Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * lib/bitmap.c
  4 * Helper functions for bitmap.h.
 
 
 
  5 */
  6
 
 
 
  7#include <linux/bitmap.h>
  8#include <linux/bitops.h>
  9#include <linux/ctype.h>
 10#include <linux/device.h>
 11#include <linux/export.h>
 12#include <linux/slab.h>
 
 
 13
 14/**
 15 * DOC: bitmap introduction
 16 *
 17 * bitmaps provide an array of bits, implemented using an
 18 * array of unsigned longs.  The number of valid bits in a
 19 * given bitmap does _not_ need to be an exact multiple of
 20 * BITS_PER_LONG.
 21 *
 22 * The possible unused bits in the last, partially used word
 23 * of a bitmap are 'don't care'.  The implementation makes
 24 * no particular effort to keep them zero.  It ensures that
 25 * their value will not affect the results of any operation.
 26 * The bitmap operations that return Boolean (bitmap_empty,
 27 * for example) or scalar (bitmap_weight, for example) results
 28 * carefully filter out these unused bits from impacting their
 29 * results.
 30 *
 
 
 
 
 
 31 * The byte ordering of bitmaps is more natural on little
 32 * endian architectures.  See the big-endian headers
 33 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
 34 * for the best explanations of this ordering.
 35 */
 36
 37bool __bitmap_equal(const unsigned long *bitmap1,
 38		    const unsigned long *bitmap2, unsigned int bits)
 39{
 40	unsigned int k, lim = bits/BITS_PER_LONG;
 41	for (k = 0; k < lim; ++k)
 42		if (bitmap1[k] != bitmap2[k])
 43			return false;
 44
 45	if (bits % BITS_PER_LONG)
 46		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 47			return false;
 48
 49	return true;
 50}
 51EXPORT_SYMBOL(__bitmap_equal);
 52
 53bool __bitmap_or_equal(const unsigned long *bitmap1,
 54		       const unsigned long *bitmap2,
 55		       const unsigned long *bitmap3,
 56		       unsigned int bits)
 57{
 58	unsigned int k, lim = bits / BITS_PER_LONG;
 59	unsigned long tmp;
 60
 61	for (k = 0; k < lim; ++k) {
 62		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
 63			return false;
 64	}
 65
 66	if (!(bits % BITS_PER_LONG))
 67		return true;
 68
 69	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
 70	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
 71}
 72
 73void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
 74{
 75	unsigned int k, lim = BITS_TO_LONGS(bits);
 76	for (k = 0; k < lim; ++k)
 77		dst[k] = ~src[k];
 
 
 
 78}
 79EXPORT_SYMBOL(__bitmap_complement);
 80
 81/**
 82 * __bitmap_shift_right - logical right shift of the bits in a bitmap
 83 *   @dst : destination bitmap
 84 *   @src : source bitmap
 85 *   @shift : shift by this many bits
 86 *   @nbits : bitmap size, in bits
 87 *
 88 * Shifting right (dividing) means moving bits in the MS -> LS bit
 89 * direction.  Zeros are fed into the vacated MS positions and the
 90 * LS bits shifted off the bottom are lost.
 91 */
 92void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
 93			unsigned shift, unsigned nbits)
 94{
 95	unsigned k, lim = BITS_TO_LONGS(nbits);
 96	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 97	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
 98	for (k = 0; off + k < lim; ++k) {
 99		unsigned long upper, lower;
100
101		/*
102		 * If shift is not word aligned, take lower rem bits of
103		 * word above and make them the top rem bits of result.
104		 */
105		if (!rem || off + k + 1 >= lim)
106			upper = 0;
107		else {
108			upper = src[off + k + 1];
109			if (off + k + 1 == lim - 1)
110				upper &= mask;
111			upper <<= (BITS_PER_LONG - rem);
112		}
113		lower = src[off + k];
114		if (off + k == lim - 1)
115			lower &= mask;
116		lower >>= rem;
117		dst[k] = lower | upper;
118	}
119	if (off)
120		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
121}
122EXPORT_SYMBOL(__bitmap_shift_right);
123
124
125/**
126 * __bitmap_shift_left - logical left shift of the bits in a bitmap
127 *   @dst : destination bitmap
128 *   @src : source bitmap
129 *   @shift : shift by this many bits
130 *   @nbits : bitmap size, in bits
131 *
132 * Shifting left (multiplying) means moving bits in the LS -> MS
133 * direction.  Zeros are fed into the vacated LS bit positions
134 * and those MS bits shifted off the top are lost.
135 */
136
137void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
138			unsigned int shift, unsigned int nbits)
139{
140	int k;
141	unsigned int lim = BITS_TO_LONGS(nbits);
142	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
143	for (k = lim - off - 1; k >= 0; --k) {
144		unsigned long upper, lower;
145
146		/*
147		 * If shift is not word aligned, take upper rem bits of
148		 * word below and make them the bottom rem bits of result.
149		 */
150		if (rem && k > 0)
151			lower = src[k - 1] >> (BITS_PER_LONG - rem);
152		else
153			lower = 0;
154		upper = src[k] << rem;
155		dst[k + off] = lower | upper;
156	}
157	if (off)
158		memset(dst, 0, off*sizeof(unsigned long));
159}
160EXPORT_SYMBOL(__bitmap_shift_left);
161
162/**
163 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
164 * @dst: destination bitmap, might overlap with src
165 * @src: source bitmap
166 * @first: start bit of region to be removed
167 * @cut: number of bits to remove
168 * @nbits: bitmap size, in bits
169 *
170 * Set the n-th bit of @dst iff the n-th bit of @src is set and
171 * n is less than @first, or the m-th bit of @src is set for any
172 * m such that @first <= n < nbits, and m = n + @cut.
173 *
174 * In pictures, example for a big-endian 32-bit architecture:
175 *
176 * The @src bitmap is::
177 *
178 *   31                                   63
179 *   |                                    |
180 *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
181 *                   |  |              |                                    |
182 *                  16  14             0                                   32
183 *
184 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
185 *
186 *   31                                   63
187 *   |                                    |
188 *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
189 *                      |              |                                    |
190 *                      14 (bit 17     0                                   32
191 *                          from @src)
192 *
193 * Note that @dst and @src might overlap partially or entirely.
194 *
195 * This is implemented in the obvious way, with a shift and carry
196 * step for each moved bit. Optimisation is left as an exercise
197 * for the compiler.
198 */
199void bitmap_cut(unsigned long *dst, const unsigned long *src,
200		unsigned int first, unsigned int cut, unsigned int nbits)
201{
202	unsigned int len = BITS_TO_LONGS(nbits);
203	unsigned long keep = 0, carry;
204	int i;
205
206	if (first % BITS_PER_LONG) {
207		keep = src[first / BITS_PER_LONG] &
208		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
209	}
210
211	memmove(dst, src, len * sizeof(*dst));
212
213	while (cut--) {
214		for (i = first / BITS_PER_LONG; i < len; i++) {
215			if (i < len - 1)
216				carry = dst[i + 1] & 1UL;
217			else
218				carry = 0;
219
220			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
221		}
222	}
223
224	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
225	dst[first / BITS_PER_LONG] |= keep;
226}
227EXPORT_SYMBOL(bitmap_cut);
228
229bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
230				const unsigned long *bitmap2, unsigned int bits)
231{
232	unsigned int k;
233	unsigned int lim = bits/BITS_PER_LONG;
234	unsigned long result = 0;
235
236	for (k = 0; k < lim; k++)
237		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
238	if (bits % BITS_PER_LONG)
239		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
240			   BITMAP_LAST_WORD_MASK(bits));
241	return result != 0;
242}
243EXPORT_SYMBOL(__bitmap_and);
244
245void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
246				const unsigned long *bitmap2, unsigned int bits)
247{
248	unsigned int k;
249	unsigned int nr = BITS_TO_LONGS(bits);
250
251	for (k = 0; k < nr; k++)
252		dst[k] = bitmap1[k] | bitmap2[k];
253}
254EXPORT_SYMBOL(__bitmap_or);
255
256void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
257				const unsigned long *bitmap2, unsigned int bits)
258{
259	unsigned int k;
260	unsigned int nr = BITS_TO_LONGS(bits);
261
262	for (k = 0; k < nr; k++)
263		dst[k] = bitmap1[k] ^ bitmap2[k];
264}
265EXPORT_SYMBOL(__bitmap_xor);
266
267bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
268				const unsigned long *bitmap2, unsigned int bits)
269{
270	unsigned int k;
271	unsigned int lim = bits/BITS_PER_LONG;
272	unsigned long result = 0;
273
274	for (k = 0; k < lim; k++)
275		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
276	if (bits % BITS_PER_LONG)
277		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
278			   BITMAP_LAST_WORD_MASK(bits));
279	return result != 0;
280}
281EXPORT_SYMBOL(__bitmap_andnot);
282
283void __bitmap_replace(unsigned long *dst,
284		      const unsigned long *old, const unsigned long *new,
285		      const unsigned long *mask, unsigned int nbits)
286{
287	unsigned int k;
288	unsigned int nr = BITS_TO_LONGS(nbits);
289
290	for (k = 0; k < nr; k++)
291		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
292}
293EXPORT_SYMBOL(__bitmap_replace);
294
295bool __bitmap_intersects(const unsigned long *bitmap1,
296			 const unsigned long *bitmap2, unsigned int bits)
297{
298	unsigned int k, lim = bits/BITS_PER_LONG;
299	for (k = 0; k < lim; ++k)
300		if (bitmap1[k] & bitmap2[k])
301			return true;
302
303	if (bits % BITS_PER_LONG)
304		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
305			return true;
306	return false;
307}
308EXPORT_SYMBOL(__bitmap_intersects);
309
310bool __bitmap_subset(const unsigned long *bitmap1,
311		     const unsigned long *bitmap2, unsigned int bits)
312{
313	unsigned int k, lim = bits/BITS_PER_LONG;
314	for (k = 0; k < lim; ++k)
315		if (bitmap1[k] & ~bitmap2[k])
316			return false;
317
318	if (bits % BITS_PER_LONG)
319		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
320			return false;
321	return true;
322}
323EXPORT_SYMBOL(__bitmap_subset);
324
325#define BITMAP_WEIGHT(FETCH, bits)	\
326({										\
327	unsigned int __bits = (bits), idx, w = 0;				\
328										\
329	for (idx = 0; idx < __bits / BITS_PER_LONG; idx++)			\
330		w += hweight_long(FETCH);					\
331										\
332	if (__bits % BITS_PER_LONG)						\
333		w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits));	\
334										\
335	w;									\
336})
337
338unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
339{
340	return BITMAP_WEIGHT(bitmap[idx], bits);
341}
342EXPORT_SYMBOL(__bitmap_weight);
343
344unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
345				const unsigned long *bitmap2, unsigned int bits)
346{
347	return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
 
 
 
348}
349EXPORT_SYMBOL(__bitmap_weight_and);
350
351void __bitmap_set(unsigned long *map, unsigned int start, int len)
352{
353	unsigned long *p = map + BIT_WORD(start);
354	const unsigned int size = start + len;
355	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
356	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
357
358	while (len - bits_to_set >= 0) {
359		*p |= mask_to_set;
360		len -= bits_to_set;
361		bits_to_set = BITS_PER_LONG;
362		mask_to_set = ~0UL;
363		p++;
364	}
365	if (len) {
366		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
367		*p |= mask_to_set;
368	}
369}
370EXPORT_SYMBOL(__bitmap_set);
371
372void __bitmap_clear(unsigned long *map, unsigned int start, int len)
373{
374	unsigned long *p = map + BIT_WORD(start);
375	const unsigned int size = start + len;
376	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
377	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
378
379	while (len - bits_to_clear >= 0) {
380		*p &= ~mask_to_clear;
381		len -= bits_to_clear;
382		bits_to_clear = BITS_PER_LONG;
383		mask_to_clear = ~0UL;
384		p++;
385	}
386	if (len) {
387		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
388		*p &= ~mask_to_clear;
389	}
390}
391EXPORT_SYMBOL(__bitmap_clear);
392
393/**
394 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
395 * @map: The address to base the search on
396 * @size: The bitmap size in bits
397 * @start: The bitnumber to start searching at
398 * @nr: The number of zeroed bits we're looking for
399 * @align_mask: Alignment mask for zero area
400 * @align_offset: Alignment offset for zero area.
401 *
402 * The @align_mask should be one less than a power of 2; the effect is that
403 * the bit offset of all zero areas this function finds plus @align_offset
404 * is multiple of that power of 2.
405 */
406unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
407					     unsigned long size,
408					     unsigned long start,
409					     unsigned int nr,
410					     unsigned long align_mask,
411					     unsigned long align_offset)
412{
413	unsigned long index, end, i;
414again:
415	index = find_next_zero_bit(map, size, start);
416
417	/* Align allocation */
418	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
419
420	end = index + nr;
421	if (end > size)
422		return end;
423	i = find_next_bit(map, end, index);
424	if (i < end) {
425		start = i + 1;
426		goto again;
427	}
428	return index;
429}
430EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432/**
433 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
434 *	@buf: pointer to a bitmap
435 *	@pos: a bit position in @buf (0 <= @pos < @nbits)
436 *	@nbits: number of valid bit positions in @buf
437 *
438 * Map the bit at position @pos in @buf (of length @nbits) to the
439 * ordinal of which set bit it is.  If it is not set or if @pos
440 * is not a valid bit position, map to -1.
441 *
442 * If for example, just bits 4 through 7 are set in @buf, then @pos
443 * values 4 through 7 will get mapped to 0 through 3, respectively,
444 * and other @pos values will get mapped to -1.  When @pos value 7
445 * gets mapped to (returns) @ord value 3 in this example, that means
446 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
447 *
448 * The bit positions 0 through @bits are valid positions in @buf.
449 */
450static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
451{
452	if (pos >= nbits || !test_bit(pos, buf))
453		return -1;
454
455	return bitmap_weight(buf, pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456}
457
458/**
459 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
460 *	@dst: remapped result
461 *	@src: subset to be remapped
462 *	@old: defines domain of map
463 *	@new: defines range of map
464 *	@nbits: number of bits in each of these bitmaps
465 *
466 * Let @old and @new define a mapping of bit positions, such that
467 * whatever position is held by the n-th set bit in @old is mapped
468 * to the n-th set bit in @new.  In the more general case, allowing
469 * for the possibility that the weight 'w' of @new is less than the
470 * weight of @old, map the position of the n-th set bit in @old to
471 * the position of the m-th set bit in @new, where m == n % w.
472 *
473 * If either of the @old and @new bitmaps are empty, or if @src and
474 * @dst point to the same location, then this routine copies @src
475 * to @dst.
476 *
477 * The positions of unset bits in @old are mapped to themselves
478 * (the identity map).
479 *
480 * Apply the above specified mapping to @src, placing the result in
481 * @dst, clearing any bits previously set in @dst.
482 *
483 * For example, lets say that @old has bits 4 through 7 set, and
484 * @new has bits 12 through 15 set.  This defines the mapping of bit
485 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
486 * bit positions unchanged.  So if say @src comes into this routine
487 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
488 * 13 and 15 set.
489 */
490void bitmap_remap(unsigned long *dst, const unsigned long *src,
491		const unsigned long *old, const unsigned long *new,
492		unsigned int nbits)
493{
494	unsigned int oldbit, w;
495
496	if (dst == src)		/* following doesn't handle inplace remaps */
497		return;
498	bitmap_zero(dst, nbits);
499
500	w = bitmap_weight(new, nbits);
501	for_each_set_bit(oldbit, src, nbits) {
502		int n = bitmap_pos_to_ord(old, oldbit, nbits);
503
504		if (n < 0 || w == 0)
505			set_bit(oldbit, dst);	/* identity map */
506		else
507			set_bit(find_nth_bit(new, nbits, n % w), dst);
508	}
509}
510EXPORT_SYMBOL(bitmap_remap);
511
512/**
513 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
514 *	@oldbit: bit position to be mapped
515 *	@old: defines domain of map
516 *	@new: defines range of map
517 *	@bits: number of bits in each of these bitmaps
518 *
519 * Let @old and @new define a mapping of bit positions, such that
520 * whatever position is held by the n-th set bit in @old is mapped
521 * to the n-th set bit in @new.  In the more general case, allowing
522 * for the possibility that the weight 'w' of @new is less than the
523 * weight of @old, map the position of the n-th set bit in @old to
524 * the position of the m-th set bit in @new, where m == n % w.
525 *
526 * The positions of unset bits in @old are mapped to themselves
527 * (the identity map).
528 *
529 * Apply the above specified mapping to bit position @oldbit, returning
530 * the new bit position.
531 *
532 * For example, lets say that @old has bits 4 through 7 set, and
533 * @new has bits 12 through 15 set.  This defines the mapping of bit
534 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
535 * bit positions unchanged.  So if say @oldbit is 5, then this routine
536 * returns 13.
537 */
538int bitmap_bitremap(int oldbit, const unsigned long *old,
539				const unsigned long *new, int bits)
540{
541	int w = bitmap_weight(new, bits);
542	int n = bitmap_pos_to_ord(old, oldbit, bits);
543	if (n < 0 || w == 0)
544		return oldbit;
545	else
546		return find_nth_bit(new, bits, n % w);
547}
548EXPORT_SYMBOL(bitmap_bitremap);
549
550#ifdef CONFIG_NUMA
551/**
552 * bitmap_onto - translate one bitmap relative to another
553 *	@dst: resulting translated bitmap
554 * 	@orig: original untranslated bitmap
555 * 	@relmap: bitmap relative to which translated
556 *	@bits: number of bits in each of these bitmaps
557 *
558 * Set the n-th bit of @dst iff there exists some m such that the
559 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
560 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
561 * (If you understood the previous sentence the first time your
562 * read it, you're overqualified for your current job.)
563 *
564 * In other words, @orig is mapped onto (surjectively) @dst,
565 * using the map { <n, m> | the n-th bit of @relmap is the
566 * m-th set bit of @relmap }.
567 *
568 * Any set bits in @orig above bit number W, where W is the
569 * weight of (number of set bits in) @relmap are mapped nowhere.
570 * In particular, if for all bits m set in @orig, m >= W, then
571 * @dst will end up empty.  In situations where the possibility
572 * of such an empty result is not desired, one way to avoid it is
573 * to use the bitmap_fold() operator, below, to first fold the
574 * @orig bitmap over itself so that all its set bits x are in the
575 * range 0 <= x < W.  The bitmap_fold() operator does this by
576 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
577 *
578 * Example [1] for bitmap_onto():
579 *  Let's say @relmap has bits 30-39 set, and @orig has bits
580 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
581 *  @dst will have bits 31, 33, 35, 37 and 39 set.
582 *
583 *  When bit 0 is set in @orig, it means turn on the bit in
584 *  @dst corresponding to whatever is the first bit (if any)
585 *  that is turned on in @relmap.  Since bit 0 was off in the
586 *  above example, we leave off that bit (bit 30) in @dst.
587 *
588 *  When bit 1 is set in @orig (as in the above example), it
589 *  means turn on the bit in @dst corresponding to whatever
590 *  is the second bit that is turned on in @relmap.  The second
591 *  bit in @relmap that was turned on in the above example was
592 *  bit 31, so we turned on bit 31 in @dst.
593 *
594 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
595 *  because they were the 4th, 6th, 8th and 10th set bits
596 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
597 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
598 *
599 *  When bit 11 is set in @orig, it means turn on the bit in
600 *  @dst corresponding to whatever is the twelfth bit that is
601 *  turned on in @relmap.  In the above example, there were
602 *  only ten bits turned on in @relmap (30..39), so that bit
603 *  11 was set in @orig had no affect on @dst.
604 *
605 * Example [2] for bitmap_fold() + bitmap_onto():
606 *  Let's say @relmap has these ten bits set::
607 *
608 *		40 41 42 43 45 48 53 61 74 95
609 *
610 *  (for the curious, that's 40 plus the first ten terms of the
611 *  Fibonacci sequence.)
612 *
613 *  Further lets say we use the following code, invoking
614 *  bitmap_fold() then bitmap_onto, as suggested above to
615 *  avoid the possibility of an empty @dst result::
616 *
617 *	unsigned long *tmp;	// a temporary bitmap's bits
618 *
619 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
620 *	bitmap_onto(dst, tmp, relmap, bits);
621 *
622 *  Then this table shows what various values of @dst would be, for
623 *  various @orig's.  I list the zero-based positions of each set bit.
624 *  The tmp column shows the intermediate result, as computed by
625 *  using bitmap_fold() to fold the @orig bitmap modulo ten
626 *  (the weight of @relmap):
627 *
628 *      =============== ============== =================
629 *      @orig           tmp            @dst
630 *      0                0             40
631 *      1                1             41
632 *      9                9             95
633 *      10               0             40 [#f1]_
634 *      1 3 5 7          1 3 5 7       41 43 48 61
635 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
636 *      0 9 18 27        0 9 8 7       40 61 74 95
637 *      0 10 20 30       0             40
638 *      0 11 22 33       0 1 2 3       40 41 42 43
639 *      0 12 24 36       0 2 4 6       40 42 45 53
640 *      78 102 211       1 2 8         41 42 74 [#f1]_
641 *      =============== ============== =================
642 *
643 * .. [#f1]
644 *
645 *     For these marked lines, if we hadn't first done bitmap_fold()
646 *     into tmp, then the @dst result would have been empty.
647 *
648 * If either of @orig or @relmap is empty (no set bits), then @dst
649 * will be returned empty.
650 *
651 * If (as explained above) the only set bits in @orig are in positions
652 * m where m >= W, (where W is the weight of @relmap) then @dst will
653 * once again be returned empty.
654 *
655 * All bits in @dst not set by the above rule are cleared.
656 */
657void bitmap_onto(unsigned long *dst, const unsigned long *orig,
658			const unsigned long *relmap, unsigned int bits)
659{
660	unsigned int n, m;	/* same meaning as in above comment */
661
662	if (dst == orig)	/* following doesn't handle inplace mappings */
663		return;
664	bitmap_zero(dst, bits);
665
666	/*
667	 * The following code is a more efficient, but less
668	 * obvious, equivalent to the loop:
669	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
670	 *		n = find_nth_bit(orig, bits, m);
671	 *		if (test_bit(m, orig))
672	 *			set_bit(n, dst);
673	 *	}
674	 */
675
676	m = 0;
677	for_each_set_bit(n, relmap, bits) {
678		/* m == bitmap_pos_to_ord(relmap, n, bits) */
679		if (test_bit(m, orig))
680			set_bit(n, dst);
681		m++;
682	}
683}
 
684
685/**
686 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
687 *	@dst: resulting smaller bitmap
688 *	@orig: original larger bitmap
689 *	@sz: specified size
690 *	@nbits: number of bits in each of these bitmaps
691 *
692 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
693 * Clear all other bits in @dst.  See further the comment and
694 * Example [2] for bitmap_onto() for why and how to use this.
695 */
696void bitmap_fold(unsigned long *dst, const unsigned long *orig,
697			unsigned int sz, unsigned int nbits)
698{
699	unsigned int oldbit;
700
701	if (dst == orig)	/* following doesn't handle inplace mappings */
702		return;
703	bitmap_zero(dst, nbits);
704
705	for_each_set_bit(oldbit, orig, nbits)
706		set_bit(oldbit % sz, dst);
707}
708#endif /* CONFIG_NUMA */
709
710unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
711{
712	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
713			     flags);
714}
715EXPORT_SYMBOL(bitmap_alloc);
 
 
 
 
 
 
 
 
 
 
 
716
717unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
718{
719	return bitmap_alloc(nbits, flags | __GFP_ZERO);
720}
721EXPORT_SYMBOL(bitmap_zalloc);
 
 
 
 
 
 
 
 
 
 
 
722
723unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
724{
725	return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
726				  flags, node);
727}
728EXPORT_SYMBOL(bitmap_alloc_node);
 
 
 
729
730unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
731{
732	return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
733}
734EXPORT_SYMBOL(bitmap_zalloc_node);
 
 
 
 
 
 
 
 
 
 
 
735
736void bitmap_free(const unsigned long *bitmap)
737{
738	kfree(bitmap);
 
 
 
 
 
 
 
 
 
739}
740EXPORT_SYMBOL(bitmap_free);
741
742static void devm_bitmap_free(void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
743{
744	unsigned long *bitmap = data;
745
746	bitmap_free(bitmap);
 
 
 
 
 
 
747}
 
748
749unsigned long *devm_bitmap_alloc(struct device *dev,
750				 unsigned int nbits, gfp_t flags)
 
 
 
 
 
 
 
 
 
 
751{
752	unsigned long *bitmap;
753	int ret;
754
755	bitmap = bitmap_alloc(nbits, flags);
756	if (!bitmap)
757		return NULL;
758
759	ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
760	if (ret)
761		return NULL;
762
763	return bitmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764}
765EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
766
767unsigned long *devm_bitmap_zalloc(struct device *dev,
768				  unsigned int nbits, gfp_t flags)
 
 
 
 
 
 
 
 
769{
770	return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
 
 
 
 
 
 
 
771}
772EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
 
773
774#if BITS_PER_LONG == 64
775/**
776 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
777 *	@bitmap: array of unsigned longs, the destination bitmap
778 *	@buf: array of u32 (in host byte order), the source bitmap
779 *	@nbits: number of bits in @bitmap
780 */
781void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
 
782{
783	unsigned int i, halfwords;
784
 
 
 
785	halfwords = DIV_ROUND_UP(nbits, 32);
786	for (i = 0; i < halfwords; i++) {
787		bitmap[i/2] = (unsigned long) buf[i];
788		if (++i < halfwords)
789			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
790	}
791
792	/* Clear tail bits in last word beyond nbits. */
793	if (nbits % BITS_PER_LONG)
794		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
795}
796EXPORT_SYMBOL(bitmap_from_arr32);
797
798/**
799 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
800 *	@buf: array of u32 (in host byte order), the dest bitmap
801 *	@bitmap: array of unsigned longs, the source bitmap
802 *	@nbits: number of bits in @bitmap
803 */
804void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
805{
806	unsigned int i, halfwords;
807
 
 
 
808	halfwords = DIV_ROUND_UP(nbits, 32);
809	for (i = 0; i < halfwords; i++) {
810		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
811		if (++i < halfwords)
812			buf[i] = (u32) (bitmap[i/2] >> 32);
813	}
814
815	/* Clear tail bits in last element of array beyond nbits. */
816	if (nbits % BITS_PER_LONG)
817		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
818}
819EXPORT_SYMBOL(bitmap_to_arr32);
820#endif
821
822#if BITS_PER_LONG == 32
823/**
824 * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
825 *	@bitmap: array of unsigned longs, the destination bitmap
826 *	@buf: array of u64 (in host byte order), the source bitmap
827 *	@nbits: number of bits in @bitmap
828 */
829void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
830{
831	int n;
832
833	for (n = nbits; n > 0; n -= 64) {
834		u64 val = *buf++;
835
836		*bitmap++ = val;
837		if (n > 32)
838			*bitmap++ = val >> 32;
839	}
840
841	/*
842	 * Clear tail bits in the last word beyond nbits.
843	 *
844	 * Negative index is OK because here we point to the word next
845	 * to the last word of the bitmap, except for nbits == 0, which
846	 * is tested implicitly.
847	 */
848	if (nbits % BITS_PER_LONG)
849		bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
850}
851EXPORT_SYMBOL(bitmap_from_arr64);
852
853/**
854 * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
855 *	@buf: array of u64 (in host byte order), the dest bitmap
856 *	@bitmap: array of unsigned longs, the source bitmap
857 *	@nbits: number of bits in @bitmap
858 */
859void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
860{
861	const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
862
863	while (bitmap < end) {
864		*buf = *bitmap++;
865		if (bitmap < end)
866			*buf |= (u64)(*bitmap++) << 32;
867		buf++;
868	}
869
870	/* Clear tail bits in the last element of array beyond nbits. */
871	if (nbits % 64)
872		buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
873}
874EXPORT_SYMBOL(bitmap_to_arr64);
875#endif
v4.17
 
   1/*
   2 * lib/bitmap.c
   3 * Helper functions for bitmap.h.
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8#include <linux/export.h>
   9#include <linux/thread_info.h>
  10#include <linux/ctype.h>
  11#include <linux/errno.h>
  12#include <linux/bitmap.h>
  13#include <linux/bitops.h>
  14#include <linux/bug.h>
  15#include <linux/kernel.h>
  16#include <linux/string.h>
  17#include <linux/uaccess.h>
  18
  19#include <asm/page.h>
  20
  21/**
  22 * DOC: bitmap introduction
  23 *
  24 * bitmaps provide an array of bits, implemented using an an
  25 * array of unsigned longs.  The number of valid bits in a
  26 * given bitmap does _not_ need to be an exact multiple of
  27 * BITS_PER_LONG.
  28 *
  29 * The possible unused bits in the last, partially used word
  30 * of a bitmap are 'don't care'.  The implementation makes
  31 * no particular effort to keep them zero.  It ensures that
  32 * their value will not affect the results of any operation.
  33 * The bitmap operations that return Boolean (bitmap_empty,
  34 * for example) or scalar (bitmap_weight, for example) results
  35 * carefully filter out these unused bits from impacting their
  36 * results.
  37 *
  38 * These operations actually hold to a slightly stronger rule:
  39 * if you don't input any bitmaps to these ops that have some
  40 * unused bits set, then they won't output any set unused bits
  41 * in output bitmaps.
  42 *
  43 * The byte ordering of bitmaps is more natural on little
  44 * endian architectures.  See the big-endian headers
  45 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  46 * for the best explanations of this ordering.
  47 */
  48
  49int __bitmap_equal(const unsigned long *bitmap1,
  50		const unsigned long *bitmap2, unsigned int bits)
  51{
  52	unsigned int k, lim = bits/BITS_PER_LONG;
  53	for (k = 0; k < lim; ++k)
  54		if (bitmap1[k] != bitmap2[k])
  55			return 0;
  56
  57	if (bits % BITS_PER_LONG)
  58		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  59			return 0;
  60
  61	return 1;
  62}
  63EXPORT_SYMBOL(__bitmap_equal);
  64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
  66{
  67	unsigned int k, lim = bits/BITS_PER_LONG;
  68	for (k = 0; k < lim; ++k)
  69		dst[k] = ~src[k];
  70
  71	if (bits % BITS_PER_LONG)
  72		dst[k] = ~src[k];
  73}
  74EXPORT_SYMBOL(__bitmap_complement);
  75
  76/**
  77 * __bitmap_shift_right - logical right shift of the bits in a bitmap
  78 *   @dst : destination bitmap
  79 *   @src : source bitmap
  80 *   @shift : shift by this many bits
  81 *   @nbits : bitmap size, in bits
  82 *
  83 * Shifting right (dividing) means moving bits in the MS -> LS bit
  84 * direction.  Zeros are fed into the vacated MS positions and the
  85 * LS bits shifted off the bottom are lost.
  86 */
  87void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
  88			unsigned shift, unsigned nbits)
  89{
  90	unsigned k, lim = BITS_TO_LONGS(nbits);
  91	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  92	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
  93	for (k = 0; off + k < lim; ++k) {
  94		unsigned long upper, lower;
  95
  96		/*
  97		 * If shift is not word aligned, take lower rem bits of
  98		 * word above and make them the top rem bits of result.
  99		 */
 100		if (!rem || off + k + 1 >= lim)
 101			upper = 0;
 102		else {
 103			upper = src[off + k + 1];
 104			if (off + k + 1 == lim - 1)
 105				upper &= mask;
 106			upper <<= (BITS_PER_LONG - rem);
 107		}
 108		lower = src[off + k];
 109		if (off + k == lim - 1)
 110			lower &= mask;
 111		lower >>= rem;
 112		dst[k] = lower | upper;
 113	}
 114	if (off)
 115		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
 116}
 117EXPORT_SYMBOL(__bitmap_shift_right);
 118
 119
 120/**
 121 * __bitmap_shift_left - logical left shift of the bits in a bitmap
 122 *   @dst : destination bitmap
 123 *   @src : source bitmap
 124 *   @shift : shift by this many bits
 125 *   @nbits : bitmap size, in bits
 126 *
 127 * Shifting left (multiplying) means moving bits in the LS -> MS
 128 * direction.  Zeros are fed into the vacated LS bit positions
 129 * and those MS bits shifted off the top are lost.
 130 */
 131
 132void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
 133			unsigned int shift, unsigned int nbits)
 134{
 135	int k;
 136	unsigned int lim = BITS_TO_LONGS(nbits);
 137	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 138	for (k = lim - off - 1; k >= 0; --k) {
 139		unsigned long upper, lower;
 140
 141		/*
 142		 * If shift is not word aligned, take upper rem bits of
 143		 * word below and make them the bottom rem bits of result.
 144		 */
 145		if (rem && k > 0)
 146			lower = src[k - 1] >> (BITS_PER_LONG - rem);
 147		else
 148			lower = 0;
 149		upper = src[k] << rem;
 150		dst[k + off] = lower | upper;
 151	}
 152	if (off)
 153		memset(dst, 0, off*sizeof(unsigned long));
 154}
 155EXPORT_SYMBOL(__bitmap_shift_left);
 156
 157int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158				const unsigned long *bitmap2, unsigned int bits)
 159{
 160	unsigned int k;
 161	unsigned int lim = bits/BITS_PER_LONG;
 162	unsigned long result = 0;
 163
 164	for (k = 0; k < lim; k++)
 165		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
 166	if (bits % BITS_PER_LONG)
 167		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
 168			   BITMAP_LAST_WORD_MASK(bits));
 169	return result != 0;
 170}
 171EXPORT_SYMBOL(__bitmap_and);
 172
 173void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 174				const unsigned long *bitmap2, unsigned int bits)
 175{
 176	unsigned int k;
 177	unsigned int nr = BITS_TO_LONGS(bits);
 178
 179	for (k = 0; k < nr; k++)
 180		dst[k] = bitmap1[k] | bitmap2[k];
 181}
 182EXPORT_SYMBOL(__bitmap_or);
 183
 184void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 185				const unsigned long *bitmap2, unsigned int bits)
 186{
 187	unsigned int k;
 188	unsigned int nr = BITS_TO_LONGS(bits);
 189
 190	for (k = 0; k < nr; k++)
 191		dst[k] = bitmap1[k] ^ bitmap2[k];
 192}
 193EXPORT_SYMBOL(__bitmap_xor);
 194
 195int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 196				const unsigned long *bitmap2, unsigned int bits)
 197{
 198	unsigned int k;
 199	unsigned int lim = bits/BITS_PER_LONG;
 200	unsigned long result = 0;
 201
 202	for (k = 0; k < lim; k++)
 203		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
 204	if (bits % BITS_PER_LONG)
 205		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
 206			   BITMAP_LAST_WORD_MASK(bits));
 207	return result != 0;
 208}
 209EXPORT_SYMBOL(__bitmap_andnot);
 210
 211int __bitmap_intersects(const unsigned long *bitmap1,
 212			const unsigned long *bitmap2, unsigned int bits)
 
 
 
 
 
 
 
 
 
 
 
 
 213{
 214	unsigned int k, lim = bits/BITS_PER_LONG;
 215	for (k = 0; k < lim; ++k)
 216		if (bitmap1[k] & bitmap2[k])
 217			return 1;
 218
 219	if (bits % BITS_PER_LONG)
 220		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 221			return 1;
 222	return 0;
 223}
 224EXPORT_SYMBOL(__bitmap_intersects);
 225
 226int __bitmap_subset(const unsigned long *bitmap1,
 227		    const unsigned long *bitmap2, unsigned int bits)
 228{
 229	unsigned int k, lim = bits/BITS_PER_LONG;
 230	for (k = 0; k < lim; ++k)
 231		if (bitmap1[k] & ~bitmap2[k])
 232			return 0;
 233
 234	if (bits % BITS_PER_LONG)
 235		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 236			return 0;
 237	return 1;
 238}
 239EXPORT_SYMBOL(__bitmap_subset);
 240
 241int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 242{
 243	unsigned int k, lim = bits/BITS_PER_LONG;
 244	int w = 0;
 
 245
 246	for (k = 0; k < lim; k++)
 247		w += hweight_long(bitmap[k]);
 248
 249	if (bits % BITS_PER_LONG)
 250		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
 251
 252	return w;
 253}
 254EXPORT_SYMBOL(__bitmap_weight);
 255
 256void __bitmap_set(unsigned long *map, unsigned int start, int len)
 257{
 258	unsigned long *p = map + BIT_WORD(start);
 259	const unsigned int size = start + len;
 260	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 261	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 262
 263	while (len - bits_to_set >= 0) {
 264		*p |= mask_to_set;
 265		len -= bits_to_set;
 266		bits_to_set = BITS_PER_LONG;
 267		mask_to_set = ~0UL;
 268		p++;
 269	}
 270	if (len) {
 271		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 272		*p |= mask_to_set;
 273	}
 274}
 275EXPORT_SYMBOL(__bitmap_set);
 276
 277void __bitmap_clear(unsigned long *map, unsigned int start, int len)
 278{
 279	unsigned long *p = map + BIT_WORD(start);
 280	const unsigned int size = start + len;
 281	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
 282	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 283
 284	while (len - bits_to_clear >= 0) {
 285		*p &= ~mask_to_clear;
 286		len -= bits_to_clear;
 287		bits_to_clear = BITS_PER_LONG;
 288		mask_to_clear = ~0UL;
 289		p++;
 290	}
 291	if (len) {
 292		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
 293		*p &= ~mask_to_clear;
 294	}
 295}
 296EXPORT_SYMBOL(__bitmap_clear);
 297
 298/**
 299 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
 300 * @map: The address to base the search on
 301 * @size: The bitmap size in bits
 302 * @start: The bitnumber to start searching at
 303 * @nr: The number of zeroed bits we're looking for
 304 * @align_mask: Alignment mask for zero area
 305 * @align_offset: Alignment offset for zero area.
 306 *
 307 * The @align_mask should be one less than a power of 2; the effect is that
 308 * the bit offset of all zero areas this function finds plus @align_offset
 309 * is multiple of that power of 2.
 310 */
 311unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
 312					     unsigned long size,
 313					     unsigned long start,
 314					     unsigned int nr,
 315					     unsigned long align_mask,
 316					     unsigned long align_offset)
 317{
 318	unsigned long index, end, i;
 319again:
 320	index = find_next_zero_bit(map, size, start);
 321
 322	/* Align allocation */
 323	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
 324
 325	end = index + nr;
 326	if (end > size)
 327		return end;
 328	i = find_next_bit(map, end, index);
 329	if (i < end) {
 330		start = i + 1;
 331		goto again;
 332	}
 333	return index;
 334}
 335EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
 336
 337/*
 338 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
 339 * second version by Paul Jackson, third by Joe Korty.
 340 */
 341
 342#define CHUNKSZ				32
 343#define nbits_to_hold_value(val)	fls(val)
 344#define BASEDEC 10		/* fancier cpuset lists input in decimal */
 345
 346/**
 347 * __bitmap_parse - convert an ASCII hex string into a bitmap.
 348 * @buf: pointer to buffer containing string.
 349 * @buflen: buffer size in bytes.  If string is smaller than this
 350 *    then it must be terminated with a \0.
 351 * @is_user: location of buffer, 0 indicates kernel space
 352 * @maskp: pointer to bitmap array that will contain result.
 353 * @nmaskbits: size of bitmap, in bits.
 354 *
 355 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 356 * bits of the resultant bitmask.  No chunk may specify a value larger
 357 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 358 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 359 * characters and for grouping errors such as "1,,5", ",44", "," and "".
 360 * Leading and trailing whitespace accepted, but not embedded whitespace.
 361 */
 362int __bitmap_parse(const char *buf, unsigned int buflen,
 363		int is_user, unsigned long *maskp,
 364		int nmaskbits)
 365{
 366	int c, old_c, totaldigits, ndigits, nchunks, nbits;
 367	u32 chunk;
 368	const char __user __force *ubuf = (const char __user __force *)buf;
 369
 370	bitmap_zero(maskp, nmaskbits);
 371
 372	nchunks = nbits = totaldigits = c = 0;
 373	do {
 374		chunk = 0;
 375		ndigits = totaldigits;
 376
 377		/* Get the next chunk of the bitmap */
 378		while (buflen) {
 379			old_c = c;
 380			if (is_user) {
 381				if (__get_user(c, ubuf++))
 382					return -EFAULT;
 383			}
 384			else
 385				c = *buf++;
 386			buflen--;
 387			if (isspace(c))
 388				continue;
 389
 390			/*
 391			 * If the last character was a space and the current
 392			 * character isn't '\0', we've got embedded whitespace.
 393			 * This is a no-no, so throw an error.
 394			 */
 395			if (totaldigits && c && isspace(old_c))
 396				return -EINVAL;
 397
 398			/* A '\0' or a ',' signal the end of the chunk */
 399			if (c == '\0' || c == ',')
 400				break;
 401
 402			if (!isxdigit(c))
 403				return -EINVAL;
 404
 405			/*
 406			 * Make sure there are at least 4 free bits in 'chunk'.
 407			 * If not, this hexdigit will overflow 'chunk', so
 408			 * throw an error.
 409			 */
 410			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
 411				return -EOVERFLOW;
 412
 413			chunk = (chunk << 4) | hex_to_bin(c);
 414			totaldigits++;
 415		}
 416		if (ndigits == totaldigits)
 417			return -EINVAL;
 418		if (nchunks == 0 && chunk == 0)
 419			continue;
 420
 421		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
 422		*maskp |= chunk;
 423		nchunks++;
 424		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
 425		if (nbits > nmaskbits)
 426			return -EOVERFLOW;
 427	} while (buflen && c == ',');
 428
 429	return 0;
 430}
 431EXPORT_SYMBOL(__bitmap_parse);
 432
 433/**
 434 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
 435 *
 436 * @ubuf: pointer to user buffer containing string.
 437 * @ulen: buffer size in bytes.  If string is smaller than this
 438 *    then it must be terminated with a \0.
 439 * @maskp: pointer to bitmap array that will contain result.
 440 * @nmaskbits: size of bitmap, in bits.
 441 *
 442 * Wrapper for __bitmap_parse(), providing it with user buffer.
 443 *
 444 * We cannot have this as an inline function in bitmap.h because it needs
 445 * linux/uaccess.h to get the access_ok() declaration and this causes
 446 * cyclic dependencies.
 447 */
 448int bitmap_parse_user(const char __user *ubuf,
 449			unsigned int ulen, unsigned long *maskp,
 450			int nmaskbits)
 451{
 452	if (!access_ok(VERIFY_READ, ubuf, ulen))
 453		return -EFAULT;
 454	return __bitmap_parse((const char __force *)ubuf,
 455				ulen, 1, maskp, nmaskbits);
 456
 457}
 458EXPORT_SYMBOL(bitmap_parse_user);
 459
 460/**
 461 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
 462 * @list: indicates whether the bitmap must be list
 463 * @buf: page aligned buffer into which string is placed
 464 * @maskp: pointer to bitmap to convert
 465 * @nmaskbits: size of bitmap, in bits
 466 *
 467 * Output format is a comma-separated list of decimal numbers and
 468 * ranges if list is specified or hex digits grouped into comma-separated
 469 * sets of 8 digits/set. Returns the number of characters written to buf.
 470 *
 471 * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
 472 * sufficient storage remains at @buf to accommodate the
 473 * bitmap_print_to_pagebuf() output.
 474 */
 475int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
 476			    int nmaskbits)
 477{
 478	ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
 479	int n = 0;
 480
 481	if (len > 1)
 482		n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
 483			   scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
 484	return n;
 485}
 486EXPORT_SYMBOL(bitmap_print_to_pagebuf);
 487
 488/**
 489 * __bitmap_parselist - convert list format ASCII string to bitmap
 490 * @buf: read nul-terminated user string from this buffer
 491 * @buflen: buffer size in bytes.  If string is smaller than this
 492 *    then it must be terminated with a \0.
 493 * @is_user: location of buffer, 0 indicates kernel space
 494 * @maskp: write resulting mask here
 495 * @nmaskbits: number of bits in mask to be written
 496 *
 497 * Input format is a comma-separated list of decimal numbers and
 498 * ranges.  Consecutively set bits are shown as two hyphen-separated
 499 * decimal numbers, the smallest and largest bit numbers set in
 500 * the range.
 501 * Optionally each range can be postfixed to denote that only parts of it
 502 * should be set. The range will divided to groups of specific size.
 503 * From each group will be used only defined amount of bits.
 504 * Syntax: range:used_size/group_size
 505 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
 506 *
 507 * Returns: 0 on success, -errno on invalid input strings. Error values:
 508 *
 509 *   - ``-EINVAL``: second number in range smaller than first
 510 *   - ``-EINVAL``: invalid character in string
 511 *   - ``-ERANGE``: bit number specified too large for mask
 512 */
 513static int __bitmap_parselist(const char *buf, unsigned int buflen,
 514		int is_user, unsigned long *maskp,
 515		int nmaskbits)
 516{
 517	unsigned int a, b, old_a, old_b;
 518	unsigned int group_size, used_size, off;
 519	int c, old_c, totaldigits, ndigits;
 520	const char __user __force *ubuf = (const char __user __force *)buf;
 521	int at_start, in_range, in_partial_range;
 522
 523	totaldigits = c = 0;
 524	old_a = old_b = 0;
 525	group_size = used_size = 0;
 526	bitmap_zero(maskp, nmaskbits);
 527	do {
 528		at_start = 1;
 529		in_range = 0;
 530		in_partial_range = 0;
 531		a = b = 0;
 532		ndigits = totaldigits;
 533
 534		/* Get the next cpu# or a range of cpu#'s */
 535		while (buflen) {
 536			old_c = c;
 537			if (is_user) {
 538				if (__get_user(c, ubuf++))
 539					return -EFAULT;
 540			} else
 541				c = *buf++;
 542			buflen--;
 543			if (isspace(c))
 544				continue;
 545
 546			/* A '\0' or a ',' signal the end of a cpu# or range */
 547			if (c == '\0' || c == ',')
 548				break;
 549			/*
 550			* whitespaces between digits are not allowed,
 551			* but it's ok if whitespaces are on head or tail.
 552			* when old_c is whilespace,
 553			* if totaldigits == ndigits, whitespace is on head.
 554			* if whitespace is on tail, it should not run here.
 555			* as c was ',' or '\0',
 556			* the last code line has broken the current loop.
 557			*/
 558			if ((totaldigits != ndigits) && isspace(old_c))
 559				return -EINVAL;
 560
 561			if (c == '/') {
 562				used_size = a;
 563				at_start = 1;
 564				in_range = 0;
 565				a = b = 0;
 566				continue;
 567			}
 568
 569			if (c == ':') {
 570				old_a = a;
 571				old_b = b;
 572				at_start = 1;
 573				in_range = 0;
 574				in_partial_range = 1;
 575				a = b = 0;
 576				continue;
 577			}
 578
 579			if (c == '-') {
 580				if (at_start || in_range)
 581					return -EINVAL;
 582				b = 0;
 583				in_range = 1;
 584				at_start = 1;
 585				continue;
 586			}
 587
 588			if (!isdigit(c))
 589				return -EINVAL;
 590
 591			b = b * 10 + (c - '0');
 592			if (!in_range)
 593				a = b;
 594			at_start = 0;
 595			totaldigits++;
 596		}
 597		if (ndigits == totaldigits)
 598			continue;
 599		if (in_partial_range) {
 600			group_size = a;
 601			a = old_a;
 602			b = old_b;
 603			old_a = old_b = 0;
 604		} else {
 605			used_size = group_size = b - a + 1;
 606		}
 607		/* if no digit is after '-', it's wrong*/
 608		if (at_start && in_range)
 609			return -EINVAL;
 610		if (!(a <= b) || group_size == 0 || !(used_size <= group_size))
 611			return -EINVAL;
 612		if (b >= nmaskbits)
 613			return -ERANGE;
 614		while (a <= b) {
 615			off = min(b - a + 1, used_size);
 616			bitmap_set(maskp, a, off);
 617			a += group_size;
 618		}
 619	} while (buflen && c == ',');
 620	return 0;
 621}
 622
 623int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
 624{
 625	char *nl  = strchrnul(bp, '\n');
 626	int len = nl - bp;
 627
 628	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
 629}
 630EXPORT_SYMBOL(bitmap_parselist);
 631
 632
 633/**
 634 * bitmap_parselist_user()
 635 *
 636 * @ubuf: pointer to user buffer containing string.
 637 * @ulen: buffer size in bytes.  If string is smaller than this
 638 *    then it must be terminated with a \0.
 639 * @maskp: pointer to bitmap array that will contain result.
 640 * @nmaskbits: size of bitmap, in bits.
 641 *
 642 * Wrapper for bitmap_parselist(), providing it with user buffer.
 643 *
 644 * We cannot have this as an inline function in bitmap.h because it needs
 645 * linux/uaccess.h to get the access_ok() declaration and this causes
 646 * cyclic dependencies.
 647 */
 648int bitmap_parselist_user(const char __user *ubuf,
 649			unsigned int ulen, unsigned long *maskp,
 650			int nmaskbits)
 651{
 652	if (!access_ok(VERIFY_READ, ubuf, ulen))
 653		return -EFAULT;
 654	return __bitmap_parselist((const char __force *)ubuf,
 655					ulen, 1, maskp, nmaskbits);
 656}
 657EXPORT_SYMBOL(bitmap_parselist_user);
 658
 659
 660/**
 661 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
 662 *	@buf: pointer to a bitmap
 663 *	@pos: a bit position in @buf (0 <= @pos < @nbits)
 664 *	@nbits: number of valid bit positions in @buf
 665 *
 666 * Map the bit at position @pos in @buf (of length @nbits) to the
 667 * ordinal of which set bit it is.  If it is not set or if @pos
 668 * is not a valid bit position, map to -1.
 669 *
 670 * If for example, just bits 4 through 7 are set in @buf, then @pos
 671 * values 4 through 7 will get mapped to 0 through 3, respectively,
 672 * and other @pos values will get mapped to -1.  When @pos value 7
 673 * gets mapped to (returns) @ord value 3 in this example, that means
 674 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 675 *
 676 * The bit positions 0 through @bits are valid positions in @buf.
 677 */
 678static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
 679{
 680	if (pos >= nbits || !test_bit(pos, buf))
 681		return -1;
 682
 683	return __bitmap_weight(buf, pos);
 684}
 685
 686/**
 687 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
 688 *	@buf: pointer to bitmap
 689 *	@ord: ordinal bit position (n-th set bit, n >= 0)
 690 *	@nbits: number of valid bit positions in @buf
 691 *
 692 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
 693 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
 694 * >= weight(buf), returns @nbits.
 695 *
 696 * If for example, just bits 4 through 7 are set in @buf, then @ord
 697 * values 0 through 3 will get mapped to 4 through 7, respectively,
 698 * and all other @ord values returns @nbits.  When @ord value 3
 699 * gets mapped to (returns) @pos value 7 in this example, that means
 700 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 701 *
 702 * The bit positions 0 through @nbits-1 are valid positions in @buf.
 703 */
 704unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
 705{
 706	unsigned int pos;
 707
 708	for (pos = find_first_bit(buf, nbits);
 709	     pos < nbits && ord;
 710	     pos = find_next_bit(buf, nbits, pos + 1))
 711		ord--;
 712
 713	return pos;
 714}
 715
 716/**
 717 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 718 *	@dst: remapped result
 719 *	@src: subset to be remapped
 720 *	@old: defines domain of map
 721 *	@new: defines range of map
 722 *	@nbits: number of bits in each of these bitmaps
 723 *
 724 * Let @old and @new define a mapping of bit positions, such that
 725 * whatever position is held by the n-th set bit in @old is mapped
 726 * to the n-th set bit in @new.  In the more general case, allowing
 727 * for the possibility that the weight 'w' of @new is less than the
 728 * weight of @old, map the position of the n-th set bit in @old to
 729 * the position of the m-th set bit in @new, where m == n % w.
 730 *
 731 * If either of the @old and @new bitmaps are empty, or if @src and
 732 * @dst point to the same location, then this routine copies @src
 733 * to @dst.
 734 *
 735 * The positions of unset bits in @old are mapped to themselves
 736 * (the identify map).
 737 *
 738 * Apply the above specified mapping to @src, placing the result in
 739 * @dst, clearing any bits previously set in @dst.
 740 *
 741 * For example, lets say that @old has bits 4 through 7 set, and
 742 * @new has bits 12 through 15 set.  This defines the mapping of bit
 743 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 744 * bit positions unchanged.  So if say @src comes into this routine
 745 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 746 * 13 and 15 set.
 747 */
 748void bitmap_remap(unsigned long *dst, const unsigned long *src,
 749		const unsigned long *old, const unsigned long *new,
 750		unsigned int nbits)
 751{
 752	unsigned int oldbit, w;
 753
 754	if (dst == src)		/* following doesn't handle inplace remaps */
 755		return;
 756	bitmap_zero(dst, nbits);
 757
 758	w = bitmap_weight(new, nbits);
 759	for_each_set_bit(oldbit, src, nbits) {
 760		int n = bitmap_pos_to_ord(old, oldbit, nbits);
 761
 762		if (n < 0 || w == 0)
 763			set_bit(oldbit, dst);	/* identity map */
 764		else
 765			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
 766	}
 767}
 768EXPORT_SYMBOL(bitmap_remap);
 769
 770/**
 771 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
 772 *	@oldbit: bit position to be mapped
 773 *	@old: defines domain of map
 774 *	@new: defines range of map
 775 *	@bits: number of bits in each of these bitmaps
 776 *
 777 * Let @old and @new define a mapping of bit positions, such that
 778 * whatever position is held by the n-th set bit in @old is mapped
 779 * to the n-th set bit in @new.  In the more general case, allowing
 780 * for the possibility that the weight 'w' of @new is less than the
 781 * weight of @old, map the position of the n-th set bit in @old to
 782 * the position of the m-th set bit in @new, where m == n % w.
 783 *
 784 * The positions of unset bits in @old are mapped to themselves
 785 * (the identify map).
 786 *
 787 * Apply the above specified mapping to bit position @oldbit, returning
 788 * the new bit position.
 789 *
 790 * For example, lets say that @old has bits 4 through 7 set, and
 791 * @new has bits 12 through 15 set.  This defines the mapping of bit
 792 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 793 * bit positions unchanged.  So if say @oldbit is 5, then this routine
 794 * returns 13.
 795 */
 796int bitmap_bitremap(int oldbit, const unsigned long *old,
 797				const unsigned long *new, int bits)
 798{
 799	int w = bitmap_weight(new, bits);
 800	int n = bitmap_pos_to_ord(old, oldbit, bits);
 801	if (n < 0 || w == 0)
 802		return oldbit;
 803	else
 804		return bitmap_ord_to_pos(new, n % w, bits);
 805}
 806EXPORT_SYMBOL(bitmap_bitremap);
 807
 
 808/**
 809 * bitmap_onto - translate one bitmap relative to another
 810 *	@dst: resulting translated bitmap
 811 * 	@orig: original untranslated bitmap
 812 * 	@relmap: bitmap relative to which translated
 813 *	@bits: number of bits in each of these bitmaps
 814 *
 815 * Set the n-th bit of @dst iff there exists some m such that the
 816 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
 817 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
 818 * (If you understood the previous sentence the first time your
 819 * read it, you're overqualified for your current job.)
 820 *
 821 * In other words, @orig is mapped onto (surjectively) @dst,
 822 * using the map { <n, m> | the n-th bit of @relmap is the
 823 * m-th set bit of @relmap }.
 824 *
 825 * Any set bits in @orig above bit number W, where W is the
 826 * weight of (number of set bits in) @relmap are mapped nowhere.
 827 * In particular, if for all bits m set in @orig, m >= W, then
 828 * @dst will end up empty.  In situations where the possibility
 829 * of such an empty result is not desired, one way to avoid it is
 830 * to use the bitmap_fold() operator, below, to first fold the
 831 * @orig bitmap over itself so that all its set bits x are in the
 832 * range 0 <= x < W.  The bitmap_fold() operator does this by
 833 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
 834 *
 835 * Example [1] for bitmap_onto():
 836 *  Let's say @relmap has bits 30-39 set, and @orig has bits
 837 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
 838 *  @dst will have bits 31, 33, 35, 37 and 39 set.
 839 *
 840 *  When bit 0 is set in @orig, it means turn on the bit in
 841 *  @dst corresponding to whatever is the first bit (if any)
 842 *  that is turned on in @relmap.  Since bit 0 was off in the
 843 *  above example, we leave off that bit (bit 30) in @dst.
 844 *
 845 *  When bit 1 is set in @orig (as in the above example), it
 846 *  means turn on the bit in @dst corresponding to whatever
 847 *  is the second bit that is turned on in @relmap.  The second
 848 *  bit in @relmap that was turned on in the above example was
 849 *  bit 31, so we turned on bit 31 in @dst.
 850 *
 851 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
 852 *  because they were the 4th, 6th, 8th and 10th set bits
 853 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
 854 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
 855 *
 856 *  When bit 11 is set in @orig, it means turn on the bit in
 857 *  @dst corresponding to whatever is the twelfth bit that is
 858 *  turned on in @relmap.  In the above example, there were
 859 *  only ten bits turned on in @relmap (30..39), so that bit
 860 *  11 was set in @orig had no affect on @dst.
 861 *
 862 * Example [2] for bitmap_fold() + bitmap_onto():
 863 *  Let's say @relmap has these ten bits set::
 864 *
 865 *		40 41 42 43 45 48 53 61 74 95
 866 *
 867 *  (for the curious, that's 40 plus the first ten terms of the
 868 *  Fibonacci sequence.)
 869 *
 870 *  Further lets say we use the following code, invoking
 871 *  bitmap_fold() then bitmap_onto, as suggested above to
 872 *  avoid the possibility of an empty @dst result::
 873 *
 874 *	unsigned long *tmp;	// a temporary bitmap's bits
 875 *
 876 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
 877 *	bitmap_onto(dst, tmp, relmap, bits);
 878 *
 879 *  Then this table shows what various values of @dst would be, for
 880 *  various @orig's.  I list the zero-based positions of each set bit.
 881 *  The tmp column shows the intermediate result, as computed by
 882 *  using bitmap_fold() to fold the @orig bitmap modulo ten
 883 *  (the weight of @relmap):
 884 *
 885 *      =============== ============== =================
 886 *      @orig           tmp            @dst
 887 *      0                0             40
 888 *      1                1             41
 889 *      9                9             95
 890 *      10               0             40 [#f1]_
 891 *      1 3 5 7          1 3 5 7       41 43 48 61
 892 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
 893 *      0 9 18 27        0 9 8 7       40 61 74 95
 894 *      0 10 20 30       0             40
 895 *      0 11 22 33       0 1 2 3       40 41 42 43
 896 *      0 12 24 36       0 2 4 6       40 42 45 53
 897 *      78 102 211       1 2 8         41 42 74 [#f1]_
 898 *      =============== ============== =================
 899 *
 900 * .. [#f1]
 901 *
 902 *     For these marked lines, if we hadn't first done bitmap_fold()
 903 *     into tmp, then the @dst result would have been empty.
 904 *
 905 * If either of @orig or @relmap is empty (no set bits), then @dst
 906 * will be returned empty.
 907 *
 908 * If (as explained above) the only set bits in @orig are in positions
 909 * m where m >= W, (where W is the weight of @relmap) then @dst will
 910 * once again be returned empty.
 911 *
 912 * All bits in @dst not set by the above rule are cleared.
 913 */
 914void bitmap_onto(unsigned long *dst, const unsigned long *orig,
 915			const unsigned long *relmap, unsigned int bits)
 916{
 917	unsigned int n, m;	/* same meaning as in above comment */
 918
 919	if (dst == orig)	/* following doesn't handle inplace mappings */
 920		return;
 921	bitmap_zero(dst, bits);
 922
 923	/*
 924	 * The following code is a more efficient, but less
 925	 * obvious, equivalent to the loop:
 926	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
 927	 *		n = bitmap_ord_to_pos(orig, m, bits);
 928	 *		if (test_bit(m, orig))
 929	 *			set_bit(n, dst);
 930	 *	}
 931	 */
 932
 933	m = 0;
 934	for_each_set_bit(n, relmap, bits) {
 935		/* m == bitmap_pos_to_ord(relmap, n, bits) */
 936		if (test_bit(m, orig))
 937			set_bit(n, dst);
 938		m++;
 939	}
 940}
 941EXPORT_SYMBOL(bitmap_onto);
 942
 943/**
 944 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
 945 *	@dst: resulting smaller bitmap
 946 *	@orig: original larger bitmap
 947 *	@sz: specified size
 948 *	@nbits: number of bits in each of these bitmaps
 949 *
 950 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
 951 * Clear all other bits in @dst.  See further the comment and
 952 * Example [2] for bitmap_onto() for why and how to use this.
 953 */
 954void bitmap_fold(unsigned long *dst, const unsigned long *orig,
 955			unsigned int sz, unsigned int nbits)
 956{
 957	unsigned int oldbit;
 958
 959	if (dst == orig)	/* following doesn't handle inplace mappings */
 960		return;
 961	bitmap_zero(dst, nbits);
 962
 963	for_each_set_bit(oldbit, orig, nbits)
 964		set_bit(oldbit % sz, dst);
 965}
 966EXPORT_SYMBOL(bitmap_fold);
 967
 968/*
 969 * Common code for bitmap_*_region() routines.
 970 *	bitmap: array of unsigned longs corresponding to the bitmap
 971 *	pos: the beginning of the region
 972 *	order: region size (log base 2 of number of bits)
 973 *	reg_op: operation(s) to perform on that region of bitmap
 974 *
 975 * Can set, verify and/or release a region of bits in a bitmap,
 976 * depending on which combination of REG_OP_* flag bits is set.
 977 *
 978 * A region of a bitmap is a sequence of bits in the bitmap, of
 979 * some size '1 << order' (a power of two), aligned to that same
 980 * '1 << order' power of two.
 981 *
 982 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
 983 * Returns 0 in all other cases and reg_ops.
 984 */
 985
 986enum {
 987	REG_OP_ISFREE,		/* true if region is all zero bits */
 988	REG_OP_ALLOC,		/* set all bits in region */
 989	REG_OP_RELEASE,		/* clear all bits in region */
 990};
 991
 992static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
 993{
 994	int nbits_reg;		/* number of bits in region */
 995	int index;		/* index first long of region in bitmap */
 996	int offset;		/* bit offset region in bitmap[index] */
 997	int nlongs_reg;		/* num longs spanned by region in bitmap */
 998	int nbitsinlong;	/* num bits of region in each spanned long */
 999	unsigned long mask;	/* bitmask for one long of region */
1000	int i;			/* scans bitmap by longs */
1001	int ret = 0;		/* return value */
1002
1003	/*
1004	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1005	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1006	 */
1007	nbits_reg = 1 << order;
1008	index = pos / BITS_PER_LONG;
1009	offset = pos - (index * BITS_PER_LONG);
1010	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1011	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1012
1013	/*
1014	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1015	 * overflows if nbitsinlong == BITS_PER_LONG.
1016	 */
1017	mask = (1UL << (nbitsinlong - 1));
1018	mask += mask - 1;
1019	mask <<= offset;
1020
1021	switch (reg_op) {
1022	case REG_OP_ISFREE:
1023		for (i = 0; i < nlongs_reg; i++) {
1024			if (bitmap[index + i] & mask)
1025				goto done;
1026		}
1027		ret = 1;	/* all bits in region free (zero) */
1028		break;
1029
1030	case REG_OP_ALLOC:
1031		for (i = 0; i < nlongs_reg; i++)
1032			bitmap[index + i] |= mask;
1033		break;
1034
1035	case REG_OP_RELEASE:
1036		for (i = 0; i < nlongs_reg; i++)
1037			bitmap[index + i] &= ~mask;
1038		break;
1039	}
1040done:
1041	return ret;
1042}
 
1043
1044/**
1045 * bitmap_find_free_region - find a contiguous aligned mem region
1046 *	@bitmap: array of unsigned longs corresponding to the bitmap
1047 *	@bits: number of bits in the bitmap
1048 *	@order: region size (log base 2 of number of bits) to find
1049 *
1050 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1051 * allocate them (set them to one).  Only consider regions of length
1052 * a power (@order) of two, aligned to that power of two, which
1053 * makes the search algorithm much faster.
1054 *
1055 * Return the bit offset in bitmap of the allocated region,
1056 * or -errno on failure.
1057 */
1058int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1059{
1060	unsigned int pos, end;		/* scans bitmap by regions of size order */
1061
1062	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1063		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1064			continue;
1065		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1066		return pos;
1067	}
1068	return -ENOMEM;
1069}
1070EXPORT_SYMBOL(bitmap_find_free_region);
1071
1072/**
1073 * bitmap_release_region - release allocated bitmap region
1074 *	@bitmap: array of unsigned longs corresponding to the bitmap
1075 *	@pos: beginning of bit region to release
1076 *	@order: region size (log base 2 of number of bits) to release
1077 *
1078 * This is the complement to __bitmap_find_free_region() and releases
1079 * the found region (by clearing it in the bitmap).
1080 *
1081 * No return value.
1082 */
1083void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1084{
1085	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1086}
1087EXPORT_SYMBOL(bitmap_release_region);
 
 
 
 
 
 
 
1088
1089/**
1090 * bitmap_allocate_region - allocate bitmap region
1091 *	@bitmap: array of unsigned longs corresponding to the bitmap
1092 *	@pos: beginning of bit region to allocate
1093 *	@order: region size (log base 2 of number of bits) to allocate
1094 *
1095 * Allocate (set bits in) a specified region of a bitmap.
1096 *
1097 * Return 0 on success, or %-EBUSY if specified region wasn't
1098 * free (not all bits were zero).
1099 */
1100int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1101{
1102	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1103		return -EBUSY;
1104	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1105}
1106EXPORT_SYMBOL(bitmap_allocate_region);
1107
1108/**
1109 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1110 * @dst:   destination buffer
1111 * @src:   bitmap to copy
1112 * @nbits: number of bits in the bitmap
1113 *
1114 * Require nbits % BITS_PER_LONG == 0.
1115 */
1116#ifdef __BIG_ENDIAN
1117void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1118{
1119	unsigned int i;
1120
1121	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1122		if (BITS_PER_LONG == 64)
1123			dst[i] = cpu_to_le64(src[i]);
1124		else
1125			dst[i] = cpu_to_le32(src[i]);
1126	}
1127}
1128EXPORT_SYMBOL(bitmap_copy_le);
1129#endif
1130
1131#if BITS_PER_LONG == 64
1132/**
1133 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1134 *	@bitmap: array of unsigned longs, the destination bitmap
1135 *	@buf: array of u32 (in host byte order), the source bitmap
1136 *	@nbits: number of bits in @bitmap
1137 */
1138void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
1139						unsigned int nbits)
1140{
1141	unsigned int i, halfwords;
1142
1143	if (!nbits)
1144		return;
1145
1146	halfwords = DIV_ROUND_UP(nbits, 32);
1147	for (i = 0; i < halfwords; i++) {
1148		bitmap[i/2] = (unsigned long) buf[i];
1149		if (++i < halfwords)
1150			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1151	}
1152
1153	/* Clear tail bits in last word beyond nbits. */
1154	if (nbits % BITS_PER_LONG)
1155		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1156}
1157EXPORT_SYMBOL(bitmap_from_arr32);
1158
1159/**
1160 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1161 *	@buf: array of u32 (in host byte order), the dest bitmap
1162 *	@bitmap: array of unsigned longs, the source bitmap
1163 *	@nbits: number of bits in @bitmap
1164 */
1165void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1166{
1167	unsigned int i, halfwords;
1168
1169	if (!nbits)
1170		return;
1171
1172	halfwords = DIV_ROUND_UP(nbits, 32);
1173	for (i = 0; i < halfwords; i++) {
1174		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1175		if (++i < halfwords)
1176			buf[i] = (u32) (bitmap[i/2] >> 32);
1177	}
1178
1179	/* Clear tail bits in last element of array beyond nbits. */
1180	if (nbits % BITS_PER_LONG)
1181		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1182}
1183EXPORT_SYMBOL(bitmap_to_arr32);
 
1184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185#endif