Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * lib/bitmap.c
  4 * Helper functions for bitmap.h.
 
 
 
  5 */
  6
 
 
 
  7#include <linux/bitmap.h>
  8#include <linux/bitops.h>
  9#include <linux/ctype.h>
 10#include <linux/device.h>
 11#include <linux/export.h>
 12#include <linux/slab.h>
 13
 14/**
 15 * DOC: bitmap introduction
 16 *
 17 * bitmaps provide an array of bits, implemented using an
 
 18 * array of unsigned longs.  The number of valid bits in a
 19 * given bitmap does _not_ need to be an exact multiple of
 20 * BITS_PER_LONG.
 21 *
 22 * The possible unused bits in the last, partially used word
 23 * of a bitmap are 'don't care'.  The implementation makes
 24 * no particular effort to keep them zero.  It ensures that
 25 * their value will not affect the results of any operation.
 26 * The bitmap operations that return Boolean (bitmap_empty,
 27 * for example) or scalar (bitmap_weight, for example) results
 28 * carefully filter out these unused bits from impacting their
 29 * results.
 30 *
 
 
 
 
 
 31 * The byte ordering of bitmaps is more natural on little
 32 * endian architectures.  See the big-endian headers
 33 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
 34 * for the best explanations of this ordering.
 35 */
 36
 37bool __bitmap_equal(const unsigned long *bitmap1,
 38		    const unsigned long *bitmap2, unsigned int bits)
 39{
 40	unsigned int k, lim = bits/BITS_PER_LONG;
 41	for (k = 0; k < lim; ++k)
 42		if (bitmap1[k] != bitmap2[k])
 43			return false;
 44
 45	if (bits % BITS_PER_LONG)
 46		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 47			return false;
 48
 49	return true;
 50}
 51EXPORT_SYMBOL(__bitmap_equal);
 52
 53bool __bitmap_or_equal(const unsigned long *bitmap1,
 54		       const unsigned long *bitmap2,
 55		       const unsigned long *bitmap3,
 56		       unsigned int bits)
 57{
 58	unsigned int k, lim = bits / BITS_PER_LONG;
 59	unsigned long tmp;
 60
 61	for (k = 0; k < lim; ++k) {
 62		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
 63			return false;
 64	}
 65
 66	if (!(bits % BITS_PER_LONG))
 67		return true;
 68
 69	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
 70	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
 71}
 72
 73void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
 74{
 75	unsigned int k, lim = BITS_TO_LONGS(bits);
 76	for (k = 0; k < lim; ++k)
 77		dst[k] = ~src[k];
 
 
 
 78}
 79EXPORT_SYMBOL(__bitmap_complement);
 80
 81/**
 82 * __bitmap_shift_right - logical right shift of the bits in a bitmap
 83 *   @dst : destination bitmap
 84 *   @src : source bitmap
 85 *   @shift : shift by this many bits
 86 *   @nbits : bitmap size, in bits
 87 *
 88 * Shifting right (dividing) means moving bits in the MS -> LS bit
 89 * direction.  Zeros are fed into the vacated MS positions and the
 90 * LS bits shifted off the bottom are lost.
 91 */
 92void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
 93			unsigned shift, unsigned nbits)
 94{
 95	unsigned k, lim = BITS_TO_LONGS(nbits);
 96	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 97	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
 98	for (k = 0; off + k < lim; ++k) {
 99		unsigned long upper, lower;
100
101		/*
102		 * If shift is not word aligned, take lower rem bits of
103		 * word above and make them the top rem bits of result.
104		 */
105		if (!rem || off + k + 1 >= lim)
106			upper = 0;
107		else {
108			upper = src[off + k + 1];
109			if (off + k + 1 == lim - 1)
110				upper &= mask;
111			upper <<= (BITS_PER_LONG - rem);
112		}
113		lower = src[off + k];
114		if (off + k == lim - 1)
115			lower &= mask;
116		lower >>= rem;
117		dst[k] = lower | upper;
118	}
119	if (off)
120		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
121}
122EXPORT_SYMBOL(__bitmap_shift_right);
123
124
125/**
126 * __bitmap_shift_left - logical left shift of the bits in a bitmap
127 *   @dst : destination bitmap
128 *   @src : source bitmap
129 *   @shift : shift by this many bits
130 *   @nbits : bitmap size, in bits
131 *
132 * Shifting left (multiplying) means moving bits in the LS -> MS
133 * direction.  Zeros are fed into the vacated LS bit positions
134 * and those MS bits shifted off the top are lost.
135 */
136
137void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
138			unsigned int shift, unsigned int nbits)
139{
140	int k;
141	unsigned int lim = BITS_TO_LONGS(nbits);
142	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
143	for (k = lim - off - 1; k >= 0; --k) {
144		unsigned long upper, lower;
145
146		/*
147		 * If shift is not word aligned, take upper rem bits of
148		 * word below and make them the bottom rem bits of result.
149		 */
150		if (rem && k > 0)
151			lower = src[k - 1] >> (BITS_PER_LONG - rem);
152		else
153			lower = 0;
154		upper = src[k] << rem;
155		dst[k + off] = lower | upper;
156	}
157	if (off)
158		memset(dst, 0, off*sizeof(unsigned long));
159}
160EXPORT_SYMBOL(__bitmap_shift_left);
161
162/**
163 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
164 * @dst: destination bitmap, might overlap with src
165 * @src: source bitmap
166 * @first: start bit of region to be removed
167 * @cut: number of bits to remove
168 * @nbits: bitmap size, in bits
169 *
170 * Set the n-th bit of @dst iff the n-th bit of @src is set and
171 * n is less than @first, or the m-th bit of @src is set for any
172 * m such that @first <= n < nbits, and m = n + @cut.
173 *
174 * In pictures, example for a big-endian 32-bit architecture:
175 *
176 * The @src bitmap is::
177 *
178 *   31                                   63
179 *   |                                    |
180 *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
181 *                   |  |              |                                    |
182 *                  16  14             0                                   32
183 *
184 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
185 *
186 *   31                                   63
187 *   |                                    |
188 *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
189 *                      |              |                                    |
190 *                      14 (bit 17     0                                   32
191 *                          from @src)
192 *
193 * Note that @dst and @src might overlap partially or entirely.
194 *
195 * This is implemented in the obvious way, with a shift and carry
196 * step for each moved bit. Optimisation is left as an exercise
197 * for the compiler.
198 */
199void bitmap_cut(unsigned long *dst, const unsigned long *src,
200		unsigned int first, unsigned int cut, unsigned int nbits)
201{
202	unsigned int len = BITS_TO_LONGS(nbits);
203	unsigned long keep = 0, carry;
204	int i;
205
206	if (first % BITS_PER_LONG) {
207		keep = src[first / BITS_PER_LONG] &
208		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
209	}
210
211	memmove(dst, src, len * sizeof(*dst));
212
213	while (cut--) {
214		for (i = first / BITS_PER_LONG; i < len; i++) {
215			if (i < len - 1)
216				carry = dst[i + 1] & 1UL;
217			else
218				carry = 0;
219
220			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
221		}
222	}
223
224	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
225	dst[first / BITS_PER_LONG] |= keep;
226}
227EXPORT_SYMBOL(bitmap_cut);
228
229bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
230				const unsigned long *bitmap2, unsigned int bits)
231{
232	unsigned int k;
233	unsigned int lim = bits/BITS_PER_LONG;
234	unsigned long result = 0;
235
236	for (k = 0; k < lim; k++)
237		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
238	if (bits % BITS_PER_LONG)
239		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
240			   BITMAP_LAST_WORD_MASK(bits));
241	return result != 0;
242}
243EXPORT_SYMBOL(__bitmap_and);
244
245void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
246				const unsigned long *bitmap2, unsigned int bits)
247{
248	unsigned int k;
249	unsigned int nr = BITS_TO_LONGS(bits);
250
251	for (k = 0; k < nr; k++)
252		dst[k] = bitmap1[k] | bitmap2[k];
253}
254EXPORT_SYMBOL(__bitmap_or);
255
256void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
257				const unsigned long *bitmap2, unsigned int bits)
258{
259	unsigned int k;
260	unsigned int nr = BITS_TO_LONGS(bits);
261
262	for (k = 0; k < nr; k++)
263		dst[k] = bitmap1[k] ^ bitmap2[k];
264}
265EXPORT_SYMBOL(__bitmap_xor);
266
267bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
268				const unsigned long *bitmap2, unsigned int bits)
269{
270	unsigned int k;
271	unsigned int lim = bits/BITS_PER_LONG;
272	unsigned long result = 0;
273
274	for (k = 0; k < lim; k++)
275		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
276	if (bits % BITS_PER_LONG)
277		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
278			   BITMAP_LAST_WORD_MASK(bits));
279	return result != 0;
280}
281EXPORT_SYMBOL(__bitmap_andnot);
282
283void __bitmap_replace(unsigned long *dst,
284		      const unsigned long *old, const unsigned long *new,
285		      const unsigned long *mask, unsigned int nbits)
286{
287	unsigned int k;
288	unsigned int nr = BITS_TO_LONGS(nbits);
289
290	for (k = 0; k < nr; k++)
291		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
292}
293EXPORT_SYMBOL(__bitmap_replace);
294
295bool __bitmap_intersects(const unsigned long *bitmap1,
296			 const unsigned long *bitmap2, unsigned int bits)
297{
298	unsigned int k, lim = bits/BITS_PER_LONG;
299	for (k = 0; k < lim; ++k)
300		if (bitmap1[k] & bitmap2[k])
301			return true;
302
303	if (bits % BITS_PER_LONG)
304		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
305			return true;
306	return false;
307}
308EXPORT_SYMBOL(__bitmap_intersects);
309
310bool __bitmap_subset(const unsigned long *bitmap1,
311		     const unsigned long *bitmap2, unsigned int bits)
312{
313	unsigned int k, lim = bits/BITS_PER_LONG;
314	for (k = 0; k < lim; ++k)
315		if (bitmap1[k] & ~bitmap2[k])
316			return false;
317
318	if (bits % BITS_PER_LONG)
319		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
320			return false;
321	return true;
322}
323EXPORT_SYMBOL(__bitmap_subset);
324
325#define BITMAP_WEIGHT(FETCH, bits)	\
326({										\
327	unsigned int __bits = (bits), idx, w = 0;				\
328										\
329	for (idx = 0; idx < __bits / BITS_PER_LONG; idx++)			\
330		w += hweight_long(FETCH);					\
331										\
332	if (__bits % BITS_PER_LONG)						\
333		w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits));	\
334										\
335	w;									\
336})
337
338unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
339{
340	return BITMAP_WEIGHT(bitmap[idx], bits);
341}
342EXPORT_SYMBOL(__bitmap_weight);
343
344unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
345				const unsigned long *bitmap2, unsigned int bits)
346{
347	return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
 
 
 
348}
349EXPORT_SYMBOL(__bitmap_weight_and);
350
351void __bitmap_set(unsigned long *map, unsigned int start, int len)
352{
353	unsigned long *p = map + BIT_WORD(start);
354	const unsigned int size = start + len;
355	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
356	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
357
358	while (len - bits_to_set >= 0) {
359		*p |= mask_to_set;
360		len -= bits_to_set;
361		bits_to_set = BITS_PER_LONG;
362		mask_to_set = ~0UL;
363		p++;
364	}
365	if (len) {
366		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
367		*p |= mask_to_set;
368	}
369}
370EXPORT_SYMBOL(__bitmap_set);
371
372void __bitmap_clear(unsigned long *map, unsigned int start, int len)
373{
374	unsigned long *p = map + BIT_WORD(start);
375	const unsigned int size = start + len;
376	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
377	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
378
379	while (len - bits_to_clear >= 0) {
380		*p &= ~mask_to_clear;
381		len -= bits_to_clear;
382		bits_to_clear = BITS_PER_LONG;
383		mask_to_clear = ~0UL;
384		p++;
385	}
386	if (len) {
387		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
388		*p &= ~mask_to_clear;
389	}
390}
391EXPORT_SYMBOL(__bitmap_clear);
392
393/**
394 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
395 * @map: The address to base the search on
396 * @size: The bitmap size in bits
397 * @start: The bitnumber to start searching at
398 * @nr: The number of zeroed bits we're looking for
399 * @align_mask: Alignment mask for zero area
400 * @align_offset: Alignment offset for zero area.
401 *
402 * The @align_mask should be one less than a power of 2; the effect is that
403 * the bit offset of all zero areas this function finds plus @align_offset
404 * is multiple of that power of 2.
405 */
406unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
407					     unsigned long size,
408					     unsigned long start,
409					     unsigned int nr,
410					     unsigned long align_mask,
411					     unsigned long align_offset)
412{
413	unsigned long index, end, i;
414again:
415	index = find_next_zero_bit(map, size, start);
416
417	/* Align allocation */
418	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
419
420	end = index + nr;
421	if (end > size)
422		return end;
423	i = find_next_bit(map, end, index);
424	if (i < end) {
425		start = i + 1;
426		goto again;
427	}
428	return index;
429}
430EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432/**
433 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
434 *	@buf: pointer to a bitmap
435 *	@pos: a bit position in @buf (0 <= @pos < @nbits)
436 *	@nbits: number of valid bit positions in @buf
437 *
438 * Map the bit at position @pos in @buf (of length @nbits) to the
439 * ordinal of which set bit it is.  If it is not set or if @pos
440 * is not a valid bit position, map to -1.
441 *
442 * If for example, just bits 4 through 7 are set in @buf, then @pos
443 * values 4 through 7 will get mapped to 0 through 3, respectively,
444 * and other @pos values will get mapped to -1.  When @pos value 7
445 * gets mapped to (returns) @ord value 3 in this example, that means
446 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
447 *
448 * The bit positions 0 through @bits are valid positions in @buf.
449 */
450static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
451{
452	if (pos >= nbits || !test_bit(pos, buf))
453		return -1;
454
455	return bitmap_weight(buf, pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456}
457
458/**
459 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
460 *	@dst: remapped result
461 *	@src: subset to be remapped
462 *	@old: defines domain of map
463 *	@new: defines range of map
464 *	@nbits: number of bits in each of these bitmaps
465 *
466 * Let @old and @new define a mapping of bit positions, such that
467 * whatever position is held by the n-th set bit in @old is mapped
468 * to the n-th set bit in @new.  In the more general case, allowing
469 * for the possibility that the weight 'w' of @new is less than the
470 * weight of @old, map the position of the n-th set bit in @old to
471 * the position of the m-th set bit in @new, where m == n % w.
472 *
473 * If either of the @old and @new bitmaps are empty, or if @src and
474 * @dst point to the same location, then this routine copies @src
475 * to @dst.
476 *
477 * The positions of unset bits in @old are mapped to themselves
478 * (the identity map).
479 *
480 * Apply the above specified mapping to @src, placing the result in
481 * @dst, clearing any bits previously set in @dst.
482 *
483 * For example, lets say that @old has bits 4 through 7 set, and
484 * @new has bits 12 through 15 set.  This defines the mapping of bit
485 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
486 * bit positions unchanged.  So if say @src comes into this routine
487 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
488 * 13 and 15 set.
489 */
490void bitmap_remap(unsigned long *dst, const unsigned long *src,
491		const unsigned long *old, const unsigned long *new,
492		unsigned int nbits)
493{
494	unsigned int oldbit, w;
495
496	if (dst == src)		/* following doesn't handle inplace remaps */
497		return;
498	bitmap_zero(dst, nbits);
499
500	w = bitmap_weight(new, nbits);
501	for_each_set_bit(oldbit, src, nbits) {
502		int n = bitmap_pos_to_ord(old, oldbit, nbits);
503
504		if (n < 0 || w == 0)
505			set_bit(oldbit, dst);	/* identity map */
506		else
507			set_bit(find_nth_bit(new, nbits, n % w), dst);
508	}
509}
510EXPORT_SYMBOL(bitmap_remap);
511
512/**
513 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
514 *	@oldbit: bit position to be mapped
515 *	@old: defines domain of map
516 *	@new: defines range of map
517 *	@bits: number of bits in each of these bitmaps
518 *
519 * Let @old and @new define a mapping of bit positions, such that
520 * whatever position is held by the n-th set bit in @old is mapped
521 * to the n-th set bit in @new.  In the more general case, allowing
522 * for the possibility that the weight 'w' of @new is less than the
523 * weight of @old, map the position of the n-th set bit in @old to
524 * the position of the m-th set bit in @new, where m == n % w.
525 *
526 * The positions of unset bits in @old are mapped to themselves
527 * (the identity map).
528 *
529 * Apply the above specified mapping to bit position @oldbit, returning
530 * the new bit position.
531 *
532 * For example, lets say that @old has bits 4 through 7 set, and
533 * @new has bits 12 through 15 set.  This defines the mapping of bit
534 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
535 * bit positions unchanged.  So if say @oldbit is 5, then this routine
536 * returns 13.
537 */
538int bitmap_bitremap(int oldbit, const unsigned long *old,
539				const unsigned long *new, int bits)
540{
541	int w = bitmap_weight(new, bits);
542	int n = bitmap_pos_to_ord(old, oldbit, bits);
543	if (n < 0 || w == 0)
544		return oldbit;
545	else
546		return find_nth_bit(new, bits, n % w);
547}
548EXPORT_SYMBOL(bitmap_bitremap);
549
550#ifdef CONFIG_NUMA
551/**
552 * bitmap_onto - translate one bitmap relative to another
553 *	@dst: resulting translated bitmap
554 * 	@orig: original untranslated bitmap
555 * 	@relmap: bitmap relative to which translated
556 *	@bits: number of bits in each of these bitmaps
557 *
558 * Set the n-th bit of @dst iff there exists some m such that the
559 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
560 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
561 * (If you understood the previous sentence the first time your
562 * read it, you're overqualified for your current job.)
563 *
564 * In other words, @orig is mapped onto (surjectively) @dst,
565 * using the map { <n, m> | the n-th bit of @relmap is the
566 * m-th set bit of @relmap }.
567 *
568 * Any set bits in @orig above bit number W, where W is the
569 * weight of (number of set bits in) @relmap are mapped nowhere.
570 * In particular, if for all bits m set in @orig, m >= W, then
571 * @dst will end up empty.  In situations where the possibility
572 * of such an empty result is not desired, one way to avoid it is
573 * to use the bitmap_fold() operator, below, to first fold the
574 * @orig bitmap over itself so that all its set bits x are in the
575 * range 0 <= x < W.  The bitmap_fold() operator does this by
576 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
577 *
578 * Example [1] for bitmap_onto():
579 *  Let's say @relmap has bits 30-39 set, and @orig has bits
580 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
581 *  @dst will have bits 31, 33, 35, 37 and 39 set.
582 *
583 *  When bit 0 is set in @orig, it means turn on the bit in
584 *  @dst corresponding to whatever is the first bit (if any)
585 *  that is turned on in @relmap.  Since bit 0 was off in the
586 *  above example, we leave off that bit (bit 30) in @dst.
587 *
588 *  When bit 1 is set in @orig (as in the above example), it
589 *  means turn on the bit in @dst corresponding to whatever
590 *  is the second bit that is turned on in @relmap.  The second
591 *  bit in @relmap that was turned on in the above example was
592 *  bit 31, so we turned on bit 31 in @dst.
593 *
594 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
595 *  because they were the 4th, 6th, 8th and 10th set bits
596 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
597 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
598 *
599 *  When bit 11 is set in @orig, it means turn on the bit in
600 *  @dst corresponding to whatever is the twelfth bit that is
601 *  turned on in @relmap.  In the above example, there were
602 *  only ten bits turned on in @relmap (30..39), so that bit
603 *  11 was set in @orig had no affect on @dst.
604 *
605 * Example [2] for bitmap_fold() + bitmap_onto():
606 *  Let's say @relmap has these ten bits set::
607 *
608 *		40 41 42 43 45 48 53 61 74 95
609 *
610 *  (for the curious, that's 40 plus the first ten terms of the
611 *  Fibonacci sequence.)
612 *
613 *  Further lets say we use the following code, invoking
614 *  bitmap_fold() then bitmap_onto, as suggested above to
615 *  avoid the possibility of an empty @dst result::
616 *
617 *	unsigned long *tmp;	// a temporary bitmap's bits
618 *
619 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
620 *	bitmap_onto(dst, tmp, relmap, bits);
621 *
622 *  Then this table shows what various values of @dst would be, for
623 *  various @orig's.  I list the zero-based positions of each set bit.
624 *  The tmp column shows the intermediate result, as computed by
625 *  using bitmap_fold() to fold the @orig bitmap modulo ten
626 *  (the weight of @relmap):
627 *
628 *      =============== ============== =================
629 *      @orig           tmp            @dst
630 *      0                0             40
631 *      1                1             41
632 *      9                9             95
633 *      10               0             40 [#f1]_
634 *      1 3 5 7          1 3 5 7       41 43 48 61
635 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
636 *      0 9 18 27        0 9 8 7       40 61 74 95
637 *      0 10 20 30       0             40
638 *      0 11 22 33       0 1 2 3       40 41 42 43
639 *      0 12 24 36       0 2 4 6       40 42 45 53
640 *      78 102 211       1 2 8         41 42 74 [#f1]_
641 *      =============== ============== =================
642 *
643 * .. [#f1]
644 *
645 *     For these marked lines, if we hadn't first done bitmap_fold()
646 *     into tmp, then the @dst result would have been empty.
647 *
648 * If either of @orig or @relmap is empty (no set bits), then @dst
649 * will be returned empty.
650 *
651 * If (as explained above) the only set bits in @orig are in positions
652 * m where m >= W, (where W is the weight of @relmap) then @dst will
653 * once again be returned empty.
654 *
655 * All bits in @dst not set by the above rule are cleared.
656 */
657void bitmap_onto(unsigned long *dst, const unsigned long *orig,
658			const unsigned long *relmap, unsigned int bits)
659{
660	unsigned int n, m;	/* same meaning as in above comment */
661
662	if (dst == orig)	/* following doesn't handle inplace mappings */
663		return;
664	bitmap_zero(dst, bits);
665
666	/*
667	 * The following code is a more efficient, but less
668	 * obvious, equivalent to the loop:
669	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
670	 *		n = find_nth_bit(orig, bits, m);
671	 *		if (test_bit(m, orig))
672	 *			set_bit(n, dst);
673	 *	}
674	 */
675
676	m = 0;
677	for_each_set_bit(n, relmap, bits) {
678		/* m == bitmap_pos_to_ord(relmap, n, bits) */
679		if (test_bit(m, orig))
680			set_bit(n, dst);
681		m++;
682	}
683}
 
684
685/**
686 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
687 *	@dst: resulting smaller bitmap
688 *	@orig: original larger bitmap
689 *	@sz: specified size
690 *	@nbits: number of bits in each of these bitmaps
691 *
692 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
693 * Clear all other bits in @dst.  See further the comment and
694 * Example [2] for bitmap_onto() for why and how to use this.
695 */
696void bitmap_fold(unsigned long *dst, const unsigned long *orig,
697			unsigned int sz, unsigned int nbits)
698{
699	unsigned int oldbit;
700
701	if (dst == orig)	/* following doesn't handle inplace mappings */
702		return;
703	bitmap_zero(dst, nbits);
704
705	for_each_set_bit(oldbit, orig, nbits)
706		set_bit(oldbit % sz, dst);
707}
708#endif /* CONFIG_NUMA */
709
710unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
711{
712	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
713			     flags);
714}
715EXPORT_SYMBOL(bitmap_alloc);
 
 
 
 
 
 
 
 
 
 
 
716
717unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
718{
719	return bitmap_alloc(nbits, flags | __GFP_ZERO);
720}
721EXPORT_SYMBOL(bitmap_zalloc);
 
 
 
 
 
 
 
 
 
 
 
722
723unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
724{
725	return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
726				  flags, node);
727}
728EXPORT_SYMBOL(bitmap_alloc_node);
 
 
 
729
730unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
731{
732	return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
733}
734EXPORT_SYMBOL(bitmap_zalloc_node);
 
 
 
 
 
 
 
 
 
 
 
735
736void bitmap_free(const unsigned long *bitmap)
737{
738	kfree(bitmap);
 
 
 
 
 
 
 
 
 
739}
740EXPORT_SYMBOL(bitmap_free);
741
742static void devm_bitmap_free(void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
743{
744	unsigned long *bitmap = data;
745
746	bitmap_free(bitmap);
 
 
 
 
 
 
747}
 
748
749unsigned long *devm_bitmap_alloc(struct device *dev,
750				 unsigned int nbits, gfp_t flags)
 
 
 
 
 
 
 
 
 
 
751{
752	unsigned long *bitmap;
753	int ret;
754
755	bitmap = bitmap_alloc(nbits, flags);
756	if (!bitmap)
757		return NULL;
758
759	ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
760	if (ret)
761		return NULL;
762
763	return bitmap;
764}
765EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
766
767unsigned long *devm_bitmap_zalloc(struct device *dev,
768				  unsigned int nbits, gfp_t flags)
 
 
 
 
 
 
 
 
 
 
769{
770	return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
 
 
771}
772EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
773
774#if BITS_PER_LONG == 64
775/**
776 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
777 *	@bitmap: array of unsigned longs, the destination bitmap
778 *	@buf: array of u32 (in host byte order), the source bitmap
779 *	@nbits: number of bits in @bitmap
 
 
 
 
 
 
 
 
 
780 */
781void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
 
 
782{
783	unsigned int i, halfwords;
784
785	halfwords = DIV_ROUND_UP(nbits, 32);
786	for (i = 0; i < halfwords; i++) {
787		bitmap[i/2] = (unsigned long) buf[i];
788		if (++i < halfwords)
789			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
790	}
791
792	/* Clear tail bits in last word beyond nbits. */
793	if (nbits % BITS_PER_LONG)
794		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
795}
796EXPORT_SYMBOL(bitmap_from_arr32);
797
798/**
799 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
800 *	@buf: array of u32 (in host byte order), the dest bitmap
801 *	@bitmap: array of unsigned longs, the source bitmap
802 *	@nbits: number of bits in @bitmap
803 */
804void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
805{
806	unsigned int i, halfwords;
807
808	halfwords = DIV_ROUND_UP(nbits, 32);
809	for (i = 0; i < halfwords; i++) {
810		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
811		if (++i < halfwords)
812			buf[i] = (u32) (bitmap[i/2] >> 32);
 
 
 
813	}
814
815	/* Clear tail bits in last element of array beyond nbits. */
816	if (nbits % BITS_PER_LONG)
817		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
818}
819EXPORT_SYMBOL(bitmap_to_arr32);
820#endif
821
822#if BITS_PER_LONG == 32
823/**
824 * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
825 *	@bitmap: array of unsigned longs, the destination bitmap
826 *	@buf: array of u64 (in host byte order), the source bitmap
 
827 *	@nbits: number of bits in @bitmap
 
 
 
 
 
828 */
829void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
830{
831	int n;
 
 
 
 
 
 
 
 
 
 
 
 
832
833	for (n = nbits; n > 0; n -= 64) {
834		u64 val = *buf++;
835
836		*bitmap++ = val;
837		if (n > 32)
838			*bitmap++ = val >> 32;
 
 
 
839	}
840
841	/*
842	 * Clear tail bits in the last word beyond nbits.
843	 *
844	 * Negative index is OK because here we point to the word next
845	 * to the last word of the bitmap, except for nbits == 0, which
846	 * is tested implicitly.
847	 */
848	if (nbits % BITS_PER_LONG)
849		bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
850}
851EXPORT_SYMBOL(bitmap_from_arr64);
852
853/**
854 * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
855 *	@buf: array of u64 (in host byte order), the dest bitmap
856 *	@bitmap: array of unsigned longs, the source bitmap
857 *	@nbits: number of bits in @bitmap
 
 
858 */
859void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
 
860{
861	const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
862
863	while (bitmap < end) {
864		*buf = *bitmap++;
865		if (bitmap < end)
866			*buf |= (u64)(*bitmap++) << 32;
867		buf++;
868	}
869
870	/* Clear tail bits in the last element of array beyond nbits. */
871	if (nbits % 64)
872		buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
873}
874EXPORT_SYMBOL(bitmap_to_arr64);
875#endif
v4.6
 
   1/*
   2 * lib/bitmap.c
   3 * Helper functions for bitmap.h.
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8#include <linux/export.h>
   9#include <linux/thread_info.h>
  10#include <linux/ctype.h>
  11#include <linux/errno.h>
  12#include <linux/bitmap.h>
  13#include <linux/bitops.h>
  14#include <linux/bug.h>
  15#include <linux/kernel.h>
  16#include <linux/string.h>
 
  17
  18#include <asm/page.h>
  19#include <asm/uaccess.h>
  20
  21/*
  22 * bitmaps provide an array of bits, implemented using an an
  23 * array of unsigned longs.  The number of valid bits in a
  24 * given bitmap does _not_ need to be an exact multiple of
  25 * BITS_PER_LONG.
  26 *
  27 * The possible unused bits in the last, partially used word
  28 * of a bitmap are 'don't care'.  The implementation makes
  29 * no particular effort to keep them zero.  It ensures that
  30 * their value will not affect the results of any operation.
  31 * The bitmap operations that return Boolean (bitmap_empty,
  32 * for example) or scalar (bitmap_weight, for example) results
  33 * carefully filter out these unused bits from impacting their
  34 * results.
  35 *
  36 * These operations actually hold to a slightly stronger rule:
  37 * if you don't input any bitmaps to these ops that have some
  38 * unused bits set, then they won't output any set unused bits
  39 * in output bitmaps.
  40 *
  41 * The byte ordering of bitmaps is more natural on little
  42 * endian architectures.  See the big-endian headers
  43 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  44 * for the best explanations of this ordering.
  45 */
  46
  47int __bitmap_equal(const unsigned long *bitmap1,
  48		const unsigned long *bitmap2, unsigned int bits)
  49{
  50	unsigned int k, lim = bits/BITS_PER_LONG;
  51	for (k = 0; k < lim; ++k)
  52		if (bitmap1[k] != bitmap2[k])
  53			return 0;
  54
  55	if (bits % BITS_PER_LONG)
  56		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  57			return 0;
  58
  59	return 1;
  60}
  61EXPORT_SYMBOL(__bitmap_equal);
  62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
  64{
  65	unsigned int k, lim = bits/BITS_PER_LONG;
  66	for (k = 0; k < lim; ++k)
  67		dst[k] = ~src[k];
  68
  69	if (bits % BITS_PER_LONG)
  70		dst[k] = ~src[k];
  71}
  72EXPORT_SYMBOL(__bitmap_complement);
  73
  74/**
  75 * __bitmap_shift_right - logical right shift of the bits in a bitmap
  76 *   @dst : destination bitmap
  77 *   @src : source bitmap
  78 *   @shift : shift by this many bits
  79 *   @nbits : bitmap size, in bits
  80 *
  81 * Shifting right (dividing) means moving bits in the MS -> LS bit
  82 * direction.  Zeros are fed into the vacated MS positions and the
  83 * LS bits shifted off the bottom are lost.
  84 */
  85void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
  86			unsigned shift, unsigned nbits)
  87{
  88	unsigned k, lim = BITS_TO_LONGS(nbits);
  89	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  90	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
  91	for (k = 0; off + k < lim; ++k) {
  92		unsigned long upper, lower;
  93
  94		/*
  95		 * If shift is not word aligned, take lower rem bits of
  96		 * word above and make them the top rem bits of result.
  97		 */
  98		if (!rem || off + k + 1 >= lim)
  99			upper = 0;
 100		else {
 101			upper = src[off + k + 1];
 102			if (off + k + 1 == lim - 1)
 103				upper &= mask;
 104			upper <<= (BITS_PER_LONG - rem);
 105		}
 106		lower = src[off + k];
 107		if (off + k == lim - 1)
 108			lower &= mask;
 109		lower >>= rem;
 110		dst[k] = lower | upper;
 111	}
 112	if (off)
 113		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
 114}
 115EXPORT_SYMBOL(__bitmap_shift_right);
 116
 117
 118/**
 119 * __bitmap_shift_left - logical left shift of the bits in a bitmap
 120 *   @dst : destination bitmap
 121 *   @src : source bitmap
 122 *   @shift : shift by this many bits
 123 *   @nbits : bitmap size, in bits
 124 *
 125 * Shifting left (multiplying) means moving bits in the LS -> MS
 126 * direction.  Zeros are fed into the vacated LS bit positions
 127 * and those MS bits shifted off the top are lost.
 128 */
 129
 130void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
 131			unsigned int shift, unsigned int nbits)
 132{
 133	int k;
 134	unsigned int lim = BITS_TO_LONGS(nbits);
 135	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 136	for (k = lim - off - 1; k >= 0; --k) {
 137		unsigned long upper, lower;
 138
 139		/*
 140		 * If shift is not word aligned, take upper rem bits of
 141		 * word below and make them the bottom rem bits of result.
 142		 */
 143		if (rem && k > 0)
 144			lower = src[k - 1] >> (BITS_PER_LONG - rem);
 145		else
 146			lower = 0;
 147		upper = src[k] << rem;
 148		dst[k + off] = lower | upper;
 149	}
 150	if (off)
 151		memset(dst, 0, off*sizeof(unsigned long));
 152}
 153EXPORT_SYMBOL(__bitmap_shift_left);
 154
 155int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156				const unsigned long *bitmap2, unsigned int bits)
 157{
 158	unsigned int k;
 159	unsigned int lim = bits/BITS_PER_LONG;
 160	unsigned long result = 0;
 161
 162	for (k = 0; k < lim; k++)
 163		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
 164	if (bits % BITS_PER_LONG)
 165		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
 166			   BITMAP_LAST_WORD_MASK(bits));
 167	return result != 0;
 168}
 169EXPORT_SYMBOL(__bitmap_and);
 170
 171void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 172				const unsigned long *bitmap2, unsigned int bits)
 173{
 174	unsigned int k;
 175	unsigned int nr = BITS_TO_LONGS(bits);
 176
 177	for (k = 0; k < nr; k++)
 178		dst[k] = bitmap1[k] | bitmap2[k];
 179}
 180EXPORT_SYMBOL(__bitmap_or);
 181
 182void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 183				const unsigned long *bitmap2, unsigned int bits)
 184{
 185	unsigned int k;
 186	unsigned int nr = BITS_TO_LONGS(bits);
 187
 188	for (k = 0; k < nr; k++)
 189		dst[k] = bitmap1[k] ^ bitmap2[k];
 190}
 191EXPORT_SYMBOL(__bitmap_xor);
 192
 193int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 194				const unsigned long *bitmap2, unsigned int bits)
 195{
 196	unsigned int k;
 197	unsigned int lim = bits/BITS_PER_LONG;
 198	unsigned long result = 0;
 199
 200	for (k = 0; k < lim; k++)
 201		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
 202	if (bits % BITS_PER_LONG)
 203		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
 204			   BITMAP_LAST_WORD_MASK(bits));
 205	return result != 0;
 206}
 207EXPORT_SYMBOL(__bitmap_andnot);
 208
 209int __bitmap_intersects(const unsigned long *bitmap1,
 210			const unsigned long *bitmap2, unsigned int bits)
 
 
 
 
 
 
 
 
 
 
 
 
 211{
 212	unsigned int k, lim = bits/BITS_PER_LONG;
 213	for (k = 0; k < lim; ++k)
 214		if (bitmap1[k] & bitmap2[k])
 215			return 1;
 216
 217	if (bits % BITS_PER_LONG)
 218		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 219			return 1;
 220	return 0;
 221}
 222EXPORT_SYMBOL(__bitmap_intersects);
 223
 224int __bitmap_subset(const unsigned long *bitmap1,
 225		    const unsigned long *bitmap2, unsigned int bits)
 226{
 227	unsigned int k, lim = bits/BITS_PER_LONG;
 228	for (k = 0; k < lim; ++k)
 229		if (bitmap1[k] & ~bitmap2[k])
 230			return 0;
 231
 232	if (bits % BITS_PER_LONG)
 233		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 234			return 0;
 235	return 1;
 236}
 237EXPORT_SYMBOL(__bitmap_subset);
 238
 239int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 240{
 241	unsigned int k, lim = bits/BITS_PER_LONG;
 242	int w = 0;
 
 243
 244	for (k = 0; k < lim; k++)
 245		w += hweight_long(bitmap[k]);
 246
 247	if (bits % BITS_PER_LONG)
 248		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
 249
 250	return w;
 251}
 252EXPORT_SYMBOL(__bitmap_weight);
 253
 254void bitmap_set(unsigned long *map, unsigned int start, int len)
 255{
 256	unsigned long *p = map + BIT_WORD(start);
 257	const unsigned int size = start + len;
 258	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 259	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 260
 261	while (len - bits_to_set >= 0) {
 262		*p |= mask_to_set;
 263		len -= bits_to_set;
 264		bits_to_set = BITS_PER_LONG;
 265		mask_to_set = ~0UL;
 266		p++;
 267	}
 268	if (len) {
 269		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 270		*p |= mask_to_set;
 271	}
 272}
 273EXPORT_SYMBOL(bitmap_set);
 274
 275void bitmap_clear(unsigned long *map, unsigned int start, int len)
 276{
 277	unsigned long *p = map + BIT_WORD(start);
 278	const unsigned int size = start + len;
 279	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
 280	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 281
 282	while (len - bits_to_clear >= 0) {
 283		*p &= ~mask_to_clear;
 284		len -= bits_to_clear;
 285		bits_to_clear = BITS_PER_LONG;
 286		mask_to_clear = ~0UL;
 287		p++;
 288	}
 289	if (len) {
 290		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
 291		*p &= ~mask_to_clear;
 292	}
 293}
 294EXPORT_SYMBOL(bitmap_clear);
 295
 296/**
 297 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
 298 * @map: The address to base the search on
 299 * @size: The bitmap size in bits
 300 * @start: The bitnumber to start searching at
 301 * @nr: The number of zeroed bits we're looking for
 302 * @align_mask: Alignment mask for zero area
 303 * @align_offset: Alignment offset for zero area.
 304 *
 305 * The @align_mask should be one less than a power of 2; the effect is that
 306 * the bit offset of all zero areas this function finds plus @align_offset
 307 * is multiple of that power of 2.
 308 */
 309unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
 310					     unsigned long size,
 311					     unsigned long start,
 312					     unsigned int nr,
 313					     unsigned long align_mask,
 314					     unsigned long align_offset)
 315{
 316	unsigned long index, end, i;
 317again:
 318	index = find_next_zero_bit(map, size, start);
 319
 320	/* Align allocation */
 321	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
 322
 323	end = index + nr;
 324	if (end > size)
 325		return end;
 326	i = find_next_bit(map, end, index);
 327	if (i < end) {
 328		start = i + 1;
 329		goto again;
 330	}
 331	return index;
 332}
 333EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
 334
 335/*
 336 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
 337 * second version by Paul Jackson, third by Joe Korty.
 338 */
 339
 340#define CHUNKSZ				32
 341#define nbits_to_hold_value(val)	fls(val)
 342#define BASEDEC 10		/* fancier cpuset lists input in decimal */
 343
 344/**
 345 * __bitmap_parse - convert an ASCII hex string into a bitmap.
 346 * @buf: pointer to buffer containing string.
 347 * @buflen: buffer size in bytes.  If string is smaller than this
 348 *    then it must be terminated with a \0.
 349 * @is_user: location of buffer, 0 indicates kernel space
 350 * @maskp: pointer to bitmap array that will contain result.
 351 * @nmaskbits: size of bitmap, in bits.
 352 *
 353 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 354 * bits of the resultant bitmask.  No chunk may specify a value larger
 355 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 356 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 357 * characters and for grouping errors such as "1,,5", ",44", "," and "".
 358 * Leading and trailing whitespace accepted, but not embedded whitespace.
 359 */
 360int __bitmap_parse(const char *buf, unsigned int buflen,
 361		int is_user, unsigned long *maskp,
 362		int nmaskbits)
 363{
 364	int c, old_c, totaldigits, ndigits, nchunks, nbits;
 365	u32 chunk;
 366	const char __user __force *ubuf = (const char __user __force *)buf;
 367
 368	bitmap_zero(maskp, nmaskbits);
 369
 370	nchunks = nbits = totaldigits = c = 0;
 371	do {
 372		chunk = 0;
 373		ndigits = totaldigits;
 374
 375		/* Get the next chunk of the bitmap */
 376		while (buflen) {
 377			old_c = c;
 378			if (is_user) {
 379				if (__get_user(c, ubuf++))
 380					return -EFAULT;
 381			}
 382			else
 383				c = *buf++;
 384			buflen--;
 385			if (isspace(c))
 386				continue;
 387
 388			/*
 389			 * If the last character was a space and the current
 390			 * character isn't '\0', we've got embedded whitespace.
 391			 * This is a no-no, so throw an error.
 392			 */
 393			if (totaldigits && c && isspace(old_c))
 394				return -EINVAL;
 395
 396			/* A '\0' or a ',' signal the end of the chunk */
 397			if (c == '\0' || c == ',')
 398				break;
 399
 400			if (!isxdigit(c))
 401				return -EINVAL;
 402
 403			/*
 404			 * Make sure there are at least 4 free bits in 'chunk'.
 405			 * If not, this hexdigit will overflow 'chunk', so
 406			 * throw an error.
 407			 */
 408			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
 409				return -EOVERFLOW;
 410
 411			chunk = (chunk << 4) | hex_to_bin(c);
 412			totaldigits++;
 413		}
 414		if (ndigits == totaldigits)
 415			return -EINVAL;
 416		if (nchunks == 0 && chunk == 0)
 417			continue;
 418
 419		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
 420		*maskp |= chunk;
 421		nchunks++;
 422		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
 423		if (nbits > nmaskbits)
 424			return -EOVERFLOW;
 425	} while (buflen && c == ',');
 426
 427	return 0;
 428}
 429EXPORT_SYMBOL(__bitmap_parse);
 430
 431/**
 432 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
 433 *
 434 * @ubuf: pointer to user buffer containing string.
 435 * @ulen: buffer size in bytes.  If string is smaller than this
 436 *    then it must be terminated with a \0.
 437 * @maskp: pointer to bitmap array that will contain result.
 438 * @nmaskbits: size of bitmap, in bits.
 439 *
 440 * Wrapper for __bitmap_parse(), providing it with user buffer.
 441 *
 442 * We cannot have this as an inline function in bitmap.h because it needs
 443 * linux/uaccess.h to get the access_ok() declaration and this causes
 444 * cyclic dependencies.
 445 */
 446int bitmap_parse_user(const char __user *ubuf,
 447			unsigned int ulen, unsigned long *maskp,
 448			int nmaskbits)
 449{
 450	if (!access_ok(VERIFY_READ, ubuf, ulen))
 451		return -EFAULT;
 452	return __bitmap_parse((const char __force *)ubuf,
 453				ulen, 1, maskp, nmaskbits);
 454
 455}
 456EXPORT_SYMBOL(bitmap_parse_user);
 457
 458/**
 459 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
 460 * @list: indicates whether the bitmap must be list
 461 * @buf: page aligned buffer into which string is placed
 462 * @maskp: pointer to bitmap to convert
 463 * @nmaskbits: size of bitmap, in bits
 464 *
 465 * Output format is a comma-separated list of decimal numbers and
 466 * ranges if list is specified or hex digits grouped into comma-separated
 467 * sets of 8 digits/set. Returns the number of characters written to buf.
 468 *
 469 * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
 470 * sufficient storage remains at @buf to accommodate the
 471 * bitmap_print_to_pagebuf() output.
 472 */
 473int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
 474			    int nmaskbits)
 475{
 476	ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
 477	int n = 0;
 478
 479	if (len > 1)
 480		n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
 481			   scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
 482	return n;
 483}
 484EXPORT_SYMBOL(bitmap_print_to_pagebuf);
 485
 486/**
 487 * __bitmap_parselist - convert list format ASCII string to bitmap
 488 * @buf: read nul-terminated user string from this buffer
 489 * @buflen: buffer size in bytes.  If string is smaller than this
 490 *    then it must be terminated with a \0.
 491 * @is_user: location of buffer, 0 indicates kernel space
 492 * @maskp: write resulting mask here
 493 * @nmaskbits: number of bits in mask to be written
 494 *
 495 * Input format is a comma-separated list of decimal numbers and
 496 * ranges.  Consecutively set bits are shown as two hyphen-separated
 497 * decimal numbers, the smallest and largest bit numbers set in
 498 * the range.
 499 *
 500 * Returns 0 on success, -errno on invalid input strings.
 501 * Error values:
 502 *    %-EINVAL: second number in range smaller than first
 503 *    %-EINVAL: invalid character in string
 504 *    %-ERANGE: bit number specified too large for mask
 505 */
 506static int __bitmap_parselist(const char *buf, unsigned int buflen,
 507		int is_user, unsigned long *maskp,
 508		int nmaskbits)
 509{
 510	unsigned a, b;
 511	int c, old_c, totaldigits, ndigits;
 512	const char __user __force *ubuf = (const char __user __force *)buf;
 513	int at_start, in_range;
 514
 515	totaldigits = c = 0;
 516	bitmap_zero(maskp, nmaskbits);
 517	do {
 518		at_start = 1;
 519		in_range = 0;
 520		a = b = 0;
 521		ndigits = totaldigits;
 522
 523		/* Get the next cpu# or a range of cpu#'s */
 524		while (buflen) {
 525			old_c = c;
 526			if (is_user) {
 527				if (__get_user(c, ubuf++))
 528					return -EFAULT;
 529			} else
 530				c = *buf++;
 531			buflen--;
 532			if (isspace(c))
 533				continue;
 534
 535			/* A '\0' or a ',' signal the end of a cpu# or range */
 536			if (c == '\0' || c == ',')
 537				break;
 538			/*
 539			* whitespaces between digits are not allowed,
 540			* but it's ok if whitespaces are on head or tail.
 541			* when old_c is whilespace,
 542			* if totaldigits == ndigits, whitespace is on head.
 543			* if whitespace is on tail, it should not run here.
 544			* as c was ',' or '\0',
 545			* the last code line has broken the current loop.
 546			*/
 547			if ((totaldigits != ndigits) && isspace(old_c))
 548				return -EINVAL;
 549
 550			if (c == '-') {
 551				if (at_start || in_range)
 552					return -EINVAL;
 553				b = 0;
 554				in_range = 1;
 555				at_start = 1;
 556				continue;
 557			}
 558
 559			if (!isdigit(c))
 560				return -EINVAL;
 561
 562			b = b * 10 + (c - '0');
 563			if (!in_range)
 564				a = b;
 565			at_start = 0;
 566			totaldigits++;
 567		}
 568		if (ndigits == totaldigits)
 569			continue;
 570		/* if no digit is after '-', it's wrong*/
 571		if (at_start && in_range)
 572			return -EINVAL;
 573		if (!(a <= b))
 574			return -EINVAL;
 575		if (b >= nmaskbits)
 576			return -ERANGE;
 577		while (a <= b) {
 578			set_bit(a, maskp);
 579			a++;
 580		}
 581	} while (buflen && c == ',');
 582	return 0;
 583}
 584
 585int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
 586{
 587	char *nl  = strchrnul(bp, '\n');
 588	int len = nl - bp;
 589
 590	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
 591}
 592EXPORT_SYMBOL(bitmap_parselist);
 593
 594
 595/**
 596 * bitmap_parselist_user()
 597 *
 598 * @ubuf: pointer to user buffer containing string.
 599 * @ulen: buffer size in bytes.  If string is smaller than this
 600 *    then it must be terminated with a \0.
 601 * @maskp: pointer to bitmap array that will contain result.
 602 * @nmaskbits: size of bitmap, in bits.
 603 *
 604 * Wrapper for bitmap_parselist(), providing it with user buffer.
 605 *
 606 * We cannot have this as an inline function in bitmap.h because it needs
 607 * linux/uaccess.h to get the access_ok() declaration and this causes
 608 * cyclic dependencies.
 609 */
 610int bitmap_parselist_user(const char __user *ubuf,
 611			unsigned int ulen, unsigned long *maskp,
 612			int nmaskbits)
 613{
 614	if (!access_ok(VERIFY_READ, ubuf, ulen))
 615		return -EFAULT;
 616	return __bitmap_parselist((const char __force *)ubuf,
 617					ulen, 1, maskp, nmaskbits);
 618}
 619EXPORT_SYMBOL(bitmap_parselist_user);
 620
 621
 622/**
 623 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
 624 *	@buf: pointer to a bitmap
 625 *	@pos: a bit position in @buf (0 <= @pos < @nbits)
 626 *	@nbits: number of valid bit positions in @buf
 627 *
 628 * Map the bit at position @pos in @buf (of length @nbits) to the
 629 * ordinal of which set bit it is.  If it is not set or if @pos
 630 * is not a valid bit position, map to -1.
 631 *
 632 * If for example, just bits 4 through 7 are set in @buf, then @pos
 633 * values 4 through 7 will get mapped to 0 through 3, respectively,
 634 * and other @pos values will get mapped to -1.  When @pos value 7
 635 * gets mapped to (returns) @ord value 3 in this example, that means
 636 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 637 *
 638 * The bit positions 0 through @bits are valid positions in @buf.
 639 */
 640static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
 641{
 642	if (pos >= nbits || !test_bit(pos, buf))
 643		return -1;
 644
 645	return __bitmap_weight(buf, pos);
 646}
 647
 648/**
 649 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
 650 *	@buf: pointer to bitmap
 651 *	@ord: ordinal bit position (n-th set bit, n >= 0)
 652 *	@nbits: number of valid bit positions in @buf
 653 *
 654 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
 655 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
 656 * >= weight(buf), returns @nbits.
 657 *
 658 * If for example, just bits 4 through 7 are set in @buf, then @ord
 659 * values 0 through 3 will get mapped to 4 through 7, respectively,
 660 * and all other @ord values returns @nbits.  When @ord value 3
 661 * gets mapped to (returns) @pos value 7 in this example, that means
 662 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 663 *
 664 * The bit positions 0 through @nbits-1 are valid positions in @buf.
 665 */
 666unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
 667{
 668	unsigned int pos;
 669
 670	for (pos = find_first_bit(buf, nbits);
 671	     pos < nbits && ord;
 672	     pos = find_next_bit(buf, nbits, pos + 1))
 673		ord--;
 674
 675	return pos;
 676}
 677
 678/**
 679 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 680 *	@dst: remapped result
 681 *	@src: subset to be remapped
 682 *	@old: defines domain of map
 683 *	@new: defines range of map
 684 *	@nbits: number of bits in each of these bitmaps
 685 *
 686 * Let @old and @new define a mapping of bit positions, such that
 687 * whatever position is held by the n-th set bit in @old is mapped
 688 * to the n-th set bit in @new.  In the more general case, allowing
 689 * for the possibility that the weight 'w' of @new is less than the
 690 * weight of @old, map the position of the n-th set bit in @old to
 691 * the position of the m-th set bit in @new, where m == n % w.
 692 *
 693 * If either of the @old and @new bitmaps are empty, or if @src and
 694 * @dst point to the same location, then this routine copies @src
 695 * to @dst.
 696 *
 697 * The positions of unset bits in @old are mapped to themselves
 698 * (the identify map).
 699 *
 700 * Apply the above specified mapping to @src, placing the result in
 701 * @dst, clearing any bits previously set in @dst.
 702 *
 703 * For example, lets say that @old has bits 4 through 7 set, and
 704 * @new has bits 12 through 15 set.  This defines the mapping of bit
 705 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 706 * bit positions unchanged.  So if say @src comes into this routine
 707 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 708 * 13 and 15 set.
 709 */
 710void bitmap_remap(unsigned long *dst, const unsigned long *src,
 711		const unsigned long *old, const unsigned long *new,
 712		unsigned int nbits)
 713{
 714	unsigned int oldbit, w;
 715
 716	if (dst == src)		/* following doesn't handle inplace remaps */
 717		return;
 718	bitmap_zero(dst, nbits);
 719
 720	w = bitmap_weight(new, nbits);
 721	for_each_set_bit(oldbit, src, nbits) {
 722		int n = bitmap_pos_to_ord(old, oldbit, nbits);
 723
 724		if (n < 0 || w == 0)
 725			set_bit(oldbit, dst);	/* identity map */
 726		else
 727			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
 728	}
 729}
 730EXPORT_SYMBOL(bitmap_remap);
 731
 732/**
 733 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
 734 *	@oldbit: bit position to be mapped
 735 *	@old: defines domain of map
 736 *	@new: defines range of map
 737 *	@bits: number of bits in each of these bitmaps
 738 *
 739 * Let @old and @new define a mapping of bit positions, such that
 740 * whatever position is held by the n-th set bit in @old is mapped
 741 * to the n-th set bit in @new.  In the more general case, allowing
 742 * for the possibility that the weight 'w' of @new is less than the
 743 * weight of @old, map the position of the n-th set bit in @old to
 744 * the position of the m-th set bit in @new, where m == n % w.
 745 *
 746 * The positions of unset bits in @old are mapped to themselves
 747 * (the identify map).
 748 *
 749 * Apply the above specified mapping to bit position @oldbit, returning
 750 * the new bit position.
 751 *
 752 * For example, lets say that @old has bits 4 through 7 set, and
 753 * @new has bits 12 through 15 set.  This defines the mapping of bit
 754 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 755 * bit positions unchanged.  So if say @oldbit is 5, then this routine
 756 * returns 13.
 757 */
 758int bitmap_bitremap(int oldbit, const unsigned long *old,
 759				const unsigned long *new, int bits)
 760{
 761	int w = bitmap_weight(new, bits);
 762	int n = bitmap_pos_to_ord(old, oldbit, bits);
 763	if (n < 0 || w == 0)
 764		return oldbit;
 765	else
 766		return bitmap_ord_to_pos(new, n % w, bits);
 767}
 768EXPORT_SYMBOL(bitmap_bitremap);
 769
 
 770/**
 771 * bitmap_onto - translate one bitmap relative to another
 772 *	@dst: resulting translated bitmap
 773 * 	@orig: original untranslated bitmap
 774 * 	@relmap: bitmap relative to which translated
 775 *	@bits: number of bits in each of these bitmaps
 776 *
 777 * Set the n-th bit of @dst iff there exists some m such that the
 778 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
 779 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
 780 * (If you understood the previous sentence the first time your
 781 * read it, you're overqualified for your current job.)
 782 *
 783 * In other words, @orig is mapped onto (surjectively) @dst,
 784 * using the map { <n, m> | the n-th bit of @relmap is the
 785 * m-th set bit of @relmap }.
 786 *
 787 * Any set bits in @orig above bit number W, where W is the
 788 * weight of (number of set bits in) @relmap are mapped nowhere.
 789 * In particular, if for all bits m set in @orig, m >= W, then
 790 * @dst will end up empty.  In situations where the possibility
 791 * of such an empty result is not desired, one way to avoid it is
 792 * to use the bitmap_fold() operator, below, to first fold the
 793 * @orig bitmap over itself so that all its set bits x are in the
 794 * range 0 <= x < W.  The bitmap_fold() operator does this by
 795 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
 796 *
 797 * Example [1] for bitmap_onto():
 798 *  Let's say @relmap has bits 30-39 set, and @orig has bits
 799 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
 800 *  @dst will have bits 31, 33, 35, 37 and 39 set.
 801 *
 802 *  When bit 0 is set in @orig, it means turn on the bit in
 803 *  @dst corresponding to whatever is the first bit (if any)
 804 *  that is turned on in @relmap.  Since bit 0 was off in the
 805 *  above example, we leave off that bit (bit 30) in @dst.
 806 *
 807 *  When bit 1 is set in @orig (as in the above example), it
 808 *  means turn on the bit in @dst corresponding to whatever
 809 *  is the second bit that is turned on in @relmap.  The second
 810 *  bit in @relmap that was turned on in the above example was
 811 *  bit 31, so we turned on bit 31 in @dst.
 812 *
 813 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
 814 *  because they were the 4th, 6th, 8th and 10th set bits
 815 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
 816 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
 817 *
 818 *  When bit 11 is set in @orig, it means turn on the bit in
 819 *  @dst corresponding to whatever is the twelfth bit that is
 820 *  turned on in @relmap.  In the above example, there were
 821 *  only ten bits turned on in @relmap (30..39), so that bit
 822 *  11 was set in @orig had no affect on @dst.
 823 *
 824 * Example [2] for bitmap_fold() + bitmap_onto():
 825 *  Let's say @relmap has these ten bits set:
 
 826 *		40 41 42 43 45 48 53 61 74 95
 
 827 *  (for the curious, that's 40 plus the first ten terms of the
 828 *  Fibonacci sequence.)
 829 *
 830 *  Further lets say we use the following code, invoking
 831 *  bitmap_fold() then bitmap_onto, as suggested above to
 832 *  avoid the possibility of an empty @dst result:
 833 *
 834 *	unsigned long *tmp;	// a temporary bitmap's bits
 835 *
 836 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
 837 *	bitmap_onto(dst, tmp, relmap, bits);
 838 *
 839 *  Then this table shows what various values of @dst would be, for
 840 *  various @orig's.  I list the zero-based positions of each set bit.
 841 *  The tmp column shows the intermediate result, as computed by
 842 *  using bitmap_fold() to fold the @orig bitmap modulo ten
 843 *  (the weight of @relmap).
 844 *
 
 845 *      @orig           tmp            @dst
 846 *      0                0             40
 847 *      1                1             41
 848 *      9                9             95
 849 *      10               0             40 (*)
 850 *      1 3 5 7          1 3 5 7       41 43 48 61
 851 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
 852 *      0 9 18 27        0 9 8 7       40 61 74 95
 853 *      0 10 20 30       0             40
 854 *      0 11 22 33       0 1 2 3       40 41 42 43
 855 *      0 12 24 36       0 2 4 6       40 42 45 53
 856 *      78 102 211       1 2 8         41 42 74 (*)
 
 
 
 857 *
 858 * (*) For these marked lines, if we hadn't first done bitmap_fold()
 859 *     into tmp, then the @dst result would have been empty.
 860 *
 861 * If either of @orig or @relmap is empty (no set bits), then @dst
 862 * will be returned empty.
 863 *
 864 * If (as explained above) the only set bits in @orig are in positions
 865 * m where m >= W, (where W is the weight of @relmap) then @dst will
 866 * once again be returned empty.
 867 *
 868 * All bits in @dst not set by the above rule are cleared.
 869 */
 870void bitmap_onto(unsigned long *dst, const unsigned long *orig,
 871			const unsigned long *relmap, unsigned int bits)
 872{
 873	unsigned int n, m;	/* same meaning as in above comment */
 874
 875	if (dst == orig)	/* following doesn't handle inplace mappings */
 876		return;
 877	bitmap_zero(dst, bits);
 878
 879	/*
 880	 * The following code is a more efficient, but less
 881	 * obvious, equivalent to the loop:
 882	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
 883	 *		n = bitmap_ord_to_pos(orig, m, bits);
 884	 *		if (test_bit(m, orig))
 885	 *			set_bit(n, dst);
 886	 *	}
 887	 */
 888
 889	m = 0;
 890	for_each_set_bit(n, relmap, bits) {
 891		/* m == bitmap_pos_to_ord(relmap, n, bits) */
 892		if (test_bit(m, orig))
 893			set_bit(n, dst);
 894		m++;
 895	}
 896}
 897EXPORT_SYMBOL(bitmap_onto);
 898
 899/**
 900 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
 901 *	@dst: resulting smaller bitmap
 902 *	@orig: original larger bitmap
 903 *	@sz: specified size
 904 *	@nbits: number of bits in each of these bitmaps
 905 *
 906 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
 907 * Clear all other bits in @dst.  See further the comment and
 908 * Example [2] for bitmap_onto() for why and how to use this.
 909 */
 910void bitmap_fold(unsigned long *dst, const unsigned long *orig,
 911			unsigned int sz, unsigned int nbits)
 912{
 913	unsigned int oldbit;
 914
 915	if (dst == orig)	/* following doesn't handle inplace mappings */
 916		return;
 917	bitmap_zero(dst, nbits);
 918
 919	for_each_set_bit(oldbit, orig, nbits)
 920		set_bit(oldbit % sz, dst);
 921}
 922EXPORT_SYMBOL(bitmap_fold);
 923
 924/*
 925 * Common code for bitmap_*_region() routines.
 926 *	bitmap: array of unsigned longs corresponding to the bitmap
 927 *	pos: the beginning of the region
 928 *	order: region size (log base 2 of number of bits)
 929 *	reg_op: operation(s) to perform on that region of bitmap
 930 *
 931 * Can set, verify and/or release a region of bits in a bitmap,
 932 * depending on which combination of REG_OP_* flag bits is set.
 933 *
 934 * A region of a bitmap is a sequence of bits in the bitmap, of
 935 * some size '1 << order' (a power of two), aligned to that same
 936 * '1 << order' power of two.
 937 *
 938 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
 939 * Returns 0 in all other cases and reg_ops.
 940 */
 941
 942enum {
 943	REG_OP_ISFREE,		/* true if region is all zero bits */
 944	REG_OP_ALLOC,		/* set all bits in region */
 945	REG_OP_RELEASE,		/* clear all bits in region */
 946};
 947
 948static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
 949{
 950	int nbits_reg;		/* number of bits in region */
 951	int index;		/* index first long of region in bitmap */
 952	int offset;		/* bit offset region in bitmap[index] */
 953	int nlongs_reg;		/* num longs spanned by region in bitmap */
 954	int nbitsinlong;	/* num bits of region in each spanned long */
 955	unsigned long mask;	/* bitmask for one long of region */
 956	int i;			/* scans bitmap by longs */
 957	int ret = 0;		/* return value */
 958
 959	/*
 960	 * Either nlongs_reg == 1 (for small orders that fit in one long)
 961	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
 962	 */
 963	nbits_reg = 1 << order;
 964	index = pos / BITS_PER_LONG;
 965	offset = pos - (index * BITS_PER_LONG);
 966	nlongs_reg = BITS_TO_LONGS(nbits_reg);
 967	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
 968
 969	/*
 970	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
 971	 * overflows if nbitsinlong == BITS_PER_LONG.
 972	 */
 973	mask = (1UL << (nbitsinlong - 1));
 974	mask += mask - 1;
 975	mask <<= offset;
 976
 977	switch (reg_op) {
 978	case REG_OP_ISFREE:
 979		for (i = 0; i < nlongs_reg; i++) {
 980			if (bitmap[index + i] & mask)
 981				goto done;
 982		}
 983		ret = 1;	/* all bits in region free (zero) */
 984		break;
 985
 986	case REG_OP_ALLOC:
 987		for (i = 0; i < nlongs_reg; i++)
 988			bitmap[index + i] |= mask;
 989		break;
 990
 991	case REG_OP_RELEASE:
 992		for (i = 0; i < nlongs_reg; i++)
 993			bitmap[index + i] &= ~mask;
 994		break;
 995	}
 996done:
 997	return ret;
 998}
 
 999
1000/**
1001 * bitmap_find_free_region - find a contiguous aligned mem region
1002 *	@bitmap: array of unsigned longs corresponding to the bitmap
1003 *	@bits: number of bits in the bitmap
1004 *	@order: region size (log base 2 of number of bits) to find
1005 *
1006 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1007 * allocate them (set them to one).  Only consider regions of length
1008 * a power (@order) of two, aligned to that power of two, which
1009 * makes the search algorithm much faster.
1010 *
1011 * Return the bit offset in bitmap of the allocated region,
1012 * or -errno on failure.
1013 */
1014int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1015{
1016	unsigned int pos, end;		/* scans bitmap by regions of size order */
1017
1018	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1019		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1020			continue;
1021		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1022		return pos;
1023	}
1024	return -ENOMEM;
1025}
1026EXPORT_SYMBOL(bitmap_find_free_region);
1027
1028/**
1029 * bitmap_release_region - release allocated bitmap region
1030 *	@bitmap: array of unsigned longs corresponding to the bitmap
1031 *	@pos: beginning of bit region to release
1032 *	@order: region size (log base 2 of number of bits) to release
1033 *
1034 * This is the complement to __bitmap_find_free_region() and releases
1035 * the found region (by clearing it in the bitmap).
1036 *
1037 * No return value.
1038 */
1039void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1040{
1041	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
 
 
 
 
 
 
 
 
 
 
 
1042}
1043EXPORT_SYMBOL(bitmap_release_region);
1044
1045/**
1046 * bitmap_allocate_region - allocate bitmap region
1047 *	@bitmap: array of unsigned longs corresponding to the bitmap
1048 *	@pos: beginning of bit region to allocate
1049 *	@order: region size (log base 2 of number of bits) to allocate
1050 *
1051 * Allocate (set bits in) a specified region of a bitmap.
1052 *
1053 * Return 0 on success, or %-EBUSY if specified region wasn't
1054 * free (not all bits were zero).
1055 */
1056int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1057{
1058	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1059		return -EBUSY;
1060	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1061}
1062EXPORT_SYMBOL(bitmap_allocate_region);
1063
 
1064/**
1065 * bitmap_from_u32array - copy the contents of a u32 array of bits to bitmap
1066 *	@bitmap: array of unsigned longs, the destination bitmap, non NULL
 
1067 *	@nbits: number of bits in @bitmap
1068 *	@buf: array of u32 (in host byte order), the source bitmap, non NULL
1069 *	@nwords: number of u32 words in @buf
1070 *
1071 * copy min(nbits, 32*nwords) bits from @buf to @bitmap, remaining
1072 * bits between nword and nbits in @bitmap (if any) are cleared. In
1073 * last word of @bitmap, the bits beyond nbits (if any) are kept
1074 * unchanged.
1075 *
1076 * Return the number of bits effectively copied.
1077 */
1078unsigned int
1079bitmap_from_u32array(unsigned long *bitmap, unsigned int nbits,
1080		     const u32 *buf, unsigned int nwords)
1081{
1082	unsigned int dst_idx, src_idx;
1083
1084	for (src_idx = dst_idx = 0; dst_idx < BITS_TO_LONGS(nbits); ++dst_idx) {
1085		unsigned long part = 0;
 
 
 
 
1086
1087		if (src_idx < nwords)
1088			part = buf[src_idx++];
 
 
 
1089
1090#if BITS_PER_LONG == 64
1091		if (src_idx < nwords)
1092			part |= ((unsigned long) buf[src_idx++]) << 32;
1093#endif
 
 
 
 
 
1094
1095		if (dst_idx < nbits/BITS_PER_LONG)
1096			bitmap[dst_idx] = part;
1097		else {
1098			unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1099
1100			bitmap[dst_idx] = (bitmap[dst_idx] & ~mask)
1101				| (part & mask);
1102		}
1103	}
1104
1105	return min_t(unsigned int, nbits, 32*nwords);
 
 
1106}
1107EXPORT_SYMBOL(bitmap_from_u32array);
 
1108
 
1109/**
1110 * bitmap_to_u32array - copy the contents of bitmap to a u32 array of bits
1111 *	@buf: array of u32 (in host byte order), the dest bitmap, non NULL
1112 *	@nwords: number of u32 words in @buf
1113 *	@bitmap: array of unsigned longs, the source bitmap, non NULL
1114 *	@nbits: number of bits in @bitmap
1115 *
1116 * copy min(nbits, 32*nwords) bits from @bitmap to @buf. Remaining
1117 * bits after nbits in @buf (if any) are cleared.
1118 *
1119 * Return the number of bits effectively copied.
1120 */
1121unsigned int
1122bitmap_to_u32array(u32 *buf, unsigned int nwords,
1123		   const unsigned long *bitmap, unsigned int nbits)
1124{
1125	unsigned int dst_idx = 0, src_idx = 0;
1126
1127	while (dst_idx < nwords) {
1128		unsigned long part = 0;
1129
1130		if (src_idx < BITS_TO_LONGS(nbits)) {
1131			part = bitmap[src_idx];
1132			if (src_idx >= nbits/BITS_PER_LONG)
1133				part &= BITMAP_LAST_WORD_MASK(nbits);
1134			src_idx++;
1135		}
1136
1137		buf[dst_idx++] = part & 0xffffffffUL;
 
1138
1139#if BITS_PER_LONG == 64
1140		if (dst_idx < nwords) {
1141			part >>= 32;
1142			buf[dst_idx++] = part & 0xffffffffUL;
1143		}
1144#endif
1145	}
1146
1147	return min_t(unsigned int, nbits, 32*nwords);
 
 
 
 
 
 
 
 
1148}
1149EXPORT_SYMBOL(bitmap_to_u32array);
1150
1151/**
1152 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1153 * @dst:   destination buffer
1154 * @src:   bitmap to copy
1155 * @nbits: number of bits in the bitmap
1156 *
1157 * Require nbits % BITS_PER_LONG == 0.
1158 */
1159#ifdef __BIG_ENDIAN
1160void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1161{
1162	unsigned int i;
1163
1164	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1165		if (BITS_PER_LONG == 64)
1166			dst[i] = cpu_to_le64(src[i]);
1167		else
1168			dst[i] = cpu_to_le32(src[i]);
1169	}
 
 
 
 
1170}
1171EXPORT_SYMBOL(bitmap_copy_le);
1172#endif