Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * lib/bitmap.c
4 * Helper functions for bitmap.h.
5 */
6
7#include <linux/bitmap.h>
8#include <linux/bitops.h>
9#include <linux/ctype.h>
10#include <linux/device.h>
11#include <linux/export.h>
12#include <linux/slab.h>
13
14/**
15 * DOC: bitmap introduction
16 *
17 * bitmaps provide an array of bits, implemented using an
18 * array of unsigned longs. The number of valid bits in a
19 * given bitmap does _not_ need to be an exact multiple of
20 * BITS_PER_LONG.
21 *
22 * The possible unused bits in the last, partially used word
23 * of a bitmap are 'don't care'. The implementation makes
24 * no particular effort to keep them zero. It ensures that
25 * their value will not affect the results of any operation.
26 * The bitmap operations that return Boolean (bitmap_empty,
27 * for example) or scalar (bitmap_weight, for example) results
28 * carefully filter out these unused bits from impacting their
29 * results.
30 *
31 * The byte ordering of bitmaps is more natural on little
32 * endian architectures. See the big-endian headers
33 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
34 * for the best explanations of this ordering.
35 */
36
37bool __bitmap_equal(const unsigned long *bitmap1,
38 const unsigned long *bitmap2, unsigned int bits)
39{
40 unsigned int k, lim = bits/BITS_PER_LONG;
41 for (k = 0; k < lim; ++k)
42 if (bitmap1[k] != bitmap2[k])
43 return false;
44
45 if (bits % BITS_PER_LONG)
46 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
47 return false;
48
49 return true;
50}
51EXPORT_SYMBOL(__bitmap_equal);
52
53bool __bitmap_or_equal(const unsigned long *bitmap1,
54 const unsigned long *bitmap2,
55 const unsigned long *bitmap3,
56 unsigned int bits)
57{
58 unsigned int k, lim = bits / BITS_PER_LONG;
59 unsigned long tmp;
60
61 for (k = 0; k < lim; ++k) {
62 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
63 return false;
64 }
65
66 if (!(bits % BITS_PER_LONG))
67 return true;
68
69 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
70 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
71}
72
73void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
74{
75 unsigned int k, lim = BITS_TO_LONGS(bits);
76 for (k = 0; k < lim; ++k)
77 dst[k] = ~src[k];
78}
79EXPORT_SYMBOL(__bitmap_complement);
80
81/**
82 * __bitmap_shift_right - logical right shift of the bits in a bitmap
83 * @dst : destination bitmap
84 * @src : source bitmap
85 * @shift : shift by this many bits
86 * @nbits : bitmap size, in bits
87 *
88 * Shifting right (dividing) means moving bits in the MS -> LS bit
89 * direction. Zeros are fed into the vacated MS positions and the
90 * LS bits shifted off the bottom are lost.
91 */
92void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
93 unsigned shift, unsigned nbits)
94{
95 unsigned k, lim = BITS_TO_LONGS(nbits);
96 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
97 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
98 for (k = 0; off + k < lim; ++k) {
99 unsigned long upper, lower;
100
101 /*
102 * If shift is not word aligned, take lower rem bits of
103 * word above and make them the top rem bits of result.
104 */
105 if (!rem || off + k + 1 >= lim)
106 upper = 0;
107 else {
108 upper = src[off + k + 1];
109 if (off + k + 1 == lim - 1)
110 upper &= mask;
111 upper <<= (BITS_PER_LONG - rem);
112 }
113 lower = src[off + k];
114 if (off + k == lim - 1)
115 lower &= mask;
116 lower >>= rem;
117 dst[k] = lower | upper;
118 }
119 if (off)
120 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
121}
122EXPORT_SYMBOL(__bitmap_shift_right);
123
124
125/**
126 * __bitmap_shift_left - logical left shift of the bits in a bitmap
127 * @dst : destination bitmap
128 * @src : source bitmap
129 * @shift : shift by this many bits
130 * @nbits : bitmap size, in bits
131 *
132 * Shifting left (multiplying) means moving bits in the LS -> MS
133 * direction. Zeros are fed into the vacated LS bit positions
134 * and those MS bits shifted off the top are lost.
135 */
136
137void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
138 unsigned int shift, unsigned int nbits)
139{
140 int k;
141 unsigned int lim = BITS_TO_LONGS(nbits);
142 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
143 for (k = lim - off - 1; k >= 0; --k) {
144 unsigned long upper, lower;
145
146 /*
147 * If shift is not word aligned, take upper rem bits of
148 * word below and make them the bottom rem bits of result.
149 */
150 if (rem && k > 0)
151 lower = src[k - 1] >> (BITS_PER_LONG - rem);
152 else
153 lower = 0;
154 upper = src[k] << rem;
155 dst[k + off] = lower | upper;
156 }
157 if (off)
158 memset(dst, 0, off*sizeof(unsigned long));
159}
160EXPORT_SYMBOL(__bitmap_shift_left);
161
162/**
163 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
164 * @dst: destination bitmap, might overlap with src
165 * @src: source bitmap
166 * @first: start bit of region to be removed
167 * @cut: number of bits to remove
168 * @nbits: bitmap size, in bits
169 *
170 * Set the n-th bit of @dst iff the n-th bit of @src is set and
171 * n is less than @first, or the m-th bit of @src is set for any
172 * m such that @first <= n < nbits, and m = n + @cut.
173 *
174 * In pictures, example for a big-endian 32-bit architecture:
175 *
176 * The @src bitmap is::
177 *
178 * 31 63
179 * | |
180 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101
181 * | | | |
182 * 16 14 0 32
183 *
184 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
185 *
186 * 31 63
187 * | |
188 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010
189 * | | |
190 * 14 (bit 17 0 32
191 * from @src)
192 *
193 * Note that @dst and @src might overlap partially or entirely.
194 *
195 * This is implemented in the obvious way, with a shift and carry
196 * step for each moved bit. Optimisation is left as an exercise
197 * for the compiler.
198 */
199void bitmap_cut(unsigned long *dst, const unsigned long *src,
200 unsigned int first, unsigned int cut, unsigned int nbits)
201{
202 unsigned int len = BITS_TO_LONGS(nbits);
203 unsigned long keep = 0, carry;
204 int i;
205
206 if (first % BITS_PER_LONG) {
207 keep = src[first / BITS_PER_LONG] &
208 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
209 }
210
211 memmove(dst, src, len * sizeof(*dst));
212
213 while (cut--) {
214 for (i = first / BITS_PER_LONG; i < len; i++) {
215 if (i < len - 1)
216 carry = dst[i + 1] & 1UL;
217 else
218 carry = 0;
219
220 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
221 }
222 }
223
224 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
225 dst[first / BITS_PER_LONG] |= keep;
226}
227EXPORT_SYMBOL(bitmap_cut);
228
229bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
230 const unsigned long *bitmap2, unsigned int bits)
231{
232 unsigned int k;
233 unsigned int lim = bits/BITS_PER_LONG;
234 unsigned long result = 0;
235
236 for (k = 0; k < lim; k++)
237 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
238 if (bits % BITS_PER_LONG)
239 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
240 BITMAP_LAST_WORD_MASK(bits));
241 return result != 0;
242}
243EXPORT_SYMBOL(__bitmap_and);
244
245void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
246 const unsigned long *bitmap2, unsigned int bits)
247{
248 unsigned int k;
249 unsigned int nr = BITS_TO_LONGS(bits);
250
251 for (k = 0; k < nr; k++)
252 dst[k] = bitmap1[k] | bitmap2[k];
253}
254EXPORT_SYMBOL(__bitmap_or);
255
256void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
257 const unsigned long *bitmap2, unsigned int bits)
258{
259 unsigned int k;
260 unsigned int nr = BITS_TO_LONGS(bits);
261
262 for (k = 0; k < nr; k++)
263 dst[k] = bitmap1[k] ^ bitmap2[k];
264}
265EXPORT_SYMBOL(__bitmap_xor);
266
267bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
268 const unsigned long *bitmap2, unsigned int bits)
269{
270 unsigned int k;
271 unsigned int lim = bits/BITS_PER_LONG;
272 unsigned long result = 0;
273
274 for (k = 0; k < lim; k++)
275 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
276 if (bits % BITS_PER_LONG)
277 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
278 BITMAP_LAST_WORD_MASK(bits));
279 return result != 0;
280}
281EXPORT_SYMBOL(__bitmap_andnot);
282
283void __bitmap_replace(unsigned long *dst,
284 const unsigned long *old, const unsigned long *new,
285 const unsigned long *mask, unsigned int nbits)
286{
287 unsigned int k;
288 unsigned int nr = BITS_TO_LONGS(nbits);
289
290 for (k = 0; k < nr; k++)
291 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
292}
293EXPORT_SYMBOL(__bitmap_replace);
294
295bool __bitmap_intersects(const unsigned long *bitmap1,
296 const unsigned long *bitmap2, unsigned int bits)
297{
298 unsigned int k, lim = bits/BITS_PER_LONG;
299 for (k = 0; k < lim; ++k)
300 if (bitmap1[k] & bitmap2[k])
301 return true;
302
303 if (bits % BITS_PER_LONG)
304 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
305 return true;
306 return false;
307}
308EXPORT_SYMBOL(__bitmap_intersects);
309
310bool __bitmap_subset(const unsigned long *bitmap1,
311 const unsigned long *bitmap2, unsigned int bits)
312{
313 unsigned int k, lim = bits/BITS_PER_LONG;
314 for (k = 0; k < lim; ++k)
315 if (bitmap1[k] & ~bitmap2[k])
316 return false;
317
318 if (bits % BITS_PER_LONG)
319 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
320 return false;
321 return true;
322}
323EXPORT_SYMBOL(__bitmap_subset);
324
325#define BITMAP_WEIGHT(FETCH, bits) \
326({ \
327 unsigned int __bits = (bits), idx, w = 0; \
328 \
329 for (idx = 0; idx < __bits / BITS_PER_LONG; idx++) \
330 w += hweight_long(FETCH); \
331 \
332 if (__bits % BITS_PER_LONG) \
333 w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits)); \
334 \
335 w; \
336})
337
338unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
339{
340 return BITMAP_WEIGHT(bitmap[idx], bits);
341}
342EXPORT_SYMBOL(__bitmap_weight);
343
344unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
345 const unsigned long *bitmap2, unsigned int bits)
346{
347 return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
348}
349EXPORT_SYMBOL(__bitmap_weight_and);
350
351void __bitmap_set(unsigned long *map, unsigned int start, int len)
352{
353 unsigned long *p = map + BIT_WORD(start);
354 const unsigned int size = start + len;
355 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
356 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
357
358 while (len - bits_to_set >= 0) {
359 *p |= mask_to_set;
360 len -= bits_to_set;
361 bits_to_set = BITS_PER_LONG;
362 mask_to_set = ~0UL;
363 p++;
364 }
365 if (len) {
366 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
367 *p |= mask_to_set;
368 }
369}
370EXPORT_SYMBOL(__bitmap_set);
371
372void __bitmap_clear(unsigned long *map, unsigned int start, int len)
373{
374 unsigned long *p = map + BIT_WORD(start);
375 const unsigned int size = start + len;
376 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
377 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
378
379 while (len - bits_to_clear >= 0) {
380 *p &= ~mask_to_clear;
381 len -= bits_to_clear;
382 bits_to_clear = BITS_PER_LONG;
383 mask_to_clear = ~0UL;
384 p++;
385 }
386 if (len) {
387 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
388 *p &= ~mask_to_clear;
389 }
390}
391EXPORT_SYMBOL(__bitmap_clear);
392
393/**
394 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
395 * @map: The address to base the search on
396 * @size: The bitmap size in bits
397 * @start: The bitnumber to start searching at
398 * @nr: The number of zeroed bits we're looking for
399 * @align_mask: Alignment mask for zero area
400 * @align_offset: Alignment offset for zero area.
401 *
402 * The @align_mask should be one less than a power of 2; the effect is that
403 * the bit offset of all zero areas this function finds plus @align_offset
404 * is multiple of that power of 2.
405 */
406unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
407 unsigned long size,
408 unsigned long start,
409 unsigned int nr,
410 unsigned long align_mask,
411 unsigned long align_offset)
412{
413 unsigned long index, end, i;
414again:
415 index = find_next_zero_bit(map, size, start);
416
417 /* Align allocation */
418 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
419
420 end = index + nr;
421 if (end > size)
422 return end;
423 i = find_next_bit(map, end, index);
424 if (i < end) {
425 start = i + 1;
426 goto again;
427 }
428 return index;
429}
430EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
431
432/**
433 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
434 * @buf: pointer to a bitmap
435 * @pos: a bit position in @buf (0 <= @pos < @nbits)
436 * @nbits: number of valid bit positions in @buf
437 *
438 * Map the bit at position @pos in @buf (of length @nbits) to the
439 * ordinal of which set bit it is. If it is not set or if @pos
440 * is not a valid bit position, map to -1.
441 *
442 * If for example, just bits 4 through 7 are set in @buf, then @pos
443 * values 4 through 7 will get mapped to 0 through 3, respectively,
444 * and other @pos values will get mapped to -1. When @pos value 7
445 * gets mapped to (returns) @ord value 3 in this example, that means
446 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
447 *
448 * The bit positions 0 through @bits are valid positions in @buf.
449 */
450static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
451{
452 if (pos >= nbits || !test_bit(pos, buf))
453 return -1;
454
455 return bitmap_weight(buf, pos);
456}
457
458/**
459 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
460 * @dst: remapped result
461 * @src: subset to be remapped
462 * @old: defines domain of map
463 * @new: defines range of map
464 * @nbits: number of bits in each of these bitmaps
465 *
466 * Let @old and @new define a mapping of bit positions, such that
467 * whatever position is held by the n-th set bit in @old is mapped
468 * to the n-th set bit in @new. In the more general case, allowing
469 * for the possibility that the weight 'w' of @new is less than the
470 * weight of @old, map the position of the n-th set bit in @old to
471 * the position of the m-th set bit in @new, where m == n % w.
472 *
473 * If either of the @old and @new bitmaps are empty, or if @src and
474 * @dst point to the same location, then this routine copies @src
475 * to @dst.
476 *
477 * The positions of unset bits in @old are mapped to themselves
478 * (the identity map).
479 *
480 * Apply the above specified mapping to @src, placing the result in
481 * @dst, clearing any bits previously set in @dst.
482 *
483 * For example, lets say that @old has bits 4 through 7 set, and
484 * @new has bits 12 through 15 set. This defines the mapping of bit
485 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
486 * bit positions unchanged. So if say @src comes into this routine
487 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
488 * 13 and 15 set.
489 */
490void bitmap_remap(unsigned long *dst, const unsigned long *src,
491 const unsigned long *old, const unsigned long *new,
492 unsigned int nbits)
493{
494 unsigned int oldbit, w;
495
496 if (dst == src) /* following doesn't handle inplace remaps */
497 return;
498 bitmap_zero(dst, nbits);
499
500 w = bitmap_weight(new, nbits);
501 for_each_set_bit(oldbit, src, nbits) {
502 int n = bitmap_pos_to_ord(old, oldbit, nbits);
503
504 if (n < 0 || w == 0)
505 set_bit(oldbit, dst); /* identity map */
506 else
507 set_bit(find_nth_bit(new, nbits, n % w), dst);
508 }
509}
510EXPORT_SYMBOL(bitmap_remap);
511
512/**
513 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
514 * @oldbit: bit position to be mapped
515 * @old: defines domain of map
516 * @new: defines range of map
517 * @bits: number of bits in each of these bitmaps
518 *
519 * Let @old and @new define a mapping of bit positions, such that
520 * whatever position is held by the n-th set bit in @old is mapped
521 * to the n-th set bit in @new. In the more general case, allowing
522 * for the possibility that the weight 'w' of @new is less than the
523 * weight of @old, map the position of the n-th set bit in @old to
524 * the position of the m-th set bit in @new, where m == n % w.
525 *
526 * The positions of unset bits in @old are mapped to themselves
527 * (the identity map).
528 *
529 * Apply the above specified mapping to bit position @oldbit, returning
530 * the new bit position.
531 *
532 * For example, lets say that @old has bits 4 through 7 set, and
533 * @new has bits 12 through 15 set. This defines the mapping of bit
534 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
535 * bit positions unchanged. So if say @oldbit is 5, then this routine
536 * returns 13.
537 */
538int bitmap_bitremap(int oldbit, const unsigned long *old,
539 const unsigned long *new, int bits)
540{
541 int w = bitmap_weight(new, bits);
542 int n = bitmap_pos_to_ord(old, oldbit, bits);
543 if (n < 0 || w == 0)
544 return oldbit;
545 else
546 return find_nth_bit(new, bits, n % w);
547}
548EXPORT_SYMBOL(bitmap_bitremap);
549
550#ifdef CONFIG_NUMA
551/**
552 * bitmap_onto - translate one bitmap relative to another
553 * @dst: resulting translated bitmap
554 * @orig: original untranslated bitmap
555 * @relmap: bitmap relative to which translated
556 * @bits: number of bits in each of these bitmaps
557 *
558 * Set the n-th bit of @dst iff there exists some m such that the
559 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
560 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
561 * (If you understood the previous sentence the first time your
562 * read it, you're overqualified for your current job.)
563 *
564 * In other words, @orig is mapped onto (surjectively) @dst,
565 * using the map { <n, m> | the n-th bit of @relmap is the
566 * m-th set bit of @relmap }.
567 *
568 * Any set bits in @orig above bit number W, where W is the
569 * weight of (number of set bits in) @relmap are mapped nowhere.
570 * In particular, if for all bits m set in @orig, m >= W, then
571 * @dst will end up empty. In situations where the possibility
572 * of such an empty result is not desired, one way to avoid it is
573 * to use the bitmap_fold() operator, below, to first fold the
574 * @orig bitmap over itself so that all its set bits x are in the
575 * range 0 <= x < W. The bitmap_fold() operator does this by
576 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
577 *
578 * Example [1] for bitmap_onto():
579 * Let's say @relmap has bits 30-39 set, and @orig has bits
580 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
581 * @dst will have bits 31, 33, 35, 37 and 39 set.
582 *
583 * When bit 0 is set in @orig, it means turn on the bit in
584 * @dst corresponding to whatever is the first bit (if any)
585 * that is turned on in @relmap. Since bit 0 was off in the
586 * above example, we leave off that bit (bit 30) in @dst.
587 *
588 * When bit 1 is set in @orig (as in the above example), it
589 * means turn on the bit in @dst corresponding to whatever
590 * is the second bit that is turned on in @relmap. The second
591 * bit in @relmap that was turned on in the above example was
592 * bit 31, so we turned on bit 31 in @dst.
593 *
594 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
595 * because they were the 4th, 6th, 8th and 10th set bits
596 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
597 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
598 *
599 * When bit 11 is set in @orig, it means turn on the bit in
600 * @dst corresponding to whatever is the twelfth bit that is
601 * turned on in @relmap. In the above example, there were
602 * only ten bits turned on in @relmap (30..39), so that bit
603 * 11 was set in @orig had no affect on @dst.
604 *
605 * Example [2] for bitmap_fold() + bitmap_onto():
606 * Let's say @relmap has these ten bits set::
607 *
608 * 40 41 42 43 45 48 53 61 74 95
609 *
610 * (for the curious, that's 40 plus the first ten terms of the
611 * Fibonacci sequence.)
612 *
613 * Further lets say we use the following code, invoking
614 * bitmap_fold() then bitmap_onto, as suggested above to
615 * avoid the possibility of an empty @dst result::
616 *
617 * unsigned long *tmp; // a temporary bitmap's bits
618 *
619 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
620 * bitmap_onto(dst, tmp, relmap, bits);
621 *
622 * Then this table shows what various values of @dst would be, for
623 * various @orig's. I list the zero-based positions of each set bit.
624 * The tmp column shows the intermediate result, as computed by
625 * using bitmap_fold() to fold the @orig bitmap modulo ten
626 * (the weight of @relmap):
627 *
628 * =============== ============== =================
629 * @orig tmp @dst
630 * 0 0 40
631 * 1 1 41
632 * 9 9 95
633 * 10 0 40 [#f1]_
634 * 1 3 5 7 1 3 5 7 41 43 48 61
635 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
636 * 0 9 18 27 0 9 8 7 40 61 74 95
637 * 0 10 20 30 0 40
638 * 0 11 22 33 0 1 2 3 40 41 42 43
639 * 0 12 24 36 0 2 4 6 40 42 45 53
640 * 78 102 211 1 2 8 41 42 74 [#f1]_
641 * =============== ============== =================
642 *
643 * .. [#f1]
644 *
645 * For these marked lines, if we hadn't first done bitmap_fold()
646 * into tmp, then the @dst result would have been empty.
647 *
648 * If either of @orig or @relmap is empty (no set bits), then @dst
649 * will be returned empty.
650 *
651 * If (as explained above) the only set bits in @orig are in positions
652 * m where m >= W, (where W is the weight of @relmap) then @dst will
653 * once again be returned empty.
654 *
655 * All bits in @dst not set by the above rule are cleared.
656 */
657void bitmap_onto(unsigned long *dst, const unsigned long *orig,
658 const unsigned long *relmap, unsigned int bits)
659{
660 unsigned int n, m; /* same meaning as in above comment */
661
662 if (dst == orig) /* following doesn't handle inplace mappings */
663 return;
664 bitmap_zero(dst, bits);
665
666 /*
667 * The following code is a more efficient, but less
668 * obvious, equivalent to the loop:
669 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
670 * n = find_nth_bit(orig, bits, m);
671 * if (test_bit(m, orig))
672 * set_bit(n, dst);
673 * }
674 */
675
676 m = 0;
677 for_each_set_bit(n, relmap, bits) {
678 /* m == bitmap_pos_to_ord(relmap, n, bits) */
679 if (test_bit(m, orig))
680 set_bit(n, dst);
681 m++;
682 }
683}
684
685/**
686 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
687 * @dst: resulting smaller bitmap
688 * @orig: original larger bitmap
689 * @sz: specified size
690 * @nbits: number of bits in each of these bitmaps
691 *
692 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
693 * Clear all other bits in @dst. See further the comment and
694 * Example [2] for bitmap_onto() for why and how to use this.
695 */
696void bitmap_fold(unsigned long *dst, const unsigned long *orig,
697 unsigned int sz, unsigned int nbits)
698{
699 unsigned int oldbit;
700
701 if (dst == orig) /* following doesn't handle inplace mappings */
702 return;
703 bitmap_zero(dst, nbits);
704
705 for_each_set_bit(oldbit, orig, nbits)
706 set_bit(oldbit % sz, dst);
707}
708#endif /* CONFIG_NUMA */
709
710unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
711{
712 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
713 flags);
714}
715EXPORT_SYMBOL(bitmap_alloc);
716
717unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
718{
719 return bitmap_alloc(nbits, flags | __GFP_ZERO);
720}
721EXPORT_SYMBOL(bitmap_zalloc);
722
723unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
724{
725 return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
726 flags, node);
727}
728EXPORT_SYMBOL(bitmap_alloc_node);
729
730unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
731{
732 return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
733}
734EXPORT_SYMBOL(bitmap_zalloc_node);
735
736void bitmap_free(const unsigned long *bitmap)
737{
738 kfree(bitmap);
739}
740EXPORT_SYMBOL(bitmap_free);
741
742static void devm_bitmap_free(void *data)
743{
744 unsigned long *bitmap = data;
745
746 bitmap_free(bitmap);
747}
748
749unsigned long *devm_bitmap_alloc(struct device *dev,
750 unsigned int nbits, gfp_t flags)
751{
752 unsigned long *bitmap;
753 int ret;
754
755 bitmap = bitmap_alloc(nbits, flags);
756 if (!bitmap)
757 return NULL;
758
759 ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
760 if (ret)
761 return NULL;
762
763 return bitmap;
764}
765EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
766
767unsigned long *devm_bitmap_zalloc(struct device *dev,
768 unsigned int nbits, gfp_t flags)
769{
770 return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
771}
772EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
773
774#if BITS_PER_LONG == 64
775/**
776 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
777 * @bitmap: array of unsigned longs, the destination bitmap
778 * @buf: array of u32 (in host byte order), the source bitmap
779 * @nbits: number of bits in @bitmap
780 */
781void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
782{
783 unsigned int i, halfwords;
784
785 halfwords = DIV_ROUND_UP(nbits, 32);
786 for (i = 0; i < halfwords; i++) {
787 bitmap[i/2] = (unsigned long) buf[i];
788 if (++i < halfwords)
789 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
790 }
791
792 /* Clear tail bits in last word beyond nbits. */
793 if (nbits % BITS_PER_LONG)
794 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
795}
796EXPORT_SYMBOL(bitmap_from_arr32);
797
798/**
799 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
800 * @buf: array of u32 (in host byte order), the dest bitmap
801 * @bitmap: array of unsigned longs, the source bitmap
802 * @nbits: number of bits in @bitmap
803 */
804void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
805{
806 unsigned int i, halfwords;
807
808 halfwords = DIV_ROUND_UP(nbits, 32);
809 for (i = 0; i < halfwords; i++) {
810 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
811 if (++i < halfwords)
812 buf[i] = (u32) (bitmap[i/2] >> 32);
813 }
814
815 /* Clear tail bits in last element of array beyond nbits. */
816 if (nbits % BITS_PER_LONG)
817 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
818}
819EXPORT_SYMBOL(bitmap_to_arr32);
820#endif
821
822#if BITS_PER_LONG == 32
823/**
824 * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
825 * @bitmap: array of unsigned longs, the destination bitmap
826 * @buf: array of u64 (in host byte order), the source bitmap
827 * @nbits: number of bits in @bitmap
828 */
829void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
830{
831 int n;
832
833 for (n = nbits; n > 0; n -= 64) {
834 u64 val = *buf++;
835
836 *bitmap++ = val;
837 if (n > 32)
838 *bitmap++ = val >> 32;
839 }
840
841 /*
842 * Clear tail bits in the last word beyond nbits.
843 *
844 * Negative index is OK because here we point to the word next
845 * to the last word of the bitmap, except for nbits == 0, which
846 * is tested implicitly.
847 */
848 if (nbits % BITS_PER_LONG)
849 bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
850}
851EXPORT_SYMBOL(bitmap_from_arr64);
852
853/**
854 * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
855 * @buf: array of u64 (in host byte order), the dest bitmap
856 * @bitmap: array of unsigned longs, the source bitmap
857 * @nbits: number of bits in @bitmap
858 */
859void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
860{
861 const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
862
863 while (bitmap < end) {
864 *buf = *bitmap++;
865 if (bitmap < end)
866 *buf |= (u64)(*bitmap++) << 32;
867 buf++;
868 }
869
870 /* Clear tail bits in the last element of array beyond nbits. */
871 if (nbits % 64)
872 buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
873}
874EXPORT_SYMBOL(bitmap_to_arr64);
875#endif
1/*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8#include <linux/export.h>
9#include <linux/thread_info.h>
10#include <linux/ctype.h>
11#include <linux/errno.h>
12#include <linux/bitmap.h>
13#include <linux/bitops.h>
14#include <linux/bug.h>
15#include <linux/kernel.h>
16#include <linux/string.h>
17
18#include <asm/page.h>
19#include <asm/uaccess.h>
20
21/*
22 * bitmaps provide an array of bits, implemented using an an
23 * array of unsigned longs. The number of valid bits in a
24 * given bitmap does _not_ need to be an exact multiple of
25 * BITS_PER_LONG.
26 *
27 * The possible unused bits in the last, partially used word
28 * of a bitmap are 'don't care'. The implementation makes
29 * no particular effort to keep them zero. It ensures that
30 * their value will not affect the results of any operation.
31 * The bitmap operations that return Boolean (bitmap_empty,
32 * for example) or scalar (bitmap_weight, for example) results
33 * carefully filter out these unused bits from impacting their
34 * results.
35 *
36 * These operations actually hold to a slightly stronger rule:
37 * if you don't input any bitmaps to these ops that have some
38 * unused bits set, then they won't output any set unused bits
39 * in output bitmaps.
40 *
41 * The byte ordering of bitmaps is more natural on little
42 * endian architectures. See the big-endian headers
43 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
44 * for the best explanations of this ordering.
45 */
46
47int __bitmap_equal(const unsigned long *bitmap1,
48 const unsigned long *bitmap2, unsigned int bits)
49{
50 unsigned int k, lim = bits/BITS_PER_LONG;
51 for (k = 0; k < lim; ++k)
52 if (bitmap1[k] != bitmap2[k])
53 return 0;
54
55 if (bits % BITS_PER_LONG)
56 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
57 return 0;
58
59 return 1;
60}
61EXPORT_SYMBOL(__bitmap_equal);
62
63void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
64{
65 unsigned int k, lim = bits/BITS_PER_LONG;
66 for (k = 0; k < lim; ++k)
67 dst[k] = ~src[k];
68
69 if (bits % BITS_PER_LONG)
70 dst[k] = ~src[k];
71}
72EXPORT_SYMBOL(__bitmap_complement);
73
74/**
75 * __bitmap_shift_right - logical right shift of the bits in a bitmap
76 * @dst : destination bitmap
77 * @src : source bitmap
78 * @shift : shift by this many bits
79 * @nbits : bitmap size, in bits
80 *
81 * Shifting right (dividing) means moving bits in the MS -> LS bit
82 * direction. Zeros are fed into the vacated MS positions and the
83 * LS bits shifted off the bottom are lost.
84 */
85void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
86 unsigned shift, unsigned nbits)
87{
88 unsigned k, lim = BITS_TO_LONGS(nbits);
89 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
90 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
91 for (k = 0; off + k < lim; ++k) {
92 unsigned long upper, lower;
93
94 /*
95 * If shift is not word aligned, take lower rem bits of
96 * word above and make them the top rem bits of result.
97 */
98 if (!rem || off + k + 1 >= lim)
99 upper = 0;
100 else {
101 upper = src[off + k + 1];
102 if (off + k + 1 == lim - 1)
103 upper &= mask;
104 upper <<= (BITS_PER_LONG - rem);
105 }
106 lower = src[off + k];
107 if (off + k == lim - 1)
108 lower &= mask;
109 lower >>= rem;
110 dst[k] = lower | upper;
111 }
112 if (off)
113 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
114}
115EXPORT_SYMBOL(__bitmap_shift_right);
116
117
118/**
119 * __bitmap_shift_left - logical left shift of the bits in a bitmap
120 * @dst : destination bitmap
121 * @src : source bitmap
122 * @shift : shift by this many bits
123 * @nbits : bitmap size, in bits
124 *
125 * Shifting left (multiplying) means moving bits in the LS -> MS
126 * direction. Zeros are fed into the vacated LS bit positions
127 * and those MS bits shifted off the top are lost.
128 */
129
130void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
131 unsigned int shift, unsigned int nbits)
132{
133 int k;
134 unsigned int lim = BITS_TO_LONGS(nbits);
135 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
136 for (k = lim - off - 1; k >= 0; --k) {
137 unsigned long upper, lower;
138
139 /*
140 * If shift is not word aligned, take upper rem bits of
141 * word below and make them the bottom rem bits of result.
142 */
143 if (rem && k > 0)
144 lower = src[k - 1] >> (BITS_PER_LONG - rem);
145 else
146 lower = 0;
147 upper = src[k] << rem;
148 dst[k + off] = lower | upper;
149 }
150 if (off)
151 memset(dst, 0, off*sizeof(unsigned long));
152}
153EXPORT_SYMBOL(__bitmap_shift_left);
154
155int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
156 const unsigned long *bitmap2, unsigned int bits)
157{
158 unsigned int k;
159 unsigned int lim = bits/BITS_PER_LONG;
160 unsigned long result = 0;
161
162 for (k = 0; k < lim; k++)
163 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
164 if (bits % BITS_PER_LONG)
165 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
166 BITMAP_LAST_WORD_MASK(bits));
167 return result != 0;
168}
169EXPORT_SYMBOL(__bitmap_and);
170
171void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
172 const unsigned long *bitmap2, unsigned int bits)
173{
174 unsigned int k;
175 unsigned int nr = BITS_TO_LONGS(bits);
176
177 for (k = 0; k < nr; k++)
178 dst[k] = bitmap1[k] | bitmap2[k];
179}
180EXPORT_SYMBOL(__bitmap_or);
181
182void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
183 const unsigned long *bitmap2, unsigned int bits)
184{
185 unsigned int k;
186 unsigned int nr = BITS_TO_LONGS(bits);
187
188 for (k = 0; k < nr; k++)
189 dst[k] = bitmap1[k] ^ bitmap2[k];
190}
191EXPORT_SYMBOL(__bitmap_xor);
192
193int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
194 const unsigned long *bitmap2, unsigned int bits)
195{
196 unsigned int k;
197 unsigned int lim = bits/BITS_PER_LONG;
198 unsigned long result = 0;
199
200 for (k = 0; k < lim; k++)
201 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
202 if (bits % BITS_PER_LONG)
203 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
204 BITMAP_LAST_WORD_MASK(bits));
205 return result != 0;
206}
207EXPORT_SYMBOL(__bitmap_andnot);
208
209int __bitmap_intersects(const unsigned long *bitmap1,
210 const unsigned long *bitmap2, unsigned int bits)
211{
212 unsigned int k, lim = bits/BITS_PER_LONG;
213 for (k = 0; k < lim; ++k)
214 if (bitmap1[k] & bitmap2[k])
215 return 1;
216
217 if (bits % BITS_PER_LONG)
218 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
219 return 1;
220 return 0;
221}
222EXPORT_SYMBOL(__bitmap_intersects);
223
224int __bitmap_subset(const unsigned long *bitmap1,
225 const unsigned long *bitmap2, unsigned int bits)
226{
227 unsigned int k, lim = bits/BITS_PER_LONG;
228 for (k = 0; k < lim; ++k)
229 if (bitmap1[k] & ~bitmap2[k])
230 return 0;
231
232 if (bits % BITS_PER_LONG)
233 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
234 return 0;
235 return 1;
236}
237EXPORT_SYMBOL(__bitmap_subset);
238
239int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
240{
241 unsigned int k, lim = bits/BITS_PER_LONG;
242 int w = 0;
243
244 for (k = 0; k < lim; k++)
245 w += hweight_long(bitmap[k]);
246
247 if (bits % BITS_PER_LONG)
248 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
249
250 return w;
251}
252EXPORT_SYMBOL(__bitmap_weight);
253
254void bitmap_set(unsigned long *map, unsigned int start, int len)
255{
256 unsigned long *p = map + BIT_WORD(start);
257 const unsigned int size = start + len;
258 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
259 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
260
261 while (len - bits_to_set >= 0) {
262 *p |= mask_to_set;
263 len -= bits_to_set;
264 bits_to_set = BITS_PER_LONG;
265 mask_to_set = ~0UL;
266 p++;
267 }
268 if (len) {
269 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
270 *p |= mask_to_set;
271 }
272}
273EXPORT_SYMBOL(bitmap_set);
274
275void bitmap_clear(unsigned long *map, unsigned int start, int len)
276{
277 unsigned long *p = map + BIT_WORD(start);
278 const unsigned int size = start + len;
279 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
280 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
281
282 while (len - bits_to_clear >= 0) {
283 *p &= ~mask_to_clear;
284 len -= bits_to_clear;
285 bits_to_clear = BITS_PER_LONG;
286 mask_to_clear = ~0UL;
287 p++;
288 }
289 if (len) {
290 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
291 *p &= ~mask_to_clear;
292 }
293}
294EXPORT_SYMBOL(bitmap_clear);
295
296/**
297 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
298 * @map: The address to base the search on
299 * @size: The bitmap size in bits
300 * @start: The bitnumber to start searching at
301 * @nr: The number of zeroed bits we're looking for
302 * @align_mask: Alignment mask for zero area
303 * @align_offset: Alignment offset for zero area.
304 *
305 * The @align_mask should be one less than a power of 2; the effect is that
306 * the bit offset of all zero areas this function finds plus @align_offset
307 * is multiple of that power of 2.
308 */
309unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
310 unsigned long size,
311 unsigned long start,
312 unsigned int nr,
313 unsigned long align_mask,
314 unsigned long align_offset)
315{
316 unsigned long index, end, i;
317again:
318 index = find_next_zero_bit(map, size, start);
319
320 /* Align allocation */
321 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
322
323 end = index + nr;
324 if (end > size)
325 return end;
326 i = find_next_bit(map, end, index);
327 if (i < end) {
328 start = i + 1;
329 goto again;
330 }
331 return index;
332}
333EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
334
335/*
336 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
337 * second version by Paul Jackson, third by Joe Korty.
338 */
339
340#define CHUNKSZ 32
341#define nbits_to_hold_value(val) fls(val)
342#define BASEDEC 10 /* fancier cpuset lists input in decimal */
343
344/**
345 * __bitmap_parse - convert an ASCII hex string into a bitmap.
346 * @buf: pointer to buffer containing string.
347 * @buflen: buffer size in bytes. If string is smaller than this
348 * then it must be terminated with a \0.
349 * @is_user: location of buffer, 0 indicates kernel space
350 * @maskp: pointer to bitmap array that will contain result.
351 * @nmaskbits: size of bitmap, in bits.
352 *
353 * Commas group hex digits into chunks. Each chunk defines exactly 32
354 * bits of the resultant bitmask. No chunk may specify a value larger
355 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
356 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
357 * characters and for grouping errors such as "1,,5", ",44", "," and "".
358 * Leading and trailing whitespace accepted, but not embedded whitespace.
359 */
360int __bitmap_parse(const char *buf, unsigned int buflen,
361 int is_user, unsigned long *maskp,
362 int nmaskbits)
363{
364 int c, old_c, totaldigits, ndigits, nchunks, nbits;
365 u32 chunk;
366 const char __user __force *ubuf = (const char __user __force *)buf;
367
368 bitmap_zero(maskp, nmaskbits);
369
370 nchunks = nbits = totaldigits = c = 0;
371 do {
372 chunk = 0;
373 ndigits = totaldigits;
374
375 /* Get the next chunk of the bitmap */
376 while (buflen) {
377 old_c = c;
378 if (is_user) {
379 if (__get_user(c, ubuf++))
380 return -EFAULT;
381 }
382 else
383 c = *buf++;
384 buflen--;
385 if (isspace(c))
386 continue;
387
388 /*
389 * If the last character was a space and the current
390 * character isn't '\0', we've got embedded whitespace.
391 * This is a no-no, so throw an error.
392 */
393 if (totaldigits && c && isspace(old_c))
394 return -EINVAL;
395
396 /* A '\0' or a ',' signal the end of the chunk */
397 if (c == '\0' || c == ',')
398 break;
399
400 if (!isxdigit(c))
401 return -EINVAL;
402
403 /*
404 * Make sure there are at least 4 free bits in 'chunk'.
405 * If not, this hexdigit will overflow 'chunk', so
406 * throw an error.
407 */
408 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
409 return -EOVERFLOW;
410
411 chunk = (chunk << 4) | hex_to_bin(c);
412 totaldigits++;
413 }
414 if (ndigits == totaldigits)
415 return -EINVAL;
416 if (nchunks == 0 && chunk == 0)
417 continue;
418
419 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
420 *maskp |= chunk;
421 nchunks++;
422 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
423 if (nbits > nmaskbits)
424 return -EOVERFLOW;
425 } while (buflen && c == ',');
426
427 return 0;
428}
429EXPORT_SYMBOL(__bitmap_parse);
430
431/**
432 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
433 *
434 * @ubuf: pointer to user buffer containing string.
435 * @ulen: buffer size in bytes. If string is smaller than this
436 * then it must be terminated with a \0.
437 * @maskp: pointer to bitmap array that will contain result.
438 * @nmaskbits: size of bitmap, in bits.
439 *
440 * Wrapper for __bitmap_parse(), providing it with user buffer.
441 *
442 * We cannot have this as an inline function in bitmap.h because it needs
443 * linux/uaccess.h to get the access_ok() declaration and this causes
444 * cyclic dependencies.
445 */
446int bitmap_parse_user(const char __user *ubuf,
447 unsigned int ulen, unsigned long *maskp,
448 int nmaskbits)
449{
450 if (!access_ok(VERIFY_READ, ubuf, ulen))
451 return -EFAULT;
452 return __bitmap_parse((const char __force *)ubuf,
453 ulen, 1, maskp, nmaskbits);
454
455}
456EXPORT_SYMBOL(bitmap_parse_user);
457
458/**
459 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
460 * @list: indicates whether the bitmap must be list
461 * @buf: page aligned buffer into which string is placed
462 * @maskp: pointer to bitmap to convert
463 * @nmaskbits: size of bitmap, in bits
464 *
465 * Output format is a comma-separated list of decimal numbers and
466 * ranges if list is specified or hex digits grouped into comma-separated
467 * sets of 8 digits/set. Returns the number of characters written to buf.
468 *
469 * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
470 * sufficient storage remains at @buf to accommodate the
471 * bitmap_print_to_pagebuf() output.
472 */
473int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
474 int nmaskbits)
475{
476 ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
477 int n = 0;
478
479 if (len > 1)
480 n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
481 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
482 return n;
483}
484EXPORT_SYMBOL(bitmap_print_to_pagebuf);
485
486/**
487 * __bitmap_parselist - convert list format ASCII string to bitmap
488 * @buf: read nul-terminated user string from this buffer
489 * @buflen: buffer size in bytes. If string is smaller than this
490 * then it must be terminated with a \0.
491 * @is_user: location of buffer, 0 indicates kernel space
492 * @maskp: write resulting mask here
493 * @nmaskbits: number of bits in mask to be written
494 *
495 * Input format is a comma-separated list of decimal numbers and
496 * ranges. Consecutively set bits are shown as two hyphen-separated
497 * decimal numbers, the smallest and largest bit numbers set in
498 * the range.
499 *
500 * Returns 0 on success, -errno on invalid input strings.
501 * Error values:
502 * %-EINVAL: second number in range smaller than first
503 * %-EINVAL: invalid character in string
504 * %-ERANGE: bit number specified too large for mask
505 */
506static int __bitmap_parselist(const char *buf, unsigned int buflen,
507 int is_user, unsigned long *maskp,
508 int nmaskbits)
509{
510 unsigned a, b;
511 int c, old_c, totaldigits, ndigits;
512 const char __user __force *ubuf = (const char __user __force *)buf;
513 int at_start, in_range;
514
515 totaldigits = c = 0;
516 bitmap_zero(maskp, nmaskbits);
517 do {
518 at_start = 1;
519 in_range = 0;
520 a = b = 0;
521 ndigits = totaldigits;
522
523 /* Get the next cpu# or a range of cpu#'s */
524 while (buflen) {
525 old_c = c;
526 if (is_user) {
527 if (__get_user(c, ubuf++))
528 return -EFAULT;
529 } else
530 c = *buf++;
531 buflen--;
532 if (isspace(c))
533 continue;
534
535 /* A '\0' or a ',' signal the end of a cpu# or range */
536 if (c == '\0' || c == ',')
537 break;
538 /*
539 * whitespaces between digits are not allowed,
540 * but it's ok if whitespaces are on head or tail.
541 * when old_c is whilespace,
542 * if totaldigits == ndigits, whitespace is on head.
543 * if whitespace is on tail, it should not run here.
544 * as c was ',' or '\0',
545 * the last code line has broken the current loop.
546 */
547 if ((totaldigits != ndigits) && isspace(old_c))
548 return -EINVAL;
549
550 if (c == '-') {
551 if (at_start || in_range)
552 return -EINVAL;
553 b = 0;
554 in_range = 1;
555 at_start = 1;
556 continue;
557 }
558
559 if (!isdigit(c))
560 return -EINVAL;
561
562 b = b * 10 + (c - '0');
563 if (!in_range)
564 a = b;
565 at_start = 0;
566 totaldigits++;
567 }
568 if (ndigits == totaldigits)
569 continue;
570 /* if no digit is after '-', it's wrong*/
571 if (at_start && in_range)
572 return -EINVAL;
573 if (!(a <= b))
574 return -EINVAL;
575 if (b >= nmaskbits)
576 return -ERANGE;
577 while (a <= b) {
578 set_bit(a, maskp);
579 a++;
580 }
581 } while (buflen && c == ',');
582 return 0;
583}
584
585int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
586{
587 char *nl = strchrnul(bp, '\n');
588 int len = nl - bp;
589
590 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
591}
592EXPORT_SYMBOL(bitmap_parselist);
593
594
595/**
596 * bitmap_parselist_user()
597 *
598 * @ubuf: pointer to user buffer containing string.
599 * @ulen: buffer size in bytes. If string is smaller than this
600 * then it must be terminated with a \0.
601 * @maskp: pointer to bitmap array that will contain result.
602 * @nmaskbits: size of bitmap, in bits.
603 *
604 * Wrapper for bitmap_parselist(), providing it with user buffer.
605 *
606 * We cannot have this as an inline function in bitmap.h because it needs
607 * linux/uaccess.h to get the access_ok() declaration and this causes
608 * cyclic dependencies.
609 */
610int bitmap_parselist_user(const char __user *ubuf,
611 unsigned int ulen, unsigned long *maskp,
612 int nmaskbits)
613{
614 if (!access_ok(VERIFY_READ, ubuf, ulen))
615 return -EFAULT;
616 return __bitmap_parselist((const char __force *)ubuf,
617 ulen, 1, maskp, nmaskbits);
618}
619EXPORT_SYMBOL(bitmap_parselist_user);
620
621
622/**
623 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
624 * @buf: pointer to a bitmap
625 * @pos: a bit position in @buf (0 <= @pos < @nbits)
626 * @nbits: number of valid bit positions in @buf
627 *
628 * Map the bit at position @pos in @buf (of length @nbits) to the
629 * ordinal of which set bit it is. If it is not set or if @pos
630 * is not a valid bit position, map to -1.
631 *
632 * If for example, just bits 4 through 7 are set in @buf, then @pos
633 * values 4 through 7 will get mapped to 0 through 3, respectively,
634 * and other @pos values will get mapped to -1. When @pos value 7
635 * gets mapped to (returns) @ord value 3 in this example, that means
636 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
637 *
638 * The bit positions 0 through @bits are valid positions in @buf.
639 */
640static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
641{
642 if (pos >= nbits || !test_bit(pos, buf))
643 return -1;
644
645 return __bitmap_weight(buf, pos);
646}
647
648/**
649 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
650 * @buf: pointer to bitmap
651 * @ord: ordinal bit position (n-th set bit, n >= 0)
652 * @nbits: number of valid bit positions in @buf
653 *
654 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
655 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
656 * >= weight(buf), returns @nbits.
657 *
658 * If for example, just bits 4 through 7 are set in @buf, then @ord
659 * values 0 through 3 will get mapped to 4 through 7, respectively,
660 * and all other @ord values returns @nbits. When @ord value 3
661 * gets mapped to (returns) @pos value 7 in this example, that means
662 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
663 *
664 * The bit positions 0 through @nbits-1 are valid positions in @buf.
665 */
666unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
667{
668 unsigned int pos;
669
670 for (pos = find_first_bit(buf, nbits);
671 pos < nbits && ord;
672 pos = find_next_bit(buf, nbits, pos + 1))
673 ord--;
674
675 return pos;
676}
677
678/**
679 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
680 * @dst: remapped result
681 * @src: subset to be remapped
682 * @old: defines domain of map
683 * @new: defines range of map
684 * @nbits: number of bits in each of these bitmaps
685 *
686 * Let @old and @new define a mapping of bit positions, such that
687 * whatever position is held by the n-th set bit in @old is mapped
688 * to the n-th set bit in @new. In the more general case, allowing
689 * for the possibility that the weight 'w' of @new is less than the
690 * weight of @old, map the position of the n-th set bit in @old to
691 * the position of the m-th set bit in @new, where m == n % w.
692 *
693 * If either of the @old and @new bitmaps are empty, or if @src and
694 * @dst point to the same location, then this routine copies @src
695 * to @dst.
696 *
697 * The positions of unset bits in @old are mapped to themselves
698 * (the identify map).
699 *
700 * Apply the above specified mapping to @src, placing the result in
701 * @dst, clearing any bits previously set in @dst.
702 *
703 * For example, lets say that @old has bits 4 through 7 set, and
704 * @new has bits 12 through 15 set. This defines the mapping of bit
705 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
706 * bit positions unchanged. So if say @src comes into this routine
707 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
708 * 13 and 15 set.
709 */
710void bitmap_remap(unsigned long *dst, const unsigned long *src,
711 const unsigned long *old, const unsigned long *new,
712 unsigned int nbits)
713{
714 unsigned int oldbit, w;
715
716 if (dst == src) /* following doesn't handle inplace remaps */
717 return;
718 bitmap_zero(dst, nbits);
719
720 w = bitmap_weight(new, nbits);
721 for_each_set_bit(oldbit, src, nbits) {
722 int n = bitmap_pos_to_ord(old, oldbit, nbits);
723
724 if (n < 0 || w == 0)
725 set_bit(oldbit, dst); /* identity map */
726 else
727 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
728 }
729}
730EXPORT_SYMBOL(bitmap_remap);
731
732/**
733 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
734 * @oldbit: bit position to be mapped
735 * @old: defines domain of map
736 * @new: defines range of map
737 * @bits: number of bits in each of these bitmaps
738 *
739 * Let @old and @new define a mapping of bit positions, such that
740 * whatever position is held by the n-th set bit in @old is mapped
741 * to the n-th set bit in @new. In the more general case, allowing
742 * for the possibility that the weight 'w' of @new is less than the
743 * weight of @old, map the position of the n-th set bit in @old to
744 * the position of the m-th set bit in @new, where m == n % w.
745 *
746 * The positions of unset bits in @old are mapped to themselves
747 * (the identify map).
748 *
749 * Apply the above specified mapping to bit position @oldbit, returning
750 * the new bit position.
751 *
752 * For example, lets say that @old has bits 4 through 7 set, and
753 * @new has bits 12 through 15 set. This defines the mapping of bit
754 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
755 * bit positions unchanged. So if say @oldbit is 5, then this routine
756 * returns 13.
757 */
758int bitmap_bitremap(int oldbit, const unsigned long *old,
759 const unsigned long *new, int bits)
760{
761 int w = bitmap_weight(new, bits);
762 int n = bitmap_pos_to_ord(old, oldbit, bits);
763 if (n < 0 || w == 0)
764 return oldbit;
765 else
766 return bitmap_ord_to_pos(new, n % w, bits);
767}
768EXPORT_SYMBOL(bitmap_bitremap);
769
770/**
771 * bitmap_onto - translate one bitmap relative to another
772 * @dst: resulting translated bitmap
773 * @orig: original untranslated bitmap
774 * @relmap: bitmap relative to which translated
775 * @bits: number of bits in each of these bitmaps
776 *
777 * Set the n-th bit of @dst iff there exists some m such that the
778 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
779 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
780 * (If you understood the previous sentence the first time your
781 * read it, you're overqualified for your current job.)
782 *
783 * In other words, @orig is mapped onto (surjectively) @dst,
784 * using the map { <n, m> | the n-th bit of @relmap is the
785 * m-th set bit of @relmap }.
786 *
787 * Any set bits in @orig above bit number W, where W is the
788 * weight of (number of set bits in) @relmap are mapped nowhere.
789 * In particular, if for all bits m set in @orig, m >= W, then
790 * @dst will end up empty. In situations where the possibility
791 * of such an empty result is not desired, one way to avoid it is
792 * to use the bitmap_fold() operator, below, to first fold the
793 * @orig bitmap over itself so that all its set bits x are in the
794 * range 0 <= x < W. The bitmap_fold() operator does this by
795 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
796 *
797 * Example [1] for bitmap_onto():
798 * Let's say @relmap has bits 30-39 set, and @orig has bits
799 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
800 * @dst will have bits 31, 33, 35, 37 and 39 set.
801 *
802 * When bit 0 is set in @orig, it means turn on the bit in
803 * @dst corresponding to whatever is the first bit (if any)
804 * that is turned on in @relmap. Since bit 0 was off in the
805 * above example, we leave off that bit (bit 30) in @dst.
806 *
807 * When bit 1 is set in @orig (as in the above example), it
808 * means turn on the bit in @dst corresponding to whatever
809 * is the second bit that is turned on in @relmap. The second
810 * bit in @relmap that was turned on in the above example was
811 * bit 31, so we turned on bit 31 in @dst.
812 *
813 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
814 * because they were the 4th, 6th, 8th and 10th set bits
815 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
816 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
817 *
818 * When bit 11 is set in @orig, it means turn on the bit in
819 * @dst corresponding to whatever is the twelfth bit that is
820 * turned on in @relmap. In the above example, there were
821 * only ten bits turned on in @relmap (30..39), so that bit
822 * 11 was set in @orig had no affect on @dst.
823 *
824 * Example [2] for bitmap_fold() + bitmap_onto():
825 * Let's say @relmap has these ten bits set:
826 * 40 41 42 43 45 48 53 61 74 95
827 * (for the curious, that's 40 plus the first ten terms of the
828 * Fibonacci sequence.)
829 *
830 * Further lets say we use the following code, invoking
831 * bitmap_fold() then bitmap_onto, as suggested above to
832 * avoid the possibility of an empty @dst result:
833 *
834 * unsigned long *tmp; // a temporary bitmap's bits
835 *
836 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
837 * bitmap_onto(dst, tmp, relmap, bits);
838 *
839 * Then this table shows what various values of @dst would be, for
840 * various @orig's. I list the zero-based positions of each set bit.
841 * The tmp column shows the intermediate result, as computed by
842 * using bitmap_fold() to fold the @orig bitmap modulo ten
843 * (the weight of @relmap).
844 *
845 * @orig tmp @dst
846 * 0 0 40
847 * 1 1 41
848 * 9 9 95
849 * 10 0 40 (*)
850 * 1 3 5 7 1 3 5 7 41 43 48 61
851 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
852 * 0 9 18 27 0 9 8 7 40 61 74 95
853 * 0 10 20 30 0 40
854 * 0 11 22 33 0 1 2 3 40 41 42 43
855 * 0 12 24 36 0 2 4 6 40 42 45 53
856 * 78 102 211 1 2 8 41 42 74 (*)
857 *
858 * (*) For these marked lines, if we hadn't first done bitmap_fold()
859 * into tmp, then the @dst result would have been empty.
860 *
861 * If either of @orig or @relmap is empty (no set bits), then @dst
862 * will be returned empty.
863 *
864 * If (as explained above) the only set bits in @orig are in positions
865 * m where m >= W, (where W is the weight of @relmap) then @dst will
866 * once again be returned empty.
867 *
868 * All bits in @dst not set by the above rule are cleared.
869 */
870void bitmap_onto(unsigned long *dst, const unsigned long *orig,
871 const unsigned long *relmap, unsigned int bits)
872{
873 unsigned int n, m; /* same meaning as in above comment */
874
875 if (dst == orig) /* following doesn't handle inplace mappings */
876 return;
877 bitmap_zero(dst, bits);
878
879 /*
880 * The following code is a more efficient, but less
881 * obvious, equivalent to the loop:
882 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
883 * n = bitmap_ord_to_pos(orig, m, bits);
884 * if (test_bit(m, orig))
885 * set_bit(n, dst);
886 * }
887 */
888
889 m = 0;
890 for_each_set_bit(n, relmap, bits) {
891 /* m == bitmap_pos_to_ord(relmap, n, bits) */
892 if (test_bit(m, orig))
893 set_bit(n, dst);
894 m++;
895 }
896}
897EXPORT_SYMBOL(bitmap_onto);
898
899/**
900 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
901 * @dst: resulting smaller bitmap
902 * @orig: original larger bitmap
903 * @sz: specified size
904 * @nbits: number of bits in each of these bitmaps
905 *
906 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
907 * Clear all other bits in @dst. See further the comment and
908 * Example [2] for bitmap_onto() for why and how to use this.
909 */
910void bitmap_fold(unsigned long *dst, const unsigned long *orig,
911 unsigned int sz, unsigned int nbits)
912{
913 unsigned int oldbit;
914
915 if (dst == orig) /* following doesn't handle inplace mappings */
916 return;
917 bitmap_zero(dst, nbits);
918
919 for_each_set_bit(oldbit, orig, nbits)
920 set_bit(oldbit % sz, dst);
921}
922EXPORT_SYMBOL(bitmap_fold);
923
924/*
925 * Common code for bitmap_*_region() routines.
926 * bitmap: array of unsigned longs corresponding to the bitmap
927 * pos: the beginning of the region
928 * order: region size (log base 2 of number of bits)
929 * reg_op: operation(s) to perform on that region of bitmap
930 *
931 * Can set, verify and/or release a region of bits in a bitmap,
932 * depending on which combination of REG_OP_* flag bits is set.
933 *
934 * A region of a bitmap is a sequence of bits in the bitmap, of
935 * some size '1 << order' (a power of two), aligned to that same
936 * '1 << order' power of two.
937 *
938 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
939 * Returns 0 in all other cases and reg_ops.
940 */
941
942enum {
943 REG_OP_ISFREE, /* true if region is all zero bits */
944 REG_OP_ALLOC, /* set all bits in region */
945 REG_OP_RELEASE, /* clear all bits in region */
946};
947
948static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
949{
950 int nbits_reg; /* number of bits in region */
951 int index; /* index first long of region in bitmap */
952 int offset; /* bit offset region in bitmap[index] */
953 int nlongs_reg; /* num longs spanned by region in bitmap */
954 int nbitsinlong; /* num bits of region in each spanned long */
955 unsigned long mask; /* bitmask for one long of region */
956 int i; /* scans bitmap by longs */
957 int ret = 0; /* return value */
958
959 /*
960 * Either nlongs_reg == 1 (for small orders that fit in one long)
961 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
962 */
963 nbits_reg = 1 << order;
964 index = pos / BITS_PER_LONG;
965 offset = pos - (index * BITS_PER_LONG);
966 nlongs_reg = BITS_TO_LONGS(nbits_reg);
967 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
968
969 /*
970 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
971 * overflows if nbitsinlong == BITS_PER_LONG.
972 */
973 mask = (1UL << (nbitsinlong - 1));
974 mask += mask - 1;
975 mask <<= offset;
976
977 switch (reg_op) {
978 case REG_OP_ISFREE:
979 for (i = 0; i < nlongs_reg; i++) {
980 if (bitmap[index + i] & mask)
981 goto done;
982 }
983 ret = 1; /* all bits in region free (zero) */
984 break;
985
986 case REG_OP_ALLOC:
987 for (i = 0; i < nlongs_reg; i++)
988 bitmap[index + i] |= mask;
989 break;
990
991 case REG_OP_RELEASE:
992 for (i = 0; i < nlongs_reg; i++)
993 bitmap[index + i] &= ~mask;
994 break;
995 }
996done:
997 return ret;
998}
999
1000/**
1001 * bitmap_find_free_region - find a contiguous aligned mem region
1002 * @bitmap: array of unsigned longs corresponding to the bitmap
1003 * @bits: number of bits in the bitmap
1004 * @order: region size (log base 2 of number of bits) to find
1005 *
1006 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1007 * allocate them (set them to one). Only consider regions of length
1008 * a power (@order) of two, aligned to that power of two, which
1009 * makes the search algorithm much faster.
1010 *
1011 * Return the bit offset in bitmap of the allocated region,
1012 * or -errno on failure.
1013 */
1014int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1015{
1016 unsigned int pos, end; /* scans bitmap by regions of size order */
1017
1018 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1019 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1020 continue;
1021 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1022 return pos;
1023 }
1024 return -ENOMEM;
1025}
1026EXPORT_SYMBOL(bitmap_find_free_region);
1027
1028/**
1029 * bitmap_release_region - release allocated bitmap region
1030 * @bitmap: array of unsigned longs corresponding to the bitmap
1031 * @pos: beginning of bit region to release
1032 * @order: region size (log base 2 of number of bits) to release
1033 *
1034 * This is the complement to __bitmap_find_free_region() and releases
1035 * the found region (by clearing it in the bitmap).
1036 *
1037 * No return value.
1038 */
1039void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1040{
1041 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1042}
1043EXPORT_SYMBOL(bitmap_release_region);
1044
1045/**
1046 * bitmap_allocate_region - allocate bitmap region
1047 * @bitmap: array of unsigned longs corresponding to the bitmap
1048 * @pos: beginning of bit region to allocate
1049 * @order: region size (log base 2 of number of bits) to allocate
1050 *
1051 * Allocate (set bits in) a specified region of a bitmap.
1052 *
1053 * Return 0 on success, or %-EBUSY if specified region wasn't
1054 * free (not all bits were zero).
1055 */
1056int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1057{
1058 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1059 return -EBUSY;
1060 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1061}
1062EXPORT_SYMBOL(bitmap_allocate_region);
1063
1064/**
1065 * bitmap_from_u32array - copy the contents of a u32 array of bits to bitmap
1066 * @bitmap: array of unsigned longs, the destination bitmap, non NULL
1067 * @nbits: number of bits in @bitmap
1068 * @buf: array of u32 (in host byte order), the source bitmap, non NULL
1069 * @nwords: number of u32 words in @buf
1070 *
1071 * copy min(nbits, 32*nwords) bits from @buf to @bitmap, remaining
1072 * bits between nword and nbits in @bitmap (if any) are cleared. In
1073 * last word of @bitmap, the bits beyond nbits (if any) are kept
1074 * unchanged.
1075 *
1076 * Return the number of bits effectively copied.
1077 */
1078unsigned int
1079bitmap_from_u32array(unsigned long *bitmap, unsigned int nbits,
1080 const u32 *buf, unsigned int nwords)
1081{
1082 unsigned int dst_idx, src_idx;
1083
1084 for (src_idx = dst_idx = 0; dst_idx < BITS_TO_LONGS(nbits); ++dst_idx) {
1085 unsigned long part = 0;
1086
1087 if (src_idx < nwords)
1088 part = buf[src_idx++];
1089
1090#if BITS_PER_LONG == 64
1091 if (src_idx < nwords)
1092 part |= ((unsigned long) buf[src_idx++]) << 32;
1093#endif
1094
1095 if (dst_idx < nbits/BITS_PER_LONG)
1096 bitmap[dst_idx] = part;
1097 else {
1098 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1099
1100 bitmap[dst_idx] = (bitmap[dst_idx] & ~mask)
1101 | (part & mask);
1102 }
1103 }
1104
1105 return min_t(unsigned int, nbits, 32*nwords);
1106}
1107EXPORT_SYMBOL(bitmap_from_u32array);
1108
1109/**
1110 * bitmap_to_u32array - copy the contents of bitmap to a u32 array of bits
1111 * @buf: array of u32 (in host byte order), the dest bitmap, non NULL
1112 * @nwords: number of u32 words in @buf
1113 * @bitmap: array of unsigned longs, the source bitmap, non NULL
1114 * @nbits: number of bits in @bitmap
1115 *
1116 * copy min(nbits, 32*nwords) bits from @bitmap to @buf. Remaining
1117 * bits after nbits in @buf (if any) are cleared.
1118 *
1119 * Return the number of bits effectively copied.
1120 */
1121unsigned int
1122bitmap_to_u32array(u32 *buf, unsigned int nwords,
1123 const unsigned long *bitmap, unsigned int nbits)
1124{
1125 unsigned int dst_idx = 0, src_idx = 0;
1126
1127 while (dst_idx < nwords) {
1128 unsigned long part = 0;
1129
1130 if (src_idx < BITS_TO_LONGS(nbits)) {
1131 part = bitmap[src_idx];
1132 if (src_idx >= nbits/BITS_PER_LONG)
1133 part &= BITMAP_LAST_WORD_MASK(nbits);
1134 src_idx++;
1135 }
1136
1137 buf[dst_idx++] = part & 0xffffffffUL;
1138
1139#if BITS_PER_LONG == 64
1140 if (dst_idx < nwords) {
1141 part >>= 32;
1142 buf[dst_idx++] = part & 0xffffffffUL;
1143 }
1144#endif
1145 }
1146
1147 return min_t(unsigned int, nbits, 32*nwords);
1148}
1149EXPORT_SYMBOL(bitmap_to_u32array);
1150
1151/**
1152 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1153 * @dst: destination buffer
1154 * @src: bitmap to copy
1155 * @nbits: number of bits in the bitmap
1156 *
1157 * Require nbits % BITS_PER_LONG == 0.
1158 */
1159#ifdef __BIG_ENDIAN
1160void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1161{
1162 unsigned int i;
1163
1164 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1165 if (BITS_PER_LONG == 64)
1166 dst[i] = cpu_to_le64(src[i]);
1167 else
1168 dst[i] = cpu_to_le32(src[i]);
1169 }
1170}
1171EXPORT_SYMBOL(bitmap_copy_le);
1172#endif