Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
Note: File does not exist in v3.1.
   1/*
   2 * intel_pstate.c: Native P state management for Intel processors
   3 *
   4 * (C) Copyright 2012 Intel Corporation
   5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; version 2
  10 * of the License.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/kernel.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/module.h>
  18#include <linux/ktime.h>
  19#include <linux/hrtimer.h>
  20#include <linux/tick.h>
  21#include <linux/slab.h>
  22#include <linux/sched.h>
  23#include <linux/list.h>
  24#include <linux/cpu.h>
  25#include <linux/cpufreq.h>
  26#include <linux/sysfs.h>
  27#include <linux/types.h>
  28#include <linux/fs.h>
  29#include <linux/debugfs.h>
  30#include <linux/acpi.h>
  31#include <linux/vmalloc.h>
  32#include <trace/events/power.h>
  33
  34#include <asm/div64.h>
  35#include <asm/msr.h>
  36#include <asm/cpu_device_id.h>
  37#include <asm/cpufeature.h>
  38#include <asm/intel-family.h>
  39
  40#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
  41
  42#define ATOM_RATIOS		0x66a
  43#define ATOM_VIDS		0x66b
  44#define ATOM_TURBO_RATIOS	0x66c
  45#define ATOM_TURBO_VIDS		0x66d
  46
  47#ifdef CONFIG_ACPI
  48#include <acpi/processor.h>
  49#include <acpi/cppc_acpi.h>
  50#endif
  51
  52#define FRAC_BITS 8
  53#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
  54#define fp_toint(X) ((X) >> FRAC_BITS)
  55
  56#define EXT_BITS 6
  57#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
  58#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
  59#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
  60
  61static inline int32_t mul_fp(int32_t x, int32_t y)
  62{
  63	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
  64}
  65
  66static inline int32_t div_fp(s64 x, s64 y)
  67{
  68	return div64_s64((int64_t)x << FRAC_BITS, y);
  69}
  70
  71static inline int ceiling_fp(int32_t x)
  72{
  73	int mask, ret;
  74
  75	ret = fp_toint(x);
  76	mask = (1 << FRAC_BITS) - 1;
  77	if (x & mask)
  78		ret += 1;
  79	return ret;
  80}
  81
  82static inline u64 mul_ext_fp(u64 x, u64 y)
  83{
  84	return (x * y) >> EXT_FRAC_BITS;
  85}
  86
  87static inline u64 div_ext_fp(u64 x, u64 y)
  88{
  89	return div64_u64(x << EXT_FRAC_BITS, y);
  90}
  91
  92/**
  93 * struct sample -	Store performance sample
  94 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
  95 *			performance during last sample period
  96 * @busy_scaled:	Scaled busy value which is used to calculate next
  97 *			P state. This can be different than core_avg_perf
  98 *			to account for cpu idle period
  99 * @aperf:		Difference of actual performance frequency clock count
 100 *			read from APERF MSR between last and current sample
 101 * @mperf:		Difference of maximum performance frequency clock count
 102 *			read from MPERF MSR between last and current sample
 103 * @tsc:		Difference of time stamp counter between last and
 104 *			current sample
 105 * @time:		Current time from scheduler
 106 *
 107 * This structure is used in the cpudata structure to store performance sample
 108 * data for choosing next P State.
 109 */
 110struct sample {
 111	int32_t core_avg_perf;
 112	int32_t busy_scaled;
 113	u64 aperf;
 114	u64 mperf;
 115	u64 tsc;
 116	u64 time;
 117};
 118
 119/**
 120 * struct pstate_data - Store P state data
 121 * @current_pstate:	Current requested P state
 122 * @min_pstate:		Min P state possible for this platform
 123 * @max_pstate:		Max P state possible for this platform
 124 * @max_pstate_physical:This is physical Max P state for a processor
 125 *			This can be higher than the max_pstate which can
 126 *			be limited by platform thermal design power limits
 127 * @scaling:		Scaling factor to  convert frequency to cpufreq
 128 *			frequency units
 129 * @turbo_pstate:	Max Turbo P state possible for this platform
 130 * @max_freq:		@max_pstate frequency in cpufreq units
 131 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
 132 *
 133 * Stores the per cpu model P state limits and current P state.
 134 */
 135struct pstate_data {
 136	int	current_pstate;
 137	int	min_pstate;
 138	int	max_pstate;
 139	int	max_pstate_physical;
 140	int	scaling;
 141	int	turbo_pstate;
 142	unsigned int max_freq;
 143	unsigned int turbo_freq;
 144};
 145
 146/**
 147 * struct vid_data -	Stores voltage information data
 148 * @min:		VID data for this platform corresponding to
 149 *			the lowest P state
 150 * @max:		VID data corresponding to the highest P State.
 151 * @turbo:		VID data for turbo P state
 152 * @ratio:		Ratio of (vid max - vid min) /
 153 *			(max P state - Min P State)
 154 *
 155 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 156 * This data is used in Atom platforms, where in addition to target P state,
 157 * the voltage data needs to be specified to select next P State.
 158 */
 159struct vid_data {
 160	int min;
 161	int max;
 162	int turbo;
 163	int32_t ratio;
 164};
 165
 166/**
 167 * struct _pid -	Stores PID data
 168 * @setpoint:		Target set point for busyness or performance
 169 * @integral:		Storage for accumulated error values
 170 * @p_gain:		PID proportional gain
 171 * @i_gain:		PID integral gain
 172 * @d_gain:		PID derivative gain
 173 * @deadband:		PID deadband
 174 * @last_err:		Last error storage for integral part of PID calculation
 175 *
 176 * Stores PID coefficients and last error for PID controller.
 177 */
 178struct _pid {
 179	int setpoint;
 180	int32_t integral;
 181	int32_t p_gain;
 182	int32_t i_gain;
 183	int32_t d_gain;
 184	int deadband;
 185	int32_t last_err;
 186};
 187
 188/**
 189 * struct perf_limits - Store user and policy limits
 190 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 191 * @turbo_disabled:	Platform turbo status either from msr
 192 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 193 *			matches the maximum turbo pstate
 194 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 195 *			is minimum of either limits enforced by cpufreq policy
 196 *			or limits from user set limits via intel_pstate sysfs
 197 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 198 *			is maximum of either limits enforced by cpufreq policy
 199 *			or limits from user set limits via intel_pstate sysfs
 200 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 201 *			This value is used to limit max pstate
 202 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 203 *			This value is used to limit min pstate
 204 * @max_policy_pct:	The maximum performance in percentage enforced by
 205 *			cpufreq setpolicy interface
 206 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 207 *			intel pstate sysfs interface, unused when per cpu
 208 *			controls are enforced
 209 * @min_policy_pct:	The minimum performance in percentage enforced by
 210 *			cpufreq setpolicy interface
 211 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 212 *			intel pstate sysfs interface, unused when per cpu
 213 *			controls are enforced
 214 *
 215 * Storage for user and policy defined limits.
 216 */
 217struct perf_limits {
 218	int no_turbo;
 219	int turbo_disabled;
 220	int max_perf_pct;
 221	int min_perf_pct;
 222	int32_t max_perf;
 223	int32_t min_perf;
 224	int max_policy_pct;
 225	int max_sysfs_pct;
 226	int min_policy_pct;
 227	int min_sysfs_pct;
 228};
 229
 230/**
 231 * struct cpudata -	Per CPU instance data storage
 232 * @cpu:		CPU number for this instance data
 233 * @policy:		CPUFreq policy value
 234 * @update_util:	CPUFreq utility callback information
 235 * @update_util_set:	CPUFreq utility callback is set
 236 * @iowait_boost:	iowait-related boost fraction
 237 * @last_update:	Time of the last update.
 238 * @pstate:		Stores P state limits for this CPU
 239 * @vid:		Stores VID limits for this CPU
 240 * @pid:		Stores PID parameters for this CPU
 241 * @last_sample_time:	Last Sample time
 242 * @prev_aperf:		Last APERF value read from APERF MSR
 243 * @prev_mperf:		Last MPERF value read from MPERF MSR
 244 * @prev_tsc:		Last timestamp counter (TSC) value
 245 * @prev_cummulative_iowait: IO Wait time difference from last and
 246 *			current sample
 247 * @sample:		Storage for storing last Sample data
 248 * @perf_limits:	Pointer to perf_limit unique to this CPU
 249 *			Not all field in the structure are applicable
 250 *			when per cpu controls are enforced
 251 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 252 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
 253 * @epp_powersave:	Last saved HWP energy performance preference
 254 *			(EPP) or energy performance bias (EPB),
 255 *			when policy switched to performance
 256 * @epp_policy:		Last saved policy used to set EPP/EPB
 257 * @epp_default:	Power on default HWP energy performance
 258 *			preference/bias
 259 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 260 *			operation
 261 *
 262 * This structure stores per CPU instance data for all CPUs.
 263 */
 264struct cpudata {
 265	int cpu;
 266
 267	unsigned int policy;
 268	struct update_util_data update_util;
 269	bool   update_util_set;
 270
 271	struct pstate_data pstate;
 272	struct vid_data vid;
 273	struct _pid pid;
 274
 275	u64	last_update;
 276	u64	last_sample_time;
 277	u64	prev_aperf;
 278	u64	prev_mperf;
 279	u64	prev_tsc;
 280	u64	prev_cummulative_iowait;
 281	struct sample sample;
 282	struct perf_limits *perf_limits;
 283#ifdef CONFIG_ACPI
 284	struct acpi_processor_performance acpi_perf_data;
 285	bool valid_pss_table;
 286#endif
 287	unsigned int iowait_boost;
 288	s16 epp_powersave;
 289	s16 epp_policy;
 290	s16 epp_default;
 291	s16 epp_saved;
 292};
 293
 294static struct cpudata **all_cpu_data;
 295
 296/**
 297 * struct pstate_adjust_policy - Stores static PID configuration data
 298 * @sample_rate_ms:	PID calculation sample rate in ms
 299 * @sample_rate_ns:	Sample rate calculation in ns
 300 * @deadband:		PID deadband
 301 * @setpoint:		PID Setpoint
 302 * @p_gain_pct:		PID proportional gain
 303 * @i_gain_pct:		PID integral gain
 304 * @d_gain_pct:		PID derivative gain
 305 *
 306 * Stores per CPU model static PID configuration data.
 307 */
 308struct pstate_adjust_policy {
 309	int sample_rate_ms;
 310	s64 sample_rate_ns;
 311	int deadband;
 312	int setpoint;
 313	int p_gain_pct;
 314	int d_gain_pct;
 315	int i_gain_pct;
 316};
 317
 318/**
 319 * struct pstate_funcs - Per CPU model specific callbacks
 320 * @get_max:		Callback to get maximum non turbo effective P state
 321 * @get_max_physical:	Callback to get maximum non turbo physical P state
 322 * @get_min:		Callback to get minimum P state
 323 * @get_turbo:		Callback to get turbo P state
 324 * @get_scaling:	Callback to get frequency scaling factor
 325 * @get_val:		Callback to convert P state to actual MSR write value
 326 * @get_vid:		Callback to get VID data for Atom platforms
 327 * @get_target_pstate:	Callback to a function to calculate next P state to use
 328 *
 329 * Core and Atom CPU models have different way to get P State limits. This
 330 * structure is used to store those callbacks.
 331 */
 332struct pstate_funcs {
 333	int (*get_max)(void);
 334	int (*get_max_physical)(void);
 335	int (*get_min)(void);
 336	int (*get_turbo)(void);
 337	int (*get_scaling)(void);
 338	u64 (*get_val)(struct cpudata*, int pstate);
 339	void (*get_vid)(struct cpudata *);
 340	int32_t (*get_target_pstate)(struct cpudata *);
 341};
 342
 343/**
 344 * struct cpu_defaults- Per CPU model default config data
 345 * @pid_policy:	PID config data
 346 * @funcs:		Callback function data
 347 */
 348struct cpu_defaults {
 349	struct pstate_adjust_policy pid_policy;
 350	struct pstate_funcs funcs;
 351};
 352
 353static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
 354static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
 355
 356static struct pstate_adjust_policy pid_params __read_mostly;
 357static struct pstate_funcs pstate_funcs __read_mostly;
 358static int hwp_active __read_mostly;
 359static bool per_cpu_limits __read_mostly;
 360
 361#ifdef CONFIG_ACPI
 362static bool acpi_ppc;
 363#endif
 364
 365static struct perf_limits performance_limits = {
 366	.no_turbo = 0,
 367	.turbo_disabled = 0,
 368	.max_perf_pct = 100,
 369	.max_perf = int_ext_tofp(1),
 370	.min_perf_pct = 100,
 371	.min_perf = int_ext_tofp(1),
 372	.max_policy_pct = 100,
 373	.max_sysfs_pct = 100,
 374	.min_policy_pct = 0,
 375	.min_sysfs_pct = 0,
 376};
 377
 378static struct perf_limits powersave_limits = {
 379	.no_turbo = 0,
 380	.turbo_disabled = 0,
 381	.max_perf_pct = 100,
 382	.max_perf = int_ext_tofp(1),
 383	.min_perf_pct = 0,
 384	.min_perf = 0,
 385	.max_policy_pct = 100,
 386	.max_sysfs_pct = 100,
 387	.min_policy_pct = 0,
 388	.min_sysfs_pct = 0,
 389};
 390
 391#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
 392static struct perf_limits *limits = &performance_limits;
 393#else
 394static struct perf_limits *limits = &powersave_limits;
 395#endif
 396
 397static DEFINE_MUTEX(intel_pstate_limits_lock);
 398
 399#ifdef CONFIG_ACPI
 400
 401static bool intel_pstate_get_ppc_enable_status(void)
 402{
 403	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
 404	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
 405		return true;
 406
 407	return acpi_ppc;
 408}
 409
 410#ifdef CONFIG_ACPI_CPPC_LIB
 411
 412/* The work item is needed to avoid CPU hotplug locking issues */
 413static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
 414{
 415	sched_set_itmt_support();
 416}
 417
 418static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
 419
 420static void intel_pstate_set_itmt_prio(int cpu)
 421{
 422	struct cppc_perf_caps cppc_perf;
 423	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
 424	int ret;
 425
 426	ret = cppc_get_perf_caps(cpu, &cppc_perf);
 427	if (ret)
 428		return;
 429
 430	/*
 431	 * The priorities can be set regardless of whether or not
 432	 * sched_set_itmt_support(true) has been called and it is valid to
 433	 * update them at any time after it has been called.
 434	 */
 435	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
 436
 437	if (max_highest_perf <= min_highest_perf) {
 438		if (cppc_perf.highest_perf > max_highest_perf)
 439			max_highest_perf = cppc_perf.highest_perf;
 440
 441		if (cppc_perf.highest_perf < min_highest_perf)
 442			min_highest_perf = cppc_perf.highest_perf;
 443
 444		if (max_highest_perf > min_highest_perf) {
 445			/*
 446			 * This code can be run during CPU online under the
 447			 * CPU hotplug locks, so sched_set_itmt_support()
 448			 * cannot be called from here.  Queue up a work item
 449			 * to invoke it.
 450			 */
 451			schedule_work(&sched_itmt_work);
 452		}
 453	}
 454}
 455#else
 456static void intel_pstate_set_itmt_prio(int cpu)
 457{
 458}
 459#endif
 460
 461static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 462{
 463	struct cpudata *cpu;
 464	int ret;
 465	int i;
 466
 467	if (hwp_active) {
 468		intel_pstate_set_itmt_prio(policy->cpu);
 469		return;
 470	}
 471
 472	if (!intel_pstate_get_ppc_enable_status())
 473		return;
 474
 475	cpu = all_cpu_data[policy->cpu];
 476
 477	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
 478						  policy->cpu);
 479	if (ret)
 480		return;
 481
 482	/*
 483	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
 484	 * guarantee that the states returned by it map to the states in our
 485	 * list directly.
 486	 */
 487	if (cpu->acpi_perf_data.control_register.space_id !=
 488						ACPI_ADR_SPACE_FIXED_HARDWARE)
 489		goto err;
 490
 491	/*
 492	 * If there is only one entry _PSS, simply ignore _PSS and continue as
 493	 * usual without taking _PSS into account
 494	 */
 495	if (cpu->acpi_perf_data.state_count < 2)
 496		goto err;
 497
 498	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
 499	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
 500		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
 501			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
 502			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
 503			 (u32) cpu->acpi_perf_data.states[i].power,
 504			 (u32) cpu->acpi_perf_data.states[i].control);
 505	}
 506
 507	/*
 508	 * The _PSS table doesn't contain whole turbo frequency range.
 509	 * This just contains +1 MHZ above the max non turbo frequency,
 510	 * with control value corresponding to max turbo ratio. But
 511	 * when cpufreq set policy is called, it will call with this
 512	 * max frequency, which will cause a reduced performance as
 513	 * this driver uses real max turbo frequency as the max
 514	 * frequency. So correct this frequency in _PSS table to
 515	 * correct max turbo frequency based on the turbo state.
 516	 * Also need to convert to MHz as _PSS freq is in MHz.
 517	 */
 518	if (!limits->turbo_disabled)
 519		cpu->acpi_perf_data.states[0].core_frequency =
 520					policy->cpuinfo.max_freq / 1000;
 521	cpu->valid_pss_table = true;
 522	pr_debug("_PPC limits will be enforced\n");
 523
 524	return;
 525
 526 err:
 527	cpu->valid_pss_table = false;
 528	acpi_processor_unregister_performance(policy->cpu);
 529}
 530
 531static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 532{
 533	struct cpudata *cpu;
 534
 535	cpu = all_cpu_data[policy->cpu];
 536	if (!cpu->valid_pss_table)
 537		return;
 538
 539	acpi_processor_unregister_performance(policy->cpu);
 540}
 541
 542#else
 543static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 544{
 545}
 546
 547static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 548{
 549}
 550#endif
 551
 552static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
 553			     int deadband, int integral) {
 554	pid->setpoint = int_tofp(setpoint);
 555	pid->deadband  = int_tofp(deadband);
 556	pid->integral  = int_tofp(integral);
 557	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
 558}
 559
 560static inline void pid_p_gain_set(struct _pid *pid, int percent)
 561{
 562	pid->p_gain = div_fp(percent, 100);
 563}
 564
 565static inline void pid_i_gain_set(struct _pid *pid, int percent)
 566{
 567	pid->i_gain = div_fp(percent, 100);
 568}
 569
 570static inline void pid_d_gain_set(struct _pid *pid, int percent)
 571{
 572	pid->d_gain = div_fp(percent, 100);
 573}
 574
 575static signed int pid_calc(struct _pid *pid, int32_t busy)
 576{
 577	signed int result;
 578	int32_t pterm, dterm, fp_error;
 579	int32_t integral_limit;
 580
 581	fp_error = pid->setpoint - busy;
 582
 583	if (abs(fp_error) <= pid->deadband)
 584		return 0;
 585
 586	pterm = mul_fp(pid->p_gain, fp_error);
 587
 588	pid->integral += fp_error;
 589
 590	/*
 591	 * We limit the integral here so that it will never
 592	 * get higher than 30.  This prevents it from becoming
 593	 * too large an input over long periods of time and allows
 594	 * it to get factored out sooner.
 595	 *
 596	 * The value of 30 was chosen through experimentation.
 597	 */
 598	integral_limit = int_tofp(30);
 599	if (pid->integral > integral_limit)
 600		pid->integral = integral_limit;
 601	if (pid->integral < -integral_limit)
 602		pid->integral = -integral_limit;
 603
 604	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
 605	pid->last_err = fp_error;
 606
 607	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
 608	result = result + (1 << (FRAC_BITS-1));
 609	return (signed int)fp_toint(result);
 610}
 611
 612static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
 613{
 614	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
 615	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
 616	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
 617
 618	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
 619}
 620
 621static inline void intel_pstate_reset_all_pid(void)
 622{
 623	unsigned int cpu;
 624
 625	for_each_online_cpu(cpu) {
 626		if (all_cpu_data[cpu])
 627			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
 628	}
 629}
 630
 631static inline void update_turbo_state(void)
 632{
 633	u64 misc_en;
 634	struct cpudata *cpu;
 635
 636	cpu = all_cpu_data[0];
 637	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
 638	limits->turbo_disabled =
 639		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
 640		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
 641}
 642
 643static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
 644{
 645	u64 epb;
 646	int ret;
 647
 648	if (!static_cpu_has(X86_FEATURE_EPB))
 649		return -ENXIO;
 650
 651	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 652	if (ret)
 653		return (s16)ret;
 654
 655	return (s16)(epb & 0x0f);
 656}
 657
 658static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
 659{
 660	s16 epp;
 661
 662	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
 663		/*
 664		 * When hwp_req_data is 0, means that caller didn't read
 665		 * MSR_HWP_REQUEST, so need to read and get EPP.
 666		 */
 667		if (!hwp_req_data) {
 668			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
 669					    &hwp_req_data);
 670			if (epp)
 671				return epp;
 672		}
 673		epp = (hwp_req_data >> 24) & 0xff;
 674	} else {
 675		/* When there is no EPP present, HWP uses EPB settings */
 676		epp = intel_pstate_get_epb(cpu_data);
 677	}
 678
 679	return epp;
 680}
 681
 682static int intel_pstate_set_epb(int cpu, s16 pref)
 683{
 684	u64 epb;
 685	int ret;
 686
 687	if (!static_cpu_has(X86_FEATURE_EPB))
 688		return -ENXIO;
 689
 690	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 691	if (ret)
 692		return ret;
 693
 694	epb = (epb & ~0x0f) | pref;
 695	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
 696
 697	return 0;
 698}
 699
 700/*
 701 * EPP/EPB display strings corresponding to EPP index in the
 702 * energy_perf_strings[]
 703 *	index		String
 704 *-------------------------------------
 705 *	0		default
 706 *	1		performance
 707 *	2		balance_performance
 708 *	3		balance_power
 709 *	4		power
 710 */
 711static const char * const energy_perf_strings[] = {
 712	"default",
 713	"performance",
 714	"balance_performance",
 715	"balance_power",
 716	"power",
 717	NULL
 718};
 719
 720static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
 721{
 722	s16 epp;
 723	int index = -EINVAL;
 724
 725	epp = intel_pstate_get_epp(cpu_data, 0);
 726	if (epp < 0)
 727		return epp;
 728
 729	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
 730		/*
 731		 * Range:
 732		 *	0x00-0x3F	:	Performance
 733		 *	0x40-0x7F	:	Balance performance
 734		 *	0x80-0xBF	:	Balance power
 735		 *	0xC0-0xFF	:	Power
 736		 * The EPP is a 8 bit value, but our ranges restrict the
 737		 * value which can be set. Here only using top two bits
 738		 * effectively.
 739		 */
 740		index = (epp >> 6) + 1;
 741	} else if (static_cpu_has(X86_FEATURE_EPB)) {
 742		/*
 743		 * Range:
 744		 *	0x00-0x03	:	Performance
 745		 *	0x04-0x07	:	Balance performance
 746		 *	0x08-0x0B	:	Balance power
 747		 *	0x0C-0x0F	:	Power
 748		 * The EPB is a 4 bit value, but our ranges restrict the
 749		 * value which can be set. Here only using top two bits
 750		 * effectively.
 751		 */
 752		index = (epp >> 2) + 1;
 753	}
 754
 755	return index;
 756}
 757
 758static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
 759					      int pref_index)
 760{
 761	int epp = -EINVAL;
 762	int ret;
 763
 764	if (!pref_index)
 765		epp = cpu_data->epp_default;
 766
 767	mutex_lock(&intel_pstate_limits_lock);
 768
 769	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
 770		u64 value;
 771
 772		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
 773		if (ret)
 774			goto return_pref;
 775
 776		value &= ~GENMASK_ULL(31, 24);
 777
 778		/*
 779		 * If epp is not default, convert from index into
 780		 * energy_perf_strings to epp value, by shifting 6
 781		 * bits left to use only top two bits in epp.
 782		 * The resultant epp need to shifted by 24 bits to
 783		 * epp position in MSR_HWP_REQUEST.
 784		 */
 785		if (epp == -EINVAL)
 786			epp = (pref_index - 1) << 6;
 787
 788		value |= (u64)epp << 24;
 789		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
 790	} else {
 791		if (epp == -EINVAL)
 792			epp = (pref_index - 1) << 2;
 793		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
 794	}
 795return_pref:
 796	mutex_unlock(&intel_pstate_limits_lock);
 797
 798	return ret;
 799}
 800
 801static ssize_t show_energy_performance_available_preferences(
 802				struct cpufreq_policy *policy, char *buf)
 803{
 804	int i = 0;
 805	int ret = 0;
 806
 807	while (energy_perf_strings[i] != NULL)
 808		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
 809
 810	ret += sprintf(&buf[ret], "\n");
 811
 812	return ret;
 813}
 814
 815cpufreq_freq_attr_ro(energy_performance_available_preferences);
 816
 817static ssize_t store_energy_performance_preference(
 818		struct cpufreq_policy *policy, const char *buf, size_t count)
 819{
 820	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 821	char str_preference[21];
 822	int ret, i = 0;
 823
 824	ret = sscanf(buf, "%20s", str_preference);
 825	if (ret != 1)
 826		return -EINVAL;
 827
 828	while (energy_perf_strings[i] != NULL) {
 829		if (!strcmp(str_preference, energy_perf_strings[i])) {
 830			intel_pstate_set_energy_pref_index(cpu_data, i);
 831			return count;
 832		}
 833		++i;
 834	}
 835
 836	return -EINVAL;
 837}
 838
 839static ssize_t show_energy_performance_preference(
 840				struct cpufreq_policy *policy, char *buf)
 841{
 842	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 843	int preference;
 844
 845	preference = intel_pstate_get_energy_pref_index(cpu_data);
 846	if (preference < 0)
 847		return preference;
 848
 849	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
 850}
 851
 852cpufreq_freq_attr_rw(energy_performance_preference);
 853
 854static struct freq_attr *hwp_cpufreq_attrs[] = {
 855	&energy_performance_preference,
 856	&energy_performance_available_preferences,
 857	NULL,
 858};
 859
 860static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
 861{
 862	int min, hw_min, max, hw_max, cpu, range, adj_range;
 863	struct perf_limits *perf_limits = limits;
 864	u64 value, cap;
 865
 866	for_each_cpu(cpu, policy->cpus) {
 867		int max_perf_pct, min_perf_pct;
 868		struct cpudata *cpu_data = all_cpu_data[cpu];
 869		s16 epp;
 870
 871		if (per_cpu_limits)
 872			perf_limits = all_cpu_data[cpu]->perf_limits;
 873
 874		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
 875		hw_min = HWP_LOWEST_PERF(cap);
 876		hw_max = HWP_HIGHEST_PERF(cap);
 877		range = hw_max - hw_min;
 878
 879		max_perf_pct = perf_limits->max_perf_pct;
 880		min_perf_pct = perf_limits->min_perf_pct;
 881
 882		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
 883		adj_range = min_perf_pct * range / 100;
 884		min = hw_min + adj_range;
 885		value &= ~HWP_MIN_PERF(~0L);
 886		value |= HWP_MIN_PERF(min);
 887
 888		adj_range = max_perf_pct * range / 100;
 889		max = hw_min + adj_range;
 890		if (limits->no_turbo) {
 891			hw_max = HWP_GUARANTEED_PERF(cap);
 892			if (hw_max < max)
 893				max = hw_max;
 894		}
 895
 896		value &= ~HWP_MAX_PERF(~0L);
 897		value |= HWP_MAX_PERF(max);
 898
 899		if (cpu_data->epp_policy == cpu_data->policy)
 900			goto skip_epp;
 901
 902		cpu_data->epp_policy = cpu_data->policy;
 903
 904		if (cpu_data->epp_saved >= 0) {
 905			epp = cpu_data->epp_saved;
 906			cpu_data->epp_saved = -EINVAL;
 907			goto update_epp;
 908		}
 909
 910		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
 911			epp = intel_pstate_get_epp(cpu_data, value);
 912			cpu_data->epp_powersave = epp;
 913			/* If EPP read was failed, then don't try to write */
 914			if (epp < 0)
 915				goto skip_epp;
 916
 917
 918			epp = 0;
 919		} else {
 920			/* skip setting EPP, when saved value is invalid */
 921			if (cpu_data->epp_powersave < 0)
 922				goto skip_epp;
 923
 924			/*
 925			 * No need to restore EPP when it is not zero. This
 926			 * means:
 927			 *  - Policy is not changed
 928			 *  - user has manually changed
 929			 *  - Error reading EPB
 930			 */
 931			epp = intel_pstate_get_epp(cpu_data, value);
 932			if (epp)
 933				goto skip_epp;
 934
 935			epp = cpu_data->epp_powersave;
 936		}
 937update_epp:
 938		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
 939			value &= ~GENMASK_ULL(31, 24);
 940			value |= (u64)epp << 24;
 941		} else {
 942			intel_pstate_set_epb(cpu, epp);
 943		}
 944skip_epp:
 945		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 946	}
 947}
 948
 949static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
 950{
 951	if (hwp_active)
 952		intel_pstate_hwp_set(policy);
 953
 954	return 0;
 955}
 956
 957static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
 958{
 959	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 960
 961	if (!hwp_active)
 962		return 0;
 963
 964	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
 965
 966	return 0;
 967}
 968
 969static int intel_pstate_resume(struct cpufreq_policy *policy)
 970{
 971	int ret;
 972
 973	if (!hwp_active)
 974		return 0;
 975
 976	mutex_lock(&intel_pstate_limits_lock);
 977
 978	all_cpu_data[policy->cpu]->epp_policy = 0;
 979
 980	ret = intel_pstate_hwp_set_policy(policy);
 981
 982	mutex_unlock(&intel_pstate_limits_lock);
 983
 984	return ret;
 985}
 986
 987static void intel_pstate_update_policies(void)
 988{
 989	int cpu;
 990
 991	for_each_possible_cpu(cpu)
 992		cpufreq_update_policy(cpu);
 993}
 994
 995/************************** debugfs begin ************************/
 996static int pid_param_set(void *data, u64 val)
 997{
 998	*(u32 *)data = val;
 999	intel_pstate_reset_all_pid();
1000	return 0;
1001}
1002
1003static int pid_param_get(void *data, u64 *val)
1004{
1005	*val = *(u32 *)data;
1006	return 0;
1007}
1008DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1009
1010struct pid_param {
1011	char *name;
1012	void *value;
1013};
1014
1015static struct pid_param pid_files[] = {
1016	{"sample_rate_ms", &pid_params.sample_rate_ms},
1017	{"d_gain_pct", &pid_params.d_gain_pct},
1018	{"i_gain_pct", &pid_params.i_gain_pct},
1019	{"deadband", &pid_params.deadband},
1020	{"setpoint", &pid_params.setpoint},
1021	{"p_gain_pct", &pid_params.p_gain_pct},
1022	{NULL, NULL}
1023};
1024
1025static void __init intel_pstate_debug_expose_params(void)
1026{
1027	struct dentry *debugfs_parent;
1028	int i = 0;
1029
1030	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1031	if (IS_ERR_OR_NULL(debugfs_parent))
1032		return;
1033	while (pid_files[i].name) {
1034		debugfs_create_file(pid_files[i].name, 0660,
1035				    debugfs_parent, pid_files[i].value,
1036				    &fops_pid_param);
1037		i++;
1038	}
1039}
1040
1041/************************** debugfs end ************************/
1042
1043/************************** sysfs begin ************************/
1044#define show_one(file_name, object)					\
1045	static ssize_t show_##file_name					\
1046	(struct kobject *kobj, struct attribute *attr, char *buf)	\
1047	{								\
1048		return sprintf(buf, "%u\n", limits->object);		\
1049	}
1050
1051static ssize_t show_turbo_pct(struct kobject *kobj,
1052				struct attribute *attr, char *buf)
1053{
1054	struct cpudata *cpu;
1055	int total, no_turbo, turbo_pct;
1056	uint32_t turbo_fp;
1057
1058	cpu = all_cpu_data[0];
1059
1060	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1061	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1062	turbo_fp = div_fp(no_turbo, total);
1063	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1064	return sprintf(buf, "%u\n", turbo_pct);
1065}
1066
1067static ssize_t show_num_pstates(struct kobject *kobj,
1068				struct attribute *attr, char *buf)
1069{
1070	struct cpudata *cpu;
1071	int total;
1072
1073	cpu = all_cpu_data[0];
1074	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1075	return sprintf(buf, "%u\n", total);
1076}
1077
1078static ssize_t show_no_turbo(struct kobject *kobj,
1079			     struct attribute *attr, char *buf)
1080{
1081	ssize_t ret;
1082
1083	update_turbo_state();
1084	if (limits->turbo_disabled)
1085		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1086	else
1087		ret = sprintf(buf, "%u\n", limits->no_turbo);
1088
1089	return ret;
1090}
1091
1092static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1093			      const char *buf, size_t count)
1094{
1095	unsigned int input;
1096	int ret;
1097
1098	ret = sscanf(buf, "%u", &input);
1099	if (ret != 1)
1100		return -EINVAL;
1101
1102	mutex_lock(&intel_pstate_limits_lock);
1103
1104	update_turbo_state();
1105	if (limits->turbo_disabled) {
1106		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1107		mutex_unlock(&intel_pstate_limits_lock);
1108		return -EPERM;
1109	}
1110
1111	limits->no_turbo = clamp_t(int, input, 0, 1);
1112
1113	mutex_unlock(&intel_pstate_limits_lock);
1114
1115	intel_pstate_update_policies();
1116
1117	return count;
1118}
1119
1120static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1121				  const char *buf, size_t count)
1122{
1123	unsigned int input;
1124	int ret;
1125
1126	ret = sscanf(buf, "%u", &input);
1127	if (ret != 1)
1128		return -EINVAL;
1129
1130	mutex_lock(&intel_pstate_limits_lock);
1131
1132	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1133	limits->max_perf_pct = min(limits->max_policy_pct,
1134				   limits->max_sysfs_pct);
1135	limits->max_perf_pct = max(limits->min_policy_pct,
1136				   limits->max_perf_pct);
1137	limits->max_perf_pct = max(limits->min_perf_pct,
1138				   limits->max_perf_pct);
1139	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1140
1141	mutex_unlock(&intel_pstate_limits_lock);
1142
1143	intel_pstate_update_policies();
1144
1145	return count;
1146}
1147
1148static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1149				  const char *buf, size_t count)
1150{
1151	unsigned int input;
1152	int ret;
1153
1154	ret = sscanf(buf, "%u", &input);
1155	if (ret != 1)
1156		return -EINVAL;
1157
1158	mutex_lock(&intel_pstate_limits_lock);
1159
1160	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1161	limits->min_perf_pct = max(limits->min_policy_pct,
1162				   limits->min_sysfs_pct);
1163	limits->min_perf_pct = min(limits->max_policy_pct,
1164				   limits->min_perf_pct);
1165	limits->min_perf_pct = min(limits->max_perf_pct,
1166				   limits->min_perf_pct);
1167	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1168
1169	mutex_unlock(&intel_pstate_limits_lock);
1170
1171	intel_pstate_update_policies();
1172
1173	return count;
1174}
1175
1176show_one(max_perf_pct, max_perf_pct);
1177show_one(min_perf_pct, min_perf_pct);
1178
1179define_one_global_rw(no_turbo);
1180define_one_global_rw(max_perf_pct);
1181define_one_global_rw(min_perf_pct);
1182define_one_global_ro(turbo_pct);
1183define_one_global_ro(num_pstates);
1184
1185static struct attribute *intel_pstate_attributes[] = {
1186	&no_turbo.attr,
1187	&turbo_pct.attr,
1188	&num_pstates.attr,
1189	NULL
1190};
1191
1192static struct attribute_group intel_pstate_attr_group = {
1193	.attrs = intel_pstate_attributes,
1194};
1195
1196static void __init intel_pstate_sysfs_expose_params(void)
1197{
1198	struct kobject *intel_pstate_kobject;
1199	int rc;
1200
1201	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1202						&cpu_subsys.dev_root->kobj);
1203	if (WARN_ON(!intel_pstate_kobject))
1204		return;
1205
1206	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1207	if (WARN_ON(rc))
1208		return;
1209
1210	/*
1211	 * If per cpu limits are enforced there are no global limits, so
1212	 * return without creating max/min_perf_pct attributes
1213	 */
1214	if (per_cpu_limits)
1215		return;
1216
1217	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1218	WARN_ON(rc);
1219
1220	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1221	WARN_ON(rc);
1222
1223}
1224/************************** sysfs end ************************/
1225
1226static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1227{
1228	/* First disable HWP notification interrupt as we don't process them */
1229	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1230		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1231
1232	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1233	cpudata->epp_policy = 0;
1234	if (cpudata->epp_default == -EINVAL)
1235		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1236}
1237
1238#define MSR_IA32_POWER_CTL_BIT_EE	19
1239
1240/* Disable energy efficiency optimization */
1241static void intel_pstate_disable_ee(int cpu)
1242{
1243	u64 power_ctl;
1244	int ret;
1245
1246	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1247	if (ret)
1248		return;
1249
1250	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1251		pr_info("Disabling energy efficiency optimization\n");
1252		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1253		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1254	}
1255}
1256
1257static int atom_get_min_pstate(void)
1258{
1259	u64 value;
1260
1261	rdmsrl(ATOM_RATIOS, value);
1262	return (value >> 8) & 0x7F;
1263}
1264
1265static int atom_get_max_pstate(void)
1266{
1267	u64 value;
1268
1269	rdmsrl(ATOM_RATIOS, value);
1270	return (value >> 16) & 0x7F;
1271}
1272
1273static int atom_get_turbo_pstate(void)
1274{
1275	u64 value;
1276
1277	rdmsrl(ATOM_TURBO_RATIOS, value);
1278	return value & 0x7F;
1279}
1280
1281static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1282{
1283	u64 val;
1284	int32_t vid_fp;
1285	u32 vid;
1286
1287	val = (u64)pstate << 8;
1288	if (limits->no_turbo && !limits->turbo_disabled)
1289		val |= (u64)1 << 32;
1290
1291	vid_fp = cpudata->vid.min + mul_fp(
1292		int_tofp(pstate - cpudata->pstate.min_pstate),
1293		cpudata->vid.ratio);
1294
1295	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1296	vid = ceiling_fp(vid_fp);
1297
1298	if (pstate > cpudata->pstate.max_pstate)
1299		vid = cpudata->vid.turbo;
1300
1301	return val | vid;
1302}
1303
1304static int silvermont_get_scaling(void)
1305{
1306	u64 value;
1307	int i;
1308	/* Defined in Table 35-6 from SDM (Sept 2015) */
1309	static int silvermont_freq_table[] = {
1310		83300, 100000, 133300, 116700, 80000};
1311
1312	rdmsrl(MSR_FSB_FREQ, value);
1313	i = value & 0x7;
1314	WARN_ON(i > 4);
1315
1316	return silvermont_freq_table[i];
1317}
1318
1319static int airmont_get_scaling(void)
1320{
1321	u64 value;
1322	int i;
1323	/* Defined in Table 35-10 from SDM (Sept 2015) */
1324	static int airmont_freq_table[] = {
1325		83300, 100000, 133300, 116700, 80000,
1326		93300, 90000, 88900, 87500};
1327
1328	rdmsrl(MSR_FSB_FREQ, value);
1329	i = value & 0xF;
1330	WARN_ON(i > 8);
1331
1332	return airmont_freq_table[i];
1333}
1334
1335static void atom_get_vid(struct cpudata *cpudata)
1336{
1337	u64 value;
1338
1339	rdmsrl(ATOM_VIDS, value);
1340	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1341	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1342	cpudata->vid.ratio = div_fp(
1343		cpudata->vid.max - cpudata->vid.min,
1344		int_tofp(cpudata->pstate.max_pstate -
1345			cpudata->pstate.min_pstate));
1346
1347	rdmsrl(ATOM_TURBO_VIDS, value);
1348	cpudata->vid.turbo = value & 0x7f;
1349}
1350
1351static int core_get_min_pstate(void)
1352{
1353	u64 value;
1354
1355	rdmsrl(MSR_PLATFORM_INFO, value);
1356	return (value >> 40) & 0xFF;
1357}
1358
1359static int core_get_max_pstate_physical(void)
1360{
1361	u64 value;
1362
1363	rdmsrl(MSR_PLATFORM_INFO, value);
1364	return (value >> 8) & 0xFF;
1365}
1366
1367static int core_get_max_pstate(void)
1368{
1369	u64 tar;
1370	u64 plat_info;
1371	int max_pstate;
1372	int err;
1373
1374	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1375	max_pstate = (plat_info >> 8) & 0xFF;
1376
1377	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1378	if (!err) {
1379		/* Do some sanity checking for safety */
1380		if (plat_info & 0x600000000) {
1381			u64 tdp_ctrl;
1382			u64 tdp_ratio;
1383			int tdp_msr;
1384
1385			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1386			if (err)
1387				goto skip_tar;
1388
1389			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
1390			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1391			if (err)
1392				goto skip_tar;
1393
1394			/* For level 1 and 2, bits[23:16] contain the ratio */
1395			if (tdp_ctrl)
1396				tdp_ratio >>= 16;
1397
1398			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1399			if (tdp_ratio - 1 == tar) {
1400				max_pstate = tar;
1401				pr_debug("max_pstate=TAC %x\n", max_pstate);
1402			} else {
1403				goto skip_tar;
1404			}
1405		}
1406	}
1407
1408skip_tar:
1409	return max_pstate;
1410}
1411
1412static int core_get_turbo_pstate(void)
1413{
1414	u64 value;
1415	int nont, ret;
1416
1417	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1418	nont = core_get_max_pstate();
1419	ret = (value) & 255;
1420	if (ret <= nont)
1421		ret = nont;
1422	return ret;
1423}
1424
1425static inline int core_get_scaling(void)
1426{
1427	return 100000;
1428}
1429
1430static u64 core_get_val(struct cpudata *cpudata, int pstate)
1431{
1432	u64 val;
1433
1434	val = (u64)pstate << 8;
1435	if (limits->no_turbo && !limits->turbo_disabled)
1436		val |= (u64)1 << 32;
1437
1438	return val;
1439}
1440
1441static int knl_get_turbo_pstate(void)
1442{
1443	u64 value;
1444	int nont, ret;
1445
1446	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1447	nont = core_get_max_pstate();
1448	ret = (((value) >> 8) & 0xFF);
1449	if (ret <= nont)
1450		ret = nont;
1451	return ret;
1452}
1453
1454static struct cpu_defaults core_params = {
1455	.pid_policy = {
1456		.sample_rate_ms = 10,
1457		.deadband = 0,
1458		.setpoint = 97,
1459		.p_gain_pct = 20,
1460		.d_gain_pct = 0,
1461		.i_gain_pct = 0,
1462	},
1463	.funcs = {
1464		.get_max = core_get_max_pstate,
1465		.get_max_physical = core_get_max_pstate_physical,
1466		.get_min = core_get_min_pstate,
1467		.get_turbo = core_get_turbo_pstate,
1468		.get_scaling = core_get_scaling,
1469		.get_val = core_get_val,
1470		.get_target_pstate = get_target_pstate_use_performance,
1471	},
1472};
1473
1474static const struct cpu_defaults silvermont_params = {
1475	.pid_policy = {
1476		.sample_rate_ms = 10,
1477		.deadband = 0,
1478		.setpoint = 60,
1479		.p_gain_pct = 14,
1480		.d_gain_pct = 0,
1481		.i_gain_pct = 4,
1482	},
1483	.funcs = {
1484		.get_max = atom_get_max_pstate,
1485		.get_max_physical = atom_get_max_pstate,
1486		.get_min = atom_get_min_pstate,
1487		.get_turbo = atom_get_turbo_pstate,
1488		.get_val = atom_get_val,
1489		.get_scaling = silvermont_get_scaling,
1490		.get_vid = atom_get_vid,
1491		.get_target_pstate = get_target_pstate_use_cpu_load,
1492	},
1493};
1494
1495static const struct cpu_defaults airmont_params = {
1496	.pid_policy = {
1497		.sample_rate_ms = 10,
1498		.deadband = 0,
1499		.setpoint = 60,
1500		.p_gain_pct = 14,
1501		.d_gain_pct = 0,
1502		.i_gain_pct = 4,
1503	},
1504	.funcs = {
1505		.get_max = atom_get_max_pstate,
1506		.get_max_physical = atom_get_max_pstate,
1507		.get_min = atom_get_min_pstate,
1508		.get_turbo = atom_get_turbo_pstate,
1509		.get_val = atom_get_val,
1510		.get_scaling = airmont_get_scaling,
1511		.get_vid = atom_get_vid,
1512		.get_target_pstate = get_target_pstate_use_cpu_load,
1513	},
1514};
1515
1516static const struct cpu_defaults knl_params = {
1517	.pid_policy = {
1518		.sample_rate_ms = 10,
1519		.deadband = 0,
1520		.setpoint = 97,
1521		.p_gain_pct = 20,
1522		.d_gain_pct = 0,
1523		.i_gain_pct = 0,
1524	},
1525	.funcs = {
1526		.get_max = core_get_max_pstate,
1527		.get_max_physical = core_get_max_pstate_physical,
1528		.get_min = core_get_min_pstate,
1529		.get_turbo = knl_get_turbo_pstate,
1530		.get_scaling = core_get_scaling,
1531		.get_val = core_get_val,
1532		.get_target_pstate = get_target_pstate_use_performance,
1533	},
1534};
1535
1536static const struct cpu_defaults bxt_params = {
1537	.pid_policy = {
1538		.sample_rate_ms = 10,
1539		.deadband = 0,
1540		.setpoint = 60,
1541		.p_gain_pct = 14,
1542		.d_gain_pct = 0,
1543		.i_gain_pct = 4,
1544	},
1545	.funcs = {
1546		.get_max = core_get_max_pstate,
1547		.get_max_physical = core_get_max_pstate_physical,
1548		.get_min = core_get_min_pstate,
1549		.get_turbo = core_get_turbo_pstate,
1550		.get_scaling = core_get_scaling,
1551		.get_val = core_get_val,
1552		.get_target_pstate = get_target_pstate_use_cpu_load,
1553	},
1554};
1555
1556static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1557{
1558	int max_perf = cpu->pstate.turbo_pstate;
1559	int max_perf_adj;
1560	int min_perf;
1561	struct perf_limits *perf_limits = limits;
1562
1563	if (limits->no_turbo || limits->turbo_disabled)
1564		max_perf = cpu->pstate.max_pstate;
1565
1566	if (per_cpu_limits)
1567		perf_limits = cpu->perf_limits;
1568
1569	/*
1570	 * performance can be limited by user through sysfs, by cpufreq
1571	 * policy, or by cpu specific default values determined through
1572	 * experimentation.
1573	 */
1574	max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1575	*max = clamp_t(int, max_perf_adj,
1576			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1577
1578	min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1579	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1580}
1581
1582static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1583{
1584	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1585	cpu->pstate.current_pstate = pstate;
1586	/*
1587	 * Generally, there is no guarantee that this code will always run on
1588	 * the CPU being updated, so force the register update to run on the
1589	 * right CPU.
1590	 */
1591	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1592		      pstate_funcs.get_val(cpu, pstate));
1593}
1594
1595static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1596{
1597	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1598}
1599
1600static void intel_pstate_max_within_limits(struct cpudata *cpu)
1601{
1602	int min_pstate, max_pstate;
1603
1604	update_turbo_state();
1605	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1606	intel_pstate_set_pstate(cpu, max_pstate);
1607}
1608
1609static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1610{
1611	cpu->pstate.min_pstate = pstate_funcs.get_min();
1612	cpu->pstate.max_pstate = pstate_funcs.get_max();
1613	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1614	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1615	cpu->pstate.scaling = pstate_funcs.get_scaling();
1616	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1617	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1618
1619	if (pstate_funcs.get_vid)
1620		pstate_funcs.get_vid(cpu);
1621
1622	intel_pstate_set_min_pstate(cpu);
1623}
1624
1625static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1626{
1627	struct sample *sample = &cpu->sample;
1628
1629	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1630}
1631
1632static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1633{
1634	u64 aperf, mperf;
1635	unsigned long flags;
1636	u64 tsc;
1637
1638	local_irq_save(flags);
1639	rdmsrl(MSR_IA32_APERF, aperf);
1640	rdmsrl(MSR_IA32_MPERF, mperf);
1641	tsc = rdtsc();
1642	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1643		local_irq_restore(flags);
1644		return false;
1645	}
1646	local_irq_restore(flags);
1647
1648	cpu->last_sample_time = cpu->sample.time;
1649	cpu->sample.time = time;
1650	cpu->sample.aperf = aperf;
1651	cpu->sample.mperf = mperf;
1652	cpu->sample.tsc =  tsc;
1653	cpu->sample.aperf -= cpu->prev_aperf;
1654	cpu->sample.mperf -= cpu->prev_mperf;
1655	cpu->sample.tsc -= cpu->prev_tsc;
1656
1657	cpu->prev_aperf = aperf;
1658	cpu->prev_mperf = mperf;
1659	cpu->prev_tsc = tsc;
1660	/*
1661	 * First time this function is invoked in a given cycle, all of the
1662	 * previous sample data fields are equal to zero or stale and they must
1663	 * be populated with meaningful numbers for things to work, so assume
1664	 * that sample.time will always be reset before setting the utilization
1665	 * update hook and make the caller skip the sample then.
1666	 */
1667	return !!cpu->last_sample_time;
1668}
1669
1670static inline int32_t get_avg_frequency(struct cpudata *cpu)
1671{
1672	return mul_ext_fp(cpu->sample.core_avg_perf,
1673			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1674}
1675
1676static inline int32_t get_avg_pstate(struct cpudata *cpu)
1677{
1678	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1679			  cpu->sample.core_avg_perf);
1680}
1681
1682static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1683{
1684	struct sample *sample = &cpu->sample;
1685	int32_t busy_frac, boost;
1686	int target, avg_pstate;
1687
1688	busy_frac = div_fp(sample->mperf, sample->tsc);
1689
1690	boost = cpu->iowait_boost;
1691	cpu->iowait_boost >>= 1;
1692
1693	if (busy_frac < boost)
1694		busy_frac = boost;
1695
1696	sample->busy_scaled = busy_frac * 100;
1697
1698	target = limits->no_turbo || limits->turbo_disabled ?
1699			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1700	target += target >> 2;
1701	target = mul_fp(target, busy_frac);
1702	if (target < cpu->pstate.min_pstate)
1703		target = cpu->pstate.min_pstate;
1704
1705	/*
1706	 * If the average P-state during the previous cycle was higher than the
1707	 * current target, add 50% of the difference to the target to reduce
1708	 * possible performance oscillations and offset possible performance
1709	 * loss related to moving the workload from one CPU to another within
1710	 * a package/module.
1711	 */
1712	avg_pstate = get_avg_pstate(cpu);
1713	if (avg_pstate > target)
1714		target += (avg_pstate - target) >> 1;
1715
1716	return target;
1717}
1718
1719static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1720{
1721	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1722	u64 duration_ns;
1723
1724	/*
1725	 * perf_scaled is the ratio of the average P-state during the last
1726	 * sampling period to the P-state requested last time (in percent).
1727	 *
1728	 * That measures the system's response to the previous P-state
1729	 * selection.
1730	 */
1731	max_pstate = cpu->pstate.max_pstate_physical;
1732	current_pstate = cpu->pstate.current_pstate;
1733	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1734			       div_fp(100 * max_pstate, current_pstate));
1735
1736	/*
1737	 * Since our utilization update callback will not run unless we are
1738	 * in C0, check if the actual elapsed time is significantly greater (3x)
1739	 * than our sample interval.  If it is, then we were idle for a long
1740	 * enough period of time to adjust our performance metric.
1741	 */
1742	duration_ns = cpu->sample.time - cpu->last_sample_time;
1743	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1744		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1745		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1746	} else {
1747		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1748		if (sample_ratio < int_tofp(1))
1749			perf_scaled = 0;
1750	}
1751
1752	cpu->sample.busy_scaled = perf_scaled;
1753	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1754}
1755
1756static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1757{
1758	int max_perf, min_perf;
1759
1760	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1761	pstate = clamp_t(int, pstate, min_perf, max_perf);
1762	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1763	return pstate;
1764}
1765
1766static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1767{
1768	pstate = intel_pstate_prepare_request(cpu, pstate);
1769	if (pstate == cpu->pstate.current_pstate)
1770		return;
1771
1772	cpu->pstate.current_pstate = pstate;
1773	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1774}
1775
1776static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1777{
1778	int from, target_pstate;
1779	struct sample *sample;
1780
1781	from = cpu->pstate.current_pstate;
1782
1783	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1784		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1785
1786	update_turbo_state();
1787
1788	intel_pstate_update_pstate(cpu, target_pstate);
1789
1790	sample = &cpu->sample;
1791	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1792		fp_toint(sample->busy_scaled),
1793		from,
1794		cpu->pstate.current_pstate,
1795		sample->mperf,
1796		sample->aperf,
1797		sample->tsc,
1798		get_avg_frequency(cpu),
1799		fp_toint(cpu->iowait_boost * 100));
1800}
1801
1802static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1803				     unsigned int flags)
1804{
1805	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1806	u64 delta_ns;
1807
1808	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1809		if (flags & SCHED_CPUFREQ_IOWAIT) {
1810			cpu->iowait_boost = int_tofp(1);
1811		} else if (cpu->iowait_boost) {
1812			/* Clear iowait_boost if the CPU may have been idle. */
1813			delta_ns = time - cpu->last_update;
1814			if (delta_ns > TICK_NSEC)
1815				cpu->iowait_boost = 0;
1816		}
1817		cpu->last_update = time;
1818	}
1819
1820	delta_ns = time - cpu->sample.time;
1821	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1822		bool sample_taken = intel_pstate_sample(cpu, time);
1823
1824		if (sample_taken) {
1825			intel_pstate_calc_avg_perf(cpu);
1826			if (!hwp_active)
1827				intel_pstate_adjust_busy_pstate(cpu);
1828		}
1829	}
1830}
1831
1832#define ICPU(model, policy) \
1833	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1834			(unsigned long)&policy }
1835
1836static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1837	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
1838	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
1839	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
1840	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
1841	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
1842	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
1843	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
1844	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
1845	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
1846	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
1847	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
1848	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
1849	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
1850	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
1851	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
1852	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
1853	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1854	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1855	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1856	{}
1857};
1858MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1859
1860static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1861	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1862	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1863	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1864	{}
1865};
1866
1867static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1868	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1869	{}
1870};
1871
1872static int intel_pstate_init_cpu(unsigned int cpunum)
1873{
1874	struct cpudata *cpu;
1875
1876	cpu = all_cpu_data[cpunum];
1877
1878	if (!cpu) {
1879		unsigned int size = sizeof(struct cpudata);
1880
1881		if (per_cpu_limits)
1882			size += sizeof(struct perf_limits);
1883
1884		cpu = kzalloc(size, GFP_KERNEL);
1885		if (!cpu)
1886			return -ENOMEM;
1887
1888		all_cpu_data[cpunum] = cpu;
1889		if (per_cpu_limits)
1890			cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1891
1892		cpu->epp_default = -EINVAL;
1893		cpu->epp_powersave = -EINVAL;
1894		cpu->epp_saved = -EINVAL;
1895	}
1896
1897	cpu = all_cpu_data[cpunum];
1898
1899	cpu->cpu = cpunum;
1900
1901	if (hwp_active) {
1902		const struct x86_cpu_id *id;
1903
1904		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1905		if (id)
1906			intel_pstate_disable_ee(cpunum);
1907
1908		intel_pstate_hwp_enable(cpu);
1909		pid_params.sample_rate_ms = 50;
1910		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1911	}
1912
1913	intel_pstate_get_cpu_pstates(cpu);
1914
1915	intel_pstate_busy_pid_reset(cpu);
1916
1917	pr_debug("controlling: cpu %d\n", cpunum);
1918
1919	return 0;
1920}
1921
1922static unsigned int intel_pstate_get(unsigned int cpu_num)
1923{
1924	struct cpudata *cpu = all_cpu_data[cpu_num];
1925
1926	return cpu ? get_avg_frequency(cpu) : 0;
1927}
1928
1929static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1930{
1931	struct cpudata *cpu = all_cpu_data[cpu_num];
1932
1933	if (cpu->update_util_set)
1934		return;
1935
1936	/* Prevent intel_pstate_update_util() from using stale data. */
1937	cpu->sample.time = 0;
1938	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1939				     intel_pstate_update_util);
1940	cpu->update_util_set = true;
1941}
1942
1943static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1944{
1945	struct cpudata *cpu_data = all_cpu_data[cpu];
1946
1947	if (!cpu_data->update_util_set)
1948		return;
1949
1950	cpufreq_remove_update_util_hook(cpu);
1951	cpu_data->update_util_set = false;
1952	synchronize_sched();
1953}
1954
1955static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1956{
1957	limits->no_turbo = 0;
1958	limits->turbo_disabled = 0;
1959	limits->max_perf_pct = 100;
1960	limits->max_perf = int_ext_tofp(1);
1961	limits->min_perf_pct = 100;
1962	limits->min_perf = int_ext_tofp(1);
1963	limits->max_policy_pct = 100;
1964	limits->max_sysfs_pct = 100;
1965	limits->min_policy_pct = 0;
1966	limits->min_sysfs_pct = 0;
1967}
1968
1969static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1970					    struct perf_limits *limits)
1971{
1972
1973	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1974					      policy->cpuinfo.max_freq);
1975	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
1976	if (policy->max == policy->min) {
1977		limits->min_policy_pct = limits->max_policy_pct;
1978	} else {
1979		limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
1980						      policy->cpuinfo.max_freq);
1981		limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
1982						 0, 100);
1983	}
1984
1985	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1986	limits->min_perf_pct = max(limits->min_policy_pct,
1987				   limits->min_sysfs_pct);
1988	limits->min_perf_pct = min(limits->max_policy_pct,
1989				   limits->min_perf_pct);
1990	limits->max_perf_pct = min(limits->max_policy_pct,
1991				   limits->max_sysfs_pct);
1992	limits->max_perf_pct = max(limits->min_policy_pct,
1993				   limits->max_perf_pct);
1994
1995	/* Make sure min_perf_pct <= max_perf_pct */
1996	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1997
1998	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1999	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
2000	limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2001	limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2002
2003	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2004		 limits->max_perf_pct, limits->min_perf_pct);
2005}
2006
2007static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2008{
2009	struct cpudata *cpu;
2010	struct perf_limits *perf_limits = NULL;
2011
2012	if (!policy->cpuinfo.max_freq)
2013		return -ENODEV;
2014
2015	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2016		 policy->cpuinfo.max_freq, policy->max);
2017
2018	cpu = all_cpu_data[policy->cpu];
2019	cpu->policy = policy->policy;
2020
2021	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2022	    policy->max < policy->cpuinfo.max_freq &&
2023	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2024		pr_debug("policy->max > max non turbo frequency\n");
2025		policy->max = policy->cpuinfo.max_freq;
2026	}
2027
2028	if (per_cpu_limits)
2029		perf_limits = cpu->perf_limits;
2030
2031	mutex_lock(&intel_pstate_limits_lock);
2032
2033	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2034		if (!perf_limits) {
2035			limits = &performance_limits;
2036			perf_limits = limits;
2037		}
2038		if (policy->max >= policy->cpuinfo.max_freq &&
2039		    !limits->no_turbo) {
2040			pr_debug("set performance\n");
2041			intel_pstate_set_performance_limits(perf_limits);
2042			goto out;
2043		}
2044	} else {
2045		pr_debug("set powersave\n");
2046		if (!perf_limits) {
2047			limits = &powersave_limits;
2048			perf_limits = limits;
2049		}
2050
2051	}
2052
2053	intel_pstate_update_perf_limits(policy, perf_limits);
2054 out:
2055	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2056		/*
2057		 * NOHZ_FULL CPUs need this as the governor callback may not
2058		 * be invoked on them.
2059		 */
2060		intel_pstate_clear_update_util_hook(policy->cpu);
2061		intel_pstate_max_within_limits(cpu);
2062	}
2063
2064	intel_pstate_set_update_util_hook(policy->cpu);
2065
2066	intel_pstate_hwp_set_policy(policy);
2067
2068	mutex_unlock(&intel_pstate_limits_lock);
2069
2070	return 0;
2071}
2072
2073static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2074{
2075	cpufreq_verify_within_cpu_limits(policy);
2076
2077	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2078	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2079		return -EINVAL;
2080
2081	/* When per-CPU limits are used, sysfs limits are not used */
2082	if (!per_cpu_limits) {
2083		unsigned int max_freq, min_freq;
2084
2085		max_freq = policy->cpuinfo.max_freq *
2086						limits->max_sysfs_pct / 100;
2087		min_freq = policy->cpuinfo.max_freq *
2088						limits->min_sysfs_pct / 100;
2089		cpufreq_verify_within_limits(policy, min_freq, max_freq);
2090	}
2091
2092	return 0;
2093}
2094
2095static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2096{
2097	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2098}
2099
2100static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2101{
2102	pr_debug("CPU %d exiting\n", policy->cpu);
2103
2104	intel_pstate_clear_update_util_hook(policy->cpu);
2105	if (hwp_active)
2106		intel_pstate_hwp_save_state(policy);
2107	else
2108		intel_cpufreq_stop_cpu(policy);
2109}
2110
2111static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2112{
2113	intel_pstate_exit_perf_limits(policy);
2114
2115	policy->fast_switch_possible = false;
2116
2117	return 0;
2118}
2119
2120static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2121{
2122	struct cpudata *cpu;
2123	int rc;
2124
2125	rc = intel_pstate_init_cpu(policy->cpu);
2126	if (rc)
2127		return rc;
2128
2129	cpu = all_cpu_data[policy->cpu];
2130
2131	/*
2132	 * We need sane value in the cpu->perf_limits, so inherit from global
2133	 * perf_limits limits, which are seeded with values based on the
2134	 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2135	 */
2136	if (per_cpu_limits)
2137		memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2138
2139	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2140	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2141
2142	/* cpuinfo and default policy values */
2143	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2144	update_turbo_state();
2145	policy->cpuinfo.max_freq = limits->turbo_disabled ?
2146			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2147	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2148
2149	intel_pstate_init_acpi_perf_limits(policy);
2150	cpumask_set_cpu(policy->cpu, policy->cpus);
2151
2152	policy->fast_switch_possible = true;
2153
2154	return 0;
2155}
2156
2157static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2158{
2159	int ret = __intel_pstate_cpu_init(policy);
2160
2161	if (ret)
2162		return ret;
2163
2164	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2165	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2166		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2167	else
2168		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2169
2170	return 0;
2171}
2172
2173static struct cpufreq_driver intel_pstate = {
2174	.flags		= CPUFREQ_CONST_LOOPS,
2175	.verify		= intel_pstate_verify_policy,
2176	.setpolicy	= intel_pstate_set_policy,
2177	.suspend	= intel_pstate_hwp_save_state,
2178	.resume		= intel_pstate_resume,
2179	.get		= intel_pstate_get,
2180	.init		= intel_pstate_cpu_init,
2181	.exit		= intel_pstate_cpu_exit,
2182	.stop_cpu	= intel_pstate_stop_cpu,
2183	.name		= "intel_pstate",
2184};
2185
2186static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2187{
2188	struct cpudata *cpu = all_cpu_data[policy->cpu];
2189	struct perf_limits *perf_limits = limits;
2190
2191	update_turbo_state();
2192	policy->cpuinfo.max_freq = limits->turbo_disabled ?
2193			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2194
2195	cpufreq_verify_within_cpu_limits(policy);
2196
2197	if (per_cpu_limits)
2198		perf_limits = cpu->perf_limits;
2199
2200	mutex_lock(&intel_pstate_limits_lock);
2201
2202	intel_pstate_update_perf_limits(policy, perf_limits);
2203
2204	mutex_unlock(&intel_pstate_limits_lock);
2205
2206	return 0;
2207}
2208
2209static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2210					       struct cpufreq_policy *policy,
2211					       unsigned int target_freq)
2212{
2213	unsigned int max_freq;
2214
2215	update_turbo_state();
2216
2217	max_freq = limits->no_turbo || limits->turbo_disabled ?
2218			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2219	policy->cpuinfo.max_freq = max_freq;
2220	if (policy->max > max_freq)
2221		policy->max = max_freq;
2222
2223	if (target_freq > max_freq)
2224		target_freq = max_freq;
2225
2226	return target_freq;
2227}
2228
2229static int intel_cpufreq_target(struct cpufreq_policy *policy,
2230				unsigned int target_freq,
2231				unsigned int relation)
2232{
2233	struct cpudata *cpu = all_cpu_data[policy->cpu];
2234	struct cpufreq_freqs freqs;
2235	int target_pstate;
2236
2237	freqs.old = policy->cur;
2238	freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2239
2240	cpufreq_freq_transition_begin(policy, &freqs);
2241	switch (relation) {
2242	case CPUFREQ_RELATION_L:
2243		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2244		break;
2245	case CPUFREQ_RELATION_H:
2246		target_pstate = freqs.new / cpu->pstate.scaling;
2247		break;
2248	default:
2249		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2250		break;
2251	}
2252	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2253	if (target_pstate != cpu->pstate.current_pstate) {
2254		cpu->pstate.current_pstate = target_pstate;
2255		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2256			      pstate_funcs.get_val(cpu, target_pstate));
2257	}
2258	cpufreq_freq_transition_end(policy, &freqs, false);
2259
2260	return 0;
2261}
2262
2263static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2264					      unsigned int target_freq)
2265{
2266	struct cpudata *cpu = all_cpu_data[policy->cpu];
2267	int target_pstate;
2268
2269	target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2270	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2271	intel_pstate_update_pstate(cpu, target_pstate);
2272	return target_freq;
2273}
2274
2275static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2276{
2277	int ret = __intel_pstate_cpu_init(policy);
2278
2279	if (ret)
2280		return ret;
2281
2282	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2283	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2284	policy->cur = policy->cpuinfo.min_freq;
2285
2286	return 0;
2287}
2288
2289static struct cpufreq_driver intel_cpufreq = {
2290	.flags		= CPUFREQ_CONST_LOOPS,
2291	.verify		= intel_cpufreq_verify_policy,
2292	.target		= intel_cpufreq_target,
2293	.fast_switch	= intel_cpufreq_fast_switch,
2294	.init		= intel_cpufreq_cpu_init,
2295	.exit		= intel_pstate_cpu_exit,
2296	.stop_cpu	= intel_cpufreq_stop_cpu,
2297	.name		= "intel_cpufreq",
2298};
2299
2300static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2301
2302static int no_load __initdata;
2303static int no_hwp __initdata;
2304static int hwp_only __initdata;
2305static unsigned int force_load __initdata;
2306
2307static int __init intel_pstate_msrs_not_valid(void)
2308{
2309	if (!pstate_funcs.get_max() ||
2310	    !pstate_funcs.get_min() ||
2311	    !pstate_funcs.get_turbo())
2312		return -ENODEV;
2313
2314	return 0;
2315}
2316
2317static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2318{
2319	pid_params.sample_rate_ms = policy->sample_rate_ms;
2320	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2321	pid_params.p_gain_pct = policy->p_gain_pct;
2322	pid_params.i_gain_pct = policy->i_gain_pct;
2323	pid_params.d_gain_pct = policy->d_gain_pct;
2324	pid_params.deadband = policy->deadband;
2325	pid_params.setpoint = policy->setpoint;
2326}
2327
2328#ifdef CONFIG_ACPI
2329static void intel_pstate_use_acpi_profile(void)
2330{
2331	if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2332		pstate_funcs.get_target_pstate =
2333				get_target_pstate_use_cpu_load;
2334}
2335#else
2336static void intel_pstate_use_acpi_profile(void)
2337{
2338}
2339#endif
2340
2341static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2342{
2343	pstate_funcs.get_max   = funcs->get_max;
2344	pstate_funcs.get_max_physical = funcs->get_max_physical;
2345	pstate_funcs.get_min   = funcs->get_min;
2346	pstate_funcs.get_turbo = funcs->get_turbo;
2347	pstate_funcs.get_scaling = funcs->get_scaling;
2348	pstate_funcs.get_val   = funcs->get_val;
2349	pstate_funcs.get_vid   = funcs->get_vid;
2350	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2351
2352	intel_pstate_use_acpi_profile();
2353}
2354
2355#ifdef CONFIG_ACPI
2356
2357static bool __init intel_pstate_no_acpi_pss(void)
2358{
2359	int i;
2360
2361	for_each_possible_cpu(i) {
2362		acpi_status status;
2363		union acpi_object *pss;
2364		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2365		struct acpi_processor *pr = per_cpu(processors, i);
2366
2367		if (!pr)
2368			continue;
2369
2370		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2371		if (ACPI_FAILURE(status))
2372			continue;
2373
2374		pss = buffer.pointer;
2375		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2376			kfree(pss);
2377			return false;
2378		}
2379
2380		kfree(pss);
2381	}
2382
2383	return true;
2384}
2385
2386static bool __init intel_pstate_has_acpi_ppc(void)
2387{
2388	int i;
2389
2390	for_each_possible_cpu(i) {
2391		struct acpi_processor *pr = per_cpu(processors, i);
2392
2393		if (!pr)
2394			continue;
2395		if (acpi_has_method(pr->handle, "_PPC"))
2396			return true;
2397	}
2398	return false;
2399}
2400
2401enum {
2402	PSS,
2403	PPC,
2404};
2405
2406struct hw_vendor_info {
2407	u16  valid;
2408	char oem_id[ACPI_OEM_ID_SIZE];
2409	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2410	int  oem_pwr_table;
2411};
2412
2413/* Hardware vendor-specific info that has its own power management modes */
2414static struct hw_vendor_info vendor_info[] __initdata = {
2415	{1, "HP    ", "ProLiant", PSS},
2416	{1, "ORACLE", "X4-2    ", PPC},
2417	{1, "ORACLE", "X4-2L   ", PPC},
2418	{1, "ORACLE", "X4-2B   ", PPC},
2419	{1, "ORACLE", "X3-2    ", PPC},
2420	{1, "ORACLE", "X3-2L   ", PPC},
2421	{1, "ORACLE", "X3-2B   ", PPC},
2422	{1, "ORACLE", "X4470M2 ", PPC},
2423	{1, "ORACLE", "X4270M3 ", PPC},
2424	{1, "ORACLE", "X4270M2 ", PPC},
2425	{1, "ORACLE", "X4170M2 ", PPC},
2426	{1, "ORACLE", "X4170 M3", PPC},
2427	{1, "ORACLE", "X4275 M3", PPC},
2428	{1, "ORACLE", "X6-2    ", PPC},
2429	{1, "ORACLE", "Sudbury ", PPC},
2430	{0, "", ""},
2431};
2432
2433static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2434{
2435	struct acpi_table_header hdr;
2436	struct hw_vendor_info *v_info;
2437	const struct x86_cpu_id *id;
2438	u64 misc_pwr;
2439
2440	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2441	if (id) {
2442		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2443		if ( misc_pwr & (1 << 8))
2444			return true;
2445	}
2446
2447	if (acpi_disabled ||
2448	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2449		return false;
2450
2451	for (v_info = vendor_info; v_info->valid; v_info++) {
2452		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2453			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
2454						ACPI_OEM_TABLE_ID_SIZE))
2455			switch (v_info->oem_pwr_table) {
2456			case PSS:
2457				return intel_pstate_no_acpi_pss();
2458			case PPC:
2459				return intel_pstate_has_acpi_ppc() &&
2460					(!force_load);
2461			}
2462	}
2463
2464	return false;
2465}
2466
2467static void intel_pstate_request_control_from_smm(void)
2468{
2469	/*
2470	 * It may be unsafe to request P-states control from SMM if _PPC support
2471	 * has not been enabled.
2472	 */
2473	if (acpi_ppc)
2474		acpi_processor_pstate_control();
2475}
2476#else /* CONFIG_ACPI not enabled */
2477static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2478static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2479static inline void intel_pstate_request_control_from_smm(void) {}
2480#endif /* CONFIG_ACPI */
2481
2482static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2483	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2484	{}
2485};
2486
2487static int __init intel_pstate_init(void)
2488{
2489	int cpu, rc = 0;
2490	const struct x86_cpu_id *id;
2491	struct cpu_defaults *cpu_def;
2492
2493	if (no_load)
2494		return -ENODEV;
2495
2496	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2497		copy_cpu_funcs(&core_params.funcs);
2498		hwp_active++;
2499		intel_pstate.attr = hwp_cpufreq_attrs;
2500		goto hwp_cpu_matched;
2501	}
2502
2503	id = x86_match_cpu(intel_pstate_cpu_ids);
2504	if (!id)
2505		return -ENODEV;
2506
2507	cpu_def = (struct cpu_defaults *)id->driver_data;
2508
2509	copy_pid_params(&cpu_def->pid_policy);
2510	copy_cpu_funcs(&cpu_def->funcs);
2511
2512	if (intel_pstate_msrs_not_valid())
2513		return -ENODEV;
2514
2515hwp_cpu_matched:
2516	/*
2517	 * The Intel pstate driver will be ignored if the platform
2518	 * firmware has its own power management modes.
2519	 */
2520	if (intel_pstate_platform_pwr_mgmt_exists())
2521		return -ENODEV;
2522
2523	pr_info("Intel P-state driver initializing\n");
2524
2525	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2526	if (!all_cpu_data)
2527		return -ENOMEM;
2528
2529	if (!hwp_active && hwp_only)
2530		goto out;
2531
2532	intel_pstate_request_control_from_smm();
2533
2534	rc = cpufreq_register_driver(intel_pstate_driver);
2535	if (rc)
2536		goto out;
2537
2538	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2539	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2540		intel_pstate_debug_expose_params();
2541
2542	intel_pstate_sysfs_expose_params();
2543
2544	if (hwp_active)
2545		pr_info("HWP enabled\n");
2546
2547	return rc;
2548out:
2549	get_online_cpus();
2550	for_each_online_cpu(cpu) {
2551		if (all_cpu_data[cpu]) {
2552			if (intel_pstate_driver == &intel_pstate)
2553				intel_pstate_clear_update_util_hook(cpu);
2554
2555			kfree(all_cpu_data[cpu]);
2556		}
2557	}
2558
2559	put_online_cpus();
2560	vfree(all_cpu_data);
2561	return -ENODEV;
2562}
2563device_initcall(intel_pstate_init);
2564
2565static int __init intel_pstate_setup(char *str)
2566{
2567	if (!str)
2568		return -EINVAL;
2569
2570	if (!strcmp(str, "disable")) {
2571		no_load = 1;
2572	} else if (!strcmp(str, "passive")) {
2573		pr_info("Passive mode enabled\n");
2574		intel_pstate_driver = &intel_cpufreq;
2575		no_hwp = 1;
2576	}
2577	if (!strcmp(str, "no_hwp")) {
2578		pr_info("HWP disabled\n");
2579		no_hwp = 1;
2580	}
2581	if (!strcmp(str, "force"))
2582		force_load = 1;
2583	if (!strcmp(str, "hwp_only"))
2584		hwp_only = 1;
2585	if (!strcmp(str, "per_cpu_perf_limits"))
2586		per_cpu_limits = true;
2587
2588#ifdef CONFIG_ACPI
2589	if (!strcmp(str, "support_acpi_ppc"))
2590		acpi_ppc = true;
2591#endif
2592
2593	return 0;
2594}
2595early_param("intel_pstate", intel_pstate_setup);
2596
2597MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2598MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2599MODULE_LICENSE("GPL");