Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * intel_pstate.c: Native P state management for Intel processors
   4 *
   5 * (C) Copyright 2012 Intel Corporation
   6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/module.h>
  14#include <linux/ktime.h>
  15#include <linux/hrtimer.h>
  16#include <linux/tick.h>
  17#include <linux/slab.h>
  18#include <linux/sched/cpufreq.h>
  19#include <linux/list.h>
  20#include <linux/cpu.h>
  21#include <linux/cpufreq.h>
  22#include <linux/sysfs.h>
  23#include <linux/types.h>
  24#include <linux/fs.h>
  25#include <linux/acpi.h>
  26#include <linux/vmalloc.h>
  27#include <linux/pm_qos.h>
  28#include <trace/events/power.h>
  29
  30#include <asm/div64.h>
  31#include <asm/msr.h>
  32#include <asm/cpu_device_id.h>
  33#include <asm/cpufeature.h>
  34#include <asm/intel-family.h>
  35
  36#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
  37
  38#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
  39#define INTEL_CPUFREQ_TRANSITION_DELAY		500
  40
  41#ifdef CONFIG_ACPI
  42#include <acpi/processor.h>
  43#include <acpi/cppc_acpi.h>
  44#endif
  45
  46#define FRAC_BITS 8
  47#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
  48#define fp_toint(X) ((X) >> FRAC_BITS)
  49
  50#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
  51
  52#define EXT_BITS 6
  53#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
  54#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
  55#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
  56
  57static inline int32_t mul_fp(int32_t x, int32_t y)
  58{
  59	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
  60}
  61
  62static inline int32_t div_fp(s64 x, s64 y)
  63{
  64	return div64_s64((int64_t)x << FRAC_BITS, y);
  65}
  66
  67static inline int ceiling_fp(int32_t x)
  68{
  69	int mask, ret;
  70
  71	ret = fp_toint(x);
  72	mask = (1 << FRAC_BITS) - 1;
  73	if (x & mask)
  74		ret += 1;
  75	return ret;
  76}
  77
  78static inline int32_t percent_fp(int percent)
  79{
  80	return div_fp(percent, 100);
  81}
  82
  83static inline u64 mul_ext_fp(u64 x, u64 y)
  84{
  85	return (x * y) >> EXT_FRAC_BITS;
  86}
  87
  88static inline u64 div_ext_fp(u64 x, u64 y)
  89{
  90	return div64_u64(x << EXT_FRAC_BITS, y);
  91}
  92
  93static inline int32_t percent_ext_fp(int percent)
  94{
  95	return div_ext_fp(percent, 100);
  96}
  97
  98/**
  99 * struct sample -	Store performance sample
 100 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
 101 *			performance during last sample period
 102 * @busy_scaled:	Scaled busy value which is used to calculate next
 103 *			P state. This can be different than core_avg_perf
 104 *			to account for cpu idle period
 105 * @aperf:		Difference of actual performance frequency clock count
 106 *			read from APERF MSR between last and current sample
 107 * @mperf:		Difference of maximum performance frequency clock count
 108 *			read from MPERF MSR between last and current sample
 109 * @tsc:		Difference of time stamp counter between last and
 110 *			current sample
 111 * @time:		Current time from scheduler
 112 *
 113 * This structure is used in the cpudata structure to store performance sample
 114 * data for choosing next P State.
 115 */
 116struct sample {
 117	int32_t core_avg_perf;
 118	int32_t busy_scaled;
 119	u64 aperf;
 120	u64 mperf;
 121	u64 tsc;
 122	u64 time;
 123};
 124
 125/**
 126 * struct pstate_data - Store P state data
 127 * @current_pstate:	Current requested P state
 128 * @min_pstate:		Min P state possible for this platform
 129 * @max_pstate:		Max P state possible for this platform
 130 * @max_pstate_physical:This is physical Max P state for a processor
 131 *			This can be higher than the max_pstate which can
 132 *			be limited by platform thermal design power limits
 133 * @scaling:		Scaling factor to  convert frequency to cpufreq
 134 *			frequency units
 135 * @turbo_pstate:	Max Turbo P state possible for this platform
 136 * @max_freq:		@max_pstate frequency in cpufreq units
 137 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
 138 *
 139 * Stores the per cpu model P state limits and current P state.
 140 */
 141struct pstate_data {
 142	int	current_pstate;
 143	int	min_pstate;
 144	int	max_pstate;
 145	int	max_pstate_physical;
 146	int	scaling;
 147	int	turbo_pstate;
 148	unsigned int max_freq;
 149	unsigned int turbo_freq;
 150};
 151
 152/**
 153 * struct vid_data -	Stores voltage information data
 154 * @min:		VID data for this platform corresponding to
 155 *			the lowest P state
 156 * @max:		VID data corresponding to the highest P State.
 157 * @turbo:		VID data for turbo P state
 158 * @ratio:		Ratio of (vid max - vid min) /
 159 *			(max P state - Min P State)
 160 *
 161 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 162 * This data is used in Atom platforms, where in addition to target P state,
 163 * the voltage data needs to be specified to select next P State.
 164 */
 165struct vid_data {
 166	int min;
 167	int max;
 168	int turbo;
 169	int32_t ratio;
 170};
 171
 172/**
 173 * struct global_params - Global parameters, mostly tunable via sysfs.
 174 * @no_turbo:		Whether or not to use turbo P-states.
 175 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 176 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 177 *			not the maximum reported turbo P-state is different from
 178 *			the maximum reported non-turbo one.
 179 * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
 180 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 181 *			P-state capacity.
 182 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 183 *			P-state capacity.
 184 */
 185struct global_params {
 186	bool no_turbo;
 187	bool turbo_disabled;
 188	bool turbo_disabled_mf;
 189	int max_perf_pct;
 190	int min_perf_pct;
 191};
 192
 193/**
 194 * struct cpudata -	Per CPU instance data storage
 195 * @cpu:		CPU number for this instance data
 196 * @policy:		CPUFreq policy value
 197 * @update_util:	CPUFreq utility callback information
 198 * @update_util_set:	CPUFreq utility callback is set
 199 * @iowait_boost:	iowait-related boost fraction
 200 * @last_update:	Time of the last update.
 201 * @pstate:		Stores P state limits for this CPU
 202 * @vid:		Stores VID limits for this CPU
 203 * @last_sample_time:	Last Sample time
 204 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 205 *			This shift is a multiplier to mperf delta to
 206 *			calculate CPU busy.
 207 * @prev_aperf:		Last APERF value read from APERF MSR
 208 * @prev_mperf:		Last MPERF value read from MPERF MSR
 209 * @prev_tsc:		Last timestamp counter (TSC) value
 210 * @prev_cummulative_iowait: IO Wait time difference from last and
 211 *			current sample
 212 * @sample:		Storage for storing last Sample data
 213 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 214 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
 215 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 216 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
 217 * @epp_powersave:	Last saved HWP energy performance preference
 218 *			(EPP) or energy performance bias (EPB),
 219 *			when policy switched to performance
 220 * @epp_policy:		Last saved policy used to set EPP/EPB
 221 * @epp_default:	Power on default HWP energy performance
 222 *			preference/bias
 223 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 224 *			operation
 225 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 226 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
 227 * @last_io_update:	Last time when IO wake flag was set
 228 * @sched_flags:	Store scheduler flags for possible cross CPU update
 229 * @hwp_boost_min:	Last HWP boosted min performance
 230 *
 231 * This structure stores per CPU instance data for all CPUs.
 232 */
 233struct cpudata {
 234	int cpu;
 235
 236	unsigned int policy;
 237	struct update_util_data update_util;
 238	bool   update_util_set;
 239
 240	struct pstate_data pstate;
 241	struct vid_data vid;
 242
 243	u64	last_update;
 244	u64	last_sample_time;
 245	u64	aperf_mperf_shift;
 246	u64	prev_aperf;
 247	u64	prev_mperf;
 248	u64	prev_tsc;
 249	u64	prev_cummulative_iowait;
 250	struct sample sample;
 251	int32_t	min_perf_ratio;
 252	int32_t	max_perf_ratio;
 253#ifdef CONFIG_ACPI
 254	struct acpi_processor_performance acpi_perf_data;
 255	bool valid_pss_table;
 256#endif
 257	unsigned int iowait_boost;
 258	s16 epp_powersave;
 259	s16 epp_policy;
 260	s16 epp_default;
 261	s16 epp_saved;
 262	u64 hwp_req_cached;
 263	u64 hwp_cap_cached;
 264	u64 last_io_update;
 265	unsigned int sched_flags;
 266	u32 hwp_boost_min;
 267};
 268
 269static struct cpudata **all_cpu_data;
 270
 271/**
 272 * struct pstate_funcs - Per CPU model specific callbacks
 273 * @get_max:		Callback to get maximum non turbo effective P state
 274 * @get_max_physical:	Callback to get maximum non turbo physical P state
 275 * @get_min:		Callback to get minimum P state
 276 * @get_turbo:		Callback to get turbo P state
 277 * @get_scaling:	Callback to get frequency scaling factor
 278 * @get_val:		Callback to convert P state to actual MSR write value
 279 * @get_vid:		Callback to get VID data for Atom platforms
 280 *
 281 * Core and Atom CPU models have different way to get P State limits. This
 282 * structure is used to store those callbacks.
 283 */
 284struct pstate_funcs {
 285	int (*get_max)(void);
 286	int (*get_max_physical)(void);
 287	int (*get_min)(void);
 288	int (*get_turbo)(void);
 289	int (*get_scaling)(void);
 290	int (*get_aperf_mperf_shift)(void);
 291	u64 (*get_val)(struct cpudata*, int pstate);
 292	void (*get_vid)(struct cpudata *);
 293};
 294
 295static struct pstate_funcs pstate_funcs __read_mostly;
 296
 297static int hwp_active __read_mostly;
 298static int hwp_mode_bdw __read_mostly;
 299static bool per_cpu_limits __read_mostly;
 300static bool hwp_boost __read_mostly;
 301
 302static struct cpufreq_driver *intel_pstate_driver __read_mostly;
 303
 304#ifdef CONFIG_ACPI
 305static bool acpi_ppc;
 306#endif
 307
 308static struct global_params global;
 309
 310static DEFINE_MUTEX(intel_pstate_driver_lock);
 311static DEFINE_MUTEX(intel_pstate_limits_lock);
 312
 313#ifdef CONFIG_ACPI
 314
 315static bool intel_pstate_acpi_pm_profile_server(void)
 316{
 317	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
 318	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
 319		return true;
 320
 321	return false;
 322}
 323
 324static bool intel_pstate_get_ppc_enable_status(void)
 325{
 326	if (intel_pstate_acpi_pm_profile_server())
 327		return true;
 328
 329	return acpi_ppc;
 330}
 331
 332#ifdef CONFIG_ACPI_CPPC_LIB
 333
 334/* The work item is needed to avoid CPU hotplug locking issues */
 335static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
 336{
 337	sched_set_itmt_support();
 338}
 339
 340static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
 341
 342static void intel_pstate_set_itmt_prio(int cpu)
 343{
 344	struct cppc_perf_caps cppc_perf;
 345	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
 346	int ret;
 347
 348	ret = cppc_get_perf_caps(cpu, &cppc_perf);
 349	if (ret)
 350		return;
 351
 352	/*
 353	 * The priorities can be set regardless of whether or not
 354	 * sched_set_itmt_support(true) has been called and it is valid to
 355	 * update them at any time after it has been called.
 356	 */
 357	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
 358
 359	if (max_highest_perf <= min_highest_perf) {
 360		if (cppc_perf.highest_perf > max_highest_perf)
 361			max_highest_perf = cppc_perf.highest_perf;
 362
 363		if (cppc_perf.highest_perf < min_highest_perf)
 364			min_highest_perf = cppc_perf.highest_perf;
 365
 366		if (max_highest_perf > min_highest_perf) {
 367			/*
 368			 * This code can be run during CPU online under the
 369			 * CPU hotplug locks, so sched_set_itmt_support()
 370			 * cannot be called from here.  Queue up a work item
 371			 * to invoke it.
 372			 */
 373			schedule_work(&sched_itmt_work);
 374		}
 375	}
 376}
 377
 378static int intel_pstate_get_cppc_guranteed(int cpu)
 379{
 380	struct cppc_perf_caps cppc_perf;
 381	int ret;
 382
 383	ret = cppc_get_perf_caps(cpu, &cppc_perf);
 384	if (ret)
 385		return ret;
 386
 387	if (cppc_perf.guaranteed_perf)
 388		return cppc_perf.guaranteed_perf;
 389
 390	return cppc_perf.nominal_perf;
 391}
 392
 393#else /* CONFIG_ACPI_CPPC_LIB */
 394static void intel_pstate_set_itmt_prio(int cpu)
 395{
 396}
 397#endif /* CONFIG_ACPI_CPPC_LIB */
 398
 399static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 400{
 401	struct cpudata *cpu;
 402	int ret;
 403	int i;
 404
 405	if (hwp_active) {
 406		intel_pstate_set_itmt_prio(policy->cpu);
 407		return;
 408	}
 409
 410	if (!intel_pstate_get_ppc_enable_status())
 411		return;
 412
 413	cpu = all_cpu_data[policy->cpu];
 414
 415	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
 416						  policy->cpu);
 417	if (ret)
 418		return;
 419
 420	/*
 421	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
 422	 * guarantee that the states returned by it map to the states in our
 423	 * list directly.
 424	 */
 425	if (cpu->acpi_perf_data.control_register.space_id !=
 426						ACPI_ADR_SPACE_FIXED_HARDWARE)
 427		goto err;
 428
 429	/*
 430	 * If there is only one entry _PSS, simply ignore _PSS and continue as
 431	 * usual without taking _PSS into account
 432	 */
 433	if (cpu->acpi_perf_data.state_count < 2)
 434		goto err;
 435
 436	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
 437	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
 438		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
 439			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
 440			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
 441			 (u32) cpu->acpi_perf_data.states[i].power,
 442			 (u32) cpu->acpi_perf_data.states[i].control);
 443	}
 444
 445	/*
 446	 * The _PSS table doesn't contain whole turbo frequency range.
 447	 * This just contains +1 MHZ above the max non turbo frequency,
 448	 * with control value corresponding to max turbo ratio. But
 449	 * when cpufreq set policy is called, it will call with this
 450	 * max frequency, which will cause a reduced performance as
 451	 * this driver uses real max turbo frequency as the max
 452	 * frequency. So correct this frequency in _PSS table to
 453	 * correct max turbo frequency based on the turbo state.
 454	 * Also need to convert to MHz as _PSS freq is in MHz.
 455	 */
 456	if (!global.turbo_disabled)
 457		cpu->acpi_perf_data.states[0].core_frequency =
 458					policy->cpuinfo.max_freq / 1000;
 459	cpu->valid_pss_table = true;
 460	pr_debug("_PPC limits will be enforced\n");
 461
 462	return;
 463
 464 err:
 465	cpu->valid_pss_table = false;
 466	acpi_processor_unregister_performance(policy->cpu);
 467}
 468
 469static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 470{
 471	struct cpudata *cpu;
 472
 473	cpu = all_cpu_data[policy->cpu];
 474	if (!cpu->valid_pss_table)
 475		return;
 476
 477	acpi_processor_unregister_performance(policy->cpu);
 478}
 479#else /* CONFIG_ACPI */
 480static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 481{
 482}
 483
 484static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 485{
 486}
 487
 488static inline bool intel_pstate_acpi_pm_profile_server(void)
 489{
 490	return false;
 491}
 492#endif /* CONFIG_ACPI */
 493
 494#ifndef CONFIG_ACPI_CPPC_LIB
 495static int intel_pstate_get_cppc_guranteed(int cpu)
 496{
 497	return -ENOTSUPP;
 498}
 499#endif /* CONFIG_ACPI_CPPC_LIB */
 500
 501static inline void update_turbo_state(void)
 502{
 503	u64 misc_en;
 504	struct cpudata *cpu;
 505
 506	cpu = all_cpu_data[0];
 507	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
 508	global.turbo_disabled =
 509		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
 510		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
 511}
 512
 513static int min_perf_pct_min(void)
 514{
 515	struct cpudata *cpu = all_cpu_data[0];
 516	int turbo_pstate = cpu->pstate.turbo_pstate;
 517
 518	return turbo_pstate ?
 519		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
 520}
 521
 522static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
 523{
 524	u64 epb;
 525	int ret;
 526
 527	if (!boot_cpu_has(X86_FEATURE_EPB))
 528		return -ENXIO;
 529
 530	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 531	if (ret)
 532		return (s16)ret;
 533
 534	return (s16)(epb & 0x0f);
 535}
 536
 537static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
 538{
 539	s16 epp;
 540
 541	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 542		/*
 543		 * When hwp_req_data is 0, means that caller didn't read
 544		 * MSR_HWP_REQUEST, so need to read and get EPP.
 545		 */
 546		if (!hwp_req_data) {
 547			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
 548					    &hwp_req_data);
 549			if (epp)
 550				return epp;
 551		}
 552		epp = (hwp_req_data >> 24) & 0xff;
 553	} else {
 554		/* When there is no EPP present, HWP uses EPB settings */
 555		epp = intel_pstate_get_epb(cpu_data);
 556	}
 557
 558	return epp;
 559}
 560
 561static int intel_pstate_set_epb(int cpu, s16 pref)
 562{
 563	u64 epb;
 564	int ret;
 565
 566	if (!boot_cpu_has(X86_FEATURE_EPB))
 567		return -ENXIO;
 568
 569	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 570	if (ret)
 571		return ret;
 572
 573	epb = (epb & ~0x0f) | pref;
 574	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
 575
 576	return 0;
 577}
 578
 579/*
 580 * EPP/EPB display strings corresponding to EPP index in the
 581 * energy_perf_strings[]
 582 *	index		String
 583 *-------------------------------------
 584 *	0		default
 585 *	1		performance
 586 *	2		balance_performance
 587 *	3		balance_power
 588 *	4		power
 589 */
 590static const char * const energy_perf_strings[] = {
 591	"default",
 592	"performance",
 593	"balance_performance",
 594	"balance_power",
 595	"power",
 596	NULL
 597};
 598static const unsigned int epp_values[] = {
 599	HWP_EPP_PERFORMANCE,
 600	HWP_EPP_BALANCE_PERFORMANCE,
 601	HWP_EPP_BALANCE_POWERSAVE,
 602	HWP_EPP_POWERSAVE
 603};
 604
 605static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
 606{
 607	s16 epp;
 608	int index = -EINVAL;
 609
 610	epp = intel_pstate_get_epp(cpu_data, 0);
 611	if (epp < 0)
 612		return epp;
 613
 614	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 615		if (epp == HWP_EPP_PERFORMANCE)
 616			return 1;
 617		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
 618			return 2;
 619		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
 620			return 3;
 621		else
 622			return 4;
 623	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
 624		/*
 625		 * Range:
 626		 *	0x00-0x03	:	Performance
 627		 *	0x04-0x07	:	Balance performance
 628		 *	0x08-0x0B	:	Balance power
 629		 *	0x0C-0x0F	:	Power
 630		 * The EPB is a 4 bit value, but our ranges restrict the
 631		 * value which can be set. Here only using top two bits
 632		 * effectively.
 633		 */
 634		index = (epp >> 2) + 1;
 635	}
 636
 637	return index;
 638}
 639
 640static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
 641					      int pref_index)
 642{
 643	int epp = -EINVAL;
 644	int ret;
 645
 646	if (!pref_index)
 647		epp = cpu_data->epp_default;
 648
 649	mutex_lock(&intel_pstate_limits_lock);
 650
 651	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 652		u64 value;
 653
 654		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
 655		if (ret)
 656			goto return_pref;
 657
 658		value &= ~GENMASK_ULL(31, 24);
 659
 660		if (epp == -EINVAL)
 661			epp = epp_values[pref_index - 1];
 662
 663		value |= (u64)epp << 24;
 664		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
 665	} else {
 666		if (epp == -EINVAL)
 667			epp = (pref_index - 1) << 2;
 668		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
 669	}
 670return_pref:
 671	mutex_unlock(&intel_pstate_limits_lock);
 672
 673	return ret;
 674}
 675
 676static ssize_t show_energy_performance_available_preferences(
 677				struct cpufreq_policy *policy, char *buf)
 678{
 679	int i = 0;
 680	int ret = 0;
 681
 682	while (energy_perf_strings[i] != NULL)
 683		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
 684
 685	ret += sprintf(&buf[ret], "\n");
 686
 687	return ret;
 688}
 689
 690cpufreq_freq_attr_ro(energy_performance_available_preferences);
 691
 692static ssize_t store_energy_performance_preference(
 693		struct cpufreq_policy *policy, const char *buf, size_t count)
 694{
 695	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 696	char str_preference[21];
 697	int ret;
 698
 699	ret = sscanf(buf, "%20s", str_preference);
 700	if (ret != 1)
 701		return -EINVAL;
 702
 703	ret = match_string(energy_perf_strings, -1, str_preference);
 704	if (ret < 0)
 705		return ret;
 706
 707	intel_pstate_set_energy_pref_index(cpu_data, ret);
 708	return count;
 709}
 710
 711static ssize_t show_energy_performance_preference(
 712				struct cpufreq_policy *policy, char *buf)
 713{
 714	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 715	int preference;
 716
 717	preference = intel_pstate_get_energy_pref_index(cpu_data);
 718	if (preference < 0)
 719		return preference;
 720
 721	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
 722}
 723
 724cpufreq_freq_attr_rw(energy_performance_preference);
 725
 726static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
 727{
 728	struct cpudata *cpu;
 729	u64 cap;
 730	int ratio;
 731
 732	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
 733	if (ratio <= 0) {
 734		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
 735		ratio = HWP_GUARANTEED_PERF(cap);
 736	}
 737
 738	cpu = all_cpu_data[policy->cpu];
 739
 740	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
 741}
 742
 743cpufreq_freq_attr_ro(base_frequency);
 744
 745static struct freq_attr *hwp_cpufreq_attrs[] = {
 746	&energy_performance_preference,
 747	&energy_performance_available_preferences,
 748	&base_frequency,
 749	NULL,
 750};
 751
 752static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
 753				     int *current_max)
 754{
 755	u64 cap;
 756
 757	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
 758	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
 759	if (global.no_turbo)
 760		*current_max = HWP_GUARANTEED_PERF(cap);
 761	else
 762		*current_max = HWP_HIGHEST_PERF(cap);
 763
 764	*phy_max = HWP_HIGHEST_PERF(cap);
 765}
 766
 767static void intel_pstate_hwp_set(unsigned int cpu)
 768{
 769	struct cpudata *cpu_data = all_cpu_data[cpu];
 770	int max, min;
 771	u64 value;
 772	s16 epp;
 773
 774	max = cpu_data->max_perf_ratio;
 775	min = cpu_data->min_perf_ratio;
 776
 777	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
 778		min = max;
 779
 780	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
 781
 782	value &= ~HWP_MIN_PERF(~0L);
 783	value |= HWP_MIN_PERF(min);
 784
 785	value &= ~HWP_MAX_PERF(~0L);
 786	value |= HWP_MAX_PERF(max);
 787
 788	if (cpu_data->epp_policy == cpu_data->policy)
 789		goto skip_epp;
 790
 791	cpu_data->epp_policy = cpu_data->policy;
 792
 793	if (cpu_data->epp_saved >= 0) {
 794		epp = cpu_data->epp_saved;
 795		cpu_data->epp_saved = -EINVAL;
 796		goto update_epp;
 797	}
 798
 799	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
 800		epp = intel_pstate_get_epp(cpu_data, value);
 801		cpu_data->epp_powersave = epp;
 802		/* If EPP read was failed, then don't try to write */
 803		if (epp < 0)
 804			goto skip_epp;
 805
 806		epp = 0;
 807	} else {
 808		/* skip setting EPP, when saved value is invalid */
 809		if (cpu_data->epp_powersave < 0)
 810			goto skip_epp;
 811
 812		/*
 813		 * No need to restore EPP when it is not zero. This
 814		 * means:
 815		 *  - Policy is not changed
 816		 *  - user has manually changed
 817		 *  - Error reading EPB
 818		 */
 819		epp = intel_pstate_get_epp(cpu_data, value);
 820		if (epp)
 821			goto skip_epp;
 822
 823		epp = cpu_data->epp_powersave;
 824	}
 825update_epp:
 826	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 827		value &= ~GENMASK_ULL(31, 24);
 828		value |= (u64)epp << 24;
 829	} else {
 830		intel_pstate_set_epb(cpu, epp);
 831	}
 832skip_epp:
 833	WRITE_ONCE(cpu_data->hwp_req_cached, value);
 834	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 835}
 836
 837static void intel_pstate_hwp_force_min_perf(int cpu)
 838{
 839	u64 value;
 840	int min_perf;
 841
 842	value = all_cpu_data[cpu]->hwp_req_cached;
 843	value &= ~GENMASK_ULL(31, 0);
 844	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
 845
 846	/* Set hwp_max = hwp_min */
 847	value |= HWP_MAX_PERF(min_perf);
 848	value |= HWP_MIN_PERF(min_perf);
 849
 850	/* Set EPP to min */
 851	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
 852		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
 853
 854	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 855}
 856
 857static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
 858{
 859	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 860
 861	if (!hwp_active)
 862		return 0;
 863
 864	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
 865
 866	return 0;
 867}
 868
 869static void intel_pstate_hwp_enable(struct cpudata *cpudata);
 870
 871static int intel_pstate_resume(struct cpufreq_policy *policy)
 872{
 873	if (!hwp_active)
 874		return 0;
 875
 876	mutex_lock(&intel_pstate_limits_lock);
 877
 878	if (policy->cpu == 0)
 879		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
 880
 881	all_cpu_data[policy->cpu]->epp_policy = 0;
 882	intel_pstate_hwp_set(policy->cpu);
 883
 884	mutex_unlock(&intel_pstate_limits_lock);
 885
 886	return 0;
 887}
 888
 889static void intel_pstate_update_policies(void)
 890{
 891	int cpu;
 892
 893	for_each_possible_cpu(cpu)
 894		cpufreq_update_policy(cpu);
 895}
 896
 897static void intel_pstate_update_max_freq(unsigned int cpu)
 898{
 899	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
 900	struct cpudata *cpudata;
 901
 902	if (!policy)
 903		return;
 904
 905	cpudata = all_cpu_data[cpu];
 906	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
 907			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
 908
 909	refresh_frequency_limits(policy);
 910
 911	cpufreq_cpu_release(policy);
 912}
 913
 914static void intel_pstate_update_limits(unsigned int cpu)
 915{
 916	mutex_lock(&intel_pstate_driver_lock);
 917
 918	update_turbo_state();
 919	/*
 920	 * If turbo has been turned on or off globally, policy limits for
 921	 * all CPUs need to be updated to reflect that.
 922	 */
 923	if (global.turbo_disabled_mf != global.turbo_disabled) {
 924		global.turbo_disabled_mf = global.turbo_disabled;
 925		for_each_possible_cpu(cpu)
 926			intel_pstate_update_max_freq(cpu);
 927	} else {
 928		cpufreq_update_policy(cpu);
 929	}
 930
 931	mutex_unlock(&intel_pstate_driver_lock);
 932}
 933
 934/************************** sysfs begin ************************/
 935#define show_one(file_name, object)					\
 936	static ssize_t show_##file_name					\
 937	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
 938	{								\
 939		return sprintf(buf, "%u\n", global.object);		\
 940	}
 941
 942static ssize_t intel_pstate_show_status(char *buf);
 943static int intel_pstate_update_status(const char *buf, size_t size);
 944
 945static ssize_t show_status(struct kobject *kobj,
 946			   struct kobj_attribute *attr, char *buf)
 947{
 948	ssize_t ret;
 949
 950	mutex_lock(&intel_pstate_driver_lock);
 951	ret = intel_pstate_show_status(buf);
 952	mutex_unlock(&intel_pstate_driver_lock);
 953
 954	return ret;
 955}
 956
 957static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
 958			    const char *buf, size_t count)
 959{
 960	char *p = memchr(buf, '\n', count);
 961	int ret;
 962
 963	mutex_lock(&intel_pstate_driver_lock);
 964	ret = intel_pstate_update_status(buf, p ? p - buf : count);
 965	mutex_unlock(&intel_pstate_driver_lock);
 966
 967	return ret < 0 ? ret : count;
 968}
 969
 970static ssize_t show_turbo_pct(struct kobject *kobj,
 971				struct kobj_attribute *attr, char *buf)
 972{
 973	struct cpudata *cpu;
 974	int total, no_turbo, turbo_pct;
 975	uint32_t turbo_fp;
 976
 977	mutex_lock(&intel_pstate_driver_lock);
 978
 979	if (!intel_pstate_driver) {
 980		mutex_unlock(&intel_pstate_driver_lock);
 981		return -EAGAIN;
 982	}
 983
 984	cpu = all_cpu_data[0];
 985
 986	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 987	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
 988	turbo_fp = div_fp(no_turbo, total);
 989	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
 990
 991	mutex_unlock(&intel_pstate_driver_lock);
 992
 993	return sprintf(buf, "%u\n", turbo_pct);
 994}
 995
 996static ssize_t show_num_pstates(struct kobject *kobj,
 997				struct kobj_attribute *attr, char *buf)
 998{
 999	struct cpudata *cpu;
1000	int total;
1001
1002	mutex_lock(&intel_pstate_driver_lock);
1003
1004	if (!intel_pstate_driver) {
1005		mutex_unlock(&intel_pstate_driver_lock);
1006		return -EAGAIN;
1007	}
1008
1009	cpu = all_cpu_data[0];
1010	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1011
1012	mutex_unlock(&intel_pstate_driver_lock);
1013
1014	return sprintf(buf, "%u\n", total);
1015}
1016
1017static ssize_t show_no_turbo(struct kobject *kobj,
1018			     struct kobj_attribute *attr, char *buf)
1019{
1020	ssize_t ret;
1021
1022	mutex_lock(&intel_pstate_driver_lock);
1023
1024	if (!intel_pstate_driver) {
1025		mutex_unlock(&intel_pstate_driver_lock);
1026		return -EAGAIN;
1027	}
1028
1029	update_turbo_state();
1030	if (global.turbo_disabled)
1031		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1032	else
1033		ret = sprintf(buf, "%u\n", global.no_turbo);
1034
1035	mutex_unlock(&intel_pstate_driver_lock);
1036
1037	return ret;
1038}
1039
1040static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1041			      const char *buf, size_t count)
1042{
1043	unsigned int input;
1044	int ret;
1045
1046	ret = sscanf(buf, "%u", &input);
1047	if (ret != 1)
1048		return -EINVAL;
1049
1050	mutex_lock(&intel_pstate_driver_lock);
1051
1052	if (!intel_pstate_driver) {
1053		mutex_unlock(&intel_pstate_driver_lock);
1054		return -EAGAIN;
1055	}
1056
1057	mutex_lock(&intel_pstate_limits_lock);
1058
1059	update_turbo_state();
1060	if (global.turbo_disabled) {
1061		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1062		mutex_unlock(&intel_pstate_limits_lock);
1063		mutex_unlock(&intel_pstate_driver_lock);
1064		return -EPERM;
1065	}
1066
1067	global.no_turbo = clamp_t(int, input, 0, 1);
1068
1069	if (global.no_turbo) {
1070		struct cpudata *cpu = all_cpu_data[0];
1071		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1072
1073		/* Squash the global minimum into the permitted range. */
1074		if (global.min_perf_pct > pct)
1075			global.min_perf_pct = pct;
1076	}
1077
1078	mutex_unlock(&intel_pstate_limits_lock);
1079
1080	intel_pstate_update_policies();
1081
1082	mutex_unlock(&intel_pstate_driver_lock);
1083
1084	return count;
1085}
1086
1087static struct cpufreq_driver intel_pstate;
1088
1089static void update_qos_request(enum freq_qos_req_type type)
1090{
1091	int max_state, turbo_max, freq, i, perf_pct;
1092	struct freq_qos_request *req;
1093	struct cpufreq_policy *policy;
1094
1095	for_each_possible_cpu(i) {
1096		struct cpudata *cpu = all_cpu_data[i];
1097
1098		policy = cpufreq_cpu_get(i);
1099		if (!policy)
1100			continue;
1101
1102		req = policy->driver_data;
1103		cpufreq_cpu_put(policy);
1104
1105		if (!req)
1106			continue;
1107
1108		if (hwp_active)
1109			intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1110		else
1111			turbo_max = cpu->pstate.turbo_pstate;
1112
1113		if (type == FREQ_QOS_MIN) {
1114			perf_pct = global.min_perf_pct;
1115		} else {
1116			req++;
1117			perf_pct = global.max_perf_pct;
1118		}
1119
1120		freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1121		freq *= cpu->pstate.scaling;
1122
1123		if (freq_qos_update_request(req, freq) < 0)
1124			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1125	}
1126}
1127
1128static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1129				  const char *buf, size_t count)
1130{
1131	unsigned int input;
1132	int ret;
1133
1134	ret = sscanf(buf, "%u", &input);
1135	if (ret != 1)
1136		return -EINVAL;
1137
1138	mutex_lock(&intel_pstate_driver_lock);
1139
1140	if (!intel_pstate_driver) {
1141		mutex_unlock(&intel_pstate_driver_lock);
1142		return -EAGAIN;
1143	}
1144
1145	mutex_lock(&intel_pstate_limits_lock);
1146
1147	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1148
1149	mutex_unlock(&intel_pstate_limits_lock);
1150
1151	if (intel_pstate_driver == &intel_pstate)
1152		intel_pstate_update_policies();
1153	else
1154		update_qos_request(FREQ_QOS_MAX);
1155
1156	mutex_unlock(&intel_pstate_driver_lock);
1157
1158	return count;
1159}
1160
1161static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1162				  const char *buf, size_t count)
1163{
1164	unsigned int input;
1165	int ret;
1166
1167	ret = sscanf(buf, "%u", &input);
1168	if (ret != 1)
1169		return -EINVAL;
1170
1171	mutex_lock(&intel_pstate_driver_lock);
1172
1173	if (!intel_pstate_driver) {
1174		mutex_unlock(&intel_pstate_driver_lock);
1175		return -EAGAIN;
1176	}
1177
1178	mutex_lock(&intel_pstate_limits_lock);
1179
1180	global.min_perf_pct = clamp_t(int, input,
1181				      min_perf_pct_min(), global.max_perf_pct);
1182
1183	mutex_unlock(&intel_pstate_limits_lock);
1184
1185	if (intel_pstate_driver == &intel_pstate)
1186		intel_pstate_update_policies();
1187	else
1188		update_qos_request(FREQ_QOS_MIN);
1189
1190	mutex_unlock(&intel_pstate_driver_lock);
1191
1192	return count;
1193}
1194
1195static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1196				struct kobj_attribute *attr, char *buf)
1197{
1198	return sprintf(buf, "%u\n", hwp_boost);
1199}
1200
1201static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1202				       struct kobj_attribute *b,
1203				       const char *buf, size_t count)
1204{
1205	unsigned int input;
1206	int ret;
1207
1208	ret = kstrtouint(buf, 10, &input);
1209	if (ret)
1210		return ret;
1211
1212	mutex_lock(&intel_pstate_driver_lock);
1213	hwp_boost = !!input;
1214	intel_pstate_update_policies();
1215	mutex_unlock(&intel_pstate_driver_lock);
1216
1217	return count;
1218}
1219
1220show_one(max_perf_pct, max_perf_pct);
1221show_one(min_perf_pct, min_perf_pct);
1222
1223define_one_global_rw(status);
1224define_one_global_rw(no_turbo);
1225define_one_global_rw(max_perf_pct);
1226define_one_global_rw(min_perf_pct);
1227define_one_global_ro(turbo_pct);
1228define_one_global_ro(num_pstates);
1229define_one_global_rw(hwp_dynamic_boost);
1230
1231static struct attribute *intel_pstate_attributes[] = {
1232	&status.attr,
1233	&no_turbo.attr,
1234	&turbo_pct.attr,
1235	&num_pstates.attr,
1236	NULL
1237};
1238
1239static const struct attribute_group intel_pstate_attr_group = {
1240	.attrs = intel_pstate_attributes,
1241};
1242
1243static void __init intel_pstate_sysfs_expose_params(void)
1244{
1245	struct kobject *intel_pstate_kobject;
1246	int rc;
1247
1248	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1249						&cpu_subsys.dev_root->kobj);
1250	if (WARN_ON(!intel_pstate_kobject))
1251		return;
1252
1253	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1254	if (WARN_ON(rc))
1255		return;
1256
1257	/*
1258	 * If per cpu limits are enforced there are no global limits, so
1259	 * return without creating max/min_perf_pct attributes
1260	 */
1261	if (per_cpu_limits)
1262		return;
1263
1264	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1265	WARN_ON(rc);
1266
1267	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1268	WARN_ON(rc);
1269
1270	if (hwp_active) {
1271		rc = sysfs_create_file(intel_pstate_kobject,
1272				       &hwp_dynamic_boost.attr);
1273		WARN_ON(rc);
1274	}
1275}
1276/************************** sysfs end ************************/
1277
1278static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1279{
1280	/* First disable HWP notification interrupt as we don't process them */
1281	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1282		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1283
1284	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1285	cpudata->epp_policy = 0;
1286	if (cpudata->epp_default == -EINVAL)
1287		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1288}
1289
1290#define MSR_IA32_POWER_CTL_BIT_EE	19
1291
1292/* Disable energy efficiency optimization */
1293static void intel_pstate_disable_ee(int cpu)
1294{
1295	u64 power_ctl;
1296	int ret;
1297
1298	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1299	if (ret)
1300		return;
1301
1302	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1303		pr_info("Disabling energy efficiency optimization\n");
1304		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1305		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1306	}
1307}
1308
1309static int atom_get_min_pstate(void)
1310{
1311	u64 value;
1312
1313	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1314	return (value >> 8) & 0x7F;
1315}
1316
1317static int atom_get_max_pstate(void)
1318{
1319	u64 value;
1320
1321	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1322	return (value >> 16) & 0x7F;
1323}
1324
1325static int atom_get_turbo_pstate(void)
1326{
1327	u64 value;
1328
1329	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1330	return value & 0x7F;
1331}
1332
1333static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1334{
1335	u64 val;
1336	int32_t vid_fp;
1337	u32 vid;
1338
1339	val = (u64)pstate << 8;
1340	if (global.no_turbo && !global.turbo_disabled)
1341		val |= (u64)1 << 32;
1342
1343	vid_fp = cpudata->vid.min + mul_fp(
1344		int_tofp(pstate - cpudata->pstate.min_pstate),
1345		cpudata->vid.ratio);
1346
1347	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1348	vid = ceiling_fp(vid_fp);
1349
1350	if (pstate > cpudata->pstate.max_pstate)
1351		vid = cpudata->vid.turbo;
1352
1353	return val | vid;
1354}
1355
1356static int silvermont_get_scaling(void)
1357{
1358	u64 value;
1359	int i;
1360	/* Defined in Table 35-6 from SDM (Sept 2015) */
1361	static int silvermont_freq_table[] = {
1362		83300, 100000, 133300, 116700, 80000};
1363
1364	rdmsrl(MSR_FSB_FREQ, value);
1365	i = value & 0x7;
1366	WARN_ON(i > 4);
1367
1368	return silvermont_freq_table[i];
1369}
1370
1371static int airmont_get_scaling(void)
1372{
1373	u64 value;
1374	int i;
1375	/* Defined in Table 35-10 from SDM (Sept 2015) */
1376	static int airmont_freq_table[] = {
1377		83300, 100000, 133300, 116700, 80000,
1378		93300, 90000, 88900, 87500};
1379
1380	rdmsrl(MSR_FSB_FREQ, value);
1381	i = value & 0xF;
1382	WARN_ON(i > 8);
1383
1384	return airmont_freq_table[i];
1385}
1386
1387static void atom_get_vid(struct cpudata *cpudata)
1388{
1389	u64 value;
1390
1391	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1392	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1393	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1394	cpudata->vid.ratio = div_fp(
1395		cpudata->vid.max - cpudata->vid.min,
1396		int_tofp(cpudata->pstate.max_pstate -
1397			cpudata->pstate.min_pstate));
1398
1399	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1400	cpudata->vid.turbo = value & 0x7f;
1401}
1402
1403static int core_get_min_pstate(void)
1404{
1405	u64 value;
1406
1407	rdmsrl(MSR_PLATFORM_INFO, value);
1408	return (value >> 40) & 0xFF;
1409}
1410
1411static int core_get_max_pstate_physical(void)
1412{
1413	u64 value;
1414
1415	rdmsrl(MSR_PLATFORM_INFO, value);
1416	return (value >> 8) & 0xFF;
1417}
1418
1419static int core_get_tdp_ratio(u64 plat_info)
1420{
1421	/* Check how many TDP levels present */
1422	if (plat_info & 0x600000000) {
1423		u64 tdp_ctrl;
1424		u64 tdp_ratio;
1425		int tdp_msr;
1426		int err;
1427
1428		/* Get the TDP level (0, 1, 2) to get ratios */
1429		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1430		if (err)
1431			return err;
1432
1433		/* TDP MSR are continuous starting at 0x648 */
1434		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1435		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1436		if (err)
1437			return err;
1438
1439		/* For level 1 and 2, bits[23:16] contain the ratio */
1440		if (tdp_ctrl & 0x03)
1441			tdp_ratio >>= 16;
1442
1443		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1444		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1445
1446		return (int)tdp_ratio;
1447	}
1448
1449	return -ENXIO;
1450}
1451
1452static int core_get_max_pstate(void)
1453{
1454	u64 tar;
1455	u64 plat_info;
1456	int max_pstate;
1457	int tdp_ratio;
1458	int err;
1459
1460	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1461	max_pstate = (plat_info >> 8) & 0xFF;
1462
1463	tdp_ratio = core_get_tdp_ratio(plat_info);
1464	if (tdp_ratio <= 0)
1465		return max_pstate;
1466
1467	if (hwp_active) {
1468		/* Turbo activation ratio is not used on HWP platforms */
1469		return tdp_ratio;
1470	}
1471
1472	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1473	if (!err) {
1474		int tar_levels;
1475
1476		/* Do some sanity checking for safety */
1477		tar_levels = tar & 0xff;
1478		if (tdp_ratio - 1 == tar_levels) {
1479			max_pstate = tar_levels;
1480			pr_debug("max_pstate=TAC %x\n", max_pstate);
1481		}
1482	}
1483
1484	return max_pstate;
1485}
1486
1487static int core_get_turbo_pstate(void)
1488{
1489	u64 value;
1490	int nont, ret;
1491
1492	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1493	nont = core_get_max_pstate();
1494	ret = (value) & 255;
1495	if (ret <= nont)
1496		ret = nont;
1497	return ret;
1498}
1499
1500static inline int core_get_scaling(void)
1501{
1502	return 100000;
1503}
1504
1505static u64 core_get_val(struct cpudata *cpudata, int pstate)
1506{
1507	u64 val;
1508
1509	val = (u64)pstate << 8;
1510	if (global.no_turbo && !global.turbo_disabled)
1511		val |= (u64)1 << 32;
1512
1513	return val;
1514}
1515
1516static int knl_get_aperf_mperf_shift(void)
1517{
1518	return 10;
1519}
1520
1521static int knl_get_turbo_pstate(void)
1522{
1523	u64 value;
1524	int nont, ret;
1525
1526	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1527	nont = core_get_max_pstate();
1528	ret = (((value) >> 8) & 0xFF);
1529	if (ret <= nont)
1530		ret = nont;
1531	return ret;
1532}
1533
1534static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1535{
1536	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1537	cpu->pstate.current_pstate = pstate;
1538	/*
1539	 * Generally, there is no guarantee that this code will always run on
1540	 * the CPU being updated, so force the register update to run on the
1541	 * right CPU.
1542	 */
1543	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1544		      pstate_funcs.get_val(cpu, pstate));
1545}
1546
1547static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1548{
1549	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1550}
1551
1552static void intel_pstate_max_within_limits(struct cpudata *cpu)
1553{
1554	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1555
1556	update_turbo_state();
1557	intel_pstate_set_pstate(cpu, pstate);
1558}
1559
1560static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1561{
1562	cpu->pstate.min_pstate = pstate_funcs.get_min();
1563	cpu->pstate.max_pstate = pstate_funcs.get_max();
1564	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1565	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1566	cpu->pstate.scaling = pstate_funcs.get_scaling();
1567	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1568
1569	if (hwp_active && !hwp_mode_bdw) {
1570		unsigned int phy_max, current_max;
1571
1572		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1573		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1574	} else {
1575		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1576	}
1577
1578	if (pstate_funcs.get_aperf_mperf_shift)
1579		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1580
1581	if (pstate_funcs.get_vid)
1582		pstate_funcs.get_vid(cpu);
1583
1584	intel_pstate_set_min_pstate(cpu);
1585}
1586
1587/*
1588 * Long hold time will keep high perf limits for long time,
1589 * which negatively impacts perf/watt for some workloads,
1590 * like specpower. 3ms is based on experiements on some
1591 * workoads.
1592 */
1593static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1594
1595static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1596{
1597	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1598	u32 max_limit = (hwp_req & 0xff00) >> 8;
1599	u32 min_limit = (hwp_req & 0xff);
1600	u32 boost_level1;
1601
1602	/*
1603	 * Cases to consider (User changes via sysfs or boot time):
1604	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1605	 *	No boost, return.
1606	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1607	 *     Should result in one level boost only for P0.
1608	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1609	 *     Should result in two level boost:
1610	 *         (min + p1)/2 and P1.
1611	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1612	 *     Should result in three level boost:
1613	 *        (min + p1)/2, P1 and P0.
1614	 */
1615
1616	/* If max and min are equal or already at max, nothing to boost */
1617	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1618		return;
1619
1620	if (!cpu->hwp_boost_min)
1621		cpu->hwp_boost_min = min_limit;
1622
1623	/* level at half way mark between min and guranteed */
1624	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1625
1626	if (cpu->hwp_boost_min < boost_level1)
1627		cpu->hwp_boost_min = boost_level1;
1628	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1629		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1630	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1631		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1632		cpu->hwp_boost_min = max_limit;
1633	else
1634		return;
1635
1636	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1637	wrmsrl(MSR_HWP_REQUEST, hwp_req);
1638	cpu->last_update = cpu->sample.time;
1639}
1640
1641static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1642{
1643	if (cpu->hwp_boost_min) {
1644		bool expired;
1645
1646		/* Check if we are idle for hold time to boost down */
1647		expired = time_after64(cpu->sample.time, cpu->last_update +
1648				       hwp_boost_hold_time_ns);
1649		if (expired) {
1650			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1651			cpu->hwp_boost_min = 0;
1652		}
1653	}
1654	cpu->last_update = cpu->sample.time;
1655}
1656
1657static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1658						      u64 time)
1659{
1660	cpu->sample.time = time;
1661
1662	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1663		bool do_io = false;
1664
1665		cpu->sched_flags = 0;
1666		/*
1667		 * Set iowait_boost flag and update time. Since IO WAIT flag
1668		 * is set all the time, we can't just conclude that there is
1669		 * some IO bound activity is scheduled on this CPU with just
1670		 * one occurrence. If we receive at least two in two
1671		 * consecutive ticks, then we treat as boost candidate.
1672		 */
1673		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1674			do_io = true;
1675
1676		cpu->last_io_update = time;
1677
1678		if (do_io)
1679			intel_pstate_hwp_boost_up(cpu);
1680
1681	} else {
1682		intel_pstate_hwp_boost_down(cpu);
1683	}
1684}
1685
1686static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1687						u64 time, unsigned int flags)
1688{
1689	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1690
1691	cpu->sched_flags |= flags;
1692
1693	if (smp_processor_id() == cpu->cpu)
1694		intel_pstate_update_util_hwp_local(cpu, time);
1695}
1696
1697static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1698{
1699	struct sample *sample = &cpu->sample;
1700
1701	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1702}
1703
1704static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1705{
1706	u64 aperf, mperf;
1707	unsigned long flags;
1708	u64 tsc;
1709
1710	local_irq_save(flags);
1711	rdmsrl(MSR_IA32_APERF, aperf);
1712	rdmsrl(MSR_IA32_MPERF, mperf);
1713	tsc = rdtsc();
1714	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1715		local_irq_restore(flags);
1716		return false;
1717	}
1718	local_irq_restore(flags);
1719
1720	cpu->last_sample_time = cpu->sample.time;
1721	cpu->sample.time = time;
1722	cpu->sample.aperf = aperf;
1723	cpu->sample.mperf = mperf;
1724	cpu->sample.tsc =  tsc;
1725	cpu->sample.aperf -= cpu->prev_aperf;
1726	cpu->sample.mperf -= cpu->prev_mperf;
1727	cpu->sample.tsc -= cpu->prev_tsc;
1728
1729	cpu->prev_aperf = aperf;
1730	cpu->prev_mperf = mperf;
1731	cpu->prev_tsc = tsc;
1732	/*
1733	 * First time this function is invoked in a given cycle, all of the
1734	 * previous sample data fields are equal to zero or stale and they must
1735	 * be populated with meaningful numbers for things to work, so assume
1736	 * that sample.time will always be reset before setting the utilization
1737	 * update hook and make the caller skip the sample then.
1738	 */
1739	if (cpu->last_sample_time) {
1740		intel_pstate_calc_avg_perf(cpu);
1741		return true;
1742	}
1743	return false;
1744}
1745
1746static inline int32_t get_avg_frequency(struct cpudata *cpu)
1747{
1748	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1749}
1750
1751static inline int32_t get_avg_pstate(struct cpudata *cpu)
1752{
1753	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1754			  cpu->sample.core_avg_perf);
1755}
1756
1757static inline int32_t get_target_pstate(struct cpudata *cpu)
1758{
1759	struct sample *sample = &cpu->sample;
1760	int32_t busy_frac;
1761	int target, avg_pstate;
1762
1763	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1764			   sample->tsc);
1765
1766	if (busy_frac < cpu->iowait_boost)
1767		busy_frac = cpu->iowait_boost;
1768
1769	sample->busy_scaled = busy_frac * 100;
1770
1771	target = global.no_turbo || global.turbo_disabled ?
1772			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1773	target += target >> 2;
1774	target = mul_fp(target, busy_frac);
1775	if (target < cpu->pstate.min_pstate)
1776		target = cpu->pstate.min_pstate;
1777
1778	/*
1779	 * If the average P-state during the previous cycle was higher than the
1780	 * current target, add 50% of the difference to the target to reduce
1781	 * possible performance oscillations and offset possible performance
1782	 * loss related to moving the workload from one CPU to another within
1783	 * a package/module.
1784	 */
1785	avg_pstate = get_avg_pstate(cpu);
1786	if (avg_pstate > target)
1787		target += (avg_pstate - target) >> 1;
1788
1789	return target;
1790}
1791
1792static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1793{
1794	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1795	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1796
1797	return clamp_t(int, pstate, min_pstate, max_pstate);
1798}
1799
1800static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1801{
1802	if (pstate == cpu->pstate.current_pstate)
1803		return;
1804
1805	cpu->pstate.current_pstate = pstate;
1806	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1807}
1808
1809static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1810{
1811	int from = cpu->pstate.current_pstate;
1812	struct sample *sample;
1813	int target_pstate;
1814
1815	update_turbo_state();
1816
1817	target_pstate = get_target_pstate(cpu);
1818	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1819	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1820	intel_pstate_update_pstate(cpu, target_pstate);
1821
1822	sample = &cpu->sample;
1823	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1824		fp_toint(sample->busy_scaled),
1825		from,
1826		cpu->pstate.current_pstate,
1827		sample->mperf,
1828		sample->aperf,
1829		sample->tsc,
1830		get_avg_frequency(cpu),
1831		fp_toint(cpu->iowait_boost * 100));
1832}
1833
1834static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1835				     unsigned int flags)
1836{
1837	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1838	u64 delta_ns;
1839
1840	/* Don't allow remote callbacks */
1841	if (smp_processor_id() != cpu->cpu)
1842		return;
1843
1844	delta_ns = time - cpu->last_update;
1845	if (flags & SCHED_CPUFREQ_IOWAIT) {
1846		/* Start over if the CPU may have been idle. */
1847		if (delta_ns > TICK_NSEC) {
1848			cpu->iowait_boost = ONE_EIGHTH_FP;
1849		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1850			cpu->iowait_boost <<= 1;
1851			if (cpu->iowait_boost > int_tofp(1))
1852				cpu->iowait_boost = int_tofp(1);
1853		} else {
1854			cpu->iowait_boost = ONE_EIGHTH_FP;
1855		}
1856	} else if (cpu->iowait_boost) {
1857		/* Clear iowait_boost if the CPU may have been idle. */
1858		if (delta_ns > TICK_NSEC)
1859			cpu->iowait_boost = 0;
1860		else
1861			cpu->iowait_boost >>= 1;
1862	}
1863	cpu->last_update = time;
1864	delta_ns = time - cpu->sample.time;
1865	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1866		return;
1867
1868	if (intel_pstate_sample(cpu, time))
1869		intel_pstate_adjust_pstate(cpu);
1870}
1871
1872static struct pstate_funcs core_funcs = {
1873	.get_max = core_get_max_pstate,
1874	.get_max_physical = core_get_max_pstate_physical,
1875	.get_min = core_get_min_pstate,
1876	.get_turbo = core_get_turbo_pstate,
1877	.get_scaling = core_get_scaling,
1878	.get_val = core_get_val,
1879};
1880
1881static const struct pstate_funcs silvermont_funcs = {
1882	.get_max = atom_get_max_pstate,
1883	.get_max_physical = atom_get_max_pstate,
1884	.get_min = atom_get_min_pstate,
1885	.get_turbo = atom_get_turbo_pstate,
1886	.get_val = atom_get_val,
1887	.get_scaling = silvermont_get_scaling,
1888	.get_vid = atom_get_vid,
1889};
1890
1891static const struct pstate_funcs airmont_funcs = {
1892	.get_max = atom_get_max_pstate,
1893	.get_max_physical = atom_get_max_pstate,
1894	.get_min = atom_get_min_pstate,
1895	.get_turbo = atom_get_turbo_pstate,
1896	.get_val = atom_get_val,
1897	.get_scaling = airmont_get_scaling,
1898	.get_vid = atom_get_vid,
1899};
1900
1901static const struct pstate_funcs knl_funcs = {
1902	.get_max = core_get_max_pstate,
1903	.get_max_physical = core_get_max_pstate_physical,
1904	.get_min = core_get_min_pstate,
1905	.get_turbo = knl_get_turbo_pstate,
1906	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1907	.get_scaling = core_get_scaling,
1908	.get_val = core_get_val,
1909};
1910
1911#define ICPU(model, policy) \
1912	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1913			(unsigned long)&policy }
1914
1915static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1916	ICPU(INTEL_FAM6_SANDYBRIDGE,		core_funcs),
1917	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1918	ICPU(INTEL_FAM6_ATOM_SILVERMONT,	silvermont_funcs),
1919	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1920	ICPU(INTEL_FAM6_HASWELL,		core_funcs),
1921	ICPU(INTEL_FAM6_BROADWELL,		core_funcs),
1922	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1923	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1924	ICPU(INTEL_FAM6_HASWELL_L,		core_funcs),
1925	ICPU(INTEL_FAM6_HASWELL_G,		core_funcs),
1926	ICPU(INTEL_FAM6_BROADWELL_G,		core_funcs),
1927	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1928	ICPU(INTEL_FAM6_SKYLAKE_L,		core_funcs),
1929	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1930	ICPU(INTEL_FAM6_SKYLAKE,		core_funcs),
1931	ICPU(INTEL_FAM6_BROADWELL_D,		core_funcs),
1932	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1933	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1934	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1935	ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1936	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1937	{}
1938};
1939MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1940
1941static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1942	ICPU(INTEL_FAM6_BROADWELL_D, core_funcs),
1943	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1944	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1945	{}
1946};
1947
1948static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1949	ICPU(INTEL_FAM6_KABYLAKE, core_funcs),
1950	{}
1951};
1952
1953static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1954	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1955	ICPU(INTEL_FAM6_SKYLAKE, core_funcs),
1956	{}
1957};
1958
1959static int intel_pstate_init_cpu(unsigned int cpunum)
1960{
1961	struct cpudata *cpu;
1962
1963	cpu = all_cpu_data[cpunum];
1964
1965	if (!cpu) {
1966		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1967		if (!cpu)
1968			return -ENOMEM;
1969
1970		all_cpu_data[cpunum] = cpu;
1971
1972		cpu->epp_default = -EINVAL;
1973		cpu->epp_powersave = -EINVAL;
1974		cpu->epp_saved = -EINVAL;
1975	}
1976
1977	cpu = all_cpu_data[cpunum];
1978
1979	cpu->cpu = cpunum;
1980
1981	if (hwp_active) {
1982		const struct x86_cpu_id *id;
1983
1984		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1985		if (id)
1986			intel_pstate_disable_ee(cpunum);
1987
1988		intel_pstate_hwp_enable(cpu);
1989
1990		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1991		if (id && intel_pstate_acpi_pm_profile_server())
1992			hwp_boost = true;
1993	}
1994
1995	intel_pstate_get_cpu_pstates(cpu);
1996
1997	pr_debug("controlling: cpu %d\n", cpunum);
1998
1999	return 0;
2000}
2001
2002static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2003{
2004	struct cpudata *cpu = all_cpu_data[cpu_num];
2005
2006	if (hwp_active && !hwp_boost)
2007		return;
2008
2009	if (cpu->update_util_set)
2010		return;
2011
2012	/* Prevent intel_pstate_update_util() from using stale data. */
2013	cpu->sample.time = 0;
2014	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2015				     (hwp_active ?
2016				      intel_pstate_update_util_hwp :
2017				      intel_pstate_update_util));
2018	cpu->update_util_set = true;
2019}
2020
2021static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2022{
2023	struct cpudata *cpu_data = all_cpu_data[cpu];
2024
2025	if (!cpu_data->update_util_set)
2026		return;
2027
2028	cpufreq_remove_update_util_hook(cpu);
2029	cpu_data->update_util_set = false;
2030	synchronize_rcu();
2031}
2032
2033static int intel_pstate_get_max_freq(struct cpudata *cpu)
2034{
2035	return global.turbo_disabled || global.no_turbo ?
2036			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2037}
2038
2039static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2040					    struct cpudata *cpu)
2041{
2042	int max_freq = intel_pstate_get_max_freq(cpu);
2043	int32_t max_policy_perf, min_policy_perf;
2044	int max_state, turbo_max;
2045
2046	/*
2047	 * HWP needs some special consideration, because on BDX the
2048	 * HWP_REQUEST uses abstract value to represent performance
2049	 * rather than pure ratios.
2050	 */
2051	if (hwp_active) {
2052		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2053	} else {
2054		max_state = global.no_turbo || global.turbo_disabled ?
2055			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2056		turbo_max = cpu->pstate.turbo_pstate;
2057	}
2058
2059	max_policy_perf = max_state * policy->max / max_freq;
2060	if (policy->max == policy->min) {
2061		min_policy_perf = max_policy_perf;
2062	} else {
2063		min_policy_perf = max_state * policy->min / max_freq;
2064		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2065					  0, max_policy_perf);
2066	}
2067
2068	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2069		 policy->cpu, max_state,
2070		 min_policy_perf, max_policy_perf);
2071
2072	/* Normalize user input to [min_perf, max_perf] */
2073	if (per_cpu_limits) {
2074		cpu->min_perf_ratio = min_policy_perf;
2075		cpu->max_perf_ratio = max_policy_perf;
2076	} else {
2077		int32_t global_min, global_max;
2078
2079		/* Global limits are in percent of the maximum turbo P-state. */
2080		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2081		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2082		global_min = clamp_t(int32_t, global_min, 0, global_max);
2083
2084		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2085			 global_min, global_max);
2086
2087		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2088		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2089		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2090		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2091
2092		/* Make sure min_perf <= max_perf */
2093		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2094					  cpu->max_perf_ratio);
2095
2096	}
2097	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2098		 cpu->max_perf_ratio,
2099		 cpu->min_perf_ratio);
2100}
2101
2102static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2103{
2104	struct cpudata *cpu;
2105
2106	if (!policy->cpuinfo.max_freq)
2107		return -ENODEV;
2108
2109	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2110		 policy->cpuinfo.max_freq, policy->max);
2111
2112	cpu = all_cpu_data[policy->cpu];
2113	cpu->policy = policy->policy;
2114
2115	mutex_lock(&intel_pstate_limits_lock);
2116
2117	intel_pstate_update_perf_limits(policy, cpu);
2118
2119	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2120		/*
2121		 * NOHZ_FULL CPUs need this as the governor callback may not
2122		 * be invoked on them.
2123		 */
2124		intel_pstate_clear_update_util_hook(policy->cpu);
2125		intel_pstate_max_within_limits(cpu);
2126	} else {
2127		intel_pstate_set_update_util_hook(policy->cpu);
2128	}
2129
2130	if (hwp_active) {
2131		/*
2132		 * When hwp_boost was active before and dynamically it
2133		 * was turned off, in that case we need to clear the
2134		 * update util hook.
2135		 */
2136		if (!hwp_boost)
2137			intel_pstate_clear_update_util_hook(policy->cpu);
2138		intel_pstate_hwp_set(policy->cpu);
2139	}
2140
2141	mutex_unlock(&intel_pstate_limits_lock);
2142
2143	return 0;
2144}
2145
2146static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2147					 struct cpudata *cpu)
2148{
2149	if (!hwp_active &&
2150	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2151	    policy->max < policy->cpuinfo.max_freq &&
2152	    policy->max > cpu->pstate.max_freq) {
2153		pr_debug("policy->max > max non turbo frequency\n");
2154		policy->max = policy->cpuinfo.max_freq;
2155	}
2156}
2157
2158static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2159{
2160	struct cpudata *cpu = all_cpu_data[policy->cpu];
2161
2162	update_turbo_state();
2163	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2164				     intel_pstate_get_max_freq(cpu));
2165
2166	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2167	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2168		return -EINVAL;
2169
2170	intel_pstate_adjust_policy_max(policy, cpu);
2171
2172	return 0;
2173}
2174
2175static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2176{
2177	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2178}
2179
2180static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2181{
2182	pr_debug("CPU %d exiting\n", policy->cpu);
2183
2184	intel_pstate_clear_update_util_hook(policy->cpu);
2185	if (hwp_active) {
2186		intel_pstate_hwp_save_state(policy);
2187		intel_pstate_hwp_force_min_perf(policy->cpu);
2188	} else {
2189		intel_cpufreq_stop_cpu(policy);
2190	}
2191}
2192
2193static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2194{
2195	intel_pstate_exit_perf_limits(policy);
2196
2197	policy->fast_switch_possible = false;
2198
2199	return 0;
2200}
2201
2202static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2203{
2204	struct cpudata *cpu;
2205	int rc;
2206
2207	rc = intel_pstate_init_cpu(policy->cpu);
2208	if (rc)
2209		return rc;
2210
2211	cpu = all_cpu_data[policy->cpu];
2212
2213	cpu->max_perf_ratio = 0xFF;
2214	cpu->min_perf_ratio = 0;
2215
2216	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2217	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2218
2219	/* cpuinfo and default policy values */
2220	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2221	update_turbo_state();
2222	global.turbo_disabled_mf = global.turbo_disabled;
2223	policy->cpuinfo.max_freq = global.turbo_disabled ?
2224			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2225	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2226
2227	if (hwp_active) {
2228		unsigned int max_freq;
2229
2230		max_freq = global.turbo_disabled ?
2231			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2232		if (max_freq < policy->cpuinfo.max_freq)
2233			policy->cpuinfo.max_freq = max_freq;
2234	}
2235
2236	intel_pstate_init_acpi_perf_limits(policy);
2237
2238	policy->fast_switch_possible = true;
2239
2240	return 0;
2241}
2242
2243static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2244{
2245	int ret = __intel_pstate_cpu_init(policy);
2246
2247	if (ret)
2248		return ret;
2249
2250	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2251		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2252	else
2253		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2254
2255	return 0;
2256}
2257
2258static struct cpufreq_driver intel_pstate = {
2259	.flags		= CPUFREQ_CONST_LOOPS,
2260	.verify		= intel_pstate_verify_policy,
2261	.setpolicy	= intel_pstate_set_policy,
2262	.suspend	= intel_pstate_hwp_save_state,
2263	.resume		= intel_pstate_resume,
2264	.init		= intel_pstate_cpu_init,
2265	.exit		= intel_pstate_cpu_exit,
2266	.stop_cpu	= intel_pstate_stop_cpu,
2267	.update_limits	= intel_pstate_update_limits,
2268	.name		= "intel_pstate",
2269};
2270
2271static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2272{
2273	struct cpudata *cpu = all_cpu_data[policy->cpu];
2274
2275	update_turbo_state();
2276	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2277				     intel_pstate_get_max_freq(cpu));
2278
2279	intel_pstate_adjust_policy_max(policy, cpu);
2280
2281	intel_pstate_update_perf_limits(policy, cpu);
2282
2283	return 0;
2284}
2285
2286/* Use of trace in passive mode:
2287 *
2288 * In passive mode the trace core_busy field (also known as the
2289 * performance field, and lablelled as such on the graphs; also known as
2290 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2291 * driver call was via the normal or fast switch path. Various graphs
2292 * output from the intel_pstate_tracer.py utility that include core_busy
2293 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2294 * so we use 10 to indicate the the normal path through the driver, and
2295 * 90 to indicate the fast switch path through the driver.
2296 * The scaled_busy field is not used, and is set to 0.
2297 */
2298
2299#define	INTEL_PSTATE_TRACE_TARGET 10
2300#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2301
2302static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2303{
2304	struct sample *sample;
2305
2306	if (!trace_pstate_sample_enabled())
2307		return;
2308
2309	if (!intel_pstate_sample(cpu, ktime_get()))
2310		return;
2311
2312	sample = &cpu->sample;
2313	trace_pstate_sample(trace_type,
2314		0,
2315		old_pstate,
2316		cpu->pstate.current_pstate,
2317		sample->mperf,
2318		sample->aperf,
2319		sample->tsc,
2320		get_avg_frequency(cpu),
2321		fp_toint(cpu->iowait_boost * 100));
2322}
2323
2324static int intel_cpufreq_target(struct cpufreq_policy *policy,
2325				unsigned int target_freq,
2326				unsigned int relation)
2327{
2328	struct cpudata *cpu = all_cpu_data[policy->cpu];
2329	struct cpufreq_freqs freqs;
2330	int target_pstate, old_pstate;
2331
2332	update_turbo_state();
2333
2334	freqs.old = policy->cur;
2335	freqs.new = target_freq;
2336
2337	cpufreq_freq_transition_begin(policy, &freqs);
2338	switch (relation) {
2339	case CPUFREQ_RELATION_L:
2340		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2341		break;
2342	case CPUFREQ_RELATION_H:
2343		target_pstate = freqs.new / cpu->pstate.scaling;
2344		break;
2345	default:
2346		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2347		break;
2348	}
2349	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2350	old_pstate = cpu->pstate.current_pstate;
2351	if (target_pstate != cpu->pstate.current_pstate) {
2352		cpu->pstate.current_pstate = target_pstate;
2353		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2354			      pstate_funcs.get_val(cpu, target_pstate));
2355	}
2356	freqs.new = target_pstate * cpu->pstate.scaling;
2357	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2358	cpufreq_freq_transition_end(policy, &freqs, false);
2359
2360	return 0;
2361}
2362
2363static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2364					      unsigned int target_freq)
2365{
2366	struct cpudata *cpu = all_cpu_data[policy->cpu];
2367	int target_pstate, old_pstate;
2368
2369	update_turbo_state();
2370
2371	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2372	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2373	old_pstate = cpu->pstate.current_pstate;
2374	intel_pstate_update_pstate(cpu, target_pstate);
2375	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2376	return target_pstate * cpu->pstate.scaling;
2377}
2378
2379static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2380{
2381	int max_state, turbo_max, min_freq, max_freq, ret;
2382	struct freq_qos_request *req;
2383	struct cpudata *cpu;
2384	struct device *dev;
2385
2386	dev = get_cpu_device(policy->cpu);
2387	if (!dev)
2388		return -ENODEV;
2389
2390	ret = __intel_pstate_cpu_init(policy);
2391	if (ret)
2392		return ret;
2393
2394	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2395	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2396	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2397	policy->cur = policy->cpuinfo.min_freq;
2398
2399	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2400	if (!req) {
2401		ret = -ENOMEM;
2402		goto pstate_exit;
2403	}
2404
2405	cpu = all_cpu_data[policy->cpu];
2406
2407	if (hwp_active)
2408		intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2409	else
2410		turbo_max = cpu->pstate.turbo_pstate;
2411
2412	min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2413	min_freq *= cpu->pstate.scaling;
2414	max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2415	max_freq *= cpu->pstate.scaling;
2416
2417	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2418				   min_freq);
2419	if (ret < 0) {
2420		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2421		goto free_req;
2422	}
2423
2424	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2425				   max_freq);
2426	if (ret < 0) {
2427		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2428		goto remove_min_req;
2429	}
2430
2431	policy->driver_data = req;
2432
2433	return 0;
2434
2435remove_min_req:
2436	freq_qos_remove_request(req);
2437free_req:
2438	kfree(req);
2439pstate_exit:
2440	intel_pstate_exit_perf_limits(policy);
2441
2442	return ret;
2443}
2444
2445static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2446{
2447	struct freq_qos_request *req;
2448
2449	req = policy->driver_data;
2450
2451	freq_qos_remove_request(req + 1);
2452	freq_qos_remove_request(req);
2453	kfree(req);
2454
2455	return intel_pstate_cpu_exit(policy);
2456}
2457
2458static struct cpufreq_driver intel_cpufreq = {
2459	.flags		= CPUFREQ_CONST_LOOPS,
2460	.verify		= intel_cpufreq_verify_policy,
2461	.target		= intel_cpufreq_target,
2462	.fast_switch	= intel_cpufreq_fast_switch,
2463	.init		= intel_cpufreq_cpu_init,
2464	.exit		= intel_cpufreq_cpu_exit,
2465	.stop_cpu	= intel_cpufreq_stop_cpu,
2466	.update_limits	= intel_pstate_update_limits,
2467	.name		= "intel_cpufreq",
2468};
2469
2470static struct cpufreq_driver *default_driver = &intel_pstate;
2471
2472static void intel_pstate_driver_cleanup(void)
2473{
2474	unsigned int cpu;
2475
2476	get_online_cpus();
2477	for_each_online_cpu(cpu) {
2478		if (all_cpu_data[cpu]) {
2479			if (intel_pstate_driver == &intel_pstate)
2480				intel_pstate_clear_update_util_hook(cpu);
2481
2482			kfree(all_cpu_data[cpu]);
2483			all_cpu_data[cpu] = NULL;
2484		}
2485	}
2486	put_online_cpus();
2487	intel_pstate_driver = NULL;
2488}
2489
2490static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2491{
2492	int ret;
2493
2494	memset(&global, 0, sizeof(global));
2495	global.max_perf_pct = 100;
2496
2497	intel_pstate_driver = driver;
2498	ret = cpufreq_register_driver(intel_pstate_driver);
2499	if (ret) {
2500		intel_pstate_driver_cleanup();
2501		return ret;
2502	}
2503
2504	global.min_perf_pct = min_perf_pct_min();
2505
2506	return 0;
2507}
2508
2509static int intel_pstate_unregister_driver(void)
2510{
2511	if (hwp_active)
2512		return -EBUSY;
2513
2514	cpufreq_unregister_driver(intel_pstate_driver);
2515	intel_pstate_driver_cleanup();
2516
2517	return 0;
2518}
2519
2520static ssize_t intel_pstate_show_status(char *buf)
2521{
2522	if (!intel_pstate_driver)
2523		return sprintf(buf, "off\n");
2524
2525	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2526					"active" : "passive");
2527}
2528
2529static int intel_pstate_update_status(const char *buf, size_t size)
2530{
2531	int ret;
2532
2533	if (size == 3 && !strncmp(buf, "off", size))
2534		return intel_pstate_driver ?
2535			intel_pstate_unregister_driver() : -EINVAL;
2536
2537	if (size == 6 && !strncmp(buf, "active", size)) {
2538		if (intel_pstate_driver) {
2539			if (intel_pstate_driver == &intel_pstate)
2540				return 0;
2541
2542			ret = intel_pstate_unregister_driver();
2543			if (ret)
2544				return ret;
2545		}
2546
2547		return intel_pstate_register_driver(&intel_pstate);
2548	}
2549
2550	if (size == 7 && !strncmp(buf, "passive", size)) {
2551		if (intel_pstate_driver) {
2552			if (intel_pstate_driver == &intel_cpufreq)
2553				return 0;
2554
2555			ret = intel_pstate_unregister_driver();
2556			if (ret)
2557				return ret;
2558		}
2559
2560		return intel_pstate_register_driver(&intel_cpufreq);
2561	}
2562
2563	return -EINVAL;
2564}
2565
2566static int no_load __initdata;
2567static int no_hwp __initdata;
2568static int hwp_only __initdata;
2569static unsigned int force_load __initdata;
2570
2571static int __init intel_pstate_msrs_not_valid(void)
2572{
2573	if (!pstate_funcs.get_max() ||
2574	    !pstate_funcs.get_min() ||
2575	    !pstate_funcs.get_turbo())
2576		return -ENODEV;
2577
2578	return 0;
2579}
2580
2581static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2582{
2583	pstate_funcs.get_max   = funcs->get_max;
2584	pstate_funcs.get_max_physical = funcs->get_max_physical;
2585	pstate_funcs.get_min   = funcs->get_min;
2586	pstate_funcs.get_turbo = funcs->get_turbo;
2587	pstate_funcs.get_scaling = funcs->get_scaling;
2588	pstate_funcs.get_val   = funcs->get_val;
2589	pstate_funcs.get_vid   = funcs->get_vid;
2590	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2591}
2592
2593#ifdef CONFIG_ACPI
2594
2595static bool __init intel_pstate_no_acpi_pss(void)
2596{
2597	int i;
2598
2599	for_each_possible_cpu(i) {
2600		acpi_status status;
2601		union acpi_object *pss;
2602		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2603		struct acpi_processor *pr = per_cpu(processors, i);
2604
2605		if (!pr)
2606			continue;
2607
2608		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2609		if (ACPI_FAILURE(status))
2610			continue;
2611
2612		pss = buffer.pointer;
2613		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2614			kfree(pss);
2615			return false;
2616		}
2617
2618		kfree(pss);
2619	}
2620
2621	pr_debug("ACPI _PSS not found\n");
2622	return true;
2623}
2624
2625static bool __init intel_pstate_no_acpi_pcch(void)
2626{
2627	acpi_status status;
2628	acpi_handle handle;
2629
2630	status = acpi_get_handle(NULL, "\\_SB", &handle);
2631	if (ACPI_FAILURE(status))
2632		goto not_found;
2633
2634	if (acpi_has_method(handle, "PCCH"))
2635		return false;
2636
2637not_found:
2638	pr_debug("ACPI PCCH not found\n");
2639	return true;
2640}
2641
2642static bool __init intel_pstate_has_acpi_ppc(void)
2643{
2644	int i;
2645
2646	for_each_possible_cpu(i) {
2647		struct acpi_processor *pr = per_cpu(processors, i);
2648
2649		if (!pr)
2650			continue;
2651		if (acpi_has_method(pr->handle, "_PPC"))
2652			return true;
2653	}
2654	pr_debug("ACPI _PPC not found\n");
2655	return false;
2656}
2657
2658enum {
2659	PSS,
2660	PPC,
2661};
2662
2663/* Hardware vendor-specific info that has its own power management modes */
2664static struct acpi_platform_list plat_info[] __initdata = {
2665	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2666	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2667	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2668	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2669	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2670	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2671	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2672	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2673	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2674	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2675	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2676	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2677	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2678	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2679	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2680	{ } /* End */
2681};
2682
2683static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2684{
2685	const struct x86_cpu_id *id;
2686	u64 misc_pwr;
2687	int idx;
2688
2689	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2690	if (id) {
2691		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2692		if (misc_pwr & (1 << 8)) {
2693			pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2694			return true;
2695		}
2696	}
2697
2698	idx = acpi_match_platform_list(plat_info);
2699	if (idx < 0)
2700		return false;
2701
2702	switch (plat_info[idx].data) {
2703	case PSS:
2704		if (!intel_pstate_no_acpi_pss())
2705			return false;
2706
2707		return intel_pstate_no_acpi_pcch();
2708	case PPC:
2709		return intel_pstate_has_acpi_ppc() && !force_load;
2710	}
2711
2712	return false;
2713}
2714
2715static void intel_pstate_request_control_from_smm(void)
2716{
2717	/*
2718	 * It may be unsafe to request P-states control from SMM if _PPC support
2719	 * has not been enabled.
2720	 */
2721	if (acpi_ppc)
2722		acpi_processor_pstate_control();
2723}
2724#else /* CONFIG_ACPI not enabled */
2725static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2726static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2727static inline void intel_pstate_request_control_from_smm(void) {}
2728#endif /* CONFIG_ACPI */
2729
2730#define INTEL_PSTATE_HWP_BROADWELL	0x01
2731
2732#define ICPU_HWP(model, hwp_mode) \
2733	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2734
2735static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2736	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2737	ICPU_HWP(INTEL_FAM6_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
2738	ICPU_HWP(X86_MODEL_ANY, 0),
2739	{}
2740};
2741
2742static int __init intel_pstate_init(void)
2743{
2744	const struct x86_cpu_id *id;
2745	int rc;
2746
2747	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2748		return -ENODEV;
2749
2750	if (no_load)
2751		return -ENODEV;
2752
2753	id = x86_match_cpu(hwp_support_ids);
2754	if (id) {
2755		copy_cpu_funcs(&core_funcs);
2756		if (!no_hwp) {
2757			hwp_active++;
2758			hwp_mode_bdw = id->driver_data;
2759			intel_pstate.attr = hwp_cpufreq_attrs;
2760			goto hwp_cpu_matched;
2761		}
2762	} else {
2763		id = x86_match_cpu(intel_pstate_cpu_ids);
2764		if (!id) {
2765			pr_info("CPU model not supported\n");
2766			return -ENODEV;
2767		}
2768
2769		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2770	}
2771
2772	if (intel_pstate_msrs_not_valid()) {
2773		pr_info("Invalid MSRs\n");
2774		return -ENODEV;
2775	}
2776
2777hwp_cpu_matched:
2778	/*
2779	 * The Intel pstate driver will be ignored if the platform
2780	 * firmware has its own power management modes.
2781	 */
2782	if (intel_pstate_platform_pwr_mgmt_exists()) {
2783		pr_info("P-states controlled by the platform\n");
2784		return -ENODEV;
2785	}
2786
2787	if (!hwp_active && hwp_only)
2788		return -ENOTSUPP;
2789
2790	pr_info("Intel P-state driver initializing\n");
2791
2792	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2793	if (!all_cpu_data)
2794		return -ENOMEM;
2795
2796	intel_pstate_request_control_from_smm();
2797
2798	intel_pstate_sysfs_expose_params();
2799
2800	mutex_lock(&intel_pstate_driver_lock);
2801	rc = intel_pstate_register_driver(default_driver);
2802	mutex_unlock(&intel_pstate_driver_lock);
2803	if (rc)
2804		return rc;
2805
2806	if (hwp_active)
2807		pr_info("HWP enabled\n");
2808
2809	return 0;
2810}
2811device_initcall(intel_pstate_init);
2812
2813static int __init intel_pstate_setup(char *str)
2814{
2815	if (!str)
2816		return -EINVAL;
2817
2818	if (!strcmp(str, "disable")) {
2819		no_load = 1;
2820	} else if (!strcmp(str, "passive")) {
2821		pr_info("Passive mode enabled\n");
2822		default_driver = &intel_cpufreq;
2823		no_hwp = 1;
2824	}
2825	if (!strcmp(str, "no_hwp")) {
2826		pr_info("HWP disabled\n");
2827		no_hwp = 1;
2828	}
2829	if (!strcmp(str, "force"))
2830		force_load = 1;
2831	if (!strcmp(str, "hwp_only"))
2832		hwp_only = 1;
2833	if (!strcmp(str, "per_cpu_perf_limits"))
2834		per_cpu_limits = true;
2835
2836#ifdef CONFIG_ACPI
2837	if (!strcmp(str, "support_acpi_ppc"))
2838		acpi_ppc = true;
2839#endif
2840
2841	return 0;
2842}
2843early_param("intel_pstate", intel_pstate_setup);
2844
2845MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2846MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2847MODULE_LICENSE("GPL");