Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * lib/bitmap.c
  4 * Helper functions for bitmap.h.
  5 */
  6
  7#include <linux/bitmap.h>
  8#include <linux/bitops.h>
 
  9#include <linux/ctype.h>
 10#include <linux/device.h>
 
 11#include <linux/export.h>
 
 
 12#include <linux/slab.h>
 
 
 
 
 
 
 
 13
 14/**
 15 * DOC: bitmap introduction
 16 *
 17 * bitmaps provide an array of bits, implemented using an
 18 * array of unsigned longs.  The number of valid bits in a
 19 * given bitmap does _not_ need to be an exact multiple of
 20 * BITS_PER_LONG.
 21 *
 22 * The possible unused bits in the last, partially used word
 23 * of a bitmap are 'don't care'.  The implementation makes
 24 * no particular effort to keep them zero.  It ensures that
 25 * their value will not affect the results of any operation.
 26 * The bitmap operations that return Boolean (bitmap_empty,
 27 * for example) or scalar (bitmap_weight, for example) results
 28 * carefully filter out these unused bits from impacting their
 29 * results.
 30 *
 31 * The byte ordering of bitmaps is more natural on little
 32 * endian architectures.  See the big-endian headers
 33 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
 34 * for the best explanations of this ordering.
 35 */
 36
 37bool __bitmap_equal(const unsigned long *bitmap1,
 38		    const unsigned long *bitmap2, unsigned int bits)
 39{
 40	unsigned int k, lim = bits/BITS_PER_LONG;
 41	for (k = 0; k < lim; ++k)
 42		if (bitmap1[k] != bitmap2[k])
 43			return false;
 44
 45	if (bits % BITS_PER_LONG)
 46		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 47			return false;
 48
 49	return true;
 50}
 51EXPORT_SYMBOL(__bitmap_equal);
 52
 53bool __bitmap_or_equal(const unsigned long *bitmap1,
 54		       const unsigned long *bitmap2,
 55		       const unsigned long *bitmap3,
 56		       unsigned int bits)
 57{
 58	unsigned int k, lim = bits / BITS_PER_LONG;
 59	unsigned long tmp;
 60
 61	for (k = 0; k < lim; ++k) {
 62		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
 63			return false;
 64	}
 65
 66	if (!(bits % BITS_PER_LONG))
 67		return true;
 68
 69	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
 70	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
 71}
 72
 73void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
 74{
 75	unsigned int k, lim = BITS_TO_LONGS(bits);
 76	for (k = 0; k < lim; ++k)
 77		dst[k] = ~src[k];
 78}
 79EXPORT_SYMBOL(__bitmap_complement);
 80
 81/**
 82 * __bitmap_shift_right - logical right shift of the bits in a bitmap
 83 *   @dst : destination bitmap
 84 *   @src : source bitmap
 85 *   @shift : shift by this many bits
 86 *   @nbits : bitmap size, in bits
 87 *
 88 * Shifting right (dividing) means moving bits in the MS -> LS bit
 89 * direction.  Zeros are fed into the vacated MS positions and the
 90 * LS bits shifted off the bottom are lost.
 91 */
 92void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
 93			unsigned shift, unsigned nbits)
 94{
 95	unsigned k, lim = BITS_TO_LONGS(nbits);
 96	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 97	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
 98	for (k = 0; off + k < lim; ++k) {
 99		unsigned long upper, lower;
100
101		/*
102		 * If shift is not word aligned, take lower rem bits of
103		 * word above and make them the top rem bits of result.
104		 */
105		if (!rem || off + k + 1 >= lim)
106			upper = 0;
107		else {
108			upper = src[off + k + 1];
109			if (off + k + 1 == lim - 1)
110				upper &= mask;
111			upper <<= (BITS_PER_LONG - rem);
112		}
113		lower = src[off + k];
114		if (off + k == lim - 1)
115			lower &= mask;
116		lower >>= rem;
117		dst[k] = lower | upper;
118	}
119	if (off)
120		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
121}
122EXPORT_SYMBOL(__bitmap_shift_right);
123
124
125/**
126 * __bitmap_shift_left - logical left shift of the bits in a bitmap
127 *   @dst : destination bitmap
128 *   @src : source bitmap
129 *   @shift : shift by this many bits
130 *   @nbits : bitmap size, in bits
131 *
132 * Shifting left (multiplying) means moving bits in the LS -> MS
133 * direction.  Zeros are fed into the vacated LS bit positions
134 * and those MS bits shifted off the top are lost.
135 */
136
137void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
138			unsigned int shift, unsigned int nbits)
139{
140	int k;
141	unsigned int lim = BITS_TO_LONGS(nbits);
142	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
143	for (k = lim - off - 1; k >= 0; --k) {
144		unsigned long upper, lower;
145
146		/*
147		 * If shift is not word aligned, take upper rem bits of
148		 * word below and make them the bottom rem bits of result.
149		 */
150		if (rem && k > 0)
151			lower = src[k - 1] >> (BITS_PER_LONG - rem);
152		else
153			lower = 0;
154		upper = src[k] << rem;
155		dst[k + off] = lower | upper;
156	}
157	if (off)
158		memset(dst, 0, off*sizeof(unsigned long));
159}
160EXPORT_SYMBOL(__bitmap_shift_left);
161
162/**
163 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
164 * @dst: destination bitmap, might overlap with src
165 * @src: source bitmap
166 * @first: start bit of region to be removed
167 * @cut: number of bits to remove
168 * @nbits: bitmap size, in bits
169 *
170 * Set the n-th bit of @dst iff the n-th bit of @src is set and
171 * n is less than @first, or the m-th bit of @src is set for any
172 * m such that @first <= n < nbits, and m = n + @cut.
173 *
174 * In pictures, example for a big-endian 32-bit architecture:
175 *
176 * The @src bitmap is::
177 *
178 *   31                                   63
179 *   |                                    |
180 *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
181 *                   |  |              |                                    |
182 *                  16  14             0                                   32
183 *
184 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
185 *
186 *   31                                   63
187 *   |                                    |
188 *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
189 *                      |              |                                    |
190 *                      14 (bit 17     0                                   32
191 *                          from @src)
192 *
193 * Note that @dst and @src might overlap partially or entirely.
194 *
195 * This is implemented in the obvious way, with a shift and carry
196 * step for each moved bit. Optimisation is left as an exercise
197 * for the compiler.
198 */
199void bitmap_cut(unsigned long *dst, const unsigned long *src,
200		unsigned int first, unsigned int cut, unsigned int nbits)
201{
202	unsigned int len = BITS_TO_LONGS(nbits);
203	unsigned long keep = 0, carry;
204	int i;
205
206	if (first % BITS_PER_LONG) {
207		keep = src[first / BITS_PER_LONG] &
208		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
209	}
210
211	memmove(dst, src, len * sizeof(*dst));
212
213	while (cut--) {
214		for (i = first / BITS_PER_LONG; i < len; i++) {
215			if (i < len - 1)
216				carry = dst[i + 1] & 1UL;
217			else
218				carry = 0;
219
220			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
221		}
222	}
223
224	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
225	dst[first / BITS_PER_LONG] |= keep;
226}
227EXPORT_SYMBOL(bitmap_cut);
228
229bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
230				const unsigned long *bitmap2, unsigned int bits)
231{
232	unsigned int k;
233	unsigned int lim = bits/BITS_PER_LONG;
234	unsigned long result = 0;
235
236	for (k = 0; k < lim; k++)
237		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
238	if (bits % BITS_PER_LONG)
239		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
240			   BITMAP_LAST_WORD_MASK(bits));
241	return result != 0;
242}
243EXPORT_SYMBOL(__bitmap_and);
244
245void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
246				const unsigned long *bitmap2, unsigned int bits)
247{
248	unsigned int k;
249	unsigned int nr = BITS_TO_LONGS(bits);
250
251	for (k = 0; k < nr; k++)
252		dst[k] = bitmap1[k] | bitmap2[k];
253}
254EXPORT_SYMBOL(__bitmap_or);
255
256void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
257				const unsigned long *bitmap2, unsigned int bits)
258{
259	unsigned int k;
260	unsigned int nr = BITS_TO_LONGS(bits);
261
262	for (k = 0; k < nr; k++)
263		dst[k] = bitmap1[k] ^ bitmap2[k];
264}
265EXPORT_SYMBOL(__bitmap_xor);
266
267bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
268				const unsigned long *bitmap2, unsigned int bits)
269{
270	unsigned int k;
271	unsigned int lim = bits/BITS_PER_LONG;
272	unsigned long result = 0;
273
274	for (k = 0; k < lim; k++)
275		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
276	if (bits % BITS_PER_LONG)
277		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
278			   BITMAP_LAST_WORD_MASK(bits));
279	return result != 0;
280}
281EXPORT_SYMBOL(__bitmap_andnot);
282
283void __bitmap_replace(unsigned long *dst,
284		      const unsigned long *old, const unsigned long *new,
285		      const unsigned long *mask, unsigned int nbits)
286{
287	unsigned int k;
288	unsigned int nr = BITS_TO_LONGS(nbits);
289
290	for (k = 0; k < nr; k++)
291		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
292}
293EXPORT_SYMBOL(__bitmap_replace);
294
295bool __bitmap_intersects(const unsigned long *bitmap1,
296			 const unsigned long *bitmap2, unsigned int bits)
297{
298	unsigned int k, lim = bits/BITS_PER_LONG;
299	for (k = 0; k < lim; ++k)
300		if (bitmap1[k] & bitmap2[k])
301			return true;
302
303	if (bits % BITS_PER_LONG)
304		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
305			return true;
306	return false;
307}
308EXPORT_SYMBOL(__bitmap_intersects);
309
310bool __bitmap_subset(const unsigned long *bitmap1,
311		     const unsigned long *bitmap2, unsigned int bits)
312{
313	unsigned int k, lim = bits/BITS_PER_LONG;
314	for (k = 0; k < lim; ++k)
315		if (bitmap1[k] & ~bitmap2[k])
316			return false;
317
318	if (bits % BITS_PER_LONG)
319		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
320			return false;
321	return true;
322}
323EXPORT_SYMBOL(__bitmap_subset);
324
325#define BITMAP_WEIGHT(FETCH, bits)	\
326({										\
327	unsigned int __bits = (bits), idx, w = 0;				\
328										\
329	for (idx = 0; idx < __bits / BITS_PER_LONG; idx++)			\
330		w += hweight_long(FETCH);					\
331										\
332	if (__bits % BITS_PER_LONG)						\
333		w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits));	\
334										\
335	w;									\
336})
337
338unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
339{
340	return BITMAP_WEIGHT(bitmap[idx], bits);
341}
342EXPORT_SYMBOL(__bitmap_weight);
343
344unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
345				const unsigned long *bitmap2, unsigned int bits)
346{
347	return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
348}
349EXPORT_SYMBOL(__bitmap_weight_and);
350
351void __bitmap_set(unsigned long *map, unsigned int start, int len)
352{
353	unsigned long *p = map + BIT_WORD(start);
354	const unsigned int size = start + len;
355	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
356	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
357
358	while (len - bits_to_set >= 0) {
359		*p |= mask_to_set;
360		len -= bits_to_set;
361		bits_to_set = BITS_PER_LONG;
362		mask_to_set = ~0UL;
363		p++;
364	}
365	if (len) {
366		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
367		*p |= mask_to_set;
368	}
369}
370EXPORT_SYMBOL(__bitmap_set);
371
372void __bitmap_clear(unsigned long *map, unsigned int start, int len)
373{
374	unsigned long *p = map + BIT_WORD(start);
375	const unsigned int size = start + len;
376	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
377	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
378
379	while (len - bits_to_clear >= 0) {
380		*p &= ~mask_to_clear;
381		len -= bits_to_clear;
382		bits_to_clear = BITS_PER_LONG;
383		mask_to_clear = ~0UL;
384		p++;
385	}
386	if (len) {
387		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
388		*p &= ~mask_to_clear;
389	}
390}
391EXPORT_SYMBOL(__bitmap_clear);
392
393/**
394 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
395 * @map: The address to base the search on
396 * @size: The bitmap size in bits
397 * @start: The bitnumber to start searching at
398 * @nr: The number of zeroed bits we're looking for
399 * @align_mask: Alignment mask for zero area
400 * @align_offset: Alignment offset for zero area.
401 *
402 * The @align_mask should be one less than a power of 2; the effect is that
403 * the bit offset of all zero areas this function finds plus @align_offset
404 * is multiple of that power of 2.
405 */
406unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
407					     unsigned long size,
408					     unsigned long start,
409					     unsigned int nr,
410					     unsigned long align_mask,
411					     unsigned long align_offset)
412{
413	unsigned long index, end, i;
414again:
415	index = find_next_zero_bit(map, size, start);
416
417	/* Align allocation */
418	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
419
420	end = index + nr;
421	if (end > size)
422		return end;
423	i = find_next_bit(map, end, index);
424	if (i < end) {
425		start = i + 1;
426		goto again;
427	}
428	return index;
429}
430EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432/**
433 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
434 *	@buf: pointer to a bitmap
435 *	@pos: a bit position in @buf (0 <= @pos < @nbits)
436 *	@nbits: number of valid bit positions in @buf
437 *
438 * Map the bit at position @pos in @buf (of length @nbits) to the
439 * ordinal of which set bit it is.  If it is not set or if @pos
440 * is not a valid bit position, map to -1.
441 *
442 * If for example, just bits 4 through 7 are set in @buf, then @pos
443 * values 4 through 7 will get mapped to 0 through 3, respectively,
444 * and other @pos values will get mapped to -1.  When @pos value 7
445 * gets mapped to (returns) @ord value 3 in this example, that means
446 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
447 *
448 * The bit positions 0 through @bits are valid positions in @buf.
449 */
450static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
451{
452	if (pos >= nbits || !test_bit(pos, buf))
453		return -1;
454
455	return bitmap_weight(buf, pos);
456}
457
458/**
459 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
460 *	@dst: remapped result
461 *	@src: subset to be remapped
462 *	@old: defines domain of map
463 *	@new: defines range of map
464 *	@nbits: number of bits in each of these bitmaps
465 *
466 * Let @old and @new define a mapping of bit positions, such that
467 * whatever position is held by the n-th set bit in @old is mapped
468 * to the n-th set bit in @new.  In the more general case, allowing
469 * for the possibility that the weight 'w' of @new is less than the
470 * weight of @old, map the position of the n-th set bit in @old to
471 * the position of the m-th set bit in @new, where m == n % w.
472 *
473 * If either of the @old and @new bitmaps are empty, or if @src and
474 * @dst point to the same location, then this routine copies @src
475 * to @dst.
476 *
477 * The positions of unset bits in @old are mapped to themselves
478 * (the identity map).
479 *
480 * Apply the above specified mapping to @src, placing the result in
481 * @dst, clearing any bits previously set in @dst.
482 *
483 * For example, lets say that @old has bits 4 through 7 set, and
484 * @new has bits 12 through 15 set.  This defines the mapping of bit
485 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
486 * bit positions unchanged.  So if say @src comes into this routine
487 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
488 * 13 and 15 set.
489 */
490void bitmap_remap(unsigned long *dst, const unsigned long *src,
491		const unsigned long *old, const unsigned long *new,
492		unsigned int nbits)
493{
494	unsigned int oldbit, w;
495
496	if (dst == src)		/* following doesn't handle inplace remaps */
497		return;
498	bitmap_zero(dst, nbits);
499
500	w = bitmap_weight(new, nbits);
501	for_each_set_bit(oldbit, src, nbits) {
502		int n = bitmap_pos_to_ord(old, oldbit, nbits);
503
504		if (n < 0 || w == 0)
505			set_bit(oldbit, dst);	/* identity map */
506		else
507			set_bit(find_nth_bit(new, nbits, n % w), dst);
508	}
509}
510EXPORT_SYMBOL(bitmap_remap);
511
512/**
513 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
514 *	@oldbit: bit position to be mapped
515 *	@old: defines domain of map
516 *	@new: defines range of map
517 *	@bits: number of bits in each of these bitmaps
518 *
519 * Let @old and @new define a mapping of bit positions, such that
520 * whatever position is held by the n-th set bit in @old is mapped
521 * to the n-th set bit in @new.  In the more general case, allowing
522 * for the possibility that the weight 'w' of @new is less than the
523 * weight of @old, map the position of the n-th set bit in @old to
524 * the position of the m-th set bit in @new, where m == n % w.
525 *
526 * The positions of unset bits in @old are mapped to themselves
527 * (the identity map).
528 *
529 * Apply the above specified mapping to bit position @oldbit, returning
530 * the new bit position.
531 *
532 * For example, lets say that @old has bits 4 through 7 set, and
533 * @new has bits 12 through 15 set.  This defines the mapping of bit
534 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
535 * bit positions unchanged.  So if say @oldbit is 5, then this routine
536 * returns 13.
537 */
538int bitmap_bitremap(int oldbit, const unsigned long *old,
539				const unsigned long *new, int bits)
540{
541	int w = bitmap_weight(new, bits);
542	int n = bitmap_pos_to_ord(old, oldbit, bits);
543	if (n < 0 || w == 0)
544		return oldbit;
545	else
546		return find_nth_bit(new, bits, n % w);
547}
548EXPORT_SYMBOL(bitmap_bitremap);
549
550#ifdef CONFIG_NUMA
551/**
552 * bitmap_onto - translate one bitmap relative to another
553 *	@dst: resulting translated bitmap
554 * 	@orig: original untranslated bitmap
555 * 	@relmap: bitmap relative to which translated
556 *	@bits: number of bits in each of these bitmaps
557 *
558 * Set the n-th bit of @dst iff there exists some m such that the
559 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
560 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
561 * (If you understood the previous sentence the first time your
562 * read it, you're overqualified for your current job.)
563 *
564 * In other words, @orig is mapped onto (surjectively) @dst,
565 * using the map { <n, m> | the n-th bit of @relmap is the
566 * m-th set bit of @relmap }.
567 *
568 * Any set bits in @orig above bit number W, where W is the
569 * weight of (number of set bits in) @relmap are mapped nowhere.
570 * In particular, if for all bits m set in @orig, m >= W, then
571 * @dst will end up empty.  In situations where the possibility
572 * of such an empty result is not desired, one way to avoid it is
573 * to use the bitmap_fold() operator, below, to first fold the
574 * @orig bitmap over itself so that all its set bits x are in the
575 * range 0 <= x < W.  The bitmap_fold() operator does this by
576 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
577 *
578 * Example [1] for bitmap_onto():
579 *  Let's say @relmap has bits 30-39 set, and @orig has bits
580 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
581 *  @dst will have bits 31, 33, 35, 37 and 39 set.
582 *
583 *  When bit 0 is set in @orig, it means turn on the bit in
584 *  @dst corresponding to whatever is the first bit (if any)
585 *  that is turned on in @relmap.  Since bit 0 was off in the
586 *  above example, we leave off that bit (bit 30) in @dst.
587 *
588 *  When bit 1 is set in @orig (as in the above example), it
589 *  means turn on the bit in @dst corresponding to whatever
590 *  is the second bit that is turned on in @relmap.  The second
591 *  bit in @relmap that was turned on in the above example was
592 *  bit 31, so we turned on bit 31 in @dst.
593 *
594 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
595 *  because they were the 4th, 6th, 8th and 10th set bits
596 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
597 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
598 *
599 *  When bit 11 is set in @orig, it means turn on the bit in
600 *  @dst corresponding to whatever is the twelfth bit that is
601 *  turned on in @relmap.  In the above example, there were
602 *  only ten bits turned on in @relmap (30..39), so that bit
603 *  11 was set in @orig had no affect on @dst.
604 *
605 * Example [2] for bitmap_fold() + bitmap_onto():
606 *  Let's say @relmap has these ten bits set::
607 *
608 *		40 41 42 43 45 48 53 61 74 95
609 *
610 *  (for the curious, that's 40 plus the first ten terms of the
611 *  Fibonacci sequence.)
612 *
613 *  Further lets say we use the following code, invoking
614 *  bitmap_fold() then bitmap_onto, as suggested above to
615 *  avoid the possibility of an empty @dst result::
616 *
617 *	unsigned long *tmp;	// a temporary bitmap's bits
618 *
619 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
620 *	bitmap_onto(dst, tmp, relmap, bits);
621 *
622 *  Then this table shows what various values of @dst would be, for
623 *  various @orig's.  I list the zero-based positions of each set bit.
624 *  The tmp column shows the intermediate result, as computed by
625 *  using bitmap_fold() to fold the @orig bitmap modulo ten
626 *  (the weight of @relmap):
627 *
628 *      =============== ============== =================
629 *      @orig           tmp            @dst
630 *      0                0             40
631 *      1                1             41
632 *      9                9             95
633 *      10               0             40 [#f1]_
634 *      1 3 5 7          1 3 5 7       41 43 48 61
635 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
636 *      0 9 18 27        0 9 8 7       40 61 74 95
637 *      0 10 20 30       0             40
638 *      0 11 22 33       0 1 2 3       40 41 42 43
639 *      0 12 24 36       0 2 4 6       40 42 45 53
640 *      78 102 211       1 2 8         41 42 74 [#f1]_
641 *      =============== ============== =================
642 *
643 * .. [#f1]
644 *
645 *     For these marked lines, if we hadn't first done bitmap_fold()
646 *     into tmp, then the @dst result would have been empty.
647 *
648 * If either of @orig or @relmap is empty (no set bits), then @dst
649 * will be returned empty.
650 *
651 * If (as explained above) the only set bits in @orig are in positions
652 * m where m >= W, (where W is the weight of @relmap) then @dst will
653 * once again be returned empty.
654 *
655 * All bits in @dst not set by the above rule are cleared.
656 */
657void bitmap_onto(unsigned long *dst, const unsigned long *orig,
658			const unsigned long *relmap, unsigned int bits)
659{
660	unsigned int n, m;	/* same meaning as in above comment */
661
662	if (dst == orig)	/* following doesn't handle inplace mappings */
663		return;
664	bitmap_zero(dst, bits);
665
666	/*
667	 * The following code is a more efficient, but less
668	 * obvious, equivalent to the loop:
669	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
670	 *		n = find_nth_bit(orig, bits, m);
671	 *		if (test_bit(m, orig))
672	 *			set_bit(n, dst);
673	 *	}
674	 */
675
676	m = 0;
677	for_each_set_bit(n, relmap, bits) {
678		/* m == bitmap_pos_to_ord(relmap, n, bits) */
679		if (test_bit(m, orig))
680			set_bit(n, dst);
681		m++;
682	}
683}
684
685/**
686 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
687 *	@dst: resulting smaller bitmap
688 *	@orig: original larger bitmap
689 *	@sz: specified size
690 *	@nbits: number of bits in each of these bitmaps
691 *
692 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
693 * Clear all other bits in @dst.  See further the comment and
694 * Example [2] for bitmap_onto() for why and how to use this.
695 */
696void bitmap_fold(unsigned long *dst, const unsigned long *orig,
697			unsigned int sz, unsigned int nbits)
698{
699	unsigned int oldbit;
700
701	if (dst == orig)	/* following doesn't handle inplace mappings */
702		return;
703	bitmap_zero(dst, nbits);
704
705	for_each_set_bit(oldbit, orig, nbits)
706		set_bit(oldbit % sz, dst);
707}
708#endif /* CONFIG_NUMA */
709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
711{
712	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
713			     flags);
714}
715EXPORT_SYMBOL(bitmap_alloc);
716
717unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
718{
719	return bitmap_alloc(nbits, flags | __GFP_ZERO);
720}
721EXPORT_SYMBOL(bitmap_zalloc);
722
723unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
724{
725	return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
726				  flags, node);
727}
728EXPORT_SYMBOL(bitmap_alloc_node);
729
730unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
731{
732	return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
733}
734EXPORT_SYMBOL(bitmap_zalloc_node);
735
736void bitmap_free(const unsigned long *bitmap)
737{
738	kfree(bitmap);
739}
740EXPORT_SYMBOL(bitmap_free);
741
742static void devm_bitmap_free(void *data)
743{
744	unsigned long *bitmap = data;
745
746	bitmap_free(bitmap);
747}
748
749unsigned long *devm_bitmap_alloc(struct device *dev,
750				 unsigned int nbits, gfp_t flags)
751{
752	unsigned long *bitmap;
753	int ret;
754
755	bitmap = bitmap_alloc(nbits, flags);
756	if (!bitmap)
757		return NULL;
758
759	ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
760	if (ret)
761		return NULL;
762
763	return bitmap;
764}
765EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
766
767unsigned long *devm_bitmap_zalloc(struct device *dev,
768				  unsigned int nbits, gfp_t flags)
769{
770	return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
771}
772EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
773
774#if BITS_PER_LONG == 64
775/**
776 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
777 *	@bitmap: array of unsigned longs, the destination bitmap
778 *	@buf: array of u32 (in host byte order), the source bitmap
779 *	@nbits: number of bits in @bitmap
780 */
781void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
782{
783	unsigned int i, halfwords;
784
785	halfwords = DIV_ROUND_UP(nbits, 32);
786	for (i = 0; i < halfwords; i++) {
787		bitmap[i/2] = (unsigned long) buf[i];
788		if (++i < halfwords)
789			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
790	}
791
792	/* Clear tail bits in last word beyond nbits. */
793	if (nbits % BITS_PER_LONG)
794		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
795}
796EXPORT_SYMBOL(bitmap_from_arr32);
797
798/**
799 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
800 *	@buf: array of u32 (in host byte order), the dest bitmap
801 *	@bitmap: array of unsigned longs, the source bitmap
802 *	@nbits: number of bits in @bitmap
803 */
804void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
805{
806	unsigned int i, halfwords;
807
808	halfwords = DIV_ROUND_UP(nbits, 32);
809	for (i = 0; i < halfwords; i++) {
810		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
811		if (++i < halfwords)
812			buf[i] = (u32) (bitmap[i/2] >> 32);
813	}
814
815	/* Clear tail bits in last element of array beyond nbits. */
816	if (nbits % BITS_PER_LONG)
817		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
818}
819EXPORT_SYMBOL(bitmap_to_arr32);
820#endif
821
822#if BITS_PER_LONG == 32
823/**
824 * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
825 *	@bitmap: array of unsigned longs, the destination bitmap
826 *	@buf: array of u64 (in host byte order), the source bitmap
827 *	@nbits: number of bits in @bitmap
828 */
829void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
830{
831	int n;
832
833	for (n = nbits; n > 0; n -= 64) {
834		u64 val = *buf++;
835
836		*bitmap++ = val;
837		if (n > 32)
838			*bitmap++ = val >> 32;
839	}
840
841	/*
842	 * Clear tail bits in the last word beyond nbits.
843	 *
844	 * Negative index is OK because here we point to the word next
845	 * to the last word of the bitmap, except for nbits == 0, which
846	 * is tested implicitly.
847	 */
848	if (nbits % BITS_PER_LONG)
849		bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
850}
851EXPORT_SYMBOL(bitmap_from_arr64);
852
853/**
854 * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
855 *	@buf: array of u64 (in host byte order), the dest bitmap
856 *	@bitmap: array of unsigned longs, the source bitmap
857 *	@nbits: number of bits in @bitmap
858 */
859void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
860{
861	const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
862
863	while (bitmap < end) {
864		*buf = *bitmap++;
865		if (bitmap < end)
866			*buf |= (u64)(*bitmap++) << 32;
867		buf++;
868	}
869
870	/* Clear tail bits in the last element of array beyond nbits. */
871	if (nbits % 64)
872		buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
873}
874EXPORT_SYMBOL(bitmap_to_arr64);
875#endif
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * lib/bitmap.c
   4 * Helper functions for bitmap.h.
   5 */
   6
   7#include <linux/bitmap.h>
   8#include <linux/bitops.h>
   9#include <linux/bug.h>
  10#include <linux/ctype.h>
  11#include <linux/device.h>
  12#include <linux/errno.h>
  13#include <linux/export.h>
  14#include <linux/kernel.h>
  15#include <linux/mm.h>
  16#include <linux/slab.h>
  17#include <linux/string.h>
  18#include <linux/thread_info.h>
  19#include <linux/uaccess.h>
  20
  21#include <asm/page.h>
  22
  23#include "kstrtox.h"
  24
  25/**
  26 * DOC: bitmap introduction
  27 *
  28 * bitmaps provide an array of bits, implemented using an
  29 * array of unsigned longs.  The number of valid bits in a
  30 * given bitmap does _not_ need to be an exact multiple of
  31 * BITS_PER_LONG.
  32 *
  33 * The possible unused bits in the last, partially used word
  34 * of a bitmap are 'don't care'.  The implementation makes
  35 * no particular effort to keep them zero.  It ensures that
  36 * their value will not affect the results of any operation.
  37 * The bitmap operations that return Boolean (bitmap_empty,
  38 * for example) or scalar (bitmap_weight, for example) results
  39 * carefully filter out these unused bits from impacting their
  40 * results.
  41 *
  42 * The byte ordering of bitmaps is more natural on little
  43 * endian architectures.  See the big-endian headers
  44 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  45 * for the best explanations of this ordering.
  46 */
  47
  48bool __bitmap_equal(const unsigned long *bitmap1,
  49		    const unsigned long *bitmap2, unsigned int bits)
  50{
  51	unsigned int k, lim = bits/BITS_PER_LONG;
  52	for (k = 0; k < lim; ++k)
  53		if (bitmap1[k] != bitmap2[k])
  54			return false;
  55
  56	if (bits % BITS_PER_LONG)
  57		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  58			return false;
  59
  60	return true;
  61}
  62EXPORT_SYMBOL(__bitmap_equal);
  63
  64bool __bitmap_or_equal(const unsigned long *bitmap1,
  65		       const unsigned long *bitmap2,
  66		       const unsigned long *bitmap3,
  67		       unsigned int bits)
  68{
  69	unsigned int k, lim = bits / BITS_PER_LONG;
  70	unsigned long tmp;
  71
  72	for (k = 0; k < lim; ++k) {
  73		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
  74			return false;
  75	}
  76
  77	if (!(bits % BITS_PER_LONG))
  78		return true;
  79
  80	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
  81	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
  82}
  83
  84void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
  85{
  86	unsigned int k, lim = BITS_TO_LONGS(bits);
  87	for (k = 0; k < lim; ++k)
  88		dst[k] = ~src[k];
  89}
  90EXPORT_SYMBOL(__bitmap_complement);
  91
  92/**
  93 * __bitmap_shift_right - logical right shift of the bits in a bitmap
  94 *   @dst : destination bitmap
  95 *   @src : source bitmap
  96 *   @shift : shift by this many bits
  97 *   @nbits : bitmap size, in bits
  98 *
  99 * Shifting right (dividing) means moving bits in the MS -> LS bit
 100 * direction.  Zeros are fed into the vacated MS positions and the
 101 * LS bits shifted off the bottom are lost.
 102 */
 103void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
 104			unsigned shift, unsigned nbits)
 105{
 106	unsigned k, lim = BITS_TO_LONGS(nbits);
 107	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 108	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
 109	for (k = 0; off + k < lim; ++k) {
 110		unsigned long upper, lower;
 111
 112		/*
 113		 * If shift is not word aligned, take lower rem bits of
 114		 * word above and make them the top rem bits of result.
 115		 */
 116		if (!rem || off + k + 1 >= lim)
 117			upper = 0;
 118		else {
 119			upper = src[off + k + 1];
 120			if (off + k + 1 == lim - 1)
 121				upper &= mask;
 122			upper <<= (BITS_PER_LONG - rem);
 123		}
 124		lower = src[off + k];
 125		if (off + k == lim - 1)
 126			lower &= mask;
 127		lower >>= rem;
 128		dst[k] = lower | upper;
 129	}
 130	if (off)
 131		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
 132}
 133EXPORT_SYMBOL(__bitmap_shift_right);
 134
 135
 136/**
 137 * __bitmap_shift_left - logical left shift of the bits in a bitmap
 138 *   @dst : destination bitmap
 139 *   @src : source bitmap
 140 *   @shift : shift by this many bits
 141 *   @nbits : bitmap size, in bits
 142 *
 143 * Shifting left (multiplying) means moving bits in the LS -> MS
 144 * direction.  Zeros are fed into the vacated LS bit positions
 145 * and those MS bits shifted off the top are lost.
 146 */
 147
 148void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
 149			unsigned int shift, unsigned int nbits)
 150{
 151	int k;
 152	unsigned int lim = BITS_TO_LONGS(nbits);
 153	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 154	for (k = lim - off - 1; k >= 0; --k) {
 155		unsigned long upper, lower;
 156
 157		/*
 158		 * If shift is not word aligned, take upper rem bits of
 159		 * word below and make them the bottom rem bits of result.
 160		 */
 161		if (rem && k > 0)
 162			lower = src[k - 1] >> (BITS_PER_LONG - rem);
 163		else
 164			lower = 0;
 165		upper = src[k] << rem;
 166		dst[k + off] = lower | upper;
 167	}
 168	if (off)
 169		memset(dst, 0, off*sizeof(unsigned long));
 170}
 171EXPORT_SYMBOL(__bitmap_shift_left);
 172
 173/**
 174 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
 175 * @dst: destination bitmap, might overlap with src
 176 * @src: source bitmap
 177 * @first: start bit of region to be removed
 178 * @cut: number of bits to remove
 179 * @nbits: bitmap size, in bits
 180 *
 181 * Set the n-th bit of @dst iff the n-th bit of @src is set and
 182 * n is less than @first, or the m-th bit of @src is set for any
 183 * m such that @first <= n < nbits, and m = n + @cut.
 184 *
 185 * In pictures, example for a big-endian 32-bit architecture:
 186 *
 187 * The @src bitmap is::
 188 *
 189 *   31                                   63
 190 *   |                                    |
 191 *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
 192 *                   |  |              |                                    |
 193 *                  16  14             0                                   32
 194 *
 195 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
 196 *
 197 *   31                                   63
 198 *   |                                    |
 199 *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
 200 *                      |              |                                    |
 201 *                      14 (bit 17     0                                   32
 202 *                          from @src)
 203 *
 204 * Note that @dst and @src might overlap partially or entirely.
 205 *
 206 * This is implemented in the obvious way, with a shift and carry
 207 * step for each moved bit. Optimisation is left as an exercise
 208 * for the compiler.
 209 */
 210void bitmap_cut(unsigned long *dst, const unsigned long *src,
 211		unsigned int first, unsigned int cut, unsigned int nbits)
 212{
 213	unsigned int len = BITS_TO_LONGS(nbits);
 214	unsigned long keep = 0, carry;
 215	int i;
 216
 217	if (first % BITS_PER_LONG) {
 218		keep = src[first / BITS_PER_LONG] &
 219		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
 220	}
 221
 222	memmove(dst, src, len * sizeof(*dst));
 223
 224	while (cut--) {
 225		for (i = first / BITS_PER_LONG; i < len; i++) {
 226			if (i < len - 1)
 227				carry = dst[i + 1] & 1UL;
 228			else
 229				carry = 0;
 230
 231			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
 232		}
 233	}
 234
 235	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
 236	dst[first / BITS_PER_LONG] |= keep;
 237}
 238EXPORT_SYMBOL(bitmap_cut);
 239
 240bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 241				const unsigned long *bitmap2, unsigned int bits)
 242{
 243	unsigned int k;
 244	unsigned int lim = bits/BITS_PER_LONG;
 245	unsigned long result = 0;
 246
 247	for (k = 0; k < lim; k++)
 248		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
 249	if (bits % BITS_PER_LONG)
 250		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
 251			   BITMAP_LAST_WORD_MASK(bits));
 252	return result != 0;
 253}
 254EXPORT_SYMBOL(__bitmap_and);
 255
 256void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 257				const unsigned long *bitmap2, unsigned int bits)
 258{
 259	unsigned int k;
 260	unsigned int nr = BITS_TO_LONGS(bits);
 261
 262	for (k = 0; k < nr; k++)
 263		dst[k] = bitmap1[k] | bitmap2[k];
 264}
 265EXPORT_SYMBOL(__bitmap_or);
 266
 267void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 268				const unsigned long *bitmap2, unsigned int bits)
 269{
 270	unsigned int k;
 271	unsigned int nr = BITS_TO_LONGS(bits);
 272
 273	for (k = 0; k < nr; k++)
 274		dst[k] = bitmap1[k] ^ bitmap2[k];
 275}
 276EXPORT_SYMBOL(__bitmap_xor);
 277
 278bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 279				const unsigned long *bitmap2, unsigned int bits)
 280{
 281	unsigned int k;
 282	unsigned int lim = bits/BITS_PER_LONG;
 283	unsigned long result = 0;
 284
 285	for (k = 0; k < lim; k++)
 286		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
 287	if (bits % BITS_PER_LONG)
 288		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
 289			   BITMAP_LAST_WORD_MASK(bits));
 290	return result != 0;
 291}
 292EXPORT_SYMBOL(__bitmap_andnot);
 293
 294void __bitmap_replace(unsigned long *dst,
 295		      const unsigned long *old, const unsigned long *new,
 296		      const unsigned long *mask, unsigned int nbits)
 297{
 298	unsigned int k;
 299	unsigned int nr = BITS_TO_LONGS(nbits);
 300
 301	for (k = 0; k < nr; k++)
 302		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
 303}
 304EXPORT_SYMBOL(__bitmap_replace);
 305
 306bool __bitmap_intersects(const unsigned long *bitmap1,
 307			 const unsigned long *bitmap2, unsigned int bits)
 308{
 309	unsigned int k, lim = bits/BITS_PER_LONG;
 310	for (k = 0; k < lim; ++k)
 311		if (bitmap1[k] & bitmap2[k])
 312			return true;
 313
 314	if (bits % BITS_PER_LONG)
 315		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 316			return true;
 317	return false;
 318}
 319EXPORT_SYMBOL(__bitmap_intersects);
 320
 321bool __bitmap_subset(const unsigned long *bitmap1,
 322		     const unsigned long *bitmap2, unsigned int bits)
 323{
 324	unsigned int k, lim = bits/BITS_PER_LONG;
 325	for (k = 0; k < lim; ++k)
 326		if (bitmap1[k] & ~bitmap2[k])
 327			return false;
 328
 329	if (bits % BITS_PER_LONG)
 330		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 331			return false;
 332	return true;
 333}
 334EXPORT_SYMBOL(__bitmap_subset);
 335
 336#define BITMAP_WEIGHT(FETCH, bits)	\
 337({										\
 338	unsigned int __bits = (bits), idx, w = 0;				\
 339										\
 340	for (idx = 0; idx < __bits / BITS_PER_LONG; idx++)			\
 341		w += hweight_long(FETCH);					\
 342										\
 343	if (__bits % BITS_PER_LONG)						\
 344		w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits));	\
 345										\
 346	w;									\
 347})
 348
 349unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
 350{
 351	return BITMAP_WEIGHT(bitmap[idx], bits);
 352}
 353EXPORT_SYMBOL(__bitmap_weight);
 354
 355unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
 356				const unsigned long *bitmap2, unsigned int bits)
 357{
 358	return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
 359}
 360EXPORT_SYMBOL(__bitmap_weight_and);
 361
 362void __bitmap_set(unsigned long *map, unsigned int start, int len)
 363{
 364	unsigned long *p = map + BIT_WORD(start);
 365	const unsigned int size = start + len;
 366	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 367	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 368
 369	while (len - bits_to_set >= 0) {
 370		*p |= mask_to_set;
 371		len -= bits_to_set;
 372		bits_to_set = BITS_PER_LONG;
 373		mask_to_set = ~0UL;
 374		p++;
 375	}
 376	if (len) {
 377		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 378		*p |= mask_to_set;
 379	}
 380}
 381EXPORT_SYMBOL(__bitmap_set);
 382
 383void __bitmap_clear(unsigned long *map, unsigned int start, int len)
 384{
 385	unsigned long *p = map + BIT_WORD(start);
 386	const unsigned int size = start + len;
 387	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
 388	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 389
 390	while (len - bits_to_clear >= 0) {
 391		*p &= ~mask_to_clear;
 392		len -= bits_to_clear;
 393		bits_to_clear = BITS_PER_LONG;
 394		mask_to_clear = ~0UL;
 395		p++;
 396	}
 397	if (len) {
 398		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
 399		*p &= ~mask_to_clear;
 400	}
 401}
 402EXPORT_SYMBOL(__bitmap_clear);
 403
 404/**
 405 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
 406 * @map: The address to base the search on
 407 * @size: The bitmap size in bits
 408 * @start: The bitnumber to start searching at
 409 * @nr: The number of zeroed bits we're looking for
 410 * @align_mask: Alignment mask for zero area
 411 * @align_offset: Alignment offset for zero area.
 412 *
 413 * The @align_mask should be one less than a power of 2; the effect is that
 414 * the bit offset of all zero areas this function finds plus @align_offset
 415 * is multiple of that power of 2.
 416 */
 417unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
 418					     unsigned long size,
 419					     unsigned long start,
 420					     unsigned int nr,
 421					     unsigned long align_mask,
 422					     unsigned long align_offset)
 423{
 424	unsigned long index, end, i;
 425again:
 426	index = find_next_zero_bit(map, size, start);
 427
 428	/* Align allocation */
 429	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
 430
 431	end = index + nr;
 432	if (end > size)
 433		return end;
 434	i = find_next_bit(map, end, index);
 435	if (i < end) {
 436		start = i + 1;
 437		goto again;
 438	}
 439	return index;
 440}
 441EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
 442
 443/*
 444 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
 445 * second version by Paul Jackson, third by Joe Korty.
 446 */
 447
 448/**
 449 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
 450 *
 451 * @ubuf: pointer to user buffer containing string.
 452 * @ulen: buffer size in bytes.  If string is smaller than this
 453 *    then it must be terminated with a \0.
 454 * @maskp: pointer to bitmap array that will contain result.
 455 * @nmaskbits: size of bitmap, in bits.
 456 */
 457int bitmap_parse_user(const char __user *ubuf,
 458			unsigned int ulen, unsigned long *maskp,
 459			int nmaskbits)
 460{
 461	char *buf;
 462	int ret;
 463
 464	buf = memdup_user_nul(ubuf, ulen);
 465	if (IS_ERR(buf))
 466		return PTR_ERR(buf);
 467
 468	ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
 469
 470	kfree(buf);
 471	return ret;
 472}
 473EXPORT_SYMBOL(bitmap_parse_user);
 474
 475/**
 476 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
 477 * @list: indicates whether the bitmap must be list
 478 * @buf: page aligned buffer into which string is placed
 479 * @maskp: pointer to bitmap to convert
 480 * @nmaskbits: size of bitmap, in bits
 481 *
 482 * Output format is a comma-separated list of decimal numbers and
 483 * ranges if list is specified or hex digits grouped into comma-separated
 484 * sets of 8 digits/set. Returns the number of characters written to buf.
 485 *
 486 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
 487 * area and that sufficient storage remains at @buf to accommodate the
 488 * bitmap_print_to_pagebuf() output. Returns the number of characters
 489 * actually printed to @buf, excluding terminating '\0'.
 490 */
 491int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
 492			    int nmaskbits)
 493{
 494	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
 495
 496	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
 497		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
 498}
 499EXPORT_SYMBOL(bitmap_print_to_pagebuf);
 500
 501/**
 502 * bitmap_print_to_buf  - convert bitmap to list or hex format ASCII string
 503 * @list: indicates whether the bitmap must be list
 504 *      true:  print in decimal list format
 505 *      false: print in hexadecimal bitmask format
 506 * @buf: buffer into which string is placed
 507 * @maskp: pointer to bitmap to convert
 508 * @nmaskbits: size of bitmap, in bits
 509 * @off: in the string from which we are copying, We copy to @buf
 510 * @count: the maximum number of bytes to print
 511 */
 512static int bitmap_print_to_buf(bool list, char *buf, const unsigned long *maskp,
 513		int nmaskbits, loff_t off, size_t count)
 514{
 515	const char *fmt = list ? "%*pbl\n" : "%*pb\n";
 516	ssize_t size;
 517	void *data;
 518
 519	data = kasprintf(GFP_KERNEL, fmt, nmaskbits, maskp);
 520	if (!data)
 521		return -ENOMEM;
 522
 523	size = memory_read_from_buffer(buf, count, &off, data, strlen(data) + 1);
 524	kfree(data);
 525
 526	return size;
 527}
 528
 529/**
 530 * bitmap_print_bitmask_to_buf  - convert bitmap to hex bitmask format ASCII string
 531 * @buf: buffer into which string is placed
 532 * @maskp: pointer to bitmap to convert
 533 * @nmaskbits: size of bitmap, in bits
 534 * @off: in the string from which we are copying, We copy to @buf
 535 * @count: the maximum number of bytes to print
 536 *
 537 * The bitmap_print_to_pagebuf() is used indirectly via its cpumap wrapper
 538 * cpumap_print_to_pagebuf() or directly by drivers to export hexadecimal
 539 * bitmask and decimal list to userspace by sysfs ABI.
 540 * Drivers might be using a normal attribute for this kind of ABIs. A
 541 * normal attribute typically has show entry as below::
 542 *
 543 *   static ssize_t example_attribute_show(struct device *dev,
 544 * 		struct device_attribute *attr, char *buf)
 545 *   {
 546 * 	...
 547 * 	return bitmap_print_to_pagebuf(true, buf, &mask, nr_trig_max);
 548 *   }
 549 *
 550 * show entry of attribute has no offset and count parameters and this
 551 * means the file is limited to one page only.
 552 * bitmap_print_to_pagebuf() API works terribly well for this kind of
 553 * normal attribute with buf parameter and without offset, count::
 554 *
 555 *   bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
 556 * 			   int nmaskbits)
 557 *   {
 558 *   }
 559 *
 560 * The problem is once we have a large bitmap, we have a chance to get a
 561 * bitmask or list more than one page. Especially for list, it could be
 562 * as complex as 0,3,5,7,9,... We have no simple way to know it exact size.
 563 * It turns out bin_attribute is a way to break this limit. bin_attribute
 564 * has show entry as below::
 565 *
 566 *   static ssize_t
 567 *   example_bin_attribute_show(struct file *filp, struct kobject *kobj,
 568 * 		struct bin_attribute *attr, char *buf,
 569 * 		loff_t offset, size_t count)
 570 *   {
 571 * 	...
 572 *   }
 573 *
 574 * With the new offset and count parameters, this makes sysfs ABI be able
 575 * to support file size more than one page. For example, offset could be
 576 * >= 4096.
 577 * bitmap_print_bitmask_to_buf(), bitmap_print_list_to_buf() wit their
 578 * cpumap wrapper cpumap_print_bitmask_to_buf(), cpumap_print_list_to_buf()
 579 * make those drivers be able to support large bitmask and list after they
 580 * move to use bin_attribute. In result, we have to pass the corresponding
 581 * parameters such as off, count from bin_attribute show entry to this API.
 582 *
 583 * The role of cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf()
 584 * is similar with cpumap_print_to_pagebuf(),  the difference is that
 585 * bitmap_print_to_pagebuf() mainly serves sysfs attribute with the assumption
 586 * the destination buffer is exactly one page and won't be more than one page.
 587 * cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf(), on the other
 588 * hand, mainly serves bin_attribute which doesn't work with exact one page,
 589 * and it can break the size limit of converted decimal list and hexadecimal
 590 * bitmask.
 591 *
 592 * WARNING!
 593 *
 594 * This function is not a replacement for sprintf() or bitmap_print_to_pagebuf().
 595 * It is intended to workaround sysfs limitations discussed above and should be
 596 * used carefully in general case for the following reasons:
 597 *
 598 *  - Time complexity is O(nbits^2/count), comparing to O(nbits) for snprintf().
 599 *  - Memory complexity is O(nbits), comparing to O(1) for snprintf().
 600 *  - @off and @count are NOT offset and number of bits to print.
 601 *  - If printing part of bitmap as list, the resulting string is not a correct
 602 *    list representation of bitmap. Particularly, some bits within or out of
 603 *    related interval may be erroneously set or unset. The format of the string
 604 *    may be broken, so bitmap_parselist-like parser may fail parsing it.
 605 *  - If printing the whole bitmap as list by parts, user must ensure the order
 606 *    of calls of the function such that the offset is incremented linearly.
 607 *  - If printing the whole bitmap as list by parts, user must keep bitmap
 608 *    unchanged between the very first and very last call. Otherwise concatenated
 609 *    result may be incorrect, and format may be broken.
 610 *
 611 * Returns the number of characters actually printed to @buf
 612 */
 613int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp,
 614				int nmaskbits, loff_t off, size_t count)
 615{
 616	return bitmap_print_to_buf(false, buf, maskp, nmaskbits, off, count);
 617}
 618EXPORT_SYMBOL(bitmap_print_bitmask_to_buf);
 619
 620/**
 621 * bitmap_print_list_to_buf  - convert bitmap to decimal list format ASCII string
 622 * @buf: buffer into which string is placed
 623 * @maskp: pointer to bitmap to convert
 624 * @nmaskbits: size of bitmap, in bits
 625 * @off: in the string from which we are copying, We copy to @buf
 626 * @count: the maximum number of bytes to print
 627 *
 628 * Everything is same with the above bitmap_print_bitmask_to_buf() except
 629 * the print format.
 630 */
 631int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp,
 632			     int nmaskbits, loff_t off, size_t count)
 633{
 634	return bitmap_print_to_buf(true, buf, maskp, nmaskbits, off, count);
 635}
 636EXPORT_SYMBOL(bitmap_print_list_to_buf);
 637
 638/*
 639 * Region 9-38:4/10 describes the following bitmap structure:
 640 * 0	   9  12    18			38	     N
 641 * .........****......****......****..................
 642 *	    ^  ^     ^			 ^	     ^
 643 *      start  off   group_len	       end	 nbits
 644 */
 645struct region {
 646	unsigned int start;
 647	unsigned int off;
 648	unsigned int group_len;
 649	unsigned int end;
 650	unsigned int nbits;
 651};
 652
 653static void bitmap_set_region(const struct region *r, unsigned long *bitmap)
 654{
 655	unsigned int start;
 656
 657	for (start = r->start; start <= r->end; start += r->group_len)
 658		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
 659}
 660
 661static int bitmap_check_region(const struct region *r)
 662{
 663	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
 664		return -EINVAL;
 665
 666	if (r->end >= r->nbits)
 667		return -ERANGE;
 668
 669	return 0;
 670}
 671
 672static const char *bitmap_getnum(const char *str, unsigned int *num,
 673				 unsigned int lastbit)
 674{
 675	unsigned long long n;
 676	unsigned int len;
 677
 678	if (str[0] == 'N') {
 679		*num = lastbit;
 680		return str + 1;
 681	}
 682
 683	len = _parse_integer(str, 10, &n);
 684	if (!len)
 685		return ERR_PTR(-EINVAL);
 686	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
 687		return ERR_PTR(-EOVERFLOW);
 688
 689	*num = n;
 690	return str + len;
 691}
 692
 693static inline bool end_of_str(char c)
 694{
 695	return c == '\0' || c == '\n';
 696}
 697
 698static inline bool __end_of_region(char c)
 699{
 700	return isspace(c) || c == ',';
 701}
 702
 703static inline bool end_of_region(char c)
 704{
 705	return __end_of_region(c) || end_of_str(c);
 706}
 707
 708/*
 709 * The format allows commas and whitespaces at the beginning
 710 * of the region.
 711 */
 712static const char *bitmap_find_region(const char *str)
 713{
 714	while (__end_of_region(*str))
 715		str++;
 716
 717	return end_of_str(*str) ? NULL : str;
 718}
 719
 720static const char *bitmap_find_region_reverse(const char *start, const char *end)
 721{
 722	while (start <= end && __end_of_region(*end))
 723		end--;
 724
 725	return end;
 726}
 727
 728static const char *bitmap_parse_region(const char *str, struct region *r)
 729{
 730	unsigned int lastbit = r->nbits - 1;
 731
 732	if (!strncasecmp(str, "all", 3)) {
 733		r->start = 0;
 734		r->end = lastbit;
 735		str += 3;
 736
 737		goto check_pattern;
 738	}
 739
 740	str = bitmap_getnum(str, &r->start, lastbit);
 741	if (IS_ERR(str))
 742		return str;
 743
 744	if (end_of_region(*str))
 745		goto no_end;
 746
 747	if (*str != '-')
 748		return ERR_PTR(-EINVAL);
 749
 750	str = bitmap_getnum(str + 1, &r->end, lastbit);
 751	if (IS_ERR(str))
 752		return str;
 753
 754check_pattern:
 755	if (end_of_region(*str))
 756		goto no_pattern;
 757
 758	if (*str != ':')
 759		return ERR_PTR(-EINVAL);
 760
 761	str = bitmap_getnum(str + 1, &r->off, lastbit);
 762	if (IS_ERR(str))
 763		return str;
 764
 765	if (*str != '/')
 766		return ERR_PTR(-EINVAL);
 767
 768	return bitmap_getnum(str + 1, &r->group_len, lastbit);
 769
 770no_end:
 771	r->end = r->start;
 772no_pattern:
 773	r->off = r->end + 1;
 774	r->group_len = r->end + 1;
 775
 776	return end_of_str(*str) ? NULL : str;
 777}
 778
 779/**
 780 * bitmap_parselist - convert list format ASCII string to bitmap
 781 * @buf: read user string from this buffer; must be terminated
 782 *    with a \0 or \n.
 783 * @maskp: write resulting mask here
 784 * @nmaskbits: number of bits in mask to be written
 785 *
 786 * Input format is a comma-separated list of decimal numbers and
 787 * ranges.  Consecutively set bits are shown as two hyphen-separated
 788 * decimal numbers, the smallest and largest bit numbers set in
 789 * the range.
 790 * Optionally each range can be postfixed to denote that only parts of it
 791 * should be set. The range will divided to groups of specific size.
 792 * From each group will be used only defined amount of bits.
 793 * Syntax: range:used_size/group_size
 794 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
 795 * The value 'N' can be used as a dynamically substituted token for the
 796 * maximum allowed value; i.e (nmaskbits - 1).  Keep in mind that it is
 797 * dynamic, so if system changes cause the bitmap width to change, such
 798 * as more cores in a CPU list, then any ranges using N will also change.
 799 *
 800 * Returns: 0 on success, -errno on invalid input strings. Error values:
 801 *
 802 *   - ``-EINVAL``: wrong region format
 803 *   - ``-EINVAL``: invalid character in string
 804 *   - ``-ERANGE``: bit number specified too large for mask
 805 *   - ``-EOVERFLOW``: integer overflow in the input parameters
 806 */
 807int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
 808{
 809	struct region r;
 810	long ret;
 811
 812	r.nbits = nmaskbits;
 813	bitmap_zero(maskp, r.nbits);
 814
 815	while (buf) {
 816		buf = bitmap_find_region(buf);
 817		if (buf == NULL)
 818			return 0;
 819
 820		buf = bitmap_parse_region(buf, &r);
 821		if (IS_ERR(buf))
 822			return PTR_ERR(buf);
 823
 824		ret = bitmap_check_region(&r);
 825		if (ret)
 826			return ret;
 827
 828		bitmap_set_region(&r, maskp);
 829	}
 830
 831	return 0;
 832}
 833EXPORT_SYMBOL(bitmap_parselist);
 834
 835
 836/**
 837 * bitmap_parselist_user() - convert user buffer's list format ASCII
 838 * string to bitmap
 839 *
 840 * @ubuf: pointer to user buffer containing string.
 841 * @ulen: buffer size in bytes.  If string is smaller than this
 842 *    then it must be terminated with a \0.
 843 * @maskp: pointer to bitmap array that will contain result.
 844 * @nmaskbits: size of bitmap, in bits.
 845 *
 846 * Wrapper for bitmap_parselist(), providing it with user buffer.
 847 */
 848int bitmap_parselist_user(const char __user *ubuf,
 849			unsigned int ulen, unsigned long *maskp,
 850			int nmaskbits)
 851{
 852	char *buf;
 853	int ret;
 854
 855	buf = memdup_user_nul(ubuf, ulen);
 856	if (IS_ERR(buf))
 857		return PTR_ERR(buf);
 858
 859	ret = bitmap_parselist(buf, maskp, nmaskbits);
 860
 861	kfree(buf);
 862	return ret;
 863}
 864EXPORT_SYMBOL(bitmap_parselist_user);
 865
 866static const char *bitmap_get_x32_reverse(const char *start,
 867					const char *end, u32 *num)
 868{
 869	u32 ret = 0;
 870	int c, i;
 871
 872	for (i = 0; i < 32; i += 4) {
 873		c = hex_to_bin(*end--);
 874		if (c < 0)
 875			return ERR_PTR(-EINVAL);
 876
 877		ret |= c << i;
 878
 879		if (start > end || __end_of_region(*end))
 880			goto out;
 881	}
 882
 883	if (hex_to_bin(*end--) >= 0)
 884		return ERR_PTR(-EOVERFLOW);
 885out:
 886	*num = ret;
 887	return end;
 888}
 889
 890/**
 891 * bitmap_parse - convert an ASCII hex string into a bitmap.
 892 * @start: pointer to buffer containing string.
 893 * @buflen: buffer size in bytes.  If string is smaller than this
 894 *    then it must be terminated with a \0 or \n. In that case,
 895 *    UINT_MAX may be provided instead of string length.
 896 * @maskp: pointer to bitmap array that will contain result.
 897 * @nmaskbits: size of bitmap, in bits.
 898 *
 899 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 900 * bits of the resultant bitmask.  No chunk may specify a value larger
 901 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 902 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 903 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
 904 * Leading, embedded and trailing whitespace accepted.
 905 */
 906int bitmap_parse(const char *start, unsigned int buflen,
 907		unsigned long *maskp, int nmaskbits)
 908{
 909	const char *end = strnchrnul(start, buflen, '\n') - 1;
 910	int chunks = BITS_TO_U32(nmaskbits);
 911	u32 *bitmap = (u32 *)maskp;
 912	int unset_bit;
 913	int chunk;
 914
 915	for (chunk = 0; ; chunk++) {
 916		end = bitmap_find_region_reverse(start, end);
 917		if (start > end)
 918			break;
 919
 920		if (!chunks--)
 921			return -EOVERFLOW;
 922
 923#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
 924		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
 925#else
 926		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
 927#endif
 928		if (IS_ERR(end))
 929			return PTR_ERR(end);
 930	}
 931
 932	unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
 933	if (unset_bit < nmaskbits) {
 934		bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
 935		return 0;
 936	}
 937
 938	if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
 939		return -EOVERFLOW;
 940
 941	return 0;
 942}
 943EXPORT_SYMBOL(bitmap_parse);
 944
 945/**
 946 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
 947 *	@buf: pointer to a bitmap
 948 *	@pos: a bit position in @buf (0 <= @pos < @nbits)
 949 *	@nbits: number of valid bit positions in @buf
 950 *
 951 * Map the bit at position @pos in @buf (of length @nbits) to the
 952 * ordinal of which set bit it is.  If it is not set or if @pos
 953 * is not a valid bit position, map to -1.
 954 *
 955 * If for example, just bits 4 through 7 are set in @buf, then @pos
 956 * values 4 through 7 will get mapped to 0 through 3, respectively,
 957 * and other @pos values will get mapped to -1.  When @pos value 7
 958 * gets mapped to (returns) @ord value 3 in this example, that means
 959 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 960 *
 961 * The bit positions 0 through @bits are valid positions in @buf.
 962 */
 963static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
 964{
 965	if (pos >= nbits || !test_bit(pos, buf))
 966		return -1;
 967
 968	return bitmap_weight(buf, pos);
 969}
 970
 971/**
 972 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 973 *	@dst: remapped result
 974 *	@src: subset to be remapped
 975 *	@old: defines domain of map
 976 *	@new: defines range of map
 977 *	@nbits: number of bits in each of these bitmaps
 978 *
 979 * Let @old and @new define a mapping of bit positions, such that
 980 * whatever position is held by the n-th set bit in @old is mapped
 981 * to the n-th set bit in @new.  In the more general case, allowing
 982 * for the possibility that the weight 'w' of @new is less than the
 983 * weight of @old, map the position of the n-th set bit in @old to
 984 * the position of the m-th set bit in @new, where m == n % w.
 985 *
 986 * If either of the @old and @new bitmaps are empty, or if @src and
 987 * @dst point to the same location, then this routine copies @src
 988 * to @dst.
 989 *
 990 * The positions of unset bits in @old are mapped to themselves
 991 * (the identify map).
 992 *
 993 * Apply the above specified mapping to @src, placing the result in
 994 * @dst, clearing any bits previously set in @dst.
 995 *
 996 * For example, lets say that @old has bits 4 through 7 set, and
 997 * @new has bits 12 through 15 set.  This defines the mapping of bit
 998 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 999 * bit positions unchanged.  So if say @src comes into this routine
1000 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
1001 * 13 and 15 set.
1002 */
1003void bitmap_remap(unsigned long *dst, const unsigned long *src,
1004		const unsigned long *old, const unsigned long *new,
1005		unsigned int nbits)
1006{
1007	unsigned int oldbit, w;
1008
1009	if (dst == src)		/* following doesn't handle inplace remaps */
1010		return;
1011	bitmap_zero(dst, nbits);
1012
1013	w = bitmap_weight(new, nbits);
1014	for_each_set_bit(oldbit, src, nbits) {
1015		int n = bitmap_pos_to_ord(old, oldbit, nbits);
1016
1017		if (n < 0 || w == 0)
1018			set_bit(oldbit, dst);	/* identity map */
1019		else
1020			set_bit(find_nth_bit(new, nbits, n % w), dst);
1021	}
1022}
1023EXPORT_SYMBOL(bitmap_remap);
1024
1025/**
1026 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
1027 *	@oldbit: bit position to be mapped
1028 *	@old: defines domain of map
1029 *	@new: defines range of map
1030 *	@bits: number of bits in each of these bitmaps
1031 *
1032 * Let @old and @new define a mapping of bit positions, such that
1033 * whatever position is held by the n-th set bit in @old is mapped
1034 * to the n-th set bit in @new.  In the more general case, allowing
1035 * for the possibility that the weight 'w' of @new is less than the
1036 * weight of @old, map the position of the n-th set bit in @old to
1037 * the position of the m-th set bit in @new, where m == n % w.
1038 *
1039 * The positions of unset bits in @old are mapped to themselves
1040 * (the identify map).
1041 *
1042 * Apply the above specified mapping to bit position @oldbit, returning
1043 * the new bit position.
1044 *
1045 * For example, lets say that @old has bits 4 through 7 set, and
1046 * @new has bits 12 through 15 set.  This defines the mapping of bit
1047 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
1048 * bit positions unchanged.  So if say @oldbit is 5, then this routine
1049 * returns 13.
1050 */
1051int bitmap_bitremap(int oldbit, const unsigned long *old,
1052				const unsigned long *new, int bits)
1053{
1054	int w = bitmap_weight(new, bits);
1055	int n = bitmap_pos_to_ord(old, oldbit, bits);
1056	if (n < 0 || w == 0)
1057		return oldbit;
1058	else
1059		return find_nth_bit(new, bits, n % w);
1060}
1061EXPORT_SYMBOL(bitmap_bitremap);
1062
1063#ifdef CONFIG_NUMA
1064/**
1065 * bitmap_onto - translate one bitmap relative to another
1066 *	@dst: resulting translated bitmap
1067 * 	@orig: original untranslated bitmap
1068 * 	@relmap: bitmap relative to which translated
1069 *	@bits: number of bits in each of these bitmaps
1070 *
1071 * Set the n-th bit of @dst iff there exists some m such that the
1072 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
1073 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
1074 * (If you understood the previous sentence the first time your
1075 * read it, you're overqualified for your current job.)
1076 *
1077 * In other words, @orig is mapped onto (surjectively) @dst,
1078 * using the map { <n, m> | the n-th bit of @relmap is the
1079 * m-th set bit of @relmap }.
1080 *
1081 * Any set bits in @orig above bit number W, where W is the
1082 * weight of (number of set bits in) @relmap are mapped nowhere.
1083 * In particular, if for all bits m set in @orig, m >= W, then
1084 * @dst will end up empty.  In situations where the possibility
1085 * of such an empty result is not desired, one way to avoid it is
1086 * to use the bitmap_fold() operator, below, to first fold the
1087 * @orig bitmap over itself so that all its set bits x are in the
1088 * range 0 <= x < W.  The bitmap_fold() operator does this by
1089 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
1090 *
1091 * Example [1] for bitmap_onto():
1092 *  Let's say @relmap has bits 30-39 set, and @orig has bits
1093 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
1094 *  @dst will have bits 31, 33, 35, 37 and 39 set.
1095 *
1096 *  When bit 0 is set in @orig, it means turn on the bit in
1097 *  @dst corresponding to whatever is the first bit (if any)
1098 *  that is turned on in @relmap.  Since bit 0 was off in the
1099 *  above example, we leave off that bit (bit 30) in @dst.
1100 *
1101 *  When bit 1 is set in @orig (as in the above example), it
1102 *  means turn on the bit in @dst corresponding to whatever
1103 *  is the second bit that is turned on in @relmap.  The second
1104 *  bit in @relmap that was turned on in the above example was
1105 *  bit 31, so we turned on bit 31 in @dst.
1106 *
1107 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
1108 *  because they were the 4th, 6th, 8th and 10th set bits
1109 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
1110 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
1111 *
1112 *  When bit 11 is set in @orig, it means turn on the bit in
1113 *  @dst corresponding to whatever is the twelfth bit that is
1114 *  turned on in @relmap.  In the above example, there were
1115 *  only ten bits turned on in @relmap (30..39), so that bit
1116 *  11 was set in @orig had no affect on @dst.
1117 *
1118 * Example [2] for bitmap_fold() + bitmap_onto():
1119 *  Let's say @relmap has these ten bits set::
1120 *
1121 *		40 41 42 43 45 48 53 61 74 95
1122 *
1123 *  (for the curious, that's 40 plus the first ten terms of the
1124 *  Fibonacci sequence.)
1125 *
1126 *  Further lets say we use the following code, invoking
1127 *  bitmap_fold() then bitmap_onto, as suggested above to
1128 *  avoid the possibility of an empty @dst result::
1129 *
1130 *	unsigned long *tmp;	// a temporary bitmap's bits
1131 *
1132 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
1133 *	bitmap_onto(dst, tmp, relmap, bits);
1134 *
1135 *  Then this table shows what various values of @dst would be, for
1136 *  various @orig's.  I list the zero-based positions of each set bit.
1137 *  The tmp column shows the intermediate result, as computed by
1138 *  using bitmap_fold() to fold the @orig bitmap modulo ten
1139 *  (the weight of @relmap):
1140 *
1141 *      =============== ============== =================
1142 *      @orig           tmp            @dst
1143 *      0                0             40
1144 *      1                1             41
1145 *      9                9             95
1146 *      10               0             40 [#f1]_
1147 *      1 3 5 7          1 3 5 7       41 43 48 61
1148 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
1149 *      0 9 18 27        0 9 8 7       40 61 74 95
1150 *      0 10 20 30       0             40
1151 *      0 11 22 33       0 1 2 3       40 41 42 43
1152 *      0 12 24 36       0 2 4 6       40 42 45 53
1153 *      78 102 211       1 2 8         41 42 74 [#f1]_
1154 *      =============== ============== =================
1155 *
1156 * .. [#f1]
1157 *
1158 *     For these marked lines, if we hadn't first done bitmap_fold()
1159 *     into tmp, then the @dst result would have been empty.
1160 *
1161 * If either of @orig or @relmap is empty (no set bits), then @dst
1162 * will be returned empty.
1163 *
1164 * If (as explained above) the only set bits in @orig are in positions
1165 * m where m >= W, (where W is the weight of @relmap) then @dst will
1166 * once again be returned empty.
1167 *
1168 * All bits in @dst not set by the above rule are cleared.
1169 */
1170void bitmap_onto(unsigned long *dst, const unsigned long *orig,
1171			const unsigned long *relmap, unsigned int bits)
1172{
1173	unsigned int n, m;	/* same meaning as in above comment */
1174
1175	if (dst == orig)	/* following doesn't handle inplace mappings */
1176		return;
1177	bitmap_zero(dst, bits);
1178
1179	/*
1180	 * The following code is a more efficient, but less
1181	 * obvious, equivalent to the loop:
1182	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1183	 *		n = find_nth_bit(orig, bits, m);
1184	 *		if (test_bit(m, orig))
1185	 *			set_bit(n, dst);
1186	 *	}
1187	 */
1188
1189	m = 0;
1190	for_each_set_bit(n, relmap, bits) {
1191		/* m == bitmap_pos_to_ord(relmap, n, bits) */
1192		if (test_bit(m, orig))
1193			set_bit(n, dst);
1194		m++;
1195	}
1196}
1197
1198/**
1199 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1200 *	@dst: resulting smaller bitmap
1201 *	@orig: original larger bitmap
1202 *	@sz: specified size
1203 *	@nbits: number of bits in each of these bitmaps
1204 *
1205 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1206 * Clear all other bits in @dst.  See further the comment and
1207 * Example [2] for bitmap_onto() for why and how to use this.
1208 */
1209void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1210			unsigned int sz, unsigned int nbits)
1211{
1212	unsigned int oldbit;
1213
1214	if (dst == orig)	/* following doesn't handle inplace mappings */
1215		return;
1216	bitmap_zero(dst, nbits);
1217
1218	for_each_set_bit(oldbit, orig, nbits)
1219		set_bit(oldbit % sz, dst);
1220}
1221#endif /* CONFIG_NUMA */
1222
1223/*
1224 * Common code for bitmap_*_region() routines.
1225 *	bitmap: array of unsigned longs corresponding to the bitmap
1226 *	pos: the beginning of the region
1227 *	order: region size (log base 2 of number of bits)
1228 *	reg_op: operation(s) to perform on that region of bitmap
1229 *
1230 * Can set, verify and/or release a region of bits in a bitmap,
1231 * depending on which combination of REG_OP_* flag bits is set.
1232 *
1233 * A region of a bitmap is a sequence of bits in the bitmap, of
1234 * some size '1 << order' (a power of two), aligned to that same
1235 * '1 << order' power of two.
1236 *
1237 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1238 * Returns 0 in all other cases and reg_ops.
1239 */
1240
1241enum {
1242	REG_OP_ISFREE,		/* true if region is all zero bits */
1243	REG_OP_ALLOC,		/* set all bits in region */
1244	REG_OP_RELEASE,		/* clear all bits in region */
1245};
1246
1247static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1248{
1249	int nbits_reg;		/* number of bits in region */
1250	int index;		/* index first long of region in bitmap */
1251	int offset;		/* bit offset region in bitmap[index] */
1252	int nlongs_reg;		/* num longs spanned by region in bitmap */
1253	int nbitsinlong;	/* num bits of region in each spanned long */
1254	unsigned long mask;	/* bitmask for one long of region */
1255	int i;			/* scans bitmap by longs */
1256	int ret = 0;		/* return value */
1257
1258	/*
1259	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1260	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1261	 */
1262	nbits_reg = 1 << order;
1263	index = pos / BITS_PER_LONG;
1264	offset = pos - (index * BITS_PER_LONG);
1265	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1266	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1267
1268	/*
1269	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1270	 * overflows if nbitsinlong == BITS_PER_LONG.
1271	 */
1272	mask = (1UL << (nbitsinlong - 1));
1273	mask += mask - 1;
1274	mask <<= offset;
1275
1276	switch (reg_op) {
1277	case REG_OP_ISFREE:
1278		for (i = 0; i < nlongs_reg; i++) {
1279			if (bitmap[index + i] & mask)
1280				goto done;
1281		}
1282		ret = 1;	/* all bits in region free (zero) */
1283		break;
1284
1285	case REG_OP_ALLOC:
1286		for (i = 0; i < nlongs_reg; i++)
1287			bitmap[index + i] |= mask;
1288		break;
1289
1290	case REG_OP_RELEASE:
1291		for (i = 0; i < nlongs_reg; i++)
1292			bitmap[index + i] &= ~mask;
1293		break;
1294	}
1295done:
1296	return ret;
1297}
1298
1299/**
1300 * bitmap_find_free_region - find a contiguous aligned mem region
1301 *	@bitmap: array of unsigned longs corresponding to the bitmap
1302 *	@bits: number of bits in the bitmap
1303 *	@order: region size (log base 2 of number of bits) to find
1304 *
1305 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1306 * allocate them (set them to one).  Only consider regions of length
1307 * a power (@order) of two, aligned to that power of two, which
1308 * makes the search algorithm much faster.
1309 *
1310 * Return the bit offset in bitmap of the allocated region,
1311 * or -errno on failure.
1312 */
1313int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1314{
1315	unsigned int pos, end;		/* scans bitmap by regions of size order */
1316
1317	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1318		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1319			continue;
1320		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1321		return pos;
1322	}
1323	return -ENOMEM;
1324}
1325EXPORT_SYMBOL(bitmap_find_free_region);
1326
1327/**
1328 * bitmap_release_region - release allocated bitmap region
1329 *	@bitmap: array of unsigned longs corresponding to the bitmap
1330 *	@pos: beginning of bit region to release
1331 *	@order: region size (log base 2 of number of bits) to release
1332 *
1333 * This is the complement to __bitmap_find_free_region() and releases
1334 * the found region (by clearing it in the bitmap).
1335 *
1336 * No return value.
1337 */
1338void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1339{
1340	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1341}
1342EXPORT_SYMBOL(bitmap_release_region);
1343
1344/**
1345 * bitmap_allocate_region - allocate bitmap region
1346 *	@bitmap: array of unsigned longs corresponding to the bitmap
1347 *	@pos: beginning of bit region to allocate
1348 *	@order: region size (log base 2 of number of bits) to allocate
1349 *
1350 * Allocate (set bits in) a specified region of a bitmap.
1351 *
1352 * Return 0 on success, or %-EBUSY if specified region wasn't
1353 * free (not all bits were zero).
1354 */
1355int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1356{
1357	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1358		return -EBUSY;
1359	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1360}
1361EXPORT_SYMBOL(bitmap_allocate_region);
1362
1363/**
1364 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1365 * @dst:   destination buffer
1366 * @src:   bitmap to copy
1367 * @nbits: number of bits in the bitmap
1368 *
1369 * Require nbits % BITS_PER_LONG == 0.
1370 */
1371#ifdef __BIG_ENDIAN
1372void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1373{
1374	unsigned int i;
1375
1376	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1377		if (BITS_PER_LONG == 64)
1378			dst[i] = cpu_to_le64(src[i]);
1379		else
1380			dst[i] = cpu_to_le32(src[i]);
1381	}
1382}
1383EXPORT_SYMBOL(bitmap_copy_le);
1384#endif
1385
1386unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1387{
1388	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1389			     flags);
1390}
1391EXPORT_SYMBOL(bitmap_alloc);
1392
1393unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1394{
1395	return bitmap_alloc(nbits, flags | __GFP_ZERO);
1396}
1397EXPORT_SYMBOL(bitmap_zalloc);
1398
1399unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
1400{
1401	return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1402				  flags, node);
1403}
1404EXPORT_SYMBOL(bitmap_alloc_node);
1405
1406unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
1407{
1408	return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
1409}
1410EXPORT_SYMBOL(bitmap_zalloc_node);
1411
1412void bitmap_free(const unsigned long *bitmap)
1413{
1414	kfree(bitmap);
1415}
1416EXPORT_SYMBOL(bitmap_free);
1417
1418static void devm_bitmap_free(void *data)
1419{
1420	unsigned long *bitmap = data;
1421
1422	bitmap_free(bitmap);
1423}
1424
1425unsigned long *devm_bitmap_alloc(struct device *dev,
1426				 unsigned int nbits, gfp_t flags)
1427{
1428	unsigned long *bitmap;
1429	int ret;
1430
1431	bitmap = bitmap_alloc(nbits, flags);
1432	if (!bitmap)
1433		return NULL;
1434
1435	ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
1436	if (ret)
1437		return NULL;
1438
1439	return bitmap;
1440}
1441EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
1442
1443unsigned long *devm_bitmap_zalloc(struct device *dev,
1444				  unsigned int nbits, gfp_t flags)
1445{
1446	return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
1447}
1448EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
1449
1450#if BITS_PER_LONG == 64
1451/**
1452 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1453 *	@bitmap: array of unsigned longs, the destination bitmap
1454 *	@buf: array of u32 (in host byte order), the source bitmap
1455 *	@nbits: number of bits in @bitmap
1456 */
1457void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1458{
1459	unsigned int i, halfwords;
1460
1461	halfwords = DIV_ROUND_UP(nbits, 32);
1462	for (i = 0; i < halfwords; i++) {
1463		bitmap[i/2] = (unsigned long) buf[i];
1464		if (++i < halfwords)
1465			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1466	}
1467
1468	/* Clear tail bits in last word beyond nbits. */
1469	if (nbits % BITS_PER_LONG)
1470		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1471}
1472EXPORT_SYMBOL(bitmap_from_arr32);
1473
1474/**
1475 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1476 *	@buf: array of u32 (in host byte order), the dest bitmap
1477 *	@bitmap: array of unsigned longs, the source bitmap
1478 *	@nbits: number of bits in @bitmap
1479 */
1480void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1481{
1482	unsigned int i, halfwords;
1483
1484	halfwords = DIV_ROUND_UP(nbits, 32);
1485	for (i = 0; i < halfwords; i++) {
1486		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1487		if (++i < halfwords)
1488			buf[i] = (u32) (bitmap[i/2] >> 32);
1489	}
1490
1491	/* Clear tail bits in last element of array beyond nbits. */
1492	if (nbits % BITS_PER_LONG)
1493		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1494}
1495EXPORT_SYMBOL(bitmap_to_arr32);
1496#endif
1497
1498#if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
1499/**
1500 * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
1501 *	@bitmap: array of unsigned longs, the destination bitmap
1502 *	@buf: array of u64 (in host byte order), the source bitmap
1503 *	@nbits: number of bits in @bitmap
1504 */
1505void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
1506{
1507	int n;
1508
1509	for (n = nbits; n > 0; n -= 64) {
1510		u64 val = *buf++;
1511
1512		*bitmap++ = val;
1513		if (n > 32)
1514			*bitmap++ = val >> 32;
1515	}
1516
1517	/*
1518	 * Clear tail bits in the last word beyond nbits.
1519	 *
1520	 * Negative index is OK because here we point to the word next
1521	 * to the last word of the bitmap, except for nbits == 0, which
1522	 * is tested implicitly.
1523	 */
1524	if (nbits % BITS_PER_LONG)
1525		bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
1526}
1527EXPORT_SYMBOL(bitmap_from_arr64);
1528
1529/**
1530 * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
1531 *	@buf: array of u64 (in host byte order), the dest bitmap
1532 *	@bitmap: array of unsigned longs, the source bitmap
1533 *	@nbits: number of bits in @bitmap
1534 */
1535void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
1536{
1537	const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
1538
1539	while (bitmap < end) {
1540		*buf = *bitmap++;
1541		if (bitmap < end)
1542			*buf |= (u64)(*bitmap++) << 32;
1543		buf++;
1544	}
1545
1546	/* Clear tail bits in the last element of array beyond nbits. */
1547	if (nbits % 64)
1548		buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
1549}
1550EXPORT_SYMBOL(bitmap_to_arr64);
1551#endif