 184	return 0;
 185}
 186
 187static int
 188i915_gem_create(struct drm_file *file,
 189		struct drm_device *dev,
 190		uint64_t size,
 191		uint32_t *handle_p)
 192{
 193	struct drm_i915_gem_object *obj;
 194	int ret;
 195	u32 handle;
 196
 197	size = roundup(size, PAGE_SIZE);
 
 
 198
 199	/* Allocate the new object */
 200	obj = i915_gem_alloc_object(dev, size);
 201	if (obj == NULL)
 202		return -ENOMEM;
 203
 204	ret = drm_gem_handle_create(file, &obj->base, &handle);
 205	if (ret) {
 206		drm_gem_object_release(&obj->base);
 207		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
 208		kfree(obj);
 209		return ret;
 210	}
 211
 212	/* drop reference from allocate - handle holds it now */
 213	drm_gem_object_unreference(&obj->base);
 214	trace_i915_gem_object_create(obj);
 215
 216	*handle_p = handle;
 217	return 0;
 218}
 219
 220int
 221i915_gem_dumb_create(struct drm_file *file,
 222		     struct drm_device *dev,
 223		     struct drm_mode_create_dumb *args)
 224{
 225	/* have to work out size/pitch and return them */
 226	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
 227	args->size = args->pitch * args->height;
 228	return i915_gem_create(file, dev,
 229			       args->size, &args->handle);
 230}
 231
 232int i915_gem_dumb_destroy(struct drm_file *file,
 233			  struct drm_device *dev,
 234			  uint32_t handle)
 235{
 236	return drm_gem_handle_delete(file, handle);
 237}
 238
 239/**
 240 * Creates a new mm object and returns a handle to it.
 241 */
 242int
 243i915_gem_create_ioctl(struct drm_device *dev, void *data,
 244		      struct drm_file *file)
 245{
 246	struct drm_i915_gem_create *args = data;
 
 247	return i915_gem_create(file, dev,
 248			       args->size, &args->handle);
 249}
 250
 251static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
 252{
 253	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
 254
 255	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
 256		obj->tiling_mode != I915_TILING_NONE;
 257}
 258
 259static inline void
 260slow_shmem_copy(struct page *dst_page,
 261		int dst_offset,
 262		struct page *src_page,
 263		int src_offset,
 264		int length)
 265{
 266	char *dst_vaddr, *src_vaddr;
 267
 268	dst_vaddr = kmap(dst_page);
 269	src_vaddr = kmap(src_page);
 270
 271	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
 
 
 
 272
 273	kunmap(src_page);
 274	kunmap(dst_page);
 275}
 
 
 276
 277static inline void
 278slow_shmem_bit17_copy(struct page *gpu_page,
 279		      int gpu_offset,
 280		      struct page *cpu_page,
 281		      int cpu_offset,
 282		      int length,
 283		      int is_read)
 284{
 285	char *gpu_vaddr, *cpu_vaddr;
 286
 287	/* Use the unswizzled path if this page isn't affected. */
 288	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
 289		if (is_read)
 290			return slow_shmem_copy(cpu_page, cpu_offset,
 291					       gpu_page, gpu_offset, length);
 292		else
 293			return slow_shmem_copy(gpu_page, gpu_offset,
 294					       cpu_page, cpu_offset, length);
 295	}
 296
 297	gpu_vaddr = kmap(gpu_page);
 298	cpu_vaddr = kmap(cpu_page);
 
 
 
 
 
 
 
 299
 300	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
 301	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
 302	 */
 303	while (length > 0) {
 304		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 305		int this_length = min(cacheline_end - gpu_offset, length);
 306		int swizzled_gpu_offset = gpu_offset ^ 64;
 307
 308		if (is_read) {
 309			memcpy(cpu_vaddr + cpu_offset,
 310			       gpu_vaddr + swizzled_gpu_offset,
 311			       this_length);
 312		} else {
 313			memcpy(gpu_vaddr + swizzled_gpu_offset,
 314			       cpu_vaddr + cpu_offset,
 315			       this_length);
 316		}
 317		cpu_offset += this_length;
 318		gpu_offset += this_length;
 319		length -= this_length;
 320	}
 321
 322	kunmap(cpu_page);
 323	kunmap(gpu_page);
 324}
 325
 326/**
 327 * This is the fast shmem pread path, which attempts to copy_from_user directly
 328 * from the backing pages of the object to the user's address space.  On a
 329 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 330 */
 331static int
 332i915_gem_shmem_pread_fast(struct drm_device *dev,
 333			  struct drm_i915_gem_object *obj,
 334			  struct drm_i915_gem_pread *args,
 335			  struct drm_file *file)
 336{
 337	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 338	ssize_t remain;
 339	loff_t offset;
 340	char __user *user_data;
 341	int page_offset, page_length;
 342
 343	user_data = (char __user *) (uintptr_t) args->data_ptr;
 344	remain = args->size;
 345
 346	offset = args->offset;
 
 347
 348	while (remain > 0) {
 349		struct page *page;
 350		char *vaddr;
 351		int ret;
 
 
 
 
 352
 353		/* Operation in this page
 354		 *
 355		 * page_offset = offset within page
 356		 * page_length = bytes to copy for this page
 357		 */
 358		page_offset = offset_in_page(offset);
 359		page_length = remain;
 360		if ((page_offset + remain) > PAGE_SIZE)
 361			page_length = PAGE_SIZE - page_offset;
 362
 363		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 364		if (IS_ERR(page))
 365			return PTR_ERR(page);
 
 
 
 
 
 
 
 
 
 
 
 366
 367		vaddr = kmap_atomic(page);
 368		ret = __copy_to_user_inatomic(user_data,
 369					      vaddr + page_offset,
 370					      page_length);
 371		kunmap_atomic(vaddr);
 372
 373		mark_page_accessed(page);
 374		page_cache_release(page);
 375		if (ret)
 376			return -EFAULT;
 377
 378		remain -= page_length;
 379		user_data += page_length;
 380		offset += page_length;
 381	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382
 383	return 0;
 384}
 385
 386/**
 387 * This is the fallback shmem pread path, which allocates temporary storage
 388 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 389 * can copy out of the object's backing pages while holding the struct mutex
 390 * and not take page faults.
 391 */
 392static int
 393i915_gem_shmem_pread_slow(struct drm_device *dev,
 394			  struct drm_i915_gem_object *obj,
 395			  struct drm_i915_gem_pread *args,
 396			  struct drm_file *file)
 397{
 398	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 399	struct mm_struct *mm = current->mm;
 400	struct page **user_pages;
 401	ssize_t remain;
 402	loff_t offset, pinned_pages, i;
 403	loff_t first_data_page, last_data_page, num_pages;
 404	int shmem_page_offset;
 405	int data_page_index, data_page_offset;
 406	int page_length;
 407	int ret;
 408	uint64_t data_ptr = args->data_ptr;
 409	int do_bit17_swizzling;
 410
 
 411	remain = args->size;
 412
 413	/* Pin the user pages containing the data.  We can't fault while
 414	 * holding the struct mutex, yet we want to hold it while
 415	 * dereferencing the user data.
 416	 */
 417	first_data_page = data_ptr / PAGE_SIZE;
 418	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
 419	num_pages = last_data_page - first_data_page + 1;
 420
 421	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
 422	if (user_pages == NULL)
 423		return -ENOMEM;
 424
 425	mutex_unlock(&dev->struct_mutex);
 426	down_read(&mm->mmap_sem);
 427	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
 428				      num_pages, 1, 0, user_pages, NULL);
 429	up_read(&mm->mmap_sem);
 430	mutex_lock(&dev->struct_mutex);
 431	if (pinned_pages < num_pages) {
 432		ret = -EFAULT;
 433		goto out;
 
 434	}
 435
 436	ret = i915_gem_object_set_cpu_read_domain_range(obj,
 437							args->offset,
 438							args->size);
 439	if (ret)
 440		goto out;
 441
 442	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 443
 444	offset = args->offset;
 445
 446	while (remain > 0) {
 447		struct page *page;
 448
 449		/* Operation in this page
 450		 *
 451		 * shmem_page_offset = offset within page in shmem file
 452		 * data_page_index = page number in get_user_pages return
 453		 * data_page_offset = offset with data_page_index page.
 454		 * page_length = bytes to copy for this page
 455		 */
 456		shmem_page_offset = offset_in_page(offset);
 457		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
 458		data_page_offset = offset_in_page(data_ptr);
 459
 460		page_length = remain;
 461		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 462			page_length = PAGE_SIZE - shmem_page_offset;
 463		if ((data_page_offset + page_length) > PAGE_SIZE)
 464			page_length = PAGE_SIZE - data_page_offset;
 465
 466		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 467		if (IS_ERR(page)) {
 468			ret = PTR_ERR(page);
 469			goto out;
 
 
 
 
 
 
 470		}
 471
 472		if (do_bit17_swizzling) {
 473			slow_shmem_bit17_copy(page,
 474					      shmem_page_offset,
 475					      user_pages[data_page_index],
 476					      data_page_offset,
 477					      page_length,
 478					      1);
 479		} else {
 480			slow_shmem_copy(user_pages[data_page_index],
 481					data_page_offset,
 482					page,
 483					shmem_page_offset,
 484					page_length);
 
 
 
 
 
 
 
 
 485		}
 486
 487		mark_page_accessed(page);
 
 
 
 
 488		page_cache_release(page);
 
 
 
 
 
 
 
 
 
 489
 490		remain -= page_length;
 491		data_ptr += page_length;
 492		offset += page_length;
 493	}
 494
 495out:
 496	for (i = 0; i < pinned_pages; i++) {
 497		SetPageDirty(user_pages[i]);
 498		mark_page_accessed(user_pages[i]);
 499		page_cache_release(user_pages[i]);
 500	}
 501	drm_free_large(user_pages);
 502
 503	return ret;
 504}
 505
 506/**
 507 * Reads data from the object referenced by handle.
 508 *
 509 * On error, the contents of *data are undefined.
 510 */
 511int
 512i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 513		     struct drm_file *file)
 514{
 515	struct drm_i915_gem_pread *args = data;
 516	struct drm_i915_gem_object *obj;
 517	int ret = 0;
 518
 519	if (args->size == 0)
 520		return 0;
 521
 522	if (!access_ok(VERIFY_WRITE,
 523		       (char __user *)(uintptr_t)args->data_ptr,
 524		       args->size))
 525		return -EFAULT;
 526
 527	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
 528				       args->size);
 529	if (ret)
 530		return -EFAULT;
 531
 532	ret = i915_mutex_lock_interruptible(dev);
 533	if (ret)
 534		return ret;
 535
 536	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 537	if (&obj->base == NULL) {
 538		ret = -ENOENT;
 539		goto unlock;
 540	}
 541
 542	/* Bounds check source.  */
 543	if (args->offset > obj->base.size ||
 544	    args->size > obj->base.size - args->offset) {
 545		ret = -EINVAL;
 546		goto out;
 547	}
 548
 549	trace_i915_gem_object_pread(obj, args->offset, args->size);
 550
 551	ret = i915_gem_object_set_cpu_read_domain_range(obj,
 552							args->offset,
 553							args->size);
 554	if (ret)
 555		goto out;
 
 556
 557	ret = -EFAULT;
 558	if (!i915_gem_object_needs_bit17_swizzle(obj))
 559		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
 560	if (ret == -EFAULT)
 561		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
 562
 563out:
 564	drm_gem_object_unreference(&obj->base);
 565unlock:
 566	mutex_unlock(&dev->struct_mutex);
 567	return ret;
 568}
 569
 570/* This is the fast write path which cannot handle
 571 * page faults in the source data
 572 */
 573
 574static inline int
 575fast_user_write(struct io_mapping *mapping,
 576		loff_t page_base, int page_offset,
 577		char __user *user_data,
 578		int length)
 579{
 580	char *vaddr_atomic;
 
 581	unsigned long unwritten;
 582
 583	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
 584	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
 
 
 585						      user_data, length);
 586	io_mapping_unmap_atomic(vaddr_atomic);
 587	return unwritten;
 588}
 589
 590/* Here's the write path which can sleep for
 591 * page faults
 592 */
 593
 594static inline void
 595slow_kernel_write(struct io_mapping *mapping,
 596		  loff_t gtt_base, int gtt_offset,
 597		  struct page *user_page, int user_offset,
 598		  int length)
 599{
 600	char __iomem *dst_vaddr;
 601	char *src_vaddr;
 602
 603	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
 604	src_vaddr = kmap(user_page);
 605
 606	memcpy_toio(dst_vaddr + gtt_offset,
 607		    src_vaddr + user_offset,
 608		    length);
 609
 610	kunmap(user_page);
 611	io_mapping_unmap(dst_vaddr);
 612}
 613
 614/**
 615 * This is the fast pwrite path, where we copy the data directly from the
 616 * user into the GTT, uncached.
 617 */
 618static int
 619i915_gem_gtt_pwrite_fast(struct drm_device *dev,
 620			 struct drm_i915_gem_object *obj,
 621			 struct drm_i915_gem_pwrite *args,
 622			 struct drm_file *file)
 623{
 624	drm_i915_private_t *dev_priv = dev->dev_private;
 625	ssize_t remain;
 626	loff_t offset, page_base;
 627	char __user *user_data;
 628	int page_offset, page_length;
 
 
 
 
 
 
 
 
 
 
 
 
 629
 630	user_data = (char __user *) (uintptr_t) args->data_ptr;
 631	remain = args->size;
 632
 633	offset = obj->gtt_offset + args->offset;
 634
 635	while (remain > 0) {
 636		/* Operation in this page
 637		 *
 638		 * page_base = page offset within aperture
 639		 * page_offset = offset within page
 640		 * page_length = bytes to copy for this page
 641		 */
 642		page_base = offset & PAGE_MASK;
 643		page_offset = offset_in_page(offset);
 644		page_length = remain;
 645		if ((page_offset + remain) > PAGE_SIZE)
 646			page_length = PAGE_SIZE - page_offset;
 647
 648		/* If we get a fault while copying data, then (presumably) our
 649		 * source page isn't available.  Return the error and we'll
 650		 * retry in the slow path.
 651		 */
 652		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
 653				    page_offset, user_data, page_length))
 654			return -EFAULT;
 
 
 655
 656		remain -= page_length;
 657		user_data += page_length;
 658		offset += page_length;
 659	}
 660
 661	return 0;
 
 
 
 662}
 663
 664/**
 665 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 666 * the memory and maps it using kmap_atomic for copying.
 667 *
 668 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 669 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 670 */
 671static int
 672i915_gem_gtt_pwrite_slow(struct drm_device *dev,
 673			 struct drm_i915_gem_object *obj,
 674			 struct drm_i915_gem_pwrite *args,
 675			 struct drm_file *file)
 
 676{
 677	drm_i915_private_t *dev_priv = dev->dev_private;
 678	ssize_t remain;
 679	loff_t gtt_page_base, offset;
 680	loff_t first_data_page, last_data_page, num_pages;
 681	loff_t pinned_pages, i;
 682	struct page **user_pages;
 683	struct mm_struct *mm = current->mm;
 684	int gtt_page_offset, data_page_offset, data_page_index, page_length;
 685	int ret;
 686	uint64_t data_ptr = args->data_ptr;
 687
 688	remain = args->size;
 689
 690	/* Pin the user pages containing the data.  We can't fault while
 691	 * holding the struct mutex, and all of the pwrite implementations
 692	 * want to hold it while dereferencing the user data.
 693	 */
 694	first_data_page = data_ptr / PAGE_SIZE;
 695	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
 696	num_pages = last_data_page - first_data_page + 1;
 697
 698	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
 699	if (user_pages == NULL)
 700		return -ENOMEM;
 701
 702	mutex_unlock(&dev->struct_mutex);
 703	down_read(&mm->mmap_sem);
 704	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
 705				      num_pages, 0, 0, user_pages, NULL);
 706	up_read(&mm->mmap_sem);
 707	mutex_lock(&dev->struct_mutex);
 708	if (pinned_pages < num_pages) {
 709		ret = -EFAULT;
 710		goto out_unpin_pages;
 711	}
 712
 713	ret = i915_gem_object_set_to_gtt_domain(obj, true);
 714	if (ret)
 715		goto out_unpin_pages;
 716
 717	ret = i915_gem_object_put_fence(obj);
 718	if (ret)
 719		goto out_unpin_pages;
 720
 721	offset = obj->gtt_offset + args->offset;
 722
 723	while (remain > 0) {
 724		/* Operation in this page
 725		 *
 726		 * gtt_page_base = page offset within aperture
 727		 * gtt_page_offset = offset within page in aperture
 728		 * data_page_index = page number in get_user_pages return
 729		 * data_page_offset = offset with data_page_index page.
 730		 * page_length = bytes to copy for this page
 731		 */
 732		gtt_page_base = offset & PAGE_MASK;
 733		gtt_page_offset = offset_in_page(offset);
 734		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
 735		data_page_offset = offset_in_page(data_ptr);
 736
 737		page_length = remain;
 738		if ((gtt_page_offset + page_length) > PAGE_SIZE)
 739			page_length = PAGE_SIZE - gtt_page_offset;
 740		if ((data_page_offset + page_length) > PAGE_SIZE)
 741			page_length = PAGE_SIZE - data_page_offset;
 742
 743		slow_kernel_write(dev_priv->mm.gtt_mapping,
 744				  gtt_page_base, gtt_page_offset,
 745				  user_pages[data_page_index],
 746				  data_page_offset,
 747				  page_length);
 748
 749		remain -= page_length;
 750		offset += page_length;
 751		data_ptr += page_length;
 752	}
 753
 754out_unpin_pages:
 755	for (i = 0; i < pinned_pages; i++)
 756		page_cache_release(user_pages[i]);
 757	drm_free_large(user_pages);
 
 
 
 
 
 
 
 758
 759	return ret;
 760}
 761
 762/**
 763 * This is the fast shmem pwrite path, which attempts to directly
 764 * copy_from_user into the kmapped pages backing the object.
 765 */
 766static int
 767i915_gem_shmem_pwrite_fast(struct drm_device *dev,
 768			   struct drm_i915_gem_object *obj,
 769			   struct drm_i915_gem_pwrite *args,
 770			   struct drm_file *file)
 771{
 772	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 773	ssize_t remain;
 774	loff_t offset;
 775	char __user *user_data;
 776	int page_offset, page_length;
 777
 778	user_data = (char __user *) (uintptr_t) args->data_ptr;
 779	remain = args->size;
 780
 781	offset = args->offset;
 782	obj->dirty = 1;
 783
 784	while (remain > 0) {
 785		struct page *page;
 786		char *vaddr;
 787		int ret;
 788
 789		/* Operation in this page
 790		 *
 791		 * page_offset = offset within page
 792		 * page_length = bytes to copy for this page
 793		 */
 794		page_offset = offset_in_page(offset);
 795		page_length = remain;
 796		if ((page_offset + remain) > PAGE_SIZE)
 797			page_length = PAGE_SIZE - page_offset;
 798
 799		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 800		if (IS_ERR(page))
 801			return PTR_ERR(page);
 802
 803		vaddr = kmap_atomic(page, KM_USER0);
 804		ret = __copy_from_user_inatomic(vaddr + page_offset,
 805						user_data,
 806						page_length);
 807		kunmap_atomic(vaddr, KM_USER0);
 808
 809		set_page_dirty(page);
 810		mark_page_accessed(page);
 811		page_cache_release(page);
 812
 813		/* If we get a fault while copying data, then (presumably) our
 814		 * source page isn't available.  Return the error and we'll
 815		 * retry in the slow path.
 816		 */
 817		if (ret)
 818			return -EFAULT;
 819
 820		remain -= page_length;
 821		user_data += page_length;
 822		offset += page_length;
 823	}
 824
 825	return 0;
 826}
 827
 828/**
 829 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 830 * the memory and maps it using kmap_atomic for copying.
 831 *
 832 * This avoids taking mmap_sem for faulting on the user's address while the
 833 * struct_mutex is held.
 834 */
 835static int
 836i915_gem_shmem_pwrite_slow(struct drm_device *dev,
 837			   struct drm_i915_gem_object *obj,
 838			   struct drm_i915_gem_pwrite *args,
 839			   struct drm_file *file)
 840{
 841	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 842	struct mm_struct *mm = current->mm;
 843	struct page **user_pages;
 844	ssize_t remain;
 845	loff_t offset, pinned_pages, i;
 846	loff_t first_data_page, last_data_page, num_pages;
 847	int shmem_page_offset;
 848	int data_page_index,  data_page_offset;
 849	int page_length;
 850	int ret;
 851	uint64_t data_ptr = args->data_ptr;
 852	int do_bit17_swizzling;
 853
 
 854	remain = args->size;
 855
 856	/* Pin the user pages containing the data.  We can't fault while
 857	 * holding the struct mutex, and all of the pwrite implementations
 858	 * want to hold it while dereferencing the user data.
 859	 */
 860	first_data_page = data_ptr / PAGE_SIZE;
 861	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
 862	num_pages = last_data_page - first_data_page + 1;
 863
 864	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
 865	if (user_pages == NULL)
 866		return -ENOMEM;
 867
 868	mutex_unlock(&dev->struct_mutex);
 869	down_read(&mm->mmap_sem);
 870	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
 871				      num_pages, 0, 0, user_pages, NULL);
 872	up_read(&mm->mmap_sem);
 873	mutex_lock(&dev->struct_mutex);
 874	if (pinned_pages < num_pages) {
 875		ret = -EFAULT;
 876		goto out;
 
 877	}
 878
 879	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
 880	if (ret)
 881		goto out;
 882
 883	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 884
 885	offset = args->offset;
 886	obj->dirty = 1;
 887
 888	while (remain > 0) {
 889		struct page *page;
 
 890
 891		/* Operation in this page
 892		 *
 893		 * shmem_page_offset = offset within page in shmem file
 894		 * data_page_index = page number in get_user_pages return
 895		 * data_page_offset = offset with data_page_index page.
 896		 * page_length = bytes to copy for this page
 897		 */
 898		shmem_page_offset = offset_in_page(offset);
 899		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
 900		data_page_offset = offset_in_page(data_ptr);
 901
 902		page_length = remain;
 903		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 904			page_length = PAGE_SIZE - shmem_page_offset;
 905		if ((data_page_offset + page_length) > PAGE_SIZE)
 906			page_length = PAGE_SIZE - data_page_offset;
 907
 908		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 909		if (IS_ERR(page)) {
 910			ret = PTR_ERR(page);
 911			goto out;
 912		}
 913
 914		if (do_bit17_swizzling) {
 915			slow_shmem_bit17_copy(page,
 916					      shmem_page_offset,
 917					      user_pages[data_page_index],
 918					      data_page_offset,
 919					      page_length,
 920					      0);
 
 
 
 921		} else {
 922			slow_shmem_copy(page,
 923					shmem_page_offset,
 924					user_pages[data_page_index],
 925					data_page_offset,
 926					page_length);
 
 927		}
 928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929		set_page_dirty(page);
 930		mark_page_accessed(page);
 931		page_cache_release(page);
 
 
 
 
 
 
 932
 933		remain -= page_length;
 934		data_ptr += page_length;
 935		offset += page_length;
 936	}
 937
 938out:
 939	for (i = 0; i < pinned_pages; i++)
 940		page_cache_release(user_pages[i]);
 941	drm_free_large(user_pages);
 
 
 
 
 
 
 
 
 
 
 
 942
 943	return ret;
 944}
 945
 946/**
 947 * Writes data to the object referenced by handle.
 948 *
 949 * On error, the contents of the buffer that were to be modified are undefined.
 950 */
 951int
 952i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 953		      struct drm_file *file)
 954{
 955	struct drm_i915_gem_pwrite *args = data;
 956	struct drm_i915_gem_object *obj;
 957	int ret;
 958
 959	if (args->size == 0)
 960		return 0;
 961
 962	if (!access_ok(VERIFY_READ,
 963		       (char __user *)(uintptr_t)args->data_ptr,
 964		       args->size))
 965		return -EFAULT;
 966
 967	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
 968				      args->size);
 969	if (ret)
 970		return -EFAULT;
 971
 972	ret = i915_mutex_lock_interruptible(dev);
 973	if (ret)
 974		return ret;
 975
 976	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 977	if (&obj->base == NULL) {
 978		ret = -ENOENT;
 979		goto unlock;
 980	}
 981
 982	/* Bounds check destination. */
 983	if (args->offset > obj->base.size ||
 984	    args->size > obj->base.size - args->offset) {
 985		ret = -EINVAL;
 986		goto out;
 987	}
 988
 
 
 
 
 
 
 
 
 989	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 990
 
 991	/* We can only do the GTT pwrite on untiled buffers, as otherwise
 992	 * it would end up going through the fenced access, and we'll get
 993	 * different detiling behavior between reading and writing.
 994	 * pread/pwrite currently are reading and writing from the CPU
 995	 * perspective, requiring manual detiling by the client.
 996	 */
 997	if (obj->phys_obj)
 998		ret = i915_gem_phys_pwrite(dev, obj, args, file);
 999	else if (obj->gtt_space &&
1000		 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1001		ret = i915_gem_object_pin(obj, 0, true);
1002		if (ret)
1003			goto out;
1004
1005		ret = i915_gem_object_set_to_gtt_domain(obj, true);
1006		if (ret)
1007			goto out_unpin;
1008
1009		ret = i915_gem_object_put_fence(obj);
1010		if (ret)
1011			goto out_unpin;
1012
 
 
 
 
 
1013		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1014		if (ret == -EFAULT)
1015			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1016
1017out_unpin:
1018		i915_gem_object_unpin(obj);
1019	} else {
1020		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1021		if (ret)
1022			goto out;
1023
1024		ret = -EFAULT;
1025		if (!i915_gem_object_needs_bit17_swizzle(obj))
1026			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1027		if (ret == -EFAULT)
1028			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1029	}
1030
 
 
 
1031out:
1032	drm_gem_object_unreference(&obj->base);
1033unlock:
1034	mutex_unlock(&dev->struct_mutex);
1035	return ret;
1036}
1037
1038/**
1039 * Called when user space prepares to use an object with the CPU, either
1040 * through the mmap ioctl's mapping or a GTT mapping.
1041 */
1042int
1043i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1044			  struct drm_file *file)
1045{
1046	struct drm_i915_gem_set_domain *args = data;
1047	struct drm_i915_gem_object *obj;
1048	uint32_t read_domains = args->read_domains;
1049	uint32_t write_domain = args->write_domain;
1050	int ret;
1051
1052	if (!(dev->driver->driver_features & DRIVER_GEM))
1053		return -ENODEV;
1054
1055	/* Only handle setting domains to types used by the CPU. */
1056	if (write_domain & I915_GEM_GPU_DOMAINS)
1057		return -EINVAL;
1058
1059	if (read_domains & I915_GEM_GPU_DOMAINS)
1060		return -EINVAL;
1061
1062	/* Having something in the write domain implies it's in the read
1063	 * domain, and only that read domain.  Enforce that in the request.
1064	 */
1065	if (write_domain != 0 && read_domains != write_domain)
1066		return -EINVAL;
1067
1068	ret = i915_mutex_lock_interruptible(dev);
1069	if (ret)
1070		return ret;
1071
1072	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1073	if (&obj->base == NULL) {
1074		ret = -ENOENT;
1075		goto unlock;
1076	}
1077
1078	if (read_domains & I915_GEM_DOMAIN_GTT) {
1079		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1080
1081		/* Silently promote "you're not bound, there was nothing to do"
1082		 * to success, since the client was just asking us to
1083		 * make sure everything was done.
1084		 */
1085		if (ret == -EINVAL)
1086			ret = 0;
1087	} else {
1088		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1089	}
1090
1091	drm_gem_object_unreference(&obj->base);
1092unlock:
1093	mutex_unlock(&dev->struct_mutex);
1094	return ret;
1095}
1096
1097/**
1098 * Called when user space has done writes to this buffer
1099 */
1100int
1101i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1102			 struct drm_file *file)
1103{
1104	struct drm_i915_gem_sw_finish *args = data;
1105	struct drm_i915_gem_object *obj;
1106	int ret = 0;
1107
1108	if (!(dev->driver->driver_features & DRIVER_GEM))
1109		return -ENODEV;
1110
1111	ret = i915_mutex_lock_interruptible(dev);
1112	if (ret)
1113		return ret;
1114
1115	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1116	if (&obj->base == NULL) {
1117		ret = -ENOENT;
1118		goto unlock;
1119	}
1120
1121	/* Pinned buffers may be scanout, so flush the cache */
1122	if (obj->pin_count)
1123		i915_gem_object_flush_cpu_write_domain(obj);
1124
1125	drm_gem_object_unreference(&obj->base);
1126unlock:
1127	mutex_unlock(&dev->struct_mutex);
1128	return ret;
1129}
1130
1131/**
1132 * Maps the contents of an object, returning the address it is mapped
1133 * into.
1134 *
1135 * While the mapping holds a reference on the contents of the object, it doesn't
1136 * imply a ref on the object itself.
1137 */
1138int
1139i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1140		    struct drm_file *file)
1141{
1142	struct drm_i915_private *dev_priv = dev->dev_private;
1143	struct drm_i915_gem_mmap *args = data;
1144	struct drm_gem_object *obj;
1145	unsigned long addr;
1146
1147	if (!(dev->driver->driver_features & DRIVER_GEM))
1148		return -ENODEV;
1149
1150	obj = drm_gem_object_lookup(dev, file, args->handle);
1151	if (obj == NULL)
1152		return -ENOENT;
1153
1154	if (obj->size > dev_priv->mm.gtt_mappable_end) {
 
 
 
1155		drm_gem_object_unreference_unlocked(obj);
1156		return -E2BIG;
1157	}
1158
1159	down_write(&current->mm->mmap_sem);
1160	addr = do_mmap(obj->filp, 0, args->size,
1161		       PROT_READ | PROT_WRITE, MAP_SHARED,
1162		       args->offset);
1163	up_write(&current->mm->mmap_sem);
1164	drm_gem_object_unreference_unlocked(obj);
1165	if (IS_ERR((void *)addr))
1166		return addr;
1167
1168	args->addr_ptr = (uint64_t) addr;
1169
1170	return 0;
1171}
1172
1173/**
1174 * i915_gem_fault - fault a page into the GTT
1175 * vma: VMA in question
1176 * vmf: fault info
1177 *
1178 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1179 * from userspace.  The fault handler takes care of binding the object to
1180 * the GTT (if needed), allocating and programming a fence register (again,
1181 * only if needed based on whether the old reg is still valid or the object
1182 * is tiled) and inserting a new PTE into the faulting process.
1183 *
1184 * Note that the faulting process may involve evicting existing objects
1185 * from the GTT and/or fence registers to make room.  So performance may
1186 * suffer if the GTT working set is large or there are few fence registers
1187 * left.
1188 */
1189int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1190{
1191	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1192	struct drm_device *dev = obj->base.dev;
1193	drm_i915_private_t *dev_priv = dev->dev_private;
1194	pgoff_t page_offset;
1195	unsigned long pfn;
1196	int ret = 0;
1197	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1198
1199	/* We don't use vmf->pgoff since that has the fake offset */
1200	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1201		PAGE_SHIFT;
1202
1203	ret = i915_mutex_lock_interruptible(dev);
1204	if (ret)
1205		goto out;
1206
1207	trace_i915_gem_object_fault(obj, page_offset, true, write);
1208
1209	/* Now bind it into the GTT if needed */
1210	if (!obj->map_and_fenceable) {
1211		ret = i915_gem_object_unbind(obj);
1212		if (ret)
1213			goto unlock;
1214	}
1215	if (!obj->gtt_space) {
1216		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1217		if (ret)
1218			goto unlock;
1219
1220		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1221		if (ret)
1222			goto unlock;
1223	}
1224
1225	if (obj->tiling_mode == I915_TILING_NONE)
1226		ret = i915_gem_object_put_fence(obj);
1227	else
1228		ret = i915_gem_object_get_fence(obj, NULL);
1229	if (ret)
1230		goto unlock;
1231
1232	if (i915_gem_object_is_inactive(obj))
1233		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1234
1235	obj->fault_mappable = true;
1236
1237	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1238		page_offset;
1239
1240	/* Finally, remap it using the new GTT offset */
1241	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1242unlock:
1243	mutex_unlock(&dev->struct_mutex);
1244out:
1245	switch (ret) {
1246	case -EIO:
1247	case -EAGAIN:
1248		/* Give the error handler a chance to run and move the
1249		 * objects off the GPU active list. Next time we service the
1250		 * fault, we should be able to transition the page into the
1251		 * GTT without touching the GPU (and so avoid further
1252		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1253		 * with coherency, just lost writes.
1254		 */
1255		set_need_resched();
1256	case 0:
1257	case -ERESTARTSYS:
1258	case -EINTR:
1259		return VM_FAULT_NOPAGE;
1260	case -ENOMEM:
1261		return VM_FAULT_OOM;
1262	default:
1263		return VM_FAULT_SIGBUS;
1264	}
1265}
1266
1267/**
1268 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1269 * @obj: obj in question
1270 *
1271 * GEM memory mapping works by handing back to userspace a fake mmap offset
1272 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1273 * up the object based on the offset and sets up the various memory mapping
1274 * structures.
1275 *
1276 * This routine allocates and attaches a fake offset for @obj.
1277 */
1278static int
1279i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1280{
1281	struct drm_device *dev = obj->base.dev;
1282	struct drm_gem_mm *mm = dev->mm_private;
1283	struct drm_map_list *list;
1284	struct drm_local_map *map;
1285	int ret = 0;
1286
1287	/* Set the object up for mmap'ing */
1288	list = &obj->base.map_list;
1289	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1290	if (!list->map)
1291		return -ENOMEM;
1292
1293	map = list->map;
1294	map->type = _DRM_GEM;
1295	map->size = obj->base.size;
1296	map->handle = obj;
1297
1298	/* Get a DRM GEM mmap offset allocated... */
1299	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1300						    obj->base.size / PAGE_SIZE,
1301						    0, 0);
1302	if (!list->file_offset_node) {
1303		DRM_ERROR("failed to allocate offset for bo %d\n",
1304			  obj->base.name);
1305		ret = -ENOSPC;
1306		goto out_free_list;
1307	}
1308
1309	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1310						  obj->base.size / PAGE_SIZE,
1311						  0);
1312	if (!list->file_offset_node) {
1313		ret = -ENOMEM;
1314		goto out_free_list;
1315	}
1316
1317	list->hash.key = list->file_offset_node->start;
1318	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1319	if (ret) {
1320		DRM_ERROR("failed to add to map hash\n");
1321		goto out_free_mm;
1322	}
1323
1324	return 0;
1325
1326out_free_mm:
1327	drm_mm_put_block(list->file_offset_node);
1328out_free_list:
1329	kfree(list->map);
1330	list->map = NULL;
1331
1332	return ret;
1333}
1334
1335/**
1336 * i915_gem_release_mmap - remove physical page mappings
1337 * @obj: obj in question
1338 *
1339 * Preserve the reservation of the mmapping with the DRM core code, but
1340 * relinquish ownership of the pages back to the system.
1341 *
1342 * It is vital that we remove the page mapping if we have mapped a tiled
1343 * object through the GTT and then lose the fence register due to
1344 * resource pressure. Similarly if the object has been moved out of the
1345 * aperture, than pages mapped into userspace must be revoked. Removing the
1346 * mapping will then trigger a page fault on the next user access, allowing
1347 * fixup by i915_gem_fault().
1348 */
1349void
1350i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1351{
1352	if (!obj->fault_mappable)
1353		return;
1354
1355	if (obj->base.dev->dev_mapping)
1356		unmap_mapping_range(obj->base.dev->dev_mapping,
1357				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1358				    obj->base.size, 1);
1359
1360	obj->fault_mappable = false;
1361}
1362
1363static void
1364i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1365{
1366	struct drm_device *dev = obj->base.dev;
1367	struct drm_gem_mm *mm = dev->mm_private;
1368	struct drm_map_list *list = &obj->base.map_list;
1369
1370	drm_ht_remove_item(&mm->offset_hash, &list->hash);
1371	drm_mm_put_block(list->file_offset_node);
1372	kfree(list->map);
1373	list->map = NULL;
1374}
1375
1376static uint32_t
1377i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1378{
1379	uint32_t gtt_size;
1380
1381	if (INTEL_INFO(dev)->gen >= 4 ||
1382	    tiling_mode == I915_TILING_NONE)
1383		return size;
1384
1385	/* Previous chips need a power-of-two fence region when tiling */
1386	if (INTEL_INFO(dev)->gen == 3)
1387		gtt_size = 1024*1024;
1388	else
1389		gtt_size = 512*1024;
1390
1391	while (gtt_size < size)
1392		gtt_size <<= 1;
1393
1394	return gtt_size;
1395}
1396
1397/**
1398 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1399 * @obj: object to check
1400 *
1401 * Return the required GTT alignment for an object, taking into account
1402 * potential fence register mapping.
1403 */
1404static uint32_t
1405i915_gem_get_gtt_alignment(struct drm_device *dev,
1406			   uint32_t size,
1407			   int tiling_mode)
1408{
1409	/*
1410	 * Minimum alignment is 4k (GTT page size), but might be greater
1411	 * if a fence register is needed for the object.
1412	 */
1413	if (INTEL_INFO(dev)->gen >= 4 ||
1414	    tiling_mode == I915_TILING_NONE)
1415		return 4096;
1416
1417	/*
1418	 * Previous chips need to be aligned to the size of the smallest
1419	 * fence register that can contain the object.
1420	 */
1421	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1422}
1423
1424/**
1425 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1426 *					 unfenced object
1427 * @dev: the device
1428 * @size: size of the object
1429 * @tiling_mode: tiling mode of the object
1430 *
1431 * Return the required GTT alignment for an object, only taking into account
1432 * unfenced tiled surface requirements.
1433 */
1434uint32_t
1435i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1436				    uint32_t size,
1437				    int tiling_mode)
1438{
1439	/*
1440	 * Minimum alignment is 4k (GTT page size) for sane hw.
1441	 */
1442	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1443	    tiling_mode == I915_TILING_NONE)
1444		return 4096;
1445
1446	/* Previous hardware however needs to be aligned to a power-of-two
1447	 * tile height. The simplest method for determining this is to reuse
1448	 * the power-of-tile object size.
1449	 */
1450	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1451}
1452
1453int
1454i915_gem_mmap_gtt(struct drm_file *file,
1455		  struct drm_device *dev,
1456		  uint32_t handle,
1457		  uint64_t *offset)
1458{
1459	struct drm_i915_private *dev_priv = dev->dev_private;
1460	struct drm_i915_gem_object *obj;
1461	int ret;
1462
1463	if (!(dev->driver->driver_features & DRIVER_GEM))
1464		return -ENODEV;
1465
1466	ret = i915_mutex_lock_interruptible(dev);
1467	if (ret)
1468		return ret;
1469
1470	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1471	if (&obj->base == NULL) {
1472		ret = -ENOENT;
1473		goto unlock;
1474	}
1475
1476	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1477		ret = -E2BIG;
1478		goto unlock;
1479	}
1480
1481	if (obj->madv != I915_MADV_WILLNEED) {
1482		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1483		ret = -EINVAL;
1484		goto out;
1485	}
1486
1487	if (!obj->base.map_list.map) {
1488		ret = i915_gem_create_mmap_offset(obj);
1489		if (ret)
1490			goto out;
1491	}
1492
1493	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1494
1495out:
1496	drm_gem_object_unreference(&obj->base);
1497unlock:
1498	mutex_unlock(&dev->struct_mutex);
1499	return ret;
1500}
1501
1502/**
1503 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1504 * @dev: DRM device
1505 * @data: GTT mapping ioctl data
1506 * @file: GEM object info
1507 *
1508 * Simply returns the fake offset to userspace so it can mmap it.
1509 * The mmap call will end up in drm_gem_mmap(), which will set things
1510 * up so we can get faults in the handler above.
1511 *
1512 * The fault handler will take care of binding the object into the GTT
1513 * (since it may have been evicted to make room for something), allocating
1514 * a fence register, and mapping the appropriate aperture address into
1515 * userspace.
1516 */
1517int
1518i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1519			struct drm_file *file)
1520{
1521	struct drm_i915_gem_mmap_gtt *args = data;
1522
1523	if (!(dev->driver->driver_features & DRIVER_GEM))
1524		return -ENODEV;
1525
1526	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1527}
1528
1529
1530static int
1531i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1532			      gfp_t gfpmask)
1533{
1534	int page_count, i;
1535	struct address_space *mapping;
1536	struct inode *inode;
1537	struct page *page;
1538
 
 
 
1539	/* Get the list of pages out of our struct file.  They'll be pinned
1540	 * at this point until we release them.
1541	 */
1542	page_count = obj->base.size / PAGE_SIZE;
1543	BUG_ON(obj->pages != NULL);
1544	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1545	if (obj->pages == NULL)
1546		return -ENOMEM;
1547
1548	inode = obj->base.filp->f_path.dentry->d_inode;
1549	mapping = inode->i_mapping;
1550	gfpmask |= mapping_gfp_mask(mapping);
1551
1552	for (i = 0; i < page_count; i++) {
1553		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1554		if (IS_ERR(page))
1555			goto err_pages;
1556
1557		obj->pages[i] = page;
1558	}
1559
1560	if (obj->tiling_mode != I915_TILING_NONE)
1561		i915_gem_object_do_bit_17_swizzle(obj);
1562
1563	return 0;
1564
1565err_pages:
1566	while (i--)
1567		page_cache_release(obj->pages[i]);
1568
1569	drm_free_large(obj->pages);
1570	obj->pages = NULL;
1571	return PTR_ERR(page);
1572}
1573
1574static void
1575i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1576{
1577	int page_count = obj->base.size / PAGE_SIZE;
1578	int i;
1579
 
 
 
1580	BUG_ON(obj->madv == __I915_MADV_PURGED);
1581
1582	if (obj->tiling_mode != I915_TILING_NONE)
1583		i915_gem_object_save_bit_17_swizzle(obj);
1584
1585	if (obj->madv == I915_MADV_DONTNEED)
1586		obj->dirty = 0;
1587
1588	for (i = 0; i < page_count; i++) {
1589		if (obj->dirty)
1590			set_page_dirty(obj->pages[i]);
1591
1592		if (obj->madv == I915_MADV_WILLNEED)
1593			mark_page_accessed(obj->pages[i]);
1594
1595		page_cache_release(obj->pages[i]);
1596	}
1597	obj->dirty = 0;
1598
1599	drm_free_large(obj->pages);
1600	obj->pages = NULL;
1601}
1602
1603void
1604i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1605			       struct intel_ring_buffer *ring,
1606			       u32 seqno)
1607{
1608	struct drm_device *dev = obj->base.dev;
1609	struct drm_i915_private *dev_priv = dev->dev_private;
1610
1611	BUG_ON(ring == NULL);
1612	obj->ring = ring;
1613
1614	/* Add a reference if we're newly entering the active list. */
1615	if (!obj->active) {
1616		drm_gem_object_reference(&obj->base);
1617		obj->active = 1;
1618	}
1619
1620	/* Move from whatever list we were on to the tail of execution. */
1621	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1622	list_move_tail(&obj->ring_list, &ring->active_list);
1623
1624	obj->last_rendering_seqno = seqno;
1625	if (obj->fenced_gpu_access) {
1626		struct drm_i915_fence_reg *reg;
1627
1628		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1629
 
1630		obj->last_fenced_seqno = seqno;
1631		obj->last_fenced_ring = ring;
1632
1633		reg = &dev_priv->fence_regs[obj->fence_reg];
1634		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
 
 
 
 
 
 
1635	}
1636}
1637
1638static void
1639i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1640{
1641	list_del_init(&obj->ring_list);
1642	obj->last_rendering_seqno = 0;
 
1643}
1644
1645static void
1646i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1647{
1648	struct drm_device *dev = obj->base.dev;
1649	drm_i915_private_t *dev_priv = dev->dev_private;
1650
1651	BUG_ON(!obj->active);
1652	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1653
1654	i915_gem_object_move_off_active(obj);
1655}
1656
1657static void
1658i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1659{
1660	struct drm_device *dev = obj->base.dev;
1661	struct drm_i915_private *dev_priv = dev->dev_private;
1662
1663	if (obj->pin_count != 0)
1664		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1665	else
1666		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1667
1668	BUG_ON(!list_empty(&obj->gpu_write_list));
1669	BUG_ON(!obj->active);
1670	obj->ring = NULL;
1671
1672	i915_gem_object_move_off_active(obj);
1673	obj->fenced_gpu_access = false;
1674
1675	obj->active = 0;
1676	obj->pending_gpu_write = false;
1677	drm_gem_object_unreference(&obj->base);
1678
1679	WARN_ON(i915_verify_lists(dev));
1680}
1681
1682/* Immediately discard the backing storage */
1683static void
1684i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1685{
1686	struct inode *inode;
1687
1688	/* Our goal here is to return as much of the memory as
1689	 * is possible back to the system as we are called from OOM.
1690	 * To do this we must instruct the shmfs to drop all of its
1691	 * backing pages, *now*.
1692	 */
1693	inode = obj->base.filp->f_path.dentry->d_inode;
1694	shmem_truncate_range(inode, 0, (loff_t)-1);
1695
 
 
 
1696	obj->madv = __I915_MADV_PURGED;
1697}
1698
1699static inline int
1700i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1701{
1702	return obj->madv == I915_MADV_DONTNEED;
1703}
1704
1705static void
1706i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1707			       uint32_t flush_domains)
1708{
1709	struct drm_i915_gem_object *obj, *next;
1710
1711	list_for_each_entry_safe(obj, next,
1712				 &ring->gpu_write_list,
1713				 gpu_write_list) {
1714		if (obj->base.write_domain & flush_domains) {
1715			uint32_t old_write_domain = obj->base.write_domain;
1716
1717			obj->base.write_domain = 0;
1718			list_del_init(&obj->gpu_write_list);
1719			i915_gem_object_move_to_active(obj, ring,
1720						       i915_gem_next_request_seqno(ring));
1721
1722			trace_i915_gem_object_change_domain(obj,
1723							    obj->base.read_domains,
1724							    old_write_domain);
1725		}
1726	}
1727}
1728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729int
1730i915_add_request(struct intel_ring_buffer *ring,
1731		 struct drm_file *file,
1732		 struct drm_i915_gem_request *request)
1733{
1734	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1735	uint32_t seqno;
 
1736	int was_empty;
1737	int ret;
1738
1739	BUG_ON(request == NULL);
 
 
 
 
 
 
 
 
1740
1741	ret = ring->add_request(ring, &seqno);
1742	if (ret)
1743	    return ret;
1744
1745	trace_i915_gem_request_add(ring, seqno);
1746
1747	request->seqno = seqno;
1748	request->ring = ring;
 
1749	request->emitted_jiffies = jiffies;
1750	was_empty = list_empty(&ring->request_list);
1751	list_add_tail(&request->list, &ring->request_list);
1752
1753	if (file) {
1754		struct drm_i915_file_private *file_priv = file->driver_priv;
1755
1756		spin_lock(&file_priv->mm.lock);
1757		request->file_priv = file_priv;
1758		list_add_tail(&request->client_list,
1759			      &file_priv->mm.request_list);
1760		spin_unlock(&file_priv->mm.lock);
1761	}
1762
1763	ring->outstanding_lazy_request = false;
1764
1765	if (!dev_priv->mm.suspended) {
1766		if (i915_enable_hangcheck) {
1767			mod_timer(&dev_priv->hangcheck_timer,
1768				  jiffies +
1769				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1770		}
1771		if (was_empty)
1772			queue_delayed_work(dev_priv->wq,
1773					   &dev_priv->mm.retire_work, HZ);
1774	}
1775	return 0;
1776}
1777
1778static inline void
1779i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1780{
1781	struct drm_i915_file_private *file_priv = request->file_priv;
1782
1783	if (!file_priv)
1784		return;
1785
1786	spin_lock(&file_priv->mm.lock);
1787	if (request->file_priv) {
1788		list_del(&request->client_list);
1789		request->file_priv = NULL;
1790	}
1791	spin_unlock(&file_priv->mm.lock);
1792}
1793
1794static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1795				      struct intel_ring_buffer *ring)
1796{
1797	while (!list_empty(&ring->request_list)) {
1798		struct drm_i915_gem_request *request;
1799
1800		request = list_first_entry(&ring->request_list,
1801					   struct drm_i915_gem_request,
1802					   list);
1803
1804		list_del(&request->list);
1805		i915_gem_request_remove_from_client(request);
1806		kfree(request);
1807	}
1808
1809	while (!list_empty(&ring->active_list)) {
1810		struct drm_i915_gem_object *obj;
1811
1812		obj = list_first_entry(&ring->active_list,
1813				       struct drm_i915_gem_object,
1814				       ring_list);
1815
1816		obj->base.write_domain = 0;
1817		list_del_init(&obj->gpu_write_list);
1818		i915_gem_object_move_to_inactive(obj);
1819	}
1820}
1821
1822static void i915_gem_reset_fences(struct drm_device *dev)
1823{
1824	struct drm_i915_private *dev_priv = dev->dev_private;
1825	int i;
1826
1827	for (i = 0; i < 16; i++) {
1828		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1829		struct drm_i915_gem_object *obj = reg->obj;
1830
1831		if (!obj)
1832			continue;
1833
1834		if (obj->tiling_mode)
1835			i915_gem_release_mmap(obj);
1836
1837		reg->obj->fence_reg = I915_FENCE_REG_NONE;
1838		reg->obj->fenced_gpu_access = false;
1839		reg->obj->last_fenced_seqno = 0;
1840		reg->obj->last_fenced_ring = NULL;
1841		i915_gem_clear_fence_reg(dev, reg);
1842	}
 
 
1843}
1844
1845void i915_gem_reset(struct drm_device *dev)
1846{
1847	struct drm_i915_private *dev_priv = dev->dev_private;
1848	struct drm_i915_gem_object *obj;
 
1849	int i;
1850
1851	for (i = 0; i < I915_NUM_RINGS; i++)
1852		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1853
1854	/* Remove anything from the flushing lists. The GPU cache is likely
1855	 * to be lost on reset along with the data, so simply move the
1856	 * lost bo to the inactive list.
1857	 */
1858	while (!list_empty(&dev_priv->mm.flushing_list)) {
1859		obj= list_first_entry(&dev_priv->mm.flushing_list,
1860				      struct drm_i915_gem_object,
1861				      mm_list);
1862
1863		obj->base.write_domain = 0;
1864		list_del_init(&obj->gpu_write_list);
1865		i915_gem_object_move_to_inactive(obj);
1866	}
1867
1868	/* Move everything out of the GPU domains to ensure we do any
1869	 * necessary invalidation upon reuse.
1870	 */
1871	list_for_each_entry(obj,
1872			    &dev_priv->mm.inactive_list,
1873			    mm_list)
1874	{
1875		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1876	}
1877
1878	/* The fence registers are invalidated so clear them out */
1879	i915_gem_reset_fences(dev);
1880}
1881
1882/**
1883 * This function clears the request list as sequence numbers are passed.
1884 */
1885static void
1886i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1887{
1888	uint32_t seqno;
1889	int i;
1890
1891	if (list_empty(&ring->request_list))
1892		return;
1893
1894	WARN_ON(i915_verify_lists(ring->dev));
1895
1896	seqno = ring->get_seqno(ring);
1897
1898	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1899		if (seqno >= ring->sync_seqno[i])
1900			ring->sync_seqno[i] = 0;
1901
1902	while (!list_empty(&ring->request_list)) {
1903		struct drm_i915_gem_request *request;
1904
1905		request = list_first_entry(&ring->request_list,
1906					   struct drm_i915_gem_request,
1907					   list);
1908
1909		if (!i915_seqno_passed(seqno, request->seqno))
1910			break;
1911
1912		trace_i915_gem_request_retire(ring, request->seqno);
 
 
 
 
 
 
1913
1914		list_del(&request->list);
1915		i915_gem_request_remove_from_client(request);
1916		kfree(request);
1917	}
1918
1919	/* Move any buffers on the active list that are no longer referenced
1920	 * by the ringbuffer to the flushing/inactive lists as appropriate.
1921	 */
1922	while (!list_empty(&ring->active_list)) {
1923		struct drm_i915_gem_object *obj;
1924
1925		obj= list_first_entry(&ring->active_list,
1926				      struct drm_i915_gem_object,
1927				      ring_list);
1928
1929		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1930			break;
1931
1932		if (obj->base.write_domain != 0)
1933			i915_gem_object_move_to_flushing(obj);
1934		else
1935			i915_gem_object_move_to_inactive(obj);
1936	}
1937
1938	if (unlikely(ring->trace_irq_seqno &&
1939		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1940		ring->irq_put(ring);
1941		ring->trace_irq_seqno = 0;
1942	}
1943
1944	WARN_ON(i915_verify_lists(ring->dev));
1945}
1946
1947void
1948i915_gem_retire_requests(struct drm_device *dev)
1949{
1950	drm_i915_private_t *dev_priv = dev->dev_private;
 
1951	int i;
1952
1953	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1954	    struct drm_i915_gem_object *obj, *next;
1955
1956	    /* We must be careful that during unbind() we do not
1957	     * accidentally infinitely recurse into retire requests.
1958	     * Currently:
1959	     *   retire -> free -> unbind -> wait -> retire_ring
1960	     */
1961	    list_for_each_entry_safe(obj, next,
1962				     &dev_priv->mm.deferred_free_list,
1963				     mm_list)
1964		    i915_gem_free_object_tail(obj);
1965	}
1966
1967	for (i = 0; i < I915_NUM_RINGS; i++)
1968		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1969}
1970
1971static void
1972i915_gem_retire_work_handler(struct work_struct *work)
1973{
1974	drm_i915_private_t *dev_priv;
1975	struct drm_device *dev;
 
1976	bool idle;
1977	int i;
1978
1979	dev_priv = container_of(work, drm_i915_private_t,
1980				mm.retire_work.work);
1981	dev = dev_priv->dev;
1982
1983	/* Come back later if the device is busy... */
1984	if (!mutex_trylock(&dev->struct_mutex)) {
1985		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1986		return;
1987	}
1988
1989	i915_gem_retire_requests(dev);
1990
1991	/* Send a periodic flush down the ring so we don't hold onto GEM
1992	 * objects indefinitely.
1993	 */
1994	idle = true;
1995	for (i = 0; i < I915_NUM_RINGS; i++) {
1996		struct intel_ring_buffer *ring = &dev_priv->ring[i];
1997
1998		if (!list_empty(&ring->gpu_write_list)) {
1999			struct drm_i915_gem_request *request;
2000			int ret;
2001
2002			ret = i915_gem_flush_ring(ring,
2003						  0, I915_GEM_GPU_DOMAINS);
2004			request = kzalloc(sizeof(*request), GFP_KERNEL);
2005			if (ret || request == NULL ||
2006			    i915_add_request(ring, NULL, request))
2007			    kfree(request);
2008		}
2009
2010		idle &= list_empty(&ring->request_list);
2011	}
2012
2013	if (!dev_priv->mm.suspended && !idle)
2014		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2015
2016	mutex_unlock(&dev->struct_mutex);
2017}
2018
2019/**
2020 * Waits for a sequence number to be signaled, and cleans up the
2021 * request and object lists appropriately for that event.
2022 */
2023int
2024i915_wait_request(struct intel_ring_buffer *ring,
2025		  uint32_t seqno)
2026{
2027	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2028	u32 ier;
2029	int ret = 0;
2030
2031	BUG_ON(seqno == 0);
2032
2033	if (atomic_read(&dev_priv->mm.wedged)) {
2034		struct completion *x = &dev_priv->error_completion;
2035		bool recovery_complete;
2036		unsigned long flags;
2037
2038		/* Give the error handler a chance to run. */
2039		spin_lock_irqsave(&x->wait.lock, flags);
2040		recovery_complete = x->done > 0;
2041		spin_unlock_irqrestore(&x->wait.lock, flags);
2042
2043		return recovery_complete ? -EIO : -EAGAIN;
2044	}
2045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2046	if (seqno == ring->outstanding_lazy_request) {
2047		struct drm_i915_gem_request *request;
2048
2049		request = kzalloc(sizeof(*request), GFP_KERNEL);
2050		if (request == NULL)
2051			return -ENOMEM;
2052
2053		ret = i915_add_request(ring, NULL, request);
2054		if (ret) {
2055			kfree(request);
2056			return ret;
2057		}
2058
2059		seqno = request->seqno;
2060	}
2061
2062	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2063		if (HAS_PCH_SPLIT(ring->dev))
2064			ier = I915_READ(DEIER) | I915_READ(GTIER);
2065		else
2066			ier = I915_READ(IER);
2067		if (!ier) {
2068			DRM_ERROR("something (likely vbetool) disabled "
2069				  "interrupts, re-enabling\n");
2070			ring->dev->driver->irq_preinstall(ring->dev);
2071			ring->dev->driver->irq_postinstall(ring->dev);
2072		}
2073
2074		trace_i915_gem_request_wait_begin(ring, seqno);
 
 
 
 
2075
2076		ring->waiting_seqno = seqno;
2077		if (ring->irq_get(ring)) {
2078			if (dev_priv->mm.interruptible)
2079				ret = wait_event_interruptible(ring->irq_queue,
2080							       i915_seqno_passed(ring->get_seqno(ring), seqno)
2081							       || atomic_read(&dev_priv->mm.wedged));
2082			else
2083				wait_event(ring->irq_queue,
2084					   i915_seqno_passed(ring->get_seqno(ring), seqno)
2085					   || atomic_read(&dev_priv->mm.wedged));
2086
2087			ring->irq_put(ring);
2088		} else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2089						      seqno) ||
2090				    atomic_read(&dev_priv->mm.wedged), 3000))
2091			ret = -EBUSY;
2092		ring->waiting_seqno = 0;
2093
2094		trace_i915_gem_request_wait_end(ring, seqno);
2095	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2096	if (atomic_read(&dev_priv->mm.wedged))
2097		ret = -EAGAIN;
2098
2099	if (ret && ret != -ERESTARTSYS)
2100		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2101			  __func__, ret, seqno, ring->get_seqno(ring),
2102			  dev_priv->next_seqno);
2103
2104	/* Directly dispatch request retiring.  While we have the work queue
2105	 * to handle this, the waiter on a request often wants an associated
2106	 * buffer to have made it to the inactive list, and we would need
2107	 * a separate wait queue to handle that.
2108	 */
2109	if (ret == 0)
2110		i915_gem_retire_requests_ring(ring);
2111
2112	return ret;
2113}
2114
2115/**
2116 * Ensures that all rendering to the object has completed and the object is
2117 * safe to unbind from the GTT or access from the CPU.
2118 */
2119int
2120i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2121{
2122	int ret;
2123
2124	/* This function only exists to support waiting for existing rendering,
2125	 * not for emitting required flushes.
2126	 */
2127	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2128
2129	/* If there is rendering queued on the buffer being evicted, wait for
2130	 * it.
2131	 */
2132	if (obj->active) {
2133		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2134		if (ret)
2135			return ret;
 
2136	}
2137
2138	return 0;
2139}
2140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2141static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2142{
2143	u32 old_write_domain, old_read_domains;
2144
2145	/* Act a barrier for all accesses through the GTT */
2146	mb();
2147
2148	/* Force a pagefault for domain tracking on next user access */
2149	i915_gem_release_mmap(obj);
2150
2151	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2152		return;
2153
2154	old_read_domains = obj->base.read_domains;
2155	old_write_domain = obj->base.write_domain;
2156
2157	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2158	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2159
2160	trace_i915_gem_object_change_domain(obj,
2161					    old_read_domains,
2162					    old_write_domain);
2163}
2164
2165/**
2166 * Unbinds an object from the GTT aperture.
2167 */
2168int
2169i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2170{
 
2171	int ret = 0;
2172
2173	if (obj->gtt_space == NULL)
2174		return 0;
2175
2176	if (obj->pin_count != 0) {
2177		DRM_ERROR("Attempting to unbind pinned buffer\n");
2178		return -EINVAL;
2179	}
2180
2181	ret = i915_gem_object_finish_gpu(obj);
2182	if (ret == -ERESTARTSYS)
2183		return ret;
2184	/* Continue on if we fail due to EIO, the GPU is hung so we
2185	 * should be safe and we need to cleanup or else we might
2186	 * cause memory corruption through use-after-free.
2187	 */
2188
2189	i915_gem_object_finish_gtt(obj);
2190
2191	/* Move the object to the CPU domain to ensure that
2192	 * any possible CPU writes while it's not in the GTT
2193	 * are flushed when we go to remap it.
2194	 */
2195	if (ret == 0)
2196		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2197	if (ret == -ERESTARTSYS)
2198		return ret;
2199	if (ret) {
2200		/* In the event of a disaster, abandon all caches and
2201		 * hope for the best.
2202		 */
2203		i915_gem_clflush_object(obj);
2204		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2205	}
2206
2207	/* release the fence reg _after_ flushing */
2208	ret = i915_gem_object_put_fence(obj);
2209	if (ret == -ERESTARTSYS)
2210		return ret;
2211
2212	trace_i915_gem_object_unbind(obj);
2213
2214	i915_gem_gtt_unbind_object(obj);
 
 
 
 
 
 
 
2215	i915_gem_object_put_pages_gtt(obj);
2216
2217	list_del_init(&obj->gtt_list);
2218	list_del_init(&obj->mm_list);
2219	/* Avoid an unnecessary call to unbind on rebind. */
2220	obj->map_and_fenceable = true;
2221
2222	drm_mm_put_block(obj->gtt_space);
2223	obj->gtt_space = NULL;
2224	obj->gtt_offset = 0;
2225
2226	if (i915_gem_object_is_purgeable(obj))
2227		i915_gem_object_truncate(obj);
2228
2229	return ret;
2230}
2231
2232int
2233i915_gem_flush_ring(struct intel_ring_buffer *ring,
2234		    uint32_t invalidate_domains,
2235		    uint32_t flush_domains)
2236{
2237	int ret;
2238
2239	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2240		return 0;
2241
2242	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2243
2244	ret = ring->flush(ring, invalidate_domains, flush_domains);
2245	if (ret)
2246		return ret;
2247
2248	if (flush_domains & I915_GEM_GPU_DOMAINS)
2249		i915_gem_process_flushing_list(ring, flush_domains);
2250
2251	return 0;
2252}
2253
2254static int i915_ring_idle(struct intel_ring_buffer *ring)
2255{
2256	int ret;
2257
2258	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2259		return 0;
2260
2261	if (!list_empty(&ring->gpu_write_list)) {
2262		ret = i915_gem_flush_ring(ring,
2263				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2264		if (ret)
2265			return ret;
2266	}
2267
2268	return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2269}
2270
2271int
2272i915_gpu_idle(struct drm_device *dev)
2273{
2274	drm_i915_private_t *dev_priv = dev->dev_private;
2275	bool lists_empty;
2276	int ret, i;
2277
2278	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2279		       list_empty(&dev_priv->mm.active_list));
2280	if (lists_empty)
2281		return 0;
2282
2283	/* Flush everything onto the inactive list. */
2284	for (i = 0; i < I915_NUM_RINGS; i++) {
2285		ret = i915_ring_idle(&dev_priv->ring[i]);
2286		if (ret)
2287			return ret;
 
 
 
 
2288	}
2289
2290	return 0;
2291}
2292
2293static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2294				       struct intel_ring_buffer *pipelined)
2295{
2296	struct drm_device *dev = obj->base.dev;
2297	drm_i915_private_t *dev_priv = dev->dev_private;
2298	u32 size = obj->gtt_space->size;
2299	int regnum = obj->fence_reg;
2300	uint64_t val;
2301
2302	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2303			 0xfffff000) << 32;
2304	val |= obj->gtt_offset & 0xfffff000;
2305	val |= (uint64_t)((obj->stride / 128) - 1) <<
2306		SANDYBRIDGE_FENCE_PITCH_SHIFT;
2307
2308	if (obj->tiling_mode == I915_TILING_Y)
2309		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2310	val |= I965_FENCE_REG_VALID;
2311
2312	if (pipelined) {
2313		int ret = intel_ring_begin(pipelined, 6);
2314		if (ret)
2315			return ret;
2316
2317		intel_ring_emit(pipelined, MI_NOOP);
2318		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2319		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2320		intel_ring_emit(pipelined, (u32)val);
2321		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2322		intel_ring_emit(pipelined, (u32)(val >> 32));
2323		intel_ring_advance(pipelined);
 
 
2324	} else
2325		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2326
2327	return 0;
 
2328}
2329
2330static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2331				struct intel_ring_buffer *pipelined)
2332{
2333	struct drm_device *dev = obj->base.dev;
2334	drm_i915_private_t *dev_priv = dev->dev_private;
2335	u32 size = obj->gtt_space->size;
2336	int regnum = obj->fence_reg;
2337	uint64_t val;
2338
2339	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2340		    0xfffff000) << 32;
2341	val |= obj->gtt_offset & 0xfffff000;
2342	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2343	if (obj->tiling_mode == I915_TILING_Y)
2344		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2345	val |= I965_FENCE_REG_VALID;
2346
2347	if (pipelined) {
2348		int ret = intel_ring_begin(pipelined, 6);
2349		if (ret)
2350			return ret;
2351
2352		intel_ring_emit(pipelined, MI_NOOP);
2353		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2354		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2355		intel_ring_emit(pipelined, (u32)val);
2356		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2357		intel_ring_emit(pipelined, (u32)(val >> 32));
2358		intel_ring_advance(pipelined);
2359	} else
2360		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2361
2362	return 0;
 
2363}
2364
2365static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2366				struct intel_ring_buffer *pipelined)
2367{
2368	struct drm_device *dev = obj->base.dev;
2369	drm_i915_private_t *dev_priv = dev->dev_private;
2370	u32 size = obj->gtt_space->size;
2371	u32 fence_reg, val, pitch_val;
2372	int tile_width;
2373
2374	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2375		 (size & -size) != size ||
2376		 (obj->gtt_offset & (size - 1)),
2377		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2378		 obj->gtt_offset, obj->map_and_fenceable, size))
2379		return -EINVAL;
2380
2381	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2382		tile_width = 128;
2383	else
2384		tile_width = 512;
 
 
 
 
 
 
2385
2386	/* Note: pitch better be a power of two tile widths */
2387	pitch_val = obj->stride / tile_width;
2388	pitch_val = ffs(pitch_val) - 1;
2389
2390	val = obj->gtt_offset;
2391	if (obj->tiling_mode == I915_TILING_Y)
2392		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2393	val |= I915_FENCE_SIZE_BITS(size);
2394	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2395	val |= I830_FENCE_REG_VALID;
2396
2397	fence_reg = obj->fence_reg;
2398	if (fence_reg < 8)
2399		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2400	else
2401		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2402
2403	if (pipelined) {
2404		int ret = intel_ring_begin(pipelined, 4);
2405		if (ret)
2406			return ret;
2407
2408		intel_ring_emit(pipelined, MI_NOOP);
2409		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2410		intel_ring_emit(pipelined, fence_reg);
2411		intel_ring_emit(pipelined, val);
2412		intel_ring_advance(pipelined);
 
 
 
 
 
2413	} else
2414		I915_WRITE(fence_reg, val);
2415
2416	return 0;
 
 
 
 
 
 
2417}
2418
2419static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2420				struct intel_ring_buffer *pipelined)
2421{
2422	struct drm_device *dev = obj->base.dev;
2423	drm_i915_private_t *dev_priv = dev->dev_private;
2424	u32 size = obj->gtt_space->size;
2425	int regnum = obj->fence_reg;
2426	uint32_t val;
2427	uint32_t pitch_val;
2428
2429	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2430		 (size & -size) != size ||
2431		 (obj->gtt_offset & (size - 1)),
2432		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2433		 obj->gtt_offset, size))
2434		return -EINVAL;
2435
2436	pitch_val = obj->stride / 128;
2437	pitch_val = ffs(pitch_val) - 1;
2438
2439	val = obj->gtt_offset;
2440	if (obj->tiling_mode == I915_TILING_Y)
2441		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2442	val |= I830_FENCE_SIZE_BITS(size);
2443	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2444	val |= I830_FENCE_REG_VALID;
 
 
 
 
 
2445
2446	if (pipelined) {
2447		int ret = intel_ring_begin(pipelined, 4);
2448		if (ret)
2449			return ret;
2450
2451		intel_ring_emit(pipelined, MI_NOOP);
2452		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2453		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2454		intel_ring_emit(pipelined, val);
2455		intel_ring_advance(pipelined);
2456	} else
2457		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
 
 
 
 
 
 
2458
2459	return 0;
 
 
 
2460}
2461
2462static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
 
 
2463{
2464	return i915_seqno_passed(ring->get_seqno(ring), seqno);
 
 
 
 
 
 
 
 
 
 
 
 
 
2465}
2466
2467static int
2468i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2469			    struct intel_ring_buffer *pipelined)
2470{
2471	int ret;
2472
2473	if (obj->fenced_gpu_access) {
2474		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2475			ret = i915_gem_flush_ring(obj->last_fenced_ring,
2476						  0, obj->base.write_domain);
2477			if (ret)
2478				return ret;
2479		}
2480
2481		obj->fenced_gpu_access = false;
2482	}
2483
2484	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2485		if (!ring_passed_seqno(obj->last_fenced_ring,
2486				       obj->last_fenced_seqno)) {
2487			ret = i915_wait_request(obj->last_fenced_ring,
2488						obj->last_fenced_seqno);
2489			if (ret)
2490				return ret;
2491		}
2492
2493		obj->last_fenced_seqno = 0;
2494		obj->last_fenced_ring = NULL;
2495	}
2496
2497	/* Ensure that all CPU reads are completed before installing a fence
2498	 * and all writes before removing the fence.
2499	 */
2500	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2501		mb();
2502
2503	return 0;
2504}
2505
2506int
2507i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2508{
 
2509	int ret;
2510
2511	if (obj->tiling_mode)
2512		i915_gem_release_mmap(obj);
2513
2514	ret = i915_gem_object_flush_fence(obj, NULL);
2515	if (ret)
2516		return ret;
2517
2518	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2519		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2520		i915_gem_clear_fence_reg(obj->base.dev,
2521					 &dev_priv->fence_regs[obj->fence_reg]);
2522
2523		obj->fence_reg = I915_FENCE_REG_NONE;
2524	}
 
 
2525
2526	return 0;
2527}
2528
2529static struct drm_i915_fence_reg *
2530i915_find_fence_reg(struct drm_device *dev,
2531		    struct intel_ring_buffer *pipelined)
2532{
2533	struct drm_i915_private *dev_priv = dev->dev_private;
2534	struct drm_i915_fence_reg *reg, *first, *avail;
2535	int i;
2536
2537	/* First try to find a free reg */
2538	avail = NULL;
2539	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2540		reg = &dev_priv->fence_regs[i];
2541		if (!reg->obj)
2542			return reg;
2543
2544		if (!reg->obj->pin_count)
2545			avail = reg;
2546	}
2547
2548	if (avail == NULL)
2549		return NULL;
2550
2551	/* None available, try to steal one or wait for a user to finish */
2552	avail = first = NULL;
2553	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2554		if (reg->obj->pin_count)
2555			continue;
2556
2557		if (first == NULL)
2558			first = reg;
2559
2560		if (!pipelined ||
2561		    !reg->obj->last_fenced_ring ||
2562		    reg->obj->last_fenced_ring == pipelined) {
2563			avail = reg;
2564			break;
2565		}
2566	}
2567
2568	if (avail == NULL)
2569		avail = first;
2570
2571	return avail;
2572}
2573
2574/**
2575 * i915_gem_object_get_fence - set up a fence reg for an object
2576 * @obj: object to map through a fence reg
2577 * @pipelined: ring on which to queue the change, or NULL for CPU access
2578 * @interruptible: must we wait uninterruptibly for the register to retire?
2579 *
2580 * When mapping objects through the GTT, userspace wants to be able to write
2581 * to them without having to worry about swizzling if the object is tiled.
2582 *
2583 * This function walks the fence regs looking for a free one for @obj,
2584 * stealing one if it can't find any.
2585 *
2586 * It then sets up the reg based on the object's properties: address, pitch
2587 * and tiling format.
 
 
2588 */
2589int
2590i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2591			  struct intel_ring_buffer *pipelined)
2592{
2593	struct drm_device *dev = obj->base.dev;
2594	struct drm_i915_private *dev_priv = dev->dev_private;
 
2595	struct drm_i915_fence_reg *reg;
2596	int ret;
2597
2598	/* XXX disable pipelining. There are bugs. Shocking. */
2599	pipelined = NULL;
 
 
 
 
 
 
2600
2601	/* Just update our place in the LRU if our fence is getting reused. */
2602	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2603		reg = &dev_priv->fence_regs[obj->fence_reg];
2604		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2605
2606		if (obj->tiling_changed) {
2607			ret = i915_gem_object_flush_fence(obj, pipelined);
2608			if (ret)
2609				return ret;
 
 
 
2610
2611			if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2612				pipelined = NULL;
2613
2614			if (pipelined) {
2615				reg->setup_seqno =
2616					i915_gem_next_request_seqno(pipelined);
2617				obj->last_fenced_seqno = reg->setup_seqno;
2618				obj->last_fenced_ring = pipelined;
2619			}
2620
2621			goto update;
2622		}
2623
2624		if (!pipelined) {
2625			if (reg->setup_seqno) {
2626				if (!ring_passed_seqno(obj->last_fenced_ring,
2627						       reg->setup_seqno)) {
2628					ret = i915_wait_request(obj->last_fenced_ring,
2629								reg->setup_seqno);
2630					if (ret)
2631						return ret;
2632				}
2633
2634				reg->setup_seqno = 0;
2635			}
2636		} else if (obj->last_fenced_ring &&
2637			   obj->last_fenced_ring != pipelined) {
2638			ret = i915_gem_object_flush_fence(obj, pipelined);
2639			if (ret)
2640				return ret;
2641		}
2642
2643		return 0;
2644	}
2645
2646	reg = i915_find_fence_reg(dev, pipelined);
2647	if (reg == NULL)
2648		return -ENOSPC;
2649
2650	ret = i915_gem_object_flush_fence(obj, pipelined);
2651	if (ret)
2652		return ret;
2653
2654	if (reg->obj) {
2655		struct drm_i915_gem_object *old = reg->obj;
2656
2657		drm_gem_object_reference(&old->base);
2658
2659		if (old->tiling_mode)
2660			i915_gem_release_mmap(old);
2661
2662		ret = i915_gem_object_flush_fence(old, pipelined);
2663		if (ret) {
2664			drm_gem_object_unreference(&old->base);
2665			return ret;
2666		}
 
 
2667
2668		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2669			pipelined = NULL;
2670
2671		old->fence_reg = I915_FENCE_REG_NONE;
2672		old->last_fenced_ring = pipelined;
2673		old->last_fenced_seqno =
2674			pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2675
2676		drm_gem_object_unreference(&old->base);
2677	} else if (obj->last_fenced_seqno == 0)
2678		pipelined = NULL;
2679
2680	reg->obj = obj;
2681	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2682	obj->fence_reg = reg - dev_priv->fence_regs;
2683	obj->last_fenced_ring = pipelined;
2684
2685	reg->setup_seqno =
2686		pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2687	obj->last_fenced_seqno = reg->setup_seqno;
2688
2689update:
2690	obj->tiling_changed = false;
2691	switch (INTEL_INFO(dev)->gen) {
2692	case 7:
2693	case 6:
2694		ret = sandybridge_write_fence_reg(obj, pipelined);
2695		break;
2696	case 5:
2697	case 4:
2698		ret = i965_write_fence_reg(obj, pipelined);
2699		break;
2700	case 3:
2701		ret = i915_write_fence_reg(obj, pipelined);
2702		break;
2703	case 2:
2704		ret = i830_write_fence_reg(obj, pipelined);
2705		break;
2706	}
2707
2708	return ret;
2709}
2710
2711/**
2712 * i915_gem_clear_fence_reg - clear out fence register info
2713 * @obj: object to clear
2714 *
2715 * Zeroes out the fence register itself and clears out the associated
2716 * data structures in dev_priv and obj.
2717 */
2718static void
2719i915_gem_clear_fence_reg(struct drm_device *dev,
2720			 struct drm_i915_fence_reg *reg)
2721{
2722	drm_i915_private_t *dev_priv = dev->dev_private;
2723	uint32_t fence_reg = reg - dev_priv->fence_regs;
2724
2725	switch (INTEL_INFO(dev)->gen) {
2726	case 7:
2727	case 6:
2728		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2729		break;
2730	case 5:
2731	case 4:
2732		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2733		break;
2734	case 3:
2735		if (fence_reg >= 8)
2736			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2737		else
2738	case 2:
2739			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2740
2741		I915_WRITE(fence_reg, 0);
2742		break;
2743	}
2744
2745	list_del_init(&reg->lru_list);
2746	reg->obj = NULL;
2747	reg->setup_seqno = 0;
2748}
2749
2750/**
2751 * Finds free space in the GTT aperture and binds the object there.
2752 */
2753static int
2754i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2755			    unsigned alignment,
2756			    bool map_and_fenceable)
2757{
2758	struct drm_device *dev = obj->base.dev;
2759	drm_i915_private_t *dev_priv = dev->dev_private;
2760	struct drm_mm_node *free_space;
2761	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2762	u32 size, fence_size, fence_alignment, unfenced_alignment;
2763	bool mappable, fenceable;
2764	int ret;
2765
2766	if (obj->madv != I915_MADV_WILLNEED) {
2767		DRM_ERROR("Attempting to bind a purgeable object\n");
2768		return -EINVAL;
2769	}
2770
2771	fence_size = i915_gem_get_gtt_size(dev,
2772					   obj->base.size,
2773					   obj->tiling_mode);
2774	fence_alignment = i915_gem_get_gtt_alignment(dev,
2775						     obj->base.size,
2776						     obj->tiling_mode);
2777	unfenced_alignment =
2778		i915_gem_get_unfenced_gtt_alignment(dev,
2779						    obj->base.size,
2780						    obj->tiling_mode);
2781
2782	if (alignment == 0)
2783		alignment = map_and_fenceable ? fence_alignment :
2784						unfenced_alignment;
2785	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2786		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2787		return -EINVAL;
2788	}
2789
2790	size = map_and_fenceable ? fence_size : obj->base.size;
2791
2792	/* If the object is bigger than the entire aperture, reject it early
2793	 * before evicting everything in a vain attempt to find space.
2794	 */
2795	if (obj->base.size >
2796	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2797		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2798		return -E2BIG;
2799	}
2800
2801 search_free:
2802	if (map_and_fenceable)
2803		free_space =
2804			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2805						    size, alignment, 0,
2806						    dev_priv->mm.gtt_mappable_end,
2807						    0);
2808	else
2809		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2810						size, alignment, 0);
2811
2812	if (free_space != NULL) {
2813		if (map_and_fenceable)
2814			obj->gtt_space =
2815				drm_mm_get_block_range_generic(free_space,
2816							       size, alignment, 0,
2817							       dev_priv->mm.gtt_mappable_end,
2818							       0);
2819		else
2820			obj->gtt_space =
2821				drm_mm_get_block(free_space, size, alignment);
2822	}
2823	if (obj->gtt_space == NULL) {
2824		/* If the gtt is empty and we're still having trouble
2825		 * fitting our object in, we're out of memory.
2826		 */
2827		ret = i915_gem_evict_something(dev, size, alignment,
2828					       map_and_fenceable);
2829		if (ret)
2830			return ret;
2831
2832		goto search_free;
2833	}
2834
2835	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2836	if (ret) {
2837		drm_mm_put_block(obj->gtt_space);
2838		obj->gtt_space = NULL;
2839
2840		if (ret == -ENOMEM) {
2841			/* first try to reclaim some memory by clearing the GTT */
2842			ret = i915_gem_evict_everything(dev, false);
2843			if (ret) {
2844				/* now try to shrink everyone else */
2845				if (gfpmask) {
2846					gfpmask = 0;
2847					goto search_free;
2848				}
2849
2850				return -ENOMEM;
2851			}
2852
2853			goto search_free;
2854		}
2855
2856		return ret;
2857	}
2858
2859	ret = i915_gem_gtt_bind_object(obj);
2860	if (ret) {
2861		i915_gem_object_put_pages_gtt(obj);
2862		drm_mm_put_block(obj->gtt_space);
2863		obj->gtt_space = NULL;
2864
2865		if (i915_gem_evict_everything(dev, false))
2866			return ret;
2867
2868		goto search_free;
2869	}
2870
 
 
 
2871	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2872	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2873
2874	/* Assert that the object is not currently in any GPU domain. As it
2875	 * wasn't in the GTT, there shouldn't be any way it could have been in
2876	 * a GPU cache
2877	 */
2878	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2879	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2880
2881	obj->gtt_offset = obj->gtt_space->start;
2882
2883	fenceable =
2884		obj->gtt_space->size == fence_size &&
2885		(obj->gtt_space->start & (fence_alignment -1)) == 0;
2886
2887	mappable =
2888		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2889
2890	obj->map_and_fenceable = mappable && fenceable;
2891
2892	trace_i915_gem_object_bind(obj, map_and_fenceable);
2893	return 0;
2894}
2895
2896void
2897i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2898{
2899	/* If we don't have a page list set up, then we're not pinned
2900	 * to GPU, and we can ignore the cache flush because it'll happen
2901	 * again at bind time.
2902	 */
2903	if (obj->pages == NULL)
2904		return;
2905
2906	/* If the GPU is snooping the contents of the CPU cache,
2907	 * we do not need to manually clear the CPU cache lines.  However,
2908	 * the caches are only snooped when the render cache is
2909	 * flushed/invalidated.  As we always have to emit invalidations
2910	 * and flushes when moving into and out of the RENDER domain, correct
2911	 * snooping behaviour occurs naturally as the result of our domain
2912	 * tracking.
2913	 */
2914	if (obj->cache_level != I915_CACHE_NONE)
2915		return;
2916
2917	trace_i915_gem_object_clflush(obj);
2918
2919	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2920}
2921
2922/** Flushes any GPU write domain for the object if it's dirty. */
2923static int
2924i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2925{
2926	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2927		return 0;
2928
2929	/* Queue the GPU write cache flushing we need. */
2930	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2931}
2932
2933/** Flushes the GTT write domain for the object if it's dirty. */
2934static void
2935i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2936{
2937	uint32_t old_write_domain;
2938
2939	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2940		return;
2941
2942	/* No actual flushing is required for the GTT write domain.  Writes
2943	 * to it immediately go to main memory as far as we know, so there's
2944	 * no chipset flush.  It also doesn't land in render cache.
2945	 *
2946	 * However, we do have to enforce the order so that all writes through
2947	 * the GTT land before any writes to the device, such as updates to
2948	 * the GATT itself.
2949	 */
2950	wmb();
2951
2952	old_write_domain = obj->base.write_domain;
2953	obj->base.write_domain = 0;
2954
2955	trace_i915_gem_object_change_domain(obj,
2956					    obj->base.read_domains,
2957					    old_write_domain);
2958}
2959
2960/** Flushes the CPU write domain for the object if it's dirty. */
2961static void
2962i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2963{
2964	uint32_t old_write_domain;
2965
2966	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2967		return;
2968
2969	i915_gem_clflush_object(obj);
2970	intel_gtt_chipset_flush();
2971	old_write_domain = obj->base.write_domain;
2972	obj->base.write_domain = 0;
2973
2974	trace_i915_gem_object_change_domain(obj,
2975					    obj->base.read_domains,
2976					    old_write_domain);
2977}
2978
2979/**
2980 * Moves a single object to the GTT read, and possibly write domain.
2981 *
2982 * This function returns when the move is complete, including waiting on
2983 * flushes to occur.
2984 */
2985int
2986i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2987{
 
2988	uint32_t old_write_domain, old_read_domains;
2989	int ret;
2990
2991	/* Not valid to be called on unbound objects. */
2992	if (obj->gtt_space == NULL)
2993		return -EINVAL;
2994
2995	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2996		return 0;
2997
2998	ret = i915_gem_object_flush_gpu_write_domain(obj);
2999	if (ret)
3000		return ret;
3001
3002	if (obj->pending_gpu_write || write) {
3003		ret = i915_gem_object_wait_rendering(obj);
3004		if (ret)
3005			return ret;
3006	}
3007
3008	i915_gem_object_flush_cpu_write_domain(obj);
3009
3010	old_write_domain = obj->base.write_domain;
3011	old_read_domains = obj->base.read_domains;
3012
3013	/* It should now be out of any other write domains, and we can update
3014	 * the domain values for our changes.
3015	 */
3016	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3017	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3018	if (write) {
3019		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3020		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3021		obj->dirty = 1;
3022	}
3023
3024	trace_i915_gem_object_change_domain(obj,
3025					    old_read_domains,
3026					    old_write_domain);
3027
 
 
 
 
3028	return 0;
3029}
3030
3031int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3032				    enum i915_cache_level cache_level)
3033{
 
 
3034	int ret;
3035
3036	if (obj->cache_level == cache_level)
3037		return 0;
3038
3039	if (obj->pin_count) {
3040		DRM_DEBUG("can not change the cache level of pinned objects\n");
3041		return -EBUSY;
3042	}
3043
3044	if (obj->gtt_space) {
3045		ret = i915_gem_object_finish_gpu(obj);
3046		if (ret)
3047			return ret;
3048
3049		i915_gem_object_finish_gtt(obj);
3050
3051		/* Before SandyBridge, you could not use tiling or fence
3052		 * registers with snooped memory, so relinquish any fences
3053		 * currently pointing to our region in the aperture.
3054		 */
3055		if (INTEL_INFO(obj->base.dev)->gen < 6) {
3056			ret = i915_gem_object_put_fence(obj);
3057			if (ret)
3058				return ret;
3059		}
3060
3061		i915_gem_gtt_rebind_object(obj, cache_level);
 
 
 
 
3062	}
3063
3064	if (cache_level == I915_CACHE_NONE) {
3065		u32 old_read_domains, old_write_domain;
3066
3067		/* If we're coming from LLC cached, then we haven't
3068		 * actually been tracking whether the data is in the
3069		 * CPU cache or not, since we only allow one bit set
3070		 * in obj->write_domain and have been skipping the clflushes.
3071		 * Just set it to the CPU cache for now.
3072		 */
3073		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3074		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3075
3076		old_read_domains = obj->base.read_domains;
3077		old_write_domain = obj->base.write_domain;
3078
3079		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3080		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3081
3082		trace_i915_gem_object_change_domain(obj,
3083						    old_read_domains,
3084						    old_write_domain);
3085	}
3086
3087	obj->cache_level = cache_level;
3088	return 0;
3089}
3090
3091/*
3092 * Prepare buffer for display plane (scanout, cursors, etc).
3093 * Can be called from an uninterruptible phase (modesetting) and allows
3094 * any flushes to be pipelined (for pageflips).
3095 *
3096 * For the display plane, we want to be in the GTT but out of any write
3097 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
3098 * ability to pipeline the waits, pinning and any additional subtleties
3099 * that may differentiate the display plane from ordinary buffers.
3100 */
3101int
3102i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3103				     u32 alignment,
3104				     struct intel_ring_buffer *pipelined)
3105{
3106	u32 old_read_domains, old_write_domain;
3107	int ret;
3108
3109	ret = i915_gem_object_flush_gpu_write_domain(obj);
3110	if (ret)
3111		return ret;
3112
3113	if (pipelined != obj->ring) {
3114		ret = i915_gem_object_wait_rendering(obj);
3115		if (ret == -ERESTARTSYS)
3116			return ret;
3117	}
3118
3119	/* The display engine is not coherent with the LLC cache on gen6.  As
3120	 * a result, we make sure that the pinning that is about to occur is
3121	 * done with uncached PTEs. This is lowest common denominator for all
3122	 * chipsets.
3123	 *
3124	 * However for gen6+, we could do better by using the GFDT bit instead
3125	 * of uncaching, which would allow us to flush all the LLC-cached data
3126	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3127	 */
3128	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3129	if (ret)
3130		return ret;
3131
3132	/* As the user may map the buffer once pinned in the display plane
3133	 * (e.g. libkms for the bootup splash), we have to ensure that we
3134	 * always use map_and_fenceable for all scanout buffers.
3135	 */
3136	ret = i915_gem_object_pin(obj, alignment, true);
3137	if (ret)
3138		return ret;
3139
3140	i915_gem_object_flush_cpu_write_domain(obj);
3141
3142	old_write_domain = obj->base.write_domain;
3143	old_read_domains = obj->base.read_domains;
3144
3145	/* It should now be out of any other write domains, and we can update
3146	 * the domain values for our changes.
3147	 */
3148	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3149	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3150
3151	trace_i915_gem_object_change_domain(obj,
3152					    old_read_domains,
3153					    old_write_domain);
3154
3155	return 0;
3156}
3157
3158int
3159i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3160{
3161	int ret;
3162
3163	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3164		return 0;
3165
3166	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3167		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3168		if (ret)
3169			return ret;
3170	}
3171
 
 
 
 
3172	/* Ensure that we invalidate the GPU's caches and TLBs. */
3173	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3174
3175	return i915_gem_object_wait_rendering(obj);
3176}
3177
3178/**
3179 * Moves a single object to the CPU read, and possibly write domain.
3180 *
3181 * This function returns when the move is complete, including waiting on
3182 * flushes to occur.
3183 */
3184static int
3185i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3186{
3187	uint32_t old_write_domain, old_read_domains;
3188	int ret;
3189
3190	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3191		return 0;
3192
3193	ret = i915_gem_object_flush_gpu_write_domain(obj);
3194	if (ret)
3195		return ret;
3196
3197	ret = i915_gem_object_wait_rendering(obj);
3198	if (ret)
3199		return ret;
 
 
3200
3201	i915_gem_object_flush_gtt_write_domain(obj);
3202
3203	/* If we have a partially-valid cache of the object in the CPU,
3204	 * finish invalidating it and free the per-page flags.
3205	 */
3206	i915_gem_object_set_to_full_cpu_read_domain(obj);
3207
3208	old_write_domain = obj->base.write_domain;
3209	old_read_domains = obj->base.read_domains;
3210
3211	/* Flush the CPU cache if it's still invalid. */
3212	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3213		i915_gem_clflush_object(obj);
3214
3215		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3216	}
3217
3218	/* It should now be out of any other write domains, and we can update
3219	 * the domain values for our changes.
3220	 */
3221	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3222
3223	/* If we're writing through the CPU, then the GPU read domains will
3224	 * need to be invalidated at next use.
3225	 */
3226	if (write) {
3227		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3228		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3229	}
3230
3231	trace_i915_gem_object_change_domain(obj,
3232					    old_read_domains,
3233					    old_write_domain);
3234
3235	return 0;
3236}
3237
3238/**
3239 * Moves the object from a partially CPU read to a full one.
3240 *
3241 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3242 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3243 */
3244static void
3245i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3246{
3247	if (!obj->page_cpu_valid)
3248		return;
3249
3250	/* If we're partially in the CPU read domain, finish moving it in.
3251	 */
3252	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3253		int i;
3254
3255		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3256			if (obj->page_cpu_valid[i])
3257				continue;
3258			drm_clflush_pages(obj->pages + i, 1);
3259		}
3260	}
3261
3262	/* Free the page_cpu_valid mappings which are now stale, whether
3263	 * or not we've got I915_GEM_DOMAIN_CPU.
3264	 */
3265	kfree(obj->page_cpu_valid);
3266	obj->page_cpu_valid = NULL;
3267}
3268
3269/**
3270 * Set the CPU read domain on a range of the object.
3271 *
3272 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3273 * not entirely valid.  The page_cpu_valid member of the object flags which
3274 * pages have been flushed, and will be respected by
3275 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3276 * of the whole object.
3277 *
3278 * This function returns when the move is complete, including waiting on
3279 * flushes to occur.
3280 */
3281static int
3282i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3283					  uint64_t offset, uint64_t size)
3284{
3285	uint32_t old_read_domains;
3286	int i, ret;
3287
3288	if (offset == 0 && size == obj->base.size)
3289		return i915_gem_object_set_to_cpu_domain(obj, 0);
3290
3291	ret = i915_gem_object_flush_gpu_write_domain(obj);
3292	if (ret)
3293		return ret;
3294
3295	ret = i915_gem_object_wait_rendering(obj);
3296	if (ret)
3297		return ret;
3298
3299	i915_gem_object_flush_gtt_write_domain(obj);
3300
3301	/* If we're already fully in the CPU read domain, we're done. */
3302	if (obj->page_cpu_valid == NULL &&
3303	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3304		return 0;
3305
3306	/* Otherwise, create/clear the per-page CPU read domain flag if we're
3307	 * newly adding I915_GEM_DOMAIN_CPU
3308	 */
3309	if (obj->page_cpu_valid == NULL) {
3310		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3311					      GFP_KERNEL);
3312		if (obj->page_cpu_valid == NULL)
3313			return -ENOMEM;
3314	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3315		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3316
3317	/* Flush the cache on any pages that are still invalid from the CPU's
3318	 * perspective.
3319	 */
3320	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3321	     i++) {
3322		if (obj->page_cpu_valid[i])
3323			continue;
3324
3325		drm_clflush_pages(obj->pages + i, 1);
3326
3327		obj->page_cpu_valid[i] = 1;
3328	}
3329
3330	/* It should now be out of any other write domains, and we can update
3331	 * the domain values for our changes.
3332	 */
3333	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3334
3335	old_read_domains = obj->base.read_domains;
3336	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3337
3338	trace_i915_gem_object_change_domain(obj,
3339					    old_read_domains,
3340					    obj->base.write_domain);
3341
3342	return 0;
3343}
3344
3345/* Throttle our rendering by waiting until the ring has completed our requests
3346 * emitted over 20 msec ago.
3347 *
3348 * Note that if we were to use the current jiffies each time around the loop,
3349 * we wouldn't escape the function with any frames outstanding if the time to
3350 * render a frame was over 20ms.
3351 *
3352 * This should get us reasonable parallelism between CPU and GPU but also
3353 * relatively low latency when blocking on a particular request to finish.
3354 */
3355static int
3356i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3357{
3358	struct drm_i915_private *dev_priv = dev->dev_private;
3359	struct drm_i915_file_private *file_priv = file->driver_priv;
3360	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3361	struct drm_i915_gem_request *request;
3362	struct intel_ring_buffer *ring = NULL;
3363	u32 seqno = 0;
3364	int ret;
3365
3366	if (atomic_read(&dev_priv->mm.wedged))
3367		return -EIO;
3368
3369	spin_lock(&file_priv->mm.lock);
3370	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3371		if (time_after_eq(request->emitted_jiffies, recent_enough))
3372			break;
3373
3374		ring = request->ring;
3375		seqno = request->seqno;
3376	}
3377	spin_unlock(&file_priv->mm.lock);
3378
3379	if (seqno == 0)
3380		return 0;
3381
3382	ret = 0;
3383	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3384		/* And wait for the seqno passing without holding any locks and
3385		 * causing extra latency for others. This is safe as the irq
3386		 * generation is designed to be run atomically and so is
3387		 * lockless.
3388		 */
3389		if (ring->irq_get(ring)) {
3390			ret = wait_event_interruptible(ring->irq_queue,
3391						       i915_seqno_passed(ring->get_seqno(ring), seqno)
3392						       || atomic_read(&dev_priv->mm.wedged));
3393			ring->irq_put(ring);
3394
3395			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3396				ret = -EIO;
3397		}
3398	}
3399
3400	if (ret == 0)
3401		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3402
3403	return ret;
3404}
3405
3406int
3407i915_gem_object_pin(struct drm_i915_gem_object *obj,
3408		    uint32_t alignment,
3409		    bool map_and_fenceable)
3410{
3411	struct drm_device *dev = obj->base.dev;
3412	struct drm_i915_private *dev_priv = dev->dev_private;
3413	int ret;
3414
3415	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3416	WARN_ON(i915_verify_lists(dev));
3417
3418	if (obj->gtt_space != NULL) {
3419		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3420		    (map_and_fenceable && !obj->map_and_fenceable)) {
3421			WARN(obj->pin_count,
3422			     "bo is already pinned with incorrect alignment:"
3423			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3424			     " obj->map_and_fenceable=%d\n",
3425			     obj->gtt_offset, alignment,
3426			     map_and_fenceable,
3427			     obj->map_and_fenceable);
3428			ret = i915_gem_object_unbind(obj);
3429			if (ret)
3430				return ret;
3431		}
3432	}
3433
3434	if (obj->gtt_space == NULL) {
3435		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3436						  map_and_fenceable);
3437		if (ret)
3438			return ret;
3439	}
3440
3441	if (obj->pin_count++ == 0) {
3442		if (!obj->active)
3443			list_move_tail(&obj->mm_list,
3444				       &dev_priv->mm.pinned_list);
3445	}
3446	obj->pin_mappable |= map_and_fenceable;
3447
3448	WARN_ON(i915_verify_lists(dev));
3449	return 0;
3450}
3451
3452void
3453i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3454{
3455	struct drm_device *dev = obj->base.dev;
3456	drm_i915_private_t *dev_priv = dev->dev_private;
3457
3458	WARN_ON(i915_verify_lists(dev));
3459	BUG_ON(obj->pin_count == 0);
3460	BUG_ON(obj->gtt_space == NULL);
3461
3462	if (--obj->pin_count == 0) {
3463		if (!obj->active)
3464			list_move_tail(&obj->mm_list,
3465				       &dev_priv->mm.inactive_list);
3466		obj->pin_mappable = false;
3467	}
3468	WARN_ON(i915_verify_lists(dev));
3469}
3470
3471int
3472i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3473		   struct drm_file *file)
3474{
3475	struct drm_i915_gem_pin *args = data;
3476	struct drm_i915_gem_object *obj;
3477	int ret;
3478
3479	ret = i915_mutex_lock_interruptible(dev);
3480	if (ret)
3481		return ret;
3482
3483	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3484	if (&obj->base == NULL) {
3485		ret = -ENOENT;
3486		goto unlock;
3487	}
3488
3489	if (obj->madv != I915_MADV_WILLNEED) {
3490		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3491		ret = -EINVAL;
3492		goto out;
3493	}
3494
3495	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3496		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3497			  args->handle);
3498		ret = -EINVAL;
3499		goto out;
3500	}
3501
3502	obj->user_pin_count++;
3503	obj->pin_filp = file;
3504	if (obj->user_pin_count == 1) {
3505		ret = i915_gem_object_pin(obj, args->alignment, true);
3506		if (ret)
3507			goto out;
3508	}
3509
3510	/* XXX - flush the CPU caches for pinned objects
3511	 * as the X server doesn't manage domains yet
3512	 */
3513	i915_gem_object_flush_cpu_write_domain(obj);
3514	args->offset = obj->gtt_offset;
3515out:
3516	drm_gem_object_unreference(&obj->base);
3517unlock:
3518	mutex_unlock(&dev->struct_mutex);
3519	return ret;
3520}
3521
3522int
3523i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3524		     struct drm_file *file)
3525{
3526	struct drm_i915_gem_pin *args = data;
3527	struct drm_i915_gem_object *obj;
3528	int ret;
3529
3530	ret = i915_mutex_lock_interruptible(dev);
3531	if (ret)
3532		return ret;
3533
3534	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3535	if (&obj->base == NULL) {
3536		ret = -ENOENT;
3537		goto unlock;
3538	}
3539
3540	if (obj->pin_filp != file) {
3541		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3542			  args->handle);
3543		ret = -EINVAL;
3544		goto out;
3545	}
3546	obj->user_pin_count--;
3547	if (obj->user_pin_count == 0) {
3548		obj->pin_filp = NULL;
3549		i915_gem_object_unpin(obj);
3550	}
3551
3552out:
3553	drm_gem_object_unreference(&obj->base);
3554unlock:
3555	mutex_unlock(&dev->struct_mutex);
3556	return ret;
3557}
3558
3559int
3560i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3561		    struct drm_file *file)
3562{
3563	struct drm_i915_gem_busy *args = data;
3564	struct drm_i915_gem_object *obj;
3565	int ret;
3566
3567	ret = i915_mutex_lock_interruptible(dev);
3568	if (ret)
3569		return ret;
3570
3571	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3572	if (&obj->base == NULL) {
3573		ret = -ENOENT;
3574		goto unlock;
3575	}
3576
3577	/* Count all active objects as busy, even if they are currently not used
3578	 * by the gpu. Users of this interface expect objects to eventually
3579	 * become non-busy without any further actions, therefore emit any
3580	 * necessary flushes here.
3581	 */
3582	args->busy = obj->active;
3583	if (args->busy) {
3584		/* Unconditionally flush objects, even when the gpu still uses this
3585		 * object. Userspace calling this function indicates that it wants to
3586		 * use this buffer rather sooner than later, so issuing the required
3587		 * flush earlier is beneficial.
3588		 */
3589		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3590			ret = i915_gem_flush_ring(obj->ring,
3591						  0, obj->base.write_domain);
3592		} else if (obj->ring->outstanding_lazy_request ==
3593			   obj->last_rendering_seqno) {
3594			struct drm_i915_gem_request *request;
3595
3596			/* This ring is not being cleared by active usage,
3597			 * so emit a request to do so.
3598			 */
3599			request = kzalloc(sizeof(*request), GFP_KERNEL);
3600			if (request)
3601				ret = i915_add_request(obj->ring, NULL,request);
3602			else
3603				ret = -ENOMEM;
3604		}
3605
3606		/* Update the active list for the hardware's current position.
3607		 * Otherwise this only updates on a delayed timer or when irqs
3608		 * are actually unmasked, and our working set ends up being
3609		 * larger than required.
3610		 */
3611		i915_gem_retire_requests_ring(obj->ring);
3612
3613		args->busy = obj->active;
3614	}
3615
3616	drm_gem_object_unreference(&obj->base);
3617unlock:
3618	mutex_unlock(&dev->struct_mutex);
3619	return ret;
3620}
3621
3622int
3623i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3624			struct drm_file *file_priv)
3625{
3626    return i915_gem_ring_throttle(dev, file_priv);
3627}
3628
3629int
3630i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3631		       struct drm_file *file_priv)
3632{
3633	struct drm_i915_gem_madvise *args = data;
3634	struct drm_i915_gem_object *obj;
3635	int ret;
3636
3637	switch (args->madv) {
3638	case I915_MADV_DONTNEED:
3639	case I915_MADV_WILLNEED:
3640	    break;
3641	default:
3642	    return -EINVAL;
3643	}
3644
3645	ret = i915_mutex_lock_interruptible(dev);
3646	if (ret)
3647		return ret;
3648
3649	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3650	if (&obj->base == NULL) {
3651		ret = -ENOENT;
3652		goto unlock;
3653	}
3654
3655	if (obj->pin_count) {
3656		ret = -EINVAL;
3657		goto out;
3658	}
3659
3660	if (obj->madv != __I915_MADV_PURGED)
3661		obj->madv = args->madv;
3662
3663	/* if the object is no longer bound, discard its backing storage */
3664	if (i915_gem_object_is_purgeable(obj) &&
3665	    obj->gtt_space == NULL)
3666		i915_gem_object_truncate(obj);
3667
3668	args->retained = obj->madv != __I915_MADV_PURGED;
3669
3670out:
3671	drm_gem_object_unreference(&obj->base);
3672unlock:
3673	mutex_unlock(&dev->struct_mutex);
3674	return ret;
3675}
3676
3677struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3678						  size_t size)
3679{
3680	struct drm_i915_private *dev_priv = dev->dev_private;
3681	struct drm_i915_gem_object *obj;
3682	struct address_space *mapping;
 
3683
3684	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3685	if (obj == NULL)
3686		return NULL;
3687
3688	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3689		kfree(obj);
3690		return NULL;
3691	}
3692
 
 
 
 
 
 
 
3693	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3694	mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3695
3696	i915_gem_info_add_obj(dev_priv, size);
3697
3698	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3699	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3700
3701	if (IS_GEN6(dev)) {
3702		/* On Gen6, we can have the GPU use the LLC (the CPU
3703		 * cache) for about a 10% performance improvement
3704		 * compared to uncached.  Graphics requests other than
3705		 * display scanout are coherent with the CPU in
3706		 * accessing this cache.  This means in this mode we
3707		 * don't need to clflush on the CPU side, and on the
3708		 * GPU side we only need to flush internal caches to
3709		 * get data visible to the CPU.
3710		 *
3711		 * However, we maintain the display planes as UC, and so
3712		 * need to rebind when first used as such.
3713		 */
3714		obj->cache_level = I915_CACHE_LLC;
3715	} else
3716		obj->cache_level = I915_CACHE_NONE;
3717
3718	obj->base.driver_private = NULL;
3719	obj->fence_reg = I915_FENCE_REG_NONE;
3720	INIT_LIST_HEAD(&obj->mm_list);
3721	INIT_LIST_HEAD(&obj->gtt_list);
3722	INIT_LIST_HEAD(&obj->ring_list);
3723	INIT_LIST_HEAD(&obj->exec_list);
3724	INIT_LIST_HEAD(&obj->gpu_write_list);
3725	obj->madv = I915_MADV_WILLNEED;
3726	/* Avoid an unnecessary call to unbind on the first bind. */
3727	obj->map_and_fenceable = true;
3728
3729	return obj;
3730}
3731
3732int i915_gem_init_object(struct drm_gem_object *obj)
3733{
3734	BUG();
3735
3736	return 0;
3737}
3738
3739static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3740{
 
3741	struct drm_device *dev = obj->base.dev;
3742	drm_i915_private_t *dev_priv = dev->dev_private;
3743	int ret;
3744
3745	ret = i915_gem_object_unbind(obj);
3746	if (ret == -ERESTARTSYS) {
3747		list_move(&obj->mm_list,
3748			  &dev_priv->mm.deferred_free_list);
3749		return;
3750	}
3751
3752	trace_i915_gem_object_destroy(obj);
3753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3754	if (obj->base.map_list.map)
3755		i915_gem_free_mmap_offset(obj);
3756
3757	drm_gem_object_release(&obj->base);
3758	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3759
3760	kfree(obj->page_cpu_valid);
3761	kfree(obj->bit_17);
3762	kfree(obj);
3763}
3764
3765void i915_gem_free_object(struct drm_gem_object *gem_obj)
3766{
3767	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3768	struct drm_device *dev = obj->base.dev;
3769
3770	while (obj->pin_count > 0)
3771		i915_gem_object_unpin(obj);
3772
3773	if (obj->phys_obj)
3774		i915_gem_detach_phys_object(dev, obj);
3775
3776	i915_gem_free_object_tail(obj);
3777}
3778
3779int
3780i915_gem_idle(struct drm_device *dev)
3781{
3782	drm_i915_private_t *dev_priv = dev->dev_private;
3783	int ret;
3784
3785	mutex_lock(&dev->struct_mutex);
3786
3787	if (dev_priv->mm.suspended) {
3788		mutex_unlock(&dev->struct_mutex);
3789		return 0;
3790	}
3791
3792	ret = i915_gpu_idle(dev);
3793	if (ret) {
3794		mutex_unlock(&dev->struct_mutex);
3795		return ret;
3796	}
 
3797
3798	/* Under UMS, be paranoid and evict. */
3799	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3800		ret = i915_gem_evict_inactive(dev, false);
3801		if (ret) {
3802			mutex_unlock(&dev->struct_mutex);
3803			return ret;
3804		}
3805	}
3806
3807	i915_gem_reset_fences(dev);
3808
3809	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3810	 * We need to replace this with a semaphore, or something.
3811	 * And not confound mm.suspended!
3812	 */
3813	dev_priv->mm.suspended = 1;
3814	del_timer_sync(&dev_priv->hangcheck_timer);
3815
3816	i915_kernel_lost_context(dev);
3817	i915_gem_cleanup_ringbuffer(dev);
3818
3819	mutex_unlock(&dev->struct_mutex);
3820
3821	/* Cancel the retire work handler, which should be idle now. */
3822	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3823
3824	return 0;
3825}
3826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3827int
3828i915_gem_init_ringbuffer(struct drm_device *dev)
3829{
3830	drm_i915_private_t *dev_priv = dev->dev_private;
3831	int ret;
3832
 
 
3833	ret = intel_init_render_ring_buffer(dev);
3834	if (ret)
3835		return ret;
3836
3837	if (HAS_BSD(dev)) {
3838		ret = intel_init_bsd_ring_buffer(dev);
3839		if (ret)
3840			goto cleanup_render_ring;
3841	}
3842
3843	if (HAS_BLT(dev)) {
3844		ret = intel_init_blt_ring_buffer(dev);
3845		if (ret)
3846			goto cleanup_bsd_ring;
3847	}
3848
3849	dev_priv->next_seqno = 1;
3850
 
 
3851	return 0;
3852
3853cleanup_bsd_ring:
3854	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3855cleanup_render_ring:
3856	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3857	return ret;
3858}
3859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3860void
3861i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3862{
3863	drm_i915_private_t *dev_priv = dev->dev_private;
 
3864	int i;
3865
3866	for (i = 0; i < I915_NUM_RINGS; i++)
3867		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3868}
3869
3870int
3871i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3872		       struct drm_file *file_priv)
3873{
3874	drm_i915_private_t *dev_priv = dev->dev_private;
3875	int ret, i;
3876
3877	if (drm_core_check_feature(dev, DRIVER_MODESET))
3878		return 0;
3879
3880	if (atomic_read(&dev_priv->mm.wedged)) {
3881		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3882		atomic_set(&dev_priv->mm.wedged, 0);
3883	}
3884
3885	mutex_lock(&dev->struct_mutex);
3886	dev_priv->mm.suspended = 0;
3887
3888	ret = i915_gem_init_ringbuffer(dev);
3889	if (ret != 0) {
3890		mutex_unlock(&dev->struct_mutex);
3891		return ret;
3892	}
3893
3894	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3895	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3896	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3897	for (i = 0; i < I915_NUM_RINGS; i++) {
3898		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3899		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3900	}
3901	mutex_unlock(&dev->struct_mutex);
3902
3903	ret = drm_irq_install(dev);
3904	if (ret)
3905		goto cleanup_ringbuffer;
3906
3907	return 0;
3908
3909cleanup_ringbuffer:
3910	mutex_lock(&dev->struct_mutex);
3911	i915_gem_cleanup_ringbuffer(dev);
3912	dev_priv->mm.suspended = 1;
3913	mutex_unlock(&dev->struct_mutex);
3914
3915	return ret;
3916}
3917
3918int
3919i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3920		       struct drm_file *file_priv)
3921{
3922	if (drm_core_check_feature(dev, DRIVER_MODESET))
3923		return 0;
3924
3925	drm_irq_uninstall(dev);
3926	return i915_gem_idle(dev);
3927}
3928
3929void
3930i915_gem_lastclose(struct drm_device *dev)
3931{
3932	int ret;
3933
3934	if (drm_core_check_feature(dev, DRIVER_MODESET))
3935		return;
3936
3937	ret = i915_gem_idle(dev);
3938	if (ret)
3939		DRM_ERROR("failed to idle hardware: %d\n", ret);
3940}
3941
3942static void
3943init_ring_lists(struct intel_ring_buffer *ring)
3944{
3945	INIT_LIST_HEAD(&ring->active_list);
3946	INIT_LIST_HEAD(&ring->request_list);
3947	INIT_LIST_HEAD(&ring->gpu_write_list);
3948}
3949
3950void
3951i915_gem_load(struct drm_device *dev)
3952{
3953	int i;
3954	drm_i915_private_t *dev_priv = dev->dev_private;
3955
3956	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3957	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3958	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3959	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3960	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3961	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3962	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3963	for (i = 0; i < I915_NUM_RINGS; i++)
3964		init_ring_lists(&dev_priv->ring[i]);
3965	for (i = 0; i < 16; i++)
3966		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3967	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3968			  i915_gem_retire_work_handler);
3969	init_completion(&dev_priv->error_completion);
3970
3971	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3972	if (IS_GEN3(dev)) {
3973		u32 tmp = I915_READ(MI_ARB_STATE);
3974		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3975			/* arb state is a masked write, so set bit + bit in mask */
3976			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3977			I915_WRITE(MI_ARB_STATE, tmp);
3978		}
3979	}
3980
3981	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3982
3983	/* Old X drivers will take 0-2 for front, back, depth buffers */
3984	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3985		dev_priv->fence_reg_start = 3;
3986
3987	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3988		dev_priv->num_fence_regs = 16;
3989	else
3990		dev_priv->num_fence_regs = 8;
3991
3992	/* Initialize fence registers to zero */
3993	for (i = 0; i < dev_priv->num_fence_regs; i++) {
3994		i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3995	}
3996
3997	i915_gem_detect_bit_6_swizzle(dev);
3998	init_waitqueue_head(&dev_priv->pending_flip_queue);
3999
4000	dev_priv->mm.interruptible = true;
4001
4002	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4003	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4004	register_shrinker(&dev_priv->mm.inactive_shrinker);
4005}
4006
4007/*
4008 * Create a physically contiguous memory object for this object
4009 * e.g. for cursor + overlay regs
4010 */
4011static int i915_gem_init_phys_object(struct drm_device *dev,
4012				     int id, int size, int align)
4013{
4014	drm_i915_private_t *dev_priv = dev->dev_private;
4015	struct drm_i915_gem_phys_object *phys_obj;
4016	int ret;
4017
4018	if (dev_priv->mm.phys_objs[id - 1] || !size)
4019		return 0;
4020
4021	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4022	if (!phys_obj)
4023		return -ENOMEM;
4024
4025	phys_obj->id = id;
4026
4027	phys_obj->handle = drm_pci_alloc(dev, size, align);
4028	if (!phys_obj->handle) {
4029		ret = -ENOMEM;
4030		goto kfree_obj;
4031	}
4032#ifdef CONFIG_X86
4033	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4034#endif
4035
4036	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4037
4038	return 0;
4039kfree_obj:
4040	kfree(phys_obj);
4041	return ret;
4042}
4043
4044static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4045{
4046	drm_i915_private_t *dev_priv = dev->dev_private;
4047	struct drm_i915_gem_phys_object *phys_obj;
4048
4049	if (!dev_priv->mm.phys_objs[id - 1])
4050		return;
4051
4052	phys_obj = dev_priv->mm.phys_objs[id - 1];
4053	if (phys_obj->cur_obj) {
4054		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4055	}
4056
4057#ifdef CONFIG_X86
4058	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4059#endif
4060	drm_pci_free(dev, phys_obj->handle);
4061	kfree(phys_obj);
4062	dev_priv->mm.phys_objs[id - 1] = NULL;
4063}
4064
4065void i915_gem_free_all_phys_object(struct drm_device *dev)
4066{
4067	int i;
4068
4069	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4070		i915_gem_free_phys_object(dev, i);
4071}
4072
4073void i915_gem_detach_phys_object(struct drm_device *dev,
4074				 struct drm_i915_gem_object *obj)
4075{
4076	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4077	char *vaddr;
4078	int i;
4079	int page_count;
4080
4081	if (!obj->phys_obj)
4082		return;
4083	vaddr = obj->phys_obj->handle->vaddr;
4084
4085	page_count = obj->base.size / PAGE_SIZE;
4086	for (i = 0; i < page_count; i++) {
4087		struct page *page = shmem_read_mapping_page(mapping, i);
4088		if (!IS_ERR(page)) {
4089			char *dst = kmap_atomic(page);
4090			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4091			kunmap_atomic(dst);
4092
4093			drm_clflush_pages(&page, 1);
4094
4095			set_page_dirty(page);
4096			mark_page_accessed(page);
4097			page_cache_release(page);
4098		}
4099	}
4100	intel_gtt_chipset_flush();
4101
4102	obj->phys_obj->cur_obj = NULL;
4103	obj->phys_obj = NULL;
4104}
4105
4106int
4107i915_gem_attach_phys_object(struct drm_device *dev,
4108			    struct drm_i915_gem_object *obj,
4109			    int id,
4110			    int align)
4111{
4112	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4113	drm_i915_private_t *dev_priv = dev->dev_private;
4114	int ret = 0;
4115	int page_count;
4116	int i;
4117
4118	if (id > I915_MAX_PHYS_OBJECT)
4119		return -EINVAL;
4120
4121	if (obj->phys_obj) {
4122		if (obj->phys_obj->id == id)
4123			return 0;
4124		i915_gem_detach_phys_object(dev, obj);
4125	}
4126
4127	/* create a new object */
4128	if (!dev_priv->mm.phys_objs[id - 1]) {
4129		ret = i915_gem_init_phys_object(dev, id,
4130						obj->base.size, align);
4131		if (ret) {
4132			DRM_ERROR("failed to init phys object %d size: %zu\n",
4133				  id, obj->base.size);
4134			return ret;
4135		}
4136	}
4137
4138	/* bind to the object */
4139	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4140	obj->phys_obj->cur_obj = obj;
4141
4142	page_count = obj->base.size / PAGE_SIZE;
4143
4144	for (i = 0; i < page_count; i++) {
4145		struct page *page;
4146		char *dst, *src;
4147
4148		page = shmem_read_mapping_page(mapping, i);
4149		if (IS_ERR(page))
4150			return PTR_ERR(page);
4151
4152		src = kmap_atomic(page);
4153		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4154		memcpy(dst, src, PAGE_SIZE);
4155		kunmap_atomic(src);
4156
4157		mark_page_accessed(page);
4158		page_cache_release(page);
4159	}
4160
4161	return 0;
4162}
4163
4164static int
4165i915_gem_phys_pwrite(struct drm_device *dev,
4166		     struct drm_i915_gem_object *obj,
4167		     struct drm_i915_gem_pwrite *args,
4168		     struct drm_file *file_priv)
4169{
4170	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4171	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4172
4173	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4174		unsigned long unwritten;
4175
4176		/* The physical object once assigned is fixed for the lifetime
4177		 * of the obj, so we can safely drop the lock and continue
4178		 * to access vaddr.
4179		 */
4180		mutex_unlock(&dev->struct_mutex);
4181		unwritten = copy_from_user(vaddr, user_data, args->size);
4182		mutex_lock(&dev->struct_mutex);
4183		if (unwritten)
4184			return -EFAULT;
4185	}
4186
4187	intel_gtt_chipset_flush();
4188	return 0;
4189}
4190
4191void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4192{
4193	struct drm_i915_file_private *file_priv = file->driver_priv;
4194
4195	/* Clean up our request list when the client is going away, so that
4196	 * later retire_requests won't dereference our soon-to-be-gone
4197	 * file_priv.
4198	 */
4199	spin_lock(&file_priv->mm.lock);
4200	while (!list_empty(&file_priv->mm.request_list)) {
4201		struct drm_i915_gem_request *request;
4202
4203		request = list_first_entry(&file_priv->mm.request_list,
4204					   struct drm_i915_gem_request,
4205					   client_list);
4206		list_del(&request->client_list);
4207		request->file_priv = NULL;
4208	}
4209	spin_unlock(&file_priv->mm.lock);
4210}
4211
4212static int
4213i915_gpu_is_active(struct drm_device *dev)
4214{
4215	drm_i915_private_t *dev_priv = dev->dev_private;
4216	int lists_empty;
4217
4218	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4219		      list_empty(&dev_priv->mm.active_list);
4220
4221	return !lists_empty;
4222}
4223
4224static int
4225i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4226{
4227	struct drm_i915_private *dev_priv =
4228		container_of(shrinker,
4229			     struct drm_i915_private,
4230			     mm.inactive_shrinker);
4231	struct drm_device *dev = dev_priv->dev;
4232	struct drm_i915_gem_object *obj, *next;
4233	int nr_to_scan = sc->nr_to_scan;
4234	int cnt;
4235
4236	if (!mutex_trylock(&dev->struct_mutex))
4237		return 0;
4238
4239	/* "fast-path" to count number of available objects */
4240	if (nr_to_scan == 0) {
4241		cnt = 0;
4242		list_for_each_entry(obj,
4243				    &dev_priv->mm.inactive_list,
4244				    mm_list)
4245			cnt++;
4246		mutex_unlock(&dev->struct_mutex);
4247		return cnt / 100 * sysctl_vfs_cache_pressure;
4248	}
4249
4250rescan:
4251	/* first scan for clean buffers */
4252	i915_gem_retire_requests(dev);
4253
4254	list_for_each_entry_safe(obj, next,
4255				 &dev_priv->mm.inactive_list,
4256				 mm_list) {
4257		if (i915_gem_object_is_purgeable(obj)) {
4258			if (i915_gem_object_unbind(obj) == 0 &&
4259			    --nr_to_scan == 0)
4260				break;
4261		}
4262	}
4263
4264	/* second pass, evict/count anything still on the inactive list */
4265	cnt = 0;
4266	list_for_each_entry_safe(obj, next,
4267				 &dev_priv->mm.inactive_list,
4268				 mm_list) {
4269		if (nr_to_scan &&
4270		    i915_gem_object_unbind(obj) == 0)
4271			nr_to_scan--;
4272		else
4273			cnt++;
4274	}
4275
4276	if (nr_to_scan && i915_gpu_is_active(dev)) {
4277		/*
4278		 * We are desperate for pages, so as a last resort, wait
4279		 * for the GPU to finish and discard whatever we can.
4280		 * This has a dramatic impact to reduce the number of
4281		 * OOM-killer events whilst running the GPU aggressively.
4282		 */
4283		if (i915_gpu_idle(dev) == 0)
4284			goto rescan;
4285	}
4286	mutex_unlock(&dev->struct_mutex);
4287	return cnt / 100 * sysctl_vfs_cache_pressure;
4288}
v3.5.6
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include "drmP.h"
  29#include "drm.h"
  30#include "i915_drm.h"
  31#include "i915_drv.h"
  32#include "i915_trace.h"
  33#include "intel_drv.h"
  34#include <linux/shmem_fs.h>
  35#include <linux/slab.h>
  36#include <linux/swap.h>
  37#include <linux/pci.h>
  38#include <linux/dma-buf.h>
  39
  40static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
 
 
 
 
 
 
  43static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  44						    unsigned alignment,
  45						    bool map_and_fenceable);
 
 
  46static int i915_gem_phys_pwrite(struct drm_device *dev,
  47				struct drm_i915_gem_object *obj,
  48				struct drm_i915_gem_pwrite *args,
  49				struct drm_file *file);
  50
  51static void i915_gem_write_fence(struct drm_device *dev, int reg,
  52				 struct drm_i915_gem_object *obj);
  53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  54					 struct drm_i915_fence_reg *fence,
  55					 bool enable);
  56
  57static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  58				    struct shrink_control *sc);
  59static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  60
  61static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  62{
  63	if (obj->tiling_mode)
  64		i915_gem_release_mmap(obj);
  65
  66	/* As we do not have an associated fence register, we will force
  67	 * a tiling change if we ever need to acquire one.
  68	 */
  69	obj->fence_dirty = false;
  70	obj->fence_reg = I915_FENCE_REG_NONE;
  71}
  72
  73/* some bookkeeping */
  74static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  75				  size_t size)
  76{
  77	dev_priv->mm.object_count++;
  78	dev_priv->mm.object_memory += size;
  79}
  80
  81static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  82				     size_t size)
  83{
  84	dev_priv->mm.object_count--;
  85	dev_priv->mm.object_memory -= size;
  86}
  87
  88static int
  89i915_gem_wait_for_error(struct drm_device *dev)
  90{
  91	struct drm_i915_private *dev_priv = dev->dev_private;
  92	struct completion *x = &dev_priv->error_completion;
  93	unsigned long flags;
  94	int ret;
  95
  96	if (!atomic_read(&dev_priv->mm.wedged))
  97		return 0;
  98
  99	ret = wait_for_completion_interruptible(x);
 100	if (ret)
 101		return ret;
 102
 103	if (atomic_read(&dev_priv->mm.wedged)) {
 104		/* GPU is hung, bump the completion count to account for
 105		 * the token we just consumed so that we never hit zero and
 106		 * end up waiting upon a subsequent completion event that
 107		 * will never happen.
 108		 */
 109		spin_lock_irqsave(&x->wait.lock, flags);
 110		x->done++;
 111		spin_unlock_irqrestore(&x->wait.lock, flags);
 112	}
 113	return 0;
 114}
 115
 116int i915_mutex_lock_interruptible(struct drm_device *dev)
 117{
 118	int ret;
 119
 120	ret = i915_gem_wait_for_error(dev);
 121	if (ret)
 122		return ret;
 123
 124	ret = mutex_lock_interruptible(&dev->struct_mutex);
 125	if (ret)
 126		return ret;
 127
 128	WARN_ON(i915_verify_lists(dev));
 129	return 0;
 130}
 131
 132static inline bool
 133i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
 134{
 135	return !obj->active;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136}
 137
 138int
 139i915_gem_init_ioctl(struct drm_device *dev, void *data,
 140		    struct drm_file *file)
 141{
 142	struct drm_i915_gem_init *args = data;
 143
 144	if (drm_core_check_feature(dev, DRIVER_MODESET))
 145		return -ENODEV;
 146
 147	if (args->gtt_start >= args->gtt_end ||
 148	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
 149		return -EINVAL;
 150
 151	/* GEM with user mode setting was never supported on ilk and later. */
 152	if (INTEL_INFO(dev)->gen >= 5)
 153		return -ENODEV;
 154
 155	mutex_lock(&dev->struct_mutex);
 156	i915_gem_init_global_gtt(dev, args->gtt_start,
 157				 args->gtt_end, args->gtt_end);
 158	mutex_unlock(&dev->struct_mutex);
 159
 160	return 0;
 161}
 162
 163int
 164i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 165			    struct drm_file *file)
 166{
 167	struct drm_i915_private *dev_priv = dev->dev_private;
 168	struct drm_i915_gem_get_aperture *args = data;
 169	struct drm_i915_gem_object *obj;
 170	size_t pinned;
 171
 
 
 
 172	pinned = 0;
 173	mutex_lock(&dev->struct_mutex);
 174	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
 175		if (obj->pin_count)
 176			pinned += obj->gtt_space->size;
 177	mutex_unlock(&dev->struct_mutex);
 178
 179	args->aper_size = dev_priv->mm.gtt_total;
 180	args->aper_available_size = args->aper_size - pinned;
 181
 182	return 0;
 183}
 184
 185static int
 186i915_gem_create(struct drm_file *file,
 187		struct drm_device *dev,
 188		uint64_t size,
 189		uint32_t *handle_p)
 190{
 191	struct drm_i915_gem_object *obj;
 192	int ret;
 193	u32 handle;
 194
 195	size = roundup(size, PAGE_SIZE);
 196	if (size == 0)
 197		return -EINVAL;
 198
 199	/* Allocate the new object */
 200	obj = i915_gem_alloc_object(dev, size);
 201	if (obj == NULL)
 202		return -ENOMEM;
 203
 204	ret = drm_gem_handle_create(file, &obj->base, &handle);
 205	if (ret) {
 206		drm_gem_object_release(&obj->base);
 207		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
 208		kfree(obj);
 209		return ret;
 210	}
 211
 212	/* drop reference from allocate - handle holds it now */
 213	drm_gem_object_unreference(&obj->base);
 214	trace_i915_gem_object_create(obj);
 215
 216	*handle_p = handle;
 217	return 0;
 218}
 219
 220int
 221i915_gem_dumb_create(struct drm_file *file,
 222		     struct drm_device *dev,
 223		     struct drm_mode_create_dumb *args)
 224{
 225	/* have to work out size/pitch and return them */
 226	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
 227	args->size = args->pitch * args->height;
 228	return i915_gem_create(file, dev,
 229			       args->size, &args->handle);
 230}
 231
 232int i915_gem_dumb_destroy(struct drm_file *file,
 233			  struct drm_device *dev,
 234			  uint32_t handle)
 235{
 236	return drm_gem_handle_delete(file, handle);
 237}
 238
 239/**
 240 * Creates a new mm object and returns a handle to it.
 241 */
 242int
 243i915_gem_create_ioctl(struct drm_device *dev, void *data,
 244		      struct drm_file *file)
 245{
 246	struct drm_i915_gem_create *args = data;
 247
 248	return i915_gem_create(file, dev,
 249			       args->size, &args->handle);
 250}
 251
 252static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
 253{
 254	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
 255
 256	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
 257		obj->tiling_mode != I915_TILING_NONE;
 258}
 259
 260static inline int
 261__copy_to_user_swizzled(char __user *cpu_vaddr,
 262			const char *gpu_vaddr, int gpu_offset,
 263			int length)
 
 
 264{
 265	int ret, cpu_offset = 0;
 
 
 
 266
 267	while (length > 0) {
 268		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 269		int this_length = min(cacheline_end - gpu_offset, length);
 270		int swizzled_gpu_offset = gpu_offset ^ 64;
 271
 272		ret = __copy_to_user(cpu_vaddr + cpu_offset,
 273				     gpu_vaddr + swizzled_gpu_offset,
 274				     this_length);
 275		if (ret)
 276			return ret + length;
 277
 278		cpu_offset += this_length;
 279		gpu_offset += this_length;
 280		length -= this_length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281	}
 282
 283	return 0;
 284}
 285
 286static inline int
 287__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
 288			  const char __user *cpu_vaddr,
 289			  int length)
 290{
 291	int ret, cpu_offset = 0;
 292
 
 
 
 293	while (length > 0) {
 294		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 295		int this_length = min(cacheline_end - gpu_offset, length);
 296		int swizzled_gpu_offset = gpu_offset ^ 64;
 297
 298		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
 299				       cpu_vaddr + cpu_offset,
 300				       this_length);
 301		if (ret)
 302			return ret + length;
 303
 
 
 
 304		cpu_offset += this_length;
 305		gpu_offset += this_length;
 306		length -= this_length;
 307	}
 308
 309	return 0;
 
 310}
 311
 312/* Per-page copy function for the shmem pread fastpath.
 313 * Flushes invalid cachelines before reading the target if
 314 * needs_clflush is set. */
 
 
 315static int
 316shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
 317		 char __user *user_data,
 318		 bool page_do_bit17_swizzling, bool needs_clflush)
 
 319{
 320	char *vaddr;
 321	int ret;
 
 
 
 
 
 
 322
 323	if (unlikely(page_do_bit17_swizzling))
 324		return -EINVAL;
 325
 326	vaddr = kmap_atomic(page);
 327	if (needs_clflush)
 328		drm_clflush_virt_range(vaddr + shmem_page_offset,
 329				       page_length);
 330	ret = __copy_to_user_inatomic(user_data,
 331				      vaddr + shmem_page_offset,
 332				      page_length);
 333	kunmap_atomic(vaddr);
 334
 335	return ret;
 336}
 
 
 
 
 
 
 
 337
 338static void
 339shmem_clflush_swizzled_range(char *addr, unsigned long length,
 340			     bool swizzled)
 341{
 342	if (unlikely(swizzled)) {
 343		unsigned long start = (unsigned long) addr;
 344		unsigned long end = (unsigned long) addr + length;
 345
 346		/* For swizzling simply ensure that we always flush both
 347		 * channels. Lame, but simple and it works. Swizzled
 348		 * pwrite/pread is far from a hotpath - current userspace
 349		 * doesn't use it at all. */
 350		start = round_down(start, 128);
 351		end = round_up(end, 128);
 352
 353		drm_clflush_virt_range((void *)start, end - start);
 354	} else {
 355		drm_clflush_virt_range(addr, length);
 356	}
 
 357
 358}
 
 
 
 359
 360/* Only difference to the fast-path function is that this can handle bit17
 361 * and uses non-atomic copy and kmap functions. */
 362static int
 363shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
 364		 char __user *user_data,
 365		 bool page_do_bit17_swizzling, bool needs_clflush)
 366{
 367	char *vaddr;
 368	int ret;
 369
 370	vaddr = kmap(page);
 371	if (needs_clflush)
 372		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 373					     page_length,
 374					     page_do_bit17_swizzling);
 375
 376	if (page_do_bit17_swizzling)
 377		ret = __copy_to_user_swizzled(user_data,
 378					      vaddr, shmem_page_offset,
 379					      page_length);
 380	else
 381		ret = __copy_to_user(user_data,
 382				     vaddr + shmem_page_offset,
 383				     page_length);
 384	kunmap(page);
 385
 386	return ret;
 387}
 388
 
 
 
 
 
 
 389static int
 390i915_gem_shmem_pread(struct drm_device *dev,
 391		     struct drm_i915_gem_object *obj,
 392		     struct drm_i915_gem_pread *args,
 393		     struct drm_file *file)
 394{
 395	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 396	char __user *user_data;
 
 397	ssize_t remain;
 398	loff_t offset;
 399	int shmem_page_offset, page_length, ret = 0;
 400	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 401	int hit_slowpath = 0;
 402	int prefaulted = 0;
 403	int needs_clflush = 0;
 404	int release_page;
 
 405
 406	user_data = (char __user *) (uintptr_t) args->data_ptr;
 407	remain = args->size;
 408
 409	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 
 
 
 
 
 
 
 
 
 
 410
 411	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
 412		/* If we're not in the cpu read domain, set ourself into the gtt
 413		 * read domain and manually flush cachelines (if required). This
 414		 * optimizes for the case when the gpu will dirty the data
 415		 * anyway again before the next pread happens. */
 416		if (obj->cache_level == I915_CACHE_NONE)
 417			needs_clflush = 1;
 418		ret = i915_gem_object_set_to_gtt_domain(obj, false);
 419		if (ret)
 420			return ret;
 421	}
 422
 
 
 
 
 
 
 
 
 423	offset = args->offset;
 424
 425	while (remain > 0) {
 426		struct page *page;
 427
 428		/* Operation in this page
 429		 *
 430		 * shmem_page_offset = offset within page in shmem file
 
 
 431		 * page_length = bytes to copy for this page
 432		 */
 433		shmem_page_offset = offset_in_page(offset);
 
 
 
 434		page_length = remain;
 435		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 436			page_length = PAGE_SIZE - shmem_page_offset;
 
 
 437
 438		if (obj->pages) {
 439			page = obj->pages[offset >> PAGE_SHIFT];
 440			release_page = 0;
 441		} else {
 442			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 443			if (IS_ERR(page)) {
 444				ret = PTR_ERR(page);
 445				goto out;
 446			}
 447			release_page = 1;
 448		}
 449
 450		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 451			(page_to_phys(page) & (1 << 17)) != 0;
 452
 453		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
 454				       user_data, page_do_bit17_swizzling,
 455				       needs_clflush);
 456		if (ret == 0)
 457			goto next_page;
 458
 459		hit_slowpath = 1;
 460		page_cache_get(page);
 461		mutex_unlock(&dev->struct_mutex);
 462
 463		if (!prefaulted) {
 464			ret = fault_in_multipages_writeable(user_data, remain);
 465			/* Userspace is tricking us, but we've already clobbered
 466			 * its pages with the prefault and promised to write the
 467			 * data up to the first fault. Hence ignore any errors
 468			 * and just continue. */
 469			(void)ret;
 470			prefaulted = 1;
 471		}
 472
 473		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
 474				       user_data, page_do_bit17_swizzling,
 475				       needs_clflush);
 476
 477		mutex_lock(&dev->struct_mutex);
 478		page_cache_release(page);
 479next_page:
 480		mark_page_accessed(page);
 481		if (release_page)
 482			page_cache_release(page);
 483
 484		if (ret) {
 485			ret = -EFAULT;
 486			goto out;
 487		}
 488
 489		remain -= page_length;
 490		user_data += page_length;
 491		offset += page_length;
 492	}
 493
 494out:
 495	if (hit_slowpath) {
 496		/* Fixup: Kill any reinstated backing storage pages */
 497		if (obj->madv == __I915_MADV_PURGED)
 498			i915_gem_object_truncate(obj);
 499	}
 
 500
 501	return ret;
 502}
 503
 504/**
 505 * Reads data from the object referenced by handle.
 506 *
 507 * On error, the contents of *data are undefined.
 508 */
 509int
 510i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 511		     struct drm_file *file)
 512{
 513	struct drm_i915_gem_pread *args = data;
 514	struct drm_i915_gem_object *obj;
 515	int ret = 0;
 516
 517	if (args->size == 0)
 518		return 0;
 519
 520	if (!access_ok(VERIFY_WRITE,
 521		       (char __user *)(uintptr_t)args->data_ptr,
 522		       args->size))
 523		return -EFAULT;
 524
 
 
 
 
 
 525	ret = i915_mutex_lock_interruptible(dev);
 526	if (ret)
 527		return ret;
 528
 529	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 530	if (&obj->base == NULL) {
 531		ret = -ENOENT;
 532		goto unlock;
 533	}
 534
 535	/* Bounds check source.  */
 536	if (args->offset > obj->base.size ||
 537	    args->size > obj->base.size - args->offset) {
 538		ret = -EINVAL;
 539		goto out;
 540	}
 541
 542	/* prime objects have no backing filp to GEM pread/pwrite
 543	 * pages from.
 544	 */
 545	if (!obj->base.filp) {
 546		ret = -EINVAL;
 
 547		goto out;
 548	}
 549
 550	trace_i915_gem_object_pread(obj, args->offset, args->size);
 551
 552	ret = i915_gem_shmem_pread(dev, obj, args, file);
 
 
 553
 554out:
 555	drm_gem_object_unreference(&obj->base);
 556unlock:
 557	mutex_unlock(&dev->struct_mutex);
 558	return ret;
 559}
 560
 561/* This is the fast write path which cannot handle
 562 * page faults in the source data
 563 */
 564
 565static inline int
 566fast_user_write(struct io_mapping *mapping,
 567		loff_t page_base, int page_offset,
 568		char __user *user_data,
 569		int length)
 570{
 571	void __iomem *vaddr_atomic;
 572	void *vaddr;
 573	unsigned long unwritten;
 574
 575	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
 576	/* We can use the cpu mem copy function because this is X86. */
 577	vaddr = (void __force*)vaddr_atomic + page_offset;
 578	unwritten = __copy_from_user_inatomic_nocache(vaddr,
 579						      user_data, length);
 580	io_mapping_unmap_atomic(vaddr_atomic);
 581	return unwritten;
 582}
 583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584/**
 585 * This is the fast pwrite path, where we copy the data directly from the
 586 * user into the GTT, uncached.
 587 */
 588static int
 589i915_gem_gtt_pwrite_fast(struct drm_device *dev,
 590			 struct drm_i915_gem_object *obj,
 591			 struct drm_i915_gem_pwrite *args,
 592			 struct drm_file *file)
 593{
 594	drm_i915_private_t *dev_priv = dev->dev_private;
 595	ssize_t remain;
 596	loff_t offset, page_base;
 597	char __user *user_data;
 598	int page_offset, page_length, ret;
 599
 600	ret = i915_gem_object_pin(obj, 0, true);
 601	if (ret)
 602		goto out;
 603
 604	ret = i915_gem_object_set_to_gtt_domain(obj, true);
 605	if (ret)
 606		goto out_unpin;
 607
 608	ret = i915_gem_object_put_fence(obj);
 609	if (ret)
 610		goto out_unpin;
 611
 612	user_data = (char __user *) (uintptr_t) args->data_ptr;
 613	remain = args->size;
 614
 615	offset = obj->gtt_offset + args->offset;
 616
 617	while (remain > 0) {
 618		/* Operation in this page
 619		 *
 620		 * page_base = page offset within aperture
 621		 * page_offset = offset within page
 622		 * page_length = bytes to copy for this page
 623		 */
 624		page_base = offset & PAGE_MASK;
 625		page_offset = offset_in_page(offset);
 626		page_length = remain;
 627		if ((page_offset + remain) > PAGE_SIZE)
 628			page_length = PAGE_SIZE - page_offset;
 629
 630		/* If we get a fault while copying data, then (presumably) our
 631		 * source page isn't available.  Return the error and we'll
 632		 * retry in the slow path.
 633		 */
 634		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
 635				    page_offset, user_data, page_length)) {
 636			ret = -EFAULT;
 637			goto out_unpin;
 638		}
 639
 640		remain -= page_length;
 641		user_data += page_length;
 642		offset += page_length;
 643	}
 644
 645out_unpin:
 646	i915_gem_object_unpin(obj);
 647out:
 648	return ret;
 649}
 650
 651/* Per-page copy function for the shmem pwrite fastpath.
 652 * Flushes invalid cachelines before writing to the target if
 653 * needs_clflush_before is set and flushes out any written cachelines after
 654 * writing if needs_clflush is set. */
 
 
 
 655static int
 656shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
 657		  char __user *user_data,
 658		  bool page_do_bit17_swizzling,
 659		  bool needs_clflush_before,
 660		  bool needs_clflush_after)
 661{
 662	char *vaddr;
 
 
 
 
 
 
 
 663	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664
 665	if (unlikely(page_do_bit17_swizzling))
 666		return -EINVAL;
 
 
 667
 668	vaddr = kmap_atomic(page);
 669	if (needs_clflush_before)
 670		drm_clflush_virt_range(vaddr + shmem_page_offset,
 671				       page_length);
 672	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
 673						user_data,
 674						page_length);
 675	if (needs_clflush_after)
 676		drm_clflush_virt_range(vaddr + shmem_page_offset,
 677				       page_length);
 678	kunmap_atomic(vaddr);
 679
 680	return ret;
 681}
 682
 683/* Only difference to the fast-path function is that this can handle bit17
 684 * and uses non-atomic copy and kmap functions. */
 
 
 685static int
 686shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
 687		  char __user *user_data,
 688		  bool page_do_bit17_swizzling,
 689		  bool needs_clflush_before,
 690		  bool needs_clflush_after)
 691{
 692	char *vaddr;
 693	int ret;
 694
 695	vaddr = kmap(page);
 696	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
 697		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 698					     page_length,
 699					     page_do_bit17_swizzling);
 700	if (page_do_bit17_swizzling)
 701		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702						user_data,
 703						page_length);
 704	else
 705		ret = __copy_from_user(vaddr + shmem_page_offset,
 706				       user_data,
 707				       page_length);
 708	if (needs_clflush_after)
 709		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 710					     page_length,
 711					     page_do_bit17_swizzling);
 712	kunmap(page);
 
 
 
 
 
 
 
 
 713
 714	return ret;
 715}
 716
 
 
 
 
 
 
 
 717static int
 718i915_gem_shmem_pwrite(struct drm_device *dev,
 719		      struct drm_i915_gem_object *obj,
 720		      struct drm_i915_gem_pwrite *args,
 721		      struct drm_file *file)
 722{
 723	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 
 
 724	ssize_t remain;
 725	loff_t offset;
 726	char __user *user_data;
 727	int shmem_page_offset, page_length, ret = 0;
 728	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 729	int hit_slowpath = 0;
 730	int needs_clflush_after = 0;
 731	int needs_clflush_before = 0;
 732	int release_page;
 733
 734	user_data = (char __user *) (uintptr_t) args->data_ptr;
 735	remain = args->size;
 736
 737	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 
 
 
 
 
 
 
 
 
 
 738
 739	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 740		/* If we're not in the cpu write domain, set ourself into the gtt
 741		 * write domain and manually flush cachelines (if required). This
 742		 * optimizes for the case when the gpu will use the data
 743		 * right away and we therefore have to clflush anyway. */
 744		if (obj->cache_level == I915_CACHE_NONE)
 745			needs_clflush_after = 1;
 746		ret = i915_gem_object_set_to_gtt_domain(obj, true);
 747		if (ret)
 748			return ret;
 749	}
 750	/* Same trick applies for invalidate partially written cachelines before
 751	 * writing.  */
 752	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
 753	    && obj->cache_level == I915_CACHE_NONE)
 754		needs_clflush_before = 1;
 
 755
 756	offset = args->offset;
 757	obj->dirty = 1;
 758
 759	while (remain > 0) {
 760		struct page *page;
 761		int partial_cacheline_write;
 762
 763		/* Operation in this page
 764		 *
 765		 * shmem_page_offset = offset within page in shmem file
 
 
 766		 * page_length = bytes to copy for this page
 767		 */
 768		shmem_page_offset = offset_in_page(offset);
 
 
 769
 770		page_length = remain;
 771		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 772			page_length = PAGE_SIZE - shmem_page_offset;
 
 
 
 
 
 
 
 
 773
 774		/* If we don't overwrite a cacheline completely we need to be
 775		 * careful to have up-to-date data by first clflushing. Don't
 776		 * overcomplicate things and flush the entire patch. */
 777		partial_cacheline_write = needs_clflush_before &&
 778			((shmem_page_offset | page_length)
 779				& (boot_cpu_data.x86_clflush_size - 1));
 780
 781		if (obj->pages) {
 782			page = obj->pages[offset >> PAGE_SHIFT];
 783			release_page = 0;
 784		} else {
 785			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 786			if (IS_ERR(page)) {
 787				ret = PTR_ERR(page);
 788				goto out;
 789			}
 790			release_page = 1;
 791		}
 792
 793		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 794			(page_to_phys(page) & (1 << 17)) != 0;
 795
 796		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
 797					user_data, page_do_bit17_swizzling,
 798					partial_cacheline_write,
 799					needs_clflush_after);
 800		if (ret == 0)
 801			goto next_page;
 802
 803		hit_slowpath = 1;
 804		page_cache_get(page);
 805		mutex_unlock(&dev->struct_mutex);
 806
 807		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
 808					user_data, page_do_bit17_swizzling,
 809					partial_cacheline_write,
 810					needs_clflush_after);
 811
 812		mutex_lock(&dev->struct_mutex);
 813		page_cache_release(page);
 814next_page:
 815		set_page_dirty(page);
 816		mark_page_accessed(page);
 817		if (release_page)
 818			page_cache_release(page);
 819
 820		if (ret) {
 821			ret = -EFAULT;
 822			goto out;
 823		}
 824
 825		remain -= page_length;
 826		user_data += page_length;
 827		offset += page_length;
 828	}
 829
 830out:
 831	if (hit_slowpath) {
 832		/* Fixup: Kill any reinstated backing storage pages */
 833		if (obj->madv == __I915_MADV_PURGED)
 834			i915_gem_object_truncate(obj);
 835		/* and flush dirty cachelines in case the object isn't in the cpu write
 836		 * domain anymore. */
 837		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 838			i915_gem_clflush_object(obj);
 839			intel_gtt_chipset_flush();
 840		}
 841	}
 842
 843	if (needs_clflush_after)
 844		intel_gtt_chipset_flush();
 845
 846	return ret;
 847}
 848
 849/**
 850 * Writes data to the object referenced by handle.
 851 *
 852 * On error, the contents of the buffer that were to be modified are undefined.
 853 */
 854int
 855i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 856		      struct drm_file *file)
 857{
 858	struct drm_i915_gem_pwrite *args = data;
 859	struct drm_i915_gem_object *obj;
 860	int ret;
 861
 862	if (args->size == 0)
 863		return 0;
 864
 865	if (!access_ok(VERIFY_READ,
 866		       (char __user *)(uintptr_t)args->data_ptr,
 867		       args->size))
 868		return -EFAULT;
 869
 870	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
 871					   args->size);
 872	if (ret)
 873		return -EFAULT;
 874
 875	ret = i915_mutex_lock_interruptible(dev);
 876	if (ret)
 877		return ret;
 878
 879	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 880	if (&obj->base == NULL) {
 881		ret = -ENOENT;
 882		goto unlock;
 883	}
 884
 885	/* Bounds check destination. */
 886	if (args->offset > obj->base.size ||
 887	    args->size > obj->base.size - args->offset) {
 888		ret = -EINVAL;
 889		goto out;
 890	}
 891
 892	/* prime objects have no backing filp to GEM pread/pwrite
 893	 * pages from.
 894	 */
 895	if (!obj->base.filp) {
 896		ret = -EINVAL;
 897		goto out;
 898	}
 899
 900	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 901
 902	ret = -EFAULT;
 903	/* We can only do the GTT pwrite on untiled buffers, as otherwise
 904	 * it would end up going through the fenced access, and we'll get
 905	 * different detiling behavior between reading and writing.
 906	 * pread/pwrite currently are reading and writing from the CPU
 907	 * perspective, requiring manual detiling by the client.
 908	 */
 909	if (obj->phys_obj) {
 910		ret = i915_gem_phys_pwrite(dev, obj, args, file);
 911		goto out;
 912	}
 
 
 
 
 
 
 
 
 
 
 
 913
 914	if (obj->gtt_space &&
 915	    obj->cache_level == I915_CACHE_NONE &&
 916	    obj->tiling_mode == I915_TILING_NONE &&
 917	    obj->map_and_fenceable &&
 918	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 919		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
 920		/* Note that the gtt paths might fail with non-page-backed user
 921		 * pointers (e.g. gtt mappings when moving data between
 922		 * textures). Fallback to the shmem path in that case. */
 
 
 
 
 
 
 
 
 
 
 
 
 923	}
 924
 925	if (ret == -EFAULT)
 926		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
 927
 928out:
 929	drm_gem_object_unreference(&obj->base);
 930unlock:
 931	mutex_unlock(&dev->struct_mutex);
 932	return ret;
 933}
 934
 935/**
 936 * Called when user space prepares to use an object with the CPU, either
 937 * through the mmap ioctl's mapping or a GTT mapping.
 938 */
 939int
 940i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
 941			  struct drm_file *file)
 942{
 943	struct drm_i915_gem_set_domain *args = data;
 944	struct drm_i915_gem_object *obj;
 945	uint32_t read_domains = args->read_domains;
 946	uint32_t write_domain = args->write_domain;
 947	int ret;
 948
 
 
 
 949	/* Only handle setting domains to types used by the CPU. */
 950	if (write_domain & I915_GEM_GPU_DOMAINS)
 951		return -EINVAL;
 952
 953	if (read_domains & I915_GEM_GPU_DOMAINS)
 954		return -EINVAL;
 955
 956	/* Having something in the write domain implies it's in the read
 957	 * domain, and only that read domain.  Enforce that in the request.
 958	 */
 959	if (write_domain != 0 && read_domains != write_domain)
 960		return -EINVAL;
 961
 962	ret = i915_mutex_lock_interruptible(dev);
 963	if (ret)
 964		return ret;
 965
 966	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 967	if (&obj->base == NULL) {
 968		ret = -ENOENT;
 969		goto unlock;
 970	}
 971
 972	if (read_domains & I915_GEM_DOMAIN_GTT) {
 973		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
 974
 975		/* Silently promote "you're not bound, there was nothing to do"
 976		 * to success, since the client was just asking us to
 977		 * make sure everything was done.
 978		 */
 979		if (ret == -EINVAL)
 980			ret = 0;
 981	} else {
 982		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
 983	}
 984
 985	drm_gem_object_unreference(&obj->base);
 986unlock:
 987	mutex_unlock(&dev->struct_mutex);
 988	return ret;
 989}
 990
 991/**
 992 * Called when user space has done writes to this buffer
 993 */
 994int
 995i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
 996			 struct drm_file *file)
 997{
 998	struct drm_i915_gem_sw_finish *args = data;
 999	struct drm_i915_gem_object *obj;
1000	int ret = 0;
1001
 
 
 
1002	ret = i915_mutex_lock_interruptible(dev);
1003	if (ret)
1004		return ret;
1005
1006	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1007	if (&obj->base == NULL) {
1008		ret = -ENOENT;
1009		goto unlock;
1010	}
1011
1012	/* Pinned buffers may be scanout, so flush the cache */
1013	if (obj->pin_count)
1014		i915_gem_object_flush_cpu_write_domain(obj);
1015
1016	drm_gem_object_unreference(&obj->base);
1017unlock:
1018	mutex_unlock(&dev->struct_mutex);
1019	return ret;
1020}
1021
1022/**
1023 * Maps the contents of an object, returning the address it is mapped
1024 * into.
1025 *
1026 * While the mapping holds a reference on the contents of the object, it doesn't
1027 * imply a ref on the object itself.
1028 */
1029int
1030i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1031		    struct drm_file *file)
1032{
 
1033	struct drm_i915_gem_mmap *args = data;
1034	struct drm_gem_object *obj;
1035	unsigned long addr;
1036
 
 
 
1037	obj = drm_gem_object_lookup(dev, file, args->handle);
1038	if (obj == NULL)
1039		return -ENOENT;
1040
1041	/* prime objects have no backing filp to GEM mmap
1042	 * pages from.
1043	 */
1044	if (!obj->filp) {
1045		drm_gem_object_unreference_unlocked(obj);
1046		return -EINVAL;
1047	}
1048
1049	addr = vm_mmap(obj->filp, 0, args->size,
 
1050		       PROT_READ | PROT_WRITE, MAP_SHARED,
1051		       args->offset);
 
1052	drm_gem_object_unreference_unlocked(obj);
1053	if (IS_ERR((void *)addr))
1054		return addr;
1055
1056	args->addr_ptr = (uint64_t) addr;
1057
1058	return 0;
1059}
1060
1061/**
1062 * i915_gem_fault - fault a page into the GTT
1063 * vma: VMA in question
1064 * vmf: fault info
1065 *
1066 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1067 * from userspace.  The fault handler takes care of binding the object to
1068 * the GTT (if needed), allocating and programming a fence register (again,
1069 * only if needed based on whether the old reg is still valid or the object
1070 * is tiled) and inserting a new PTE into the faulting process.
1071 *
1072 * Note that the faulting process may involve evicting existing objects
1073 * from the GTT and/or fence registers to make room.  So performance may
1074 * suffer if the GTT working set is large or there are few fence registers
1075 * left.
1076 */
1077int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1078{
1079	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1080	struct drm_device *dev = obj->base.dev;
1081	drm_i915_private_t *dev_priv = dev->dev_private;
1082	pgoff_t page_offset;
1083	unsigned long pfn;
1084	int ret = 0;
1085	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1086
1087	/* We don't use vmf->pgoff since that has the fake offset */
1088	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1089		PAGE_SHIFT;
1090
1091	ret = i915_mutex_lock_interruptible(dev);
1092	if (ret)
1093		goto out;
1094
1095	trace_i915_gem_object_fault(obj, page_offset, true, write);
1096
1097	/* Now bind it into the GTT if needed */
1098	if (!obj->map_and_fenceable) {
1099		ret = i915_gem_object_unbind(obj);
1100		if (ret)
1101			goto unlock;
1102	}
1103	if (!obj->gtt_space) {
1104		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1105		if (ret)
1106			goto unlock;
1107
1108		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1109		if (ret)
1110			goto unlock;
1111	}
1112
1113	if (!obj->has_global_gtt_mapping)
1114		i915_gem_gtt_bind_object(obj, obj->cache_level);
1115
1116	ret = i915_gem_object_get_fence(obj);
1117	if (ret)
1118		goto unlock;
1119
1120	if (i915_gem_object_is_inactive(obj))
1121		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1122
1123	obj->fault_mappable = true;
1124
1125	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1126		page_offset;
1127
1128	/* Finally, remap it using the new GTT offset */
1129	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1130unlock:
1131	mutex_unlock(&dev->struct_mutex);
1132out:
1133	switch (ret) {
1134	case -EIO:
1135	case -EAGAIN:
1136		/* Give the error handler a chance to run and move the
1137		 * objects off the GPU active list. Next time we service the
1138		 * fault, we should be able to transition the page into the
1139		 * GTT without touching the GPU (and so avoid further
1140		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1141		 * with coherency, just lost writes.
1142		 */
1143		set_need_resched();
1144	case 0:
1145	case -ERESTARTSYS:
1146	case -EINTR:
1147		return VM_FAULT_NOPAGE;
1148	case -ENOMEM:
1149		return VM_FAULT_OOM;
1150	default:
1151		return VM_FAULT_SIGBUS;
1152	}
1153}
1154
1155/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156 * i915_gem_release_mmap - remove physical page mappings
1157 * @obj: obj in question
1158 *
1159 * Preserve the reservation of the mmapping with the DRM core code, but
1160 * relinquish ownership of the pages back to the system.
1161 *
1162 * It is vital that we remove the page mapping if we have mapped a tiled
1163 * object through the GTT and then lose the fence register due to
1164 * resource pressure. Similarly if the object has been moved out of the
1165 * aperture, than pages mapped into userspace must be revoked. Removing the
1166 * mapping will then trigger a page fault on the next user access, allowing
1167 * fixup by i915_gem_fault().
1168 */
1169void
1170i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1171{
1172	if (!obj->fault_mappable)
1173		return;
1174
1175	if (obj->base.dev->dev_mapping)
1176		unmap_mapping_range(obj->base.dev->dev_mapping,
1177				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1178				    obj->base.size, 1);
1179
1180	obj->fault_mappable = false;
1181}
1182
 
 
 
 
 
 
 
 
 
 
 
 
 
1183static uint32_t
1184i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1185{
1186	uint32_t gtt_size;
1187
1188	if (INTEL_INFO(dev)->gen >= 4 ||
1189	    tiling_mode == I915_TILING_NONE)
1190		return size;
1191
1192	/* Previous chips need a power-of-two fence region when tiling */
1193	if (INTEL_INFO(dev)->gen == 3)
1194		gtt_size = 1024*1024;
1195	else
1196		gtt_size = 512*1024;
1197
1198	while (gtt_size < size)
1199		gtt_size <<= 1;
1200
1201	return gtt_size;
1202}
1203
1204/**
1205 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1206 * @obj: object to check
1207 *
1208 * Return the required GTT alignment for an object, taking into account
1209 * potential fence register mapping.
1210 */
1211static uint32_t
1212i915_gem_get_gtt_alignment(struct drm_device *dev,
1213			   uint32_t size,
1214			   int tiling_mode)
1215{
1216	/*
1217	 * Minimum alignment is 4k (GTT page size), but might be greater
1218	 * if a fence register is needed for the object.
1219	 */
1220	if (INTEL_INFO(dev)->gen >= 4 ||
1221	    tiling_mode == I915_TILING_NONE)
1222		return 4096;
1223
1224	/*
1225	 * Previous chips need to be aligned to the size of the smallest
1226	 * fence register that can contain the object.
1227	 */
1228	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1229}
1230
1231/**
1232 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1233 *					 unfenced object
1234 * @dev: the device
1235 * @size: size of the object
1236 * @tiling_mode: tiling mode of the object
1237 *
1238 * Return the required GTT alignment for an object, only taking into account
1239 * unfenced tiled surface requirements.
1240 */
1241uint32_t
1242i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1243				    uint32_t size,
1244				    int tiling_mode)
1245{
1246	/*
1247	 * Minimum alignment is 4k (GTT page size) for sane hw.
1248	 */
1249	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1250	    tiling_mode == I915_TILING_NONE)
1251		return 4096;
1252
1253	/* Previous hardware however needs to be aligned to a power-of-two
1254	 * tile height. The simplest method for determining this is to reuse
1255	 * the power-of-tile object size.
1256	 */
1257	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1258}
1259
1260int
1261i915_gem_mmap_gtt(struct drm_file *file,
1262		  struct drm_device *dev,
1263		  uint32_t handle,
1264		  uint64_t *offset)
1265{
1266	struct drm_i915_private *dev_priv = dev->dev_private;
1267	struct drm_i915_gem_object *obj;
1268	int ret;
1269
 
 
 
1270	ret = i915_mutex_lock_interruptible(dev);
1271	if (ret)
1272		return ret;
1273
1274	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1275	if (&obj->base == NULL) {
1276		ret = -ENOENT;
1277		goto unlock;
1278	}
1279
1280	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1281		ret = -E2BIG;
1282		goto out;
1283	}
1284
1285	if (obj->madv != I915_MADV_WILLNEED) {
1286		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1287		ret = -EINVAL;
1288		goto out;
1289	}
1290
1291	if (!obj->base.map_list.map) {
1292		ret = drm_gem_create_mmap_offset(&obj->base);
1293		if (ret)
1294			goto out;
1295	}
1296
1297	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1298
1299out:
1300	drm_gem_object_unreference(&obj->base);
1301unlock:
1302	mutex_unlock(&dev->struct_mutex);
1303	return ret;
1304}
1305
1306/**
1307 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1308 * @dev: DRM device
1309 * @data: GTT mapping ioctl data
1310 * @file: GEM object info
1311 *
1312 * Simply returns the fake offset to userspace so it can mmap it.
1313 * The mmap call will end up in drm_gem_mmap(), which will set things
1314 * up so we can get faults in the handler above.
1315 *
1316 * The fault handler will take care of binding the object into the GTT
1317 * (since it may have been evicted to make room for something), allocating
1318 * a fence register, and mapping the appropriate aperture address into
1319 * userspace.
1320 */
1321int
1322i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1323			struct drm_file *file)
1324{
1325	struct drm_i915_gem_mmap_gtt *args = data;
1326
 
 
 
1327	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1328}
1329
1330int
 
1331i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1332			      gfp_t gfpmask)
1333{
1334	int page_count, i;
1335	struct address_space *mapping;
1336	struct inode *inode;
1337	struct page *page;
1338
1339	if (obj->pages || obj->sg_table)
1340		return 0;
1341
1342	/* Get the list of pages out of our struct file.  They'll be pinned
1343	 * at this point until we release them.
1344	 */
1345	page_count = obj->base.size / PAGE_SIZE;
1346	BUG_ON(obj->pages != NULL);
1347	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1348	if (obj->pages == NULL)
1349		return -ENOMEM;
1350
1351	inode = obj->base.filp->f_path.dentry->d_inode;
1352	mapping = inode->i_mapping;
1353	gfpmask |= mapping_gfp_mask(mapping);
1354
1355	for (i = 0; i < page_count; i++) {
1356		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1357		if (IS_ERR(page))
1358			goto err_pages;
1359
1360		obj->pages[i] = page;
1361	}
1362
1363	if (i915_gem_object_needs_bit17_swizzle(obj))
1364		i915_gem_object_do_bit_17_swizzle(obj);
1365
1366	return 0;
1367
1368err_pages:
1369	while (i--)
1370		page_cache_release(obj->pages[i]);
1371
1372	drm_free_large(obj->pages);
1373	obj->pages = NULL;
1374	return PTR_ERR(page);
1375}
1376
1377static void
1378i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1379{
1380	int page_count = obj->base.size / PAGE_SIZE;
1381	int i;
1382
1383	if (!obj->pages)
1384		return;
1385
1386	BUG_ON(obj->madv == __I915_MADV_PURGED);
1387
1388	if (i915_gem_object_needs_bit17_swizzle(obj))
1389		i915_gem_object_save_bit_17_swizzle(obj);
1390
1391	if (obj->madv == I915_MADV_DONTNEED)
1392		obj->dirty = 0;
1393
1394	for (i = 0; i < page_count; i++) {
1395		if (obj->dirty)
1396			set_page_dirty(obj->pages[i]);
1397
1398		if (obj->madv == I915_MADV_WILLNEED)
1399			mark_page_accessed(obj->pages[i]);
1400
1401		page_cache_release(obj->pages[i]);
1402	}
1403	obj->dirty = 0;
1404
1405	drm_free_large(obj->pages);
1406	obj->pages = NULL;
1407}
1408
1409void
1410i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1411			       struct intel_ring_buffer *ring,
1412			       u32 seqno)
1413{
1414	struct drm_device *dev = obj->base.dev;
1415	struct drm_i915_private *dev_priv = dev->dev_private;
1416
1417	BUG_ON(ring == NULL);
1418	obj->ring = ring;
1419
1420	/* Add a reference if we're newly entering the active list. */
1421	if (!obj->active) {
1422		drm_gem_object_reference(&obj->base);
1423		obj->active = 1;
1424	}
1425
1426	/* Move from whatever list we were on to the tail of execution. */
1427	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1428	list_move_tail(&obj->ring_list, &ring->active_list);
1429
1430	obj->last_rendering_seqno = seqno;
 
 
 
 
1431
1432	if (obj->fenced_gpu_access) {
1433		obj->last_fenced_seqno = seqno;
 
1434
1435		/* Bump MRU to take account of the delayed flush */
1436		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1437			struct drm_i915_fence_reg *reg;
1438
1439			reg = &dev_priv->fence_regs[obj->fence_reg];
1440			list_move_tail(&reg->lru_list,
1441				       &dev_priv->mm.fence_list);
1442		}
1443	}
1444}
1445
1446static void
1447i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1448{
1449	list_del_init(&obj->ring_list);
1450	obj->last_rendering_seqno = 0;
1451	obj->last_fenced_seqno = 0;
1452}
1453
1454static void
1455i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1456{
1457	struct drm_device *dev = obj->base.dev;
1458	drm_i915_private_t *dev_priv = dev->dev_private;
1459
1460	BUG_ON(!obj->active);
1461	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1462
1463	i915_gem_object_move_off_active(obj);
1464}
1465
1466static void
1467i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1468{
1469	struct drm_device *dev = obj->base.dev;
1470	struct drm_i915_private *dev_priv = dev->dev_private;
1471
1472	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
 
 
 
1473
1474	BUG_ON(!list_empty(&obj->gpu_write_list));
1475	BUG_ON(!obj->active);
1476	obj->ring = NULL;
1477
1478	i915_gem_object_move_off_active(obj);
1479	obj->fenced_gpu_access = false;
1480
1481	obj->active = 0;
1482	obj->pending_gpu_write = false;
1483	drm_gem_object_unreference(&obj->base);
1484
1485	WARN_ON(i915_verify_lists(dev));
1486}
1487
1488/* Immediately discard the backing storage */
1489static void
1490i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1491{
1492	struct inode *inode;
1493
1494	/* Our goal here is to return as much of the memory as
1495	 * is possible back to the system as we are called from OOM.
1496	 * To do this we must instruct the shmfs to drop all of its
1497	 * backing pages, *now*.
1498	 */
1499	inode = obj->base.filp->f_path.dentry->d_inode;
1500	shmem_truncate_range(inode, 0, (loff_t)-1);
1501
1502	if (obj->base.map_list.map)
1503		drm_gem_free_mmap_offset(&obj->base);
1504
1505	obj->madv = __I915_MADV_PURGED;
1506}
1507
1508static inline int
1509i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1510{
1511	return obj->madv == I915_MADV_DONTNEED;
1512}
1513
1514static void
1515i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1516			       uint32_t flush_domains)
1517{
1518	struct drm_i915_gem_object *obj, *next;
1519
1520	list_for_each_entry_safe(obj, next,
1521				 &ring->gpu_write_list,
1522				 gpu_write_list) {
1523		if (obj->base.write_domain & flush_domains) {
1524			uint32_t old_write_domain = obj->base.write_domain;
1525
1526			obj->base.write_domain = 0;
1527			list_del_init(&obj->gpu_write_list);
1528			i915_gem_object_move_to_active(obj, ring,
1529						       i915_gem_next_request_seqno(ring));
1530
1531			trace_i915_gem_object_change_domain(obj,
1532							    obj->base.read_domains,
1533							    old_write_domain);
1534		}
1535	}
1536}
1537
1538static u32
1539i915_gem_get_seqno(struct drm_device *dev)
1540{
1541	drm_i915_private_t *dev_priv = dev->dev_private;
1542	u32 seqno = dev_priv->next_seqno;
1543
1544	/* reserve 0 for non-seqno */
1545	if (++dev_priv->next_seqno == 0)
1546		dev_priv->next_seqno = 1;
1547
1548	return seqno;
1549}
1550
1551u32
1552i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1553{
1554	if (ring->outstanding_lazy_request == 0)
1555		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1556
1557	return ring->outstanding_lazy_request;
1558}
1559
1560int
1561i915_add_request(struct intel_ring_buffer *ring,
1562		 struct drm_file *file,
1563		 struct drm_i915_gem_request *request)
1564{
1565	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1566	uint32_t seqno;
1567	u32 request_ring_position;
1568	int was_empty;
1569	int ret;
1570
1571	BUG_ON(request == NULL);
1572	seqno = i915_gem_next_request_seqno(ring);
1573
1574	/* Record the position of the start of the request so that
1575	 * should we detect the updated seqno part-way through the
1576	 * GPU processing the request, we never over-estimate the
1577	 * position of the head.
1578	 */
1579	request_ring_position = intel_ring_get_tail(ring);
1580
1581	ret = ring->add_request(ring, &seqno);
1582	if (ret)
1583	    return ret;
1584
1585	trace_i915_gem_request_add(ring, seqno);
1586
1587	request->seqno = seqno;
1588	request->ring = ring;
1589	request->tail = request_ring_position;
1590	request->emitted_jiffies = jiffies;
1591	was_empty = list_empty(&ring->request_list);
1592	list_add_tail(&request->list, &ring->request_list);
1593
1594	if (file) {
1595		struct drm_i915_file_private *file_priv = file->driver_priv;
1596
1597		spin_lock(&file_priv->mm.lock);
1598		request->file_priv = file_priv;
1599		list_add_tail(&request->client_list,
1600			      &file_priv->mm.request_list);
1601		spin_unlock(&file_priv->mm.lock);
1602	}
1603
1604	ring->outstanding_lazy_request = 0;
1605
1606	if (!dev_priv->mm.suspended) {
1607		if (i915_enable_hangcheck) {
1608			mod_timer(&dev_priv->hangcheck_timer,
1609				  jiffies +
1610				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1611		}
1612		if (was_empty)
1613			queue_delayed_work(dev_priv->wq,
1614					   &dev_priv->mm.retire_work, HZ);
1615	}
1616	return 0;
1617}
1618
1619static inline void
1620i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1621{
1622	struct drm_i915_file_private *file_priv = request->file_priv;
1623
1624	if (!file_priv)
1625		return;
1626
1627	spin_lock(&file_priv->mm.lock);
1628	if (request->file_priv) {
1629		list_del(&request->client_list);
1630		request->file_priv = NULL;
1631	}
1632	spin_unlock(&file_priv->mm.lock);
1633}
1634
1635static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1636				      struct intel_ring_buffer *ring)
1637{
1638	while (!list_empty(&ring->request_list)) {
1639		struct drm_i915_gem_request *request;
1640
1641		request = list_first_entry(&ring->request_list,
1642					   struct drm_i915_gem_request,
1643					   list);
1644
1645		list_del(&request->list);
1646		i915_gem_request_remove_from_client(request);
1647		kfree(request);
1648	}
1649
1650	while (!list_empty(&ring->active_list)) {
1651		struct drm_i915_gem_object *obj;
1652
1653		obj = list_first_entry(&ring->active_list,
1654				       struct drm_i915_gem_object,
1655				       ring_list);
1656
1657		obj->base.write_domain = 0;
1658		list_del_init(&obj->gpu_write_list);
1659		i915_gem_object_move_to_inactive(obj);
1660	}
1661}
1662
1663static void i915_gem_reset_fences(struct drm_device *dev)
1664{
1665	struct drm_i915_private *dev_priv = dev->dev_private;
1666	int i;
1667
1668	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1669		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
 
1670
1671		i915_gem_write_fence(dev, i, NULL);
 
1672
1673		if (reg->obj)
1674			i915_gem_object_fence_lost(reg->obj);
1675
1676		reg->pin_count = 0;
1677		reg->obj = NULL;
1678		INIT_LIST_HEAD(&reg->lru_list);
 
 
1679	}
1680
1681	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1682}
1683
1684void i915_gem_reset(struct drm_device *dev)
1685{
1686	struct drm_i915_private *dev_priv = dev->dev_private;
1687	struct drm_i915_gem_object *obj;
1688	struct intel_ring_buffer *ring;
1689	int i;
1690
1691	for_each_ring(ring, dev_priv, i)
1692		i915_gem_reset_ring_lists(dev_priv, ring);
1693
1694	/* Remove anything from the flushing lists. The GPU cache is likely
1695	 * to be lost on reset along with the data, so simply move the
1696	 * lost bo to the inactive list.
1697	 */
1698	while (!list_empty(&dev_priv->mm.flushing_list)) {
1699		obj = list_first_entry(&dev_priv->mm.flushing_list,
1700				      struct drm_i915_gem_object,
1701				      mm_list);
1702
1703		obj->base.write_domain = 0;
1704		list_del_init(&obj->gpu_write_list);
1705		i915_gem_object_move_to_inactive(obj);
1706	}
1707
1708	/* Move everything out of the GPU domains to ensure we do any
1709	 * necessary invalidation upon reuse.
1710	 */
1711	list_for_each_entry(obj,
1712			    &dev_priv->mm.inactive_list,
1713			    mm_list)
1714	{
1715		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1716	}
1717
1718	/* The fence registers are invalidated so clear them out */
1719	i915_gem_reset_fences(dev);
1720}
1721
1722/**
1723 * This function clears the request list as sequence numbers are passed.
1724 */
1725void
1726i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1727{
1728	uint32_t seqno;
1729	int i;
1730
1731	if (list_empty(&ring->request_list))
1732		return;
1733
1734	WARN_ON(i915_verify_lists(ring->dev));
1735
1736	seqno = ring->get_seqno(ring);
1737
1738	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1739		if (seqno >= ring->sync_seqno[i])
1740			ring->sync_seqno[i] = 0;
1741
1742	while (!list_empty(&ring->request_list)) {
1743		struct drm_i915_gem_request *request;
1744
1745		request = list_first_entry(&ring->request_list,
1746					   struct drm_i915_gem_request,
1747					   list);
1748
1749		if (!i915_seqno_passed(seqno, request->seqno))
1750			break;
1751
1752		trace_i915_gem_request_retire(ring, request->seqno);
1753		/* We know the GPU must have read the request to have
1754		 * sent us the seqno + interrupt, so use the position
1755		 * of tail of the request to update the last known position
1756		 * of the GPU head.
1757		 */
1758		ring->last_retired_head = request->tail;
1759
1760		list_del(&request->list);
1761		i915_gem_request_remove_from_client(request);
1762		kfree(request);
1763	}
1764
1765	/* Move any buffers on the active list that are no longer referenced
1766	 * by the ringbuffer to the flushing/inactive lists as appropriate.
1767	 */
1768	while (!list_empty(&ring->active_list)) {
1769		struct drm_i915_gem_object *obj;
1770
1771		obj = list_first_entry(&ring->active_list,
1772				      struct drm_i915_gem_object,
1773				      ring_list);
1774
1775		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1776			break;
1777
1778		if (obj->base.write_domain != 0)
1779			i915_gem_object_move_to_flushing(obj);
1780		else
1781			i915_gem_object_move_to_inactive(obj);
1782	}
1783
1784	if (unlikely(ring->trace_irq_seqno &&
1785		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1786		ring->irq_put(ring);
1787		ring->trace_irq_seqno = 0;
1788	}
1789
1790	WARN_ON(i915_verify_lists(ring->dev));
1791}
1792
1793void
1794i915_gem_retire_requests(struct drm_device *dev)
1795{
1796	drm_i915_private_t *dev_priv = dev->dev_private;
1797	struct intel_ring_buffer *ring;
1798	int i;
1799
1800	for_each_ring(ring, dev_priv, i)
1801		i915_gem_retire_requests_ring(ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1802}
1803
1804static void
1805i915_gem_retire_work_handler(struct work_struct *work)
1806{
1807	drm_i915_private_t *dev_priv;
1808	struct drm_device *dev;
1809	struct intel_ring_buffer *ring;
1810	bool idle;
1811	int i;
1812
1813	dev_priv = container_of(work, drm_i915_private_t,
1814				mm.retire_work.work);
1815	dev = dev_priv->dev;
1816
1817	/* Come back later if the device is busy... */
1818	if (!mutex_trylock(&dev->struct_mutex)) {
1819		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1820		return;
1821	}
1822
1823	i915_gem_retire_requests(dev);
1824
1825	/* Send a periodic flush down the ring so we don't hold onto GEM
1826	 * objects indefinitely.
1827	 */
1828	idle = true;
1829	for_each_ring(ring, dev_priv, i) {
 
 
1830		if (!list_empty(&ring->gpu_write_list)) {
1831			struct drm_i915_gem_request *request;
1832			int ret;
1833
1834			ret = i915_gem_flush_ring(ring,
1835						  0, I915_GEM_GPU_DOMAINS);
1836			request = kzalloc(sizeof(*request), GFP_KERNEL);
1837			if (ret || request == NULL ||
1838			    i915_add_request(ring, NULL, request))
1839			    kfree(request);
1840		}
1841
1842		idle &= list_empty(&ring->request_list);
1843	}
1844
1845	if (!dev_priv->mm.suspended && !idle)
1846		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1847
1848	mutex_unlock(&dev->struct_mutex);
1849}
1850
1851static int
1852i915_gem_check_wedge(struct drm_i915_private *dev_priv)
 
 
 
 
 
1853{
1854	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
 
 
 
 
1855
1856	if (atomic_read(&dev_priv->mm.wedged)) {
1857		struct completion *x = &dev_priv->error_completion;
1858		bool recovery_complete;
1859		unsigned long flags;
1860
1861		/* Give the error handler a chance to run. */
1862		spin_lock_irqsave(&x->wait.lock, flags);
1863		recovery_complete = x->done > 0;
1864		spin_unlock_irqrestore(&x->wait.lock, flags);
1865
1866		return recovery_complete ? -EIO : -EAGAIN;
1867	}
1868
1869	return 0;
1870}
1871
1872/*
1873 * Compare seqno against outstanding lazy request. Emit a request if they are
1874 * equal.
1875 */
1876static int
1877i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1878{
1879	int ret = 0;
1880
1881	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1882
1883	if (seqno == ring->outstanding_lazy_request) {
1884		struct drm_i915_gem_request *request;
1885
1886		request = kzalloc(sizeof(*request), GFP_KERNEL);
1887		if (request == NULL)
1888			return -ENOMEM;
1889
1890		ret = i915_add_request(ring, NULL, request);
1891		if (ret) {
1892			kfree(request);
1893			return ret;
1894		}
1895
1896		BUG_ON(seqno != request->seqno);
1897	}
1898
1899	return ret;
1900}
 
 
 
 
 
 
 
 
 
1901
1902static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1903			bool interruptible)
1904{
1905	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1906	int ret = 0;
1907
1908	if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1909		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910
1911	trace_i915_gem_request_wait_begin(ring, seqno);
1912	if (WARN_ON(!ring->irq_get(ring)))
1913		return -ENODEV;
1914
1915#define EXIT_COND \
1916	(i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1917	atomic_read(&dev_priv->mm.wedged))
1918
1919	if (interruptible)
1920		ret = wait_event_interruptible(ring->irq_queue,
1921					       EXIT_COND);
1922	else
1923		wait_event(ring->irq_queue, EXIT_COND);
1924
1925	ring->irq_put(ring);
1926	trace_i915_gem_request_wait_end(ring, seqno);
1927#undef EXIT_COND
1928
1929	return ret;
1930}
1931
1932/**
1933 * Waits for a sequence number to be signaled, and cleans up the
1934 * request and object lists appropriately for that event.
1935 */
1936int
1937i915_wait_request(struct intel_ring_buffer *ring,
1938		  uint32_t seqno)
1939{
1940	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1941	int ret = 0;
1942
1943	BUG_ON(seqno == 0);
1944
1945	ret = i915_gem_check_wedge(dev_priv);
1946	if (ret)
1947		return ret;
1948
1949	ret = i915_gem_check_olr(ring, seqno);
1950	if (ret)
1951		return ret;
1952
1953	ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible);
1954	if (atomic_read(&dev_priv->mm.wedged))
1955		ret = -EAGAIN;
1956
 
 
 
 
 
 
 
 
 
 
 
 
 
1957	return ret;
1958}
1959
1960/**
1961 * Ensures that all rendering to the object has completed and the object is
1962 * safe to unbind from the GTT or access from the CPU.
1963 */
1964int
1965i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1966{
1967	int ret;
1968
1969	/* This function only exists to support waiting for existing rendering,
1970	 * not for emitting required flushes.
1971	 */
1972	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1973
1974	/* If there is rendering queued on the buffer being evicted, wait for
1975	 * it.
1976	 */
1977	if (obj->active) {
1978		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
1979		if (ret)
1980			return ret;
1981		i915_gem_retire_requests_ring(obj->ring);
1982	}
1983
1984	return 0;
1985}
1986
1987/**
1988 * i915_gem_object_sync - sync an object to a ring.
1989 *
1990 * @obj: object which may be in use on another ring.
1991 * @to: ring we wish to use the object on. May be NULL.
1992 *
1993 * This code is meant to abstract object synchronization with the GPU.
1994 * Calling with NULL implies synchronizing the object with the CPU
1995 * rather than a particular GPU ring.
1996 *
1997 * Returns 0 if successful, else propagates up the lower layer error.
1998 */
1999int
2000i915_gem_object_sync(struct drm_i915_gem_object *obj,
2001		     struct intel_ring_buffer *to)
2002{
2003	struct intel_ring_buffer *from = obj->ring;
2004	u32 seqno;
2005	int ret, idx;
2006
2007	if (from == NULL || to == from)
2008		return 0;
2009
2010	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2011		return i915_gem_object_wait_rendering(obj);
2012
2013	idx = intel_ring_sync_index(from, to);
2014
2015	seqno = obj->last_rendering_seqno;
2016	if (seqno <= from->sync_seqno[idx])
2017		return 0;
2018
2019	ret = i915_gem_check_olr(obj->ring, seqno);
2020	if (ret)
2021		return ret;
2022
2023	ret = to->sync_to(to, from, seqno);
2024	if (!ret)
2025		from->sync_seqno[idx] = seqno;
2026
2027	return ret;
2028}
2029
2030static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2031{
2032	u32 old_write_domain, old_read_domains;
2033
2034	/* Act a barrier for all accesses through the GTT */
2035	mb();
2036
2037	/* Force a pagefault for domain tracking on next user access */
2038	i915_gem_release_mmap(obj);
2039
2040	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2041		return;
2042
2043	old_read_domains = obj->base.read_domains;
2044	old_write_domain = obj->base.write_domain;
2045
2046	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2047	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2048
2049	trace_i915_gem_object_change_domain(obj,
2050					    old_read_domains,
2051					    old_write_domain);
2052}
2053
2054/**
2055 * Unbinds an object from the GTT aperture.
2056 */
2057int
2058i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2059{
2060	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2061	int ret = 0;
2062
2063	if (obj->gtt_space == NULL)
2064		return 0;
2065
2066	if (obj->pin_count)
2067		return -EBUSY;
 
 
2068
2069	ret = i915_gem_object_finish_gpu(obj);
2070	if (ret)
2071		return ret;
2072	/* Continue on if we fail due to EIO, the GPU is hung so we
2073	 * should be safe and we need to cleanup or else we might
2074	 * cause memory corruption through use-after-free.
2075	 */
2076
2077	i915_gem_object_finish_gtt(obj);
2078
2079	/* Move the object to the CPU domain to ensure that
2080	 * any possible CPU writes while it's not in the GTT
2081	 * are flushed when we go to remap it.
2082	 */
2083	if (ret == 0)
2084		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2085	if (ret == -ERESTARTSYS)
2086		return ret;
2087	if (ret) {
2088		/* In the event of a disaster, abandon all caches and
2089		 * hope for the best.
2090		 */
2091		i915_gem_clflush_object(obj);
2092		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2093	}
2094
2095	/* release the fence reg _after_ flushing */
2096	ret = i915_gem_object_put_fence(obj);
2097	if (ret)
2098		return ret;
2099
2100	trace_i915_gem_object_unbind(obj);
2101
2102	if (obj->has_global_gtt_mapping)
2103		i915_gem_gtt_unbind_object(obj);
2104	if (obj->has_aliasing_ppgtt_mapping) {
2105		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2106		obj->has_aliasing_ppgtt_mapping = 0;
2107	}
2108	i915_gem_gtt_finish_object(obj);
2109
2110	i915_gem_object_put_pages_gtt(obj);
2111
2112	list_del_init(&obj->gtt_list);
2113	list_del_init(&obj->mm_list);
2114	/* Avoid an unnecessary call to unbind on rebind. */
2115	obj->map_and_fenceable = true;
2116
2117	drm_mm_put_block(obj->gtt_space);
2118	obj->gtt_space = NULL;
2119	obj->gtt_offset = 0;
2120
2121	if (i915_gem_object_is_purgeable(obj))
2122		i915_gem_object_truncate(obj);
2123
2124	return ret;
2125}
2126
2127int
2128i915_gem_flush_ring(struct intel_ring_buffer *ring,
2129		    uint32_t invalidate_domains,
2130		    uint32_t flush_domains)
2131{
2132	int ret;
2133
2134	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2135		return 0;
2136
2137	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2138
2139	ret = ring->flush(ring, invalidate_domains, flush_domains);
2140	if (ret)
2141		return ret;
2142
2143	if (flush_domains & I915_GEM_GPU_DOMAINS)
2144		i915_gem_process_flushing_list(ring, flush_domains);
2145
2146	return 0;
2147}
2148
2149static int i915_ring_idle(struct intel_ring_buffer *ring)
2150{
2151	int ret;
2152
2153	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2154		return 0;
2155
2156	if (!list_empty(&ring->gpu_write_list)) {
2157		ret = i915_gem_flush_ring(ring,
2158				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2159		if (ret)
2160			return ret;
2161	}
2162
2163	return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2164}
2165
2166int i915_gpu_idle(struct drm_device *dev)
 
2167{
2168	drm_i915_private_t *dev_priv = dev->dev_private;
2169	struct intel_ring_buffer *ring;
2170	int ret, i;
2171
 
 
 
 
 
2172	/* Flush everything onto the inactive list. */
2173	for_each_ring(ring, dev_priv, i) {
2174		ret = i915_ring_idle(ring);
2175		if (ret)
2176			return ret;
2177
2178		/* Is the device fubar? */
2179		if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2180			return -EBUSY;
2181	}
2182
2183	return 0;
2184}
2185
2186static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2187					struct drm_i915_gem_object *obj)
2188{
 
2189	drm_i915_private_t *dev_priv = dev->dev_private;
 
 
2190	uint64_t val;
2191
2192	if (obj) {
2193		u32 size = obj->gtt_space->size;
 
 
 
 
 
 
 
 
 
 
 
 
2194
2195		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2196				 0xfffff000) << 32;
2197		val |= obj->gtt_offset & 0xfffff000;
2198		val |= (uint64_t)((obj->stride / 128) - 1) <<
2199			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2200
2201		if (obj->tiling_mode == I915_TILING_Y)
2202			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2203		val |= I965_FENCE_REG_VALID;
2204	} else
2205		val = 0;
2206
2207	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2208	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2209}
2210
2211static void i965_write_fence_reg(struct drm_device *dev, int reg,
2212				 struct drm_i915_gem_object *obj)
2213{
 
2214	drm_i915_private_t *dev_priv = dev->dev_private;
 
 
2215	uint64_t val;
2216
2217	if (obj) {
2218		u32 size = obj->gtt_space->size;
 
 
 
 
 
2219
2220		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2221				 0xfffff000) << 32;
2222		val |= obj->gtt_offset & 0xfffff000;
2223		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2224		if (obj->tiling_mode == I915_TILING_Y)
2225			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2226		val |= I965_FENCE_REG_VALID;
 
 
 
 
 
2227	} else
2228		val = 0;
2229
2230	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2231	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2232}
2233
2234static void i915_write_fence_reg(struct drm_device *dev, int reg,
2235				 struct drm_i915_gem_object *obj)
2236{
 
2237	drm_i915_private_t *dev_priv = dev->dev_private;
2238	u32 val;
 
 
 
 
 
 
 
 
 
2239
2240	if (obj) {
2241		u32 size = obj->gtt_space->size;
2242		int pitch_val;
2243		int tile_width;
2244
2245		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2246		     (size & -size) != size ||
2247		     (obj->gtt_offset & (size - 1)),
2248		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2249		     obj->gtt_offset, obj->map_and_fenceable, size);
2250
2251		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2252			tile_width = 128;
2253		else
2254			tile_width = 512;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2255
2256		/* Note: pitch better be a power of two tile widths */
2257		pitch_val = obj->stride / tile_width;
2258		pitch_val = ffs(pitch_val) - 1;
2259
2260		val = obj->gtt_offset;
2261		if (obj->tiling_mode == I915_TILING_Y)
2262			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2263		val |= I915_FENCE_SIZE_BITS(size);
2264		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2265		val |= I830_FENCE_REG_VALID;
2266	} else
2267		val = 0;
2268
2269	if (reg < 8)
2270		reg = FENCE_REG_830_0 + reg * 4;
2271	else
2272		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2273
2274	I915_WRITE(reg, val);
2275	POSTING_READ(reg);
2276}
2277
2278static void i830_write_fence_reg(struct drm_device *dev, int reg,
2279				struct drm_i915_gem_object *obj)
2280{
 
2281	drm_i915_private_t *dev_priv = dev->dev_private;
 
 
2282	uint32_t val;
 
2283
2284	if (obj) {
2285		u32 size = obj->gtt_space->size;
2286		uint32_t pitch_val;
2287
2288		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2289		     (size & -size) != size ||
2290		     (obj->gtt_offset & (size - 1)),
2291		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2292		     obj->gtt_offset, size);
2293
2294		pitch_val = obj->stride / 128;
2295		pitch_val = ffs(pitch_val) - 1;
2296
2297		val = obj->gtt_offset;
2298		if (obj->tiling_mode == I915_TILING_Y)
2299			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2300		val |= I830_FENCE_SIZE_BITS(size);
2301		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2302		val |= I830_FENCE_REG_VALID;
2303	} else
2304		val = 0;
2305
2306	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2307	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2308}
 
2309
2310static void i915_gem_write_fence(struct drm_device *dev, int reg,
2311				 struct drm_i915_gem_object *obj)
2312{
2313	switch (INTEL_INFO(dev)->gen) {
2314	case 7:
2315	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2316	case 5:
2317	case 4: i965_write_fence_reg(dev, reg, obj); break;
2318	case 3: i915_write_fence_reg(dev, reg, obj); break;
2319	case 2: i830_write_fence_reg(dev, reg, obj); break;
2320	default: break;
2321	}
2322}
2323
2324static inline int fence_number(struct drm_i915_private *dev_priv,
2325			       struct drm_i915_fence_reg *fence)
2326{
2327	return fence - dev_priv->fence_regs;
2328}
2329
2330static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2331					 struct drm_i915_fence_reg *fence,
2332					 bool enable)
2333{
2334	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2335	int reg = fence_number(dev_priv, fence);
2336
2337	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2338
2339	if (enable) {
2340		obj->fence_reg = reg;
2341		fence->obj = obj;
2342		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2343	} else {
2344		obj->fence_reg = I915_FENCE_REG_NONE;
2345		fence->obj = NULL;
2346		list_del_init(&fence->lru_list);
2347	}
2348}
2349
2350static int
2351i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
 
2352{
2353	int ret;
2354
2355	if (obj->fenced_gpu_access) {
2356		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2357			ret = i915_gem_flush_ring(obj->ring,
2358						  0, obj->base.write_domain);
2359			if (ret)
2360				return ret;
2361		}
2362
2363		obj->fenced_gpu_access = false;
2364	}
2365
2366	if (obj->last_fenced_seqno) {
2367		ret = i915_wait_request(obj->ring, obj->last_fenced_seqno);
2368		if (ret)
2369			return ret;
 
 
 
 
2370
2371		obj->last_fenced_seqno = 0;
 
2372	}
2373
2374	/* Ensure that all CPU reads are completed before installing a fence
2375	 * and all writes before removing the fence.
2376	 */
2377	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2378		mb();
2379
2380	return 0;
2381}
2382
2383int
2384i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2385{
2386	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2387	int ret;
2388
2389	ret = i915_gem_object_flush_fence(obj);
 
 
 
2390	if (ret)
2391		return ret;
2392
2393	if (obj->fence_reg == I915_FENCE_REG_NONE)
2394		return 0;
 
 
2395
2396	i915_gem_object_update_fence(obj,
2397				     &dev_priv->fence_regs[obj->fence_reg],
2398				     false);
2399	i915_gem_object_fence_lost(obj);
2400
2401	return 0;
2402}
2403
2404static struct drm_i915_fence_reg *
2405i915_find_fence_reg(struct drm_device *dev)
 
2406{
2407	struct drm_i915_private *dev_priv = dev->dev_private;
2408	struct drm_i915_fence_reg *reg, *avail;
2409	int i;
2410
2411	/* First try to find a free reg */
2412	avail = NULL;
2413	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2414		reg = &dev_priv->fence_regs[i];
2415		if (!reg->obj)
2416			return reg;
2417
2418		if (!reg->pin_count)
2419			avail = reg;
2420	}
2421
2422	if (avail == NULL)
2423		return NULL;
2424
2425	/* None available, try to steal one or wait for a user to finish */
 
2426	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2427		if (reg->pin_count)
2428			continue;
2429
2430		return reg;
 
 
 
 
 
 
 
 
2431	}
2432
2433	return NULL;
 
 
 
2434}
2435
2436/**
2437 * i915_gem_object_get_fence - set up fencing for an object
2438 * @obj: object to map through a fence reg
 
 
2439 *
2440 * When mapping objects through the GTT, userspace wants to be able to write
2441 * to them without having to worry about swizzling if the object is tiled.
 
2442 * This function walks the fence regs looking for a free one for @obj,
2443 * stealing one if it can't find any.
2444 *
2445 * It then sets up the reg based on the object's properties: address, pitch
2446 * and tiling format.
2447 *
2448 * For an untiled surface, this removes any existing fence.
2449 */
2450int
2451i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
 
2452{
2453	struct drm_device *dev = obj->base.dev;
2454	struct drm_i915_private *dev_priv = dev->dev_private;
2455	bool enable = obj->tiling_mode != I915_TILING_NONE;
2456	struct drm_i915_fence_reg *reg;
2457	int ret;
2458
2459	/* Have we updated the tiling parameters upon the object and so
2460	 * will need to serialise the write to the associated fence register?
2461	 */
2462	if (obj->fence_dirty) {
2463		ret = i915_gem_object_flush_fence(obj);
2464		if (ret)
2465			return ret;
2466	}
2467
2468	/* Just update our place in the LRU if our fence is getting reused. */
2469	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2470		reg = &dev_priv->fence_regs[obj->fence_reg];
2471		if (!obj->fence_dirty) {
2472			list_move_tail(&reg->lru_list,
2473				       &dev_priv->mm.fence_list);
2474			return 0;
2475		}
2476	} else if (enable) {
2477		reg = i915_find_fence_reg(dev);
2478		if (reg == NULL)
2479			return -EDEADLK;
2480
2481		if (reg->obj) {
2482			struct drm_i915_gem_object *old = reg->obj;
2483
2484			ret = i915_gem_object_flush_fence(old);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2485			if (ret)
2486				return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2487
2488			i915_gem_object_fence_lost(old);
 
 
 
2489		}
2490	} else
2491		return 0;
2492
2493	i915_gem_object_update_fence(obj, reg, enable);
2494	obj->fence_dirty = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2495
2496	return 0;
 
 
2497}
2498
2499/**
2500 * Finds free space in the GTT aperture and binds the object there.
2501 */
2502static int
2503i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2504			    unsigned alignment,
2505			    bool map_and_fenceable)
2506{
2507	struct drm_device *dev = obj->base.dev;
2508	drm_i915_private_t *dev_priv = dev->dev_private;
2509	struct drm_mm_node *free_space;
2510	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2511	u32 size, fence_size, fence_alignment, unfenced_alignment;
2512	bool mappable, fenceable;
2513	int ret;
2514
2515	if (obj->madv != I915_MADV_WILLNEED) {
2516		DRM_ERROR("Attempting to bind a purgeable object\n");
2517		return -EINVAL;
2518	}
2519
2520	fence_size = i915_gem_get_gtt_size(dev,
2521					   obj->base.size,
2522					   obj->tiling_mode);
2523	fence_alignment = i915_gem_get_gtt_alignment(dev,
2524						     obj->base.size,
2525						     obj->tiling_mode);
2526	unfenced_alignment =
2527		i915_gem_get_unfenced_gtt_alignment(dev,
2528						    obj->base.size,
2529						    obj->tiling_mode);
2530
2531	if (alignment == 0)
2532		alignment = map_and_fenceable ? fence_alignment :
2533						unfenced_alignment;
2534	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2535		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2536		return -EINVAL;
2537	}
2538
2539	size = map_and_fenceable ? fence_size : obj->base.size;
2540
2541	/* If the object is bigger than the entire aperture, reject it early
2542	 * before evicting everything in a vain attempt to find space.
2543	 */
2544	if (obj->base.size >
2545	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2546		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2547		return -E2BIG;
2548	}
2549
2550 search_free:
2551	if (map_and_fenceable)
2552		free_space =
2553			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2554						    size, alignment, 0,
2555						    dev_priv->mm.gtt_mappable_end,
2556						    0);
2557	else
2558		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2559						size, alignment, 0);
2560
2561	if (free_space != NULL) {
2562		if (map_and_fenceable)
2563			obj->gtt_space =
2564				drm_mm_get_block_range_generic(free_space,
2565							       size, alignment, 0,
2566							       dev_priv->mm.gtt_mappable_end,
2567							       0);
2568		else
2569			obj->gtt_space =
2570				drm_mm_get_block(free_space, size, alignment);
2571	}
2572	if (obj->gtt_space == NULL) {
2573		/* If the gtt is empty and we're still having trouble
2574		 * fitting our object in, we're out of memory.
2575		 */
2576		ret = i915_gem_evict_something(dev, size, alignment,
2577					       map_and_fenceable);
2578		if (ret)
2579			return ret;
2580
2581		goto search_free;
2582	}
2583
2584	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2585	if (ret) {
2586		drm_mm_put_block(obj->gtt_space);
2587		obj->gtt_space = NULL;
2588
2589		if (ret == -ENOMEM) {
2590			/* first try to reclaim some memory by clearing the GTT */
2591			ret = i915_gem_evict_everything(dev, false);
2592			if (ret) {
2593				/* now try to shrink everyone else */
2594				if (gfpmask) {
2595					gfpmask = 0;
2596					goto search_free;
2597				}
2598
2599				return -ENOMEM;
2600			}
2601
2602			goto search_free;
2603		}
2604
2605		return ret;
2606	}
2607
2608	ret = i915_gem_gtt_prepare_object(obj);
2609	if (ret) {
2610		i915_gem_object_put_pages_gtt(obj);
2611		drm_mm_put_block(obj->gtt_space);
2612		obj->gtt_space = NULL;
2613
2614		if (i915_gem_evict_everything(dev, false))
2615			return ret;
2616
2617		goto search_free;
2618	}
2619
2620	if (!dev_priv->mm.aliasing_ppgtt)
2621		i915_gem_gtt_bind_object(obj, obj->cache_level);
2622
2623	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2624	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2625
2626	/* Assert that the object is not currently in any GPU domain. As it
2627	 * wasn't in the GTT, there shouldn't be any way it could have been in
2628	 * a GPU cache
2629	 */
2630	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2631	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2632
2633	obj->gtt_offset = obj->gtt_space->start;
2634
2635	fenceable =
2636		obj->gtt_space->size == fence_size &&
2637		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2638
2639	mappable =
2640		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2641
2642	obj->map_and_fenceable = mappable && fenceable;
2643
2644	trace_i915_gem_object_bind(obj, map_and_fenceable);
2645	return 0;
2646}
2647
2648void
2649i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2650{
2651	/* If we don't have a page list set up, then we're not pinned
2652	 * to GPU, and we can ignore the cache flush because it'll happen
2653	 * again at bind time.
2654	 */
2655	if (obj->pages == NULL)
2656		return;
2657
2658	/* If the GPU is snooping the contents of the CPU cache,
2659	 * we do not need to manually clear the CPU cache lines.  However,
2660	 * the caches are only snooped when the render cache is
2661	 * flushed/invalidated.  As we always have to emit invalidations
2662	 * and flushes when moving into and out of the RENDER domain, correct
2663	 * snooping behaviour occurs naturally as the result of our domain
2664	 * tracking.
2665	 */
2666	if (obj->cache_level != I915_CACHE_NONE)
2667		return;
2668
2669	trace_i915_gem_object_clflush(obj);
2670
2671	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2672}
2673
2674/** Flushes any GPU write domain for the object if it's dirty. */
2675static int
2676i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2677{
2678	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2679		return 0;
2680
2681	/* Queue the GPU write cache flushing we need. */
2682	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2683}
2684
2685/** Flushes the GTT write domain for the object if it's dirty. */
2686static void
2687i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2688{
2689	uint32_t old_write_domain;
2690
2691	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2692		return;
2693
2694	/* No actual flushing is required for the GTT write domain.  Writes
2695	 * to it immediately go to main memory as far as we know, so there's
2696	 * no chipset flush.  It also doesn't land in render cache.
2697	 *
2698	 * However, we do have to enforce the order so that all writes through
2699	 * the GTT land before any writes to the device, such as updates to
2700	 * the GATT itself.
2701	 */
2702	wmb();
2703
2704	old_write_domain = obj->base.write_domain;
2705	obj->base.write_domain = 0;
2706
2707	trace_i915_gem_object_change_domain(obj,
2708					    obj->base.read_domains,
2709					    old_write_domain);
2710}
2711
2712/** Flushes the CPU write domain for the object if it's dirty. */
2713static void
2714i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2715{
2716	uint32_t old_write_domain;
2717
2718	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2719		return;
2720
2721	i915_gem_clflush_object(obj);
2722	intel_gtt_chipset_flush();
2723	old_write_domain = obj->base.write_domain;
2724	obj->base.write_domain = 0;
2725
2726	trace_i915_gem_object_change_domain(obj,
2727					    obj->base.read_domains,
2728					    old_write_domain);
2729}
2730
2731/**
2732 * Moves a single object to the GTT read, and possibly write domain.
2733 *
2734 * This function returns when the move is complete, including waiting on
2735 * flushes to occur.
2736 */
2737int
2738i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2739{
2740	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2741	uint32_t old_write_domain, old_read_domains;
2742	int ret;
2743
2744	/* Not valid to be called on unbound objects. */
2745	if (obj->gtt_space == NULL)
2746		return -EINVAL;
2747
2748	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2749		return 0;
2750
2751	ret = i915_gem_object_flush_gpu_write_domain(obj);
2752	if (ret)
2753		return ret;
2754
2755	if (obj->pending_gpu_write || write) {
2756		ret = i915_gem_object_wait_rendering(obj);
2757		if (ret)
2758			return ret;
2759	}
2760
2761	i915_gem_object_flush_cpu_write_domain(obj);
2762
2763	old_write_domain = obj->base.write_domain;
2764	old_read_domains = obj->base.read_domains;
2765
2766	/* It should now be out of any other write domains, and we can update
2767	 * the domain values for our changes.
2768	 */
2769	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2770	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2771	if (write) {
2772		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2773		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2774		obj->dirty = 1;
2775	}
2776
2777	trace_i915_gem_object_change_domain(obj,
2778					    old_read_domains,
2779					    old_write_domain);
2780
2781	/* And bump the LRU for this access */
2782	if (i915_gem_object_is_inactive(obj))
2783		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2784
2785	return 0;
2786}
2787
2788int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2789				    enum i915_cache_level cache_level)
2790{
2791	struct drm_device *dev = obj->base.dev;
2792	drm_i915_private_t *dev_priv = dev->dev_private;
2793	int ret;
2794
2795	if (obj->cache_level == cache_level)
2796		return 0;
2797
2798	if (obj->pin_count) {
2799		DRM_DEBUG("can not change the cache level of pinned objects\n");
2800		return -EBUSY;
2801	}
2802
2803	if (obj->gtt_space) {
2804		ret = i915_gem_object_finish_gpu(obj);
2805		if (ret)
2806			return ret;
2807
2808		i915_gem_object_finish_gtt(obj);
2809
2810		/* Before SandyBridge, you could not use tiling or fence
2811		 * registers with snooped memory, so relinquish any fences
2812		 * currently pointing to our region in the aperture.
2813		 */
2814		if (INTEL_INFO(obj->base.dev)->gen < 6) {
2815			ret = i915_gem_object_put_fence(obj);
2816			if (ret)
2817				return ret;
2818		}
2819
2820		if (obj->has_global_gtt_mapping)
2821			i915_gem_gtt_bind_object(obj, cache_level);
2822		if (obj->has_aliasing_ppgtt_mapping)
2823			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2824					       obj, cache_level);
2825	}
2826
2827	if (cache_level == I915_CACHE_NONE) {
2828		u32 old_read_domains, old_write_domain;
2829
2830		/* If we're coming from LLC cached, then we haven't
2831		 * actually been tracking whether the data is in the
2832		 * CPU cache or not, since we only allow one bit set
2833		 * in obj->write_domain and have been skipping the clflushes.
2834		 * Just set it to the CPU cache for now.
2835		 */
2836		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2837		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2838
2839		old_read_domains = obj->base.read_domains;
2840		old_write_domain = obj->base.write_domain;
2841
2842		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2843		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2844
2845		trace_i915_gem_object_change_domain(obj,
2846						    old_read_domains,
2847						    old_write_domain);
2848	}
2849
2850	obj->cache_level = cache_level;
2851	return 0;
2852}
2853
2854/*
2855 * Prepare buffer for display plane (scanout, cursors, etc).
2856 * Can be called from an uninterruptible phase (modesetting) and allows
2857 * any flushes to be pipelined (for pageflips).
 
 
 
 
 
2858 */
2859int
2860i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2861				     u32 alignment,
2862				     struct intel_ring_buffer *pipelined)
2863{
2864	u32 old_read_domains, old_write_domain;
2865	int ret;
2866
2867	ret = i915_gem_object_flush_gpu_write_domain(obj);
2868	if (ret)
2869		return ret;
2870
2871	if (pipelined != obj->ring) {
2872		ret = i915_gem_object_sync(obj, pipelined);
2873		if (ret)
2874			return ret;
2875	}
2876
2877	/* The display engine is not coherent with the LLC cache on gen6.  As
2878	 * a result, we make sure that the pinning that is about to occur is
2879	 * done with uncached PTEs. This is lowest common denominator for all
2880	 * chipsets.
2881	 *
2882	 * However for gen6+, we could do better by using the GFDT bit instead
2883	 * of uncaching, which would allow us to flush all the LLC-cached data
2884	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2885	 */
2886	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2887	if (ret)
2888		return ret;
2889
2890	/* As the user may map the buffer once pinned in the display plane
2891	 * (e.g. libkms for the bootup splash), we have to ensure that we
2892	 * always use map_and_fenceable for all scanout buffers.
2893	 */
2894	ret = i915_gem_object_pin(obj, alignment, true);
2895	if (ret)
2896		return ret;
2897
2898	i915_gem_object_flush_cpu_write_domain(obj);
2899
2900	old_write_domain = obj->base.write_domain;
2901	old_read_domains = obj->base.read_domains;
2902
2903	/* It should now be out of any other write domains, and we can update
2904	 * the domain values for our changes.
2905	 */
2906	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2907	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2908
2909	trace_i915_gem_object_change_domain(obj,
2910					    old_read_domains,
2911					    old_write_domain);
2912
2913	return 0;
2914}
2915
2916int
2917i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2918{
2919	int ret;
2920
2921	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2922		return 0;
2923
2924	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2925		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2926		if (ret)
2927			return ret;
2928	}
2929
2930	ret = i915_gem_object_wait_rendering(obj);
2931	if (ret)
2932		return ret;
2933
2934	/* Ensure that we invalidate the GPU's caches and TLBs. */
2935	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2936	return 0;
 
2937}
2938
2939/**
2940 * Moves a single object to the CPU read, and possibly write domain.
2941 *
2942 * This function returns when the move is complete, including waiting on
2943 * flushes to occur.
2944 */
2945int
2946i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2947{
2948	uint32_t old_write_domain, old_read_domains;
2949	int ret;
2950
2951	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
2952		return 0;
2953
2954	ret = i915_gem_object_flush_gpu_write_domain(obj);
2955	if (ret)
2956		return ret;
2957
2958	if (write || obj->pending_gpu_write) {
2959		ret = i915_gem_object_wait_rendering(obj);
2960		if (ret)
2961			return ret;
2962	}
2963
2964	i915_gem_object_flush_gtt_write_domain(obj);
2965
 
 
 
 
 
2966	old_write_domain = obj->base.write_domain;
2967	old_read_domains = obj->base.read_domains;
2968
2969	/* Flush the CPU cache if it's still invalid. */
2970	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2971		i915_gem_clflush_object(obj);
2972
2973		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2974	}
2975
2976	/* It should now be out of any other write domains, and we can update
2977	 * the domain values for our changes.
2978	 */
2979	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2980
2981	/* If we're writing through the CPU, then the GPU read domains will
2982	 * need to be invalidated at next use.
2983	 */
2984	if (write) {
2985		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2986		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2987	}
2988
2989	trace_i915_gem_object_change_domain(obj,
2990					    old_read_domains,
2991					    old_write_domain);
2992
2993	return 0;
2994}
2995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2996/* Throttle our rendering by waiting until the ring has completed our requests
2997 * emitted over 20 msec ago.
2998 *
2999 * Note that if we were to use the current jiffies each time around the loop,
3000 * we wouldn't escape the function with any frames outstanding if the time to
3001 * render a frame was over 20ms.
3002 *
3003 * This should get us reasonable parallelism between CPU and GPU but also
3004 * relatively low latency when blocking on a particular request to finish.
3005 */
3006static int
3007i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3008{
3009	struct drm_i915_private *dev_priv = dev->dev_private;
3010	struct drm_i915_file_private *file_priv = file->driver_priv;
3011	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3012	struct drm_i915_gem_request *request;
3013	struct intel_ring_buffer *ring = NULL;
3014	u32 seqno = 0;
3015	int ret;
3016
3017	if (atomic_read(&dev_priv->mm.wedged))
3018		return -EIO;
3019
3020	spin_lock(&file_priv->mm.lock);
3021	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3022		if (time_after_eq(request->emitted_jiffies, recent_enough))
3023			break;
3024
3025		ring = request->ring;
3026		seqno = request->seqno;
3027	}
3028	spin_unlock(&file_priv->mm.lock);
3029
3030	if (seqno == 0)
3031		return 0;
3032
3033	ret = __wait_seqno(ring, seqno, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3034	if (ret == 0)
3035		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3036
3037	return ret;
3038}
3039
3040int
3041i915_gem_object_pin(struct drm_i915_gem_object *obj,
3042		    uint32_t alignment,
3043		    bool map_and_fenceable)
3044{
 
 
3045	int ret;
3046
3047	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3048		return -EBUSY;
3049
3050	if (obj->gtt_space != NULL) {
3051		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3052		    (map_and_fenceable && !obj->map_and_fenceable)) {
3053			WARN(obj->pin_count,
3054			     "bo is already pinned with incorrect alignment:"
3055			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3056			     " obj->map_and_fenceable=%d\n",
3057			     obj->gtt_offset, alignment,
3058			     map_and_fenceable,
3059			     obj->map_and_fenceable);
3060			ret = i915_gem_object_unbind(obj);
3061			if (ret)
3062				return ret;
3063		}
3064	}
3065
3066	if (obj->gtt_space == NULL) {
3067		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3068						  map_and_fenceable);
3069		if (ret)
3070			return ret;
3071	}
3072
3073	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3074		i915_gem_gtt_bind_object(obj, obj->cache_level);
3075
3076	obj->pin_count++;
 
3077	obj->pin_mappable |= map_and_fenceable;
3078
 
3079	return 0;
3080}
3081
3082void
3083i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3084{
 
 
 
 
3085	BUG_ON(obj->pin_count == 0);
3086	BUG_ON(obj->gtt_space == NULL);
3087
3088	if (--obj->pin_count == 0)
 
 
 
3089		obj->pin_mappable = false;
 
 
3090}
3091
3092int
3093i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3094		   struct drm_file *file)
3095{
3096	struct drm_i915_gem_pin *args = data;
3097	struct drm_i915_gem_object *obj;
3098	int ret;
3099
3100	ret = i915_mutex_lock_interruptible(dev);
3101	if (ret)
3102		return ret;
3103
3104	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3105	if (&obj->base == NULL) {
3106		ret = -ENOENT;
3107		goto unlock;
3108	}
3109
3110	if (obj->madv != I915_MADV_WILLNEED) {
3111		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3112		ret = -EINVAL;
3113		goto out;
3114	}
3115
3116	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3117		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3118			  args->handle);
3119		ret = -EINVAL;
3120		goto out;
3121	}
3122
3123	obj->user_pin_count++;
3124	obj->pin_filp = file;
3125	if (obj->user_pin_count == 1) {
3126		ret = i915_gem_object_pin(obj, args->alignment, true);
3127		if (ret)
3128			goto out;
3129	}
3130
3131	/* XXX - flush the CPU caches for pinned objects
3132	 * as the X server doesn't manage domains yet
3133	 */
3134	i915_gem_object_flush_cpu_write_domain(obj);
3135	args->offset = obj->gtt_offset;
3136out:
3137	drm_gem_object_unreference(&obj->base);
3138unlock:
3139	mutex_unlock(&dev->struct_mutex);
3140	return ret;
3141}
3142
3143int
3144i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3145		     struct drm_file *file)
3146{
3147	struct drm_i915_gem_pin *args = data;
3148	struct drm_i915_gem_object *obj;
3149	int ret;
3150
3151	ret = i915_mutex_lock_interruptible(dev);
3152	if (ret)
3153		return ret;
3154
3155	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3156	if (&obj->base == NULL) {
3157		ret = -ENOENT;
3158		goto unlock;
3159	}
3160
3161	if (obj->pin_filp != file) {
3162		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3163			  args->handle);
3164		ret = -EINVAL;
3165		goto out;
3166	}
3167	obj->user_pin_count--;
3168	if (obj->user_pin_count == 0) {
3169		obj->pin_filp = NULL;
3170		i915_gem_object_unpin(obj);
3171	}
3172
3173out:
3174	drm_gem_object_unreference(&obj->base);
3175unlock:
3176	mutex_unlock(&dev->struct_mutex);
3177	return ret;
3178}
3179
3180int
3181i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3182		    struct drm_file *file)
3183{
3184	struct drm_i915_gem_busy *args = data;
3185	struct drm_i915_gem_object *obj;
3186	int ret;
3187
3188	ret = i915_mutex_lock_interruptible(dev);
3189	if (ret)
3190		return ret;
3191
3192	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3193	if (&obj->base == NULL) {
3194		ret = -ENOENT;
3195		goto unlock;
3196	}
3197
3198	/* Count all active objects as busy, even if they are currently not used
3199	 * by the gpu. Users of this interface expect objects to eventually
3200	 * become non-busy without any further actions, therefore emit any
3201	 * necessary flushes here.
3202	 */
3203	args->busy = obj->active;
3204	if (args->busy) {
3205		/* Unconditionally flush objects, even when the gpu still uses this
3206		 * object. Userspace calling this function indicates that it wants to
3207		 * use this buffer rather sooner than later, so issuing the required
3208		 * flush earlier is beneficial.
3209		 */
3210		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3211			ret = i915_gem_flush_ring(obj->ring,
3212						  0, obj->base.write_domain);
3213		} else {
3214			ret = i915_gem_check_olr(obj->ring,
3215						 obj->last_rendering_seqno);
 
 
 
 
 
 
 
 
 
3216		}
3217
3218		/* Update the active list for the hardware's current position.
3219		 * Otherwise this only updates on a delayed timer or when irqs
3220		 * are actually unmasked, and our working set ends up being
3221		 * larger than required.
3222		 */
3223		i915_gem_retire_requests_ring(obj->ring);
3224
3225		args->busy = obj->active;
3226	}
3227
3228	drm_gem_object_unreference(&obj->base);
3229unlock:
3230	mutex_unlock(&dev->struct_mutex);
3231	return ret;
3232}
3233
3234int
3235i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3236			struct drm_file *file_priv)
3237{
3238	return i915_gem_ring_throttle(dev, file_priv);
3239}
3240
3241int
3242i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3243		       struct drm_file *file_priv)
3244{
3245	struct drm_i915_gem_madvise *args = data;
3246	struct drm_i915_gem_object *obj;
3247	int ret;
3248
3249	switch (args->madv) {
3250	case I915_MADV_DONTNEED:
3251	case I915_MADV_WILLNEED:
3252	    break;
3253	default:
3254	    return -EINVAL;
3255	}
3256
3257	ret = i915_mutex_lock_interruptible(dev);
3258	if (ret)
3259		return ret;
3260
3261	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3262	if (&obj->base == NULL) {
3263		ret = -ENOENT;
3264		goto unlock;
3265	}
3266
3267	if (obj->pin_count) {
3268		ret = -EINVAL;
3269		goto out;
3270	}
3271
3272	if (obj->madv != __I915_MADV_PURGED)
3273		obj->madv = args->madv;
3274
3275	/* if the object is no longer bound, discard its backing storage */
3276	if (i915_gem_object_is_purgeable(obj) &&
3277	    obj->gtt_space == NULL)
3278		i915_gem_object_truncate(obj);
3279
3280	args->retained = obj->madv != __I915_MADV_PURGED;
3281
3282out:
3283	drm_gem_object_unreference(&obj->base);
3284unlock:
3285	mutex_unlock(&dev->struct_mutex);
3286	return ret;
3287}
3288
3289struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3290						  size_t size)
3291{
3292	struct drm_i915_private *dev_priv = dev->dev_private;
3293	struct drm_i915_gem_object *obj;
3294	struct address_space *mapping;
3295	u32 mask;
3296
3297	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3298	if (obj == NULL)
3299		return NULL;
3300
3301	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3302		kfree(obj);
3303		return NULL;
3304	}
3305
3306	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3307	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3308		/* 965gm cannot relocate objects above 4GiB. */
3309		mask &= ~__GFP_HIGHMEM;
3310		mask |= __GFP_DMA32;
3311	}
3312
3313	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3314	mapping_set_gfp_mask(mapping, mask);
3315
3316	i915_gem_info_add_obj(dev_priv, size);
3317
3318	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3319	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3320
3321	if (HAS_LLC(dev)) {
3322		/* On some devices, we can have the GPU use the LLC (the CPU
3323		 * cache) for about a 10% performance improvement
3324		 * compared to uncached.  Graphics requests other than
3325		 * display scanout are coherent with the CPU in
3326		 * accessing this cache.  This means in this mode we
3327		 * don't need to clflush on the CPU side, and on the
3328		 * GPU side we only need to flush internal caches to
3329		 * get data visible to the CPU.
3330		 *
3331		 * However, we maintain the display planes as UC, and so
3332		 * need to rebind when first used as such.
3333		 */
3334		obj->cache_level = I915_CACHE_LLC;
3335	} else
3336		obj->cache_level = I915_CACHE_NONE;
3337
3338	obj->base.driver_private = NULL;
3339	obj->fence_reg = I915_FENCE_REG_NONE;
3340	INIT_LIST_HEAD(&obj->mm_list);
3341	INIT_LIST_HEAD(&obj->gtt_list);
3342	INIT_LIST_HEAD(&obj->ring_list);
3343	INIT_LIST_HEAD(&obj->exec_list);
3344	INIT_LIST_HEAD(&obj->gpu_write_list);
3345	obj->madv = I915_MADV_WILLNEED;
3346	/* Avoid an unnecessary call to unbind on the first bind. */
3347	obj->map_and_fenceable = true;
3348
3349	return obj;
3350}
3351
3352int i915_gem_init_object(struct drm_gem_object *obj)
3353{
3354	BUG();
3355
3356	return 0;
3357}
3358
3359void i915_gem_free_object(struct drm_gem_object *gem_obj)
3360{
3361	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3362	struct drm_device *dev = obj->base.dev;
3363	drm_i915_private_t *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
3364
3365	trace_i915_gem_object_destroy(obj);
3366
3367	if (gem_obj->import_attach)
3368		drm_prime_gem_destroy(gem_obj, obj->sg_table);
3369
3370	if (obj->phys_obj)
3371		i915_gem_detach_phys_object(dev, obj);
3372
3373	obj->pin_count = 0;
3374	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3375		bool was_interruptible;
3376
3377		was_interruptible = dev_priv->mm.interruptible;
3378		dev_priv->mm.interruptible = false;
3379
3380		WARN_ON(i915_gem_object_unbind(obj));
3381
3382		dev_priv->mm.interruptible = was_interruptible;
3383	}
3384
3385	if (obj->base.map_list.map)
3386		drm_gem_free_mmap_offset(&obj->base);
3387
3388	drm_gem_object_release(&obj->base);
3389	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3390
 
3391	kfree(obj->bit_17);
3392	kfree(obj);
3393}
3394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3395int
3396i915_gem_idle(struct drm_device *dev)
3397{
3398	drm_i915_private_t *dev_priv = dev->dev_private;
3399	int ret;
3400
3401	mutex_lock(&dev->struct_mutex);
3402
3403	if (dev_priv->mm.suspended) {
3404		mutex_unlock(&dev->struct_mutex);
3405		return 0;
3406	}
3407
3408	ret = i915_gpu_idle(dev);
3409	if (ret) {
3410		mutex_unlock(&dev->struct_mutex);
3411		return ret;
3412	}
3413	i915_gem_retire_requests(dev);
3414
3415	/* Under UMS, be paranoid and evict. */
3416	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3417		i915_gem_evict_everything(dev, false);
 
 
 
 
 
3418
3419	i915_gem_reset_fences(dev);
3420
3421	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3422	 * We need to replace this with a semaphore, or something.
3423	 * And not confound mm.suspended!
3424	 */
3425	dev_priv->mm.suspended = 1;
3426	del_timer_sync(&dev_priv->hangcheck_timer);
3427
3428	i915_kernel_lost_context(dev);
3429	i915_gem_cleanup_ringbuffer(dev);
3430
3431	mutex_unlock(&dev->struct_mutex);
3432
3433	/* Cancel the retire work handler, which should be idle now. */
3434	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3435
3436	return 0;
3437}
3438
3439void i915_gem_init_swizzling(struct drm_device *dev)
3440{
3441	drm_i915_private_t *dev_priv = dev->dev_private;
3442
3443	if (INTEL_INFO(dev)->gen < 5 ||
3444	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3445		return;
3446
3447	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3448				 DISP_TILE_SURFACE_SWIZZLING);
3449
3450	if (IS_GEN5(dev))
3451		return;
3452
3453	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3454	if (IS_GEN6(dev))
3455		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3456	else
3457		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3458}
3459
3460void i915_gem_init_ppgtt(struct drm_device *dev)
3461{
3462	drm_i915_private_t *dev_priv = dev->dev_private;
3463	uint32_t pd_offset;
3464	struct intel_ring_buffer *ring;
3465	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3466	uint32_t __iomem *pd_addr;
3467	uint32_t pd_entry;
3468	int i;
3469
3470	if (!dev_priv->mm.aliasing_ppgtt)
3471		return;
3472
3473
3474	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3475	for (i = 0; i < ppgtt->num_pd_entries; i++) {
3476		dma_addr_t pt_addr;
3477
3478		if (dev_priv->mm.gtt->needs_dmar)
3479			pt_addr = ppgtt->pt_dma_addr[i];
3480		else
3481			pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3482
3483		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3484		pd_entry |= GEN6_PDE_VALID;
3485
3486		writel(pd_entry, pd_addr + i);
3487	}
3488	readl(pd_addr);
3489
3490	pd_offset = ppgtt->pd_offset;
3491	pd_offset /= 64; /* in cachelines, */
3492	pd_offset <<= 16;
3493
3494	if (INTEL_INFO(dev)->gen == 6) {
3495		uint32_t ecochk, gab_ctl, ecobits;
3496
3497		ecobits = I915_READ(GAC_ECO_BITS); 
3498		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3499
3500		gab_ctl = I915_READ(GAB_CTL);
3501		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3502
3503		ecochk = I915_READ(GAM_ECOCHK);
3504		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3505				       ECOCHK_PPGTT_CACHE64B);
3506		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3507	} else if (INTEL_INFO(dev)->gen >= 7) {
3508		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3509		/* GFX_MODE is per-ring on gen7+ */
3510	}
3511
3512	for_each_ring(ring, dev_priv, i) {
3513		if (INTEL_INFO(dev)->gen >= 7)
3514			I915_WRITE(RING_MODE_GEN7(ring),
3515				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3516
3517		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3518		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3519	}
3520}
3521
3522int
3523i915_gem_init_hw(struct drm_device *dev)
3524{
3525	drm_i915_private_t *dev_priv = dev->dev_private;
3526	int ret;
3527
3528	i915_gem_init_swizzling(dev);
3529
3530	ret = intel_init_render_ring_buffer(dev);
3531	if (ret)
3532		return ret;
3533
3534	if (HAS_BSD(dev)) {
3535		ret = intel_init_bsd_ring_buffer(dev);
3536		if (ret)
3537			goto cleanup_render_ring;
3538	}
3539
3540	if (HAS_BLT(dev)) {
3541		ret = intel_init_blt_ring_buffer(dev);
3542		if (ret)
3543			goto cleanup_bsd_ring;
3544	}
3545
3546	dev_priv->next_seqno = 1;
3547
3548	i915_gem_init_ppgtt(dev);
3549
3550	return 0;
3551
3552cleanup_bsd_ring:
3553	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3554cleanup_render_ring:
3555	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3556	return ret;
3557}
3558
3559static bool
3560intel_enable_ppgtt(struct drm_device *dev)
3561{
3562	if (i915_enable_ppgtt >= 0)
3563		return i915_enable_ppgtt;
3564
3565#ifdef CONFIG_INTEL_IOMMU
3566	/* Disable ppgtt on SNB if VT-d is on. */
3567	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3568		return false;
3569#endif
3570
3571	return true;
3572}
3573
3574int i915_gem_init(struct drm_device *dev)
3575{
3576	struct drm_i915_private *dev_priv = dev->dev_private;
3577	unsigned long gtt_size, mappable_size;
3578	int ret;
3579
3580	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3581	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3582
3583	mutex_lock(&dev->struct_mutex);
3584	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3585		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
3586		 * aperture accordingly when using aliasing ppgtt. */
3587		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3588
3589		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3590
3591		ret = i915_gem_init_aliasing_ppgtt(dev);
3592		if (ret) {
3593			mutex_unlock(&dev->struct_mutex);
3594			return ret;
3595		}
3596	} else {
3597		/* Let GEM Manage all of the aperture.
3598		 *
3599		 * However, leave one page at the end still bound to the scratch
3600		 * page.  There are a number of places where the hardware
3601		 * apparently prefetches past the end of the object, and we've
3602		 * seen multiple hangs with the GPU head pointer stuck in a
3603		 * batchbuffer bound at the last page of the aperture.  One page
3604		 * should be enough to keep any prefetching inside of the
3605		 * aperture.
3606		 */
3607		i915_gem_init_global_gtt(dev, 0, mappable_size,
3608					 gtt_size);
3609	}
3610
3611	ret = i915_gem_init_hw(dev);
3612	mutex_unlock(&dev->struct_mutex);
3613	if (ret) {
3614		i915_gem_cleanup_aliasing_ppgtt(dev);
3615		return ret;
3616	}
3617
3618	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3619	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3620		dev_priv->dri1.allow_batchbuffer = 1;
3621	return 0;
3622}
3623
3624void
3625i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3626{
3627	drm_i915_private_t *dev_priv = dev->dev_private;
3628	struct intel_ring_buffer *ring;
3629	int i;
3630
3631	for_each_ring(ring, dev_priv, i)
3632		intel_cleanup_ring_buffer(ring);
3633}
3634
3635int
3636i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3637		       struct drm_file *file_priv)
3638{
3639	drm_i915_private_t *dev_priv = dev->dev_private;
3640	int ret;
3641
3642	if (drm_core_check_feature(dev, DRIVER_MODESET))
3643		return 0;
3644
3645	if (atomic_read(&dev_priv->mm.wedged)) {
3646		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3647		atomic_set(&dev_priv->mm.wedged, 0);
3648	}
3649
3650	mutex_lock(&dev->struct_mutex);
3651	dev_priv->mm.suspended = 0;
3652
3653	ret = i915_gem_init_hw(dev);
3654	if (ret != 0) {
3655		mutex_unlock(&dev->struct_mutex);
3656		return ret;
3657	}
3658
3659	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3660	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3661	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
 
 
 
 
3662	mutex_unlock(&dev->struct_mutex);
3663
3664	ret = drm_irq_install(dev);
3665	if (ret)
3666		goto cleanup_ringbuffer;
3667
3668	return 0;
3669
3670cleanup_ringbuffer:
3671	mutex_lock(&dev->struct_mutex);
3672	i915_gem_cleanup_ringbuffer(dev);
3673	dev_priv->mm.suspended = 1;
3674	mutex_unlock(&dev->struct_mutex);
3675
3676	return ret;
3677}
3678
3679int
3680i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3681		       struct drm_file *file_priv)
3682{
3683	if (drm_core_check_feature(dev, DRIVER_MODESET))
3684		return 0;
3685
3686	drm_irq_uninstall(dev);
3687	return i915_gem_idle(dev);
3688}
3689
3690void
3691i915_gem_lastclose(struct drm_device *dev)
3692{
3693	int ret;
3694
3695	if (drm_core_check_feature(dev, DRIVER_MODESET))
3696		return;
3697
3698	ret = i915_gem_idle(dev);
3699	if (ret)
3700		DRM_ERROR("failed to idle hardware: %d\n", ret);
3701}
3702
3703static void
3704init_ring_lists(struct intel_ring_buffer *ring)
3705{
3706	INIT_LIST_HEAD(&ring->active_list);
3707	INIT_LIST_HEAD(&ring->request_list);
3708	INIT_LIST_HEAD(&ring->gpu_write_list);
3709}
3710
3711void
3712i915_gem_load(struct drm_device *dev)
3713{
3714	int i;
3715	drm_i915_private_t *dev_priv = dev->dev_private;
3716
3717	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3718	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3719	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
 
3720	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
 
3721	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3722	for (i = 0; i < I915_NUM_RINGS; i++)
3723		init_ring_lists(&dev_priv->ring[i]);
3724	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3725		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3726	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3727			  i915_gem_retire_work_handler);
3728	init_completion(&dev_priv->error_completion);
3729
3730	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3731	if (IS_GEN3(dev)) {
3732		I915_WRITE(MI_ARB_STATE,
3733			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
 
 
 
 
3734	}
3735
3736	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3737
3738	/* Old X drivers will take 0-2 for front, back, depth buffers */
3739	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3740		dev_priv->fence_reg_start = 3;
3741
3742	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3743		dev_priv->num_fence_regs = 16;
3744	else
3745		dev_priv->num_fence_regs = 8;
3746
3747	/* Initialize fence registers to zero */
3748	i915_gem_reset_fences(dev);
 
 
3749
3750	i915_gem_detect_bit_6_swizzle(dev);
3751	init_waitqueue_head(&dev_priv->pending_flip_queue);
3752
3753	dev_priv->mm.interruptible = true;
3754
3755	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3756	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3757	register_shrinker(&dev_priv->mm.inactive_shrinker);
3758}
3759
3760/*
3761 * Create a physically contiguous memory object for this object
3762 * e.g. for cursor + overlay regs
3763 */
3764static int i915_gem_init_phys_object(struct drm_device *dev,
3765				     int id, int size, int align)
3766{
3767	drm_i915_private_t *dev_priv = dev->dev_private;
3768	struct drm_i915_gem_phys_object *phys_obj;
3769	int ret;
3770
3771	if (dev_priv->mm.phys_objs[id - 1] || !size)
3772		return 0;
3773
3774	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3775	if (!phys_obj)
3776		return -ENOMEM;
3777
3778	phys_obj->id = id;
3779
3780	phys_obj->handle = drm_pci_alloc(dev, size, align);
3781	if (!phys_obj->handle) {
3782		ret = -ENOMEM;
3783		goto kfree_obj;
3784	}
3785#ifdef CONFIG_X86
3786	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3787#endif
3788
3789	dev_priv->mm.phys_objs[id - 1] = phys_obj;
3790
3791	return 0;
3792kfree_obj:
3793	kfree(phys_obj);
3794	return ret;
3795}
3796
3797static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3798{
3799	drm_i915_private_t *dev_priv = dev->dev_private;
3800	struct drm_i915_gem_phys_object *phys_obj;
3801
3802	if (!dev_priv->mm.phys_objs[id - 1])
3803		return;
3804
3805	phys_obj = dev_priv->mm.phys_objs[id - 1];
3806	if (phys_obj->cur_obj) {
3807		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3808	}
3809
3810#ifdef CONFIG_X86
3811	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3812#endif
3813	drm_pci_free(dev, phys_obj->handle);
3814	kfree(phys_obj);
3815	dev_priv->mm.phys_objs[id - 1] = NULL;
3816}
3817
3818void i915_gem_free_all_phys_object(struct drm_device *dev)
3819{
3820	int i;
3821
3822	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3823		i915_gem_free_phys_object(dev, i);
3824}
3825
3826void i915_gem_detach_phys_object(struct drm_device *dev,
3827				 struct drm_i915_gem_object *obj)
3828{
3829	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3830	char *vaddr;
3831	int i;
3832	int page_count;
3833
3834	if (!obj->phys_obj)
3835		return;
3836	vaddr = obj->phys_obj->handle->vaddr;
3837
3838	page_count = obj->base.size / PAGE_SIZE;
3839	for (i = 0; i < page_count; i++) {
3840		struct page *page = shmem_read_mapping_page(mapping, i);
3841		if (!IS_ERR(page)) {
3842			char *dst = kmap_atomic(page);
3843			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3844			kunmap_atomic(dst);
3845
3846			drm_clflush_pages(&page, 1);
3847
3848			set_page_dirty(page);
3849			mark_page_accessed(page);
3850			page_cache_release(page);
3851		}
3852	}
3853	intel_gtt_chipset_flush();
3854
3855	obj->phys_obj->cur_obj = NULL;
3856	obj->phys_obj = NULL;
3857}
3858
3859int
3860i915_gem_attach_phys_object(struct drm_device *dev,
3861			    struct drm_i915_gem_object *obj,
3862			    int id,
3863			    int align)
3864{
3865	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3866	drm_i915_private_t *dev_priv = dev->dev_private;
3867	int ret = 0;
3868	int page_count;
3869	int i;
3870
3871	if (id > I915_MAX_PHYS_OBJECT)
3872		return -EINVAL;
3873
3874	if (obj->phys_obj) {
3875		if (obj->phys_obj->id == id)
3876			return 0;
3877		i915_gem_detach_phys_object(dev, obj);
3878	}
3879
3880	/* create a new object */
3881	if (!dev_priv->mm.phys_objs[id - 1]) {
3882		ret = i915_gem_init_phys_object(dev, id,
3883						obj->base.size, align);
3884		if (ret) {
3885			DRM_ERROR("failed to init phys object %d size: %zu\n",
3886				  id, obj->base.size);
3887			return ret;
3888		}
3889	}
3890
3891	/* bind to the object */
3892	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3893	obj->phys_obj->cur_obj = obj;
3894
3895	page_count = obj->base.size / PAGE_SIZE;
3896
3897	for (i = 0; i < page_count; i++) {
3898		struct page *page;
3899		char *dst, *src;
3900
3901		page = shmem_read_mapping_page(mapping, i);
3902		if (IS_ERR(page))
3903			return PTR_ERR(page);
3904
3905		src = kmap_atomic(page);
3906		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3907		memcpy(dst, src, PAGE_SIZE);
3908		kunmap_atomic(src);
3909
3910		mark_page_accessed(page);
3911		page_cache_release(page);
3912	}
3913
3914	return 0;
3915}
3916
3917static int
3918i915_gem_phys_pwrite(struct drm_device *dev,
3919		     struct drm_i915_gem_object *obj,
3920		     struct drm_i915_gem_pwrite *args,
3921		     struct drm_file *file_priv)
3922{
3923	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3924	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3925
3926	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3927		unsigned long unwritten;
3928
3929		/* The physical object once assigned is fixed for the lifetime
3930		 * of the obj, so we can safely drop the lock and continue
3931		 * to access vaddr.
3932		 */
3933		mutex_unlock(&dev->struct_mutex);
3934		unwritten = copy_from_user(vaddr, user_data, args->size);
3935		mutex_lock(&dev->struct_mutex);
3936		if (unwritten)
3937			return -EFAULT;
3938	}
3939
3940	intel_gtt_chipset_flush();
3941	return 0;
3942}
3943
3944void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3945{
3946	struct drm_i915_file_private *file_priv = file->driver_priv;
3947
3948	/* Clean up our request list when the client is going away, so that
3949	 * later retire_requests won't dereference our soon-to-be-gone
3950	 * file_priv.
3951	 */
3952	spin_lock(&file_priv->mm.lock);
3953	while (!list_empty(&file_priv->mm.request_list)) {
3954		struct drm_i915_gem_request *request;
3955
3956		request = list_first_entry(&file_priv->mm.request_list,
3957					   struct drm_i915_gem_request,
3958					   client_list);
3959		list_del(&request->client_list);
3960		request->file_priv = NULL;
3961	}
3962	spin_unlock(&file_priv->mm.lock);
3963}
3964
3965static int
3966i915_gpu_is_active(struct drm_device *dev)
3967{
3968	drm_i915_private_t *dev_priv = dev->dev_private;
3969	int lists_empty;
3970
3971	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
3972		      list_empty(&dev_priv->mm.active_list);
3973
3974	return !lists_empty;
3975}
3976
3977static int
3978i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
3979{
3980	struct drm_i915_private *dev_priv =
3981		container_of(shrinker,
3982			     struct drm_i915_private,
3983			     mm.inactive_shrinker);
3984	struct drm_device *dev = dev_priv->dev;
3985	struct drm_i915_gem_object *obj, *next;
3986	int nr_to_scan = sc->nr_to_scan;
3987	int cnt;
3988
3989	if (!mutex_trylock(&dev->struct_mutex))
3990		return 0;
3991
3992	/* "fast-path" to count number of available objects */
3993	if (nr_to_scan == 0) {
3994		cnt = 0;
3995		list_for_each_entry(obj,
3996				    &dev_priv->mm.inactive_list,
3997				    mm_list)
3998			cnt++;
3999		mutex_unlock(&dev->struct_mutex);
4000		return cnt / 100 * sysctl_vfs_cache_pressure;
4001	}
4002
4003rescan:
4004	/* first scan for clean buffers */
4005	i915_gem_retire_requests(dev);
4006
4007	list_for_each_entry_safe(obj, next,
4008				 &dev_priv->mm.inactive_list,
4009				 mm_list) {
4010		if (i915_gem_object_is_purgeable(obj)) {
4011			if (i915_gem_object_unbind(obj) == 0 &&
4012			    --nr_to_scan == 0)
4013				break;
4014		}
4015	}
4016
4017	/* second pass, evict/count anything still on the inactive list */
4018	cnt = 0;
4019	list_for_each_entry_safe(obj, next,
4020				 &dev_priv->mm.inactive_list,
4021				 mm_list) {
4022		if (nr_to_scan &&
4023		    i915_gem_object_unbind(obj) == 0)
4024			nr_to_scan--;
4025		else
4026			cnt++;
4027	}
4028
4029	if (nr_to_scan && i915_gpu_is_active(dev)) {
4030		/*
4031		 * We are desperate for pages, so as a last resort, wait
4032		 * for the GPU to finish and discard whatever we can.
4033		 * This has a dramatic impact to reduce the number of
4034		 * OOM-killer events whilst running the GPU aggressively.
4035		 */
4036		if (i915_gpu_idle(dev) == 0)
4037			goto rescan;
4038	}
4039	mutex_unlock(&dev->struct_mutex);
4040	return cnt / 100 * sysctl_vfs_cache_pressure;
4041}