Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include "drmP.h"
  29#include "drm.h"
  30#include "i915_drm.h"
  31#include "i915_drv.h"
 
  32#include "i915_trace.h"
  33#include "intel_drv.h"
  34#include <linux/shmem_fs.h>
  35#include <linux/slab.h>
  36#include <linux/swap.h>
  37#include <linux/pci.h>
 
 
 
  38
  39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  42static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  43							  bool write);
  44static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  45								  uint64_t offset,
  46								  uint64_t size);
  47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  48static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  49						    unsigned alignment,
  50						    bool map_and_fenceable);
  51static void i915_gem_clear_fence_reg(struct drm_device *dev,
  52				     struct drm_i915_fence_reg *reg);
  53static int i915_gem_phys_pwrite(struct drm_device *dev,
  54				struct drm_i915_gem_object *obj,
  55				struct drm_i915_gem_pwrite *args,
  56				struct drm_file *file);
  57static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  58
  59static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  60				    struct shrink_control *sc);
 
 
 
 
 
 
 
 
 
 
 
  61
  62/* some bookkeeping */
  63static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  64				  size_t size)
  65{
 
  66	dev_priv->mm.object_count++;
  67	dev_priv->mm.object_memory += size;
 
  68}
  69
  70static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  71				     size_t size)
  72{
 
  73	dev_priv->mm.object_count--;
  74	dev_priv->mm.object_memory -= size;
 
  75}
  76
  77static int
  78i915_gem_wait_for_error(struct drm_device *dev)
  79{
  80	struct drm_i915_private *dev_priv = dev->dev_private;
  81	struct completion *x = &dev_priv->error_completion;
  82	unsigned long flags;
  83	int ret;
  84
  85	if (!atomic_read(&dev_priv->mm.wedged))
 
 
  86		return 0;
  87
  88	ret = wait_for_completion_interruptible(x);
  89	if (ret)
 
 
 
 
 
 
 
 
 
 
  90		return ret;
  91
  92	if (atomic_read(&dev_priv->mm.wedged)) {
  93		/* GPU is hung, bump the completion count to account for
  94		 * the token we just consumed so that we never hit zero and
  95		 * end up waiting upon a subsequent completion event that
  96		 * will never happen.
  97		 */
  98		spin_lock_irqsave(&x->wait.lock, flags);
  99		x->done++;
 100		spin_unlock_irqrestore(&x->wait.lock, flags);
 101	}
 
 
 102	return 0;
 103}
 104
 105int i915_mutex_lock_interruptible(struct drm_device *dev)
 106{
 
 107	int ret;
 108
 109	ret = i915_gem_wait_for_error(dev);
 110	if (ret)
 111		return ret;
 112
 113	ret = mutex_lock_interruptible(&dev->struct_mutex);
 114	if (ret)
 115		return ret;
 116
 117	WARN_ON(i915_verify_lists(dev));
 118	return 0;
 119}
 120
 121static inline bool
 122i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
 
 123{
 124	return obj->gtt_space && !obj->active && obj->pin_count == 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125}
 126
 127void i915_gem_do_init(struct drm_device *dev,
 128		      unsigned long start,
 129		      unsigned long mappable_end,
 130		      unsigned long end)
 131{
 132	drm_i915_private_t *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 133
 134	drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 135
 136	dev_priv->mm.gtt_start = start;
 137	dev_priv->mm.gtt_mappable_end = mappable_end;
 138	dev_priv->mm.gtt_end = end;
 139	dev_priv->mm.gtt_total = end - start;
 140	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
 
 
 
 
 
 
 
 141
 142	/* Take over this portion of the GTT */
 143	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144}
 145
 146int
 147i915_gem_init_ioctl(struct drm_device *dev, void *data,
 148		    struct drm_file *file)
 149{
 150	struct drm_i915_gem_init *args = data;
 
 
 
 
 
 151
 152	if (args->gtt_start >= args->gtt_end ||
 153	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
 
 
 
 
 
 154		return -EINVAL;
 155
 156	mutex_lock(&dev->struct_mutex);
 157	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
 158	mutex_unlock(&dev->struct_mutex);
 159
 160	return 0;
 
 
 
 
 
 
 
 
 161}
 162
 163int
 164i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 165			    struct drm_file *file)
 
 166{
 167	struct drm_i915_private *dev_priv = dev->dev_private;
 168	struct drm_i915_gem_get_aperture *args = data;
 169	struct drm_i915_gem_object *obj;
 170	size_t pinned;
 171
 172	if (!(dev->driver->driver_features & DRIVER_GEM))
 173		return -ENODEV;
 
 
 
 
 174
 175	pinned = 0;
 176	mutex_lock(&dev->struct_mutex);
 177	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
 178		pinned += obj->gtt_space->size;
 179	mutex_unlock(&dev->struct_mutex);
 180
 181	args->aper_size = dev_priv->mm.gtt_total;
 182	args->aper_available_size = args->aper_size -pinned;
 
 
 
 
 
 
 
 
 
 
 183
 184	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185}
 186
 187static int
 188i915_gem_create(struct drm_file *file,
 189		struct drm_device *dev,
 190		uint64_t size,
 191		uint32_t *handle_p)
 192{
 193	struct drm_i915_gem_object *obj;
 194	int ret;
 195	u32 handle;
 196
 197	size = roundup(size, PAGE_SIZE);
 
 
 198
 199	/* Allocate the new object */
 200	obj = i915_gem_alloc_object(dev, size);
 201	if (obj == NULL)
 202		return -ENOMEM;
 203
 204	ret = drm_gem_handle_create(file, &obj->base, &handle);
 205	if (ret) {
 206		drm_gem_object_release(&obj->base);
 207		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
 208		kfree(obj);
 209		return ret;
 210	}
 211
 212	/* drop reference from allocate - handle holds it now */
 213	drm_gem_object_unreference(&obj->base);
 214	trace_i915_gem_object_create(obj);
 
 215
 216	*handle_p = handle;
 217	return 0;
 218}
 219
 220int
 221i915_gem_dumb_create(struct drm_file *file,
 222		     struct drm_device *dev,
 223		     struct drm_mode_create_dumb *args)
 224{
 225	/* have to work out size/pitch and return them */
 226	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
 227	args->size = args->pitch * args->height;
 228	return i915_gem_create(file, dev,
 229			       args->size, &args->handle);
 230}
 231
 232int i915_gem_dumb_destroy(struct drm_file *file,
 233			  struct drm_device *dev,
 234			  uint32_t handle)
 235{
 236	return drm_gem_handle_delete(file, handle);
 237}
 238
 239/**
 240 * Creates a new mm object and returns a handle to it.
 241 */
 242int
 243i915_gem_create_ioctl(struct drm_device *dev, void *data,
 244		      struct drm_file *file)
 245{
 246	struct drm_i915_gem_create *args = data;
 
 247	return i915_gem_create(file, dev,
 248			       args->size, &args->handle);
 249}
 250
 251static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
 
 
 
 252{
 253	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
 254
 255	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
 256		obj->tiling_mode != I915_TILING_NONE;
 257}
 258
 259static inline void
 260slow_shmem_copy(struct page *dst_page,
 261		int dst_offset,
 262		struct page *src_page,
 263		int src_offset,
 264		int length)
 265{
 266	char *dst_vaddr, *src_vaddr;
 267
 268	dst_vaddr = kmap(dst_page);
 269	src_vaddr = kmap(src_page);
 
 
 
 270
 271	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
 
 
 
 272
 273	kunmap(src_page);
 274	kunmap(dst_page);
 275}
 276
 277static inline void
 278slow_shmem_bit17_copy(struct page *gpu_page,
 279		      int gpu_offset,
 280		      struct page *cpu_page,
 281		      int cpu_offset,
 282		      int length,
 283		      int is_read)
 284{
 285	char *gpu_vaddr, *cpu_vaddr;
 286
 287	/* Use the unswizzled path if this page isn't affected. */
 288	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
 289		if (is_read)
 290			return slow_shmem_copy(cpu_page, cpu_offset,
 291					       gpu_page, gpu_offset, length);
 292		else
 293			return slow_shmem_copy(gpu_page, gpu_offset,
 294					       cpu_page, cpu_offset, length);
 295	}
 296
 297	gpu_vaddr = kmap(gpu_page);
 298	cpu_vaddr = kmap(cpu_page);
 299
 300	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
 301	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
 302	 */
 303	while (length > 0) {
 304		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 305		int this_length = min(cacheline_end - gpu_offset, length);
 306		int swizzled_gpu_offset = gpu_offset ^ 64;
 307
 308		if (is_read) {
 309			memcpy(cpu_vaddr + cpu_offset,
 310			       gpu_vaddr + swizzled_gpu_offset,
 311			       this_length);
 312		} else {
 313			memcpy(gpu_vaddr + swizzled_gpu_offset,
 314			       cpu_vaddr + cpu_offset,
 315			       this_length);
 316		}
 317		cpu_offset += this_length;
 318		gpu_offset += this_length;
 319		length -= this_length;
 320	}
 321
 322	kunmap(cpu_page);
 323	kunmap(gpu_page);
 324}
 325
 326/**
 327 * This is the fast shmem pread path, which attempts to copy_from_user directly
 328 * from the backing pages of the object to the user's address space.  On a
 329 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 330 */
 331static int
 332i915_gem_shmem_pread_fast(struct drm_device *dev,
 333			  struct drm_i915_gem_object *obj,
 334			  struct drm_i915_gem_pread *args,
 335			  struct drm_file *file)
 336{
 337	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 338	ssize_t remain;
 339	loff_t offset;
 340	char __user *user_data;
 341	int page_offset, page_length;
 342
 343	user_data = (char __user *) (uintptr_t) args->data_ptr;
 344	remain = args->size;
 345
 346	offset = args->offset;
 
 347
 348	while (remain > 0) {
 349		struct page *page;
 350		char *vaddr;
 351		int ret;
 
 
 
 
 
 
 
 352
 353		/* Operation in this page
 354		 *
 355		 * page_offset = offset within page
 356		 * page_length = bytes to copy for this page
 357		 */
 358		page_offset = offset_in_page(offset);
 359		page_length = remain;
 360		if ((page_offset + remain) > PAGE_SIZE)
 361			page_length = PAGE_SIZE - page_offset;
 362
 363		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 364		if (IS_ERR(page))
 365			return PTR_ERR(page);
 366
 367		vaddr = kmap_atomic(page);
 368		ret = __copy_to_user_inatomic(user_data,
 369					      vaddr + page_offset,
 370					      page_length);
 371		kunmap_atomic(vaddr);
 372
 373		mark_page_accessed(page);
 374		page_cache_release(page);
 375		if (ret)
 376			return -EFAULT;
 
 
 
 
 
 
 377
 378		remain -= page_length;
 379		user_data += page_length;
 380		offset += page_length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381	}
 382
 383	return 0;
 384}
 385
 386/**
 387 * This is the fallback shmem pread path, which allocates temporary storage
 388 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 389 * can copy out of the object's backing pages while holding the struct mutex
 390 * and not take page faults.
 391 */
 392static int
 393i915_gem_shmem_pread_slow(struct drm_device *dev,
 394			  struct drm_i915_gem_object *obj,
 395			  struct drm_i915_gem_pread *args,
 396			  struct drm_file *file)
 397{
 398	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 399	struct mm_struct *mm = current->mm;
 400	struct page **user_pages;
 401	ssize_t remain;
 402	loff_t offset, pinned_pages, i;
 403	loff_t first_data_page, last_data_page, num_pages;
 404	int shmem_page_offset;
 405	int data_page_index, data_page_offset;
 406	int page_length;
 407	int ret;
 408	uint64_t data_ptr = args->data_ptr;
 409	int do_bit17_swizzling;
 410
 411	remain = args->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412
 413	/* Pin the user pages containing the data.  We can't fault while
 414	 * holding the struct mutex, yet we want to hold it while
 415	 * dereferencing the user data.
 416	 */
 417	first_data_page = data_ptr / PAGE_SIZE;
 418	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
 419	num_pages = last_data_page - first_data_page + 1;
 420
 421	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
 422	if (user_pages == NULL)
 423		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 424
 425	mutex_unlock(&dev->struct_mutex);
 426	down_read(&mm->mmap_sem);
 427	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
 428				      num_pages, 1, 0, user_pages, NULL);
 429	up_read(&mm->mmap_sem);
 430	mutex_lock(&dev->struct_mutex);
 431	if (pinned_pages < num_pages) {
 432		ret = -EFAULT;
 433		goto out;
 434	}
 435
 436	ret = i915_gem_object_set_cpu_read_domain_range(obj,
 437							args->offset,
 438							args->size);
 439	if (ret)
 440		goto out;
 441
 442	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 
 
 443
 444	offset = args->offset;
 445
 446	while (remain > 0) {
 447		struct page *page;
 
 
 
 
 448
 449		/* Operation in this page
 450		 *
 451		 * shmem_page_offset = offset within page in shmem file
 452		 * data_page_index = page number in get_user_pages return
 453		 * data_page_offset = offset with data_page_index page.
 454		 * page_length = bytes to copy for this page
 455		 */
 456		shmem_page_offset = offset_in_page(offset);
 457		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
 458		data_page_offset = offset_in_page(data_ptr);
 459
 460		page_length = remain;
 461		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 462			page_length = PAGE_SIZE - shmem_page_offset;
 463		if ((data_page_offset + page_length) > PAGE_SIZE)
 464			page_length = PAGE_SIZE - data_page_offset;
 465
 466		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 467		if (IS_ERR(page)) {
 468			ret = PTR_ERR(page);
 469			goto out;
 470		}
 471
 472		if (do_bit17_swizzling) {
 473			slow_shmem_bit17_copy(page,
 474					      shmem_page_offset,
 475					      user_pages[data_page_index],
 476					      data_page_offset,
 477					      page_length,
 478					      1);
 479		} else {
 480			slow_shmem_copy(user_pages[data_page_index],
 481					data_page_offset,
 482					page,
 483					shmem_page_offset,
 484					page_length);
 
 
 
 485		}
 486
 487		mark_page_accessed(page);
 488		page_cache_release(page);
 
 
 
 
 
 
 489
 
 490		remain -= page_length;
 491		data_ptr += page_length;
 492		offset += page_length;
 493	}
 494
 495out:
 496	for (i = 0; i < pinned_pages; i++) {
 497		SetPageDirty(user_pages[i]);
 498		mark_page_accessed(user_pages[i]);
 499		page_cache_release(user_pages[i]);
 500	}
 501	drm_free_large(user_pages);
 502
 503	return ret;
 504}
 505
 506/**
 507 * Reads data from the object referenced by handle.
 508 *
 509 * On error, the contents of *data are undefined.
 510 */
 511int
 512i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 513		     struct drm_file *file)
 514{
 515	struct drm_i915_gem_pread *args = data;
 516	struct drm_i915_gem_object *obj;
 517	int ret = 0;
 518
 519	if (args->size == 0)
 520		return 0;
 521
 522	if (!access_ok(VERIFY_WRITE,
 523		       (char __user *)(uintptr_t)args->data_ptr,
 524		       args->size))
 525		return -EFAULT;
 526
 527	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
 528				       args->size);
 529	if (ret)
 530		return -EFAULT;
 531
 532	ret = i915_mutex_lock_interruptible(dev);
 533	if (ret)
 534		return ret;
 535
 536	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 537	if (&obj->base == NULL) {
 538		ret = -ENOENT;
 539		goto unlock;
 540	}
 541
 542	/* Bounds check source.  */
 543	if (args->offset > obj->base.size ||
 544	    args->size > obj->base.size - args->offset) {
 545		ret = -EINVAL;
 546		goto out;
 547	}
 548
 549	trace_i915_gem_object_pread(obj, args->offset, args->size);
 550
 551	ret = i915_gem_object_set_cpu_read_domain_range(obj,
 552							args->offset,
 553							args->size);
 554	if (ret)
 555		goto out;
 
 556
 557	ret = -EFAULT;
 558	if (!i915_gem_object_needs_bit17_swizzle(obj))
 559		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
 560	if (ret == -EFAULT)
 561		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
 562
 563out:
 564	drm_gem_object_unreference(&obj->base);
 565unlock:
 566	mutex_unlock(&dev->struct_mutex);
 567	return ret;
 568}
 569
 570/* This is the fast write path which cannot handle
 571 * page faults in the source data
 572 */
 573
 574static inline int
 575fast_user_write(struct io_mapping *mapping,
 576		loff_t page_base, int page_offset,
 577		char __user *user_data,
 578		int length)
 579{
 580	char *vaddr_atomic;
 
 581	unsigned long unwritten;
 582
 583	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
 584	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
 
 
 585						      user_data, length);
 586	io_mapping_unmap_atomic(vaddr_atomic);
 587	return unwritten;
 588}
 589
 590/* Here's the write path which can sleep for
 591 * page faults
 592 */
 593
 594static inline void
 595slow_kernel_write(struct io_mapping *mapping,
 596		  loff_t gtt_base, int gtt_offset,
 597		  struct page *user_page, int user_offset,
 598		  int length)
 599{
 600	char __iomem *dst_vaddr;
 601	char *src_vaddr;
 602
 603	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
 604	src_vaddr = kmap(user_page);
 605
 606	memcpy_toio(dst_vaddr + gtt_offset,
 607		    src_vaddr + user_offset,
 608		    length);
 609
 610	kunmap(user_page);
 611	io_mapping_unmap(dst_vaddr);
 612}
 613
 614/**
 615 * This is the fast pwrite path, where we copy the data directly from the
 616 * user into the GTT, uncached.
 617 */
 618static int
 619i915_gem_gtt_pwrite_fast(struct drm_device *dev,
 620			 struct drm_i915_gem_object *obj,
 621			 struct drm_i915_gem_pwrite *args,
 622			 struct drm_file *file)
 623{
 624	drm_i915_private_t *dev_priv = dev->dev_private;
 625	ssize_t remain;
 626	loff_t offset, page_base;
 627	char __user *user_data;
 628	int page_offset, page_length;
 629
 630	user_data = (char __user *) (uintptr_t) args->data_ptr;
 
 
 
 
 
 
 
 
 
 
 
 
 631	remain = args->size;
 632
 633	offset = obj->gtt_offset + args->offset;
 
 
 634
 635	while (remain > 0) {
 636		/* Operation in this page
 637		 *
 638		 * page_base = page offset within aperture
 639		 * page_offset = offset within page
 640		 * page_length = bytes to copy for this page
 641		 */
 642		page_base = offset & PAGE_MASK;
 643		page_offset = offset_in_page(offset);
 644		page_length = remain;
 645		if ((page_offset + remain) > PAGE_SIZE)
 646			page_length = PAGE_SIZE - page_offset;
 647
 648		/* If we get a fault while copying data, then (presumably) our
 649		 * source page isn't available.  Return the error and we'll
 650		 * retry in the slow path.
 651		 */
 652		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
 653				    page_offset, user_data, page_length))
 654			return -EFAULT;
 
 
 655
 656		remain -= page_length;
 657		user_data += page_length;
 658		offset += page_length;
 659	}
 660
 661	return 0;
 
 
 
 
 
 662}
 663
 664/**
 665 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 666 * the memory and maps it using kmap_atomic for copying.
 667 *
 668 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 669 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 670 */
 671static int
 672i915_gem_gtt_pwrite_slow(struct drm_device *dev,
 673			 struct drm_i915_gem_object *obj,
 674			 struct drm_i915_gem_pwrite *args,
 675			 struct drm_file *file)
 
 676{
 677	drm_i915_private_t *dev_priv = dev->dev_private;
 678	ssize_t remain;
 679	loff_t gtt_page_base, offset;
 680	loff_t first_data_page, last_data_page, num_pages;
 681	loff_t pinned_pages, i;
 682	struct page **user_pages;
 683	struct mm_struct *mm = current->mm;
 684	int gtt_page_offset, data_page_offset, data_page_index, page_length;
 685	int ret;
 686	uint64_t data_ptr = args->data_ptr;
 687
 688	remain = args->size;
 689
 690	/* Pin the user pages containing the data.  We can't fault while
 691	 * holding the struct mutex, and all of the pwrite implementations
 692	 * want to hold it while dereferencing the user data.
 693	 */
 694	first_data_page = data_ptr / PAGE_SIZE;
 695	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
 696	num_pages = last_data_page - first_data_page + 1;
 697
 698	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
 699	if (user_pages == NULL)
 700		return -ENOMEM;
 701
 702	mutex_unlock(&dev->struct_mutex);
 703	down_read(&mm->mmap_sem);
 704	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
 705				      num_pages, 0, 0, user_pages, NULL);
 706	up_read(&mm->mmap_sem);
 707	mutex_lock(&dev->struct_mutex);
 708	if (pinned_pages < num_pages) {
 709		ret = -EFAULT;
 710		goto out_unpin_pages;
 711	}
 712
 713	ret = i915_gem_object_set_to_gtt_domain(obj, true);
 714	if (ret)
 715		goto out_unpin_pages;
 716
 717	ret = i915_gem_object_put_fence(obj);
 718	if (ret)
 719		goto out_unpin_pages;
 720
 721	offset = obj->gtt_offset + args->offset;
 722
 723	while (remain > 0) {
 724		/* Operation in this page
 725		 *
 726		 * gtt_page_base = page offset within aperture
 727		 * gtt_page_offset = offset within page in aperture
 728		 * data_page_index = page number in get_user_pages return
 729		 * data_page_offset = offset with data_page_index page.
 730		 * page_length = bytes to copy for this page
 731		 */
 732		gtt_page_base = offset & PAGE_MASK;
 733		gtt_page_offset = offset_in_page(offset);
 734		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
 735		data_page_offset = offset_in_page(data_ptr);
 736
 737		page_length = remain;
 738		if ((gtt_page_offset + page_length) > PAGE_SIZE)
 739			page_length = PAGE_SIZE - gtt_page_offset;
 740		if ((data_page_offset + page_length) > PAGE_SIZE)
 741			page_length = PAGE_SIZE - data_page_offset;
 742
 743		slow_kernel_write(dev_priv->mm.gtt_mapping,
 744				  gtt_page_base, gtt_page_offset,
 745				  user_pages[data_page_index],
 746				  data_page_offset,
 747				  page_length);
 748
 749		remain -= page_length;
 750		offset += page_length;
 751		data_ptr += page_length;
 752	}
 753
 754out_unpin_pages:
 755	for (i = 0; i < pinned_pages; i++)
 756		page_cache_release(user_pages[i]);
 757	drm_free_large(user_pages);
 
 
 
 
 
 
 758
 759	return ret;
 760}
 761
 762/**
 763 * This is the fast shmem pwrite path, which attempts to directly
 764 * copy_from_user into the kmapped pages backing the object.
 765 */
 766static int
 767i915_gem_shmem_pwrite_fast(struct drm_device *dev,
 768			   struct drm_i915_gem_object *obj,
 769			   struct drm_i915_gem_pwrite *args,
 770			   struct drm_file *file)
 
 771{
 772	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 773	ssize_t remain;
 774	loff_t offset;
 775	char __user *user_data;
 776	int page_offset, page_length;
 777
 778	user_data = (char __user *) (uintptr_t) args->data_ptr;
 779	remain = args->size;
 780
 781	offset = args->offset;
 782	obj->dirty = 1;
 783
 784	while (remain > 0) {
 785		struct page *page;
 786		char *vaddr;
 787		int ret;
 788
 789		/* Operation in this page
 790		 *
 791		 * page_offset = offset within page
 792		 * page_length = bytes to copy for this page
 793		 */
 794		page_offset = offset_in_page(offset);
 795		page_length = remain;
 796		if ((page_offset + remain) > PAGE_SIZE)
 797			page_length = PAGE_SIZE - page_offset;
 798
 799		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 800		if (IS_ERR(page))
 801			return PTR_ERR(page);
 802
 803		vaddr = kmap_atomic(page, KM_USER0);
 804		ret = __copy_from_user_inatomic(vaddr + page_offset,
 
 
 
 
 
 805						user_data,
 806						page_length);
 807		kunmap_atomic(vaddr, KM_USER0);
 808
 809		set_page_dirty(page);
 810		mark_page_accessed(page);
 811		page_cache_release(page);
 812
 813		/* If we get a fault while copying data, then (presumably) our
 814		 * source page isn't available.  Return the error and we'll
 815		 * retry in the slow path.
 816		 */
 817		if (ret)
 818			return -EFAULT;
 819
 820		remain -= page_length;
 821		user_data += page_length;
 822		offset += page_length;
 823	}
 824
 825	return 0;
 826}
 827
 828/**
 829 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 830 * the memory and maps it using kmap_atomic for copying.
 831 *
 832 * This avoids taking mmap_sem for faulting on the user's address while the
 833 * struct_mutex is held.
 834 */
 835static int
 836i915_gem_shmem_pwrite_slow(struct drm_device *dev,
 837			   struct drm_i915_gem_object *obj,
 838			   struct drm_i915_gem_pwrite *args,
 839			   struct drm_file *file)
 840{
 841	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
 842	struct mm_struct *mm = current->mm;
 843	struct page **user_pages;
 844	ssize_t remain;
 845	loff_t offset, pinned_pages, i;
 846	loff_t first_data_page, last_data_page, num_pages;
 847	int shmem_page_offset;
 848	int data_page_index,  data_page_offset;
 849	int page_length;
 850	int ret;
 851	uint64_t data_ptr = args->data_ptr;
 852	int do_bit17_swizzling;
 853
 
 854	remain = args->size;
 855
 856	/* Pin the user pages containing the data.  We can't fault while
 857	 * holding the struct mutex, and all of the pwrite implementations
 858	 * want to hold it while dereferencing the user data.
 859	 */
 860	first_data_page = data_ptr / PAGE_SIZE;
 861	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
 862	num_pages = last_data_page - first_data_page + 1;
 863
 864	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
 865	if (user_pages == NULL)
 866		return -ENOMEM;
 867
 868	mutex_unlock(&dev->struct_mutex);
 869	down_read(&mm->mmap_sem);
 870	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
 871				      num_pages, 0, 0, user_pages, NULL);
 872	up_read(&mm->mmap_sem);
 873	mutex_lock(&dev->struct_mutex);
 874	if (pinned_pages < num_pages) {
 875		ret = -EFAULT;
 876		goto out;
 877	}
 
 
 
 
 
 878
 879	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
 880	if (ret)
 881		goto out;
 882
 883	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 
 
 884
 885	offset = args->offset;
 886	obj->dirty = 1;
 887
 888	while (remain > 0) {
 889		struct page *page;
 
 
 
 
 
 890
 891		/* Operation in this page
 892		 *
 893		 * shmem_page_offset = offset within page in shmem file
 894		 * data_page_index = page number in get_user_pages return
 895		 * data_page_offset = offset with data_page_index page.
 896		 * page_length = bytes to copy for this page
 897		 */
 898		shmem_page_offset = offset_in_page(offset);
 899		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
 900		data_page_offset = offset_in_page(data_ptr);
 901
 902		page_length = remain;
 903		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 904			page_length = PAGE_SIZE - shmem_page_offset;
 905		if ((data_page_offset + page_length) > PAGE_SIZE)
 906			page_length = PAGE_SIZE - data_page_offset;
 907
 908		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 909		if (IS_ERR(page)) {
 910			ret = PTR_ERR(page);
 911			goto out;
 912		}
 
 
 
 
 
 
 
 
 
 
 
 913
 914		if (do_bit17_swizzling) {
 915			slow_shmem_bit17_copy(page,
 916					      shmem_page_offset,
 917					      user_pages[data_page_index],
 918					      data_page_offset,
 919					      page_length,
 920					      0);
 921		} else {
 922			slow_shmem_copy(page,
 923					shmem_page_offset,
 924					user_pages[data_page_index],
 925					data_page_offset,
 926					page_length);
 927		}
 928
 929		set_page_dirty(page);
 930		mark_page_accessed(page);
 931		page_cache_release(page);
 932
 
 933		remain -= page_length;
 934		data_ptr += page_length;
 935		offset += page_length;
 936	}
 937
 938out:
 939	for (i = 0; i < pinned_pages; i++)
 940		page_cache_release(user_pages[i]);
 941	drm_free_large(user_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942
 
 943	return ret;
 944}
 945
 946/**
 947 * Writes data to the object referenced by handle.
 948 *
 949 * On error, the contents of the buffer that were to be modified are undefined.
 950 */
 951int
 952i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 953		      struct drm_file *file)
 954{
 
 955	struct drm_i915_gem_pwrite *args = data;
 956	struct drm_i915_gem_object *obj;
 957	int ret;
 958
 959	if (args->size == 0)
 960		return 0;
 961
 962	if (!access_ok(VERIFY_READ,
 963		       (char __user *)(uintptr_t)args->data_ptr,
 964		       args->size))
 965		return -EFAULT;
 966
 967	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
 968				      args->size);
 969	if (ret)
 970		return -EFAULT;
 
 
 
 
 971
 972	ret = i915_mutex_lock_interruptible(dev);
 973	if (ret)
 974		return ret;
 975
 976	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 977	if (&obj->base == NULL) {
 978		ret = -ENOENT;
 979		goto unlock;
 980	}
 981
 982	/* Bounds check destination. */
 983	if (args->offset > obj->base.size ||
 984	    args->size > obj->base.size - args->offset) {
 985		ret = -EINVAL;
 986		goto out;
 987	}
 988
 
 
 
 
 
 
 
 
 989	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 990
 
 991	/* We can only do the GTT pwrite on untiled buffers, as otherwise
 992	 * it would end up going through the fenced access, and we'll get
 993	 * different detiling behavior between reading and writing.
 994	 * pread/pwrite currently are reading and writing from the CPU
 995	 * perspective, requiring manual detiling by the client.
 996	 */
 997	if (obj->phys_obj)
 998		ret = i915_gem_phys_pwrite(dev, obj, args, file);
 999	else if (obj->gtt_space &&
1000		 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1001		ret = i915_gem_object_pin(obj, 0, true);
1002		if (ret)
1003			goto out;
 
1004
1005		ret = i915_gem_object_set_to_gtt_domain(obj, true);
1006		if (ret)
1007			goto out_unpin;
 
 
 
1008
1009		ret = i915_gem_object_put_fence(obj);
1010		if (ret)
1011			goto out_unpin;
 
 
 
1012
1013		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1014		if (ret == -EFAULT)
1015			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1016
1017out_unpin:
1018		i915_gem_object_unpin(obj);
1019	} else {
1020		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1021		if (ret)
1022			goto out;
 
 
 
 
 
 
 
1023
1024		ret = -EFAULT;
1025		if (!i915_gem_object_needs_bit17_swizzle(obj))
1026			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1027		if (ret == -EFAULT)
1028			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029	}
 
 
 
 
1030
1031out:
1032	drm_gem_object_unreference(&obj->base);
1033unlock:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034	mutex_unlock(&dev->struct_mutex);
 
 
 
 
 
 
 
 
 
 
 
1035	return ret;
1036}
1037
 
 
 
 
 
 
1038/**
1039 * Called when user space prepares to use an object with the CPU, either
1040 * through the mmap ioctl's mapping or a GTT mapping.
1041 */
1042int
1043i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1044			  struct drm_file *file)
1045{
1046	struct drm_i915_gem_set_domain *args = data;
1047	struct drm_i915_gem_object *obj;
1048	uint32_t read_domains = args->read_domains;
1049	uint32_t write_domain = args->write_domain;
1050	int ret;
1051
1052	if (!(dev->driver->driver_features & DRIVER_GEM))
1053		return -ENODEV;
1054
1055	/* Only handle setting domains to types used by the CPU. */
1056	if (write_domain & I915_GEM_GPU_DOMAINS)
1057		return -EINVAL;
1058
1059	if (read_domains & I915_GEM_GPU_DOMAINS)
1060		return -EINVAL;
1061
1062	/* Having something in the write domain implies it's in the read
1063	 * domain, and only that read domain.  Enforce that in the request.
1064	 */
1065	if (write_domain != 0 && read_domains != write_domain)
1066		return -EINVAL;
1067
1068	ret = i915_mutex_lock_interruptible(dev);
1069	if (ret)
1070		return ret;
1071
1072	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1073	if (&obj->base == NULL) {
1074		ret = -ENOENT;
1075		goto unlock;
1076	}
1077
1078	if (read_domains & I915_GEM_DOMAIN_GTT) {
1079		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
 
 
 
 
 
 
 
1080
1081		/* Silently promote "you're not bound, there was nothing to do"
1082		 * to success, since the client was just asking us to
1083		 * make sure everything was done.
1084		 */
1085		if (ret == -EINVAL)
1086			ret = 0;
1087	} else {
1088		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1089	}
1090
 
 
 
 
 
 
1091	drm_gem_object_unreference(&obj->base);
1092unlock:
1093	mutex_unlock(&dev->struct_mutex);
1094	return ret;
1095}
1096
1097/**
1098 * Called when user space has done writes to this buffer
1099 */
1100int
1101i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1102			 struct drm_file *file)
1103{
1104	struct drm_i915_gem_sw_finish *args = data;
1105	struct drm_i915_gem_object *obj;
1106	int ret = 0;
1107
1108	if (!(dev->driver->driver_features & DRIVER_GEM))
1109		return -ENODEV;
1110
1111	ret = i915_mutex_lock_interruptible(dev);
1112	if (ret)
1113		return ret;
1114
1115	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1116	if (&obj->base == NULL) {
1117		ret = -ENOENT;
1118		goto unlock;
1119	}
1120
1121	/* Pinned buffers may be scanout, so flush the cache */
1122	if (obj->pin_count)
1123		i915_gem_object_flush_cpu_write_domain(obj);
1124
1125	drm_gem_object_unreference(&obj->base);
1126unlock:
1127	mutex_unlock(&dev->struct_mutex);
1128	return ret;
1129}
1130
1131/**
1132 * Maps the contents of an object, returning the address it is mapped
1133 * into.
1134 *
1135 * While the mapping holds a reference on the contents of the object, it doesn't
1136 * imply a ref on the object itself.
 
 
 
 
 
 
 
 
 
 
1137 */
1138int
1139i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1140		    struct drm_file *file)
1141{
1142	struct drm_i915_private *dev_priv = dev->dev_private;
1143	struct drm_i915_gem_mmap *args = data;
1144	struct drm_gem_object *obj;
1145	unsigned long addr;
1146
1147	if (!(dev->driver->driver_features & DRIVER_GEM))
 
 
 
1148		return -ENODEV;
1149
1150	obj = drm_gem_object_lookup(dev, file, args->handle);
1151	if (obj == NULL)
1152		return -ENOENT;
1153
1154	if (obj->size > dev_priv->mm.gtt_mappable_end) {
 
 
 
1155		drm_gem_object_unreference_unlocked(obj);
1156		return -E2BIG;
1157	}
1158
1159	down_write(&current->mm->mmap_sem);
1160	addr = do_mmap(obj->filp, 0, args->size,
1161		       PROT_READ | PROT_WRITE, MAP_SHARED,
1162		       args->offset);
1163	up_write(&current->mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
1164	drm_gem_object_unreference_unlocked(obj);
1165	if (IS_ERR((void *)addr))
1166		return addr;
1167
1168	args->addr_ptr = (uint64_t) addr;
1169
1170	return 0;
1171}
1172
1173/**
1174 * i915_gem_fault - fault a page into the GTT
1175 * vma: VMA in question
1176 * vmf: fault info
1177 *
1178 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1179 * from userspace.  The fault handler takes care of binding the object to
1180 * the GTT (if needed), allocating and programming a fence register (again,
1181 * only if needed based on whether the old reg is still valid or the object
1182 * is tiled) and inserting a new PTE into the faulting process.
1183 *
1184 * Note that the faulting process may involve evicting existing objects
1185 * from the GTT and/or fence registers to make room.  So performance may
1186 * suffer if the GTT working set is large or there are few fence registers
1187 * left.
1188 */
1189int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1190{
1191	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1192	struct drm_device *dev = obj->base.dev;
1193	drm_i915_private_t *dev_priv = dev->dev_private;
 
1194	pgoff_t page_offset;
1195	unsigned long pfn;
1196	int ret = 0;
1197	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1198
 
 
1199	/* We don't use vmf->pgoff since that has the fake offset */
1200	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1201		PAGE_SHIFT;
1202
1203	ret = i915_mutex_lock_interruptible(dev);
1204	if (ret)
1205		goto out;
1206
1207	trace_i915_gem_object_fault(obj, page_offset, true, write);
1208
1209	/* Now bind it into the GTT if needed */
1210	if (!obj->map_and_fenceable) {
1211		ret = i915_gem_object_unbind(obj);
1212		if (ret)
1213			goto unlock;
 
 
 
 
 
 
 
 
1214	}
1215	if (!obj->gtt_space) {
1216		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1217		if (ret)
1218			goto unlock;
1219
1220		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1221		if (ret)
1222			goto unlock;
 
 
 
 
 
 
 
 
 
 
1223	}
1224
1225	if (obj->tiling_mode == I915_TILING_NONE)
1226		ret = i915_gem_object_put_fence(obj);
1227	else
1228		ret = i915_gem_object_get_fence(obj, NULL);
1229	if (ret)
1230		goto unlock;
1231
1232	if (i915_gem_object_is_inactive(obj))
1233		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1234
1235	obj->fault_mappable = true;
1236
1237	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1238		page_offset;
 
1239
1240	/* Finally, remap it using the new GTT offset */
1241	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242unlock:
1243	mutex_unlock(&dev->struct_mutex);
1244out:
1245	switch (ret) {
1246	case -EIO:
 
 
 
 
 
 
 
 
 
 
1247	case -EAGAIN:
1248		/* Give the error handler a chance to run and move the
1249		 * objects off the GPU active list. Next time we service the
1250		 * fault, we should be able to transition the page into the
1251		 * GTT without touching the GPU (and so avoid further
1252		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1253		 * with coherency, just lost writes.
1254		 */
1255		set_need_resched();
1256	case 0:
1257	case -ERESTARTSYS:
1258	case -EINTR:
1259		return VM_FAULT_NOPAGE;
 
 
 
 
 
 
1260	case -ENOMEM:
1261		return VM_FAULT_OOM;
 
 
 
 
 
1262	default:
1263		return VM_FAULT_SIGBUS;
1264	}
1265}
1266
1267/**
1268 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1269 * @obj: obj in question
1270 *
1271 * GEM memory mapping works by handing back to userspace a fake mmap offset
1272 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1273 * up the object based on the offset and sets up the various memory mapping
1274 * structures.
1275 *
1276 * This routine allocates and attaches a fake offset for @obj.
1277 */
1278static int
1279i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1280{
1281	struct drm_device *dev = obj->base.dev;
1282	struct drm_gem_mm *mm = dev->mm_private;
1283	struct drm_map_list *list;
1284	struct drm_local_map *map;
1285	int ret = 0;
1286
1287	/* Set the object up for mmap'ing */
1288	list = &obj->base.map_list;
1289	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1290	if (!list->map)
1291		return -ENOMEM;
1292
1293	map = list->map;
1294	map->type = _DRM_GEM;
1295	map->size = obj->base.size;
1296	map->handle = obj;
1297
1298	/* Get a DRM GEM mmap offset allocated... */
1299	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1300						    obj->base.size / PAGE_SIZE,
1301						    0, 0);
1302	if (!list->file_offset_node) {
1303		DRM_ERROR("failed to allocate offset for bo %d\n",
1304			  obj->base.name);
1305		ret = -ENOSPC;
1306		goto out_free_list;
1307	}
1308
1309	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1310						  obj->base.size / PAGE_SIZE,
1311						  0);
1312	if (!list->file_offset_node) {
1313		ret = -ENOMEM;
1314		goto out_free_list;
1315	}
1316
1317	list->hash.key = list->file_offset_node->start;
1318	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1319	if (ret) {
1320		DRM_ERROR("failed to add to map hash\n");
1321		goto out_free_mm;
1322	}
1323
1324	return 0;
1325
1326out_free_mm:
1327	drm_mm_put_block(list->file_offset_node);
1328out_free_list:
1329	kfree(list->map);
1330	list->map = NULL;
1331
1332	return ret;
1333}
1334
1335/**
1336 * i915_gem_release_mmap - remove physical page mappings
1337 * @obj: obj in question
1338 *
1339 * Preserve the reservation of the mmapping with the DRM core code, but
1340 * relinquish ownership of the pages back to the system.
1341 *
1342 * It is vital that we remove the page mapping if we have mapped a tiled
1343 * object through the GTT and then lose the fence register due to
1344 * resource pressure. Similarly if the object has been moved out of the
1345 * aperture, than pages mapped into userspace must be revoked. Removing the
1346 * mapping will then trigger a page fault on the next user access, allowing
1347 * fixup by i915_gem_fault().
1348 */
1349void
1350i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1351{
1352	if (!obj->fault_mappable)
1353		return;
1354
1355	if (obj->base.dev->dev_mapping)
1356		unmap_mapping_range(obj->base.dev->dev_mapping,
1357				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1358				    obj->base.size, 1);
1359
1360	obj->fault_mappable = false;
1361}
1362
1363static void
1364i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1365{
1366	struct drm_device *dev = obj->base.dev;
1367	struct drm_gem_mm *mm = dev->mm_private;
1368	struct drm_map_list *list = &obj->base.map_list;
1369
1370	drm_ht_remove_item(&mm->offset_hash, &list->hash);
1371	drm_mm_put_block(list->file_offset_node);
1372	kfree(list->map);
1373	list->map = NULL;
1374}
1375
1376static uint32_t
1377i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1378{
1379	uint32_t gtt_size;
1380
1381	if (INTEL_INFO(dev)->gen >= 4 ||
1382	    tiling_mode == I915_TILING_NONE)
1383		return size;
1384
1385	/* Previous chips need a power-of-two fence region when tiling */
1386	if (INTEL_INFO(dev)->gen == 3)
1387		gtt_size = 1024*1024;
1388	else
1389		gtt_size = 512*1024;
1390
1391	while (gtt_size < size)
1392		gtt_size <<= 1;
1393
1394	return gtt_size;
1395}
1396
1397/**
1398 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1399 * @obj: object to check
1400 *
1401 * Return the required GTT alignment for an object, taking into account
1402 * potential fence register mapping.
1403 */
1404static uint32_t
1405i915_gem_get_gtt_alignment(struct drm_device *dev,
1406			   uint32_t size,
1407			   int tiling_mode)
1408{
1409	/*
1410	 * Minimum alignment is 4k (GTT page size), but might be greater
1411	 * if a fence register is needed for the object.
1412	 */
1413	if (INTEL_INFO(dev)->gen >= 4 ||
1414	    tiling_mode == I915_TILING_NONE)
1415		return 4096;
1416
1417	/*
1418	 * Previous chips need to be aligned to the size of the smallest
1419	 * fence register that can contain the object.
1420	 */
1421	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1422}
1423
1424/**
1425 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1426 *					 unfenced object
1427 * @dev: the device
1428 * @size: size of the object
1429 * @tiling_mode: tiling mode of the object
1430 *
1431 * Return the required GTT alignment for an object, only taking into account
1432 * unfenced tiled surface requirements.
1433 */
1434uint32_t
1435i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1436				    uint32_t size,
1437				    int tiling_mode)
1438{
1439	/*
1440	 * Minimum alignment is 4k (GTT page size) for sane hw.
1441	 */
1442	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1443	    tiling_mode == I915_TILING_NONE)
1444		return 4096;
1445
1446	/* Previous hardware however needs to be aligned to a power-of-two
1447	 * tile height. The simplest method for determining this is to reuse
1448	 * the power-of-tile object size.
1449	 */
1450	return i915_gem_get_gtt_size(dev, size, tiling_mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451}
1452
1453int
1454i915_gem_mmap_gtt(struct drm_file *file,
1455		  struct drm_device *dev,
1456		  uint32_t handle,
1457		  uint64_t *offset)
1458{
1459	struct drm_i915_private *dev_priv = dev->dev_private;
1460	struct drm_i915_gem_object *obj;
1461	int ret;
1462
1463	if (!(dev->driver->driver_features & DRIVER_GEM))
1464		return -ENODEV;
1465
1466	ret = i915_mutex_lock_interruptible(dev);
1467	if (ret)
1468		return ret;
1469
1470	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1471	if (&obj->base == NULL) {
1472		ret = -ENOENT;
1473		goto unlock;
1474	}
1475
1476	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1477		ret = -E2BIG;
1478		goto unlock;
1479	}
1480
1481	if (obj->madv != I915_MADV_WILLNEED) {
1482		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1483		ret = -EINVAL;
1484		goto out;
1485	}
1486
1487	if (!obj->base.map_list.map) {
1488		ret = i915_gem_create_mmap_offset(obj);
1489		if (ret)
1490			goto out;
1491	}
1492
1493	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1494
1495out:
1496	drm_gem_object_unreference(&obj->base);
1497unlock:
1498	mutex_unlock(&dev->struct_mutex);
1499	return ret;
1500}
1501
1502/**
1503 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1504 * @dev: DRM device
1505 * @data: GTT mapping ioctl data
1506 * @file: GEM object info
1507 *
1508 * Simply returns the fake offset to userspace so it can mmap it.
1509 * The mmap call will end up in drm_gem_mmap(), which will set things
1510 * up so we can get faults in the handler above.
1511 *
1512 * The fault handler will take care of binding the object into the GTT
1513 * (since it may have been evicted to make room for something), allocating
1514 * a fence register, and mapping the appropriate aperture address into
1515 * userspace.
1516 */
1517int
1518i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1519			struct drm_file *file)
1520{
1521	struct drm_i915_gem_mmap_gtt *args = data;
1522
1523	if (!(dev->driver->driver_features & DRIVER_GEM))
1524		return -ENODEV;
1525
1526	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1527}
1528
1529
1530static int
1531i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1532			      gfp_t gfpmask)
1533{
1534	int page_count, i;
1535	struct address_space *mapping;
1536	struct inode *inode;
1537	struct page *page;
1538
1539	/* Get the list of pages out of our struct file.  They'll be pinned
1540	 * at this point until we release them.
1541	 */
1542	page_count = obj->base.size / PAGE_SIZE;
1543	BUG_ON(obj->pages != NULL);
1544	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1545	if (obj->pages == NULL)
1546		return -ENOMEM;
1547
1548	inode = obj->base.filp->f_path.dentry->d_inode;
1549	mapping = inode->i_mapping;
1550	gfpmask |= mapping_gfp_mask(mapping);
 
 
 
 
 
1551
1552	for (i = 0; i < page_count; i++) {
1553		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1554		if (IS_ERR(page))
1555			goto err_pages;
 
1556
1557		obj->pages[i] = page;
 
 
 
 
1558	}
1559
1560	if (obj->tiling_mode != I915_TILING_NONE)
1561		i915_gem_object_do_bit_17_swizzle(obj);
1562
1563	return 0;
1564
1565err_pages:
1566	while (i--)
1567		page_cache_release(obj->pages[i]);
1568
1569	drm_free_large(obj->pages);
1570	obj->pages = NULL;
1571	return PTR_ERR(page);
1572}
1573
1574static void
1575i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1576{
1577	int page_count = obj->base.size / PAGE_SIZE;
1578	int i;
1579
1580	BUG_ON(obj->madv == __I915_MADV_PURGED);
1581
1582	if (obj->tiling_mode != I915_TILING_NONE)
 
 
 
 
 
 
 
 
 
 
 
 
1583		i915_gem_object_save_bit_17_swizzle(obj);
1584
1585	if (obj->madv == I915_MADV_DONTNEED)
1586		obj->dirty = 0;
1587
1588	for (i = 0; i < page_count; i++) {
 
 
1589		if (obj->dirty)
1590			set_page_dirty(obj->pages[i]);
1591
1592		if (obj->madv == I915_MADV_WILLNEED)
1593			mark_page_accessed(obj->pages[i]);
1594
1595		page_cache_release(obj->pages[i]);
1596	}
1597	obj->dirty = 0;
1598
1599	drm_free_large(obj->pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1600	obj->pages = NULL;
 
 
 
 
1601}
1602
1603void
1604i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1605			       struct intel_ring_buffer *ring,
1606			       u32 seqno)
1607{
1608	struct drm_device *dev = obj->base.dev;
1609	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1610
1611	BUG_ON(ring == NULL);
1612	obj->ring = ring;
 
1613
1614	/* Add a reference if we're newly entering the active list. */
1615	if (!obj->active) {
1616		drm_gem_object_reference(&obj->base);
1617		obj->active = 1;
1618	}
1619
1620	/* Move from whatever list we were on to the tail of execution. */
1621	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1622	list_move_tail(&obj->ring_list, &ring->active_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1623
1624	obj->last_rendering_seqno = seqno;
1625	if (obj->fenced_gpu_access) {
1626		struct drm_i915_fence_reg *reg;
1627
1628		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
 
1629
1630		obj->last_fenced_seqno = seqno;
1631		obj->last_fenced_ring = ring;
 
1632
1633		reg = &dev_priv->fence_regs[obj->fence_reg];
1634		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1635	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1636}
1637
1638static void
1639i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1640{
1641	list_del_init(&obj->ring_list);
1642	obj->last_rendering_seqno = 0;
 
 
 
 
 
 
 
 
 
 
 
 
1643}
1644
1645static void
1646i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1647{
1648	struct drm_device *dev = obj->base.dev;
1649	drm_i915_private_t *dev_priv = dev->dev_private;
1650
1651	BUG_ON(!obj->active);
1652	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1653
1654	i915_gem_object_move_off_active(obj);
1655}
1656
1657static void
1658i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1659{
1660	struct drm_device *dev = obj->base.dev;
1661	struct drm_i915_private *dev_priv = dev->dev_private;
1662
1663	if (obj->pin_count != 0)
1664		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1665	else
1666		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1667
1668	BUG_ON(!list_empty(&obj->gpu_write_list));
1669	BUG_ON(!obj->active);
1670	obj->ring = NULL;
1671
1672	i915_gem_object_move_off_active(obj);
1673	obj->fenced_gpu_access = false;
1674
1675	obj->active = 0;
1676	obj->pending_gpu_write = false;
1677	drm_gem_object_unreference(&obj->base);
1678
1679	WARN_ON(i915_verify_lists(dev));
 
 
 
 
 
 
 
 
 
 
 
 
 
1680}
1681
1682/* Immediately discard the backing storage */
1683static void
1684i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1685{
1686	struct inode *inode;
 
 
1687
1688	/* Our goal here is to return as much of the memory as
1689	 * is possible back to the system as we are called from OOM.
1690	 * To do this we must instruct the shmfs to drop all of its
1691	 * backing pages, *now*.
1692	 */
1693	inode = obj->base.filp->f_path.dentry->d_inode;
1694	shmem_truncate_range(inode, 0, (loff_t)-1);
1695
1696	obj->madv = __I915_MADV_PURGED;
 
 
 
 
 
 
 
 
1697}
1698
1699static inline int
1700i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1701{
1702	return obj->madv == I915_MADV_DONTNEED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1703}
1704
1705static void
1706i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1707			       uint32_t flush_domains)
1708{
1709	struct drm_i915_gem_object *obj, *next;
1710
1711	list_for_each_entry_safe(obj, next,
1712				 &ring->gpu_write_list,
1713				 gpu_write_list) {
1714		if (obj->base.write_domain & flush_domains) {
1715			uint32_t old_write_domain = obj->base.write_domain;
1716
1717			obj->base.write_domain = 0;
1718			list_del_init(&obj->gpu_write_list);
1719			i915_gem_object_move_to_active(obj, ring,
1720						       i915_gem_next_request_seqno(ring));
1721
1722			trace_i915_gem_object_change_domain(obj,
1723							    obj->base.read_domains,
1724							    old_write_domain);
1725		}
1726	}
 
 
 
1727}
1728
1729int
1730i915_add_request(struct intel_ring_buffer *ring,
1731		 struct drm_file *file,
1732		 struct drm_i915_gem_request *request)
1733{
1734	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1735	uint32_t seqno;
1736	int was_empty;
 
 
 
 
 
1737	int ret;
1738
1739	BUG_ON(request == NULL);
 
1740
1741	ret = ring->add_request(ring, &seqno);
1742	if (ret)
1743	    return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744
1745	trace_i915_gem_request_add(ring, seqno);
 
 
 
 
 
 
 
 
1746
1747	request->seqno = seqno;
1748	request->ring = ring;
1749	request->emitted_jiffies = jiffies;
1750	was_empty = list_empty(&ring->request_list);
 
1751	list_add_tail(&request->list, &ring->request_list);
1752
1753	if (file) {
1754		struct drm_i915_file_private *file_priv = file->driver_priv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755
1756		spin_lock(&file_priv->mm.lock);
1757		request->file_priv = file_priv;
1758		list_add_tail(&request->client_list,
1759			      &file_priv->mm.request_list);
1760		spin_unlock(&file_priv->mm.lock);
1761	}
1762
1763	ring->outstanding_lazy_request = false;
1764
1765	if (!dev_priv->mm.suspended) {
1766		if (i915_enable_hangcheck) {
1767			mod_timer(&dev_priv->hangcheck_timer,
1768				  jiffies +
1769				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1770		}
1771		if (was_empty)
1772			queue_delayed_work(dev_priv->wq,
1773					   &dev_priv->mm.retire_work, HZ);
1774	}
1775	return 0;
 
1776}
1777
1778static inline void
1779i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
 
1780{
1781	struct drm_i915_file_private *file_priv = request->file_priv;
1782
1783	if (!file_priv)
1784		return;
1785
1786	spin_lock(&file_priv->mm.lock);
1787	if (request->file_priv) {
1788		list_del(&request->client_list);
1789		request->file_priv = NULL;
 
 
 
 
1790	}
1791	spin_unlock(&file_priv->mm.lock);
1792}
1793
1794static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1795				      struct intel_ring_buffer *ring)
1796{
1797	while (!list_empty(&ring->request_list)) {
1798		struct drm_i915_gem_request *request;
 
1799
1800		request = list_first_entry(&ring->request_list,
1801					   struct drm_i915_gem_request,
1802					   list);
 
 
 
1803
1804		list_del(&request->list);
1805		i915_gem_request_remove_from_client(request);
1806		kfree(request);
1807	}
1808
1809	while (!list_empty(&ring->active_list)) {
1810		struct drm_i915_gem_object *obj;
1811
1812		obj = list_first_entry(&ring->active_list,
1813				       struct drm_i915_gem_object,
1814				       ring_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815
1816		obj->base.write_domain = 0;
1817		list_del_init(&obj->gpu_write_list);
1818		i915_gem_object_move_to_inactive(obj);
 
 
 
 
1819	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820}
1821
1822static void i915_gem_reset_fences(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823{
1824	struct drm_i915_private *dev_priv = dev->dev_private;
1825	int i;
1826
1827	for (i = 0; i < 16; i++) {
1828		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1829		struct drm_i915_gem_object *obj = reg->obj;
 
 
1830
1831		if (!obj)
1832			continue;
 
1833
1834		if (obj->tiling_mode)
1835			i915_gem_release_mmap(obj);
1836
1837		reg->obj->fence_reg = I915_FENCE_REG_NONE;
1838		reg->obj->fenced_gpu_access = false;
1839		reg->obj->last_fenced_seqno = 0;
1840		reg->obj->last_fenced_ring = NULL;
1841		i915_gem_clear_fence_reg(dev, reg);
 
 
 
 
 
1842	}
 
 
1843}
1844
1845void i915_gem_reset(struct drm_device *dev)
 
1846{
1847	struct drm_i915_private *dev_priv = dev->dev_private;
1848	struct drm_i915_gem_object *obj;
1849	int i;
1850
1851	for (i = 0; i < I915_NUM_RINGS; i++)
1852		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
 
 
 
 
 
 
 
 
 
 
1853
1854	/* Remove anything from the flushing lists. The GPU cache is likely
1855	 * to be lost on reset along with the data, so simply move the
1856	 * lost bo to the inactive list.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857	 */
1858	while (!list_empty(&dev_priv->mm.flushing_list)) {
1859		obj= list_first_entry(&dev_priv->mm.flushing_list,
1860				      struct drm_i915_gem_object,
1861				      mm_list);
1862
1863		obj->base.write_domain = 0;
1864		list_del_init(&obj->gpu_write_list);
1865		i915_gem_object_move_to_inactive(obj);
 
 
 
 
 
 
1866	}
1867
1868	/* Move everything out of the GPU domains to ensure we do any
1869	 * necessary invalidation upon reuse.
 
 
 
 
1870	 */
1871	list_for_each_entry(obj,
1872			    &dev_priv->mm.inactive_list,
1873			    mm_list)
1874	{
1875		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
 
 
 
1876	}
1877
1878	/* The fence registers are invalidated so clear them out */
1879	i915_gem_reset_fences(dev);
 
 
 
 
 
 
 
 
 
1880}
1881
1882/**
1883 * This function clears the request list as sequence numbers are passed.
1884 */
1885static void
1886i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1887{
1888	uint32_t seqno;
 
1889	int i;
1890
1891	if (list_empty(&ring->request_list))
1892		return;
 
 
 
 
 
1893
1894	WARN_ON(i915_verify_lists(ring->dev));
 
 
 
1895
1896	seqno = ring->get_seqno(ring);
 
 
 
1897
1898	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1899		if (seqno >= ring->sync_seqno[i])
1900			ring->sync_seqno[i] = 0;
 
 
 
 
1901
 
 
 
 
 
1902	while (!list_empty(&ring->request_list)) {
1903		struct drm_i915_gem_request *request;
1904
1905		request = list_first_entry(&ring->request_list,
1906					   struct drm_i915_gem_request,
1907					   list);
1908
1909		if (!i915_seqno_passed(seqno, request->seqno))
1910			break;
1911
1912		trace_i915_gem_request_retire(ring, request->seqno);
1913
1914		list_del(&request->list);
1915		i915_gem_request_remove_from_client(request);
1916		kfree(request);
1917	}
1918
1919	/* Move any buffers on the active list that are no longer referenced
1920	 * by the ringbuffer to the flushing/inactive lists as appropriate.
 
1921	 */
1922	while (!list_empty(&ring->active_list)) {
1923		struct drm_i915_gem_object *obj;
1924
1925		obj= list_first_entry(&ring->active_list,
1926				      struct drm_i915_gem_object,
1927				      ring_list);
1928
1929		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1930			break;
1931
1932		if (obj->base.write_domain != 0)
1933			i915_gem_object_move_to_flushing(obj);
1934		else
1935			i915_gem_object_move_to_inactive(obj);
1936	}
1937
1938	if (unlikely(ring->trace_irq_seqno &&
1939		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1940		ring->irq_put(ring);
1941		ring->trace_irq_seqno = 0;
1942	}
1943
1944	WARN_ON(i915_verify_lists(ring->dev));
1945}
1946
1947void
1948i915_gem_retire_requests(struct drm_device *dev)
1949{
1950	drm_i915_private_t *dev_priv = dev->dev_private;
 
 
1951	int i;
1952
1953	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1954	    struct drm_i915_gem_object *obj, *next;
 
 
 
 
 
1955
1956	    /* We must be careful that during unbind() we do not
1957	     * accidentally infinitely recurse into retire requests.
1958	     * Currently:
1959	     *   retire -> free -> unbind -> wait -> retire_ring
1960	     */
1961	    list_for_each_entry_safe(obj, next,
1962				     &dev_priv->mm.deferred_free_list,
1963				     mm_list)
1964		    i915_gem_free_object_tail(obj);
1965	}
1966
1967	for (i = 0; i < I915_NUM_RINGS; i++)
1968		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
 
 
 
 
1969}
1970
1971static void
1972i915_gem_retire_work_handler(struct work_struct *work)
1973{
1974	drm_i915_private_t *dev_priv;
1975	struct drm_device *dev;
 
1976	bool idle;
1977	int i;
1978
1979	dev_priv = container_of(work, drm_i915_private_t,
1980				mm.retire_work.work);
1981	dev = dev_priv->dev;
1982
1983	/* Come back later if the device is busy... */
1984	if (!mutex_trylock(&dev->struct_mutex)) {
1985		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1986		return;
 
1987	}
 
 
 
 
1988
1989	i915_gem_retire_requests(dev);
 
 
 
 
 
 
 
1990
1991	/* Send a periodic flush down the ring so we don't hold onto GEM
1992	 * objects indefinitely.
1993	 */
1994	idle = true;
1995	for (i = 0; i < I915_NUM_RINGS; i++) {
1996		struct intel_ring_buffer *ring = &dev_priv->ring[i];
 
1997
1998		if (!list_empty(&ring->gpu_write_list)) {
1999			struct drm_i915_gem_request *request;
2000			int ret;
2001
2002			ret = i915_gem_flush_ring(ring,
2003						  0, I915_GEM_GPU_DOMAINS);
2004			request = kzalloc(sizeof(*request), GFP_KERNEL);
2005			if (ret || request == NULL ||
2006			    i915_add_request(ring, NULL, request))
2007			    kfree(request);
2008		}
2009
2010		idle &= list_empty(&ring->request_list);
2011	}
 
2012
2013	if (!dev_priv->mm.suspended && !idle)
2014		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2015
2016	mutex_unlock(&dev->struct_mutex);
 
2017}
2018
2019/**
2020 * Waits for a sequence number to be signaled, and cleans up the
2021 * request and object lists appropriately for that event.
 
2022 */
2023int
2024i915_wait_request(struct intel_ring_buffer *ring,
2025		  uint32_t seqno)
2026{
2027	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2028	u32 ier;
2029	int ret = 0;
2030
2031	BUG_ON(seqno == 0);
2032
2033	if (atomic_read(&dev_priv->mm.wedged)) {
2034		struct completion *x = &dev_priv->error_completion;
2035		bool recovery_complete;
2036		unsigned long flags;
2037
2038		/* Give the error handler a chance to run. */
2039		spin_lock_irqsave(&x->wait.lock, flags);
2040		recovery_complete = x->done > 0;
2041		spin_unlock_irqrestore(&x->wait.lock, flags);
2042
2043		return recovery_complete ? -EIO : -EAGAIN;
2044	}
2045
2046	if (seqno == ring->outstanding_lazy_request) {
2047		struct drm_i915_gem_request *request;
 
2048
2049		request = kzalloc(sizeof(*request), GFP_KERNEL);
2050		if (request == NULL)
2051			return -ENOMEM;
2052
2053		ret = i915_add_request(ring, NULL, request);
2054		if (ret) {
2055			kfree(request);
2056			return ret;
2057		}
2058
2059		seqno = request->seqno;
2060	}
2061
2062	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2063		if (HAS_PCH_SPLIT(ring->dev))
2064			ier = I915_READ(DEIER) | I915_READ(GTIER);
2065		else
2066			ier = I915_READ(IER);
2067		if (!ier) {
2068			DRM_ERROR("something (likely vbetool) disabled "
2069				  "interrupts, re-enabling\n");
2070			ring->dev->driver->irq_preinstall(ring->dev);
2071			ring->dev->driver->irq_postinstall(ring->dev);
2072		}
2073
2074		trace_i915_gem_request_wait_begin(ring, seqno);
2075
2076		ring->waiting_seqno = seqno;
2077		if (ring->irq_get(ring)) {
2078			if (dev_priv->mm.interruptible)
2079				ret = wait_event_interruptible(ring->irq_queue,
2080							       i915_seqno_passed(ring->get_seqno(ring), seqno)
2081							       || atomic_read(&dev_priv->mm.wedged));
2082			else
2083				wait_event(ring->irq_queue,
2084					   i915_seqno_passed(ring->get_seqno(ring), seqno)
2085					   || atomic_read(&dev_priv->mm.wedged));
2086
2087			ring->irq_put(ring);
2088		} else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2089						      seqno) ||
2090				    atomic_read(&dev_priv->mm.wedged), 3000))
2091			ret = -EBUSY;
2092		ring->waiting_seqno = 0;
2093
2094		trace_i915_gem_request_wait_end(ring, seqno);
2095	}
2096	if (atomic_read(&dev_priv->mm.wedged))
2097		ret = -EAGAIN;
2098
2099	if (ret && ret != -ERESTARTSYS)
2100		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2101			  __func__, ret, seqno, ring->get_seqno(ring),
2102			  dev_priv->next_seqno);
2103
2104	/* Directly dispatch request retiring.  While we have the work queue
2105	 * to handle this, the waiter on a request often wants an associated
2106	 * buffer to have made it to the inactive list, and we would need
2107	 * a separate wait queue to handle that.
2108	 */
2109	if (ret == 0)
2110		i915_gem_retire_requests_ring(ring);
2111
2112	return ret;
2113}
2114
2115/**
2116 * Ensures that all rendering to the object has completed and the object is
2117 * safe to unbind from the GTT or access from the CPU.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118 */
2119int
2120i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2121{
 
 
 
 
 
 
2122	int ret;
2123
2124	/* This function only exists to support waiting for existing rendering,
2125	 * not for emitting required flushes.
2126	 */
2127	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2128
2129	/* If there is rendering queued on the buffer being evicted, wait for
2130	 * it.
2131	 */
2132	if (obj->active) {
2133		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2134		if (ret)
2135			return ret;
2136	}
2137
2138	return 0;
2139}
2140
2141static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2142{
2143	u32 old_write_domain, old_read_domains;
2144
2145	/* Act a barrier for all accesses through the GTT */
2146	mb();
2147
2148	/* Force a pagefault for domain tracking on next user access */
2149	i915_gem_release_mmap(obj);
2150
2151	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2152		return;
2153
2154	old_read_domains = obj->base.read_domains;
2155	old_write_domain = obj->base.write_domain;
2156
2157	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2158	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2159
2160	trace_i915_gem_object_change_domain(obj,
2161					    old_read_domains,
2162					    old_write_domain);
2163}
2164
2165/**
2166 * Unbinds an object from the GTT aperture.
2167 */
2168int
2169i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2170{
2171	int ret = 0;
2172
2173	if (obj->gtt_space == NULL)
2174		return 0;
 
2175
2176	if (obj->pin_count != 0) {
2177		DRM_ERROR("Attempting to unbind pinned buffer\n");
2178		return -EINVAL;
 
2179	}
2180
2181	ret = i915_gem_object_finish_gpu(obj);
2182	if (ret == -ERESTARTSYS)
2183		return ret;
2184	/* Continue on if we fail due to EIO, the GPU is hung so we
2185	 * should be safe and we need to cleanup or else we might
2186	 * cause memory corruption through use-after-free.
2187	 */
2188
2189	i915_gem_object_finish_gtt(obj);
 
2190
2191	/* Move the object to the CPU domain to ensure that
2192	 * any possible CPU writes while it's not in the GTT
2193	 * are flushed when we go to remap it.
2194	 */
2195	if (ret == 0)
2196		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2197	if (ret == -ERESTARTSYS)
2198		return ret;
2199	if (ret) {
2200		/* In the event of a disaster, abandon all caches and
2201		 * hope for the best.
2202		 */
2203		i915_gem_clflush_object(obj);
2204		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2205	}
2206
2207	/* release the fence reg _after_ flushing */
2208	ret = i915_gem_object_put_fence(obj);
2209	if (ret == -ERESTARTSYS)
2210		return ret;
2211
2212	trace_i915_gem_object_unbind(obj);
2213
2214	i915_gem_gtt_unbind_object(obj);
2215	i915_gem_object_put_pages_gtt(obj);
 
2216
2217	list_del_init(&obj->gtt_list);
2218	list_del_init(&obj->mm_list);
2219	/* Avoid an unnecessary call to unbind on rebind. */
2220	obj->map_and_fenceable = true;
2221
2222	drm_mm_put_block(obj->gtt_space);
2223	obj->gtt_space = NULL;
2224	obj->gtt_offset = 0;
2225
2226	if (i915_gem_object_is_purgeable(obj))
2227		i915_gem_object_truncate(obj);
 
 
 
 
 
 
2228
 
 
 
2229	return ret;
2230}
2231
2232int
2233i915_gem_flush_ring(struct intel_ring_buffer *ring,
2234		    uint32_t invalidate_domains,
2235		    uint32_t flush_domains)
 
2236{
 
2237	int ret;
2238
2239	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
 
2240		return 0;
2241
2242	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
 
2243
2244	ret = ring->flush(ring, invalidate_domains, flush_domains);
2245	if (ret)
2246		return ret;
 
 
 
 
 
 
2247
2248	if (flush_domains & I915_GEM_GPU_DOMAINS)
2249		i915_gem_process_flushing_list(ring, flush_domains);
 
 
2250
2251	return 0;
2252}
2253
2254static int i915_ring_idle(struct intel_ring_buffer *ring)
2255{
2256	int ret;
2257
2258	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2259		return 0;
 
 
 
 
2260
2261	if (!list_empty(&ring->gpu_write_list)) {
2262		ret = i915_gem_flush_ring(ring,
2263				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
 
 
2264		if (ret)
2265			return ret;
 
 
 
 
 
 
 
2266	}
2267
2268	return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2269}
2270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2271int
2272i915_gpu_idle(struct drm_device *dev)
2273{
2274	drm_i915_private_t *dev_priv = dev->dev_private;
2275	bool lists_empty;
2276	int ret, i;
 
 
2277
2278	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2279		       list_empty(&dev_priv->mm.active_list));
2280	if (lists_empty)
2281		return 0;
2282
2283	/* Flush everything onto the inactive list. */
2284	for (i = 0; i < I915_NUM_RINGS; i++) {
2285		ret = i915_ring_idle(&dev_priv->ring[i]);
 
 
 
 
 
 
 
 
 
 
 
2286		if (ret)
2287			return ret;
2288	}
2289
2290	return 0;
2291}
2292
2293static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2294				       struct intel_ring_buffer *pipelined)
2295{
2296	struct drm_device *dev = obj->base.dev;
2297	drm_i915_private_t *dev_priv = dev->dev_private;
2298	u32 size = obj->gtt_space->size;
2299	int regnum = obj->fence_reg;
2300	uint64_t val;
2301
2302	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2303			 0xfffff000) << 32;
2304	val |= obj->gtt_offset & 0xfffff000;
2305	val |= (uint64_t)((obj->stride / 128) - 1) <<
2306		SANDYBRIDGE_FENCE_PITCH_SHIFT;
2307
2308	if (obj->tiling_mode == I915_TILING_Y)
2309		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2310	val |= I965_FENCE_REG_VALID;
2311
2312	if (pipelined) {
2313		int ret = intel_ring_begin(pipelined, 6);
2314		if (ret)
2315			return ret;
2316
2317		intel_ring_emit(pipelined, MI_NOOP);
2318		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2319		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2320		intel_ring_emit(pipelined, (u32)val);
2321		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2322		intel_ring_emit(pipelined, (u32)(val >> 32));
2323		intel_ring_advance(pipelined);
2324	} else
2325		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2326
2327	return 0;
2328}
2329
2330static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2331				struct intel_ring_buffer *pipelined)
2332{
2333	struct drm_device *dev = obj->base.dev;
2334	drm_i915_private_t *dev_priv = dev->dev_private;
2335	u32 size = obj->gtt_space->size;
2336	int regnum = obj->fence_reg;
2337	uint64_t val;
2338
2339	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2340		    0xfffff000) << 32;
2341	val |= obj->gtt_offset & 0xfffff000;
2342	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2343	if (obj->tiling_mode == I915_TILING_Y)
2344		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2345	val |= I965_FENCE_REG_VALID;
2346
2347	if (pipelined) {
2348		int ret = intel_ring_begin(pipelined, 6);
2349		if (ret)
2350			return ret;
2351
2352		intel_ring_emit(pipelined, MI_NOOP);
2353		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2354		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2355		intel_ring_emit(pipelined, (u32)val);
2356		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2357		intel_ring_emit(pipelined, (u32)(val >> 32));
2358		intel_ring_advance(pipelined);
2359	} else
2360		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2361
2362	return 0;
 
 
2363}
2364
2365static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2366				struct intel_ring_buffer *pipelined)
2367{
2368	struct drm_device *dev = obj->base.dev;
2369	drm_i915_private_t *dev_priv = dev->dev_private;
2370	u32 size = obj->gtt_space->size;
2371	u32 fence_reg, val, pitch_val;
2372	int tile_width;
2373
2374	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2375		 (size & -size) != size ||
2376		 (obj->gtt_offset & (size - 1)),
2377		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2378		 obj->gtt_offset, obj->map_and_fenceable, size))
2379		return -EINVAL;
2380
2381	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2382		tile_width = 128;
2383	else
2384		tile_width = 512;
2385
2386	/* Note: pitch better be a power of two tile widths */
2387	pitch_val = obj->stride / tile_width;
2388	pitch_val = ffs(pitch_val) - 1;
2389
2390	val = obj->gtt_offset;
2391	if (obj->tiling_mode == I915_TILING_Y)
2392		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2393	val |= I915_FENCE_SIZE_BITS(size);
2394	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2395	val |= I830_FENCE_REG_VALID;
2396
2397	fence_reg = obj->fence_reg;
2398	if (fence_reg < 8)
2399		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2400	else
2401		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2402
2403	if (pipelined) {
2404		int ret = intel_ring_begin(pipelined, 4);
2405		if (ret)
2406			return ret;
2407
2408		intel_ring_emit(pipelined, MI_NOOP);
2409		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2410		intel_ring_emit(pipelined, fence_reg);
2411		intel_ring_emit(pipelined, val);
2412		intel_ring_advance(pipelined);
2413	} else
2414		I915_WRITE(fence_reg, val);
2415
2416	return 0;
2417}
2418
2419static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2420				struct intel_ring_buffer *pipelined)
2421{
2422	struct drm_device *dev = obj->base.dev;
2423	drm_i915_private_t *dev_priv = dev->dev_private;
2424	u32 size = obj->gtt_space->size;
2425	int regnum = obj->fence_reg;
2426	uint32_t val;
2427	uint32_t pitch_val;
2428
2429	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2430		 (size & -size) != size ||
2431		 (obj->gtt_offset & (size - 1)),
2432		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2433		 obj->gtt_offset, size))
2434		return -EINVAL;
2435
2436	pitch_val = obj->stride / 128;
2437	pitch_val = ffs(pitch_val) - 1;
2438
2439	val = obj->gtt_offset;
2440	if (obj->tiling_mode == I915_TILING_Y)
2441		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2442	val |= I830_FENCE_SIZE_BITS(size);
2443	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2444	val |= I830_FENCE_REG_VALID;
2445
2446	if (pipelined) {
2447		int ret = intel_ring_begin(pipelined, 4);
2448		if (ret)
2449			return ret;
 
2450
2451		intel_ring_emit(pipelined, MI_NOOP);
2452		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2453		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2454		intel_ring_emit(pipelined, val);
2455		intel_ring_advance(pipelined);
2456	} else
2457		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2458
2459	return 0;
2460}
 
 
 
2461
2462static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2463{
2464	return i915_seqno_passed(ring->get_seqno(ring), seqno);
2465}
2466
2467static int
2468i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2469			    struct intel_ring_buffer *pipelined)
2470{
2471	int ret;
2472
2473	if (obj->fenced_gpu_access) {
2474		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2475			ret = i915_gem_flush_ring(obj->last_fenced_ring,
2476						  0, obj->base.write_domain);
2477			if (ret)
2478				return ret;
 
2479		}
2480
2481		obj->fenced_gpu_access = false;
2482	}
2483
2484	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2485		if (!ring_passed_seqno(obj->last_fenced_ring,
2486				       obj->last_fenced_seqno)) {
2487			ret = i915_wait_request(obj->last_fenced_ring,
2488						obj->last_fenced_seqno);
2489			if (ret)
2490				return ret;
2491		}
2492
2493		obj->last_fenced_seqno = 0;
2494		obj->last_fenced_ring = NULL;
2495	}
 
2496
2497	/* Ensure that all CPU reads are completed before installing a fence
2498	 * and all writes before removing the fence.
 
2499	 */
2500	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2501		mb();
2502
2503	return 0;
2504}
2505
2506int
2507i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2508{
2509	int ret;
2510
2511	if (obj->tiling_mode)
2512		i915_gem_release_mmap(obj);
2513
2514	ret = i915_gem_object_flush_fence(obj, NULL);
2515	if (ret)
2516		return ret;
2517
2518	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2519		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2520		i915_gem_clear_fence_reg(obj->base.dev,
2521					 &dev_priv->fence_regs[obj->fence_reg]);
2522
2523		obj->fence_reg = I915_FENCE_REG_NONE;
2524	}
2525
2526	return 0;
2527}
2528
2529static struct drm_i915_fence_reg *
2530i915_find_fence_reg(struct drm_device *dev,
2531		    struct intel_ring_buffer *pipelined)
2532{
2533	struct drm_i915_private *dev_priv = dev->dev_private;
2534	struct drm_i915_fence_reg *reg, *first, *avail;
2535	int i;
2536
2537	/* First try to find a free reg */
2538	avail = NULL;
2539	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2540		reg = &dev_priv->fence_regs[i];
2541		if (!reg->obj)
2542			return reg;
2543
2544		if (!reg->obj->pin_count)
2545			avail = reg;
2546	}
2547
2548	if (avail == NULL)
2549		return NULL;
2550
2551	/* None available, try to steal one or wait for a user to finish */
2552	avail = first = NULL;
2553	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2554		if (reg->obj->pin_count)
2555			continue;
2556
2557		if (first == NULL)
2558			first = reg;
2559
2560		if (!pipelined ||
2561		    !reg->obj->last_fenced_ring ||
2562		    reg->obj->last_fenced_ring == pipelined) {
2563			avail = reg;
2564			break;
2565		}
2566	}
2567
2568	if (avail == NULL)
2569		avail = first;
2570
2571	return avail;
2572}
2573
2574/**
2575 * i915_gem_object_get_fence - set up a fence reg for an object
2576 * @obj: object to map through a fence reg
2577 * @pipelined: ring on which to queue the change, or NULL for CPU access
2578 * @interruptible: must we wait uninterruptibly for the register to retire?
2579 *
2580 * When mapping objects through the GTT, userspace wants to be able to write
2581 * to them without having to worry about swizzling if the object is tiled.
2582 *
2583 * This function walks the fence regs looking for a free one for @obj,
2584 * stealing one if it can't find any.
2585 *
2586 * It then sets up the reg based on the object's properties: address, pitch
2587 * and tiling format.
2588 */
2589int
2590i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2591			  struct intel_ring_buffer *pipelined)
2592{
2593	struct drm_device *dev = obj->base.dev;
2594	struct drm_i915_private *dev_priv = dev->dev_private;
2595	struct drm_i915_fence_reg *reg;
2596	int ret;
2597
2598	/* XXX disable pipelining. There are bugs. Shocking. */
2599	pipelined = NULL;
2600
2601	/* Just update our place in the LRU if our fence is getting reused. */
2602	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2603		reg = &dev_priv->fence_regs[obj->fence_reg];
2604		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
 
 
 
 
2605
2606		if (obj->tiling_changed) {
2607			ret = i915_gem_object_flush_fence(obj, pipelined);
2608			if (ret)
2609				return ret;
2610
2611			if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2612				pipelined = NULL;
2613
2614			if (pipelined) {
2615				reg->setup_seqno =
2616					i915_gem_next_request_seqno(pipelined);
2617				obj->last_fenced_seqno = reg->setup_seqno;
2618				obj->last_fenced_ring = pipelined;
2619			}
2620
2621			goto update;
2622		}
2623
2624		if (!pipelined) {
2625			if (reg->setup_seqno) {
2626				if (!ring_passed_seqno(obj->last_fenced_ring,
2627						       reg->setup_seqno)) {
2628					ret = i915_wait_request(obj->last_fenced_ring,
2629								reg->setup_seqno);
2630					if (ret)
2631						return ret;
2632				}
2633
2634				reg->setup_seqno = 0;
2635			}
2636		} else if (obj->last_fenced_ring &&
2637			   obj->last_fenced_ring != pipelined) {
2638			ret = i915_gem_object_flush_fence(obj, pipelined);
2639			if (ret)
2640				return ret;
2641		}
2642
2643		return 0;
2644	}
2645
2646	reg = i915_find_fence_reg(dev, pipelined);
2647	if (reg == NULL)
2648		return -ENOSPC;
2649
2650	ret = i915_gem_object_flush_fence(obj, pipelined);
2651	if (ret)
2652		return ret;
2653
2654	if (reg->obj) {
2655		struct drm_i915_gem_object *old = reg->obj;
2656
2657		drm_gem_object_reference(&old->base);
2658
2659		if (old->tiling_mode)
2660			i915_gem_release_mmap(old);
2661
2662		ret = i915_gem_object_flush_fence(old, pipelined);
2663		if (ret) {
2664			drm_gem_object_unreference(&old->base);
2665			return ret;
2666		}
2667
2668		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2669			pipelined = NULL;
2670
2671		old->fence_reg = I915_FENCE_REG_NONE;
2672		old->last_fenced_ring = pipelined;
2673		old->last_fenced_seqno =
2674			pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2675
2676		drm_gem_object_unreference(&old->base);
2677	} else if (obj->last_fenced_seqno == 0)
2678		pipelined = NULL;
2679
2680	reg->obj = obj;
2681	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2682	obj->fence_reg = reg - dev_priv->fence_regs;
2683	obj->last_fenced_ring = pipelined;
2684
2685	reg->setup_seqno =
2686		pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2687	obj->last_fenced_seqno = reg->setup_seqno;
2688
2689update:
2690	obj->tiling_changed = false;
2691	switch (INTEL_INFO(dev)->gen) {
2692	case 7:
2693	case 6:
2694		ret = sandybridge_write_fence_reg(obj, pipelined);
2695		break;
2696	case 5:
2697	case 4:
2698		ret = i965_write_fence_reg(obj, pipelined);
2699		break;
2700	case 3:
2701		ret = i915_write_fence_reg(obj, pipelined);
2702		break;
2703	case 2:
2704		ret = i830_write_fence_reg(obj, pipelined);
2705		break;
2706	}
2707
2708	return ret;
 
2709}
2710
2711/**
2712 * i915_gem_clear_fence_reg - clear out fence register info
2713 * @obj: object to clear
2714 *
2715 * Zeroes out the fence register itself and clears out the associated
2716 * data structures in dev_priv and obj.
2717 */
2718static void
2719i915_gem_clear_fence_reg(struct drm_device *dev,
2720			 struct drm_i915_fence_reg *reg)
2721{
2722	drm_i915_private_t *dev_priv = dev->dev_private;
2723	uint32_t fence_reg = reg - dev_priv->fence_regs;
2724
2725	switch (INTEL_INFO(dev)->gen) {
2726	case 7:
2727	case 6:
2728		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2729		break;
2730	case 5:
2731	case 4:
2732		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2733		break;
2734	case 3:
2735		if (fence_reg >= 8)
2736			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2737		else
2738	case 2:
2739			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2740
2741		I915_WRITE(fence_reg, 0);
2742		break;
2743	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2744
2745	list_del_init(&reg->lru_list);
2746	reg->obj = NULL;
2747	reg->setup_seqno = 0;
2748}
2749
2750/**
2751 * Finds free space in the GTT aperture and binds the object there.
 
2752 */
2753static int
2754i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2755			    unsigned alignment,
2756			    bool map_and_fenceable)
 
 
2757{
2758	struct drm_device *dev = obj->base.dev;
2759	drm_i915_private_t *dev_priv = dev->dev_private;
2760	struct drm_mm_node *free_space;
2761	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2762	u32 size, fence_size, fence_alignment, unfenced_alignment;
2763	bool mappable, fenceable;
 
2764	int ret;
2765
2766	if (obj->madv != I915_MADV_WILLNEED) {
2767		DRM_ERROR("Attempting to bind a purgeable object\n");
2768		return -EINVAL;
2769	}
2770
2771	fence_size = i915_gem_get_gtt_size(dev,
2772					   obj->base.size,
2773					   obj->tiling_mode);
2774	fence_alignment = i915_gem_get_gtt_alignment(dev,
2775						     obj->base.size,
2776						     obj->tiling_mode);
2777	unfenced_alignment =
2778		i915_gem_get_unfenced_gtt_alignment(dev,
2779						    obj->base.size,
2780						    obj->tiling_mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2781
2782	if (alignment == 0)
2783		alignment = map_and_fenceable ? fence_alignment :
2784						unfenced_alignment;
2785	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2786		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2787		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2788	}
2789
2790	size = map_and_fenceable ? fence_size : obj->base.size;
 
 
2791
2792	/* If the object is bigger than the entire aperture, reject it early
2793	 * before evicting everything in a vain attempt to find space.
2794	 */
2795	if (obj->base.size >
2796	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2797		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2798		return -E2BIG;
2799	}
2800
2801 search_free:
2802	if (map_and_fenceable)
2803		free_space =
2804			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2805						    size, alignment, 0,
2806						    dev_priv->mm.gtt_mappable_end,
2807						    0);
2808	else
2809		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2810						size, alignment, 0);
2811
2812	if (free_space != NULL) {
2813		if (map_and_fenceable)
2814			obj->gtt_space =
2815				drm_mm_get_block_range_generic(free_space,
2816							       size, alignment, 0,
2817							       dev_priv->mm.gtt_mappable_end,
2818							       0);
2819		else
2820			obj->gtt_space =
2821				drm_mm_get_block(free_space, size, alignment);
2822	}
2823	if (obj->gtt_space == NULL) {
2824		/* If the gtt is empty and we're still having trouble
2825		 * fitting our object in, we're out of memory.
2826		 */
2827		ret = i915_gem_evict_something(dev, size, alignment,
2828					       map_and_fenceable);
2829		if (ret)
2830			return ret;
2831
2832		goto search_free;
2833	}
2834
2835	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2836	if (ret) {
2837		drm_mm_put_block(obj->gtt_space);
2838		obj->gtt_space = NULL;
2839
2840		if (ret == -ENOMEM) {
2841			/* first try to reclaim some memory by clearing the GTT */
2842			ret = i915_gem_evict_everything(dev, false);
2843			if (ret) {
2844				/* now try to shrink everyone else */
2845				if (gfpmask) {
2846					gfpmask = 0;
2847					goto search_free;
2848				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2849
2850				return -ENOMEM;
2851			}
 
 
 
 
 
 
 
 
 
 
 
 
2852
2853			goto search_free;
2854		}
2855
2856		return ret;
2857	}
2858
2859	ret = i915_gem_gtt_bind_object(obj);
2860	if (ret) {
2861		i915_gem_object_put_pages_gtt(obj);
2862		drm_mm_put_block(obj->gtt_space);
2863		obj->gtt_space = NULL;
2864
2865		if (i915_gem_evict_everything(dev, false))
2866			return ret;
2867
2868		goto search_free;
2869	}
2870
2871	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2872	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2873
2874	/* Assert that the object is not currently in any GPU domain. As it
2875	 * wasn't in the GTT, there shouldn't be any way it could have been in
2876	 * a GPU cache
2877	 */
2878	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2879	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2880
2881	obj->gtt_offset = obj->gtt_space->start;
2882
2883	fenceable =
2884		obj->gtt_space->size == fence_size &&
2885		(obj->gtt_space->start & (fence_alignment -1)) == 0;
2886
2887	mappable =
2888		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2889
2890	obj->map_and_fenceable = mappable && fenceable;
 
2891
2892	trace_i915_gem_object_bind(obj, map_and_fenceable);
2893	return 0;
2894}
2895
2896void
2897i915_gem_clflush_object(struct drm_i915_gem_object *obj)
 
 
 
 
 
 
 
 
 
 
 
2898{
2899	/* If we don't have a page list set up, then we're not pinned
2900	 * to GPU, and we can ignore the cache flush because it'll happen
2901	 * again at bind time.
2902	 */
2903	if (obj->pages == NULL)
2904		return;
 
 
 
 
 
 
 
2905
2906	/* If the GPU is snooping the contents of the CPU cache,
2907	 * we do not need to manually clear the CPU cache lines.  However,
2908	 * the caches are only snooped when the render cache is
2909	 * flushed/invalidated.  As we always have to emit invalidations
2910	 * and flushes when moving into and out of the RENDER domain, correct
2911	 * snooping behaviour occurs naturally as the result of our domain
2912	 * tracking.
2913	 */
2914	if (obj->cache_level != I915_CACHE_NONE)
2915		return;
 
 
2916
2917	trace_i915_gem_object_clflush(obj);
 
 
2918
2919	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2920}
2921
2922/** Flushes any GPU write domain for the object if it's dirty. */
2923static int
2924i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2925{
2926	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2927		return 0;
2928
2929	/* Queue the GPU write cache flushing we need. */
2930	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2931}
2932
2933/** Flushes the GTT write domain for the object if it's dirty. */
2934static void
2935i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2936{
2937	uint32_t old_write_domain;
2938
2939	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2940		return;
2941
2942	/* No actual flushing is required for the GTT write domain.  Writes
2943	 * to it immediately go to main memory as far as we know, so there's
2944	 * no chipset flush.  It also doesn't land in render cache.
2945	 *
2946	 * However, we do have to enforce the order so that all writes through
2947	 * the GTT land before any writes to the device, such as updates to
2948	 * the GATT itself.
2949	 */
2950	wmb();
2951
2952	old_write_domain = obj->base.write_domain;
2953	obj->base.write_domain = 0;
2954
 
 
2955	trace_i915_gem_object_change_domain(obj,
2956					    obj->base.read_domains,
2957					    old_write_domain);
2958}
2959
2960/** Flushes the CPU write domain for the object if it's dirty. */
2961static void
2962i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2963{
2964	uint32_t old_write_domain;
2965
2966	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2967		return;
2968
2969	i915_gem_clflush_object(obj);
2970	intel_gtt_chipset_flush();
 
2971	old_write_domain = obj->base.write_domain;
2972	obj->base.write_domain = 0;
2973
 
 
2974	trace_i915_gem_object_change_domain(obj,
2975					    obj->base.read_domains,
2976					    old_write_domain);
2977}
2978
2979/**
2980 * Moves a single object to the GTT read, and possibly write domain.
2981 *
2982 * This function returns when the move is complete, including waiting on
2983 * flushes to occur.
2984 */
2985int
2986i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2987{
2988	uint32_t old_write_domain, old_read_domains;
 
2989	int ret;
2990
2991	/* Not valid to be called on unbound objects. */
2992	if (obj->gtt_space == NULL)
2993		return -EINVAL;
2994
2995	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2996		return 0;
2997
2998	ret = i915_gem_object_flush_gpu_write_domain(obj);
2999	if (ret)
3000		return ret;
3001
3002	if (obj->pending_gpu_write || write) {
3003		ret = i915_gem_object_wait_rendering(obj);
3004		if (ret)
3005			return ret;
3006	}
 
 
 
 
 
 
3007
3008	i915_gem_object_flush_cpu_write_domain(obj);
3009
 
 
 
 
 
 
 
3010	old_write_domain = obj->base.write_domain;
3011	old_read_domains = obj->base.read_domains;
3012
3013	/* It should now be out of any other write domains, and we can update
3014	 * the domain values for our changes.
3015	 */
3016	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3017	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3018	if (write) {
3019		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3020		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3021		obj->dirty = 1;
3022	}
3023
3024	trace_i915_gem_object_change_domain(obj,
3025					    old_read_domains,
3026					    old_write_domain);
3027
 
 
 
 
 
 
3028	return 0;
3029}
3030
 
 
 
 
 
 
 
 
 
 
 
 
 
3031int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3032				    enum i915_cache_level cache_level)
3033{
3034	int ret;
 
 
 
3035
3036	if (obj->cache_level == cache_level)
3037		return 0;
3038
3039	if (obj->pin_count) {
3040		DRM_DEBUG("can not change the cache level of pinned objects\n");
3041		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3042	}
3043
3044	if (obj->gtt_space) {
3045		ret = i915_gem_object_finish_gpu(obj);
 
 
 
 
 
 
 
 
 
 
 
3046		if (ret)
3047			return ret;
3048
3049		i915_gem_object_finish_gtt(obj);
 
 
 
 
 
 
 
 
3050
3051		/* Before SandyBridge, you could not use tiling or fence
3052		 * registers with snooped memory, so relinquish any fences
3053		 * currently pointing to our region in the aperture.
3054		 */
3055		if (INTEL_INFO(obj->base.dev)->gen < 6) {
 
 
3056			ret = i915_gem_object_put_fence(obj);
3057			if (ret)
3058				return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3059		}
 
 
 
 
 
3060
3061		i915_gem_gtt_rebind_object(obj, cache_level);
 
 
 
 
 
 
 
 
 
3062	}
3063
3064	if (cache_level == I915_CACHE_NONE) {
3065		u32 old_read_domains, old_write_domain;
3066
3067		/* If we're coming from LLC cached, then we haven't
3068		 * actually been tracking whether the data is in the
3069		 * CPU cache or not, since we only allow one bit set
3070		 * in obj->write_domain and have been skipping the clflushes.
3071		 * Just set it to the CPU cache for now.
3072		 */
3073		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3074		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3075
3076		old_read_domains = obj->base.read_domains;
3077		old_write_domain = obj->base.write_domain;
 
3078
3079		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3080		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
 
 
 
 
 
 
 
3081
3082		trace_i915_gem_object_change_domain(obj,
3083						    old_read_domains,
3084						    old_write_domain);
3085	}
3086
3087	obj->cache_level = cache_level;
3088	return 0;
3089}
3090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091/*
3092 * Prepare buffer for display plane (scanout, cursors, etc).
3093 * Can be called from an uninterruptible phase (modesetting) and allows
3094 * any flushes to be pipelined (for pageflips).
3095 *
3096 * For the display plane, we want to be in the GTT but out of any write
3097 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
3098 * ability to pipeline the waits, pinning and any additional subtleties
3099 * that may differentiate the display plane from ordinary buffers.
3100 */
3101int
3102i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3103				     u32 alignment,
3104				     struct intel_ring_buffer *pipelined)
3105{
3106	u32 old_read_domains, old_write_domain;
3107	int ret;
3108
3109	ret = i915_gem_object_flush_gpu_write_domain(obj);
3110	if (ret)
3111		return ret;
3112
3113	if (pipelined != obj->ring) {
3114		ret = i915_gem_object_wait_rendering(obj);
3115		if (ret == -ERESTARTSYS)
3116			return ret;
3117	}
3118
3119	/* The display engine is not coherent with the LLC cache on gen6.  As
3120	 * a result, we make sure that the pinning that is about to occur is
3121	 * done with uncached PTEs. This is lowest common denominator for all
3122	 * chipsets.
3123	 *
3124	 * However for gen6+, we could do better by using the GFDT bit instead
3125	 * of uncaching, which would allow us to flush all the LLC-cached data
3126	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3127	 */
3128	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
 
3129	if (ret)
3130		return ret;
3131
3132	/* As the user may map the buffer once pinned in the display plane
3133	 * (e.g. libkms for the bootup splash), we have to ensure that we
3134	 * always use map_and_fenceable for all scanout buffers.
3135	 */
3136	ret = i915_gem_object_pin(obj, alignment, true);
 
 
3137	if (ret)
3138		return ret;
3139
3140	i915_gem_object_flush_cpu_write_domain(obj);
3141
3142	old_write_domain = obj->base.write_domain;
3143	old_read_domains = obj->base.read_domains;
3144
3145	/* It should now be out of any other write domains, and we can update
3146	 * the domain values for our changes.
3147	 */
3148	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3149	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3150
3151	trace_i915_gem_object_change_domain(obj,
3152					    old_read_domains,
3153					    old_write_domain);
3154
3155	return 0;
 
 
 
 
3156}
3157
3158int
3159i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
 
3160{
3161	int ret;
3162
3163	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3164		return 0;
3165
3166	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3167		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3168		if (ret)
3169			return ret;
3170	}
3171
3172	/* Ensure that we invalidate the GPU's caches and TLBs. */
3173	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3174
3175	return i915_gem_object_wait_rendering(obj);
3176}
3177
3178/**
3179 * Moves a single object to the CPU read, and possibly write domain.
3180 *
3181 * This function returns when the move is complete, including waiting on
3182 * flushes to occur.
3183 */
3184static int
3185i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3186{
3187	uint32_t old_write_domain, old_read_domains;
3188	int ret;
3189
3190	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3191		return 0;
3192
3193	ret = i915_gem_object_flush_gpu_write_domain(obj);
3194	if (ret)
3195		return ret;
3196
3197	ret = i915_gem_object_wait_rendering(obj);
3198	if (ret)
3199		return ret;
3200
3201	i915_gem_object_flush_gtt_write_domain(obj);
3202
3203	/* If we have a partially-valid cache of the object in the CPU,
3204	 * finish invalidating it and free the per-page flags.
3205	 */
3206	i915_gem_object_set_to_full_cpu_read_domain(obj);
3207
3208	old_write_domain = obj->base.write_domain;
3209	old_read_domains = obj->base.read_domains;
3210
3211	/* Flush the CPU cache if it's still invalid. */
3212	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3213		i915_gem_clflush_object(obj);
3214
3215		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3216	}
3217
3218	/* It should now be out of any other write domains, and we can update
3219	 * the domain values for our changes.
3220	 */
3221	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3222
3223	/* If we're writing through the CPU, then the GPU read domains will
3224	 * need to be invalidated at next use.
3225	 */
3226	if (write) {
3227		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3228		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3229	}
3230
3231	trace_i915_gem_object_change_domain(obj,
3232					    old_read_domains,
3233					    old_write_domain);
3234
3235	return 0;
3236}
3237
3238/**
3239 * Moves the object from a partially CPU read to a full one.
3240 *
3241 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3242 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3243 */
3244static void
3245i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3246{
3247	if (!obj->page_cpu_valid)
3248		return;
3249
3250	/* If we're partially in the CPU read domain, finish moving it in.
3251	 */
3252	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3253		int i;
3254
3255		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3256			if (obj->page_cpu_valid[i])
3257				continue;
3258			drm_clflush_pages(obj->pages + i, 1);
3259		}
3260	}
3261
3262	/* Free the page_cpu_valid mappings which are now stale, whether
3263	 * or not we've got I915_GEM_DOMAIN_CPU.
3264	 */
3265	kfree(obj->page_cpu_valid);
3266	obj->page_cpu_valid = NULL;
3267}
3268
3269/**
3270 * Set the CPU read domain on a range of the object.
3271 *
3272 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3273 * not entirely valid.  The page_cpu_valid member of the object flags which
3274 * pages have been flushed, and will be respected by
3275 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3276 * of the whole object.
3277 *
3278 * This function returns when the move is complete, including waiting on
3279 * flushes to occur.
3280 */
3281static int
3282i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3283					  uint64_t offset, uint64_t size)
3284{
3285	uint32_t old_read_domains;
3286	int i, ret;
3287
3288	if (offset == 0 && size == obj->base.size)
3289		return i915_gem_object_set_to_cpu_domain(obj, 0);
3290
3291	ret = i915_gem_object_flush_gpu_write_domain(obj);
3292	if (ret)
3293		return ret;
3294
3295	ret = i915_gem_object_wait_rendering(obj);
3296	if (ret)
3297		return ret;
3298
3299	i915_gem_object_flush_gtt_write_domain(obj);
3300
3301	/* If we're already fully in the CPU read domain, we're done. */
3302	if (obj->page_cpu_valid == NULL &&
3303	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3304		return 0;
3305
3306	/* Otherwise, create/clear the per-page CPU read domain flag if we're
3307	 * newly adding I915_GEM_DOMAIN_CPU
3308	 */
3309	if (obj->page_cpu_valid == NULL) {
3310		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3311					      GFP_KERNEL);
3312		if (obj->page_cpu_valid == NULL)
3313			return -ENOMEM;
3314	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3315		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3316
3317	/* Flush the cache on any pages that are still invalid from the CPU's
3318	 * perspective.
3319	 */
3320	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3321	     i++) {
3322		if (obj->page_cpu_valid[i])
3323			continue;
3324
3325		drm_clflush_pages(obj->pages + i, 1);
3326
3327		obj->page_cpu_valid[i] = 1;
3328	}
3329
3330	/* It should now be out of any other write domains, and we can update
3331	 * the domain values for our changes.
3332	 */
3333	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3334
3335	old_read_domains = obj->base.read_domains;
3336	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3337
3338	trace_i915_gem_object_change_domain(obj,
3339					    old_read_domains,
3340					    obj->base.write_domain);
3341
3342	return 0;
3343}
3344
3345/* Throttle our rendering by waiting until the ring has completed our requests
3346 * emitted over 20 msec ago.
3347 *
3348 * Note that if we were to use the current jiffies each time around the loop,
3349 * we wouldn't escape the function with any frames outstanding if the time to
3350 * render a frame was over 20ms.
3351 *
3352 * This should get us reasonable parallelism between CPU and GPU but also
3353 * relatively low latency when blocking on a particular request to finish.
3354 */
3355static int
3356i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3357{
3358	struct drm_i915_private *dev_priv = dev->dev_private;
3359	struct drm_i915_file_private *file_priv = file->driver_priv;
3360	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3361	struct drm_i915_gem_request *request;
3362	struct intel_ring_buffer *ring = NULL;
3363	u32 seqno = 0;
3364	int ret;
3365
3366	if (atomic_read(&dev_priv->mm.wedged))
3367		return -EIO;
 
 
 
 
 
3368
3369	spin_lock(&file_priv->mm.lock);
3370	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3371		if (time_after_eq(request->emitted_jiffies, recent_enough))
3372			break;
3373
3374		ring = request->ring;
3375		seqno = request->seqno;
 
 
 
 
 
 
3376	}
 
 
 
3377	spin_unlock(&file_priv->mm.lock);
3378
3379	if (seqno == 0)
3380		return 0;
3381
3382	ret = 0;
3383	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3384		/* And wait for the seqno passing without holding any locks and
3385		 * causing extra latency for others. This is safe as the irq
3386		 * generation is designed to be run atomically and so is
3387		 * lockless.
3388		 */
3389		if (ring->irq_get(ring)) {
3390			ret = wait_event_interruptible(ring->irq_queue,
3391						       i915_seqno_passed(ring->get_seqno(ring), seqno)
3392						       || atomic_read(&dev_priv->mm.wedged));
3393			ring->irq_put(ring);
3394
3395			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3396				ret = -EIO;
3397		}
3398	}
3399
3400	if (ret == 0)
3401		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3402
 
 
3403	return ret;
3404}
3405
3406int
3407i915_gem_object_pin(struct drm_i915_gem_object *obj,
3408		    uint32_t alignment,
3409		    bool map_and_fenceable)
3410{
3411	struct drm_device *dev = obj->base.dev;
3412	struct drm_i915_private *dev_priv = dev->dev_private;
3413	int ret;
3414
3415	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3416	WARN_ON(i915_verify_lists(dev));
 
3417
3418	if (obj->gtt_space != NULL) {
3419		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3420		    (map_and_fenceable && !obj->map_and_fenceable)) {
3421			WARN(obj->pin_count,
3422			     "bo is already pinned with incorrect alignment:"
3423			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3424			     " obj->map_and_fenceable=%d\n",
3425			     obj->gtt_offset, alignment,
3426			     map_and_fenceable,
3427			     obj->map_and_fenceable);
3428			ret = i915_gem_object_unbind(obj);
3429			if (ret)
3430				return ret;
3431		}
3432	}
3433
3434	if (obj->gtt_space == NULL) {
3435		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3436						  map_and_fenceable);
3437		if (ret)
3438			return ret;
3439	}
3440
3441	if (obj->pin_count++ == 0) {
3442		if (!obj->active)
3443			list_move_tail(&obj->mm_list,
3444				       &dev_priv->mm.pinned_list);
3445	}
3446	obj->pin_mappable |= map_and_fenceable;
3447
3448	WARN_ON(i915_verify_lists(dev));
3449	return 0;
3450}
3451
3452void
3453i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3454{
3455	struct drm_device *dev = obj->base.dev;
3456	drm_i915_private_t *dev_priv = dev->dev_private;
 
3457
3458	WARN_ON(i915_verify_lists(dev));
3459	BUG_ON(obj->pin_count == 0);
3460	BUG_ON(obj->gtt_space == NULL);
 
 
 
 
3461
3462	if (--obj->pin_count == 0) {
3463		if (!obj->active)
3464			list_move_tail(&obj->mm_list,
3465				       &dev_priv->mm.inactive_list);
3466		obj->pin_mappable = false;
3467	}
3468	WARN_ON(i915_verify_lists(dev));
3469}
3470
3471int
3472i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3473		   struct drm_file *file)
3474{
3475	struct drm_i915_gem_pin *args = data;
3476	struct drm_i915_gem_object *obj;
 
 
 
 
3477	int ret;
3478
3479	ret = i915_mutex_lock_interruptible(dev);
3480	if (ret)
3481		return ret;
3482
3483	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3484	if (&obj->base == NULL) {
3485		ret = -ENOENT;
3486		goto unlock;
3487	}
3488
3489	if (obj->madv != I915_MADV_WILLNEED) {
3490		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3491		ret = -EINVAL;
3492		goto out;
3493	}
3494
3495	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3496		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3497			  args->handle);
3498		ret = -EINVAL;
3499		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3500	}
3501
3502	obj->user_pin_count++;
3503	obj->pin_filp = file;
3504	if (obj->user_pin_count == 1) {
3505		ret = i915_gem_object_pin(obj, args->alignment, true);
 
 
 
 
3506		if (ret)
3507			goto out;
3508	}
3509
3510	/* XXX - flush the CPU caches for pinned objects
3511	 * as the X server doesn't manage domains yet
3512	 */
3513	i915_gem_object_flush_cpu_write_domain(obj);
3514	args->offset = obj->gtt_offset;
3515out:
3516	drm_gem_object_unreference(&obj->base);
3517unlock:
3518	mutex_unlock(&dev->struct_mutex);
3519	return ret;
3520}
3521
3522int
3523i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3524		     struct drm_file *file)
 
 
3525{
3526	struct drm_i915_gem_pin *args = data;
3527	struct drm_i915_gem_object *obj;
3528	int ret;
 
3529
3530	ret = i915_mutex_lock_interruptible(dev);
3531	if (ret)
3532		return ret;
 
 
 
 
 
3533
3534	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3535	if (&obj->base == NULL) {
3536		ret = -ENOENT;
3537		goto unlock;
3538	}
3539
3540	if (obj->pin_filp != file) {
3541		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3542			  args->handle);
3543		ret = -EINVAL;
3544		goto out;
3545	}
3546	obj->user_pin_count--;
3547	if (obj->user_pin_count == 0) {
3548		obj->pin_filp = NULL;
3549		i915_gem_object_unpin(obj);
3550	}
3551
3552out:
3553	drm_gem_object_unreference(&obj->base);
3554unlock:
3555	mutex_unlock(&dev->struct_mutex);
3556	return ret;
3557}
3558
3559int
3560i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3561		    struct drm_file *file)
3562{
3563	struct drm_i915_gem_busy *args = data;
3564	struct drm_i915_gem_object *obj;
3565	int ret;
3566
3567	ret = i915_mutex_lock_interruptible(dev);
3568	if (ret)
3569		return ret;
3570
3571	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3572	if (&obj->base == NULL) {
3573		ret = -ENOENT;
3574		goto unlock;
3575	}
3576
3577	/* Count all active objects as busy, even if they are currently not used
3578	 * by the gpu. Users of this interface expect objects to eventually
3579	 * become non-busy without any further actions, therefore emit any
3580	 * necessary flushes here.
3581	 */
3582	args->busy = obj->active;
3583	if (args->busy) {
3584		/* Unconditionally flush objects, even when the gpu still uses this
3585		 * object. Userspace calling this function indicates that it wants to
3586		 * use this buffer rather sooner than later, so issuing the required
3587		 * flush earlier is beneficial.
3588		 */
3589		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3590			ret = i915_gem_flush_ring(obj->ring,
3591						  0, obj->base.write_domain);
3592		} else if (obj->ring->outstanding_lazy_request ==
3593			   obj->last_rendering_seqno) {
3594			struct drm_i915_gem_request *request;
3595
3596			/* This ring is not being cleared by active usage,
3597			 * so emit a request to do so.
3598			 */
3599			request = kzalloc(sizeof(*request), GFP_KERNEL);
3600			if (request)
3601				ret = i915_add_request(obj->ring, NULL,request);
3602			else
3603				ret = -ENOMEM;
3604		}
3605
3606		/* Update the active list for the hardware's current position.
3607		 * Otherwise this only updates on a delayed timer or when irqs
3608		 * are actually unmasked, and our working set ends up being
3609		 * larger than required.
3610		 */
3611		i915_gem_retire_requests_ring(obj->ring);
3612
3613		args->busy = obj->active;
 
 
 
 
 
3614	}
3615
 
3616	drm_gem_object_unreference(&obj->base);
3617unlock:
3618	mutex_unlock(&dev->struct_mutex);
3619	return ret;
3620}
3621
3622int
3623i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3624			struct drm_file *file_priv)
3625{
3626    return i915_gem_ring_throttle(dev, file_priv);
3627}
3628
3629int
3630i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3631		       struct drm_file *file_priv)
3632{
 
3633	struct drm_i915_gem_madvise *args = data;
3634	struct drm_i915_gem_object *obj;
3635	int ret;
3636
3637	switch (args->madv) {
3638	case I915_MADV_DONTNEED:
3639	case I915_MADV_WILLNEED:
3640	    break;
3641	default:
3642	    return -EINVAL;
3643	}
3644
3645	ret = i915_mutex_lock_interruptible(dev);
3646	if (ret)
3647		return ret;
3648
3649	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3650	if (&obj->base == NULL) {
3651		ret = -ENOENT;
3652		goto unlock;
3653	}
3654
3655	if (obj->pin_count) {
3656		ret = -EINVAL;
3657		goto out;
3658	}
3659
 
 
 
 
 
 
 
 
 
3660	if (obj->madv != __I915_MADV_PURGED)
3661		obj->madv = args->madv;
3662
3663	/* if the object is no longer bound, discard its backing storage */
3664	if (i915_gem_object_is_purgeable(obj) &&
3665	    obj->gtt_space == NULL)
3666		i915_gem_object_truncate(obj);
3667
3668	args->retained = obj->madv != __I915_MADV_PURGED;
3669
3670out:
3671	drm_gem_object_unreference(&obj->base);
3672unlock:
3673	mutex_unlock(&dev->struct_mutex);
3674	return ret;
3675}
3676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3677struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3678						  size_t size)
3679{
3680	struct drm_i915_private *dev_priv = dev->dev_private;
3681	struct drm_i915_gem_object *obj;
3682	struct address_space *mapping;
 
3683
3684	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3685	if (obj == NULL)
3686		return NULL;
3687
3688	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3689		kfree(obj);
3690		return NULL;
3691	}
3692
3693	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3694	mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
 
 
 
 
 
 
 
3695
3696	i915_gem_info_add_obj(dev_priv, size);
3697
3698	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3699	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3700
3701	if (IS_GEN6(dev)) {
3702		/* On Gen6, we can have the GPU use the LLC (the CPU
3703		 * cache) for about a 10% performance improvement
3704		 * compared to uncached.  Graphics requests other than
3705		 * display scanout are coherent with the CPU in
3706		 * accessing this cache.  This means in this mode we
3707		 * don't need to clflush on the CPU side, and on the
3708		 * GPU side we only need to flush internal caches to
3709		 * get data visible to the CPU.
3710		 *
3711		 * However, we maintain the display planes as UC, and so
3712		 * need to rebind when first used as such.
3713		 */
3714		obj->cache_level = I915_CACHE_LLC;
3715	} else
3716		obj->cache_level = I915_CACHE_NONE;
3717
3718	obj->base.driver_private = NULL;
3719	obj->fence_reg = I915_FENCE_REG_NONE;
3720	INIT_LIST_HEAD(&obj->mm_list);
3721	INIT_LIST_HEAD(&obj->gtt_list);
3722	INIT_LIST_HEAD(&obj->ring_list);
3723	INIT_LIST_HEAD(&obj->exec_list);
3724	INIT_LIST_HEAD(&obj->gpu_write_list);
3725	obj->madv = I915_MADV_WILLNEED;
3726	/* Avoid an unnecessary call to unbind on the first bind. */
3727	obj->map_and_fenceable = true;
3728
3729	return obj;
3730}
3731
3732int i915_gem_init_object(struct drm_gem_object *obj)
3733{
3734	BUG();
 
 
 
 
3735
3736	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
3737}
3738
3739static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3740{
 
3741	struct drm_device *dev = obj->base.dev;
3742	drm_i915_private_t *dev_priv = dev->dev_private;
3743	int ret;
3744
3745	ret = i915_gem_object_unbind(obj);
3746	if (ret == -ERESTARTSYS) {
3747		list_move(&obj->mm_list,
3748			  &dev_priv->mm.deferred_free_list);
3749		return;
3750	}
3751
3752	trace_i915_gem_object_destroy(obj);
3753
3754	if (obj->base.map_list.map)
3755		i915_gem_free_mmap_offset(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3756
3757	drm_gem_object_release(&obj->base);
3758	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3759
3760	kfree(obj->page_cpu_valid);
3761	kfree(obj->bit_17);
3762	kfree(obj);
 
 
3763}
3764
3765void i915_gem_free_object(struct drm_gem_object *gem_obj)
 
3766{
3767	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3768	struct drm_device *dev = obj->base.dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3769
3770	while (obj->pin_count > 0)
3771		i915_gem_object_unpin(obj);
 
 
 
 
 
 
 
 
 
3772
3773	if (obj->phys_obj)
3774		i915_gem_detach_phys_object(dev, obj);
 
 
 
 
3775
3776	i915_gem_free_object_tail(obj);
 
3777}
3778
3779int
3780i915_gem_idle(struct drm_device *dev)
3781{
3782	drm_i915_private_t *dev_priv = dev->dev_private;
3783	int ret;
3784
3785	mutex_lock(&dev->struct_mutex);
 
 
 
3786
3787	if (dev_priv->mm.suspended) {
3788		mutex_unlock(&dev->struct_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3789		return 0;
3790	}
3791
3792	ret = i915_gpu_idle(dev);
3793	if (ret) {
3794		mutex_unlock(&dev->struct_mutex);
3795		return ret;
3796	}
3797
3798	/* Under UMS, be paranoid and evict. */
3799	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3800		ret = i915_gem_evict_inactive(dev, false);
3801		if (ret) {
3802			mutex_unlock(&dev->struct_mutex);
3803			return ret;
3804		}
 
 
3805	}
3806
3807	i915_gem_reset_fences(dev);
3808
3809	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3810	 * We need to replace this with a semaphore, or something.
3811	 * And not confound mm.suspended!
3812	 */
3813	dev_priv->mm.suspended = 1;
3814	del_timer_sync(&dev_priv->hangcheck_timer);
3815
3816	i915_kernel_lost_context(dev);
3817	i915_gem_cleanup_ringbuffer(dev);
 
3818
3819	mutex_unlock(&dev->struct_mutex);
 
 
3820
3821	/* Cancel the retire work handler, which should be idle now. */
3822	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3823
3824	return 0;
 
 
 
 
 
 
 
 
 
 
 
3825}
3826
3827int
3828i915_gem_init_ringbuffer(struct drm_device *dev)
3829{
3830	drm_i915_private_t *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3831	int ret;
3832
3833	ret = intel_init_render_ring_buffer(dev);
3834	if (ret)
3835		return ret;
3836
3837	if (HAS_BSD(dev)) {
3838		ret = intel_init_bsd_ring_buffer(dev);
3839		if (ret)
3840			goto cleanup_render_ring;
3841	}
3842
3843	if (HAS_BLT(dev)) {
3844		ret = intel_init_blt_ring_buffer(dev);
3845		if (ret)
3846			goto cleanup_bsd_ring;
3847	}
3848
3849	dev_priv->next_seqno = 1;
 
 
 
 
 
 
 
 
 
 
3850
3851	return 0;
3852
 
 
 
 
3853cleanup_bsd_ring:
3854	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3855cleanup_render_ring:
3856	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
 
3857	return ret;
3858}
3859
3860void
3861i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3862{
3863	drm_i915_private_t *dev_priv = dev->dev_private;
3864	int i;
 
3865
3866	for (i = 0; i < I915_NUM_RINGS; i++)
3867		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3868}
3869
3870int
3871i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3872		       struct drm_file *file_priv)
3873{
3874	drm_i915_private_t *dev_priv = dev->dev_private;
3875	int ret, i;
3876
3877	if (drm_core_check_feature(dev, DRIVER_MODESET))
3878		return 0;
3879
3880	if (atomic_read(&dev_priv->mm.wedged)) {
3881		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3882		atomic_set(&dev_priv->mm.wedged, 0);
 
 
 
 
 
 
 
 
 
 
 
3883	}
3884
3885	mutex_lock(&dev->struct_mutex);
3886	dev_priv->mm.suspended = 0;
3887
3888	ret = i915_gem_init_ringbuffer(dev);
3889	if (ret != 0) {
3890		mutex_unlock(&dev->struct_mutex);
3891		return ret;
 
 
 
 
 
 
 
 
 
 
3892	}
3893
3894	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3895	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3896	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3897	for (i = 0; i < I915_NUM_RINGS; i++) {
3898		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3899		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3900	}
3901	mutex_unlock(&dev->struct_mutex);
3902
3903	ret = drm_irq_install(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3904	if (ret)
3905		goto cleanup_ringbuffer;
3906
3907	return 0;
 
 
 
 
 
 
 
 
 
3908
3909cleanup_ringbuffer:
3910	mutex_lock(&dev->struct_mutex);
3911	i915_gem_cleanup_ringbuffer(dev);
3912	dev_priv->mm.suspended = 1;
3913	mutex_unlock(&dev->struct_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3914
 
 
 
 
 
3915	return ret;
3916}
3917
3918int
3919i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3920		       struct drm_file *file_priv)
3921{
3922	if (drm_core_check_feature(dev, DRIVER_MODESET))
3923		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3924
3925	drm_irq_uninstall(dev);
3926	return i915_gem_idle(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3927}
3928
3929void
3930i915_gem_lastclose(struct drm_device *dev)
3931{
3932	int ret;
 
 
3933
3934	if (drm_core_check_feature(dev, DRIVER_MODESET))
3935		return;
3936
3937	ret = i915_gem_idle(dev);
3938	if (ret)
3939		DRM_ERROR("failed to idle hardware: %d\n", ret);
 
 
 
 
3940}
3941
3942static void
3943init_ring_lists(struct intel_ring_buffer *ring)
3944{
3945	INIT_LIST_HEAD(&ring->active_list);
3946	INIT_LIST_HEAD(&ring->request_list);
3947	INIT_LIST_HEAD(&ring->gpu_write_list);
3948}
3949
3950void
3951i915_gem_load(struct drm_device *dev)
3952{
 
3953	int i;
3954	drm_i915_private_t *dev_priv = dev->dev_private;
3955
3956	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3957	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3958	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3959	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3960	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3961	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3962	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3963	for (i = 0; i < I915_NUM_RINGS; i++)
3964		init_ring_lists(&dev_priv->ring[i]);
3965	for (i = 0; i < 16; i++)
3966		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3967	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3968			  i915_gem_retire_work_handler);
3969	init_completion(&dev_priv->error_completion);
3970
3971	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3972	if (IS_GEN3(dev)) {
3973		u32 tmp = I915_READ(MI_ARB_STATE);
3974		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3975			/* arb state is a masked write, so set bit + bit in mask */
3976			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3977			I915_WRITE(MI_ARB_STATE, tmp);
3978		}
3979	}
3980
3981	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3982
3983	/* Old X drivers will take 0-2 for front, back, depth buffers */
3984	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3985		dev_priv->fence_reg_start = 3;
3986
3987	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3988		dev_priv->num_fence_regs = 16;
3989	else
3990		dev_priv->num_fence_regs = 8;
3991
 
 
 
 
 
 
 
 
 
 
 
 
3992	/* Initialize fence registers to zero */
3993	for (i = 0; i < dev_priv->num_fence_regs; i++) {
3994		i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3995	}
3996
3997	i915_gem_detect_bit_6_swizzle(dev);
3998	init_waitqueue_head(&dev_priv->pending_flip_queue);
3999
4000	dev_priv->mm.interruptible = true;
4001
4002	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4003	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4004	register_shrinker(&dev_priv->mm.inactive_shrinker);
4005}
4006
4007/*
4008 * Create a physically contiguous memory object for this object
4009 * e.g. for cursor + overlay regs
4010 */
4011static int i915_gem_init_phys_object(struct drm_device *dev,
4012				     int id, int size, int align)
4013{
4014	drm_i915_private_t *dev_priv = dev->dev_private;
4015	struct drm_i915_gem_phys_object *phys_obj;
4016	int ret;
4017
4018	if (dev_priv->mm.phys_objs[id - 1] || !size)
4019		return 0;
 
 
4020
4021	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4022	if (!phys_obj)
4023		return -ENOMEM;
4024
4025	phys_obj->id = id;
 
 
 
 
 
 
4026
4027	phys_obj->handle = drm_pci_alloc(dev, size, align);
4028	if (!phys_obj->handle) {
4029		ret = -ENOMEM;
4030		goto kfree_obj;
 
4031	}
4032#ifdef CONFIG_X86
4033	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4034#endif
4035
4036	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4037
4038	return 0;
4039kfree_obj:
4040	kfree(phys_obj);
4041	return ret;
 
4042}
4043
4044static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4045{
4046	drm_i915_private_t *dev_priv = dev->dev_private;
4047	struct drm_i915_gem_phys_object *phys_obj;
4048
4049	if (!dev_priv->mm.phys_objs[id - 1])
4050		return;
4051
4052	phys_obj = dev_priv->mm.phys_objs[id - 1];
4053	if (phys_obj->cur_obj) {
4054		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4055	}
4056
4057#ifdef CONFIG_X86
4058	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4059#endif
4060	drm_pci_free(dev, phys_obj->handle);
4061	kfree(phys_obj);
4062	dev_priv->mm.phys_objs[id - 1] = NULL;
4063}
4064
4065void i915_gem_free_all_phys_object(struct drm_device *dev)
4066{
4067	int i;
4068
4069	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4070		i915_gem_free_phys_object(dev, i);
 
 
 
 
 
4071}
4072
4073void i915_gem_detach_phys_object(struct drm_device *dev,
4074				 struct drm_i915_gem_object *obj)
 
 
 
 
 
 
 
 
 
 
4075{
4076	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4077	char *vaddr;
4078	int i;
4079	int page_count;
 
4080
4081	if (!obj->phys_obj)
4082		return;
4083	vaddr = obj->phys_obj->handle->vaddr;
 
 
 
4084
4085	page_count = obj->base.size / PAGE_SIZE;
4086	for (i = 0; i < page_count; i++) {
4087		struct page *page = shmem_read_mapping_page(mapping, i);
4088		if (!IS_ERR(page)) {
4089			char *dst = kmap_atomic(page);
4090			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4091			kunmap_atomic(dst);
4092
4093			drm_clflush_pages(&page, 1);
4094
4095			set_page_dirty(page);
4096			mark_page_accessed(page);
4097			page_cache_release(page);
4098		}
 
 
4099	}
4100	intel_gtt_chipset_flush();
4101
4102	obj->phys_obj->cur_obj = NULL;
4103	obj->phys_obj = NULL;
 
4104}
4105
4106int
4107i915_gem_attach_phys_object(struct drm_device *dev,
4108			    struct drm_i915_gem_object *obj,
4109			    int id,
4110			    int align)
4111{
4112	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4113	drm_i915_private_t *dev_priv = dev->dev_private;
4114	int ret = 0;
4115	int page_count;
4116	int i;
4117
4118	if (id > I915_MAX_PHYS_OBJECT)
4119		return -EINVAL;
 
 
4120
4121	if (obj->phys_obj) {
4122		if (obj->phys_obj->id == id)
4123			return 0;
4124		i915_gem_detach_phys_object(dev, obj);
4125	}
4126
4127	/* create a new object */
4128	if (!dev_priv->mm.phys_objs[id - 1]) {
4129		ret = i915_gem_init_phys_object(dev, id,
4130						obj->base.size, align);
4131		if (ret) {
4132			DRM_ERROR("failed to init phys object %d size: %zu\n",
4133				  id, obj->base.size);
4134			return ret;
4135		}
 
 
4136	}
4137
4138	/* bind to the object */
4139	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4140	obj->phys_obj->cur_obj = obj;
4141
4142	page_count = obj->base.size / PAGE_SIZE;
 
 
 
 
4143
4144	for (i = 0; i < page_count; i++) {
4145		struct page *page;
4146		char *dst, *src;
 
 
4147
4148		page = shmem_read_mapping_page(mapping, i);
4149		if (IS_ERR(page))
4150			return PTR_ERR(page);
4151
4152		src = kmap_atomic(page);
4153		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4154		memcpy(dst, src, PAGE_SIZE);
4155		kunmap_atomic(src);
4156
4157		mark_page_accessed(page);
4158		page_cache_release(page);
4159	}
4160
4161	return 0;
4162}
4163
4164static int
4165i915_gem_phys_pwrite(struct drm_device *dev,
4166		     struct drm_i915_gem_object *obj,
4167		     struct drm_i915_gem_pwrite *args,
4168		     struct drm_file *file_priv)
4169{
4170	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4171	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4172
4173	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4174		unsigned long unwritten;
4175
4176		/* The physical object once assigned is fixed for the lifetime
4177		 * of the obj, so we can safely drop the lock and continue
4178		 * to access vaddr.
4179		 */
4180		mutex_unlock(&dev->struct_mutex);
4181		unwritten = copy_from_user(vaddr, user_data, args->size);
4182		mutex_lock(&dev->struct_mutex);
4183		if (unwritten)
4184			return -EFAULT;
4185	}
4186
4187	intel_gtt_chipset_flush();
 
 
 
 
 
 
4188	return 0;
4189}
4190
4191void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4192{
4193	struct drm_i915_file_private *file_priv = file->driver_priv;
 
 
 
4194
4195	/* Clean up our request list when the client is going away, so that
4196	 * later retire_requests won't dereference our soon-to-be-gone
4197	 * file_priv.
4198	 */
4199	spin_lock(&file_priv->mm.lock);
4200	while (!list_empty(&file_priv->mm.request_list)) {
4201		struct drm_i915_gem_request *request;
4202
4203		request = list_first_entry(&file_priv->mm.request_list,
4204					   struct drm_i915_gem_request,
4205					   client_list);
4206		list_del(&request->client_list);
4207		request->file_priv = NULL;
4208	}
4209	spin_unlock(&file_priv->mm.lock);
4210}
4211
4212static int
4213i915_gpu_is_active(struct drm_device *dev)
 
4214{
4215	drm_i915_private_t *dev_priv = dev->dev_private;
4216	int lists_empty;
4217
4218	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4219		      list_empty(&dev_priv->mm.active_list);
 
4220
4221	return !lists_empty;
 
 
4222}
4223
4224static int
4225i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
 
 
4226{
4227	struct drm_i915_private *dev_priv =
4228		container_of(shrinker,
4229			     struct drm_i915_private,
4230			     mm.inactive_shrinker);
4231	struct drm_device *dev = dev_priv->dev;
4232	struct drm_i915_gem_object *obj, *next;
4233	int nr_to_scan = sc->nr_to_scan;
4234	int cnt;
4235
4236	if (!mutex_trylock(&dev->struct_mutex))
4237		return 0;
 
4238
4239	/* "fast-path" to count number of available objects */
4240	if (nr_to_scan == 0) {
4241		cnt = 0;
4242		list_for_each_entry(obj,
4243				    &dev_priv->mm.inactive_list,
4244				    mm_list)
4245			cnt++;
4246		mutex_unlock(&dev->struct_mutex);
4247		return cnt / 100 * sysctl_vfs_cache_pressure;
4248	}
4249
4250rescan:
4251	/* first scan for clean buffers */
4252	i915_gem_retire_requests(dev);
4253
4254	list_for_each_entry_safe(obj, next,
4255				 &dev_priv->mm.inactive_list,
4256				 mm_list) {
4257		if (i915_gem_object_is_purgeable(obj)) {
4258			if (i915_gem_object_unbind(obj) == 0 &&
4259			    --nr_to_scan == 0)
4260				break;
4261		}
4262	}
4263
4264	/* second pass, evict/count anything still on the inactive list */
4265	cnt = 0;
4266	list_for_each_entry_safe(obj, next,
4267				 &dev_priv->mm.inactive_list,
4268				 mm_list) {
4269		if (nr_to_scan &&
4270		    i915_gem_object_unbind(obj) == 0)
4271			nr_to_scan--;
4272		else
4273			cnt++;
4274	}
4275
4276	if (nr_to_scan && i915_gpu_is_active(dev)) {
4277		/*
4278		 * We are desperate for pages, so as a last resort, wait
4279		 * for the GPU to finish and discard whatever we can.
4280		 * This has a dramatic impact to reduce the number of
4281		 * OOM-killer events whilst running the GPU aggressively.
4282		 */
4283		if (i915_gpu_idle(dev) == 0)
4284			goto rescan;
4285	}
4286	mutex_unlock(&dev->struct_mutex);
4287	return cnt / 100 * sysctl_vfs_cache_pressure;
4288}
v4.6
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drmP.h>
  29#include <drm/drm_vma_manager.h>
  30#include <drm/i915_drm.h>
  31#include "i915_drv.h"
  32#include "i915_vgpu.h"
  33#include "i915_trace.h"
  34#include "intel_drv.h"
  35#include <linux/shmem_fs.h>
  36#include <linux/slab.h>
  37#include <linux/swap.h>
  38#include <linux/pci.h>
  39#include <linux/dma-buf.h>
  40
  41#define RQ_BUG_ON(expr)
  42
 
  43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  45static void
  46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
  47static void
  48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
 
 
 
 
 
 
 
 
 
 
 
 
  49
  50static bool cpu_cache_is_coherent(struct drm_device *dev,
  51				  enum i915_cache_level level)
  52{
  53	return HAS_LLC(dev) || level != I915_CACHE_NONE;
  54}
  55
  56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
  57{
  58	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  59		return true;
  60
  61	return obj->pin_display;
  62}
  63
  64/* some bookkeeping */
  65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  66				  size_t size)
  67{
  68	spin_lock(&dev_priv->mm.object_stat_lock);
  69	dev_priv->mm.object_count++;
  70	dev_priv->mm.object_memory += size;
  71	spin_unlock(&dev_priv->mm.object_stat_lock);
  72}
  73
  74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  75				     size_t size)
  76{
  77	spin_lock(&dev_priv->mm.object_stat_lock);
  78	dev_priv->mm.object_count--;
  79	dev_priv->mm.object_memory -= size;
  80	spin_unlock(&dev_priv->mm.object_stat_lock);
  81}
  82
  83static int
  84i915_gem_wait_for_error(struct i915_gpu_error *error)
  85{
 
 
 
  86	int ret;
  87
  88#define EXIT_COND (!i915_reset_in_progress(error) || \
  89		   i915_terminally_wedged(error))
  90	if (EXIT_COND)
  91		return 0;
  92
  93	/*
  94	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  95	 * userspace. If it takes that long something really bad is going on and
  96	 * we should simply try to bail out and fail as gracefully as possible.
  97	 */
  98	ret = wait_event_interruptible_timeout(error->reset_queue,
  99					       EXIT_COND,
 100					       10*HZ);
 101	if (ret == 0) {
 102		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
 103		return -EIO;
 104	} else if (ret < 0) {
 105		return ret;
 
 
 
 
 
 
 
 
 
 
 106	}
 107#undef EXIT_COND
 108
 109	return 0;
 110}
 111
 112int i915_mutex_lock_interruptible(struct drm_device *dev)
 113{
 114	struct drm_i915_private *dev_priv = dev->dev_private;
 115	int ret;
 116
 117	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
 118	if (ret)
 119		return ret;
 120
 121	ret = mutex_lock_interruptible(&dev->struct_mutex);
 122	if (ret)
 123		return ret;
 124
 125	WARN_ON(i915_verify_lists(dev));
 126	return 0;
 127}
 128
 129int
 130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 131			    struct drm_file *file)
 132{
 133	struct drm_i915_private *dev_priv = dev->dev_private;
 134	struct drm_i915_gem_get_aperture *args = data;
 135	struct i915_gtt *ggtt = &dev_priv->gtt;
 136	struct i915_vma *vma;
 137	size_t pinned;
 138
 139	pinned = 0;
 140	mutex_lock(&dev->struct_mutex);
 141	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
 142		if (vma->pin_count)
 143			pinned += vma->node.size;
 144	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
 145		if (vma->pin_count)
 146			pinned += vma->node.size;
 147	mutex_unlock(&dev->struct_mutex);
 148
 149	args->aper_size = dev_priv->gtt.base.total;
 150	args->aper_available_size = args->aper_size - pinned;
 151
 152	return 0;
 153}
 154
 155static int
 156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
 
 
 157{
 158	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
 159	char *vaddr = obj->phys_handle->vaddr;
 160	struct sg_table *st;
 161	struct scatterlist *sg;
 162	int i;
 163
 164	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
 165		return -EINVAL;
 166
 167	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 168		struct page *page;
 169		char *src;
 170
 171		page = shmem_read_mapping_page(mapping, i);
 172		if (IS_ERR(page))
 173			return PTR_ERR(page);
 174
 175		src = kmap_atomic(page);
 176		memcpy(vaddr, src, PAGE_SIZE);
 177		drm_clflush_virt_range(vaddr, PAGE_SIZE);
 178		kunmap_atomic(src);
 179
 180		put_page(page);
 181		vaddr += PAGE_SIZE;
 182	}
 183
 184	i915_gem_chipset_flush(obj->base.dev);
 185
 186	st = kmalloc(sizeof(*st), GFP_KERNEL);
 187	if (st == NULL)
 188		return -ENOMEM;
 189
 190	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
 191		kfree(st);
 192		return -ENOMEM;
 193	}
 194
 195	sg = st->sgl;
 196	sg->offset = 0;
 197	sg->length = obj->base.size;
 198
 199	sg_dma_address(sg) = obj->phys_handle->busaddr;
 200	sg_dma_len(sg) = obj->base.size;
 201
 202	obj->pages = st;
 203	return 0;
 204}
 205
 206static void
 207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
 208{
 209	int ret;
 210
 211	BUG_ON(obj->madv == __I915_MADV_PURGED);
 212
 213	ret = i915_gem_object_set_to_cpu_domain(obj, true);
 214	if (ret) {
 215		/* In the event of a disaster, abandon all caches and
 216		 * hope for the best.
 217		 */
 218		WARN_ON(ret != -EIO);
 219		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
 220	}
 221
 222	if (obj->madv == I915_MADV_DONTNEED)
 223		obj->dirty = 0;
 224
 225	if (obj->dirty) {
 226		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
 227		char *vaddr = obj->phys_handle->vaddr;
 228		int i;
 229
 230		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 231			struct page *page;
 232			char *dst;
 233
 234			page = shmem_read_mapping_page(mapping, i);
 235			if (IS_ERR(page))
 236				continue;
 237
 238			dst = kmap_atomic(page);
 239			drm_clflush_virt_range(vaddr, PAGE_SIZE);
 240			memcpy(dst, vaddr, PAGE_SIZE);
 241			kunmap_atomic(dst);
 242
 243			set_page_dirty(page);
 244			if (obj->madv == I915_MADV_WILLNEED)
 245				mark_page_accessed(page);
 246			put_page(page);
 247			vaddr += PAGE_SIZE;
 248		}
 249		obj->dirty = 0;
 250	}
 251
 252	sg_free_table(obj->pages);
 253	kfree(obj->pages);
 254}
 255
 256static void
 257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
 258{
 259	drm_pci_free(obj->base.dev, obj->phys_handle);
 260}
 261
 262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
 263	.get_pages = i915_gem_object_get_pages_phys,
 264	.put_pages = i915_gem_object_put_pages_phys,
 265	.release = i915_gem_object_release_phys,
 266};
 267
 268static int
 269drop_pages(struct drm_i915_gem_object *obj)
 270{
 271	struct i915_vma *vma, *next;
 272	int ret;
 273
 274	drm_gem_object_reference(&obj->base);
 275	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
 276		if (i915_vma_unbind(vma))
 277			break;
 278
 279	ret = i915_gem_object_put_pages(obj);
 280	drm_gem_object_unreference(&obj->base);
 281
 282	return ret;
 283}
 284
 285int
 286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
 287			    int align)
 288{
 289	drm_dma_handle_t *phys;
 290	int ret;
 291
 292	if (obj->phys_handle) {
 293		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
 294			return -EBUSY;
 295
 296		return 0;
 297	}
 298
 299	if (obj->madv != I915_MADV_WILLNEED)
 300		return -EFAULT;
 301
 302	if (obj->base.filp == NULL)
 303		return -EINVAL;
 304
 305	ret = drop_pages(obj);
 306	if (ret)
 307		return ret;
 308
 309	/* create a new object */
 310	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
 311	if (!phys)
 312		return -ENOMEM;
 313
 314	obj->phys_handle = phys;
 315	obj->ops = &i915_gem_phys_ops;
 316
 317	return i915_gem_object_get_pages(obj);
 318}
 319
 320static int
 321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
 322		     struct drm_i915_gem_pwrite *args,
 323		     struct drm_file *file_priv)
 324{
 325	struct drm_device *dev = obj->base.dev;
 326	void *vaddr = obj->phys_handle->vaddr + args->offset;
 327	char __user *user_data = to_user_ptr(args->data_ptr);
 328	int ret = 0;
 329
 330	/* We manually control the domain here and pretend that it
 331	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
 332	 */
 333	ret = i915_gem_object_wait_rendering(obj, false);
 334	if (ret)
 335		return ret;
 336
 337	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 338	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
 339		unsigned long unwritten;
 
 
 340
 341		/* The physical object once assigned is fixed for the lifetime
 342		 * of the obj, so we can safely drop the lock and continue
 343		 * to access vaddr.
 344		 */
 345		mutex_unlock(&dev->struct_mutex);
 346		unwritten = copy_from_user(vaddr, user_data, args->size);
 347		mutex_lock(&dev->struct_mutex);
 348		if (unwritten) {
 349			ret = -EFAULT;
 350			goto out;
 351		}
 352	}
 353
 354	drm_clflush_virt_range(vaddr, args->size);
 355	i915_gem_chipset_flush(dev);
 356
 357out:
 358	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
 359	return ret;
 360}
 361
 362void *i915_gem_object_alloc(struct drm_device *dev)
 363{
 364	struct drm_i915_private *dev_priv = dev->dev_private;
 365	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
 366}
 367
 368void i915_gem_object_free(struct drm_i915_gem_object *obj)
 369{
 370	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
 371	kmem_cache_free(dev_priv->objects, obj);
 372}
 373
 374static int
 375i915_gem_create(struct drm_file *file,
 376		struct drm_device *dev,
 377		uint64_t size,
 378		uint32_t *handle_p)
 379{
 380	struct drm_i915_gem_object *obj;
 381	int ret;
 382	u32 handle;
 383
 384	size = roundup(size, PAGE_SIZE);
 385	if (size == 0)
 386		return -EINVAL;
 387
 388	/* Allocate the new object */
 389	obj = i915_gem_alloc_object(dev, size);
 390	if (obj == NULL)
 391		return -ENOMEM;
 392
 393	ret = drm_gem_handle_create(file, &obj->base, &handle);
 
 
 
 
 
 
 
 394	/* drop reference from allocate - handle holds it now */
 395	drm_gem_object_unreference_unlocked(&obj->base);
 396	if (ret)
 397		return ret;
 398
 399	*handle_p = handle;
 400	return 0;
 401}
 402
 403int
 404i915_gem_dumb_create(struct drm_file *file,
 405		     struct drm_device *dev,
 406		     struct drm_mode_create_dumb *args)
 407{
 408	/* have to work out size/pitch and return them */
 409	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
 410	args->size = args->pitch * args->height;
 411	return i915_gem_create(file, dev,
 412			       args->size, &args->handle);
 413}
 414
 
 
 
 
 
 
 
 415/**
 416 * Creates a new mm object and returns a handle to it.
 417 */
 418int
 419i915_gem_create_ioctl(struct drm_device *dev, void *data,
 420		      struct drm_file *file)
 421{
 422	struct drm_i915_gem_create *args = data;
 423
 424	return i915_gem_create(file, dev,
 425			       args->size, &args->handle);
 426}
 427
 428static inline int
 429__copy_to_user_swizzled(char __user *cpu_vaddr,
 430			const char *gpu_vaddr, int gpu_offset,
 431			int length)
 432{
 433	int ret, cpu_offset = 0;
 434
 435	while (length > 0) {
 436		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 437		int this_length = min(cacheline_end - gpu_offset, length);
 438		int swizzled_gpu_offset = gpu_offset ^ 64;
 
 
 
 
 
 
 
 
 439
 440		ret = __copy_to_user(cpu_vaddr + cpu_offset,
 441				     gpu_vaddr + swizzled_gpu_offset,
 442				     this_length);
 443		if (ret)
 444			return ret + length;
 445
 446		cpu_offset += this_length;
 447		gpu_offset += this_length;
 448		length -= this_length;
 449	}
 450
 451	return 0;
 
 452}
 453
 454static inline int
 455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
 456			  const char __user *cpu_vaddr,
 457			  int length)
 458{
 459	int ret, cpu_offset = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460
 
 
 
 461	while (length > 0) {
 462		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 463		int this_length = min(cacheline_end - gpu_offset, length);
 464		int swizzled_gpu_offset = gpu_offset ^ 64;
 465
 466		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
 467				       cpu_vaddr + cpu_offset,
 468				       this_length);
 469		if (ret)
 470			return ret + length;
 471
 
 
 
 472		cpu_offset += this_length;
 473		gpu_offset += this_length;
 474		length -= this_length;
 475	}
 476
 477	return 0;
 
 478}
 479
 480/*
 481 * Pins the specified object's pages and synchronizes the object with
 482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 483 * flush the object from the CPU cache.
 484 */
 485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
 486				    int *needs_clflush)
 
 
 
 487{
 488	int ret;
 
 
 
 
 489
 490	*needs_clflush = 0;
 
 491
 492	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
 493		return -EINVAL;
 494
 495	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
 496		/* If we're not in the cpu read domain, set ourself into the gtt
 497		 * read domain and manually flush cachelines (if required). This
 498		 * optimizes for the case when the gpu will dirty the data
 499		 * anyway again before the next pread happens. */
 500		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
 501							obj->cache_level);
 502		ret = i915_gem_object_wait_rendering(obj, true);
 503		if (ret)
 504			return ret;
 505	}
 506
 507	ret = i915_gem_object_get_pages(obj);
 508	if (ret)
 509		return ret;
 
 
 
 
 
 
 510
 511	i915_gem_object_pin_pages(obj);
 
 
 512
 513	return ret;
 514}
 
 
 
 515
 516/* Per-page copy function for the shmem pread fastpath.
 517 * Flushes invalid cachelines before reading the target if
 518 * needs_clflush is set. */
 519static int
 520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
 521		 char __user *user_data,
 522		 bool page_do_bit17_swizzling, bool needs_clflush)
 523{
 524	char *vaddr;
 525	int ret;
 526
 527	if (unlikely(page_do_bit17_swizzling))
 528		return -EINVAL;
 529
 530	vaddr = kmap_atomic(page);
 531	if (needs_clflush)
 532		drm_clflush_virt_range(vaddr + shmem_page_offset,
 533				       page_length);
 534	ret = __copy_to_user_inatomic(user_data,
 535				      vaddr + shmem_page_offset,
 536				      page_length);
 537	kunmap_atomic(vaddr);
 538
 539	return ret ? -EFAULT : 0;
 540}
 541
 542static void
 543shmem_clflush_swizzled_range(char *addr, unsigned long length,
 544			     bool swizzled)
 545{
 546	if (unlikely(swizzled)) {
 547		unsigned long start = (unsigned long) addr;
 548		unsigned long end = (unsigned long) addr + length;
 549
 550		/* For swizzling simply ensure that we always flush both
 551		 * channels. Lame, but simple and it works. Swizzled
 552		 * pwrite/pread is far from a hotpath - current userspace
 553		 * doesn't use it at all. */
 554		start = round_down(start, 128);
 555		end = round_up(end, 128);
 556
 557		drm_clflush_virt_range((void *)start, end - start);
 558	} else {
 559		drm_clflush_virt_range(addr, length);
 560	}
 561
 
 562}
 563
 564/* Only difference to the fast-path function is that this can handle bit17
 565 * and uses non-atomic copy and kmap functions. */
 
 
 
 
 566static int
 567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
 568		 char __user *user_data,
 569		 bool page_do_bit17_swizzling, bool needs_clflush)
 
 570{
 571	char *vaddr;
 
 
 
 
 
 
 
 
 572	int ret;
 
 
 573
 574	vaddr = kmap(page);
 575	if (needs_clflush)
 576		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 577					     page_length,
 578					     page_do_bit17_swizzling);
 579
 580	if (page_do_bit17_swizzling)
 581		ret = __copy_to_user_swizzled(user_data,
 582					      vaddr, shmem_page_offset,
 583					      page_length);
 584	else
 585		ret = __copy_to_user(user_data,
 586				     vaddr + shmem_page_offset,
 587				     page_length);
 588	kunmap(page);
 589
 590	return ret ? - EFAULT : 0;
 591}
 
 
 
 
 
 592
 593static int
 594i915_gem_shmem_pread(struct drm_device *dev,
 595		     struct drm_i915_gem_object *obj,
 596		     struct drm_i915_gem_pread *args,
 597		     struct drm_file *file)
 598{
 599	char __user *user_data;
 600	ssize_t remain;
 601	loff_t offset;
 602	int shmem_page_offset, page_length, ret = 0;
 603	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 604	int prefaulted = 0;
 605	int needs_clflush = 0;
 606	struct sg_page_iter sg_iter;
 607
 608	user_data = to_user_ptr(args->data_ptr);
 609	remain = args->size;
 
 
 
 
 
 
 
 
 610
 611	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 
 
 
 
 612
 613	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
 614	if (ret)
 615		return ret;
 616
 617	offset = args->offset;
 618
 619	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
 620			 offset >> PAGE_SHIFT) {
 621		struct page *page = sg_page_iter_page(&sg_iter);
 622
 623		if (remain <= 0)
 624			break;
 625
 626		/* Operation in this page
 627		 *
 628		 * shmem_page_offset = offset within page in shmem file
 
 
 629		 * page_length = bytes to copy for this page
 630		 */
 631		shmem_page_offset = offset_in_page(offset);
 
 
 
 632		page_length = remain;
 633		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 634			page_length = PAGE_SIZE - shmem_page_offset;
 
 
 635
 636		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 637			(page_to_phys(page) & (1 << 17)) != 0;
 
 
 
 638
 639		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
 640				       user_data, page_do_bit17_swizzling,
 641				       needs_clflush);
 642		if (ret == 0)
 643			goto next_page;
 644
 645		mutex_unlock(&dev->struct_mutex);
 646
 647		if (likely(!i915.prefault_disable) && !prefaulted) {
 648			ret = fault_in_multipages_writeable(user_data, remain);
 649			/* Userspace is tricking us, but we've already clobbered
 650			 * its pages with the prefault and promised to write the
 651			 * data up to the first fault. Hence ignore any errors
 652			 * and just continue. */
 653			(void)ret;
 654			prefaulted = 1;
 655		}
 656
 657		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
 658				       user_data, page_do_bit17_swizzling,
 659				       needs_clflush);
 660
 661		mutex_lock(&dev->struct_mutex);
 662
 663		if (ret)
 664			goto out;
 665
 666next_page:
 667		remain -= page_length;
 668		user_data += page_length;
 669		offset += page_length;
 670	}
 671
 672out:
 673	i915_gem_object_unpin_pages(obj);
 
 
 
 
 
 674
 675	return ret;
 676}
 677
 678/**
 679 * Reads data from the object referenced by handle.
 680 *
 681 * On error, the contents of *data are undefined.
 682 */
 683int
 684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 685		     struct drm_file *file)
 686{
 687	struct drm_i915_gem_pread *args = data;
 688	struct drm_i915_gem_object *obj;
 689	int ret = 0;
 690
 691	if (args->size == 0)
 692		return 0;
 693
 694	if (!access_ok(VERIFY_WRITE,
 695		       to_user_ptr(args->data_ptr),
 696		       args->size))
 697		return -EFAULT;
 698
 
 
 
 
 
 699	ret = i915_mutex_lock_interruptible(dev);
 700	if (ret)
 701		return ret;
 702
 703	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 704	if (&obj->base == NULL) {
 705		ret = -ENOENT;
 706		goto unlock;
 707	}
 708
 709	/* Bounds check source.  */
 710	if (args->offset > obj->base.size ||
 711	    args->size > obj->base.size - args->offset) {
 712		ret = -EINVAL;
 713		goto out;
 714	}
 715
 716	/* prime objects have no backing filp to GEM pread/pwrite
 717	 * pages from.
 718	 */
 719	if (!obj->base.filp) {
 720		ret = -EINVAL;
 
 721		goto out;
 722	}
 723
 724	trace_i915_gem_object_pread(obj, args->offset, args->size);
 725
 726	ret = i915_gem_shmem_pread(dev, obj, args, file);
 
 
 727
 728out:
 729	drm_gem_object_unreference(&obj->base);
 730unlock:
 731	mutex_unlock(&dev->struct_mutex);
 732	return ret;
 733}
 734
 735/* This is the fast write path which cannot handle
 736 * page faults in the source data
 737 */
 738
 739static inline int
 740fast_user_write(struct io_mapping *mapping,
 741		loff_t page_base, int page_offset,
 742		char __user *user_data,
 743		int length)
 744{
 745	void __iomem *vaddr_atomic;
 746	void *vaddr;
 747	unsigned long unwritten;
 748
 749	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
 750	/* We can use the cpu mem copy function because this is X86. */
 751	vaddr = (void __force*)vaddr_atomic + page_offset;
 752	unwritten = __copy_from_user_inatomic_nocache(vaddr,
 753						      user_data, length);
 754	io_mapping_unmap_atomic(vaddr_atomic);
 755	return unwritten;
 756}
 757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758/**
 759 * This is the fast pwrite path, where we copy the data directly from the
 760 * user into the GTT, uncached.
 761 */
 762static int
 763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
 764			 struct drm_i915_gem_object *obj,
 765			 struct drm_i915_gem_pwrite *args,
 766			 struct drm_file *file)
 767{
 768	struct drm_i915_private *dev_priv = dev->dev_private;
 769	ssize_t remain;
 770	loff_t offset, page_base;
 771	char __user *user_data;
 772	int page_offset, page_length, ret;
 773
 774	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
 775	if (ret)
 776		goto out;
 777
 778	ret = i915_gem_object_set_to_gtt_domain(obj, true);
 779	if (ret)
 780		goto out_unpin;
 781
 782	ret = i915_gem_object_put_fence(obj);
 783	if (ret)
 784		goto out_unpin;
 785
 786	user_data = to_user_ptr(args->data_ptr);
 787	remain = args->size;
 788
 789	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
 790
 791	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
 792
 793	while (remain > 0) {
 794		/* Operation in this page
 795		 *
 796		 * page_base = page offset within aperture
 797		 * page_offset = offset within page
 798		 * page_length = bytes to copy for this page
 799		 */
 800		page_base = offset & PAGE_MASK;
 801		page_offset = offset_in_page(offset);
 802		page_length = remain;
 803		if ((page_offset + remain) > PAGE_SIZE)
 804			page_length = PAGE_SIZE - page_offset;
 805
 806		/* If we get a fault while copying data, then (presumably) our
 807		 * source page isn't available.  Return the error and we'll
 808		 * retry in the slow path.
 809		 */
 810		if (fast_user_write(dev_priv->gtt.mappable, page_base,
 811				    page_offset, user_data, page_length)) {
 812			ret = -EFAULT;
 813			goto out_flush;
 814		}
 815
 816		remain -= page_length;
 817		user_data += page_length;
 818		offset += page_length;
 819	}
 820
 821out_flush:
 822	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
 823out_unpin:
 824	i915_gem_object_ggtt_unpin(obj);
 825out:
 826	return ret;
 827}
 828
 829/* Per-page copy function for the shmem pwrite fastpath.
 830 * Flushes invalid cachelines before writing to the target if
 831 * needs_clflush_before is set and flushes out any written cachelines after
 832 * writing if needs_clflush is set. */
 
 
 
 833static int
 834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
 835		  char __user *user_data,
 836		  bool page_do_bit17_swizzling,
 837		  bool needs_clflush_before,
 838		  bool needs_clflush_after)
 839{
 840	char *vaddr;
 
 
 
 
 
 
 
 841	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842
 843	if (unlikely(page_do_bit17_swizzling))
 844		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845
 846	vaddr = kmap_atomic(page);
 847	if (needs_clflush_before)
 848		drm_clflush_virt_range(vaddr + shmem_page_offset,
 849				       page_length);
 850	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
 851					user_data, page_length);
 852	if (needs_clflush_after)
 853		drm_clflush_virt_range(vaddr + shmem_page_offset,
 854				       page_length);
 855	kunmap_atomic(vaddr);
 856
 857	return ret ? -EFAULT : 0;
 858}
 859
 860/* Only difference to the fast-path function is that this can handle bit17
 861 * and uses non-atomic copy and kmap functions. */
 
 
 862static int
 863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
 864		  char __user *user_data,
 865		  bool page_do_bit17_swizzling,
 866		  bool needs_clflush_before,
 867		  bool needs_clflush_after)
 868{
 869	char *vaddr;
 870	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871
 872	vaddr = kmap(page);
 873	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
 874		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 875					     page_length,
 876					     page_do_bit17_swizzling);
 877	if (page_do_bit17_swizzling)
 878		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
 879						user_data,
 880						page_length);
 881	else
 882		ret = __copy_from_user(vaddr + shmem_page_offset,
 883				       user_data,
 884				       page_length);
 885	if (needs_clflush_after)
 886		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 887					     page_length,
 888					     page_do_bit17_swizzling);
 889	kunmap(page);
 
 
 
 
 
 
 
 
 890
 891	return ret ? -EFAULT : 0;
 892}
 893
 
 
 
 
 
 
 
 894static int
 895i915_gem_shmem_pwrite(struct drm_device *dev,
 896		      struct drm_i915_gem_object *obj,
 897		      struct drm_i915_gem_pwrite *args,
 898		      struct drm_file *file)
 899{
 
 
 
 900	ssize_t remain;
 901	loff_t offset;
 902	char __user *user_data;
 903	int shmem_page_offset, page_length, ret = 0;
 904	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 905	int hit_slowpath = 0;
 906	int needs_clflush_after = 0;
 907	int needs_clflush_before = 0;
 908	struct sg_page_iter sg_iter;
 909
 910	user_data = to_user_ptr(args->data_ptr);
 911	remain = args->size;
 912
 913	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 
 
 
 
 
 
 
 
 
 
 914
 915	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 916		/* If we're not in the cpu write domain, set ourself into the gtt
 917		 * write domain and manually flush cachelines (if required). This
 918		 * optimizes for the case when the gpu will use the data
 919		 * right away and we therefore have to clflush anyway. */
 920		needs_clflush_after = cpu_write_needs_clflush(obj);
 921		ret = i915_gem_object_wait_rendering(obj, false);
 922		if (ret)
 923			return ret;
 924	}
 925	/* Same trick applies to invalidate partially written cachelines read
 926	 * before writing. */
 927	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
 928		needs_clflush_before =
 929			!cpu_cache_is_coherent(dev, obj->cache_level);
 930
 931	ret = i915_gem_object_get_pages(obj);
 932	if (ret)
 933		return ret;
 934
 935	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 936
 937	i915_gem_object_pin_pages(obj);
 938
 939	offset = args->offset;
 940	obj->dirty = 1;
 941
 942	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
 943			 offset >> PAGE_SHIFT) {
 944		struct page *page = sg_page_iter_page(&sg_iter);
 945		int partial_cacheline_write;
 946
 947		if (remain <= 0)
 948			break;
 949
 950		/* Operation in this page
 951		 *
 952		 * shmem_page_offset = offset within page in shmem file
 
 
 953		 * page_length = bytes to copy for this page
 954		 */
 955		shmem_page_offset = offset_in_page(offset);
 
 
 956
 957		page_length = remain;
 958		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 959			page_length = PAGE_SIZE - shmem_page_offset;
 
 
 960
 961		/* If we don't overwrite a cacheline completely we need to be
 962		 * careful to have up-to-date data by first clflushing. Don't
 963		 * overcomplicate things and flush the entire patch. */
 964		partial_cacheline_write = needs_clflush_before &&
 965			((shmem_page_offset | page_length)
 966				& (boot_cpu_data.x86_clflush_size - 1));
 967
 968		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 969			(page_to_phys(page) & (1 << 17)) != 0;
 970
 971		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
 972					user_data, page_do_bit17_swizzling,
 973					partial_cacheline_write,
 974					needs_clflush_after);
 975		if (ret == 0)
 976			goto next_page;
 977
 978		hit_slowpath = 1;
 979		mutex_unlock(&dev->struct_mutex);
 980		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
 981					user_data, page_do_bit17_swizzling,
 982					partial_cacheline_write,
 983					needs_clflush_after);
 984
 985		mutex_lock(&dev->struct_mutex);
 
 
 
 
 
 
 986
 987		if (ret)
 988			goto out;
 
 989
 990next_page:
 991		remain -= page_length;
 992		user_data += page_length;
 993		offset += page_length;
 994	}
 995
 996out:
 997	i915_gem_object_unpin_pages(obj);
 998
 999	if (hit_slowpath) {
1000		/*
1001		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002		 * cachelines in-line while writing and the object moved
1003		 * out of the cpu write domain while we've dropped the lock.
1004		 */
1005		if (!needs_clflush_after &&
1006		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007			if (i915_gem_clflush_object(obj, obj->pin_display))
1008				needs_clflush_after = true;
1009		}
1010	}
1011
1012	if (needs_clflush_after)
1013		i915_gem_chipset_flush(dev);
1014	else
1015		obj->cache_dirty = true;
1016
1017	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018	return ret;
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028		      struct drm_file *file)
1029{
1030	struct drm_i915_private *dev_priv = dev->dev_private;
1031	struct drm_i915_gem_pwrite *args = data;
1032	struct drm_i915_gem_object *obj;
1033	int ret;
1034
1035	if (args->size == 0)
1036		return 0;
1037
1038	if (!access_ok(VERIFY_READ,
1039		       to_user_ptr(args->data_ptr),
1040		       args->size))
1041		return -EFAULT;
1042
1043	if (likely(!i915.prefault_disable)) {
1044		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045						   args->size);
1046		if (ret)
1047			return -EFAULT;
1048	}
1049
1050	intel_runtime_pm_get(dev_priv);
1051
1052	ret = i915_mutex_lock_interruptible(dev);
1053	if (ret)
1054		goto put_rpm;
1055
1056	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057	if (&obj->base == NULL) {
1058		ret = -ENOENT;
1059		goto unlock;
1060	}
1061
1062	/* Bounds check destination. */
1063	if (args->offset > obj->base.size ||
1064	    args->size > obj->base.size - args->offset) {
1065		ret = -EINVAL;
1066		goto out;
1067	}
1068
1069	/* prime objects have no backing filp to GEM pread/pwrite
1070	 * pages from.
1071	 */
1072	if (!obj->base.filp) {
1073		ret = -EINVAL;
1074		goto out;
1075	}
1076
1077	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079	ret = -EFAULT;
1080	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1081	 * it would end up going through the fenced access, and we'll get
1082	 * different detiling behavior between reading and writing.
1083	 * pread/pwrite currently are reading and writing from the CPU
1084	 * perspective, requiring manual detiling by the client.
1085	 */
1086	if (obj->tiling_mode == I915_TILING_NONE &&
1087	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088	    cpu_write_needs_clflush(obj)) {
1089		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090		/* Note that the gtt paths might fail with non-page-backed user
1091		 * pointers (e.g. gtt mappings when moving data between
1092		 * textures). Fallback to the shmem path in that case. */
1093	}
1094
1095	if (ret == -EFAULT || ret == -ENOSPC) {
1096		if (obj->phys_handle)
1097			ret = i915_gem_phys_pwrite(obj, args, file);
1098		else
1099			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100	}
1101
1102out:
1103	drm_gem_object_unreference(&obj->base);
1104unlock:
1105	mutex_unlock(&dev->struct_mutex);
1106put_rpm:
1107	intel_runtime_pm_put(dev_priv);
1108
1109	return ret;
1110}
 
1111
1112int
1113i915_gem_check_wedge(struct i915_gpu_error *error,
1114		     bool interruptible)
1115{
1116	if (i915_reset_in_progress(error)) {
1117		/* Non-interruptible callers can't handle -EAGAIN, hence return
1118		 * -EIO unconditionally for these. */
1119		if (!interruptible)
1120			return -EIO;
1121
1122		/* Recovery complete, but the reset failed ... */
1123		if (i915_terminally_wedged(error))
1124			return -EIO;
1125
1126		/*
1127		 * Check if GPU Reset is in progress - we need intel_ring_begin
1128		 * to work properly to reinit the hw state while the gpu is
1129		 * still marked as reset-in-progress. Handle this with a flag.
1130		 */
1131		if (!error->reload_in_reset)
1132			return -EAGAIN;
1133	}
1134
1135	return 0;
1136}
1137
1138static void fake_irq(unsigned long data)
1139{
1140	wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
1144		       struct intel_engine_cs *ring)
1145{
1146	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147}
1148
1149static unsigned long local_clock_us(unsigned *cpu)
1150{
1151	unsigned long t;
1152
1153	/* Cheaply and approximately convert from nanoseconds to microseconds.
1154	 * The result and subsequent calculations are also defined in the same
1155	 * approximate microseconds units. The principal source of timing
1156	 * error here is from the simple truncation.
1157	 *
1158	 * Note that local_clock() is only defined wrt to the current CPU;
1159	 * the comparisons are no longer valid if we switch CPUs. Instead of
1160	 * blocking preemption for the entire busywait, we can detect the CPU
1161	 * switch and use that as indicator of system load and a reason to
1162	 * stop busywaiting, see busywait_stop().
1163	 */
1164	*cpu = get_cpu();
1165	t = local_clock() >> 10;
1166	put_cpu();
1167
1168	return t;
1169}
1170
1171static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172{
1173	unsigned this_cpu;
1174
1175	if (time_after(local_clock_us(&this_cpu), timeout))
1176		return true;
1177
1178	return this_cpu != cpu;
1179}
1180
1181static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182{
1183	unsigned long timeout;
1184	unsigned cpu;
1185
1186	/* When waiting for high frequency requests, e.g. during synchronous
1187	 * rendering split between the CPU and GPU, the finite amount of time
1188	 * required to set up the irq and wait upon it limits the response
1189	 * rate. By busywaiting on the request completion for a short while we
1190	 * can service the high frequency waits as quick as possible. However,
1191	 * if it is a slow request, we want to sleep as quickly as possible.
1192	 * The tradeoff between waiting and sleeping is roughly the time it
1193	 * takes to sleep on a request, on the order of a microsecond.
1194	 */
1195
1196	if (req->ring->irq_refcount)
1197		return -EBUSY;
1198
1199	/* Only spin if we know the GPU is processing this request */
1200	if (!i915_gem_request_started(req, true))
1201		return -EAGAIN;
1202
1203	timeout = local_clock_us(&cpu) + 5;
1204	while (!need_resched()) {
1205		if (i915_gem_request_completed(req, true))
1206			return 0;
1207
1208		if (signal_pending_state(state, current))
1209			break;
1210
1211		if (busywait_stop(timeout, cpu))
1212			break;
1213
1214		cpu_relax_lowlatency();
1215	}
1216
1217	if (i915_gem_request_completed(req, false))
1218		return 0;
1219
1220	return -EAGAIN;
1221}
1222
1223/**
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
1237 * Returns 0 if the request was found within the alloted time. Else returns the
1238 * errno with remaining time filled in timeout argument.
1239 */
1240int __i915_wait_request(struct drm_i915_gem_request *req,
1241			unsigned reset_counter,
1242			bool interruptible,
1243			s64 *timeout,
1244			struct intel_rps_client *rps)
1245{
1246	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247	struct drm_device *dev = ring->dev;
1248	struct drm_i915_private *dev_priv = dev->dev_private;
1249	const bool irq_test_in_progress =
1250		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252	DEFINE_WAIT(wait);
1253	unsigned long timeout_expire;
1254	s64 before = 0; /* Only to silence a compiler warning. */
1255	int ret;
1256
1257	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259	if (list_empty(&req->list))
1260		return 0;
1261
1262	if (i915_gem_request_completed(req, true))
1263		return 0;
1264
1265	timeout_expire = 0;
1266	if (timeout) {
1267		if (WARN_ON(*timeout < 0))
1268			return -EINVAL;
1269
1270		if (*timeout == 0)
1271			return -ETIME;
1272
1273		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274
1275		/*
1276		 * Record current time in case interrupted by signal, or wedged.
1277		 */
1278		before = ktime_get_raw_ns();
1279	}
1280
1281	if (INTEL_INFO(dev_priv)->gen >= 6)
1282		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1283
1284	trace_i915_gem_request_wait_begin(req);
1285
1286	/* Optimistic spin for the next jiffie before touching IRQs */
1287	ret = __i915_spin_request(req, state);
1288	if (ret == 0)
1289		goto out;
1290
1291	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1292		ret = -ENODEV;
1293		goto out;
1294	}
1295
1296	for (;;) {
1297		struct timer_list timer;
1298
1299		prepare_to_wait(&ring->irq_queue, &wait, state);
1300
1301		/* We need to check whether any gpu reset happened in between
1302		 * the caller grabbing the seqno and now ... */
1303		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305			 * is truely gone. */
1306			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307			if (ret == 0)
1308				ret = -EAGAIN;
1309			break;
1310		}
1311
1312		if (i915_gem_request_completed(req, false)) {
1313			ret = 0;
1314			break;
1315		}
1316
1317		if (signal_pending_state(state, current)) {
1318			ret = -ERESTARTSYS;
1319			break;
1320		}
1321
1322		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1323			ret = -ETIME;
1324			break;
1325		}
1326
1327		timer.function = NULL;
1328		if (timeout || missed_irq(dev_priv, ring)) {
1329			unsigned long expire;
1330
1331			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1332			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1333			mod_timer(&timer, expire);
1334		}
1335
1336		io_schedule();
1337
1338		if (timer.function) {
1339			del_singleshot_timer_sync(&timer);
1340			destroy_timer_on_stack(&timer);
1341		}
1342	}
1343	if (!irq_test_in_progress)
1344		ring->irq_put(ring);
1345
1346	finish_wait(&ring->irq_queue, &wait);
1347
1348out:
1349	trace_i915_gem_request_wait_end(req);
1350
1351	if (timeout) {
1352		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1353
1354		*timeout = tres < 0 ? 0 : tres;
1355
1356		/*
1357		 * Apparently ktime isn't accurate enough and occasionally has a
1358		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359		 * things up to make the test happy. We allow up to 1 jiffy.
1360		 *
1361		 * This is a regrssion from the timespec->ktime conversion.
1362		 */
1363		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364			*timeout = 0;
1365	}
1366
1367	return ret;
1368}
1369
1370int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371				   struct drm_file *file)
1372{
1373	struct drm_i915_private *dev_private;
1374	struct drm_i915_file_private *file_priv;
1375
1376	WARN_ON(!req || !file || req->file_priv);
1377
1378	if (!req || !file)
1379		return -EINVAL;
1380
1381	if (req->file_priv)
1382		return -EINVAL;
1383
1384	dev_private = req->ring->dev->dev_private;
1385	file_priv = file->driver_priv;
1386
1387	spin_lock(&file_priv->mm.lock);
1388	req->file_priv = file_priv;
1389	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1390	spin_unlock(&file_priv->mm.lock);
1391
1392	req->pid = get_pid(task_pid(current));
1393
1394	return 0;
1395}
1396
1397static inline void
1398i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1399{
1400	struct drm_i915_file_private *file_priv = request->file_priv;
1401
1402	if (!file_priv)
1403		return;
1404
1405	spin_lock(&file_priv->mm.lock);
1406	list_del(&request->client_list);
1407	request->file_priv = NULL;
1408	spin_unlock(&file_priv->mm.lock);
1409
1410	put_pid(request->pid);
1411	request->pid = NULL;
1412}
1413
1414static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1415{
1416	trace_i915_gem_request_retire(request);
1417
1418	/* We know the GPU must have read the request to have
1419	 * sent us the seqno + interrupt, so use the position
1420	 * of tail of the request to update the last known position
1421	 * of the GPU head.
1422	 *
1423	 * Note this requires that we are always called in request
1424	 * completion order.
1425	 */
1426	request->ringbuf->last_retired_head = request->postfix;
1427
1428	list_del_init(&request->list);
1429	i915_gem_request_remove_from_client(request);
1430
1431	i915_gem_request_unreference(request);
1432}
1433
1434static void
1435__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1436{
1437	struct intel_engine_cs *engine = req->ring;
1438	struct drm_i915_gem_request *tmp;
1439
1440	lockdep_assert_held(&engine->dev->struct_mutex);
1441
1442	if (list_empty(&req->list))
1443		return;
1444
1445	do {
1446		tmp = list_first_entry(&engine->request_list,
1447				       typeof(*tmp), list);
1448
1449		i915_gem_request_retire(tmp);
1450	} while (tmp != req);
1451
1452	WARN_ON(i915_verify_lists(engine->dev));
1453}
1454
1455/**
1456 * Waits for a request to be signaled, and cleans up the
1457 * request and object lists appropriately for that event.
1458 */
1459int
1460i915_wait_request(struct drm_i915_gem_request *req)
1461{
1462	struct drm_device *dev;
1463	struct drm_i915_private *dev_priv;
1464	bool interruptible;
1465	int ret;
1466
1467	BUG_ON(req == NULL);
1468
1469	dev = req->ring->dev;
1470	dev_priv = dev->dev_private;
1471	interruptible = dev_priv->mm.interruptible;
1472
1473	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1474
1475	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1476	if (ret)
1477		return ret;
1478
1479	ret = __i915_wait_request(req,
1480				  atomic_read(&dev_priv->gpu_error.reset_counter),
1481				  interruptible, NULL, NULL);
1482	if (ret)
1483		return ret;
1484
1485	__i915_gem_request_retire__upto(req);
1486	return 0;
1487}
1488
1489/**
1490 * Ensures that all rendering to the object has completed and the object is
1491 * safe to unbind from the GTT or access from the CPU.
1492 */
1493int
1494i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1495			       bool readonly)
1496{
1497	int ret, i;
1498
1499	if (!obj->active)
1500		return 0;
1501
1502	if (readonly) {
1503		if (obj->last_write_req != NULL) {
1504			ret = i915_wait_request(obj->last_write_req);
1505			if (ret)
1506				return ret;
1507
1508			i = obj->last_write_req->ring->id;
1509			if (obj->last_read_req[i] == obj->last_write_req)
1510				i915_gem_object_retire__read(obj, i);
1511			else
1512				i915_gem_object_retire__write(obj);
1513		}
1514	} else {
1515		for (i = 0; i < I915_NUM_RINGS; i++) {
1516			if (obj->last_read_req[i] == NULL)
1517				continue;
1518
1519			ret = i915_wait_request(obj->last_read_req[i]);
1520			if (ret)
1521				return ret;
1522
1523			i915_gem_object_retire__read(obj, i);
1524		}
1525		RQ_BUG_ON(obj->active);
1526	}
1527
1528	return 0;
1529}
1530
1531static void
1532i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1533			       struct drm_i915_gem_request *req)
1534{
1535	int ring = req->ring->id;
1536
1537	if (obj->last_read_req[ring] == req)
1538		i915_gem_object_retire__read(obj, ring);
1539	else if (obj->last_write_req == req)
1540		i915_gem_object_retire__write(obj);
1541
1542	__i915_gem_request_retire__upto(req);
1543}
1544
1545/* A nonblocking variant of the above wait. This is a highly dangerous routine
1546 * as the object state may change during this call.
1547 */
1548static __must_check int
1549i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1550					    struct intel_rps_client *rps,
1551					    bool readonly)
1552{
1553	struct drm_device *dev = obj->base.dev;
1554	struct drm_i915_private *dev_priv = dev->dev_private;
1555	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1556	unsigned reset_counter;
1557	int ret, i, n = 0;
1558
1559	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1560	BUG_ON(!dev_priv->mm.interruptible);
1561
1562	if (!obj->active)
1563		return 0;
1564
1565	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1566	if (ret)
1567		return ret;
1568
1569	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1570
1571	if (readonly) {
1572		struct drm_i915_gem_request *req;
1573
1574		req = obj->last_write_req;
1575		if (req == NULL)
1576			return 0;
1577
1578		requests[n++] = i915_gem_request_reference(req);
1579	} else {
1580		for (i = 0; i < I915_NUM_RINGS; i++) {
1581			struct drm_i915_gem_request *req;
1582
1583			req = obj->last_read_req[i];
1584			if (req == NULL)
1585				continue;
1586
1587			requests[n++] = i915_gem_request_reference(req);
1588		}
1589	}
1590
1591	mutex_unlock(&dev->struct_mutex);
1592	for (i = 0; ret == 0 && i < n; i++)
1593		ret = __i915_wait_request(requests[i], reset_counter, true,
1594					  NULL, rps);
1595	mutex_lock(&dev->struct_mutex);
1596
1597	for (i = 0; i < n; i++) {
1598		if (ret == 0)
1599			i915_gem_object_retire_request(obj, requests[i]);
1600		i915_gem_request_unreference(requests[i]);
1601	}
1602
1603	return ret;
1604}
1605
1606static struct intel_rps_client *to_rps_client(struct drm_file *file)
1607{
1608	struct drm_i915_file_private *fpriv = file->driver_priv;
1609	return &fpriv->rps;
1610}
1611
1612/**
1613 * Called when user space prepares to use an object with the CPU, either
1614 * through the mmap ioctl's mapping or a GTT mapping.
1615 */
1616int
1617i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1618			  struct drm_file *file)
1619{
1620	struct drm_i915_gem_set_domain *args = data;
1621	struct drm_i915_gem_object *obj;
1622	uint32_t read_domains = args->read_domains;
1623	uint32_t write_domain = args->write_domain;
1624	int ret;
1625
 
 
 
1626	/* Only handle setting domains to types used by the CPU. */
1627	if (write_domain & I915_GEM_GPU_DOMAINS)
1628		return -EINVAL;
1629
1630	if (read_domains & I915_GEM_GPU_DOMAINS)
1631		return -EINVAL;
1632
1633	/* Having something in the write domain implies it's in the read
1634	 * domain, and only that read domain.  Enforce that in the request.
1635	 */
1636	if (write_domain != 0 && read_domains != write_domain)
1637		return -EINVAL;
1638
1639	ret = i915_mutex_lock_interruptible(dev);
1640	if (ret)
1641		return ret;
1642
1643	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1644	if (&obj->base == NULL) {
1645		ret = -ENOENT;
1646		goto unlock;
1647	}
1648
1649	/* Try to flush the object off the GPU without holding the lock.
1650	 * We will repeat the flush holding the lock in the normal manner
1651	 * to catch cases where we are gazumped.
1652	 */
1653	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1654							  to_rps_client(file),
1655							  !write_domain);
1656	if (ret)
1657		goto unref;
1658
1659	if (read_domains & I915_GEM_DOMAIN_GTT)
1660		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1661	else
 
 
 
 
1662		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
 
1663
1664	if (write_domain != 0)
1665		intel_fb_obj_invalidate(obj,
1666					write_domain == I915_GEM_DOMAIN_GTT ?
1667					ORIGIN_GTT : ORIGIN_CPU);
1668
1669unref:
1670	drm_gem_object_unreference(&obj->base);
1671unlock:
1672	mutex_unlock(&dev->struct_mutex);
1673	return ret;
1674}
1675
1676/**
1677 * Called when user space has done writes to this buffer
1678 */
1679int
1680i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1681			 struct drm_file *file)
1682{
1683	struct drm_i915_gem_sw_finish *args = data;
1684	struct drm_i915_gem_object *obj;
1685	int ret = 0;
1686
 
 
 
1687	ret = i915_mutex_lock_interruptible(dev);
1688	if (ret)
1689		return ret;
1690
1691	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1692	if (&obj->base == NULL) {
1693		ret = -ENOENT;
1694		goto unlock;
1695	}
1696
1697	/* Pinned buffers may be scanout, so flush the cache */
1698	if (obj->pin_display)
1699		i915_gem_object_flush_cpu_write_domain(obj);
1700
1701	drm_gem_object_unreference(&obj->base);
1702unlock:
1703	mutex_unlock(&dev->struct_mutex);
1704	return ret;
1705}
1706
1707/**
1708 * Maps the contents of an object, returning the address it is mapped
1709 * into.
1710 *
1711 * While the mapping holds a reference on the contents of the object, it doesn't
1712 * imply a ref on the object itself.
1713 *
1714 * IMPORTANT:
1715 *
1716 * DRM driver writers who look a this function as an example for how to do GEM
1717 * mmap support, please don't implement mmap support like here. The modern way
1718 * to implement DRM mmap support is with an mmap offset ioctl (like
1719 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1720 * That way debug tooling like valgrind will understand what's going on, hiding
1721 * the mmap call in a driver private ioctl will break that. The i915 driver only
1722 * does cpu mmaps this way because we didn't know better.
1723 */
1724int
1725i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1726		    struct drm_file *file)
1727{
 
1728	struct drm_i915_gem_mmap *args = data;
1729	struct drm_gem_object *obj;
1730	unsigned long addr;
1731
1732	if (args->flags & ~(I915_MMAP_WC))
1733		return -EINVAL;
1734
1735	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1736		return -ENODEV;
1737
1738	obj = drm_gem_object_lookup(dev, file, args->handle);
1739	if (obj == NULL)
1740		return -ENOENT;
1741
1742	/* prime objects have no backing filp to GEM mmap
1743	 * pages from.
1744	 */
1745	if (!obj->filp) {
1746		drm_gem_object_unreference_unlocked(obj);
1747		return -EINVAL;
1748	}
1749
1750	addr = vm_mmap(obj->filp, 0, args->size,
 
1751		       PROT_READ | PROT_WRITE, MAP_SHARED,
1752		       args->offset);
1753	if (args->flags & I915_MMAP_WC) {
1754		struct mm_struct *mm = current->mm;
1755		struct vm_area_struct *vma;
1756
1757		down_write(&mm->mmap_sem);
1758		vma = find_vma(mm, addr);
1759		if (vma)
1760			vma->vm_page_prot =
1761				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1762		else
1763			addr = -ENOMEM;
1764		up_write(&mm->mmap_sem);
1765	}
1766	drm_gem_object_unreference_unlocked(obj);
1767	if (IS_ERR((void *)addr))
1768		return addr;
1769
1770	args->addr_ptr = (uint64_t) addr;
1771
1772	return 0;
1773}
1774
1775/**
1776 * i915_gem_fault - fault a page into the GTT
1777 * @vma: VMA in question
1778 * @vmf: fault info
1779 *
1780 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1781 * from userspace.  The fault handler takes care of binding the object to
1782 * the GTT (if needed), allocating and programming a fence register (again,
1783 * only if needed based on whether the old reg is still valid or the object
1784 * is tiled) and inserting a new PTE into the faulting process.
1785 *
1786 * Note that the faulting process may involve evicting existing objects
1787 * from the GTT and/or fence registers to make room.  So performance may
1788 * suffer if the GTT working set is large or there are few fence registers
1789 * left.
1790 */
1791int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1792{
1793	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1794	struct drm_device *dev = obj->base.dev;
1795	struct drm_i915_private *dev_priv = dev->dev_private;
1796	struct i915_ggtt_view view = i915_ggtt_view_normal;
1797	pgoff_t page_offset;
1798	unsigned long pfn;
1799	int ret = 0;
1800	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801
1802	intel_runtime_pm_get(dev_priv);
1803
1804	/* We don't use vmf->pgoff since that has the fake offset */
1805	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806		PAGE_SHIFT;
1807
1808	ret = i915_mutex_lock_interruptible(dev);
1809	if (ret)
1810		goto out;
1811
1812	trace_i915_gem_object_fault(obj, page_offset, true, write);
1813
1814	/* Try to flush the object off the GPU first without holding the lock.
1815	 * Upon reacquiring the lock, we will perform our sanity checks and then
1816	 * repeat the flush holding the lock in the normal manner to catch cases
1817	 * where we are gazumped.
1818	 */
1819	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1820	if (ret)
1821		goto unlock;
1822
1823	/* Access to snoopable pages through the GTT is incoherent. */
1824	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825		ret = -EFAULT;
1826		goto unlock;
1827	}
 
 
 
 
1828
1829	/* Use a partial view if the object is bigger than the aperture. */
1830	if (obj->base.size >= dev_priv->gtt.mappable_end &&
1831	    obj->tiling_mode == I915_TILING_NONE) {
1832		static const unsigned int chunk_size = 256; // 1 MiB
1833
1834		memset(&view, 0, sizeof(view));
1835		view.type = I915_GGTT_VIEW_PARTIAL;
1836		view.params.partial.offset = rounddown(page_offset, chunk_size);
1837		view.params.partial.size =
1838			min_t(unsigned int,
1839			      chunk_size,
1840			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841			      view.params.partial.offset);
1842	}
1843
1844	/* Now pin it into the GTT if needed */
1845	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
 
 
1846	if (ret)
1847		goto unlock;
1848
1849	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850	if (ret)
1851		goto unpin;
 
1852
1853	ret = i915_gem_object_get_fence(obj);
1854	if (ret)
1855		goto unpin;
1856
1857	/* Finally, remap it using the new GTT offset */
1858	pfn = dev_priv->gtt.mappable_base +
1859		i915_gem_obj_ggtt_offset_view(obj, &view);
1860	pfn >>= PAGE_SHIFT;
1861
1862	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863		/* Overriding existing pages in partial view does not cause
1864		 * us any trouble as TLBs are still valid because the fault
1865		 * is due to userspace losing part of the mapping or never
1866		 * having accessed it before (at this partials' range).
1867		 */
1868		unsigned long base = vma->vm_start +
1869				     (view.params.partial.offset << PAGE_SHIFT);
1870		unsigned int i;
1871
1872		for (i = 0; i < view.params.partial.size; i++) {
1873			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874			if (ret)
1875				break;
1876		}
1877
1878		obj->fault_mappable = true;
1879	} else {
1880		if (!obj->fault_mappable) {
1881			unsigned long size = min_t(unsigned long,
1882						   vma->vm_end - vma->vm_start,
1883						   obj->base.size);
1884			int i;
1885
1886			for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887				ret = vm_insert_pfn(vma,
1888						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889						    pfn + i);
1890				if (ret)
1891					break;
1892			}
1893
1894			obj->fault_mappable = true;
1895		} else
1896			ret = vm_insert_pfn(vma,
1897					    (unsigned long)vmf->virtual_address,
1898					    pfn + page_offset);
1899	}
1900unpin:
1901	i915_gem_object_ggtt_unpin_view(obj, &view);
1902unlock:
1903	mutex_unlock(&dev->struct_mutex);
1904out:
1905	switch (ret) {
1906	case -EIO:
1907		/*
1908		 * We eat errors when the gpu is terminally wedged to avoid
1909		 * userspace unduly crashing (gl has no provisions for mmaps to
1910		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911		 * and so needs to be reported.
1912		 */
1913		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914			ret = VM_FAULT_SIGBUS;
1915			break;
1916		}
1917	case -EAGAIN:
1918		/*
1919		 * EAGAIN means the gpu is hung and we'll wait for the error
1920		 * handler to reset everything when re-faulting in
1921		 * i915_mutex_lock_interruptible.
 
 
1922		 */
 
1923	case 0:
1924	case -ERESTARTSYS:
1925	case -EINTR:
1926	case -EBUSY:
1927		/*
1928		 * EBUSY is ok: this just means that another thread
1929		 * already did the job.
1930		 */
1931		ret = VM_FAULT_NOPAGE;
1932		break;
1933	case -ENOMEM:
1934		ret = VM_FAULT_OOM;
1935		break;
1936	case -ENOSPC:
1937	case -EFAULT:
1938		ret = VM_FAULT_SIGBUS;
1939		break;
1940	default:
1941		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942		ret = VM_FAULT_SIGBUS;
1943		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944	}
1945
1946	intel_runtime_pm_put(dev_priv);
 
 
 
 
 
 
 
1947	return ret;
1948}
1949
1950/**
1951 * i915_gem_release_mmap - remove physical page mappings
1952 * @obj: obj in question
1953 *
1954 * Preserve the reservation of the mmapping with the DRM core code, but
1955 * relinquish ownership of the pages back to the system.
1956 *
1957 * It is vital that we remove the page mapping if we have mapped a tiled
1958 * object through the GTT and then lose the fence register due to
1959 * resource pressure. Similarly if the object has been moved out of the
1960 * aperture, than pages mapped into userspace must be revoked. Removing the
1961 * mapping will then trigger a page fault on the next user access, allowing
1962 * fixup by i915_gem_fault().
1963 */
1964void
1965i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966{
1967	if (!obj->fault_mappable)
1968		return;
1969
1970	drm_vma_node_unmap(&obj->base.vma_node,
1971			   obj->base.dev->anon_inode->i_mapping);
 
 
 
1972	obj->fault_mappable = false;
1973}
1974
1975void
1976i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977{
1978	struct drm_i915_gem_object *obj;
 
 
1979
1980	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981		i915_gem_release_mmap(obj);
 
 
1982}
1983
1984uint32_t
1985i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986{
1987	uint32_t gtt_size;
1988
1989	if (INTEL_INFO(dev)->gen >= 4 ||
1990	    tiling_mode == I915_TILING_NONE)
1991		return size;
1992
1993	/* Previous chips need a power-of-two fence region when tiling */
1994	if (INTEL_INFO(dev)->gen == 3)
1995		gtt_size = 1024*1024;
1996	else
1997		gtt_size = 512*1024;
1998
1999	while (gtt_size < size)
2000		gtt_size <<= 1;
2001
2002	return gtt_size;
2003}
2004
2005/**
2006 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007 * @obj: object to check
2008 *
2009 * Return the required GTT alignment for an object, taking into account
2010 * potential fence register mapping.
2011 */
2012uint32_t
2013i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014			   int tiling_mode, bool fenced)
 
2015{
2016	/*
2017	 * Minimum alignment is 4k (GTT page size), but might be greater
2018	 * if a fence register is needed for the object.
2019	 */
2020	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021	    tiling_mode == I915_TILING_NONE)
2022		return 4096;
2023
2024	/*
2025	 * Previous chips need to be aligned to the size of the smallest
2026	 * fence register that can contain the object.
2027	 */
2028	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029}
2030
2031static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
 
 
 
 
 
 
 
 
 
 
 
 
 
2032{
2033	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034	int ret;
 
 
 
 
2035
2036	if (drm_vma_node_has_offset(&obj->base.vma_node))
2037		return 0;
2038
2039	dev_priv->mm.shrinker_no_lock_stealing = true;
2040
2041	ret = drm_gem_create_mmap_offset(&obj->base);
2042	if (ret != -ENOSPC)
2043		goto out;
2044
2045	/* Badly fragmented mmap space? The only way we can recover
2046	 * space is by destroying unwanted objects. We can't randomly release
2047	 * mmap_offsets as userspace expects them to be persistent for the
2048	 * lifetime of the objects. The closest we can is to release the
2049	 * offsets on purgeable objects by truncating it and marking it purged,
2050	 * which prevents userspace from ever using that object again.
2051	 */
2052	i915_gem_shrink(dev_priv,
2053			obj->base.size >> PAGE_SHIFT,
2054			I915_SHRINK_BOUND |
2055			I915_SHRINK_UNBOUND |
2056			I915_SHRINK_PURGEABLE);
2057	ret = drm_gem_create_mmap_offset(&obj->base);
2058	if (ret != -ENOSPC)
2059		goto out;
2060
2061	i915_gem_shrink_all(dev_priv);
2062	ret = drm_gem_create_mmap_offset(&obj->base);
2063out:
2064	dev_priv->mm.shrinker_no_lock_stealing = false;
2065
2066	return ret;
2067}
2068
2069static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2070{
2071	drm_gem_free_mmap_offset(&obj->base);
2072}
2073
2074int
2075i915_gem_mmap_gtt(struct drm_file *file,
2076		  struct drm_device *dev,
2077		  uint32_t handle,
2078		  uint64_t *offset)
2079{
 
2080	struct drm_i915_gem_object *obj;
2081	int ret;
2082
 
 
 
2083	ret = i915_mutex_lock_interruptible(dev);
2084	if (ret)
2085		return ret;
2086
2087	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2088	if (&obj->base == NULL) {
2089		ret = -ENOENT;
2090		goto unlock;
2091	}
2092
 
 
 
 
 
2093	if (obj->madv != I915_MADV_WILLNEED) {
2094		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2095		ret = -EFAULT;
2096		goto out;
2097	}
2098
2099	ret = i915_gem_object_create_mmap_offset(obj);
2100	if (ret)
2101		goto out;
 
 
2102
2103	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2104
2105out:
2106	drm_gem_object_unreference(&obj->base);
2107unlock:
2108	mutex_unlock(&dev->struct_mutex);
2109	return ret;
2110}
2111
2112/**
2113 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2114 * @dev: DRM device
2115 * @data: GTT mapping ioctl data
2116 * @file: GEM object info
2117 *
2118 * Simply returns the fake offset to userspace so it can mmap it.
2119 * The mmap call will end up in drm_gem_mmap(), which will set things
2120 * up so we can get faults in the handler above.
2121 *
2122 * The fault handler will take care of binding the object into the GTT
2123 * (since it may have been evicted to make room for something), allocating
2124 * a fence register, and mapping the appropriate aperture address into
2125 * userspace.
2126 */
2127int
2128i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2129			struct drm_file *file)
2130{
2131	struct drm_i915_gem_mmap_gtt *args = data;
2132
 
 
 
2133	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134}
2135
2136/* Immediately discard the backing storage */
2137static void
2138i915_gem_object_truncate(struct drm_i915_gem_object *obj)
 
2139{
2140	i915_gem_object_free_mmap_offset(obj);
 
 
 
2141
2142	if (obj->base.filp == NULL)
2143		return;
 
 
 
 
 
 
2144
2145	/* Our goal here is to return as much of the memory as
2146	 * is possible back to the system as we are called from OOM.
2147	 * To do this we must instruct the shmfs to drop all of its
2148	 * backing pages, *now*.
2149	 */
2150	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2151	obj->madv = __I915_MADV_PURGED;
2152}
2153
2154/* Try to discard unwanted pages */
2155static void
2156i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2157{
2158	struct address_space *mapping;
2159
2160	switch (obj->madv) {
2161	case I915_MADV_DONTNEED:
2162		i915_gem_object_truncate(obj);
2163	case __I915_MADV_PURGED:
2164		return;
2165	}
2166
2167	if (obj->base.filp == NULL)
2168		return;
 
 
 
 
 
 
2169
2170	mapping = file_inode(obj->base.filp)->i_mapping,
2171	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
 
2172}
2173
2174static void
2175i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2176{
2177	struct sg_page_iter sg_iter;
2178	int ret;
2179
2180	BUG_ON(obj->madv == __I915_MADV_PURGED);
2181
2182	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2183	if (ret) {
2184		/* In the event of a disaster, abandon all caches and
2185		 * hope for the best.
2186		 */
2187		WARN_ON(ret != -EIO);
2188		i915_gem_clflush_object(obj, true);
2189		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2190	}
2191
2192	i915_gem_gtt_finish_object(obj);
2193
2194	if (i915_gem_object_needs_bit17_swizzle(obj))
2195		i915_gem_object_save_bit_17_swizzle(obj);
2196
2197	if (obj->madv == I915_MADV_DONTNEED)
2198		obj->dirty = 0;
2199
2200	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2201		struct page *page = sg_page_iter_page(&sg_iter);
2202
2203		if (obj->dirty)
2204			set_page_dirty(page);
2205
2206		if (obj->madv == I915_MADV_WILLNEED)
2207			mark_page_accessed(page);
2208
2209		put_page(page);
2210	}
2211	obj->dirty = 0;
2212
2213	sg_free_table(obj->pages);
2214	kfree(obj->pages);
2215}
2216
2217int
2218i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2219{
2220	const struct drm_i915_gem_object_ops *ops = obj->ops;
2221
2222	if (obj->pages == NULL)
2223		return 0;
2224
2225	if (obj->pages_pin_count)
2226		return -EBUSY;
2227
2228	BUG_ON(i915_gem_obj_bound_any(obj));
2229
2230	/* ->put_pages might need to allocate memory for the bit17 swizzle
2231	 * array, hence protect them from being reaped by removing them from gtt
2232	 * lists early. */
2233	list_del(&obj->global_list);
2234
2235	ops->put_pages(obj);
2236	obj->pages = NULL;
2237
2238	i915_gem_object_invalidate(obj);
2239
2240	return 0;
2241}
2242
2243static int
2244i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
 
 
2245{
2246	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2247	int page_count, i;
2248	struct address_space *mapping;
2249	struct sg_table *st;
2250	struct scatterlist *sg;
2251	struct sg_page_iter sg_iter;
2252	struct page *page;
2253	unsigned long last_pfn = 0;	/* suppress gcc warning */
2254	int ret;
2255	gfp_t gfp;
2256
2257	/* Assert that the object is not currently in any GPU domain. As it
2258	 * wasn't in the GTT, there shouldn't be any way it could have been in
2259	 * a GPU cache
2260	 */
2261	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2262	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2263
2264	st = kmalloc(sizeof(*st), GFP_KERNEL);
2265	if (st == NULL)
2266		return -ENOMEM;
2267
2268	page_count = obj->base.size / PAGE_SIZE;
2269	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2270		kfree(st);
2271		return -ENOMEM;
2272	}
2273
2274	/* Get the list of pages out of our struct file.  They'll be pinned
2275	 * at this point until we release them.
2276	 *
2277	 * Fail silently without starting the shrinker
2278	 */
2279	mapping = file_inode(obj->base.filp)->i_mapping;
2280	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2282	sg = st->sgl;
2283	st->nents = 0;
2284	for (i = 0; i < page_count; i++) {
2285		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2286		if (IS_ERR(page)) {
2287			i915_gem_shrink(dev_priv,
2288					page_count,
2289					I915_SHRINK_BOUND |
2290					I915_SHRINK_UNBOUND |
2291					I915_SHRINK_PURGEABLE);
2292			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2293		}
2294		if (IS_ERR(page)) {
2295			/* We've tried hard to allocate the memory by reaping
2296			 * our own buffer, now let the real VM do its job and
2297			 * go down in flames if truly OOM.
2298			 */
2299			i915_gem_shrink_all(dev_priv);
2300			page = shmem_read_mapping_page(mapping, i);
2301			if (IS_ERR(page)) {
2302				ret = PTR_ERR(page);
2303				goto err_pages;
2304			}
2305		}
2306#ifdef CONFIG_SWIOTLB
2307		if (swiotlb_nr_tbl()) {
2308			st->nents++;
2309			sg_set_page(sg, page, PAGE_SIZE, 0);
2310			sg = sg_next(sg);
2311			continue;
2312		}
2313#endif
2314		if (!i || page_to_pfn(page) != last_pfn + 1) {
2315			if (i)
2316				sg = sg_next(sg);
2317			st->nents++;
2318			sg_set_page(sg, page, PAGE_SIZE, 0);
2319		} else {
2320			sg->length += PAGE_SIZE;
2321		}
2322		last_pfn = page_to_pfn(page);
2323
2324		/* Check that the i965g/gm workaround works. */
2325		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2326	}
2327#ifdef CONFIG_SWIOTLB
2328	if (!swiotlb_nr_tbl())
2329#endif
2330		sg_mark_end(sg);
2331	obj->pages = st;
2332
2333	ret = i915_gem_gtt_prepare_object(obj);
2334	if (ret)
2335		goto err_pages;
2336
2337	if (i915_gem_object_needs_bit17_swizzle(obj))
2338		i915_gem_object_do_bit_17_swizzle(obj);
2339
2340	if (obj->tiling_mode != I915_TILING_NONE &&
2341	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2342		i915_gem_object_pin_pages(obj);
2343
2344	return 0;
2345
2346err_pages:
2347	sg_mark_end(sg);
2348	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2349		put_page(sg_page_iter_page(&sg_iter));
2350	sg_free_table(st);
2351	kfree(st);
2352
2353	/* shmemfs first checks if there is enough memory to allocate the page
2354	 * and reports ENOSPC should there be insufficient, along with the usual
2355	 * ENOMEM for a genuine allocation failure.
2356	 *
2357	 * We use ENOSPC in our driver to mean that we have run out of aperture
2358	 * space and so want to translate the error from shmemfs back to our
2359	 * usual understanding of ENOMEM.
2360	 */
2361	if (ret == -ENOSPC)
2362		ret = -ENOMEM;
2363
2364	return ret;
2365}
2366
2367/* Ensure that the associated pages are gathered from the backing storage
2368 * and pinned into our object. i915_gem_object_get_pages() may be called
2369 * multiple times before they are released by a single call to
2370 * i915_gem_object_put_pages() - once the pages are no longer referenced
2371 * either as a result of memory pressure (reaping pages under the shrinker)
2372 * or as the object is itself released.
2373 */
2374int
2375i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2376{
2377	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378	const struct drm_i915_gem_object_ops *ops = obj->ops;
2379	int ret;
2380
2381	if (obj->pages)
2382		return 0;
2383
2384	if (obj->madv != I915_MADV_WILLNEED) {
2385		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2386		return -EFAULT;
2387	}
2388
2389	BUG_ON(obj->pages_pin_count);
2390
2391	ret = ops->get_pages(obj);
2392	if (ret)
2393		return ret;
2394
2395	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2396
2397	obj->get_page.sg = obj->pages->sgl;
2398	obj->get_page.last = 0;
2399
2400	return 0;
2401}
2402
2403void i915_vma_move_to_active(struct i915_vma *vma,
2404			     struct drm_i915_gem_request *req)
2405{
2406	struct drm_i915_gem_object *obj = vma->obj;
2407	struct intel_engine_cs *ring;
2408
2409	ring = i915_gem_request_get_ring(req);
2410
2411	/* Add a reference if we're newly entering the active list. */
2412	if (obj->active == 0)
2413		drm_gem_object_reference(&obj->base);
2414	obj->active |= intel_ring_flag(ring);
2415
2416	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2417	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2418
2419	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2420}
2421
2422static void
2423i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2424{
2425	RQ_BUG_ON(obj->last_write_req == NULL);
2426	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2427
2428	i915_gem_request_assign(&obj->last_write_req, NULL);
2429	intel_fb_obj_flush(obj, true, ORIGIN_CS);
 
 
2430}
2431
2432static void
2433i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2434{
2435	struct i915_vma *vma;
 
2436
2437	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2438	RQ_BUG_ON(!(obj->active & (1 << ring)));
 
 
2439
2440	list_del_init(&obj->ring_list[ring]);
2441	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
 
2442
2443	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2444		i915_gem_object_retire__write(obj);
2445
2446	obj->active &= ~(1 << ring);
2447	if (obj->active)
2448		return;
2449
2450	/* Bump our place on the bound list to keep it roughly in LRU order
2451	 * so that we don't steal from recently used but inactive objects
2452	 * (unless we are forced to ofc!)
2453	 */
2454	list_move_tail(&obj->global_list,
2455		       &to_i915(obj->base.dev)->mm.bound_list);
2456
2457	list_for_each_entry(vma, &obj->vma_list, obj_link) {
2458		if (!list_empty(&vma->vm_link))
2459			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2460	}
2461
2462	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2463	drm_gem_object_unreference(&obj->base);
2464}
2465
2466static int
2467i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
 
2468{
2469	struct drm_i915_private *dev_priv = dev->dev_private;
2470	struct intel_engine_cs *ring;
2471	int ret, i, j;
2472
2473	/* Carefully retire all requests without writing to the rings */
2474	for_each_ring(ring, dev_priv, i) {
2475		ret = intel_ring_idle(ring);
2476		if (ret)
2477			return ret;
2478	}
2479	i915_gem_retire_requests(dev);
2480
2481	/* Finally reset hw state */
2482	for_each_ring(ring, dev_priv, i) {
2483		intel_ring_init_seqno(ring, seqno);
2484
2485		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2486			ring->semaphore.sync_seqno[j] = 0;
2487	}
2488
2489	return 0;
2490}
2491
2492int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
 
2493{
2494	struct drm_i915_private *dev_priv = dev->dev_private;
2495	int ret;
2496
2497	if (seqno == 0)
2498		return -EINVAL;
2499
2500	/* HWS page needs to be set less than what we
2501	 * will inject to ring
2502	 */
2503	ret = i915_gem_init_seqno(dev, seqno - 1);
2504	if (ret)
2505		return ret;
2506
2507	/* Carefully set the last_seqno value so that wrap
2508	 * detection still works
2509	 */
2510	dev_priv->next_seqno = seqno;
2511	dev_priv->last_seqno = seqno - 1;
2512	if (dev_priv->last_seqno == 0)
2513		dev_priv->last_seqno--;
2514
2515	return 0;
2516}
2517
2518int
2519i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
 
2520{
2521	struct drm_i915_private *dev_priv = dev->dev_private;
2522
2523	/* reserve 0 for non-seqno */
2524	if (dev_priv->next_seqno == 0) {
2525		int ret = i915_gem_init_seqno(dev, 0);
2526		if (ret)
2527			return ret;
2528
2529		dev_priv->next_seqno = 1;
 
 
 
 
 
 
 
 
2530	}
2531
2532	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2533	return 0;
2534}
2535
2536/*
2537 * NB: This function is not allowed to fail. Doing so would mean the the
2538 * request is not being tracked for completion but the work itself is
2539 * going to happen on the hardware. This would be a Bad Thing(tm).
2540 */
2541void __i915_add_request(struct drm_i915_gem_request *request,
2542			struct drm_i915_gem_object *obj,
2543			bool flush_caches)
2544{
2545	struct intel_engine_cs *ring;
2546	struct drm_i915_private *dev_priv;
2547	struct intel_ringbuffer *ringbuf;
2548	u32 request_start;
2549	int ret;
2550
2551	if (WARN_ON(request == NULL))
2552		return;
2553
2554	ring = request->ring;
2555	dev_priv = ring->dev->dev_private;
2556	ringbuf = request->ringbuf;
2557
2558	/*
2559	 * To ensure that this call will not fail, space for its emissions
2560	 * should already have been reserved in the ring buffer. Let the ring
2561	 * know that it is time to use that space up.
2562	 */
2563	intel_ring_reserved_space_use(ringbuf);
2564
2565	request_start = intel_ring_get_tail(ringbuf);
2566	/*
2567	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2568	 * after having emitted the batchbuffer command. Hence we need to fix
2569	 * things up similar to emitting the lazy request. The difference here
2570	 * is that the flush _must_ happen before the next request, no matter
2571	 * what.
2572	 */
2573	if (flush_caches) {
2574		if (i915.enable_execlists)
2575			ret = logical_ring_flush_all_caches(request);
2576		else
2577			ret = intel_ring_flush_all_caches(request);
2578		/* Not allowed to fail! */
2579		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2580	}
2581
2582	/* Record the position of the start of the request so that
2583	 * should we detect the updated seqno part-way through the
2584	 * GPU processing the request, we never over-estimate the
2585	 * position of the head.
2586	 */
2587	request->postfix = intel_ring_get_tail(ringbuf);
2588
2589	if (i915.enable_execlists)
2590		ret = ring->emit_request(request);
2591	else {
2592		ret = ring->add_request(request);
2593
2594		request->tail = intel_ring_get_tail(ringbuf);
2595	}
2596	/* Not allowed to fail! */
2597	WARN(ret, "emit|add_request failed: %d!\n", ret);
2598
2599	request->head = request_start;
2600
2601	/* Whilst this request exists, batch_obj will be on the
2602	 * active_list, and so will hold the active reference. Only when this
2603	 * request is retired will the the batch_obj be moved onto the
2604	 * inactive_list and lose its active reference. Hence we do not need
2605	 * to explicitly hold another reference here.
2606	 */
2607	request->batch_obj = obj;
2608
 
 
2609	request->emitted_jiffies = jiffies;
2610	request->previous_seqno = ring->last_submitted_seqno;
2611	ring->last_submitted_seqno = request->seqno;
2612	list_add_tail(&request->list, &ring->request_list);
2613
2614	trace_i915_gem_request_add(request);
2615
2616	i915_queue_hangcheck(ring->dev);
2617
2618	queue_delayed_work(dev_priv->wq,
2619			   &dev_priv->mm.retire_work,
2620			   round_jiffies_up_relative(HZ));
2621	intel_mark_busy(dev_priv->dev);
2622
2623	/* Sanity check that the reserved size was large enough. */
2624	intel_ring_reserved_space_end(ringbuf);
2625}
2626
2627static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2628				   const struct intel_context *ctx)
2629{
2630	unsigned long elapsed;
2631
2632	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2633
2634	if (ctx->hang_stats.banned)
2635		return true;
2636
2637	if (ctx->hang_stats.ban_period_seconds &&
2638	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2639		if (!i915_gem_context_is_default(ctx)) {
2640			DRM_DEBUG("context hanging too fast, banning!\n");
2641			return true;
2642		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2643			if (i915_stop_ring_allow_warn(dev_priv))
2644				DRM_ERROR("gpu hanging too fast, banning!\n");
2645			return true;
2646		}
 
 
 
 
 
2647	}
2648
2649	return false;
2650}
2651
2652static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2653				  struct intel_context *ctx,
2654				  const bool guilty)
2655{
2656	struct i915_ctx_hang_stats *hs;
2657
2658	if (WARN_ON(!ctx))
2659		return;
2660
2661	hs = &ctx->hang_stats;
2662
2663	if (guilty) {
2664		hs->banned = i915_context_is_banned(dev_priv, ctx);
2665		hs->batch_active++;
2666		hs->guilty_ts = get_seconds();
2667	} else {
2668		hs->batch_pending++;
2669	}
 
2670}
2671
2672void i915_gem_request_free(struct kref *req_ref)
 
2673{
2674	struct drm_i915_gem_request *req = container_of(req_ref,
2675						 typeof(*req), ref);
2676	struct intel_context *ctx = req->ctx;
2677
2678	if (req->file_priv)
2679		i915_gem_request_remove_from_client(req);
2680
2681	if (ctx) {
2682		if (i915.enable_execlists && ctx != req->i915->kernel_context)
2683			intel_lr_context_unpin(ctx, req->ring);
2684
2685		i915_gem_context_unreference(ctx);
 
 
2686	}
2687
2688	kmem_cache_free(req->i915->requests, req);
2689}
2690
2691static inline int
2692__i915_gem_request_alloc(struct intel_engine_cs *ring,
2693			 struct intel_context *ctx,
2694			 struct drm_i915_gem_request **req_out)
2695{
2696	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2697	struct drm_i915_gem_request *req;
2698	int ret;
2699
2700	if (!req_out)
2701		return -EINVAL;
2702
2703	*req_out = NULL;
2704
2705	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2706	if (req == NULL)
2707		return -ENOMEM;
2708
2709	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2710	if (ret)
2711		goto err;
2712
2713	kref_init(&req->ref);
2714	req->i915 = dev_priv;
2715	req->ring = ring;
2716	req->ctx  = ctx;
2717	i915_gem_context_reference(req->ctx);
2718
2719	if (i915.enable_execlists)
2720		ret = intel_logical_ring_alloc_request_extras(req);
2721	else
2722		ret = intel_ring_alloc_request_extras(req);
2723	if (ret) {
2724		i915_gem_context_unreference(req->ctx);
2725		goto err;
2726	}
2727
2728	/*
2729	 * Reserve space in the ring buffer for all the commands required to
2730	 * eventually emit this request. This is to guarantee that the
2731	 * i915_add_request() call can't fail. Note that the reserve may need
2732	 * to be redone if the request is not actually submitted straight
2733	 * away, e.g. because a GPU scheduler has deferred it.
2734	 */
2735	if (i915.enable_execlists)
2736		ret = intel_logical_ring_reserve_space(req);
2737	else
2738		ret = intel_ring_reserve_space(req);
2739	if (ret) {
2740		/*
2741		 * At this point, the request is fully allocated even if not
2742		 * fully prepared. Thus it can be cleaned up using the proper
2743		 * free code.
2744		 */
2745		i915_gem_request_cancel(req);
2746		return ret;
2747	}
2748
2749	*req_out = req;
2750	return 0;
2751
2752err:
2753	kmem_cache_free(dev_priv->requests, req);
2754	return ret;
2755}
2756
2757/**
2758 * i915_gem_request_alloc - allocate a request structure
2759 *
2760 * @engine: engine that we wish to issue the request on.
2761 * @ctx: context that the request will be associated with.
2762 *       This can be NULL if the request is not directly related to
2763 *       any specific user context, in which case this function will
2764 *       choose an appropriate context to use.
2765 *
2766 * Returns a pointer to the allocated request if successful,
2767 * or an error code if not.
2768 */
2769struct drm_i915_gem_request *
2770i915_gem_request_alloc(struct intel_engine_cs *engine,
2771		       struct intel_context *ctx)
2772{
2773	struct drm_i915_gem_request *req;
2774	int err;
2775
2776	if (ctx == NULL)
2777		ctx = to_i915(engine->dev)->kernel_context;
2778	err = __i915_gem_request_alloc(engine, ctx, &req);
2779	return err ? ERR_PTR(err) : req;
2780}
2781
2782void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2783{
2784	intel_ring_reserved_space_cancel(req->ringbuf);
2785
2786	i915_gem_request_unreference(req);
2787}
2788
2789struct drm_i915_gem_request *
2790i915_gem_find_active_request(struct intel_engine_cs *ring)
2791{
2792	struct drm_i915_gem_request *request;
2793
2794	list_for_each_entry(request, &ring->request_list, list) {
2795		if (i915_gem_request_completed(request, false))
2796			continue;
2797
2798		return request;
2799	}
2800
2801	return NULL;
2802}
2803
2804static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2805				       struct intel_engine_cs *ring)
2806{
2807	struct drm_i915_gem_request *request;
2808	bool ring_hung;
 
2809
2810	request = i915_gem_find_active_request(ring);
2811
2812	if (request == NULL)
2813		return;
2814
2815	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2816
2817	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2818
2819	list_for_each_entry_continue(request, &ring->request_list, list)
2820		i915_set_reset_status(dev_priv, request->ctx, false);
2821}
2822
2823static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2824					struct intel_engine_cs *ring)
2825{
2826	struct intel_ringbuffer *buffer;
2827
2828	while (!list_empty(&ring->active_list)) {
2829		struct drm_i915_gem_object *obj;
2830
2831		obj = list_first_entry(&ring->active_list,
2832				       struct drm_i915_gem_object,
2833				       ring_list[ring->id]);
2834
2835		i915_gem_object_retire__read(obj, ring->id);
2836	}
2837
2838	/*
2839	 * Clear the execlists queue up before freeing the requests, as those
2840	 * are the ones that keep the context and ringbuffer backing objects
2841	 * pinned in place.
2842	 */
 
 
 
 
2843
2844	if (i915.enable_execlists) {
2845		spin_lock_irq(&ring->execlist_lock);
2846
2847		/* list_splice_tail_init checks for empty lists */
2848		list_splice_tail_init(&ring->execlist_queue,
2849				      &ring->execlist_retired_req_list);
2850
2851		spin_unlock_irq(&ring->execlist_lock);
2852		intel_execlists_retire_requests(ring);
2853	}
2854
2855	/*
2856	 * We must free the requests after all the corresponding objects have
2857	 * been moved off active lists. Which is the same order as the normal
2858	 * retire_requests function does. This is important if object hold
2859	 * implicit references on things like e.g. ppgtt address spaces through
2860	 * the request.
2861	 */
2862	while (!list_empty(&ring->request_list)) {
2863		struct drm_i915_gem_request *request;
2864
2865		request = list_first_entry(&ring->request_list,
2866					   struct drm_i915_gem_request,
2867					   list);
2868
2869		i915_gem_request_retire(request);
2870	}
2871
2872	/* Having flushed all requests from all queues, we know that all
2873	 * ringbuffers must now be empty. However, since we do not reclaim
2874	 * all space when retiring the request (to prevent HEADs colliding
2875	 * with rapid ringbuffer wraparound) the amount of available space
2876	 * upon reset is less than when we start. Do one more pass over
2877	 * all the ringbuffers to reset last_retired_head.
2878	 */
2879	list_for_each_entry(buffer, &ring->buffers, link) {
2880		buffer->last_retired_head = buffer->tail;
2881		intel_ring_update_space(buffer);
2882	}
2883}
2884
2885void i915_gem_reset(struct drm_device *dev)
 
 
 
 
2886{
2887	struct drm_i915_private *dev_priv = dev->dev_private;
2888	struct intel_engine_cs *ring;
2889	int i;
2890
2891	/*
2892	 * Before we free the objects from the requests, we need to inspect
2893	 * them for finding the guilty party. As the requests only borrow
2894	 * their reference to the objects, the inspection must be done first.
2895	 */
2896	for_each_ring(ring, dev_priv, i)
2897		i915_gem_reset_ring_status(dev_priv, ring);
2898
2899	for_each_ring(ring, dev_priv, i)
2900		i915_gem_reset_ring_cleanup(dev_priv, ring);
2901
2902	i915_gem_context_reset(dev);
2903
2904	i915_gem_restore_fences(dev);
2905
2906	WARN_ON(i915_verify_lists(dev));
2907}
2908
2909/**
2910 * This function clears the request list as sequence numbers are passed.
2911 */
2912void
2913i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2914{
2915	WARN_ON(i915_verify_lists(ring->dev));
2916
2917	/* Retire requests first as we use it above for the early return.
2918	 * If we retire requests last, we may use a later seqno and so clear
2919	 * the requests lists without clearing the active list, leading to
2920	 * confusion.
2921	 */
2922	while (!list_empty(&ring->request_list)) {
2923		struct drm_i915_gem_request *request;
2924
2925		request = list_first_entry(&ring->request_list,
2926					   struct drm_i915_gem_request,
2927					   list);
2928
2929		if (!i915_gem_request_completed(request, true))
2930			break;
2931
2932		i915_gem_request_retire(request);
 
 
 
 
2933	}
2934
2935	/* Move any buffers on the active list that are no longer referenced
2936	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2937	 * before we free the context associated with the requests.
2938	 */
2939	while (!list_empty(&ring->active_list)) {
2940		struct drm_i915_gem_object *obj;
2941
2942		obj = list_first_entry(&ring->active_list,
2943				      struct drm_i915_gem_object,
2944				      ring_list[ring->id]);
2945
2946		if (!list_empty(&obj->last_read_req[ring->id]->list))
2947			break;
2948
2949		i915_gem_object_retire__read(obj, ring->id);
 
 
 
2950	}
2951
2952	if (unlikely(ring->trace_irq_req &&
2953		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2954		ring->irq_put(ring);
2955		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2956	}
2957
2958	WARN_ON(i915_verify_lists(ring->dev));
2959}
2960
2961bool
2962i915_gem_retire_requests(struct drm_device *dev)
2963{
2964	struct drm_i915_private *dev_priv = dev->dev_private;
2965	struct intel_engine_cs *ring;
2966	bool idle = true;
2967	int i;
2968
2969	for_each_ring(ring, dev_priv, i) {
2970		i915_gem_retire_requests_ring(ring);
2971		idle &= list_empty(&ring->request_list);
2972		if (i915.enable_execlists) {
2973			spin_lock_irq(&ring->execlist_lock);
2974			idle &= list_empty(&ring->execlist_queue);
2975			spin_unlock_irq(&ring->execlist_lock);
2976
2977			intel_execlists_retire_requests(ring);
2978		}
 
 
 
 
 
 
 
2979	}
2980
2981	if (idle)
2982		mod_delayed_work(dev_priv->wq,
2983				   &dev_priv->mm.idle_work,
2984				   msecs_to_jiffies(100));
2985
2986	return idle;
2987}
2988
2989static void
2990i915_gem_retire_work_handler(struct work_struct *work)
2991{
2992	struct drm_i915_private *dev_priv =
2993		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2994	struct drm_device *dev = dev_priv->dev;
2995	bool idle;
 
 
 
 
 
2996
2997	/* Come back later if the device is busy... */
2998	idle = false;
2999	if (mutex_trylock(&dev->struct_mutex)) {
3000		idle = i915_gem_retire_requests(dev);
3001		mutex_unlock(&dev->struct_mutex);
3002	}
3003	if (!idle)
3004		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3005				   round_jiffies_up_relative(HZ));
3006}
3007
3008static void
3009i915_gem_idle_work_handler(struct work_struct *work)
3010{
3011	struct drm_i915_private *dev_priv =
3012		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3013	struct drm_device *dev = dev_priv->dev;
3014	struct intel_engine_cs *ring;
3015	int i;
3016
3017	for_each_ring(ring, dev_priv, i)
3018		if (!list_empty(&ring->request_list))
3019			return;
3020
3021	/* we probably should sync with hangcheck here, using cancel_work_sync.
3022	 * Also locking seems to be fubar here, ring->request_list is protected
3023	 * by dev->struct_mutex. */
3024
3025	intel_mark_idle(dev);
 
 
 
 
 
 
 
 
 
 
3026
3027	if (mutex_trylock(&dev->struct_mutex)) {
3028		struct intel_engine_cs *ring;
3029		int i;
3030
3031		for_each_ring(ring, dev_priv, i)
3032			i915_gem_batch_pool_fini(&ring->batch_pool);
3033
3034		mutex_unlock(&dev->struct_mutex);
3035	}
3036}
3037
3038/**
3039 * Ensures that an object will eventually get non-busy by flushing any required
3040 * write domains, emitting any outstanding lazy request and retiring and
3041 * completed requests.
3042 */
3043static int
3044i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
 
3045{
3046	int i;
 
 
 
 
 
 
 
 
 
3047
3048	if (!obj->active)
3049		return 0;
 
 
3050
3051	for (i = 0; i < I915_NUM_RINGS; i++) {
3052		struct drm_i915_gem_request *req;
3053
3054		req = obj->last_read_req[i];
3055		if (req == NULL)
3056			continue;
3057
3058		if (list_empty(&req->list))
3059			goto retire;
 
3060
3061		if (i915_gem_request_completed(req, true)) {
3062			__i915_gem_request_retire__upto(req);
3063retire:
3064			i915_gem_object_retire__read(obj, i);
3065		}
 
 
3066	}
3067
3068	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3069}
3070
3071/**
3072 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3073 * @DRM_IOCTL_ARGS: standard ioctl arguments
3074 *
3075 * Returns 0 if successful, else an error is returned with the remaining time in
3076 * the timeout parameter.
3077 *  -ETIME: object is still busy after timeout
3078 *  -ERESTARTSYS: signal interrupted the wait
3079 *  -ENONENT: object doesn't exist
3080 * Also possible, but rare:
3081 *  -EAGAIN: GPU wedged
3082 *  -ENOMEM: damn
3083 *  -ENODEV: Internal IRQ fail
3084 *  -E?: The add request failed
3085 *
3086 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3087 * non-zero timeout parameter the wait ioctl will wait for the given number of
3088 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3089 * without holding struct_mutex the object may become re-busied before this
3090 * function completes. A similar but shorter * race condition exists in the busy
3091 * ioctl
3092 */
3093int
3094i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3095{
3096	struct drm_i915_private *dev_priv = dev->dev_private;
3097	struct drm_i915_gem_wait *args = data;
3098	struct drm_i915_gem_object *obj;
3099	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3100	unsigned reset_counter;
3101	int i, n = 0;
3102	int ret;
3103
3104	if (args->flags != 0)
3105		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3106
3107	ret = i915_mutex_lock_interruptible(dev);
3108	if (ret)
3109		return ret;
3110
3111	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3112	if (&obj->base == NULL) {
3113		mutex_unlock(&dev->struct_mutex);
3114		return -ENOENT;
3115	}
3116
3117	/* Need to make sure the object gets inactive eventually. */
3118	ret = i915_gem_object_flush_active(obj);
3119	if (ret)
3120		goto out;
 
 
 
3121
3122	if (!obj->active)
3123		goto out;
3124
3125	/* Do this after OLR check to make sure we make forward progress polling
3126	 * on this IOCTL with a timeout == 0 (like busy ioctl)
 
3127	 */
3128	if (args->timeout_ns == 0) {
3129		ret = -ETIME;
3130		goto out;
 
 
 
 
 
 
 
3131	}
3132
3133	drm_gem_object_unreference(&obj->base);
3134	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
 
 
 
 
3135
3136	for (i = 0; i < I915_NUM_RINGS; i++) {
3137		if (obj->last_read_req[i] == NULL)
3138			continue;
3139
3140		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3141	}
 
 
3142
3143	mutex_unlock(&dev->struct_mutex);
 
 
3144
3145	for (i = 0; i < n; i++) {
3146		if (ret == 0)
3147			ret = __i915_wait_request(req[i], reset_counter, true,
3148						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3149						  to_rps_client(file));
3150		i915_gem_request_unreference__unlocked(req[i]);
3151	}
3152	return ret;
3153
3154out:
3155	drm_gem_object_unreference(&obj->base);
3156	mutex_unlock(&dev->struct_mutex);
3157	return ret;
3158}
3159
3160static int
3161__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3162		       struct intel_engine_cs *to,
3163		       struct drm_i915_gem_request *from_req,
3164		       struct drm_i915_gem_request **to_req)
3165{
3166	struct intel_engine_cs *from;
3167	int ret;
3168
3169	from = i915_gem_request_get_ring(from_req);
3170	if (to == from)
3171		return 0;
3172
3173	if (i915_gem_request_completed(from_req, true))
3174		return 0;
3175
3176	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3177		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3178		ret = __i915_wait_request(from_req,
3179					  atomic_read(&i915->gpu_error.reset_counter),
3180					  i915->mm.interruptible,
3181					  NULL,
3182					  &i915->rps.semaphores);
3183		if (ret)
3184			return ret;
3185
3186		i915_gem_object_retire_request(obj, from_req);
3187	} else {
3188		int idx = intel_ring_sync_index(from, to);
3189		u32 seqno = i915_gem_request_get_seqno(from_req);
3190
3191		WARN_ON(!to_req);
 
3192
3193		if (seqno <= from->semaphore.sync_seqno[idx])
3194			return 0;
 
3195
3196		if (*to_req == NULL) {
3197			struct drm_i915_gem_request *req;
3198
3199			req = i915_gem_request_alloc(to, NULL);
3200			if (IS_ERR(req))
3201				return PTR_ERR(req);
3202
3203			*to_req = req;
3204		}
3205
3206		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3207		ret = to->semaphore.sync_to(*to_req, from, seqno);
3208		if (ret)
3209			return ret;
3210
3211		/* We use last_read_req because sync_to()
3212		 * might have just caused seqno wrap under
3213		 * the radar.
3214		 */
3215		from->semaphore.sync_seqno[idx] =
3216			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3217	}
3218
3219	return 0;
3220}
3221
3222/**
3223 * i915_gem_object_sync - sync an object to a ring.
3224 *
3225 * @obj: object which may be in use on another ring.
3226 * @to: ring we wish to use the object on. May be NULL.
3227 * @to_req: request we wish to use the object for. See below.
3228 *          This will be allocated and returned if a request is
3229 *          required but not passed in.
3230 *
3231 * This code is meant to abstract object synchronization with the GPU.
3232 * Calling with NULL implies synchronizing the object with the CPU
3233 * rather than a particular GPU ring. Conceptually we serialise writes
3234 * between engines inside the GPU. We only allow one engine to write
3235 * into a buffer at any time, but multiple readers. To ensure each has
3236 * a coherent view of memory, we must:
3237 *
3238 * - If there is an outstanding write request to the object, the new
3239 *   request must wait for it to complete (either CPU or in hw, requests
3240 *   on the same ring will be naturally ordered).
3241 *
3242 * - If we are a write request (pending_write_domain is set), the new
3243 *   request must wait for outstanding read requests to complete.
3244 *
3245 * For CPU synchronisation (NULL to) no request is required. For syncing with
3246 * rings to_req must be non-NULL. However, a request does not have to be
3247 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3248 * request will be allocated automatically and returned through *to_req. Note
3249 * that it is not guaranteed that commands will be emitted (because the system
3250 * might already be idle). Hence there is no need to create a request that
3251 * might never have any work submitted. Note further that if a request is
3252 * returned in *to_req, it is the responsibility of the caller to submit
3253 * that request (after potentially adding more work to it).
3254 *
3255 * Returns 0 if successful, else propagates up the lower layer error.
3256 */
3257int
3258i915_gem_object_sync(struct drm_i915_gem_object *obj,
3259		     struct intel_engine_cs *to,
3260		     struct drm_i915_gem_request **to_req)
3261{
3262	const bool readonly = obj->base.pending_write_domain == 0;
3263	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3264	int ret, i, n;
3265
3266	if (!obj->active)
 
 
3267		return 0;
3268
3269	if (to == NULL)
3270		return i915_gem_object_wait_rendering(obj, readonly);
3271
3272	n = 0;
3273	if (readonly) {
3274		if (obj->last_write_req)
3275			req[n++] = obj->last_write_req;
3276	} else {
3277		for (i = 0; i < I915_NUM_RINGS; i++)
3278			if (obj->last_read_req[i])
3279				req[n++] = obj->last_read_req[i];
3280	}
3281	for (i = 0; i < n; i++) {
3282		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3283		if (ret)
3284			return ret;
3285	}
3286
3287	return 0;
3288}
3289
3290static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
 
3291{
3292	u32 old_write_domain, old_read_domains;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293
3294	/* Force a pagefault for domain tracking on next user access */
3295	i915_gem_release_mmap(obj);
 
 
 
 
 
 
 
3296
3297	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3298		return;
3299
3300	/* Wait for any direct GTT access to complete */
3301	mb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3302
3303	old_read_domains = obj->base.read_domains;
3304	old_write_domain = obj->base.write_domain;
 
 
3305
3306	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3307	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
 
 
 
 
 
 
 
3308
3309	trace_i915_gem_object_change_domain(obj,
3310					    old_read_domains,
3311					    old_write_domain);
3312}
3313
3314static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
 
3315{
3316	struct drm_i915_gem_object *obj = vma->obj;
3317	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3318	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3319
3320	if (list_empty(&vma->obj_link))
3321		return 0;
3322
3323	if (!drm_mm_node_allocated(&vma->node)) {
3324		i915_gem_vma_destroy(vma);
3325		return 0;
3326	}
 
 
 
 
 
 
 
 
 
 
 
 
3327
3328	if (vma->pin_count)
3329		return -EBUSY;
3330
3331	BUG_ON(obj->pages == NULL);
 
 
 
 
 
3332
3333	if (wait) {
3334		ret = i915_gem_object_wait_rendering(obj, false);
3335		if (ret)
3336			return ret;
3337	}
3338
3339	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3340		i915_gem_object_finish_gtt(obj);
 
 
 
 
 
3341
3342		/* release the fence reg _after_ flushing */
3343		ret = i915_gem_object_put_fence(obj);
3344		if (ret)
3345			return ret;
3346	}
3347
3348	trace_i915_vma_unbind(vma);
 
 
 
3349
3350	vma->vm->unbind_vma(vma);
3351	vma->bound = 0;
 
 
 
3352
3353	list_del_init(&vma->vm_link);
3354	if (vma->is_ggtt) {
3355		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3356			obj->map_and_fenceable = false;
3357		} else if (vma->ggtt_view.pages) {
3358			sg_free_table(vma->ggtt_view.pages);
3359			kfree(vma->ggtt_view.pages);
3360		}
3361		vma->ggtt_view.pages = NULL;
 
3362	}
3363
3364	drm_mm_remove_node(&vma->node);
3365	i915_gem_vma_destroy(vma);
 
 
 
 
 
 
3366
3367	/* Since the unbound list is global, only move to that list if
3368	 * no more VMAs exist. */
3369	if (list_empty(&obj->vma_list))
3370		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3371
3372	/* And finally now the object is completely decoupled from this vma,
3373	 * we can drop its hold on the backing storage and allow it to be
3374	 * reaped by the shrinker.
3375	 */
3376	i915_gem_object_unpin_pages(obj);
 
3377
3378	return 0;
3379}
3380
3381int i915_vma_unbind(struct i915_vma *vma)
 
3382{
3383	return __i915_vma_unbind(vma, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3384}
3385
3386int __i915_vma_unbind_no_wait(struct i915_vma *vma)
 
 
3387{
3388	return __i915_vma_unbind(vma, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3389}
3390
3391int i915_gpu_idle(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3392{
 
3393	struct drm_i915_private *dev_priv = dev->dev_private;
3394	struct intel_engine_cs *ring;
3395	int ret, i;
 
 
 
3396
3397	/* Flush everything onto the inactive list. */
3398	for_each_ring(ring, dev_priv, i) {
3399		if (!i915.enable_execlists) {
3400			struct drm_i915_gem_request *req;
3401
3402			req = i915_gem_request_alloc(ring, NULL);
3403			if (IS_ERR(req))
3404				return PTR_ERR(req);
3405
3406			ret = i915_switch_context(req);
3407			if (ret) {
3408				i915_gem_request_cancel(req);
3409				return ret;
 
 
 
 
 
 
 
 
 
3410			}
3411
3412			i915_add_request_no_flush(req);
3413		}
3414
3415		ret = intel_ring_idle(ring);
3416		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3417			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3418	}
3419
3420	WARN_ON(i915_verify_lists(dev));
3421	return 0;
3422}
3423
3424static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3425				     unsigned long cache_level)
 
 
 
 
 
 
 
 
3426{
3427	struct drm_mm_node *gtt_space = &vma->node;
3428	struct drm_mm_node *other;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3429
3430	/*
3431	 * On some machines we have to be careful when putting differing types
3432	 * of snoopable memory together to avoid the prefetcher crossing memory
3433	 * domains and dying. During vm initialisation, we decide whether or not
3434	 * these constraints apply and set the drm_mm.color_adjust
3435	 * appropriately.
3436	 */
3437	if (vma->vm->mm.color_adjust == NULL)
3438		return true;
3439
3440	if (!drm_mm_node_allocated(gtt_space))
3441		return true;
3442
3443	if (list_empty(&gtt_space->node_list))
3444		return true;
3445
3446	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3447	if (other->allocated && !other->hole_follows && other->color != cache_level)
3448		return false;
3449
3450	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3451	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3452		return false;
3453
3454	return true;
 
 
3455}
3456
3457/**
3458 * Finds free space in the GTT aperture and binds the object or a view of it
3459 * there.
3460 */
3461static struct i915_vma *
3462i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3463			   struct i915_address_space *vm,
3464			   const struct i915_ggtt_view *ggtt_view,
3465			   unsigned alignment,
3466			   uint64_t flags)
3467{
3468	struct drm_device *dev = obj->base.dev;
3469	struct drm_i915_private *dev_priv = dev->dev_private;
3470	u32 fence_alignment, unfenced_alignment;
3471	u32 search_flag, alloc_flag;
3472	u64 start, end;
3473	u64 size, fence_size;
3474	struct i915_vma *vma;
3475	int ret;
3476
3477	if (i915_is_ggtt(vm)) {
3478		u32 view_size;
 
 
3479
3480		if (WARN_ON(!ggtt_view))
3481			return ERR_PTR(-EINVAL);
3482
3483		view_size = i915_ggtt_view_size(obj, ggtt_view);
3484
3485		fence_size = i915_gem_get_gtt_size(dev,
3486						   view_size,
3487						   obj->tiling_mode);
3488		fence_alignment = i915_gem_get_gtt_alignment(dev,
3489							     view_size,
3490							     obj->tiling_mode,
3491							     true);
3492		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3493								view_size,
3494								obj->tiling_mode,
3495								false);
3496		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3497	} else {
3498		fence_size = i915_gem_get_gtt_size(dev,
3499						   obj->base.size,
3500						   obj->tiling_mode);
3501		fence_alignment = i915_gem_get_gtt_alignment(dev,
3502							     obj->base.size,
3503							     obj->tiling_mode,
3504							     true);
3505		unfenced_alignment =
3506			i915_gem_get_gtt_alignment(dev,
3507						   obj->base.size,
3508						   obj->tiling_mode,
3509						   false);
3510		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3511	}
3512
3513	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3514	end = vm->total;
3515	if (flags & PIN_MAPPABLE)
3516		end = min_t(u64, end, dev_priv->gtt.mappable_end);
3517	if (flags & PIN_ZONE_4G)
3518		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3519
3520	if (alignment == 0)
3521		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3522						unfenced_alignment;
3523	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3524		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3525			  ggtt_view ? ggtt_view->type : 0,
3526			  alignment);
3527		return ERR_PTR(-EINVAL);
3528	}
3529
3530	/* If binding the object/GGTT view requires more space than the entire
3531	 * aperture has, reject it early before evicting everything in a vain
3532	 * attempt to find space.
3533	 */
3534	if (size > end) {
3535		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3536			  ggtt_view ? ggtt_view->type : 0,
3537			  size,
3538			  flags & PIN_MAPPABLE ? "mappable" : "total",
3539			  end);
3540		return ERR_PTR(-E2BIG);
3541	}
3542
3543	ret = i915_gem_object_get_pages(obj);
3544	if (ret)
3545		return ERR_PTR(ret);
3546
3547	i915_gem_object_pin_pages(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3548
3549	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3550			  i915_gem_obj_lookup_or_create_vma(obj, vm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3551
3552	if (IS_ERR(vma))
3553		goto err_unpin;
3554
3555	if (flags & PIN_OFFSET_FIXED) {
3556		uint64_t offset = flags & PIN_OFFSET_MASK;
 
 
3557
3558		if (offset & (alignment - 1) || offset + size > end) {
3559			ret = -EINVAL;
3560			goto err_free_vma;
3561		}
3562		vma->node.start = offset;
3563		vma->node.size = size;
3564		vma->node.color = obj->cache_level;
3565		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3566		if (ret) {
3567			ret = i915_gem_evict_for_vma(vma);
3568			if (ret == 0)
3569				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3570		}
3571		if (ret)
3572			goto err_free_vma;
3573	} else {
3574		if (flags & PIN_HIGH) {
3575			search_flag = DRM_MM_SEARCH_BELOW;
3576			alloc_flag = DRM_MM_CREATE_TOP;
3577		} else {
3578			search_flag = DRM_MM_SEARCH_DEFAULT;
3579			alloc_flag = DRM_MM_CREATE_DEFAULT;
3580		}
3581
3582search_free:
3583		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3584							  size, alignment,
3585							  obj->cache_level,
3586							  start, end,
3587							  search_flag,
3588							  alloc_flag);
3589		if (ret) {
3590			ret = i915_gem_evict_something(dev, vm, size, alignment,
3591						       obj->cache_level,
3592						       start, end,
3593						       flags);
3594			if (ret == 0)
3595				goto search_free;
3596
3597			goto err_free_vma;
3598		}
 
 
3599	}
3600	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3601		ret = -EINVAL;
3602		goto err_remove_node;
 
 
 
 
 
 
 
 
3603	}
3604
3605	trace_i915_vma_bind(vma, flags);
3606	ret = i915_vma_bind(vma, obj->cache_level, flags);
3607	if (ret)
3608		goto err_remove_node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3609
3610	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3611	list_add_tail(&vma->vm_link, &vm->inactive_list);
3612
3613	return vma;
 
 
3614
3615err_remove_node:
3616	drm_mm_remove_node(&vma->node);
3617err_free_vma:
3618	i915_gem_vma_destroy(vma);
3619	vma = ERR_PTR(ret);
3620err_unpin:
3621	i915_gem_object_unpin_pages(obj);
3622	return vma;
3623}
3624
3625bool
3626i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3627			bool force)
3628{
3629	/* If we don't have a page list set up, then we're not pinned
3630	 * to GPU, and we can ignore the cache flush because it'll happen
3631	 * again at bind time.
3632	 */
3633	if (obj->pages == NULL)
3634		return false;
3635
3636	/*
3637	 * Stolen memory is always coherent with the GPU as it is explicitly
3638	 * marked as wc by the system, or the system is cache-coherent.
3639	 */
3640	if (obj->stolen || obj->phys_handle)
3641		return false;
3642
3643	/* If the GPU is snooping the contents of the CPU cache,
3644	 * we do not need to manually clear the CPU cache lines.  However,
3645	 * the caches are only snooped when the render cache is
3646	 * flushed/invalidated.  As we always have to emit invalidations
3647	 * and flushes when moving into and out of the RENDER domain, correct
3648	 * snooping behaviour occurs naturally as the result of our domain
3649	 * tracking.
3650	 */
3651	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3652		obj->cache_dirty = true;
3653		return false;
3654	}
3655
3656	trace_i915_gem_object_clflush(obj);
3657	drm_clflush_sg(obj->pages);
3658	obj->cache_dirty = false;
3659
3660	return true;
 
 
 
 
 
 
 
 
 
 
 
3661}
3662
3663/** Flushes the GTT write domain for the object if it's dirty. */
3664static void
3665i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3666{
3667	uint32_t old_write_domain;
3668
3669	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3670		return;
3671
3672	/* No actual flushing is required for the GTT write domain.  Writes
3673	 * to it immediately go to main memory as far as we know, so there's
3674	 * no chipset flush.  It also doesn't land in render cache.
3675	 *
3676	 * However, we do have to enforce the order so that all writes through
3677	 * the GTT land before any writes to the device, such as updates to
3678	 * the GATT itself.
3679	 */
3680	wmb();
3681
3682	old_write_domain = obj->base.write_domain;
3683	obj->base.write_domain = 0;
3684
3685	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3686
3687	trace_i915_gem_object_change_domain(obj,
3688					    obj->base.read_domains,
3689					    old_write_domain);
3690}
3691
3692/** Flushes the CPU write domain for the object if it's dirty. */
3693static void
3694i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3695{
3696	uint32_t old_write_domain;
3697
3698	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3699		return;
3700
3701	if (i915_gem_clflush_object(obj, obj->pin_display))
3702		i915_gem_chipset_flush(obj->base.dev);
3703
3704	old_write_domain = obj->base.write_domain;
3705	obj->base.write_domain = 0;
3706
3707	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3708
3709	trace_i915_gem_object_change_domain(obj,
3710					    obj->base.read_domains,
3711					    old_write_domain);
3712}
3713
3714/**
3715 * Moves a single object to the GTT read, and possibly write domain.
3716 *
3717 * This function returns when the move is complete, including waiting on
3718 * flushes to occur.
3719 */
3720int
3721i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3722{
3723	uint32_t old_write_domain, old_read_domains;
3724	struct i915_vma *vma;
3725	int ret;
3726
 
 
 
 
3727	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3728		return 0;
3729
3730	ret = i915_gem_object_wait_rendering(obj, !write);
3731	if (ret)
3732		return ret;
3733
3734	/* Flush and acquire obj->pages so that we are coherent through
3735	 * direct access in memory with previous cached writes through
3736	 * shmemfs and that our cache domain tracking remains valid.
3737	 * For example, if the obj->filp was moved to swap without us
3738	 * being notified and releasing the pages, we would mistakenly
3739	 * continue to assume that the obj remained out of the CPU cached
3740	 * domain.
3741	 */
3742	ret = i915_gem_object_get_pages(obj);
3743	if (ret)
3744		return ret;
3745
3746	i915_gem_object_flush_cpu_write_domain(obj);
3747
3748	/* Serialise direct access to this object with the barriers for
3749	 * coherent writes from the GPU, by effectively invalidating the
3750	 * GTT domain upon first access.
3751	 */
3752	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3753		mb();
3754
3755	old_write_domain = obj->base.write_domain;
3756	old_read_domains = obj->base.read_domains;
3757
3758	/* It should now be out of any other write domains, and we can update
3759	 * the domain values for our changes.
3760	 */
3761	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3762	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3763	if (write) {
3764		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3765		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3766		obj->dirty = 1;
3767	}
3768
3769	trace_i915_gem_object_change_domain(obj,
3770					    old_read_domains,
3771					    old_write_domain);
3772
3773	/* And bump the LRU for this access */
3774	vma = i915_gem_obj_to_ggtt(obj);
3775	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3776		list_move_tail(&vma->vm_link,
3777			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3778
3779	return 0;
3780}
3781
3782/**
3783 * Changes the cache-level of an object across all VMA.
3784 *
3785 * After this function returns, the object will be in the new cache-level
3786 * across all GTT and the contents of the backing storage will be coherent,
3787 * with respect to the new cache-level. In order to keep the backing storage
3788 * coherent for all users, we only allow a single cache level to be set
3789 * globally on the object and prevent it from being changed whilst the
3790 * hardware is reading from the object. That is if the object is currently
3791 * on the scanout it will be set to uncached (or equivalent display
3792 * cache coherency) and all non-MOCS GPU access will also be uncached so
3793 * that all direct access to the scanout remains coherent.
3794 */
3795int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3796				    enum i915_cache_level cache_level)
3797{
3798	struct drm_device *dev = obj->base.dev;
3799	struct i915_vma *vma, *next;
3800	bool bound = false;
3801	int ret = 0;
3802
3803	if (obj->cache_level == cache_level)
3804		goto out;
3805
3806	/* Inspect the list of currently bound VMA and unbind any that would
3807	 * be invalid given the new cache-level. This is principally to
3808	 * catch the issue of the CS prefetch crossing page boundaries and
3809	 * reading an invalid PTE on older architectures.
3810	 */
3811	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3812		if (!drm_mm_node_allocated(&vma->node))
3813			continue;
3814
3815		if (vma->pin_count) {
3816			DRM_DEBUG("can not change the cache level of pinned objects\n");
3817			return -EBUSY;
3818		}
3819
3820		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3821			ret = i915_vma_unbind(vma);
3822			if (ret)
3823				return ret;
3824		} else
3825			bound = true;
3826	}
3827
3828	/* We can reuse the existing drm_mm nodes but need to change the
3829	 * cache-level on the PTE. We could simply unbind them all and
3830	 * rebind with the correct cache-level on next use. However since
3831	 * we already have a valid slot, dma mapping, pages etc, we may as
3832	 * rewrite the PTE in the belief that doing so tramples upon less
3833	 * state and so involves less work.
3834	 */
3835	if (bound) {
3836		/* Before we change the PTE, the GPU must not be accessing it.
3837		 * If we wait upon the object, we know that all the bound
3838		 * VMA are no longer active.
3839		 */
3840		ret = i915_gem_object_wait_rendering(obj, false);
3841		if (ret)
3842			return ret;
3843
3844		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3845			/* Access to snoopable pages through the GTT is
3846			 * incoherent and on some machines causes a hard
3847			 * lockup. Relinquish the CPU mmaping to force
3848			 * userspace to refault in the pages and we can
3849			 * then double check if the GTT mapping is still
3850			 * valid for that pointer access.
3851			 */
3852			i915_gem_release_mmap(obj);
3853
3854			/* As we no longer need a fence for GTT access,
3855			 * we can relinquish it now (and so prevent having
3856			 * to steal a fence from someone else on the next
3857			 * fence request). Note GPU activity would have
3858			 * dropped the fence as all snoopable access is
3859			 * supposed to be linear.
3860			 */
3861			ret = i915_gem_object_put_fence(obj);
3862			if (ret)
3863				return ret;
3864		} else {
3865			/* We either have incoherent backing store and
3866			 * so no GTT access or the architecture is fully
3867			 * coherent. In such cases, existing GTT mmaps
3868			 * ignore the cache bit in the PTE and we can
3869			 * rewrite it without confusing the GPU or having
3870			 * to force userspace to fault back in its mmaps.
3871			 */
3872		}
3873
3874		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3875			if (!drm_mm_node_allocated(&vma->node))
3876				continue;
3877
3878			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3879			if (ret)
3880				return ret;
3881		}
3882	}
3883
3884	list_for_each_entry(vma, &obj->vma_list, obj_link)
3885		vma->node.color = cache_level;
3886	obj->cache_level = cache_level;
3887
3888out:
3889	/* Flush the dirty CPU caches to the backing storage so that the
3890	 * object is now coherent at its new cache level (with respect
3891	 * to the access domain).
3892	 */
3893	if (obj->cache_dirty &&
3894	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3895	    cpu_write_needs_clflush(obj)) {
3896		if (i915_gem_clflush_object(obj, true))
3897			i915_gem_chipset_flush(obj->base.dev);
3898	}
3899
3900	return 0;
3901}
3902
3903int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3904			       struct drm_file *file)
3905{
3906	struct drm_i915_gem_caching *args = data;
3907	struct drm_i915_gem_object *obj;
 
 
 
3908
3909	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3910	if (&obj->base == NULL)
3911		return -ENOENT;
3912
3913	switch (obj->cache_level) {
3914	case I915_CACHE_LLC:
3915	case I915_CACHE_L3_LLC:
3916		args->caching = I915_CACHING_CACHED;
3917		break;
3918
3919	case I915_CACHE_WT:
3920		args->caching = I915_CACHING_DISPLAY;
3921		break;
3922
3923	default:
3924		args->caching = I915_CACHING_NONE;
3925		break;
3926	}
3927
3928	drm_gem_object_unreference_unlocked(&obj->base);
3929	return 0;
3930}
3931
3932int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3933			       struct drm_file *file)
3934{
3935	struct drm_i915_private *dev_priv = dev->dev_private;
3936	struct drm_i915_gem_caching *args = data;
3937	struct drm_i915_gem_object *obj;
3938	enum i915_cache_level level;
3939	int ret;
3940
3941	switch (args->caching) {
3942	case I915_CACHING_NONE:
3943		level = I915_CACHE_NONE;
3944		break;
3945	case I915_CACHING_CACHED:
3946		/*
3947		 * Due to a HW issue on BXT A stepping, GPU stores via a
3948		 * snooped mapping may leave stale data in a corresponding CPU
3949		 * cacheline, whereas normally such cachelines would get
3950		 * invalidated.
3951		 */
3952		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3953			return -ENODEV;
3954
3955		level = I915_CACHE_LLC;
3956		break;
3957	case I915_CACHING_DISPLAY:
3958		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3959		break;
3960	default:
3961		return -EINVAL;
3962	}
3963
3964	intel_runtime_pm_get(dev_priv);
3965
3966	ret = i915_mutex_lock_interruptible(dev);
3967	if (ret)
3968		goto rpm_put;
3969
3970	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3971	if (&obj->base == NULL) {
3972		ret = -ENOENT;
3973		goto unlock;
3974	}
3975
3976	ret = i915_gem_object_set_cache_level(obj, level);
3977
3978	drm_gem_object_unreference(&obj->base);
3979unlock:
3980	mutex_unlock(&dev->struct_mutex);
3981rpm_put:
3982	intel_runtime_pm_put(dev_priv);
3983
3984	return ret;
3985}
3986
3987/*
3988 * Prepare buffer for display plane (scanout, cursors, etc).
3989 * Can be called from an uninterruptible phase (modesetting) and allows
3990 * any flushes to be pipelined (for pageflips).
 
 
 
 
 
3991 */
3992int
3993i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3994				     u32 alignment,
3995				     const struct i915_ggtt_view *view)
3996{
3997	u32 old_read_domains, old_write_domain;
3998	int ret;
3999
4000	/* Mark the pin_display early so that we account for the
4001	 * display coherency whilst setting up the cache domains.
4002	 */
4003	obj->pin_display++;
 
 
 
 
 
4004
4005	/* The display engine is not coherent with the LLC cache on gen6.  As
4006	 * a result, we make sure that the pinning that is about to occur is
4007	 * done with uncached PTEs. This is lowest common denominator for all
4008	 * chipsets.
4009	 *
4010	 * However for gen6+, we could do better by using the GFDT bit instead
4011	 * of uncaching, which would allow us to flush all the LLC-cached data
4012	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4013	 */
4014	ret = i915_gem_object_set_cache_level(obj,
4015					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4016	if (ret)
4017		goto err_unpin_display;
4018
4019	/* As the user may map the buffer once pinned in the display plane
4020	 * (e.g. libkms for the bootup splash), we have to ensure that we
4021	 * always use map_and_fenceable for all scanout buffers.
4022	 */
4023	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4024				       view->type == I915_GGTT_VIEW_NORMAL ?
4025				       PIN_MAPPABLE : 0);
4026	if (ret)
4027		goto err_unpin_display;
4028
4029	i915_gem_object_flush_cpu_write_domain(obj);
4030
4031	old_write_domain = obj->base.write_domain;
4032	old_read_domains = obj->base.read_domains;
4033
4034	/* It should now be out of any other write domains, and we can update
4035	 * the domain values for our changes.
4036	 */
4037	obj->base.write_domain = 0;
4038	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4039
4040	trace_i915_gem_object_change_domain(obj,
4041					    old_read_domains,
4042					    old_write_domain);
4043
4044	return 0;
4045
4046err_unpin_display:
4047	obj->pin_display--;
4048	return ret;
4049}
4050
4051void
4052i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4053					 const struct i915_ggtt_view *view)
4054{
4055	if (WARN_ON(obj->pin_display == 0))
4056		return;
 
 
 
 
 
 
 
 
4057
4058	i915_gem_object_ggtt_unpin_view(obj, view);
 
4059
4060	obj->pin_display--;
4061}
4062
4063/**
4064 * Moves a single object to the CPU read, and possibly write domain.
4065 *
4066 * This function returns when the move is complete, including waiting on
4067 * flushes to occur.
4068 */
4069int
4070i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4071{
4072	uint32_t old_write_domain, old_read_domains;
4073	int ret;
4074
4075	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4076		return 0;
4077
4078	ret = i915_gem_object_wait_rendering(obj, !write);
 
 
 
 
4079	if (ret)
4080		return ret;
4081
4082	i915_gem_object_flush_gtt_write_domain(obj);
4083
 
 
 
 
 
4084	old_write_domain = obj->base.write_domain;
4085	old_read_domains = obj->base.read_domains;
4086
4087	/* Flush the CPU cache if it's still invalid. */
4088	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4089		i915_gem_clflush_object(obj, false);
4090
4091		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4092	}
4093
4094	/* It should now be out of any other write domains, and we can update
4095	 * the domain values for our changes.
4096	 */
4097	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4098
4099	/* If we're writing through the CPU, then the GPU read domains will
4100	 * need to be invalidated at next use.
4101	 */
4102	if (write) {
4103		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4104		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4105	}
4106
4107	trace_i915_gem_object_change_domain(obj,
4108					    old_read_domains,
4109					    old_write_domain);
4110
4111	return 0;
4112}
4113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4114/* Throttle our rendering by waiting until the ring has completed our requests
4115 * emitted over 20 msec ago.
4116 *
4117 * Note that if we were to use the current jiffies each time around the loop,
4118 * we wouldn't escape the function with any frames outstanding if the time to
4119 * render a frame was over 20ms.
4120 *
4121 * This should get us reasonable parallelism between CPU and GPU but also
4122 * relatively low latency when blocking on a particular request to finish.
4123 */
4124static int
4125i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4126{
4127	struct drm_i915_private *dev_priv = dev->dev_private;
4128	struct drm_i915_file_private *file_priv = file->driver_priv;
4129	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4130	struct drm_i915_gem_request *request, *target = NULL;
4131	unsigned reset_counter;
 
4132	int ret;
4133
4134	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4135	if (ret)
4136		return ret;
4137
4138	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4139	if (ret)
4140		return ret;
4141
4142	spin_lock(&file_priv->mm.lock);
4143	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4144		if (time_after_eq(request->emitted_jiffies, recent_enough))
4145			break;
4146
4147		/*
4148		 * Note that the request might not have been submitted yet.
4149		 * In which case emitted_jiffies will be zero.
4150		 */
4151		if (!request->emitted_jiffies)
4152			continue;
4153
4154		target = request;
4155	}
4156	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4157	if (target)
4158		i915_gem_request_reference(target);
4159	spin_unlock(&file_priv->mm.lock);
4160
4161	if (target == NULL)
4162		return 0;
4163
4164	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4165	if (ret == 0)
4166		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4167
4168	i915_gem_request_unreference__unlocked(target);
4169
4170	return ret;
4171}
4172
4173static bool
4174i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
 
 
4175{
4176	struct drm_i915_gem_object *obj = vma->obj;
 
 
4177
4178	if (alignment &&
4179	    vma->node.start & (alignment - 1))
4180		return true;
4181
4182	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4183		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
4184
4185	if (flags & PIN_OFFSET_BIAS &&
4186	    vma->node.start < (flags & PIN_OFFSET_MASK))
4187		return true;
 
 
 
4188
4189	if (flags & PIN_OFFSET_FIXED &&
4190	    vma->node.start != (flags & PIN_OFFSET_MASK))
4191		return true;
 
 
 
4192
4193	return false;
 
4194}
4195
4196void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
 
4197{
4198	struct drm_i915_gem_object *obj = vma->obj;
4199	bool mappable, fenceable;
4200	u32 fence_size, fence_alignment;
4201
4202	fence_size = i915_gem_get_gtt_size(obj->base.dev,
4203					   obj->base.size,
4204					   obj->tiling_mode);
4205	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4206						     obj->base.size,
4207						     obj->tiling_mode,
4208						     true);
4209
4210	fenceable = (vma->node.size == fence_size &&
4211		     (vma->node.start & (fence_alignment - 1)) == 0);
4212
4213	mappable = (vma->node.start + fence_size <=
4214		    to_i915(obj->base.dev)->gtt.mappable_end);
4215
4216	obj->map_and_fenceable = mappable && fenceable;
4217}
4218
4219static int
4220i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4221		       struct i915_address_space *vm,
4222		       const struct i915_ggtt_view *ggtt_view,
4223		       uint32_t alignment,
4224		       uint64_t flags)
4225{
4226	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4227	struct i915_vma *vma;
4228	unsigned bound;
4229	int ret;
4230
4231	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4232		return -ENODEV;
 
4233
4234	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4235		return -EINVAL;
 
 
 
4236
4237	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4238		return -EINVAL;
 
 
 
4239
4240	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4241		return -EINVAL;
4242
4243	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4244			  i915_gem_obj_to_vma(obj, vm);
4245
4246	if (IS_ERR(vma))
4247		return PTR_ERR(vma);
4248
4249	if (vma) {
4250		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4251			return -EBUSY;
4252
4253		if (i915_vma_misplaced(vma, alignment, flags)) {
4254			WARN(vma->pin_count,
4255			     "bo is already pinned in %s with incorrect alignment:"
4256			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4257			     " obj->map_and_fenceable=%d\n",
4258			     ggtt_view ? "ggtt" : "ppgtt",
4259			     upper_32_bits(vma->node.start),
4260			     lower_32_bits(vma->node.start),
4261			     alignment,
4262			     !!(flags & PIN_MAPPABLE),
4263			     obj->map_and_fenceable);
4264			ret = i915_vma_unbind(vma);
4265			if (ret)
4266				return ret;
4267
4268			vma = NULL;
4269		}
4270	}
4271
4272	bound = vma ? vma->bound : 0;
4273	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4274		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4275						 flags);
4276		if (IS_ERR(vma))
4277			return PTR_ERR(vma);
4278	} else {
4279		ret = i915_vma_bind(vma, obj->cache_level, flags);
4280		if (ret)
4281			return ret;
4282	}
4283
4284	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4285	    (bound ^ vma->bound) & GLOBAL_BIND) {
4286		__i915_vma_set_map_and_fenceable(vma);
4287		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4288	}
4289
4290	vma->pin_count++;
4291	return 0;
 
 
4292}
4293
4294int
4295i915_gem_object_pin(struct drm_i915_gem_object *obj,
4296		    struct i915_address_space *vm,
4297		    uint32_t alignment,
4298		    uint64_t flags)
4299{
4300	return i915_gem_object_do_pin(obj, vm,
4301				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4302				      alignment, flags);
4303}
4304
4305int
4306i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4307			 const struct i915_ggtt_view *view,
4308			 uint32_t alignment,
4309			 uint64_t flags)
4310{
4311	if (WARN_ONCE(!view, "no view specified"))
4312		return -EINVAL;
4313
4314	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4315				      alignment, flags | PIN_GLOBAL);
4316}
 
 
4317
4318void
4319i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4320				const struct i915_ggtt_view *view)
4321{
4322	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
 
 
 
 
 
 
4323
4324	BUG_ON(!vma);
4325	WARN_ON(vma->pin_count == 0);
4326	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4327
4328	--vma->pin_count;
4329}
4330
4331int
4332i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4333		    struct drm_file *file)
4334{
4335	struct drm_i915_gem_busy *args = data;
4336	struct drm_i915_gem_object *obj;
4337	int ret;
4338
4339	ret = i915_mutex_lock_interruptible(dev);
4340	if (ret)
4341		return ret;
4342
4343	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4344	if (&obj->base == NULL) {
4345		ret = -ENOENT;
4346		goto unlock;
4347	}
4348
4349	/* Count all active objects as busy, even if they are currently not used
4350	 * by the gpu. Users of this interface expect objects to eventually
4351	 * become non-busy without any further actions, therefore emit any
4352	 * necessary flushes here.
4353	 */
4354	ret = i915_gem_object_flush_active(obj);
4355	if (ret)
4356		goto unref;
 
 
 
 
 
 
 
 
 
 
4357
4358	args->busy = 0;
4359	if (obj->active) {
4360		int i;
 
 
 
 
 
 
4361
4362		for (i = 0; i < I915_NUM_RINGS; i++) {
4363			struct drm_i915_gem_request *req;
 
 
 
 
4364
4365			req = obj->last_read_req[i];
4366			if (req)
4367				args->busy |= 1 << (16 + req->ring->exec_id);
4368		}
4369		if (obj->last_write_req)
4370			args->busy |= obj->last_write_req->ring->exec_id;
4371	}
4372
4373unref:
4374	drm_gem_object_unreference(&obj->base);
4375unlock:
4376	mutex_unlock(&dev->struct_mutex);
4377	return ret;
4378}
4379
4380int
4381i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4382			struct drm_file *file_priv)
4383{
4384	return i915_gem_ring_throttle(dev, file_priv);
4385}
4386
4387int
4388i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4389		       struct drm_file *file_priv)
4390{
4391	struct drm_i915_private *dev_priv = dev->dev_private;
4392	struct drm_i915_gem_madvise *args = data;
4393	struct drm_i915_gem_object *obj;
4394	int ret;
4395
4396	switch (args->madv) {
4397	case I915_MADV_DONTNEED:
4398	case I915_MADV_WILLNEED:
4399	    break;
4400	default:
4401	    return -EINVAL;
4402	}
4403
4404	ret = i915_mutex_lock_interruptible(dev);
4405	if (ret)
4406		return ret;
4407
4408	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4409	if (&obj->base == NULL) {
4410		ret = -ENOENT;
4411		goto unlock;
4412	}
4413
4414	if (i915_gem_obj_is_pinned(obj)) {
4415		ret = -EINVAL;
4416		goto out;
4417	}
4418
4419	if (obj->pages &&
4420	    obj->tiling_mode != I915_TILING_NONE &&
4421	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4422		if (obj->madv == I915_MADV_WILLNEED)
4423			i915_gem_object_unpin_pages(obj);
4424		if (args->madv == I915_MADV_WILLNEED)
4425			i915_gem_object_pin_pages(obj);
4426	}
4427
4428	if (obj->madv != __I915_MADV_PURGED)
4429		obj->madv = args->madv;
4430
4431	/* if the object is no longer attached, discard its backing storage */
4432	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
 
4433		i915_gem_object_truncate(obj);
4434
4435	args->retained = obj->madv != __I915_MADV_PURGED;
4436
4437out:
4438	drm_gem_object_unreference(&obj->base);
4439unlock:
4440	mutex_unlock(&dev->struct_mutex);
4441	return ret;
4442}
4443
4444void i915_gem_object_init(struct drm_i915_gem_object *obj,
4445			  const struct drm_i915_gem_object_ops *ops)
4446{
4447	int i;
4448
4449	INIT_LIST_HEAD(&obj->global_list);
4450	for (i = 0; i < I915_NUM_RINGS; i++)
4451		INIT_LIST_HEAD(&obj->ring_list[i]);
4452	INIT_LIST_HEAD(&obj->obj_exec_link);
4453	INIT_LIST_HEAD(&obj->vma_list);
4454	INIT_LIST_HEAD(&obj->batch_pool_link);
4455
4456	obj->ops = ops;
4457
4458	obj->fence_reg = I915_FENCE_REG_NONE;
4459	obj->madv = I915_MADV_WILLNEED;
4460
4461	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4462}
4463
4464static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4465	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4466	.get_pages = i915_gem_object_get_pages_gtt,
4467	.put_pages = i915_gem_object_put_pages_gtt,
4468};
4469
4470struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4471						  size_t size)
4472{
 
4473	struct drm_i915_gem_object *obj;
4474	struct address_space *mapping;
4475	gfp_t mask;
4476
4477	obj = i915_gem_object_alloc(dev);
4478	if (obj == NULL)
4479		return NULL;
4480
4481	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4482		i915_gem_object_free(obj);
4483		return NULL;
4484	}
4485
4486	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4487	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4488		/* 965gm cannot relocate objects above 4GiB. */
4489		mask &= ~__GFP_HIGHMEM;
4490		mask |= __GFP_DMA32;
4491	}
4492
4493	mapping = file_inode(obj->base.filp)->i_mapping;
4494	mapping_set_gfp_mask(mapping, mask);
4495
4496	i915_gem_object_init(obj, &i915_gem_object_ops);
4497
4498	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4499	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4500
4501	if (HAS_LLC(dev)) {
4502		/* On some devices, we can have the GPU use the LLC (the CPU
4503		 * cache) for about a 10% performance improvement
4504		 * compared to uncached.  Graphics requests other than
4505		 * display scanout are coherent with the CPU in
4506		 * accessing this cache.  This means in this mode we
4507		 * don't need to clflush on the CPU side, and on the
4508		 * GPU side we only need to flush internal caches to
4509		 * get data visible to the CPU.
4510		 *
4511		 * However, we maintain the display planes as UC, and so
4512		 * need to rebind when first used as such.
4513		 */
4514		obj->cache_level = I915_CACHE_LLC;
4515	} else
4516		obj->cache_level = I915_CACHE_NONE;
4517
4518	trace_i915_gem_object_create(obj);
 
 
 
 
 
 
 
 
 
4519
4520	return obj;
4521}
4522
4523static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4524{
4525	/* If we are the last user of the backing storage (be it shmemfs
4526	 * pages or stolen etc), we know that the pages are going to be
4527	 * immediately released. In this case, we can then skip copying
4528	 * back the contents from the GPU.
4529	 */
4530
4531	if (obj->madv != I915_MADV_WILLNEED)
4532		return false;
4533
4534	if (obj->base.filp == NULL)
4535		return true;
4536
4537	/* At first glance, this looks racy, but then again so would be
4538	 * userspace racing mmap against close. However, the first external
4539	 * reference to the filp can only be obtained through the
4540	 * i915_gem_mmap_ioctl() which safeguards us against the user
4541	 * acquiring such a reference whilst we are in the middle of
4542	 * freeing the object.
4543	 */
4544	return atomic_long_read(&obj->base.filp->f_count) == 1;
4545}
4546
4547void i915_gem_free_object(struct drm_gem_object *gem_obj)
4548{
4549	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4550	struct drm_device *dev = obj->base.dev;
4551	struct drm_i915_private *dev_priv = dev->dev_private;
4552	struct i915_vma *vma, *next;
4553
4554	intel_runtime_pm_get(dev_priv);
 
 
 
 
 
4555
4556	trace_i915_gem_object_destroy(obj);
4557
4558	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4559		int ret;
4560
4561		vma->pin_count = 0;
4562		ret = i915_vma_unbind(vma);
4563		if (WARN_ON(ret == -ERESTARTSYS)) {
4564			bool was_interruptible;
4565
4566			was_interruptible = dev_priv->mm.interruptible;
4567			dev_priv->mm.interruptible = false;
4568
4569			WARN_ON(i915_vma_unbind(vma));
4570
4571			dev_priv->mm.interruptible = was_interruptible;
4572		}
4573	}
4574
4575	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4576	 * before progressing. */
4577	if (obj->stolen)
4578		i915_gem_object_unpin_pages(obj);
4579
4580	WARN_ON(obj->frontbuffer_bits);
4581
4582	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4583	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4584	    obj->tiling_mode != I915_TILING_NONE)
4585		i915_gem_object_unpin_pages(obj);
4586
4587	if (WARN_ON(obj->pages_pin_count))
4588		obj->pages_pin_count = 0;
4589	if (discard_backing_storage(obj))
4590		obj->madv = I915_MADV_DONTNEED;
4591	i915_gem_object_put_pages(obj);
4592	i915_gem_object_free_mmap_offset(obj);
4593
4594	BUG_ON(obj->pages);
4595
4596	if (obj->base.import_attach)
4597		drm_prime_gem_destroy(&obj->base, NULL);
4598
4599	if (obj->ops->release)
4600		obj->ops->release(obj);
4601
4602	drm_gem_object_release(&obj->base);
4603	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4604
 
4605	kfree(obj->bit_17);
4606	i915_gem_object_free(obj);
4607
4608	intel_runtime_pm_put(dev_priv);
4609}
4610
4611struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4612				     struct i915_address_space *vm)
4613{
4614	struct i915_vma *vma;
4615	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4616		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4617		    vma->vm == vm)
4618			return vma;
4619	}
4620	return NULL;
4621}
4622
4623struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4624					   const struct i915_ggtt_view *view)
4625{
4626	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4627	struct i915_vma *vma;
4628
4629	if (WARN_ONCE(!view, "no view specified"))
4630		return ERR_PTR(-EINVAL);
4631
4632	list_for_each_entry(vma, &obj->vma_list, obj_link)
4633		if (vma->vm == ggtt &&
4634		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4635			return vma;
4636	return NULL;
4637}
4638
4639void i915_gem_vma_destroy(struct i915_vma *vma)
4640{
4641	WARN_ON(vma->node.allocated);
4642
4643	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4644	if (!list_empty(&vma->exec_list))
4645		return;
4646
4647	if (!vma->is_ggtt)
4648		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4649
4650	list_del(&vma->obj_link);
4651
4652	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4653}
4654
4655static void
4656i915_gem_stop_ringbuffers(struct drm_device *dev)
4657{
4658	struct drm_i915_private *dev_priv = dev->dev_private;
4659	struct intel_engine_cs *ring;
4660	int i;
4661
4662	for_each_ring(ring, dev_priv, i)
4663		dev_priv->gt.stop_ring(ring);
4664}
4665
4666int
4667i915_gem_suspend(struct drm_device *dev)
4668{
4669	struct drm_i915_private *dev_priv = dev->dev_private;
4670	int ret = 0;
4671
4672	mutex_lock(&dev->struct_mutex);
4673	ret = i915_gpu_idle(dev);
4674	if (ret)
4675		goto err;
4676
4677	i915_gem_retire_requests(dev);
4678
4679	i915_gem_stop_ringbuffers(dev);
4680	mutex_unlock(&dev->struct_mutex);
4681
4682	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4683	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4684	flush_delayed_work(&dev_priv->mm.idle_work);
4685
4686	/* Assert that we sucessfully flushed all the work and
4687	 * reset the GPU back to its idle, low power state.
4688	 */
4689	WARN_ON(dev_priv->mm.busy);
4690
4691	return 0;
4692
4693err:
4694	mutex_unlock(&dev->struct_mutex);
4695	return ret;
4696}
4697
4698int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4699{
4700	struct intel_engine_cs *ring = req->ring;
4701	struct drm_device *dev = ring->dev;
4702	struct drm_i915_private *dev_priv = dev->dev_private;
4703	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4704	int i, ret;
4705
4706	if (!HAS_L3_DPF(dev) || !remap_info)
4707		return 0;
 
4708
4709	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4710	if (ret)
 
4711		return ret;
 
4712
4713	/*
4714	 * Note: We do not worry about the concurrent register cacheline hang
4715	 * here because no other code should access these registers other than
4716	 * at initialization time.
4717	 */
4718	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4719		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4720		intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4721		intel_ring_emit(ring, remap_info[i]);
4722	}
4723
4724	intel_ring_advance(ring);
4725
4726	return ret;
4727}
 
 
 
 
4728
4729void i915_gem_init_swizzling(struct drm_device *dev)
4730{
4731	struct drm_i915_private *dev_priv = dev->dev_private;
4732
4733	if (INTEL_INFO(dev)->gen < 5 ||
4734	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4735		return;
4736
4737	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4738				 DISP_TILE_SURFACE_SWIZZLING);
4739
4740	if (IS_GEN5(dev))
4741		return;
4742
4743	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4744	if (IS_GEN6(dev))
4745		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4746	else if (IS_GEN7(dev))
4747		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4748	else if (IS_GEN8(dev))
4749		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4750	else
4751		BUG();
4752}
4753
4754static void init_unused_ring(struct drm_device *dev, u32 base)
 
4755{
4756	struct drm_i915_private *dev_priv = dev->dev_private;
4757
4758	I915_WRITE(RING_CTL(base), 0);
4759	I915_WRITE(RING_HEAD(base), 0);
4760	I915_WRITE(RING_TAIL(base), 0);
4761	I915_WRITE(RING_START(base), 0);
4762}
4763
4764static void init_unused_rings(struct drm_device *dev)
4765{
4766	if (IS_I830(dev)) {
4767		init_unused_ring(dev, PRB1_BASE);
4768		init_unused_ring(dev, SRB0_BASE);
4769		init_unused_ring(dev, SRB1_BASE);
4770		init_unused_ring(dev, SRB2_BASE);
4771		init_unused_ring(dev, SRB3_BASE);
4772	} else if (IS_GEN2(dev)) {
4773		init_unused_ring(dev, SRB0_BASE);
4774		init_unused_ring(dev, SRB1_BASE);
4775	} else if (IS_GEN3(dev)) {
4776		init_unused_ring(dev, PRB1_BASE);
4777		init_unused_ring(dev, PRB2_BASE);
4778	}
4779}
4780
4781int i915_gem_init_rings(struct drm_device *dev)
4782{
4783	struct drm_i915_private *dev_priv = dev->dev_private;
4784	int ret;
4785
4786	ret = intel_init_render_ring_buffer(dev);
4787	if (ret)
4788		return ret;
4789
4790	if (HAS_BSD(dev)) {
4791		ret = intel_init_bsd_ring_buffer(dev);
4792		if (ret)
4793			goto cleanup_render_ring;
4794	}
4795
4796	if (HAS_BLT(dev)) {
4797		ret = intel_init_blt_ring_buffer(dev);
4798		if (ret)
4799			goto cleanup_bsd_ring;
4800	}
4801
4802	if (HAS_VEBOX(dev)) {
4803		ret = intel_init_vebox_ring_buffer(dev);
4804		if (ret)
4805			goto cleanup_blt_ring;
4806	}
4807
4808	if (HAS_BSD2(dev)) {
4809		ret = intel_init_bsd2_ring_buffer(dev);
4810		if (ret)
4811			goto cleanup_vebox_ring;
4812	}
4813
4814	return 0;
4815
4816cleanup_vebox_ring:
4817	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4818cleanup_blt_ring:
4819	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4820cleanup_bsd_ring:
4821	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4822cleanup_render_ring:
4823	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4824
4825	return ret;
4826}
4827
4828int
4829i915_gem_init_hw(struct drm_device *dev)
4830{
4831	struct drm_i915_private *dev_priv = dev->dev_private;
4832	struct intel_engine_cs *ring;
4833	int ret, i, j;
4834
4835	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4836		return -EIO;
 
4837
4838	/* Double layer security blanket, see i915_gem_init() */
4839	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
 
 
 
 
4840
4841	if (dev_priv->ellc_size)
4842		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4843
4844	if (IS_HASWELL(dev))
4845		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4846			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4847
4848	if (HAS_PCH_NOP(dev)) {
4849		if (IS_IVYBRIDGE(dev)) {
4850			u32 temp = I915_READ(GEN7_MSG_CTL);
4851			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4852			I915_WRITE(GEN7_MSG_CTL, temp);
4853		} else if (INTEL_INFO(dev)->gen >= 7) {
4854			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4855			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4856			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4857		}
4858	}
4859
4860	i915_gem_init_swizzling(dev);
 
4861
4862	/*
4863	 * At least 830 can leave some of the unused rings
4864	 * "active" (ie. head != tail) after resume which
4865	 * will prevent c3 entry. Makes sure all unused rings
4866	 * are totally idle.
4867	 */
4868	init_unused_rings(dev);
4869
4870	BUG_ON(!dev_priv->kernel_context);
4871
4872	ret = i915_ppgtt_init_hw(dev);
4873	if (ret) {
4874		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4875		goto out;
4876	}
4877
4878	/* Need to do basic initialisation of all rings first: */
4879	for_each_ring(ring, dev_priv, i) {
4880		ret = ring->init_hw(ring);
4881		if (ret)
4882			goto out;
 
4883	}
 
4884
4885	/* We can't enable contexts until all firmware is loaded */
4886	if (HAS_GUC_UCODE(dev)) {
4887		ret = intel_guc_ucode_load(dev);
4888		if (ret) {
4889			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4890			ret = -EIO;
4891			goto out;
4892		}
4893	}
4894
4895	/*
4896	 * Increment the next seqno by 0x100 so we have a visible break
4897	 * on re-initialisation
4898	 */
4899	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4900	if (ret)
4901		goto out;
4902
4903	/* Now it is safe to go back round and do everything else: */
4904	for_each_ring(ring, dev_priv, i) {
4905		struct drm_i915_gem_request *req;
4906
4907		req = i915_gem_request_alloc(ring, NULL);
4908		if (IS_ERR(req)) {
4909			ret = PTR_ERR(req);
4910			i915_gem_cleanup_ringbuffer(dev);
4911			goto out;
4912		}
4913
4914		if (ring->id == RCS) {
4915			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4916				i915_gem_l3_remap(req, j);
4917		}
4918
4919		ret = i915_ppgtt_init_ring(req);
4920		if (ret && ret != -EIO) {
4921			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4922			i915_gem_request_cancel(req);
4923			i915_gem_cleanup_ringbuffer(dev);
4924			goto out;
4925		}
4926
4927		ret = i915_gem_context_enable(req);
4928		if (ret && ret != -EIO) {
4929			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4930			i915_gem_request_cancel(req);
4931			i915_gem_cleanup_ringbuffer(dev);
4932			goto out;
4933		}
4934
4935		i915_add_request_no_flush(req);
4936	}
4937
4938out:
4939	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4940	return ret;
4941}
4942
4943int i915_gem_init(struct drm_device *dev)
 
 
4944{
4945	struct drm_i915_private *dev_priv = dev->dev_private;
4946	int ret;
4947
4948	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4949			i915.enable_execlists);
4950
4951	mutex_lock(&dev->struct_mutex);
4952
4953	if (!i915.enable_execlists) {
4954		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4955		dev_priv->gt.init_rings = i915_gem_init_rings;
4956		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4957		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4958	} else {
4959		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4960		dev_priv->gt.init_rings = intel_logical_rings_init;
4961		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4962		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4963	}
4964
4965	/* This is just a security blanket to placate dragons.
4966	 * On some systems, we very sporadically observe that the first TLBs
4967	 * used by the CS may be stale, despite us poking the TLB reset. If
4968	 * we hold the forcewake during initialisation these problems
4969	 * just magically go away.
4970	 */
4971	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4972
4973	ret = i915_gem_init_userptr(dev);
4974	if (ret)
4975		goto out_unlock;
4976
4977	i915_gem_init_global_gtt(dev);
4978
4979	ret = i915_gem_context_init(dev);
4980	if (ret)
4981		goto out_unlock;
4982
4983	ret = dev_priv->gt.init_rings(dev);
4984	if (ret)
4985		goto out_unlock;
4986
4987	ret = i915_gem_init_hw(dev);
4988	if (ret == -EIO) {
4989		/* Allow ring initialisation to fail by marking the GPU as
4990		 * wedged. But we only want to do this where the GPU is angry,
4991		 * for all other failure, such as an allocation failure, bail.
4992		 */
4993		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4994		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4995		ret = 0;
4996	}
4997
4998out_unlock:
4999	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5000	mutex_unlock(&dev->struct_mutex);
5001
5002	return ret;
5003}
5004
5005void
5006i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5007{
5008	struct drm_i915_private *dev_priv = dev->dev_private;
5009	struct intel_engine_cs *ring;
5010	int i;
5011
5012	for_each_ring(ring, dev_priv, i)
5013		dev_priv->gt.cleanup_ring(ring);
5014
5015    if (i915.enable_execlists)
5016            /*
5017             * Neither the BIOS, ourselves or any other kernel
5018             * expects the system to be in execlists mode on startup,
5019             * so we need to reset the GPU back to legacy mode.
5020             */
5021            intel_gpu_reset(dev);
5022}
5023
5024static void
5025init_ring_lists(struct intel_engine_cs *ring)
5026{
5027	INIT_LIST_HEAD(&ring->active_list);
5028	INIT_LIST_HEAD(&ring->request_list);
 
5029}
5030
5031void
5032i915_gem_load_init(struct drm_device *dev)
5033{
5034	struct drm_i915_private *dev_priv = dev->dev_private;
5035	int i;
 
5036
5037	dev_priv->objects =
5038		kmem_cache_create("i915_gem_object",
5039				  sizeof(struct drm_i915_gem_object), 0,
5040				  SLAB_HWCACHE_ALIGN,
5041				  NULL);
5042	dev_priv->vmas =
5043		kmem_cache_create("i915_gem_vma",
5044				  sizeof(struct i915_vma), 0,
5045				  SLAB_HWCACHE_ALIGN,
5046				  NULL);
5047	dev_priv->requests =
5048		kmem_cache_create("i915_gem_request",
5049				  sizeof(struct drm_i915_gem_request), 0,
5050				  SLAB_HWCACHE_ALIGN,
5051				  NULL);
5052
5053	INIT_LIST_HEAD(&dev_priv->vm_list);
5054	INIT_LIST_HEAD(&dev_priv->context_list);
5055	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5056	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5057	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
 
 
5058	for (i = 0; i < I915_NUM_RINGS; i++)
5059		init_ring_lists(&dev_priv->ring[i]);
5060	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5061		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5062	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5063			  i915_gem_retire_work_handler);
5064	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5065			  i915_gem_idle_work_handler);
5066	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
 
 
 
 
 
 
 
 
5067
5068	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5069
5070	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5071		dev_priv->num_fence_regs = 32;
5072	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
 
 
5073		dev_priv->num_fence_regs = 16;
5074	else
5075		dev_priv->num_fence_regs = 8;
5076
5077	if (intel_vgpu_active(dev))
5078		dev_priv->num_fence_regs =
5079				I915_READ(vgtif_reg(avail_rs.fence_num));
5080
5081	/*
5082	 * Set initial sequence number for requests.
5083	 * Using this number allows the wraparound to happen early,
5084	 * catching any obvious problems.
5085	 */
5086	dev_priv->next_seqno = ((u32)~0 - 0x1100);
5087	dev_priv->last_seqno = ((u32)~0 - 0x1101);
5088
5089	/* Initialize fence registers to zero */
5090	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5091	i915_gem_restore_fences(dev);
 
5092
5093	i915_gem_detect_bit_6_swizzle(dev);
5094	init_waitqueue_head(&dev_priv->pending_flip_queue);
5095
5096	dev_priv->mm.interruptible = true;
5097
5098	mutex_init(&dev_priv->fb_tracking.lock);
 
 
5099}
5100
5101void i915_gem_load_cleanup(struct drm_device *dev)
 
 
 
 
 
5102{
5103	struct drm_i915_private *dev_priv = to_i915(dev);
 
 
5104
5105	kmem_cache_destroy(dev_priv->requests);
5106	kmem_cache_destroy(dev_priv->vmas);
5107	kmem_cache_destroy(dev_priv->objects);
5108}
5109
5110void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5111{
5112	struct drm_i915_file_private *file_priv = file->driver_priv;
5113
5114	/* Clean up our request list when the client is going away, so that
5115	 * later retire_requests won't dereference our soon-to-be-gone
5116	 * file_priv.
5117	 */
5118	spin_lock(&file_priv->mm.lock);
5119	while (!list_empty(&file_priv->mm.request_list)) {
5120		struct drm_i915_gem_request *request;
5121
5122		request = list_first_entry(&file_priv->mm.request_list,
5123					   struct drm_i915_gem_request,
5124					   client_list);
5125		list_del(&request->client_list);
5126		request->file_priv = NULL;
5127	}
5128	spin_unlock(&file_priv->mm.lock);
 
 
 
 
5129
5130	if (!list_empty(&file_priv->rps.link)) {
5131		spin_lock(&to_i915(dev)->rps.client_lock);
5132		list_del(&file_priv->rps.link);
5133		spin_unlock(&to_i915(dev)->rps.client_lock);
5134	}
5135}
5136
5137int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5138{
5139	struct drm_i915_file_private *file_priv;
5140	int ret;
5141
5142	DRM_DEBUG_DRIVER("\n");
 
5143
5144	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5145	if (!file_priv)
5146		return -ENOMEM;
 
5147
5148	file->driver_priv = file_priv;
5149	file_priv->dev_priv = dev->dev_private;
5150	file_priv->file = file;
5151	INIT_LIST_HEAD(&file_priv->rps.link);
 
 
 
5152
5153	spin_lock_init(&file_priv->mm.lock);
5154	INIT_LIST_HEAD(&file_priv->mm.request_list);
 
5155
5156	file_priv->bsd_ring = -1;
5157
5158	ret = i915_gem_context_open(dev, file);
5159	if (ret)
5160		kfree(file_priv);
5161
5162	return ret;
5163}
5164
5165/**
5166 * i915_gem_track_fb - update frontbuffer tracking
5167 * @old: current GEM buffer for the frontbuffer slots
5168 * @new: new GEM buffer for the frontbuffer slots
5169 * @frontbuffer_bits: bitmask of frontbuffer slots
5170 *
5171 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5172 * from @old and setting them in @new. Both @old and @new can be NULL.
5173 */
5174void i915_gem_track_fb(struct drm_i915_gem_object *old,
5175		       struct drm_i915_gem_object *new,
5176		       unsigned frontbuffer_bits)
5177{
5178	if (old) {
5179		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5180		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5181		old->frontbuffer_bits &= ~frontbuffer_bits;
5182	}
5183
5184	if (new) {
5185		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5186		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5187		new->frontbuffer_bits |= frontbuffer_bits;
5188	}
5189}
5190
5191/* All the new VM stuff */
5192u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5193			struct i915_address_space *vm)
5194{
5195	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5196	struct i915_vma *vma;
 
5197
5198	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5199
5200	list_for_each_entry(vma, &o->vma_list, obj_link) {
5201		if (vma->is_ggtt &&
5202		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5203			continue;
5204		if (vma->vm == vm)
5205			return vma->node.start;
5206	}
 
5207
5208	WARN(1, "%s vma for this object not found.\n",
5209	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5210	return -1;
5211}
5212
5213u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5214				  const struct i915_ggtt_view *view)
 
 
 
5215{
5216	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5217	struct i915_vma *vma;
 
 
 
5218
5219	list_for_each_entry(vma, &o->vma_list, obj_link)
5220		if (vma->vm == ggtt &&
5221		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5222			return vma->node.start;
5223
5224	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5225	return -1;
5226}
 
 
5227
5228bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5229			struct i915_address_space *vm)
5230{
5231	struct i915_vma *vma;
5232
5233	list_for_each_entry(vma, &o->vma_list, obj_link) {
5234		if (vma->is_ggtt &&
5235		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5236			continue;
5237		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5238			return true;
5239	}
5240
5241	return false;
5242}
 
5243
5244bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5245				  const struct i915_ggtt_view *view)
5246{
5247	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5248	struct i915_vma *vma;
5249
5250	list_for_each_entry(vma, &o->vma_list, obj_link)
5251		if (vma->vm == ggtt &&
5252		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5253		    drm_mm_node_allocated(&vma->node))
5254			return true;
5255
5256	return false;
5257}
 
5258
5259bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5260{
5261	struct i915_vma *vma;
 
5262
5263	list_for_each_entry(vma, &o->vma_list, obj_link)
5264		if (drm_mm_node_allocated(&vma->node))
5265			return true;
5266
5267	return false;
5268}
5269
5270unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5271				struct i915_address_space *vm)
 
 
 
5272{
5273	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5274	struct i915_vma *vma;
5275
5276	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
 
5277
5278	BUG_ON(list_empty(&o->vma_list));
 
 
 
 
 
 
 
 
 
5279
5280	list_for_each_entry(vma, &o->vma_list, obj_link) {
5281		if (vma->is_ggtt &&
5282		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5283			continue;
5284		if (vma->vm == vm)
5285			return vma->node.size;
5286	}
5287	return 0;
5288}
5289
5290bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5291{
5292	struct i915_vma *vma;
5293	list_for_each_entry(vma, &obj->vma_list, obj_link)
5294		if (vma->pin_count > 0)
5295			return true;
5296
5297	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5298}
5299
5300/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5301struct page *
5302i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5303{
5304	struct page *page;
 
5305
5306	/* Only default objects have per-page dirty tracking */
5307	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5308		return NULL;
5309
5310	page = i915_gem_object_get_page(obj, n);
5311	set_page_dirty(page);
5312	return page;
5313}
5314
5315/* Allocate a new GEM object and fill it with the supplied data */
5316struct drm_i915_gem_object *
5317i915_gem_object_create_from_data(struct drm_device *dev,
5318			         const void *data, size_t size)
5319{
5320	struct drm_i915_gem_object *obj;
5321	struct sg_table *sg;
5322	size_t bytes;
5323	int ret;
 
 
 
 
5324
5325	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5326	if (IS_ERR_OR_NULL(obj))
5327		return obj;
5328
5329	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5330	if (ret)
5331		goto fail;
 
 
 
 
 
 
 
5332
5333	ret = i915_gem_object_get_pages(obj);
5334	if (ret)
5335		goto fail;
5336
5337	i915_gem_object_pin_pages(obj);
5338	sg = obj->pages;
5339	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5340	obj->dirty = 1;		/* Backing store is now out of date */
5341	i915_gem_object_unpin_pages(obj);
 
 
 
 
5342
5343	if (WARN_ON(bytes != size)) {
5344		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5345		ret = -EFAULT;
5346		goto fail;
 
 
 
 
 
 
5347	}
5348
5349	return obj;
5350
5351fail:
5352	drm_gem_object_unreference(&obj->base);
5353	return ERR_PTR(ret);
 
 
 
 
 
 
 
5354}