Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * intel_pstate.c: Native P state management for Intel processors
   3 *
   4 * (C) Copyright 2012 Intel Corporation
   5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; version 2
  10 * of the License.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/module.h>
  16#include <linux/ktime.h>
  17#include <linux/hrtimer.h>
  18#include <linux/tick.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/list.h>
  22#include <linux/cpu.h>
  23#include <linux/cpufreq.h>
  24#include <linux/sysfs.h>
  25#include <linux/types.h>
  26#include <linux/fs.h>
  27#include <linux/debugfs.h>
  28#include <linux/acpi.h>
  29#include <linux/vmalloc.h>
  30#include <trace/events/power.h>
  31
  32#include <asm/div64.h>
  33#include <asm/msr.h>
  34#include <asm/cpu_device_id.h>
  35#include <asm/cpufeature.h>
  36
  37#define ATOM_RATIOS		0x66a
  38#define ATOM_VIDS		0x66b
  39#define ATOM_TURBO_RATIOS	0x66c
  40#define ATOM_TURBO_VIDS		0x66d
  41
  42#define FRAC_BITS 8
  43#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
  44#define fp_toint(X) ((X) >> FRAC_BITS)
  45
  46static inline int32_t mul_fp(int32_t x, int32_t y)
  47{
  48	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
  49}
  50
  51static inline int32_t div_fp(s64 x, s64 y)
  52{
  53	return div64_s64((int64_t)x << FRAC_BITS, y);
  54}
  55
  56static inline int ceiling_fp(int32_t x)
  57{
  58	int mask, ret;
  59
  60	ret = fp_toint(x);
  61	mask = (1 << FRAC_BITS) - 1;
  62	if (x & mask)
  63		ret += 1;
  64	return ret;
  65}
  66
  67/**
  68 * struct sample -	Store performance sample
  69 * @core_pct_busy:	Ratio of APERF/MPERF in percent, which is actual
  70 *			performance during last sample period
  71 * @busy_scaled:	Scaled busy value which is used to calculate next
  72 *			P state. This can be different than core_pct_busy
  73 *			to account for cpu idle period
  74 * @aperf:		Difference of actual performance frequency clock count
  75 *			read from APERF MSR between last and current sample
  76 * @mperf:		Difference of maximum performance frequency clock count
  77 *			read from MPERF MSR between last and current sample
  78 * @tsc:		Difference of time stamp counter between last and
  79 *			current sample
  80 * @freq:		Effective frequency calculated from APERF/MPERF
  81 * @time:		Current time from scheduler
  82 *
  83 * This structure is used in the cpudata structure to store performance sample
  84 * data for choosing next P State.
  85 */
  86struct sample {
  87	int32_t core_pct_busy;
  88	int32_t busy_scaled;
  89	u64 aperf;
  90	u64 mperf;
  91	u64 tsc;
  92	int freq;
  93	u64 time;
  94};
  95
  96/**
  97 * struct pstate_data - Store P state data
  98 * @current_pstate:	Current requested P state
  99 * @min_pstate:		Min P state possible for this platform
 100 * @max_pstate:		Max P state possible for this platform
 101 * @max_pstate_physical:This is physical Max P state for a processor
 102 *			This can be higher than the max_pstate which can
 103 *			be limited by platform thermal design power limits
 104 * @scaling:		Scaling factor to  convert frequency to cpufreq
 105 *			frequency units
 106 * @turbo_pstate:	Max Turbo P state possible for this platform
 107 *
 108 * Stores the per cpu model P state limits and current P state.
 109 */
 110struct pstate_data {
 111	int	current_pstate;
 112	int	min_pstate;
 113	int	max_pstate;
 114	int	max_pstate_physical;
 115	int	scaling;
 116	int	turbo_pstate;
 117};
 118
 119/**
 120 * struct vid_data -	Stores voltage information data
 121 * @min:		VID data for this platform corresponding to
 122 *			the lowest P state
 123 * @max:		VID data corresponding to the highest P State.
 124 * @turbo:		VID data for turbo P state
 125 * @ratio:		Ratio of (vid max - vid min) /
 126 *			(max P state - Min P State)
 127 *
 128 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 129 * This data is used in Atom platforms, where in addition to target P state,
 130 * the voltage data needs to be specified to select next P State.
 131 */
 132struct vid_data {
 133	int min;
 134	int max;
 135	int turbo;
 136	int32_t ratio;
 137};
 138
 139/**
 140 * struct _pid -	Stores PID data
 141 * @setpoint:		Target set point for busyness or performance
 142 * @integral:		Storage for accumulated error values
 143 * @p_gain:		PID proportional gain
 144 * @i_gain:		PID integral gain
 145 * @d_gain:		PID derivative gain
 146 * @deadband:		PID deadband
 147 * @last_err:		Last error storage for integral part of PID calculation
 148 *
 149 * Stores PID coefficients and last error for PID controller.
 150 */
 151struct _pid {
 152	int setpoint;
 153	int32_t integral;
 154	int32_t p_gain;
 155	int32_t i_gain;
 156	int32_t d_gain;
 157	int deadband;
 158	int32_t last_err;
 159};
 160
 161/**
 162 * struct cpudata -	Per CPU instance data storage
 163 * @cpu:		CPU number for this instance data
 164 * @update_util:	CPUFreq utility callback information
 165 * @pstate:		Stores P state limits for this CPU
 166 * @vid:		Stores VID limits for this CPU
 167 * @pid:		Stores PID parameters for this CPU
 168 * @last_sample_time:	Last Sample time
 169 * @prev_aperf:		Last APERF value read from APERF MSR
 170 * @prev_mperf:		Last MPERF value read from MPERF MSR
 171 * @prev_tsc:		Last timestamp counter (TSC) value
 172 * @prev_cummulative_iowait: IO Wait time difference from last and
 173 *			current sample
 174 * @sample:		Storage for storing last Sample data
 175 *
 176 * This structure stores per CPU instance data for all CPUs.
 177 */
 178struct cpudata {
 179	int cpu;
 180
 181	struct update_util_data update_util;
 182
 183	struct pstate_data pstate;
 184	struct vid_data vid;
 185	struct _pid pid;
 186
 187	u64	last_sample_time;
 188	u64	prev_aperf;
 189	u64	prev_mperf;
 190	u64	prev_tsc;
 191	u64	prev_cummulative_iowait;
 192	struct sample sample;
 193};
 194
 195static struct cpudata **all_cpu_data;
 196
 197/**
 198 * struct pid_adjust_policy - Stores static PID configuration data
 199 * @sample_rate_ms:	PID calculation sample rate in ms
 200 * @sample_rate_ns:	Sample rate calculation in ns
 201 * @deadband:		PID deadband
 202 * @setpoint:		PID Setpoint
 203 * @p_gain_pct:		PID proportional gain
 204 * @i_gain_pct:		PID integral gain
 205 * @d_gain_pct:		PID derivative gain
 206 *
 207 * Stores per CPU model static PID configuration data.
 208 */
 209struct pstate_adjust_policy {
 210	int sample_rate_ms;
 211	s64 sample_rate_ns;
 212	int deadband;
 213	int setpoint;
 214	int p_gain_pct;
 215	int d_gain_pct;
 216	int i_gain_pct;
 217};
 218
 219/**
 220 * struct pstate_funcs - Per CPU model specific callbacks
 221 * @get_max:		Callback to get maximum non turbo effective P state
 222 * @get_max_physical:	Callback to get maximum non turbo physical P state
 223 * @get_min:		Callback to get minimum P state
 224 * @get_turbo:		Callback to get turbo P state
 225 * @get_scaling:	Callback to get frequency scaling factor
 226 * @get_val:		Callback to convert P state to actual MSR write value
 227 * @get_vid:		Callback to get VID data for Atom platforms
 228 * @get_target_pstate:	Callback to a function to calculate next P state to use
 229 *
 230 * Core and Atom CPU models have different way to get P State limits. This
 231 * structure is used to store those callbacks.
 232 */
 233struct pstate_funcs {
 234	int (*get_max)(void);
 235	int (*get_max_physical)(void);
 236	int (*get_min)(void);
 237	int (*get_turbo)(void);
 238	int (*get_scaling)(void);
 239	u64 (*get_val)(struct cpudata*, int pstate);
 240	void (*get_vid)(struct cpudata *);
 241	int32_t (*get_target_pstate)(struct cpudata *);
 242};
 243
 244/**
 245 * struct cpu_defaults- Per CPU model default config data
 246 * @pid_policy:	PID config data
 247 * @funcs:		Callback function data
 248 */
 249struct cpu_defaults {
 250	struct pstate_adjust_policy pid_policy;
 251	struct pstate_funcs funcs;
 252};
 253
 254static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
 255static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
 256
 257static struct pstate_adjust_policy pid_params;
 258static struct pstate_funcs pstate_funcs;
 259static int hwp_active;
 260
 261
 262/**
 263 * struct perf_limits - Store user and policy limits
 264 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 265 * @turbo_disabled:	Platform turbo status either from msr
 266 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 267 *			matches the maximum turbo pstate
 268 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 269 *			is minimum of either limits enforced by cpufreq policy
 270 *			or limits from user set limits via intel_pstate sysfs
 271 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 272 *			is maximum of either limits enforced by cpufreq policy
 273 *			or limits from user set limits via intel_pstate sysfs
 274 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 275 *			This value is used to limit max pstate
 276 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 277 *			This value is used to limit min pstate
 278 * @max_policy_pct:	The maximum performance in percentage enforced by
 279 *			cpufreq setpolicy interface
 280 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 281 *			intel pstate sysfs interface
 282 * @min_policy_pct:	The minimum performance in percentage enforced by
 283 *			cpufreq setpolicy interface
 284 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 285 *			intel pstate sysfs interface
 286 *
 287 * Storage for user and policy defined limits.
 288 */
 289struct perf_limits {
 290	int no_turbo;
 291	int turbo_disabled;
 292	int max_perf_pct;
 293	int min_perf_pct;
 294	int32_t max_perf;
 295	int32_t min_perf;
 296	int max_policy_pct;
 297	int max_sysfs_pct;
 298	int min_policy_pct;
 299	int min_sysfs_pct;
 300};
 301
 302static struct perf_limits performance_limits = {
 303	.no_turbo = 0,
 304	.turbo_disabled = 0,
 305	.max_perf_pct = 100,
 306	.max_perf = int_tofp(1),
 307	.min_perf_pct = 100,
 308	.min_perf = int_tofp(1),
 309	.max_policy_pct = 100,
 310	.max_sysfs_pct = 100,
 311	.min_policy_pct = 0,
 312	.min_sysfs_pct = 0,
 313};
 314
 315static struct perf_limits powersave_limits = {
 316	.no_turbo = 0,
 317	.turbo_disabled = 0,
 318	.max_perf_pct = 100,
 319	.max_perf = int_tofp(1),
 320	.min_perf_pct = 0,
 321	.min_perf = 0,
 322	.max_policy_pct = 100,
 323	.max_sysfs_pct = 100,
 324	.min_policy_pct = 0,
 325	.min_sysfs_pct = 0,
 326};
 327
 328#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
 329static struct perf_limits *limits = &performance_limits;
 330#else
 331static struct perf_limits *limits = &powersave_limits;
 332#endif
 333
 334static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
 335			     int deadband, int integral) {
 336	pid->setpoint = int_tofp(setpoint);
 337	pid->deadband  = int_tofp(deadband);
 338	pid->integral  = int_tofp(integral);
 339	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
 340}
 341
 342static inline void pid_p_gain_set(struct _pid *pid, int percent)
 343{
 344	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
 345}
 346
 347static inline void pid_i_gain_set(struct _pid *pid, int percent)
 348{
 349	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
 350}
 351
 352static inline void pid_d_gain_set(struct _pid *pid, int percent)
 353{
 354	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
 355}
 356
 357static signed int pid_calc(struct _pid *pid, int32_t busy)
 358{
 359	signed int result;
 360	int32_t pterm, dterm, fp_error;
 361	int32_t integral_limit;
 362
 363	fp_error = pid->setpoint - busy;
 364
 365	if (abs(fp_error) <= pid->deadband)
 366		return 0;
 367
 368	pterm = mul_fp(pid->p_gain, fp_error);
 369
 370	pid->integral += fp_error;
 371
 372	/*
 373	 * We limit the integral here so that it will never
 374	 * get higher than 30.  This prevents it from becoming
 375	 * too large an input over long periods of time and allows
 376	 * it to get factored out sooner.
 377	 *
 378	 * The value of 30 was chosen through experimentation.
 379	 */
 380	integral_limit = int_tofp(30);
 381	if (pid->integral > integral_limit)
 382		pid->integral = integral_limit;
 383	if (pid->integral < -integral_limit)
 384		pid->integral = -integral_limit;
 385
 386	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
 387	pid->last_err = fp_error;
 388
 389	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
 390	result = result + (1 << (FRAC_BITS-1));
 391	return (signed int)fp_toint(result);
 392}
 393
 394static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
 395{
 396	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
 397	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
 398	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
 399
 400	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
 401}
 402
 403static inline void intel_pstate_reset_all_pid(void)
 404{
 405	unsigned int cpu;
 406
 407	for_each_online_cpu(cpu) {
 408		if (all_cpu_data[cpu])
 409			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
 410	}
 411}
 412
 413static inline void update_turbo_state(void)
 414{
 415	u64 misc_en;
 416	struct cpudata *cpu;
 417
 418	cpu = all_cpu_data[0];
 419	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
 420	limits->turbo_disabled =
 421		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
 422		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
 423}
 424
 425static void intel_pstate_hwp_set(const struct cpumask *cpumask)
 426{
 427	int min, hw_min, max, hw_max, cpu, range, adj_range;
 428	u64 value, cap;
 429
 430	rdmsrl(MSR_HWP_CAPABILITIES, cap);
 431	hw_min = HWP_LOWEST_PERF(cap);
 432	hw_max = HWP_HIGHEST_PERF(cap);
 433	range = hw_max - hw_min;
 434
 435	for_each_cpu(cpu, cpumask) {
 436		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
 437		adj_range = limits->min_perf_pct * range / 100;
 438		min = hw_min + adj_range;
 439		value &= ~HWP_MIN_PERF(~0L);
 440		value |= HWP_MIN_PERF(min);
 441
 442		adj_range = limits->max_perf_pct * range / 100;
 443		max = hw_min + adj_range;
 444		if (limits->no_turbo) {
 445			hw_max = HWP_GUARANTEED_PERF(cap);
 446			if (hw_max < max)
 447				max = hw_max;
 448		}
 449
 450		value &= ~HWP_MAX_PERF(~0L);
 451		value |= HWP_MAX_PERF(max);
 452		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 453	}
 454}
 455
 456static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
 457{
 458	if (hwp_active)
 459		intel_pstate_hwp_set(policy->cpus);
 460
 461	return 0;
 462}
 463
 464static void intel_pstate_hwp_set_online_cpus(void)
 465{
 466	get_online_cpus();
 467	intel_pstate_hwp_set(cpu_online_mask);
 468	put_online_cpus();
 469}
 470
 471/************************** debugfs begin ************************/
 472static int pid_param_set(void *data, u64 val)
 473{
 474	*(u32 *)data = val;
 475	intel_pstate_reset_all_pid();
 476	return 0;
 477}
 478
 479static int pid_param_get(void *data, u64 *val)
 480{
 481	*val = *(u32 *)data;
 482	return 0;
 483}
 484DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
 485
 486struct pid_param {
 487	char *name;
 488	void *value;
 489};
 490
 491static struct pid_param pid_files[] = {
 492	{"sample_rate_ms", &pid_params.sample_rate_ms},
 493	{"d_gain_pct", &pid_params.d_gain_pct},
 494	{"i_gain_pct", &pid_params.i_gain_pct},
 495	{"deadband", &pid_params.deadband},
 496	{"setpoint", &pid_params.setpoint},
 497	{"p_gain_pct", &pid_params.p_gain_pct},
 498	{NULL, NULL}
 499};
 500
 501static void __init intel_pstate_debug_expose_params(void)
 502{
 503	struct dentry *debugfs_parent;
 504	int i = 0;
 505
 506	if (hwp_active)
 507		return;
 508	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
 509	if (IS_ERR_OR_NULL(debugfs_parent))
 510		return;
 511	while (pid_files[i].name) {
 512		debugfs_create_file(pid_files[i].name, 0660,
 513				    debugfs_parent, pid_files[i].value,
 514				    &fops_pid_param);
 515		i++;
 516	}
 517}
 518
 519/************************** debugfs end ************************/
 520
 521/************************** sysfs begin ************************/
 522#define show_one(file_name, object)					\
 523	static ssize_t show_##file_name					\
 524	(struct kobject *kobj, struct attribute *attr, char *buf)	\
 525	{								\
 526		return sprintf(buf, "%u\n", limits->object);		\
 527	}
 528
 529static ssize_t show_turbo_pct(struct kobject *kobj,
 530				struct attribute *attr, char *buf)
 531{
 532	struct cpudata *cpu;
 533	int total, no_turbo, turbo_pct;
 534	uint32_t turbo_fp;
 535
 536	cpu = all_cpu_data[0];
 537
 538	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 539	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
 540	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
 541	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
 542	return sprintf(buf, "%u\n", turbo_pct);
 543}
 544
 545static ssize_t show_num_pstates(struct kobject *kobj,
 546				struct attribute *attr, char *buf)
 547{
 548	struct cpudata *cpu;
 549	int total;
 550
 551	cpu = all_cpu_data[0];
 552	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 553	return sprintf(buf, "%u\n", total);
 554}
 555
 556static ssize_t show_no_turbo(struct kobject *kobj,
 557			     struct attribute *attr, char *buf)
 558{
 559	ssize_t ret;
 560
 561	update_turbo_state();
 562	if (limits->turbo_disabled)
 563		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
 564	else
 565		ret = sprintf(buf, "%u\n", limits->no_turbo);
 566
 567	return ret;
 568}
 569
 570static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
 571			      const char *buf, size_t count)
 572{
 573	unsigned int input;
 574	int ret;
 575
 576	ret = sscanf(buf, "%u", &input);
 577	if (ret != 1)
 578		return -EINVAL;
 579
 580	update_turbo_state();
 581	if (limits->turbo_disabled) {
 582		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
 583		return -EPERM;
 584	}
 585
 586	limits->no_turbo = clamp_t(int, input, 0, 1);
 587
 588	if (hwp_active)
 589		intel_pstate_hwp_set_online_cpus();
 590
 591	return count;
 592}
 593
 594static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
 595				  const char *buf, size_t count)
 596{
 597	unsigned int input;
 598	int ret;
 599
 600	ret = sscanf(buf, "%u", &input);
 601	if (ret != 1)
 602		return -EINVAL;
 603
 604	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
 605	limits->max_perf_pct = min(limits->max_policy_pct,
 606				   limits->max_sysfs_pct);
 607	limits->max_perf_pct = max(limits->min_policy_pct,
 608				   limits->max_perf_pct);
 609	limits->max_perf_pct = max(limits->min_perf_pct,
 610				   limits->max_perf_pct);
 611	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
 612				  int_tofp(100));
 613
 614	if (hwp_active)
 615		intel_pstate_hwp_set_online_cpus();
 616	return count;
 617}
 618
 619static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
 620				  const char *buf, size_t count)
 621{
 622	unsigned int input;
 623	int ret;
 624
 625	ret = sscanf(buf, "%u", &input);
 626	if (ret != 1)
 627		return -EINVAL;
 628
 629	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
 630	limits->min_perf_pct = max(limits->min_policy_pct,
 631				   limits->min_sysfs_pct);
 632	limits->min_perf_pct = min(limits->max_policy_pct,
 633				   limits->min_perf_pct);
 634	limits->min_perf_pct = min(limits->max_perf_pct,
 635				   limits->min_perf_pct);
 636	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
 637				  int_tofp(100));
 638
 639	if (hwp_active)
 640		intel_pstate_hwp_set_online_cpus();
 641	return count;
 642}
 643
 644show_one(max_perf_pct, max_perf_pct);
 645show_one(min_perf_pct, min_perf_pct);
 646
 647define_one_global_rw(no_turbo);
 648define_one_global_rw(max_perf_pct);
 649define_one_global_rw(min_perf_pct);
 650define_one_global_ro(turbo_pct);
 651define_one_global_ro(num_pstates);
 652
 653static struct attribute *intel_pstate_attributes[] = {
 654	&no_turbo.attr,
 655	&max_perf_pct.attr,
 656	&min_perf_pct.attr,
 657	&turbo_pct.attr,
 658	&num_pstates.attr,
 659	NULL
 660};
 661
 662static struct attribute_group intel_pstate_attr_group = {
 663	.attrs = intel_pstate_attributes,
 664};
 665
 666static void __init intel_pstate_sysfs_expose_params(void)
 667{
 668	struct kobject *intel_pstate_kobject;
 669	int rc;
 670
 671	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
 672						&cpu_subsys.dev_root->kobj);
 673	BUG_ON(!intel_pstate_kobject);
 674	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
 675	BUG_ON(rc);
 676}
 677/************************** sysfs end ************************/
 678
 679static void intel_pstate_hwp_enable(struct cpudata *cpudata)
 680{
 681	/* First disable HWP notification interrupt as we don't process them */
 682	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
 683
 684	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
 685}
 686
 687static int atom_get_min_pstate(void)
 688{
 689	u64 value;
 690
 691	rdmsrl(ATOM_RATIOS, value);
 692	return (value >> 8) & 0x7F;
 693}
 694
 695static int atom_get_max_pstate(void)
 696{
 697	u64 value;
 698
 699	rdmsrl(ATOM_RATIOS, value);
 700	return (value >> 16) & 0x7F;
 701}
 702
 703static int atom_get_turbo_pstate(void)
 704{
 705	u64 value;
 706
 707	rdmsrl(ATOM_TURBO_RATIOS, value);
 708	return value & 0x7F;
 709}
 710
 711static u64 atom_get_val(struct cpudata *cpudata, int pstate)
 712{
 713	u64 val;
 714	int32_t vid_fp;
 715	u32 vid;
 716
 717	val = (u64)pstate << 8;
 718	if (limits->no_turbo && !limits->turbo_disabled)
 719		val |= (u64)1 << 32;
 720
 721	vid_fp = cpudata->vid.min + mul_fp(
 722		int_tofp(pstate - cpudata->pstate.min_pstate),
 723		cpudata->vid.ratio);
 724
 725	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
 726	vid = ceiling_fp(vid_fp);
 727
 728	if (pstate > cpudata->pstate.max_pstate)
 729		vid = cpudata->vid.turbo;
 730
 731	return val | vid;
 732}
 733
 734static int silvermont_get_scaling(void)
 735{
 736	u64 value;
 737	int i;
 738	/* Defined in Table 35-6 from SDM (Sept 2015) */
 739	static int silvermont_freq_table[] = {
 740		83300, 100000, 133300, 116700, 80000};
 741
 742	rdmsrl(MSR_FSB_FREQ, value);
 743	i = value & 0x7;
 744	WARN_ON(i > 4);
 745
 746	return silvermont_freq_table[i];
 747}
 748
 749static int airmont_get_scaling(void)
 750{
 751	u64 value;
 752	int i;
 753	/* Defined in Table 35-10 from SDM (Sept 2015) */
 754	static int airmont_freq_table[] = {
 755		83300, 100000, 133300, 116700, 80000,
 756		93300, 90000, 88900, 87500};
 757
 758	rdmsrl(MSR_FSB_FREQ, value);
 759	i = value & 0xF;
 760	WARN_ON(i > 8);
 761
 762	return airmont_freq_table[i];
 763}
 764
 765static void atom_get_vid(struct cpudata *cpudata)
 766{
 767	u64 value;
 768
 769	rdmsrl(ATOM_VIDS, value);
 770	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
 771	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
 772	cpudata->vid.ratio = div_fp(
 773		cpudata->vid.max - cpudata->vid.min,
 774		int_tofp(cpudata->pstate.max_pstate -
 775			cpudata->pstate.min_pstate));
 776
 777	rdmsrl(ATOM_TURBO_VIDS, value);
 778	cpudata->vid.turbo = value & 0x7f;
 779}
 780
 781static int core_get_min_pstate(void)
 782{
 783	u64 value;
 784
 785	rdmsrl(MSR_PLATFORM_INFO, value);
 786	return (value >> 40) & 0xFF;
 787}
 788
 789static int core_get_max_pstate_physical(void)
 790{
 791	u64 value;
 792
 793	rdmsrl(MSR_PLATFORM_INFO, value);
 794	return (value >> 8) & 0xFF;
 795}
 796
 797static int core_get_max_pstate(void)
 798{
 799	u64 tar;
 800	u64 plat_info;
 801	int max_pstate;
 802	int err;
 803
 804	rdmsrl(MSR_PLATFORM_INFO, plat_info);
 805	max_pstate = (plat_info >> 8) & 0xFF;
 806
 807	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
 808	if (!err) {
 809		/* Do some sanity checking for safety */
 810		if (plat_info & 0x600000000) {
 811			u64 tdp_ctrl;
 812			u64 tdp_ratio;
 813			int tdp_msr;
 814
 815			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
 816			if (err)
 817				goto skip_tar;
 818
 819			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
 820			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
 821			if (err)
 822				goto skip_tar;
 823
 824			/* For level 1 and 2, bits[23:16] contain the ratio */
 825			if (tdp_ctrl)
 826				tdp_ratio >>= 16;
 827
 828			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
 829			if (tdp_ratio - 1 == tar) {
 830				max_pstate = tar;
 831				pr_debug("max_pstate=TAC %x\n", max_pstate);
 832			} else {
 833				goto skip_tar;
 834			}
 835		}
 836	}
 837
 838skip_tar:
 839	return max_pstate;
 840}
 841
 842static int core_get_turbo_pstate(void)
 843{
 844	u64 value;
 845	int nont, ret;
 846
 847	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
 848	nont = core_get_max_pstate();
 849	ret = (value) & 255;
 850	if (ret <= nont)
 851		ret = nont;
 852	return ret;
 853}
 854
 855static inline int core_get_scaling(void)
 856{
 857	return 100000;
 858}
 859
 860static u64 core_get_val(struct cpudata *cpudata, int pstate)
 861{
 862	u64 val;
 863
 864	val = (u64)pstate << 8;
 865	if (limits->no_turbo && !limits->turbo_disabled)
 866		val |= (u64)1 << 32;
 867
 868	return val;
 869}
 870
 871static int knl_get_turbo_pstate(void)
 872{
 873	u64 value;
 874	int nont, ret;
 875
 876	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
 877	nont = core_get_max_pstate();
 878	ret = (((value) >> 8) & 0xFF);
 879	if (ret <= nont)
 880		ret = nont;
 881	return ret;
 882}
 883
 884static struct cpu_defaults core_params = {
 885	.pid_policy = {
 886		.sample_rate_ms = 10,
 887		.deadband = 0,
 888		.setpoint = 97,
 889		.p_gain_pct = 20,
 890		.d_gain_pct = 0,
 891		.i_gain_pct = 0,
 892	},
 893	.funcs = {
 894		.get_max = core_get_max_pstate,
 895		.get_max_physical = core_get_max_pstate_physical,
 896		.get_min = core_get_min_pstate,
 897		.get_turbo = core_get_turbo_pstate,
 898		.get_scaling = core_get_scaling,
 899		.get_val = core_get_val,
 900		.get_target_pstate = get_target_pstate_use_performance,
 901	},
 902};
 903
 904static struct cpu_defaults silvermont_params = {
 905	.pid_policy = {
 906		.sample_rate_ms = 10,
 907		.deadband = 0,
 908		.setpoint = 60,
 909		.p_gain_pct = 14,
 910		.d_gain_pct = 0,
 911		.i_gain_pct = 4,
 912	},
 913	.funcs = {
 914		.get_max = atom_get_max_pstate,
 915		.get_max_physical = atom_get_max_pstate,
 916		.get_min = atom_get_min_pstate,
 917		.get_turbo = atom_get_turbo_pstate,
 918		.get_val = atom_get_val,
 919		.get_scaling = silvermont_get_scaling,
 920		.get_vid = atom_get_vid,
 921		.get_target_pstate = get_target_pstate_use_cpu_load,
 922	},
 923};
 924
 925static struct cpu_defaults airmont_params = {
 926	.pid_policy = {
 927		.sample_rate_ms = 10,
 928		.deadband = 0,
 929		.setpoint = 60,
 930		.p_gain_pct = 14,
 931		.d_gain_pct = 0,
 932		.i_gain_pct = 4,
 933	},
 934	.funcs = {
 935		.get_max = atom_get_max_pstate,
 936		.get_max_physical = atom_get_max_pstate,
 937		.get_min = atom_get_min_pstate,
 938		.get_turbo = atom_get_turbo_pstate,
 939		.get_val = atom_get_val,
 940		.get_scaling = airmont_get_scaling,
 941		.get_vid = atom_get_vid,
 942		.get_target_pstate = get_target_pstate_use_cpu_load,
 943	},
 944};
 945
 946static struct cpu_defaults knl_params = {
 947	.pid_policy = {
 948		.sample_rate_ms = 10,
 949		.deadband = 0,
 950		.setpoint = 97,
 951		.p_gain_pct = 20,
 952		.d_gain_pct = 0,
 953		.i_gain_pct = 0,
 954	},
 955	.funcs = {
 956		.get_max = core_get_max_pstate,
 957		.get_max_physical = core_get_max_pstate_physical,
 958		.get_min = core_get_min_pstate,
 959		.get_turbo = knl_get_turbo_pstate,
 960		.get_scaling = core_get_scaling,
 961		.get_val = core_get_val,
 962		.get_target_pstate = get_target_pstate_use_performance,
 963	},
 964};
 965
 966static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
 967{
 968	int max_perf = cpu->pstate.turbo_pstate;
 969	int max_perf_adj;
 970	int min_perf;
 971
 972	if (limits->no_turbo || limits->turbo_disabled)
 973		max_perf = cpu->pstate.max_pstate;
 974
 975	/*
 976	 * performance can be limited by user through sysfs, by cpufreq
 977	 * policy, or by cpu specific default values determined through
 978	 * experimentation.
 979	 */
 980	max_perf_adj = fp_toint(max_perf * limits->max_perf);
 981	*max = clamp_t(int, max_perf_adj,
 982			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
 983
 984	min_perf = fp_toint(max_perf * limits->min_perf);
 985	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
 986}
 987
 988static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
 989{
 990	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
 991	cpu->pstate.current_pstate = pstate;
 992}
 993
 994static void intel_pstate_set_min_pstate(struct cpudata *cpu)
 995{
 996	int pstate = cpu->pstate.min_pstate;
 997
 998	intel_pstate_record_pstate(cpu, pstate);
 999	/*
1000	 * Generally, there is no guarantee that this code will always run on
1001	 * the CPU being updated, so force the register update to run on the
1002	 * right CPU.
1003	 */
1004	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1005		      pstate_funcs.get_val(cpu, pstate));
1006}
1007
1008static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1009{
1010	cpu->pstate.min_pstate = pstate_funcs.get_min();
1011	cpu->pstate.max_pstate = pstate_funcs.get_max();
1012	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1013	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1014	cpu->pstate.scaling = pstate_funcs.get_scaling();
1015
1016	if (pstate_funcs.get_vid)
1017		pstate_funcs.get_vid(cpu);
1018
1019	intel_pstate_set_min_pstate(cpu);
1020}
1021
1022static inline void intel_pstate_calc_busy(struct cpudata *cpu)
1023{
1024	struct sample *sample = &cpu->sample;
1025	int64_t core_pct;
1026
1027	core_pct = int_tofp(sample->aperf) * int_tofp(100);
1028	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
1029
1030	sample->core_pct_busy = (int32_t)core_pct;
1031}
1032
1033static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1034{
1035	u64 aperf, mperf;
1036	unsigned long flags;
1037	u64 tsc;
1038
1039	local_irq_save(flags);
1040	rdmsrl(MSR_IA32_APERF, aperf);
1041	rdmsrl(MSR_IA32_MPERF, mperf);
1042	tsc = rdtsc();
1043	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1044		local_irq_restore(flags);
1045		return false;
1046	}
1047	local_irq_restore(flags);
1048
1049	cpu->last_sample_time = cpu->sample.time;
1050	cpu->sample.time = time;
1051	cpu->sample.aperf = aperf;
1052	cpu->sample.mperf = mperf;
1053	cpu->sample.tsc =  tsc;
1054	cpu->sample.aperf -= cpu->prev_aperf;
1055	cpu->sample.mperf -= cpu->prev_mperf;
1056	cpu->sample.tsc -= cpu->prev_tsc;
1057
1058	cpu->prev_aperf = aperf;
1059	cpu->prev_mperf = mperf;
1060	cpu->prev_tsc = tsc;
1061	/*
1062	 * First time this function is invoked in a given cycle, all of the
1063	 * previous sample data fields are equal to zero or stale and they must
1064	 * be populated with meaningful numbers for things to work, so assume
1065	 * that sample.time will always be reset before setting the utilization
1066	 * update hook and make the caller skip the sample then.
1067	 */
1068	return !!cpu->last_sample_time;
1069}
1070
1071static inline int32_t get_avg_frequency(struct cpudata *cpu)
1072{
1073	return fp_toint(mul_fp(cpu->sample.core_pct_busy,
1074			       int_tofp(cpu->pstate.max_pstate_physical *
1075						cpu->pstate.scaling / 100)));
1076}
1077
1078static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1079{
1080	struct sample *sample = &cpu->sample;
1081	u64 cummulative_iowait, delta_iowait_us;
1082	u64 delta_iowait_mperf;
1083	u64 mperf, now;
1084	int32_t cpu_load;
1085
1086	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1087
1088	/*
1089	 * Convert iowait time into number of IO cycles spent at max_freq.
1090	 * IO is considered as busy only for the cpu_load algorithm. For
1091	 * performance this is not needed since we always try to reach the
1092	 * maximum P-State, so we are already boosting the IOs.
1093	 */
1094	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1095	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1096		cpu->pstate.max_pstate, MSEC_PER_SEC);
1097
1098	mperf = cpu->sample.mperf + delta_iowait_mperf;
1099	cpu->prev_cummulative_iowait = cummulative_iowait;
1100
1101	/*
1102	 * The load can be estimated as the ratio of the mperf counter
1103	 * running at a constant frequency during active periods
1104	 * (C0) and the time stamp counter running at the same frequency
1105	 * also during C-states.
1106	 */
1107	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1108	cpu->sample.busy_scaled = cpu_load;
1109
1110	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
1111}
1112
1113static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1114{
1115	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1116	u64 duration_ns;
1117
1118	/*
1119	 * core_busy is the ratio of actual performance to max
1120	 * max_pstate is the max non turbo pstate available
1121	 * current_pstate was the pstate that was requested during
1122	 * 	the last sample period.
1123	 *
1124	 * We normalize core_busy, which was our actual percent
1125	 * performance to what we requested during the last sample
1126	 * period. The result will be a percentage of busy at a
1127	 * specified pstate.
1128	 */
1129	core_busy = cpu->sample.core_pct_busy;
1130	max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
1131	current_pstate = int_tofp(cpu->pstate.current_pstate);
1132	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1133
1134	/*
1135	 * Since our utilization update callback will not run unless we are
1136	 * in C0, check if the actual elapsed time is significantly greater (3x)
1137	 * than our sample interval.  If it is, then we were idle for a long
1138	 * enough period of time to adjust our busyness.
1139	 */
1140	duration_ns = cpu->sample.time - cpu->last_sample_time;
1141	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1142		sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
1143				      int_tofp(duration_ns));
1144		core_busy = mul_fp(core_busy, sample_ratio);
1145	} else {
1146		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1147		if (sample_ratio < int_tofp(1))
1148			core_busy = 0;
1149	}
1150
1151	cpu->sample.busy_scaled = core_busy;
1152	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1153}
1154
1155static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1156{
1157	int max_perf, min_perf;
1158
1159	update_turbo_state();
1160
1161	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1162	pstate = clamp_t(int, pstate, min_perf, max_perf);
1163	if (pstate == cpu->pstate.current_pstate)
1164		return;
1165
1166	intel_pstate_record_pstate(cpu, pstate);
1167	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1168}
1169
1170static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1171{
1172	int from, target_pstate;
1173	struct sample *sample;
1174
1175	from = cpu->pstate.current_pstate;
1176
1177	target_pstate = pstate_funcs.get_target_pstate(cpu);
1178
1179	intel_pstate_update_pstate(cpu, target_pstate);
1180
1181	sample = &cpu->sample;
1182	trace_pstate_sample(fp_toint(sample->core_pct_busy),
1183		fp_toint(sample->busy_scaled),
1184		from,
1185		cpu->pstate.current_pstate,
1186		sample->mperf,
1187		sample->aperf,
1188		sample->tsc,
1189		get_avg_frequency(cpu));
1190}
1191
1192static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1193				     unsigned long util, unsigned long max)
1194{
1195	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1196	u64 delta_ns = time - cpu->sample.time;
1197
1198	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1199		bool sample_taken = intel_pstate_sample(cpu, time);
1200
1201		if (sample_taken) {
1202			intel_pstate_calc_busy(cpu);
1203			if (!hwp_active)
1204				intel_pstate_adjust_busy_pstate(cpu);
1205		}
1206	}
1207}
1208
1209#define ICPU(model, policy) \
1210	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1211			(unsigned long)&policy }
1212
1213static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1214	ICPU(0x2a, core_params),
1215	ICPU(0x2d, core_params),
1216	ICPU(0x37, silvermont_params),
1217	ICPU(0x3a, core_params),
1218	ICPU(0x3c, core_params),
1219	ICPU(0x3d, core_params),
1220	ICPU(0x3e, core_params),
1221	ICPU(0x3f, core_params),
1222	ICPU(0x45, core_params),
1223	ICPU(0x46, core_params),
1224	ICPU(0x47, core_params),
1225	ICPU(0x4c, airmont_params),
1226	ICPU(0x4e, core_params),
1227	ICPU(0x4f, core_params),
1228	ICPU(0x5e, core_params),
1229	ICPU(0x56, core_params),
1230	ICPU(0x57, knl_params),
1231	{}
1232};
1233MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1234
1235static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1236	ICPU(0x56, core_params),
1237	{}
1238};
1239
1240static int intel_pstate_init_cpu(unsigned int cpunum)
1241{
1242	struct cpudata *cpu;
1243
1244	if (!all_cpu_data[cpunum])
1245		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1246					       GFP_KERNEL);
1247	if (!all_cpu_data[cpunum])
1248		return -ENOMEM;
1249
1250	cpu = all_cpu_data[cpunum];
1251
1252	cpu->cpu = cpunum;
1253
1254	if (hwp_active) {
1255		intel_pstate_hwp_enable(cpu);
1256		pid_params.sample_rate_ms = 50;
1257		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1258	}
1259
1260	intel_pstate_get_cpu_pstates(cpu);
1261
1262	intel_pstate_busy_pid_reset(cpu);
1263
1264	cpu->update_util.func = intel_pstate_update_util;
1265
1266	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1267
1268	return 0;
1269}
1270
1271static unsigned int intel_pstate_get(unsigned int cpu_num)
1272{
1273	struct sample *sample;
1274	struct cpudata *cpu;
1275
1276	cpu = all_cpu_data[cpu_num];
1277	if (!cpu)
1278		return 0;
1279	sample = &cpu->sample;
1280	return get_avg_frequency(cpu);
1281}
1282
1283static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1284{
1285	struct cpudata *cpu = all_cpu_data[cpu_num];
1286
1287	/* Prevent intel_pstate_update_util() from using stale data. */
1288	cpu->sample.time = 0;
1289	cpufreq_set_update_util_data(cpu_num, &cpu->update_util);
1290}
1291
1292static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1293{
1294	cpufreq_set_update_util_data(cpu, NULL);
1295	synchronize_sched();
1296}
1297
1298static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1299{
1300	limits->no_turbo = 0;
1301	limits->turbo_disabled = 0;
1302	limits->max_perf_pct = 100;
1303	limits->max_perf = int_tofp(1);
1304	limits->min_perf_pct = 100;
1305	limits->min_perf = int_tofp(1);
1306	limits->max_policy_pct = 100;
1307	limits->max_sysfs_pct = 100;
1308	limits->min_policy_pct = 0;
1309	limits->min_sysfs_pct = 0;
1310}
1311
1312static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1313{
1314	if (!policy->cpuinfo.max_freq)
1315		return -ENODEV;
1316
1317	intel_pstate_clear_update_util_hook(policy->cpu);
1318
1319	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1320		limits = &performance_limits;
1321		if (policy->max >= policy->cpuinfo.max_freq) {
1322			pr_debug("intel_pstate: set performance\n");
1323			intel_pstate_set_performance_limits(limits);
1324			goto out;
1325		}
1326	} else {
1327		pr_debug("intel_pstate: set powersave\n");
1328		limits = &powersave_limits;
1329	}
1330
1331	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1332	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1333	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1334					      policy->cpuinfo.max_freq);
1335	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1336
1337	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1338	limits->min_perf_pct = max(limits->min_policy_pct,
1339				   limits->min_sysfs_pct);
1340	limits->min_perf_pct = min(limits->max_policy_pct,
1341				   limits->min_perf_pct);
1342	limits->max_perf_pct = min(limits->max_policy_pct,
1343				   limits->max_sysfs_pct);
1344	limits->max_perf_pct = max(limits->min_policy_pct,
1345				   limits->max_perf_pct);
1346	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1347
1348	/* Make sure min_perf_pct <= max_perf_pct */
1349	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1350
1351	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1352				  int_tofp(100));
1353	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1354				  int_tofp(100));
1355
1356 out:
1357	intel_pstate_set_update_util_hook(policy->cpu);
1358
1359	intel_pstate_hwp_set_policy(policy);
1360
1361	return 0;
1362}
1363
1364static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1365{
1366	cpufreq_verify_within_cpu_limits(policy);
1367
1368	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1369	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1370		return -EINVAL;
1371
1372	return 0;
1373}
1374
1375static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1376{
1377	int cpu_num = policy->cpu;
1378	struct cpudata *cpu = all_cpu_data[cpu_num];
1379
1380	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1381
1382	intel_pstate_clear_update_util_hook(cpu_num);
1383
1384	if (hwp_active)
1385		return;
1386
1387	intel_pstate_set_min_pstate(cpu);
1388}
1389
1390static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1391{
1392	struct cpudata *cpu;
1393	int rc;
1394
1395	rc = intel_pstate_init_cpu(policy->cpu);
1396	if (rc)
1397		return rc;
1398
1399	cpu = all_cpu_data[policy->cpu];
1400
1401	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1402		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1403	else
1404		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1405
1406	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1407	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1408
1409	/* cpuinfo and default policy values */
1410	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1411	policy->cpuinfo.max_freq =
1412		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1413	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1414	cpumask_set_cpu(policy->cpu, policy->cpus);
1415
1416	return 0;
1417}
1418
1419static struct cpufreq_driver intel_pstate_driver = {
1420	.flags		= CPUFREQ_CONST_LOOPS,
1421	.verify		= intel_pstate_verify_policy,
1422	.setpolicy	= intel_pstate_set_policy,
1423	.resume		= intel_pstate_hwp_set_policy,
1424	.get		= intel_pstate_get,
1425	.init		= intel_pstate_cpu_init,
1426	.stop_cpu	= intel_pstate_stop_cpu,
1427	.name		= "intel_pstate",
1428};
1429
1430static int __initdata no_load;
1431static int __initdata no_hwp;
1432static int __initdata hwp_only;
1433static unsigned int force_load;
1434
1435static int intel_pstate_msrs_not_valid(void)
1436{
1437	if (!pstate_funcs.get_max() ||
1438	    !pstate_funcs.get_min() ||
1439	    !pstate_funcs.get_turbo())
1440		return -ENODEV;
1441
1442	return 0;
1443}
1444
1445static void copy_pid_params(struct pstate_adjust_policy *policy)
1446{
1447	pid_params.sample_rate_ms = policy->sample_rate_ms;
1448	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1449	pid_params.p_gain_pct = policy->p_gain_pct;
1450	pid_params.i_gain_pct = policy->i_gain_pct;
1451	pid_params.d_gain_pct = policy->d_gain_pct;
1452	pid_params.deadband = policy->deadband;
1453	pid_params.setpoint = policy->setpoint;
1454}
1455
1456static void copy_cpu_funcs(struct pstate_funcs *funcs)
1457{
1458	pstate_funcs.get_max   = funcs->get_max;
1459	pstate_funcs.get_max_physical = funcs->get_max_physical;
1460	pstate_funcs.get_min   = funcs->get_min;
1461	pstate_funcs.get_turbo = funcs->get_turbo;
1462	pstate_funcs.get_scaling = funcs->get_scaling;
1463	pstate_funcs.get_val   = funcs->get_val;
1464	pstate_funcs.get_vid   = funcs->get_vid;
1465	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1466
1467}
1468
1469#if IS_ENABLED(CONFIG_ACPI)
1470#include <acpi/processor.h>
1471
1472static bool intel_pstate_no_acpi_pss(void)
1473{
1474	int i;
1475
1476	for_each_possible_cpu(i) {
1477		acpi_status status;
1478		union acpi_object *pss;
1479		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1480		struct acpi_processor *pr = per_cpu(processors, i);
1481
1482		if (!pr)
1483			continue;
1484
1485		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1486		if (ACPI_FAILURE(status))
1487			continue;
1488
1489		pss = buffer.pointer;
1490		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1491			kfree(pss);
1492			return false;
1493		}
1494
1495		kfree(pss);
1496	}
1497
1498	return true;
1499}
1500
1501static bool intel_pstate_has_acpi_ppc(void)
1502{
1503	int i;
1504
1505	for_each_possible_cpu(i) {
1506		struct acpi_processor *pr = per_cpu(processors, i);
1507
1508		if (!pr)
1509			continue;
1510		if (acpi_has_method(pr->handle, "_PPC"))
1511			return true;
1512	}
1513	return false;
1514}
1515
1516enum {
1517	PSS,
1518	PPC,
1519};
1520
1521struct hw_vendor_info {
1522	u16  valid;
1523	char oem_id[ACPI_OEM_ID_SIZE];
1524	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1525	int  oem_pwr_table;
1526};
1527
1528/* Hardware vendor-specific info that has its own power management modes */
1529static struct hw_vendor_info vendor_info[] = {
1530	{1, "HP    ", "ProLiant", PSS},
1531	{1, "ORACLE", "X4-2    ", PPC},
1532	{1, "ORACLE", "X4-2L   ", PPC},
1533	{1, "ORACLE", "X4-2B   ", PPC},
1534	{1, "ORACLE", "X3-2    ", PPC},
1535	{1, "ORACLE", "X3-2L   ", PPC},
1536	{1, "ORACLE", "X3-2B   ", PPC},
1537	{1, "ORACLE", "X4470M2 ", PPC},
1538	{1, "ORACLE", "X4270M3 ", PPC},
1539	{1, "ORACLE", "X4270M2 ", PPC},
1540	{1, "ORACLE", "X4170M2 ", PPC},
1541	{1, "ORACLE", "X4170 M3", PPC},
1542	{1, "ORACLE", "X4275 M3", PPC},
1543	{1, "ORACLE", "X6-2    ", PPC},
1544	{1, "ORACLE", "Sudbury ", PPC},
1545	{0, "", ""},
1546};
1547
1548static bool intel_pstate_platform_pwr_mgmt_exists(void)
1549{
1550	struct acpi_table_header hdr;
1551	struct hw_vendor_info *v_info;
1552	const struct x86_cpu_id *id;
1553	u64 misc_pwr;
1554
1555	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1556	if (id) {
1557		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1558		if ( misc_pwr & (1 << 8))
1559			return true;
1560	}
1561
1562	if (acpi_disabled ||
1563	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1564		return false;
1565
1566	for (v_info = vendor_info; v_info->valid; v_info++) {
1567		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1568			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1569						ACPI_OEM_TABLE_ID_SIZE))
1570			switch (v_info->oem_pwr_table) {
1571			case PSS:
1572				return intel_pstate_no_acpi_pss();
1573			case PPC:
1574				return intel_pstate_has_acpi_ppc() &&
1575					(!force_load);
1576			}
1577	}
1578
1579	return false;
1580}
1581#else /* CONFIG_ACPI not enabled */
1582static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1583static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1584#endif /* CONFIG_ACPI */
1585
1586static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1587	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1588	{}
1589};
1590
1591static int __init intel_pstate_init(void)
1592{
1593	int cpu, rc = 0;
1594	const struct x86_cpu_id *id;
1595	struct cpu_defaults *cpu_def;
1596
1597	if (no_load)
1598		return -ENODEV;
1599
1600	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1601		copy_cpu_funcs(&core_params.funcs);
1602		hwp_active++;
1603		goto hwp_cpu_matched;
1604	}
1605
1606	id = x86_match_cpu(intel_pstate_cpu_ids);
1607	if (!id)
1608		return -ENODEV;
1609
1610	cpu_def = (struct cpu_defaults *)id->driver_data;
1611
1612	copy_pid_params(&cpu_def->pid_policy);
1613	copy_cpu_funcs(&cpu_def->funcs);
1614
1615	if (intel_pstate_msrs_not_valid())
1616		return -ENODEV;
1617
1618hwp_cpu_matched:
1619	/*
1620	 * The Intel pstate driver will be ignored if the platform
1621	 * firmware has its own power management modes.
1622	 */
1623	if (intel_pstate_platform_pwr_mgmt_exists())
1624		return -ENODEV;
1625
1626	pr_info("Intel P-state driver initializing.\n");
1627
1628	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1629	if (!all_cpu_data)
1630		return -ENOMEM;
1631
1632	if (!hwp_active && hwp_only)
1633		goto out;
1634
1635	rc = cpufreq_register_driver(&intel_pstate_driver);
1636	if (rc)
1637		goto out;
1638
1639	intel_pstate_debug_expose_params();
1640	intel_pstate_sysfs_expose_params();
1641
1642	if (hwp_active)
1643		pr_info("intel_pstate: HWP enabled\n");
1644
1645	return rc;
1646out:
1647	get_online_cpus();
1648	for_each_online_cpu(cpu) {
1649		if (all_cpu_data[cpu]) {
1650			intel_pstate_clear_update_util_hook(cpu);
1651			kfree(all_cpu_data[cpu]);
1652		}
1653	}
1654
1655	put_online_cpus();
1656	vfree(all_cpu_data);
1657	return -ENODEV;
1658}
1659device_initcall(intel_pstate_init);
1660
1661static int __init intel_pstate_setup(char *str)
1662{
1663	if (!str)
1664		return -EINVAL;
1665
1666	if (!strcmp(str, "disable"))
1667		no_load = 1;
1668	if (!strcmp(str, "no_hwp")) {
1669		pr_info("intel_pstate: HWP disabled\n");
1670		no_hwp = 1;
1671	}
1672	if (!strcmp(str, "force"))
1673		force_load = 1;
1674	if (!strcmp(str, "hwp_only"))
1675		hwp_only = 1;
1676	return 0;
1677}
1678early_param("intel_pstate", intel_pstate_setup);
1679
1680MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1681MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1682MODULE_LICENSE("GPL");