Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * lib/bitmap.c
  4 * Helper functions for bitmap.h.
  5 */
  6
 
 
 
  7#include <linux/bitmap.h>
  8#include <linux/bitops.h>
  9#include <linux/ctype.h>
 10#include <linux/device.h>
 11#include <linux/export.h>
 12#include <linux/slab.h>
 
 
 
 
 
 
 13
 14/**
 15 * DOC: bitmap introduction
 16 *
 17 * bitmaps provide an array of bits, implemented using an
 18 * array of unsigned longs.  The number of valid bits in a
 19 * given bitmap does _not_ need to be an exact multiple of
 20 * BITS_PER_LONG.
 21 *
 22 * The possible unused bits in the last, partially used word
 23 * of a bitmap are 'don't care'.  The implementation makes
 24 * no particular effort to keep them zero.  It ensures that
 25 * their value will not affect the results of any operation.
 26 * The bitmap operations that return Boolean (bitmap_empty,
 27 * for example) or scalar (bitmap_weight, for example) results
 28 * carefully filter out these unused bits from impacting their
 29 * results.
 30 *
 31 * The byte ordering of bitmaps is more natural on little
 32 * endian architectures.  See the big-endian headers
 33 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
 34 * for the best explanations of this ordering.
 35 */
 36
 37bool __bitmap_equal(const unsigned long *bitmap1,
 38		    const unsigned long *bitmap2, unsigned int bits)
 39{
 40	unsigned int k, lim = bits/BITS_PER_LONG;
 41	for (k = 0; k < lim; ++k)
 42		if (bitmap1[k] != bitmap2[k])
 43			return false;
 44
 45	if (bits % BITS_PER_LONG)
 46		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 47			return false;
 48
 49	return true;
 50}
 51EXPORT_SYMBOL(__bitmap_equal);
 52
 53bool __bitmap_or_equal(const unsigned long *bitmap1,
 54		       const unsigned long *bitmap2,
 55		       const unsigned long *bitmap3,
 56		       unsigned int bits)
 57{
 58	unsigned int k, lim = bits / BITS_PER_LONG;
 59	unsigned long tmp;
 60
 61	for (k = 0; k < lim; ++k) {
 62		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
 63			return false;
 64	}
 65
 66	if (!(bits % BITS_PER_LONG))
 67		return true;
 68
 69	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
 70	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
 71}
 72
 73void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
 74{
 75	unsigned int k, lim = BITS_TO_LONGS(bits);
 76	for (k = 0; k < lim; ++k)
 77		dst[k] = ~src[k];
 78}
 79EXPORT_SYMBOL(__bitmap_complement);
 80
 81/**
 82 * __bitmap_shift_right - logical right shift of the bits in a bitmap
 83 *   @dst : destination bitmap
 84 *   @src : source bitmap
 85 *   @shift : shift by this many bits
 86 *   @nbits : bitmap size, in bits
 87 *
 88 * Shifting right (dividing) means moving bits in the MS -> LS bit
 89 * direction.  Zeros are fed into the vacated MS positions and the
 90 * LS bits shifted off the bottom are lost.
 91 */
 92void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
 93			unsigned shift, unsigned nbits)
 94{
 95	unsigned k, lim = BITS_TO_LONGS(nbits);
 96	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 97	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
 98	for (k = 0; off + k < lim; ++k) {
 99		unsigned long upper, lower;
100
101		/*
102		 * If shift is not word aligned, take lower rem bits of
103		 * word above and make them the top rem bits of result.
104		 */
105		if (!rem || off + k + 1 >= lim)
106			upper = 0;
107		else {
108			upper = src[off + k + 1];
109			if (off + k + 1 == lim - 1)
110				upper &= mask;
111			upper <<= (BITS_PER_LONG - rem);
112		}
113		lower = src[off + k];
114		if (off + k == lim - 1)
115			lower &= mask;
116		lower >>= rem;
117		dst[k] = lower | upper;
118	}
119	if (off)
120		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
121}
122EXPORT_SYMBOL(__bitmap_shift_right);
123
124
125/**
126 * __bitmap_shift_left - logical left shift of the bits in a bitmap
127 *   @dst : destination bitmap
128 *   @src : source bitmap
129 *   @shift : shift by this many bits
130 *   @nbits : bitmap size, in bits
131 *
132 * Shifting left (multiplying) means moving bits in the LS -> MS
133 * direction.  Zeros are fed into the vacated LS bit positions
134 * and those MS bits shifted off the top are lost.
135 */
136
137void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
138			unsigned int shift, unsigned int nbits)
139{
140	int k;
141	unsigned int lim = BITS_TO_LONGS(nbits);
142	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
143	for (k = lim - off - 1; k >= 0; --k) {
144		unsigned long upper, lower;
145
146		/*
147		 * If shift is not word aligned, take upper rem bits of
148		 * word below and make them the bottom rem bits of result.
149		 */
150		if (rem && k > 0)
151			lower = src[k - 1] >> (BITS_PER_LONG - rem);
152		else
153			lower = 0;
154		upper = src[k] << rem;
155		dst[k + off] = lower | upper;
156	}
157	if (off)
158		memset(dst, 0, off*sizeof(unsigned long));
159}
160EXPORT_SYMBOL(__bitmap_shift_left);
161
162/**
163 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
164 * @dst: destination bitmap, might overlap with src
165 * @src: source bitmap
166 * @first: start bit of region to be removed
167 * @cut: number of bits to remove
168 * @nbits: bitmap size, in bits
169 *
170 * Set the n-th bit of @dst iff the n-th bit of @src is set and
171 * n is less than @first, or the m-th bit of @src is set for any
172 * m such that @first <= n < nbits, and m = n + @cut.
173 *
174 * In pictures, example for a big-endian 32-bit architecture:
175 *
176 * The @src bitmap is::
177 *
178 *   31                                   63
179 *   |                                    |
180 *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
181 *                   |  |              |                                    |
182 *                  16  14             0                                   32
183 *
184 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
185 *
186 *   31                                   63
187 *   |                                    |
188 *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
189 *                      |              |                                    |
190 *                      14 (bit 17     0                                   32
191 *                          from @src)
192 *
193 * Note that @dst and @src might overlap partially or entirely.
194 *
195 * This is implemented in the obvious way, with a shift and carry
196 * step for each moved bit. Optimisation is left as an exercise
197 * for the compiler.
198 */
199void bitmap_cut(unsigned long *dst, const unsigned long *src,
200		unsigned int first, unsigned int cut, unsigned int nbits)
201{
202	unsigned int len = BITS_TO_LONGS(nbits);
203	unsigned long keep = 0, carry;
204	int i;
205
206	if (first % BITS_PER_LONG) {
207		keep = src[first / BITS_PER_LONG] &
208		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
209	}
210
211	memmove(dst, src, len * sizeof(*dst));
212
213	while (cut--) {
214		for (i = first / BITS_PER_LONG; i < len; i++) {
215			if (i < len - 1)
216				carry = dst[i + 1] & 1UL;
217			else
218				carry = 0;
219
220			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
221		}
222	}
223
224	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
225	dst[first / BITS_PER_LONG] |= keep;
226}
227EXPORT_SYMBOL(bitmap_cut);
228
229bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
230				const unsigned long *bitmap2, unsigned int bits)
231{
232	unsigned int k;
233	unsigned int lim = bits/BITS_PER_LONG;
234	unsigned long result = 0;
235
236	for (k = 0; k < lim; k++)
237		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
238	if (bits % BITS_PER_LONG)
239		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
240			   BITMAP_LAST_WORD_MASK(bits));
241	return result != 0;
242}
243EXPORT_SYMBOL(__bitmap_and);
244
245void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
246				const unsigned long *bitmap2, unsigned int bits)
247{
248	unsigned int k;
249	unsigned int nr = BITS_TO_LONGS(bits);
250
251	for (k = 0; k < nr; k++)
252		dst[k] = bitmap1[k] | bitmap2[k];
253}
254EXPORT_SYMBOL(__bitmap_or);
255
256void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
257				const unsigned long *bitmap2, unsigned int bits)
258{
259	unsigned int k;
260	unsigned int nr = BITS_TO_LONGS(bits);
261
262	for (k = 0; k < nr; k++)
263		dst[k] = bitmap1[k] ^ bitmap2[k];
264}
265EXPORT_SYMBOL(__bitmap_xor);
266
267bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
268				const unsigned long *bitmap2, unsigned int bits)
269{
270	unsigned int k;
271	unsigned int lim = bits/BITS_PER_LONG;
272	unsigned long result = 0;
273
274	for (k = 0; k < lim; k++)
275		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
276	if (bits % BITS_PER_LONG)
277		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
278			   BITMAP_LAST_WORD_MASK(bits));
279	return result != 0;
280}
281EXPORT_SYMBOL(__bitmap_andnot);
282
283void __bitmap_replace(unsigned long *dst,
284		      const unsigned long *old, const unsigned long *new,
285		      const unsigned long *mask, unsigned int nbits)
286{
287	unsigned int k;
288	unsigned int nr = BITS_TO_LONGS(nbits);
289
290	for (k = 0; k < nr; k++)
291		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
292}
293EXPORT_SYMBOL(__bitmap_replace);
294
295bool __bitmap_intersects(const unsigned long *bitmap1,
296			 const unsigned long *bitmap2, unsigned int bits)
297{
298	unsigned int k, lim = bits/BITS_PER_LONG;
299	for (k = 0; k < lim; ++k)
300		if (bitmap1[k] & bitmap2[k])
301			return true;
302
303	if (bits % BITS_PER_LONG)
304		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
305			return true;
306	return false;
307}
308EXPORT_SYMBOL(__bitmap_intersects);
309
310bool __bitmap_subset(const unsigned long *bitmap1,
311		     const unsigned long *bitmap2, unsigned int bits)
312{
313	unsigned int k, lim = bits/BITS_PER_LONG;
314	for (k = 0; k < lim; ++k)
315		if (bitmap1[k] & ~bitmap2[k])
316			return false;
317
318	if (bits % BITS_PER_LONG)
319		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
320			return false;
321	return true;
322}
323EXPORT_SYMBOL(__bitmap_subset);
324
325#define BITMAP_WEIGHT(FETCH, bits)	\
326({										\
327	unsigned int __bits = (bits), idx, w = 0;				\
328										\
329	for (idx = 0; idx < __bits / BITS_PER_LONG; idx++)			\
330		w += hweight_long(FETCH);					\
331										\
332	if (__bits % BITS_PER_LONG)						\
333		w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits));	\
334										\
335	w;									\
336})
337
338unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
339{
340	return BITMAP_WEIGHT(bitmap[idx], bits);
341}
342EXPORT_SYMBOL(__bitmap_weight);
343
344unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
345				const unsigned long *bitmap2, unsigned int bits)
346{
347	return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
 
 
 
348}
349EXPORT_SYMBOL(__bitmap_weight_and);
350
351void __bitmap_set(unsigned long *map, unsigned int start, int len)
352{
353	unsigned long *p = map + BIT_WORD(start);
354	const unsigned int size = start + len;
355	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
356	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
357
358	while (len - bits_to_set >= 0) {
359		*p |= mask_to_set;
360		len -= bits_to_set;
361		bits_to_set = BITS_PER_LONG;
362		mask_to_set = ~0UL;
363		p++;
364	}
365	if (len) {
366		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
367		*p |= mask_to_set;
368	}
369}
370EXPORT_SYMBOL(__bitmap_set);
371
372void __bitmap_clear(unsigned long *map, unsigned int start, int len)
373{
374	unsigned long *p = map + BIT_WORD(start);
375	const unsigned int size = start + len;
376	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
377	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
378
379	while (len - bits_to_clear >= 0) {
380		*p &= ~mask_to_clear;
381		len -= bits_to_clear;
382		bits_to_clear = BITS_PER_LONG;
383		mask_to_clear = ~0UL;
384		p++;
385	}
386	if (len) {
387		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
388		*p &= ~mask_to_clear;
389	}
390}
391EXPORT_SYMBOL(__bitmap_clear);
392
393/**
394 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
395 * @map: The address to base the search on
396 * @size: The bitmap size in bits
397 * @start: The bitnumber to start searching at
398 * @nr: The number of zeroed bits we're looking for
399 * @align_mask: Alignment mask for zero area
400 * @align_offset: Alignment offset for zero area.
401 *
402 * The @align_mask should be one less than a power of 2; the effect is that
403 * the bit offset of all zero areas this function finds plus @align_offset
404 * is multiple of that power of 2.
405 */
406unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
407					     unsigned long size,
408					     unsigned long start,
409					     unsigned int nr,
410					     unsigned long align_mask,
411					     unsigned long align_offset)
412{
413	unsigned long index, end, i;
414again:
415	index = find_next_zero_bit(map, size, start);
416
417	/* Align allocation */
418	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
419
420	end = index + nr;
421	if (end > size)
422		return end;
423	i = find_next_bit(map, end, index);
424	if (i < end) {
425		start = i + 1;
426		goto again;
427	}
428	return index;
429}
430EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432/**
433 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
434 *	@buf: pointer to a bitmap
435 *	@pos: a bit position in @buf (0 <= @pos < @nbits)
436 *	@nbits: number of valid bit positions in @buf
437 *
438 * Map the bit at position @pos in @buf (of length @nbits) to the
439 * ordinal of which set bit it is.  If it is not set or if @pos
440 * is not a valid bit position, map to -1.
441 *
442 * If for example, just bits 4 through 7 are set in @buf, then @pos
443 * values 4 through 7 will get mapped to 0 through 3, respectively,
444 * and other @pos values will get mapped to -1.  When @pos value 7
445 * gets mapped to (returns) @ord value 3 in this example, that means
446 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
447 *
448 * The bit positions 0 through @bits are valid positions in @buf.
449 */
450static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
451{
452	if (pos >= nbits || !test_bit(pos, buf))
453		return -1;
454
455	return bitmap_weight(buf, pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456}
457
458/**
459 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
460 *	@dst: remapped result
461 *	@src: subset to be remapped
462 *	@old: defines domain of map
463 *	@new: defines range of map
464 *	@nbits: number of bits in each of these bitmaps
465 *
466 * Let @old and @new define a mapping of bit positions, such that
467 * whatever position is held by the n-th set bit in @old is mapped
468 * to the n-th set bit in @new.  In the more general case, allowing
469 * for the possibility that the weight 'w' of @new is less than the
470 * weight of @old, map the position of the n-th set bit in @old to
471 * the position of the m-th set bit in @new, where m == n % w.
472 *
473 * If either of the @old and @new bitmaps are empty, or if @src and
474 * @dst point to the same location, then this routine copies @src
475 * to @dst.
476 *
477 * The positions of unset bits in @old are mapped to themselves
478 * (the identity map).
479 *
480 * Apply the above specified mapping to @src, placing the result in
481 * @dst, clearing any bits previously set in @dst.
482 *
483 * For example, lets say that @old has bits 4 through 7 set, and
484 * @new has bits 12 through 15 set.  This defines the mapping of bit
485 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
486 * bit positions unchanged.  So if say @src comes into this routine
487 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
488 * 13 and 15 set.
489 */
490void bitmap_remap(unsigned long *dst, const unsigned long *src,
491		const unsigned long *old, const unsigned long *new,
492		unsigned int nbits)
493{
494	unsigned int oldbit, w;
495
496	if (dst == src)		/* following doesn't handle inplace remaps */
497		return;
498	bitmap_zero(dst, nbits);
499
500	w = bitmap_weight(new, nbits);
501	for_each_set_bit(oldbit, src, nbits) {
502		int n = bitmap_pos_to_ord(old, oldbit, nbits);
503
504		if (n < 0 || w == 0)
505			set_bit(oldbit, dst);	/* identity map */
506		else
507			set_bit(find_nth_bit(new, nbits, n % w), dst);
508	}
509}
510EXPORT_SYMBOL(bitmap_remap);
511
512/**
513 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
514 *	@oldbit: bit position to be mapped
515 *	@old: defines domain of map
516 *	@new: defines range of map
517 *	@bits: number of bits in each of these bitmaps
518 *
519 * Let @old and @new define a mapping of bit positions, such that
520 * whatever position is held by the n-th set bit in @old is mapped
521 * to the n-th set bit in @new.  In the more general case, allowing
522 * for the possibility that the weight 'w' of @new is less than the
523 * weight of @old, map the position of the n-th set bit in @old to
524 * the position of the m-th set bit in @new, where m == n % w.
525 *
526 * The positions of unset bits in @old are mapped to themselves
527 * (the identity map).
528 *
529 * Apply the above specified mapping to bit position @oldbit, returning
530 * the new bit position.
531 *
532 * For example, lets say that @old has bits 4 through 7 set, and
533 * @new has bits 12 through 15 set.  This defines the mapping of bit
534 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
535 * bit positions unchanged.  So if say @oldbit is 5, then this routine
536 * returns 13.
537 */
538int bitmap_bitremap(int oldbit, const unsigned long *old,
539				const unsigned long *new, int bits)
540{
541	int w = bitmap_weight(new, bits);
542	int n = bitmap_pos_to_ord(old, oldbit, bits);
543	if (n < 0 || w == 0)
544		return oldbit;
545	else
546		return find_nth_bit(new, bits, n % w);
547}
548EXPORT_SYMBOL(bitmap_bitremap);
549
550#ifdef CONFIG_NUMA
551/**
552 * bitmap_onto - translate one bitmap relative to another
553 *	@dst: resulting translated bitmap
554 * 	@orig: original untranslated bitmap
555 * 	@relmap: bitmap relative to which translated
556 *	@bits: number of bits in each of these bitmaps
557 *
558 * Set the n-th bit of @dst iff there exists some m such that the
559 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
560 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
561 * (If you understood the previous sentence the first time your
562 * read it, you're overqualified for your current job.)
563 *
564 * In other words, @orig is mapped onto (surjectively) @dst,
565 * using the map { <n, m> | the n-th bit of @relmap is the
566 * m-th set bit of @relmap }.
567 *
568 * Any set bits in @orig above bit number W, where W is the
569 * weight of (number of set bits in) @relmap are mapped nowhere.
570 * In particular, if for all bits m set in @orig, m >= W, then
571 * @dst will end up empty.  In situations where the possibility
572 * of such an empty result is not desired, one way to avoid it is
573 * to use the bitmap_fold() operator, below, to first fold the
574 * @orig bitmap over itself so that all its set bits x are in the
575 * range 0 <= x < W.  The bitmap_fold() operator does this by
576 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
577 *
578 * Example [1] for bitmap_onto():
579 *  Let's say @relmap has bits 30-39 set, and @orig has bits
580 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
581 *  @dst will have bits 31, 33, 35, 37 and 39 set.
582 *
583 *  When bit 0 is set in @orig, it means turn on the bit in
584 *  @dst corresponding to whatever is the first bit (if any)
585 *  that is turned on in @relmap.  Since bit 0 was off in the
586 *  above example, we leave off that bit (bit 30) in @dst.
587 *
588 *  When bit 1 is set in @orig (as in the above example), it
589 *  means turn on the bit in @dst corresponding to whatever
590 *  is the second bit that is turned on in @relmap.  The second
591 *  bit in @relmap that was turned on in the above example was
592 *  bit 31, so we turned on bit 31 in @dst.
593 *
594 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
595 *  because they were the 4th, 6th, 8th and 10th set bits
596 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
597 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
598 *
599 *  When bit 11 is set in @orig, it means turn on the bit in
600 *  @dst corresponding to whatever is the twelfth bit that is
601 *  turned on in @relmap.  In the above example, there were
602 *  only ten bits turned on in @relmap (30..39), so that bit
603 *  11 was set in @orig had no affect on @dst.
604 *
605 * Example [2] for bitmap_fold() + bitmap_onto():
606 *  Let's say @relmap has these ten bits set::
607 *
608 *		40 41 42 43 45 48 53 61 74 95
609 *
610 *  (for the curious, that's 40 plus the first ten terms of the
611 *  Fibonacci sequence.)
612 *
613 *  Further lets say we use the following code, invoking
614 *  bitmap_fold() then bitmap_onto, as suggested above to
615 *  avoid the possibility of an empty @dst result::
616 *
617 *	unsigned long *tmp;	// a temporary bitmap's bits
618 *
619 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
620 *	bitmap_onto(dst, tmp, relmap, bits);
621 *
622 *  Then this table shows what various values of @dst would be, for
623 *  various @orig's.  I list the zero-based positions of each set bit.
624 *  The tmp column shows the intermediate result, as computed by
625 *  using bitmap_fold() to fold the @orig bitmap modulo ten
626 *  (the weight of @relmap):
627 *
628 *      =============== ============== =================
629 *      @orig           tmp            @dst
630 *      0                0             40
631 *      1                1             41
632 *      9                9             95
633 *      10               0             40 [#f1]_
634 *      1 3 5 7          1 3 5 7       41 43 48 61
635 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
636 *      0 9 18 27        0 9 8 7       40 61 74 95
637 *      0 10 20 30       0             40
638 *      0 11 22 33       0 1 2 3       40 41 42 43
639 *      0 12 24 36       0 2 4 6       40 42 45 53
640 *      78 102 211       1 2 8         41 42 74 [#f1]_
641 *      =============== ============== =================
642 *
643 * .. [#f1]
644 *
645 *     For these marked lines, if we hadn't first done bitmap_fold()
646 *     into tmp, then the @dst result would have been empty.
647 *
648 * If either of @orig or @relmap is empty (no set bits), then @dst
649 * will be returned empty.
650 *
651 * If (as explained above) the only set bits in @orig are in positions
652 * m where m >= W, (where W is the weight of @relmap) then @dst will
653 * once again be returned empty.
654 *
655 * All bits in @dst not set by the above rule are cleared.
656 */
657void bitmap_onto(unsigned long *dst, const unsigned long *orig,
658			const unsigned long *relmap, unsigned int bits)
659{
660	unsigned int n, m;	/* same meaning as in above comment */
661
662	if (dst == orig)	/* following doesn't handle inplace mappings */
663		return;
664	bitmap_zero(dst, bits);
665
666	/*
667	 * The following code is a more efficient, but less
668	 * obvious, equivalent to the loop:
669	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
670	 *		n = find_nth_bit(orig, bits, m);
671	 *		if (test_bit(m, orig))
672	 *			set_bit(n, dst);
673	 *	}
674	 */
675
676	m = 0;
677	for_each_set_bit(n, relmap, bits) {
678		/* m == bitmap_pos_to_ord(relmap, n, bits) */
679		if (test_bit(m, orig))
680			set_bit(n, dst);
681		m++;
682	}
683}
684
685/**
686 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
687 *	@dst: resulting smaller bitmap
688 *	@orig: original larger bitmap
689 *	@sz: specified size
690 *	@nbits: number of bits in each of these bitmaps
691 *
692 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
693 * Clear all other bits in @dst.  See further the comment and
694 * Example [2] for bitmap_onto() for why and how to use this.
695 */
696void bitmap_fold(unsigned long *dst, const unsigned long *orig,
697			unsigned int sz, unsigned int nbits)
698{
699	unsigned int oldbit;
700
701	if (dst == orig)	/* following doesn't handle inplace mappings */
702		return;
703	bitmap_zero(dst, nbits);
704
705	for_each_set_bit(oldbit, orig, nbits)
706		set_bit(oldbit % sz, dst);
707}
708#endif /* CONFIG_NUMA */
709
710unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
711{
712	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
713			     flags);
714}
715EXPORT_SYMBOL(bitmap_alloc);
 
 
 
 
 
 
 
 
 
 
 
716
717unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
718{
719	return bitmap_alloc(nbits, flags | __GFP_ZERO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
720}
721EXPORT_SYMBOL(bitmap_zalloc);
722
723unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
724{
725	return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
726				  flags, node);
 
 
 
 
 
 
 
727}
728EXPORT_SYMBOL(bitmap_alloc_node);
729
730unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
 
 
 
 
 
 
 
 
 
 
 
731{
732	return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
733}
734EXPORT_SYMBOL(bitmap_zalloc_node);
735
736void bitmap_free(const unsigned long *bitmap)
 
 
 
 
 
 
 
 
 
 
 
737{
738	kfree(bitmap);
 
 
739}
740EXPORT_SYMBOL(bitmap_free);
741
742static void devm_bitmap_free(void *data)
 
 
 
 
 
 
 
 
 
743{
744	unsigned long *bitmap = data;
745
746	bitmap_free(bitmap);
 
 
 
 
 
747}
 
 
748
749unsigned long *devm_bitmap_alloc(struct device *dev,
750				 unsigned int nbits, gfp_t flags)
751{
752	unsigned long *bitmap;
753	int ret;
754
755	bitmap = bitmap_alloc(nbits, flags);
756	if (!bitmap)
757		return NULL;
758
759	ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
760	if (ret)
761		return NULL;
762
763	return bitmap;
 
 
764}
765EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
766
767unsigned long *devm_bitmap_zalloc(struct device *dev,
768				  unsigned int nbits, gfp_t flags)
769{
770	return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
771}
772EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
773
774#if BITS_PER_LONG == 64
775/**
776 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
777 *	@bitmap: array of unsigned longs, the destination bitmap
778 *	@buf: array of u32 (in host byte order), the source bitmap
779 *	@nbits: number of bits in @bitmap
780 */
781void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
782{
783	unsigned int i, halfwords;
784
785	halfwords = DIV_ROUND_UP(nbits, 32);
786	for (i = 0; i < halfwords; i++) {
787		bitmap[i/2] = (unsigned long) buf[i];
788		if (++i < halfwords)
789			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
790	}
791
792	/* Clear tail bits in last word beyond nbits. */
793	if (nbits % BITS_PER_LONG)
794		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
795}
796EXPORT_SYMBOL(bitmap_from_arr32);
797
798/**
799 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
800 *	@buf: array of u32 (in host byte order), the dest bitmap
801 *	@bitmap: array of unsigned longs, the source bitmap
802 *	@nbits: number of bits in @bitmap
803 */
804void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
805{
806	unsigned int i, halfwords;
807
808	halfwords = DIV_ROUND_UP(nbits, 32);
809	for (i = 0; i < halfwords; i++) {
810		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
811		if (++i < halfwords)
812			buf[i] = (u32) (bitmap[i/2] >> 32);
813	}
814
815	/* Clear tail bits in last element of array beyond nbits. */
816	if (nbits % BITS_PER_LONG)
817		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
818}
819EXPORT_SYMBOL(bitmap_to_arr32);
820#endif
821
822#if BITS_PER_LONG == 32
823/**
824 * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
825 *	@bitmap: array of unsigned longs, the destination bitmap
826 *	@buf: array of u64 (in host byte order), the source bitmap
827 *	@nbits: number of bits in @bitmap
828 */
829void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
830{
831	int n;
832
833	for (n = nbits; n > 0; n -= 64) {
834		u64 val = *buf++;
835
836		*bitmap++ = val;
837		if (n > 32)
838			*bitmap++ = val >> 32;
839	}
840
841	/*
842	 * Clear tail bits in the last word beyond nbits.
843	 *
844	 * Negative index is OK because here we point to the word next
845	 * to the last word of the bitmap, except for nbits == 0, which
846	 * is tested implicitly.
847	 */
848	if (nbits % BITS_PER_LONG)
849		bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
850}
851EXPORT_SYMBOL(bitmap_from_arr64);
852
853/**
854 * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
855 *	@buf: array of u64 (in host byte order), the dest bitmap
856 *	@bitmap: array of unsigned longs, the source bitmap
857 *	@nbits: number of bits in @bitmap
858 */
859void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
860{
861	const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
862
863	while (bitmap < end) {
864		*buf = *bitmap++;
865		if (bitmap < end)
866			*buf |= (u64)(*bitmap++) << 32;
867		buf++;
868	}
869
870	/* Clear tail bits in the last element of array beyond nbits. */
871	if (nbits % 64)
872		buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
873}
874EXPORT_SYMBOL(bitmap_to_arr64);
875#endif
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * lib/bitmap.c
   4 * Helper functions for bitmap.h.
   5 */
   6#include <linux/export.h>
   7#include <linux/thread_info.h>
   8#include <linux/ctype.h>
   9#include <linux/errno.h>
  10#include <linux/bitmap.h>
  11#include <linux/bitops.h>
  12#include <linux/bug.h>
  13#include <linux/kernel.h>
  14#include <linux/mm.h>
  15#include <linux/slab.h>
  16#include <linux/string.h>
  17#include <linux/uaccess.h>
  18
  19#include <asm/page.h>
  20
  21#include "kstrtox.h"
  22
  23/**
  24 * DOC: bitmap introduction
  25 *
  26 * bitmaps provide an array of bits, implemented using an an
  27 * array of unsigned longs.  The number of valid bits in a
  28 * given bitmap does _not_ need to be an exact multiple of
  29 * BITS_PER_LONG.
  30 *
  31 * The possible unused bits in the last, partially used word
  32 * of a bitmap are 'don't care'.  The implementation makes
  33 * no particular effort to keep them zero.  It ensures that
  34 * their value will not affect the results of any operation.
  35 * The bitmap operations that return Boolean (bitmap_empty,
  36 * for example) or scalar (bitmap_weight, for example) results
  37 * carefully filter out these unused bits from impacting their
  38 * results.
  39 *
  40 * The byte ordering of bitmaps is more natural on little
  41 * endian architectures.  See the big-endian headers
  42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  43 * for the best explanations of this ordering.
  44 */
  45
  46int __bitmap_equal(const unsigned long *bitmap1,
  47		const unsigned long *bitmap2, unsigned int bits)
  48{
  49	unsigned int k, lim = bits/BITS_PER_LONG;
  50	for (k = 0; k < lim; ++k)
  51		if (bitmap1[k] != bitmap2[k])
  52			return 0;
  53
  54	if (bits % BITS_PER_LONG)
  55		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  56			return 0;
  57
  58	return 1;
  59}
  60EXPORT_SYMBOL(__bitmap_equal);
  61
  62bool __bitmap_or_equal(const unsigned long *bitmap1,
  63		       const unsigned long *bitmap2,
  64		       const unsigned long *bitmap3,
  65		       unsigned int bits)
  66{
  67	unsigned int k, lim = bits / BITS_PER_LONG;
  68	unsigned long tmp;
  69
  70	for (k = 0; k < lim; ++k) {
  71		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
  72			return false;
  73	}
  74
  75	if (!(bits % BITS_PER_LONG))
  76		return true;
  77
  78	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
  79	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
  80}
  81
  82void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
  83{
  84	unsigned int k, lim = BITS_TO_LONGS(bits);
  85	for (k = 0; k < lim; ++k)
  86		dst[k] = ~src[k];
  87}
  88EXPORT_SYMBOL(__bitmap_complement);
  89
  90/**
  91 * __bitmap_shift_right - logical right shift of the bits in a bitmap
  92 *   @dst : destination bitmap
  93 *   @src : source bitmap
  94 *   @shift : shift by this many bits
  95 *   @nbits : bitmap size, in bits
  96 *
  97 * Shifting right (dividing) means moving bits in the MS -> LS bit
  98 * direction.  Zeros are fed into the vacated MS positions and the
  99 * LS bits shifted off the bottom are lost.
 100 */
 101void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
 102			unsigned shift, unsigned nbits)
 103{
 104	unsigned k, lim = BITS_TO_LONGS(nbits);
 105	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 106	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
 107	for (k = 0; off + k < lim; ++k) {
 108		unsigned long upper, lower;
 109
 110		/*
 111		 * If shift is not word aligned, take lower rem bits of
 112		 * word above and make them the top rem bits of result.
 113		 */
 114		if (!rem || off + k + 1 >= lim)
 115			upper = 0;
 116		else {
 117			upper = src[off + k + 1];
 118			if (off + k + 1 == lim - 1)
 119				upper &= mask;
 120			upper <<= (BITS_PER_LONG - rem);
 121		}
 122		lower = src[off + k];
 123		if (off + k == lim - 1)
 124			lower &= mask;
 125		lower >>= rem;
 126		dst[k] = lower | upper;
 127	}
 128	if (off)
 129		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
 130}
 131EXPORT_SYMBOL(__bitmap_shift_right);
 132
 133
 134/**
 135 * __bitmap_shift_left - logical left shift of the bits in a bitmap
 136 *   @dst : destination bitmap
 137 *   @src : source bitmap
 138 *   @shift : shift by this many bits
 139 *   @nbits : bitmap size, in bits
 140 *
 141 * Shifting left (multiplying) means moving bits in the LS -> MS
 142 * direction.  Zeros are fed into the vacated LS bit positions
 143 * and those MS bits shifted off the top are lost.
 144 */
 145
 146void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
 147			unsigned int shift, unsigned int nbits)
 148{
 149	int k;
 150	unsigned int lim = BITS_TO_LONGS(nbits);
 151	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 152	for (k = lim - off - 1; k >= 0; --k) {
 153		unsigned long upper, lower;
 154
 155		/*
 156		 * If shift is not word aligned, take upper rem bits of
 157		 * word below and make them the bottom rem bits of result.
 158		 */
 159		if (rem && k > 0)
 160			lower = src[k - 1] >> (BITS_PER_LONG - rem);
 161		else
 162			lower = 0;
 163		upper = src[k] << rem;
 164		dst[k + off] = lower | upper;
 165	}
 166	if (off)
 167		memset(dst, 0, off*sizeof(unsigned long));
 168}
 169EXPORT_SYMBOL(__bitmap_shift_left);
 170
 171int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172				const unsigned long *bitmap2, unsigned int bits)
 173{
 174	unsigned int k;
 175	unsigned int lim = bits/BITS_PER_LONG;
 176	unsigned long result = 0;
 177
 178	for (k = 0; k < lim; k++)
 179		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
 180	if (bits % BITS_PER_LONG)
 181		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
 182			   BITMAP_LAST_WORD_MASK(bits));
 183	return result != 0;
 184}
 185EXPORT_SYMBOL(__bitmap_and);
 186
 187void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 188				const unsigned long *bitmap2, unsigned int bits)
 189{
 190	unsigned int k;
 191	unsigned int nr = BITS_TO_LONGS(bits);
 192
 193	for (k = 0; k < nr; k++)
 194		dst[k] = bitmap1[k] | bitmap2[k];
 195}
 196EXPORT_SYMBOL(__bitmap_or);
 197
 198void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 199				const unsigned long *bitmap2, unsigned int bits)
 200{
 201	unsigned int k;
 202	unsigned int nr = BITS_TO_LONGS(bits);
 203
 204	for (k = 0; k < nr; k++)
 205		dst[k] = bitmap1[k] ^ bitmap2[k];
 206}
 207EXPORT_SYMBOL(__bitmap_xor);
 208
 209int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 210				const unsigned long *bitmap2, unsigned int bits)
 211{
 212	unsigned int k;
 213	unsigned int lim = bits/BITS_PER_LONG;
 214	unsigned long result = 0;
 215
 216	for (k = 0; k < lim; k++)
 217		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
 218	if (bits % BITS_PER_LONG)
 219		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
 220			   BITMAP_LAST_WORD_MASK(bits));
 221	return result != 0;
 222}
 223EXPORT_SYMBOL(__bitmap_andnot);
 224
 225int __bitmap_intersects(const unsigned long *bitmap1,
 226			const unsigned long *bitmap2, unsigned int bits)
 
 
 
 
 
 
 
 
 
 
 
 
 227{
 228	unsigned int k, lim = bits/BITS_PER_LONG;
 229	for (k = 0; k < lim; ++k)
 230		if (bitmap1[k] & bitmap2[k])
 231			return 1;
 232
 233	if (bits % BITS_PER_LONG)
 234		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 235			return 1;
 236	return 0;
 237}
 238EXPORT_SYMBOL(__bitmap_intersects);
 239
 240int __bitmap_subset(const unsigned long *bitmap1,
 241		    const unsigned long *bitmap2, unsigned int bits)
 242{
 243	unsigned int k, lim = bits/BITS_PER_LONG;
 244	for (k = 0; k < lim; ++k)
 245		if (bitmap1[k] & ~bitmap2[k])
 246			return 0;
 247
 248	if (bits % BITS_PER_LONG)
 249		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 250			return 0;
 251	return 1;
 252}
 253EXPORT_SYMBOL(__bitmap_subset);
 254
 255int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 256{
 257	unsigned int k, lim = bits/BITS_PER_LONG;
 258	int w = 0;
 
 259
 260	for (k = 0; k < lim; k++)
 261		w += hweight_long(bitmap[k]);
 262
 263	if (bits % BITS_PER_LONG)
 264		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
 265
 266	return w;
 267}
 268EXPORT_SYMBOL(__bitmap_weight);
 269
 270void __bitmap_set(unsigned long *map, unsigned int start, int len)
 271{
 272	unsigned long *p = map + BIT_WORD(start);
 273	const unsigned int size = start + len;
 274	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 275	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 276
 277	while (len - bits_to_set >= 0) {
 278		*p |= mask_to_set;
 279		len -= bits_to_set;
 280		bits_to_set = BITS_PER_LONG;
 281		mask_to_set = ~0UL;
 282		p++;
 283	}
 284	if (len) {
 285		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 286		*p |= mask_to_set;
 287	}
 288}
 289EXPORT_SYMBOL(__bitmap_set);
 290
 291void __bitmap_clear(unsigned long *map, unsigned int start, int len)
 292{
 293	unsigned long *p = map + BIT_WORD(start);
 294	const unsigned int size = start + len;
 295	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
 296	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 297
 298	while (len - bits_to_clear >= 0) {
 299		*p &= ~mask_to_clear;
 300		len -= bits_to_clear;
 301		bits_to_clear = BITS_PER_LONG;
 302		mask_to_clear = ~0UL;
 303		p++;
 304	}
 305	if (len) {
 306		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
 307		*p &= ~mask_to_clear;
 308	}
 309}
 310EXPORT_SYMBOL(__bitmap_clear);
 311
 312/**
 313 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
 314 * @map: The address to base the search on
 315 * @size: The bitmap size in bits
 316 * @start: The bitnumber to start searching at
 317 * @nr: The number of zeroed bits we're looking for
 318 * @align_mask: Alignment mask for zero area
 319 * @align_offset: Alignment offset for zero area.
 320 *
 321 * The @align_mask should be one less than a power of 2; the effect is that
 322 * the bit offset of all zero areas this function finds plus @align_offset
 323 * is multiple of that power of 2.
 324 */
 325unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
 326					     unsigned long size,
 327					     unsigned long start,
 328					     unsigned int nr,
 329					     unsigned long align_mask,
 330					     unsigned long align_offset)
 331{
 332	unsigned long index, end, i;
 333again:
 334	index = find_next_zero_bit(map, size, start);
 335
 336	/* Align allocation */
 337	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
 338
 339	end = index + nr;
 340	if (end > size)
 341		return end;
 342	i = find_next_bit(map, end, index);
 343	if (i < end) {
 344		start = i + 1;
 345		goto again;
 346	}
 347	return index;
 348}
 349EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
 350
 351/*
 352 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
 353 * second version by Paul Jackson, third by Joe Korty.
 354 */
 355
 356#define CHUNKSZ				32
 357#define nbits_to_hold_value(val)	fls(val)
 358#define BASEDEC 10		/* fancier cpuset lists input in decimal */
 359
 360/**
 361 * __bitmap_parse - convert an ASCII hex string into a bitmap.
 362 * @buf: pointer to buffer containing string.
 363 * @buflen: buffer size in bytes.  If string is smaller than this
 364 *    then it must be terminated with a \0.
 365 * @is_user: location of buffer, 0 indicates kernel space
 366 * @maskp: pointer to bitmap array that will contain result.
 367 * @nmaskbits: size of bitmap, in bits.
 368 *
 369 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 370 * bits of the resultant bitmask.  No chunk may specify a value larger
 371 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 372 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 373 * characters and for grouping errors such as "1,,5", ",44", "," and "".
 374 * Leading and trailing whitespace accepted, but not embedded whitespace.
 375 */
 376int __bitmap_parse(const char *buf, unsigned int buflen,
 377		int is_user, unsigned long *maskp,
 378		int nmaskbits)
 379{
 380	int c, old_c, totaldigits, ndigits, nchunks, nbits;
 381	u32 chunk;
 382	const char __user __force *ubuf = (const char __user __force *)buf;
 383
 384	bitmap_zero(maskp, nmaskbits);
 385
 386	nchunks = nbits = totaldigits = c = 0;
 387	do {
 388		chunk = 0;
 389		ndigits = totaldigits;
 390
 391		/* Get the next chunk of the bitmap */
 392		while (buflen) {
 393			old_c = c;
 394			if (is_user) {
 395				if (__get_user(c, ubuf++))
 396					return -EFAULT;
 397			}
 398			else
 399				c = *buf++;
 400			buflen--;
 401			if (isspace(c))
 402				continue;
 403
 404			/*
 405			 * If the last character was a space and the current
 406			 * character isn't '\0', we've got embedded whitespace.
 407			 * This is a no-no, so throw an error.
 408			 */
 409			if (totaldigits && c && isspace(old_c))
 410				return -EINVAL;
 411
 412			/* A '\0' or a ',' signal the end of the chunk */
 413			if (c == '\0' || c == ',')
 414				break;
 415
 416			if (!isxdigit(c))
 417				return -EINVAL;
 418
 419			/*
 420			 * Make sure there are at least 4 free bits in 'chunk'.
 421			 * If not, this hexdigit will overflow 'chunk', so
 422			 * throw an error.
 423			 */
 424			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
 425				return -EOVERFLOW;
 426
 427			chunk = (chunk << 4) | hex_to_bin(c);
 428			totaldigits++;
 429		}
 430		if (ndigits == totaldigits)
 431			return -EINVAL;
 432		if (nchunks == 0 && chunk == 0)
 433			continue;
 434
 435		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
 436		*maskp |= chunk;
 437		nchunks++;
 438		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
 439		if (nbits > nmaskbits)
 440			return -EOVERFLOW;
 441	} while (buflen && c == ',');
 442
 443	return 0;
 444}
 445EXPORT_SYMBOL(__bitmap_parse);
 446
 447/**
 448 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
 449 *
 450 * @ubuf: pointer to user buffer containing string.
 451 * @ulen: buffer size in bytes.  If string is smaller than this
 452 *    then it must be terminated with a \0.
 453 * @maskp: pointer to bitmap array that will contain result.
 454 * @nmaskbits: size of bitmap, in bits.
 455 *
 456 * Wrapper for __bitmap_parse(), providing it with user buffer.
 457 *
 458 * We cannot have this as an inline function in bitmap.h because it needs
 459 * linux/uaccess.h to get the access_ok() declaration and this causes
 460 * cyclic dependencies.
 461 */
 462int bitmap_parse_user(const char __user *ubuf,
 463			unsigned int ulen, unsigned long *maskp,
 464			int nmaskbits)
 465{
 466	if (!access_ok(ubuf, ulen))
 467		return -EFAULT;
 468	return __bitmap_parse((const char __force *)ubuf,
 469				ulen, 1, maskp, nmaskbits);
 470
 471}
 472EXPORT_SYMBOL(bitmap_parse_user);
 473
 474/**
 475 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
 476 * @list: indicates whether the bitmap must be list
 477 * @buf: page aligned buffer into which string is placed
 478 * @maskp: pointer to bitmap to convert
 479 * @nmaskbits: size of bitmap, in bits
 480 *
 481 * Output format is a comma-separated list of decimal numbers and
 482 * ranges if list is specified or hex digits grouped into comma-separated
 483 * sets of 8 digits/set. Returns the number of characters written to buf.
 484 *
 485 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
 486 * area and that sufficient storage remains at @buf to accommodate the
 487 * bitmap_print_to_pagebuf() output. Returns the number of characters
 488 * actually printed to @buf, excluding terminating '\0'.
 489 */
 490int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
 491			    int nmaskbits)
 492{
 493	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
 494
 495	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
 496		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
 497}
 498EXPORT_SYMBOL(bitmap_print_to_pagebuf);
 499
 500/*
 501 * Region 9-38:4/10 describes the following bitmap structure:
 502 * 0	   9  12    18			38
 503 * .........****......****......****......
 504 *	    ^  ^     ^			 ^
 505 *      start  off   group_len	       end
 506 */
 507struct region {
 508	unsigned int start;
 509	unsigned int off;
 510	unsigned int group_len;
 511	unsigned int end;
 512};
 513
 514static int bitmap_set_region(const struct region *r,
 515				unsigned long *bitmap, int nbits)
 516{
 517	unsigned int start;
 518
 519	if (r->end >= nbits)
 520		return -ERANGE;
 521
 522	for (start = r->start; start <= r->end; start += r->group_len)
 523		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
 524
 525	return 0;
 526}
 527
 528static int bitmap_check_region(const struct region *r)
 529{
 530	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
 531		return -EINVAL;
 532
 533	return 0;
 534}
 535
 536static const char *bitmap_getnum(const char *str, unsigned int *num)
 537{
 538	unsigned long long n;
 539	unsigned int len;
 540
 541	len = _parse_integer(str, 10, &n);
 542	if (!len)
 543		return ERR_PTR(-EINVAL);
 544	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
 545		return ERR_PTR(-EOVERFLOW);
 546
 547	*num = n;
 548	return str + len;
 549}
 550
 551static inline bool end_of_str(char c)
 552{
 553	return c == '\0' || c == '\n';
 554}
 555
 556static inline bool __end_of_region(char c)
 557{
 558	return isspace(c) || c == ',';
 559}
 560
 561static inline bool end_of_region(char c)
 562{
 563	return __end_of_region(c) || end_of_str(c);
 564}
 565
 566/*
 567 * The format allows commas and whitespases at the beginning
 568 * of the region.
 569 */
 570static const char *bitmap_find_region(const char *str)
 571{
 572	while (__end_of_region(*str))
 573		str++;
 574
 575	return end_of_str(*str) ? NULL : str;
 576}
 577
 578static const char *bitmap_parse_region(const char *str, struct region *r)
 579{
 580	str = bitmap_getnum(str, &r->start);
 581	if (IS_ERR(str))
 582		return str;
 583
 584	if (end_of_region(*str))
 585		goto no_end;
 586
 587	if (*str != '-')
 588		return ERR_PTR(-EINVAL);
 589
 590	str = bitmap_getnum(str + 1, &r->end);
 591	if (IS_ERR(str))
 592		return str;
 593
 594	if (end_of_region(*str))
 595		goto no_pattern;
 596
 597	if (*str != ':')
 598		return ERR_PTR(-EINVAL);
 599
 600	str = bitmap_getnum(str + 1, &r->off);
 601	if (IS_ERR(str))
 602		return str;
 603
 604	if (*str != '/')
 605		return ERR_PTR(-EINVAL);
 606
 607	return bitmap_getnum(str + 1, &r->group_len);
 608
 609no_end:
 610	r->end = r->start;
 611no_pattern:
 612	r->off = r->end + 1;
 613	r->group_len = r->end + 1;
 614
 615	return end_of_str(*str) ? NULL : str;
 616}
 617
 618/**
 619 * bitmap_parselist - convert list format ASCII string to bitmap
 620 * @buf: read user string from this buffer; must be terminated
 621 *    with a \0 or \n.
 622 * @maskp: write resulting mask here
 623 * @nmaskbits: number of bits in mask to be written
 624 *
 625 * Input format is a comma-separated list of decimal numbers and
 626 * ranges.  Consecutively set bits are shown as two hyphen-separated
 627 * decimal numbers, the smallest and largest bit numbers set in
 628 * the range.
 629 * Optionally each range can be postfixed to denote that only parts of it
 630 * should be set. The range will divided to groups of specific size.
 631 * From each group will be used only defined amount of bits.
 632 * Syntax: range:used_size/group_size
 633 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
 634 *
 635 * Returns: 0 on success, -errno on invalid input strings. Error values:
 636 *
 637 *   - ``-EINVAL``: wrong region format
 638 *   - ``-EINVAL``: invalid character in string
 639 *   - ``-ERANGE``: bit number specified too large for mask
 640 *   - ``-EOVERFLOW``: integer overflow in the input parameters
 641 */
 642int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
 643{
 644	struct region r;
 645	long ret;
 646
 647	bitmap_zero(maskp, nmaskbits);
 648
 649	while (buf) {
 650		buf = bitmap_find_region(buf);
 651		if (buf == NULL)
 652			return 0;
 653
 654		buf = bitmap_parse_region(buf, &r);
 655		if (IS_ERR(buf))
 656			return PTR_ERR(buf);
 657
 658		ret = bitmap_check_region(&r);
 659		if (ret)
 660			return ret;
 661
 662		ret = bitmap_set_region(&r, maskp, nmaskbits);
 663		if (ret)
 664			return ret;
 665	}
 666
 667	return 0;
 668}
 669EXPORT_SYMBOL(bitmap_parselist);
 670
 671
 672/**
 673 * bitmap_parselist_user()
 674 *
 675 * @ubuf: pointer to user buffer containing string.
 676 * @ulen: buffer size in bytes.  If string is smaller than this
 677 *    then it must be terminated with a \0.
 678 * @maskp: pointer to bitmap array that will contain result.
 679 * @nmaskbits: size of bitmap, in bits.
 680 *
 681 * Wrapper for bitmap_parselist(), providing it with user buffer.
 682 */
 683int bitmap_parselist_user(const char __user *ubuf,
 684			unsigned int ulen, unsigned long *maskp,
 685			int nmaskbits)
 686{
 687	char *buf;
 688	int ret;
 689
 690	buf = memdup_user_nul(ubuf, ulen);
 691	if (IS_ERR(buf))
 692		return PTR_ERR(buf);
 693
 694	ret = bitmap_parselist(buf, maskp, nmaskbits);
 695
 696	kfree(buf);
 697	return ret;
 698}
 699EXPORT_SYMBOL(bitmap_parselist_user);
 700
 701
 702#ifdef CONFIG_NUMA
 703/**
 704 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
 705 *	@buf: pointer to a bitmap
 706 *	@pos: a bit position in @buf (0 <= @pos < @nbits)
 707 *	@nbits: number of valid bit positions in @buf
 708 *
 709 * Map the bit at position @pos in @buf (of length @nbits) to the
 710 * ordinal of which set bit it is.  If it is not set or if @pos
 711 * is not a valid bit position, map to -1.
 712 *
 713 * If for example, just bits 4 through 7 are set in @buf, then @pos
 714 * values 4 through 7 will get mapped to 0 through 3, respectively,
 715 * and other @pos values will get mapped to -1.  When @pos value 7
 716 * gets mapped to (returns) @ord value 3 in this example, that means
 717 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 718 *
 719 * The bit positions 0 through @bits are valid positions in @buf.
 720 */
 721static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
 722{
 723	if (pos >= nbits || !test_bit(pos, buf))
 724		return -1;
 725
 726	return __bitmap_weight(buf, pos);
 727}
 728
 729/**
 730 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
 731 *	@buf: pointer to bitmap
 732 *	@ord: ordinal bit position (n-th set bit, n >= 0)
 733 *	@nbits: number of valid bit positions in @buf
 734 *
 735 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
 736 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
 737 * >= weight(buf), returns @nbits.
 738 *
 739 * If for example, just bits 4 through 7 are set in @buf, then @ord
 740 * values 0 through 3 will get mapped to 4 through 7, respectively,
 741 * and all other @ord values returns @nbits.  When @ord value 3
 742 * gets mapped to (returns) @pos value 7 in this example, that means
 743 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 744 *
 745 * The bit positions 0 through @nbits-1 are valid positions in @buf.
 746 */
 747unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
 748{
 749	unsigned int pos;
 750
 751	for (pos = find_first_bit(buf, nbits);
 752	     pos < nbits && ord;
 753	     pos = find_next_bit(buf, nbits, pos + 1))
 754		ord--;
 755
 756	return pos;
 757}
 758
 759/**
 760 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 761 *	@dst: remapped result
 762 *	@src: subset to be remapped
 763 *	@old: defines domain of map
 764 *	@new: defines range of map
 765 *	@nbits: number of bits in each of these bitmaps
 766 *
 767 * Let @old and @new define a mapping of bit positions, such that
 768 * whatever position is held by the n-th set bit in @old is mapped
 769 * to the n-th set bit in @new.  In the more general case, allowing
 770 * for the possibility that the weight 'w' of @new is less than the
 771 * weight of @old, map the position of the n-th set bit in @old to
 772 * the position of the m-th set bit in @new, where m == n % w.
 773 *
 774 * If either of the @old and @new bitmaps are empty, or if @src and
 775 * @dst point to the same location, then this routine copies @src
 776 * to @dst.
 777 *
 778 * The positions of unset bits in @old are mapped to themselves
 779 * (the identify map).
 780 *
 781 * Apply the above specified mapping to @src, placing the result in
 782 * @dst, clearing any bits previously set in @dst.
 783 *
 784 * For example, lets say that @old has bits 4 through 7 set, and
 785 * @new has bits 12 through 15 set.  This defines the mapping of bit
 786 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 787 * bit positions unchanged.  So if say @src comes into this routine
 788 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 789 * 13 and 15 set.
 790 */
 791void bitmap_remap(unsigned long *dst, const unsigned long *src,
 792		const unsigned long *old, const unsigned long *new,
 793		unsigned int nbits)
 794{
 795	unsigned int oldbit, w;
 796
 797	if (dst == src)		/* following doesn't handle inplace remaps */
 798		return;
 799	bitmap_zero(dst, nbits);
 800
 801	w = bitmap_weight(new, nbits);
 802	for_each_set_bit(oldbit, src, nbits) {
 803		int n = bitmap_pos_to_ord(old, oldbit, nbits);
 804
 805		if (n < 0 || w == 0)
 806			set_bit(oldbit, dst);	/* identity map */
 807		else
 808			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
 809	}
 810}
 
 811
 812/**
 813 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
 814 *	@oldbit: bit position to be mapped
 815 *	@old: defines domain of map
 816 *	@new: defines range of map
 817 *	@bits: number of bits in each of these bitmaps
 818 *
 819 * Let @old and @new define a mapping of bit positions, such that
 820 * whatever position is held by the n-th set bit in @old is mapped
 821 * to the n-th set bit in @new.  In the more general case, allowing
 822 * for the possibility that the weight 'w' of @new is less than the
 823 * weight of @old, map the position of the n-th set bit in @old to
 824 * the position of the m-th set bit in @new, where m == n % w.
 825 *
 826 * The positions of unset bits in @old are mapped to themselves
 827 * (the identify map).
 828 *
 829 * Apply the above specified mapping to bit position @oldbit, returning
 830 * the new bit position.
 831 *
 832 * For example, lets say that @old has bits 4 through 7 set, and
 833 * @new has bits 12 through 15 set.  This defines the mapping of bit
 834 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 835 * bit positions unchanged.  So if say @oldbit is 5, then this routine
 836 * returns 13.
 837 */
 838int bitmap_bitremap(int oldbit, const unsigned long *old,
 839				const unsigned long *new, int bits)
 840{
 841	int w = bitmap_weight(new, bits);
 842	int n = bitmap_pos_to_ord(old, oldbit, bits);
 843	if (n < 0 || w == 0)
 844		return oldbit;
 845	else
 846		return bitmap_ord_to_pos(new, n % w, bits);
 847}
 
 848
 
 849/**
 850 * bitmap_onto - translate one bitmap relative to another
 851 *	@dst: resulting translated bitmap
 852 * 	@orig: original untranslated bitmap
 853 * 	@relmap: bitmap relative to which translated
 854 *	@bits: number of bits in each of these bitmaps
 855 *
 856 * Set the n-th bit of @dst iff there exists some m such that the
 857 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
 858 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
 859 * (If you understood the previous sentence the first time your
 860 * read it, you're overqualified for your current job.)
 861 *
 862 * In other words, @orig is mapped onto (surjectively) @dst,
 863 * using the map { <n, m> | the n-th bit of @relmap is the
 864 * m-th set bit of @relmap }.
 865 *
 866 * Any set bits in @orig above bit number W, where W is the
 867 * weight of (number of set bits in) @relmap are mapped nowhere.
 868 * In particular, if for all bits m set in @orig, m >= W, then
 869 * @dst will end up empty.  In situations where the possibility
 870 * of such an empty result is not desired, one way to avoid it is
 871 * to use the bitmap_fold() operator, below, to first fold the
 872 * @orig bitmap over itself so that all its set bits x are in the
 873 * range 0 <= x < W.  The bitmap_fold() operator does this by
 874 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
 875 *
 876 * Example [1] for bitmap_onto():
 877 *  Let's say @relmap has bits 30-39 set, and @orig has bits
 878 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
 879 *  @dst will have bits 31, 33, 35, 37 and 39 set.
 880 *
 881 *  When bit 0 is set in @orig, it means turn on the bit in
 882 *  @dst corresponding to whatever is the first bit (if any)
 883 *  that is turned on in @relmap.  Since bit 0 was off in the
 884 *  above example, we leave off that bit (bit 30) in @dst.
 885 *
 886 *  When bit 1 is set in @orig (as in the above example), it
 887 *  means turn on the bit in @dst corresponding to whatever
 888 *  is the second bit that is turned on in @relmap.  The second
 889 *  bit in @relmap that was turned on in the above example was
 890 *  bit 31, so we turned on bit 31 in @dst.
 891 *
 892 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
 893 *  because they were the 4th, 6th, 8th and 10th set bits
 894 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
 895 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
 896 *
 897 *  When bit 11 is set in @orig, it means turn on the bit in
 898 *  @dst corresponding to whatever is the twelfth bit that is
 899 *  turned on in @relmap.  In the above example, there were
 900 *  only ten bits turned on in @relmap (30..39), so that bit
 901 *  11 was set in @orig had no affect on @dst.
 902 *
 903 * Example [2] for bitmap_fold() + bitmap_onto():
 904 *  Let's say @relmap has these ten bits set::
 905 *
 906 *		40 41 42 43 45 48 53 61 74 95
 907 *
 908 *  (for the curious, that's 40 plus the first ten terms of the
 909 *  Fibonacci sequence.)
 910 *
 911 *  Further lets say we use the following code, invoking
 912 *  bitmap_fold() then bitmap_onto, as suggested above to
 913 *  avoid the possibility of an empty @dst result::
 914 *
 915 *	unsigned long *tmp;	// a temporary bitmap's bits
 916 *
 917 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
 918 *	bitmap_onto(dst, tmp, relmap, bits);
 919 *
 920 *  Then this table shows what various values of @dst would be, for
 921 *  various @orig's.  I list the zero-based positions of each set bit.
 922 *  The tmp column shows the intermediate result, as computed by
 923 *  using bitmap_fold() to fold the @orig bitmap modulo ten
 924 *  (the weight of @relmap):
 925 *
 926 *      =============== ============== =================
 927 *      @orig           tmp            @dst
 928 *      0                0             40
 929 *      1                1             41
 930 *      9                9             95
 931 *      10               0             40 [#f1]_
 932 *      1 3 5 7          1 3 5 7       41 43 48 61
 933 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
 934 *      0 9 18 27        0 9 8 7       40 61 74 95
 935 *      0 10 20 30       0             40
 936 *      0 11 22 33       0 1 2 3       40 41 42 43
 937 *      0 12 24 36       0 2 4 6       40 42 45 53
 938 *      78 102 211       1 2 8         41 42 74 [#f1]_
 939 *      =============== ============== =================
 940 *
 941 * .. [#f1]
 942 *
 943 *     For these marked lines, if we hadn't first done bitmap_fold()
 944 *     into tmp, then the @dst result would have been empty.
 945 *
 946 * If either of @orig or @relmap is empty (no set bits), then @dst
 947 * will be returned empty.
 948 *
 949 * If (as explained above) the only set bits in @orig are in positions
 950 * m where m >= W, (where W is the weight of @relmap) then @dst will
 951 * once again be returned empty.
 952 *
 953 * All bits in @dst not set by the above rule are cleared.
 954 */
 955void bitmap_onto(unsigned long *dst, const unsigned long *orig,
 956			const unsigned long *relmap, unsigned int bits)
 957{
 958	unsigned int n, m;	/* same meaning as in above comment */
 959
 960	if (dst == orig)	/* following doesn't handle inplace mappings */
 961		return;
 962	bitmap_zero(dst, bits);
 963
 964	/*
 965	 * The following code is a more efficient, but less
 966	 * obvious, equivalent to the loop:
 967	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
 968	 *		n = bitmap_ord_to_pos(orig, m, bits);
 969	 *		if (test_bit(m, orig))
 970	 *			set_bit(n, dst);
 971	 *	}
 972	 */
 973
 974	m = 0;
 975	for_each_set_bit(n, relmap, bits) {
 976		/* m == bitmap_pos_to_ord(relmap, n, bits) */
 977		if (test_bit(m, orig))
 978			set_bit(n, dst);
 979		m++;
 980	}
 981}
 982
 983/**
 984 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
 985 *	@dst: resulting smaller bitmap
 986 *	@orig: original larger bitmap
 987 *	@sz: specified size
 988 *	@nbits: number of bits in each of these bitmaps
 989 *
 990 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
 991 * Clear all other bits in @dst.  See further the comment and
 992 * Example [2] for bitmap_onto() for why and how to use this.
 993 */
 994void bitmap_fold(unsigned long *dst, const unsigned long *orig,
 995			unsigned int sz, unsigned int nbits)
 996{
 997	unsigned int oldbit;
 998
 999	if (dst == orig)	/* following doesn't handle inplace mappings */
1000		return;
1001	bitmap_zero(dst, nbits);
1002
1003	for_each_set_bit(oldbit, orig, nbits)
1004		set_bit(oldbit % sz, dst);
1005}
1006#endif /* CONFIG_NUMA */
1007
1008/*
1009 * Common code for bitmap_*_region() routines.
1010 *	bitmap: array of unsigned longs corresponding to the bitmap
1011 *	pos: the beginning of the region
1012 *	order: region size (log base 2 of number of bits)
1013 *	reg_op: operation(s) to perform on that region of bitmap
1014 *
1015 * Can set, verify and/or release a region of bits in a bitmap,
1016 * depending on which combination of REG_OP_* flag bits is set.
1017 *
1018 * A region of a bitmap is a sequence of bits in the bitmap, of
1019 * some size '1 << order' (a power of two), aligned to that same
1020 * '1 << order' power of two.
1021 *
1022 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1023 * Returns 0 in all other cases and reg_ops.
1024 */
1025
1026enum {
1027	REG_OP_ISFREE,		/* true if region is all zero bits */
1028	REG_OP_ALLOC,		/* set all bits in region */
1029	REG_OP_RELEASE,		/* clear all bits in region */
1030};
1031
1032static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1033{
1034	int nbits_reg;		/* number of bits in region */
1035	int index;		/* index first long of region in bitmap */
1036	int offset;		/* bit offset region in bitmap[index] */
1037	int nlongs_reg;		/* num longs spanned by region in bitmap */
1038	int nbitsinlong;	/* num bits of region in each spanned long */
1039	unsigned long mask;	/* bitmask for one long of region */
1040	int i;			/* scans bitmap by longs */
1041	int ret = 0;		/* return value */
1042
1043	/*
1044	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1045	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1046	 */
1047	nbits_reg = 1 << order;
1048	index = pos / BITS_PER_LONG;
1049	offset = pos - (index * BITS_PER_LONG);
1050	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1051	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1052
1053	/*
1054	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1055	 * overflows if nbitsinlong == BITS_PER_LONG.
1056	 */
1057	mask = (1UL << (nbitsinlong - 1));
1058	mask += mask - 1;
1059	mask <<= offset;
1060
1061	switch (reg_op) {
1062	case REG_OP_ISFREE:
1063		for (i = 0; i < nlongs_reg; i++) {
1064			if (bitmap[index + i] & mask)
1065				goto done;
1066		}
1067		ret = 1;	/* all bits in region free (zero) */
1068		break;
1069
1070	case REG_OP_ALLOC:
1071		for (i = 0; i < nlongs_reg; i++)
1072			bitmap[index + i] |= mask;
1073		break;
1074
1075	case REG_OP_RELEASE:
1076		for (i = 0; i < nlongs_reg; i++)
1077			bitmap[index + i] &= ~mask;
1078		break;
1079	}
1080done:
1081	return ret;
1082}
 
1083
1084/**
1085 * bitmap_find_free_region - find a contiguous aligned mem region
1086 *	@bitmap: array of unsigned longs corresponding to the bitmap
1087 *	@bits: number of bits in the bitmap
1088 *	@order: region size (log base 2 of number of bits) to find
1089 *
1090 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1091 * allocate them (set them to one).  Only consider regions of length
1092 * a power (@order) of two, aligned to that power of two, which
1093 * makes the search algorithm much faster.
1094 *
1095 * Return the bit offset in bitmap of the allocated region,
1096 * or -errno on failure.
1097 */
1098int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1099{
1100	unsigned int pos, end;		/* scans bitmap by regions of size order */
1101
1102	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1103		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1104			continue;
1105		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1106		return pos;
1107	}
1108	return -ENOMEM;
1109}
1110EXPORT_SYMBOL(bitmap_find_free_region);
1111
1112/**
1113 * bitmap_release_region - release allocated bitmap region
1114 *	@bitmap: array of unsigned longs corresponding to the bitmap
1115 *	@pos: beginning of bit region to release
1116 *	@order: region size (log base 2 of number of bits) to release
1117 *
1118 * This is the complement to __bitmap_find_free_region() and releases
1119 * the found region (by clearing it in the bitmap).
1120 *
1121 * No return value.
1122 */
1123void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1124{
1125	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1126}
1127EXPORT_SYMBOL(bitmap_release_region);
1128
1129/**
1130 * bitmap_allocate_region - allocate bitmap region
1131 *	@bitmap: array of unsigned longs corresponding to the bitmap
1132 *	@pos: beginning of bit region to allocate
1133 *	@order: region size (log base 2 of number of bits) to allocate
1134 *
1135 * Allocate (set bits in) a specified region of a bitmap.
1136 *
1137 * Return 0 on success, or %-EBUSY if specified region wasn't
1138 * free (not all bits were zero).
1139 */
1140int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1141{
1142	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1143		return -EBUSY;
1144	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1145}
1146EXPORT_SYMBOL(bitmap_allocate_region);
1147
1148/**
1149 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1150 * @dst:   destination buffer
1151 * @src:   bitmap to copy
1152 * @nbits: number of bits in the bitmap
1153 *
1154 * Require nbits % BITS_PER_LONG == 0.
1155 */
1156#ifdef __BIG_ENDIAN
1157void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1158{
1159	unsigned int i;
1160
1161	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1162		if (BITS_PER_LONG == 64)
1163			dst[i] = cpu_to_le64(src[i]);
1164		else
1165			dst[i] = cpu_to_le32(src[i]);
1166	}
1167}
1168EXPORT_SYMBOL(bitmap_copy_le);
1169#endif
1170
1171unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
 
1172{
1173	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1174			     flags);
1175}
1176EXPORT_SYMBOL(bitmap_alloc);
 
 
 
 
 
 
1177
1178unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1179{
1180	return bitmap_alloc(nbits, flags | __GFP_ZERO);
1181}
1182EXPORT_SYMBOL(bitmap_zalloc);
1183
1184void bitmap_free(const unsigned long *bitmap)
 
1185{
1186	kfree(bitmap);
1187}
1188EXPORT_SYMBOL(bitmap_free);
1189
1190#if BITS_PER_LONG == 64
1191/**
1192 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1193 *	@bitmap: array of unsigned longs, the destination bitmap
1194 *	@buf: array of u32 (in host byte order), the source bitmap
1195 *	@nbits: number of bits in @bitmap
1196 */
1197void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1198{
1199	unsigned int i, halfwords;
1200
1201	halfwords = DIV_ROUND_UP(nbits, 32);
1202	for (i = 0; i < halfwords; i++) {
1203		bitmap[i/2] = (unsigned long) buf[i];
1204		if (++i < halfwords)
1205			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1206	}
1207
1208	/* Clear tail bits in last word beyond nbits. */
1209	if (nbits % BITS_PER_LONG)
1210		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1211}
1212EXPORT_SYMBOL(bitmap_from_arr32);
1213
1214/**
1215 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1216 *	@buf: array of u32 (in host byte order), the dest bitmap
1217 *	@bitmap: array of unsigned longs, the source bitmap
1218 *	@nbits: number of bits in @bitmap
1219 */
1220void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1221{
1222	unsigned int i, halfwords;
1223
1224	halfwords = DIV_ROUND_UP(nbits, 32);
1225	for (i = 0; i < halfwords; i++) {
1226		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1227		if (++i < halfwords)
1228			buf[i] = (u32) (bitmap[i/2] >> 32);
1229	}
1230
1231	/* Clear tail bits in last element of array beyond nbits. */
1232	if (nbits % BITS_PER_LONG)
1233		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1234}
1235EXPORT_SYMBOL(bitmap_to_arr32);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237#endif