Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/moduleparam.h>
30#include <linux/mm.h>
31#include <linux/init.h>
32#include <linux/kallsyms.h>
33#include <linux/kgdb.h>
34#include <linux/kdb.h>
35#include <linux/notifier.h>
36#include <linux/interrupt.h>
37#include <linux/delay.h>
38#include <linux/nmi.h>
39#include <linux/time.h>
40#include <linux/ptrace.h>
41#include <linux/sysctl.h>
42#include <linux/cpu.h>
43#include <linux/kdebug.h>
44#include <linux/proc_fs.h>
45#include <linux/uaccess.h>
46#include <linux/slab.h>
47#include <linux/security.h>
48#include "kdb_private.h"
49
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56char kdb_grep_string[KDB_GREP_STRLEN];
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65unsigned int kdb_flags;
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76struct pt_regs *kdb_current_regs;
77
78const char *kdb_diemsg;
79static int kdb_go_count;
80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81static unsigned int kdb_continue_catastrophic =
82 CONFIG_KDB_CONTINUE_CATASTROPHIC;
83#else
84static unsigned int kdb_continue_catastrophic;
85#endif
86
87/* kdb_cmds_head describes the available commands. */
88static LIST_HEAD(kdb_cmds_head);
89
90typedef struct _kdbmsg {
91 int km_diag; /* kdb diagnostic */
92 char *km_msg; /* Corresponding message text */
93} kdbmsg_t;
94
95#define KDBMSG(msgnum, text) \
96 { KDB_##msgnum, text }
97
98static kdbmsg_t kdbmsgs[] = {
99 KDBMSG(NOTFOUND, "Command Not Found"),
100 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
101 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
102 "8 is only allowed on 64 bit systems"),
103 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
104 KDBMSG(NOTENV, "Cannot find environment variable"),
105 KDBMSG(NOENVVALUE, "Environment variable should have value"),
106 KDBMSG(NOTIMP, "Command not implemented"),
107 KDBMSG(ENVFULL, "Environment full"),
108 KDBMSG(ENVBUFFULL, "Environment buffer full"),
109 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
110#ifdef CONFIG_CPU_XSCALE
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
112#else
113 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
114#endif
115 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
116 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
117 KDBMSG(BADMODE, "Invalid IDMODE"),
118 KDBMSG(BADINT, "Illegal numeric value"),
119 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
120 KDBMSG(BADREG, "Invalid register name"),
121 KDBMSG(BADCPUNUM, "Invalid cpu number"),
122 KDBMSG(BADLENGTH, "Invalid length field"),
123 KDBMSG(NOBP, "No Breakpoint exists"),
124 KDBMSG(BADADDR, "Invalid address"),
125 KDBMSG(NOPERM, "Permission denied"),
126};
127#undef KDBMSG
128
129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
130
131
132/*
133 * Initial environment. This is all kept static and local to
134 * this file. We don't want to rely on the memory allocation
135 * mechanisms in the kernel, so we use a very limited allocate-only
136 * heap for new and altered environment variables. The entire
137 * environment is limited to a fixed number of entries (add more
138 * to __env[] if required) and a fixed amount of heap (add more to
139 * KDB_ENVBUFSIZE if required).
140 */
141
142static char *__env[31] = {
143#if defined(CONFIG_SMP)
144 "PROMPT=[%d]kdb> ",
145#else
146 "PROMPT=kdb> ",
147#endif
148 "MOREPROMPT=more> ",
149 "RADIX=16",
150 "MDCOUNT=8", /* lines of md output */
151 KDB_PLATFORM_ENV,
152 "DTABCOUNT=30",
153 "NOSECT=1",
154};
155
156static const int __nenv = ARRAY_SIZE(__env);
157
158struct task_struct *kdb_curr_task(int cpu)
159{
160 struct task_struct *p = curr_task(cpu);
161#ifdef _TIF_MCA_INIT
162 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
163 p = krp->p;
164#endif
165 return p;
166}
167
168/*
169 * Update the permissions flags (kdb_cmd_enabled) to match the
170 * current lockdown state.
171 *
172 * Within this function the calls to security_locked_down() are "lazy". We
173 * avoid calling them if the current value of kdb_cmd_enabled already excludes
174 * flags that might be subject to lockdown. Additionally we deliberately check
175 * the lockdown flags independently (even though read lockdown implies write
176 * lockdown) since that results in both simpler code and clearer messages to
177 * the user on first-time debugger entry.
178 *
179 * The permission masks during a read+write lockdown permits the following
180 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
181 *
182 * The INSPECT commands are not blocked during lockdown because they are
183 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
184 * forcing them to have no arguments) and lsmod. These commands do expose
185 * some kernel state but do not allow the developer seated at the console to
186 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
187 * given these are allowed for root during lockdown already.
188 */
189static void kdb_check_for_lockdown(void)
190{
191 const int write_flags = KDB_ENABLE_MEM_WRITE |
192 KDB_ENABLE_REG_WRITE |
193 KDB_ENABLE_FLOW_CTRL;
194 const int read_flags = KDB_ENABLE_MEM_READ |
195 KDB_ENABLE_REG_READ;
196
197 bool need_to_lockdown_write = false;
198 bool need_to_lockdown_read = false;
199
200 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
201 need_to_lockdown_write =
202 security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
203
204 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
205 need_to_lockdown_read =
206 security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
207
208 /* De-compose KDB_ENABLE_ALL if required */
209 if (need_to_lockdown_write || need_to_lockdown_read)
210 if (kdb_cmd_enabled & KDB_ENABLE_ALL)
211 kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
212
213 if (need_to_lockdown_write)
214 kdb_cmd_enabled &= ~write_flags;
215
216 if (need_to_lockdown_read)
217 kdb_cmd_enabled &= ~read_flags;
218}
219
220/*
221 * Check whether the flags of the current command, the permissions of the kdb
222 * console and the lockdown state allow a command to be run.
223 */
224static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
225 bool no_args)
226{
227 /* permissions comes from userspace so needs massaging slightly */
228 permissions &= KDB_ENABLE_MASK;
229 permissions |= KDB_ENABLE_ALWAYS_SAFE;
230
231 /* some commands change group when launched with no arguments */
232 if (no_args)
233 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
234
235 flags |= KDB_ENABLE_ALL;
236
237 return permissions & flags;
238}
239
240/*
241 * kdbgetenv - This function will return the character string value of
242 * an environment variable.
243 * Parameters:
244 * match A character string representing an environment variable.
245 * Returns:
246 * NULL No environment variable matches 'match'
247 * char* Pointer to string value of environment variable.
248 */
249char *kdbgetenv(const char *match)
250{
251 char **ep = __env;
252 int matchlen = strlen(match);
253 int i;
254
255 for (i = 0; i < __nenv; i++) {
256 char *e = *ep++;
257
258 if (!e)
259 continue;
260
261 if ((strncmp(match, e, matchlen) == 0)
262 && ((e[matchlen] == '\0')
263 || (e[matchlen] == '='))) {
264 char *cp = strchr(e, '=');
265 return cp ? ++cp : "";
266 }
267 }
268 return NULL;
269}
270
271/*
272 * kdballocenv - This function is used to allocate bytes for
273 * environment entries.
274 * Parameters:
275 * bytes The number of bytes to allocate in the static buffer.
276 * Returns:
277 * A pointer to the allocated space in the buffer on success.
278 * NULL if bytes > size available in the envbuffer.
279 * Remarks:
280 * We use a static environment buffer (envbuffer) to hold the values
281 * of dynamically generated environment variables (see kdb_set). Buffer
282 * space once allocated is never free'd, so over time, the amount of space
283 * (currently 512 bytes) will be exhausted if env variables are changed
284 * frequently.
285 */
286static char *kdballocenv(size_t bytes)
287{
288#define KDB_ENVBUFSIZE 512
289 static char envbuffer[KDB_ENVBUFSIZE];
290 static int envbufsize;
291 char *ep = NULL;
292
293 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
294 ep = &envbuffer[envbufsize];
295 envbufsize += bytes;
296 }
297 return ep;
298}
299
300/*
301 * kdbgetulenv - This function will return the value of an unsigned
302 * long-valued environment variable.
303 * Parameters:
304 * match A character string representing a numeric value
305 * Outputs:
306 * *value the unsigned long representation of the env variable 'match'
307 * Returns:
308 * Zero on success, a kdb diagnostic on failure.
309 */
310static int kdbgetulenv(const char *match, unsigned long *value)
311{
312 char *ep;
313
314 ep = kdbgetenv(match);
315 if (!ep)
316 return KDB_NOTENV;
317 if (strlen(ep) == 0)
318 return KDB_NOENVVALUE;
319
320 *value = simple_strtoul(ep, NULL, 0);
321
322 return 0;
323}
324
325/*
326 * kdbgetintenv - This function will return the value of an
327 * integer-valued environment variable.
328 * Parameters:
329 * match A character string representing an integer-valued env variable
330 * Outputs:
331 * *value the integer representation of the environment variable 'match'
332 * Returns:
333 * Zero on success, a kdb diagnostic on failure.
334 */
335int kdbgetintenv(const char *match, int *value)
336{
337 unsigned long val;
338 int diag;
339
340 diag = kdbgetulenv(match, &val);
341 if (!diag)
342 *value = (int) val;
343 return diag;
344}
345
346/*
347 * kdb_setenv() - Alter an existing environment variable or create a new one.
348 * @var: Name of the variable
349 * @val: Value of the variable
350 *
351 * Return: Zero on success, a kdb diagnostic on failure.
352 */
353static int kdb_setenv(const char *var, const char *val)
354{
355 int i;
356 char *ep;
357 size_t varlen, vallen;
358
359 varlen = strlen(var);
360 vallen = strlen(val);
361 ep = kdballocenv(varlen + vallen + 2);
362 if (ep == (char *)0)
363 return KDB_ENVBUFFULL;
364
365 sprintf(ep, "%s=%s", var, val);
366
367 for (i = 0; i < __nenv; i++) {
368 if (__env[i]
369 && ((strncmp(__env[i], var, varlen) == 0)
370 && ((__env[i][varlen] == '\0')
371 || (__env[i][varlen] == '=')))) {
372 __env[i] = ep;
373 return 0;
374 }
375 }
376
377 /*
378 * Wasn't existing variable. Fit into slot.
379 */
380 for (i = 0; i < __nenv-1; i++) {
381 if (__env[i] == (char *)0) {
382 __env[i] = ep;
383 return 0;
384 }
385 }
386
387 return KDB_ENVFULL;
388}
389
390/*
391 * kdb_printenv() - Display the current environment variables.
392 */
393static void kdb_printenv(void)
394{
395 int i;
396
397 for (i = 0; i < __nenv; i++) {
398 if (__env[i])
399 kdb_printf("%s\n", __env[i]);
400 }
401}
402
403/*
404 * kdbgetularg - This function will convert a numeric string into an
405 * unsigned long value.
406 * Parameters:
407 * arg A character string representing a numeric value
408 * Outputs:
409 * *value the unsigned long representation of arg.
410 * Returns:
411 * Zero on success, a kdb diagnostic on failure.
412 */
413int kdbgetularg(const char *arg, unsigned long *value)
414{
415 char *endp;
416 unsigned long val;
417
418 val = simple_strtoul(arg, &endp, 0);
419
420 if (endp == arg) {
421 /*
422 * Also try base 16, for us folks too lazy to type the
423 * leading 0x...
424 */
425 val = simple_strtoul(arg, &endp, 16);
426 if (endp == arg)
427 return KDB_BADINT;
428 }
429
430 *value = val;
431
432 return 0;
433}
434
435int kdbgetu64arg(const char *arg, u64 *value)
436{
437 char *endp;
438 u64 val;
439
440 val = simple_strtoull(arg, &endp, 0);
441
442 if (endp == arg) {
443
444 val = simple_strtoull(arg, &endp, 16);
445 if (endp == arg)
446 return KDB_BADINT;
447 }
448
449 *value = val;
450
451 return 0;
452}
453
454/*
455 * kdb_set - This function implements the 'set' command. Alter an
456 * existing environment variable or create a new one.
457 */
458int kdb_set(int argc, const char **argv)
459{
460 /*
461 * we can be invoked two ways:
462 * set var=value argv[1]="var", argv[2]="value"
463 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
464 * - if the latter, shift 'em down.
465 */
466 if (argc == 3) {
467 argv[2] = argv[3];
468 argc--;
469 }
470
471 if (argc != 2)
472 return KDB_ARGCOUNT;
473
474 /*
475 * Censor sensitive variables
476 */
477 if (strcmp(argv[1], "PROMPT") == 0 &&
478 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
479 return KDB_NOPERM;
480
481 /*
482 * Check for internal variables
483 */
484 if (strcmp(argv[1], "KDBDEBUG") == 0) {
485 unsigned int debugflags;
486 char *cp;
487
488 debugflags = simple_strtoul(argv[2], &cp, 0);
489 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
490 kdb_printf("kdb: illegal debug flags '%s'\n",
491 argv[2]);
492 return 0;
493 }
494 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
495 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
496
497 return 0;
498 }
499
500 /*
501 * Tokenizer squashed the '=' sign. argv[1] is variable
502 * name, argv[2] = value.
503 */
504 return kdb_setenv(argv[1], argv[2]);
505}
506
507static int kdb_check_regs(void)
508{
509 if (!kdb_current_regs) {
510 kdb_printf("No current kdb registers."
511 " You may need to select another task\n");
512 return KDB_BADREG;
513 }
514 return 0;
515}
516
517/*
518 * kdbgetaddrarg - This function is responsible for parsing an
519 * address-expression and returning the value of the expression,
520 * symbol name, and offset to the caller.
521 *
522 * The argument may consist of a numeric value (decimal or
523 * hexadecimal), a symbol name, a register name (preceded by the
524 * percent sign), an environment variable with a numeric value
525 * (preceded by a dollar sign) or a simple arithmetic expression
526 * consisting of a symbol name, +/-, and a numeric constant value
527 * (offset).
528 * Parameters:
529 * argc - count of arguments in argv
530 * argv - argument vector
531 * *nextarg - index to next unparsed argument in argv[]
532 * regs - Register state at time of KDB entry
533 * Outputs:
534 * *value - receives the value of the address-expression
535 * *offset - receives the offset specified, if any
536 * *name - receives the symbol name, if any
537 * *nextarg - index to next unparsed argument in argv[]
538 * Returns:
539 * zero is returned on success, a kdb diagnostic code is
540 * returned on error.
541 */
542int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
543 unsigned long *value, long *offset,
544 char **name)
545{
546 unsigned long addr;
547 unsigned long off = 0;
548 int positive;
549 int diag;
550 int found = 0;
551 char *symname;
552 char symbol = '\0';
553 char *cp;
554 kdb_symtab_t symtab;
555
556 /*
557 * If the enable flags prohibit both arbitrary memory access
558 * and flow control then there are no reasonable grounds to
559 * provide symbol lookup.
560 */
561 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
562 kdb_cmd_enabled, false))
563 return KDB_NOPERM;
564
565 /*
566 * Process arguments which follow the following syntax:
567 *
568 * symbol | numeric-address [+/- numeric-offset]
569 * %register
570 * $environment-variable
571 */
572
573 if (*nextarg > argc)
574 return KDB_ARGCOUNT;
575
576 symname = (char *)argv[*nextarg];
577
578 /*
579 * If there is no whitespace between the symbol
580 * or address and the '+' or '-' symbols, we
581 * remember the character and replace it with a
582 * null so the symbol/value can be properly parsed
583 */
584 cp = strpbrk(symname, "+-");
585 if (cp != NULL) {
586 symbol = *cp;
587 *cp++ = '\0';
588 }
589
590 if (symname[0] == '$') {
591 diag = kdbgetulenv(&symname[1], &addr);
592 if (diag)
593 return diag;
594 } else if (symname[0] == '%') {
595 diag = kdb_check_regs();
596 if (diag)
597 return diag;
598 /* Implement register values with % at a later time as it is
599 * arch optional.
600 */
601 return KDB_NOTIMP;
602 } else {
603 found = kdbgetsymval(symname, &symtab);
604 if (found) {
605 addr = symtab.sym_start;
606 } else {
607 diag = kdbgetularg(argv[*nextarg], &addr);
608 if (diag)
609 return diag;
610 }
611 }
612
613 if (!found)
614 found = kdbnearsym(addr, &symtab);
615
616 (*nextarg)++;
617
618 if (name)
619 *name = symname;
620 if (value)
621 *value = addr;
622 if (offset && name && *name)
623 *offset = addr - symtab.sym_start;
624
625 if ((*nextarg > argc)
626 && (symbol == '\0'))
627 return 0;
628
629 /*
630 * check for +/- and offset
631 */
632
633 if (symbol == '\0') {
634 if ((argv[*nextarg][0] != '+')
635 && (argv[*nextarg][0] != '-')) {
636 /*
637 * Not our argument. Return.
638 */
639 return 0;
640 } else {
641 positive = (argv[*nextarg][0] == '+');
642 (*nextarg)++;
643 }
644 } else
645 positive = (symbol == '+');
646
647 /*
648 * Now there must be an offset!
649 */
650 if ((*nextarg > argc)
651 && (symbol == '\0')) {
652 return KDB_INVADDRFMT;
653 }
654
655 if (!symbol) {
656 cp = (char *)argv[*nextarg];
657 (*nextarg)++;
658 }
659
660 diag = kdbgetularg(cp, &off);
661 if (diag)
662 return diag;
663
664 if (!positive)
665 off = -off;
666
667 if (offset)
668 *offset += off;
669
670 if (value)
671 *value += off;
672
673 return 0;
674}
675
676static void kdb_cmderror(int diag)
677{
678 int i;
679
680 if (diag >= 0) {
681 kdb_printf("no error detected (diagnostic is %d)\n", diag);
682 return;
683 }
684
685 for (i = 0; i < __nkdb_err; i++) {
686 if (kdbmsgs[i].km_diag == diag) {
687 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
688 return;
689 }
690 }
691
692 kdb_printf("Unknown diag %d\n", -diag);
693}
694
695/*
696 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
697 * command which defines one command as a set of other commands,
698 * terminated by endefcmd. kdb_defcmd processes the initial
699 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
700 * the following commands until 'endefcmd'.
701 * Inputs:
702 * argc argument count
703 * argv argument vector
704 * Returns:
705 * zero for success, a kdb diagnostic if error
706 */
707struct kdb_macro {
708 kdbtab_t cmd; /* Macro command */
709 struct list_head statements; /* Associated statement list */
710};
711
712struct kdb_macro_statement {
713 char *statement; /* Statement text */
714 struct list_head list_node; /* Statement list node */
715};
716
717static struct kdb_macro *kdb_macro;
718static bool defcmd_in_progress;
719
720/* Forward references */
721static int kdb_exec_defcmd(int argc, const char **argv);
722
723static int kdb_defcmd2(const char *cmdstr, const char *argv0)
724{
725 struct kdb_macro_statement *kms;
726
727 if (!kdb_macro)
728 return KDB_NOTIMP;
729
730 if (strcmp(argv0, "endefcmd") == 0) {
731 defcmd_in_progress = false;
732 if (!list_empty(&kdb_macro->statements))
733 kdb_register(&kdb_macro->cmd);
734 return 0;
735 }
736
737 kms = kmalloc(sizeof(*kms), GFP_KDB);
738 if (!kms) {
739 kdb_printf("Could not allocate new kdb macro command: %s\n",
740 cmdstr);
741 return KDB_NOTIMP;
742 }
743
744 kms->statement = kdb_strdup(cmdstr, GFP_KDB);
745 list_add_tail(&kms->list_node, &kdb_macro->statements);
746
747 return 0;
748}
749
750static int kdb_defcmd(int argc, const char **argv)
751{
752 kdbtab_t *mp;
753
754 if (defcmd_in_progress) {
755 kdb_printf("kdb: nested defcmd detected, assuming missing "
756 "endefcmd\n");
757 kdb_defcmd2("endefcmd", "endefcmd");
758 }
759 if (argc == 0) {
760 kdbtab_t *kp;
761 struct kdb_macro *kmp;
762 struct kdb_macro_statement *kms;
763
764 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
765 if (kp->func == kdb_exec_defcmd) {
766 kdb_printf("defcmd %s \"%s\" \"%s\"\n",
767 kp->name, kp->usage, kp->help);
768 kmp = container_of(kp, struct kdb_macro, cmd);
769 list_for_each_entry(kms, &kmp->statements,
770 list_node)
771 kdb_printf("%s", kms->statement);
772 kdb_printf("endefcmd\n");
773 }
774 }
775 return 0;
776 }
777 if (argc != 3)
778 return KDB_ARGCOUNT;
779 if (in_dbg_master()) {
780 kdb_printf("Command only available during kdb_init()\n");
781 return KDB_NOTIMP;
782 }
783 kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
784 if (!kdb_macro)
785 goto fail_defcmd;
786
787 mp = &kdb_macro->cmd;
788 mp->func = kdb_exec_defcmd;
789 mp->minlen = 0;
790 mp->flags = KDB_ENABLE_ALWAYS_SAFE;
791 mp->name = kdb_strdup(argv[1], GFP_KDB);
792 if (!mp->name)
793 goto fail_name;
794 mp->usage = kdb_strdup(argv[2], GFP_KDB);
795 if (!mp->usage)
796 goto fail_usage;
797 mp->help = kdb_strdup(argv[3], GFP_KDB);
798 if (!mp->help)
799 goto fail_help;
800 if (mp->usage[0] == '"') {
801 strcpy(mp->usage, argv[2]+1);
802 mp->usage[strlen(mp->usage)-1] = '\0';
803 }
804 if (mp->help[0] == '"') {
805 strcpy(mp->help, argv[3]+1);
806 mp->help[strlen(mp->help)-1] = '\0';
807 }
808
809 INIT_LIST_HEAD(&kdb_macro->statements);
810 defcmd_in_progress = true;
811 return 0;
812fail_help:
813 kfree(mp->usage);
814fail_usage:
815 kfree(mp->name);
816fail_name:
817 kfree(kdb_macro);
818fail_defcmd:
819 kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
820 return KDB_NOTIMP;
821}
822
823/*
824 * kdb_exec_defcmd - Execute the set of commands associated with this
825 * defcmd name.
826 * Inputs:
827 * argc argument count
828 * argv argument vector
829 * Returns:
830 * zero for success, a kdb diagnostic if error
831 */
832static int kdb_exec_defcmd(int argc, const char **argv)
833{
834 int ret;
835 kdbtab_t *kp;
836 struct kdb_macro *kmp;
837 struct kdb_macro_statement *kms;
838
839 if (argc != 0)
840 return KDB_ARGCOUNT;
841
842 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
843 if (strcmp(kp->name, argv[0]) == 0)
844 break;
845 }
846 if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
847 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
848 argv[0]);
849 return KDB_NOTIMP;
850 }
851 kmp = container_of(kp, struct kdb_macro, cmd);
852 list_for_each_entry(kms, &kmp->statements, list_node) {
853 /*
854 * Recursive use of kdb_parse, do not use argv after this point.
855 */
856 argv = NULL;
857 kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
858 ret = kdb_parse(kms->statement);
859 if (ret)
860 return ret;
861 }
862 return 0;
863}
864
865/* Command history */
866#define KDB_CMD_HISTORY_COUNT 32
867#define CMD_BUFLEN 200 /* kdb_printf: max printline
868 * size == 256 */
869static unsigned int cmd_head, cmd_tail;
870static unsigned int cmdptr;
871static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
872static char cmd_cur[CMD_BUFLEN];
873
874/*
875 * The "str" argument may point to something like | grep xyz
876 */
877static void parse_grep(const char *str)
878{
879 int len;
880 char *cp = (char *)str, *cp2;
881
882 /* sanity check: we should have been called with the \ first */
883 if (*cp != '|')
884 return;
885 cp++;
886 while (isspace(*cp))
887 cp++;
888 if (!str_has_prefix(cp, "grep ")) {
889 kdb_printf("invalid 'pipe', see grephelp\n");
890 return;
891 }
892 cp += 5;
893 while (isspace(*cp))
894 cp++;
895 cp2 = strchr(cp, '\n');
896 if (cp2)
897 *cp2 = '\0'; /* remove the trailing newline */
898 len = strlen(cp);
899 if (len == 0) {
900 kdb_printf("invalid 'pipe', see grephelp\n");
901 return;
902 }
903 /* now cp points to a nonzero length search string */
904 if (*cp == '"') {
905 /* allow it be "x y z" by removing the "'s - there must
906 be two of them */
907 cp++;
908 cp2 = strchr(cp, '"');
909 if (!cp2) {
910 kdb_printf("invalid quoted string, see grephelp\n");
911 return;
912 }
913 *cp2 = '\0'; /* end the string where the 2nd " was */
914 }
915 kdb_grep_leading = 0;
916 if (*cp == '^') {
917 kdb_grep_leading = 1;
918 cp++;
919 }
920 len = strlen(cp);
921 kdb_grep_trailing = 0;
922 if (*(cp+len-1) == '$') {
923 kdb_grep_trailing = 1;
924 *(cp+len-1) = '\0';
925 }
926 len = strlen(cp);
927 if (!len)
928 return;
929 if (len >= KDB_GREP_STRLEN) {
930 kdb_printf("search string too long\n");
931 return;
932 }
933 strcpy(kdb_grep_string, cp);
934 kdb_grepping_flag++;
935 return;
936}
937
938/*
939 * kdb_parse - Parse the command line, search the command table for a
940 * matching command and invoke the command function. This
941 * function may be called recursively, if it is, the second call
942 * will overwrite argv and cbuf. It is the caller's
943 * responsibility to save their argv if they recursively call
944 * kdb_parse().
945 * Parameters:
946 * cmdstr The input command line to be parsed.
947 * regs The registers at the time kdb was entered.
948 * Returns:
949 * Zero for success, a kdb diagnostic if failure.
950 * Remarks:
951 * Limited to 20 tokens.
952 *
953 * Real rudimentary tokenization. Basically only whitespace
954 * is considered a token delimiter (but special consideration
955 * is taken of the '=' sign as used by the 'set' command).
956 *
957 * The algorithm used to tokenize the input string relies on
958 * there being at least one whitespace (or otherwise useless)
959 * character between tokens as the character immediately following
960 * the token is altered in-place to a null-byte to terminate the
961 * token string.
962 */
963
964#define MAXARGC 20
965
966int kdb_parse(const char *cmdstr)
967{
968 static char *argv[MAXARGC];
969 static int argc;
970 static char cbuf[CMD_BUFLEN+2];
971 char *cp;
972 char *cpp, quoted;
973 kdbtab_t *tp;
974 int escaped, ignore_errors = 0, check_grep = 0;
975
976 /*
977 * First tokenize the command string.
978 */
979 cp = (char *)cmdstr;
980
981 if (KDB_FLAG(CMD_INTERRUPT)) {
982 /* Previous command was interrupted, newline must not
983 * repeat the command */
984 KDB_FLAG_CLEAR(CMD_INTERRUPT);
985 KDB_STATE_SET(PAGER);
986 argc = 0; /* no repeat */
987 }
988
989 if (*cp != '\n' && *cp != '\0') {
990 argc = 0;
991 cpp = cbuf;
992 while (*cp) {
993 /* skip whitespace */
994 while (isspace(*cp))
995 cp++;
996 if ((*cp == '\0') || (*cp == '\n') ||
997 (*cp == '#' && !defcmd_in_progress))
998 break;
999 /* special case: check for | grep pattern */
1000 if (*cp == '|') {
1001 check_grep++;
1002 break;
1003 }
1004 if (cpp >= cbuf + CMD_BUFLEN) {
1005 kdb_printf("kdb_parse: command buffer "
1006 "overflow, command ignored\n%s\n",
1007 cmdstr);
1008 return KDB_NOTFOUND;
1009 }
1010 if (argc >= MAXARGC - 1) {
1011 kdb_printf("kdb_parse: too many arguments, "
1012 "command ignored\n%s\n", cmdstr);
1013 return KDB_NOTFOUND;
1014 }
1015 argv[argc++] = cpp;
1016 escaped = 0;
1017 quoted = '\0';
1018 /* Copy to next unquoted and unescaped
1019 * whitespace or '=' */
1020 while (*cp && *cp != '\n' &&
1021 (escaped || quoted || !isspace(*cp))) {
1022 if (cpp >= cbuf + CMD_BUFLEN)
1023 break;
1024 if (escaped) {
1025 escaped = 0;
1026 *cpp++ = *cp++;
1027 continue;
1028 }
1029 if (*cp == '\\') {
1030 escaped = 1;
1031 ++cp;
1032 continue;
1033 }
1034 if (*cp == quoted)
1035 quoted = '\0';
1036 else if (*cp == '\'' || *cp == '"')
1037 quoted = *cp;
1038 *cpp = *cp++;
1039 if (*cpp == '=' && !quoted)
1040 break;
1041 ++cpp;
1042 }
1043 *cpp++ = '\0'; /* Squash a ws or '=' character */
1044 }
1045 }
1046 if (!argc)
1047 return 0;
1048 if (check_grep)
1049 parse_grep(cp);
1050 if (defcmd_in_progress) {
1051 int result = kdb_defcmd2(cmdstr, argv[0]);
1052 if (!defcmd_in_progress) {
1053 argc = 0; /* avoid repeat on endefcmd */
1054 *(argv[0]) = '\0';
1055 }
1056 return result;
1057 }
1058 if (argv[0][0] == '-' && argv[0][1] &&
1059 (argv[0][1] < '0' || argv[0][1] > '9')) {
1060 ignore_errors = 1;
1061 ++argv[0];
1062 }
1063
1064 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1065 /*
1066 * If this command is allowed to be abbreviated,
1067 * check to see if this is it.
1068 */
1069 if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1070 (strncmp(argv[0], tp->name, tp->minlen) == 0))
1071 break;
1072
1073 if (strcmp(argv[0], tp->name) == 0)
1074 break;
1075 }
1076
1077 /*
1078 * If we don't find a command by this name, see if the first
1079 * few characters of this match any of the known commands.
1080 * e.g., md1c20 should match md.
1081 */
1082 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1083 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1084 if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
1085 break;
1086 }
1087 }
1088
1089 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1090 int result;
1091
1092 if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
1093 return KDB_NOPERM;
1094
1095 KDB_STATE_SET(CMD);
1096 result = (*tp->func)(argc-1, (const char **)argv);
1097 if (result && ignore_errors && result > KDB_CMD_GO)
1098 result = 0;
1099 KDB_STATE_CLEAR(CMD);
1100
1101 if (tp->flags & KDB_REPEAT_WITH_ARGS)
1102 return result;
1103
1104 argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1105 if (argv[argc])
1106 *(argv[argc]) = '\0';
1107 return result;
1108 }
1109
1110 /*
1111 * If the input with which we were presented does not
1112 * map to an existing command, attempt to parse it as an
1113 * address argument and display the result. Useful for
1114 * obtaining the address of a variable, or the nearest symbol
1115 * to an address contained in a register.
1116 */
1117 {
1118 unsigned long value;
1119 char *name = NULL;
1120 long offset;
1121 int nextarg = 0;
1122
1123 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1124 &value, &offset, &name)) {
1125 return KDB_NOTFOUND;
1126 }
1127
1128 kdb_printf("%s = ", argv[0]);
1129 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1130 kdb_printf("\n");
1131 return 0;
1132 }
1133}
1134
1135
1136static int handle_ctrl_cmd(char *cmd)
1137{
1138#define CTRL_P 16
1139#define CTRL_N 14
1140
1141 /* initial situation */
1142 if (cmd_head == cmd_tail)
1143 return 0;
1144 switch (*cmd) {
1145 case CTRL_P:
1146 if (cmdptr != cmd_tail)
1147 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1148 KDB_CMD_HISTORY_COUNT;
1149 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1150 return 1;
1151 case CTRL_N:
1152 if (cmdptr != cmd_head)
1153 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1154 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1155 return 1;
1156 }
1157 return 0;
1158}
1159
1160/*
1161 * kdb_reboot - This function implements the 'reboot' command. Reboot
1162 * the system immediately, or loop for ever on failure.
1163 */
1164static int kdb_reboot(int argc, const char **argv)
1165{
1166 emergency_restart();
1167 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1168 while (1)
1169 cpu_relax();
1170 /* NOTREACHED */
1171 return 0;
1172}
1173
1174static void kdb_dumpregs(struct pt_regs *regs)
1175{
1176 int old_lvl = console_loglevel;
1177 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1178 kdb_trap_printk++;
1179 show_regs(regs);
1180 kdb_trap_printk--;
1181 kdb_printf("\n");
1182 console_loglevel = old_lvl;
1183}
1184
1185static void kdb_set_current_task(struct task_struct *p)
1186{
1187 kdb_current_task = p;
1188
1189 if (kdb_task_has_cpu(p)) {
1190 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1191 return;
1192 }
1193 kdb_current_regs = NULL;
1194}
1195
1196static void drop_newline(char *buf)
1197{
1198 size_t len = strlen(buf);
1199
1200 if (len == 0)
1201 return;
1202 if (*(buf + len - 1) == '\n')
1203 *(buf + len - 1) = '\0';
1204}
1205
1206/*
1207 * kdb_local - The main code for kdb. This routine is invoked on a
1208 * specific processor, it is not global. The main kdb() routine
1209 * ensures that only one processor at a time is in this routine.
1210 * This code is called with the real reason code on the first
1211 * entry to a kdb session, thereafter it is called with reason
1212 * SWITCH, even if the user goes back to the original cpu.
1213 * Inputs:
1214 * reason The reason KDB was invoked
1215 * error The hardware-defined error code
1216 * regs The exception frame at time of fault/breakpoint.
1217 * db_result Result code from the break or debug point.
1218 * Returns:
1219 * 0 KDB was invoked for an event which it wasn't responsible
1220 * 1 KDB handled the event for which it was invoked.
1221 * KDB_CMD_GO User typed 'go'.
1222 * KDB_CMD_CPU User switched to another cpu.
1223 * KDB_CMD_SS Single step.
1224 */
1225static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1226 kdb_dbtrap_t db_result)
1227{
1228 char *cmdbuf;
1229 int diag;
1230 struct task_struct *kdb_current =
1231 kdb_curr_task(raw_smp_processor_id());
1232
1233 KDB_DEBUG_STATE("kdb_local 1", reason);
1234
1235 kdb_check_for_lockdown();
1236
1237 kdb_go_count = 0;
1238 if (reason == KDB_REASON_DEBUG) {
1239 /* special case below */
1240 } else {
1241 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1242 kdb_current, kdb_current ? kdb_current->pid : 0);
1243#if defined(CONFIG_SMP)
1244 kdb_printf("on processor %d ", raw_smp_processor_id());
1245#endif
1246 }
1247
1248 switch (reason) {
1249 case KDB_REASON_DEBUG:
1250 {
1251 /*
1252 * If re-entering kdb after a single step
1253 * command, don't print the message.
1254 */
1255 switch (db_result) {
1256 case KDB_DB_BPT:
1257 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1258 kdb_current, kdb_current->pid);
1259#if defined(CONFIG_SMP)
1260 kdb_printf("on processor %d ", raw_smp_processor_id());
1261#endif
1262 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1263 instruction_pointer(regs));
1264 break;
1265 case KDB_DB_SS:
1266 break;
1267 case KDB_DB_SSBPT:
1268 KDB_DEBUG_STATE("kdb_local 4", reason);
1269 return 1; /* kdba_db_trap did the work */
1270 default:
1271 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1272 db_result);
1273 break;
1274 }
1275
1276 }
1277 break;
1278 case KDB_REASON_ENTER:
1279 if (KDB_STATE(KEYBOARD))
1280 kdb_printf("due to Keyboard Entry\n");
1281 else
1282 kdb_printf("due to KDB_ENTER()\n");
1283 break;
1284 case KDB_REASON_KEYBOARD:
1285 KDB_STATE_SET(KEYBOARD);
1286 kdb_printf("due to Keyboard Entry\n");
1287 break;
1288 case KDB_REASON_ENTER_SLAVE:
1289 /* drop through, slaves only get released via cpu switch */
1290 case KDB_REASON_SWITCH:
1291 kdb_printf("due to cpu switch\n");
1292 break;
1293 case KDB_REASON_OOPS:
1294 kdb_printf("Oops: %s\n", kdb_diemsg);
1295 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1296 instruction_pointer(regs));
1297 kdb_dumpregs(regs);
1298 break;
1299 case KDB_REASON_SYSTEM_NMI:
1300 kdb_printf("due to System NonMaskable Interrupt\n");
1301 break;
1302 case KDB_REASON_NMI:
1303 kdb_printf("due to NonMaskable Interrupt @ "
1304 kdb_machreg_fmt "\n",
1305 instruction_pointer(regs));
1306 break;
1307 case KDB_REASON_SSTEP:
1308 case KDB_REASON_BREAK:
1309 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1310 reason == KDB_REASON_BREAK ?
1311 "Breakpoint" : "SS trap", instruction_pointer(regs));
1312 /*
1313 * Determine if this breakpoint is one that we
1314 * are interested in.
1315 */
1316 if (db_result != KDB_DB_BPT) {
1317 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1318 db_result);
1319 KDB_DEBUG_STATE("kdb_local 6", reason);
1320 return 0; /* Not for us, dismiss it */
1321 }
1322 break;
1323 case KDB_REASON_RECURSE:
1324 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1325 instruction_pointer(regs));
1326 break;
1327 default:
1328 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1329 KDB_DEBUG_STATE("kdb_local 8", reason);
1330 return 0; /* Not for us, dismiss it */
1331 }
1332
1333 while (1) {
1334 /*
1335 * Initialize pager context.
1336 */
1337 kdb_nextline = 1;
1338 KDB_STATE_CLEAR(SUPPRESS);
1339 kdb_grepping_flag = 0;
1340 /* ensure the old search does not leak into '/' commands */
1341 kdb_grep_string[0] = '\0';
1342
1343 cmdbuf = cmd_cur;
1344 *cmdbuf = '\0';
1345 *(cmd_hist[cmd_head]) = '\0';
1346
1347do_full_getstr:
1348 /* PROMPT can only be set if we have MEM_READ permission. */
1349 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1350 raw_smp_processor_id());
1351
1352 /*
1353 * Fetch command from keyboard
1354 */
1355 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1356 if (*cmdbuf != '\n') {
1357 if (*cmdbuf < 32) {
1358 if (cmdptr == cmd_head) {
1359 strscpy(cmd_hist[cmd_head], cmd_cur,
1360 CMD_BUFLEN);
1361 *(cmd_hist[cmd_head] +
1362 strlen(cmd_hist[cmd_head])-1) = '\0';
1363 }
1364 if (!handle_ctrl_cmd(cmdbuf))
1365 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1366 cmdbuf = cmd_cur;
1367 goto do_full_getstr;
1368 } else {
1369 strscpy(cmd_hist[cmd_head], cmd_cur,
1370 CMD_BUFLEN);
1371 }
1372
1373 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1374 if (cmd_head == cmd_tail)
1375 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1376 }
1377
1378 cmdptr = cmd_head;
1379 diag = kdb_parse(cmdbuf);
1380 if (diag == KDB_NOTFOUND) {
1381 drop_newline(cmdbuf);
1382 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1383 diag = 0;
1384 }
1385 if (diag == KDB_CMD_GO
1386 || diag == KDB_CMD_CPU
1387 || diag == KDB_CMD_SS
1388 || diag == KDB_CMD_KGDB)
1389 break;
1390
1391 if (diag)
1392 kdb_cmderror(diag);
1393 }
1394 KDB_DEBUG_STATE("kdb_local 9", diag);
1395 return diag;
1396}
1397
1398
1399/*
1400 * kdb_print_state - Print the state data for the current processor
1401 * for debugging.
1402 * Inputs:
1403 * text Identifies the debug point
1404 * value Any integer value to be printed, e.g. reason code.
1405 */
1406void kdb_print_state(const char *text, int value)
1407{
1408 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1409 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1410 kdb_state);
1411}
1412
1413/*
1414 * kdb_main_loop - After initial setup and assignment of the
1415 * controlling cpu, all cpus are in this loop. One cpu is in
1416 * control and will issue the kdb prompt, the others will spin
1417 * until 'go' or cpu switch.
1418 *
1419 * To get a consistent view of the kernel stacks for all
1420 * processes, this routine is invoked from the main kdb code via
1421 * an architecture specific routine. kdba_main_loop is
1422 * responsible for making the kernel stacks consistent for all
1423 * processes, there should be no difference between a blocked
1424 * process and a running process as far as kdb is concerned.
1425 * Inputs:
1426 * reason The reason KDB was invoked
1427 * error The hardware-defined error code
1428 * reason2 kdb's current reason code.
1429 * Initially error but can change
1430 * according to kdb state.
1431 * db_result Result code from break or debug point.
1432 * regs The exception frame at time of fault/breakpoint.
1433 * should always be valid.
1434 * Returns:
1435 * 0 KDB was invoked for an event which it wasn't responsible
1436 * 1 KDB handled the event for which it was invoked.
1437 */
1438int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1439 kdb_dbtrap_t db_result, struct pt_regs *regs)
1440{
1441 int result = 1;
1442 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1443 while (1) {
1444 /*
1445 * All processors except the one that is in control
1446 * will spin here.
1447 */
1448 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1449 while (KDB_STATE(HOLD_CPU)) {
1450 /* state KDB is turned off by kdb_cpu to see if the
1451 * other cpus are still live, each cpu in this loop
1452 * turns it back on.
1453 */
1454 if (!KDB_STATE(KDB))
1455 KDB_STATE_SET(KDB);
1456 }
1457
1458 KDB_STATE_CLEAR(SUPPRESS);
1459 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1460 if (KDB_STATE(LEAVING))
1461 break; /* Another cpu said 'go' */
1462 /* Still using kdb, this processor is in control */
1463 result = kdb_local(reason2, error, regs, db_result);
1464 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1465
1466 if (result == KDB_CMD_CPU)
1467 break;
1468
1469 if (result == KDB_CMD_SS) {
1470 KDB_STATE_SET(DOING_SS);
1471 break;
1472 }
1473
1474 if (result == KDB_CMD_KGDB) {
1475 if (!KDB_STATE(DOING_KGDB))
1476 kdb_printf("Entering please attach debugger "
1477 "or use $D#44+ or $3#33\n");
1478 break;
1479 }
1480 if (result && result != 1 && result != KDB_CMD_GO)
1481 kdb_printf("\nUnexpected kdb_local return code %d\n",
1482 result);
1483 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1484 break;
1485 }
1486 if (KDB_STATE(DOING_SS))
1487 KDB_STATE_CLEAR(SSBPT);
1488
1489 /* Clean up any keyboard devices before leaving */
1490 kdb_kbd_cleanup_state();
1491
1492 return result;
1493}
1494
1495/*
1496 * kdb_mdr - This function implements the guts of the 'mdr', memory
1497 * read command.
1498 * mdr <addr arg>,<byte count>
1499 * Inputs:
1500 * addr Start address
1501 * count Number of bytes
1502 * Returns:
1503 * Always 0. Any errors are detected and printed by kdb_getarea.
1504 */
1505static int kdb_mdr(unsigned long addr, unsigned int count)
1506{
1507 unsigned char c;
1508 while (count--) {
1509 if (kdb_getarea(c, addr))
1510 return 0;
1511 kdb_printf("%02x", c);
1512 addr++;
1513 }
1514 kdb_printf("\n");
1515 return 0;
1516}
1517
1518/*
1519 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1520 * 'md8' 'mdr' and 'mds' commands.
1521 *
1522 * md|mds [<addr arg> [<line count> [<radix>]]]
1523 * mdWcN [<addr arg> [<line count> [<radix>]]]
1524 * where W = is the width (1, 2, 4 or 8) and N is the count.
1525 * for eg., md1c20 reads 20 bytes, 1 at a time.
1526 * mdr <addr arg>,<byte count>
1527 */
1528static void kdb_md_line(const char *fmtstr, unsigned long addr,
1529 int symbolic, int nosect, int bytesperword,
1530 int num, int repeat, int phys)
1531{
1532 /* print just one line of data */
1533 kdb_symtab_t symtab;
1534 char cbuf[32];
1535 char *c = cbuf;
1536 int i;
1537 int j;
1538 unsigned long word;
1539
1540 memset(cbuf, '\0', sizeof(cbuf));
1541 if (phys)
1542 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1543 else
1544 kdb_printf(kdb_machreg_fmt0 " ", addr);
1545
1546 for (i = 0; i < num && repeat--; i++) {
1547 if (phys) {
1548 if (kdb_getphysword(&word, addr, bytesperword))
1549 break;
1550 } else if (kdb_getword(&word, addr, bytesperword))
1551 break;
1552 kdb_printf(fmtstr, word);
1553 if (symbolic)
1554 kdbnearsym(word, &symtab);
1555 else
1556 memset(&symtab, 0, sizeof(symtab));
1557 if (symtab.sym_name) {
1558 kdb_symbol_print(word, &symtab, 0);
1559 if (!nosect) {
1560 kdb_printf("\n");
1561 kdb_printf(" %s %s "
1562 kdb_machreg_fmt " "
1563 kdb_machreg_fmt " "
1564 kdb_machreg_fmt, symtab.mod_name,
1565 symtab.sec_name, symtab.sec_start,
1566 symtab.sym_start, symtab.sym_end);
1567 }
1568 addr += bytesperword;
1569 } else {
1570 union {
1571 u64 word;
1572 unsigned char c[8];
1573 } wc;
1574 unsigned char *cp;
1575#ifdef __BIG_ENDIAN
1576 cp = wc.c + 8 - bytesperword;
1577#else
1578 cp = wc.c;
1579#endif
1580 wc.word = word;
1581#define printable_char(c) \
1582 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1583 for (j = 0; j < bytesperword; j++)
1584 *c++ = printable_char(*cp++);
1585 addr += bytesperword;
1586#undef printable_char
1587 }
1588 }
1589 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1590 " ", cbuf);
1591}
1592
1593static int kdb_md(int argc, const char **argv)
1594{
1595 static unsigned long last_addr;
1596 static int last_radix, last_bytesperword, last_repeat;
1597 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1598 int nosect = 0;
1599 char fmtchar, fmtstr[64];
1600 unsigned long addr;
1601 unsigned long word;
1602 long offset = 0;
1603 int symbolic = 0;
1604 int valid = 0;
1605 int phys = 0;
1606 int raw = 0;
1607
1608 kdbgetintenv("MDCOUNT", &mdcount);
1609 kdbgetintenv("RADIX", &radix);
1610 kdbgetintenv("BYTESPERWORD", &bytesperword);
1611
1612 /* Assume 'md <addr>' and start with environment values */
1613 repeat = mdcount * 16 / bytesperword;
1614
1615 if (strcmp(argv[0], "mdr") == 0) {
1616 if (argc == 2 || (argc == 0 && last_addr != 0))
1617 valid = raw = 1;
1618 else
1619 return KDB_ARGCOUNT;
1620 } else if (isdigit(argv[0][2])) {
1621 bytesperword = (int)(argv[0][2] - '0');
1622 if (bytesperword == 0) {
1623 bytesperword = last_bytesperword;
1624 if (bytesperword == 0)
1625 bytesperword = 4;
1626 }
1627 last_bytesperword = bytesperword;
1628 repeat = mdcount * 16 / bytesperword;
1629 if (!argv[0][3])
1630 valid = 1;
1631 else if (argv[0][3] == 'c' && argv[0][4]) {
1632 char *p;
1633 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1634 mdcount = ((repeat * bytesperword) + 15) / 16;
1635 valid = !*p;
1636 }
1637 last_repeat = repeat;
1638 } else if (strcmp(argv[0], "md") == 0)
1639 valid = 1;
1640 else if (strcmp(argv[0], "mds") == 0)
1641 valid = 1;
1642 else if (strcmp(argv[0], "mdp") == 0) {
1643 phys = valid = 1;
1644 }
1645 if (!valid)
1646 return KDB_NOTFOUND;
1647
1648 if (argc == 0) {
1649 if (last_addr == 0)
1650 return KDB_ARGCOUNT;
1651 addr = last_addr;
1652 radix = last_radix;
1653 bytesperword = last_bytesperword;
1654 repeat = last_repeat;
1655 if (raw)
1656 mdcount = repeat;
1657 else
1658 mdcount = ((repeat * bytesperword) + 15) / 16;
1659 }
1660
1661 if (argc) {
1662 unsigned long val;
1663 int diag, nextarg = 1;
1664 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1665 &offset, NULL);
1666 if (diag)
1667 return diag;
1668 if (argc > nextarg+2)
1669 return KDB_ARGCOUNT;
1670
1671 if (argc >= nextarg) {
1672 diag = kdbgetularg(argv[nextarg], &val);
1673 if (!diag) {
1674 mdcount = (int) val;
1675 if (raw)
1676 repeat = mdcount;
1677 else
1678 repeat = mdcount * 16 / bytesperword;
1679 }
1680 }
1681 if (argc >= nextarg+1) {
1682 diag = kdbgetularg(argv[nextarg+1], &val);
1683 if (!diag)
1684 radix = (int) val;
1685 }
1686 }
1687
1688 if (strcmp(argv[0], "mdr") == 0) {
1689 int ret;
1690 last_addr = addr;
1691 ret = kdb_mdr(addr, mdcount);
1692 last_addr += mdcount;
1693 last_repeat = mdcount;
1694 last_bytesperword = bytesperword; // to make REPEAT happy
1695 return ret;
1696 }
1697
1698 switch (radix) {
1699 case 10:
1700 fmtchar = 'd';
1701 break;
1702 case 16:
1703 fmtchar = 'x';
1704 break;
1705 case 8:
1706 fmtchar = 'o';
1707 break;
1708 default:
1709 return KDB_BADRADIX;
1710 }
1711
1712 last_radix = radix;
1713
1714 if (bytesperword > KDB_WORD_SIZE)
1715 return KDB_BADWIDTH;
1716
1717 switch (bytesperword) {
1718 case 8:
1719 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1720 break;
1721 case 4:
1722 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1723 break;
1724 case 2:
1725 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1726 break;
1727 case 1:
1728 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1729 break;
1730 default:
1731 return KDB_BADWIDTH;
1732 }
1733
1734 last_repeat = repeat;
1735 last_bytesperword = bytesperword;
1736
1737 if (strcmp(argv[0], "mds") == 0) {
1738 symbolic = 1;
1739 /* Do not save these changes as last_*, they are temporary mds
1740 * overrides.
1741 */
1742 bytesperword = KDB_WORD_SIZE;
1743 repeat = mdcount;
1744 kdbgetintenv("NOSECT", &nosect);
1745 }
1746
1747 /* Round address down modulo BYTESPERWORD */
1748
1749 addr &= ~(bytesperword-1);
1750
1751 while (repeat > 0) {
1752 unsigned long a;
1753 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1754
1755 if (KDB_FLAG(CMD_INTERRUPT))
1756 return 0;
1757 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1758 if (phys) {
1759 if (kdb_getphysword(&word, a, bytesperword)
1760 || word)
1761 break;
1762 } else if (kdb_getword(&word, a, bytesperword) || word)
1763 break;
1764 }
1765 n = min(num, repeat);
1766 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1767 num, repeat, phys);
1768 addr += bytesperword * n;
1769 repeat -= n;
1770 z = (z + num - 1) / num;
1771 if (z > 2) {
1772 int s = num * (z-2);
1773 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1774 " zero suppressed\n",
1775 addr, addr + bytesperword * s - 1);
1776 addr += bytesperword * s;
1777 repeat -= s;
1778 }
1779 }
1780 last_addr = addr;
1781
1782 return 0;
1783}
1784
1785/*
1786 * kdb_mm - This function implements the 'mm' command.
1787 * mm address-expression new-value
1788 * Remarks:
1789 * mm works on machine words, mmW works on bytes.
1790 */
1791static int kdb_mm(int argc, const char **argv)
1792{
1793 int diag;
1794 unsigned long addr;
1795 long offset = 0;
1796 unsigned long contents;
1797 int nextarg;
1798 int width;
1799
1800 if (argv[0][2] && !isdigit(argv[0][2]))
1801 return KDB_NOTFOUND;
1802
1803 if (argc < 2)
1804 return KDB_ARGCOUNT;
1805
1806 nextarg = 1;
1807 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1808 if (diag)
1809 return diag;
1810
1811 if (nextarg > argc)
1812 return KDB_ARGCOUNT;
1813 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1814 if (diag)
1815 return diag;
1816
1817 if (nextarg != argc + 1)
1818 return KDB_ARGCOUNT;
1819
1820 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1821 diag = kdb_putword(addr, contents, width);
1822 if (diag)
1823 return diag;
1824
1825 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1826
1827 return 0;
1828}
1829
1830/*
1831 * kdb_go - This function implements the 'go' command.
1832 * go [address-expression]
1833 */
1834static int kdb_go(int argc, const char **argv)
1835{
1836 unsigned long addr;
1837 int diag;
1838 int nextarg;
1839 long offset;
1840
1841 if (raw_smp_processor_id() != kdb_initial_cpu) {
1842 kdb_printf("go must execute on the entry cpu, "
1843 "please use \"cpu %d\" and then execute go\n",
1844 kdb_initial_cpu);
1845 return KDB_BADCPUNUM;
1846 }
1847 if (argc == 1) {
1848 nextarg = 1;
1849 diag = kdbgetaddrarg(argc, argv, &nextarg,
1850 &addr, &offset, NULL);
1851 if (diag)
1852 return diag;
1853 } else if (argc) {
1854 return KDB_ARGCOUNT;
1855 }
1856
1857 diag = KDB_CMD_GO;
1858 if (KDB_FLAG(CATASTROPHIC)) {
1859 kdb_printf("Catastrophic error detected\n");
1860 kdb_printf("kdb_continue_catastrophic=%d, ",
1861 kdb_continue_catastrophic);
1862 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1863 kdb_printf("type go a second time if you really want "
1864 "to continue\n");
1865 return 0;
1866 }
1867 if (kdb_continue_catastrophic == 2) {
1868 kdb_printf("forcing reboot\n");
1869 kdb_reboot(0, NULL);
1870 }
1871 kdb_printf("attempting to continue\n");
1872 }
1873 return diag;
1874}
1875
1876/*
1877 * kdb_rd - This function implements the 'rd' command.
1878 */
1879static int kdb_rd(int argc, const char **argv)
1880{
1881 int len = kdb_check_regs();
1882#if DBG_MAX_REG_NUM > 0
1883 int i;
1884 char *rname;
1885 int rsize;
1886 u64 reg64;
1887 u32 reg32;
1888 u16 reg16;
1889 u8 reg8;
1890
1891 if (len)
1892 return len;
1893
1894 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1895 rsize = dbg_reg_def[i].size * 2;
1896 if (rsize > 16)
1897 rsize = 2;
1898 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1899 len = 0;
1900 kdb_printf("\n");
1901 }
1902 if (len)
1903 len += kdb_printf(" ");
1904 switch(dbg_reg_def[i].size * 8) {
1905 case 8:
1906 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1907 if (!rname)
1908 break;
1909 len += kdb_printf("%s: %02x", rname, reg8);
1910 break;
1911 case 16:
1912 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1913 if (!rname)
1914 break;
1915 len += kdb_printf("%s: %04x", rname, reg16);
1916 break;
1917 case 32:
1918 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1919 if (!rname)
1920 break;
1921 len += kdb_printf("%s: %08x", rname, reg32);
1922 break;
1923 case 64:
1924 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1925 if (!rname)
1926 break;
1927 len += kdb_printf("%s: %016llx", rname, reg64);
1928 break;
1929 default:
1930 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1931 }
1932 }
1933 kdb_printf("\n");
1934#else
1935 if (len)
1936 return len;
1937
1938 kdb_dumpregs(kdb_current_regs);
1939#endif
1940 return 0;
1941}
1942
1943/*
1944 * kdb_rm - This function implements the 'rm' (register modify) command.
1945 * rm register-name new-contents
1946 * Remarks:
1947 * Allows register modification with the same restrictions as gdb
1948 */
1949static int kdb_rm(int argc, const char **argv)
1950{
1951#if DBG_MAX_REG_NUM > 0
1952 int diag;
1953 const char *rname;
1954 int i;
1955 u64 reg64;
1956 u32 reg32;
1957 u16 reg16;
1958 u8 reg8;
1959
1960 if (argc != 2)
1961 return KDB_ARGCOUNT;
1962 /*
1963 * Allow presence or absence of leading '%' symbol.
1964 */
1965 rname = argv[1];
1966 if (*rname == '%')
1967 rname++;
1968
1969 diag = kdbgetu64arg(argv[2], ®64);
1970 if (diag)
1971 return diag;
1972
1973 diag = kdb_check_regs();
1974 if (diag)
1975 return diag;
1976
1977 diag = KDB_BADREG;
1978 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1979 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1980 diag = 0;
1981 break;
1982 }
1983 }
1984 if (!diag) {
1985 switch(dbg_reg_def[i].size * 8) {
1986 case 8:
1987 reg8 = reg64;
1988 dbg_set_reg(i, ®8, kdb_current_regs);
1989 break;
1990 case 16:
1991 reg16 = reg64;
1992 dbg_set_reg(i, ®16, kdb_current_regs);
1993 break;
1994 case 32:
1995 reg32 = reg64;
1996 dbg_set_reg(i, ®32, kdb_current_regs);
1997 break;
1998 case 64:
1999 dbg_set_reg(i, ®64, kdb_current_regs);
2000 break;
2001 }
2002 }
2003 return diag;
2004#else
2005 kdb_printf("ERROR: Register set currently not implemented\n");
2006 return 0;
2007#endif
2008}
2009
2010#if defined(CONFIG_MAGIC_SYSRQ)
2011/*
2012 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
2013 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
2014 * sr <magic-sysrq-code>
2015 */
2016static int kdb_sr(int argc, const char **argv)
2017{
2018 bool check_mask =
2019 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
2020
2021 if (argc != 1)
2022 return KDB_ARGCOUNT;
2023
2024 kdb_trap_printk++;
2025 __handle_sysrq(*argv[1], check_mask);
2026 kdb_trap_printk--;
2027
2028 return 0;
2029}
2030#endif /* CONFIG_MAGIC_SYSRQ */
2031
2032/*
2033 * kdb_ef - This function implements the 'regs' (display exception
2034 * frame) command. This command takes an address and expects to
2035 * find an exception frame at that address, formats and prints
2036 * it.
2037 * regs address-expression
2038 * Remarks:
2039 * Not done yet.
2040 */
2041static int kdb_ef(int argc, const char **argv)
2042{
2043 int diag;
2044 unsigned long addr;
2045 long offset;
2046 int nextarg;
2047
2048 if (argc != 1)
2049 return KDB_ARGCOUNT;
2050
2051 nextarg = 1;
2052 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2053 if (diag)
2054 return diag;
2055 show_regs((struct pt_regs *)addr);
2056 return 0;
2057}
2058
2059/*
2060 * kdb_env - This function implements the 'env' command. Display the
2061 * current environment variables.
2062 */
2063
2064static int kdb_env(int argc, const char **argv)
2065{
2066 kdb_printenv();
2067
2068 if (KDB_DEBUG(MASK))
2069 kdb_printf("KDBDEBUG=0x%x\n",
2070 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2071
2072 return 0;
2073}
2074
2075#ifdef CONFIG_PRINTK
2076/*
2077 * kdb_dmesg - This function implements the 'dmesg' command to display
2078 * the contents of the syslog buffer.
2079 * dmesg [lines] [adjust]
2080 */
2081static int kdb_dmesg(int argc, const char **argv)
2082{
2083 int diag;
2084 int logging;
2085 int lines = 0;
2086 int adjust = 0;
2087 int n = 0;
2088 int skip = 0;
2089 struct kmsg_dump_iter iter;
2090 size_t len;
2091 char buf[201];
2092
2093 if (argc > 2)
2094 return KDB_ARGCOUNT;
2095 if (argc) {
2096 char *cp;
2097 lines = simple_strtol(argv[1], &cp, 0);
2098 if (*cp)
2099 lines = 0;
2100 if (argc > 1) {
2101 adjust = simple_strtoul(argv[2], &cp, 0);
2102 if (*cp || adjust < 0)
2103 adjust = 0;
2104 }
2105 }
2106
2107 /* disable LOGGING if set */
2108 diag = kdbgetintenv("LOGGING", &logging);
2109 if (!diag && logging) {
2110 const char *setargs[] = { "set", "LOGGING", "0" };
2111 kdb_set(2, setargs);
2112 }
2113
2114 kmsg_dump_rewind(&iter);
2115 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2116 n++;
2117
2118 if (lines < 0) {
2119 if (adjust >= n)
2120 kdb_printf("buffer only contains %d lines, nothing "
2121 "printed\n", n);
2122 else if (adjust - lines >= n)
2123 kdb_printf("buffer only contains %d lines, last %d "
2124 "lines printed\n", n, n - adjust);
2125 skip = adjust;
2126 lines = abs(lines);
2127 } else if (lines > 0) {
2128 skip = n - lines - adjust;
2129 lines = abs(lines);
2130 if (adjust >= n) {
2131 kdb_printf("buffer only contains %d lines, "
2132 "nothing printed\n", n);
2133 skip = n;
2134 } else if (skip < 0) {
2135 lines += skip;
2136 skip = 0;
2137 kdb_printf("buffer only contains %d lines, first "
2138 "%d lines printed\n", n, lines);
2139 }
2140 } else {
2141 lines = n;
2142 }
2143
2144 if (skip >= n || skip < 0)
2145 return 0;
2146
2147 kmsg_dump_rewind(&iter);
2148 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2149 if (skip) {
2150 skip--;
2151 continue;
2152 }
2153 if (!lines--)
2154 break;
2155 if (KDB_FLAG(CMD_INTERRUPT))
2156 return 0;
2157
2158 kdb_printf("%.*s\n", (int)len - 1, buf);
2159 }
2160
2161 return 0;
2162}
2163#endif /* CONFIG_PRINTK */
2164
2165/* Make sure we balance enable/disable calls, must disable first. */
2166static atomic_t kdb_nmi_disabled;
2167
2168static int kdb_disable_nmi(int argc, const char *argv[])
2169{
2170 if (atomic_read(&kdb_nmi_disabled))
2171 return 0;
2172 atomic_set(&kdb_nmi_disabled, 1);
2173 arch_kgdb_ops.enable_nmi(0);
2174 return 0;
2175}
2176
2177static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2178{
2179 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2180 return -EINVAL;
2181 arch_kgdb_ops.enable_nmi(1);
2182 return 0;
2183}
2184
2185static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2186 .set = kdb_param_enable_nmi,
2187};
2188module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2189
2190/*
2191 * kdb_cpu - This function implements the 'cpu' command.
2192 * cpu [<cpunum>]
2193 * Returns:
2194 * KDB_CMD_CPU for success, a kdb diagnostic if error
2195 */
2196static void kdb_cpu_status(void)
2197{
2198 int i, start_cpu, first_print = 1;
2199 char state, prev_state = '?';
2200
2201 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2202 kdb_printf("Available cpus: ");
2203 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2204 if (!cpu_online(i)) {
2205 state = 'F'; /* cpu is offline */
2206 } else if (!kgdb_info[i].enter_kgdb) {
2207 state = 'D'; /* cpu is online but unresponsive */
2208 } else {
2209 state = ' '; /* cpu is responding to kdb */
2210 if (kdb_task_state_char(KDB_TSK(i)) == '-')
2211 state = '-'; /* idle task */
2212 }
2213 if (state != prev_state) {
2214 if (prev_state != '?') {
2215 if (!first_print)
2216 kdb_printf(", ");
2217 first_print = 0;
2218 kdb_printf("%d", start_cpu);
2219 if (start_cpu < i-1)
2220 kdb_printf("-%d", i-1);
2221 if (prev_state != ' ')
2222 kdb_printf("(%c)", prev_state);
2223 }
2224 prev_state = state;
2225 start_cpu = i;
2226 }
2227 }
2228 /* print the trailing cpus, ignoring them if they are all offline */
2229 if (prev_state != 'F') {
2230 if (!first_print)
2231 kdb_printf(", ");
2232 kdb_printf("%d", start_cpu);
2233 if (start_cpu < i-1)
2234 kdb_printf("-%d", i-1);
2235 if (prev_state != ' ')
2236 kdb_printf("(%c)", prev_state);
2237 }
2238 kdb_printf("\n");
2239}
2240
2241static int kdb_cpu(int argc, const char **argv)
2242{
2243 unsigned long cpunum;
2244 int diag;
2245
2246 if (argc == 0) {
2247 kdb_cpu_status();
2248 return 0;
2249 }
2250
2251 if (argc != 1)
2252 return KDB_ARGCOUNT;
2253
2254 diag = kdbgetularg(argv[1], &cpunum);
2255 if (diag)
2256 return diag;
2257
2258 /*
2259 * Validate cpunum
2260 */
2261 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2262 return KDB_BADCPUNUM;
2263
2264 dbg_switch_cpu = cpunum;
2265
2266 /*
2267 * Switch to other cpu
2268 */
2269 return KDB_CMD_CPU;
2270}
2271
2272/* The user may not realize that ps/bta with no parameters does not print idle
2273 * or sleeping system daemon processes, so tell them how many were suppressed.
2274 */
2275void kdb_ps_suppressed(void)
2276{
2277 int idle = 0, daemon = 0;
2278 unsigned long cpu;
2279 const struct task_struct *p, *g;
2280 for_each_online_cpu(cpu) {
2281 p = kdb_curr_task(cpu);
2282 if (kdb_task_state(p, "-"))
2283 ++idle;
2284 }
2285 for_each_process_thread(g, p) {
2286 if (kdb_task_state(p, "ims"))
2287 ++daemon;
2288 }
2289 if (idle || daemon) {
2290 if (idle)
2291 kdb_printf("%d idle process%s (state -)%s\n",
2292 idle, idle == 1 ? "" : "es",
2293 daemon ? " and " : "");
2294 if (daemon)
2295 kdb_printf("%d sleeping system daemon (state [ims]) "
2296 "process%s", daemon,
2297 daemon == 1 ? "" : "es");
2298 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2299 }
2300}
2301
2302void kdb_ps1(const struct task_struct *p)
2303{
2304 int cpu;
2305 unsigned long tmp;
2306
2307 if (!p ||
2308 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2309 return;
2310
2311 cpu = kdb_process_cpu(p);
2312 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2313 (void *)p, p->pid, p->parent->pid,
2314 kdb_task_has_cpu(p), kdb_process_cpu(p),
2315 kdb_task_state_char(p),
2316 (void *)(&p->thread),
2317 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2318 p->comm);
2319 if (kdb_task_has_cpu(p)) {
2320 if (!KDB_TSK(cpu)) {
2321 kdb_printf(" Error: no saved data for this cpu\n");
2322 } else {
2323 if (KDB_TSK(cpu) != p)
2324 kdb_printf(" Error: does not match running "
2325 "process table (0x%px)\n", KDB_TSK(cpu));
2326 }
2327 }
2328}
2329
2330/*
2331 * kdb_ps - This function implements the 'ps' command which shows a
2332 * list of the active processes.
2333 *
2334 * ps [<state_chars>] Show processes, optionally selecting only those whose
2335 * state character is found in <state_chars>.
2336 */
2337static int kdb_ps(int argc, const char **argv)
2338{
2339 struct task_struct *g, *p;
2340 const char *mask;
2341 unsigned long cpu;
2342
2343 if (argc == 0)
2344 kdb_ps_suppressed();
2345 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2346 (int)(2*sizeof(void *))+2, "Task Addr",
2347 (int)(2*sizeof(void *))+2, "Thread");
2348 mask = argc ? argv[1] : kdbgetenv("PS");
2349 /* Run the active tasks first */
2350 for_each_online_cpu(cpu) {
2351 if (KDB_FLAG(CMD_INTERRUPT))
2352 return 0;
2353 p = kdb_curr_task(cpu);
2354 if (kdb_task_state(p, mask))
2355 kdb_ps1(p);
2356 }
2357 kdb_printf("\n");
2358 /* Now the real tasks */
2359 for_each_process_thread(g, p) {
2360 if (KDB_FLAG(CMD_INTERRUPT))
2361 return 0;
2362 if (kdb_task_state(p, mask))
2363 kdb_ps1(p);
2364 }
2365
2366 return 0;
2367}
2368
2369/*
2370 * kdb_pid - This function implements the 'pid' command which switches
2371 * the currently active process.
2372 * pid [<pid> | R]
2373 */
2374static int kdb_pid(int argc, const char **argv)
2375{
2376 struct task_struct *p;
2377 unsigned long val;
2378 int diag;
2379
2380 if (argc > 1)
2381 return KDB_ARGCOUNT;
2382
2383 if (argc) {
2384 if (strcmp(argv[1], "R") == 0) {
2385 p = KDB_TSK(kdb_initial_cpu);
2386 } else {
2387 diag = kdbgetularg(argv[1], &val);
2388 if (diag)
2389 return KDB_BADINT;
2390
2391 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2392 if (!p) {
2393 kdb_printf("No task with pid=%d\n", (pid_t)val);
2394 return 0;
2395 }
2396 }
2397 kdb_set_current_task(p);
2398 }
2399 kdb_printf("KDB current process is %s(pid=%d)\n",
2400 kdb_current_task->comm,
2401 kdb_current_task->pid);
2402
2403 return 0;
2404}
2405
2406static int kdb_kgdb(int argc, const char **argv)
2407{
2408 return KDB_CMD_KGDB;
2409}
2410
2411/*
2412 * kdb_help - This function implements the 'help' and '?' commands.
2413 */
2414static int kdb_help(int argc, const char **argv)
2415{
2416 kdbtab_t *kt;
2417
2418 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2419 kdb_printf("-----------------------------"
2420 "-----------------------------\n");
2421 list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2422 char *space = "";
2423 if (KDB_FLAG(CMD_INTERRUPT))
2424 return 0;
2425 if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
2426 continue;
2427 if (strlen(kt->usage) > 20)
2428 space = "\n ";
2429 kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2430 kt->usage, space, kt->help);
2431 }
2432 return 0;
2433}
2434
2435/*
2436 * kdb_kill - This function implements the 'kill' commands.
2437 */
2438static int kdb_kill(int argc, const char **argv)
2439{
2440 long sig, pid;
2441 char *endp;
2442 struct task_struct *p;
2443
2444 if (argc != 2)
2445 return KDB_ARGCOUNT;
2446
2447 sig = simple_strtol(argv[1], &endp, 0);
2448 if (*endp)
2449 return KDB_BADINT;
2450 if ((sig >= 0) || !valid_signal(-sig)) {
2451 kdb_printf("Invalid signal parameter.<-signal>\n");
2452 return 0;
2453 }
2454 sig = -sig;
2455
2456 pid = simple_strtol(argv[2], &endp, 0);
2457 if (*endp)
2458 return KDB_BADINT;
2459 if (pid <= 0) {
2460 kdb_printf("Process ID must be large than 0.\n");
2461 return 0;
2462 }
2463
2464 /* Find the process. */
2465 p = find_task_by_pid_ns(pid, &init_pid_ns);
2466 if (!p) {
2467 kdb_printf("The specified process isn't found.\n");
2468 return 0;
2469 }
2470 p = p->group_leader;
2471 kdb_send_sig(p, sig);
2472 return 0;
2473}
2474
2475/*
2476 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2477 * I cannot call that code directly from kdb, it has an unconditional
2478 * cli()/sti() and calls routines that take locks which can stop the debugger.
2479 */
2480static void kdb_sysinfo(struct sysinfo *val)
2481{
2482 u64 uptime = ktime_get_mono_fast_ns();
2483
2484 memset(val, 0, sizeof(*val));
2485 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2486 val->loads[0] = avenrun[0];
2487 val->loads[1] = avenrun[1];
2488 val->loads[2] = avenrun[2];
2489 val->procs = nr_threads-1;
2490 si_meminfo(val);
2491
2492 return;
2493}
2494
2495/*
2496 * kdb_summary - This function implements the 'summary' command.
2497 */
2498static int kdb_summary(int argc, const char **argv)
2499{
2500 time64_t now;
2501 struct sysinfo val;
2502
2503 if (argc)
2504 return KDB_ARGCOUNT;
2505
2506 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2507 kdb_printf("release %s\n", init_uts_ns.name.release);
2508 kdb_printf("version %s\n", init_uts_ns.name.version);
2509 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2510 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2511 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2512
2513 now = __ktime_get_real_seconds();
2514 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2515 kdb_sysinfo(&val);
2516 kdb_printf("uptime ");
2517 if (val.uptime > (24*60*60)) {
2518 int days = val.uptime / (24*60*60);
2519 val.uptime %= (24*60*60);
2520 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2521 }
2522 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2523
2524 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2525 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2526 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2527 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2528
2529 /* Display in kilobytes */
2530#define K(x) ((x) << (PAGE_SHIFT - 10))
2531 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2532 "Buffers: %8lu kB\n",
2533 K(val.totalram), K(val.freeram), K(val.bufferram));
2534 return 0;
2535}
2536
2537/*
2538 * kdb_per_cpu - This function implements the 'per_cpu' command.
2539 */
2540static int kdb_per_cpu(int argc, const char **argv)
2541{
2542 char fmtstr[64];
2543 int cpu, diag, nextarg = 1;
2544 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2545
2546 if (argc < 1 || argc > 3)
2547 return KDB_ARGCOUNT;
2548
2549 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2550 if (diag)
2551 return diag;
2552
2553 if (argc >= 2) {
2554 diag = kdbgetularg(argv[2], &bytesperword);
2555 if (diag)
2556 return diag;
2557 }
2558 if (!bytesperword)
2559 bytesperword = KDB_WORD_SIZE;
2560 else if (bytesperword > KDB_WORD_SIZE)
2561 return KDB_BADWIDTH;
2562 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2563 if (argc >= 3) {
2564 diag = kdbgetularg(argv[3], &whichcpu);
2565 if (diag)
2566 return diag;
2567 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2568 kdb_printf("cpu %ld is not online\n", whichcpu);
2569 return KDB_BADCPUNUM;
2570 }
2571 }
2572
2573 /* Most architectures use __per_cpu_offset[cpu], some use
2574 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2575 */
2576#ifdef __per_cpu_offset
2577#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2578#else
2579#ifdef CONFIG_SMP
2580#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2581#else
2582#define KDB_PCU(cpu) 0
2583#endif
2584#endif
2585 for_each_online_cpu(cpu) {
2586 if (KDB_FLAG(CMD_INTERRUPT))
2587 return 0;
2588
2589 if (whichcpu != ~0UL && whichcpu != cpu)
2590 continue;
2591 addr = symaddr + KDB_PCU(cpu);
2592 diag = kdb_getword(&val, addr, bytesperword);
2593 if (diag) {
2594 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2595 "read, diag=%d\n", cpu, addr, diag);
2596 continue;
2597 }
2598 kdb_printf("%5d ", cpu);
2599 kdb_md_line(fmtstr, addr,
2600 bytesperword == KDB_WORD_SIZE,
2601 1, bytesperword, 1, 1, 0);
2602 }
2603#undef KDB_PCU
2604 return 0;
2605}
2606
2607/*
2608 * display help for the use of cmd | grep pattern
2609 */
2610static int kdb_grep_help(int argc, const char **argv)
2611{
2612 kdb_printf("Usage of cmd args | grep pattern:\n");
2613 kdb_printf(" Any command's output may be filtered through an ");
2614 kdb_printf("emulated 'pipe'.\n");
2615 kdb_printf(" 'grep' is just a key word.\n");
2616 kdb_printf(" The pattern may include a very limited set of "
2617 "metacharacters:\n");
2618 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2619 kdb_printf(" And if there are spaces in the pattern, you may "
2620 "quote it:\n");
2621 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2622 " or \"^pat tern$\"\n");
2623 return 0;
2624}
2625
2626/**
2627 * kdb_register() - This function is used to register a kernel debugger
2628 * command.
2629 * @cmd: pointer to kdb command
2630 *
2631 * Note that it's the job of the caller to keep the memory for the cmd
2632 * allocated until unregister is called.
2633 */
2634int kdb_register(kdbtab_t *cmd)
2635{
2636 kdbtab_t *kp;
2637
2638 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2639 if (strcmp(kp->name, cmd->name) == 0) {
2640 kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
2641 cmd->name, cmd->func, cmd->help);
2642 return 1;
2643 }
2644 }
2645
2646 list_add_tail(&cmd->list_node, &kdb_cmds_head);
2647 return 0;
2648}
2649EXPORT_SYMBOL_GPL(kdb_register);
2650
2651/**
2652 * kdb_register_table() - This function is used to register a kdb command
2653 * table.
2654 * @kp: pointer to kdb command table
2655 * @len: length of kdb command table
2656 */
2657void kdb_register_table(kdbtab_t *kp, size_t len)
2658{
2659 while (len--) {
2660 list_add_tail(&kp->list_node, &kdb_cmds_head);
2661 kp++;
2662 }
2663}
2664
2665/**
2666 * kdb_unregister() - This function is used to unregister a kernel debugger
2667 * command. It is generally called when a module which
2668 * implements kdb command is unloaded.
2669 * @cmd: pointer to kdb command
2670 */
2671void kdb_unregister(kdbtab_t *cmd)
2672{
2673 list_del(&cmd->list_node);
2674}
2675EXPORT_SYMBOL_GPL(kdb_unregister);
2676
2677static kdbtab_t maintab[] = {
2678 { .name = "md",
2679 .func = kdb_md,
2680 .usage = "<vaddr>",
2681 .help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2682 .minlen = 1,
2683 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2684 },
2685 { .name = "mdr",
2686 .func = kdb_md,
2687 .usage = "<vaddr> <bytes>",
2688 .help = "Display Raw Memory",
2689 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2690 },
2691 { .name = "mdp",
2692 .func = kdb_md,
2693 .usage = "<paddr> <bytes>",
2694 .help = "Display Physical Memory",
2695 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2696 },
2697 { .name = "mds",
2698 .func = kdb_md,
2699 .usage = "<vaddr>",
2700 .help = "Display Memory Symbolically",
2701 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2702 },
2703 { .name = "mm",
2704 .func = kdb_mm,
2705 .usage = "<vaddr> <contents>",
2706 .help = "Modify Memory Contents",
2707 .flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2708 },
2709 { .name = "go",
2710 .func = kdb_go,
2711 .usage = "[<vaddr>]",
2712 .help = "Continue Execution",
2713 .minlen = 1,
2714 .flags = KDB_ENABLE_REG_WRITE |
2715 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2716 },
2717 { .name = "rd",
2718 .func = kdb_rd,
2719 .usage = "",
2720 .help = "Display Registers",
2721 .flags = KDB_ENABLE_REG_READ,
2722 },
2723 { .name = "rm",
2724 .func = kdb_rm,
2725 .usage = "<reg> <contents>",
2726 .help = "Modify Registers",
2727 .flags = KDB_ENABLE_REG_WRITE,
2728 },
2729 { .name = "ef",
2730 .func = kdb_ef,
2731 .usage = "<vaddr>",
2732 .help = "Display exception frame",
2733 .flags = KDB_ENABLE_MEM_READ,
2734 },
2735 { .name = "bt",
2736 .func = kdb_bt,
2737 .usage = "[<vaddr>]",
2738 .help = "Stack traceback",
2739 .minlen = 1,
2740 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2741 },
2742 { .name = "btp",
2743 .func = kdb_bt,
2744 .usage = "<pid>",
2745 .help = "Display stack for process <pid>",
2746 .flags = KDB_ENABLE_INSPECT,
2747 },
2748 { .name = "bta",
2749 .func = kdb_bt,
2750 .usage = "[<state_chars>|A]",
2751 .help = "Backtrace all processes whose state matches",
2752 .flags = KDB_ENABLE_INSPECT,
2753 },
2754 { .name = "btc",
2755 .func = kdb_bt,
2756 .usage = "",
2757 .help = "Backtrace current process on each cpu",
2758 .flags = KDB_ENABLE_INSPECT,
2759 },
2760 { .name = "btt",
2761 .func = kdb_bt,
2762 .usage = "<vaddr>",
2763 .help = "Backtrace process given its struct task address",
2764 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2765 },
2766 { .name = "env",
2767 .func = kdb_env,
2768 .usage = "",
2769 .help = "Show environment variables",
2770 .flags = KDB_ENABLE_ALWAYS_SAFE,
2771 },
2772 { .name = "set",
2773 .func = kdb_set,
2774 .usage = "",
2775 .help = "Set environment variables",
2776 .flags = KDB_ENABLE_ALWAYS_SAFE,
2777 },
2778 { .name = "help",
2779 .func = kdb_help,
2780 .usage = "",
2781 .help = "Display Help Message",
2782 .minlen = 1,
2783 .flags = KDB_ENABLE_ALWAYS_SAFE,
2784 },
2785 { .name = "?",
2786 .func = kdb_help,
2787 .usage = "",
2788 .help = "Display Help Message",
2789 .flags = KDB_ENABLE_ALWAYS_SAFE,
2790 },
2791 { .name = "cpu",
2792 .func = kdb_cpu,
2793 .usage = "<cpunum>",
2794 .help = "Switch to new cpu",
2795 .flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2796 },
2797 { .name = "kgdb",
2798 .func = kdb_kgdb,
2799 .usage = "",
2800 .help = "Enter kgdb mode",
2801 .flags = 0,
2802 },
2803 { .name = "ps",
2804 .func = kdb_ps,
2805 .usage = "[<state_chars>|A]",
2806 .help = "Display active task list",
2807 .flags = KDB_ENABLE_INSPECT,
2808 },
2809 { .name = "pid",
2810 .func = kdb_pid,
2811 .usage = "<pidnum>",
2812 .help = "Switch to another task",
2813 .flags = KDB_ENABLE_INSPECT,
2814 },
2815 { .name = "reboot",
2816 .func = kdb_reboot,
2817 .usage = "",
2818 .help = "Reboot the machine immediately",
2819 .flags = KDB_ENABLE_REBOOT,
2820 },
2821#if defined(CONFIG_MODULES)
2822 { .name = "lsmod",
2823 .func = kdb_lsmod,
2824 .usage = "",
2825 .help = "List loaded kernel modules",
2826 .flags = KDB_ENABLE_INSPECT,
2827 },
2828#endif
2829#if defined(CONFIG_MAGIC_SYSRQ)
2830 { .name = "sr",
2831 .func = kdb_sr,
2832 .usage = "<key>",
2833 .help = "Magic SysRq key",
2834 .flags = KDB_ENABLE_ALWAYS_SAFE,
2835 },
2836#endif
2837#if defined(CONFIG_PRINTK)
2838 { .name = "dmesg",
2839 .func = kdb_dmesg,
2840 .usage = "[lines]",
2841 .help = "Display syslog buffer",
2842 .flags = KDB_ENABLE_ALWAYS_SAFE,
2843 },
2844#endif
2845 { .name = "defcmd",
2846 .func = kdb_defcmd,
2847 .usage = "name \"usage\" \"help\"",
2848 .help = "Define a set of commands, down to endefcmd",
2849 /*
2850 * Macros are always safe because when executed each
2851 * internal command re-enters kdb_parse() and is safety
2852 * checked individually.
2853 */
2854 .flags = KDB_ENABLE_ALWAYS_SAFE,
2855 },
2856 { .name = "kill",
2857 .func = kdb_kill,
2858 .usage = "<-signal> <pid>",
2859 .help = "Send a signal to a process",
2860 .flags = KDB_ENABLE_SIGNAL,
2861 },
2862 { .name = "summary",
2863 .func = kdb_summary,
2864 .usage = "",
2865 .help = "Summarize the system",
2866 .minlen = 4,
2867 .flags = KDB_ENABLE_ALWAYS_SAFE,
2868 },
2869 { .name = "per_cpu",
2870 .func = kdb_per_cpu,
2871 .usage = "<sym> [<bytes>] [<cpu>]",
2872 .help = "Display per_cpu variables",
2873 .minlen = 3,
2874 .flags = KDB_ENABLE_MEM_READ,
2875 },
2876 { .name = "grephelp",
2877 .func = kdb_grep_help,
2878 .usage = "",
2879 .help = "Display help on | grep",
2880 .flags = KDB_ENABLE_ALWAYS_SAFE,
2881 },
2882};
2883
2884static kdbtab_t nmicmd = {
2885 .name = "disable_nmi",
2886 .func = kdb_disable_nmi,
2887 .usage = "",
2888 .help = "Disable NMI entry to KDB",
2889 .flags = KDB_ENABLE_ALWAYS_SAFE,
2890};
2891
2892/* Initialize the kdb command table. */
2893static void __init kdb_inittab(void)
2894{
2895 kdb_register_table(maintab, ARRAY_SIZE(maintab));
2896 if (arch_kgdb_ops.enable_nmi)
2897 kdb_register_table(&nmicmd, 1);
2898}
2899
2900/* Execute any commands defined in kdb_cmds. */
2901static void __init kdb_cmd_init(void)
2902{
2903 int i, diag;
2904 for (i = 0; kdb_cmds[i]; ++i) {
2905 diag = kdb_parse(kdb_cmds[i]);
2906 if (diag)
2907 kdb_printf("kdb command %s failed, kdb diag %d\n",
2908 kdb_cmds[i], diag);
2909 }
2910 if (defcmd_in_progress) {
2911 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2912 kdb_parse("endefcmd");
2913 }
2914}
2915
2916/* Initialize kdb_printf, breakpoint tables and kdb state */
2917void __init kdb_init(int lvl)
2918{
2919 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2920 int i;
2921
2922 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2923 return;
2924 for (i = kdb_init_lvl; i < lvl; i++) {
2925 switch (i) {
2926 case KDB_NOT_INITIALIZED:
2927 kdb_inittab(); /* Initialize Command Table */
2928 kdb_initbptab(); /* Initialize Breakpoints */
2929 break;
2930 case KDB_INIT_EARLY:
2931 kdb_cmd_init(); /* Build kdb_cmds tables */
2932 break;
2933 }
2934 }
2935 kdb_init_lvl = lvl;
2936}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/moduleparam.h>
30#include <linux/mm.h>
31#include <linux/init.h>
32#include <linux/kallsyms.h>
33#include <linux/kgdb.h>
34#include <linux/kdb.h>
35#include <linux/notifier.h>
36#include <linux/interrupt.h>
37#include <linux/delay.h>
38#include <linux/nmi.h>
39#include <linux/time.h>
40#include <linux/ptrace.h>
41#include <linux/sysctl.h>
42#include <linux/cpu.h>
43#include <linux/kdebug.h>
44#include <linux/proc_fs.h>
45#include <linux/uaccess.h>
46#include <linux/slab.h>
47#include <linux/security.h>
48#include "kdb_private.h"
49
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56char kdb_grep_string[KDB_GREP_STRLEN];
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65unsigned int kdb_flags;
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76struct pt_regs *kdb_current_regs;
77
78const char *kdb_diemsg;
79static int kdb_go_count;
80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81static unsigned int kdb_continue_catastrophic =
82 CONFIG_KDB_CONTINUE_CATASTROPHIC;
83#else
84static unsigned int kdb_continue_catastrophic;
85#endif
86
87/* kdb_cmds_head describes the available commands. */
88static LIST_HEAD(kdb_cmds_head);
89
90typedef struct _kdbmsg {
91 int km_diag; /* kdb diagnostic */
92 char *km_msg; /* Corresponding message text */
93} kdbmsg_t;
94
95#define KDBMSG(msgnum, text) \
96 { KDB_##msgnum, text }
97
98static kdbmsg_t kdbmsgs[] = {
99 KDBMSG(NOTFOUND, "Command Not Found"),
100 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
101 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
102 "8 is only allowed on 64 bit systems"),
103 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
104 KDBMSG(NOTENV, "Cannot find environment variable"),
105 KDBMSG(NOENVVALUE, "Environment variable should have value"),
106 KDBMSG(NOTIMP, "Command not implemented"),
107 KDBMSG(ENVFULL, "Environment full"),
108 KDBMSG(ENVBUFFULL, "Environment buffer full"),
109 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
110#ifdef CONFIG_CPU_XSCALE
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
112#else
113 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
114#endif
115 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
116 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
117 KDBMSG(BADMODE, "Invalid IDMODE"),
118 KDBMSG(BADINT, "Illegal numeric value"),
119 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
120 KDBMSG(BADREG, "Invalid register name"),
121 KDBMSG(BADCPUNUM, "Invalid cpu number"),
122 KDBMSG(BADLENGTH, "Invalid length field"),
123 KDBMSG(NOBP, "No Breakpoint exists"),
124 KDBMSG(BADADDR, "Invalid address"),
125 KDBMSG(NOPERM, "Permission denied"),
126};
127#undef KDBMSG
128
129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
130
131
132/*
133 * Initial environment. This is all kept static and local to
134 * this file. We don't want to rely on the memory allocation
135 * mechanisms in the kernel, so we use a very limited allocate-only
136 * heap for new and altered environment variables. The entire
137 * environment is limited to a fixed number of entries (add more
138 * to __env[] if required) and a fixed amount of heap (add more to
139 * KDB_ENVBUFSIZE if required).
140 */
141
142static char *__env[31] = {
143#if defined(CONFIG_SMP)
144 "PROMPT=[%d]kdb> ",
145#else
146 "PROMPT=kdb> ",
147#endif
148 "MOREPROMPT=more> ",
149 "RADIX=16",
150 "MDCOUNT=8", /* lines of md output */
151 KDB_PLATFORM_ENV,
152 "DTABCOUNT=30",
153 "NOSECT=1",
154};
155
156static const int __nenv = ARRAY_SIZE(__env);
157
158struct task_struct *kdb_curr_task(int cpu)
159{
160 struct task_struct *p = curr_task(cpu);
161#ifdef _TIF_MCA_INIT
162 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
163 p = krp->p;
164#endif
165 return p;
166}
167
168/*
169 * Update the permissions flags (kdb_cmd_enabled) to match the
170 * current lockdown state.
171 *
172 * Within this function the calls to security_locked_down() are "lazy". We
173 * avoid calling them if the current value of kdb_cmd_enabled already excludes
174 * flags that might be subject to lockdown. Additionally we deliberately check
175 * the lockdown flags independently (even though read lockdown implies write
176 * lockdown) since that results in both simpler code and clearer messages to
177 * the user on first-time debugger entry.
178 *
179 * The permission masks during a read+write lockdown permits the following
180 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
181 *
182 * The INSPECT commands are not blocked during lockdown because they are
183 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
184 * forcing them to have no arguments) and lsmod. These commands do expose
185 * some kernel state but do not allow the developer seated at the console to
186 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
187 * given these are allowed for root during lockdown already.
188 */
189static void kdb_check_for_lockdown(void)
190{
191 const int write_flags = KDB_ENABLE_MEM_WRITE |
192 KDB_ENABLE_REG_WRITE |
193 KDB_ENABLE_FLOW_CTRL;
194 const int read_flags = KDB_ENABLE_MEM_READ |
195 KDB_ENABLE_REG_READ;
196
197 bool need_to_lockdown_write = false;
198 bool need_to_lockdown_read = false;
199
200 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
201 need_to_lockdown_write =
202 security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
203
204 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
205 need_to_lockdown_read =
206 security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
207
208 /* De-compose KDB_ENABLE_ALL if required */
209 if (need_to_lockdown_write || need_to_lockdown_read)
210 if (kdb_cmd_enabled & KDB_ENABLE_ALL)
211 kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
212
213 if (need_to_lockdown_write)
214 kdb_cmd_enabled &= ~write_flags;
215
216 if (need_to_lockdown_read)
217 kdb_cmd_enabled &= ~read_flags;
218}
219
220/*
221 * Check whether the flags of the current command, the permissions of the kdb
222 * console and the lockdown state allow a command to be run.
223 */
224static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
225 bool no_args)
226{
227 /* permissions comes from userspace so needs massaging slightly */
228 permissions &= KDB_ENABLE_MASK;
229 permissions |= KDB_ENABLE_ALWAYS_SAFE;
230
231 /* some commands change group when launched with no arguments */
232 if (no_args)
233 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
234
235 flags |= KDB_ENABLE_ALL;
236
237 return permissions & flags;
238}
239
240/*
241 * kdbgetenv - This function will return the character string value of
242 * an environment variable.
243 * Parameters:
244 * match A character string representing an environment variable.
245 * Returns:
246 * NULL No environment variable matches 'match'
247 * char* Pointer to string value of environment variable.
248 */
249char *kdbgetenv(const char *match)
250{
251 char **ep = __env;
252 int matchlen = strlen(match);
253 int i;
254
255 for (i = 0; i < __nenv; i++) {
256 char *e = *ep++;
257
258 if (!e)
259 continue;
260
261 if ((strncmp(match, e, matchlen) == 0)
262 && ((e[matchlen] == '\0')
263 || (e[matchlen] == '='))) {
264 char *cp = strchr(e, '=');
265 return cp ? ++cp : "";
266 }
267 }
268 return NULL;
269}
270
271/*
272 * kdballocenv - This function is used to allocate bytes for
273 * environment entries.
274 * Parameters:
275 * match A character string representing a numeric value
276 * Outputs:
277 * *value the unsigned long representation of the env variable 'match'
278 * Returns:
279 * Zero on success, a kdb diagnostic on failure.
280 * Remarks:
281 * We use a static environment buffer (envbuffer) to hold the values
282 * of dynamically generated environment variables (see kdb_set). Buffer
283 * space once allocated is never free'd, so over time, the amount of space
284 * (currently 512 bytes) will be exhausted if env variables are changed
285 * frequently.
286 */
287static char *kdballocenv(size_t bytes)
288{
289#define KDB_ENVBUFSIZE 512
290 static char envbuffer[KDB_ENVBUFSIZE];
291 static int envbufsize;
292 char *ep = NULL;
293
294 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
295 ep = &envbuffer[envbufsize];
296 envbufsize += bytes;
297 }
298 return ep;
299}
300
301/*
302 * kdbgetulenv - This function will return the value of an unsigned
303 * long-valued environment variable.
304 * Parameters:
305 * match A character string representing a numeric value
306 * Outputs:
307 * *value the unsigned long representation of the env variable 'match'
308 * Returns:
309 * Zero on success, a kdb diagnostic on failure.
310 */
311static int kdbgetulenv(const char *match, unsigned long *value)
312{
313 char *ep;
314
315 ep = kdbgetenv(match);
316 if (!ep)
317 return KDB_NOTENV;
318 if (strlen(ep) == 0)
319 return KDB_NOENVVALUE;
320
321 *value = simple_strtoul(ep, NULL, 0);
322
323 return 0;
324}
325
326/*
327 * kdbgetintenv - This function will return the value of an
328 * integer-valued environment variable.
329 * Parameters:
330 * match A character string representing an integer-valued env variable
331 * Outputs:
332 * *value the integer representation of the environment variable 'match'
333 * Returns:
334 * Zero on success, a kdb diagnostic on failure.
335 */
336int kdbgetintenv(const char *match, int *value)
337{
338 unsigned long val;
339 int diag;
340
341 diag = kdbgetulenv(match, &val);
342 if (!diag)
343 *value = (int) val;
344 return diag;
345}
346
347/*
348 * kdb_setenv() - Alter an existing environment variable or create a new one.
349 * @var: Name of the variable
350 * @val: Value of the variable
351 *
352 * Return: Zero on success, a kdb diagnostic on failure.
353 */
354static int kdb_setenv(const char *var, const char *val)
355{
356 int i;
357 char *ep;
358 size_t varlen, vallen;
359
360 varlen = strlen(var);
361 vallen = strlen(val);
362 ep = kdballocenv(varlen + vallen + 2);
363 if (ep == (char *)0)
364 return KDB_ENVBUFFULL;
365
366 sprintf(ep, "%s=%s", var, val);
367
368 for (i = 0; i < __nenv; i++) {
369 if (__env[i]
370 && ((strncmp(__env[i], var, varlen) == 0)
371 && ((__env[i][varlen] == '\0')
372 || (__env[i][varlen] == '=')))) {
373 __env[i] = ep;
374 return 0;
375 }
376 }
377
378 /*
379 * Wasn't existing variable. Fit into slot.
380 */
381 for (i = 0; i < __nenv-1; i++) {
382 if (__env[i] == (char *)0) {
383 __env[i] = ep;
384 return 0;
385 }
386 }
387
388 return KDB_ENVFULL;
389}
390
391/*
392 * kdb_printenv() - Display the current environment variables.
393 */
394static void kdb_printenv(void)
395{
396 int i;
397
398 for (i = 0; i < __nenv; i++) {
399 if (__env[i])
400 kdb_printf("%s\n", __env[i]);
401 }
402}
403
404/*
405 * kdbgetularg - This function will convert a numeric string into an
406 * unsigned long value.
407 * Parameters:
408 * arg A character string representing a numeric value
409 * Outputs:
410 * *value the unsigned long representation of arg.
411 * Returns:
412 * Zero on success, a kdb diagnostic on failure.
413 */
414int kdbgetularg(const char *arg, unsigned long *value)
415{
416 char *endp;
417 unsigned long val;
418
419 val = simple_strtoul(arg, &endp, 0);
420
421 if (endp == arg) {
422 /*
423 * Also try base 16, for us folks too lazy to type the
424 * leading 0x...
425 */
426 val = simple_strtoul(arg, &endp, 16);
427 if (endp == arg)
428 return KDB_BADINT;
429 }
430
431 *value = val;
432
433 return 0;
434}
435
436int kdbgetu64arg(const char *arg, u64 *value)
437{
438 char *endp;
439 u64 val;
440
441 val = simple_strtoull(arg, &endp, 0);
442
443 if (endp == arg) {
444
445 val = simple_strtoull(arg, &endp, 16);
446 if (endp == arg)
447 return KDB_BADINT;
448 }
449
450 *value = val;
451
452 return 0;
453}
454
455/*
456 * kdb_set - This function implements the 'set' command. Alter an
457 * existing environment variable or create a new one.
458 */
459int kdb_set(int argc, const char **argv)
460{
461 /*
462 * we can be invoked two ways:
463 * set var=value argv[1]="var", argv[2]="value"
464 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
465 * - if the latter, shift 'em down.
466 */
467 if (argc == 3) {
468 argv[2] = argv[3];
469 argc--;
470 }
471
472 if (argc != 2)
473 return KDB_ARGCOUNT;
474
475 /*
476 * Censor sensitive variables
477 */
478 if (strcmp(argv[1], "PROMPT") == 0 &&
479 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
480 return KDB_NOPERM;
481
482 /*
483 * Check for internal variables
484 */
485 if (strcmp(argv[1], "KDBDEBUG") == 0) {
486 unsigned int debugflags;
487 char *cp;
488
489 debugflags = simple_strtoul(argv[2], &cp, 0);
490 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
491 kdb_printf("kdb: illegal debug flags '%s'\n",
492 argv[2]);
493 return 0;
494 }
495 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
496 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
497
498 return 0;
499 }
500
501 /*
502 * Tokenizer squashed the '=' sign. argv[1] is variable
503 * name, argv[2] = value.
504 */
505 return kdb_setenv(argv[1], argv[2]);
506}
507
508static int kdb_check_regs(void)
509{
510 if (!kdb_current_regs) {
511 kdb_printf("No current kdb registers."
512 " You may need to select another task\n");
513 return KDB_BADREG;
514 }
515 return 0;
516}
517
518/*
519 * kdbgetaddrarg - This function is responsible for parsing an
520 * address-expression and returning the value of the expression,
521 * symbol name, and offset to the caller.
522 *
523 * The argument may consist of a numeric value (decimal or
524 * hexadecimal), a symbol name, a register name (preceded by the
525 * percent sign), an environment variable with a numeric value
526 * (preceded by a dollar sign) or a simple arithmetic expression
527 * consisting of a symbol name, +/-, and a numeric constant value
528 * (offset).
529 * Parameters:
530 * argc - count of arguments in argv
531 * argv - argument vector
532 * *nextarg - index to next unparsed argument in argv[]
533 * regs - Register state at time of KDB entry
534 * Outputs:
535 * *value - receives the value of the address-expression
536 * *offset - receives the offset specified, if any
537 * *name - receives the symbol name, if any
538 * *nextarg - index to next unparsed argument in argv[]
539 * Returns:
540 * zero is returned on success, a kdb diagnostic code is
541 * returned on error.
542 */
543int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
544 unsigned long *value, long *offset,
545 char **name)
546{
547 unsigned long addr;
548 unsigned long off = 0;
549 int positive;
550 int diag;
551 int found = 0;
552 char *symname;
553 char symbol = '\0';
554 char *cp;
555 kdb_symtab_t symtab;
556
557 /*
558 * If the enable flags prohibit both arbitrary memory access
559 * and flow control then there are no reasonable grounds to
560 * provide symbol lookup.
561 */
562 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
563 kdb_cmd_enabled, false))
564 return KDB_NOPERM;
565
566 /*
567 * Process arguments which follow the following syntax:
568 *
569 * symbol | numeric-address [+/- numeric-offset]
570 * %register
571 * $environment-variable
572 */
573
574 if (*nextarg > argc)
575 return KDB_ARGCOUNT;
576
577 symname = (char *)argv[*nextarg];
578
579 /*
580 * If there is no whitespace between the symbol
581 * or address and the '+' or '-' symbols, we
582 * remember the character and replace it with a
583 * null so the symbol/value can be properly parsed
584 */
585 cp = strpbrk(symname, "+-");
586 if (cp != NULL) {
587 symbol = *cp;
588 *cp++ = '\0';
589 }
590
591 if (symname[0] == '$') {
592 diag = kdbgetulenv(&symname[1], &addr);
593 if (diag)
594 return diag;
595 } else if (symname[0] == '%') {
596 diag = kdb_check_regs();
597 if (diag)
598 return diag;
599 /* Implement register values with % at a later time as it is
600 * arch optional.
601 */
602 return KDB_NOTIMP;
603 } else {
604 found = kdbgetsymval(symname, &symtab);
605 if (found) {
606 addr = symtab.sym_start;
607 } else {
608 diag = kdbgetularg(argv[*nextarg], &addr);
609 if (diag)
610 return diag;
611 }
612 }
613
614 if (!found)
615 found = kdbnearsym(addr, &symtab);
616
617 (*nextarg)++;
618
619 if (name)
620 *name = symname;
621 if (value)
622 *value = addr;
623 if (offset && name && *name)
624 *offset = addr - symtab.sym_start;
625
626 if ((*nextarg > argc)
627 && (symbol == '\0'))
628 return 0;
629
630 /*
631 * check for +/- and offset
632 */
633
634 if (symbol == '\0') {
635 if ((argv[*nextarg][0] != '+')
636 && (argv[*nextarg][0] != '-')) {
637 /*
638 * Not our argument. Return.
639 */
640 return 0;
641 } else {
642 positive = (argv[*nextarg][0] == '+');
643 (*nextarg)++;
644 }
645 } else
646 positive = (symbol == '+');
647
648 /*
649 * Now there must be an offset!
650 */
651 if ((*nextarg > argc)
652 && (symbol == '\0')) {
653 return KDB_INVADDRFMT;
654 }
655
656 if (!symbol) {
657 cp = (char *)argv[*nextarg];
658 (*nextarg)++;
659 }
660
661 diag = kdbgetularg(cp, &off);
662 if (diag)
663 return diag;
664
665 if (!positive)
666 off = -off;
667
668 if (offset)
669 *offset += off;
670
671 if (value)
672 *value += off;
673
674 return 0;
675}
676
677static void kdb_cmderror(int diag)
678{
679 int i;
680
681 if (diag >= 0) {
682 kdb_printf("no error detected (diagnostic is %d)\n", diag);
683 return;
684 }
685
686 for (i = 0; i < __nkdb_err; i++) {
687 if (kdbmsgs[i].km_diag == diag) {
688 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
689 return;
690 }
691 }
692
693 kdb_printf("Unknown diag %d\n", -diag);
694}
695
696/*
697 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
698 * command which defines one command as a set of other commands,
699 * terminated by endefcmd. kdb_defcmd processes the initial
700 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
701 * the following commands until 'endefcmd'.
702 * Inputs:
703 * argc argument count
704 * argv argument vector
705 * Returns:
706 * zero for success, a kdb diagnostic if error
707 */
708struct kdb_macro {
709 kdbtab_t cmd; /* Macro command */
710 struct list_head statements; /* Associated statement list */
711};
712
713struct kdb_macro_statement {
714 char *statement; /* Statement text */
715 struct list_head list_node; /* Statement list node */
716};
717
718static struct kdb_macro *kdb_macro;
719static bool defcmd_in_progress;
720
721/* Forward references */
722static int kdb_exec_defcmd(int argc, const char **argv);
723
724static int kdb_defcmd2(const char *cmdstr, const char *argv0)
725{
726 struct kdb_macro_statement *kms;
727
728 if (!kdb_macro)
729 return KDB_NOTIMP;
730
731 if (strcmp(argv0, "endefcmd") == 0) {
732 defcmd_in_progress = false;
733 if (!list_empty(&kdb_macro->statements))
734 kdb_register(&kdb_macro->cmd);
735 return 0;
736 }
737
738 kms = kmalloc(sizeof(*kms), GFP_KDB);
739 if (!kms) {
740 kdb_printf("Could not allocate new kdb macro command: %s\n",
741 cmdstr);
742 return KDB_NOTIMP;
743 }
744
745 kms->statement = kdb_strdup(cmdstr, GFP_KDB);
746 list_add_tail(&kms->list_node, &kdb_macro->statements);
747
748 return 0;
749}
750
751static int kdb_defcmd(int argc, const char **argv)
752{
753 kdbtab_t *mp;
754
755 if (defcmd_in_progress) {
756 kdb_printf("kdb: nested defcmd detected, assuming missing "
757 "endefcmd\n");
758 kdb_defcmd2("endefcmd", "endefcmd");
759 }
760 if (argc == 0) {
761 kdbtab_t *kp;
762 struct kdb_macro *kmp;
763 struct kdb_macro_statement *kms;
764
765 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
766 if (kp->func == kdb_exec_defcmd) {
767 kdb_printf("defcmd %s \"%s\" \"%s\"\n",
768 kp->name, kp->usage, kp->help);
769 kmp = container_of(kp, struct kdb_macro, cmd);
770 list_for_each_entry(kms, &kmp->statements,
771 list_node)
772 kdb_printf("%s", kms->statement);
773 kdb_printf("endefcmd\n");
774 }
775 }
776 return 0;
777 }
778 if (argc != 3)
779 return KDB_ARGCOUNT;
780 if (in_dbg_master()) {
781 kdb_printf("Command only available during kdb_init()\n");
782 return KDB_NOTIMP;
783 }
784 kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
785 if (!kdb_macro)
786 goto fail_defcmd;
787
788 mp = &kdb_macro->cmd;
789 mp->func = kdb_exec_defcmd;
790 mp->minlen = 0;
791 mp->flags = KDB_ENABLE_ALWAYS_SAFE;
792 mp->name = kdb_strdup(argv[1], GFP_KDB);
793 if (!mp->name)
794 goto fail_name;
795 mp->usage = kdb_strdup(argv[2], GFP_KDB);
796 if (!mp->usage)
797 goto fail_usage;
798 mp->help = kdb_strdup(argv[3], GFP_KDB);
799 if (!mp->help)
800 goto fail_help;
801 if (mp->usage[0] == '"') {
802 strcpy(mp->usage, argv[2]+1);
803 mp->usage[strlen(mp->usage)-1] = '\0';
804 }
805 if (mp->help[0] == '"') {
806 strcpy(mp->help, argv[3]+1);
807 mp->help[strlen(mp->help)-1] = '\0';
808 }
809
810 INIT_LIST_HEAD(&kdb_macro->statements);
811 defcmd_in_progress = true;
812 return 0;
813fail_help:
814 kfree(mp->usage);
815fail_usage:
816 kfree(mp->name);
817fail_name:
818 kfree(kdb_macro);
819fail_defcmd:
820 kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
821 return KDB_NOTIMP;
822}
823
824/*
825 * kdb_exec_defcmd - Execute the set of commands associated with this
826 * defcmd name.
827 * Inputs:
828 * argc argument count
829 * argv argument vector
830 * Returns:
831 * zero for success, a kdb diagnostic if error
832 */
833static int kdb_exec_defcmd(int argc, const char **argv)
834{
835 int ret;
836 kdbtab_t *kp;
837 struct kdb_macro *kmp;
838 struct kdb_macro_statement *kms;
839
840 if (argc != 0)
841 return KDB_ARGCOUNT;
842
843 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
844 if (strcmp(kp->name, argv[0]) == 0)
845 break;
846 }
847 if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
848 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
849 argv[0]);
850 return KDB_NOTIMP;
851 }
852 kmp = container_of(kp, struct kdb_macro, cmd);
853 list_for_each_entry(kms, &kmp->statements, list_node) {
854 /*
855 * Recursive use of kdb_parse, do not use argv after this point.
856 */
857 argv = NULL;
858 kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
859 ret = kdb_parse(kms->statement);
860 if (ret)
861 return ret;
862 }
863 return 0;
864}
865
866/* Command history */
867#define KDB_CMD_HISTORY_COUNT 32
868#define CMD_BUFLEN 200 /* kdb_printf: max printline
869 * size == 256 */
870static unsigned int cmd_head, cmd_tail;
871static unsigned int cmdptr;
872static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
873static char cmd_cur[CMD_BUFLEN];
874
875/*
876 * The "str" argument may point to something like | grep xyz
877 */
878static void parse_grep(const char *str)
879{
880 int len;
881 char *cp = (char *)str, *cp2;
882
883 /* sanity check: we should have been called with the \ first */
884 if (*cp != '|')
885 return;
886 cp++;
887 while (isspace(*cp))
888 cp++;
889 if (!str_has_prefix(cp, "grep ")) {
890 kdb_printf("invalid 'pipe', see grephelp\n");
891 return;
892 }
893 cp += 5;
894 while (isspace(*cp))
895 cp++;
896 cp2 = strchr(cp, '\n');
897 if (cp2)
898 *cp2 = '\0'; /* remove the trailing newline */
899 len = strlen(cp);
900 if (len == 0) {
901 kdb_printf("invalid 'pipe', see grephelp\n");
902 return;
903 }
904 /* now cp points to a nonzero length search string */
905 if (*cp == '"') {
906 /* allow it be "x y z" by removing the "'s - there must
907 be two of them */
908 cp++;
909 cp2 = strchr(cp, '"');
910 if (!cp2) {
911 kdb_printf("invalid quoted string, see grephelp\n");
912 return;
913 }
914 *cp2 = '\0'; /* end the string where the 2nd " was */
915 }
916 kdb_grep_leading = 0;
917 if (*cp == '^') {
918 kdb_grep_leading = 1;
919 cp++;
920 }
921 len = strlen(cp);
922 kdb_grep_trailing = 0;
923 if (*(cp+len-1) == '$') {
924 kdb_grep_trailing = 1;
925 *(cp+len-1) = '\0';
926 }
927 len = strlen(cp);
928 if (!len)
929 return;
930 if (len >= KDB_GREP_STRLEN) {
931 kdb_printf("search string too long\n");
932 return;
933 }
934 strcpy(kdb_grep_string, cp);
935 kdb_grepping_flag++;
936 return;
937}
938
939/*
940 * kdb_parse - Parse the command line, search the command table for a
941 * matching command and invoke the command function. This
942 * function may be called recursively, if it is, the second call
943 * will overwrite argv and cbuf. It is the caller's
944 * responsibility to save their argv if they recursively call
945 * kdb_parse().
946 * Parameters:
947 * cmdstr The input command line to be parsed.
948 * regs The registers at the time kdb was entered.
949 * Returns:
950 * Zero for success, a kdb diagnostic if failure.
951 * Remarks:
952 * Limited to 20 tokens.
953 *
954 * Real rudimentary tokenization. Basically only whitespace
955 * is considered a token delimiter (but special consideration
956 * is taken of the '=' sign as used by the 'set' command).
957 *
958 * The algorithm used to tokenize the input string relies on
959 * there being at least one whitespace (or otherwise useless)
960 * character between tokens as the character immediately following
961 * the token is altered in-place to a null-byte to terminate the
962 * token string.
963 */
964
965#define MAXARGC 20
966
967int kdb_parse(const char *cmdstr)
968{
969 static char *argv[MAXARGC];
970 static int argc;
971 static char cbuf[CMD_BUFLEN+2];
972 char *cp;
973 char *cpp, quoted;
974 kdbtab_t *tp;
975 int escaped, ignore_errors = 0, check_grep = 0;
976
977 /*
978 * First tokenize the command string.
979 */
980 cp = (char *)cmdstr;
981
982 if (KDB_FLAG(CMD_INTERRUPT)) {
983 /* Previous command was interrupted, newline must not
984 * repeat the command */
985 KDB_FLAG_CLEAR(CMD_INTERRUPT);
986 KDB_STATE_SET(PAGER);
987 argc = 0; /* no repeat */
988 }
989
990 if (*cp != '\n' && *cp != '\0') {
991 argc = 0;
992 cpp = cbuf;
993 while (*cp) {
994 /* skip whitespace */
995 while (isspace(*cp))
996 cp++;
997 if ((*cp == '\0') || (*cp == '\n') ||
998 (*cp == '#' && !defcmd_in_progress))
999 break;
1000 /* special case: check for | grep pattern */
1001 if (*cp == '|') {
1002 check_grep++;
1003 break;
1004 }
1005 if (cpp >= cbuf + CMD_BUFLEN) {
1006 kdb_printf("kdb_parse: command buffer "
1007 "overflow, command ignored\n%s\n",
1008 cmdstr);
1009 return KDB_NOTFOUND;
1010 }
1011 if (argc >= MAXARGC - 1) {
1012 kdb_printf("kdb_parse: too many arguments, "
1013 "command ignored\n%s\n", cmdstr);
1014 return KDB_NOTFOUND;
1015 }
1016 argv[argc++] = cpp;
1017 escaped = 0;
1018 quoted = '\0';
1019 /* Copy to next unquoted and unescaped
1020 * whitespace or '=' */
1021 while (*cp && *cp != '\n' &&
1022 (escaped || quoted || !isspace(*cp))) {
1023 if (cpp >= cbuf + CMD_BUFLEN)
1024 break;
1025 if (escaped) {
1026 escaped = 0;
1027 *cpp++ = *cp++;
1028 continue;
1029 }
1030 if (*cp == '\\') {
1031 escaped = 1;
1032 ++cp;
1033 continue;
1034 }
1035 if (*cp == quoted)
1036 quoted = '\0';
1037 else if (*cp == '\'' || *cp == '"')
1038 quoted = *cp;
1039 *cpp = *cp++;
1040 if (*cpp == '=' && !quoted)
1041 break;
1042 ++cpp;
1043 }
1044 *cpp++ = '\0'; /* Squash a ws or '=' character */
1045 }
1046 }
1047 if (!argc)
1048 return 0;
1049 if (check_grep)
1050 parse_grep(cp);
1051 if (defcmd_in_progress) {
1052 int result = kdb_defcmd2(cmdstr, argv[0]);
1053 if (!defcmd_in_progress) {
1054 argc = 0; /* avoid repeat on endefcmd */
1055 *(argv[0]) = '\0';
1056 }
1057 return result;
1058 }
1059 if (argv[0][0] == '-' && argv[0][1] &&
1060 (argv[0][1] < '0' || argv[0][1] > '9')) {
1061 ignore_errors = 1;
1062 ++argv[0];
1063 }
1064
1065 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1066 /*
1067 * If this command is allowed to be abbreviated,
1068 * check to see if this is it.
1069 */
1070 if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1071 (strncmp(argv[0], tp->name, tp->minlen) == 0))
1072 break;
1073
1074 if (strcmp(argv[0], tp->name) == 0)
1075 break;
1076 }
1077
1078 /*
1079 * If we don't find a command by this name, see if the first
1080 * few characters of this match any of the known commands.
1081 * e.g., md1c20 should match md.
1082 */
1083 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1084 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1085 if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
1086 break;
1087 }
1088 }
1089
1090 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1091 int result;
1092
1093 if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
1094 return KDB_NOPERM;
1095
1096 KDB_STATE_SET(CMD);
1097 result = (*tp->func)(argc-1, (const char **)argv);
1098 if (result && ignore_errors && result > KDB_CMD_GO)
1099 result = 0;
1100 KDB_STATE_CLEAR(CMD);
1101
1102 if (tp->flags & KDB_REPEAT_WITH_ARGS)
1103 return result;
1104
1105 argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1106 if (argv[argc])
1107 *(argv[argc]) = '\0';
1108 return result;
1109 }
1110
1111 /*
1112 * If the input with which we were presented does not
1113 * map to an existing command, attempt to parse it as an
1114 * address argument and display the result. Useful for
1115 * obtaining the address of a variable, or the nearest symbol
1116 * to an address contained in a register.
1117 */
1118 {
1119 unsigned long value;
1120 char *name = NULL;
1121 long offset;
1122 int nextarg = 0;
1123
1124 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1125 &value, &offset, &name)) {
1126 return KDB_NOTFOUND;
1127 }
1128
1129 kdb_printf("%s = ", argv[0]);
1130 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1131 kdb_printf("\n");
1132 return 0;
1133 }
1134}
1135
1136
1137static int handle_ctrl_cmd(char *cmd)
1138{
1139#define CTRL_P 16
1140#define CTRL_N 14
1141
1142 /* initial situation */
1143 if (cmd_head == cmd_tail)
1144 return 0;
1145 switch (*cmd) {
1146 case CTRL_P:
1147 if (cmdptr != cmd_tail)
1148 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1149 KDB_CMD_HISTORY_COUNT;
1150 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1151 return 1;
1152 case CTRL_N:
1153 if (cmdptr != cmd_head)
1154 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1155 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1156 return 1;
1157 }
1158 return 0;
1159}
1160
1161/*
1162 * kdb_reboot - This function implements the 'reboot' command. Reboot
1163 * the system immediately, or loop for ever on failure.
1164 */
1165static int kdb_reboot(int argc, const char **argv)
1166{
1167 emergency_restart();
1168 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1169 while (1)
1170 cpu_relax();
1171 /* NOTREACHED */
1172 return 0;
1173}
1174
1175static void kdb_dumpregs(struct pt_regs *regs)
1176{
1177 int old_lvl = console_loglevel;
1178 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1179 kdb_trap_printk++;
1180 show_regs(regs);
1181 kdb_trap_printk--;
1182 kdb_printf("\n");
1183 console_loglevel = old_lvl;
1184}
1185
1186static void kdb_set_current_task(struct task_struct *p)
1187{
1188 kdb_current_task = p;
1189
1190 if (kdb_task_has_cpu(p)) {
1191 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1192 return;
1193 }
1194 kdb_current_regs = NULL;
1195}
1196
1197static void drop_newline(char *buf)
1198{
1199 size_t len = strlen(buf);
1200
1201 if (len == 0)
1202 return;
1203 if (*(buf + len - 1) == '\n')
1204 *(buf + len - 1) = '\0';
1205}
1206
1207/*
1208 * kdb_local - The main code for kdb. This routine is invoked on a
1209 * specific processor, it is not global. The main kdb() routine
1210 * ensures that only one processor at a time is in this routine.
1211 * This code is called with the real reason code on the first
1212 * entry to a kdb session, thereafter it is called with reason
1213 * SWITCH, even if the user goes back to the original cpu.
1214 * Inputs:
1215 * reason The reason KDB was invoked
1216 * error The hardware-defined error code
1217 * regs The exception frame at time of fault/breakpoint.
1218 * db_result Result code from the break or debug point.
1219 * Returns:
1220 * 0 KDB was invoked for an event which it wasn't responsible
1221 * 1 KDB handled the event for which it was invoked.
1222 * KDB_CMD_GO User typed 'go'.
1223 * KDB_CMD_CPU User switched to another cpu.
1224 * KDB_CMD_SS Single step.
1225 */
1226static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1227 kdb_dbtrap_t db_result)
1228{
1229 char *cmdbuf;
1230 int diag;
1231 struct task_struct *kdb_current =
1232 kdb_curr_task(raw_smp_processor_id());
1233
1234 KDB_DEBUG_STATE("kdb_local 1", reason);
1235
1236 kdb_check_for_lockdown();
1237
1238 kdb_go_count = 0;
1239 if (reason == KDB_REASON_DEBUG) {
1240 /* special case below */
1241 } else {
1242 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1243 kdb_current, kdb_current ? kdb_current->pid : 0);
1244#if defined(CONFIG_SMP)
1245 kdb_printf("on processor %d ", raw_smp_processor_id());
1246#endif
1247 }
1248
1249 switch (reason) {
1250 case KDB_REASON_DEBUG:
1251 {
1252 /*
1253 * If re-entering kdb after a single step
1254 * command, don't print the message.
1255 */
1256 switch (db_result) {
1257 case KDB_DB_BPT:
1258 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1259 kdb_current, kdb_current->pid);
1260#if defined(CONFIG_SMP)
1261 kdb_printf("on processor %d ", raw_smp_processor_id());
1262#endif
1263 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1264 instruction_pointer(regs));
1265 break;
1266 case KDB_DB_SS:
1267 break;
1268 case KDB_DB_SSBPT:
1269 KDB_DEBUG_STATE("kdb_local 4", reason);
1270 return 1; /* kdba_db_trap did the work */
1271 default:
1272 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1273 db_result);
1274 break;
1275 }
1276
1277 }
1278 break;
1279 case KDB_REASON_ENTER:
1280 if (KDB_STATE(KEYBOARD))
1281 kdb_printf("due to Keyboard Entry\n");
1282 else
1283 kdb_printf("due to KDB_ENTER()\n");
1284 break;
1285 case KDB_REASON_KEYBOARD:
1286 KDB_STATE_SET(KEYBOARD);
1287 kdb_printf("due to Keyboard Entry\n");
1288 break;
1289 case KDB_REASON_ENTER_SLAVE:
1290 /* drop through, slaves only get released via cpu switch */
1291 case KDB_REASON_SWITCH:
1292 kdb_printf("due to cpu switch\n");
1293 break;
1294 case KDB_REASON_OOPS:
1295 kdb_printf("Oops: %s\n", kdb_diemsg);
1296 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1297 instruction_pointer(regs));
1298 kdb_dumpregs(regs);
1299 break;
1300 case KDB_REASON_SYSTEM_NMI:
1301 kdb_printf("due to System NonMaskable Interrupt\n");
1302 break;
1303 case KDB_REASON_NMI:
1304 kdb_printf("due to NonMaskable Interrupt @ "
1305 kdb_machreg_fmt "\n",
1306 instruction_pointer(regs));
1307 break;
1308 case KDB_REASON_SSTEP:
1309 case KDB_REASON_BREAK:
1310 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1311 reason == KDB_REASON_BREAK ?
1312 "Breakpoint" : "SS trap", instruction_pointer(regs));
1313 /*
1314 * Determine if this breakpoint is one that we
1315 * are interested in.
1316 */
1317 if (db_result != KDB_DB_BPT) {
1318 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1319 db_result);
1320 KDB_DEBUG_STATE("kdb_local 6", reason);
1321 return 0; /* Not for us, dismiss it */
1322 }
1323 break;
1324 case KDB_REASON_RECURSE:
1325 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1326 instruction_pointer(regs));
1327 break;
1328 default:
1329 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1330 KDB_DEBUG_STATE("kdb_local 8", reason);
1331 return 0; /* Not for us, dismiss it */
1332 }
1333
1334 while (1) {
1335 /*
1336 * Initialize pager context.
1337 */
1338 kdb_nextline = 1;
1339 KDB_STATE_CLEAR(SUPPRESS);
1340 kdb_grepping_flag = 0;
1341 /* ensure the old search does not leak into '/' commands */
1342 kdb_grep_string[0] = '\0';
1343
1344 cmdbuf = cmd_cur;
1345 *cmdbuf = '\0';
1346 *(cmd_hist[cmd_head]) = '\0';
1347
1348do_full_getstr:
1349 /* PROMPT can only be set if we have MEM_READ permission. */
1350 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1351 raw_smp_processor_id());
1352 if (defcmd_in_progress)
1353 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1354
1355 /*
1356 * Fetch command from keyboard
1357 */
1358 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1359 if (*cmdbuf != '\n') {
1360 if (*cmdbuf < 32) {
1361 if (cmdptr == cmd_head) {
1362 strscpy(cmd_hist[cmd_head], cmd_cur,
1363 CMD_BUFLEN);
1364 *(cmd_hist[cmd_head] +
1365 strlen(cmd_hist[cmd_head])-1) = '\0';
1366 }
1367 if (!handle_ctrl_cmd(cmdbuf))
1368 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1369 cmdbuf = cmd_cur;
1370 goto do_full_getstr;
1371 } else {
1372 strscpy(cmd_hist[cmd_head], cmd_cur,
1373 CMD_BUFLEN);
1374 }
1375
1376 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1377 if (cmd_head == cmd_tail)
1378 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1379 }
1380
1381 cmdptr = cmd_head;
1382 diag = kdb_parse(cmdbuf);
1383 if (diag == KDB_NOTFOUND) {
1384 drop_newline(cmdbuf);
1385 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1386 diag = 0;
1387 }
1388 if (diag == KDB_CMD_GO
1389 || diag == KDB_CMD_CPU
1390 || diag == KDB_CMD_SS
1391 || diag == KDB_CMD_KGDB)
1392 break;
1393
1394 if (diag)
1395 kdb_cmderror(diag);
1396 }
1397 KDB_DEBUG_STATE("kdb_local 9", diag);
1398 return diag;
1399}
1400
1401
1402/*
1403 * kdb_print_state - Print the state data for the current processor
1404 * for debugging.
1405 * Inputs:
1406 * text Identifies the debug point
1407 * value Any integer value to be printed, e.g. reason code.
1408 */
1409void kdb_print_state(const char *text, int value)
1410{
1411 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1412 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1413 kdb_state);
1414}
1415
1416/*
1417 * kdb_main_loop - After initial setup and assignment of the
1418 * controlling cpu, all cpus are in this loop. One cpu is in
1419 * control and will issue the kdb prompt, the others will spin
1420 * until 'go' or cpu switch.
1421 *
1422 * To get a consistent view of the kernel stacks for all
1423 * processes, this routine is invoked from the main kdb code via
1424 * an architecture specific routine. kdba_main_loop is
1425 * responsible for making the kernel stacks consistent for all
1426 * processes, there should be no difference between a blocked
1427 * process and a running process as far as kdb is concerned.
1428 * Inputs:
1429 * reason The reason KDB was invoked
1430 * error The hardware-defined error code
1431 * reason2 kdb's current reason code.
1432 * Initially error but can change
1433 * according to kdb state.
1434 * db_result Result code from break or debug point.
1435 * regs The exception frame at time of fault/breakpoint.
1436 * should always be valid.
1437 * Returns:
1438 * 0 KDB was invoked for an event which it wasn't responsible
1439 * 1 KDB handled the event for which it was invoked.
1440 */
1441int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1442 kdb_dbtrap_t db_result, struct pt_regs *regs)
1443{
1444 int result = 1;
1445 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1446 while (1) {
1447 /*
1448 * All processors except the one that is in control
1449 * will spin here.
1450 */
1451 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1452 while (KDB_STATE(HOLD_CPU)) {
1453 /* state KDB is turned off by kdb_cpu to see if the
1454 * other cpus are still live, each cpu in this loop
1455 * turns it back on.
1456 */
1457 if (!KDB_STATE(KDB))
1458 KDB_STATE_SET(KDB);
1459 }
1460
1461 KDB_STATE_CLEAR(SUPPRESS);
1462 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1463 if (KDB_STATE(LEAVING))
1464 break; /* Another cpu said 'go' */
1465 /* Still using kdb, this processor is in control */
1466 result = kdb_local(reason2, error, regs, db_result);
1467 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1468
1469 if (result == KDB_CMD_CPU)
1470 break;
1471
1472 if (result == KDB_CMD_SS) {
1473 KDB_STATE_SET(DOING_SS);
1474 break;
1475 }
1476
1477 if (result == KDB_CMD_KGDB) {
1478 if (!KDB_STATE(DOING_KGDB))
1479 kdb_printf("Entering please attach debugger "
1480 "or use $D#44+ or $3#33\n");
1481 break;
1482 }
1483 if (result && result != 1 && result != KDB_CMD_GO)
1484 kdb_printf("\nUnexpected kdb_local return code %d\n",
1485 result);
1486 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1487 break;
1488 }
1489 if (KDB_STATE(DOING_SS))
1490 KDB_STATE_CLEAR(SSBPT);
1491
1492 /* Clean up any keyboard devices before leaving */
1493 kdb_kbd_cleanup_state();
1494
1495 return result;
1496}
1497
1498/*
1499 * kdb_mdr - This function implements the guts of the 'mdr', memory
1500 * read command.
1501 * mdr <addr arg>,<byte count>
1502 * Inputs:
1503 * addr Start address
1504 * count Number of bytes
1505 * Returns:
1506 * Always 0. Any errors are detected and printed by kdb_getarea.
1507 */
1508static int kdb_mdr(unsigned long addr, unsigned int count)
1509{
1510 unsigned char c;
1511 while (count--) {
1512 if (kdb_getarea(c, addr))
1513 return 0;
1514 kdb_printf("%02x", c);
1515 addr++;
1516 }
1517 kdb_printf("\n");
1518 return 0;
1519}
1520
1521/*
1522 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1523 * 'md8' 'mdr' and 'mds' commands.
1524 *
1525 * md|mds [<addr arg> [<line count> [<radix>]]]
1526 * mdWcN [<addr arg> [<line count> [<radix>]]]
1527 * where W = is the width (1, 2, 4 or 8) and N is the count.
1528 * for eg., md1c20 reads 20 bytes, 1 at a time.
1529 * mdr <addr arg>,<byte count>
1530 */
1531static void kdb_md_line(const char *fmtstr, unsigned long addr,
1532 int symbolic, int nosect, int bytesperword,
1533 int num, int repeat, int phys)
1534{
1535 /* print just one line of data */
1536 kdb_symtab_t symtab;
1537 char cbuf[32];
1538 char *c = cbuf;
1539 int i;
1540 int j;
1541 unsigned long word;
1542
1543 memset(cbuf, '\0', sizeof(cbuf));
1544 if (phys)
1545 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1546 else
1547 kdb_printf(kdb_machreg_fmt0 " ", addr);
1548
1549 for (i = 0; i < num && repeat--; i++) {
1550 if (phys) {
1551 if (kdb_getphysword(&word, addr, bytesperword))
1552 break;
1553 } else if (kdb_getword(&word, addr, bytesperword))
1554 break;
1555 kdb_printf(fmtstr, word);
1556 if (symbolic)
1557 kdbnearsym(word, &symtab);
1558 else
1559 memset(&symtab, 0, sizeof(symtab));
1560 if (symtab.sym_name) {
1561 kdb_symbol_print(word, &symtab, 0);
1562 if (!nosect) {
1563 kdb_printf("\n");
1564 kdb_printf(" %s %s "
1565 kdb_machreg_fmt " "
1566 kdb_machreg_fmt " "
1567 kdb_machreg_fmt, symtab.mod_name,
1568 symtab.sec_name, symtab.sec_start,
1569 symtab.sym_start, symtab.sym_end);
1570 }
1571 addr += bytesperword;
1572 } else {
1573 union {
1574 u64 word;
1575 unsigned char c[8];
1576 } wc;
1577 unsigned char *cp;
1578#ifdef __BIG_ENDIAN
1579 cp = wc.c + 8 - bytesperword;
1580#else
1581 cp = wc.c;
1582#endif
1583 wc.word = word;
1584#define printable_char(c) \
1585 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1586 for (j = 0; j < bytesperword; j++)
1587 *c++ = printable_char(*cp++);
1588 addr += bytesperword;
1589#undef printable_char
1590 }
1591 }
1592 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1593 " ", cbuf);
1594}
1595
1596static int kdb_md(int argc, const char **argv)
1597{
1598 static unsigned long last_addr;
1599 static int last_radix, last_bytesperword, last_repeat;
1600 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1601 int nosect = 0;
1602 char fmtchar, fmtstr[64];
1603 unsigned long addr;
1604 unsigned long word;
1605 long offset = 0;
1606 int symbolic = 0;
1607 int valid = 0;
1608 int phys = 0;
1609 int raw = 0;
1610
1611 kdbgetintenv("MDCOUNT", &mdcount);
1612 kdbgetintenv("RADIX", &radix);
1613 kdbgetintenv("BYTESPERWORD", &bytesperword);
1614
1615 /* Assume 'md <addr>' and start with environment values */
1616 repeat = mdcount * 16 / bytesperword;
1617
1618 if (strcmp(argv[0], "mdr") == 0) {
1619 if (argc == 2 || (argc == 0 && last_addr != 0))
1620 valid = raw = 1;
1621 else
1622 return KDB_ARGCOUNT;
1623 } else if (isdigit(argv[0][2])) {
1624 bytesperword = (int)(argv[0][2] - '0');
1625 if (bytesperword == 0) {
1626 bytesperword = last_bytesperword;
1627 if (bytesperword == 0)
1628 bytesperword = 4;
1629 }
1630 last_bytesperword = bytesperword;
1631 repeat = mdcount * 16 / bytesperword;
1632 if (!argv[0][3])
1633 valid = 1;
1634 else if (argv[0][3] == 'c' && argv[0][4]) {
1635 char *p;
1636 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1637 mdcount = ((repeat * bytesperword) + 15) / 16;
1638 valid = !*p;
1639 }
1640 last_repeat = repeat;
1641 } else if (strcmp(argv[0], "md") == 0)
1642 valid = 1;
1643 else if (strcmp(argv[0], "mds") == 0)
1644 valid = 1;
1645 else if (strcmp(argv[0], "mdp") == 0) {
1646 phys = valid = 1;
1647 }
1648 if (!valid)
1649 return KDB_NOTFOUND;
1650
1651 if (argc == 0) {
1652 if (last_addr == 0)
1653 return KDB_ARGCOUNT;
1654 addr = last_addr;
1655 radix = last_radix;
1656 bytesperword = last_bytesperword;
1657 repeat = last_repeat;
1658 if (raw)
1659 mdcount = repeat;
1660 else
1661 mdcount = ((repeat * bytesperword) + 15) / 16;
1662 }
1663
1664 if (argc) {
1665 unsigned long val;
1666 int diag, nextarg = 1;
1667 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1668 &offset, NULL);
1669 if (diag)
1670 return diag;
1671 if (argc > nextarg+2)
1672 return KDB_ARGCOUNT;
1673
1674 if (argc >= nextarg) {
1675 diag = kdbgetularg(argv[nextarg], &val);
1676 if (!diag) {
1677 mdcount = (int) val;
1678 if (raw)
1679 repeat = mdcount;
1680 else
1681 repeat = mdcount * 16 / bytesperword;
1682 }
1683 }
1684 if (argc >= nextarg+1) {
1685 diag = kdbgetularg(argv[nextarg+1], &val);
1686 if (!diag)
1687 radix = (int) val;
1688 }
1689 }
1690
1691 if (strcmp(argv[0], "mdr") == 0) {
1692 int ret;
1693 last_addr = addr;
1694 ret = kdb_mdr(addr, mdcount);
1695 last_addr += mdcount;
1696 last_repeat = mdcount;
1697 last_bytesperword = bytesperword; // to make REPEAT happy
1698 return ret;
1699 }
1700
1701 switch (radix) {
1702 case 10:
1703 fmtchar = 'd';
1704 break;
1705 case 16:
1706 fmtchar = 'x';
1707 break;
1708 case 8:
1709 fmtchar = 'o';
1710 break;
1711 default:
1712 return KDB_BADRADIX;
1713 }
1714
1715 last_radix = radix;
1716
1717 if (bytesperword > KDB_WORD_SIZE)
1718 return KDB_BADWIDTH;
1719
1720 switch (bytesperword) {
1721 case 8:
1722 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1723 break;
1724 case 4:
1725 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1726 break;
1727 case 2:
1728 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1729 break;
1730 case 1:
1731 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1732 break;
1733 default:
1734 return KDB_BADWIDTH;
1735 }
1736
1737 last_repeat = repeat;
1738 last_bytesperword = bytesperword;
1739
1740 if (strcmp(argv[0], "mds") == 0) {
1741 symbolic = 1;
1742 /* Do not save these changes as last_*, they are temporary mds
1743 * overrides.
1744 */
1745 bytesperword = KDB_WORD_SIZE;
1746 repeat = mdcount;
1747 kdbgetintenv("NOSECT", &nosect);
1748 }
1749
1750 /* Round address down modulo BYTESPERWORD */
1751
1752 addr &= ~(bytesperword-1);
1753
1754 while (repeat > 0) {
1755 unsigned long a;
1756 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1757
1758 if (KDB_FLAG(CMD_INTERRUPT))
1759 return 0;
1760 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1761 if (phys) {
1762 if (kdb_getphysword(&word, a, bytesperword)
1763 || word)
1764 break;
1765 } else if (kdb_getword(&word, a, bytesperword) || word)
1766 break;
1767 }
1768 n = min(num, repeat);
1769 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1770 num, repeat, phys);
1771 addr += bytesperword * n;
1772 repeat -= n;
1773 z = (z + num - 1) / num;
1774 if (z > 2) {
1775 int s = num * (z-2);
1776 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1777 " zero suppressed\n",
1778 addr, addr + bytesperword * s - 1);
1779 addr += bytesperword * s;
1780 repeat -= s;
1781 }
1782 }
1783 last_addr = addr;
1784
1785 return 0;
1786}
1787
1788/*
1789 * kdb_mm - This function implements the 'mm' command.
1790 * mm address-expression new-value
1791 * Remarks:
1792 * mm works on machine words, mmW works on bytes.
1793 */
1794static int kdb_mm(int argc, const char **argv)
1795{
1796 int diag;
1797 unsigned long addr;
1798 long offset = 0;
1799 unsigned long contents;
1800 int nextarg;
1801 int width;
1802
1803 if (argv[0][2] && !isdigit(argv[0][2]))
1804 return KDB_NOTFOUND;
1805
1806 if (argc < 2)
1807 return KDB_ARGCOUNT;
1808
1809 nextarg = 1;
1810 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1811 if (diag)
1812 return diag;
1813
1814 if (nextarg > argc)
1815 return KDB_ARGCOUNT;
1816 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1817 if (diag)
1818 return diag;
1819
1820 if (nextarg != argc + 1)
1821 return KDB_ARGCOUNT;
1822
1823 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1824 diag = kdb_putword(addr, contents, width);
1825 if (diag)
1826 return diag;
1827
1828 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1829
1830 return 0;
1831}
1832
1833/*
1834 * kdb_go - This function implements the 'go' command.
1835 * go [address-expression]
1836 */
1837static int kdb_go(int argc, const char **argv)
1838{
1839 unsigned long addr;
1840 int diag;
1841 int nextarg;
1842 long offset;
1843
1844 if (raw_smp_processor_id() != kdb_initial_cpu) {
1845 kdb_printf("go must execute on the entry cpu, "
1846 "please use \"cpu %d\" and then execute go\n",
1847 kdb_initial_cpu);
1848 return KDB_BADCPUNUM;
1849 }
1850 if (argc == 1) {
1851 nextarg = 1;
1852 diag = kdbgetaddrarg(argc, argv, &nextarg,
1853 &addr, &offset, NULL);
1854 if (diag)
1855 return diag;
1856 } else if (argc) {
1857 return KDB_ARGCOUNT;
1858 }
1859
1860 diag = KDB_CMD_GO;
1861 if (KDB_FLAG(CATASTROPHIC)) {
1862 kdb_printf("Catastrophic error detected\n");
1863 kdb_printf("kdb_continue_catastrophic=%d, ",
1864 kdb_continue_catastrophic);
1865 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1866 kdb_printf("type go a second time if you really want "
1867 "to continue\n");
1868 return 0;
1869 }
1870 if (kdb_continue_catastrophic == 2) {
1871 kdb_printf("forcing reboot\n");
1872 kdb_reboot(0, NULL);
1873 }
1874 kdb_printf("attempting to continue\n");
1875 }
1876 return diag;
1877}
1878
1879/*
1880 * kdb_rd - This function implements the 'rd' command.
1881 */
1882static int kdb_rd(int argc, const char **argv)
1883{
1884 int len = kdb_check_regs();
1885#if DBG_MAX_REG_NUM > 0
1886 int i;
1887 char *rname;
1888 int rsize;
1889 u64 reg64;
1890 u32 reg32;
1891 u16 reg16;
1892 u8 reg8;
1893
1894 if (len)
1895 return len;
1896
1897 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1898 rsize = dbg_reg_def[i].size * 2;
1899 if (rsize > 16)
1900 rsize = 2;
1901 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1902 len = 0;
1903 kdb_printf("\n");
1904 }
1905 if (len)
1906 len += kdb_printf(" ");
1907 switch(dbg_reg_def[i].size * 8) {
1908 case 8:
1909 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1910 if (!rname)
1911 break;
1912 len += kdb_printf("%s: %02x", rname, reg8);
1913 break;
1914 case 16:
1915 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1916 if (!rname)
1917 break;
1918 len += kdb_printf("%s: %04x", rname, reg16);
1919 break;
1920 case 32:
1921 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1922 if (!rname)
1923 break;
1924 len += kdb_printf("%s: %08x", rname, reg32);
1925 break;
1926 case 64:
1927 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1928 if (!rname)
1929 break;
1930 len += kdb_printf("%s: %016llx", rname, reg64);
1931 break;
1932 default:
1933 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1934 }
1935 }
1936 kdb_printf("\n");
1937#else
1938 if (len)
1939 return len;
1940
1941 kdb_dumpregs(kdb_current_regs);
1942#endif
1943 return 0;
1944}
1945
1946/*
1947 * kdb_rm - This function implements the 'rm' (register modify) command.
1948 * rm register-name new-contents
1949 * Remarks:
1950 * Allows register modification with the same restrictions as gdb
1951 */
1952static int kdb_rm(int argc, const char **argv)
1953{
1954#if DBG_MAX_REG_NUM > 0
1955 int diag;
1956 const char *rname;
1957 int i;
1958 u64 reg64;
1959 u32 reg32;
1960 u16 reg16;
1961 u8 reg8;
1962
1963 if (argc != 2)
1964 return KDB_ARGCOUNT;
1965 /*
1966 * Allow presence or absence of leading '%' symbol.
1967 */
1968 rname = argv[1];
1969 if (*rname == '%')
1970 rname++;
1971
1972 diag = kdbgetu64arg(argv[2], ®64);
1973 if (diag)
1974 return diag;
1975
1976 diag = kdb_check_regs();
1977 if (diag)
1978 return diag;
1979
1980 diag = KDB_BADREG;
1981 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1982 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1983 diag = 0;
1984 break;
1985 }
1986 }
1987 if (!diag) {
1988 switch(dbg_reg_def[i].size * 8) {
1989 case 8:
1990 reg8 = reg64;
1991 dbg_set_reg(i, ®8, kdb_current_regs);
1992 break;
1993 case 16:
1994 reg16 = reg64;
1995 dbg_set_reg(i, ®16, kdb_current_regs);
1996 break;
1997 case 32:
1998 reg32 = reg64;
1999 dbg_set_reg(i, ®32, kdb_current_regs);
2000 break;
2001 case 64:
2002 dbg_set_reg(i, ®64, kdb_current_regs);
2003 break;
2004 }
2005 }
2006 return diag;
2007#else
2008 kdb_printf("ERROR: Register set currently not implemented\n");
2009 return 0;
2010#endif
2011}
2012
2013#if defined(CONFIG_MAGIC_SYSRQ)
2014/*
2015 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
2016 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
2017 * sr <magic-sysrq-code>
2018 */
2019static int kdb_sr(int argc, const char **argv)
2020{
2021 bool check_mask =
2022 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
2023
2024 if (argc != 1)
2025 return KDB_ARGCOUNT;
2026
2027 kdb_trap_printk++;
2028 __handle_sysrq(*argv[1], check_mask);
2029 kdb_trap_printk--;
2030
2031 return 0;
2032}
2033#endif /* CONFIG_MAGIC_SYSRQ */
2034
2035/*
2036 * kdb_ef - This function implements the 'regs' (display exception
2037 * frame) command. This command takes an address and expects to
2038 * find an exception frame at that address, formats and prints
2039 * it.
2040 * regs address-expression
2041 * Remarks:
2042 * Not done yet.
2043 */
2044static int kdb_ef(int argc, const char **argv)
2045{
2046 int diag;
2047 unsigned long addr;
2048 long offset;
2049 int nextarg;
2050
2051 if (argc != 1)
2052 return KDB_ARGCOUNT;
2053
2054 nextarg = 1;
2055 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2056 if (diag)
2057 return diag;
2058 show_regs((struct pt_regs *)addr);
2059 return 0;
2060}
2061
2062/*
2063 * kdb_env - This function implements the 'env' command. Display the
2064 * current environment variables.
2065 */
2066
2067static int kdb_env(int argc, const char **argv)
2068{
2069 kdb_printenv();
2070
2071 if (KDB_DEBUG(MASK))
2072 kdb_printf("KDBDEBUG=0x%x\n",
2073 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2074
2075 return 0;
2076}
2077
2078#ifdef CONFIG_PRINTK
2079/*
2080 * kdb_dmesg - This function implements the 'dmesg' command to display
2081 * the contents of the syslog buffer.
2082 * dmesg [lines] [adjust]
2083 */
2084static int kdb_dmesg(int argc, const char **argv)
2085{
2086 int diag;
2087 int logging;
2088 int lines = 0;
2089 int adjust = 0;
2090 int n = 0;
2091 int skip = 0;
2092 struct kmsg_dump_iter iter;
2093 size_t len;
2094 char buf[201];
2095
2096 if (argc > 2)
2097 return KDB_ARGCOUNT;
2098 if (argc) {
2099 char *cp;
2100 lines = simple_strtol(argv[1], &cp, 0);
2101 if (*cp)
2102 lines = 0;
2103 if (argc > 1) {
2104 adjust = simple_strtoul(argv[2], &cp, 0);
2105 if (*cp || adjust < 0)
2106 adjust = 0;
2107 }
2108 }
2109
2110 /* disable LOGGING if set */
2111 diag = kdbgetintenv("LOGGING", &logging);
2112 if (!diag && logging) {
2113 const char *setargs[] = { "set", "LOGGING", "0" };
2114 kdb_set(2, setargs);
2115 }
2116
2117 kmsg_dump_rewind(&iter);
2118 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2119 n++;
2120
2121 if (lines < 0) {
2122 if (adjust >= n)
2123 kdb_printf("buffer only contains %d lines, nothing "
2124 "printed\n", n);
2125 else if (adjust - lines >= n)
2126 kdb_printf("buffer only contains %d lines, last %d "
2127 "lines printed\n", n, n - adjust);
2128 skip = adjust;
2129 lines = abs(lines);
2130 } else if (lines > 0) {
2131 skip = n - lines - adjust;
2132 lines = abs(lines);
2133 if (adjust >= n) {
2134 kdb_printf("buffer only contains %d lines, "
2135 "nothing printed\n", n);
2136 skip = n;
2137 } else if (skip < 0) {
2138 lines += skip;
2139 skip = 0;
2140 kdb_printf("buffer only contains %d lines, first "
2141 "%d lines printed\n", n, lines);
2142 }
2143 } else {
2144 lines = n;
2145 }
2146
2147 if (skip >= n || skip < 0)
2148 return 0;
2149
2150 kmsg_dump_rewind(&iter);
2151 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2152 if (skip) {
2153 skip--;
2154 continue;
2155 }
2156 if (!lines--)
2157 break;
2158 if (KDB_FLAG(CMD_INTERRUPT))
2159 return 0;
2160
2161 kdb_printf("%.*s\n", (int)len - 1, buf);
2162 }
2163
2164 return 0;
2165}
2166#endif /* CONFIG_PRINTK */
2167
2168/* Make sure we balance enable/disable calls, must disable first. */
2169static atomic_t kdb_nmi_disabled;
2170
2171static int kdb_disable_nmi(int argc, const char *argv[])
2172{
2173 if (atomic_read(&kdb_nmi_disabled))
2174 return 0;
2175 atomic_set(&kdb_nmi_disabled, 1);
2176 arch_kgdb_ops.enable_nmi(0);
2177 return 0;
2178}
2179
2180static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2181{
2182 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2183 return -EINVAL;
2184 arch_kgdb_ops.enable_nmi(1);
2185 return 0;
2186}
2187
2188static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2189 .set = kdb_param_enable_nmi,
2190};
2191module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2192
2193/*
2194 * kdb_cpu - This function implements the 'cpu' command.
2195 * cpu [<cpunum>]
2196 * Returns:
2197 * KDB_CMD_CPU for success, a kdb diagnostic if error
2198 */
2199static void kdb_cpu_status(void)
2200{
2201 int i, start_cpu, first_print = 1;
2202 char state, prev_state = '?';
2203
2204 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2205 kdb_printf("Available cpus: ");
2206 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2207 if (!cpu_online(i)) {
2208 state = 'F'; /* cpu is offline */
2209 } else if (!kgdb_info[i].enter_kgdb) {
2210 state = 'D'; /* cpu is online but unresponsive */
2211 } else {
2212 state = ' '; /* cpu is responding to kdb */
2213 if (kdb_task_state_char(KDB_TSK(i)) == '-')
2214 state = '-'; /* idle task */
2215 }
2216 if (state != prev_state) {
2217 if (prev_state != '?') {
2218 if (!first_print)
2219 kdb_printf(", ");
2220 first_print = 0;
2221 kdb_printf("%d", start_cpu);
2222 if (start_cpu < i-1)
2223 kdb_printf("-%d", i-1);
2224 if (prev_state != ' ')
2225 kdb_printf("(%c)", prev_state);
2226 }
2227 prev_state = state;
2228 start_cpu = i;
2229 }
2230 }
2231 /* print the trailing cpus, ignoring them if they are all offline */
2232 if (prev_state != 'F') {
2233 if (!first_print)
2234 kdb_printf(", ");
2235 kdb_printf("%d", start_cpu);
2236 if (start_cpu < i-1)
2237 kdb_printf("-%d", i-1);
2238 if (prev_state != ' ')
2239 kdb_printf("(%c)", prev_state);
2240 }
2241 kdb_printf("\n");
2242}
2243
2244static int kdb_cpu(int argc, const char **argv)
2245{
2246 unsigned long cpunum;
2247 int diag;
2248
2249 if (argc == 0) {
2250 kdb_cpu_status();
2251 return 0;
2252 }
2253
2254 if (argc != 1)
2255 return KDB_ARGCOUNT;
2256
2257 diag = kdbgetularg(argv[1], &cpunum);
2258 if (diag)
2259 return diag;
2260
2261 /*
2262 * Validate cpunum
2263 */
2264 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2265 return KDB_BADCPUNUM;
2266
2267 dbg_switch_cpu = cpunum;
2268
2269 /*
2270 * Switch to other cpu
2271 */
2272 return KDB_CMD_CPU;
2273}
2274
2275/* The user may not realize that ps/bta with no parameters does not print idle
2276 * or sleeping system daemon processes, so tell them how many were suppressed.
2277 */
2278void kdb_ps_suppressed(void)
2279{
2280 int idle = 0, daemon = 0;
2281 unsigned long cpu;
2282 const struct task_struct *p, *g;
2283 for_each_online_cpu(cpu) {
2284 p = kdb_curr_task(cpu);
2285 if (kdb_task_state(p, "-"))
2286 ++idle;
2287 }
2288 for_each_process_thread(g, p) {
2289 if (kdb_task_state(p, "ims"))
2290 ++daemon;
2291 }
2292 if (idle || daemon) {
2293 if (idle)
2294 kdb_printf("%d idle process%s (state -)%s\n",
2295 idle, idle == 1 ? "" : "es",
2296 daemon ? " and " : "");
2297 if (daemon)
2298 kdb_printf("%d sleeping system daemon (state [ims]) "
2299 "process%s", daemon,
2300 daemon == 1 ? "" : "es");
2301 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2302 }
2303}
2304
2305void kdb_ps1(const struct task_struct *p)
2306{
2307 int cpu;
2308 unsigned long tmp;
2309
2310 if (!p ||
2311 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2312 return;
2313
2314 cpu = kdb_process_cpu(p);
2315 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2316 (void *)p, p->pid, p->parent->pid,
2317 kdb_task_has_cpu(p), kdb_process_cpu(p),
2318 kdb_task_state_char(p),
2319 (void *)(&p->thread),
2320 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2321 p->comm);
2322 if (kdb_task_has_cpu(p)) {
2323 if (!KDB_TSK(cpu)) {
2324 kdb_printf(" Error: no saved data for this cpu\n");
2325 } else {
2326 if (KDB_TSK(cpu) != p)
2327 kdb_printf(" Error: does not match running "
2328 "process table (0x%px)\n", KDB_TSK(cpu));
2329 }
2330 }
2331}
2332
2333/*
2334 * kdb_ps - This function implements the 'ps' command which shows a
2335 * list of the active processes.
2336 *
2337 * ps [<state_chars>] Show processes, optionally selecting only those whose
2338 * state character is found in <state_chars>.
2339 */
2340static int kdb_ps(int argc, const char **argv)
2341{
2342 struct task_struct *g, *p;
2343 const char *mask;
2344 unsigned long cpu;
2345
2346 if (argc == 0)
2347 kdb_ps_suppressed();
2348 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2349 (int)(2*sizeof(void *))+2, "Task Addr",
2350 (int)(2*sizeof(void *))+2, "Thread");
2351 mask = argc ? argv[1] : kdbgetenv("PS");
2352 /* Run the active tasks first */
2353 for_each_online_cpu(cpu) {
2354 if (KDB_FLAG(CMD_INTERRUPT))
2355 return 0;
2356 p = kdb_curr_task(cpu);
2357 if (kdb_task_state(p, mask))
2358 kdb_ps1(p);
2359 }
2360 kdb_printf("\n");
2361 /* Now the real tasks */
2362 for_each_process_thread(g, p) {
2363 if (KDB_FLAG(CMD_INTERRUPT))
2364 return 0;
2365 if (kdb_task_state(p, mask))
2366 kdb_ps1(p);
2367 }
2368
2369 return 0;
2370}
2371
2372/*
2373 * kdb_pid - This function implements the 'pid' command which switches
2374 * the currently active process.
2375 * pid [<pid> | R]
2376 */
2377static int kdb_pid(int argc, const char **argv)
2378{
2379 struct task_struct *p;
2380 unsigned long val;
2381 int diag;
2382
2383 if (argc > 1)
2384 return KDB_ARGCOUNT;
2385
2386 if (argc) {
2387 if (strcmp(argv[1], "R") == 0) {
2388 p = KDB_TSK(kdb_initial_cpu);
2389 } else {
2390 diag = kdbgetularg(argv[1], &val);
2391 if (diag)
2392 return KDB_BADINT;
2393
2394 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2395 if (!p) {
2396 kdb_printf("No task with pid=%d\n", (pid_t)val);
2397 return 0;
2398 }
2399 }
2400 kdb_set_current_task(p);
2401 }
2402 kdb_printf("KDB current process is %s(pid=%d)\n",
2403 kdb_current_task->comm,
2404 kdb_current_task->pid);
2405
2406 return 0;
2407}
2408
2409static int kdb_kgdb(int argc, const char **argv)
2410{
2411 return KDB_CMD_KGDB;
2412}
2413
2414/*
2415 * kdb_help - This function implements the 'help' and '?' commands.
2416 */
2417static int kdb_help(int argc, const char **argv)
2418{
2419 kdbtab_t *kt;
2420
2421 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2422 kdb_printf("-----------------------------"
2423 "-----------------------------\n");
2424 list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2425 char *space = "";
2426 if (KDB_FLAG(CMD_INTERRUPT))
2427 return 0;
2428 if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
2429 continue;
2430 if (strlen(kt->usage) > 20)
2431 space = "\n ";
2432 kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2433 kt->usage, space, kt->help);
2434 }
2435 return 0;
2436}
2437
2438/*
2439 * kdb_kill - This function implements the 'kill' commands.
2440 */
2441static int kdb_kill(int argc, const char **argv)
2442{
2443 long sig, pid;
2444 char *endp;
2445 struct task_struct *p;
2446
2447 if (argc != 2)
2448 return KDB_ARGCOUNT;
2449
2450 sig = simple_strtol(argv[1], &endp, 0);
2451 if (*endp)
2452 return KDB_BADINT;
2453 if ((sig >= 0) || !valid_signal(-sig)) {
2454 kdb_printf("Invalid signal parameter.<-signal>\n");
2455 return 0;
2456 }
2457 sig = -sig;
2458
2459 pid = simple_strtol(argv[2], &endp, 0);
2460 if (*endp)
2461 return KDB_BADINT;
2462 if (pid <= 0) {
2463 kdb_printf("Process ID must be large than 0.\n");
2464 return 0;
2465 }
2466
2467 /* Find the process. */
2468 p = find_task_by_pid_ns(pid, &init_pid_ns);
2469 if (!p) {
2470 kdb_printf("The specified process isn't found.\n");
2471 return 0;
2472 }
2473 p = p->group_leader;
2474 kdb_send_sig(p, sig);
2475 return 0;
2476}
2477
2478/*
2479 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2480 * I cannot call that code directly from kdb, it has an unconditional
2481 * cli()/sti() and calls routines that take locks which can stop the debugger.
2482 */
2483static void kdb_sysinfo(struct sysinfo *val)
2484{
2485 u64 uptime = ktime_get_mono_fast_ns();
2486
2487 memset(val, 0, sizeof(*val));
2488 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2489 val->loads[0] = avenrun[0];
2490 val->loads[1] = avenrun[1];
2491 val->loads[2] = avenrun[2];
2492 val->procs = nr_threads-1;
2493 si_meminfo(val);
2494
2495 return;
2496}
2497
2498/*
2499 * kdb_summary - This function implements the 'summary' command.
2500 */
2501static int kdb_summary(int argc, const char **argv)
2502{
2503 time64_t now;
2504 struct sysinfo val;
2505
2506 if (argc)
2507 return KDB_ARGCOUNT;
2508
2509 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2510 kdb_printf("release %s\n", init_uts_ns.name.release);
2511 kdb_printf("version %s\n", init_uts_ns.name.version);
2512 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2513 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2514 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2515
2516 now = __ktime_get_real_seconds();
2517 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2518 kdb_sysinfo(&val);
2519 kdb_printf("uptime ");
2520 if (val.uptime > (24*60*60)) {
2521 int days = val.uptime / (24*60*60);
2522 val.uptime %= (24*60*60);
2523 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2524 }
2525 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2526
2527 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2528 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2529 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2530 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2531
2532 /* Display in kilobytes */
2533#define K(x) ((x) << (PAGE_SHIFT - 10))
2534 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2535 "Buffers: %8lu kB\n",
2536 K(val.totalram), K(val.freeram), K(val.bufferram));
2537 return 0;
2538}
2539
2540/*
2541 * kdb_per_cpu - This function implements the 'per_cpu' command.
2542 */
2543static int kdb_per_cpu(int argc, const char **argv)
2544{
2545 char fmtstr[64];
2546 int cpu, diag, nextarg = 1;
2547 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2548
2549 if (argc < 1 || argc > 3)
2550 return KDB_ARGCOUNT;
2551
2552 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2553 if (diag)
2554 return diag;
2555
2556 if (argc >= 2) {
2557 diag = kdbgetularg(argv[2], &bytesperword);
2558 if (diag)
2559 return diag;
2560 }
2561 if (!bytesperword)
2562 bytesperword = KDB_WORD_SIZE;
2563 else if (bytesperword > KDB_WORD_SIZE)
2564 return KDB_BADWIDTH;
2565 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2566 if (argc >= 3) {
2567 diag = kdbgetularg(argv[3], &whichcpu);
2568 if (diag)
2569 return diag;
2570 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2571 kdb_printf("cpu %ld is not online\n", whichcpu);
2572 return KDB_BADCPUNUM;
2573 }
2574 }
2575
2576 /* Most architectures use __per_cpu_offset[cpu], some use
2577 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2578 */
2579#ifdef __per_cpu_offset
2580#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2581#else
2582#ifdef CONFIG_SMP
2583#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2584#else
2585#define KDB_PCU(cpu) 0
2586#endif
2587#endif
2588 for_each_online_cpu(cpu) {
2589 if (KDB_FLAG(CMD_INTERRUPT))
2590 return 0;
2591
2592 if (whichcpu != ~0UL && whichcpu != cpu)
2593 continue;
2594 addr = symaddr + KDB_PCU(cpu);
2595 diag = kdb_getword(&val, addr, bytesperword);
2596 if (diag) {
2597 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2598 "read, diag=%d\n", cpu, addr, diag);
2599 continue;
2600 }
2601 kdb_printf("%5d ", cpu);
2602 kdb_md_line(fmtstr, addr,
2603 bytesperword == KDB_WORD_SIZE,
2604 1, bytesperword, 1, 1, 0);
2605 }
2606#undef KDB_PCU
2607 return 0;
2608}
2609
2610/*
2611 * display help for the use of cmd | grep pattern
2612 */
2613static int kdb_grep_help(int argc, const char **argv)
2614{
2615 kdb_printf("Usage of cmd args | grep pattern:\n");
2616 kdb_printf(" Any command's output may be filtered through an ");
2617 kdb_printf("emulated 'pipe'.\n");
2618 kdb_printf(" 'grep' is just a key word.\n");
2619 kdb_printf(" The pattern may include a very limited set of "
2620 "metacharacters:\n");
2621 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2622 kdb_printf(" And if there are spaces in the pattern, you may "
2623 "quote it:\n");
2624 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2625 " or \"^pat tern$\"\n");
2626 return 0;
2627}
2628
2629/**
2630 * kdb_register() - This function is used to register a kernel debugger
2631 * command.
2632 * @cmd: pointer to kdb command
2633 *
2634 * Note that it's the job of the caller to keep the memory for the cmd
2635 * allocated until unregister is called.
2636 */
2637int kdb_register(kdbtab_t *cmd)
2638{
2639 kdbtab_t *kp;
2640
2641 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2642 if (strcmp(kp->name, cmd->name) == 0) {
2643 kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
2644 cmd->name, cmd->func, cmd->help);
2645 return 1;
2646 }
2647 }
2648
2649 list_add_tail(&cmd->list_node, &kdb_cmds_head);
2650 return 0;
2651}
2652EXPORT_SYMBOL_GPL(kdb_register);
2653
2654/**
2655 * kdb_register_table() - This function is used to register a kdb command
2656 * table.
2657 * @kp: pointer to kdb command table
2658 * @len: length of kdb command table
2659 */
2660void kdb_register_table(kdbtab_t *kp, size_t len)
2661{
2662 while (len--) {
2663 list_add_tail(&kp->list_node, &kdb_cmds_head);
2664 kp++;
2665 }
2666}
2667
2668/**
2669 * kdb_unregister() - This function is used to unregister a kernel debugger
2670 * command. It is generally called when a module which
2671 * implements kdb command is unloaded.
2672 * @cmd: pointer to kdb command
2673 */
2674void kdb_unregister(kdbtab_t *cmd)
2675{
2676 list_del(&cmd->list_node);
2677}
2678EXPORT_SYMBOL_GPL(kdb_unregister);
2679
2680static kdbtab_t maintab[] = {
2681 { .name = "md",
2682 .func = kdb_md,
2683 .usage = "<vaddr>",
2684 .help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2685 .minlen = 1,
2686 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2687 },
2688 { .name = "mdr",
2689 .func = kdb_md,
2690 .usage = "<vaddr> <bytes>",
2691 .help = "Display Raw Memory",
2692 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2693 },
2694 { .name = "mdp",
2695 .func = kdb_md,
2696 .usage = "<paddr> <bytes>",
2697 .help = "Display Physical Memory",
2698 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2699 },
2700 { .name = "mds",
2701 .func = kdb_md,
2702 .usage = "<vaddr>",
2703 .help = "Display Memory Symbolically",
2704 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2705 },
2706 { .name = "mm",
2707 .func = kdb_mm,
2708 .usage = "<vaddr> <contents>",
2709 .help = "Modify Memory Contents",
2710 .flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2711 },
2712 { .name = "go",
2713 .func = kdb_go,
2714 .usage = "[<vaddr>]",
2715 .help = "Continue Execution",
2716 .minlen = 1,
2717 .flags = KDB_ENABLE_REG_WRITE |
2718 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2719 },
2720 { .name = "rd",
2721 .func = kdb_rd,
2722 .usage = "",
2723 .help = "Display Registers",
2724 .flags = KDB_ENABLE_REG_READ,
2725 },
2726 { .name = "rm",
2727 .func = kdb_rm,
2728 .usage = "<reg> <contents>",
2729 .help = "Modify Registers",
2730 .flags = KDB_ENABLE_REG_WRITE,
2731 },
2732 { .name = "ef",
2733 .func = kdb_ef,
2734 .usage = "<vaddr>",
2735 .help = "Display exception frame",
2736 .flags = KDB_ENABLE_MEM_READ,
2737 },
2738 { .name = "bt",
2739 .func = kdb_bt,
2740 .usage = "[<vaddr>]",
2741 .help = "Stack traceback",
2742 .minlen = 1,
2743 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2744 },
2745 { .name = "btp",
2746 .func = kdb_bt,
2747 .usage = "<pid>",
2748 .help = "Display stack for process <pid>",
2749 .flags = KDB_ENABLE_INSPECT,
2750 },
2751 { .name = "bta",
2752 .func = kdb_bt,
2753 .usage = "[<state_chars>|A]",
2754 .help = "Backtrace all processes whose state matches",
2755 .flags = KDB_ENABLE_INSPECT,
2756 },
2757 { .name = "btc",
2758 .func = kdb_bt,
2759 .usage = "",
2760 .help = "Backtrace current process on each cpu",
2761 .flags = KDB_ENABLE_INSPECT,
2762 },
2763 { .name = "btt",
2764 .func = kdb_bt,
2765 .usage = "<vaddr>",
2766 .help = "Backtrace process given its struct task address",
2767 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2768 },
2769 { .name = "env",
2770 .func = kdb_env,
2771 .usage = "",
2772 .help = "Show environment variables",
2773 .flags = KDB_ENABLE_ALWAYS_SAFE,
2774 },
2775 { .name = "set",
2776 .func = kdb_set,
2777 .usage = "",
2778 .help = "Set environment variables",
2779 .flags = KDB_ENABLE_ALWAYS_SAFE,
2780 },
2781 { .name = "help",
2782 .func = kdb_help,
2783 .usage = "",
2784 .help = "Display Help Message",
2785 .minlen = 1,
2786 .flags = KDB_ENABLE_ALWAYS_SAFE,
2787 },
2788 { .name = "?",
2789 .func = kdb_help,
2790 .usage = "",
2791 .help = "Display Help Message",
2792 .flags = KDB_ENABLE_ALWAYS_SAFE,
2793 },
2794 { .name = "cpu",
2795 .func = kdb_cpu,
2796 .usage = "<cpunum>",
2797 .help = "Switch to new cpu",
2798 .flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2799 },
2800 { .name = "kgdb",
2801 .func = kdb_kgdb,
2802 .usage = "",
2803 .help = "Enter kgdb mode",
2804 .flags = 0,
2805 },
2806 { .name = "ps",
2807 .func = kdb_ps,
2808 .usage = "[<state_chars>|A]",
2809 .help = "Display active task list",
2810 .flags = KDB_ENABLE_INSPECT,
2811 },
2812 { .name = "pid",
2813 .func = kdb_pid,
2814 .usage = "<pidnum>",
2815 .help = "Switch to another task",
2816 .flags = KDB_ENABLE_INSPECT,
2817 },
2818 { .name = "reboot",
2819 .func = kdb_reboot,
2820 .usage = "",
2821 .help = "Reboot the machine immediately",
2822 .flags = KDB_ENABLE_REBOOT,
2823 },
2824#if defined(CONFIG_MODULES)
2825 { .name = "lsmod",
2826 .func = kdb_lsmod,
2827 .usage = "",
2828 .help = "List loaded kernel modules",
2829 .flags = KDB_ENABLE_INSPECT,
2830 },
2831#endif
2832#if defined(CONFIG_MAGIC_SYSRQ)
2833 { .name = "sr",
2834 .func = kdb_sr,
2835 .usage = "<key>",
2836 .help = "Magic SysRq key",
2837 .flags = KDB_ENABLE_ALWAYS_SAFE,
2838 },
2839#endif
2840#if defined(CONFIG_PRINTK)
2841 { .name = "dmesg",
2842 .func = kdb_dmesg,
2843 .usage = "[lines]",
2844 .help = "Display syslog buffer",
2845 .flags = KDB_ENABLE_ALWAYS_SAFE,
2846 },
2847#endif
2848 { .name = "defcmd",
2849 .func = kdb_defcmd,
2850 .usage = "name \"usage\" \"help\"",
2851 .help = "Define a set of commands, down to endefcmd",
2852 /*
2853 * Macros are always safe because when executed each
2854 * internal command re-enters kdb_parse() and is safety
2855 * checked individually.
2856 */
2857 .flags = KDB_ENABLE_ALWAYS_SAFE,
2858 },
2859 { .name = "kill",
2860 .func = kdb_kill,
2861 .usage = "<-signal> <pid>",
2862 .help = "Send a signal to a process",
2863 .flags = KDB_ENABLE_SIGNAL,
2864 },
2865 { .name = "summary",
2866 .func = kdb_summary,
2867 .usage = "",
2868 .help = "Summarize the system",
2869 .minlen = 4,
2870 .flags = KDB_ENABLE_ALWAYS_SAFE,
2871 },
2872 { .name = "per_cpu",
2873 .func = kdb_per_cpu,
2874 .usage = "<sym> [<bytes>] [<cpu>]",
2875 .help = "Display per_cpu variables",
2876 .minlen = 3,
2877 .flags = KDB_ENABLE_MEM_READ,
2878 },
2879 { .name = "grephelp",
2880 .func = kdb_grep_help,
2881 .usage = "",
2882 .help = "Display help on | grep",
2883 .flags = KDB_ENABLE_ALWAYS_SAFE,
2884 },
2885};
2886
2887static kdbtab_t nmicmd = {
2888 .name = "disable_nmi",
2889 .func = kdb_disable_nmi,
2890 .usage = "",
2891 .help = "Disable NMI entry to KDB",
2892 .flags = KDB_ENABLE_ALWAYS_SAFE,
2893};
2894
2895/* Initialize the kdb command table. */
2896static void __init kdb_inittab(void)
2897{
2898 kdb_register_table(maintab, ARRAY_SIZE(maintab));
2899 if (arch_kgdb_ops.enable_nmi)
2900 kdb_register_table(&nmicmd, 1);
2901}
2902
2903/* Execute any commands defined in kdb_cmds. */
2904static void __init kdb_cmd_init(void)
2905{
2906 int i, diag;
2907 for (i = 0; kdb_cmds[i]; ++i) {
2908 diag = kdb_parse(kdb_cmds[i]);
2909 if (diag)
2910 kdb_printf("kdb command %s failed, kdb diag %d\n",
2911 kdb_cmds[i], diag);
2912 }
2913 if (defcmd_in_progress) {
2914 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2915 kdb_parse("endefcmd");
2916 }
2917}
2918
2919/* Initialize kdb_printf, breakpoint tables and kdb state */
2920void __init kdb_init(int lvl)
2921{
2922 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2923 int i;
2924
2925 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2926 return;
2927 for (i = kdb_init_lvl; i < lvl; i++) {
2928 switch (i) {
2929 case KDB_NOT_INITIALIZED:
2930 kdb_inittab(); /* Initialize Command Table */
2931 kdb_initbptab(); /* Initialize Breakpoints */
2932 break;
2933 case KDB_INIT_EARLY:
2934 kdb_cmd_init(); /* Build kdb_cmds tables */
2935 break;
2936 }
2937 }
2938 kdb_init_lvl = lvl;
2939}