Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * intel_pstate.c: Native P state management for Intel processors
   3 *
   4 * (C) Copyright 2012 Intel Corporation
   5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; version 2
  10 * of the License.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/kernel.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/module.h>
  18#include <linux/ktime.h>
  19#include <linux/hrtimer.h>
  20#include <linux/tick.h>
  21#include <linux/slab.h>
  22#include <linux/sched/cpufreq.h>
  23#include <linux/list.h>
  24#include <linux/cpu.h>
  25#include <linux/cpufreq.h>
  26#include <linux/sysfs.h>
  27#include <linux/types.h>
  28#include <linux/fs.h>
  29#include <linux/acpi.h>
  30#include <linux/vmalloc.h>
  31#include <trace/events/power.h>
  32
  33#include <asm/div64.h>
  34#include <asm/msr.h>
  35#include <asm/cpu_device_id.h>
  36#include <asm/cpufeature.h>
  37#include <asm/intel-family.h>
  38
  39#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
  40
  41#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
  42#define INTEL_CPUFREQ_TRANSITION_DELAY		500
  43
  44#ifdef CONFIG_ACPI
  45#include <acpi/processor.h>
  46#include <acpi/cppc_acpi.h>
  47#endif
  48
  49#define FRAC_BITS 8
  50#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
  51#define fp_toint(X) ((X) >> FRAC_BITS)
  52
  53#define EXT_BITS 6
  54#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
  55#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
  56#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
  57
  58static inline int32_t mul_fp(int32_t x, int32_t y)
  59{
  60	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
  61}
  62
  63static inline int32_t div_fp(s64 x, s64 y)
  64{
  65	return div64_s64((int64_t)x << FRAC_BITS, y);
  66}
  67
  68static inline int ceiling_fp(int32_t x)
  69{
  70	int mask, ret;
  71
  72	ret = fp_toint(x);
  73	mask = (1 << FRAC_BITS) - 1;
  74	if (x & mask)
  75		ret += 1;
  76	return ret;
  77}
  78
  79static inline int32_t percent_fp(int percent)
  80{
  81	return div_fp(percent, 100);
  82}
  83
  84static inline u64 mul_ext_fp(u64 x, u64 y)
  85{
  86	return (x * y) >> EXT_FRAC_BITS;
  87}
  88
  89static inline u64 div_ext_fp(u64 x, u64 y)
  90{
  91	return div64_u64(x << EXT_FRAC_BITS, y);
  92}
  93
  94static inline int32_t percent_ext_fp(int percent)
  95{
  96	return div_ext_fp(percent, 100);
  97}
  98
  99/**
 100 * struct sample -	Store performance sample
 101 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
 102 *			performance during last sample period
 103 * @busy_scaled:	Scaled busy value which is used to calculate next
 104 *			P state. This can be different than core_avg_perf
 105 *			to account for cpu idle period
 106 * @aperf:		Difference of actual performance frequency clock count
 107 *			read from APERF MSR between last and current sample
 108 * @mperf:		Difference of maximum performance frequency clock count
 109 *			read from MPERF MSR between last and current sample
 110 * @tsc:		Difference of time stamp counter between last and
 111 *			current sample
 112 * @time:		Current time from scheduler
 113 *
 114 * This structure is used in the cpudata structure to store performance sample
 115 * data for choosing next P State.
 116 */
 117struct sample {
 118	int32_t core_avg_perf;
 119	int32_t busy_scaled;
 120	u64 aperf;
 121	u64 mperf;
 122	u64 tsc;
 123	u64 time;
 124};
 125
 126/**
 127 * struct pstate_data - Store P state data
 128 * @current_pstate:	Current requested P state
 129 * @min_pstate:		Min P state possible for this platform
 130 * @max_pstate:		Max P state possible for this platform
 131 * @max_pstate_physical:This is physical Max P state for a processor
 132 *			This can be higher than the max_pstate which can
 133 *			be limited by platform thermal design power limits
 134 * @scaling:		Scaling factor to  convert frequency to cpufreq
 135 *			frequency units
 136 * @turbo_pstate:	Max Turbo P state possible for this platform
 137 * @max_freq:		@max_pstate frequency in cpufreq units
 138 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
 139 *
 140 * Stores the per cpu model P state limits and current P state.
 141 */
 142struct pstate_data {
 143	int	current_pstate;
 144	int	min_pstate;
 145	int	max_pstate;
 146	int	max_pstate_physical;
 147	int	scaling;
 148	int	turbo_pstate;
 149	unsigned int max_freq;
 150	unsigned int turbo_freq;
 151};
 152
 153/**
 154 * struct vid_data -	Stores voltage information data
 155 * @min:		VID data for this platform corresponding to
 156 *			the lowest P state
 157 * @max:		VID data corresponding to the highest P State.
 158 * @turbo:		VID data for turbo P state
 159 * @ratio:		Ratio of (vid max - vid min) /
 160 *			(max P state - Min P State)
 161 *
 162 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 163 * This data is used in Atom platforms, where in addition to target P state,
 164 * the voltage data needs to be specified to select next P State.
 165 */
 166struct vid_data {
 167	int min;
 168	int max;
 169	int turbo;
 170	int32_t ratio;
 171};
 172
 173/**
 174 * struct global_params - Global parameters, mostly tunable via sysfs.
 175 * @no_turbo:		Whether or not to use turbo P-states.
 176 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 177 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 178 *			not the maximum reported turbo P-state is different from
 179 *			the maximum reported non-turbo one.
 180 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 181 *			P-state capacity.
 182 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 183 *			P-state capacity.
 184 */
 185struct global_params {
 186	bool no_turbo;
 187	bool turbo_disabled;
 188	int max_perf_pct;
 189	int min_perf_pct;
 190};
 191
 192/**
 193 * struct cpudata -	Per CPU instance data storage
 194 * @cpu:		CPU number for this instance data
 195 * @policy:		CPUFreq policy value
 196 * @update_util:	CPUFreq utility callback information
 197 * @update_util_set:	CPUFreq utility callback is set
 198 * @iowait_boost:	iowait-related boost fraction
 199 * @last_update:	Time of the last update.
 200 * @pstate:		Stores P state limits for this CPU
 201 * @vid:		Stores VID limits for this CPU
 202 * @last_sample_time:	Last Sample time
 203 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 204 *			This shift is a multiplier to mperf delta to
 205 *			calculate CPU busy.
 206 * @prev_aperf:		Last APERF value read from APERF MSR
 207 * @prev_mperf:		Last MPERF value read from MPERF MSR
 208 * @prev_tsc:		Last timestamp counter (TSC) value
 209 * @prev_cummulative_iowait: IO Wait time difference from last and
 210 *			current sample
 211 * @sample:		Storage for storing last Sample data
 212 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 213 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
 214 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 215 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
 216 * @epp_powersave:	Last saved HWP energy performance preference
 217 *			(EPP) or energy performance bias (EPB),
 218 *			when policy switched to performance
 219 * @epp_policy:		Last saved policy used to set EPP/EPB
 220 * @epp_default:	Power on default HWP energy performance
 221 *			preference/bias
 222 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 223 *			operation
 224 *
 225 * This structure stores per CPU instance data for all CPUs.
 226 */
 227struct cpudata {
 228	int cpu;
 229
 230	unsigned int policy;
 231	struct update_util_data update_util;
 232	bool   update_util_set;
 233
 234	struct pstate_data pstate;
 235	struct vid_data vid;
 236
 237	u64	last_update;
 238	u64	last_sample_time;
 239	u64	aperf_mperf_shift;
 240	u64	prev_aperf;
 241	u64	prev_mperf;
 242	u64	prev_tsc;
 243	u64	prev_cummulative_iowait;
 244	struct sample sample;
 245	int32_t	min_perf_ratio;
 246	int32_t	max_perf_ratio;
 247#ifdef CONFIG_ACPI
 248	struct acpi_processor_performance acpi_perf_data;
 249	bool valid_pss_table;
 250#endif
 251	unsigned int iowait_boost;
 252	s16 epp_powersave;
 253	s16 epp_policy;
 254	s16 epp_default;
 255	s16 epp_saved;
 256};
 257
 258static struct cpudata **all_cpu_data;
 259
 260/**
 261 * struct pstate_funcs - Per CPU model specific callbacks
 262 * @get_max:		Callback to get maximum non turbo effective P state
 263 * @get_max_physical:	Callback to get maximum non turbo physical P state
 264 * @get_min:		Callback to get minimum P state
 265 * @get_turbo:		Callback to get turbo P state
 266 * @get_scaling:	Callback to get frequency scaling factor
 267 * @get_val:		Callback to convert P state to actual MSR write value
 268 * @get_vid:		Callback to get VID data for Atom platforms
 269 *
 270 * Core and Atom CPU models have different way to get P State limits. This
 271 * structure is used to store those callbacks.
 272 */
 273struct pstate_funcs {
 274	int (*get_max)(void);
 275	int (*get_max_physical)(void);
 276	int (*get_min)(void);
 277	int (*get_turbo)(void);
 278	int (*get_scaling)(void);
 279	int (*get_aperf_mperf_shift)(void);
 280	u64 (*get_val)(struct cpudata*, int pstate);
 281	void (*get_vid)(struct cpudata *);
 282};
 283
 284static struct pstate_funcs pstate_funcs __read_mostly;
 285
 286static int hwp_active __read_mostly;
 287static bool per_cpu_limits __read_mostly;
 288
 289static struct cpufreq_driver *intel_pstate_driver __read_mostly;
 290
 291#ifdef CONFIG_ACPI
 292static bool acpi_ppc;
 293#endif
 294
 295static struct global_params global;
 296
 297static DEFINE_MUTEX(intel_pstate_driver_lock);
 298static DEFINE_MUTEX(intel_pstate_limits_lock);
 299
 300#ifdef CONFIG_ACPI
 301
 302static bool intel_pstate_get_ppc_enable_status(void)
 303{
 304	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
 305	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
 306		return true;
 307
 308	return acpi_ppc;
 309}
 310
 311#ifdef CONFIG_ACPI_CPPC_LIB
 312
 313/* The work item is needed to avoid CPU hotplug locking issues */
 314static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
 315{
 316	sched_set_itmt_support();
 317}
 318
 319static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
 320
 321static void intel_pstate_set_itmt_prio(int cpu)
 322{
 323	struct cppc_perf_caps cppc_perf;
 324	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
 325	int ret;
 326
 327	ret = cppc_get_perf_caps(cpu, &cppc_perf);
 328	if (ret)
 329		return;
 330
 331	/*
 332	 * The priorities can be set regardless of whether or not
 333	 * sched_set_itmt_support(true) has been called and it is valid to
 334	 * update them at any time after it has been called.
 335	 */
 336	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
 337
 338	if (max_highest_perf <= min_highest_perf) {
 339		if (cppc_perf.highest_perf > max_highest_perf)
 340			max_highest_perf = cppc_perf.highest_perf;
 341
 342		if (cppc_perf.highest_perf < min_highest_perf)
 343			min_highest_perf = cppc_perf.highest_perf;
 344
 345		if (max_highest_perf > min_highest_perf) {
 346			/*
 347			 * This code can be run during CPU online under the
 348			 * CPU hotplug locks, so sched_set_itmt_support()
 349			 * cannot be called from here.  Queue up a work item
 350			 * to invoke it.
 351			 */
 352			schedule_work(&sched_itmt_work);
 353		}
 354	}
 355}
 356#else
 357static void intel_pstate_set_itmt_prio(int cpu)
 358{
 359}
 360#endif
 361
 362static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 363{
 364	struct cpudata *cpu;
 365	int ret;
 366	int i;
 367
 368	if (hwp_active) {
 369		intel_pstate_set_itmt_prio(policy->cpu);
 370		return;
 371	}
 372
 373	if (!intel_pstate_get_ppc_enable_status())
 374		return;
 375
 376	cpu = all_cpu_data[policy->cpu];
 377
 378	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
 379						  policy->cpu);
 380	if (ret)
 381		return;
 382
 383	/*
 384	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
 385	 * guarantee that the states returned by it map to the states in our
 386	 * list directly.
 387	 */
 388	if (cpu->acpi_perf_data.control_register.space_id !=
 389						ACPI_ADR_SPACE_FIXED_HARDWARE)
 390		goto err;
 391
 392	/*
 393	 * If there is only one entry _PSS, simply ignore _PSS and continue as
 394	 * usual without taking _PSS into account
 395	 */
 396	if (cpu->acpi_perf_data.state_count < 2)
 397		goto err;
 398
 399	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
 400	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
 401		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
 402			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
 403			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
 404			 (u32) cpu->acpi_perf_data.states[i].power,
 405			 (u32) cpu->acpi_perf_data.states[i].control);
 406	}
 407
 408	/*
 409	 * The _PSS table doesn't contain whole turbo frequency range.
 410	 * This just contains +1 MHZ above the max non turbo frequency,
 411	 * with control value corresponding to max turbo ratio. But
 412	 * when cpufreq set policy is called, it will call with this
 413	 * max frequency, which will cause a reduced performance as
 414	 * this driver uses real max turbo frequency as the max
 415	 * frequency. So correct this frequency in _PSS table to
 416	 * correct max turbo frequency based on the turbo state.
 417	 * Also need to convert to MHz as _PSS freq is in MHz.
 418	 */
 419	if (!global.turbo_disabled)
 420		cpu->acpi_perf_data.states[0].core_frequency =
 421					policy->cpuinfo.max_freq / 1000;
 422	cpu->valid_pss_table = true;
 423	pr_debug("_PPC limits will be enforced\n");
 424
 425	return;
 426
 427 err:
 428	cpu->valid_pss_table = false;
 429	acpi_processor_unregister_performance(policy->cpu);
 430}
 431
 432static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 433{
 434	struct cpudata *cpu;
 435
 436	cpu = all_cpu_data[policy->cpu];
 437	if (!cpu->valid_pss_table)
 438		return;
 439
 440	acpi_processor_unregister_performance(policy->cpu);
 441}
 442#else
 443static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 444{
 445}
 446
 447static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 448{
 449}
 450#endif
 451
 452static inline void update_turbo_state(void)
 453{
 454	u64 misc_en;
 455	struct cpudata *cpu;
 456
 457	cpu = all_cpu_data[0];
 458	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
 459	global.turbo_disabled =
 460		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
 461		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
 462}
 463
 464static int min_perf_pct_min(void)
 465{
 466	struct cpudata *cpu = all_cpu_data[0];
 467	int turbo_pstate = cpu->pstate.turbo_pstate;
 468
 469	return turbo_pstate ?
 470		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
 471}
 472
 473static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
 474{
 475	u64 epb;
 476	int ret;
 477
 478	if (!static_cpu_has(X86_FEATURE_EPB))
 479		return -ENXIO;
 480
 481	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 482	if (ret)
 483		return (s16)ret;
 484
 485	return (s16)(epb & 0x0f);
 486}
 487
 488static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
 489{
 490	s16 epp;
 491
 492	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
 493		/*
 494		 * When hwp_req_data is 0, means that caller didn't read
 495		 * MSR_HWP_REQUEST, so need to read and get EPP.
 496		 */
 497		if (!hwp_req_data) {
 498			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
 499					    &hwp_req_data);
 500			if (epp)
 501				return epp;
 502		}
 503		epp = (hwp_req_data >> 24) & 0xff;
 504	} else {
 505		/* When there is no EPP present, HWP uses EPB settings */
 506		epp = intel_pstate_get_epb(cpu_data);
 507	}
 508
 509	return epp;
 510}
 511
 512static int intel_pstate_set_epb(int cpu, s16 pref)
 513{
 514	u64 epb;
 515	int ret;
 516
 517	if (!static_cpu_has(X86_FEATURE_EPB))
 518		return -ENXIO;
 519
 520	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 521	if (ret)
 522		return ret;
 523
 524	epb = (epb & ~0x0f) | pref;
 525	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
 526
 527	return 0;
 528}
 529
 530/*
 531 * EPP/EPB display strings corresponding to EPP index in the
 532 * energy_perf_strings[]
 533 *	index		String
 534 *-------------------------------------
 535 *	0		default
 536 *	1		performance
 537 *	2		balance_performance
 538 *	3		balance_power
 539 *	4		power
 540 */
 541static const char * const energy_perf_strings[] = {
 542	"default",
 543	"performance",
 544	"balance_performance",
 545	"balance_power",
 546	"power",
 547	NULL
 548};
 549static const unsigned int epp_values[] = {
 550	HWP_EPP_PERFORMANCE,
 551	HWP_EPP_BALANCE_PERFORMANCE,
 552	HWP_EPP_BALANCE_POWERSAVE,
 553	HWP_EPP_POWERSAVE
 554};
 555
 556static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
 557{
 558	s16 epp;
 559	int index = -EINVAL;
 560
 561	epp = intel_pstate_get_epp(cpu_data, 0);
 562	if (epp < 0)
 563		return epp;
 564
 565	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
 566		if (epp == HWP_EPP_PERFORMANCE)
 567			return 1;
 568		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
 569			return 2;
 570		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
 571			return 3;
 572		else
 573			return 4;
 574	} else if (static_cpu_has(X86_FEATURE_EPB)) {
 575		/*
 576		 * Range:
 577		 *	0x00-0x03	:	Performance
 578		 *	0x04-0x07	:	Balance performance
 579		 *	0x08-0x0B	:	Balance power
 580		 *	0x0C-0x0F	:	Power
 581		 * The EPB is a 4 bit value, but our ranges restrict the
 582		 * value which can be set. Here only using top two bits
 583		 * effectively.
 584		 */
 585		index = (epp >> 2) + 1;
 586	}
 587
 588	return index;
 589}
 590
 591static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
 592					      int pref_index)
 593{
 594	int epp = -EINVAL;
 595	int ret;
 596
 597	if (!pref_index)
 598		epp = cpu_data->epp_default;
 599
 600	mutex_lock(&intel_pstate_limits_lock);
 601
 602	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
 603		u64 value;
 604
 605		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
 606		if (ret)
 607			goto return_pref;
 608
 609		value &= ~GENMASK_ULL(31, 24);
 610
 611		if (epp == -EINVAL)
 612			epp = epp_values[pref_index - 1];
 613
 614		value |= (u64)epp << 24;
 615		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
 616	} else {
 617		if (epp == -EINVAL)
 618			epp = (pref_index - 1) << 2;
 619		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
 620	}
 621return_pref:
 622	mutex_unlock(&intel_pstate_limits_lock);
 623
 624	return ret;
 625}
 626
 627static ssize_t show_energy_performance_available_preferences(
 628				struct cpufreq_policy *policy, char *buf)
 629{
 630	int i = 0;
 631	int ret = 0;
 632
 633	while (energy_perf_strings[i] != NULL)
 634		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
 635
 636	ret += sprintf(&buf[ret], "\n");
 637
 638	return ret;
 639}
 640
 641cpufreq_freq_attr_ro(energy_performance_available_preferences);
 642
 643static ssize_t store_energy_performance_preference(
 644		struct cpufreq_policy *policy, const char *buf, size_t count)
 645{
 646	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 647	char str_preference[21];
 648	int ret, i = 0;
 649
 650	ret = sscanf(buf, "%20s", str_preference);
 651	if (ret != 1)
 652		return -EINVAL;
 653
 654	while (energy_perf_strings[i] != NULL) {
 655		if (!strcmp(str_preference, energy_perf_strings[i])) {
 656			intel_pstate_set_energy_pref_index(cpu_data, i);
 657			return count;
 658		}
 659		++i;
 660	}
 661
 662	return -EINVAL;
 663}
 664
 665static ssize_t show_energy_performance_preference(
 666				struct cpufreq_policy *policy, char *buf)
 667{
 668	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 669	int preference;
 670
 671	preference = intel_pstate_get_energy_pref_index(cpu_data);
 672	if (preference < 0)
 673		return preference;
 674
 675	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
 676}
 677
 678cpufreq_freq_attr_rw(energy_performance_preference);
 679
 680static struct freq_attr *hwp_cpufreq_attrs[] = {
 681	&energy_performance_preference,
 682	&energy_performance_available_preferences,
 683	NULL,
 684};
 685
 686static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
 687				     int *current_max)
 688{
 689	u64 cap;
 690
 691	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
 692	if (global.no_turbo)
 693		*current_max = HWP_GUARANTEED_PERF(cap);
 694	else
 695		*current_max = HWP_HIGHEST_PERF(cap);
 696
 697	*phy_max = HWP_HIGHEST_PERF(cap);
 698}
 699
 700static void intel_pstate_hwp_set(unsigned int cpu)
 701{
 702	struct cpudata *cpu_data = all_cpu_data[cpu];
 703	int max, min;
 704	u64 value;
 705	s16 epp;
 706
 707	max = cpu_data->max_perf_ratio;
 708	min = cpu_data->min_perf_ratio;
 709
 710	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
 711		min = max;
 712
 713	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
 714
 715	value &= ~HWP_MIN_PERF(~0L);
 716	value |= HWP_MIN_PERF(min);
 717
 718	value &= ~HWP_MAX_PERF(~0L);
 719	value |= HWP_MAX_PERF(max);
 720
 721	if (cpu_data->epp_policy == cpu_data->policy)
 722		goto skip_epp;
 723
 724	cpu_data->epp_policy = cpu_data->policy;
 725
 726	if (cpu_data->epp_saved >= 0) {
 727		epp = cpu_data->epp_saved;
 728		cpu_data->epp_saved = -EINVAL;
 729		goto update_epp;
 730	}
 731
 732	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
 733		epp = intel_pstate_get_epp(cpu_data, value);
 734		cpu_data->epp_powersave = epp;
 735		/* If EPP read was failed, then don't try to write */
 736		if (epp < 0)
 737			goto skip_epp;
 738
 739		epp = 0;
 740	} else {
 741		/* skip setting EPP, when saved value is invalid */
 742		if (cpu_data->epp_powersave < 0)
 743			goto skip_epp;
 744
 745		/*
 746		 * No need to restore EPP when it is not zero. This
 747		 * means:
 748		 *  - Policy is not changed
 749		 *  - user has manually changed
 750		 *  - Error reading EPB
 751		 */
 752		epp = intel_pstate_get_epp(cpu_data, value);
 753		if (epp)
 754			goto skip_epp;
 755
 756		epp = cpu_data->epp_powersave;
 757	}
 758update_epp:
 759	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
 760		value &= ~GENMASK_ULL(31, 24);
 761		value |= (u64)epp << 24;
 762	} else {
 763		intel_pstate_set_epb(cpu, epp);
 764	}
 765skip_epp:
 766	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 767}
 768
 769static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
 770{
 771	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 772
 773	if (!hwp_active)
 774		return 0;
 775
 776	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
 777
 778	return 0;
 779}
 780
 781static void intel_pstate_hwp_enable(struct cpudata *cpudata);
 782
 783static int intel_pstate_resume(struct cpufreq_policy *policy)
 784{
 785	if (!hwp_active)
 786		return 0;
 787
 788	mutex_lock(&intel_pstate_limits_lock);
 789
 790	if (policy->cpu == 0)
 791		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
 792
 793	all_cpu_data[policy->cpu]->epp_policy = 0;
 794	intel_pstate_hwp_set(policy->cpu);
 795
 796	mutex_unlock(&intel_pstate_limits_lock);
 797
 798	return 0;
 799}
 800
 801static void intel_pstate_update_policies(void)
 802{
 803	int cpu;
 804
 805	for_each_possible_cpu(cpu)
 806		cpufreq_update_policy(cpu);
 807}
 808
 809/************************** sysfs begin ************************/
 810#define show_one(file_name, object)					\
 811	static ssize_t show_##file_name					\
 812	(struct kobject *kobj, struct attribute *attr, char *buf)	\
 813	{								\
 814		return sprintf(buf, "%u\n", global.object);		\
 815	}
 816
 817static ssize_t intel_pstate_show_status(char *buf);
 818static int intel_pstate_update_status(const char *buf, size_t size);
 819
 820static ssize_t show_status(struct kobject *kobj,
 821			   struct attribute *attr, char *buf)
 822{
 823	ssize_t ret;
 824
 825	mutex_lock(&intel_pstate_driver_lock);
 826	ret = intel_pstate_show_status(buf);
 827	mutex_unlock(&intel_pstate_driver_lock);
 828
 829	return ret;
 830}
 831
 832static ssize_t store_status(struct kobject *a, struct attribute *b,
 833			    const char *buf, size_t count)
 834{
 835	char *p = memchr(buf, '\n', count);
 836	int ret;
 837
 838	mutex_lock(&intel_pstate_driver_lock);
 839	ret = intel_pstate_update_status(buf, p ? p - buf : count);
 840	mutex_unlock(&intel_pstate_driver_lock);
 841
 842	return ret < 0 ? ret : count;
 843}
 844
 845static ssize_t show_turbo_pct(struct kobject *kobj,
 846				struct attribute *attr, char *buf)
 847{
 848	struct cpudata *cpu;
 849	int total, no_turbo, turbo_pct;
 850	uint32_t turbo_fp;
 851
 852	mutex_lock(&intel_pstate_driver_lock);
 853
 854	if (!intel_pstate_driver) {
 855		mutex_unlock(&intel_pstate_driver_lock);
 856		return -EAGAIN;
 857	}
 858
 859	cpu = all_cpu_data[0];
 860
 861	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 862	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
 863	turbo_fp = div_fp(no_turbo, total);
 864	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
 865
 866	mutex_unlock(&intel_pstate_driver_lock);
 867
 868	return sprintf(buf, "%u\n", turbo_pct);
 869}
 870
 871static ssize_t show_num_pstates(struct kobject *kobj,
 872				struct attribute *attr, char *buf)
 873{
 874	struct cpudata *cpu;
 875	int total;
 876
 877	mutex_lock(&intel_pstate_driver_lock);
 878
 879	if (!intel_pstate_driver) {
 880		mutex_unlock(&intel_pstate_driver_lock);
 881		return -EAGAIN;
 882	}
 883
 884	cpu = all_cpu_data[0];
 885	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 886
 887	mutex_unlock(&intel_pstate_driver_lock);
 888
 889	return sprintf(buf, "%u\n", total);
 890}
 891
 892static ssize_t show_no_turbo(struct kobject *kobj,
 893			     struct attribute *attr, char *buf)
 894{
 895	ssize_t ret;
 896
 897	mutex_lock(&intel_pstate_driver_lock);
 898
 899	if (!intel_pstate_driver) {
 900		mutex_unlock(&intel_pstate_driver_lock);
 901		return -EAGAIN;
 902	}
 903
 904	update_turbo_state();
 905	if (global.turbo_disabled)
 906		ret = sprintf(buf, "%u\n", global.turbo_disabled);
 907	else
 908		ret = sprintf(buf, "%u\n", global.no_turbo);
 909
 910	mutex_unlock(&intel_pstate_driver_lock);
 911
 912	return ret;
 913}
 914
 915static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
 916			      const char *buf, size_t count)
 917{
 918	unsigned int input;
 919	int ret;
 920
 921	ret = sscanf(buf, "%u", &input);
 922	if (ret != 1)
 923		return -EINVAL;
 924
 925	mutex_lock(&intel_pstate_driver_lock);
 926
 927	if (!intel_pstate_driver) {
 928		mutex_unlock(&intel_pstate_driver_lock);
 929		return -EAGAIN;
 930	}
 931
 932	mutex_lock(&intel_pstate_limits_lock);
 933
 934	update_turbo_state();
 935	if (global.turbo_disabled) {
 936		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
 937		mutex_unlock(&intel_pstate_limits_lock);
 938		mutex_unlock(&intel_pstate_driver_lock);
 939		return -EPERM;
 940	}
 941
 942	global.no_turbo = clamp_t(int, input, 0, 1);
 943
 944	if (global.no_turbo) {
 945		struct cpudata *cpu = all_cpu_data[0];
 946		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
 947
 948		/* Squash the global minimum into the permitted range. */
 949		if (global.min_perf_pct > pct)
 950			global.min_perf_pct = pct;
 951	}
 952
 953	mutex_unlock(&intel_pstate_limits_lock);
 954
 955	intel_pstate_update_policies();
 956
 957	mutex_unlock(&intel_pstate_driver_lock);
 958
 959	return count;
 960}
 961
 962static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
 963				  const char *buf, size_t count)
 964{
 965	unsigned int input;
 966	int ret;
 967
 968	ret = sscanf(buf, "%u", &input);
 969	if (ret != 1)
 970		return -EINVAL;
 971
 972	mutex_lock(&intel_pstate_driver_lock);
 973
 974	if (!intel_pstate_driver) {
 975		mutex_unlock(&intel_pstate_driver_lock);
 976		return -EAGAIN;
 977	}
 978
 979	mutex_lock(&intel_pstate_limits_lock);
 980
 981	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
 982
 983	mutex_unlock(&intel_pstate_limits_lock);
 984
 985	intel_pstate_update_policies();
 986
 987	mutex_unlock(&intel_pstate_driver_lock);
 988
 989	return count;
 990}
 991
 992static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
 993				  const char *buf, size_t count)
 994{
 995	unsigned int input;
 996	int ret;
 997
 998	ret = sscanf(buf, "%u", &input);
 999	if (ret != 1)
1000		return -EINVAL;
1001
1002	mutex_lock(&intel_pstate_driver_lock);
1003
1004	if (!intel_pstate_driver) {
1005		mutex_unlock(&intel_pstate_driver_lock);
1006		return -EAGAIN;
1007	}
1008
1009	mutex_lock(&intel_pstate_limits_lock);
1010
1011	global.min_perf_pct = clamp_t(int, input,
1012				      min_perf_pct_min(), global.max_perf_pct);
1013
1014	mutex_unlock(&intel_pstate_limits_lock);
1015
1016	intel_pstate_update_policies();
1017
1018	mutex_unlock(&intel_pstate_driver_lock);
1019
1020	return count;
1021}
1022
1023show_one(max_perf_pct, max_perf_pct);
1024show_one(min_perf_pct, min_perf_pct);
1025
1026define_one_global_rw(status);
1027define_one_global_rw(no_turbo);
1028define_one_global_rw(max_perf_pct);
1029define_one_global_rw(min_perf_pct);
1030define_one_global_ro(turbo_pct);
1031define_one_global_ro(num_pstates);
1032
1033static struct attribute *intel_pstate_attributes[] = {
1034	&status.attr,
1035	&no_turbo.attr,
1036	&turbo_pct.attr,
1037	&num_pstates.attr,
1038	NULL
1039};
1040
1041static const struct attribute_group intel_pstate_attr_group = {
1042	.attrs = intel_pstate_attributes,
1043};
1044
1045static void __init intel_pstate_sysfs_expose_params(void)
1046{
1047	struct kobject *intel_pstate_kobject;
1048	int rc;
1049
1050	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1051						&cpu_subsys.dev_root->kobj);
1052	if (WARN_ON(!intel_pstate_kobject))
1053		return;
1054
1055	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1056	if (WARN_ON(rc))
1057		return;
1058
1059	/*
1060	 * If per cpu limits are enforced there are no global limits, so
1061	 * return without creating max/min_perf_pct attributes
1062	 */
1063	if (per_cpu_limits)
1064		return;
1065
1066	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1067	WARN_ON(rc);
1068
1069	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1070	WARN_ON(rc);
1071
1072}
1073/************************** sysfs end ************************/
1074
1075static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1076{
1077	/* First disable HWP notification interrupt as we don't process them */
1078	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1079		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1080
1081	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1082	cpudata->epp_policy = 0;
1083	if (cpudata->epp_default == -EINVAL)
1084		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1085}
1086
1087#define MSR_IA32_POWER_CTL_BIT_EE	19
1088
1089/* Disable energy efficiency optimization */
1090static void intel_pstate_disable_ee(int cpu)
1091{
1092	u64 power_ctl;
1093	int ret;
1094
1095	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1096	if (ret)
1097		return;
1098
1099	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1100		pr_info("Disabling energy efficiency optimization\n");
1101		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1102		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1103	}
1104}
1105
1106static int atom_get_min_pstate(void)
1107{
1108	u64 value;
1109
1110	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1111	return (value >> 8) & 0x7F;
1112}
1113
1114static int atom_get_max_pstate(void)
1115{
1116	u64 value;
1117
1118	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1119	return (value >> 16) & 0x7F;
1120}
1121
1122static int atom_get_turbo_pstate(void)
1123{
1124	u64 value;
1125
1126	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1127	return value & 0x7F;
1128}
1129
1130static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1131{
1132	u64 val;
1133	int32_t vid_fp;
1134	u32 vid;
1135
1136	val = (u64)pstate << 8;
1137	if (global.no_turbo && !global.turbo_disabled)
1138		val |= (u64)1 << 32;
1139
1140	vid_fp = cpudata->vid.min + mul_fp(
1141		int_tofp(pstate - cpudata->pstate.min_pstate),
1142		cpudata->vid.ratio);
1143
1144	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1145	vid = ceiling_fp(vid_fp);
1146
1147	if (pstate > cpudata->pstate.max_pstate)
1148		vid = cpudata->vid.turbo;
1149
1150	return val | vid;
1151}
1152
1153static int silvermont_get_scaling(void)
1154{
1155	u64 value;
1156	int i;
1157	/* Defined in Table 35-6 from SDM (Sept 2015) */
1158	static int silvermont_freq_table[] = {
1159		83300, 100000, 133300, 116700, 80000};
1160
1161	rdmsrl(MSR_FSB_FREQ, value);
1162	i = value & 0x7;
1163	WARN_ON(i > 4);
1164
1165	return silvermont_freq_table[i];
1166}
1167
1168static int airmont_get_scaling(void)
1169{
1170	u64 value;
1171	int i;
1172	/* Defined in Table 35-10 from SDM (Sept 2015) */
1173	static int airmont_freq_table[] = {
1174		83300, 100000, 133300, 116700, 80000,
1175		93300, 90000, 88900, 87500};
1176
1177	rdmsrl(MSR_FSB_FREQ, value);
1178	i = value & 0xF;
1179	WARN_ON(i > 8);
1180
1181	return airmont_freq_table[i];
1182}
1183
1184static void atom_get_vid(struct cpudata *cpudata)
1185{
1186	u64 value;
1187
1188	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1189	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1190	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1191	cpudata->vid.ratio = div_fp(
1192		cpudata->vid.max - cpudata->vid.min,
1193		int_tofp(cpudata->pstate.max_pstate -
1194			cpudata->pstate.min_pstate));
1195
1196	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1197	cpudata->vid.turbo = value & 0x7f;
1198}
1199
1200static int core_get_min_pstate(void)
1201{
1202	u64 value;
1203
1204	rdmsrl(MSR_PLATFORM_INFO, value);
1205	return (value >> 40) & 0xFF;
1206}
1207
1208static int core_get_max_pstate_physical(void)
1209{
1210	u64 value;
1211
1212	rdmsrl(MSR_PLATFORM_INFO, value);
1213	return (value >> 8) & 0xFF;
1214}
1215
1216static int core_get_tdp_ratio(u64 plat_info)
1217{
1218	/* Check how many TDP levels present */
1219	if (plat_info & 0x600000000) {
1220		u64 tdp_ctrl;
1221		u64 tdp_ratio;
1222		int tdp_msr;
1223		int err;
1224
1225		/* Get the TDP level (0, 1, 2) to get ratios */
1226		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1227		if (err)
1228			return err;
1229
1230		/* TDP MSR are continuous starting at 0x648 */
1231		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1232		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1233		if (err)
1234			return err;
1235
1236		/* For level 1 and 2, bits[23:16] contain the ratio */
1237		if (tdp_ctrl & 0x03)
1238			tdp_ratio >>= 16;
1239
1240		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1241		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1242
1243		return (int)tdp_ratio;
1244	}
1245
1246	return -ENXIO;
1247}
1248
1249static int core_get_max_pstate(void)
1250{
1251	u64 tar;
1252	u64 plat_info;
1253	int max_pstate;
1254	int tdp_ratio;
1255	int err;
1256
1257	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1258	max_pstate = (plat_info >> 8) & 0xFF;
1259
1260	tdp_ratio = core_get_tdp_ratio(plat_info);
1261	if (tdp_ratio <= 0)
1262		return max_pstate;
1263
1264	if (hwp_active) {
1265		/* Turbo activation ratio is not used on HWP platforms */
1266		return tdp_ratio;
1267	}
1268
1269	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1270	if (!err) {
1271		int tar_levels;
1272
1273		/* Do some sanity checking for safety */
1274		tar_levels = tar & 0xff;
1275		if (tdp_ratio - 1 == tar_levels) {
1276			max_pstate = tar_levels;
1277			pr_debug("max_pstate=TAC %x\n", max_pstate);
1278		}
1279	}
1280
1281	return max_pstate;
1282}
1283
1284static int core_get_turbo_pstate(void)
1285{
1286	u64 value;
1287	int nont, ret;
1288
1289	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1290	nont = core_get_max_pstate();
1291	ret = (value) & 255;
1292	if (ret <= nont)
1293		ret = nont;
1294	return ret;
1295}
1296
1297static inline int core_get_scaling(void)
1298{
1299	return 100000;
1300}
1301
1302static u64 core_get_val(struct cpudata *cpudata, int pstate)
1303{
1304	u64 val;
1305
1306	val = (u64)pstate << 8;
1307	if (global.no_turbo && !global.turbo_disabled)
1308		val |= (u64)1 << 32;
1309
1310	return val;
1311}
1312
1313static int knl_get_aperf_mperf_shift(void)
1314{
1315	return 10;
1316}
1317
1318static int knl_get_turbo_pstate(void)
1319{
1320	u64 value;
1321	int nont, ret;
1322
1323	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1324	nont = core_get_max_pstate();
1325	ret = (((value) >> 8) & 0xFF);
1326	if (ret <= nont)
1327		ret = nont;
1328	return ret;
1329}
1330
1331static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1332{
1333	return global.no_turbo || global.turbo_disabled ?
1334			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1335}
1336
1337static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1338{
1339	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1340	cpu->pstate.current_pstate = pstate;
1341	/*
1342	 * Generally, there is no guarantee that this code will always run on
1343	 * the CPU being updated, so force the register update to run on the
1344	 * right CPU.
1345	 */
1346	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1347		      pstate_funcs.get_val(cpu, pstate));
1348}
1349
1350static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1351{
1352	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1353}
1354
1355static void intel_pstate_max_within_limits(struct cpudata *cpu)
1356{
1357	int pstate;
1358
1359	update_turbo_state();
1360	pstate = intel_pstate_get_base_pstate(cpu);
1361	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1362	intel_pstate_set_pstate(cpu, pstate);
1363}
1364
1365static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1366{
1367	cpu->pstate.min_pstate = pstate_funcs.get_min();
1368	cpu->pstate.max_pstate = pstate_funcs.get_max();
1369	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1370	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1371	cpu->pstate.scaling = pstate_funcs.get_scaling();
1372	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1373	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1374
1375	if (pstate_funcs.get_aperf_mperf_shift)
1376		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1377
1378	if (pstate_funcs.get_vid)
1379		pstate_funcs.get_vid(cpu);
1380
1381	intel_pstate_set_min_pstate(cpu);
1382}
1383
1384static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1385{
1386	struct sample *sample = &cpu->sample;
1387
1388	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1389}
1390
1391static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1392{
1393	u64 aperf, mperf;
1394	unsigned long flags;
1395	u64 tsc;
1396
1397	local_irq_save(flags);
1398	rdmsrl(MSR_IA32_APERF, aperf);
1399	rdmsrl(MSR_IA32_MPERF, mperf);
1400	tsc = rdtsc();
1401	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1402		local_irq_restore(flags);
1403		return false;
1404	}
1405	local_irq_restore(flags);
1406
1407	cpu->last_sample_time = cpu->sample.time;
1408	cpu->sample.time = time;
1409	cpu->sample.aperf = aperf;
1410	cpu->sample.mperf = mperf;
1411	cpu->sample.tsc =  tsc;
1412	cpu->sample.aperf -= cpu->prev_aperf;
1413	cpu->sample.mperf -= cpu->prev_mperf;
1414	cpu->sample.tsc -= cpu->prev_tsc;
1415
1416	cpu->prev_aperf = aperf;
1417	cpu->prev_mperf = mperf;
1418	cpu->prev_tsc = tsc;
1419	/*
1420	 * First time this function is invoked in a given cycle, all of the
1421	 * previous sample data fields are equal to zero or stale and they must
1422	 * be populated with meaningful numbers for things to work, so assume
1423	 * that sample.time will always be reset before setting the utilization
1424	 * update hook and make the caller skip the sample then.
1425	 */
1426	if (cpu->last_sample_time) {
1427		intel_pstate_calc_avg_perf(cpu);
1428		return true;
1429	}
1430	return false;
1431}
1432
1433static inline int32_t get_avg_frequency(struct cpudata *cpu)
1434{
1435	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1436}
1437
1438static inline int32_t get_avg_pstate(struct cpudata *cpu)
1439{
1440	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1441			  cpu->sample.core_avg_perf);
1442}
1443
1444static inline int32_t get_target_pstate(struct cpudata *cpu)
1445{
1446	struct sample *sample = &cpu->sample;
1447	int32_t busy_frac, boost;
1448	int target, avg_pstate;
1449
1450	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1451			   sample->tsc);
1452
1453	boost = cpu->iowait_boost;
1454	cpu->iowait_boost >>= 1;
1455
1456	if (busy_frac < boost)
1457		busy_frac = boost;
1458
1459	sample->busy_scaled = busy_frac * 100;
1460
1461	target = global.no_turbo || global.turbo_disabled ?
1462			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1463	target += target >> 2;
1464	target = mul_fp(target, busy_frac);
1465	if (target < cpu->pstate.min_pstate)
1466		target = cpu->pstate.min_pstate;
1467
1468	/*
1469	 * If the average P-state during the previous cycle was higher than the
1470	 * current target, add 50% of the difference to the target to reduce
1471	 * possible performance oscillations and offset possible performance
1472	 * loss related to moving the workload from one CPU to another within
1473	 * a package/module.
1474	 */
1475	avg_pstate = get_avg_pstate(cpu);
1476	if (avg_pstate > target)
1477		target += (avg_pstate - target) >> 1;
1478
1479	return target;
1480}
1481
1482static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1483{
1484	int max_pstate = intel_pstate_get_base_pstate(cpu);
1485	int min_pstate;
1486
1487	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1488	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1489	return clamp_t(int, pstate, min_pstate, max_pstate);
1490}
1491
1492static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1493{
1494	if (pstate == cpu->pstate.current_pstate)
1495		return;
1496
1497	cpu->pstate.current_pstate = pstate;
1498	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1499}
1500
1501static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1502{
1503	int from = cpu->pstate.current_pstate;
1504	struct sample *sample;
1505	int target_pstate;
1506
1507	update_turbo_state();
1508
1509	target_pstate = get_target_pstate(cpu);
1510	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1511	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1512	intel_pstate_update_pstate(cpu, target_pstate);
1513
1514	sample = &cpu->sample;
1515	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1516		fp_toint(sample->busy_scaled),
1517		from,
1518		cpu->pstate.current_pstate,
1519		sample->mperf,
1520		sample->aperf,
1521		sample->tsc,
1522		get_avg_frequency(cpu),
1523		fp_toint(cpu->iowait_boost * 100));
1524}
1525
1526static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1527				     unsigned int flags)
1528{
1529	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1530	u64 delta_ns;
1531
1532	/* Don't allow remote callbacks */
1533	if (smp_processor_id() != cpu->cpu)
1534		return;
1535
1536	if (flags & SCHED_CPUFREQ_IOWAIT) {
1537		cpu->iowait_boost = int_tofp(1);
1538		cpu->last_update = time;
1539		/*
1540		 * The last time the busy was 100% so P-state was max anyway
1541		 * so avoid overhead of computation.
1542		 */
1543		if (fp_toint(cpu->sample.busy_scaled) == 100)
1544			return;
1545
1546		goto set_pstate;
1547	} else if (cpu->iowait_boost) {
1548		/* Clear iowait_boost if the CPU may have been idle. */
1549		delta_ns = time - cpu->last_update;
1550		if (delta_ns > TICK_NSEC)
1551			cpu->iowait_boost = 0;
1552	}
1553	cpu->last_update = time;
1554	delta_ns = time - cpu->sample.time;
1555	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1556		return;
1557
1558set_pstate:
1559	if (intel_pstate_sample(cpu, time))
1560		intel_pstate_adjust_pstate(cpu);
1561}
1562
1563static struct pstate_funcs core_funcs = {
1564	.get_max = core_get_max_pstate,
1565	.get_max_physical = core_get_max_pstate_physical,
1566	.get_min = core_get_min_pstate,
1567	.get_turbo = core_get_turbo_pstate,
1568	.get_scaling = core_get_scaling,
1569	.get_val = core_get_val,
1570};
1571
1572static const struct pstate_funcs silvermont_funcs = {
1573	.get_max = atom_get_max_pstate,
1574	.get_max_physical = atom_get_max_pstate,
1575	.get_min = atom_get_min_pstate,
1576	.get_turbo = atom_get_turbo_pstate,
1577	.get_val = atom_get_val,
1578	.get_scaling = silvermont_get_scaling,
1579	.get_vid = atom_get_vid,
1580};
1581
1582static const struct pstate_funcs airmont_funcs = {
1583	.get_max = atom_get_max_pstate,
1584	.get_max_physical = atom_get_max_pstate,
1585	.get_min = atom_get_min_pstate,
1586	.get_turbo = atom_get_turbo_pstate,
1587	.get_val = atom_get_val,
1588	.get_scaling = airmont_get_scaling,
1589	.get_vid = atom_get_vid,
1590};
1591
1592static const struct pstate_funcs knl_funcs = {
1593	.get_max = core_get_max_pstate,
1594	.get_max_physical = core_get_max_pstate_physical,
1595	.get_min = core_get_min_pstate,
1596	.get_turbo = knl_get_turbo_pstate,
1597	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1598	.get_scaling = core_get_scaling,
1599	.get_val = core_get_val,
1600};
1601
1602#define ICPU(model, policy) \
1603	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1604			(unsigned long)&policy }
1605
1606static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1607	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
1608	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1609	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
1610	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1611	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
1612	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
1613	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1614	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1615	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
1616	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
1617	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
1618	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1619	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
1620	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1621	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
1622	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
1623	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1624	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1625	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1626	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       core_funcs),
1627	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1628	{}
1629};
1630MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1631
1632static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1633	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1634	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1635	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1636	{}
1637};
1638
1639static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1640	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1641	{}
1642};
1643
1644static int intel_pstate_init_cpu(unsigned int cpunum)
1645{
1646	struct cpudata *cpu;
1647
1648	cpu = all_cpu_data[cpunum];
1649
1650	if (!cpu) {
1651		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1652		if (!cpu)
1653			return -ENOMEM;
1654
1655		all_cpu_data[cpunum] = cpu;
1656
1657		cpu->epp_default = -EINVAL;
1658		cpu->epp_powersave = -EINVAL;
1659		cpu->epp_saved = -EINVAL;
1660	}
1661
1662	cpu = all_cpu_data[cpunum];
1663
1664	cpu->cpu = cpunum;
1665
1666	if (hwp_active) {
1667		const struct x86_cpu_id *id;
1668
1669		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1670		if (id)
1671			intel_pstate_disable_ee(cpunum);
1672
1673		intel_pstate_hwp_enable(cpu);
1674	}
1675
1676	intel_pstate_get_cpu_pstates(cpu);
1677
1678	pr_debug("controlling: cpu %d\n", cpunum);
1679
1680	return 0;
1681}
1682
1683static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1684{
1685	struct cpudata *cpu = all_cpu_data[cpu_num];
1686
1687	if (hwp_active)
1688		return;
1689
1690	if (cpu->update_util_set)
1691		return;
1692
1693	/* Prevent intel_pstate_update_util() from using stale data. */
1694	cpu->sample.time = 0;
1695	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1696				     intel_pstate_update_util);
1697	cpu->update_util_set = true;
1698}
1699
1700static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1701{
1702	struct cpudata *cpu_data = all_cpu_data[cpu];
1703
1704	if (!cpu_data->update_util_set)
1705		return;
1706
1707	cpufreq_remove_update_util_hook(cpu);
1708	cpu_data->update_util_set = false;
1709	synchronize_sched();
1710}
1711
1712static int intel_pstate_get_max_freq(struct cpudata *cpu)
1713{
1714	return global.turbo_disabled || global.no_turbo ?
1715			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1716}
1717
1718static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1719					    struct cpudata *cpu)
1720{
1721	int max_freq = intel_pstate_get_max_freq(cpu);
1722	int32_t max_policy_perf, min_policy_perf;
1723	int max_state, turbo_max;
1724
1725	/*
1726	 * HWP needs some special consideration, because on BDX the
1727	 * HWP_REQUEST uses abstract value to represent performance
1728	 * rather than pure ratios.
1729	 */
1730	if (hwp_active) {
1731		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1732	} else {
1733		max_state = intel_pstate_get_base_pstate(cpu);
1734		turbo_max = cpu->pstate.turbo_pstate;
1735	}
1736
1737	max_policy_perf = max_state * policy->max / max_freq;
1738	if (policy->max == policy->min) {
1739		min_policy_perf = max_policy_perf;
1740	} else {
1741		min_policy_perf = max_state * policy->min / max_freq;
1742		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1743					  0, max_policy_perf);
1744	}
1745
1746	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1747		 policy->cpu, max_state,
1748		 min_policy_perf, max_policy_perf);
1749
1750	/* Normalize user input to [min_perf, max_perf] */
1751	if (per_cpu_limits) {
1752		cpu->min_perf_ratio = min_policy_perf;
1753		cpu->max_perf_ratio = max_policy_perf;
1754	} else {
1755		int32_t global_min, global_max;
1756
1757		/* Global limits are in percent of the maximum turbo P-state. */
1758		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1759		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1760		global_min = clamp_t(int32_t, global_min, 0, global_max);
1761
1762		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1763			 global_min, global_max);
1764
1765		cpu->min_perf_ratio = max(min_policy_perf, global_min);
1766		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1767		cpu->max_perf_ratio = min(max_policy_perf, global_max);
1768		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1769
1770		/* Make sure min_perf <= max_perf */
1771		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1772					  cpu->max_perf_ratio);
1773
1774	}
1775	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1776		 cpu->max_perf_ratio,
1777		 cpu->min_perf_ratio);
1778}
1779
1780static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1781{
1782	struct cpudata *cpu;
1783
1784	if (!policy->cpuinfo.max_freq)
1785		return -ENODEV;
1786
1787	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1788		 policy->cpuinfo.max_freq, policy->max);
1789
1790	cpu = all_cpu_data[policy->cpu];
1791	cpu->policy = policy->policy;
1792
1793	mutex_lock(&intel_pstate_limits_lock);
1794
1795	intel_pstate_update_perf_limits(policy, cpu);
1796
1797	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1798		/*
1799		 * NOHZ_FULL CPUs need this as the governor callback may not
1800		 * be invoked on them.
1801		 */
1802		intel_pstate_clear_update_util_hook(policy->cpu);
1803		intel_pstate_max_within_limits(cpu);
1804	} else {
1805		intel_pstate_set_update_util_hook(policy->cpu);
1806	}
1807
1808	if (hwp_active)
1809		intel_pstate_hwp_set(policy->cpu);
1810
1811	mutex_unlock(&intel_pstate_limits_lock);
1812
1813	return 0;
1814}
1815
1816static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
1817					 struct cpudata *cpu)
1818{
1819	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1820	    policy->max < policy->cpuinfo.max_freq &&
1821	    policy->max > cpu->pstate.max_freq) {
1822		pr_debug("policy->max > max non turbo frequency\n");
1823		policy->max = policy->cpuinfo.max_freq;
1824	}
1825}
1826
1827static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1828{
1829	struct cpudata *cpu = all_cpu_data[policy->cpu];
1830
1831	update_turbo_state();
1832	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1833				     intel_pstate_get_max_freq(cpu));
1834
1835	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1836	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1837		return -EINVAL;
1838
1839	intel_pstate_adjust_policy_max(policy, cpu);
1840
1841	return 0;
1842}
1843
1844static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1845{
1846	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
1847}
1848
1849static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1850{
1851	pr_debug("CPU %d exiting\n", policy->cpu);
1852
1853	intel_pstate_clear_update_util_hook(policy->cpu);
1854	if (hwp_active)
1855		intel_pstate_hwp_save_state(policy);
1856	else
1857		intel_cpufreq_stop_cpu(policy);
1858}
1859
1860static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1861{
1862	intel_pstate_exit_perf_limits(policy);
1863
1864	policy->fast_switch_possible = false;
1865
1866	return 0;
1867}
1868
1869static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1870{
1871	struct cpudata *cpu;
1872	int rc;
1873
1874	rc = intel_pstate_init_cpu(policy->cpu);
1875	if (rc)
1876		return rc;
1877
1878	cpu = all_cpu_data[policy->cpu];
1879
1880	cpu->max_perf_ratio = 0xFF;
1881	cpu->min_perf_ratio = 0;
1882
1883	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1884	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1885
1886	/* cpuinfo and default policy values */
1887	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1888	update_turbo_state();
1889	policy->cpuinfo.max_freq = global.turbo_disabled ?
1890			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1891	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1892
1893	intel_pstate_init_acpi_perf_limits(policy);
1894
1895	policy->fast_switch_possible = true;
1896
1897	return 0;
1898}
1899
1900static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1901{
1902	int ret = __intel_pstate_cpu_init(policy);
1903
1904	if (ret)
1905		return ret;
1906
1907	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
1908		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1909	else
1910		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1911
1912	return 0;
1913}
1914
1915static struct cpufreq_driver intel_pstate = {
1916	.flags		= CPUFREQ_CONST_LOOPS,
1917	.verify		= intel_pstate_verify_policy,
1918	.setpolicy	= intel_pstate_set_policy,
1919	.suspend	= intel_pstate_hwp_save_state,
1920	.resume		= intel_pstate_resume,
1921	.init		= intel_pstate_cpu_init,
1922	.exit		= intel_pstate_cpu_exit,
1923	.stop_cpu	= intel_pstate_stop_cpu,
1924	.name		= "intel_pstate",
1925};
1926
1927static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
1928{
1929	struct cpudata *cpu = all_cpu_data[policy->cpu];
1930
1931	update_turbo_state();
1932	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1933				     intel_pstate_get_max_freq(cpu));
1934
1935	intel_pstate_adjust_policy_max(policy, cpu);
1936
1937	intel_pstate_update_perf_limits(policy, cpu);
1938
1939	return 0;
1940}
1941
1942static int intel_cpufreq_target(struct cpufreq_policy *policy,
1943				unsigned int target_freq,
1944				unsigned int relation)
1945{
1946	struct cpudata *cpu = all_cpu_data[policy->cpu];
1947	struct cpufreq_freqs freqs;
1948	int target_pstate;
1949
1950	update_turbo_state();
1951
1952	freqs.old = policy->cur;
1953	freqs.new = target_freq;
1954
1955	cpufreq_freq_transition_begin(policy, &freqs);
1956	switch (relation) {
1957	case CPUFREQ_RELATION_L:
1958		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
1959		break;
1960	case CPUFREQ_RELATION_H:
1961		target_pstate = freqs.new / cpu->pstate.scaling;
1962		break;
1963	default:
1964		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
1965		break;
1966	}
1967	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1968	if (target_pstate != cpu->pstate.current_pstate) {
1969		cpu->pstate.current_pstate = target_pstate;
1970		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
1971			      pstate_funcs.get_val(cpu, target_pstate));
1972	}
1973	freqs.new = target_pstate * cpu->pstate.scaling;
1974	cpufreq_freq_transition_end(policy, &freqs, false);
1975
1976	return 0;
1977}
1978
1979static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
1980					      unsigned int target_freq)
1981{
1982	struct cpudata *cpu = all_cpu_data[policy->cpu];
1983	int target_pstate;
1984
1985	update_turbo_state();
1986
1987	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
1988	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1989	intel_pstate_update_pstate(cpu, target_pstate);
1990	return target_pstate * cpu->pstate.scaling;
1991}
1992
1993static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
1994{
1995	int ret = __intel_pstate_cpu_init(policy);
1996
1997	if (ret)
1998		return ret;
1999
2000	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2001	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2002	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2003	policy->cur = policy->cpuinfo.min_freq;
2004
2005	return 0;
2006}
2007
2008static struct cpufreq_driver intel_cpufreq = {
2009	.flags		= CPUFREQ_CONST_LOOPS,
2010	.verify		= intel_cpufreq_verify_policy,
2011	.target		= intel_cpufreq_target,
2012	.fast_switch	= intel_cpufreq_fast_switch,
2013	.init		= intel_cpufreq_cpu_init,
2014	.exit		= intel_pstate_cpu_exit,
2015	.stop_cpu	= intel_cpufreq_stop_cpu,
2016	.name		= "intel_cpufreq",
2017};
2018
2019static struct cpufreq_driver *default_driver = &intel_pstate;
2020
2021static void intel_pstate_driver_cleanup(void)
2022{
2023	unsigned int cpu;
2024
2025	get_online_cpus();
2026	for_each_online_cpu(cpu) {
2027		if (all_cpu_data[cpu]) {
2028			if (intel_pstate_driver == &intel_pstate)
2029				intel_pstate_clear_update_util_hook(cpu);
2030
2031			kfree(all_cpu_data[cpu]);
2032			all_cpu_data[cpu] = NULL;
2033		}
2034	}
2035	put_online_cpus();
2036	intel_pstate_driver = NULL;
2037}
2038
2039static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2040{
2041	int ret;
2042
2043	memset(&global, 0, sizeof(global));
2044	global.max_perf_pct = 100;
2045
2046	intel_pstate_driver = driver;
2047	ret = cpufreq_register_driver(intel_pstate_driver);
2048	if (ret) {
2049		intel_pstate_driver_cleanup();
2050		return ret;
2051	}
2052
2053	global.min_perf_pct = min_perf_pct_min();
2054
2055	return 0;
2056}
2057
2058static int intel_pstate_unregister_driver(void)
2059{
2060	if (hwp_active)
2061		return -EBUSY;
2062
2063	cpufreq_unregister_driver(intel_pstate_driver);
2064	intel_pstate_driver_cleanup();
2065
2066	return 0;
2067}
2068
2069static ssize_t intel_pstate_show_status(char *buf)
2070{
2071	if (!intel_pstate_driver)
2072		return sprintf(buf, "off\n");
2073
2074	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2075					"active" : "passive");
2076}
2077
2078static int intel_pstate_update_status(const char *buf, size_t size)
2079{
2080	int ret;
2081
2082	if (size == 3 && !strncmp(buf, "off", size))
2083		return intel_pstate_driver ?
2084			intel_pstate_unregister_driver() : -EINVAL;
2085
2086	if (size == 6 && !strncmp(buf, "active", size)) {
2087		if (intel_pstate_driver) {
2088			if (intel_pstate_driver == &intel_pstate)
2089				return 0;
2090
2091			ret = intel_pstate_unregister_driver();
2092			if (ret)
2093				return ret;
2094		}
2095
2096		return intel_pstate_register_driver(&intel_pstate);
2097	}
2098
2099	if (size == 7 && !strncmp(buf, "passive", size)) {
2100		if (intel_pstate_driver) {
2101			if (intel_pstate_driver == &intel_cpufreq)
2102				return 0;
2103
2104			ret = intel_pstate_unregister_driver();
2105			if (ret)
2106				return ret;
2107		}
2108
2109		return intel_pstate_register_driver(&intel_cpufreq);
2110	}
2111
2112	return -EINVAL;
2113}
2114
2115static int no_load __initdata;
2116static int no_hwp __initdata;
2117static int hwp_only __initdata;
2118static unsigned int force_load __initdata;
2119
2120static int __init intel_pstate_msrs_not_valid(void)
2121{
2122	if (!pstate_funcs.get_max() ||
2123	    !pstate_funcs.get_min() ||
2124	    !pstate_funcs.get_turbo())
2125		return -ENODEV;
2126
2127	return 0;
2128}
2129
2130static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2131{
2132	pstate_funcs.get_max   = funcs->get_max;
2133	pstate_funcs.get_max_physical = funcs->get_max_physical;
2134	pstate_funcs.get_min   = funcs->get_min;
2135	pstate_funcs.get_turbo = funcs->get_turbo;
2136	pstate_funcs.get_scaling = funcs->get_scaling;
2137	pstate_funcs.get_val   = funcs->get_val;
2138	pstate_funcs.get_vid   = funcs->get_vid;
2139	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2140}
2141
2142#ifdef CONFIG_ACPI
2143
2144static bool __init intel_pstate_no_acpi_pss(void)
2145{
2146	int i;
2147
2148	for_each_possible_cpu(i) {
2149		acpi_status status;
2150		union acpi_object *pss;
2151		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2152		struct acpi_processor *pr = per_cpu(processors, i);
2153
2154		if (!pr)
2155			continue;
2156
2157		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2158		if (ACPI_FAILURE(status))
2159			continue;
2160
2161		pss = buffer.pointer;
2162		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2163			kfree(pss);
2164			return false;
2165		}
2166
2167		kfree(pss);
2168	}
2169
2170	return true;
2171}
2172
2173static bool __init intel_pstate_has_acpi_ppc(void)
2174{
2175	int i;
2176
2177	for_each_possible_cpu(i) {
2178		struct acpi_processor *pr = per_cpu(processors, i);
2179
2180		if (!pr)
2181			continue;
2182		if (acpi_has_method(pr->handle, "_PPC"))
2183			return true;
2184	}
2185	return false;
2186}
2187
2188enum {
2189	PSS,
2190	PPC,
2191};
2192
2193/* Hardware vendor-specific info that has its own power management modes */
2194static struct acpi_platform_list plat_info[] __initdata = {
2195	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2196	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2197	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2198	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2199	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2200	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2201	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2202	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2203	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2204	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2205	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2206	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2207	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2208	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2209	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2210	{ } /* End */
2211};
2212
2213static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2214{
2215	const struct x86_cpu_id *id;
2216	u64 misc_pwr;
2217	int idx;
2218
2219	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2220	if (id) {
2221		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2222		if ( misc_pwr & (1 << 8))
2223			return true;
2224	}
2225
2226	idx = acpi_match_platform_list(plat_info);
2227	if (idx < 0)
2228		return false;
2229
2230	switch (plat_info[idx].data) {
2231	case PSS:
2232		return intel_pstate_no_acpi_pss();
2233	case PPC:
2234		return intel_pstate_has_acpi_ppc() && !force_load;
2235	}
2236
2237	return false;
2238}
2239
2240static void intel_pstate_request_control_from_smm(void)
2241{
2242	/*
2243	 * It may be unsafe to request P-states control from SMM if _PPC support
2244	 * has not been enabled.
2245	 */
2246	if (acpi_ppc)
2247		acpi_processor_pstate_control();
2248}
2249#else /* CONFIG_ACPI not enabled */
2250static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2251static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2252static inline void intel_pstate_request_control_from_smm(void) {}
2253#endif /* CONFIG_ACPI */
2254
2255static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2256	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2257	{}
2258};
2259
2260static int __init intel_pstate_init(void)
2261{
2262	int rc;
2263
2264	if (no_load)
2265		return -ENODEV;
2266
2267	if (x86_match_cpu(hwp_support_ids)) {
2268		copy_cpu_funcs(&core_funcs);
2269		if (!no_hwp) {
2270			hwp_active++;
2271			intel_pstate.attr = hwp_cpufreq_attrs;
2272			goto hwp_cpu_matched;
2273		}
2274	} else {
2275		const struct x86_cpu_id *id;
2276
2277		id = x86_match_cpu(intel_pstate_cpu_ids);
2278		if (!id)
2279			return -ENODEV;
2280
2281		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2282	}
2283
2284	if (intel_pstate_msrs_not_valid())
2285		return -ENODEV;
2286
2287hwp_cpu_matched:
2288	/*
2289	 * The Intel pstate driver will be ignored if the platform
2290	 * firmware has its own power management modes.
2291	 */
2292	if (intel_pstate_platform_pwr_mgmt_exists())
2293		return -ENODEV;
2294
2295	if (!hwp_active && hwp_only)
2296		return -ENOTSUPP;
2297
2298	pr_info("Intel P-state driver initializing\n");
2299
2300	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2301	if (!all_cpu_data)
2302		return -ENOMEM;
2303
2304	intel_pstate_request_control_from_smm();
2305
2306	intel_pstate_sysfs_expose_params();
2307
2308	mutex_lock(&intel_pstate_driver_lock);
2309	rc = intel_pstate_register_driver(default_driver);
2310	mutex_unlock(&intel_pstate_driver_lock);
2311	if (rc)
2312		return rc;
2313
2314	if (hwp_active)
2315		pr_info("HWP enabled\n");
2316
2317	return 0;
2318}
2319device_initcall(intel_pstate_init);
2320
2321static int __init intel_pstate_setup(char *str)
2322{
2323	if (!str)
2324		return -EINVAL;
2325
2326	if (!strcmp(str, "disable")) {
2327		no_load = 1;
2328	} else if (!strcmp(str, "passive")) {
2329		pr_info("Passive mode enabled\n");
2330		default_driver = &intel_cpufreq;
2331		no_hwp = 1;
2332	}
2333	if (!strcmp(str, "no_hwp")) {
2334		pr_info("HWP disabled\n");
2335		no_hwp = 1;
2336	}
2337	if (!strcmp(str, "force"))
2338		force_load = 1;
2339	if (!strcmp(str, "hwp_only"))
2340		hwp_only = 1;
2341	if (!strcmp(str, "per_cpu_perf_limits"))
2342		per_cpu_limits = true;
2343
2344#ifdef CONFIG_ACPI
2345	if (!strcmp(str, "support_acpi_ppc"))
2346		acpi_ppc = true;
2347#endif
2348
2349	return 0;
2350}
2351early_param("intel_pstate", intel_pstate_setup);
2352
2353MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2354MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2355MODULE_LICENSE("GPL");