Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kernel.h>
12#include <linux/kernel_stat.h>
13#include <linux/module.h>
14#include <linux/ktime.h>
15#include <linux/hrtimer.h>
16#include <linux/tick.h>
17#include <linux/slab.h>
18#include <linux/sched/cpufreq.h>
19#include <linux/list.h>
20#include <linux/cpu.h>
21#include <linux/cpufreq.h>
22#include <linux/sysfs.h>
23#include <linux/types.h>
24#include <linux/fs.h>
25#include <linux/acpi.h>
26#include <linux/vmalloc.h>
27#include <linux/pm_qos.h>
28#include <trace/events/power.h>
29
30#include <asm/div64.h>
31#include <asm/msr.h>
32#include <asm/cpu_device_id.h>
33#include <asm/cpufeature.h>
34#include <asm/intel-family.h>
35
36#define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
37
38#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
39#define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000
40#define INTEL_CPUFREQ_TRANSITION_DELAY 500
41
42#ifdef CONFIG_ACPI
43#include <acpi/processor.h>
44#include <acpi/cppc_acpi.h>
45#endif
46
47#define FRAC_BITS 8
48#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49#define fp_toint(X) ((X) >> FRAC_BITS)
50
51#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
52
53#define EXT_BITS 6
54#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57
58static inline int32_t mul_fp(int32_t x, int32_t y)
59{
60 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61}
62
63static inline int32_t div_fp(s64 x, s64 y)
64{
65 return div64_s64((int64_t)x << FRAC_BITS, y);
66}
67
68static inline int ceiling_fp(int32_t x)
69{
70 int mask, ret;
71
72 ret = fp_toint(x);
73 mask = (1 << FRAC_BITS) - 1;
74 if (x & mask)
75 ret += 1;
76 return ret;
77}
78
79static inline int32_t percent_fp(int percent)
80{
81 return div_fp(percent, 100);
82}
83
84static inline u64 mul_ext_fp(u64 x, u64 y)
85{
86 return (x * y) >> EXT_FRAC_BITS;
87}
88
89static inline u64 div_ext_fp(u64 x, u64 y)
90{
91 return div64_u64(x << EXT_FRAC_BITS, y);
92}
93
94static inline int32_t percent_ext_fp(int percent)
95{
96 return div_ext_fp(percent, 100);
97}
98
99/**
100 * struct sample - Store performance sample
101 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
102 * performance during last sample period
103 * @busy_scaled: Scaled busy value which is used to calculate next
104 * P state. This can be different than core_avg_perf
105 * to account for cpu idle period
106 * @aperf: Difference of actual performance frequency clock count
107 * read from APERF MSR between last and current sample
108 * @mperf: Difference of maximum performance frequency clock count
109 * read from MPERF MSR between last and current sample
110 * @tsc: Difference of time stamp counter between last and
111 * current sample
112 * @time: Current time from scheduler
113 *
114 * This structure is used in the cpudata structure to store performance sample
115 * data for choosing next P State.
116 */
117struct sample {
118 int32_t core_avg_perf;
119 int32_t busy_scaled;
120 u64 aperf;
121 u64 mperf;
122 u64 tsc;
123 u64 time;
124};
125
126/**
127 * struct pstate_data - Store P state data
128 * @current_pstate: Current requested P state
129 * @min_pstate: Min P state possible for this platform
130 * @max_pstate: Max P state possible for this platform
131 * @max_pstate_physical:This is physical Max P state for a processor
132 * This can be higher than the max_pstate which can
133 * be limited by platform thermal design power limits
134 * @scaling: Scaling factor to convert frequency to cpufreq
135 * frequency units
136 * @turbo_pstate: Max Turbo P state possible for this platform
137 * @max_freq: @max_pstate frequency in cpufreq units
138 * @turbo_freq: @turbo_pstate frequency in cpufreq units
139 *
140 * Stores the per cpu model P state limits and current P state.
141 */
142struct pstate_data {
143 int current_pstate;
144 int min_pstate;
145 int max_pstate;
146 int max_pstate_physical;
147 int scaling;
148 int turbo_pstate;
149 unsigned int max_freq;
150 unsigned int turbo_freq;
151};
152
153/**
154 * struct vid_data - Stores voltage information data
155 * @min: VID data for this platform corresponding to
156 * the lowest P state
157 * @max: VID data corresponding to the highest P State.
158 * @turbo: VID data for turbo P state
159 * @ratio: Ratio of (vid max - vid min) /
160 * (max P state - Min P State)
161 *
162 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163 * This data is used in Atom platforms, where in addition to target P state,
164 * the voltage data needs to be specified to select next P State.
165 */
166struct vid_data {
167 int min;
168 int max;
169 int turbo;
170 int32_t ratio;
171};
172
173/**
174 * struct global_params - Global parameters, mostly tunable via sysfs.
175 * @no_turbo: Whether or not to use turbo P-states.
176 * @turbo_disabled: Whether or not turbo P-states are available at all,
177 * based on the MSR_IA32_MISC_ENABLE value and whether or
178 * not the maximum reported turbo P-state is different from
179 * the maximum reported non-turbo one.
180 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
181 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
182 * P-state capacity.
183 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
184 * P-state capacity.
185 */
186struct global_params {
187 bool no_turbo;
188 bool turbo_disabled;
189 bool turbo_disabled_mf;
190 int max_perf_pct;
191 int min_perf_pct;
192};
193
194/**
195 * struct cpudata - Per CPU instance data storage
196 * @cpu: CPU number for this instance data
197 * @policy: CPUFreq policy value
198 * @update_util: CPUFreq utility callback information
199 * @update_util_set: CPUFreq utility callback is set
200 * @iowait_boost: iowait-related boost fraction
201 * @last_update: Time of the last update.
202 * @pstate: Stores P state limits for this CPU
203 * @vid: Stores VID limits for this CPU
204 * @last_sample_time: Last Sample time
205 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference
206 * @prev_aperf: Last APERF value read from APERF MSR
207 * @prev_mperf: Last MPERF value read from MPERF MSR
208 * @prev_tsc: Last timestamp counter (TSC) value
209 * @prev_cummulative_iowait: IO Wait time difference from last and
210 * current sample
211 * @sample: Storage for storing last Sample data
212 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
213 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
214 * @acpi_perf_data: Stores ACPI perf information read from _PSS
215 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
216 * @epp_powersave: Last saved HWP energy performance preference
217 * (EPP) or energy performance bias (EPB),
218 * when policy switched to performance
219 * @epp_policy: Last saved policy used to set EPP/EPB
220 * @epp_default: Power on default HWP energy performance
221 * preference/bias
222 * @epp_cached Cached HWP energy-performance preference value
223 * @hwp_req_cached: Cached value of the last HWP Request MSR
224 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
225 * @last_io_update: Last time when IO wake flag was set
226 * @sched_flags: Store scheduler flags for possible cross CPU update
227 * @hwp_boost_min: Last HWP boosted min performance
228 * @suspended: Whether or not the driver has been suspended.
229 *
230 * This structure stores per CPU instance data for all CPUs.
231 */
232struct cpudata {
233 int cpu;
234
235 unsigned int policy;
236 struct update_util_data update_util;
237 bool update_util_set;
238
239 struct pstate_data pstate;
240 struct vid_data vid;
241
242 u64 last_update;
243 u64 last_sample_time;
244 u64 aperf_mperf_shift;
245 u64 prev_aperf;
246 u64 prev_mperf;
247 u64 prev_tsc;
248 u64 prev_cummulative_iowait;
249 struct sample sample;
250 int32_t min_perf_ratio;
251 int32_t max_perf_ratio;
252#ifdef CONFIG_ACPI
253 struct acpi_processor_performance acpi_perf_data;
254 bool valid_pss_table;
255#endif
256 unsigned int iowait_boost;
257 s16 epp_powersave;
258 s16 epp_policy;
259 s16 epp_default;
260 s16 epp_cached;
261 u64 hwp_req_cached;
262 u64 hwp_cap_cached;
263 u64 last_io_update;
264 unsigned int sched_flags;
265 u32 hwp_boost_min;
266 bool suspended;
267};
268
269static struct cpudata **all_cpu_data;
270
271/**
272 * struct pstate_funcs - Per CPU model specific callbacks
273 * @get_max: Callback to get maximum non turbo effective P state
274 * @get_max_physical: Callback to get maximum non turbo physical P state
275 * @get_min: Callback to get minimum P state
276 * @get_turbo: Callback to get turbo P state
277 * @get_scaling: Callback to get frequency scaling factor
278 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
279 * @get_val: Callback to convert P state to actual MSR write value
280 * @get_vid: Callback to get VID data for Atom platforms
281 *
282 * Core and Atom CPU models have different way to get P State limits. This
283 * structure is used to store those callbacks.
284 */
285struct pstate_funcs {
286 int (*get_max)(void);
287 int (*get_max_physical)(void);
288 int (*get_min)(void);
289 int (*get_turbo)(void);
290 int (*get_scaling)(void);
291 int (*get_aperf_mperf_shift)(void);
292 u64 (*get_val)(struct cpudata*, int pstate);
293 void (*get_vid)(struct cpudata *);
294};
295
296static struct pstate_funcs pstate_funcs __read_mostly;
297
298static int hwp_active __read_mostly;
299static int hwp_mode_bdw __read_mostly;
300static bool per_cpu_limits __read_mostly;
301static bool hwp_boost __read_mostly;
302
303static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304
305#ifdef CONFIG_ACPI
306static bool acpi_ppc;
307#endif
308
309static struct global_params global;
310
311static DEFINE_MUTEX(intel_pstate_driver_lock);
312static DEFINE_MUTEX(intel_pstate_limits_lock);
313
314#ifdef CONFIG_ACPI
315
316static bool intel_pstate_acpi_pm_profile_server(void)
317{
318 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
319 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
320 return true;
321
322 return false;
323}
324
325static bool intel_pstate_get_ppc_enable_status(void)
326{
327 if (intel_pstate_acpi_pm_profile_server())
328 return true;
329
330 return acpi_ppc;
331}
332
333#ifdef CONFIG_ACPI_CPPC_LIB
334
335/* The work item is needed to avoid CPU hotplug locking issues */
336static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
337{
338 sched_set_itmt_support();
339}
340
341static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
342
343static void intel_pstate_set_itmt_prio(int cpu)
344{
345 struct cppc_perf_caps cppc_perf;
346 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
347 int ret;
348
349 ret = cppc_get_perf_caps(cpu, &cppc_perf);
350 if (ret)
351 return;
352
353 /*
354 * The priorities can be set regardless of whether or not
355 * sched_set_itmt_support(true) has been called and it is valid to
356 * update them at any time after it has been called.
357 */
358 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
359
360 if (max_highest_perf <= min_highest_perf) {
361 if (cppc_perf.highest_perf > max_highest_perf)
362 max_highest_perf = cppc_perf.highest_perf;
363
364 if (cppc_perf.highest_perf < min_highest_perf)
365 min_highest_perf = cppc_perf.highest_perf;
366
367 if (max_highest_perf > min_highest_perf) {
368 /*
369 * This code can be run during CPU online under the
370 * CPU hotplug locks, so sched_set_itmt_support()
371 * cannot be called from here. Queue up a work item
372 * to invoke it.
373 */
374 schedule_work(&sched_itmt_work);
375 }
376 }
377}
378
379static int intel_pstate_get_cppc_guranteed(int cpu)
380{
381 struct cppc_perf_caps cppc_perf;
382 int ret;
383
384 ret = cppc_get_perf_caps(cpu, &cppc_perf);
385 if (ret)
386 return ret;
387
388 if (cppc_perf.guaranteed_perf)
389 return cppc_perf.guaranteed_perf;
390
391 return cppc_perf.nominal_perf;
392}
393
394#else /* CONFIG_ACPI_CPPC_LIB */
395static void intel_pstate_set_itmt_prio(int cpu)
396{
397}
398#endif /* CONFIG_ACPI_CPPC_LIB */
399
400static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
401{
402 struct cpudata *cpu;
403 int ret;
404 int i;
405
406 if (hwp_active) {
407 intel_pstate_set_itmt_prio(policy->cpu);
408 return;
409 }
410
411 if (!intel_pstate_get_ppc_enable_status())
412 return;
413
414 cpu = all_cpu_data[policy->cpu];
415
416 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
417 policy->cpu);
418 if (ret)
419 return;
420
421 /*
422 * Check if the control value in _PSS is for PERF_CTL MSR, which should
423 * guarantee that the states returned by it map to the states in our
424 * list directly.
425 */
426 if (cpu->acpi_perf_data.control_register.space_id !=
427 ACPI_ADR_SPACE_FIXED_HARDWARE)
428 goto err;
429
430 /*
431 * If there is only one entry _PSS, simply ignore _PSS and continue as
432 * usual without taking _PSS into account
433 */
434 if (cpu->acpi_perf_data.state_count < 2)
435 goto err;
436
437 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
438 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
439 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
440 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
441 (u32) cpu->acpi_perf_data.states[i].core_frequency,
442 (u32) cpu->acpi_perf_data.states[i].power,
443 (u32) cpu->acpi_perf_data.states[i].control);
444 }
445
446 /*
447 * The _PSS table doesn't contain whole turbo frequency range.
448 * This just contains +1 MHZ above the max non turbo frequency,
449 * with control value corresponding to max turbo ratio. But
450 * when cpufreq set policy is called, it will call with this
451 * max frequency, which will cause a reduced performance as
452 * this driver uses real max turbo frequency as the max
453 * frequency. So correct this frequency in _PSS table to
454 * correct max turbo frequency based on the turbo state.
455 * Also need to convert to MHz as _PSS freq is in MHz.
456 */
457 if (!global.turbo_disabled)
458 cpu->acpi_perf_data.states[0].core_frequency =
459 policy->cpuinfo.max_freq / 1000;
460 cpu->valid_pss_table = true;
461 pr_debug("_PPC limits will be enforced\n");
462
463 return;
464
465 err:
466 cpu->valid_pss_table = false;
467 acpi_processor_unregister_performance(policy->cpu);
468}
469
470static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
471{
472 struct cpudata *cpu;
473
474 cpu = all_cpu_data[policy->cpu];
475 if (!cpu->valid_pss_table)
476 return;
477
478 acpi_processor_unregister_performance(policy->cpu);
479}
480#else /* CONFIG_ACPI */
481static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
482{
483}
484
485static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
486{
487}
488
489static inline bool intel_pstate_acpi_pm_profile_server(void)
490{
491 return false;
492}
493#endif /* CONFIG_ACPI */
494
495#ifndef CONFIG_ACPI_CPPC_LIB
496static int intel_pstate_get_cppc_guranteed(int cpu)
497{
498 return -ENOTSUPP;
499}
500#endif /* CONFIG_ACPI_CPPC_LIB */
501
502static inline void update_turbo_state(void)
503{
504 u64 misc_en;
505 struct cpudata *cpu;
506
507 cpu = all_cpu_data[0];
508 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
509 global.turbo_disabled =
510 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
511 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
512}
513
514static int min_perf_pct_min(void)
515{
516 struct cpudata *cpu = all_cpu_data[0];
517 int turbo_pstate = cpu->pstate.turbo_pstate;
518
519 return turbo_pstate ?
520 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
521}
522
523static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
524{
525 u64 epb;
526 int ret;
527
528 if (!boot_cpu_has(X86_FEATURE_EPB))
529 return -ENXIO;
530
531 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
532 if (ret)
533 return (s16)ret;
534
535 return (s16)(epb & 0x0f);
536}
537
538static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
539{
540 s16 epp;
541
542 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
543 /*
544 * When hwp_req_data is 0, means that caller didn't read
545 * MSR_HWP_REQUEST, so need to read and get EPP.
546 */
547 if (!hwp_req_data) {
548 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
549 &hwp_req_data);
550 if (epp)
551 return epp;
552 }
553 epp = (hwp_req_data >> 24) & 0xff;
554 } else {
555 /* When there is no EPP present, HWP uses EPB settings */
556 epp = intel_pstate_get_epb(cpu_data);
557 }
558
559 return epp;
560}
561
562static int intel_pstate_set_epb(int cpu, s16 pref)
563{
564 u64 epb;
565 int ret;
566
567 if (!boot_cpu_has(X86_FEATURE_EPB))
568 return -ENXIO;
569
570 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
571 if (ret)
572 return ret;
573
574 epb = (epb & ~0x0f) | pref;
575 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
576
577 return 0;
578}
579
580/*
581 * EPP/EPB display strings corresponding to EPP index in the
582 * energy_perf_strings[]
583 * index String
584 *-------------------------------------
585 * 0 default
586 * 1 performance
587 * 2 balance_performance
588 * 3 balance_power
589 * 4 power
590 */
591static const char * const energy_perf_strings[] = {
592 "default",
593 "performance",
594 "balance_performance",
595 "balance_power",
596 "power",
597 NULL
598};
599static const unsigned int epp_values[] = {
600 HWP_EPP_PERFORMANCE,
601 HWP_EPP_BALANCE_PERFORMANCE,
602 HWP_EPP_BALANCE_POWERSAVE,
603 HWP_EPP_POWERSAVE
604};
605
606static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
607{
608 s16 epp;
609 int index = -EINVAL;
610
611 *raw_epp = 0;
612 epp = intel_pstate_get_epp(cpu_data, 0);
613 if (epp < 0)
614 return epp;
615
616 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
617 if (epp == HWP_EPP_PERFORMANCE)
618 return 1;
619 if (epp == HWP_EPP_BALANCE_PERFORMANCE)
620 return 2;
621 if (epp == HWP_EPP_BALANCE_POWERSAVE)
622 return 3;
623 if (epp == HWP_EPP_POWERSAVE)
624 return 4;
625 *raw_epp = epp;
626 return 0;
627 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
628 /*
629 * Range:
630 * 0x00-0x03 : Performance
631 * 0x04-0x07 : Balance performance
632 * 0x08-0x0B : Balance power
633 * 0x0C-0x0F : Power
634 * The EPB is a 4 bit value, but our ranges restrict the
635 * value which can be set. Here only using top two bits
636 * effectively.
637 */
638 index = (epp >> 2) + 1;
639 }
640
641 return index;
642}
643
644static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
645{
646 int ret;
647
648 /*
649 * Use the cached HWP Request MSR value, because in the active mode the
650 * register itself may be updated by intel_pstate_hwp_boost_up() or
651 * intel_pstate_hwp_boost_down() at any time.
652 */
653 u64 value = READ_ONCE(cpu->hwp_req_cached);
654
655 value &= ~GENMASK_ULL(31, 24);
656 value |= (u64)epp << 24;
657 /*
658 * The only other updater of hwp_req_cached in the active mode,
659 * intel_pstate_hwp_set(), is called under the same lock as this
660 * function, so it cannot run in parallel with the update below.
661 */
662 WRITE_ONCE(cpu->hwp_req_cached, value);
663 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
664 if (!ret)
665 cpu->epp_cached = epp;
666
667 return ret;
668}
669
670static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
671 int pref_index, bool use_raw,
672 u32 raw_epp)
673{
674 int epp = -EINVAL;
675 int ret;
676
677 if (!pref_index)
678 epp = cpu_data->epp_default;
679
680 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
681 if (use_raw)
682 epp = raw_epp;
683 else if (epp == -EINVAL)
684 epp = epp_values[pref_index - 1];
685
686 /*
687 * To avoid confusion, refuse to set EPP to any values different
688 * from 0 (performance) if the current policy is "performance",
689 * because those values would be overridden.
690 */
691 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
692 return -EBUSY;
693
694 ret = intel_pstate_set_epp(cpu_data, epp);
695 } else {
696 if (epp == -EINVAL)
697 epp = (pref_index - 1) << 2;
698 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
699 }
700
701 return ret;
702}
703
704static ssize_t show_energy_performance_available_preferences(
705 struct cpufreq_policy *policy, char *buf)
706{
707 int i = 0;
708 int ret = 0;
709
710 while (energy_perf_strings[i] != NULL)
711 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
712
713 ret += sprintf(&buf[ret], "\n");
714
715 return ret;
716}
717
718cpufreq_freq_attr_ro(energy_performance_available_preferences);
719
720static struct cpufreq_driver intel_pstate;
721
722static ssize_t store_energy_performance_preference(
723 struct cpufreq_policy *policy, const char *buf, size_t count)
724{
725 struct cpudata *cpu = all_cpu_data[policy->cpu];
726 char str_preference[21];
727 bool raw = false;
728 ssize_t ret;
729 u32 epp = 0;
730
731 ret = sscanf(buf, "%20s", str_preference);
732 if (ret != 1)
733 return -EINVAL;
734
735 ret = match_string(energy_perf_strings, -1, str_preference);
736 if (ret < 0) {
737 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
738 return ret;
739
740 ret = kstrtouint(buf, 10, &epp);
741 if (ret)
742 return ret;
743
744 if (epp > 255)
745 return -EINVAL;
746
747 raw = true;
748 }
749
750 /*
751 * This function runs with the policy R/W semaphore held, which
752 * guarantees that the driver pointer will not change while it is
753 * running.
754 */
755 if (!intel_pstate_driver)
756 return -EAGAIN;
757
758 mutex_lock(&intel_pstate_limits_lock);
759
760 if (intel_pstate_driver == &intel_pstate) {
761 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
762 } else {
763 /*
764 * In the passive mode the governor needs to be stopped on the
765 * target CPU before the EPP update and restarted after it,
766 * which is super-heavy-weight, so make sure it is worth doing
767 * upfront.
768 */
769 if (!raw)
770 epp = ret ? epp_values[ret - 1] : cpu->epp_default;
771
772 if (cpu->epp_cached != epp) {
773 int err;
774
775 cpufreq_stop_governor(policy);
776 ret = intel_pstate_set_epp(cpu, epp);
777 err = cpufreq_start_governor(policy);
778 if (!ret)
779 ret = err;
780 }
781 }
782
783 mutex_unlock(&intel_pstate_limits_lock);
784
785 return ret ?: count;
786}
787
788static ssize_t show_energy_performance_preference(
789 struct cpufreq_policy *policy, char *buf)
790{
791 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
792 int preference, raw_epp;
793
794 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
795 if (preference < 0)
796 return preference;
797
798 if (raw_epp)
799 return sprintf(buf, "%d\n", raw_epp);
800 else
801 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
802}
803
804cpufreq_freq_attr_rw(energy_performance_preference);
805
806static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
807{
808 struct cpudata *cpu;
809 u64 cap;
810 int ratio;
811
812 ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
813 if (ratio <= 0) {
814 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
815 ratio = HWP_GUARANTEED_PERF(cap);
816 }
817
818 cpu = all_cpu_data[policy->cpu];
819
820 return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
821}
822
823cpufreq_freq_attr_ro(base_frequency);
824
825static struct freq_attr *hwp_cpufreq_attrs[] = {
826 &energy_performance_preference,
827 &energy_performance_available_preferences,
828 &base_frequency,
829 NULL,
830};
831
832static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
833 int *current_max)
834{
835 u64 cap;
836
837 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
838 WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
839 if (global.no_turbo || global.turbo_disabled)
840 *current_max = HWP_GUARANTEED_PERF(cap);
841 else
842 *current_max = HWP_HIGHEST_PERF(cap);
843
844 *phy_max = HWP_HIGHEST_PERF(cap);
845}
846
847static void intel_pstate_hwp_set(unsigned int cpu)
848{
849 struct cpudata *cpu_data = all_cpu_data[cpu];
850 int max, min;
851 u64 value;
852 s16 epp;
853
854 max = cpu_data->max_perf_ratio;
855 min = cpu_data->min_perf_ratio;
856
857 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
858 min = max;
859
860 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
861
862 value &= ~HWP_MIN_PERF(~0L);
863 value |= HWP_MIN_PERF(min);
864
865 value &= ~HWP_MAX_PERF(~0L);
866 value |= HWP_MAX_PERF(max);
867
868 if (cpu_data->epp_policy == cpu_data->policy)
869 goto skip_epp;
870
871 cpu_data->epp_policy = cpu_data->policy;
872
873 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
874 epp = intel_pstate_get_epp(cpu_data, value);
875 cpu_data->epp_powersave = epp;
876 /* If EPP read was failed, then don't try to write */
877 if (epp < 0)
878 goto skip_epp;
879
880 epp = 0;
881 } else {
882 /* skip setting EPP, when saved value is invalid */
883 if (cpu_data->epp_powersave < 0)
884 goto skip_epp;
885
886 /*
887 * No need to restore EPP when it is not zero. This
888 * means:
889 * - Policy is not changed
890 * - user has manually changed
891 * - Error reading EPB
892 */
893 epp = intel_pstate_get_epp(cpu_data, value);
894 if (epp)
895 goto skip_epp;
896
897 epp = cpu_data->epp_powersave;
898 }
899 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
900 value &= ~GENMASK_ULL(31, 24);
901 value |= (u64)epp << 24;
902 } else {
903 intel_pstate_set_epb(cpu, epp);
904 }
905skip_epp:
906 WRITE_ONCE(cpu_data->hwp_req_cached, value);
907 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
908}
909
910static void intel_pstate_hwp_offline(struct cpudata *cpu)
911{
912 u64 value = READ_ONCE(cpu->hwp_req_cached);
913 int min_perf;
914
915 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
916 /*
917 * In case the EPP has been set to "performance" by the
918 * active mode "performance" scaling algorithm, replace that
919 * temporary value with the cached EPP one.
920 */
921 value &= ~GENMASK_ULL(31, 24);
922 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
923 WRITE_ONCE(cpu->hwp_req_cached, value);
924 }
925
926 value &= ~GENMASK_ULL(31, 0);
927 min_perf = HWP_LOWEST_PERF(cpu->hwp_cap_cached);
928
929 /* Set hwp_max = hwp_min */
930 value |= HWP_MAX_PERF(min_perf);
931 value |= HWP_MIN_PERF(min_perf);
932
933 /* Set EPP to min */
934 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
935 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
936
937 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
938}
939
940#define POWER_CTL_EE_ENABLE 1
941#define POWER_CTL_EE_DISABLE 2
942
943static int power_ctl_ee_state;
944
945static void set_power_ctl_ee_state(bool input)
946{
947 u64 power_ctl;
948
949 mutex_lock(&intel_pstate_driver_lock);
950 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
951 if (input) {
952 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
953 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
954 } else {
955 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
956 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
957 }
958 wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
959 mutex_unlock(&intel_pstate_driver_lock);
960}
961
962static void intel_pstate_hwp_enable(struct cpudata *cpudata);
963
964static void intel_pstate_hwp_reenable(struct cpudata *cpu)
965{
966 intel_pstate_hwp_enable(cpu);
967 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
968}
969
970static int intel_pstate_suspend(struct cpufreq_policy *policy)
971{
972 struct cpudata *cpu = all_cpu_data[policy->cpu];
973
974 pr_debug("CPU %d suspending\n", cpu->cpu);
975
976 cpu->suspended = true;
977
978 return 0;
979}
980
981static int intel_pstate_resume(struct cpufreq_policy *policy)
982{
983 struct cpudata *cpu = all_cpu_data[policy->cpu];
984
985 pr_debug("CPU %d resuming\n", cpu->cpu);
986
987 /* Only restore if the system default is changed */
988 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
989 set_power_ctl_ee_state(true);
990 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
991 set_power_ctl_ee_state(false);
992
993 if (cpu->suspended && hwp_active) {
994 mutex_lock(&intel_pstate_limits_lock);
995
996 /* Re-enable HWP, because "online" has not done that. */
997 intel_pstate_hwp_reenable(cpu);
998
999 mutex_unlock(&intel_pstate_limits_lock);
1000 }
1001
1002 cpu->suspended = false;
1003
1004 return 0;
1005}
1006
1007static void intel_pstate_update_policies(void)
1008{
1009 int cpu;
1010
1011 for_each_possible_cpu(cpu)
1012 cpufreq_update_policy(cpu);
1013}
1014
1015static void intel_pstate_update_max_freq(unsigned int cpu)
1016{
1017 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1018 struct cpudata *cpudata;
1019
1020 if (!policy)
1021 return;
1022
1023 cpudata = all_cpu_data[cpu];
1024 policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1025 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1026
1027 refresh_frequency_limits(policy);
1028
1029 cpufreq_cpu_release(policy);
1030}
1031
1032static void intel_pstate_update_limits(unsigned int cpu)
1033{
1034 mutex_lock(&intel_pstate_driver_lock);
1035
1036 update_turbo_state();
1037 /*
1038 * If turbo has been turned on or off globally, policy limits for
1039 * all CPUs need to be updated to reflect that.
1040 */
1041 if (global.turbo_disabled_mf != global.turbo_disabled) {
1042 global.turbo_disabled_mf = global.turbo_disabled;
1043 arch_set_max_freq_ratio(global.turbo_disabled);
1044 for_each_possible_cpu(cpu)
1045 intel_pstate_update_max_freq(cpu);
1046 } else {
1047 cpufreq_update_policy(cpu);
1048 }
1049
1050 mutex_unlock(&intel_pstate_driver_lock);
1051}
1052
1053/************************** sysfs begin ************************/
1054#define show_one(file_name, object) \
1055 static ssize_t show_##file_name \
1056 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
1057 { \
1058 return sprintf(buf, "%u\n", global.object); \
1059 }
1060
1061static ssize_t intel_pstate_show_status(char *buf);
1062static int intel_pstate_update_status(const char *buf, size_t size);
1063
1064static ssize_t show_status(struct kobject *kobj,
1065 struct kobj_attribute *attr, char *buf)
1066{
1067 ssize_t ret;
1068
1069 mutex_lock(&intel_pstate_driver_lock);
1070 ret = intel_pstate_show_status(buf);
1071 mutex_unlock(&intel_pstate_driver_lock);
1072
1073 return ret;
1074}
1075
1076static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1077 const char *buf, size_t count)
1078{
1079 char *p = memchr(buf, '\n', count);
1080 int ret;
1081
1082 mutex_lock(&intel_pstate_driver_lock);
1083 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1084 mutex_unlock(&intel_pstate_driver_lock);
1085
1086 return ret < 0 ? ret : count;
1087}
1088
1089static ssize_t show_turbo_pct(struct kobject *kobj,
1090 struct kobj_attribute *attr, char *buf)
1091{
1092 struct cpudata *cpu;
1093 int total, no_turbo, turbo_pct;
1094 uint32_t turbo_fp;
1095
1096 mutex_lock(&intel_pstate_driver_lock);
1097
1098 if (!intel_pstate_driver) {
1099 mutex_unlock(&intel_pstate_driver_lock);
1100 return -EAGAIN;
1101 }
1102
1103 cpu = all_cpu_data[0];
1104
1105 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1106 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1107 turbo_fp = div_fp(no_turbo, total);
1108 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1109
1110 mutex_unlock(&intel_pstate_driver_lock);
1111
1112 return sprintf(buf, "%u\n", turbo_pct);
1113}
1114
1115static ssize_t show_num_pstates(struct kobject *kobj,
1116 struct kobj_attribute *attr, char *buf)
1117{
1118 struct cpudata *cpu;
1119 int total;
1120
1121 mutex_lock(&intel_pstate_driver_lock);
1122
1123 if (!intel_pstate_driver) {
1124 mutex_unlock(&intel_pstate_driver_lock);
1125 return -EAGAIN;
1126 }
1127
1128 cpu = all_cpu_data[0];
1129 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1130
1131 mutex_unlock(&intel_pstate_driver_lock);
1132
1133 return sprintf(buf, "%u\n", total);
1134}
1135
1136static ssize_t show_no_turbo(struct kobject *kobj,
1137 struct kobj_attribute *attr, char *buf)
1138{
1139 ssize_t ret;
1140
1141 mutex_lock(&intel_pstate_driver_lock);
1142
1143 if (!intel_pstate_driver) {
1144 mutex_unlock(&intel_pstate_driver_lock);
1145 return -EAGAIN;
1146 }
1147
1148 update_turbo_state();
1149 if (global.turbo_disabled)
1150 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1151 else
1152 ret = sprintf(buf, "%u\n", global.no_turbo);
1153
1154 mutex_unlock(&intel_pstate_driver_lock);
1155
1156 return ret;
1157}
1158
1159static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1160 const char *buf, size_t count)
1161{
1162 unsigned int input;
1163 int ret;
1164
1165 ret = sscanf(buf, "%u", &input);
1166 if (ret != 1)
1167 return -EINVAL;
1168
1169 mutex_lock(&intel_pstate_driver_lock);
1170
1171 if (!intel_pstate_driver) {
1172 mutex_unlock(&intel_pstate_driver_lock);
1173 return -EAGAIN;
1174 }
1175
1176 mutex_lock(&intel_pstate_limits_lock);
1177
1178 update_turbo_state();
1179 if (global.turbo_disabled) {
1180 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1181 mutex_unlock(&intel_pstate_limits_lock);
1182 mutex_unlock(&intel_pstate_driver_lock);
1183 return -EPERM;
1184 }
1185
1186 global.no_turbo = clamp_t(int, input, 0, 1);
1187
1188 if (global.no_turbo) {
1189 struct cpudata *cpu = all_cpu_data[0];
1190 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1191
1192 /* Squash the global minimum into the permitted range. */
1193 if (global.min_perf_pct > pct)
1194 global.min_perf_pct = pct;
1195 }
1196
1197 mutex_unlock(&intel_pstate_limits_lock);
1198
1199 intel_pstate_update_policies();
1200
1201 mutex_unlock(&intel_pstate_driver_lock);
1202
1203 return count;
1204}
1205
1206static void update_qos_request(enum freq_qos_req_type type)
1207{
1208 int max_state, turbo_max, freq, i, perf_pct;
1209 struct freq_qos_request *req;
1210 struct cpufreq_policy *policy;
1211
1212 for_each_possible_cpu(i) {
1213 struct cpudata *cpu = all_cpu_data[i];
1214
1215 policy = cpufreq_cpu_get(i);
1216 if (!policy)
1217 continue;
1218
1219 req = policy->driver_data;
1220 cpufreq_cpu_put(policy);
1221
1222 if (!req)
1223 continue;
1224
1225 if (hwp_active)
1226 intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1227 else
1228 turbo_max = cpu->pstate.turbo_pstate;
1229
1230 if (type == FREQ_QOS_MIN) {
1231 perf_pct = global.min_perf_pct;
1232 } else {
1233 req++;
1234 perf_pct = global.max_perf_pct;
1235 }
1236
1237 freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1238 freq *= cpu->pstate.scaling;
1239
1240 if (freq_qos_update_request(req, freq) < 0)
1241 pr_warn("Failed to update freq constraint: CPU%d\n", i);
1242 }
1243}
1244
1245static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1246 const char *buf, size_t count)
1247{
1248 unsigned int input;
1249 int ret;
1250
1251 ret = sscanf(buf, "%u", &input);
1252 if (ret != 1)
1253 return -EINVAL;
1254
1255 mutex_lock(&intel_pstate_driver_lock);
1256
1257 if (!intel_pstate_driver) {
1258 mutex_unlock(&intel_pstate_driver_lock);
1259 return -EAGAIN;
1260 }
1261
1262 mutex_lock(&intel_pstate_limits_lock);
1263
1264 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1265
1266 mutex_unlock(&intel_pstate_limits_lock);
1267
1268 if (intel_pstate_driver == &intel_pstate)
1269 intel_pstate_update_policies();
1270 else
1271 update_qos_request(FREQ_QOS_MAX);
1272
1273 mutex_unlock(&intel_pstate_driver_lock);
1274
1275 return count;
1276}
1277
1278static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1279 const char *buf, size_t count)
1280{
1281 unsigned int input;
1282 int ret;
1283
1284 ret = sscanf(buf, "%u", &input);
1285 if (ret != 1)
1286 return -EINVAL;
1287
1288 mutex_lock(&intel_pstate_driver_lock);
1289
1290 if (!intel_pstate_driver) {
1291 mutex_unlock(&intel_pstate_driver_lock);
1292 return -EAGAIN;
1293 }
1294
1295 mutex_lock(&intel_pstate_limits_lock);
1296
1297 global.min_perf_pct = clamp_t(int, input,
1298 min_perf_pct_min(), global.max_perf_pct);
1299
1300 mutex_unlock(&intel_pstate_limits_lock);
1301
1302 if (intel_pstate_driver == &intel_pstate)
1303 intel_pstate_update_policies();
1304 else
1305 update_qos_request(FREQ_QOS_MIN);
1306
1307 mutex_unlock(&intel_pstate_driver_lock);
1308
1309 return count;
1310}
1311
1312static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1313 struct kobj_attribute *attr, char *buf)
1314{
1315 return sprintf(buf, "%u\n", hwp_boost);
1316}
1317
1318static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1319 struct kobj_attribute *b,
1320 const char *buf, size_t count)
1321{
1322 unsigned int input;
1323 int ret;
1324
1325 ret = kstrtouint(buf, 10, &input);
1326 if (ret)
1327 return ret;
1328
1329 mutex_lock(&intel_pstate_driver_lock);
1330 hwp_boost = !!input;
1331 intel_pstate_update_policies();
1332 mutex_unlock(&intel_pstate_driver_lock);
1333
1334 return count;
1335}
1336
1337static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1338 char *buf)
1339{
1340 u64 power_ctl;
1341 int enable;
1342
1343 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1344 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1345 return sprintf(buf, "%d\n", !enable);
1346}
1347
1348static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1349 const char *buf, size_t count)
1350{
1351 bool input;
1352 int ret;
1353
1354 ret = kstrtobool(buf, &input);
1355 if (ret)
1356 return ret;
1357
1358 set_power_ctl_ee_state(input);
1359
1360 return count;
1361}
1362
1363show_one(max_perf_pct, max_perf_pct);
1364show_one(min_perf_pct, min_perf_pct);
1365
1366define_one_global_rw(status);
1367define_one_global_rw(no_turbo);
1368define_one_global_rw(max_perf_pct);
1369define_one_global_rw(min_perf_pct);
1370define_one_global_ro(turbo_pct);
1371define_one_global_ro(num_pstates);
1372define_one_global_rw(hwp_dynamic_boost);
1373define_one_global_rw(energy_efficiency);
1374
1375static struct attribute *intel_pstate_attributes[] = {
1376 &status.attr,
1377 &no_turbo.attr,
1378 &turbo_pct.attr,
1379 &num_pstates.attr,
1380 NULL
1381};
1382
1383static const struct attribute_group intel_pstate_attr_group = {
1384 .attrs = intel_pstate_attributes,
1385};
1386
1387static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1388
1389static struct kobject *intel_pstate_kobject;
1390
1391static void __init intel_pstate_sysfs_expose_params(void)
1392{
1393 int rc;
1394
1395 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1396 &cpu_subsys.dev_root->kobj);
1397 if (WARN_ON(!intel_pstate_kobject))
1398 return;
1399
1400 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1401 if (WARN_ON(rc))
1402 return;
1403
1404 /*
1405 * If per cpu limits are enforced there are no global limits, so
1406 * return without creating max/min_perf_pct attributes
1407 */
1408 if (per_cpu_limits)
1409 return;
1410
1411 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1412 WARN_ON(rc);
1413
1414 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1415 WARN_ON(rc);
1416
1417 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1418 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1419 WARN_ON(rc);
1420 }
1421}
1422
1423static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1424{
1425 int rc;
1426
1427 if (!hwp_active)
1428 return;
1429
1430 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1431 WARN_ON_ONCE(rc);
1432}
1433
1434static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1435{
1436 if (!hwp_active)
1437 return;
1438
1439 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1440}
1441
1442/************************** sysfs end ************************/
1443
1444static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1445{
1446 /* First disable HWP notification interrupt as we don't process them */
1447 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1448 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1449
1450 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1451 if (cpudata->epp_default == -EINVAL)
1452 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1453}
1454
1455static int atom_get_min_pstate(void)
1456{
1457 u64 value;
1458
1459 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1460 return (value >> 8) & 0x7F;
1461}
1462
1463static int atom_get_max_pstate(void)
1464{
1465 u64 value;
1466
1467 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1468 return (value >> 16) & 0x7F;
1469}
1470
1471static int atom_get_turbo_pstate(void)
1472{
1473 u64 value;
1474
1475 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1476 return value & 0x7F;
1477}
1478
1479static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1480{
1481 u64 val;
1482 int32_t vid_fp;
1483 u32 vid;
1484
1485 val = (u64)pstate << 8;
1486 if (global.no_turbo && !global.turbo_disabled)
1487 val |= (u64)1 << 32;
1488
1489 vid_fp = cpudata->vid.min + mul_fp(
1490 int_tofp(pstate - cpudata->pstate.min_pstate),
1491 cpudata->vid.ratio);
1492
1493 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1494 vid = ceiling_fp(vid_fp);
1495
1496 if (pstate > cpudata->pstate.max_pstate)
1497 vid = cpudata->vid.turbo;
1498
1499 return val | vid;
1500}
1501
1502static int silvermont_get_scaling(void)
1503{
1504 u64 value;
1505 int i;
1506 /* Defined in Table 35-6 from SDM (Sept 2015) */
1507 static int silvermont_freq_table[] = {
1508 83300, 100000, 133300, 116700, 80000};
1509
1510 rdmsrl(MSR_FSB_FREQ, value);
1511 i = value & 0x7;
1512 WARN_ON(i > 4);
1513
1514 return silvermont_freq_table[i];
1515}
1516
1517static int airmont_get_scaling(void)
1518{
1519 u64 value;
1520 int i;
1521 /* Defined in Table 35-10 from SDM (Sept 2015) */
1522 static int airmont_freq_table[] = {
1523 83300, 100000, 133300, 116700, 80000,
1524 93300, 90000, 88900, 87500};
1525
1526 rdmsrl(MSR_FSB_FREQ, value);
1527 i = value & 0xF;
1528 WARN_ON(i > 8);
1529
1530 return airmont_freq_table[i];
1531}
1532
1533static void atom_get_vid(struct cpudata *cpudata)
1534{
1535 u64 value;
1536
1537 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1538 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1539 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1540 cpudata->vid.ratio = div_fp(
1541 cpudata->vid.max - cpudata->vid.min,
1542 int_tofp(cpudata->pstate.max_pstate -
1543 cpudata->pstate.min_pstate));
1544
1545 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1546 cpudata->vid.turbo = value & 0x7f;
1547}
1548
1549static int core_get_min_pstate(void)
1550{
1551 u64 value;
1552
1553 rdmsrl(MSR_PLATFORM_INFO, value);
1554 return (value >> 40) & 0xFF;
1555}
1556
1557static int core_get_max_pstate_physical(void)
1558{
1559 u64 value;
1560
1561 rdmsrl(MSR_PLATFORM_INFO, value);
1562 return (value >> 8) & 0xFF;
1563}
1564
1565static int core_get_tdp_ratio(u64 plat_info)
1566{
1567 /* Check how many TDP levels present */
1568 if (plat_info & 0x600000000) {
1569 u64 tdp_ctrl;
1570 u64 tdp_ratio;
1571 int tdp_msr;
1572 int err;
1573
1574 /* Get the TDP level (0, 1, 2) to get ratios */
1575 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1576 if (err)
1577 return err;
1578
1579 /* TDP MSR are continuous starting at 0x648 */
1580 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1581 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1582 if (err)
1583 return err;
1584
1585 /* For level 1 and 2, bits[23:16] contain the ratio */
1586 if (tdp_ctrl & 0x03)
1587 tdp_ratio >>= 16;
1588
1589 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1590 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1591
1592 return (int)tdp_ratio;
1593 }
1594
1595 return -ENXIO;
1596}
1597
1598static int core_get_max_pstate(void)
1599{
1600 u64 tar;
1601 u64 plat_info;
1602 int max_pstate;
1603 int tdp_ratio;
1604 int err;
1605
1606 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1607 max_pstate = (plat_info >> 8) & 0xFF;
1608
1609 tdp_ratio = core_get_tdp_ratio(plat_info);
1610 if (tdp_ratio <= 0)
1611 return max_pstate;
1612
1613 if (hwp_active) {
1614 /* Turbo activation ratio is not used on HWP platforms */
1615 return tdp_ratio;
1616 }
1617
1618 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1619 if (!err) {
1620 int tar_levels;
1621
1622 /* Do some sanity checking for safety */
1623 tar_levels = tar & 0xff;
1624 if (tdp_ratio - 1 == tar_levels) {
1625 max_pstate = tar_levels;
1626 pr_debug("max_pstate=TAC %x\n", max_pstate);
1627 }
1628 }
1629
1630 return max_pstate;
1631}
1632
1633static int core_get_turbo_pstate(void)
1634{
1635 u64 value;
1636 int nont, ret;
1637
1638 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1639 nont = core_get_max_pstate();
1640 ret = (value) & 255;
1641 if (ret <= nont)
1642 ret = nont;
1643 return ret;
1644}
1645
1646static inline int core_get_scaling(void)
1647{
1648 return 100000;
1649}
1650
1651static u64 core_get_val(struct cpudata *cpudata, int pstate)
1652{
1653 u64 val;
1654
1655 val = (u64)pstate << 8;
1656 if (global.no_turbo && !global.turbo_disabled)
1657 val |= (u64)1 << 32;
1658
1659 return val;
1660}
1661
1662static int knl_get_aperf_mperf_shift(void)
1663{
1664 return 10;
1665}
1666
1667static int knl_get_turbo_pstate(void)
1668{
1669 u64 value;
1670 int nont, ret;
1671
1672 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1673 nont = core_get_max_pstate();
1674 ret = (((value) >> 8) & 0xFF);
1675 if (ret <= nont)
1676 ret = nont;
1677 return ret;
1678}
1679
1680static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1681{
1682 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1683 cpu->pstate.current_pstate = pstate;
1684 /*
1685 * Generally, there is no guarantee that this code will always run on
1686 * the CPU being updated, so force the register update to run on the
1687 * right CPU.
1688 */
1689 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1690 pstate_funcs.get_val(cpu, pstate));
1691}
1692
1693static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1694{
1695 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1696}
1697
1698static void intel_pstate_max_within_limits(struct cpudata *cpu)
1699{
1700 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1701
1702 update_turbo_state();
1703 intel_pstate_set_pstate(cpu, pstate);
1704}
1705
1706static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1707{
1708 cpu->pstate.min_pstate = pstate_funcs.get_min();
1709 cpu->pstate.max_pstate = pstate_funcs.get_max();
1710 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1711 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1712 cpu->pstate.scaling = pstate_funcs.get_scaling();
1713 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1714
1715 if (hwp_active && !hwp_mode_bdw) {
1716 unsigned int phy_max, current_max;
1717
1718 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, ¤t_max);
1719 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1720 cpu->pstate.turbo_pstate = phy_max;
1721 } else {
1722 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1723 }
1724
1725 if (pstate_funcs.get_aperf_mperf_shift)
1726 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1727
1728 if (pstate_funcs.get_vid)
1729 pstate_funcs.get_vid(cpu);
1730
1731 intel_pstate_set_min_pstate(cpu);
1732}
1733
1734/*
1735 * Long hold time will keep high perf limits for long time,
1736 * which negatively impacts perf/watt for some workloads,
1737 * like specpower. 3ms is based on experiements on some
1738 * workoads.
1739 */
1740static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1741
1742static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1743{
1744 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1745 u32 max_limit = (hwp_req & 0xff00) >> 8;
1746 u32 min_limit = (hwp_req & 0xff);
1747 u32 boost_level1;
1748
1749 /*
1750 * Cases to consider (User changes via sysfs or boot time):
1751 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1752 * No boost, return.
1753 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1754 * Should result in one level boost only for P0.
1755 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1756 * Should result in two level boost:
1757 * (min + p1)/2 and P1.
1758 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1759 * Should result in three level boost:
1760 * (min + p1)/2, P1 and P0.
1761 */
1762
1763 /* If max and min are equal or already at max, nothing to boost */
1764 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1765 return;
1766
1767 if (!cpu->hwp_boost_min)
1768 cpu->hwp_boost_min = min_limit;
1769
1770 /* level at half way mark between min and guranteed */
1771 boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1772
1773 if (cpu->hwp_boost_min < boost_level1)
1774 cpu->hwp_boost_min = boost_level1;
1775 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1776 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1777 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1778 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1779 cpu->hwp_boost_min = max_limit;
1780 else
1781 return;
1782
1783 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1784 wrmsrl(MSR_HWP_REQUEST, hwp_req);
1785 cpu->last_update = cpu->sample.time;
1786}
1787
1788static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1789{
1790 if (cpu->hwp_boost_min) {
1791 bool expired;
1792
1793 /* Check if we are idle for hold time to boost down */
1794 expired = time_after64(cpu->sample.time, cpu->last_update +
1795 hwp_boost_hold_time_ns);
1796 if (expired) {
1797 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1798 cpu->hwp_boost_min = 0;
1799 }
1800 }
1801 cpu->last_update = cpu->sample.time;
1802}
1803
1804static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1805 u64 time)
1806{
1807 cpu->sample.time = time;
1808
1809 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1810 bool do_io = false;
1811
1812 cpu->sched_flags = 0;
1813 /*
1814 * Set iowait_boost flag and update time. Since IO WAIT flag
1815 * is set all the time, we can't just conclude that there is
1816 * some IO bound activity is scheduled on this CPU with just
1817 * one occurrence. If we receive at least two in two
1818 * consecutive ticks, then we treat as boost candidate.
1819 */
1820 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1821 do_io = true;
1822
1823 cpu->last_io_update = time;
1824
1825 if (do_io)
1826 intel_pstate_hwp_boost_up(cpu);
1827
1828 } else {
1829 intel_pstate_hwp_boost_down(cpu);
1830 }
1831}
1832
1833static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1834 u64 time, unsigned int flags)
1835{
1836 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1837
1838 cpu->sched_flags |= flags;
1839
1840 if (smp_processor_id() == cpu->cpu)
1841 intel_pstate_update_util_hwp_local(cpu, time);
1842}
1843
1844static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1845{
1846 struct sample *sample = &cpu->sample;
1847
1848 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1849}
1850
1851static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1852{
1853 u64 aperf, mperf;
1854 unsigned long flags;
1855 u64 tsc;
1856
1857 local_irq_save(flags);
1858 rdmsrl(MSR_IA32_APERF, aperf);
1859 rdmsrl(MSR_IA32_MPERF, mperf);
1860 tsc = rdtsc();
1861 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1862 local_irq_restore(flags);
1863 return false;
1864 }
1865 local_irq_restore(flags);
1866
1867 cpu->last_sample_time = cpu->sample.time;
1868 cpu->sample.time = time;
1869 cpu->sample.aperf = aperf;
1870 cpu->sample.mperf = mperf;
1871 cpu->sample.tsc = tsc;
1872 cpu->sample.aperf -= cpu->prev_aperf;
1873 cpu->sample.mperf -= cpu->prev_mperf;
1874 cpu->sample.tsc -= cpu->prev_tsc;
1875
1876 cpu->prev_aperf = aperf;
1877 cpu->prev_mperf = mperf;
1878 cpu->prev_tsc = tsc;
1879 /*
1880 * First time this function is invoked in a given cycle, all of the
1881 * previous sample data fields are equal to zero or stale and they must
1882 * be populated with meaningful numbers for things to work, so assume
1883 * that sample.time will always be reset before setting the utilization
1884 * update hook and make the caller skip the sample then.
1885 */
1886 if (cpu->last_sample_time) {
1887 intel_pstate_calc_avg_perf(cpu);
1888 return true;
1889 }
1890 return false;
1891}
1892
1893static inline int32_t get_avg_frequency(struct cpudata *cpu)
1894{
1895 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1896}
1897
1898static inline int32_t get_avg_pstate(struct cpudata *cpu)
1899{
1900 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1901 cpu->sample.core_avg_perf);
1902}
1903
1904static inline int32_t get_target_pstate(struct cpudata *cpu)
1905{
1906 struct sample *sample = &cpu->sample;
1907 int32_t busy_frac;
1908 int target, avg_pstate;
1909
1910 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1911 sample->tsc);
1912
1913 if (busy_frac < cpu->iowait_boost)
1914 busy_frac = cpu->iowait_boost;
1915
1916 sample->busy_scaled = busy_frac * 100;
1917
1918 target = global.no_turbo || global.turbo_disabled ?
1919 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1920 target += target >> 2;
1921 target = mul_fp(target, busy_frac);
1922 if (target < cpu->pstate.min_pstate)
1923 target = cpu->pstate.min_pstate;
1924
1925 /*
1926 * If the average P-state during the previous cycle was higher than the
1927 * current target, add 50% of the difference to the target to reduce
1928 * possible performance oscillations and offset possible performance
1929 * loss related to moving the workload from one CPU to another within
1930 * a package/module.
1931 */
1932 avg_pstate = get_avg_pstate(cpu);
1933 if (avg_pstate > target)
1934 target += (avg_pstate - target) >> 1;
1935
1936 return target;
1937}
1938
1939static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1940{
1941 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1942 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1943
1944 return clamp_t(int, pstate, min_pstate, max_pstate);
1945}
1946
1947static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1948{
1949 if (pstate == cpu->pstate.current_pstate)
1950 return;
1951
1952 cpu->pstate.current_pstate = pstate;
1953 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1954}
1955
1956static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1957{
1958 int from = cpu->pstate.current_pstate;
1959 struct sample *sample;
1960 int target_pstate;
1961
1962 update_turbo_state();
1963
1964 target_pstate = get_target_pstate(cpu);
1965 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1966 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1967 intel_pstate_update_pstate(cpu, target_pstate);
1968
1969 sample = &cpu->sample;
1970 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1971 fp_toint(sample->busy_scaled),
1972 from,
1973 cpu->pstate.current_pstate,
1974 sample->mperf,
1975 sample->aperf,
1976 sample->tsc,
1977 get_avg_frequency(cpu),
1978 fp_toint(cpu->iowait_boost * 100));
1979}
1980
1981static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1982 unsigned int flags)
1983{
1984 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1985 u64 delta_ns;
1986
1987 /* Don't allow remote callbacks */
1988 if (smp_processor_id() != cpu->cpu)
1989 return;
1990
1991 delta_ns = time - cpu->last_update;
1992 if (flags & SCHED_CPUFREQ_IOWAIT) {
1993 /* Start over if the CPU may have been idle. */
1994 if (delta_ns > TICK_NSEC) {
1995 cpu->iowait_boost = ONE_EIGHTH_FP;
1996 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1997 cpu->iowait_boost <<= 1;
1998 if (cpu->iowait_boost > int_tofp(1))
1999 cpu->iowait_boost = int_tofp(1);
2000 } else {
2001 cpu->iowait_boost = ONE_EIGHTH_FP;
2002 }
2003 } else if (cpu->iowait_boost) {
2004 /* Clear iowait_boost if the CPU may have been idle. */
2005 if (delta_ns > TICK_NSEC)
2006 cpu->iowait_boost = 0;
2007 else
2008 cpu->iowait_boost >>= 1;
2009 }
2010 cpu->last_update = time;
2011 delta_ns = time - cpu->sample.time;
2012 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2013 return;
2014
2015 if (intel_pstate_sample(cpu, time))
2016 intel_pstate_adjust_pstate(cpu);
2017}
2018
2019static struct pstate_funcs core_funcs = {
2020 .get_max = core_get_max_pstate,
2021 .get_max_physical = core_get_max_pstate_physical,
2022 .get_min = core_get_min_pstate,
2023 .get_turbo = core_get_turbo_pstate,
2024 .get_scaling = core_get_scaling,
2025 .get_val = core_get_val,
2026};
2027
2028static const struct pstate_funcs silvermont_funcs = {
2029 .get_max = atom_get_max_pstate,
2030 .get_max_physical = atom_get_max_pstate,
2031 .get_min = atom_get_min_pstate,
2032 .get_turbo = atom_get_turbo_pstate,
2033 .get_val = atom_get_val,
2034 .get_scaling = silvermont_get_scaling,
2035 .get_vid = atom_get_vid,
2036};
2037
2038static const struct pstate_funcs airmont_funcs = {
2039 .get_max = atom_get_max_pstate,
2040 .get_max_physical = atom_get_max_pstate,
2041 .get_min = atom_get_min_pstate,
2042 .get_turbo = atom_get_turbo_pstate,
2043 .get_val = atom_get_val,
2044 .get_scaling = airmont_get_scaling,
2045 .get_vid = atom_get_vid,
2046};
2047
2048static const struct pstate_funcs knl_funcs = {
2049 .get_max = core_get_max_pstate,
2050 .get_max_physical = core_get_max_pstate_physical,
2051 .get_min = core_get_min_pstate,
2052 .get_turbo = knl_get_turbo_pstate,
2053 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2054 .get_scaling = core_get_scaling,
2055 .get_val = core_get_val,
2056};
2057
2058#define X86_MATCH(model, policy) \
2059 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2060 X86_FEATURE_APERFMPERF, &policy)
2061
2062static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2063 X86_MATCH(SANDYBRIDGE, core_funcs),
2064 X86_MATCH(SANDYBRIDGE_X, core_funcs),
2065 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs),
2066 X86_MATCH(IVYBRIDGE, core_funcs),
2067 X86_MATCH(HASWELL, core_funcs),
2068 X86_MATCH(BROADWELL, core_funcs),
2069 X86_MATCH(IVYBRIDGE_X, core_funcs),
2070 X86_MATCH(HASWELL_X, core_funcs),
2071 X86_MATCH(HASWELL_L, core_funcs),
2072 X86_MATCH(HASWELL_G, core_funcs),
2073 X86_MATCH(BROADWELL_G, core_funcs),
2074 X86_MATCH(ATOM_AIRMONT, airmont_funcs),
2075 X86_MATCH(SKYLAKE_L, core_funcs),
2076 X86_MATCH(BROADWELL_X, core_funcs),
2077 X86_MATCH(SKYLAKE, core_funcs),
2078 X86_MATCH(BROADWELL_D, core_funcs),
2079 X86_MATCH(XEON_PHI_KNL, knl_funcs),
2080 X86_MATCH(XEON_PHI_KNM, knl_funcs),
2081 X86_MATCH(ATOM_GOLDMONT, core_funcs),
2082 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs),
2083 X86_MATCH(SKYLAKE_X, core_funcs),
2084 {}
2085};
2086MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2087
2088static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2089 X86_MATCH(BROADWELL_D, core_funcs),
2090 X86_MATCH(BROADWELL_X, core_funcs),
2091 X86_MATCH(SKYLAKE_X, core_funcs),
2092 {}
2093};
2094
2095static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2096 X86_MATCH(KABYLAKE, core_funcs),
2097 {}
2098};
2099
2100static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2101 X86_MATCH(SKYLAKE_X, core_funcs),
2102 X86_MATCH(SKYLAKE, core_funcs),
2103 {}
2104};
2105
2106static int intel_pstate_init_cpu(unsigned int cpunum)
2107{
2108 struct cpudata *cpu;
2109
2110 cpu = all_cpu_data[cpunum];
2111
2112 if (!cpu) {
2113 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2114 if (!cpu)
2115 return -ENOMEM;
2116
2117 all_cpu_data[cpunum] = cpu;
2118
2119 cpu->cpu = cpunum;
2120
2121 cpu->epp_default = -EINVAL;
2122
2123 if (hwp_active) {
2124 const struct x86_cpu_id *id;
2125
2126 intel_pstate_hwp_enable(cpu);
2127
2128 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2129 if (id && intel_pstate_acpi_pm_profile_server())
2130 hwp_boost = true;
2131 }
2132 } else if (hwp_active) {
2133 /*
2134 * Re-enable HWP in case this happens after a resume from ACPI
2135 * S3 if the CPU was offline during the whole system/resume
2136 * cycle.
2137 */
2138 intel_pstate_hwp_reenable(cpu);
2139 }
2140
2141 cpu->epp_powersave = -EINVAL;
2142 cpu->epp_policy = 0;
2143
2144 intel_pstate_get_cpu_pstates(cpu);
2145
2146 pr_debug("controlling: cpu %d\n", cpunum);
2147
2148 return 0;
2149}
2150
2151static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2152{
2153 struct cpudata *cpu = all_cpu_data[cpu_num];
2154
2155 if (hwp_active && !hwp_boost)
2156 return;
2157
2158 if (cpu->update_util_set)
2159 return;
2160
2161 /* Prevent intel_pstate_update_util() from using stale data. */
2162 cpu->sample.time = 0;
2163 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2164 (hwp_active ?
2165 intel_pstate_update_util_hwp :
2166 intel_pstate_update_util));
2167 cpu->update_util_set = true;
2168}
2169
2170static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2171{
2172 struct cpudata *cpu_data = all_cpu_data[cpu];
2173
2174 if (!cpu_data->update_util_set)
2175 return;
2176
2177 cpufreq_remove_update_util_hook(cpu);
2178 cpu_data->update_util_set = false;
2179 synchronize_rcu();
2180}
2181
2182static int intel_pstate_get_max_freq(struct cpudata *cpu)
2183{
2184 return global.turbo_disabled || global.no_turbo ?
2185 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2186}
2187
2188static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2189 unsigned int policy_min,
2190 unsigned int policy_max)
2191{
2192 int max_freq = intel_pstate_get_max_freq(cpu);
2193 int32_t max_policy_perf, min_policy_perf;
2194 int max_state, turbo_max;
2195
2196 /*
2197 * HWP needs some special consideration, because on BDX the
2198 * HWP_REQUEST uses abstract value to represent performance
2199 * rather than pure ratios.
2200 */
2201 if (hwp_active) {
2202 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2203 } else {
2204 max_state = global.no_turbo || global.turbo_disabled ?
2205 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2206 turbo_max = cpu->pstate.turbo_pstate;
2207 }
2208
2209 max_policy_perf = max_state * policy_max / max_freq;
2210 if (policy_max == policy_min) {
2211 min_policy_perf = max_policy_perf;
2212 } else {
2213 min_policy_perf = max_state * policy_min / max_freq;
2214 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2215 0, max_policy_perf);
2216 }
2217
2218 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2219 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2220
2221 /* Normalize user input to [min_perf, max_perf] */
2222 if (per_cpu_limits) {
2223 cpu->min_perf_ratio = min_policy_perf;
2224 cpu->max_perf_ratio = max_policy_perf;
2225 } else {
2226 int32_t global_min, global_max;
2227
2228 /* Global limits are in percent of the maximum turbo P-state. */
2229 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2230 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2231 global_min = clamp_t(int32_t, global_min, 0, global_max);
2232
2233 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2234 global_min, global_max);
2235
2236 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2237 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2238 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2239 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2240
2241 /* Make sure min_perf <= max_perf */
2242 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2243 cpu->max_perf_ratio);
2244
2245 }
2246 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2247 cpu->max_perf_ratio,
2248 cpu->min_perf_ratio);
2249}
2250
2251static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2252{
2253 struct cpudata *cpu;
2254
2255 if (!policy->cpuinfo.max_freq)
2256 return -ENODEV;
2257
2258 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2259 policy->cpuinfo.max_freq, policy->max);
2260
2261 cpu = all_cpu_data[policy->cpu];
2262 cpu->policy = policy->policy;
2263
2264 mutex_lock(&intel_pstate_limits_lock);
2265
2266 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2267
2268 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2269 /*
2270 * NOHZ_FULL CPUs need this as the governor callback may not
2271 * be invoked on them.
2272 */
2273 intel_pstate_clear_update_util_hook(policy->cpu);
2274 intel_pstate_max_within_limits(cpu);
2275 } else {
2276 intel_pstate_set_update_util_hook(policy->cpu);
2277 }
2278
2279 if (hwp_active) {
2280 /*
2281 * When hwp_boost was active before and dynamically it
2282 * was turned off, in that case we need to clear the
2283 * update util hook.
2284 */
2285 if (!hwp_boost)
2286 intel_pstate_clear_update_util_hook(policy->cpu);
2287 intel_pstate_hwp_set(policy->cpu);
2288 }
2289
2290 mutex_unlock(&intel_pstate_limits_lock);
2291
2292 return 0;
2293}
2294
2295static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2296 struct cpufreq_policy_data *policy)
2297{
2298 if (!hwp_active &&
2299 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2300 policy->max < policy->cpuinfo.max_freq &&
2301 policy->max > cpu->pstate.max_freq) {
2302 pr_debug("policy->max > max non turbo frequency\n");
2303 policy->max = policy->cpuinfo.max_freq;
2304 }
2305}
2306
2307static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2308 struct cpufreq_policy_data *policy)
2309{
2310 update_turbo_state();
2311 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2312 intel_pstate_get_max_freq(cpu));
2313
2314 intel_pstate_adjust_policy_max(cpu, policy);
2315}
2316
2317static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2318{
2319 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2320
2321 return 0;
2322}
2323
2324static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2325{
2326 struct cpudata *cpu = all_cpu_data[policy->cpu];
2327
2328 pr_debug("CPU %d going offline\n", cpu->cpu);
2329
2330 if (cpu->suspended)
2331 return 0;
2332
2333 /*
2334 * If the CPU is an SMT thread and it goes offline with the performance
2335 * settings different from the minimum, it will prevent its sibling
2336 * from getting to lower performance levels, so force the minimum
2337 * performance on CPU offline to prevent that from happening.
2338 */
2339 if (hwp_active)
2340 intel_pstate_hwp_offline(cpu);
2341 else
2342 intel_pstate_set_min_pstate(cpu);
2343
2344 intel_pstate_exit_perf_limits(policy);
2345
2346 return 0;
2347}
2348
2349static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2350{
2351 struct cpudata *cpu = all_cpu_data[policy->cpu];
2352
2353 pr_debug("CPU %d going online\n", cpu->cpu);
2354
2355 intel_pstate_init_acpi_perf_limits(policy);
2356
2357 if (hwp_active) {
2358 /*
2359 * Re-enable HWP and clear the "suspended" flag to let "resume"
2360 * know that it need not do that.
2361 */
2362 intel_pstate_hwp_reenable(cpu);
2363 cpu->suspended = false;
2364 }
2365
2366 return 0;
2367}
2368
2369static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2370{
2371 pr_debug("CPU %d stopping\n", policy->cpu);
2372
2373 intel_pstate_clear_update_util_hook(policy->cpu);
2374}
2375
2376static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2377{
2378 pr_debug("CPU %d exiting\n", policy->cpu);
2379
2380 policy->fast_switch_possible = false;
2381
2382 return 0;
2383}
2384
2385static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2386{
2387 struct cpudata *cpu;
2388 int rc;
2389
2390 rc = intel_pstate_init_cpu(policy->cpu);
2391 if (rc)
2392 return rc;
2393
2394 cpu = all_cpu_data[policy->cpu];
2395
2396 cpu->max_perf_ratio = 0xFF;
2397 cpu->min_perf_ratio = 0;
2398
2399 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2400 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2401
2402 /* cpuinfo and default policy values */
2403 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2404 update_turbo_state();
2405 global.turbo_disabled_mf = global.turbo_disabled;
2406 policy->cpuinfo.max_freq = global.turbo_disabled ?
2407 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2408 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2409
2410 if (hwp_active) {
2411 unsigned int max_freq;
2412
2413 max_freq = global.turbo_disabled ?
2414 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2415 if (max_freq < policy->cpuinfo.max_freq)
2416 policy->cpuinfo.max_freq = max_freq;
2417 }
2418
2419 intel_pstate_init_acpi_perf_limits(policy);
2420
2421 policy->fast_switch_possible = true;
2422
2423 return 0;
2424}
2425
2426static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2427{
2428 int ret = __intel_pstate_cpu_init(policy);
2429
2430 if (ret)
2431 return ret;
2432
2433 /*
2434 * Set the policy to powersave to provide a valid fallback value in case
2435 * the default cpufreq governor is neither powersave nor performance.
2436 */
2437 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2438
2439 if (hwp_active) {
2440 struct cpudata *cpu = all_cpu_data[policy->cpu];
2441
2442 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2443 }
2444
2445 return 0;
2446}
2447
2448static struct cpufreq_driver intel_pstate = {
2449 .flags = CPUFREQ_CONST_LOOPS,
2450 .verify = intel_pstate_verify_policy,
2451 .setpolicy = intel_pstate_set_policy,
2452 .suspend = intel_pstate_suspend,
2453 .resume = intel_pstate_resume,
2454 .init = intel_pstate_cpu_init,
2455 .exit = intel_pstate_cpu_exit,
2456 .stop_cpu = intel_pstate_stop_cpu,
2457 .offline = intel_pstate_cpu_offline,
2458 .online = intel_pstate_cpu_online,
2459 .update_limits = intel_pstate_update_limits,
2460 .name = "intel_pstate",
2461};
2462
2463static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2464{
2465 struct cpudata *cpu = all_cpu_data[policy->cpu];
2466
2467 intel_pstate_verify_cpu_policy(cpu, policy);
2468 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2469
2470 return 0;
2471}
2472
2473/* Use of trace in passive mode:
2474 *
2475 * In passive mode the trace core_busy field (also known as the
2476 * performance field, and lablelled as such on the graphs; also known as
2477 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2478 * driver call was via the normal or fast switch path. Various graphs
2479 * output from the intel_pstate_tracer.py utility that include core_busy
2480 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2481 * so we use 10 to indicate the the normal path through the driver, and
2482 * 90 to indicate the fast switch path through the driver.
2483 * The scaled_busy field is not used, and is set to 0.
2484 */
2485
2486#define INTEL_PSTATE_TRACE_TARGET 10
2487#define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2488
2489static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2490{
2491 struct sample *sample;
2492
2493 if (!trace_pstate_sample_enabled())
2494 return;
2495
2496 if (!intel_pstate_sample(cpu, ktime_get()))
2497 return;
2498
2499 sample = &cpu->sample;
2500 trace_pstate_sample(trace_type,
2501 0,
2502 old_pstate,
2503 cpu->pstate.current_pstate,
2504 sample->mperf,
2505 sample->aperf,
2506 sample->tsc,
2507 get_avg_frequency(cpu),
2508 fp_toint(cpu->iowait_boost * 100));
2509}
2510
2511static void intel_cpufreq_adjust_hwp(struct cpudata *cpu, u32 target_pstate,
2512 bool fast_switch)
2513{
2514 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2515
2516 value &= ~HWP_MIN_PERF(~0L);
2517 value |= HWP_MIN_PERF(target_pstate);
2518
2519 /*
2520 * The entire MSR needs to be updated in order to update the HWP min
2521 * field in it, so opportunistically update the max too if needed.
2522 */
2523 value &= ~HWP_MAX_PERF(~0L);
2524 value |= HWP_MAX_PERF(cpu->max_perf_ratio);
2525
2526 if (value == prev)
2527 return;
2528
2529 WRITE_ONCE(cpu->hwp_req_cached, value);
2530 if (fast_switch)
2531 wrmsrl(MSR_HWP_REQUEST, value);
2532 else
2533 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2534}
2535
2536static void intel_cpufreq_adjust_perf_ctl(struct cpudata *cpu,
2537 u32 target_pstate, bool fast_switch)
2538{
2539 if (fast_switch)
2540 wrmsrl(MSR_IA32_PERF_CTL,
2541 pstate_funcs.get_val(cpu, target_pstate));
2542 else
2543 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2544 pstate_funcs.get_val(cpu, target_pstate));
2545}
2546
2547static int intel_cpufreq_update_pstate(struct cpudata *cpu, int target_pstate,
2548 bool fast_switch)
2549{
2550 int old_pstate = cpu->pstate.current_pstate;
2551
2552 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2553 if (target_pstate != old_pstate) {
2554 cpu->pstate.current_pstate = target_pstate;
2555 if (hwp_active)
2556 intel_cpufreq_adjust_hwp(cpu, target_pstate,
2557 fast_switch);
2558 else
2559 intel_cpufreq_adjust_perf_ctl(cpu, target_pstate,
2560 fast_switch);
2561 }
2562
2563 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2564 INTEL_PSTATE_TRACE_TARGET, old_pstate);
2565
2566 return target_pstate;
2567}
2568
2569static int intel_cpufreq_target(struct cpufreq_policy *policy,
2570 unsigned int target_freq,
2571 unsigned int relation)
2572{
2573 struct cpudata *cpu = all_cpu_data[policy->cpu];
2574 struct cpufreq_freqs freqs;
2575 int target_pstate;
2576
2577 update_turbo_state();
2578
2579 freqs.old = policy->cur;
2580 freqs.new = target_freq;
2581
2582 cpufreq_freq_transition_begin(policy, &freqs);
2583
2584 switch (relation) {
2585 case CPUFREQ_RELATION_L:
2586 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2587 break;
2588 case CPUFREQ_RELATION_H:
2589 target_pstate = freqs.new / cpu->pstate.scaling;
2590 break;
2591 default:
2592 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2593 break;
2594 }
2595
2596 target_pstate = intel_cpufreq_update_pstate(cpu, target_pstate, false);
2597
2598 freqs.new = target_pstate * cpu->pstate.scaling;
2599
2600 cpufreq_freq_transition_end(policy, &freqs, false);
2601
2602 return 0;
2603}
2604
2605static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2606 unsigned int target_freq)
2607{
2608 struct cpudata *cpu = all_cpu_data[policy->cpu];
2609 int target_pstate;
2610
2611 update_turbo_state();
2612
2613 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2614
2615 target_pstate = intel_cpufreq_update_pstate(cpu, target_pstate, true);
2616
2617 return target_pstate * cpu->pstate.scaling;
2618}
2619
2620static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2621{
2622 int max_state, turbo_max, min_freq, max_freq, ret;
2623 struct freq_qos_request *req;
2624 struct cpudata *cpu;
2625 struct device *dev;
2626
2627 dev = get_cpu_device(policy->cpu);
2628 if (!dev)
2629 return -ENODEV;
2630
2631 ret = __intel_pstate_cpu_init(policy);
2632 if (ret)
2633 return ret;
2634
2635 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2636 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2637 policy->cur = policy->cpuinfo.min_freq;
2638
2639 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2640 if (!req) {
2641 ret = -ENOMEM;
2642 goto pstate_exit;
2643 }
2644
2645 cpu = all_cpu_data[policy->cpu];
2646
2647 if (hwp_active) {
2648 u64 value;
2649
2650 intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2651 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2652 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2653 WRITE_ONCE(cpu->hwp_req_cached, value);
2654 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2655 } else {
2656 turbo_max = cpu->pstate.turbo_pstate;
2657 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2658 }
2659
2660 min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2661 min_freq *= cpu->pstate.scaling;
2662 max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2663 max_freq *= cpu->pstate.scaling;
2664
2665 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2666 min_freq);
2667 if (ret < 0) {
2668 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2669 goto free_req;
2670 }
2671
2672 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2673 max_freq);
2674 if (ret < 0) {
2675 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2676 goto remove_min_req;
2677 }
2678
2679 policy->driver_data = req;
2680
2681 return 0;
2682
2683remove_min_req:
2684 freq_qos_remove_request(req);
2685free_req:
2686 kfree(req);
2687pstate_exit:
2688 intel_pstate_exit_perf_limits(policy);
2689
2690 return ret;
2691}
2692
2693static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2694{
2695 struct freq_qos_request *req;
2696
2697 req = policy->driver_data;
2698
2699 freq_qos_remove_request(req + 1);
2700 freq_qos_remove_request(req);
2701 kfree(req);
2702
2703 return intel_pstate_cpu_exit(policy);
2704}
2705
2706static struct cpufreq_driver intel_cpufreq = {
2707 .flags = CPUFREQ_CONST_LOOPS,
2708 .verify = intel_cpufreq_verify_policy,
2709 .target = intel_cpufreq_target,
2710 .fast_switch = intel_cpufreq_fast_switch,
2711 .init = intel_cpufreq_cpu_init,
2712 .exit = intel_cpufreq_cpu_exit,
2713 .offline = intel_pstate_cpu_offline,
2714 .online = intel_pstate_cpu_online,
2715 .suspend = intel_pstate_suspend,
2716 .resume = intel_pstate_resume,
2717 .update_limits = intel_pstate_update_limits,
2718 .name = "intel_cpufreq",
2719};
2720
2721static struct cpufreq_driver *default_driver;
2722
2723static void intel_pstate_driver_cleanup(void)
2724{
2725 unsigned int cpu;
2726
2727 get_online_cpus();
2728 for_each_online_cpu(cpu) {
2729 if (all_cpu_data[cpu]) {
2730 if (intel_pstate_driver == &intel_pstate)
2731 intel_pstate_clear_update_util_hook(cpu);
2732
2733 kfree(all_cpu_data[cpu]);
2734 all_cpu_data[cpu] = NULL;
2735 }
2736 }
2737 put_online_cpus();
2738
2739 intel_pstate_driver = NULL;
2740}
2741
2742static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2743{
2744 int ret;
2745
2746 if (driver == &intel_pstate)
2747 intel_pstate_sysfs_expose_hwp_dynamic_boost();
2748
2749 memset(&global, 0, sizeof(global));
2750 global.max_perf_pct = 100;
2751
2752 intel_pstate_driver = driver;
2753 ret = cpufreq_register_driver(intel_pstate_driver);
2754 if (ret) {
2755 intel_pstate_driver_cleanup();
2756 return ret;
2757 }
2758
2759 global.min_perf_pct = min_perf_pct_min();
2760
2761 return 0;
2762}
2763
2764static ssize_t intel_pstate_show_status(char *buf)
2765{
2766 if (!intel_pstate_driver)
2767 return sprintf(buf, "off\n");
2768
2769 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2770 "active" : "passive");
2771}
2772
2773static int intel_pstate_update_status(const char *buf, size_t size)
2774{
2775 if (size == 3 && !strncmp(buf, "off", size)) {
2776 if (!intel_pstate_driver)
2777 return -EINVAL;
2778
2779 if (hwp_active)
2780 return -EBUSY;
2781
2782 cpufreq_unregister_driver(intel_pstate_driver);
2783 intel_pstate_driver_cleanup();
2784 return 0;
2785 }
2786
2787 if (size == 6 && !strncmp(buf, "active", size)) {
2788 if (intel_pstate_driver) {
2789 if (intel_pstate_driver == &intel_pstate)
2790 return 0;
2791
2792 cpufreq_unregister_driver(intel_pstate_driver);
2793 }
2794
2795 return intel_pstate_register_driver(&intel_pstate);
2796 }
2797
2798 if (size == 7 && !strncmp(buf, "passive", size)) {
2799 if (intel_pstate_driver) {
2800 if (intel_pstate_driver == &intel_cpufreq)
2801 return 0;
2802
2803 cpufreq_unregister_driver(intel_pstate_driver);
2804 intel_pstate_sysfs_hide_hwp_dynamic_boost();
2805 }
2806
2807 return intel_pstate_register_driver(&intel_cpufreq);
2808 }
2809
2810 return -EINVAL;
2811}
2812
2813static int no_load __initdata;
2814static int no_hwp __initdata;
2815static int hwp_only __initdata;
2816static unsigned int force_load __initdata;
2817
2818static int __init intel_pstate_msrs_not_valid(void)
2819{
2820 if (!pstate_funcs.get_max() ||
2821 !pstate_funcs.get_min() ||
2822 !pstate_funcs.get_turbo())
2823 return -ENODEV;
2824
2825 return 0;
2826}
2827
2828static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2829{
2830 pstate_funcs.get_max = funcs->get_max;
2831 pstate_funcs.get_max_physical = funcs->get_max_physical;
2832 pstate_funcs.get_min = funcs->get_min;
2833 pstate_funcs.get_turbo = funcs->get_turbo;
2834 pstate_funcs.get_scaling = funcs->get_scaling;
2835 pstate_funcs.get_val = funcs->get_val;
2836 pstate_funcs.get_vid = funcs->get_vid;
2837 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2838}
2839
2840#ifdef CONFIG_ACPI
2841
2842static bool __init intel_pstate_no_acpi_pss(void)
2843{
2844 int i;
2845
2846 for_each_possible_cpu(i) {
2847 acpi_status status;
2848 union acpi_object *pss;
2849 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2850 struct acpi_processor *pr = per_cpu(processors, i);
2851
2852 if (!pr)
2853 continue;
2854
2855 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2856 if (ACPI_FAILURE(status))
2857 continue;
2858
2859 pss = buffer.pointer;
2860 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2861 kfree(pss);
2862 return false;
2863 }
2864
2865 kfree(pss);
2866 }
2867
2868 pr_debug("ACPI _PSS not found\n");
2869 return true;
2870}
2871
2872static bool __init intel_pstate_no_acpi_pcch(void)
2873{
2874 acpi_status status;
2875 acpi_handle handle;
2876
2877 status = acpi_get_handle(NULL, "\\_SB", &handle);
2878 if (ACPI_FAILURE(status))
2879 goto not_found;
2880
2881 if (acpi_has_method(handle, "PCCH"))
2882 return false;
2883
2884not_found:
2885 pr_debug("ACPI PCCH not found\n");
2886 return true;
2887}
2888
2889static bool __init intel_pstate_has_acpi_ppc(void)
2890{
2891 int i;
2892
2893 for_each_possible_cpu(i) {
2894 struct acpi_processor *pr = per_cpu(processors, i);
2895
2896 if (!pr)
2897 continue;
2898 if (acpi_has_method(pr->handle, "_PPC"))
2899 return true;
2900 }
2901 pr_debug("ACPI _PPC not found\n");
2902 return false;
2903}
2904
2905enum {
2906 PSS,
2907 PPC,
2908};
2909
2910/* Hardware vendor-specific info that has its own power management modes */
2911static struct acpi_platform_list plat_info[] __initdata = {
2912 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
2913 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2914 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2915 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2916 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2917 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2918 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2919 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2920 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2921 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2922 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2923 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2924 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2925 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2926 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2927 { } /* End */
2928};
2929
2930#define BITMASK_OOB (BIT(8) | BIT(18))
2931
2932static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2933{
2934 const struct x86_cpu_id *id;
2935 u64 misc_pwr;
2936 int idx;
2937
2938 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2939 if (id) {
2940 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2941 if (misc_pwr & BITMASK_OOB) {
2942 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
2943 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
2944 return true;
2945 }
2946 }
2947
2948 idx = acpi_match_platform_list(plat_info);
2949 if (idx < 0)
2950 return false;
2951
2952 switch (plat_info[idx].data) {
2953 case PSS:
2954 if (!intel_pstate_no_acpi_pss())
2955 return false;
2956
2957 return intel_pstate_no_acpi_pcch();
2958 case PPC:
2959 return intel_pstate_has_acpi_ppc() && !force_load;
2960 }
2961
2962 return false;
2963}
2964
2965static void intel_pstate_request_control_from_smm(void)
2966{
2967 /*
2968 * It may be unsafe to request P-states control from SMM if _PPC support
2969 * has not been enabled.
2970 */
2971 if (acpi_ppc)
2972 acpi_processor_pstate_control();
2973}
2974#else /* CONFIG_ACPI not enabled */
2975static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2976static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2977static inline void intel_pstate_request_control_from_smm(void) {}
2978#endif /* CONFIG_ACPI */
2979
2980#define INTEL_PSTATE_HWP_BROADWELL 0x01
2981
2982#define X86_MATCH_HWP(model, hwp_mode) \
2983 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2984 X86_FEATURE_HWP, hwp_mode)
2985
2986static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2987 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2988 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
2989 X86_MATCH_HWP(ANY, 0),
2990 {}
2991};
2992
2993static int __init intel_pstate_init(void)
2994{
2995 const struct x86_cpu_id *id;
2996 int rc;
2997
2998 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2999 return -ENODEV;
3000
3001 if (no_load)
3002 return -ENODEV;
3003
3004 id = x86_match_cpu(hwp_support_ids);
3005 if (id) {
3006 copy_cpu_funcs(&core_funcs);
3007 /*
3008 * Avoid enabling HWP for processors without EPP support,
3009 * because that means incomplete HWP implementation which is a
3010 * corner case and supporting it is generally problematic.
3011 */
3012 if (!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) {
3013 hwp_active++;
3014 hwp_mode_bdw = id->driver_data;
3015 intel_pstate.attr = hwp_cpufreq_attrs;
3016 intel_cpufreq.attr = hwp_cpufreq_attrs;
3017 if (!default_driver)
3018 default_driver = &intel_pstate;
3019
3020 goto hwp_cpu_matched;
3021 }
3022 } else {
3023 id = x86_match_cpu(intel_pstate_cpu_ids);
3024 if (!id) {
3025 pr_info("CPU model not supported\n");
3026 return -ENODEV;
3027 }
3028
3029 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3030 }
3031
3032 if (intel_pstate_msrs_not_valid()) {
3033 pr_info("Invalid MSRs\n");
3034 return -ENODEV;
3035 }
3036 /* Without HWP start in the passive mode. */
3037 if (!default_driver)
3038 default_driver = &intel_cpufreq;
3039
3040hwp_cpu_matched:
3041 /*
3042 * The Intel pstate driver will be ignored if the platform
3043 * firmware has its own power management modes.
3044 */
3045 if (intel_pstate_platform_pwr_mgmt_exists()) {
3046 pr_info("P-states controlled by the platform\n");
3047 return -ENODEV;
3048 }
3049
3050 if (!hwp_active && hwp_only)
3051 return -ENOTSUPP;
3052
3053 pr_info("Intel P-state driver initializing\n");
3054
3055 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3056 if (!all_cpu_data)
3057 return -ENOMEM;
3058
3059 intel_pstate_request_control_from_smm();
3060
3061 intel_pstate_sysfs_expose_params();
3062
3063 mutex_lock(&intel_pstate_driver_lock);
3064 rc = intel_pstate_register_driver(default_driver);
3065 mutex_unlock(&intel_pstate_driver_lock);
3066 if (rc)
3067 return rc;
3068
3069 if (hwp_active) {
3070 const struct x86_cpu_id *id;
3071
3072 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3073 if (id) {
3074 set_power_ctl_ee_state(false);
3075 pr_info("Disabling energy efficiency optimization\n");
3076 }
3077
3078 pr_info("HWP enabled\n");
3079 }
3080
3081 return 0;
3082}
3083device_initcall(intel_pstate_init);
3084
3085static int __init intel_pstate_setup(char *str)
3086{
3087 if (!str)
3088 return -EINVAL;
3089
3090 if (!strcmp(str, "disable"))
3091 no_load = 1;
3092 else if (!strcmp(str, "active"))
3093 default_driver = &intel_pstate;
3094 else if (!strcmp(str, "passive"))
3095 default_driver = &intel_cpufreq;
3096
3097 if (!strcmp(str, "no_hwp")) {
3098 pr_info("HWP disabled\n");
3099 no_hwp = 1;
3100 }
3101 if (!strcmp(str, "force"))
3102 force_load = 1;
3103 if (!strcmp(str, "hwp_only"))
3104 hwp_only = 1;
3105 if (!strcmp(str, "per_cpu_perf_limits"))
3106 per_cpu_limits = true;
3107
3108#ifdef CONFIG_ACPI
3109 if (!strcmp(str, "support_acpi_ppc"))
3110 acpi_ppc = true;
3111#endif
3112
3113 return 0;
3114}
3115early_param("intel_pstate", intel_pstate_setup);
3116
3117MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3118MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3119MODULE_LICENSE("GPL");