Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include "drmP.h"
  29#include "drm.h"
  30#include "i915_drm.h"
  31#include "i915_drv.h"
  32#include "i915_trace.h"
  33#include "intel_drv.h"
  34#include <linux/shmem_fs.h>
  35#include <linux/slab.h>
  36#include <linux/swap.h>
  37#include <linux/pci.h>
 
  38
  39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  42static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  43							  bool write);
  44static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  45								  uint64_t offset,
  46								  uint64_t size);
  47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  48static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  49						    unsigned alignment,
  50						    bool map_and_fenceable);
  51static void i915_gem_clear_fence_reg(struct drm_device *dev,
  52				     struct drm_i915_fence_reg *reg);
  53static int i915_gem_phys_pwrite(struct drm_device *dev,
  54				struct drm_i915_gem_object *obj,
  55				struct drm_i915_gem_pwrite *args,
  56				struct drm_file *file);
  57static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  58
  59static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  60				    struct shrink_control *sc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61
  62/* some bookkeeping */
  63static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  64				  size_t size)
  65{
 
  66	dev_priv->mm.object_count++;
  67	dev_priv->mm.object_memory += size;
 
  68}
  69
  70static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  71				     size_t size)
  72{
 
  73	dev_priv->mm.object_count--;
  74	dev_priv->mm.object_memory -= size;
 
  75}
  76
  77static int
  78i915_gem_wait_for_error(struct drm_device *dev)
  79{
  80	struct drm_i915_private *dev_priv = dev->dev_private;
  81	struct completion *x = &dev_priv->error_completion;
  82	unsigned long flags;
  83	int ret;
  84
  85	if (!atomic_read(&dev_priv->mm.wedged))
 
 
  86		return 0;
  87
  88	ret = wait_for_completion_interruptible(x);
  89	if (ret)
 
 
 
 
 
 
 
 
 
 
  90		return ret;
  91
  92	if (atomic_read(&dev_priv->mm.wedged)) {
  93		/* GPU is hung, bump the completion count to account for
  94		 * the token we just consumed so that we never hit zero and
  95		 * end up waiting upon a subsequent completion event that
  96		 * will never happen.
  97		 */
  98		spin_lock_irqsave(&x->wait.lock, flags);
  99		x->done++;
 100		spin_unlock_irqrestore(&x->wait.lock, flags);
 101	}
 
 
 102	return 0;
 103}
 104
 105int i915_mutex_lock_interruptible(struct drm_device *dev)
 106{
 
 107	int ret;
 108
 109	ret = i915_gem_wait_for_error(dev);
 110	if (ret)
 111		return ret;
 112
 113	ret = mutex_lock_interruptible(&dev->struct_mutex);
 114	if (ret)
 115		return ret;
 116
 117	WARN_ON(i915_verify_lists(dev));
 118	return 0;
 119}
 120
 121static inline bool
 122i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
 123{
 124	return obj->gtt_space && !obj->active && obj->pin_count == 0;
 125}
 126
 127void i915_gem_do_init(struct drm_device *dev,
 128		      unsigned long start,
 129		      unsigned long mappable_end,
 130		      unsigned long end)
 131{
 132	drm_i915_private_t *dev_priv = dev->dev_private;
 133
 134	drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
 135
 136	dev_priv->mm.gtt_start = start;
 137	dev_priv->mm.gtt_mappable_end = mappable_end;
 138	dev_priv->mm.gtt_end = end;
 139	dev_priv->mm.gtt_total = end - start;
 140	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
 141
 142	/* Take over this portion of the GTT */
 143	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
 144}
 145
 146int
 147i915_gem_init_ioctl(struct drm_device *dev, void *data,
 148		    struct drm_file *file)
 149{
 
 150	struct drm_i915_gem_init *args = data;
 151
 
 
 
 152	if (args->gtt_start >= args->gtt_end ||
 153	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
 154		return -EINVAL;
 155
 
 
 
 
 156	mutex_lock(&dev->struct_mutex);
 157	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
 
 
 158	mutex_unlock(&dev->struct_mutex);
 159
 160	return 0;
 161}
 162
 163int
 164i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 165			    struct drm_file *file)
 166{
 167	struct drm_i915_private *dev_priv = dev->dev_private;
 168	struct drm_i915_gem_get_aperture *args = data;
 169	struct drm_i915_gem_object *obj;
 170	size_t pinned;
 171
 172	if (!(dev->driver->driver_features & DRIVER_GEM))
 173		return -ENODEV;
 174
 175	pinned = 0;
 176	mutex_lock(&dev->struct_mutex);
 177	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
 178		pinned += obj->gtt_space->size;
 
 179	mutex_unlock(&dev->struct_mutex);
 180
 181	args->aper_size = dev_priv->mm.gtt_total;
 182	args->aper_available_size = args->aper_size -pinned;
 183
 184	return 0;
 185}
 186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187static int
 188i915_gem_create(struct drm_file *file,
 189		struct drm_device *dev,
 190		uint64_t size,
 191		uint32_t *handle_p)
 192{
 193	struct drm_i915_gem_object *obj;
 194	int ret;
 195	u32 handle;
 196
 197	size = roundup(size, PAGE_SIZE);
 
 
 198
 199	/* Allocate the new object */
 200	obj = i915_gem_alloc_object(dev, size);
 201	if (obj == NULL)
 202		return -ENOMEM;
 203
 204	ret = drm_gem_handle_create(file, &obj->base, &handle);
 205	if (ret) {
 206		drm_gem_object_release(&obj->base);
 207		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
 208		kfree(obj);
 209		return ret;
 210	}
 211
 212	/* drop reference from allocate - handle holds it now */
 213	drm_gem_object_unreference(&obj->base);
 214	trace_i915_gem_object_create(obj);
 
 215
 216	*handle_p = handle;
 217	return 0;
 218}
 219
 220int
 221i915_gem_dumb_create(struct drm_file *file,
 222		     struct drm_device *dev,
 223		     struct drm_mode_create_dumb *args)
 224{
 225	/* have to work out size/pitch and return them */
 226	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
 227	args->size = args->pitch * args->height;
 228	return i915_gem_create(file, dev,
 229			       args->size, &args->handle);
 230}
 231
 232int i915_gem_dumb_destroy(struct drm_file *file,
 233			  struct drm_device *dev,
 234			  uint32_t handle)
 235{
 236	return drm_gem_handle_delete(file, handle);
 237}
 238
 239/**
 240 * Creates a new mm object and returns a handle to it.
 241 */
 242int
 243i915_gem_create_ioctl(struct drm_device *dev, void *data,
 244		      struct drm_file *file)
 245{
 246	struct drm_i915_gem_create *args = data;
 
 247	return i915_gem_create(file, dev,
 248			       args->size, &args->handle);
 249}
 250
 251static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
 
 
 
 252{
 253	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
 254
 255	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
 256		obj->tiling_mode != I915_TILING_NONE;
 257}
 258
 259static inline void
 260slow_shmem_copy(struct page *dst_page,
 261		int dst_offset,
 262		struct page *src_page,
 263		int src_offset,
 264		int length)
 265{
 266	char *dst_vaddr, *src_vaddr;
 267
 268	dst_vaddr = kmap(dst_page);
 269	src_vaddr = kmap(src_page);
 
 
 
 270
 271	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
 
 
 
 272
 273	kunmap(src_page);
 274	kunmap(dst_page);
 275}
 276
 277static inline void
 278slow_shmem_bit17_copy(struct page *gpu_page,
 279		      int gpu_offset,
 280		      struct page *cpu_page,
 281		      int cpu_offset,
 282		      int length,
 283		      int is_read)
 284{
 285	char *gpu_vaddr, *cpu_vaddr;
 286
 287	/* Use the unswizzled path if this page isn't affected. */
 288	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
 289		if (is_read)
 290			return slow_shmem_copy(cpu_page, cpu_offset,
 291					       gpu_page, gpu_offset, length);
 292		else
 293			return slow_shmem_copy(gpu_page, gpu_offset,
 294					       cpu_page, cpu_offset, length);
 295	}
 296
 297	gpu_vaddr = kmap(gpu_page);
 298	cpu_vaddr = kmap(cpu_page);
 299
 300	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
 301	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
 302	 */
 303	while (length > 0) {
 304		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 305		int this_length = min(cacheline_end - gpu_offset, length);
 306		int swizzled_gpu_offset = gpu_offset ^ 64;
 307
 308		if (is_read) {
 309			memcpy(cpu_vaddr + cpu_offset,
 310			       gpu_vaddr + swizzled_gpu_offset,
 311			       this_length);
 312		} else {
 313			memcpy(gpu_vaddr + swizzled_gpu_offset,
 314			       cpu_vaddr + cpu_offset,
 315			       this_length);
 316		}
 317		cpu_offset += this_length;
 318		gpu_offset += this_length;
 319		length -= this_length;
 320	}
 321
 322	kunmap(cpu_page);
 323	kunmap(gpu_page);
 324}
 325
 326/**
 327 * This is the fast shmem pread path, which attempts to copy_from_user directly
 328 * from the backing pages of the object to the user's address space.  On a
 329 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 330 */
 331static int
 332i915_gem_shmem_pread_fast(struct drm_device *dev,
 333			  struct drm_i915_gem_object *obj,
 334			  struct drm_i915_gem_pread *args,
 335			  struct drm_file *file)
 336{
 337	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 338	ssize_t remain;
 339	loff_t offset;
 340	char __user *user_data;
 341	int page_offset, page_length;
 342
 343	user_data = (char __user *) (uintptr_t) args->data_ptr;
 344	remain = args->size;
 345
 346	offset = args->offset;
 
 347
 348	while (remain > 0) {
 349		struct page *page;
 350		char *vaddr;
 351		int ret;
 
 
 
 
 
 
 
 352
 353		/* Operation in this page
 354		 *
 355		 * page_offset = offset within page
 356		 * page_length = bytes to copy for this page
 357		 */
 358		page_offset = offset_in_page(offset);
 359		page_length = remain;
 360		if ((page_offset + remain) > PAGE_SIZE)
 361			page_length = PAGE_SIZE - page_offset;
 362
 363		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 364		if (IS_ERR(page))
 365			return PTR_ERR(page);
 366
 367		vaddr = kmap_atomic(page);
 368		ret = __copy_to_user_inatomic(user_data,
 369					      vaddr + page_offset,
 370					      page_length);
 371		kunmap_atomic(vaddr);
 372
 373		mark_page_accessed(page);
 374		page_cache_release(page);
 375		if (ret)
 376			return -EFAULT;
 
 
 
 
 
 
 377
 378		remain -= page_length;
 379		user_data += page_length;
 380		offset += page_length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381	}
 382
 383	return 0;
 384}
 385
 386/**
 387 * This is the fallback shmem pread path, which allocates temporary storage
 388 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 389 * can copy out of the object's backing pages while holding the struct mutex
 390 * and not take page faults.
 391 */
 392static int
 393i915_gem_shmem_pread_slow(struct drm_device *dev,
 394			  struct drm_i915_gem_object *obj,
 395			  struct drm_i915_gem_pread *args,
 396			  struct drm_file *file)
 397{
 398	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 399	struct mm_struct *mm = current->mm;
 400	struct page **user_pages;
 401	ssize_t remain;
 402	loff_t offset, pinned_pages, i;
 403	loff_t first_data_page, last_data_page, num_pages;
 404	int shmem_page_offset;
 405	int data_page_index, data_page_offset;
 406	int page_length;
 407	int ret;
 408	uint64_t data_ptr = args->data_ptr;
 409	int do_bit17_swizzling;
 410
 411	remain = args->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412
 413	/* Pin the user pages containing the data.  We can't fault while
 414	 * holding the struct mutex, yet we want to hold it while
 415	 * dereferencing the user data.
 416	 */
 417	first_data_page = data_ptr / PAGE_SIZE;
 418	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
 419	num_pages = last_data_page - first_data_page + 1;
 420
 421	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
 422	if (user_pages == NULL)
 423		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 424
 425	mutex_unlock(&dev->struct_mutex);
 426	down_read(&mm->mmap_sem);
 427	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
 428				      num_pages, 1, 0, user_pages, NULL);
 429	up_read(&mm->mmap_sem);
 430	mutex_lock(&dev->struct_mutex);
 431	if (pinned_pages < num_pages) {
 432		ret = -EFAULT;
 433		goto out;
 434	}
 435
 436	ret = i915_gem_object_set_cpu_read_domain_range(obj,
 437							args->offset,
 438							args->size);
 439	if (ret)
 440		goto out;
 441
 442	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 
 
 443
 444	offset = args->offset;
 445
 446	while (remain > 0) {
 447		struct page *page;
 
 
 
 
 448
 449		/* Operation in this page
 450		 *
 451		 * shmem_page_offset = offset within page in shmem file
 452		 * data_page_index = page number in get_user_pages return
 453		 * data_page_offset = offset with data_page_index page.
 454		 * page_length = bytes to copy for this page
 455		 */
 456		shmem_page_offset = offset_in_page(offset);
 457		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
 458		data_page_offset = offset_in_page(data_ptr);
 459
 460		page_length = remain;
 461		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 462			page_length = PAGE_SIZE - shmem_page_offset;
 463		if ((data_page_offset + page_length) > PAGE_SIZE)
 464			page_length = PAGE_SIZE - data_page_offset;
 465
 466		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 467		if (IS_ERR(page)) {
 468			ret = PTR_ERR(page);
 469			goto out;
 470		}
 471
 472		if (do_bit17_swizzling) {
 473			slow_shmem_bit17_copy(page,
 474					      shmem_page_offset,
 475					      user_pages[data_page_index],
 476					      data_page_offset,
 477					      page_length,
 478					      1);
 479		} else {
 480			slow_shmem_copy(user_pages[data_page_index],
 481					data_page_offset,
 482					page,
 483					shmem_page_offset,
 484					page_length);
 
 
 
 485		}
 486
 487		mark_page_accessed(page);
 488		page_cache_release(page);
 
 489
 
 
 
 
 
 
 490		remain -= page_length;
 491		data_ptr += page_length;
 492		offset += page_length;
 493	}
 494
 495out:
 496	for (i = 0; i < pinned_pages; i++) {
 497		SetPageDirty(user_pages[i]);
 498		mark_page_accessed(user_pages[i]);
 499		page_cache_release(user_pages[i]);
 500	}
 501	drm_free_large(user_pages);
 502
 503	return ret;
 504}
 505
 506/**
 507 * Reads data from the object referenced by handle.
 508 *
 509 * On error, the contents of *data are undefined.
 510 */
 511int
 512i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 513		     struct drm_file *file)
 514{
 515	struct drm_i915_gem_pread *args = data;
 516	struct drm_i915_gem_object *obj;
 517	int ret = 0;
 518
 519	if (args->size == 0)
 520		return 0;
 521
 522	if (!access_ok(VERIFY_WRITE,
 523		       (char __user *)(uintptr_t)args->data_ptr,
 524		       args->size))
 525		return -EFAULT;
 526
 527	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
 528				       args->size);
 529	if (ret)
 530		return -EFAULT;
 531
 532	ret = i915_mutex_lock_interruptible(dev);
 533	if (ret)
 534		return ret;
 535
 536	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 537	if (&obj->base == NULL) {
 538		ret = -ENOENT;
 539		goto unlock;
 540	}
 541
 542	/* Bounds check source.  */
 543	if (args->offset > obj->base.size ||
 544	    args->size > obj->base.size - args->offset) {
 545		ret = -EINVAL;
 546		goto out;
 547	}
 548
 549	trace_i915_gem_object_pread(obj, args->offset, args->size);
 550
 551	ret = i915_gem_object_set_cpu_read_domain_range(obj,
 552							args->offset,
 553							args->size);
 554	if (ret)
 555		goto out;
 
 556
 557	ret = -EFAULT;
 558	if (!i915_gem_object_needs_bit17_swizzle(obj))
 559		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
 560	if (ret == -EFAULT)
 561		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
 562
 563out:
 564	drm_gem_object_unreference(&obj->base);
 565unlock:
 566	mutex_unlock(&dev->struct_mutex);
 567	return ret;
 568}
 569
 570/* This is the fast write path which cannot handle
 571 * page faults in the source data
 572 */
 573
 574static inline int
 575fast_user_write(struct io_mapping *mapping,
 576		loff_t page_base, int page_offset,
 577		char __user *user_data,
 578		int length)
 579{
 580	char *vaddr_atomic;
 
 581	unsigned long unwritten;
 582
 583	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
 584	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
 
 
 585						      user_data, length);
 586	io_mapping_unmap_atomic(vaddr_atomic);
 587	return unwritten;
 588}
 589
 590/* Here's the write path which can sleep for
 591 * page faults
 592 */
 593
 594static inline void
 595slow_kernel_write(struct io_mapping *mapping,
 596		  loff_t gtt_base, int gtt_offset,
 597		  struct page *user_page, int user_offset,
 598		  int length)
 599{
 600	char __iomem *dst_vaddr;
 601	char *src_vaddr;
 602
 603	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
 604	src_vaddr = kmap(user_page);
 605
 606	memcpy_toio(dst_vaddr + gtt_offset,
 607		    src_vaddr + user_offset,
 608		    length);
 609
 610	kunmap(user_page);
 611	io_mapping_unmap(dst_vaddr);
 612}
 613
 614/**
 615 * This is the fast pwrite path, where we copy the data directly from the
 616 * user into the GTT, uncached.
 617 */
 618static int
 619i915_gem_gtt_pwrite_fast(struct drm_device *dev,
 620			 struct drm_i915_gem_object *obj,
 621			 struct drm_i915_gem_pwrite *args,
 622			 struct drm_file *file)
 623{
 624	drm_i915_private_t *dev_priv = dev->dev_private;
 625	ssize_t remain;
 626	loff_t offset, page_base;
 627	char __user *user_data;
 628	int page_offset, page_length;
 
 
 
 
 
 
 
 
 
 
 
 
 629
 630	user_data = (char __user *) (uintptr_t) args->data_ptr;
 631	remain = args->size;
 632
 633	offset = obj->gtt_offset + args->offset;
 634
 635	while (remain > 0) {
 636		/* Operation in this page
 637		 *
 638		 * page_base = page offset within aperture
 639		 * page_offset = offset within page
 640		 * page_length = bytes to copy for this page
 641		 */
 642		page_base = offset & PAGE_MASK;
 643		page_offset = offset_in_page(offset);
 644		page_length = remain;
 645		if ((page_offset + remain) > PAGE_SIZE)
 646			page_length = PAGE_SIZE - page_offset;
 647
 648		/* If we get a fault while copying data, then (presumably) our
 649		 * source page isn't available.  Return the error and we'll
 650		 * retry in the slow path.
 651		 */
 652		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
 653				    page_offset, user_data, page_length))
 654			return -EFAULT;
 
 
 655
 656		remain -= page_length;
 657		user_data += page_length;
 658		offset += page_length;
 659	}
 660
 661	return 0;
 
 
 
 662}
 663
 664/**
 665 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 666 * the memory and maps it using kmap_atomic for copying.
 667 *
 668 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 669 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 670 */
 671static int
 672i915_gem_gtt_pwrite_slow(struct drm_device *dev,
 673			 struct drm_i915_gem_object *obj,
 674			 struct drm_i915_gem_pwrite *args,
 675			 struct drm_file *file)
 
 676{
 677	drm_i915_private_t *dev_priv = dev->dev_private;
 678	ssize_t remain;
 679	loff_t gtt_page_base, offset;
 680	loff_t first_data_page, last_data_page, num_pages;
 681	loff_t pinned_pages, i;
 682	struct page **user_pages;
 683	struct mm_struct *mm = current->mm;
 684	int gtt_page_offset, data_page_offset, data_page_index, page_length;
 685	int ret;
 686	uint64_t data_ptr = args->data_ptr;
 687
 688	remain = args->size;
 689
 690	/* Pin the user pages containing the data.  We can't fault while
 691	 * holding the struct mutex, and all of the pwrite implementations
 692	 * want to hold it while dereferencing the user data.
 693	 */
 694	first_data_page = data_ptr / PAGE_SIZE;
 695	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
 696	num_pages = last_data_page - first_data_page + 1;
 697
 698	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
 699	if (user_pages == NULL)
 700		return -ENOMEM;
 701
 702	mutex_unlock(&dev->struct_mutex);
 703	down_read(&mm->mmap_sem);
 704	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
 705				      num_pages, 0, 0, user_pages, NULL);
 706	up_read(&mm->mmap_sem);
 707	mutex_lock(&dev->struct_mutex);
 708	if (pinned_pages < num_pages) {
 709		ret = -EFAULT;
 710		goto out_unpin_pages;
 711	}
 712
 713	ret = i915_gem_object_set_to_gtt_domain(obj, true);
 714	if (ret)
 715		goto out_unpin_pages;
 716
 717	ret = i915_gem_object_put_fence(obj);
 718	if (ret)
 719		goto out_unpin_pages;
 720
 721	offset = obj->gtt_offset + args->offset;
 722
 723	while (remain > 0) {
 724		/* Operation in this page
 725		 *
 726		 * gtt_page_base = page offset within aperture
 727		 * gtt_page_offset = offset within page in aperture
 728		 * data_page_index = page number in get_user_pages return
 729		 * data_page_offset = offset with data_page_index page.
 730		 * page_length = bytes to copy for this page
 731		 */
 732		gtt_page_base = offset & PAGE_MASK;
 733		gtt_page_offset = offset_in_page(offset);
 734		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
 735		data_page_offset = offset_in_page(data_ptr);
 736
 737		page_length = remain;
 738		if ((gtt_page_offset + page_length) > PAGE_SIZE)
 739			page_length = PAGE_SIZE - gtt_page_offset;
 740		if ((data_page_offset + page_length) > PAGE_SIZE)
 741			page_length = PAGE_SIZE - data_page_offset;
 742
 743		slow_kernel_write(dev_priv->mm.gtt_mapping,
 744				  gtt_page_base, gtt_page_offset,
 745				  user_pages[data_page_index],
 746				  data_page_offset,
 747				  page_length);
 748
 749		remain -= page_length;
 750		offset += page_length;
 751		data_ptr += page_length;
 752	}
 753
 754out_unpin_pages:
 755	for (i = 0; i < pinned_pages; i++)
 756		page_cache_release(user_pages[i]);
 757	drm_free_large(user_pages);
 
 
 
 
 
 
 758
 759	return ret;
 760}
 761
 762/**
 763 * This is the fast shmem pwrite path, which attempts to directly
 764 * copy_from_user into the kmapped pages backing the object.
 765 */
 766static int
 767i915_gem_shmem_pwrite_fast(struct drm_device *dev,
 768			   struct drm_i915_gem_object *obj,
 769			   struct drm_i915_gem_pwrite *args,
 770			   struct drm_file *file)
 
 771{
 772	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 773	ssize_t remain;
 774	loff_t offset;
 775	char __user *user_data;
 776	int page_offset, page_length;
 777
 778	user_data = (char __user *) (uintptr_t) args->data_ptr;
 779	remain = args->size;
 780
 781	offset = args->offset;
 782	obj->dirty = 1;
 783
 784	while (remain > 0) {
 785		struct page *page;
 786		char *vaddr;
 787		int ret;
 788
 789		/* Operation in this page
 790		 *
 791		 * page_offset = offset within page
 792		 * page_length = bytes to copy for this page
 793		 */
 794		page_offset = offset_in_page(offset);
 795		page_length = remain;
 796		if ((page_offset + remain) > PAGE_SIZE)
 797			page_length = PAGE_SIZE - page_offset;
 798
 799		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 800		if (IS_ERR(page))
 801			return PTR_ERR(page);
 802
 803		vaddr = kmap_atomic(page, KM_USER0);
 804		ret = __copy_from_user_inatomic(vaddr + page_offset,
 
 
 
 
 
 805						user_data,
 806						page_length);
 807		kunmap_atomic(vaddr, KM_USER0);
 808
 809		set_page_dirty(page);
 810		mark_page_accessed(page);
 811		page_cache_release(page);
 812
 813		/* If we get a fault while copying data, then (presumably) our
 814		 * source page isn't available.  Return the error and we'll
 815		 * retry in the slow path.
 816		 */
 817		if (ret)
 818			return -EFAULT;
 819
 820		remain -= page_length;
 821		user_data += page_length;
 822		offset += page_length;
 823	}
 824
 825	return 0;
 826}
 827
 828/**
 829 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 830 * the memory and maps it using kmap_atomic for copying.
 831 *
 832 * This avoids taking mmap_sem for faulting on the user's address while the
 833 * struct_mutex is held.
 834 */
 835static int
 836i915_gem_shmem_pwrite_slow(struct drm_device *dev,
 837			   struct drm_i915_gem_object *obj,
 838			   struct drm_i915_gem_pwrite *args,
 839			   struct drm_file *file)
 840{
 841	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 842	struct mm_struct *mm = current->mm;
 843	struct page **user_pages;
 844	ssize_t remain;
 845	loff_t offset, pinned_pages, i;
 846	loff_t first_data_page, last_data_page, num_pages;
 847	int shmem_page_offset;
 848	int data_page_index,  data_page_offset;
 849	int page_length;
 850	int ret;
 851	uint64_t data_ptr = args->data_ptr;
 852	int do_bit17_swizzling;
 853
 
 854	remain = args->size;
 855
 856	/* Pin the user pages containing the data.  We can't fault while
 857	 * holding the struct mutex, and all of the pwrite implementations
 858	 * want to hold it while dereferencing the user data.
 859	 */
 860	first_data_page = data_ptr / PAGE_SIZE;
 861	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
 862	num_pages = last_data_page - first_data_page + 1;
 863
 864	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
 865	if (user_pages == NULL)
 866		return -ENOMEM;
 867
 868	mutex_unlock(&dev->struct_mutex);
 869	down_read(&mm->mmap_sem);
 870	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
 871				      num_pages, 0, 0, user_pages, NULL);
 872	up_read(&mm->mmap_sem);
 873	mutex_lock(&dev->struct_mutex);
 874	if (pinned_pages < num_pages) {
 875		ret = -EFAULT;
 876		goto out;
 877	}
 
 
 
 
 
 878
 879	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
 880	if (ret)
 881		goto out;
 882
 883	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 884
 885	offset = args->offset;
 886	obj->dirty = 1;
 887
 888	while (remain > 0) {
 889		struct page *page;
 
 
 
 
 
 890
 891		/* Operation in this page
 892		 *
 893		 * shmem_page_offset = offset within page in shmem file
 894		 * data_page_index = page number in get_user_pages return
 895		 * data_page_offset = offset with data_page_index page.
 896		 * page_length = bytes to copy for this page
 897		 */
 898		shmem_page_offset = offset_in_page(offset);
 899		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
 900		data_page_offset = offset_in_page(data_ptr);
 901
 902		page_length = remain;
 903		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 904			page_length = PAGE_SIZE - shmem_page_offset;
 905		if ((data_page_offset + page_length) > PAGE_SIZE)
 906			page_length = PAGE_SIZE - data_page_offset;
 907
 908		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 909		if (IS_ERR(page)) {
 910			ret = PTR_ERR(page);
 911			goto out;
 912		}
 
 
 
 
 
 
 
 
 
 
 
 913
 914		if (do_bit17_swizzling) {
 915			slow_shmem_bit17_copy(page,
 916					      shmem_page_offset,
 917					      user_pages[data_page_index],
 918					      data_page_offset,
 919					      page_length,
 920					      0);
 921		} else {
 922			slow_shmem_copy(page,
 923					shmem_page_offset,
 924					user_pages[data_page_index],
 925					data_page_offset,
 926					page_length);
 927		}
 928
 929		set_page_dirty(page);
 930		mark_page_accessed(page);
 931		page_cache_release(page);
 
 932
 
 933		remain -= page_length;
 934		data_ptr += page_length;
 935		offset += page_length;
 936	}
 937
 938out:
 939	for (i = 0; i < pinned_pages; i++)
 940		page_cache_release(user_pages[i]);
 941	drm_free_large(user_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942
 943	return ret;
 944}
 945
 946/**
 947 * Writes data to the object referenced by handle.
 948 *
 949 * On error, the contents of the buffer that were to be modified are undefined.
 950 */
 951int
 952i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 953		      struct drm_file *file)
 954{
 955	struct drm_i915_gem_pwrite *args = data;
 956	struct drm_i915_gem_object *obj;
 957	int ret;
 958
 959	if (args->size == 0)
 960		return 0;
 961
 962	if (!access_ok(VERIFY_READ,
 963		       (char __user *)(uintptr_t)args->data_ptr,
 964		       args->size))
 965		return -EFAULT;
 966
 967	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
 968				      args->size);
 969	if (ret)
 970		return -EFAULT;
 
 
 971
 972	ret = i915_mutex_lock_interruptible(dev);
 973	if (ret)
 974		return ret;
 975
 976	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 977	if (&obj->base == NULL) {
 978		ret = -ENOENT;
 979		goto unlock;
 980	}
 981
 982	/* Bounds check destination. */
 983	if (args->offset > obj->base.size ||
 984	    args->size > obj->base.size - args->offset) {
 985		ret = -EINVAL;
 986		goto out;
 987	}
 988
 
 
 
 
 
 
 
 
 989	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 990
 
 991	/* We can only do the GTT pwrite on untiled buffers, as otherwise
 992	 * it would end up going through the fenced access, and we'll get
 993	 * different detiling behavior between reading and writing.
 994	 * pread/pwrite currently are reading and writing from the CPU
 995	 * perspective, requiring manual detiling by the client.
 996	 */
 997	if (obj->phys_obj)
 998		ret = i915_gem_phys_pwrite(dev, obj, args, file);
 999	else if (obj->gtt_space &&
1000		 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1001		ret = i915_gem_object_pin(obj, 0, true);
1002		if (ret)
1003			goto out;
1004
1005		ret = i915_gem_object_set_to_gtt_domain(obj, true);
1006		if (ret)
1007			goto out_unpin;
1008
1009		ret = i915_gem_object_put_fence(obj);
1010		if (ret)
1011			goto out_unpin;
1012
 
 
 
1013		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1014		if (ret == -EFAULT)
1015			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1016
1017out_unpin:
1018		i915_gem_object_unpin(obj);
1019	} else {
1020		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1021		if (ret)
1022			goto out;
1023
1024		ret = -EFAULT;
1025		if (!i915_gem_object_needs_bit17_swizzle(obj))
1026			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1027		if (ret == -EFAULT)
1028			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1029	}
1030
 
 
 
1031out:
1032	drm_gem_object_unreference(&obj->base);
1033unlock:
1034	mutex_unlock(&dev->struct_mutex);
1035	return ret;
1036}
1037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1038/**
1039 * Called when user space prepares to use an object with the CPU, either
1040 * through the mmap ioctl's mapping or a GTT mapping.
1041 */
1042int
1043i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1044			  struct drm_file *file)
1045{
1046	struct drm_i915_gem_set_domain *args = data;
1047	struct drm_i915_gem_object *obj;
1048	uint32_t read_domains = args->read_domains;
1049	uint32_t write_domain = args->write_domain;
1050	int ret;
1051
1052	if (!(dev->driver->driver_features & DRIVER_GEM))
1053		return -ENODEV;
1054
1055	/* Only handle setting domains to types used by the CPU. */
1056	if (write_domain & I915_GEM_GPU_DOMAINS)
1057		return -EINVAL;
1058
1059	if (read_domains & I915_GEM_GPU_DOMAINS)
1060		return -EINVAL;
1061
1062	/* Having something in the write domain implies it's in the read
1063	 * domain, and only that read domain.  Enforce that in the request.
1064	 */
1065	if (write_domain != 0 && read_domains != write_domain)
1066		return -EINVAL;
1067
1068	ret = i915_mutex_lock_interruptible(dev);
1069	if (ret)
1070		return ret;
1071
1072	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1073	if (&obj->base == NULL) {
1074		ret = -ENOENT;
1075		goto unlock;
1076	}
1077
 
 
 
 
 
 
 
 
 
 
1078	if (read_domains & I915_GEM_DOMAIN_GTT) {
1079		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1080
1081		/* Silently promote "you're not bound, there was nothing to do"
1082		 * to success, since the client was just asking us to
1083		 * make sure everything was done.
1084		 */
1085		if (ret == -EINVAL)
1086			ret = 0;
1087	} else {
1088		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1089	}
1090
 
1091	drm_gem_object_unreference(&obj->base);
1092unlock:
1093	mutex_unlock(&dev->struct_mutex);
1094	return ret;
1095}
1096
1097/**
1098 * Called when user space has done writes to this buffer
1099 */
1100int
1101i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1102			 struct drm_file *file)
1103{
1104	struct drm_i915_gem_sw_finish *args = data;
1105	struct drm_i915_gem_object *obj;
1106	int ret = 0;
1107
1108	if (!(dev->driver->driver_features & DRIVER_GEM))
1109		return -ENODEV;
1110
1111	ret = i915_mutex_lock_interruptible(dev);
1112	if (ret)
1113		return ret;
1114
1115	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1116	if (&obj->base == NULL) {
1117		ret = -ENOENT;
1118		goto unlock;
1119	}
1120
1121	/* Pinned buffers may be scanout, so flush the cache */
1122	if (obj->pin_count)
1123		i915_gem_object_flush_cpu_write_domain(obj);
1124
1125	drm_gem_object_unreference(&obj->base);
1126unlock:
1127	mutex_unlock(&dev->struct_mutex);
1128	return ret;
1129}
1130
1131/**
1132 * Maps the contents of an object, returning the address it is mapped
1133 * into.
1134 *
1135 * While the mapping holds a reference on the contents of the object, it doesn't
1136 * imply a ref on the object itself.
1137 */
1138int
1139i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1140		    struct drm_file *file)
1141{
1142	struct drm_i915_private *dev_priv = dev->dev_private;
1143	struct drm_i915_gem_mmap *args = data;
1144	struct drm_gem_object *obj;
1145	unsigned long addr;
1146
1147	if (!(dev->driver->driver_features & DRIVER_GEM))
1148		return -ENODEV;
1149
1150	obj = drm_gem_object_lookup(dev, file, args->handle);
1151	if (obj == NULL)
1152		return -ENOENT;
1153
1154	if (obj->size > dev_priv->mm.gtt_mappable_end) {
 
 
 
1155		drm_gem_object_unreference_unlocked(obj);
1156		return -E2BIG;
1157	}
1158
1159	down_write(&current->mm->mmap_sem);
1160	addr = do_mmap(obj->filp, 0, args->size,
1161		       PROT_READ | PROT_WRITE, MAP_SHARED,
1162		       args->offset);
1163	up_write(&current->mm->mmap_sem);
1164	drm_gem_object_unreference_unlocked(obj);
1165	if (IS_ERR((void *)addr))
1166		return addr;
1167
1168	args->addr_ptr = (uint64_t) addr;
1169
1170	return 0;
1171}
1172
1173/**
1174 * i915_gem_fault - fault a page into the GTT
1175 * vma: VMA in question
1176 * vmf: fault info
1177 *
1178 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1179 * from userspace.  The fault handler takes care of binding the object to
1180 * the GTT (if needed), allocating and programming a fence register (again,
1181 * only if needed based on whether the old reg is still valid or the object
1182 * is tiled) and inserting a new PTE into the faulting process.
1183 *
1184 * Note that the faulting process may involve evicting existing objects
1185 * from the GTT and/or fence registers to make room.  So performance may
1186 * suffer if the GTT working set is large or there are few fence registers
1187 * left.
1188 */
1189int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1190{
1191	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1192	struct drm_device *dev = obj->base.dev;
1193	drm_i915_private_t *dev_priv = dev->dev_private;
1194	pgoff_t page_offset;
1195	unsigned long pfn;
1196	int ret = 0;
1197	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1198
 
 
1199	/* We don't use vmf->pgoff since that has the fake offset */
1200	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1201		PAGE_SHIFT;
1202
1203	ret = i915_mutex_lock_interruptible(dev);
1204	if (ret)
1205		goto out;
1206
1207	trace_i915_gem_object_fault(obj, page_offset, true, write);
1208
1209	/* Now bind it into the GTT if needed */
1210	if (!obj->map_and_fenceable) {
1211		ret = i915_gem_object_unbind(obj);
1212		if (ret)
1213			goto unlock;
1214	}
1215	if (!obj->gtt_space) {
1216		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1217		if (ret)
1218			goto unlock;
1219
1220		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1221		if (ret)
1222			goto unlock;
 
1223	}
1224
1225	if (obj->tiling_mode == I915_TILING_NONE)
1226		ret = i915_gem_object_put_fence(obj);
1227	else
1228		ret = i915_gem_object_get_fence(obj, NULL);
1229	if (ret)
1230		goto unlock;
1231
1232	if (i915_gem_object_is_inactive(obj))
1233		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
 
 
 
 
 
1234
1235	obj->fault_mappable = true;
1236
1237	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1238		page_offset;
 
1239
1240	/* Finally, remap it using the new GTT offset */
1241	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
 
 
1242unlock:
1243	mutex_unlock(&dev->struct_mutex);
1244out:
1245	switch (ret) {
1246	case -EIO:
 
 
 
 
 
 
 
1247	case -EAGAIN:
1248		/* Give the error handler a chance to run and move the
1249		 * objects off the GPU active list. Next time we service the
1250		 * fault, we should be able to transition the page into the
1251		 * GTT without touching the GPU (and so avoid further
1252		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1253		 * with coherency, just lost writes.
1254		 */
1255		set_need_resched();
1256	case 0:
1257	case -ERESTARTSYS:
1258	case -EINTR:
1259		return VM_FAULT_NOPAGE;
 
 
 
 
 
 
1260	case -ENOMEM:
1261		return VM_FAULT_OOM;
 
 
 
 
 
1262	default:
1263		return VM_FAULT_SIGBUS;
 
 
1264	}
 
 
 
1265}
1266
1267/**
1268 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1269 * @obj: obj in question
1270 *
1271 * GEM memory mapping works by handing back to userspace a fake mmap offset
1272 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1273 * up the object based on the offset and sets up the various memory mapping
1274 * structures.
1275 *
1276 * This routine allocates and attaches a fake offset for @obj.
1277 */
1278static int
1279i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1280{
1281	struct drm_device *dev = obj->base.dev;
1282	struct drm_gem_mm *mm = dev->mm_private;
1283	struct drm_map_list *list;
1284	struct drm_local_map *map;
1285	int ret = 0;
1286
1287	/* Set the object up for mmap'ing */
1288	list = &obj->base.map_list;
1289	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1290	if (!list->map)
1291		return -ENOMEM;
1292
1293	map = list->map;
1294	map->type = _DRM_GEM;
1295	map->size = obj->base.size;
1296	map->handle = obj;
1297
1298	/* Get a DRM GEM mmap offset allocated... */
1299	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1300						    obj->base.size / PAGE_SIZE,
1301						    0, 0);
1302	if (!list->file_offset_node) {
1303		DRM_ERROR("failed to allocate offset for bo %d\n",
1304			  obj->base.name);
1305		ret = -ENOSPC;
1306		goto out_free_list;
1307	}
1308
1309	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1310						  obj->base.size / PAGE_SIZE,
1311						  0);
1312	if (!list->file_offset_node) {
1313		ret = -ENOMEM;
1314		goto out_free_list;
1315	}
1316
1317	list->hash.key = list->file_offset_node->start;
1318	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1319	if (ret) {
1320		DRM_ERROR("failed to add to map hash\n");
1321		goto out_free_mm;
1322	}
1323
1324	return 0;
1325
1326out_free_mm:
1327	drm_mm_put_block(list->file_offset_node);
1328out_free_list:
1329	kfree(list->map);
1330	list->map = NULL;
1331
1332	return ret;
 
1333}
1334
1335/**
1336 * i915_gem_release_mmap - remove physical page mappings
1337 * @obj: obj in question
1338 *
1339 * Preserve the reservation of the mmapping with the DRM core code, but
1340 * relinquish ownership of the pages back to the system.
1341 *
1342 * It is vital that we remove the page mapping if we have mapped a tiled
1343 * object through the GTT and then lose the fence register due to
1344 * resource pressure. Similarly if the object has been moved out of the
1345 * aperture, than pages mapped into userspace must be revoked. Removing the
1346 * mapping will then trigger a page fault on the next user access, allowing
1347 * fixup by i915_gem_fault().
1348 */
1349void
1350i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1351{
1352	if (!obj->fault_mappable)
1353		return;
1354
1355	if (obj->base.dev->dev_mapping)
1356		unmap_mapping_range(obj->base.dev->dev_mapping,
1357				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1358				    obj->base.size, 1);
1359
1360	obj->fault_mappable = false;
1361}
1362
1363static void
1364i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1365{
1366	struct drm_device *dev = obj->base.dev;
1367	struct drm_gem_mm *mm = dev->mm_private;
1368	struct drm_map_list *list = &obj->base.map_list;
1369
1370	drm_ht_remove_item(&mm->offset_hash, &list->hash);
1371	drm_mm_put_block(list->file_offset_node);
1372	kfree(list->map);
1373	list->map = NULL;
1374}
1375
1376static uint32_t
1377i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1378{
1379	uint32_t gtt_size;
1380
1381	if (INTEL_INFO(dev)->gen >= 4 ||
1382	    tiling_mode == I915_TILING_NONE)
1383		return size;
1384
1385	/* Previous chips need a power-of-two fence region when tiling */
1386	if (INTEL_INFO(dev)->gen == 3)
1387		gtt_size = 1024*1024;
1388	else
1389		gtt_size = 512*1024;
1390
1391	while (gtt_size < size)
1392		gtt_size <<= 1;
1393
1394	return gtt_size;
1395}
1396
1397/**
1398 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1399 * @obj: object to check
1400 *
1401 * Return the required GTT alignment for an object, taking into account
1402 * potential fence register mapping.
1403 */
1404static uint32_t
1405i915_gem_get_gtt_alignment(struct drm_device *dev,
1406			   uint32_t size,
1407			   int tiling_mode)
1408{
1409	/*
1410	 * Minimum alignment is 4k (GTT page size), but might be greater
1411	 * if a fence register is needed for the object.
1412	 */
1413	if (INTEL_INFO(dev)->gen >= 4 ||
1414	    tiling_mode == I915_TILING_NONE)
1415		return 4096;
1416
1417	/*
1418	 * Previous chips need to be aligned to the size of the smallest
1419	 * fence register that can contain the object.
1420	 */
1421	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1422}
1423
1424/**
1425 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1426 *					 unfenced object
1427 * @dev: the device
1428 * @size: size of the object
1429 * @tiling_mode: tiling mode of the object
1430 *
1431 * Return the required GTT alignment for an object, only taking into account
1432 * unfenced tiled surface requirements.
1433 */
1434uint32_t
1435i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1436				    uint32_t size,
1437				    int tiling_mode)
1438{
1439	/*
1440	 * Minimum alignment is 4k (GTT page size) for sane hw.
1441	 */
1442	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1443	    tiling_mode == I915_TILING_NONE)
1444		return 4096;
1445
1446	/* Previous hardware however needs to be aligned to a power-of-two
1447	 * tile height. The simplest method for determining this is to reuse
1448	 * the power-of-tile object size.
1449	 */
1450	return i915_gem_get_gtt_size(dev, size, tiling_mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451}
1452
1453int
1454i915_gem_mmap_gtt(struct drm_file *file,
1455		  struct drm_device *dev,
1456		  uint32_t handle,
1457		  uint64_t *offset)
1458{
1459	struct drm_i915_private *dev_priv = dev->dev_private;
1460	struct drm_i915_gem_object *obj;
1461	int ret;
1462
1463	if (!(dev->driver->driver_features & DRIVER_GEM))
1464		return -ENODEV;
1465
1466	ret = i915_mutex_lock_interruptible(dev);
1467	if (ret)
1468		return ret;
1469
1470	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1471	if (&obj->base == NULL) {
1472		ret = -ENOENT;
1473		goto unlock;
1474	}
1475
1476	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1477		ret = -E2BIG;
1478		goto unlock;
1479	}
1480
1481	if (obj->madv != I915_MADV_WILLNEED) {
1482		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1483		ret = -EINVAL;
1484		goto out;
1485	}
1486
1487	if (!obj->base.map_list.map) {
1488		ret = i915_gem_create_mmap_offset(obj);
1489		if (ret)
1490			goto out;
1491	}
1492
1493	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1494
1495out:
1496	drm_gem_object_unreference(&obj->base);
1497unlock:
1498	mutex_unlock(&dev->struct_mutex);
1499	return ret;
1500}
1501
1502/**
1503 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1504 * @dev: DRM device
1505 * @data: GTT mapping ioctl data
1506 * @file: GEM object info
1507 *
1508 * Simply returns the fake offset to userspace so it can mmap it.
1509 * The mmap call will end up in drm_gem_mmap(), which will set things
1510 * up so we can get faults in the handler above.
1511 *
1512 * The fault handler will take care of binding the object into the GTT
1513 * (since it may have been evicted to make room for something), allocating
1514 * a fence register, and mapping the appropriate aperture address into
1515 * userspace.
1516 */
1517int
1518i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1519			struct drm_file *file)
1520{
1521	struct drm_i915_gem_mmap_gtt *args = data;
1522
1523	if (!(dev->driver->driver_features & DRIVER_GEM))
1524		return -ENODEV;
1525
1526	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1527}
1528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1529
1530static int
1531i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1532			      gfp_t gfpmask)
1533{
 
1534	int page_count, i;
1535	struct address_space *mapping;
1536	struct inode *inode;
 
 
1537	struct page *page;
 
 
1538
1539	/* Get the list of pages out of our struct file.  They'll be pinned
1540	 * at this point until we release them.
 
1541	 */
1542	page_count = obj->base.size / PAGE_SIZE;
1543	BUG_ON(obj->pages != NULL);
1544	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1545	if (obj->pages == NULL)
 
1546		return -ENOMEM;
1547
1548	inode = obj->base.filp->f_path.dentry->d_inode;
1549	mapping = inode->i_mapping;
1550	gfpmask |= mapping_gfp_mask(mapping);
 
 
1551
 
 
 
 
 
 
 
 
 
 
 
1552	for (i = 0; i < page_count; i++) {
1553		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1554		if (IS_ERR(page))
1555			goto err_pages;
 
 
 
 
 
 
 
 
 
1556
1557		obj->pages[i] = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1558	}
 
 
 
 
 
1559
1560	if (obj->tiling_mode != I915_TILING_NONE)
1561		i915_gem_object_do_bit_17_swizzle(obj);
1562
1563	return 0;
1564
1565err_pages:
1566	while (i--)
1567		page_cache_release(obj->pages[i]);
1568
1569	drm_free_large(obj->pages);
1570	obj->pages = NULL;
1571	return PTR_ERR(page);
1572}
1573
1574static void
1575i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
 
 
 
 
 
 
 
1576{
1577	int page_count = obj->base.size / PAGE_SIZE;
1578	int i;
1579
1580	BUG_ON(obj->madv == __I915_MADV_PURGED);
1581
1582	if (obj->tiling_mode != I915_TILING_NONE)
1583		i915_gem_object_save_bit_17_swizzle(obj);
1584
1585	if (obj->madv == I915_MADV_DONTNEED)
1586		obj->dirty = 0;
1587
1588	for (i = 0; i < page_count; i++) {
1589		if (obj->dirty)
1590			set_page_dirty(obj->pages[i]);
 
1591
1592		if (obj->madv == I915_MADV_WILLNEED)
1593			mark_page_accessed(obj->pages[i]);
1594
1595		page_cache_release(obj->pages[i]);
1596	}
1597	obj->dirty = 0;
1598
1599	drm_free_large(obj->pages);
1600	obj->pages = NULL;
1601}
1602
1603void
1604i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1605			       struct intel_ring_buffer *ring,
1606			       u32 seqno)
1607{
1608	struct drm_device *dev = obj->base.dev;
1609	struct drm_i915_private *dev_priv = dev->dev_private;
 
1610
1611	BUG_ON(ring == NULL);
 
 
 
 
1612	obj->ring = ring;
1613
1614	/* Add a reference if we're newly entering the active list. */
1615	if (!obj->active) {
1616		drm_gem_object_reference(&obj->base);
1617		obj->active = 1;
1618	}
1619
1620	/* Move from whatever list we were on to the tail of execution. */
1621	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1622	list_move_tail(&obj->ring_list, &ring->active_list);
1623
1624	obj->last_rendering_seqno = seqno;
1625	if (obj->fenced_gpu_access) {
1626		struct drm_i915_fence_reg *reg;
1627
1628		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1629
 
1630		obj->last_fenced_seqno = seqno;
1631		obj->last_fenced_ring = ring;
1632
1633		reg = &dev_priv->fence_regs[obj->fence_reg];
1634		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
 
 
 
 
 
 
1635	}
1636}
1637
1638static void
1639i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1640{
1641	list_del_init(&obj->ring_list);
1642	obj->last_rendering_seqno = 0;
1643}
1644
1645static void
1646i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1647{
1648	struct drm_device *dev = obj->base.dev;
1649	drm_i915_private_t *dev_priv = dev->dev_private;
 
1650
 
1651	BUG_ON(!obj->active);
1652	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1653
1654	i915_gem_object_move_off_active(obj);
1655}
1656
1657static void
1658i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1659{
1660	struct drm_device *dev = obj->base.dev;
1661	struct drm_i915_private *dev_priv = dev->dev_private;
1662
1663	if (obj->pin_count != 0)
1664		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1665	else
1666		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1667
1668	BUG_ON(!list_empty(&obj->gpu_write_list));
1669	BUG_ON(!obj->active);
1670	obj->ring = NULL;
1671
1672	i915_gem_object_move_off_active(obj);
 
 
 
 
1673	obj->fenced_gpu_access = false;
1674
1675	obj->active = 0;
1676	obj->pending_gpu_write = false;
1677	drm_gem_object_unreference(&obj->base);
1678
1679	WARN_ON(i915_verify_lists(dev));
1680}
1681
1682/* Immediately discard the backing storage */
1683static void
1684i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1685{
1686	struct inode *inode;
 
 
1687
1688	/* Our goal here is to return as much of the memory as
1689	 * is possible back to the system as we are called from OOM.
1690	 * To do this we must instruct the shmfs to drop all of its
1691	 * backing pages, *now*.
1692	 */
1693	inode = obj->base.filp->f_path.dentry->d_inode;
1694	shmem_truncate_range(inode, 0, (loff_t)-1);
1695
1696	obj->madv = __I915_MADV_PURGED;
 
 
 
 
 
 
 
 
1697}
1698
1699static inline int
1700i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1701{
1702	return obj->madv == I915_MADV_DONTNEED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1703}
1704
1705static void
1706i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1707			       uint32_t flush_domains)
1708{
1709	struct drm_i915_gem_object *obj, *next;
1710
1711	list_for_each_entry_safe(obj, next,
1712				 &ring->gpu_write_list,
1713				 gpu_write_list) {
1714		if (obj->base.write_domain & flush_domains) {
1715			uint32_t old_write_domain = obj->base.write_domain;
1716
1717			obj->base.write_domain = 0;
1718			list_del_init(&obj->gpu_write_list);
1719			i915_gem_object_move_to_active(obj, ring,
1720						       i915_gem_next_request_seqno(ring));
1721
1722			trace_i915_gem_object_change_domain(obj,
1723							    obj->base.read_domains,
1724							    old_write_domain);
1725		}
1726	}
 
 
 
1727}
1728
1729int
1730i915_add_request(struct intel_ring_buffer *ring,
1731		 struct drm_file *file,
1732		 struct drm_i915_gem_request *request)
1733{
1734	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1735	uint32_t seqno;
1736	int was_empty;
1737	int ret;
1738
1739	BUG_ON(request == NULL);
1740
1741	ret = ring->add_request(ring, &seqno);
 
 
 
 
 
 
1742	if (ret)
1743	    return ret;
 
 
 
 
1744
1745	trace_i915_gem_request_add(ring, seqno);
 
 
 
 
 
1746
1747	request->seqno = seqno;
 
 
 
 
1748	request->ring = ring;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1749	request->emitted_jiffies = jiffies;
1750	was_empty = list_empty(&ring->request_list);
1751	list_add_tail(&request->list, &ring->request_list);
 
1752
1753	if (file) {
1754		struct drm_i915_file_private *file_priv = file->driver_priv;
1755
1756		spin_lock(&file_priv->mm.lock);
1757		request->file_priv = file_priv;
1758		list_add_tail(&request->client_list,
1759			      &file_priv->mm.request_list);
1760		spin_unlock(&file_priv->mm.lock);
1761	}
1762
1763	ring->outstanding_lazy_request = false;
1764
1765	if (!dev_priv->mm.suspended) {
1766		if (i915_enable_hangcheck) {
1767			mod_timer(&dev_priv->hangcheck_timer,
1768				  jiffies +
1769				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1770		}
1771		if (was_empty)
1772			queue_delayed_work(dev_priv->wq,
1773					   &dev_priv->mm.retire_work, HZ);
 
1774	}
 
 
 
1775	return 0;
1776}
1777
1778static inline void
1779i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1780{
1781	struct drm_i915_file_private *file_priv = request->file_priv;
1782
1783	if (!file_priv)
1784		return;
1785
1786	spin_lock(&file_priv->mm.lock);
1787	if (request->file_priv) {
1788		list_del(&request->client_list);
1789		request->file_priv = NULL;
1790	}
1791	spin_unlock(&file_priv->mm.lock);
1792}
1793
1794static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1795				      struct intel_ring_buffer *ring)
1796{
1797	while (!list_empty(&ring->request_list)) {
1798		struct drm_i915_gem_request *request;
1799
1800		request = list_first_entry(&ring->request_list,
1801					   struct drm_i915_gem_request,
1802					   list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1803
1804		list_del(&request->list);
1805		i915_gem_request_remove_from_client(request);
1806		kfree(request);
 
 
 
 
 
 
 
 
1807	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1809	while (!list_empty(&ring->active_list)) {
1810		struct drm_i915_gem_object *obj;
1811
1812		obj = list_first_entry(&ring->active_list,
1813				       struct drm_i915_gem_object,
1814				       ring_list);
1815
1816		obj->base.write_domain = 0;
1817		list_del_init(&obj->gpu_write_list);
1818		i915_gem_object_move_to_inactive(obj);
1819	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820}
1821
1822static void i915_gem_reset_fences(struct drm_device *dev)
1823{
1824	struct drm_i915_private *dev_priv = dev->dev_private;
1825	int i;
1826
1827	for (i = 0; i < 16; i++) {
1828		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1829		struct drm_i915_gem_object *obj = reg->obj;
1830
1831		if (!obj)
1832			continue;
1833
1834		if (obj->tiling_mode)
1835			i915_gem_release_mmap(obj);
1836
1837		reg->obj->fence_reg = I915_FENCE_REG_NONE;
1838		reg->obj->fenced_gpu_access = false;
1839		reg->obj->last_fenced_seqno = 0;
1840		reg->obj->last_fenced_ring = NULL;
1841		i915_gem_clear_fence_reg(dev, reg);
1842	}
1843}
1844
1845void i915_gem_reset(struct drm_device *dev)
1846{
1847	struct drm_i915_private *dev_priv = dev->dev_private;
1848	struct drm_i915_gem_object *obj;
1849	int i;
1850
1851	for (i = 0; i < I915_NUM_RINGS; i++)
1852		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1853
1854	/* Remove anything from the flushing lists. The GPU cache is likely
1855	 * to be lost on reset along with the data, so simply move the
1856	 * lost bo to the inactive list.
1857	 */
1858	while (!list_empty(&dev_priv->mm.flushing_list)) {
1859		obj= list_first_entry(&dev_priv->mm.flushing_list,
1860				      struct drm_i915_gem_object,
1861				      mm_list);
1862
1863		obj->base.write_domain = 0;
1864		list_del_init(&obj->gpu_write_list);
1865		i915_gem_object_move_to_inactive(obj);
1866	}
1867
1868	/* Move everything out of the GPU domains to ensure we do any
1869	 * necessary invalidation upon reuse.
1870	 */
1871	list_for_each_entry(obj,
1872			    &dev_priv->mm.inactive_list,
1873			    mm_list)
1874	{
1875		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1876	}
1877
1878	/* The fence registers are invalidated so clear them out */
1879	i915_gem_reset_fences(dev);
1880}
1881
1882/**
1883 * This function clears the request list as sequence numbers are passed.
1884 */
1885static void
1886i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1887{
1888	uint32_t seqno;
1889	int i;
1890
1891	if (list_empty(&ring->request_list))
1892		return;
1893
1894	WARN_ON(i915_verify_lists(ring->dev));
1895
1896	seqno = ring->get_seqno(ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1897
1898	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1899		if (seqno >= ring->sync_seqno[i])
1900			ring->sync_seqno[i] = 0;
1901
1902	while (!list_empty(&ring->request_list)) {
1903		struct drm_i915_gem_request *request;
1904
1905		request = list_first_entry(&ring->request_list,
1906					   struct drm_i915_gem_request,
1907					   list);
1908
1909		if (!i915_seqno_passed(seqno, request->seqno))
1910			break;
1911
1912		trace_i915_gem_request_retire(ring, request->seqno);
 
 
 
 
 
 
1913
1914		list_del(&request->list);
1915		i915_gem_request_remove_from_client(request);
1916		kfree(request);
1917	}
1918
1919	/* Move any buffers on the active list that are no longer referenced
1920	 * by the ringbuffer to the flushing/inactive lists as appropriate.
1921	 */
1922	while (!list_empty(&ring->active_list)) {
1923		struct drm_i915_gem_object *obj;
1924
1925		obj= list_first_entry(&ring->active_list,
1926				      struct drm_i915_gem_object,
1927				      ring_list);
1928
1929		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1930			break;
1931
1932		if (obj->base.write_domain != 0)
1933			i915_gem_object_move_to_flushing(obj);
1934		else
1935			i915_gem_object_move_to_inactive(obj);
1936	}
1937
1938	if (unlikely(ring->trace_irq_seqno &&
1939		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1940		ring->irq_put(ring);
1941		ring->trace_irq_seqno = 0;
1942	}
1943
1944	WARN_ON(i915_verify_lists(ring->dev));
1945}
1946
1947void
1948i915_gem_retire_requests(struct drm_device *dev)
1949{
1950	drm_i915_private_t *dev_priv = dev->dev_private;
 
 
1951	int i;
1952
1953	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1954	    struct drm_i915_gem_object *obj, *next;
1955
1956	    /* We must be careful that during unbind() we do not
1957	     * accidentally infinitely recurse into retire requests.
1958	     * Currently:
1959	     *   retire -> free -> unbind -> wait -> retire_ring
1960	     */
1961	    list_for_each_entry_safe(obj, next,
1962				     &dev_priv->mm.deferred_free_list,
1963				     mm_list)
1964		    i915_gem_free_object_tail(obj);
1965	}
1966
1967	for (i = 0; i < I915_NUM_RINGS; i++)
1968		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
 
 
 
 
1969}
1970
1971static void
1972i915_gem_retire_work_handler(struct work_struct *work)
1973{
1974	drm_i915_private_t *dev_priv;
1975	struct drm_device *dev;
 
1976	bool idle;
1977	int i;
1978
1979	dev_priv = container_of(work, drm_i915_private_t,
1980				mm.retire_work.work);
1981	dev = dev_priv->dev;
1982
1983	/* Come back later if the device is busy... */
1984	if (!mutex_trylock(&dev->struct_mutex)) {
1985		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1986		return;
 
1987	}
 
 
 
 
1988
1989	i915_gem_retire_requests(dev);
 
 
 
 
1990
1991	/* Send a periodic flush down the ring so we don't hold onto GEM
1992	 * objects indefinitely.
1993	 */
1994	idle = true;
1995	for (i = 0; i < I915_NUM_RINGS; i++) {
1996		struct intel_ring_buffer *ring = &dev_priv->ring[i];
1997
1998		if (!list_empty(&ring->gpu_write_list)) {
1999			struct drm_i915_gem_request *request;
2000			int ret;
2001
2002			ret = i915_gem_flush_ring(ring,
2003						  0, I915_GEM_GPU_DOMAINS);
2004			request = kzalloc(sizeof(*request), GFP_KERNEL);
2005			if (ret || request == NULL ||
2006			    i915_add_request(ring, NULL, request))
2007			    kfree(request);
2008		}
2009
2010		idle &= list_empty(&ring->request_list);
2011	}
 
 
 
 
 
 
 
2012
2013	if (!dev_priv->mm.suspended && !idle)
2014		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
 
 
2015
2016	mutex_unlock(&dev->struct_mutex);
 
 
 
2017}
2018
2019/**
2020 * Waits for a sequence number to be signaled, and cleans up the
2021 * request and object lists appropriately for that event.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2022 */
2023int
2024i915_wait_request(struct intel_ring_buffer *ring,
2025		  uint32_t seqno)
2026{
2027	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2028	u32 ier;
 
 
 
 
 
2029	int ret = 0;
2030
2031	BUG_ON(seqno == 0);
2032
2033	if (atomic_read(&dev_priv->mm.wedged)) {
2034		struct completion *x = &dev_priv->error_completion;
2035		bool recovery_complete;
2036		unsigned long flags;
2037
2038		/* Give the error handler a chance to run. */
2039		spin_lock_irqsave(&x->wait.lock, flags);
2040		recovery_complete = x->done > 0;
2041		spin_unlock_irqrestore(&x->wait.lock, flags);
2042
2043		return recovery_complete ? -EIO : -EAGAIN;
 
 
 
2044	}
2045
2046	if (seqno == ring->outstanding_lazy_request) {
2047		struct drm_i915_gem_request *request;
2048
2049		request = kzalloc(sizeof(*request), GFP_KERNEL);
2050		if (request == NULL)
2051			return -ENOMEM;
2052
2053		ret = i915_add_request(ring, NULL, request);
2054		if (ret) {
2055			kfree(request);
2056			return ret;
2057		}
2058
2059		seqno = request->seqno;
 
 
2060	}
2061
2062	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2063		if (HAS_PCH_SPLIT(ring->dev))
2064			ier = I915_READ(DEIER) | I915_READ(GTIER);
2065		else
2066			ier = I915_READ(IER);
2067		if (!ier) {
2068			DRM_ERROR("something (likely vbetool) disabled "
2069				  "interrupts, re-enabling\n");
2070			ring->dev->driver->irq_preinstall(ring->dev);
2071			ring->dev->driver->irq_postinstall(ring->dev);
2072		}
2073
2074		trace_i915_gem_request_wait_begin(ring, seqno);
2075
2076		ring->waiting_seqno = seqno;
2077		if (ring->irq_get(ring)) {
2078			if (dev_priv->mm.interruptible)
2079				ret = wait_event_interruptible(ring->irq_queue,
2080							       i915_seqno_passed(ring->get_seqno(ring), seqno)
2081							       || atomic_read(&dev_priv->mm.wedged));
2082			else
2083				wait_event(ring->irq_queue,
2084					   i915_seqno_passed(ring->get_seqno(ring), seqno)
2085					   || atomic_read(&dev_priv->mm.wedged));
2086
2087			ring->irq_put(ring);
2088		} else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2089						      seqno) ||
2090				    atomic_read(&dev_priv->mm.wedged), 3000))
2091			ret = -EBUSY;
2092		ring->waiting_seqno = 0;
2093
2094		trace_i915_gem_request_wait_end(ring, seqno);
2095	}
2096	if (atomic_read(&dev_priv->mm.wedged))
2097		ret = -EAGAIN;
2098
2099	if (ret && ret != -ERESTARTSYS)
2100		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2101			  __func__, ret, seqno, ring->get_seqno(ring),
2102			  dev_priv->next_seqno);
2103
2104	/* Directly dispatch request retiring.  While we have the work queue
2105	 * to handle this, the waiter on a request often wants an associated
2106	 * buffer to have made it to the inactive list, and we would need
2107	 * a separate wait queue to handle that.
2108	 */
2109	if (ret == 0)
2110		i915_gem_retire_requests_ring(ring);
 
 
2111
 
 
 
 
 
 
 
 
 
 
 
 
2112	return ret;
2113}
2114
2115/**
2116 * Ensures that all rendering to the object has completed and the object is
2117 * safe to unbind from the GTT or access from the CPU.
 
 
 
 
 
 
 
 
2118 */
2119int
2120i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
 
2121{
2122	int ret;
 
 
2123
2124	/* This function only exists to support waiting for existing rendering,
2125	 * not for emitting required flushes.
2126	 */
2127	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2128
2129	/* If there is rendering queued on the buffer being evicted, wait for
2130	 * it.
2131	 */
2132	if (obj->active) {
2133		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2134		if (ret)
2135			return ret;
2136	}
2137
2138	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2139}
2140
2141static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2142{
2143	u32 old_write_domain, old_read_domains;
2144
2145	/* Act a barrier for all accesses through the GTT */
2146	mb();
2147
2148	/* Force a pagefault for domain tracking on next user access */
2149	i915_gem_release_mmap(obj);
2150
2151	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2152		return;
2153
 
 
 
2154	old_read_domains = obj->base.read_domains;
2155	old_write_domain = obj->base.write_domain;
2156
2157	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2158	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2159
2160	trace_i915_gem_object_change_domain(obj,
2161					    old_read_domains,
2162					    old_write_domain);
2163}
2164
2165/**
2166 * Unbinds an object from the GTT aperture.
2167 */
2168int
2169i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2170{
2171	int ret = 0;
 
 
2172
2173	if (obj->gtt_space == NULL)
2174		return 0;
2175
2176	if (obj->pin_count != 0) {
2177		DRM_ERROR("Attempting to unbind pinned buffer\n");
2178		return -EINVAL;
2179	}
2180
 
 
 
 
 
2181	ret = i915_gem_object_finish_gpu(obj);
2182	if (ret == -ERESTARTSYS)
2183		return ret;
2184	/* Continue on if we fail due to EIO, the GPU is hung so we
2185	 * should be safe and we need to cleanup or else we might
2186	 * cause memory corruption through use-after-free.
2187	 */
2188
2189	i915_gem_object_finish_gtt(obj);
2190
2191	/* Move the object to the CPU domain to ensure that
2192	 * any possible CPU writes while it's not in the GTT
2193	 * are flushed when we go to remap it.
2194	 */
2195	if (ret == 0)
2196		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2197	if (ret == -ERESTARTSYS)
2198		return ret;
2199	if (ret) {
2200		/* In the event of a disaster, abandon all caches and
2201		 * hope for the best.
2202		 */
2203		i915_gem_clflush_object(obj);
2204		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2205	}
2206
2207	/* release the fence reg _after_ flushing */
2208	ret = i915_gem_object_put_fence(obj);
2209	if (ret == -ERESTARTSYS)
2210		return ret;
2211
2212	trace_i915_gem_object_unbind(obj);
2213
2214	i915_gem_gtt_unbind_object(obj);
2215	i915_gem_object_put_pages_gtt(obj);
2216
2217	list_del_init(&obj->gtt_list);
2218	list_del_init(&obj->mm_list);
2219	/* Avoid an unnecessary call to unbind on rebind. */
2220	obj->map_and_fenceable = true;
2221
2222	drm_mm_put_block(obj->gtt_space);
2223	obj->gtt_space = NULL;
2224	obj->gtt_offset = 0;
2225
2226	if (i915_gem_object_is_purgeable(obj))
2227		i915_gem_object_truncate(obj);
2228
2229	return ret;
2230}
2231
2232int
2233i915_gem_flush_ring(struct intel_ring_buffer *ring,
2234		    uint32_t invalidate_domains,
2235		    uint32_t flush_domains)
2236{
2237	int ret;
2238
2239	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2240		return 0;
2241
2242	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
 
2243
2244	ret = ring->flush(ring, invalidate_domains, flush_domains);
2245	if (ret)
2246		return ret;
2247
2248	if (flush_domains & I915_GEM_GPU_DOMAINS)
2249		i915_gem_process_flushing_list(ring, flush_domains);
 
 
 
 
2250
2251	return 0;
2252}
2253
2254static int i915_ring_idle(struct intel_ring_buffer *ring)
2255{
2256	int ret;
 
 
2257
2258	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2259		return 0;
 
 
 
2260
2261	if (!list_empty(&ring->gpu_write_list)) {
2262		ret = i915_gem_flush_ring(ring,
2263				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2264		if (ret)
2265			return ret;
2266	}
2267
2268	return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2269}
2270
2271int
2272i915_gpu_idle(struct drm_device *dev)
2273{
2274	drm_i915_private_t *dev_priv = dev->dev_private;
2275	bool lists_empty;
2276	int ret, i;
2277
2278	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2279		       list_empty(&dev_priv->mm.active_list));
2280	if (lists_empty)
2281		return 0;
2282
2283	/* Flush everything onto the inactive list. */
2284	for (i = 0; i < I915_NUM_RINGS; i++) {
2285		ret = i915_ring_idle(&dev_priv->ring[i]);
2286		if (ret)
2287			return ret;
 
2288	}
2289
2290	return 0;
2291}
2292
2293static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2294				       struct intel_ring_buffer *pipelined)
2295{
2296	struct drm_device *dev = obj->base.dev;
2297	drm_i915_private_t *dev_priv = dev->dev_private;
2298	u32 size = obj->gtt_space->size;
2299	int regnum = obj->fence_reg;
2300	uint64_t val;
2301
2302	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2303			 0xfffff000) << 32;
2304	val |= obj->gtt_offset & 0xfffff000;
2305	val |= (uint64_t)((obj->stride / 128) - 1) <<
2306		SANDYBRIDGE_FENCE_PITCH_SHIFT;
2307
2308	if (obj->tiling_mode == I915_TILING_Y)
2309		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2310	val |= I965_FENCE_REG_VALID;
2311
2312	if (pipelined) {
2313		int ret = intel_ring_begin(pipelined, 6);
2314		if (ret)
2315			return ret;
 
 
 
 
 
 
 
2316
2317		intel_ring_emit(pipelined, MI_NOOP);
2318		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2319		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2320		intel_ring_emit(pipelined, (u32)val);
2321		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2322		intel_ring_emit(pipelined, (u32)(val >> 32));
2323		intel_ring_advance(pipelined);
2324	} else
2325		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2326
2327	return 0;
 
 
 
 
 
2328}
2329
2330static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2331				struct intel_ring_buffer *pipelined)
2332{
2333	struct drm_device *dev = obj->base.dev;
2334	drm_i915_private_t *dev_priv = dev->dev_private;
2335	u32 size = obj->gtt_space->size;
2336	int regnum = obj->fence_reg;
2337	uint64_t val;
2338
2339	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2340		    0xfffff000) << 32;
2341	val |= obj->gtt_offset & 0xfffff000;
2342	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2343	if (obj->tiling_mode == I915_TILING_Y)
2344		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2345	val |= I965_FENCE_REG_VALID;
2346
2347	if (pipelined) {
2348		int ret = intel_ring_begin(pipelined, 6);
2349		if (ret)
2350			return ret;
 
 
 
 
 
 
2351
2352		intel_ring_emit(pipelined, MI_NOOP);
2353		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2354		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2355		intel_ring_emit(pipelined, (u32)val);
2356		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2357		intel_ring_emit(pipelined, (u32)(val >> 32));
2358		intel_ring_advance(pipelined);
2359	} else
2360		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2361
2362	return 0;
2363}
2364
2365static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2366				struct intel_ring_buffer *pipelined)
2367{
2368	struct drm_device *dev = obj->base.dev;
2369	drm_i915_private_t *dev_priv = dev->dev_private;
2370	u32 size = obj->gtt_space->size;
2371	u32 fence_reg, val, pitch_val;
2372	int tile_width;
2373
2374	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2375		 (size & -size) != size ||
2376		 (obj->gtt_offset & (size - 1)),
2377		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2378		 obj->gtt_offset, obj->map_and_fenceable, size))
2379		return -EINVAL;
2380
2381	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2382		tile_width = 128;
2383	else
2384		tile_width = 512;
2385
2386	/* Note: pitch better be a power of two tile widths */
2387	pitch_val = obj->stride / tile_width;
2388	pitch_val = ffs(pitch_val) - 1;
2389
2390	val = obj->gtt_offset;
2391	if (obj->tiling_mode == I915_TILING_Y)
2392		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2393	val |= I915_FENCE_SIZE_BITS(size);
2394	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2395	val |= I830_FENCE_REG_VALID;
2396
2397	fence_reg = obj->fence_reg;
2398	if (fence_reg < 8)
2399		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2400	else
2401		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2402
2403	if (pipelined) {
2404		int ret = intel_ring_begin(pipelined, 4);
2405		if (ret)
2406			return ret;
 
2407
2408		intel_ring_emit(pipelined, MI_NOOP);
2409		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2410		intel_ring_emit(pipelined, fence_reg);
2411		intel_ring_emit(pipelined, val);
2412		intel_ring_advance(pipelined);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2413	} else
2414		I915_WRITE(fence_reg, val);
2415
2416	return 0;
 
2417}
2418
2419static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2420				struct intel_ring_buffer *pipelined)
2421{
2422	struct drm_device *dev = obj->base.dev;
2423	drm_i915_private_t *dev_priv = dev->dev_private;
2424	u32 size = obj->gtt_space->size;
2425	int regnum = obj->fence_reg;
2426	uint32_t val;
2427	uint32_t pitch_val;
2428
2429	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2430		 (size & -size) != size ||
2431		 (obj->gtt_offset & (size - 1)),
2432		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2433		 obj->gtt_offset, size))
2434		return -EINVAL;
2435
2436	pitch_val = obj->stride / 128;
2437	pitch_val = ffs(pitch_val) - 1;
 
 
2438
2439	val = obj->gtt_offset;
2440	if (obj->tiling_mode == I915_TILING_Y)
2441		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2442	val |= I830_FENCE_SIZE_BITS(size);
2443	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2444	val |= I830_FENCE_REG_VALID;
2445
2446	if (pipelined) {
2447		int ret = intel_ring_begin(pipelined, 4);
2448		if (ret)
2449			return ret;
2450
2451		intel_ring_emit(pipelined, MI_NOOP);
2452		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2453		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2454		intel_ring_emit(pipelined, val);
2455		intel_ring_advance(pipelined);
2456	} else
2457		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
 
 
 
2458
2459	return 0;
 
 
 
 
2460}
2461
2462static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
 
2463{
2464	return i915_seqno_passed(ring->get_seqno(ring), seqno);
2465}
2466
2467static int
2468i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2469			    struct intel_ring_buffer *pipelined)
2470{
2471	int ret;
 
2472
2473	if (obj->fenced_gpu_access) {
2474		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2475			ret = i915_gem_flush_ring(obj->last_fenced_ring,
2476						  0, obj->base.write_domain);
2477			if (ret)
2478				return ret;
2479		}
2480
2481		obj->fenced_gpu_access = false;
 
 
 
 
 
 
 
2482	}
 
 
2483
2484	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2485		if (!ring_passed_seqno(obj->last_fenced_ring,
2486				       obj->last_fenced_seqno)) {
2487			ret = i915_wait_request(obj->last_fenced_ring,
2488						obj->last_fenced_seqno);
2489			if (ret)
2490				return ret;
2491		}
2492
2493		obj->last_fenced_seqno = 0;
2494		obj->last_fenced_ring = NULL;
2495	}
2496
2497	/* Ensure that all CPU reads are completed before installing a fence
2498	 * and all writes before removing the fence.
2499	 */
2500	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2501		mb();
2502
2503	return 0;
2504}
2505
2506int
2507i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2508{
 
 
2509	int ret;
2510
2511	if (obj->tiling_mode)
2512		i915_gem_release_mmap(obj);
2513
2514	ret = i915_gem_object_flush_fence(obj, NULL);
2515	if (ret)
2516		return ret;
2517
2518	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2519		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2520		i915_gem_clear_fence_reg(obj->base.dev,
2521					 &dev_priv->fence_regs[obj->fence_reg]);
2522
2523		obj->fence_reg = I915_FENCE_REG_NONE;
2524	}
 
 
2525
2526	return 0;
2527}
2528
2529static struct drm_i915_fence_reg *
2530i915_find_fence_reg(struct drm_device *dev,
2531		    struct intel_ring_buffer *pipelined)
2532{
2533	struct drm_i915_private *dev_priv = dev->dev_private;
2534	struct drm_i915_fence_reg *reg, *first, *avail;
2535	int i;
2536
2537	/* First try to find a free reg */
2538	avail = NULL;
2539	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2540		reg = &dev_priv->fence_regs[i];
2541		if (!reg->obj)
2542			return reg;
2543
2544		if (!reg->obj->pin_count)
2545			avail = reg;
2546	}
2547
2548	if (avail == NULL)
2549		return NULL;
2550
2551	/* None available, try to steal one or wait for a user to finish */
2552	avail = first = NULL;
2553	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2554		if (reg->obj->pin_count)
2555			continue;
2556
2557		if (first == NULL)
2558			first = reg;
2559
2560		if (!pipelined ||
2561		    !reg->obj->last_fenced_ring ||
2562		    reg->obj->last_fenced_ring == pipelined) {
2563			avail = reg;
2564			break;
2565		}
2566	}
2567
2568	if (avail == NULL)
2569		avail = first;
 
 
2570
2571	return avail;
2572}
2573
2574/**
2575 * i915_gem_object_get_fence - set up a fence reg for an object
2576 * @obj: object to map through a fence reg
2577 * @pipelined: ring on which to queue the change, or NULL for CPU access
2578 * @interruptible: must we wait uninterruptibly for the register to retire?
2579 *
2580 * When mapping objects through the GTT, userspace wants to be able to write
2581 * to them without having to worry about swizzling if the object is tiled.
2582 *
2583 * This function walks the fence regs looking for a free one for @obj,
2584 * stealing one if it can't find any.
2585 *
2586 * It then sets up the reg based on the object's properties: address, pitch
2587 * and tiling format.
 
 
2588 */
2589int
2590i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2591			  struct intel_ring_buffer *pipelined)
2592{
2593	struct drm_device *dev = obj->base.dev;
2594	struct drm_i915_private *dev_priv = dev->dev_private;
 
2595	struct drm_i915_fence_reg *reg;
2596	int ret;
2597
2598	/* XXX disable pipelining. There are bugs. Shocking. */
2599	pipelined = NULL;
 
 
 
 
 
 
2600
2601	/* Just update our place in the LRU if our fence is getting reused. */
2602	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2603		reg = &dev_priv->fence_regs[obj->fence_reg];
2604		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2605
2606		if (obj->tiling_changed) {
2607			ret = i915_gem_object_flush_fence(obj, pipelined);
2608			if (ret)
2609				return ret;
2610
2611			if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2612				pipelined = NULL;
2613
2614			if (pipelined) {
2615				reg->setup_seqno =
2616					i915_gem_next_request_seqno(pipelined);
2617				obj->last_fenced_seqno = reg->setup_seqno;
2618				obj->last_fenced_ring = pipelined;
2619			}
2620
2621			goto update;
2622		}
 
 
 
 
2623
2624		if (!pipelined) {
2625			if (reg->setup_seqno) {
2626				if (!ring_passed_seqno(obj->last_fenced_ring,
2627						       reg->setup_seqno)) {
2628					ret = i915_wait_request(obj->last_fenced_ring,
2629								reg->setup_seqno);
2630					if (ret)
2631						return ret;
2632				}
2633
2634				reg->setup_seqno = 0;
2635			}
2636		} else if (obj->last_fenced_ring &&
2637			   obj->last_fenced_ring != pipelined) {
2638			ret = i915_gem_object_flush_fence(obj, pipelined);
2639			if (ret)
2640				return ret;
2641		}
2642
 
 
 
2643		return 0;
2644	}
2645
2646	reg = i915_find_fence_reg(dev, pipelined);
2647	if (reg == NULL)
2648		return -ENOSPC;
2649
2650	ret = i915_gem_object_flush_fence(obj, pipelined);
2651	if (ret)
2652		return ret;
2653
2654	if (reg->obj) {
2655		struct drm_i915_gem_object *old = reg->obj;
 
 
 
2656
2657		drm_gem_object_reference(&old->base);
 
 
 
 
 
2658
2659		if (old->tiling_mode)
2660			i915_gem_release_mmap(old);
2661
2662		ret = i915_gem_object_flush_fence(old, pipelined);
2663		if (ret) {
2664			drm_gem_object_unreference(&old->base);
2665			return ret;
2666		}
2667
2668		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2669			pipelined = NULL;
 
2670
2671		old->fence_reg = I915_FENCE_REG_NONE;
2672		old->last_fenced_ring = pipelined;
2673		old->last_fenced_seqno =
2674			pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2675
2676		drm_gem_object_unreference(&old->base);
2677	} else if (obj->last_fenced_seqno == 0)
2678		pipelined = NULL;
2679
2680	reg->obj = obj;
2681	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2682	obj->fence_reg = reg - dev_priv->fence_regs;
2683	obj->last_fenced_ring = pipelined;
2684
2685	reg->setup_seqno =
2686		pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2687	obj->last_fenced_seqno = reg->setup_seqno;
2688
2689update:
2690	obj->tiling_changed = false;
2691	switch (INTEL_INFO(dev)->gen) {
2692	case 7:
2693	case 6:
2694		ret = sandybridge_write_fence_reg(obj, pipelined);
2695		break;
2696	case 5:
2697	case 4:
2698		ret = i965_write_fence_reg(obj, pipelined);
2699		break;
2700	case 3:
2701		ret = i915_write_fence_reg(obj, pipelined);
2702		break;
2703	case 2:
2704		ret = i830_write_fence_reg(obj, pipelined);
2705		break;
2706	}
2707
2708	return ret;
2709}
2710
2711/**
2712 * i915_gem_clear_fence_reg - clear out fence register info
2713 * @obj: object to clear
2714 *
2715 * Zeroes out the fence register itself and clears out the associated
2716 * data structures in dev_priv and obj.
2717 */
2718static void
2719i915_gem_clear_fence_reg(struct drm_device *dev,
2720			 struct drm_i915_fence_reg *reg)
2721{
2722	drm_i915_private_t *dev_priv = dev->dev_private;
2723	uint32_t fence_reg = reg - dev_priv->fence_regs;
 
 
2724
2725	switch (INTEL_INFO(dev)->gen) {
2726	case 7:
2727	case 6:
2728		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2729		break;
2730	case 5:
2731	case 4:
2732		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2733		break;
2734	case 3:
2735		if (fence_reg >= 8)
2736			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2737		else
2738	case 2:
2739			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2740
2741		I915_WRITE(fence_reg, 0);
2742		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2743	}
2744
2745	list_del_init(&reg->lru_list);
2746	reg->obj = NULL;
2747	reg->setup_seqno = 0;
2748}
2749
2750/**
2751 * Finds free space in the GTT aperture and binds the object there.
2752 */
2753static int
2754i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2755			    unsigned alignment,
2756			    bool map_and_fenceable)
 
2757{
2758	struct drm_device *dev = obj->base.dev;
2759	drm_i915_private_t *dev_priv = dev->dev_private;
2760	struct drm_mm_node *free_space;
2761	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2762	u32 size, fence_size, fence_alignment, unfenced_alignment;
2763	bool mappable, fenceable;
 
 
 
 
2764	int ret;
2765
2766	if (obj->madv != I915_MADV_WILLNEED) {
2767		DRM_ERROR("Attempting to bind a purgeable object\n");
2768		return -EINVAL;
2769	}
2770
2771	fence_size = i915_gem_get_gtt_size(dev,
2772					   obj->base.size,
2773					   obj->tiling_mode);
2774	fence_alignment = i915_gem_get_gtt_alignment(dev,
2775						     obj->base.size,
2776						     obj->tiling_mode);
2777	unfenced_alignment =
2778		i915_gem_get_unfenced_gtt_alignment(dev,
2779						    obj->base.size,
2780						    obj->tiling_mode);
2781
2782	if (alignment == 0)
2783		alignment = map_and_fenceable ? fence_alignment :
2784						unfenced_alignment;
2785	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2786		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2787		return -EINVAL;
2788	}
2789
2790	size = map_and_fenceable ? fence_size : obj->base.size;
2791
2792	/* If the object is bigger than the entire aperture, reject it early
2793	 * before evicting everything in a vain attempt to find space.
2794	 */
2795	if (obj->base.size >
2796	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2797		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2798		return -E2BIG;
 
 
2799	}
2800
2801 search_free:
2802	if (map_and_fenceable)
2803		free_space =
2804			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2805						    size, alignment, 0,
2806						    dev_priv->mm.gtt_mappable_end,
2807						    0);
2808	else
2809		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2810						size, alignment, 0);
2811
2812	if (free_space != NULL) {
2813		if (map_and_fenceable)
2814			obj->gtt_space =
2815				drm_mm_get_block_range_generic(free_space,
2816							       size, alignment, 0,
2817							       dev_priv->mm.gtt_mappable_end,
2818							       0);
2819		else
2820			obj->gtt_space =
2821				drm_mm_get_block(free_space, size, alignment);
2822	}
2823	if (obj->gtt_space == NULL) {
2824		/* If the gtt is empty and we're still having trouble
2825		 * fitting our object in, we're out of memory.
2826		 */
2827		ret = i915_gem_evict_something(dev, size, alignment,
2828					       map_and_fenceable);
2829		if (ret)
2830			return ret;
2831
2832		goto search_free;
2833	}
2834
2835	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
 
 
 
 
 
 
 
 
 
 
2836	if (ret) {
2837		drm_mm_put_block(obj->gtt_space);
2838		obj->gtt_space = NULL;
2839
2840		if (ret == -ENOMEM) {
2841			/* first try to reclaim some memory by clearing the GTT */
2842			ret = i915_gem_evict_everything(dev, false);
2843			if (ret) {
2844				/* now try to shrink everyone else */
2845				if (gfpmask) {
2846					gfpmask = 0;
2847					goto search_free;
2848				}
2849
2850				return -ENOMEM;
2851			}
2852
2853			goto search_free;
2854		}
2855
2856		return ret;
 
 
 
 
 
2857	}
2858
2859	ret = i915_gem_gtt_bind_object(obj);
2860	if (ret) {
2861		i915_gem_object_put_pages_gtt(obj);
2862		drm_mm_put_block(obj->gtt_space);
2863		obj->gtt_space = NULL;
2864
2865		if (i915_gem_evict_everything(dev, false))
2866			return ret;
2867
2868		goto search_free;
2869	}
2870
2871	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2872	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2873
2874	/* Assert that the object is not currently in any GPU domain. As it
2875	 * wasn't in the GTT, there shouldn't be any way it could have been in
2876	 * a GPU cache
2877	 */
2878	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2879	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2880
2881	obj->gtt_offset = obj->gtt_space->start;
 
2882
2883	fenceable =
2884		obj->gtt_space->size == fence_size &&
2885		(obj->gtt_space->start & (fence_alignment -1)) == 0;
2886
2887	mappable =
2888		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
 
2889
2890	obj->map_and_fenceable = mappable && fenceable;
 
2891
2892	trace_i915_gem_object_bind(obj, map_and_fenceable);
2893	return 0;
 
 
 
 
 
 
2894}
2895
2896void
2897i915_gem_clflush_object(struct drm_i915_gem_object *obj)
 
2898{
2899	/* If we don't have a page list set up, then we're not pinned
2900	 * to GPU, and we can ignore the cache flush because it'll happen
2901	 * again at bind time.
2902	 */
2903	if (obj->pages == NULL)
2904		return;
 
 
 
 
 
 
 
2905
2906	/* If the GPU is snooping the contents of the CPU cache,
2907	 * we do not need to manually clear the CPU cache lines.  However,
2908	 * the caches are only snooped when the render cache is
2909	 * flushed/invalidated.  As we always have to emit invalidations
2910	 * and flushes when moving into and out of the RENDER domain, correct
2911	 * snooping behaviour occurs naturally as the result of our domain
2912	 * tracking.
2913	 */
2914	if (obj->cache_level != I915_CACHE_NONE)
2915		return;
2916
2917	trace_i915_gem_object_clflush(obj);
 
2918
2919	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2920}
2921
2922/** Flushes any GPU write domain for the object if it's dirty. */
2923static int
2924i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2925{
2926	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2927		return 0;
2928
2929	/* Queue the GPU write cache flushing we need. */
2930	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2931}
2932
2933/** Flushes the GTT write domain for the object if it's dirty. */
2934static void
2935i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2936{
2937	uint32_t old_write_domain;
2938
2939	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2940		return;
2941
2942	/* No actual flushing is required for the GTT write domain.  Writes
2943	 * to it immediately go to main memory as far as we know, so there's
2944	 * no chipset flush.  It also doesn't land in render cache.
2945	 *
2946	 * However, we do have to enforce the order so that all writes through
2947	 * the GTT land before any writes to the device, such as updates to
2948	 * the GATT itself.
2949	 */
2950	wmb();
2951
2952	old_write_domain = obj->base.write_domain;
2953	obj->base.write_domain = 0;
2954
2955	trace_i915_gem_object_change_domain(obj,
2956					    obj->base.read_domains,
2957					    old_write_domain);
2958}
2959
2960/** Flushes the CPU write domain for the object if it's dirty. */
2961static void
2962i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
 
2963{
2964	uint32_t old_write_domain;
2965
2966	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2967		return;
2968
2969	i915_gem_clflush_object(obj);
2970	intel_gtt_chipset_flush();
 
2971	old_write_domain = obj->base.write_domain;
2972	obj->base.write_domain = 0;
2973
2974	trace_i915_gem_object_change_domain(obj,
2975					    obj->base.read_domains,
2976					    old_write_domain);
2977}
2978
2979/**
2980 * Moves a single object to the GTT read, and possibly write domain.
2981 *
2982 * This function returns when the move is complete, including waiting on
2983 * flushes to occur.
2984 */
2985int
2986i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2987{
 
2988	uint32_t old_write_domain, old_read_domains;
2989	int ret;
2990
2991	/* Not valid to be called on unbound objects. */
2992	if (obj->gtt_space == NULL)
2993		return -EINVAL;
2994
2995	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2996		return 0;
2997
2998	ret = i915_gem_object_flush_gpu_write_domain(obj);
2999	if (ret)
3000		return ret;
3001
3002	if (obj->pending_gpu_write || write) {
3003		ret = i915_gem_object_wait_rendering(obj);
3004		if (ret)
3005			return ret;
3006	}
3007
3008	i915_gem_object_flush_cpu_write_domain(obj);
 
 
 
 
 
3009
3010	old_write_domain = obj->base.write_domain;
3011	old_read_domains = obj->base.read_domains;
3012
3013	/* It should now be out of any other write domains, and we can update
3014	 * the domain values for our changes.
3015	 */
3016	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3017	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3018	if (write) {
3019		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3020		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3021		obj->dirty = 1;
3022	}
3023
3024	trace_i915_gem_object_change_domain(obj,
3025					    old_read_domains,
3026					    old_write_domain);
3027
 
 
 
 
 
 
 
 
 
3028	return 0;
3029}
3030
3031int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3032				    enum i915_cache_level cache_level)
3033{
 
 
3034	int ret;
3035
3036	if (obj->cache_level == cache_level)
3037		return 0;
3038
3039	if (obj->pin_count) {
3040		DRM_DEBUG("can not change the cache level of pinned objects\n");
3041		return -EBUSY;
3042	}
3043
3044	if (obj->gtt_space) {
 
 
 
 
 
 
 
 
3045		ret = i915_gem_object_finish_gpu(obj);
3046		if (ret)
3047			return ret;
3048
3049		i915_gem_object_finish_gtt(obj);
3050
3051		/* Before SandyBridge, you could not use tiling or fence
3052		 * registers with snooped memory, so relinquish any fences
3053		 * currently pointing to our region in the aperture.
3054		 */
3055		if (INTEL_INFO(obj->base.dev)->gen < 6) {
3056			ret = i915_gem_object_put_fence(obj);
3057			if (ret)
3058				return ret;
3059		}
3060
3061		i915_gem_gtt_rebind_object(obj, cache_level);
 
 
 
3062	}
3063
3064	if (cache_level == I915_CACHE_NONE) {
 
 
 
 
3065		u32 old_read_domains, old_write_domain;
3066
3067		/* If we're coming from LLC cached, then we haven't
3068		 * actually been tracking whether the data is in the
3069		 * CPU cache or not, since we only allow one bit set
3070		 * in obj->write_domain and have been skipping the clflushes.
3071		 * Just set it to the CPU cache for now.
3072		 */
3073		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3074		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3075
3076		old_read_domains = obj->base.read_domains;
3077		old_write_domain = obj->base.write_domain;
3078
3079		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3080		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3081
3082		trace_i915_gem_object_change_domain(obj,
3083						    old_read_domains,
3084						    old_write_domain);
3085	}
3086
3087	obj->cache_level = cache_level;
3088	return 0;
3089}
3090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091/*
3092 * Prepare buffer for display plane (scanout, cursors, etc).
3093 * Can be called from an uninterruptible phase (modesetting) and allows
3094 * any flushes to be pipelined (for pageflips).
3095 *
3096 * For the display plane, we want to be in the GTT but out of any write
3097 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
3098 * ability to pipeline the waits, pinning and any additional subtleties
3099 * that may differentiate the display plane from ordinary buffers.
3100 */
3101int
3102i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3103				     u32 alignment,
3104				     struct intel_ring_buffer *pipelined)
3105{
3106	u32 old_read_domains, old_write_domain;
3107	int ret;
3108
3109	ret = i915_gem_object_flush_gpu_write_domain(obj);
3110	if (ret)
3111		return ret;
3112
3113	if (pipelined != obj->ring) {
3114		ret = i915_gem_object_wait_rendering(obj);
3115		if (ret == -ERESTARTSYS)
3116			return ret;
3117	}
3118
 
 
 
 
 
3119	/* The display engine is not coherent with the LLC cache on gen6.  As
3120	 * a result, we make sure that the pinning that is about to occur is
3121	 * done with uncached PTEs. This is lowest common denominator for all
3122	 * chipsets.
3123	 *
3124	 * However for gen6+, we could do better by using the GFDT bit instead
3125	 * of uncaching, which would allow us to flush all the LLC-cached data
3126	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3127	 */
3128	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
 
3129	if (ret)
3130		return ret;
3131
3132	/* As the user may map the buffer once pinned in the display plane
3133	 * (e.g. libkms for the bootup splash), we have to ensure that we
3134	 * always use map_and_fenceable for all scanout buffers.
3135	 */
3136	ret = i915_gem_object_pin(obj, alignment, true);
3137	if (ret)
3138		return ret;
3139
3140	i915_gem_object_flush_cpu_write_domain(obj);
3141
3142	old_write_domain = obj->base.write_domain;
3143	old_read_domains = obj->base.read_domains;
3144
3145	/* It should now be out of any other write domains, and we can update
3146	 * the domain values for our changes.
3147	 */
3148	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3149	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3150
3151	trace_i915_gem_object_change_domain(obj,
3152					    old_read_domains,
3153					    old_write_domain);
3154
3155	return 0;
 
 
 
 
 
 
 
 
 
 
 
3156}
3157
3158int
3159i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3160{
3161	int ret;
3162
3163	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3164		return 0;
3165
3166	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3167		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3168		if (ret)
3169			return ret;
3170	}
3171
3172	/* Ensure that we invalidate the GPU's caches and TLBs. */
3173	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3174
3175	return i915_gem_object_wait_rendering(obj);
3176}
3177
3178/**
3179 * Moves a single object to the CPU read, and possibly write domain.
3180 *
3181 * This function returns when the move is complete, including waiting on
3182 * flushes to occur.
3183 */
3184static int
3185i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3186{
3187	uint32_t old_write_domain, old_read_domains;
3188	int ret;
3189
3190	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3191		return 0;
3192
3193	ret = i915_gem_object_flush_gpu_write_domain(obj);
3194	if (ret)
3195		return ret;
3196
3197	ret = i915_gem_object_wait_rendering(obj);
3198	if (ret)
3199		return ret;
3200
3201	i915_gem_object_flush_gtt_write_domain(obj);
3202
3203	/* If we have a partially-valid cache of the object in the CPU,
3204	 * finish invalidating it and free the per-page flags.
3205	 */
3206	i915_gem_object_set_to_full_cpu_read_domain(obj);
3207
3208	old_write_domain = obj->base.write_domain;
3209	old_read_domains = obj->base.read_domains;
3210
3211	/* Flush the CPU cache if it's still invalid. */
3212	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3213		i915_gem_clflush_object(obj);
3214
3215		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3216	}
3217
3218	/* It should now be out of any other write domains, and we can update
3219	 * the domain values for our changes.
3220	 */
3221	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3222
3223	/* If we're writing through the CPU, then the GPU read domains will
3224	 * need to be invalidated at next use.
3225	 */
3226	if (write) {
3227		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3228		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3229	}
3230
3231	trace_i915_gem_object_change_domain(obj,
3232					    old_read_domains,
3233					    old_write_domain);
3234
3235	return 0;
3236}
3237
3238/**
3239 * Moves the object from a partially CPU read to a full one.
3240 *
3241 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3242 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3243 */
3244static void
3245i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3246{
3247	if (!obj->page_cpu_valid)
3248		return;
3249
3250	/* If we're partially in the CPU read domain, finish moving it in.
3251	 */
3252	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3253		int i;
3254
3255		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3256			if (obj->page_cpu_valid[i])
3257				continue;
3258			drm_clflush_pages(obj->pages + i, 1);
3259		}
3260	}
3261
3262	/* Free the page_cpu_valid mappings which are now stale, whether
3263	 * or not we've got I915_GEM_DOMAIN_CPU.
3264	 */
3265	kfree(obj->page_cpu_valid);
3266	obj->page_cpu_valid = NULL;
3267}
3268
3269/**
3270 * Set the CPU read domain on a range of the object.
3271 *
3272 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3273 * not entirely valid.  The page_cpu_valid member of the object flags which
3274 * pages have been flushed, and will be respected by
3275 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3276 * of the whole object.
3277 *
3278 * This function returns when the move is complete, including waiting on
3279 * flushes to occur.
3280 */
3281static int
3282i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3283					  uint64_t offset, uint64_t size)
3284{
3285	uint32_t old_read_domains;
3286	int i, ret;
3287
3288	if (offset == 0 && size == obj->base.size)
3289		return i915_gem_object_set_to_cpu_domain(obj, 0);
3290
3291	ret = i915_gem_object_flush_gpu_write_domain(obj);
3292	if (ret)
3293		return ret;
3294
3295	ret = i915_gem_object_wait_rendering(obj);
3296	if (ret)
3297		return ret;
3298
3299	i915_gem_object_flush_gtt_write_domain(obj);
3300
3301	/* If we're already fully in the CPU read domain, we're done. */
3302	if (obj->page_cpu_valid == NULL &&
3303	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3304		return 0;
3305
3306	/* Otherwise, create/clear the per-page CPU read domain flag if we're
3307	 * newly adding I915_GEM_DOMAIN_CPU
3308	 */
3309	if (obj->page_cpu_valid == NULL) {
3310		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3311					      GFP_KERNEL);
3312		if (obj->page_cpu_valid == NULL)
3313			return -ENOMEM;
3314	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3315		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3316
3317	/* Flush the cache on any pages that are still invalid from the CPU's
3318	 * perspective.
3319	 */
3320	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3321	     i++) {
3322		if (obj->page_cpu_valid[i])
3323			continue;
3324
3325		drm_clflush_pages(obj->pages + i, 1);
3326
3327		obj->page_cpu_valid[i] = 1;
3328	}
3329
3330	/* It should now be out of any other write domains, and we can update
3331	 * the domain values for our changes.
3332	 */
3333	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3334
3335	old_read_domains = obj->base.read_domains;
3336	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3337
3338	trace_i915_gem_object_change_domain(obj,
3339					    old_read_domains,
3340					    obj->base.write_domain);
3341
3342	return 0;
3343}
3344
3345/* Throttle our rendering by waiting until the ring has completed our requests
3346 * emitted over 20 msec ago.
3347 *
3348 * Note that if we were to use the current jiffies each time around the loop,
3349 * we wouldn't escape the function with any frames outstanding if the time to
3350 * render a frame was over 20ms.
3351 *
3352 * This should get us reasonable parallelism between CPU and GPU but also
3353 * relatively low latency when blocking on a particular request to finish.
3354 */
3355static int
3356i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3357{
3358	struct drm_i915_private *dev_priv = dev->dev_private;
3359	struct drm_i915_file_private *file_priv = file->driver_priv;
3360	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3361	struct drm_i915_gem_request *request;
3362	struct intel_ring_buffer *ring = NULL;
 
3363	u32 seqno = 0;
3364	int ret;
3365
3366	if (atomic_read(&dev_priv->mm.wedged))
3367		return -EIO;
 
 
 
 
 
3368
3369	spin_lock(&file_priv->mm.lock);
3370	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3371		if (time_after_eq(request->emitted_jiffies, recent_enough))
3372			break;
3373
3374		ring = request->ring;
3375		seqno = request->seqno;
3376	}
 
3377	spin_unlock(&file_priv->mm.lock);
3378
3379	if (seqno == 0)
3380		return 0;
3381
3382	ret = 0;
3383	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3384		/* And wait for the seqno passing without holding any locks and
3385		 * causing extra latency for others. This is safe as the irq
3386		 * generation is designed to be run atomically and so is
3387		 * lockless.
3388		 */
3389		if (ring->irq_get(ring)) {
3390			ret = wait_event_interruptible(ring->irq_queue,
3391						       i915_seqno_passed(ring->get_seqno(ring), seqno)
3392						       || atomic_read(&dev_priv->mm.wedged));
3393			ring->irq_put(ring);
3394
3395			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3396				ret = -EIO;
3397		}
3398	}
3399
3400	if (ret == 0)
3401		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3402
3403	return ret;
3404}
3405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3406int
3407i915_gem_object_pin(struct drm_i915_gem_object *obj,
 
3408		    uint32_t alignment,
3409		    bool map_and_fenceable)
3410{
3411	struct drm_device *dev = obj->base.dev;
3412	struct drm_i915_private *dev_priv = dev->dev_private;
3413	int ret;
3414
3415	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3416	WARN_ON(i915_verify_lists(dev));
3417
3418	if (obj->gtt_space != NULL) {
3419		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3420		    (map_and_fenceable && !obj->map_and_fenceable)) {
3421			WARN(obj->pin_count,
 
 
 
3422			     "bo is already pinned with incorrect alignment:"
3423			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3424			     " obj->map_and_fenceable=%d\n",
3425			     obj->gtt_offset, alignment,
3426			     map_and_fenceable,
3427			     obj->map_and_fenceable);
3428			ret = i915_gem_object_unbind(obj);
3429			if (ret)
3430				return ret;
 
 
3431		}
3432	}
3433
3434	if (obj->gtt_space == NULL) {
3435		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3436						  map_and_fenceable);
3437		if (ret)
3438			return ret;
3439	}
3440
3441	if (obj->pin_count++ == 0) {
3442		if (!obj->active)
3443			list_move_tail(&obj->mm_list,
3444				       &dev_priv->mm.pinned_list);
3445	}
3446	obj->pin_mappable |= map_and_fenceable;
3447
3448	WARN_ON(i915_verify_lists(dev));
3449	return 0;
3450}
3451
3452void
3453i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3454{
3455	struct drm_device *dev = obj->base.dev;
3456	drm_i915_private_t *dev_priv = dev->dev_private;
3457
3458	WARN_ON(i915_verify_lists(dev));
3459	BUG_ON(obj->pin_count == 0);
3460	BUG_ON(obj->gtt_space == NULL);
3461
3462	if (--obj->pin_count == 0) {
3463		if (!obj->active)
3464			list_move_tail(&obj->mm_list,
3465				       &dev_priv->mm.inactive_list);
3466		obj->pin_mappable = false;
3467	}
3468	WARN_ON(i915_verify_lists(dev));
3469}
3470
3471int
3472i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3473		   struct drm_file *file)
3474{
3475	struct drm_i915_gem_pin *args = data;
3476	struct drm_i915_gem_object *obj;
3477	int ret;
3478
 
 
 
3479	ret = i915_mutex_lock_interruptible(dev);
3480	if (ret)
3481		return ret;
3482
3483	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3484	if (&obj->base == NULL) {
3485		ret = -ENOENT;
3486		goto unlock;
3487	}
3488
3489	if (obj->madv != I915_MADV_WILLNEED) {
3490		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3491		ret = -EINVAL;
3492		goto out;
3493	}
3494
3495	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3496		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3497			  args->handle);
3498		ret = -EINVAL;
3499		goto out;
3500	}
3501
3502	obj->user_pin_count++;
3503	obj->pin_filp = file;
3504	if (obj->user_pin_count == 1) {
3505		ret = i915_gem_object_pin(obj, args->alignment, true);
 
 
 
3506		if (ret)
3507			goto out;
3508	}
3509
3510	/* XXX - flush the CPU caches for pinned objects
3511	 * as the X server doesn't manage domains yet
3512	 */
3513	i915_gem_object_flush_cpu_write_domain(obj);
3514	args->offset = obj->gtt_offset;
3515out:
3516	drm_gem_object_unreference(&obj->base);
3517unlock:
3518	mutex_unlock(&dev->struct_mutex);
3519	return ret;
3520}
3521
3522int
3523i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3524		     struct drm_file *file)
3525{
3526	struct drm_i915_gem_pin *args = data;
3527	struct drm_i915_gem_object *obj;
3528	int ret;
3529
3530	ret = i915_mutex_lock_interruptible(dev);
3531	if (ret)
3532		return ret;
3533
3534	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3535	if (&obj->base == NULL) {
3536		ret = -ENOENT;
3537		goto unlock;
3538	}
3539
3540	if (obj->pin_filp != file) {
3541		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3542			  args->handle);
3543		ret = -EINVAL;
3544		goto out;
3545	}
3546	obj->user_pin_count--;
3547	if (obj->user_pin_count == 0) {
3548		obj->pin_filp = NULL;
3549		i915_gem_object_unpin(obj);
3550	}
3551
3552out:
3553	drm_gem_object_unreference(&obj->base);
3554unlock:
3555	mutex_unlock(&dev->struct_mutex);
3556	return ret;
3557}
3558
3559int
3560i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3561		    struct drm_file *file)
3562{
3563	struct drm_i915_gem_busy *args = data;
3564	struct drm_i915_gem_object *obj;
3565	int ret;
3566
3567	ret = i915_mutex_lock_interruptible(dev);
3568	if (ret)
3569		return ret;
3570
3571	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3572	if (&obj->base == NULL) {
3573		ret = -ENOENT;
3574		goto unlock;
3575	}
3576
3577	/* Count all active objects as busy, even if they are currently not used
3578	 * by the gpu. Users of this interface expect objects to eventually
3579	 * become non-busy without any further actions, therefore emit any
3580	 * necessary flushes here.
3581	 */
3582	args->busy = obj->active;
3583	if (args->busy) {
3584		/* Unconditionally flush objects, even when the gpu still uses this
3585		 * object. Userspace calling this function indicates that it wants to
3586		 * use this buffer rather sooner than later, so issuing the required
3587		 * flush earlier is beneficial.
3588		 */
3589		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3590			ret = i915_gem_flush_ring(obj->ring,
3591						  0, obj->base.write_domain);
3592		} else if (obj->ring->outstanding_lazy_request ==
3593			   obj->last_rendering_seqno) {
3594			struct drm_i915_gem_request *request;
3595
3596			/* This ring is not being cleared by active usage,
3597			 * so emit a request to do so.
3598			 */
3599			request = kzalloc(sizeof(*request), GFP_KERNEL);
3600			if (request)
3601				ret = i915_add_request(obj->ring, NULL,request);
3602			else
3603				ret = -ENOMEM;
3604		}
3605
3606		/* Update the active list for the hardware's current position.
3607		 * Otherwise this only updates on a delayed timer or when irqs
3608		 * are actually unmasked, and our working set ends up being
3609		 * larger than required.
3610		 */
3611		i915_gem_retire_requests_ring(obj->ring);
3612
3613		args->busy = obj->active;
3614	}
3615
3616	drm_gem_object_unreference(&obj->base);
3617unlock:
3618	mutex_unlock(&dev->struct_mutex);
3619	return ret;
3620}
3621
3622int
3623i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3624			struct drm_file *file_priv)
3625{
3626    return i915_gem_ring_throttle(dev, file_priv);
3627}
3628
3629int
3630i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3631		       struct drm_file *file_priv)
3632{
3633	struct drm_i915_gem_madvise *args = data;
3634	struct drm_i915_gem_object *obj;
3635	int ret;
3636
3637	switch (args->madv) {
3638	case I915_MADV_DONTNEED:
3639	case I915_MADV_WILLNEED:
3640	    break;
3641	default:
3642	    return -EINVAL;
3643	}
3644
3645	ret = i915_mutex_lock_interruptible(dev);
3646	if (ret)
3647		return ret;
3648
3649	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3650	if (&obj->base == NULL) {
3651		ret = -ENOENT;
3652		goto unlock;
3653	}
3654
3655	if (obj->pin_count) {
3656		ret = -EINVAL;
3657		goto out;
3658	}
3659
3660	if (obj->madv != __I915_MADV_PURGED)
3661		obj->madv = args->madv;
3662
3663	/* if the object is no longer bound, discard its backing storage */
3664	if (i915_gem_object_is_purgeable(obj) &&
3665	    obj->gtt_space == NULL)
3666		i915_gem_object_truncate(obj);
3667
3668	args->retained = obj->madv != __I915_MADV_PURGED;
3669
3670out:
3671	drm_gem_object_unreference(&obj->base);
3672unlock:
3673	mutex_unlock(&dev->struct_mutex);
3674	return ret;
3675}
3676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3677struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3678						  size_t size)
3679{
3680	struct drm_i915_private *dev_priv = dev->dev_private;
3681	struct drm_i915_gem_object *obj;
3682	struct address_space *mapping;
 
3683
3684	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3685	if (obj == NULL)
3686		return NULL;
3687
3688	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3689		kfree(obj);
3690		return NULL;
3691	}
3692
3693	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3694	mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
 
 
 
 
 
 
 
3695
3696	i915_gem_info_add_obj(dev_priv, size);
3697
3698	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3699	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3700
3701	if (IS_GEN6(dev)) {
3702		/* On Gen6, we can have the GPU use the LLC (the CPU
3703		 * cache) for about a 10% performance improvement
3704		 * compared to uncached.  Graphics requests other than
3705		 * display scanout are coherent with the CPU in
3706		 * accessing this cache.  This means in this mode we
3707		 * don't need to clflush on the CPU side, and on the
3708		 * GPU side we only need to flush internal caches to
3709		 * get data visible to the CPU.
3710		 *
3711		 * However, we maintain the display planes as UC, and so
3712		 * need to rebind when first used as such.
3713		 */
3714		obj->cache_level = I915_CACHE_LLC;
3715	} else
3716		obj->cache_level = I915_CACHE_NONE;
3717
3718	obj->base.driver_private = NULL;
3719	obj->fence_reg = I915_FENCE_REG_NONE;
3720	INIT_LIST_HEAD(&obj->mm_list);
3721	INIT_LIST_HEAD(&obj->gtt_list);
3722	INIT_LIST_HEAD(&obj->ring_list);
3723	INIT_LIST_HEAD(&obj->exec_list);
3724	INIT_LIST_HEAD(&obj->gpu_write_list);
3725	obj->madv = I915_MADV_WILLNEED;
3726	/* Avoid an unnecessary call to unbind on the first bind. */
3727	obj->map_and_fenceable = true;
3728
3729	return obj;
3730}
3731
3732int i915_gem_init_object(struct drm_gem_object *obj)
3733{
3734	BUG();
 
 
 
3735
3736	return 0;
3737}
3738
3739static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3740{
3741	struct drm_device *dev = obj->base.dev;
3742	drm_i915_private_t *dev_priv = dev->dev_private;
3743	int ret;
3744
3745	ret = i915_gem_object_unbind(obj);
3746	if (ret == -ERESTARTSYS) {
3747		list_move(&obj->mm_list,
3748			  &dev_priv->mm.deferred_free_list);
3749		return;
 
 
 
 
 
 
 
 
 
 
3750	}
3751
3752	trace_i915_gem_object_destroy(obj);
3753
3754	if (obj->base.map_list.map)
3755		i915_gem_free_mmap_offset(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
3756
3757	drm_gem_object_release(&obj->base);
3758	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3759
3760	kfree(obj->page_cpu_valid);
3761	kfree(obj->bit_17);
3762	kfree(obj);
 
 
3763}
3764
3765void i915_gem_free_object(struct drm_gem_object *gem_obj)
 
3766{
3767	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3768	struct drm_device *dev = obj->base.dev;
 
 
 
 
 
3769
3770	while (obj->pin_count > 0)
3771		i915_gem_object_unpin(obj);
 
 
 
 
 
3772
3773	if (obj->phys_obj)
3774		i915_gem_detach_phys_object(dev, obj);
3775
3776	i915_gem_free_object_tail(obj);
3777}
3778
3779int
3780i915_gem_idle(struct drm_device *dev)
3781{
3782	drm_i915_private_t *dev_priv = dev->dev_private;
3783	int ret;
3784
3785	mutex_lock(&dev->struct_mutex);
3786
3787	if (dev_priv->mm.suspended) {
3788		mutex_unlock(&dev->struct_mutex);
3789		return 0;
3790	}
3791
3792	ret = i915_gpu_idle(dev);
3793	if (ret) {
3794		mutex_unlock(&dev->struct_mutex);
3795		return ret;
3796	}
3797
3798	/* Under UMS, be paranoid and evict. */
3799	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3800		ret = i915_gem_evict_inactive(dev, false);
3801		if (ret) {
3802			mutex_unlock(&dev->struct_mutex);
3803			return ret;
3804		}
3805	}
3806
3807	i915_gem_reset_fences(dev);
 
3808
3809	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3810	 * We need to replace this with a semaphore, or something.
3811	 * And not confound mm.suspended!
3812	 */
3813	dev_priv->mm.suspended = 1;
3814	del_timer_sync(&dev_priv->hangcheck_timer);
3815
3816	i915_kernel_lost_context(dev);
3817	i915_gem_cleanup_ringbuffer(dev);
3818
3819	mutex_unlock(&dev->struct_mutex);
3820
3821	/* Cancel the retire work handler, which should be idle now. */
3822	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
 
3823
3824	return 0;
 
 
 
 
3825}
3826
3827int
3828i915_gem_init_ringbuffer(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3829{
3830	drm_i915_private_t *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3831	int ret;
3832
3833	ret = intel_init_render_ring_buffer(dev);
3834	if (ret)
3835		return ret;
3836
3837	if (HAS_BSD(dev)) {
3838		ret = intel_init_bsd_ring_buffer(dev);
3839		if (ret)
3840			goto cleanup_render_ring;
3841	}
3842
3843	if (HAS_BLT(dev)) {
3844		ret = intel_init_blt_ring_buffer(dev);
3845		if (ret)
3846			goto cleanup_bsd_ring;
3847	}
3848
3849	dev_priv->next_seqno = 1;
 
 
 
 
 
 
 
 
 
3850
3851	return 0;
3852
 
 
 
 
3853cleanup_bsd_ring:
3854	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3855cleanup_render_ring:
3856	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3857	return ret;
3858}
3859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3860void
3861i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3862{
3863	drm_i915_private_t *dev_priv = dev->dev_private;
 
3864	int i;
3865
3866	for (i = 0; i < I915_NUM_RINGS; i++)
3867		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3868}
3869
3870int
3871i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3872		       struct drm_file *file_priv)
3873{
3874	drm_i915_private_t *dev_priv = dev->dev_private;
3875	int ret, i;
3876
3877	if (drm_core_check_feature(dev, DRIVER_MODESET))
3878		return 0;
3879
3880	if (atomic_read(&dev_priv->mm.wedged)) {
3881		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3882		atomic_set(&dev_priv->mm.wedged, 0);
3883	}
3884
3885	mutex_lock(&dev->struct_mutex);
3886	dev_priv->mm.suspended = 0;
3887
3888	ret = i915_gem_init_ringbuffer(dev);
3889	if (ret != 0) {
3890		mutex_unlock(&dev->struct_mutex);
3891		return ret;
3892	}
3893
3894	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3895	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3896	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3897	for (i = 0; i < I915_NUM_RINGS; i++) {
3898		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3899		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3900	}
3901	mutex_unlock(&dev->struct_mutex);
3902
3903	ret = drm_irq_install(dev);
3904	if (ret)
3905		goto cleanup_ringbuffer;
3906
3907	return 0;
3908
3909cleanup_ringbuffer:
3910	mutex_lock(&dev->struct_mutex);
3911	i915_gem_cleanup_ringbuffer(dev);
3912	dev_priv->mm.suspended = 1;
3913	mutex_unlock(&dev->struct_mutex);
3914
3915	return ret;
3916}
3917
3918int
3919i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3920		       struct drm_file *file_priv)
3921{
3922	if (drm_core_check_feature(dev, DRIVER_MODESET))
3923		return 0;
3924
3925	drm_irq_uninstall(dev);
3926	return i915_gem_idle(dev);
 
3927}
3928
3929void
3930i915_gem_lastclose(struct drm_device *dev)
3931{
3932	int ret;
3933
3934	if (drm_core_check_feature(dev, DRIVER_MODESET))
3935		return;
3936
3937	ret = i915_gem_idle(dev);
3938	if (ret)
3939		DRM_ERROR("failed to idle hardware: %d\n", ret);
3940}
3941
3942static void
3943init_ring_lists(struct intel_ring_buffer *ring)
3944{
3945	INIT_LIST_HEAD(&ring->active_list);
3946	INIT_LIST_HEAD(&ring->request_list);
3947	INIT_LIST_HEAD(&ring->gpu_write_list);
 
 
 
 
 
 
 
 
 
 
 
3948}
3949
3950void
3951i915_gem_load(struct drm_device *dev)
3952{
 
3953	int i;
3954	drm_i915_private_t *dev_priv = dev->dev_private;
3955
3956	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3957	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3958	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3959	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
 
 
 
 
 
 
 
 
3960	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3961	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3962	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3963	for (i = 0; i < I915_NUM_RINGS; i++)
3964		init_ring_lists(&dev_priv->ring[i]);
3965	for (i = 0; i < 16; i++)
3966		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3967	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3968			  i915_gem_retire_work_handler);
3969	init_completion(&dev_priv->error_completion);
 
 
3970
3971	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3972	if (IS_GEN3(dev)) {
3973		u32 tmp = I915_READ(MI_ARB_STATE);
3974		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3975			/* arb state is a masked write, so set bit + bit in mask */
3976			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3977			I915_WRITE(MI_ARB_STATE, tmp);
3978		}
3979	}
3980
3981	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3982
3983	/* Old X drivers will take 0-2 for front, back, depth buffers */
3984	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3985		dev_priv->fence_reg_start = 3;
3986
3987	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
 
 
3988		dev_priv->num_fence_regs = 16;
3989	else
3990		dev_priv->num_fence_regs = 8;
3991
3992	/* Initialize fence registers to zero */
3993	for (i = 0; i < dev_priv->num_fence_regs; i++) {
3994		i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3995	}
3996
3997	i915_gem_detect_bit_6_swizzle(dev);
3998	init_waitqueue_head(&dev_priv->pending_flip_queue);
3999
4000	dev_priv->mm.interruptible = true;
4001
4002	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
 
4003	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4004	register_shrinker(&dev_priv->mm.inactive_shrinker);
4005}
4006
4007/*
4008 * Create a physically contiguous memory object for this object
4009 * e.g. for cursor + overlay regs
4010 */
4011static int i915_gem_init_phys_object(struct drm_device *dev,
4012				     int id, int size, int align)
4013{
4014	drm_i915_private_t *dev_priv = dev->dev_private;
4015	struct drm_i915_gem_phys_object *phys_obj;
4016	int ret;
4017
4018	if (dev_priv->mm.phys_objs[id - 1] || !size)
4019		return 0;
4020
4021	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4022	if (!phys_obj)
4023		return -ENOMEM;
4024
4025	phys_obj->id = id;
 
 
 
 
 
 
4026
4027	phys_obj->handle = drm_pci_alloc(dev, size, align);
4028	if (!phys_obj->handle) {
4029		ret = -ENOMEM;
4030		goto kfree_obj;
 
4031	}
4032#ifdef CONFIG_X86
4033	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4034#endif
4035
4036	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4037
4038	return 0;
4039kfree_obj:
4040	kfree(phys_obj);
4041	return ret;
4042}
4043
4044static void i915_gem_free_phys_object(struct drm_device *dev, int id)
 
4045{
4046	drm_i915_private_t *dev_priv = dev->dev_private;
4047	struct drm_i915_gem_phys_object *phys_obj;
4048
4049	if (!dev_priv->mm.phys_objs[id - 1])
4050		return;
4051
4052	phys_obj = dev_priv->mm.phys_objs[id - 1];
4053	if (phys_obj->cur_obj) {
4054		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4055	}
4056
4057#ifdef CONFIG_X86
4058	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4059#endif
4060	drm_pci_free(dev, phys_obj->handle);
4061	kfree(phys_obj);
4062	dev_priv->mm.phys_objs[id - 1] = NULL;
4063}
4064
4065void i915_gem_free_all_phys_object(struct drm_device *dev)
4066{
4067	int i;
 
4068
4069	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4070		i915_gem_free_phys_object(dev, i);
4071}
4072
4073void i915_gem_detach_phys_object(struct drm_device *dev,
4074				 struct drm_i915_gem_object *obj)
4075{
4076	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4077	char *vaddr;
4078	int i;
4079	int page_count;
4080
4081	if (!obj->phys_obj)
4082		return;
4083	vaddr = obj->phys_obj->handle->vaddr;
 
 
 
 
 
4084
4085	page_count = obj->base.size / PAGE_SIZE;
4086	for (i = 0; i < page_count; i++) {
4087		struct page *page = shmem_read_mapping_page(mapping, i);
4088		if (!IS_ERR(page)) {
4089			char *dst = kmap_atomic(page);
4090			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4091			kunmap_atomic(dst);
4092
4093			drm_clflush_pages(&page, 1);
 
4094
4095			set_page_dirty(page);
4096			mark_page_accessed(page);
4097			page_cache_release(page);
4098		}
4099	}
4100	intel_gtt_chipset_flush();
4101
4102	obj->phys_obj->cur_obj = NULL;
4103	obj->phys_obj = NULL;
 
 
 
 
4104}
4105
4106int
4107i915_gem_attach_phys_object(struct drm_device *dev,
4108			    struct drm_i915_gem_object *obj,
4109			    int id,
4110			    int align)
4111{
4112	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4113	drm_i915_private_t *dev_priv = dev->dev_private;
4114	int ret = 0;
4115	int page_count;
4116	int i;
 
 
 
4117
4118	if (id > I915_MAX_PHYS_OBJECT)
4119		return -EINVAL;
 
4120
4121	if (obj->phys_obj) {
4122		if (obj->phys_obj->id == id)
4123			return 0;
4124		i915_gem_detach_phys_object(dev, obj);
 
4125	}
4126
4127	/* create a new object */
4128	if (!dev_priv->mm.phys_objs[id - 1]) {
4129		ret = i915_gem_init_phys_object(dev, id,
4130						obj->base.size, align);
4131		if (ret) {
4132			DRM_ERROR("failed to init phys object %d size: %zu\n",
4133				  id, obj->base.size);
4134			return ret;
4135		}
 
 
4136	}
4137
4138	/* bind to the object */
4139	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4140	obj->phys_obj->cur_obj = obj;
4141
4142	page_count = obj->base.size / PAGE_SIZE;
 
4143
4144	for (i = 0; i < page_count; i++) {
4145		struct page *page;
4146		char *dst, *src;
 
 
 
4147
4148		page = shmem_read_mapping_page(mapping, i);
4149		if (IS_ERR(page))
4150			return PTR_ERR(page);
4151
4152		src = kmap_atomic(page);
4153		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4154		memcpy(dst, src, PAGE_SIZE);
4155		kunmap_atomic(src);
4156
4157		mark_page_accessed(page);
4158		page_cache_release(page);
4159	}
4160
4161	return 0;
4162}
4163
4164static int
4165i915_gem_phys_pwrite(struct drm_device *dev,
4166		     struct drm_i915_gem_object *obj,
4167		     struct drm_i915_gem_pwrite *args,
4168		     struct drm_file *file_priv)
4169{
4170	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4171	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4172
4173	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4174		unsigned long unwritten;
4175
4176		/* The physical object once assigned is fixed for the lifetime
4177		 * of the obj, so we can safely drop the lock and continue
4178		 * to access vaddr.
4179		 */
4180		mutex_unlock(&dev->struct_mutex);
4181		unwritten = copy_from_user(vaddr, user_data, args->size);
4182		mutex_lock(&dev->struct_mutex);
4183		if (unwritten)
4184			return -EFAULT;
4185	}
4186
4187	intel_gtt_chipset_flush();
4188	return 0;
4189}
4190
4191void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4192{
4193	struct drm_i915_file_private *file_priv = file->driver_priv;
4194
4195	/* Clean up our request list when the client is going away, so that
4196	 * later retire_requests won't dereference our soon-to-be-gone
4197	 * file_priv.
4198	 */
4199	spin_lock(&file_priv->mm.lock);
4200	while (!list_empty(&file_priv->mm.request_list)) {
4201		struct drm_i915_gem_request *request;
4202
4203		request = list_first_entry(&file_priv->mm.request_list,
4204					   struct drm_i915_gem_request,
4205					   client_list);
4206		list_del(&request->client_list);
4207		request->file_priv = NULL;
4208	}
4209	spin_unlock(&file_priv->mm.lock);
4210}
4211
4212static int
4213i915_gpu_is_active(struct drm_device *dev)
4214{
4215	drm_i915_private_t *dev_priv = dev->dev_private;
4216	int lists_empty;
 
 
 
 
 
 
4217
4218	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4219		      list_empty(&dev_priv->mm.active_list);
 
4220
4221	return !lists_empty;
4222}
4223
4224static int
4225i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4226{
4227	struct drm_i915_private *dev_priv =
4228		container_of(shrinker,
4229			     struct drm_i915_private,
4230			     mm.inactive_shrinker);
4231	struct drm_device *dev = dev_priv->dev;
4232	struct drm_i915_gem_object *obj, *next;
4233	int nr_to_scan = sc->nr_to_scan;
4234	int cnt;
4235
4236	if (!mutex_trylock(&dev->struct_mutex))
4237		return 0;
 
4238
4239	/* "fast-path" to count number of available objects */
4240	if (nr_to_scan == 0) {
4241		cnt = 0;
4242		list_for_each_entry(obj,
4243				    &dev_priv->mm.inactive_list,
4244				    mm_list)
4245			cnt++;
4246		mutex_unlock(&dev->struct_mutex);
4247		return cnt / 100 * sysctl_vfs_cache_pressure;
4248	}
4249
4250rescan:
4251	/* first scan for clean buffers */
4252	i915_gem_retire_requests(dev);
 
 
 
 
4253
4254	list_for_each_entry_safe(obj, next,
4255				 &dev_priv->mm.inactive_list,
4256				 mm_list) {
4257		if (i915_gem_object_is_purgeable(obj)) {
4258			if (i915_gem_object_unbind(obj) == 0 &&
4259			    --nr_to_scan == 0)
4260				break;
4261		}
4262	}
4263
4264	/* second pass, evict/count anything still on the inactive list */
4265	cnt = 0;
4266	list_for_each_entry_safe(obj, next,
4267				 &dev_priv->mm.inactive_list,
4268				 mm_list) {
4269		if (nr_to_scan &&
4270		    i915_gem_object_unbind(obj) == 0)
4271			nr_to_scan--;
4272		else
4273			cnt++;
4274	}
4275
4276	if (nr_to_scan && i915_gpu_is_active(dev)) {
4277		/*
4278		 * We are desperate for pages, so as a last resort, wait
4279		 * for the GPU to finish and discard whatever we can.
4280		 * This has a dramatic impact to reduce the number of
4281		 * OOM-killer events whilst running the GPU aggressively.
4282		 */
4283		if (i915_gpu_idle(dev) == 0)
4284			goto rescan;
4285	}
4286	mutex_unlock(&dev->struct_mutex);
4287	return cnt / 100 * sysctl_vfs_cache_pressure;
4288}
v3.15
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drmP.h>
  29#include <drm/drm_vma_manager.h>
  30#include <drm/i915_drm.h>
  31#include "i915_drv.h"
  32#include "i915_trace.h"
  33#include "intel_drv.h"
  34#include <linux/shmem_fs.h>
  35#include <linux/slab.h>
  36#include <linux/swap.h>
  37#include <linux/pci.h>
  38#include <linux/dma-buf.h>
  39
 
  40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
  42						   bool force);
  43static __must_check int
  44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  45			       bool readonly);
 
 
 
 
 
 
 
 
 
 
 
 
  46
  47static void i915_gem_write_fence(struct drm_device *dev, int reg,
  48				 struct drm_i915_gem_object *obj);
  49static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  50					 struct drm_i915_fence_reg *fence,
  51					 bool enable);
  52
  53static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
  54					     struct shrink_control *sc);
  55static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
  56					    struct shrink_control *sc);
  57static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  58static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  59static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  60static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
  61
  62static bool cpu_cache_is_coherent(struct drm_device *dev,
  63				  enum i915_cache_level level)
  64{
  65	return HAS_LLC(dev) || level != I915_CACHE_NONE;
  66}
  67
  68static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
  69{
  70	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  71		return true;
  72
  73	return obj->pin_display;
  74}
  75
  76static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  77{
  78	if (obj->tiling_mode)
  79		i915_gem_release_mmap(obj);
  80
  81	/* As we do not have an associated fence register, we will force
  82	 * a tiling change if we ever need to acquire one.
  83	 */
  84	obj->fence_dirty = false;
  85	obj->fence_reg = I915_FENCE_REG_NONE;
  86}
  87
  88/* some bookkeeping */
  89static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  90				  size_t size)
  91{
  92	spin_lock(&dev_priv->mm.object_stat_lock);
  93	dev_priv->mm.object_count++;
  94	dev_priv->mm.object_memory += size;
  95	spin_unlock(&dev_priv->mm.object_stat_lock);
  96}
  97
  98static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  99				     size_t size)
 100{
 101	spin_lock(&dev_priv->mm.object_stat_lock);
 102	dev_priv->mm.object_count--;
 103	dev_priv->mm.object_memory -= size;
 104	spin_unlock(&dev_priv->mm.object_stat_lock);
 105}
 106
 107static int
 108i915_gem_wait_for_error(struct i915_gpu_error *error)
 109{
 
 
 
 110	int ret;
 111
 112#define EXIT_COND (!i915_reset_in_progress(error) || \
 113		   i915_terminally_wedged(error))
 114	if (EXIT_COND)
 115		return 0;
 116
 117	/*
 118	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
 119	 * userspace. If it takes that long something really bad is going on and
 120	 * we should simply try to bail out and fail as gracefully as possible.
 121	 */
 122	ret = wait_event_interruptible_timeout(error->reset_queue,
 123					       EXIT_COND,
 124					       10*HZ);
 125	if (ret == 0) {
 126		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
 127		return -EIO;
 128	} else if (ret < 0) {
 129		return ret;
 
 
 
 
 
 
 
 
 
 
 130	}
 131#undef EXIT_COND
 132
 133	return 0;
 134}
 135
 136int i915_mutex_lock_interruptible(struct drm_device *dev)
 137{
 138	struct drm_i915_private *dev_priv = dev->dev_private;
 139	int ret;
 140
 141	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
 142	if (ret)
 143		return ret;
 144
 145	ret = mutex_lock_interruptible(&dev->struct_mutex);
 146	if (ret)
 147		return ret;
 148
 149	WARN_ON(i915_verify_lists(dev));
 150	return 0;
 151}
 152
 153static inline bool
 154i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
 155{
 156	return i915_gem_obj_bound_any(obj) && !obj->active;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157}
 158
 159int
 160i915_gem_init_ioctl(struct drm_device *dev, void *data,
 161		    struct drm_file *file)
 162{
 163	struct drm_i915_private *dev_priv = dev->dev_private;
 164	struct drm_i915_gem_init *args = data;
 165
 166	if (drm_core_check_feature(dev, DRIVER_MODESET))
 167		return -ENODEV;
 168
 169	if (args->gtt_start >= args->gtt_end ||
 170	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
 171		return -EINVAL;
 172
 173	/* GEM with user mode setting was never supported on ilk and later. */
 174	if (INTEL_INFO(dev)->gen >= 5)
 175		return -ENODEV;
 176
 177	mutex_lock(&dev->struct_mutex);
 178	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
 179				  args->gtt_end);
 180	dev_priv->gtt.mappable_end = args->gtt_end;
 181	mutex_unlock(&dev->struct_mutex);
 182
 183	return 0;
 184}
 185
 186int
 187i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 188			    struct drm_file *file)
 189{
 190	struct drm_i915_private *dev_priv = dev->dev_private;
 191	struct drm_i915_gem_get_aperture *args = data;
 192	struct drm_i915_gem_object *obj;
 193	size_t pinned;
 194
 
 
 
 195	pinned = 0;
 196	mutex_lock(&dev->struct_mutex);
 197	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
 198		if (i915_gem_obj_is_pinned(obj))
 199			pinned += i915_gem_obj_ggtt_size(obj);
 200	mutex_unlock(&dev->struct_mutex);
 201
 202	args->aper_size = dev_priv->gtt.base.total;
 203	args->aper_available_size = args->aper_size - pinned;
 204
 205	return 0;
 206}
 207
 208static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
 209{
 210	drm_dma_handle_t *phys = obj->phys_handle;
 211
 212	if (!phys)
 213		return;
 214
 215	if (obj->madv == I915_MADV_WILLNEED) {
 216		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
 217		char *vaddr = phys->vaddr;
 218		int i;
 219
 220		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 221			struct page *page = shmem_read_mapping_page(mapping, i);
 222			if (!IS_ERR(page)) {
 223				char *dst = kmap_atomic(page);
 224				memcpy(dst, vaddr, PAGE_SIZE);
 225				drm_clflush_virt_range(dst, PAGE_SIZE);
 226				kunmap_atomic(dst);
 227
 228				set_page_dirty(page);
 229				mark_page_accessed(page);
 230				page_cache_release(page);
 231			}
 232			vaddr += PAGE_SIZE;
 233		}
 234		i915_gem_chipset_flush(obj->base.dev);
 235	}
 236
 237#ifdef CONFIG_X86
 238	set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
 239#endif
 240	drm_pci_free(obj->base.dev, phys);
 241	obj->phys_handle = NULL;
 242}
 243
 244int
 245i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
 246			    int align)
 247{
 248	drm_dma_handle_t *phys;
 249	struct address_space *mapping;
 250	char *vaddr;
 251	int i;
 252
 253	if (obj->phys_handle) {
 254		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
 255			return -EBUSY;
 256
 257		return 0;
 258	}
 259
 260	if (obj->madv != I915_MADV_WILLNEED)
 261		return -EFAULT;
 262
 263	if (obj->base.filp == NULL)
 264		return -EINVAL;
 265
 266	/* create a new object */
 267	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
 268	if (!phys)
 269		return -ENOMEM;
 270
 271	vaddr = phys->vaddr;
 272#ifdef CONFIG_X86
 273	set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
 274#endif
 275	mapping = file_inode(obj->base.filp)->i_mapping;
 276	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 277		struct page *page;
 278		char *src;
 279
 280		page = shmem_read_mapping_page(mapping, i);
 281		if (IS_ERR(page)) {
 282#ifdef CONFIG_X86
 283			set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
 284#endif
 285			drm_pci_free(obj->base.dev, phys);
 286			return PTR_ERR(page);
 287		}
 288
 289		src = kmap_atomic(page);
 290		memcpy(vaddr, src, PAGE_SIZE);
 291		kunmap_atomic(src);
 292
 293		mark_page_accessed(page);
 294		page_cache_release(page);
 295
 296		vaddr += PAGE_SIZE;
 297	}
 298
 299	obj->phys_handle = phys;
 300	return 0;
 301}
 302
 303static int
 304i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
 305		     struct drm_i915_gem_pwrite *args,
 306		     struct drm_file *file_priv)
 307{
 308	struct drm_device *dev = obj->base.dev;
 309	void *vaddr = obj->phys_handle->vaddr + args->offset;
 310	char __user *user_data = to_user_ptr(args->data_ptr);
 311
 312	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
 313		unsigned long unwritten;
 314
 315		/* The physical object once assigned is fixed for the lifetime
 316		 * of the obj, so we can safely drop the lock and continue
 317		 * to access vaddr.
 318		 */
 319		mutex_unlock(&dev->struct_mutex);
 320		unwritten = copy_from_user(vaddr, user_data, args->size);
 321		mutex_lock(&dev->struct_mutex);
 322		if (unwritten)
 323			return -EFAULT;
 324	}
 325
 326	i915_gem_chipset_flush(dev);
 327	return 0;
 328}
 329
 330void *i915_gem_object_alloc(struct drm_device *dev)
 331{
 332	struct drm_i915_private *dev_priv = dev->dev_private;
 333	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
 334}
 335
 336void i915_gem_object_free(struct drm_i915_gem_object *obj)
 337{
 338	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
 339	kmem_cache_free(dev_priv->slab, obj);
 340}
 341
 342static int
 343i915_gem_create(struct drm_file *file,
 344		struct drm_device *dev,
 345		uint64_t size,
 346		uint32_t *handle_p)
 347{
 348	struct drm_i915_gem_object *obj;
 349	int ret;
 350	u32 handle;
 351
 352	size = roundup(size, PAGE_SIZE);
 353	if (size == 0)
 354		return -EINVAL;
 355
 356	/* Allocate the new object */
 357	obj = i915_gem_alloc_object(dev, size);
 358	if (obj == NULL)
 359		return -ENOMEM;
 360
 361	ret = drm_gem_handle_create(file, &obj->base, &handle);
 
 
 
 
 
 
 
 362	/* drop reference from allocate - handle holds it now */
 363	drm_gem_object_unreference_unlocked(&obj->base);
 364	if (ret)
 365		return ret;
 366
 367	*handle_p = handle;
 368	return 0;
 369}
 370
 371int
 372i915_gem_dumb_create(struct drm_file *file,
 373		     struct drm_device *dev,
 374		     struct drm_mode_create_dumb *args)
 375{
 376	/* have to work out size/pitch and return them */
 377	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
 378	args->size = args->pitch * args->height;
 379	return i915_gem_create(file, dev,
 380			       args->size, &args->handle);
 381}
 382
 
 
 
 
 
 
 
 383/**
 384 * Creates a new mm object and returns a handle to it.
 385 */
 386int
 387i915_gem_create_ioctl(struct drm_device *dev, void *data,
 388		      struct drm_file *file)
 389{
 390	struct drm_i915_gem_create *args = data;
 391
 392	return i915_gem_create(file, dev,
 393			       args->size, &args->handle);
 394}
 395
 396static inline int
 397__copy_to_user_swizzled(char __user *cpu_vaddr,
 398			const char *gpu_vaddr, int gpu_offset,
 399			int length)
 400{
 401	int ret, cpu_offset = 0;
 
 
 
 
 402
 403	while (length > 0) {
 404		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 405		int this_length = min(cacheline_end - gpu_offset, length);
 406		int swizzled_gpu_offset = gpu_offset ^ 64;
 
 
 
 
 407
 408		ret = __copy_to_user(cpu_vaddr + cpu_offset,
 409				     gpu_vaddr + swizzled_gpu_offset,
 410				     this_length);
 411		if (ret)
 412			return ret + length;
 413
 414		cpu_offset += this_length;
 415		gpu_offset += this_length;
 416		length -= this_length;
 417	}
 418
 419	return 0;
 
 420}
 421
 422static inline int
 423__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
 424			  const char __user *cpu_vaddr,
 425			  int length)
 426{
 427	int ret, cpu_offset = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428
 
 
 
 429	while (length > 0) {
 430		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 431		int this_length = min(cacheline_end - gpu_offset, length);
 432		int swizzled_gpu_offset = gpu_offset ^ 64;
 433
 434		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
 435				       cpu_vaddr + cpu_offset,
 436				       this_length);
 437		if (ret)
 438			return ret + length;
 439
 
 
 
 440		cpu_offset += this_length;
 441		gpu_offset += this_length;
 442		length -= this_length;
 443	}
 444
 445	return 0;
 
 446}
 447
 448/*
 449 * Pins the specified object's pages and synchronizes the object with
 450 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 451 * flush the object from the CPU cache.
 452 */
 453int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
 454				    int *needs_clflush)
 
 
 
 455{
 456	int ret;
 
 
 
 
 457
 458	*needs_clflush = 0;
 
 459
 460	if (!obj->base.filp)
 461		return -EINVAL;
 462
 463	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
 464		/* If we're not in the cpu read domain, set ourself into the gtt
 465		 * read domain and manually flush cachelines (if required). This
 466		 * optimizes for the case when the gpu will dirty the data
 467		 * anyway again before the next pread happens. */
 468		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
 469							obj->cache_level);
 470		ret = i915_gem_object_wait_rendering(obj, true);
 471		if (ret)
 472			return ret;
 473	}
 474
 475	ret = i915_gem_object_get_pages(obj);
 476	if (ret)
 477		return ret;
 
 
 
 
 
 
 478
 479	i915_gem_object_pin_pages(obj);
 
 
 480
 481	return ret;
 482}
 
 
 
 483
 484/* Per-page copy function for the shmem pread fastpath.
 485 * Flushes invalid cachelines before reading the target if
 486 * needs_clflush is set. */
 487static int
 488shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
 489		 char __user *user_data,
 490		 bool page_do_bit17_swizzling, bool needs_clflush)
 491{
 492	char *vaddr;
 493	int ret;
 494
 495	if (unlikely(page_do_bit17_swizzling))
 496		return -EINVAL;
 497
 498	vaddr = kmap_atomic(page);
 499	if (needs_clflush)
 500		drm_clflush_virt_range(vaddr + shmem_page_offset,
 501				       page_length);
 502	ret = __copy_to_user_inatomic(user_data,
 503				      vaddr + shmem_page_offset,
 504				      page_length);
 505	kunmap_atomic(vaddr);
 506
 507	return ret ? -EFAULT : 0;
 508}
 509
 510static void
 511shmem_clflush_swizzled_range(char *addr, unsigned long length,
 512			     bool swizzled)
 513{
 514	if (unlikely(swizzled)) {
 515		unsigned long start = (unsigned long) addr;
 516		unsigned long end = (unsigned long) addr + length;
 517
 518		/* For swizzling simply ensure that we always flush both
 519		 * channels. Lame, but simple and it works. Swizzled
 520		 * pwrite/pread is far from a hotpath - current userspace
 521		 * doesn't use it at all. */
 522		start = round_down(start, 128);
 523		end = round_up(end, 128);
 524
 525		drm_clflush_virt_range((void *)start, end - start);
 526	} else {
 527		drm_clflush_virt_range(addr, length);
 528	}
 529
 
 530}
 531
 532/* Only difference to the fast-path function is that this can handle bit17
 533 * and uses non-atomic copy and kmap functions. */
 
 
 
 
 534static int
 535shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
 536		 char __user *user_data,
 537		 bool page_do_bit17_swizzling, bool needs_clflush)
 
 538{
 539	char *vaddr;
 
 
 
 
 
 
 
 
 540	int ret;
 
 
 541
 542	vaddr = kmap(page);
 543	if (needs_clflush)
 544		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 545					     page_length,
 546					     page_do_bit17_swizzling);
 547
 548	if (page_do_bit17_swizzling)
 549		ret = __copy_to_user_swizzled(user_data,
 550					      vaddr, shmem_page_offset,
 551					      page_length);
 552	else
 553		ret = __copy_to_user(user_data,
 554				     vaddr + shmem_page_offset,
 555				     page_length);
 556	kunmap(page);
 557
 558	return ret ? - EFAULT : 0;
 559}
 
 
 
 
 
 560
 561static int
 562i915_gem_shmem_pread(struct drm_device *dev,
 563		     struct drm_i915_gem_object *obj,
 564		     struct drm_i915_gem_pread *args,
 565		     struct drm_file *file)
 566{
 567	char __user *user_data;
 568	ssize_t remain;
 569	loff_t offset;
 570	int shmem_page_offset, page_length, ret = 0;
 571	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 572	int prefaulted = 0;
 573	int needs_clflush = 0;
 574	struct sg_page_iter sg_iter;
 575
 576	user_data = to_user_ptr(args->data_ptr);
 577	remain = args->size;
 
 
 
 
 
 
 
 
 578
 579	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 
 
 
 
 580
 581	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
 582	if (ret)
 583		return ret;
 584
 585	offset = args->offset;
 586
 587	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
 588			 offset >> PAGE_SHIFT) {
 589		struct page *page = sg_page_iter_page(&sg_iter);
 590
 591		if (remain <= 0)
 592			break;
 593
 594		/* Operation in this page
 595		 *
 596		 * shmem_page_offset = offset within page in shmem file
 
 
 597		 * page_length = bytes to copy for this page
 598		 */
 599		shmem_page_offset = offset_in_page(offset);
 
 
 
 600		page_length = remain;
 601		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 602			page_length = PAGE_SIZE - shmem_page_offset;
 
 
 603
 604		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 605			(page_to_phys(page) & (1 << 17)) != 0;
 
 
 
 606
 607		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
 608				       user_data, page_do_bit17_swizzling,
 609				       needs_clflush);
 610		if (ret == 0)
 611			goto next_page;
 612
 613		mutex_unlock(&dev->struct_mutex);
 614
 615		if (likely(!i915.prefault_disable) && !prefaulted) {
 616			ret = fault_in_multipages_writeable(user_data, remain);
 617			/* Userspace is tricking us, but we've already clobbered
 618			 * its pages with the prefault and promised to write the
 619			 * data up to the first fault. Hence ignore any errors
 620			 * and just continue. */
 621			(void)ret;
 622			prefaulted = 1;
 623		}
 624
 625		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
 626				       user_data, page_do_bit17_swizzling,
 627				       needs_clflush);
 628
 629		mutex_lock(&dev->struct_mutex);
 630
 631		if (ret)
 632			goto out;
 633
 634next_page:
 635		remain -= page_length;
 636		user_data += page_length;
 637		offset += page_length;
 638	}
 639
 640out:
 641	i915_gem_object_unpin_pages(obj);
 
 
 
 
 
 642
 643	return ret;
 644}
 645
 646/**
 647 * Reads data from the object referenced by handle.
 648 *
 649 * On error, the contents of *data are undefined.
 650 */
 651int
 652i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 653		     struct drm_file *file)
 654{
 655	struct drm_i915_gem_pread *args = data;
 656	struct drm_i915_gem_object *obj;
 657	int ret = 0;
 658
 659	if (args->size == 0)
 660		return 0;
 661
 662	if (!access_ok(VERIFY_WRITE,
 663		       to_user_ptr(args->data_ptr),
 664		       args->size))
 665		return -EFAULT;
 666
 
 
 
 
 
 667	ret = i915_mutex_lock_interruptible(dev);
 668	if (ret)
 669		return ret;
 670
 671	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 672	if (&obj->base == NULL) {
 673		ret = -ENOENT;
 674		goto unlock;
 675	}
 676
 677	/* Bounds check source.  */
 678	if (args->offset > obj->base.size ||
 679	    args->size > obj->base.size - args->offset) {
 680		ret = -EINVAL;
 681		goto out;
 682	}
 683
 684	/* prime objects have no backing filp to GEM pread/pwrite
 685	 * pages from.
 686	 */
 687	if (!obj->base.filp) {
 688		ret = -EINVAL;
 
 689		goto out;
 690	}
 691
 692	trace_i915_gem_object_pread(obj, args->offset, args->size);
 693
 694	ret = i915_gem_shmem_pread(dev, obj, args, file);
 
 
 695
 696out:
 697	drm_gem_object_unreference(&obj->base);
 698unlock:
 699	mutex_unlock(&dev->struct_mutex);
 700	return ret;
 701}
 702
 703/* This is the fast write path which cannot handle
 704 * page faults in the source data
 705 */
 706
 707static inline int
 708fast_user_write(struct io_mapping *mapping,
 709		loff_t page_base, int page_offset,
 710		char __user *user_data,
 711		int length)
 712{
 713	void __iomem *vaddr_atomic;
 714	void *vaddr;
 715	unsigned long unwritten;
 716
 717	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
 718	/* We can use the cpu mem copy function because this is X86. */
 719	vaddr = (void __force*)vaddr_atomic + page_offset;
 720	unwritten = __copy_from_user_inatomic_nocache(vaddr,
 721						      user_data, length);
 722	io_mapping_unmap_atomic(vaddr_atomic);
 723	return unwritten;
 724}
 725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726/**
 727 * This is the fast pwrite path, where we copy the data directly from the
 728 * user into the GTT, uncached.
 729 */
 730static int
 731i915_gem_gtt_pwrite_fast(struct drm_device *dev,
 732			 struct drm_i915_gem_object *obj,
 733			 struct drm_i915_gem_pwrite *args,
 734			 struct drm_file *file)
 735{
 736	struct drm_i915_private *dev_priv = dev->dev_private;
 737	ssize_t remain;
 738	loff_t offset, page_base;
 739	char __user *user_data;
 740	int page_offset, page_length, ret;
 741
 742	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
 743	if (ret)
 744		goto out;
 745
 746	ret = i915_gem_object_set_to_gtt_domain(obj, true);
 747	if (ret)
 748		goto out_unpin;
 749
 750	ret = i915_gem_object_put_fence(obj);
 751	if (ret)
 752		goto out_unpin;
 753
 754	user_data = to_user_ptr(args->data_ptr);
 755	remain = args->size;
 756
 757	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
 758
 759	while (remain > 0) {
 760		/* Operation in this page
 761		 *
 762		 * page_base = page offset within aperture
 763		 * page_offset = offset within page
 764		 * page_length = bytes to copy for this page
 765		 */
 766		page_base = offset & PAGE_MASK;
 767		page_offset = offset_in_page(offset);
 768		page_length = remain;
 769		if ((page_offset + remain) > PAGE_SIZE)
 770			page_length = PAGE_SIZE - page_offset;
 771
 772		/* If we get a fault while copying data, then (presumably) our
 773		 * source page isn't available.  Return the error and we'll
 774		 * retry in the slow path.
 775		 */
 776		if (fast_user_write(dev_priv->gtt.mappable, page_base,
 777				    page_offset, user_data, page_length)) {
 778			ret = -EFAULT;
 779			goto out_unpin;
 780		}
 781
 782		remain -= page_length;
 783		user_data += page_length;
 784		offset += page_length;
 785	}
 786
 787out_unpin:
 788	i915_gem_object_ggtt_unpin(obj);
 789out:
 790	return ret;
 791}
 792
 793/* Per-page copy function for the shmem pwrite fastpath.
 794 * Flushes invalid cachelines before writing to the target if
 795 * needs_clflush_before is set and flushes out any written cachelines after
 796 * writing if needs_clflush is set. */
 
 
 
 797static int
 798shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
 799		  char __user *user_data,
 800		  bool page_do_bit17_swizzling,
 801		  bool needs_clflush_before,
 802		  bool needs_clflush_after)
 803{
 804	char *vaddr;
 
 
 
 
 
 
 
 805	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806
 807	if (unlikely(page_do_bit17_swizzling))
 808		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809
 810	vaddr = kmap_atomic(page);
 811	if (needs_clflush_before)
 812		drm_clflush_virt_range(vaddr + shmem_page_offset,
 813				       page_length);
 814	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
 815					user_data, page_length);
 816	if (needs_clflush_after)
 817		drm_clflush_virt_range(vaddr + shmem_page_offset,
 818				       page_length);
 819	kunmap_atomic(vaddr);
 820
 821	return ret ? -EFAULT : 0;
 822}
 823
 824/* Only difference to the fast-path function is that this can handle bit17
 825 * and uses non-atomic copy and kmap functions. */
 
 
 826static int
 827shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
 828		  char __user *user_data,
 829		  bool page_do_bit17_swizzling,
 830		  bool needs_clflush_before,
 831		  bool needs_clflush_after)
 832{
 833	char *vaddr;
 834	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835
 836	vaddr = kmap(page);
 837	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
 838		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 839					     page_length,
 840					     page_do_bit17_swizzling);
 841	if (page_do_bit17_swizzling)
 842		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
 843						user_data,
 844						page_length);
 845	else
 846		ret = __copy_from_user(vaddr + shmem_page_offset,
 847				       user_data,
 848				       page_length);
 849	if (needs_clflush_after)
 850		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 851					     page_length,
 852					     page_do_bit17_swizzling);
 853	kunmap(page);
 
 
 
 
 
 
 
 
 854
 855	return ret ? -EFAULT : 0;
 856}
 857
 
 
 
 
 
 
 
 858static int
 859i915_gem_shmem_pwrite(struct drm_device *dev,
 860		      struct drm_i915_gem_object *obj,
 861		      struct drm_i915_gem_pwrite *args,
 862		      struct drm_file *file)
 863{
 
 
 
 864	ssize_t remain;
 865	loff_t offset;
 866	char __user *user_data;
 867	int shmem_page_offset, page_length, ret = 0;
 868	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 869	int hit_slowpath = 0;
 870	int needs_clflush_after = 0;
 871	int needs_clflush_before = 0;
 872	struct sg_page_iter sg_iter;
 873
 874	user_data = to_user_ptr(args->data_ptr);
 875	remain = args->size;
 876
 877	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 
 
 
 
 
 
 
 
 
 
 878
 879	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 880		/* If we're not in the cpu write domain, set ourself into the gtt
 881		 * write domain and manually flush cachelines (if required). This
 882		 * optimizes for the case when the gpu will use the data
 883		 * right away and we therefore have to clflush anyway. */
 884		needs_clflush_after = cpu_write_needs_clflush(obj);
 885		ret = i915_gem_object_wait_rendering(obj, false);
 886		if (ret)
 887			return ret;
 888	}
 889	/* Same trick applies to invalidate partially written cachelines read
 890	 * before writing. */
 891	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
 892		needs_clflush_before =
 893			!cpu_cache_is_coherent(dev, obj->cache_level);
 894
 895	ret = i915_gem_object_get_pages(obj);
 896	if (ret)
 897		return ret;
 898
 899	i915_gem_object_pin_pages(obj);
 900
 901	offset = args->offset;
 902	obj->dirty = 1;
 903
 904	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
 905			 offset >> PAGE_SHIFT) {
 906		struct page *page = sg_page_iter_page(&sg_iter);
 907		int partial_cacheline_write;
 908
 909		if (remain <= 0)
 910			break;
 911
 912		/* Operation in this page
 913		 *
 914		 * shmem_page_offset = offset within page in shmem file
 
 
 915		 * page_length = bytes to copy for this page
 916		 */
 917		shmem_page_offset = offset_in_page(offset);
 
 
 918
 919		page_length = remain;
 920		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 921			page_length = PAGE_SIZE - shmem_page_offset;
 
 
 922
 923		/* If we don't overwrite a cacheline completely we need to be
 924		 * careful to have up-to-date data by first clflushing. Don't
 925		 * overcomplicate things and flush the entire patch. */
 926		partial_cacheline_write = needs_clflush_before &&
 927			((shmem_page_offset | page_length)
 928				& (boot_cpu_data.x86_clflush_size - 1));
 929
 930		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 931			(page_to_phys(page) & (1 << 17)) != 0;
 932
 933		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
 934					user_data, page_do_bit17_swizzling,
 935					partial_cacheline_write,
 936					needs_clflush_after);
 937		if (ret == 0)
 938			goto next_page;
 939
 940		hit_slowpath = 1;
 941		mutex_unlock(&dev->struct_mutex);
 942		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
 943					user_data, page_do_bit17_swizzling,
 944					partial_cacheline_write,
 945					needs_clflush_after);
 
 
 
 
 
 
 
 
 946
 947		mutex_lock(&dev->struct_mutex);
 948
 949		if (ret)
 950			goto out;
 951
 952next_page:
 953		remain -= page_length;
 954		user_data += page_length;
 955		offset += page_length;
 956	}
 957
 958out:
 959	i915_gem_object_unpin_pages(obj);
 960
 961	if (hit_slowpath) {
 962		/*
 963		 * Fixup: Flush cpu caches in case we didn't flush the dirty
 964		 * cachelines in-line while writing and the object moved
 965		 * out of the cpu write domain while we've dropped the lock.
 966		 */
 967		if (!needs_clflush_after &&
 968		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 969			if (i915_gem_clflush_object(obj, obj->pin_display))
 970				i915_gem_chipset_flush(dev);
 971		}
 972	}
 973
 974	if (needs_clflush_after)
 975		i915_gem_chipset_flush(dev);
 976
 977	return ret;
 978}
 979
 980/**
 981 * Writes data to the object referenced by handle.
 982 *
 983 * On error, the contents of the buffer that were to be modified are undefined.
 984 */
 985int
 986i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 987		      struct drm_file *file)
 988{
 989	struct drm_i915_gem_pwrite *args = data;
 990	struct drm_i915_gem_object *obj;
 991	int ret;
 992
 993	if (args->size == 0)
 994		return 0;
 995
 996	if (!access_ok(VERIFY_READ,
 997		       to_user_ptr(args->data_ptr),
 998		       args->size))
 999		return -EFAULT;
1000
1001	if (likely(!i915.prefault_disable)) {
1002		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1003						   args->size);
1004		if (ret)
1005			return -EFAULT;
1006	}
1007
1008	ret = i915_mutex_lock_interruptible(dev);
1009	if (ret)
1010		return ret;
1011
1012	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1013	if (&obj->base == NULL) {
1014		ret = -ENOENT;
1015		goto unlock;
1016	}
1017
1018	/* Bounds check destination. */
1019	if (args->offset > obj->base.size ||
1020	    args->size > obj->base.size - args->offset) {
1021		ret = -EINVAL;
1022		goto out;
1023	}
1024
1025	/* prime objects have no backing filp to GEM pread/pwrite
1026	 * pages from.
1027	 */
1028	if (!obj->base.filp) {
1029		ret = -EINVAL;
1030		goto out;
1031	}
1032
1033	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1034
1035	ret = -EFAULT;
1036	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1037	 * it would end up going through the fenced access, and we'll get
1038	 * different detiling behavior between reading and writing.
1039	 * pread/pwrite currently are reading and writing from the CPU
1040	 * perspective, requiring manual detiling by the client.
1041	 */
1042	if (obj->phys_handle) {
1043		ret = i915_gem_phys_pwrite(obj, args, file);
1044		goto out;
1045	}
 
 
 
 
 
 
 
 
 
 
 
1046
1047	if (obj->tiling_mode == I915_TILING_NONE &&
1048	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1049	    cpu_write_needs_clflush(obj)) {
1050		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1051		/* Note that the gtt paths might fail with non-page-backed user
1052		 * pointers (e.g. gtt mappings when moving data between
1053		 * textures). Fallback to the shmem path in that case. */
 
 
 
 
 
 
 
 
 
 
 
 
1054	}
1055
1056	if (ret == -EFAULT || ret == -ENOSPC)
1057		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1058
1059out:
1060	drm_gem_object_unreference(&obj->base);
1061unlock:
1062	mutex_unlock(&dev->struct_mutex);
1063	return ret;
1064}
1065
1066int
1067i915_gem_check_wedge(struct i915_gpu_error *error,
1068		     bool interruptible)
1069{
1070	if (i915_reset_in_progress(error)) {
1071		/* Non-interruptible callers can't handle -EAGAIN, hence return
1072		 * -EIO unconditionally for these. */
1073		if (!interruptible)
1074			return -EIO;
1075
1076		/* Recovery complete, but the reset failed ... */
1077		if (i915_terminally_wedged(error))
1078			return -EIO;
1079
1080		return -EAGAIN;
1081	}
1082
1083	return 0;
1084}
1085
1086/*
1087 * Compare seqno against outstanding lazy request. Emit a request if they are
1088 * equal.
1089 */
1090static int
1091i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1092{
1093	int ret;
1094
1095	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1096
1097	ret = 0;
1098	if (seqno == ring->outstanding_lazy_seqno)
1099		ret = i915_add_request(ring, NULL);
1100
1101	return ret;
1102}
1103
1104static void fake_irq(unsigned long data)
1105{
1106	wake_up_process((struct task_struct *)data);
1107}
1108
1109static bool missed_irq(struct drm_i915_private *dev_priv,
1110		       struct intel_ring_buffer *ring)
1111{
1112	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1113}
1114
1115static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1116{
1117	if (file_priv == NULL)
1118		return true;
1119
1120	return !atomic_xchg(&file_priv->rps_wait_boost, true);
1121}
1122
1123/**
1124 * __wait_seqno - wait until execution of seqno has finished
1125 * @ring: the ring expected to report seqno
1126 * @seqno: duh!
1127 * @reset_counter: reset sequence associated with the given seqno
1128 * @interruptible: do an interruptible wait (normally yes)
1129 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1130 *
1131 * Note: It is of utmost importance that the passed in seqno and reset_counter
1132 * values have been read by the caller in an smp safe manner. Where read-side
1133 * locks are involved, it is sufficient to read the reset_counter before
1134 * unlocking the lock that protects the seqno. For lockless tricks, the
1135 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1136 * inserted.
1137 *
1138 * Returns 0 if the seqno was found within the alloted time. Else returns the
1139 * errno with remaining time filled in timeout argument.
1140 */
1141static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1142			unsigned reset_counter,
1143			bool interruptible,
1144			struct timespec *timeout,
1145			struct drm_i915_file_private *file_priv)
1146{
1147	struct drm_device *dev = ring->dev;
1148	struct drm_i915_private *dev_priv = dev->dev_private;
1149	const bool irq_test_in_progress =
1150		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1151	struct timespec before, now;
1152	DEFINE_WAIT(wait);
1153	unsigned long timeout_expire;
1154	int ret;
1155
1156	WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1157
1158	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1159		return 0;
1160
1161	timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1162
1163	if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1164		gen6_rps_boost(dev_priv);
1165		if (file_priv)
1166			mod_delayed_work(dev_priv->wq,
1167					 &file_priv->mm.idle_work,
1168					 msecs_to_jiffies(100));
1169	}
1170
1171	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1172		return -ENODEV;
1173
1174	/* Record current time in case interrupted by signal, or wedged */
1175	trace_i915_gem_request_wait_begin(ring, seqno);
1176	getrawmonotonic(&before);
1177	for (;;) {
1178		struct timer_list timer;
1179
1180		prepare_to_wait(&ring->irq_queue, &wait,
1181				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1182
1183		/* We need to check whether any gpu reset happened in between
1184		 * the caller grabbing the seqno and now ... */
1185		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1186			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1187			 * is truely gone. */
1188			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1189			if (ret == 0)
1190				ret = -EAGAIN;
1191			break;
1192		}
1193
1194		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1195			ret = 0;
1196			break;
1197		}
1198
1199		if (interruptible && signal_pending(current)) {
1200			ret = -ERESTARTSYS;
1201			break;
1202		}
1203
1204		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1205			ret = -ETIME;
1206			break;
1207		}
1208
1209		timer.function = NULL;
1210		if (timeout || missed_irq(dev_priv, ring)) {
1211			unsigned long expire;
1212
1213			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1214			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1215			mod_timer(&timer, expire);
1216		}
1217
1218		io_schedule();
1219
1220		if (timer.function) {
1221			del_singleshot_timer_sync(&timer);
1222			destroy_timer_on_stack(&timer);
1223		}
1224	}
1225	getrawmonotonic(&now);
1226	trace_i915_gem_request_wait_end(ring, seqno);
1227
1228	if (!irq_test_in_progress)
1229		ring->irq_put(ring);
1230
1231	finish_wait(&ring->irq_queue, &wait);
1232
1233	if (timeout) {
1234		struct timespec sleep_time = timespec_sub(now, before);
1235		*timeout = timespec_sub(*timeout, sleep_time);
1236		if (!timespec_valid(timeout)) /* i.e. negative time remains */
1237			set_normalized_timespec(timeout, 0, 0);
1238	}
1239
1240	return ret;
1241}
1242
1243/**
1244 * Waits for a sequence number to be signaled, and cleans up the
1245 * request and object lists appropriately for that event.
1246 */
1247int
1248i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1249{
1250	struct drm_device *dev = ring->dev;
1251	struct drm_i915_private *dev_priv = dev->dev_private;
1252	bool interruptible = dev_priv->mm.interruptible;
1253	int ret;
1254
1255	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1256	BUG_ON(seqno == 0);
1257
1258	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1259	if (ret)
1260		return ret;
1261
1262	ret = i915_gem_check_olr(ring, seqno);
1263	if (ret)
1264		return ret;
1265
1266	return __wait_seqno(ring, seqno,
1267			    atomic_read(&dev_priv->gpu_error.reset_counter),
1268			    interruptible, NULL, NULL);
1269}
1270
1271static int
1272i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1273				     struct intel_ring_buffer *ring)
1274{
1275	i915_gem_retire_requests_ring(ring);
1276
1277	/* Manually manage the write flush as we may have not yet
1278	 * retired the buffer.
1279	 *
1280	 * Note that the last_write_seqno is always the earlier of
1281	 * the two (read/write) seqno, so if we haved successfully waited,
1282	 * we know we have passed the last write.
1283	 */
1284	obj->last_write_seqno = 0;
1285	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1286
1287	return 0;
1288}
1289
1290/**
1291 * Ensures that all rendering to the object has completed and the object is
1292 * safe to unbind from the GTT or access from the CPU.
1293 */
1294static __must_check int
1295i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1296			       bool readonly)
1297{
1298	struct intel_ring_buffer *ring = obj->ring;
1299	u32 seqno;
1300	int ret;
1301
1302	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1303	if (seqno == 0)
1304		return 0;
1305
1306	ret = i915_wait_seqno(ring, seqno);
1307	if (ret)
1308		return ret;
1309
1310	return i915_gem_object_wait_rendering__tail(obj, ring);
1311}
1312
1313/* A nonblocking variant of the above wait. This is a highly dangerous routine
1314 * as the object state may change during this call.
1315 */
1316static __must_check int
1317i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1318					    struct drm_i915_file_private *file_priv,
1319					    bool readonly)
1320{
1321	struct drm_device *dev = obj->base.dev;
1322	struct drm_i915_private *dev_priv = dev->dev_private;
1323	struct intel_ring_buffer *ring = obj->ring;
1324	unsigned reset_counter;
1325	u32 seqno;
1326	int ret;
1327
1328	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1329	BUG_ON(!dev_priv->mm.interruptible);
1330
1331	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1332	if (seqno == 0)
1333		return 0;
1334
1335	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1336	if (ret)
1337		return ret;
1338
1339	ret = i915_gem_check_olr(ring, seqno);
1340	if (ret)
1341		return ret;
1342
1343	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1344	mutex_unlock(&dev->struct_mutex);
1345	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1346	mutex_lock(&dev->struct_mutex);
1347	if (ret)
1348		return ret;
1349
1350	return i915_gem_object_wait_rendering__tail(obj, ring);
1351}
1352
1353/**
1354 * Called when user space prepares to use an object with the CPU, either
1355 * through the mmap ioctl's mapping or a GTT mapping.
1356 */
1357int
1358i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1359			  struct drm_file *file)
1360{
1361	struct drm_i915_gem_set_domain *args = data;
1362	struct drm_i915_gem_object *obj;
1363	uint32_t read_domains = args->read_domains;
1364	uint32_t write_domain = args->write_domain;
1365	int ret;
1366
 
 
 
1367	/* Only handle setting domains to types used by the CPU. */
1368	if (write_domain & I915_GEM_GPU_DOMAINS)
1369		return -EINVAL;
1370
1371	if (read_domains & I915_GEM_GPU_DOMAINS)
1372		return -EINVAL;
1373
1374	/* Having something in the write domain implies it's in the read
1375	 * domain, and only that read domain.  Enforce that in the request.
1376	 */
1377	if (write_domain != 0 && read_domains != write_domain)
1378		return -EINVAL;
1379
1380	ret = i915_mutex_lock_interruptible(dev);
1381	if (ret)
1382		return ret;
1383
1384	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1385	if (&obj->base == NULL) {
1386		ret = -ENOENT;
1387		goto unlock;
1388	}
1389
1390	/* Try to flush the object off the GPU without holding the lock.
1391	 * We will repeat the flush holding the lock in the normal manner
1392	 * to catch cases where we are gazumped.
1393	 */
1394	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1395							  file->driver_priv,
1396							  !write_domain);
1397	if (ret)
1398		goto unref;
1399
1400	if (read_domains & I915_GEM_DOMAIN_GTT) {
1401		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1402
1403		/* Silently promote "you're not bound, there was nothing to do"
1404		 * to success, since the client was just asking us to
1405		 * make sure everything was done.
1406		 */
1407		if (ret == -EINVAL)
1408			ret = 0;
1409	} else {
1410		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1411	}
1412
1413unref:
1414	drm_gem_object_unreference(&obj->base);
1415unlock:
1416	mutex_unlock(&dev->struct_mutex);
1417	return ret;
1418}
1419
1420/**
1421 * Called when user space has done writes to this buffer
1422 */
1423int
1424i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1425			 struct drm_file *file)
1426{
1427	struct drm_i915_gem_sw_finish *args = data;
1428	struct drm_i915_gem_object *obj;
1429	int ret = 0;
1430
 
 
 
1431	ret = i915_mutex_lock_interruptible(dev);
1432	if (ret)
1433		return ret;
1434
1435	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1436	if (&obj->base == NULL) {
1437		ret = -ENOENT;
1438		goto unlock;
1439	}
1440
1441	/* Pinned buffers may be scanout, so flush the cache */
1442	if (obj->pin_display)
1443		i915_gem_object_flush_cpu_write_domain(obj, true);
1444
1445	drm_gem_object_unreference(&obj->base);
1446unlock:
1447	mutex_unlock(&dev->struct_mutex);
1448	return ret;
1449}
1450
1451/**
1452 * Maps the contents of an object, returning the address it is mapped
1453 * into.
1454 *
1455 * While the mapping holds a reference on the contents of the object, it doesn't
1456 * imply a ref on the object itself.
1457 */
1458int
1459i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1460		    struct drm_file *file)
1461{
 
1462	struct drm_i915_gem_mmap *args = data;
1463	struct drm_gem_object *obj;
1464	unsigned long addr;
1465
 
 
 
1466	obj = drm_gem_object_lookup(dev, file, args->handle);
1467	if (obj == NULL)
1468		return -ENOENT;
1469
1470	/* prime objects have no backing filp to GEM mmap
1471	 * pages from.
1472	 */
1473	if (!obj->filp) {
1474		drm_gem_object_unreference_unlocked(obj);
1475		return -EINVAL;
1476	}
1477
1478	addr = vm_mmap(obj->filp, 0, args->size,
 
1479		       PROT_READ | PROT_WRITE, MAP_SHARED,
1480		       args->offset);
 
1481	drm_gem_object_unreference_unlocked(obj);
1482	if (IS_ERR((void *)addr))
1483		return addr;
1484
1485	args->addr_ptr = (uint64_t) addr;
1486
1487	return 0;
1488}
1489
1490/**
1491 * i915_gem_fault - fault a page into the GTT
1492 * vma: VMA in question
1493 * vmf: fault info
1494 *
1495 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1496 * from userspace.  The fault handler takes care of binding the object to
1497 * the GTT (if needed), allocating and programming a fence register (again,
1498 * only if needed based on whether the old reg is still valid or the object
1499 * is tiled) and inserting a new PTE into the faulting process.
1500 *
1501 * Note that the faulting process may involve evicting existing objects
1502 * from the GTT and/or fence registers to make room.  So performance may
1503 * suffer if the GTT working set is large or there are few fence registers
1504 * left.
1505 */
1506int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1507{
1508	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1509	struct drm_device *dev = obj->base.dev;
1510	struct drm_i915_private *dev_priv = dev->dev_private;
1511	pgoff_t page_offset;
1512	unsigned long pfn;
1513	int ret = 0;
1514	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1515
1516	intel_runtime_pm_get(dev_priv);
1517
1518	/* We don't use vmf->pgoff since that has the fake offset */
1519	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1520		PAGE_SHIFT;
1521
1522	ret = i915_mutex_lock_interruptible(dev);
1523	if (ret)
1524		goto out;
1525
1526	trace_i915_gem_object_fault(obj, page_offset, true, write);
1527
1528	/* Try to flush the object off the GPU first without holding the lock.
1529	 * Upon reacquiring the lock, we will perform our sanity checks and then
1530	 * repeat the flush holding the lock in the normal manner to catch cases
1531	 * where we are gazumped.
1532	 */
1533	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1534	if (ret)
1535		goto unlock;
 
 
1536
1537	/* Access to snoopable pages through the GTT is incoherent. */
1538	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1539		ret = -EINVAL;
1540		goto unlock;
1541	}
1542
1543	/* Now bind it into the GTT if needed */
1544	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
 
 
1545	if (ret)
1546		goto unlock;
1547
1548	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1549	if (ret)
1550		goto unpin;
1551
1552	ret = i915_gem_object_get_fence(obj);
1553	if (ret)
1554		goto unpin;
1555
1556	obj->fault_mappable = true;
1557
1558	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1559	pfn >>= PAGE_SHIFT;
1560	pfn += page_offset;
1561
1562	/* Finally, remap it using the new GTT offset */
1563	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1564unpin:
1565	i915_gem_object_ggtt_unpin(obj);
1566unlock:
1567	mutex_unlock(&dev->struct_mutex);
1568out:
1569	switch (ret) {
1570	case -EIO:
1571		/* If this -EIO is due to a gpu hang, give the reset code a
1572		 * chance to clean up the mess. Otherwise return the proper
1573		 * SIGBUS. */
1574		if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1575			ret = VM_FAULT_SIGBUS;
1576			break;
1577		}
1578	case -EAGAIN:
1579		/*
1580		 * EAGAIN means the gpu is hung and we'll wait for the error
1581		 * handler to reset everything when re-faulting in
1582		 * i915_mutex_lock_interruptible.
 
 
1583		 */
 
1584	case 0:
1585	case -ERESTARTSYS:
1586	case -EINTR:
1587	case -EBUSY:
1588		/*
1589		 * EBUSY is ok: this just means that another thread
1590		 * already did the job.
1591		 */
1592		ret = VM_FAULT_NOPAGE;
1593		break;
1594	case -ENOMEM:
1595		ret = VM_FAULT_OOM;
1596		break;
1597	case -ENOSPC:
1598	case -EFAULT:
1599		ret = VM_FAULT_SIGBUS;
1600		break;
1601	default:
1602		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1603		ret = VM_FAULT_SIGBUS;
1604		break;
1605	}
1606
1607	intel_runtime_pm_put(dev_priv);
1608	return ret;
1609}
1610
1611void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 
 
 
 
1612{
1613	struct i915_vma *vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1614
1615	/*
1616	 * Only the global gtt is relevant for gtt memory mappings, so restrict
1617	 * list traversal to objects bound into the global address space. Note
1618	 * that the active list should be empty, but better safe than sorry.
1619	 */
1620	WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1621	list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1622		i915_gem_release_mmap(vma->obj);
1623	list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1624		i915_gem_release_mmap(vma->obj);
1625}
1626
1627/**
1628 * i915_gem_release_mmap - remove physical page mappings
1629 * @obj: obj in question
1630 *
1631 * Preserve the reservation of the mmapping with the DRM core code, but
1632 * relinquish ownership of the pages back to the system.
1633 *
1634 * It is vital that we remove the page mapping if we have mapped a tiled
1635 * object through the GTT and then lose the fence register due to
1636 * resource pressure. Similarly if the object has been moved out of the
1637 * aperture, than pages mapped into userspace must be revoked. Removing the
1638 * mapping will then trigger a page fault on the next user access, allowing
1639 * fixup by i915_gem_fault().
1640 */
1641void
1642i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1643{
1644	if (!obj->fault_mappable)
1645		return;
1646
1647	drm_vma_node_unmap(&obj->base.vma_node,
1648			   obj->base.dev->anon_inode->i_mapping);
 
 
 
1649	obj->fault_mappable = false;
1650}
1651
1652uint32_t
 
 
 
 
 
 
 
 
 
 
 
 
 
1653i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1654{
1655	uint32_t gtt_size;
1656
1657	if (INTEL_INFO(dev)->gen >= 4 ||
1658	    tiling_mode == I915_TILING_NONE)
1659		return size;
1660
1661	/* Previous chips need a power-of-two fence region when tiling */
1662	if (INTEL_INFO(dev)->gen == 3)
1663		gtt_size = 1024*1024;
1664	else
1665		gtt_size = 512*1024;
1666
1667	while (gtt_size < size)
1668		gtt_size <<= 1;
1669
1670	return gtt_size;
1671}
1672
1673/**
1674 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1675 * @obj: object to check
1676 *
1677 * Return the required GTT alignment for an object, taking into account
1678 * potential fence register mapping.
1679 */
1680uint32_t
1681i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1682			   int tiling_mode, bool fenced)
 
1683{
1684	/*
1685	 * Minimum alignment is 4k (GTT page size), but might be greater
1686	 * if a fence register is needed for the object.
1687	 */
1688	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1689	    tiling_mode == I915_TILING_NONE)
1690		return 4096;
1691
1692	/*
1693	 * Previous chips need to be aligned to the size of the smallest
1694	 * fence register that can contain the object.
1695	 */
1696	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1697}
1698
1699static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
 
 
 
 
 
 
 
 
 
 
 
 
 
1700{
1701	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1702	int ret;
 
 
 
 
1703
1704	if (drm_vma_node_has_offset(&obj->base.vma_node))
1705		return 0;
1706
1707	dev_priv->mm.shrinker_no_lock_stealing = true;
1708
1709	ret = drm_gem_create_mmap_offset(&obj->base);
1710	if (ret != -ENOSPC)
1711		goto out;
1712
1713	/* Badly fragmented mmap space? The only way we can recover
1714	 * space is by destroying unwanted objects. We can't randomly release
1715	 * mmap_offsets as userspace expects them to be persistent for the
1716	 * lifetime of the objects. The closest we can is to release the
1717	 * offsets on purgeable objects by truncating it and marking it purged,
1718	 * which prevents userspace from ever using that object again.
1719	 */
1720	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1721	ret = drm_gem_create_mmap_offset(&obj->base);
1722	if (ret != -ENOSPC)
1723		goto out;
1724
1725	i915_gem_shrink_all(dev_priv);
1726	ret = drm_gem_create_mmap_offset(&obj->base);
1727out:
1728	dev_priv->mm.shrinker_no_lock_stealing = false;
1729
1730	return ret;
1731}
1732
1733static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1734{
1735	drm_gem_free_mmap_offset(&obj->base);
1736}
1737
1738int
1739i915_gem_mmap_gtt(struct drm_file *file,
1740		  struct drm_device *dev,
1741		  uint32_t handle,
1742		  uint64_t *offset)
1743{
1744	struct drm_i915_private *dev_priv = dev->dev_private;
1745	struct drm_i915_gem_object *obj;
1746	int ret;
1747
 
 
 
1748	ret = i915_mutex_lock_interruptible(dev);
1749	if (ret)
1750		return ret;
1751
1752	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1753	if (&obj->base == NULL) {
1754		ret = -ENOENT;
1755		goto unlock;
1756	}
1757
1758	if (obj->base.size > dev_priv->gtt.mappable_end) {
1759		ret = -E2BIG;
1760		goto out;
1761	}
1762
1763	if (obj->madv != I915_MADV_WILLNEED) {
1764		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1765		ret = -EFAULT;
1766		goto out;
1767	}
1768
1769	ret = i915_gem_object_create_mmap_offset(obj);
1770	if (ret)
1771		goto out;
 
 
1772
1773	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1774
1775out:
1776	drm_gem_object_unreference(&obj->base);
1777unlock:
1778	mutex_unlock(&dev->struct_mutex);
1779	return ret;
1780}
1781
1782/**
1783 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1784 * @dev: DRM device
1785 * @data: GTT mapping ioctl data
1786 * @file: GEM object info
1787 *
1788 * Simply returns the fake offset to userspace so it can mmap it.
1789 * The mmap call will end up in drm_gem_mmap(), which will set things
1790 * up so we can get faults in the handler above.
1791 *
1792 * The fault handler will take care of binding the object into the GTT
1793 * (since it may have been evicted to make room for something), allocating
1794 * a fence register, and mapping the appropriate aperture address into
1795 * userspace.
1796 */
1797int
1798i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1799			struct drm_file *file)
1800{
1801	struct drm_i915_gem_mmap_gtt *args = data;
1802
 
 
 
1803	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1804}
1805
1806/* Immediately discard the backing storage */
1807static void
1808i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1809{
1810	struct inode *inode;
1811
1812	i915_gem_object_free_mmap_offset(obj);
1813
1814	if (obj->base.filp == NULL)
1815		return;
1816
1817	/* Our goal here is to return as much of the memory as
1818	 * is possible back to the system as we are called from OOM.
1819	 * To do this we must instruct the shmfs to drop all of its
1820	 * backing pages, *now*.
1821	 */
1822	inode = file_inode(obj->base.filp);
1823	shmem_truncate_range(inode, 0, (loff_t)-1);
1824
1825	obj->madv = __I915_MADV_PURGED;
1826}
1827
1828static inline int
1829i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1830{
1831	return obj->madv == I915_MADV_DONTNEED;
1832}
1833
1834static void
1835i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1836{
1837	struct sg_page_iter sg_iter;
1838	int ret;
1839
1840	BUG_ON(obj->madv == __I915_MADV_PURGED);
1841
1842	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1843	if (ret) {
1844		/* In the event of a disaster, abandon all caches and
1845		 * hope for the best.
1846		 */
1847		WARN_ON(ret != -EIO);
1848		i915_gem_clflush_object(obj, true);
1849		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1850	}
1851
1852	if (i915_gem_object_needs_bit17_swizzle(obj))
1853		i915_gem_object_save_bit_17_swizzle(obj);
1854
1855	if (obj->madv == I915_MADV_DONTNEED)
1856		obj->dirty = 0;
1857
1858	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1859		struct page *page = sg_page_iter_page(&sg_iter);
1860
1861		if (obj->dirty)
1862			set_page_dirty(page);
1863
1864		if (obj->madv == I915_MADV_WILLNEED)
1865			mark_page_accessed(page);
1866
1867		page_cache_release(page);
1868	}
1869	obj->dirty = 0;
1870
1871	sg_free_table(obj->pages);
1872	kfree(obj->pages);
1873}
1874
1875int
1876i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1877{
1878	const struct drm_i915_gem_object_ops *ops = obj->ops;
1879
1880	if (obj->pages == NULL)
1881		return 0;
1882
1883	if (obj->pages_pin_count)
1884		return -EBUSY;
1885
1886	BUG_ON(i915_gem_obj_bound_any(obj));
1887
1888	/* ->put_pages might need to allocate memory for the bit17 swizzle
1889	 * array, hence protect them from being reaped by removing them from gtt
1890	 * lists early. */
1891	list_del(&obj->global_list);
1892
1893	ops->put_pages(obj);
1894	obj->pages = NULL;
1895
1896	if (i915_gem_object_is_purgeable(obj))
1897		i915_gem_object_truncate(obj);
1898
1899	return 0;
1900}
1901
1902static unsigned long
1903__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1904		  bool purgeable_only)
1905{
1906	struct list_head still_bound_list;
1907	struct drm_i915_gem_object *obj, *next;
1908	unsigned long count = 0;
1909
1910	list_for_each_entry_safe(obj, next,
1911				 &dev_priv->mm.unbound_list,
1912				 global_list) {
1913		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1914		    i915_gem_object_put_pages(obj) == 0) {
1915			count += obj->base.size >> PAGE_SHIFT;
1916			if (count >= target)
1917				return count;
1918		}
1919	}
1920
1921	/*
1922	 * As we may completely rewrite the bound list whilst unbinding
1923	 * (due to retiring requests) we have to strictly process only
1924	 * one element of the list at the time, and recheck the list
1925	 * on every iteration.
1926	 */
1927	INIT_LIST_HEAD(&still_bound_list);
1928	while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1929		struct i915_vma *vma, *v;
1930
1931		obj = list_first_entry(&dev_priv->mm.bound_list,
1932				       typeof(*obj), global_list);
1933		list_move_tail(&obj->global_list, &still_bound_list);
1934
1935		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1936			continue;
1937
1938		/*
1939		 * Hold a reference whilst we unbind this object, as we may
1940		 * end up waiting for and retiring requests. This might
1941		 * release the final reference (held by the active list)
1942		 * and result in the object being freed from under us.
1943		 * in this object being freed.
1944		 *
1945		 * Note 1: Shrinking the bound list is special since only active
1946		 * (and hence bound objects) can contain such limbo objects, so
1947		 * we don't need special tricks for shrinking the unbound list.
1948		 * The only other place where we have to be careful with active
1949		 * objects suddenly disappearing due to retiring requests is the
1950		 * eviction code.
1951		 *
1952		 * Note 2: Even though the bound list doesn't hold a reference
1953		 * to the object we can safely grab one here: The final object
1954		 * unreferencing and the bound_list are both protected by the
1955		 * dev->struct_mutex and so we won't ever be able to observe an
1956		 * object on the bound_list with a reference count equals 0.
1957		 */
1958		drm_gem_object_reference(&obj->base);
1959
1960		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1961			if (i915_vma_unbind(vma))
1962				break;
1963
1964		if (i915_gem_object_put_pages(obj) == 0)
1965			count += obj->base.size >> PAGE_SHIFT;
1966
1967		drm_gem_object_unreference(&obj->base);
1968	}
1969	list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1970
1971	return count;
1972}
1973
1974static unsigned long
1975i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1976{
1977	return __i915_gem_shrink(dev_priv, target, true);
1978}
1979
1980static unsigned long
1981i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1982{
1983	struct drm_i915_gem_object *obj, *next;
1984	long freed = 0;
1985
1986	i915_gem_evict_everything(dev_priv->dev);
1987
1988	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1989				 global_list) {
1990		if (i915_gem_object_put_pages(obj) == 0)
1991			freed += obj->base.size >> PAGE_SHIFT;
1992	}
1993	return freed;
1994}
1995
1996static int
1997i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
 
1998{
1999	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2000	int page_count, i;
2001	struct address_space *mapping;
2002	struct sg_table *st;
2003	struct scatterlist *sg;
2004	struct sg_page_iter sg_iter;
2005	struct page *page;
2006	unsigned long last_pfn = 0;	/* suppress gcc warning */
2007	gfp_t gfp;
2008
2009	/* Assert that the object is not currently in any GPU domain. As it
2010	 * wasn't in the GTT, there shouldn't be any way it could have been in
2011	 * a GPU cache
2012	 */
2013	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2014	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2015
2016	st = kmalloc(sizeof(*st), GFP_KERNEL);
2017	if (st == NULL)
2018		return -ENOMEM;
2019
2020	page_count = obj->base.size / PAGE_SIZE;
2021	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2022		kfree(st);
2023		return -ENOMEM;
2024	}
2025
2026	/* Get the list of pages out of our struct file.  They'll be pinned
2027	 * at this point until we release them.
2028	 *
2029	 * Fail silently without starting the shrinker
2030	 */
2031	mapping = file_inode(obj->base.filp)->i_mapping;
2032	gfp = mapping_gfp_mask(mapping);
2033	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2034	gfp &= ~(__GFP_IO | __GFP_WAIT);
2035	sg = st->sgl;
2036	st->nents = 0;
2037	for (i = 0; i < page_count; i++) {
2038		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2039		if (IS_ERR(page)) {
2040			i915_gem_purge(dev_priv, page_count);
2041			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2042		}
2043		if (IS_ERR(page)) {
2044			/* We've tried hard to allocate the memory by reaping
2045			 * our own buffer, now let the real VM do its job and
2046			 * go down in flames if truly OOM.
2047			 */
2048			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2049			gfp |= __GFP_IO | __GFP_WAIT;
2050
2051			i915_gem_shrink_all(dev_priv);
2052			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2053			if (IS_ERR(page))
2054				goto err_pages;
2055
2056			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2057			gfp &= ~(__GFP_IO | __GFP_WAIT);
2058		}
2059#ifdef CONFIG_SWIOTLB
2060		if (swiotlb_nr_tbl()) {
2061			st->nents++;
2062			sg_set_page(sg, page, PAGE_SIZE, 0);
2063			sg = sg_next(sg);
2064			continue;
2065		}
2066#endif
2067		if (!i || page_to_pfn(page) != last_pfn + 1) {
2068			if (i)
2069				sg = sg_next(sg);
2070			st->nents++;
2071			sg_set_page(sg, page, PAGE_SIZE, 0);
2072		} else {
2073			sg->length += PAGE_SIZE;
2074		}
2075		last_pfn = page_to_pfn(page);
2076
2077		/* Check that the i965g/gm workaround works. */
2078		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2079	}
2080#ifdef CONFIG_SWIOTLB
2081	if (!swiotlb_nr_tbl())
2082#endif
2083		sg_mark_end(sg);
2084	obj->pages = st;
2085
2086	if (i915_gem_object_needs_bit17_swizzle(obj))
2087		i915_gem_object_do_bit_17_swizzle(obj);
2088
2089	return 0;
2090
2091err_pages:
2092	sg_mark_end(sg);
2093	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2094		page_cache_release(sg_page_iter_page(&sg_iter));
2095	sg_free_table(st);
2096	kfree(st);
2097	return PTR_ERR(page);
2098}
2099
2100/* Ensure that the associated pages are gathered from the backing storage
2101 * and pinned into our object. i915_gem_object_get_pages() may be called
2102 * multiple times before they are released by a single call to
2103 * i915_gem_object_put_pages() - once the pages are no longer referenced
2104 * either as a result of memory pressure (reaping pages under the shrinker)
2105 * or as the object is itself released.
2106 */
2107int
2108i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2109{
2110	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2111	const struct drm_i915_gem_object_ops *ops = obj->ops;
2112	int ret;
 
 
 
 
2113
2114	if (obj->pages)
2115		return 0;
2116
2117	if (obj->madv != I915_MADV_WILLNEED) {
2118		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2119		return -EFAULT;
2120	}
2121
2122	BUG_ON(obj->pages_pin_count);
 
2123
2124	ret = ops->get_pages(obj);
2125	if (ret)
2126		return ret;
2127
2128	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2129	return 0;
2130}
2131
2132static void
2133i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2134			       struct intel_ring_buffer *ring)
 
2135{
2136	struct drm_device *dev = obj->base.dev;
2137	struct drm_i915_private *dev_priv = dev->dev_private;
2138	u32 seqno = intel_ring_get_seqno(ring);
2139
2140	BUG_ON(ring == NULL);
2141	if (obj->ring != ring && obj->last_write_seqno) {
2142		/* Keep the seqno relative to the current ring */
2143		obj->last_write_seqno = seqno;
2144	}
2145	obj->ring = ring;
2146
2147	/* Add a reference if we're newly entering the active list. */
2148	if (!obj->active) {
2149		drm_gem_object_reference(&obj->base);
2150		obj->active = 1;
2151	}
2152
 
 
2153	list_move_tail(&obj->ring_list, &ring->active_list);
2154
2155	obj->last_read_seqno = seqno;
 
 
 
 
2156
2157	if (obj->fenced_gpu_access) {
2158		obj->last_fenced_seqno = seqno;
 
2159
2160		/* Bump MRU to take account of the delayed flush */
2161		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2162			struct drm_i915_fence_reg *reg;
2163
2164			reg = &dev_priv->fence_regs[obj->fence_reg];
2165			list_move_tail(&reg->lru_list,
2166				       &dev_priv->mm.fence_list);
2167		}
2168	}
2169}
2170
2171void i915_vma_move_to_active(struct i915_vma *vma,
2172			     struct intel_ring_buffer *ring)
2173{
2174	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2175	return i915_gem_object_move_to_active(vma->obj, ring);
2176}
2177
2178static void
2179i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2180{
2181	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2182	struct i915_address_space *vm;
2183	struct i915_vma *vma;
2184
2185	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2186	BUG_ON(!obj->active);
 
 
 
 
2187
2188	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2189		vma = i915_gem_obj_to_vma(obj, vm);
2190		if (vma && !list_empty(&vma->mm_list))
2191			list_move_tail(&vma->mm_list, &vm->inactive_list);
2192	}
 
 
 
 
 
2193
2194	list_del_init(&obj->ring_list);
 
2195	obj->ring = NULL;
2196
2197	obj->last_read_seqno = 0;
2198	obj->last_write_seqno = 0;
2199	obj->base.write_domain = 0;
2200
2201	obj->last_fenced_seqno = 0;
2202	obj->fenced_gpu_access = false;
2203
2204	obj->active = 0;
 
2205	drm_gem_object_unreference(&obj->base);
2206
2207	WARN_ON(i915_verify_lists(dev));
2208}
2209
2210static int
2211i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
 
2212{
2213	struct drm_i915_private *dev_priv = dev->dev_private;
2214	struct intel_ring_buffer *ring;
2215	int ret, i, j;
2216
2217	/* Carefully retire all requests without writing to the rings */
2218	for_each_ring(ring, dev_priv, i) {
2219		ret = intel_ring_idle(ring);
2220		if (ret)
2221			return ret;
2222	}
2223	i915_gem_retire_requests(dev);
2224
2225	/* Finally reset hw state */
2226	for_each_ring(ring, dev_priv, i) {
2227		intel_ring_init_seqno(ring, seqno);
2228
2229		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2230			ring->sync_seqno[j] = 0;
2231	}
2232
2233	return 0;
2234}
2235
2236int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
 
2237{
2238	struct drm_i915_private *dev_priv = dev->dev_private;
2239	int ret;
2240
2241	if (seqno == 0)
2242		return -EINVAL;
2243
2244	/* HWS page needs to be set less than what we
2245	 * will inject to ring
2246	 */
2247	ret = i915_gem_init_seqno(dev, seqno - 1);
2248	if (ret)
2249		return ret;
2250
2251	/* Carefully set the last_seqno value so that wrap
2252	 * detection still works
2253	 */
2254	dev_priv->next_seqno = seqno;
2255	dev_priv->last_seqno = seqno - 1;
2256	if (dev_priv->last_seqno == 0)
2257		dev_priv->last_seqno--;
2258
2259	return 0;
2260}
2261
2262int
2263i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
 
2264{
2265	struct drm_i915_private *dev_priv = dev->dev_private;
2266
2267	/* reserve 0 for non-seqno */
2268	if (dev_priv->next_seqno == 0) {
2269		int ret = i915_gem_init_seqno(dev, 0);
2270		if (ret)
2271			return ret;
2272
2273		dev_priv->next_seqno = 1;
 
 
 
 
 
 
 
 
2274	}
2275
2276	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2277	return 0;
2278}
2279
2280int __i915_add_request(struct intel_ring_buffer *ring,
2281		       struct drm_file *file,
2282		       struct drm_i915_gem_object *obj,
2283		       u32 *out_seqno)
2284{
2285	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2286	struct drm_i915_gem_request *request;
2287	u32 request_ring_position, request_start;
2288	int ret;
2289
2290	request_start = intel_ring_get_tail(ring);
2291	/*
2292	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2293	 * after having emitted the batchbuffer command. Hence we need to fix
2294	 * things up similar to emitting the lazy request. The difference here
2295	 * is that the flush _must_ happen before the next request, no matter
2296	 * what.
2297	 */
2298	ret = intel_ring_flush_all_caches(ring);
2299	if (ret)
2300		return ret;
2301
2302	request = ring->preallocated_lazy_request;
2303	if (WARN_ON(request == NULL))
2304		return -ENOMEM;
2305
2306	/* Record the position of the start of the request so that
2307	 * should we detect the updated seqno part-way through the
2308	 * GPU processing the request, we never over-estimate the
2309	 * position of the head.
2310	 */
2311	request_ring_position = intel_ring_get_tail(ring);
2312
2313	ret = ring->add_request(ring);
2314	if (ret)
2315		return ret;
2316
2317	request->seqno = intel_ring_get_seqno(ring);
2318	request->ring = ring;
2319	request->head = request_start;
2320	request->tail = request_ring_position;
2321
2322	/* Whilst this request exists, batch_obj will be on the
2323	 * active_list, and so will hold the active reference. Only when this
2324	 * request is retired will the the batch_obj be moved onto the
2325	 * inactive_list and lose its active reference. Hence we do not need
2326	 * to explicitly hold another reference here.
2327	 */
2328	request->batch_obj = obj;
2329
2330	/* Hold a reference to the current context so that we can inspect
2331	 * it later in case a hangcheck error event fires.
2332	 */
2333	request->ctx = ring->last_context;
2334	if (request->ctx)
2335		i915_gem_context_reference(request->ctx);
2336
2337	request->emitted_jiffies = jiffies;
 
2338	list_add_tail(&request->list, &ring->request_list);
2339	request->file_priv = NULL;
2340
2341	if (file) {
2342		struct drm_i915_file_private *file_priv = file->driver_priv;
2343
2344		spin_lock(&file_priv->mm.lock);
2345		request->file_priv = file_priv;
2346		list_add_tail(&request->client_list,
2347			      &file_priv->mm.request_list);
2348		spin_unlock(&file_priv->mm.lock);
2349	}
2350
2351	trace_i915_gem_request_add(ring, request->seqno);
2352	ring->outstanding_lazy_seqno = 0;
2353	ring->preallocated_lazy_request = NULL;
2354
2355	if (!dev_priv->ums.mm_suspended) {
2356		i915_queue_hangcheck(ring->dev);
2357
2358		cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2359		queue_delayed_work(dev_priv->wq,
2360				   &dev_priv->mm.retire_work,
2361				   round_jiffies_up_relative(HZ));
2362		intel_mark_busy(dev_priv->dev);
2363	}
2364
2365	if (out_seqno)
2366		*out_seqno = request->seqno;
2367	return 0;
2368}
2369
2370static inline void
2371i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2372{
2373	struct drm_i915_file_private *file_priv = request->file_priv;
2374
2375	if (!file_priv)
2376		return;
2377
2378	spin_lock(&file_priv->mm.lock);
2379	list_del(&request->client_list);
2380	request->file_priv = NULL;
 
 
2381	spin_unlock(&file_priv->mm.lock);
2382}
2383
2384static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2385				   const struct i915_hw_context *ctx)
2386{
2387	unsigned long elapsed;
 
2388
2389	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2390
2391	if (ctx->hang_stats.banned)
2392		return true;
2393
2394	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2395		if (!i915_gem_context_is_default(ctx)) {
2396			DRM_DEBUG("context hanging too fast, banning!\n");
2397			return true;
2398		} else if (dev_priv->gpu_error.stop_rings == 0) {
2399			DRM_ERROR("gpu hanging too fast, banning!\n");
2400			return true;
2401		}
2402	}
2403
2404	return false;
2405}
2406
2407static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2408				  struct i915_hw_context *ctx,
2409				  const bool guilty)
2410{
2411	struct i915_ctx_hang_stats *hs;
2412
2413	if (WARN_ON(!ctx))
2414		return;
2415
2416	hs = &ctx->hang_stats;
2417
2418	if (guilty) {
2419		hs->banned = i915_context_is_banned(dev_priv, ctx);
2420		hs->batch_active++;
2421		hs->guilty_ts = get_seconds();
2422	} else {
2423		hs->batch_pending++;
2424	}
2425}
2426
2427static void i915_gem_free_request(struct drm_i915_gem_request *request)
2428{
2429	list_del(&request->list);
2430	i915_gem_request_remove_from_client(request);
2431
2432	if (request->ctx)
2433		i915_gem_context_unreference(request->ctx);
2434
2435	kfree(request);
2436}
2437
2438struct drm_i915_gem_request *
2439i915_gem_find_active_request(struct intel_ring_buffer *ring)
2440{
2441	struct drm_i915_gem_request *request;
2442	u32 completed_seqno;
2443
2444	completed_seqno = ring->get_seqno(ring, false);
2445
2446	list_for_each_entry(request, &ring->request_list, list) {
2447		if (i915_seqno_passed(completed_seqno, request->seqno))
2448			continue;
2449
2450		return request;
2451	}
2452
2453	return NULL;
2454}
2455
2456static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2457				       struct intel_ring_buffer *ring)
2458{
2459	struct drm_i915_gem_request *request;
2460	bool ring_hung;
2461
2462	request = i915_gem_find_active_request(ring);
2463
2464	if (request == NULL)
2465		return;
2466
2467	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2468
2469	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2470
2471	list_for_each_entry_continue(request, &ring->request_list, list)
2472		i915_set_reset_status(dev_priv, request->ctx, false);
2473}
2474
2475static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2476					struct intel_ring_buffer *ring)
2477{
2478	while (!list_empty(&ring->active_list)) {
2479		struct drm_i915_gem_object *obj;
2480
2481		obj = list_first_entry(&ring->active_list,
2482				       struct drm_i915_gem_object,
2483				       ring_list);
2484
 
 
2485		i915_gem_object_move_to_inactive(obj);
2486	}
2487
2488	/*
2489	 * We must free the requests after all the corresponding objects have
2490	 * been moved off active lists. Which is the same order as the normal
2491	 * retire_requests function does. This is important if object hold
2492	 * implicit references on things like e.g. ppgtt address spaces through
2493	 * the request.
2494	 */
2495	while (!list_empty(&ring->request_list)) {
2496		struct drm_i915_gem_request *request;
2497
2498		request = list_first_entry(&ring->request_list,
2499					   struct drm_i915_gem_request,
2500					   list);
2501
2502		i915_gem_free_request(request);
2503	}
2504}
2505
2506void i915_gem_restore_fences(struct drm_device *dev)
2507{
2508	struct drm_i915_private *dev_priv = dev->dev_private;
2509	int i;
2510
2511	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2512		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
 
2513
2514		/*
2515		 * Commit delayed tiling changes if we have an object still
2516		 * attached to the fence, otherwise just clear the fence.
2517		 */
2518		if (reg->obj) {
2519			i915_gem_object_update_fence(reg->obj, reg,
2520						     reg->obj->tiling_mode);
2521		} else {
2522			i915_gem_write_fence(dev, i, NULL);
2523		}
 
2524	}
2525}
2526
2527void i915_gem_reset(struct drm_device *dev)
2528{
2529	struct drm_i915_private *dev_priv = dev->dev_private;
2530	struct intel_ring_buffer *ring;
2531	int i;
2532
2533	/*
2534	 * Before we free the objects from the requests, we need to inspect
2535	 * them for finding the guilty party. As the requests only borrow
2536	 * their reference to the objects, the inspection must be done first.
 
 
2537	 */
2538	for_each_ring(ring, dev_priv, i)
2539		i915_gem_reset_ring_status(dev_priv, ring);
 
 
2540
2541	for_each_ring(ring, dev_priv, i)
2542		i915_gem_reset_ring_cleanup(dev_priv, ring);
 
 
2543
2544	i915_gem_cleanup_ringbuffer(dev);
2545
2546	i915_gem_context_reset(dev);
 
 
 
 
 
 
2547
2548	i915_gem_restore_fences(dev);
 
2549}
2550
2551/**
2552 * This function clears the request list as sequence numbers are passed.
2553 */
2554static void
2555i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2556{
2557	uint32_t seqno;
 
2558
2559	if (list_empty(&ring->request_list))
2560		return;
2561
2562	WARN_ON(i915_verify_lists(ring->dev));
2563
2564	seqno = ring->get_seqno(ring, true);
2565
2566	/* Move any buffers on the active list that are no longer referenced
2567	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2568	 * before we free the context associated with the requests.
2569	 */
2570	while (!list_empty(&ring->active_list)) {
2571		struct drm_i915_gem_object *obj;
2572
2573		obj = list_first_entry(&ring->active_list,
2574				      struct drm_i915_gem_object,
2575				      ring_list);
2576
2577		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2578			break;
2579
2580		i915_gem_object_move_to_inactive(obj);
2581	}
2582
 
 
 
2583
2584	while (!list_empty(&ring->request_list)) {
2585		struct drm_i915_gem_request *request;
2586
2587		request = list_first_entry(&ring->request_list,
2588					   struct drm_i915_gem_request,
2589					   list);
2590
2591		if (!i915_seqno_passed(seqno, request->seqno))
2592			break;
2593
2594		trace_i915_gem_request_retire(ring, request->seqno);
2595		/* We know the GPU must have read the request to have
2596		 * sent us the seqno + interrupt, so use the position
2597		 * of tail of the request to update the last known position
2598		 * of the GPU head.
2599		 */
2600		ring->last_retired_head = request->tail;
2601
2602		i915_gem_free_request(request);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2603	}
2604
2605	if (unlikely(ring->trace_irq_seqno &&
2606		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2607		ring->irq_put(ring);
2608		ring->trace_irq_seqno = 0;
2609	}
2610
2611	WARN_ON(i915_verify_lists(ring->dev));
2612}
2613
2614bool
2615i915_gem_retire_requests(struct drm_device *dev)
2616{
2617	struct drm_i915_private *dev_priv = dev->dev_private;
2618	struct intel_ring_buffer *ring;
2619	bool idle = true;
2620	int i;
2621
2622	for_each_ring(ring, dev_priv, i) {
2623		i915_gem_retire_requests_ring(ring);
2624		idle &= list_empty(&ring->request_list);
 
 
 
 
 
 
 
 
 
2625	}
2626
2627	if (idle)
2628		mod_delayed_work(dev_priv->wq,
2629				   &dev_priv->mm.idle_work,
2630				   msecs_to_jiffies(100));
2631
2632	return idle;
2633}
2634
2635static void
2636i915_gem_retire_work_handler(struct work_struct *work)
2637{
2638	struct drm_i915_private *dev_priv =
2639		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2640	struct drm_device *dev = dev_priv->dev;
2641	bool idle;
 
 
 
 
 
2642
2643	/* Come back later if the device is busy... */
2644	idle = false;
2645	if (mutex_trylock(&dev->struct_mutex)) {
2646		idle = i915_gem_retire_requests(dev);
2647		mutex_unlock(&dev->struct_mutex);
2648	}
2649	if (!idle)
2650		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2651				   round_jiffies_up_relative(HZ));
2652}
2653
2654static void
2655i915_gem_idle_work_handler(struct work_struct *work)
2656{
2657	struct drm_i915_private *dev_priv =
2658		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2659
2660	intel_mark_idle(dev_priv->dev);
2661}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2662
2663/**
2664 * Ensures that an object will eventually get non-busy by flushing any required
2665 * write domains, emitting any outstanding lazy request and retiring and
2666 * completed requests.
2667 */
2668static int
2669i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2670{
2671	int ret;
2672
2673	if (obj->active) {
2674		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2675		if (ret)
2676			return ret;
2677
2678		i915_gem_retire_requests_ring(obj->ring);
2679	}
2680
2681	return 0;
2682}
2683
2684/**
2685 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2686 * @DRM_IOCTL_ARGS: standard ioctl arguments
2687 *
2688 * Returns 0 if successful, else an error is returned with the remaining time in
2689 * the timeout parameter.
2690 *  -ETIME: object is still busy after timeout
2691 *  -ERESTARTSYS: signal interrupted the wait
2692 *  -ENONENT: object doesn't exist
2693 * Also possible, but rare:
2694 *  -EAGAIN: GPU wedged
2695 *  -ENOMEM: damn
2696 *  -ENODEV: Internal IRQ fail
2697 *  -E?: The add request failed
2698 *
2699 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2700 * non-zero timeout parameter the wait ioctl will wait for the given number of
2701 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2702 * without holding struct_mutex the object may become re-busied before this
2703 * function completes. A similar but shorter * race condition exists in the busy
2704 * ioctl
2705 */
2706int
2707i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
 
2708{
2709	struct drm_i915_private *dev_priv = dev->dev_private;
2710	struct drm_i915_gem_wait *args = data;
2711	struct drm_i915_gem_object *obj;
2712	struct intel_ring_buffer *ring = NULL;
2713	struct timespec timeout_stack, *timeout = NULL;
2714	unsigned reset_counter;
2715	u32 seqno = 0;
2716	int ret = 0;
2717
2718	if (args->timeout_ns >= 0) {
2719		timeout_stack = ns_to_timespec(args->timeout_ns);
2720		timeout = &timeout_stack;
2721	}
 
 
2722
2723	ret = i915_mutex_lock_interruptible(dev);
2724	if (ret)
2725		return ret;
 
2726
2727	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2728	if (&obj->base == NULL) {
2729		mutex_unlock(&dev->struct_mutex);
2730		return -ENOENT;
2731	}
2732
2733	/* Need to make sure the object gets inactive eventually. */
2734	ret = i915_gem_object_flush_active(obj);
2735	if (ret)
2736		goto out;
 
 
 
 
 
 
 
 
2737
2738	if (obj->active) {
2739		seqno = obj->last_read_seqno;
2740		ring = obj->ring;
2741	}
2742
2743	if (seqno == 0)
2744		 goto out;
 
 
 
 
 
 
 
 
 
 
 
2745
2746	/* Do this after OLR check to make sure we make forward progress polling
2747	 * on this IOCTL with a 0 timeout (like busy ioctl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2748	 */
2749	if (!args->timeout_ns) {
2750		ret = -ETIME;
2751		goto out;
2752	}
2753
2754	drm_gem_object_unreference(&obj->base);
2755	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2756	mutex_unlock(&dev->struct_mutex);
2757
2758	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2759	if (timeout)
2760		args->timeout_ns = timespec_to_ns(timeout);
2761	return ret;
2762
2763out:
2764	drm_gem_object_unreference(&obj->base);
2765	mutex_unlock(&dev->struct_mutex);
2766	return ret;
2767}
2768
2769/**
2770 * i915_gem_object_sync - sync an object to a ring.
2771 *
2772 * @obj: object which may be in use on another ring.
2773 * @to: ring we wish to use the object on. May be NULL.
2774 *
2775 * This code is meant to abstract object synchronization with the GPU.
2776 * Calling with NULL implies synchronizing the object with the CPU
2777 * rather than a particular GPU ring.
2778 *
2779 * Returns 0 if successful, else propagates up the lower layer error.
2780 */
2781int
2782i915_gem_object_sync(struct drm_i915_gem_object *obj,
2783		     struct intel_ring_buffer *to)
2784{
2785	struct intel_ring_buffer *from = obj->ring;
2786	u32 seqno;
2787	int ret, idx;
2788
2789	if (from == NULL || to == from)
2790		return 0;
 
 
2791
2792	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2793		return i915_gem_object_wait_rendering(obj, false);
 
 
 
 
 
 
2794
2795	idx = intel_ring_sync_index(from, to);
2796
2797	seqno = obj->last_read_seqno;
2798	if (seqno <= from->sync_seqno[idx])
2799		return 0;
2800
2801	ret = i915_gem_check_olr(obj->ring, seqno);
2802	if (ret)
2803		return ret;
2804
2805	trace_i915_gem_ring_sync_to(from, to, seqno);
2806	ret = to->sync_to(to, from, seqno);
2807	if (!ret)
2808		/* We use last_read_seqno because sync_to()
2809		 * might have just caused seqno wrap under
2810		 * the radar.
2811		 */
2812		from->sync_seqno[idx] = obj->last_read_seqno;
2813
2814	return ret;
2815}
2816
2817static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2818{
2819	u32 old_write_domain, old_read_domains;
2820
 
 
 
2821	/* Force a pagefault for domain tracking on next user access */
2822	i915_gem_release_mmap(obj);
2823
2824	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2825		return;
2826
2827	/* Wait for any direct GTT access to complete */
2828	mb();
2829
2830	old_read_domains = obj->base.read_domains;
2831	old_write_domain = obj->base.write_domain;
2832
2833	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2834	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2835
2836	trace_i915_gem_object_change_domain(obj,
2837					    old_read_domains,
2838					    old_write_domain);
2839}
2840
2841int i915_vma_unbind(struct i915_vma *vma)
 
 
 
 
2842{
2843	struct drm_i915_gem_object *obj = vma->obj;
2844	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2845	int ret;
2846
2847	if (list_empty(&vma->vma_link))
2848		return 0;
2849
2850	if (!drm_mm_node_allocated(&vma->node)) {
2851		i915_gem_vma_destroy(vma);
2852		return 0;
2853	}
2854
2855	if (vma->pin_count)
2856		return -EBUSY;
2857
2858	BUG_ON(obj->pages == NULL);
2859
2860	ret = i915_gem_object_finish_gpu(obj);
2861	if (ret)
2862		return ret;
2863	/* Continue on if we fail due to EIO, the GPU is hung so we
2864	 * should be safe and we need to cleanup or else we might
2865	 * cause memory corruption through use-after-free.
2866	 */
2867
2868	i915_gem_object_finish_gtt(obj);
2869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2870	/* release the fence reg _after_ flushing */
2871	ret = i915_gem_object_put_fence(obj);
2872	if (ret)
2873		return ret;
2874
2875	trace_i915_vma_unbind(vma);
 
 
 
2876
2877	vma->unbind_vma(vma);
 
 
 
 
 
 
 
 
 
 
2878
2879	i915_gem_gtt_finish_object(obj);
 
2880
2881	list_del_init(&vma->mm_list);
2882	/* Avoid an unnecessary call to unbind on rebind. */
2883	if (i915_is_ggtt(vma->vm))
2884		obj->map_and_fenceable = true;
 
 
 
 
 
2885
2886	drm_mm_remove_node(&vma->node);
2887	i915_gem_vma_destroy(vma);
2888
2889	/* Since the unbound list is global, only move to that list if
2890	 * no more VMAs exist. */
2891	if (list_empty(&obj->vma_list))
2892		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2893
2894	/* And finally now the object is completely decoupled from this vma,
2895	 * we can drop its hold on the backing storage and allow it to be
2896	 * reaped by the shrinker.
2897	 */
2898	i915_gem_object_unpin_pages(obj);
2899
2900	return 0;
2901}
2902
2903int i915_gpu_idle(struct drm_device *dev)
2904{
2905	struct drm_i915_private *dev_priv = dev->dev_private;
2906	struct intel_ring_buffer *ring;
2907	int ret, i;
2908
2909	/* Flush everything onto the inactive list. */
2910	for_each_ring(ring, dev_priv, i) {
2911		ret = i915_switch_context(ring, ring->default_context);
2912		if (ret)
2913			return ret;
2914
2915		ret = intel_ring_idle(ring);
 
 
2916		if (ret)
2917			return ret;
2918	}
2919
2920	return 0;
2921}
2922
2923static void i965_write_fence_reg(struct drm_device *dev, int reg,
2924				 struct drm_i915_gem_object *obj)
2925{
2926	struct drm_i915_private *dev_priv = dev->dev_private;
2927	int fence_reg;
2928	int fence_pitch_shift;
 
 
 
 
 
2929
2930	if (INTEL_INFO(dev)->gen >= 6) {
2931		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2932		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2933	} else {
2934		fence_reg = FENCE_REG_965_0;
2935		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2936	}
2937
2938	fence_reg += reg * 8;
 
2939
2940	/* To w/a incoherency with non-atomic 64-bit register updates,
2941	 * we split the 64-bit update into two 32-bit writes. In order
2942	 * for a partial fence not to be evaluated between writes, we
2943	 * precede the update with write to turn off the fence register,
2944	 * and only enable the fence as the last step.
2945	 *
2946	 * For extra levels of paranoia, we make sure each step lands
2947	 * before applying the next step.
2948	 */
2949	I915_WRITE(fence_reg, 0);
2950	POSTING_READ(fence_reg);
 
 
 
 
 
 
 
2951
2952	if (obj) {
2953		u32 size = i915_gem_obj_ggtt_size(obj);
2954		uint64_t val;
2955
2956		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2957				 0xfffff000) << 32;
2958		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2959		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2960		if (obj->tiling_mode == I915_TILING_Y)
2961			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2962		val |= I965_FENCE_REG_VALID;
2963
2964		I915_WRITE(fence_reg + 4, val >> 32);
2965		POSTING_READ(fence_reg + 4);
 
 
 
 
 
 
 
2966
2967		I915_WRITE(fence_reg + 0, val);
2968		POSTING_READ(fence_reg);
2969	} else {
2970		I915_WRITE(fence_reg + 4, 0);
2971		POSTING_READ(fence_reg + 4);
2972	}
2973}
2974
2975static void i915_write_fence_reg(struct drm_device *dev, int reg,
2976				 struct drm_i915_gem_object *obj)
2977{
2978	struct drm_i915_private *dev_priv = dev->dev_private;
2979	u32 val;
 
 
 
 
 
 
 
 
 
 
 
2980
2981	if (obj) {
2982		u32 size = i915_gem_obj_ggtt_size(obj);
2983		int pitch_val;
2984		int tile_width;
2985
2986		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2987		     (size & -size) != size ||
2988		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2989		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2990		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2991
2992		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2993			tile_width = 128;
2994		else
2995			tile_width = 512;
 
 
 
 
 
 
 
 
2996
2997		/* Note: pitch better be a power of two tile widths */
2998		pitch_val = obj->stride / tile_width;
2999		pitch_val = ffs(pitch_val) - 1;
3000
3001		val = i915_gem_obj_ggtt_offset(obj);
3002		if (obj->tiling_mode == I915_TILING_Y)
3003			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3004		val |= I915_FENCE_SIZE_BITS(size);
3005		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3006		val |= I830_FENCE_REG_VALID;
3007	} else
3008		val = 0;
 
 
 
3009
3010	if (reg < 8)
3011		reg = FENCE_REG_830_0 + reg * 4;
3012	else
3013		reg = FENCE_REG_945_8 + (reg - 8) * 4;
3014
3015	I915_WRITE(reg, val);
3016	POSTING_READ(reg);
3017}
 
 
 
 
 
 
 
 
 
 
 
 
 
3018
3019static void i830_write_fence_reg(struct drm_device *dev, int reg,
3020				struct drm_i915_gem_object *obj)
3021{
3022	struct drm_i915_private *dev_priv = dev->dev_private;
3023	uint32_t val;
3024
3025	if (obj) {
3026		u32 size = i915_gem_obj_ggtt_size(obj);
3027		uint32_t pitch_val;
3028
3029		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3030		     (size & -size) != size ||
3031		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3032		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3033		     i915_gem_obj_ggtt_offset(obj), size);
3034
3035		pitch_val = obj->stride / 128;
3036		pitch_val = ffs(pitch_val) - 1;
3037
3038		val = i915_gem_obj_ggtt_offset(obj);
3039		if (obj->tiling_mode == I915_TILING_Y)
3040			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3041		val |= I830_FENCE_SIZE_BITS(size);
3042		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3043		val |= I830_FENCE_REG_VALID;
3044	} else
3045		val = 0;
3046
3047	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3048	POSTING_READ(FENCE_REG_830_0 + reg * 4);
3049}
3050
3051inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
 
3052{
3053	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3054}
 
 
 
 
 
 
 
 
 
 
 
3055
3056static void i915_gem_write_fence(struct drm_device *dev, int reg,
3057				 struct drm_i915_gem_object *obj)
3058{
3059	struct drm_i915_private *dev_priv = dev->dev_private;
3060
3061	/* Ensure that all CPU reads are completed before installing a fence
3062	 * and all writes before removing the fence.
3063	 */
3064	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3065		mb();
 
3066
3067	WARN(obj && (!obj->stride || !obj->tiling_mode),
3068	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3069	     obj->stride, obj->tiling_mode);
 
3070
3071	switch (INTEL_INFO(dev)->gen) {
3072	case 8:
3073	case 7:
3074	case 6:
3075	case 5:
3076	case 4: i965_write_fence_reg(dev, reg, obj); break;
3077	case 3: i915_write_fence_reg(dev, reg, obj); break;
3078	case 2: i830_write_fence_reg(dev, reg, obj); break;
3079	default: BUG();
3080	}
3081
3082	/* And similarly be paranoid that no direct access to this region
3083	 * is reordered to before the fence is installed.
3084	 */
3085	if (i915_gem_object_needs_mb(obj))
3086		mb();
3087}
3088
3089static inline int fence_number(struct drm_i915_private *dev_priv,
3090			       struct drm_i915_fence_reg *fence)
3091{
3092	return fence - dev_priv->fence_regs;
3093}
3094
3095static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3096					 struct drm_i915_fence_reg *fence,
3097					 bool enable)
3098{
3099	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3100	int reg = fence_number(dev_priv, fence);
3101
3102	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
 
 
 
 
 
 
3103
3104	if (enable) {
3105		obj->fence_reg = reg;
3106		fence->obj = obj;
3107		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3108	} else {
3109		obj->fence_reg = I915_FENCE_REG_NONE;
3110		fence->obj = NULL;
3111		list_del_init(&fence->lru_list);
3112	}
3113	obj->fence_dirty = false;
3114}
3115
3116static int
3117i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3118{
3119	if (obj->last_fenced_seqno) {
3120		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3121		if (ret)
3122			return ret;
 
3123
3124		obj->last_fenced_seqno = 0;
 
3125	}
3126
3127	obj->fenced_gpu_access = false;
 
 
 
 
 
3128	return 0;
3129}
3130
3131int
3132i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3133{
3134	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3135	struct drm_i915_fence_reg *fence;
3136	int ret;
3137
3138	ret = i915_gem_object_wait_fence(obj);
 
 
 
3139	if (ret)
3140		return ret;
3141
3142	if (obj->fence_reg == I915_FENCE_REG_NONE)
3143		return 0;
 
 
3144
3145	fence = &dev_priv->fence_regs[obj->fence_reg];
3146
3147	i915_gem_object_fence_lost(obj);
3148	i915_gem_object_update_fence(obj, fence, false);
3149
3150	return 0;
3151}
3152
3153static struct drm_i915_fence_reg *
3154i915_find_fence_reg(struct drm_device *dev)
 
3155{
3156	struct drm_i915_private *dev_priv = dev->dev_private;
3157	struct drm_i915_fence_reg *reg, *avail;
3158	int i;
3159
3160	/* First try to find a free reg */
3161	avail = NULL;
3162	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3163		reg = &dev_priv->fence_regs[i];
3164		if (!reg->obj)
3165			return reg;
3166
3167		if (!reg->pin_count)
3168			avail = reg;
3169	}
3170
3171	if (avail == NULL)
3172		goto deadlock;
3173
3174	/* None available, try to steal one or wait for a user to finish */
 
3175	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3176		if (reg->pin_count)
3177			continue;
3178
3179		return reg;
 
 
 
 
 
 
 
 
3180	}
3181
3182deadlock:
3183	/* Wait for completion of pending flips which consume fences */
3184	if (intel_has_pending_fb_unpin(dev))
3185		return ERR_PTR(-EAGAIN);
3186
3187	return ERR_PTR(-EDEADLK);
3188}
3189
3190/**
3191 * i915_gem_object_get_fence - set up fencing for an object
3192 * @obj: object to map through a fence reg
 
 
3193 *
3194 * When mapping objects through the GTT, userspace wants to be able to write
3195 * to them without having to worry about swizzling if the object is tiled.
 
3196 * This function walks the fence regs looking for a free one for @obj,
3197 * stealing one if it can't find any.
3198 *
3199 * It then sets up the reg based on the object's properties: address, pitch
3200 * and tiling format.
3201 *
3202 * For an untiled surface, this removes any existing fence.
3203 */
3204int
3205i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
 
3206{
3207	struct drm_device *dev = obj->base.dev;
3208	struct drm_i915_private *dev_priv = dev->dev_private;
3209	bool enable = obj->tiling_mode != I915_TILING_NONE;
3210	struct drm_i915_fence_reg *reg;
3211	int ret;
3212
3213	/* Have we updated the tiling parameters upon the object and so
3214	 * will need to serialise the write to the associated fence register?
3215	 */
3216	if (obj->fence_dirty) {
3217		ret = i915_gem_object_wait_fence(obj);
3218		if (ret)
3219			return ret;
3220	}
3221
3222	/* Just update our place in the LRU if our fence is getting reused. */
3223	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3224		reg = &dev_priv->fence_regs[obj->fence_reg];
3225		if (!obj->fence_dirty) {
3226			list_move_tail(&reg->lru_list,
3227				       &dev_priv->mm.fence_list);
3228			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3229		}
3230	} else if (enable) {
3231		reg = i915_find_fence_reg(dev);
3232		if (IS_ERR(reg))
3233			return PTR_ERR(reg);
3234
3235		if (reg->obj) {
3236			struct drm_i915_gem_object *old = reg->obj;
 
 
 
 
 
 
 
3237
3238			ret = i915_gem_object_wait_fence(old);
 
 
 
 
3239			if (ret)
3240				return ret;
 
3241
3242			i915_gem_object_fence_lost(old);
3243		}
3244	} else
3245		return 0;
 
3246
3247	i915_gem_object_update_fence(obj, reg, enable);
 
 
3248
3249	return 0;
3250}
 
3251
3252static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3253				     struct drm_mm_node *gtt_space,
3254				     unsigned long cache_level)
3255{
3256	struct drm_mm_node *other;
3257
3258	/* On non-LLC machines we have to be careful when putting differing
3259	 * types of snoopable memory together to avoid the prefetcher
3260	 * crossing memory domains and dying.
3261	 */
3262	if (HAS_LLC(dev))
3263		return true;
3264
3265	if (!drm_mm_node_allocated(gtt_space))
3266		return true;
3267
3268	if (list_empty(&gtt_space->node_list))
3269		return true;
 
 
 
3270
3271	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3272	if (other->allocated && !other->hole_follows && other->color != cache_level)
3273		return false;
3274
3275	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3276	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3277		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3278
3279	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3280}
3281
3282static void i915_gem_verify_gtt(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
3283{
3284#if WATCH_GTT
3285	struct drm_i915_private *dev_priv = dev->dev_private;
3286	struct drm_i915_gem_object *obj;
3287	int err = 0;
3288
3289	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3290		if (obj->gtt_space == NULL) {
3291			printk(KERN_ERR "object found on GTT list with no space reserved\n");
3292			err++;
3293			continue;
3294		}
 
 
 
 
 
 
 
 
 
3295
3296		if (obj->cache_level != obj->gtt_space->color) {
3297			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3298			       i915_gem_obj_ggtt_offset(obj),
3299			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3300			       obj->cache_level,
3301			       obj->gtt_space->color);
3302			err++;
3303			continue;
3304		}
3305
3306		if (!i915_gem_valid_gtt_space(dev,
3307					      obj->gtt_space,
3308					      obj->cache_level)) {
3309			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3310			       i915_gem_obj_ggtt_offset(obj),
3311			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3312			       obj->cache_level);
3313			err++;
3314			continue;
3315		}
3316	}
3317
3318	WARN_ON(err);
3319#endif
 
3320}
3321
3322/**
3323 * Finds free space in the GTT aperture and binds the object there.
3324 */
3325static struct i915_vma *
3326i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3327			   struct i915_address_space *vm,
3328			   unsigned alignment,
3329			   uint64_t flags)
3330{
3331	struct drm_device *dev = obj->base.dev;
3332	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
3333	u32 size, fence_size, fence_alignment, unfenced_alignment;
3334	unsigned long start =
3335		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3336	unsigned long end =
3337		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3338	struct i915_vma *vma;
3339	int ret;
3340
 
 
 
 
 
3341	fence_size = i915_gem_get_gtt_size(dev,
3342					   obj->base.size,
3343					   obj->tiling_mode);
3344	fence_alignment = i915_gem_get_gtt_alignment(dev,
3345						     obj->base.size,
3346						     obj->tiling_mode, true);
3347	unfenced_alignment =
3348		i915_gem_get_gtt_alignment(dev,
3349					   obj->base.size,
3350					   obj->tiling_mode, false);
3351
3352	if (alignment == 0)
3353		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3354						unfenced_alignment;
3355	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3356		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3357		return ERR_PTR(-EINVAL);
3358	}
3359
3360	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3361
3362	/* If the object is bigger than the entire aperture, reject it early
3363	 * before evicting everything in a vain attempt to find space.
3364	 */
3365	if (obj->base.size > end) {
3366		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3367			  obj->base.size,
3368			  flags & PIN_MAPPABLE ? "mappable" : "total",
3369			  end);
3370		return ERR_PTR(-E2BIG);
3371	}
3372
3373	ret = i915_gem_object_get_pages(obj);
3374	if (ret)
3375		return ERR_PTR(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3376
3377	i915_gem_object_pin_pages(obj);
 
3378
3379	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3380	if (IS_ERR(vma))
3381		goto err_unpin;
3382
3383search_free:
3384	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3385						  size, alignment,
3386						  obj->cache_level,
3387						  start, end,
3388						  DRM_MM_SEARCH_DEFAULT,
3389						  DRM_MM_CREATE_DEFAULT);
3390	if (ret) {
3391		ret = i915_gem_evict_something(dev, vm, size, alignment,
3392					       obj->cache_level,
3393					       start, end,
3394					       flags);
3395		if (ret == 0)
 
 
 
 
 
 
 
 
 
 
 
3396			goto search_free;
 
3397
3398		goto err_free_vma;
3399	}
3400	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3401					      obj->cache_level))) {
3402		ret = -EINVAL;
3403		goto err_remove_node;
3404	}
3405
3406	ret = i915_gem_gtt_prepare_object(obj);
3407	if (ret)
3408		goto err_remove_node;
 
 
3409
3410	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3411	list_add_tail(&vma->mm_list, &vm->inactive_list);
3412
3413	if (i915_is_ggtt(vm)) {
3414		bool mappable, fenceable;
3415
3416		fenceable = (vma->node.size == fence_size &&
3417			     (vma->node.start & (fence_alignment - 1)) == 0);
3418
3419		mappable = (vma->node.start + obj->base.size <=
3420			    dev_priv->gtt.mappable_end);
 
 
 
 
3421
3422		obj->map_and_fenceable = mappable && fenceable;
3423	}
3424
3425	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
 
 
3426
3427	trace_i915_vma_bind(vma, flags);
3428	vma->bind_vma(vma, obj->cache_level,
3429		      flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3430
3431	i915_gem_verify_gtt(dev);
3432	return vma;
3433
3434err_remove_node:
3435	drm_mm_remove_node(&vma->node);
3436err_free_vma:
3437	i915_gem_vma_destroy(vma);
3438	vma = ERR_PTR(ret);
3439err_unpin:
3440	i915_gem_object_unpin_pages(obj);
3441	return vma;
3442}
3443
3444bool
3445i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3446			bool force)
3447{
3448	/* If we don't have a page list set up, then we're not pinned
3449	 * to GPU, and we can ignore the cache flush because it'll happen
3450	 * again at bind time.
3451	 */
3452	if (obj->pages == NULL)
3453		return false;
3454
3455	/*
3456	 * Stolen memory is always coherent with the GPU as it is explicitly
3457	 * marked as wc by the system, or the system is cache-coherent.
3458	 */
3459	if (obj->stolen)
3460		return false;
3461
3462	/* If the GPU is snooping the contents of the CPU cache,
3463	 * we do not need to manually clear the CPU cache lines.  However,
3464	 * the caches are only snooped when the render cache is
3465	 * flushed/invalidated.  As we always have to emit invalidations
3466	 * and flushes when moving into and out of the RENDER domain, correct
3467	 * snooping behaviour occurs naturally as the result of our domain
3468	 * tracking.
3469	 */
3470	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3471		return false;
3472
3473	trace_i915_gem_object_clflush(obj);
3474	drm_clflush_sg(obj->pages);
3475
3476	return true;
 
 
 
 
 
 
 
 
 
 
 
3477}
3478
3479/** Flushes the GTT write domain for the object if it's dirty. */
3480static void
3481i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3482{
3483	uint32_t old_write_domain;
3484
3485	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3486		return;
3487
3488	/* No actual flushing is required for the GTT write domain.  Writes
3489	 * to it immediately go to main memory as far as we know, so there's
3490	 * no chipset flush.  It also doesn't land in render cache.
3491	 *
3492	 * However, we do have to enforce the order so that all writes through
3493	 * the GTT land before any writes to the device, such as updates to
3494	 * the GATT itself.
3495	 */
3496	wmb();
3497
3498	old_write_domain = obj->base.write_domain;
3499	obj->base.write_domain = 0;
3500
3501	trace_i915_gem_object_change_domain(obj,
3502					    obj->base.read_domains,
3503					    old_write_domain);
3504}
3505
3506/** Flushes the CPU write domain for the object if it's dirty. */
3507static void
3508i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3509				       bool force)
3510{
3511	uint32_t old_write_domain;
3512
3513	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3514		return;
3515
3516	if (i915_gem_clflush_object(obj, force))
3517		i915_gem_chipset_flush(obj->base.dev);
3518
3519	old_write_domain = obj->base.write_domain;
3520	obj->base.write_domain = 0;
3521
3522	trace_i915_gem_object_change_domain(obj,
3523					    obj->base.read_domains,
3524					    old_write_domain);
3525}
3526
3527/**
3528 * Moves a single object to the GTT read, and possibly write domain.
3529 *
3530 * This function returns when the move is complete, including waiting on
3531 * flushes to occur.
3532 */
3533int
3534i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3535{
3536	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3537	uint32_t old_write_domain, old_read_domains;
3538	int ret;
3539
3540	/* Not valid to be called on unbound objects. */
3541	if (!i915_gem_obj_bound_any(obj))
3542		return -EINVAL;
3543
3544	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3545		return 0;
3546
3547	ret = i915_gem_object_wait_rendering(obj, !write);
3548	if (ret)
3549		return ret;
3550
3551	i915_gem_object_flush_cpu_write_domain(obj, false);
 
 
 
 
3552
3553	/* Serialise direct access to this object with the barriers for
3554	 * coherent writes from the GPU, by effectively invalidating the
3555	 * GTT domain upon first access.
3556	 */
3557	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3558		mb();
3559
3560	old_write_domain = obj->base.write_domain;
3561	old_read_domains = obj->base.read_domains;
3562
3563	/* It should now be out of any other write domains, and we can update
3564	 * the domain values for our changes.
3565	 */
3566	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3567	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3568	if (write) {
3569		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3570		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3571		obj->dirty = 1;
3572	}
3573
3574	trace_i915_gem_object_change_domain(obj,
3575					    old_read_domains,
3576					    old_write_domain);
3577
3578	/* And bump the LRU for this access */
3579	if (i915_gem_object_is_inactive(obj)) {
3580		struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3581		if (vma)
3582			list_move_tail(&vma->mm_list,
3583				       &dev_priv->gtt.base.inactive_list);
3584
3585	}
3586
3587	return 0;
3588}
3589
3590int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3591				    enum i915_cache_level cache_level)
3592{
3593	struct drm_device *dev = obj->base.dev;
3594	struct i915_vma *vma, *next;
3595	int ret;
3596
3597	if (obj->cache_level == cache_level)
3598		return 0;
3599
3600	if (i915_gem_obj_is_pinned(obj)) {
3601		DRM_DEBUG("can not change the cache level of pinned objects\n");
3602		return -EBUSY;
3603	}
3604
3605	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3606		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3607			ret = i915_vma_unbind(vma);
3608			if (ret)
3609				return ret;
3610		}
3611	}
3612
3613	if (i915_gem_obj_bound_any(obj)) {
3614		ret = i915_gem_object_finish_gpu(obj);
3615		if (ret)
3616			return ret;
3617
3618		i915_gem_object_finish_gtt(obj);
3619
3620		/* Before SandyBridge, you could not use tiling or fence
3621		 * registers with snooped memory, so relinquish any fences
3622		 * currently pointing to our region in the aperture.
3623		 */
3624		if (INTEL_INFO(dev)->gen < 6) {
3625			ret = i915_gem_object_put_fence(obj);
3626			if (ret)
3627				return ret;
3628		}
3629
3630		list_for_each_entry(vma, &obj->vma_list, vma_link)
3631			if (drm_mm_node_allocated(&vma->node))
3632				vma->bind_vma(vma, cache_level,
3633					      obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3634	}
3635
3636	list_for_each_entry(vma, &obj->vma_list, vma_link)
3637		vma->node.color = cache_level;
3638	obj->cache_level = cache_level;
3639
3640	if (cpu_write_needs_clflush(obj)) {
3641		u32 old_read_domains, old_write_domain;
3642
3643		/* If we're coming from LLC cached, then we haven't
3644		 * actually been tracking whether the data is in the
3645		 * CPU cache or not, since we only allow one bit set
3646		 * in obj->write_domain and have been skipping the clflushes.
3647		 * Just set it to the CPU cache for now.
3648		 */
3649		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
 
3650
3651		old_read_domains = obj->base.read_domains;
3652		old_write_domain = obj->base.write_domain;
3653
3654		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3655		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3656
3657		trace_i915_gem_object_change_domain(obj,
3658						    old_read_domains,
3659						    old_write_domain);
3660	}
3661
3662	i915_gem_verify_gtt(dev);
3663	return 0;
3664}
3665
3666int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3667			       struct drm_file *file)
3668{
3669	struct drm_i915_gem_caching *args = data;
3670	struct drm_i915_gem_object *obj;
3671	int ret;
3672
3673	ret = i915_mutex_lock_interruptible(dev);
3674	if (ret)
3675		return ret;
3676
3677	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3678	if (&obj->base == NULL) {
3679		ret = -ENOENT;
3680		goto unlock;
3681	}
3682
3683	switch (obj->cache_level) {
3684	case I915_CACHE_LLC:
3685	case I915_CACHE_L3_LLC:
3686		args->caching = I915_CACHING_CACHED;
3687		break;
3688
3689	case I915_CACHE_WT:
3690		args->caching = I915_CACHING_DISPLAY;
3691		break;
3692
3693	default:
3694		args->caching = I915_CACHING_NONE;
3695		break;
3696	}
3697
3698	drm_gem_object_unreference(&obj->base);
3699unlock:
3700	mutex_unlock(&dev->struct_mutex);
3701	return ret;
3702}
3703
3704int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3705			       struct drm_file *file)
3706{
3707	struct drm_i915_gem_caching *args = data;
3708	struct drm_i915_gem_object *obj;
3709	enum i915_cache_level level;
3710	int ret;
3711
3712	switch (args->caching) {
3713	case I915_CACHING_NONE:
3714		level = I915_CACHE_NONE;
3715		break;
3716	case I915_CACHING_CACHED:
3717		level = I915_CACHE_LLC;
3718		break;
3719	case I915_CACHING_DISPLAY:
3720		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3721		break;
3722	default:
3723		return -EINVAL;
3724	}
3725
3726	ret = i915_mutex_lock_interruptible(dev);
3727	if (ret)
3728		return ret;
3729
3730	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3731	if (&obj->base == NULL) {
3732		ret = -ENOENT;
3733		goto unlock;
3734	}
3735
3736	ret = i915_gem_object_set_cache_level(obj, level);
3737
3738	drm_gem_object_unreference(&obj->base);
3739unlock:
3740	mutex_unlock(&dev->struct_mutex);
3741	return ret;
3742}
3743
3744static bool is_pin_display(struct drm_i915_gem_object *obj)
3745{
3746	/* There are 3 sources that pin objects:
3747	 *   1. The display engine (scanouts, sprites, cursors);
3748	 *   2. Reservations for execbuffer;
3749	 *   3. The user.
3750	 *
3751	 * We can ignore reservations as we hold the struct_mutex and
3752	 * are only called outside of the reservation path.  The user
3753	 * can only increment pin_count once, and so if after
3754	 * subtracting the potential reference by the user, any pin_count
3755	 * remains, it must be due to another use by the display engine.
3756	 */
3757	return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
3758}
3759
3760/*
3761 * Prepare buffer for display plane (scanout, cursors, etc).
3762 * Can be called from an uninterruptible phase (modesetting) and allows
3763 * any flushes to be pipelined (for pageflips).
 
 
 
 
 
3764 */
3765int
3766i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3767				     u32 alignment,
3768				     struct intel_ring_buffer *pipelined)
3769{
3770	u32 old_read_domains, old_write_domain;
3771	int ret;
3772
 
 
 
 
3773	if (pipelined != obj->ring) {
3774		ret = i915_gem_object_sync(obj, pipelined);
3775		if (ret)
3776			return ret;
3777	}
3778
3779	/* Mark the pin_display early so that we account for the
3780	 * display coherency whilst setting up the cache domains.
3781	 */
3782	obj->pin_display = true;
3783
3784	/* The display engine is not coherent with the LLC cache on gen6.  As
3785	 * a result, we make sure that the pinning that is about to occur is
3786	 * done with uncached PTEs. This is lowest common denominator for all
3787	 * chipsets.
3788	 *
3789	 * However for gen6+, we could do better by using the GFDT bit instead
3790	 * of uncaching, which would allow us to flush all the LLC-cached data
3791	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3792	 */
3793	ret = i915_gem_object_set_cache_level(obj,
3794					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3795	if (ret)
3796		goto err_unpin_display;
3797
3798	/* As the user may map the buffer once pinned in the display plane
3799	 * (e.g. libkms for the bootup splash), we have to ensure that we
3800	 * always use map_and_fenceable for all scanout buffers.
3801	 */
3802	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3803	if (ret)
3804		goto err_unpin_display;
3805
3806	i915_gem_object_flush_cpu_write_domain(obj, true);
3807
3808	old_write_domain = obj->base.write_domain;
3809	old_read_domains = obj->base.read_domains;
3810
3811	/* It should now be out of any other write domains, and we can update
3812	 * the domain values for our changes.
3813	 */
3814	obj->base.write_domain = 0;
3815	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3816
3817	trace_i915_gem_object_change_domain(obj,
3818					    old_read_domains,
3819					    old_write_domain);
3820
3821	return 0;
3822
3823err_unpin_display:
3824	obj->pin_display = is_pin_display(obj);
3825	return ret;
3826}
3827
3828void
3829i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3830{
3831	i915_gem_object_ggtt_unpin(obj);
3832	obj->pin_display = is_pin_display(obj);
3833}
3834
3835int
3836i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3837{
3838	int ret;
3839
3840	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3841		return 0;
3842
3843	ret = i915_gem_object_wait_rendering(obj, false);
3844	if (ret)
3845		return ret;
 
 
3846
3847	/* Ensure that we invalidate the GPU's caches and TLBs. */
3848	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3849	return 0;
 
3850}
3851
3852/**
3853 * Moves a single object to the CPU read, and possibly write domain.
3854 *
3855 * This function returns when the move is complete, including waiting on
3856 * flushes to occur.
3857 */
3858int
3859i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3860{
3861	uint32_t old_write_domain, old_read_domains;
3862	int ret;
3863
3864	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3865		return 0;
3866
3867	ret = i915_gem_object_wait_rendering(obj, !write);
 
 
 
 
3868	if (ret)
3869		return ret;
3870
3871	i915_gem_object_flush_gtt_write_domain(obj);
3872
 
 
 
 
 
3873	old_write_domain = obj->base.write_domain;
3874	old_read_domains = obj->base.read_domains;
3875
3876	/* Flush the CPU cache if it's still invalid. */
3877	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3878		i915_gem_clflush_object(obj, false);
3879
3880		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3881	}
3882
3883	/* It should now be out of any other write domains, and we can update
3884	 * the domain values for our changes.
3885	 */
3886	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3887
3888	/* If we're writing through the CPU, then the GPU read domains will
3889	 * need to be invalidated at next use.
3890	 */
3891	if (write) {
3892		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3893		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3894	}
3895
3896	trace_i915_gem_object_change_domain(obj,
3897					    old_read_domains,
3898					    old_write_domain);
3899
3900	return 0;
3901}
3902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3903/* Throttle our rendering by waiting until the ring has completed our requests
3904 * emitted over 20 msec ago.
3905 *
3906 * Note that if we were to use the current jiffies each time around the loop,
3907 * we wouldn't escape the function with any frames outstanding if the time to
3908 * render a frame was over 20ms.
3909 *
3910 * This should get us reasonable parallelism between CPU and GPU but also
3911 * relatively low latency when blocking on a particular request to finish.
3912 */
3913static int
3914i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3915{
3916	struct drm_i915_private *dev_priv = dev->dev_private;
3917	struct drm_i915_file_private *file_priv = file->driver_priv;
3918	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3919	struct drm_i915_gem_request *request;
3920	struct intel_ring_buffer *ring = NULL;
3921	unsigned reset_counter;
3922	u32 seqno = 0;
3923	int ret;
3924
3925	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3926	if (ret)
3927		return ret;
3928
3929	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3930	if (ret)
3931		return ret;
3932
3933	spin_lock(&file_priv->mm.lock);
3934	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3935		if (time_after_eq(request->emitted_jiffies, recent_enough))
3936			break;
3937
3938		ring = request->ring;
3939		seqno = request->seqno;
3940	}
3941	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3942	spin_unlock(&file_priv->mm.lock);
3943
3944	if (seqno == 0)
3945		return 0;
3946
3947	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3948	if (ret == 0)
3949		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3950
3951	return ret;
3952}
3953
3954static bool
3955i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
3956{
3957	struct drm_i915_gem_object *obj = vma->obj;
3958
3959	if (alignment &&
3960	    vma->node.start & (alignment - 1))
3961		return true;
3962
3963	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3964		return true;
3965
3966	if (flags & PIN_OFFSET_BIAS &&
3967	    vma->node.start < (flags & PIN_OFFSET_MASK))
3968		return true;
3969
3970	return false;
3971}
3972
3973int
3974i915_gem_object_pin(struct drm_i915_gem_object *obj,
3975		    struct i915_address_space *vm,
3976		    uint32_t alignment,
3977		    uint64_t flags)
3978{
3979	struct i915_vma *vma;
 
3980	int ret;
3981
3982	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3983		return -EINVAL;
3984
3985	vma = i915_gem_obj_to_vma(obj, vm);
3986	if (vma) {
3987		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3988			return -EBUSY;
3989
3990		if (i915_vma_misplaced(vma, alignment, flags)) {
3991			WARN(vma->pin_count,
3992			     "bo is already pinned with incorrect alignment:"
3993			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3994			     " obj->map_and_fenceable=%d\n",
3995			     i915_gem_obj_offset(obj, vm), alignment,
3996			     !!(flags & PIN_MAPPABLE),
3997			     obj->map_and_fenceable);
3998			ret = i915_vma_unbind(vma);
3999			if (ret)
4000				return ret;
4001
4002			vma = NULL;
4003		}
4004	}
4005
4006	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4007		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4008		if (IS_ERR(vma))
4009			return PTR_ERR(vma);
 
4010	}
4011
4012	if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4013		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4014
4015	vma->pin_count++;
4016	if (flags & PIN_MAPPABLE)
4017		obj->pin_mappable |= true;
4018
 
4019	return 0;
4020}
4021
4022void
4023i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4024{
4025	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
 
4026
4027	BUG_ON(!vma);
4028	BUG_ON(vma->pin_count == 0);
4029	BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4030
4031	if (--vma->pin_count == 0)
 
 
 
4032		obj->pin_mappable = false;
 
 
4033}
4034
4035int
4036i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4037		   struct drm_file *file)
4038{
4039	struct drm_i915_gem_pin *args = data;
4040	struct drm_i915_gem_object *obj;
4041	int ret;
4042
4043	if (INTEL_INFO(dev)->gen >= 6)
4044		return -ENODEV;
4045
4046	ret = i915_mutex_lock_interruptible(dev);
4047	if (ret)
4048		return ret;
4049
4050	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4051	if (&obj->base == NULL) {
4052		ret = -ENOENT;
4053		goto unlock;
4054	}
4055
4056	if (obj->madv != I915_MADV_WILLNEED) {
4057		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4058		ret = -EFAULT;
4059		goto out;
4060	}
4061
4062	if (obj->pin_filp != NULL && obj->pin_filp != file) {
4063		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4064			  args->handle);
4065		ret = -EINVAL;
4066		goto out;
4067	}
4068
4069	if (obj->user_pin_count == ULONG_MAX) {
4070		ret = -EBUSY;
4071		goto out;
4072	}
4073
4074	if (obj->user_pin_count == 0) {
4075		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4076		if (ret)
4077			goto out;
4078	}
4079
4080	obj->user_pin_count++;
4081	obj->pin_filp = file;
4082
4083	args->offset = i915_gem_obj_ggtt_offset(obj);
 
4084out:
4085	drm_gem_object_unreference(&obj->base);
4086unlock:
4087	mutex_unlock(&dev->struct_mutex);
4088	return ret;
4089}
4090
4091int
4092i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4093		     struct drm_file *file)
4094{
4095	struct drm_i915_gem_pin *args = data;
4096	struct drm_i915_gem_object *obj;
4097	int ret;
4098
4099	ret = i915_mutex_lock_interruptible(dev);
4100	if (ret)
4101		return ret;
4102
4103	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4104	if (&obj->base == NULL) {
4105		ret = -ENOENT;
4106		goto unlock;
4107	}
4108
4109	if (obj->pin_filp != file) {
4110		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4111			  args->handle);
4112		ret = -EINVAL;
4113		goto out;
4114	}
4115	obj->user_pin_count--;
4116	if (obj->user_pin_count == 0) {
4117		obj->pin_filp = NULL;
4118		i915_gem_object_ggtt_unpin(obj);
4119	}
4120
4121out:
4122	drm_gem_object_unreference(&obj->base);
4123unlock:
4124	mutex_unlock(&dev->struct_mutex);
4125	return ret;
4126}
4127
4128int
4129i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4130		    struct drm_file *file)
4131{
4132	struct drm_i915_gem_busy *args = data;
4133	struct drm_i915_gem_object *obj;
4134	int ret;
4135
4136	ret = i915_mutex_lock_interruptible(dev);
4137	if (ret)
4138		return ret;
4139
4140	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4141	if (&obj->base == NULL) {
4142		ret = -ENOENT;
4143		goto unlock;
4144	}
4145
4146	/* Count all active objects as busy, even if they are currently not used
4147	 * by the gpu. Users of this interface expect objects to eventually
4148	 * become non-busy without any further actions, therefore emit any
4149	 * necessary flushes here.
4150	 */
4151	ret = i915_gem_object_flush_active(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4152
4153	args->busy = obj->active;
4154	if (obj->ring) {
4155		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4156		args->busy |= intel_ring_flag(obj->ring) << 16;
 
 
 
 
4157	}
4158
4159	drm_gem_object_unreference(&obj->base);
4160unlock:
4161	mutex_unlock(&dev->struct_mutex);
4162	return ret;
4163}
4164
4165int
4166i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4167			struct drm_file *file_priv)
4168{
4169	return i915_gem_ring_throttle(dev, file_priv);
4170}
4171
4172int
4173i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4174		       struct drm_file *file_priv)
4175{
4176	struct drm_i915_gem_madvise *args = data;
4177	struct drm_i915_gem_object *obj;
4178	int ret;
4179
4180	switch (args->madv) {
4181	case I915_MADV_DONTNEED:
4182	case I915_MADV_WILLNEED:
4183	    break;
4184	default:
4185	    return -EINVAL;
4186	}
4187
4188	ret = i915_mutex_lock_interruptible(dev);
4189	if (ret)
4190		return ret;
4191
4192	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4193	if (&obj->base == NULL) {
4194		ret = -ENOENT;
4195		goto unlock;
4196	}
4197
4198	if (i915_gem_obj_is_pinned(obj)) {
4199		ret = -EINVAL;
4200		goto out;
4201	}
4202
4203	if (obj->madv != __I915_MADV_PURGED)
4204		obj->madv = args->madv;
4205
4206	/* if the object is no longer attached, discard its backing storage */
4207	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
 
4208		i915_gem_object_truncate(obj);
4209
4210	args->retained = obj->madv != __I915_MADV_PURGED;
4211
4212out:
4213	drm_gem_object_unreference(&obj->base);
4214unlock:
4215	mutex_unlock(&dev->struct_mutex);
4216	return ret;
4217}
4218
4219void i915_gem_object_init(struct drm_i915_gem_object *obj,
4220			  const struct drm_i915_gem_object_ops *ops)
4221{
4222	INIT_LIST_HEAD(&obj->global_list);
4223	INIT_LIST_HEAD(&obj->ring_list);
4224	INIT_LIST_HEAD(&obj->obj_exec_link);
4225	INIT_LIST_HEAD(&obj->vma_list);
4226
4227	obj->ops = ops;
4228
4229	obj->fence_reg = I915_FENCE_REG_NONE;
4230	obj->madv = I915_MADV_WILLNEED;
4231	/* Avoid an unnecessary call to unbind on the first bind. */
4232	obj->map_and_fenceable = true;
4233
4234	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4235}
4236
4237static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4238	.get_pages = i915_gem_object_get_pages_gtt,
4239	.put_pages = i915_gem_object_put_pages_gtt,
4240};
4241
4242struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4243						  size_t size)
4244{
 
4245	struct drm_i915_gem_object *obj;
4246	struct address_space *mapping;
4247	gfp_t mask;
4248
4249	obj = i915_gem_object_alloc(dev);
4250	if (obj == NULL)
4251		return NULL;
4252
4253	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4254		i915_gem_object_free(obj);
4255		return NULL;
4256	}
4257
4258	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4259	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4260		/* 965gm cannot relocate objects above 4GiB. */
4261		mask &= ~__GFP_HIGHMEM;
4262		mask |= __GFP_DMA32;
4263	}
4264
4265	mapping = file_inode(obj->base.filp)->i_mapping;
4266	mapping_set_gfp_mask(mapping, mask);
4267
4268	i915_gem_object_init(obj, &i915_gem_object_ops);
4269
4270	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4271	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4272
4273	if (HAS_LLC(dev)) {
4274		/* On some devices, we can have the GPU use the LLC (the CPU
4275		 * cache) for about a 10% performance improvement
4276		 * compared to uncached.  Graphics requests other than
4277		 * display scanout are coherent with the CPU in
4278		 * accessing this cache.  This means in this mode we
4279		 * don't need to clflush on the CPU side, and on the
4280		 * GPU side we only need to flush internal caches to
4281		 * get data visible to the CPU.
4282		 *
4283		 * However, we maintain the display planes as UC, and so
4284		 * need to rebind when first used as such.
4285		 */
4286		obj->cache_level = I915_CACHE_LLC;
4287	} else
4288		obj->cache_level = I915_CACHE_NONE;
4289
4290	trace_i915_gem_object_create(obj);
 
 
 
 
 
 
 
 
 
4291
4292	return obj;
4293}
4294
4295void i915_gem_free_object(struct drm_gem_object *gem_obj)
4296{
4297	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4298	struct drm_device *dev = obj->base.dev;
4299	struct drm_i915_private *dev_priv = dev->dev_private;
4300	struct i915_vma *vma, *next;
4301
4302	intel_runtime_pm_get(dev_priv);
 
4303
4304	trace_i915_gem_object_destroy(obj);
 
 
 
 
4305
4306	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4307		int ret;
4308
4309		vma->pin_count = 0;
4310		ret = i915_vma_unbind(vma);
4311		if (WARN_ON(ret == -ERESTARTSYS)) {
4312			bool was_interruptible;
4313
4314			was_interruptible = dev_priv->mm.interruptible;
4315			dev_priv->mm.interruptible = false;
4316
4317			WARN_ON(i915_vma_unbind(vma));
4318
4319			dev_priv->mm.interruptible = was_interruptible;
4320		}
4321	}
4322
4323	i915_gem_object_detach_phys(obj);
4324
4325	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4326	 * before progressing. */
4327	if (obj->stolen)
4328		i915_gem_object_unpin_pages(obj);
4329
4330	if (WARN_ON(obj->pages_pin_count))
4331		obj->pages_pin_count = 0;
4332	i915_gem_object_put_pages(obj);
4333	i915_gem_object_free_mmap_offset(obj);
4334	i915_gem_object_release_stolen(obj);
4335
4336	BUG_ON(obj->pages);
4337
4338	if (obj->base.import_attach)
4339		drm_prime_gem_destroy(&obj->base, NULL);
4340
4341	drm_gem_object_release(&obj->base);
4342	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4343
 
4344	kfree(obj->bit_17);
4345	i915_gem_object_free(obj);
4346
4347	intel_runtime_pm_put(dev_priv);
4348}
4349
4350struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4351				     struct i915_address_space *vm)
4352{
4353	struct i915_vma *vma;
4354	list_for_each_entry(vma, &obj->vma_list, vma_link)
4355		if (vma->vm == vm)
4356			return vma;
4357
4358	return NULL;
4359}
4360
4361void i915_gem_vma_destroy(struct i915_vma *vma)
4362{
4363	WARN_ON(vma->node.allocated);
4364
4365	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4366	if (!list_empty(&vma->exec_list))
4367		return;
4368
4369	list_del(&vma->vma_link);
 
4370
4371	kfree(vma);
4372}
4373
4374int
4375i915_gem_suspend(struct drm_device *dev)
4376{
4377	struct drm_i915_private *dev_priv = dev->dev_private;
4378	int ret = 0;
4379
4380	mutex_lock(&dev->struct_mutex);
4381	if (dev_priv->ums.mm_suspended)
4382		goto err;
 
 
 
4383
4384	ret = i915_gpu_idle(dev);
4385	if (ret)
4386		goto err;
4387
4388	i915_gem_retire_requests(dev);
4389
4390	/* Under UMS, be paranoid and evict. */
4391	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4392		i915_gem_evict_everything(dev);
 
 
 
 
 
4393
4394	i915_kernel_lost_context(dev);
4395	i915_gem_cleanup_ringbuffer(dev);
4396
4397	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4398	 * We need to replace this with a semaphore, or something.
4399	 * And not confound ums.mm_suspended!
4400	 */
4401	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4402							     DRIVER_MODESET);
 
 
 
 
4403	mutex_unlock(&dev->struct_mutex);
4404
4405	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4406	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4407	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4408
4409	return 0;
4410
4411err:
4412	mutex_unlock(&dev->struct_mutex);
4413	return ret;
4414}
4415
4416int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4417{
4418	struct drm_device *dev = ring->dev;
4419	struct drm_i915_private *dev_priv = dev->dev_private;
4420	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4421	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4422	int i, ret;
4423
4424	if (!HAS_L3_DPF(dev) || !remap_info)
4425		return 0;
4426
4427	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4428	if (ret)
4429		return ret;
4430
4431	/*
4432	 * Note: We do not worry about the concurrent register cacheline hang
4433	 * here because no other code should access these registers other than
4434	 * at initialization time.
4435	 */
4436	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4437		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4438		intel_ring_emit(ring, reg_base + i);
4439		intel_ring_emit(ring, remap_info[i/4]);
4440	}
4441
4442	intel_ring_advance(ring);
4443
4444	return ret;
4445}
4446
4447void i915_gem_init_swizzling(struct drm_device *dev)
4448{
4449	struct drm_i915_private *dev_priv = dev->dev_private;
4450
4451	if (INTEL_INFO(dev)->gen < 5 ||
4452	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4453		return;
4454
4455	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4456				 DISP_TILE_SURFACE_SWIZZLING);
4457
4458	if (IS_GEN5(dev))
4459		return;
4460
4461	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4462	if (IS_GEN6(dev))
4463		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4464	else if (IS_GEN7(dev))
4465		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4466	else if (IS_GEN8(dev))
4467		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4468	else
4469		BUG();
4470}
4471
4472static bool
4473intel_enable_blt(struct drm_device *dev)
4474{
4475	if (!HAS_BLT(dev))
4476		return false;
4477
4478	/* The blitter was dysfunctional on early prototypes */
4479	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4480		DRM_INFO("BLT not supported on this pre-production hardware;"
4481			 " graphics performance will be degraded.\n");
4482		return false;
4483	}
4484
4485	return true;
4486}
4487
4488static int i915_gem_init_rings(struct drm_device *dev)
4489{
4490	struct drm_i915_private *dev_priv = dev->dev_private;
4491	int ret;
4492
4493	ret = intel_init_render_ring_buffer(dev);
4494	if (ret)
4495		return ret;
4496
4497	if (HAS_BSD(dev)) {
4498		ret = intel_init_bsd_ring_buffer(dev);
4499		if (ret)
4500			goto cleanup_render_ring;
4501	}
4502
4503	if (intel_enable_blt(dev)) {
4504		ret = intel_init_blt_ring_buffer(dev);
4505		if (ret)
4506			goto cleanup_bsd_ring;
4507	}
4508
4509	if (HAS_VEBOX(dev)) {
4510		ret = intel_init_vebox_ring_buffer(dev);
4511		if (ret)
4512			goto cleanup_blt_ring;
4513	}
4514
4515
4516	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4517	if (ret)
4518		goto cleanup_vebox_ring;
4519
4520	return 0;
4521
4522cleanup_vebox_ring:
4523	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4524cleanup_blt_ring:
4525	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4526cleanup_bsd_ring:
4527	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4528cleanup_render_ring:
4529	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4530
4531	return ret;
4532}
4533
4534int
4535i915_gem_init_hw(struct drm_device *dev)
4536{
4537	struct drm_i915_private *dev_priv = dev->dev_private;
4538	int ret, i;
4539
4540	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4541		return -EIO;
4542
4543	if (dev_priv->ellc_size)
4544		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4545
4546	if (IS_HASWELL(dev))
4547		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4548			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4549
4550	if (HAS_PCH_NOP(dev)) {
4551		if (IS_IVYBRIDGE(dev)) {
4552			u32 temp = I915_READ(GEN7_MSG_CTL);
4553			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4554			I915_WRITE(GEN7_MSG_CTL, temp);
4555		} else if (INTEL_INFO(dev)->gen >= 7) {
4556			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4557			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4558			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4559		}
4560	}
4561
4562	i915_gem_init_swizzling(dev);
4563
4564	ret = i915_gem_init_rings(dev);
4565	if (ret)
4566		return ret;
4567
4568	for (i = 0; i < NUM_L3_SLICES(dev); i++)
4569		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4570
4571	/*
4572	 * XXX: Contexts should only be initialized once. Doing a switch to the
4573	 * default context switch however is something we'd like to do after
4574	 * reset or thaw (the latter may not actually be necessary for HW, but
4575	 * goes with our code better). Context switching requires rings (for
4576	 * the do_switch), but before enabling PPGTT. So don't move this.
4577	 */
4578	ret = i915_gem_context_enable(dev_priv);
4579	if (ret) {
4580		DRM_ERROR("Context enable failed %d\n", ret);
4581		goto err_out;
4582	}
4583
4584	return 0;
4585
4586err_out:
4587	i915_gem_cleanup_ringbuffer(dev);
4588	return ret;
4589}
4590
4591int i915_gem_init(struct drm_device *dev)
4592{
4593	struct drm_i915_private *dev_priv = dev->dev_private;
4594	int ret;
4595
4596	mutex_lock(&dev->struct_mutex);
4597
4598	if (IS_VALLEYVIEW(dev)) {
4599		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4600		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4601		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4602			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4603	}
4604
4605	i915_gem_init_global_gtt(dev);
4606
4607	ret = i915_gem_context_init(dev);
4608	if (ret) {
4609		mutex_unlock(&dev->struct_mutex);
4610		return ret;
4611	}
4612
4613	ret = i915_gem_init_hw(dev);
4614	mutex_unlock(&dev->struct_mutex);
4615	if (ret) {
4616		WARN_ON(dev_priv->mm.aliasing_ppgtt);
4617		i915_gem_context_fini(dev);
4618		drm_mm_takedown(&dev_priv->gtt.base.mm);
4619		return ret;
4620	}
4621
4622	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4623	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4624		dev_priv->dri1.allow_batchbuffer = 1;
4625	return 0;
4626}
4627
4628void
4629i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4630{
4631	struct drm_i915_private *dev_priv = dev->dev_private;
4632	struct intel_ring_buffer *ring;
4633	int i;
4634
4635	for_each_ring(ring, dev_priv, i)
4636		intel_cleanup_ring_buffer(ring);
4637}
4638
4639int
4640i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4641		       struct drm_file *file_priv)
4642{
4643	struct drm_i915_private *dev_priv = dev->dev_private;
4644	int ret;
4645
4646	if (drm_core_check_feature(dev, DRIVER_MODESET))
4647		return 0;
4648
4649	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4650		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4651		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4652	}
4653
4654	mutex_lock(&dev->struct_mutex);
4655	dev_priv->ums.mm_suspended = 0;
4656
4657	ret = i915_gem_init_hw(dev);
4658	if (ret != 0) {
4659		mutex_unlock(&dev->struct_mutex);
4660		return ret;
4661	}
4662
4663	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
 
 
 
 
 
 
4664	mutex_unlock(&dev->struct_mutex);
4665
4666	ret = drm_irq_install(dev);
4667	if (ret)
4668		goto cleanup_ringbuffer;
4669
4670	return 0;
4671
4672cleanup_ringbuffer:
4673	mutex_lock(&dev->struct_mutex);
4674	i915_gem_cleanup_ringbuffer(dev);
4675	dev_priv->ums.mm_suspended = 1;
4676	mutex_unlock(&dev->struct_mutex);
4677
4678	return ret;
4679}
4680
4681int
4682i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4683		       struct drm_file *file_priv)
4684{
4685	if (drm_core_check_feature(dev, DRIVER_MODESET))
4686		return 0;
4687
4688	drm_irq_uninstall(dev);
4689
4690	return i915_gem_suspend(dev);
4691}
4692
4693void
4694i915_gem_lastclose(struct drm_device *dev)
4695{
4696	int ret;
4697
4698	if (drm_core_check_feature(dev, DRIVER_MODESET))
4699		return;
4700
4701	ret = i915_gem_suspend(dev);
4702	if (ret)
4703		DRM_ERROR("failed to idle hardware: %d\n", ret);
4704}
4705
4706static void
4707init_ring_lists(struct intel_ring_buffer *ring)
4708{
4709	INIT_LIST_HEAD(&ring->active_list);
4710	INIT_LIST_HEAD(&ring->request_list);
4711}
4712
4713void i915_init_vm(struct drm_i915_private *dev_priv,
4714		  struct i915_address_space *vm)
4715{
4716	if (!i915_is_ggtt(vm))
4717		drm_mm_init(&vm->mm, vm->start, vm->total);
4718	vm->dev = dev_priv->dev;
4719	INIT_LIST_HEAD(&vm->active_list);
4720	INIT_LIST_HEAD(&vm->inactive_list);
4721	INIT_LIST_HEAD(&vm->global_link);
4722	list_add_tail(&vm->global_link, &dev_priv->vm_list);
4723}
4724
4725void
4726i915_gem_load(struct drm_device *dev)
4727{
4728	struct drm_i915_private *dev_priv = dev->dev_private;
4729	int i;
 
4730
4731	dev_priv->slab =
4732		kmem_cache_create("i915_gem_object",
4733				  sizeof(struct drm_i915_gem_object), 0,
4734				  SLAB_HWCACHE_ALIGN,
4735				  NULL);
4736
4737	INIT_LIST_HEAD(&dev_priv->vm_list);
4738	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4739
4740	INIT_LIST_HEAD(&dev_priv->context_list);
4741	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4742	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4743	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
 
 
4744	for (i = 0; i < I915_NUM_RINGS; i++)
4745		init_ring_lists(&dev_priv->ring[i]);
4746	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4747		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4748	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4749			  i915_gem_retire_work_handler);
4750	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4751			  i915_gem_idle_work_handler);
4752	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4753
4754	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4755	if (IS_GEN3(dev)) {
4756		I915_WRITE(MI_ARB_STATE,
4757			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
 
 
 
 
4758	}
4759
4760	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4761
4762	/* Old X drivers will take 0-2 for front, back, depth buffers */
4763	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4764		dev_priv->fence_reg_start = 3;
4765
4766	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4767		dev_priv->num_fence_regs = 32;
4768	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4769		dev_priv->num_fence_regs = 16;
4770	else
4771		dev_priv->num_fence_regs = 8;
4772
4773	/* Initialize fence registers to zero */
4774	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4775	i915_gem_restore_fences(dev);
 
4776
4777	i915_gem_detect_bit_6_swizzle(dev);
4778	init_waitqueue_head(&dev_priv->pending_flip_queue);
4779
4780	dev_priv->mm.interruptible = true;
4781
4782	dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4783	dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4784	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4785	register_shrinker(&dev_priv->mm.inactive_shrinker);
4786}
4787
4788void i915_gem_release(struct drm_device *dev, struct drm_file *file)
 
 
 
 
 
4789{
4790	struct drm_i915_file_private *file_priv = file->driver_priv;
 
 
 
 
 
4791
4792	cancel_delayed_work_sync(&file_priv->mm.idle_work);
 
 
4793
4794	/* Clean up our request list when the client is going away, so that
4795	 * later retire_requests won't dereference our soon-to-be-gone
4796	 * file_priv.
4797	 */
4798	spin_lock(&file_priv->mm.lock);
4799	while (!list_empty(&file_priv->mm.request_list)) {
4800		struct drm_i915_gem_request *request;
4801
4802		request = list_first_entry(&file_priv->mm.request_list,
4803					   struct drm_i915_gem_request,
4804					   client_list);
4805		list_del(&request->client_list);
4806		request->file_priv = NULL;
4807	}
4808	spin_unlock(&file_priv->mm.lock);
 
 
 
 
 
 
 
 
 
4809}
4810
4811static void
4812i915_gem_file_idle_work_handler(struct work_struct *work)
4813{
4814	struct drm_i915_file_private *file_priv =
4815		container_of(work, typeof(*file_priv), mm.idle_work.work);
 
 
 
 
 
 
 
 
4816
4817	atomic_set(&file_priv->rps_wait_boost, false);
 
 
 
 
 
4818}
4819
4820int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4821{
4822	struct drm_i915_file_private *file_priv;
4823	int ret;
4824
4825	DRM_DEBUG_DRIVER("\n");
 
 
4826
4827	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4828	if (!file_priv)
4829		return -ENOMEM;
 
 
 
 
4830
4831	file->driver_priv = file_priv;
4832	file_priv->dev_priv = dev->dev_private;
4833	file_priv->file = file;
4834
4835	spin_lock_init(&file_priv->mm.lock);
4836	INIT_LIST_HEAD(&file_priv->mm.request_list);
4837	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4838			  i915_gem_file_idle_work_handler);
4839
4840	ret = i915_gem_context_open(dev, file);
4841	if (ret)
4842		kfree(file_priv);
 
 
 
 
4843
4844	return ret;
4845}
4846
4847static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4848{
4849	if (!mutex_is_locked(mutex))
4850		return false;
 
 
4851
4852#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4853	return mutex->owner == task;
4854#else
4855	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4856	return false;
4857#endif
4858}
4859
4860static unsigned long
4861i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
 
 
 
4862{
4863	struct drm_i915_private *dev_priv =
4864		container_of(shrinker,
4865			     struct drm_i915_private,
4866			     mm.inactive_shrinker);
4867	struct drm_device *dev = dev_priv->dev;
4868	struct drm_i915_gem_object *obj;
4869	bool unlock = true;
4870	unsigned long count;
4871
4872	if (!mutex_trylock(&dev->struct_mutex)) {
4873		if (!mutex_is_locked_by(&dev->struct_mutex, current))
4874			return 0;
4875
4876		if (dev_priv->mm.shrinker_no_lock_stealing)
 
4877			return 0;
4878
4879		unlock = false;
4880	}
4881
4882	count = 0;
4883	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4884		if (obj->pages_pin_count == 0)
4885			count += obj->base.size >> PAGE_SHIFT;
4886
4887	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4888		if (obj->active)
4889			continue;
4890
4891		if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
4892			count += obj->base.size >> PAGE_SHIFT;
4893	}
4894
4895	if (unlock)
4896		mutex_unlock(&dev->struct_mutex);
 
4897
4898	return count;
4899}
4900
4901/* All the new VM stuff */
4902unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4903				  struct i915_address_space *vm)
4904{
4905	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4906	struct i915_vma *vma;
4907
4908	if (!dev_priv->mm.aliasing_ppgtt ||
4909	    vm == &dev_priv->mm.aliasing_ppgtt->base)
4910		vm = &dev_priv->gtt.base;
4911
4912	BUG_ON(list_empty(&o->vma_list));
4913	list_for_each_entry(vma, &o->vma_list, vma_link) {
4914		if (vma->vm == vm)
4915			return vma->node.start;
4916
 
 
4917	}
4918	return -1;
 
4919}
4920
4921bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4922			struct i915_address_space *vm)
 
 
 
4923{
4924	struct i915_vma *vma;
 
 
 
 
4925
4926	list_for_each_entry(vma, &o->vma_list, vma_link)
4927		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4928			return true;
 
 
 
 
 
 
 
4929
4930	return false;
 
4931}
4932
4933bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4934{
4935	struct i915_vma *vma;
4936
4937	list_for_each_entry(vma, &o->vma_list, vma_link)
4938		if (drm_mm_node_allocated(&vma->node))
4939			return true;
 
 
 
 
4940
4941	return false;
 
 
 
 
 
 
4942}
4943
4944unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4945				struct i915_address_space *vm)
4946{
4947	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4948	struct i915_vma *vma;
4949
4950	if (!dev_priv->mm.aliasing_ppgtt ||
4951	    vm == &dev_priv->mm.aliasing_ppgtt->base)
4952		vm = &dev_priv->gtt.base;
4953
4954	BUG_ON(list_empty(&o->vma_list));
4955
4956	list_for_each_entry(vma, &o->vma_list, vma_link)
4957		if (vma->vm == vm)
4958			return vma->node.size;
4959
4960	return 0;
4961}
4962
4963static unsigned long
4964i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
4965{
4966	struct drm_i915_private *dev_priv =
4967		container_of(shrinker,
4968			     struct drm_i915_private,
4969			     mm.inactive_shrinker);
4970	struct drm_device *dev = dev_priv->dev;
4971	unsigned long freed;
4972	bool unlock = true;
 
4973
4974	if (!mutex_trylock(&dev->struct_mutex)) {
4975		if (!mutex_is_locked_by(&dev->struct_mutex, current))
4976			return SHRINK_STOP;
4977
4978		if (dev_priv->mm.shrinker_no_lock_stealing)
4979			return SHRINK_STOP;
4980
4981		unlock = false;
 
 
 
 
 
4982	}
4983
4984	freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
4985	if (freed < sc->nr_to_scan)
4986		freed += __i915_gem_shrink(dev_priv,
4987					   sc->nr_to_scan - freed,
4988					   false);
4989	if (freed < sc->nr_to_scan)
4990		freed += i915_gem_shrink_all(dev_priv);
4991
4992	if (unlock)
4993		mutex_unlock(&dev->struct_mutex);
 
 
 
 
 
 
 
4994
4995	return freed;
4996}
 
 
 
 
 
 
 
 
 
4997
4998struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
4999{
5000	struct i915_vma *vma;
5001
5002	if (WARN_ON(list_empty(&obj->vma_list)))
5003		return NULL;
5004
5005	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5006	if (vma->vm != obj_to_ggtt(obj))
5007		return NULL;
5008
5009	return vma;
5010}