Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/moduleparam.h>
30#include <linux/mm.h>
31#include <linux/init.h>
32#include <linux/kallsyms.h>
33#include <linux/kgdb.h>
34#include <linux/kdb.h>
35#include <linux/notifier.h>
36#include <linux/interrupt.h>
37#include <linux/delay.h>
38#include <linux/nmi.h>
39#include <linux/time.h>
40#include <linux/ptrace.h>
41#include <linux/sysctl.h>
42#include <linux/cpu.h>
43#include <linux/kdebug.h>
44#include <linux/proc_fs.h>
45#include <linux/uaccess.h>
46#include <linux/slab.h>
47#include <linux/security.h>
48#include "kdb_private.h"
49
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56char kdb_grep_string[KDB_GREP_STRLEN];
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65unsigned int kdb_flags;
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76struct pt_regs *kdb_current_regs;
77
78const char *kdb_diemsg;
79static int kdb_go_count;
80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81static unsigned int kdb_continue_catastrophic =
82 CONFIG_KDB_CONTINUE_CATASTROPHIC;
83#else
84static unsigned int kdb_continue_catastrophic;
85#endif
86
87/* kdb_cmds_head describes the available commands. */
88static LIST_HEAD(kdb_cmds_head);
89
90typedef struct _kdbmsg {
91 int km_diag; /* kdb diagnostic */
92 char *km_msg; /* Corresponding message text */
93} kdbmsg_t;
94
95#define KDBMSG(msgnum, text) \
96 { KDB_##msgnum, text }
97
98static kdbmsg_t kdbmsgs[] = {
99 KDBMSG(NOTFOUND, "Command Not Found"),
100 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
101 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
102 "8 is only allowed on 64 bit systems"),
103 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
104 KDBMSG(NOTENV, "Cannot find environment variable"),
105 KDBMSG(NOENVVALUE, "Environment variable should have value"),
106 KDBMSG(NOTIMP, "Command not implemented"),
107 KDBMSG(ENVFULL, "Environment full"),
108 KDBMSG(ENVBUFFULL, "Environment buffer full"),
109 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
110#ifdef CONFIG_CPU_XSCALE
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
112#else
113 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
114#endif
115 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
116 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
117 KDBMSG(BADMODE, "Invalid IDMODE"),
118 KDBMSG(BADINT, "Illegal numeric value"),
119 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
120 KDBMSG(BADREG, "Invalid register name"),
121 KDBMSG(BADCPUNUM, "Invalid cpu number"),
122 KDBMSG(BADLENGTH, "Invalid length field"),
123 KDBMSG(NOBP, "No Breakpoint exists"),
124 KDBMSG(BADADDR, "Invalid address"),
125 KDBMSG(NOPERM, "Permission denied"),
126};
127#undef KDBMSG
128
129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
130
131
132/*
133 * Initial environment. This is all kept static and local to
134 * this file. We don't want to rely on the memory allocation
135 * mechanisms in the kernel, so we use a very limited allocate-only
136 * heap for new and altered environment variables. The entire
137 * environment is limited to a fixed number of entries (add more
138 * to __env[] if required) and a fixed amount of heap (add more to
139 * KDB_ENVBUFSIZE if required).
140 */
141
142static char *__env[31] = {
143#if defined(CONFIG_SMP)
144 "PROMPT=[%d]kdb> ",
145#else
146 "PROMPT=kdb> ",
147#endif
148 "MOREPROMPT=more> ",
149 "RADIX=16",
150 "MDCOUNT=8", /* lines of md output */
151 KDB_PLATFORM_ENV,
152 "DTABCOUNT=30",
153 "NOSECT=1",
154};
155
156static const int __nenv = ARRAY_SIZE(__env);
157
158struct task_struct *kdb_curr_task(int cpu)
159{
160 struct task_struct *p = curr_task(cpu);
161#ifdef _TIF_MCA_INIT
162 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
163 p = krp->p;
164#endif
165 return p;
166}
167
168/*
169 * Update the permissions flags (kdb_cmd_enabled) to match the
170 * current lockdown state.
171 *
172 * Within this function the calls to security_locked_down() are "lazy". We
173 * avoid calling them if the current value of kdb_cmd_enabled already excludes
174 * flags that might be subject to lockdown. Additionally we deliberately check
175 * the lockdown flags independently (even though read lockdown implies write
176 * lockdown) since that results in both simpler code and clearer messages to
177 * the user on first-time debugger entry.
178 *
179 * The permission masks during a read+write lockdown permits the following
180 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
181 *
182 * The INSPECT commands are not blocked during lockdown because they are
183 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
184 * forcing them to have no arguments) and lsmod. These commands do expose
185 * some kernel state but do not allow the developer seated at the console to
186 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
187 * given these are allowed for root during lockdown already.
188 */
189static void kdb_check_for_lockdown(void)
190{
191 const int write_flags = KDB_ENABLE_MEM_WRITE |
192 KDB_ENABLE_REG_WRITE |
193 KDB_ENABLE_FLOW_CTRL;
194 const int read_flags = KDB_ENABLE_MEM_READ |
195 KDB_ENABLE_REG_READ;
196
197 bool need_to_lockdown_write = false;
198 bool need_to_lockdown_read = false;
199
200 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
201 need_to_lockdown_write =
202 security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
203
204 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
205 need_to_lockdown_read =
206 security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
207
208 /* De-compose KDB_ENABLE_ALL if required */
209 if (need_to_lockdown_write || need_to_lockdown_read)
210 if (kdb_cmd_enabled & KDB_ENABLE_ALL)
211 kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
212
213 if (need_to_lockdown_write)
214 kdb_cmd_enabled &= ~write_flags;
215
216 if (need_to_lockdown_read)
217 kdb_cmd_enabled &= ~read_flags;
218}
219
220/*
221 * Check whether the flags of the current command, the permissions of the kdb
222 * console and the lockdown state allow a command to be run.
223 */
224static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
225 bool no_args)
226{
227 /* permissions comes from userspace so needs massaging slightly */
228 permissions &= KDB_ENABLE_MASK;
229 permissions |= KDB_ENABLE_ALWAYS_SAFE;
230
231 /* some commands change group when launched with no arguments */
232 if (no_args)
233 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
234
235 flags |= KDB_ENABLE_ALL;
236
237 return permissions & flags;
238}
239
240/*
241 * kdbgetenv - This function will return the character string value of
242 * an environment variable.
243 * Parameters:
244 * match A character string representing an environment variable.
245 * Returns:
246 * NULL No environment variable matches 'match'
247 * char* Pointer to string value of environment variable.
248 */
249char *kdbgetenv(const char *match)
250{
251 char **ep = __env;
252 int matchlen = strlen(match);
253 int i;
254
255 for (i = 0; i < __nenv; i++) {
256 char *e = *ep++;
257
258 if (!e)
259 continue;
260
261 if ((strncmp(match, e, matchlen) == 0)
262 && ((e[matchlen] == '\0')
263 || (e[matchlen] == '='))) {
264 char *cp = strchr(e, '=');
265 return cp ? ++cp : "";
266 }
267 }
268 return NULL;
269}
270
271/*
272 * kdballocenv - This function is used to allocate bytes for
273 * environment entries.
274 * Parameters:
275 * bytes The number of bytes to allocate in the static buffer.
276 * Returns:
277 * A pointer to the allocated space in the buffer on success.
278 * NULL if bytes > size available in the envbuffer.
279 * Remarks:
280 * We use a static environment buffer (envbuffer) to hold the values
281 * of dynamically generated environment variables (see kdb_set). Buffer
282 * space once allocated is never free'd, so over time, the amount of space
283 * (currently 512 bytes) will be exhausted if env variables are changed
284 * frequently.
285 */
286static char *kdballocenv(size_t bytes)
287{
288#define KDB_ENVBUFSIZE 512
289 static char envbuffer[KDB_ENVBUFSIZE];
290 static int envbufsize;
291 char *ep = NULL;
292
293 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
294 ep = &envbuffer[envbufsize];
295 envbufsize += bytes;
296 }
297 return ep;
298}
299
300/*
301 * kdbgetulenv - This function will return the value of an unsigned
302 * long-valued environment variable.
303 * Parameters:
304 * match A character string representing a numeric value
305 * Outputs:
306 * *value the unsigned long representation of the env variable 'match'
307 * Returns:
308 * Zero on success, a kdb diagnostic on failure.
309 */
310static int kdbgetulenv(const char *match, unsigned long *value)
311{
312 char *ep;
313
314 ep = kdbgetenv(match);
315 if (!ep)
316 return KDB_NOTENV;
317 if (strlen(ep) == 0)
318 return KDB_NOENVVALUE;
319
320 *value = simple_strtoul(ep, NULL, 0);
321
322 return 0;
323}
324
325/*
326 * kdbgetintenv - This function will return the value of an
327 * integer-valued environment variable.
328 * Parameters:
329 * match A character string representing an integer-valued env variable
330 * Outputs:
331 * *value the integer representation of the environment variable 'match'
332 * Returns:
333 * Zero on success, a kdb diagnostic on failure.
334 */
335int kdbgetintenv(const char *match, int *value)
336{
337 unsigned long val;
338 int diag;
339
340 diag = kdbgetulenv(match, &val);
341 if (!diag)
342 *value = (int) val;
343 return diag;
344}
345
346/*
347 * kdb_setenv() - Alter an existing environment variable or create a new one.
348 * @var: Name of the variable
349 * @val: Value of the variable
350 *
351 * Return: Zero on success, a kdb diagnostic on failure.
352 */
353static int kdb_setenv(const char *var, const char *val)
354{
355 int i;
356 char *ep;
357 size_t varlen, vallen;
358
359 varlen = strlen(var);
360 vallen = strlen(val);
361 ep = kdballocenv(varlen + vallen + 2);
362 if (ep == (char *)0)
363 return KDB_ENVBUFFULL;
364
365 sprintf(ep, "%s=%s", var, val);
366
367 for (i = 0; i < __nenv; i++) {
368 if (__env[i]
369 && ((strncmp(__env[i], var, varlen) == 0)
370 && ((__env[i][varlen] == '\0')
371 || (__env[i][varlen] == '=')))) {
372 __env[i] = ep;
373 return 0;
374 }
375 }
376
377 /*
378 * Wasn't existing variable. Fit into slot.
379 */
380 for (i = 0; i < __nenv-1; i++) {
381 if (__env[i] == (char *)0) {
382 __env[i] = ep;
383 return 0;
384 }
385 }
386
387 return KDB_ENVFULL;
388}
389
390/*
391 * kdb_printenv() - Display the current environment variables.
392 */
393static void kdb_printenv(void)
394{
395 int i;
396
397 for (i = 0; i < __nenv; i++) {
398 if (__env[i])
399 kdb_printf("%s\n", __env[i]);
400 }
401}
402
403/*
404 * kdbgetularg - This function will convert a numeric string into an
405 * unsigned long value.
406 * Parameters:
407 * arg A character string representing a numeric value
408 * Outputs:
409 * *value the unsigned long representation of arg.
410 * Returns:
411 * Zero on success, a kdb diagnostic on failure.
412 */
413int kdbgetularg(const char *arg, unsigned long *value)
414{
415 char *endp;
416 unsigned long val;
417
418 val = simple_strtoul(arg, &endp, 0);
419
420 if (endp == arg) {
421 /*
422 * Also try base 16, for us folks too lazy to type the
423 * leading 0x...
424 */
425 val = simple_strtoul(arg, &endp, 16);
426 if (endp == arg)
427 return KDB_BADINT;
428 }
429
430 *value = val;
431
432 return 0;
433}
434
435int kdbgetu64arg(const char *arg, u64 *value)
436{
437 char *endp;
438 u64 val;
439
440 val = simple_strtoull(arg, &endp, 0);
441
442 if (endp == arg) {
443
444 val = simple_strtoull(arg, &endp, 16);
445 if (endp == arg)
446 return KDB_BADINT;
447 }
448
449 *value = val;
450
451 return 0;
452}
453
454/*
455 * kdb_set - This function implements the 'set' command. Alter an
456 * existing environment variable or create a new one.
457 */
458int kdb_set(int argc, const char **argv)
459{
460 /*
461 * we can be invoked two ways:
462 * set var=value argv[1]="var", argv[2]="value"
463 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
464 * - if the latter, shift 'em down.
465 */
466 if (argc == 3) {
467 argv[2] = argv[3];
468 argc--;
469 }
470
471 if (argc != 2)
472 return KDB_ARGCOUNT;
473
474 /*
475 * Censor sensitive variables
476 */
477 if (strcmp(argv[1], "PROMPT") == 0 &&
478 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
479 return KDB_NOPERM;
480
481 /*
482 * Check for internal variables
483 */
484 if (strcmp(argv[1], "KDBDEBUG") == 0) {
485 unsigned int debugflags;
486 char *cp;
487
488 debugflags = simple_strtoul(argv[2], &cp, 0);
489 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
490 kdb_printf("kdb: illegal debug flags '%s'\n",
491 argv[2]);
492 return 0;
493 }
494 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
495 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
496
497 return 0;
498 }
499
500 /*
501 * Tokenizer squashed the '=' sign. argv[1] is variable
502 * name, argv[2] = value.
503 */
504 return kdb_setenv(argv[1], argv[2]);
505}
506
507static int kdb_check_regs(void)
508{
509 if (!kdb_current_regs) {
510 kdb_printf("No current kdb registers."
511 " You may need to select another task\n");
512 return KDB_BADREG;
513 }
514 return 0;
515}
516
517/*
518 * kdbgetaddrarg - This function is responsible for parsing an
519 * address-expression and returning the value of the expression,
520 * symbol name, and offset to the caller.
521 *
522 * The argument may consist of a numeric value (decimal or
523 * hexadecimal), a symbol name, a register name (preceded by the
524 * percent sign), an environment variable with a numeric value
525 * (preceded by a dollar sign) or a simple arithmetic expression
526 * consisting of a symbol name, +/-, and a numeric constant value
527 * (offset).
528 * Parameters:
529 * argc - count of arguments in argv
530 * argv - argument vector
531 * *nextarg - index to next unparsed argument in argv[]
532 * regs - Register state at time of KDB entry
533 * Outputs:
534 * *value - receives the value of the address-expression
535 * *offset - receives the offset specified, if any
536 * *name - receives the symbol name, if any
537 * *nextarg - index to next unparsed argument in argv[]
538 * Returns:
539 * zero is returned on success, a kdb diagnostic code is
540 * returned on error.
541 */
542int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
543 unsigned long *value, long *offset,
544 char **name)
545{
546 unsigned long addr;
547 unsigned long off = 0;
548 int positive;
549 int diag;
550 int found = 0;
551 char *symname;
552 char symbol = '\0';
553 char *cp;
554 kdb_symtab_t symtab;
555
556 /*
557 * If the enable flags prohibit both arbitrary memory access
558 * and flow control then there are no reasonable grounds to
559 * provide symbol lookup.
560 */
561 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
562 kdb_cmd_enabled, false))
563 return KDB_NOPERM;
564
565 /*
566 * Process arguments which follow the following syntax:
567 *
568 * symbol | numeric-address [+/- numeric-offset]
569 * %register
570 * $environment-variable
571 */
572
573 if (*nextarg > argc)
574 return KDB_ARGCOUNT;
575
576 symname = (char *)argv[*nextarg];
577
578 /*
579 * If there is no whitespace between the symbol
580 * or address and the '+' or '-' symbols, we
581 * remember the character and replace it with a
582 * null so the symbol/value can be properly parsed
583 */
584 cp = strpbrk(symname, "+-");
585 if (cp != NULL) {
586 symbol = *cp;
587 *cp++ = '\0';
588 }
589
590 if (symname[0] == '$') {
591 diag = kdbgetulenv(&symname[1], &addr);
592 if (diag)
593 return diag;
594 } else if (symname[0] == '%') {
595 diag = kdb_check_regs();
596 if (diag)
597 return diag;
598 /* Implement register values with % at a later time as it is
599 * arch optional.
600 */
601 return KDB_NOTIMP;
602 } else {
603 found = kdbgetsymval(symname, &symtab);
604 if (found) {
605 addr = symtab.sym_start;
606 } else {
607 diag = kdbgetularg(argv[*nextarg], &addr);
608 if (diag)
609 return diag;
610 }
611 }
612
613 if (!found)
614 found = kdbnearsym(addr, &symtab);
615
616 (*nextarg)++;
617
618 if (name)
619 *name = symname;
620 if (value)
621 *value = addr;
622 if (offset && name && *name)
623 *offset = addr - symtab.sym_start;
624
625 if ((*nextarg > argc)
626 && (symbol == '\0'))
627 return 0;
628
629 /*
630 * check for +/- and offset
631 */
632
633 if (symbol == '\0') {
634 if ((argv[*nextarg][0] != '+')
635 && (argv[*nextarg][0] != '-')) {
636 /*
637 * Not our argument. Return.
638 */
639 return 0;
640 } else {
641 positive = (argv[*nextarg][0] == '+');
642 (*nextarg)++;
643 }
644 } else
645 positive = (symbol == '+');
646
647 /*
648 * Now there must be an offset!
649 */
650 if ((*nextarg > argc)
651 && (symbol == '\0')) {
652 return KDB_INVADDRFMT;
653 }
654
655 if (!symbol) {
656 cp = (char *)argv[*nextarg];
657 (*nextarg)++;
658 }
659
660 diag = kdbgetularg(cp, &off);
661 if (diag)
662 return diag;
663
664 if (!positive)
665 off = -off;
666
667 if (offset)
668 *offset += off;
669
670 if (value)
671 *value += off;
672
673 return 0;
674}
675
676static void kdb_cmderror(int diag)
677{
678 int i;
679
680 if (diag >= 0) {
681 kdb_printf("no error detected (diagnostic is %d)\n", diag);
682 return;
683 }
684
685 for (i = 0; i < __nkdb_err; i++) {
686 if (kdbmsgs[i].km_diag == diag) {
687 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
688 return;
689 }
690 }
691
692 kdb_printf("Unknown diag %d\n", -diag);
693}
694
695/*
696 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
697 * command which defines one command as a set of other commands,
698 * terminated by endefcmd. kdb_defcmd processes the initial
699 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
700 * the following commands until 'endefcmd'.
701 * Inputs:
702 * argc argument count
703 * argv argument vector
704 * Returns:
705 * zero for success, a kdb diagnostic if error
706 */
707struct kdb_macro {
708 kdbtab_t cmd; /* Macro command */
709 struct list_head statements; /* Associated statement list */
710};
711
712struct kdb_macro_statement {
713 char *statement; /* Statement text */
714 struct list_head list_node; /* Statement list node */
715};
716
717static struct kdb_macro *kdb_macro;
718static bool defcmd_in_progress;
719
720/* Forward references */
721static int kdb_exec_defcmd(int argc, const char **argv);
722
723static int kdb_defcmd2(const char *cmdstr, const char *argv0)
724{
725 struct kdb_macro_statement *kms;
726
727 if (!kdb_macro)
728 return KDB_NOTIMP;
729
730 if (strcmp(argv0, "endefcmd") == 0) {
731 defcmd_in_progress = false;
732 if (!list_empty(&kdb_macro->statements))
733 kdb_register(&kdb_macro->cmd);
734 return 0;
735 }
736
737 kms = kmalloc(sizeof(*kms), GFP_KDB);
738 if (!kms) {
739 kdb_printf("Could not allocate new kdb macro command: %s\n",
740 cmdstr);
741 return KDB_NOTIMP;
742 }
743
744 kms->statement = kdb_strdup(cmdstr, GFP_KDB);
745 list_add_tail(&kms->list_node, &kdb_macro->statements);
746
747 return 0;
748}
749
750static int kdb_defcmd(int argc, const char **argv)
751{
752 kdbtab_t *mp;
753
754 if (defcmd_in_progress) {
755 kdb_printf("kdb: nested defcmd detected, assuming missing "
756 "endefcmd\n");
757 kdb_defcmd2("endefcmd", "endefcmd");
758 }
759 if (argc == 0) {
760 kdbtab_t *kp;
761 struct kdb_macro *kmp;
762 struct kdb_macro_statement *kms;
763
764 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
765 if (kp->func == kdb_exec_defcmd) {
766 kdb_printf("defcmd %s \"%s\" \"%s\"\n",
767 kp->name, kp->usage, kp->help);
768 kmp = container_of(kp, struct kdb_macro, cmd);
769 list_for_each_entry(kms, &kmp->statements,
770 list_node)
771 kdb_printf("%s", kms->statement);
772 kdb_printf("endefcmd\n");
773 }
774 }
775 return 0;
776 }
777 if (argc != 3)
778 return KDB_ARGCOUNT;
779 if (in_dbg_master()) {
780 kdb_printf("Command only available during kdb_init()\n");
781 return KDB_NOTIMP;
782 }
783 kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
784 if (!kdb_macro)
785 goto fail_defcmd;
786
787 mp = &kdb_macro->cmd;
788 mp->func = kdb_exec_defcmd;
789 mp->minlen = 0;
790 mp->flags = KDB_ENABLE_ALWAYS_SAFE;
791 mp->name = kdb_strdup(argv[1], GFP_KDB);
792 if (!mp->name)
793 goto fail_name;
794 mp->usage = kdb_strdup(argv[2], GFP_KDB);
795 if (!mp->usage)
796 goto fail_usage;
797 mp->help = kdb_strdup(argv[3], GFP_KDB);
798 if (!mp->help)
799 goto fail_help;
800 if (mp->usage[0] == '"') {
801 strcpy(mp->usage, argv[2]+1);
802 mp->usage[strlen(mp->usage)-1] = '\0';
803 }
804 if (mp->help[0] == '"') {
805 strcpy(mp->help, argv[3]+1);
806 mp->help[strlen(mp->help)-1] = '\0';
807 }
808
809 INIT_LIST_HEAD(&kdb_macro->statements);
810 defcmd_in_progress = true;
811 return 0;
812fail_help:
813 kfree(mp->usage);
814fail_usage:
815 kfree(mp->name);
816fail_name:
817 kfree(kdb_macro);
818fail_defcmd:
819 kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
820 return KDB_NOTIMP;
821}
822
823/*
824 * kdb_exec_defcmd - Execute the set of commands associated with this
825 * defcmd name.
826 * Inputs:
827 * argc argument count
828 * argv argument vector
829 * Returns:
830 * zero for success, a kdb diagnostic if error
831 */
832static int kdb_exec_defcmd(int argc, const char **argv)
833{
834 int ret;
835 kdbtab_t *kp;
836 struct kdb_macro *kmp;
837 struct kdb_macro_statement *kms;
838
839 if (argc != 0)
840 return KDB_ARGCOUNT;
841
842 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
843 if (strcmp(kp->name, argv[0]) == 0)
844 break;
845 }
846 if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
847 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
848 argv[0]);
849 return KDB_NOTIMP;
850 }
851 kmp = container_of(kp, struct kdb_macro, cmd);
852 list_for_each_entry(kms, &kmp->statements, list_node) {
853 /*
854 * Recursive use of kdb_parse, do not use argv after this point.
855 */
856 argv = NULL;
857 kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
858 ret = kdb_parse(kms->statement);
859 if (ret)
860 return ret;
861 }
862 return 0;
863}
864
865/* Command history */
866#define KDB_CMD_HISTORY_COUNT 32
867#define CMD_BUFLEN 200 /* kdb_printf: max printline
868 * size == 256 */
869static unsigned int cmd_head, cmd_tail;
870static unsigned int cmdptr;
871static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
872static char cmd_cur[CMD_BUFLEN];
873
874/*
875 * The "str" argument may point to something like | grep xyz
876 */
877static void parse_grep(const char *str)
878{
879 int len;
880 char *cp = (char *)str, *cp2;
881
882 /* sanity check: we should have been called with the \ first */
883 if (*cp != '|')
884 return;
885 cp++;
886 while (isspace(*cp))
887 cp++;
888 if (!str_has_prefix(cp, "grep ")) {
889 kdb_printf("invalid 'pipe', see grephelp\n");
890 return;
891 }
892 cp += 5;
893 while (isspace(*cp))
894 cp++;
895 cp2 = strchr(cp, '\n');
896 if (cp2)
897 *cp2 = '\0'; /* remove the trailing newline */
898 len = strlen(cp);
899 if (len == 0) {
900 kdb_printf("invalid 'pipe', see grephelp\n");
901 return;
902 }
903 /* now cp points to a nonzero length search string */
904 if (*cp == '"') {
905 /* allow it be "x y z" by removing the "'s - there must
906 be two of them */
907 cp++;
908 cp2 = strchr(cp, '"');
909 if (!cp2) {
910 kdb_printf("invalid quoted string, see grephelp\n");
911 return;
912 }
913 *cp2 = '\0'; /* end the string where the 2nd " was */
914 }
915 kdb_grep_leading = 0;
916 if (*cp == '^') {
917 kdb_grep_leading = 1;
918 cp++;
919 }
920 len = strlen(cp);
921 kdb_grep_trailing = 0;
922 if (*(cp+len-1) == '$') {
923 kdb_grep_trailing = 1;
924 *(cp+len-1) = '\0';
925 }
926 len = strlen(cp);
927 if (!len)
928 return;
929 if (len >= KDB_GREP_STRLEN) {
930 kdb_printf("search string too long\n");
931 return;
932 }
933 strcpy(kdb_grep_string, cp);
934 kdb_grepping_flag++;
935 return;
936}
937
938/*
939 * kdb_parse - Parse the command line, search the command table for a
940 * matching command and invoke the command function. This
941 * function may be called recursively, if it is, the second call
942 * will overwrite argv and cbuf. It is the caller's
943 * responsibility to save their argv if they recursively call
944 * kdb_parse().
945 * Parameters:
946 * cmdstr The input command line to be parsed.
947 * regs The registers at the time kdb was entered.
948 * Returns:
949 * Zero for success, a kdb diagnostic if failure.
950 * Remarks:
951 * Limited to 20 tokens.
952 *
953 * Real rudimentary tokenization. Basically only whitespace
954 * is considered a token delimiter (but special consideration
955 * is taken of the '=' sign as used by the 'set' command).
956 *
957 * The algorithm used to tokenize the input string relies on
958 * there being at least one whitespace (or otherwise useless)
959 * character between tokens as the character immediately following
960 * the token is altered in-place to a null-byte to terminate the
961 * token string.
962 */
963
964#define MAXARGC 20
965
966int kdb_parse(const char *cmdstr)
967{
968 static char *argv[MAXARGC];
969 static int argc;
970 static char cbuf[CMD_BUFLEN+2];
971 char *cp;
972 char *cpp, quoted;
973 kdbtab_t *tp;
974 int escaped, ignore_errors = 0, check_grep = 0;
975
976 /*
977 * First tokenize the command string.
978 */
979 cp = (char *)cmdstr;
980
981 if (KDB_FLAG(CMD_INTERRUPT)) {
982 /* Previous command was interrupted, newline must not
983 * repeat the command */
984 KDB_FLAG_CLEAR(CMD_INTERRUPT);
985 KDB_STATE_SET(PAGER);
986 argc = 0; /* no repeat */
987 }
988
989 if (*cp != '\n' && *cp != '\0') {
990 argc = 0;
991 cpp = cbuf;
992 while (*cp) {
993 /* skip whitespace */
994 while (isspace(*cp))
995 cp++;
996 if ((*cp == '\0') || (*cp == '\n') ||
997 (*cp == '#' && !defcmd_in_progress))
998 break;
999 /* special case: check for | grep pattern */
1000 if (*cp == '|') {
1001 check_grep++;
1002 break;
1003 }
1004 if (cpp >= cbuf + CMD_BUFLEN) {
1005 kdb_printf("kdb_parse: command buffer "
1006 "overflow, command ignored\n%s\n",
1007 cmdstr);
1008 return KDB_NOTFOUND;
1009 }
1010 if (argc >= MAXARGC - 1) {
1011 kdb_printf("kdb_parse: too many arguments, "
1012 "command ignored\n%s\n", cmdstr);
1013 return KDB_NOTFOUND;
1014 }
1015 argv[argc++] = cpp;
1016 escaped = 0;
1017 quoted = '\0';
1018 /* Copy to next unquoted and unescaped
1019 * whitespace or '=' */
1020 while (*cp && *cp != '\n' &&
1021 (escaped || quoted || !isspace(*cp))) {
1022 if (cpp >= cbuf + CMD_BUFLEN)
1023 break;
1024 if (escaped) {
1025 escaped = 0;
1026 *cpp++ = *cp++;
1027 continue;
1028 }
1029 if (*cp == '\\') {
1030 escaped = 1;
1031 ++cp;
1032 continue;
1033 }
1034 if (*cp == quoted)
1035 quoted = '\0';
1036 else if (*cp == '\'' || *cp == '"')
1037 quoted = *cp;
1038 *cpp = *cp++;
1039 if (*cpp == '=' && !quoted)
1040 break;
1041 ++cpp;
1042 }
1043 *cpp++ = '\0'; /* Squash a ws or '=' character */
1044 }
1045 }
1046 if (!argc)
1047 return 0;
1048 if (check_grep)
1049 parse_grep(cp);
1050 if (defcmd_in_progress) {
1051 int result = kdb_defcmd2(cmdstr, argv[0]);
1052 if (!defcmd_in_progress) {
1053 argc = 0; /* avoid repeat on endefcmd */
1054 *(argv[0]) = '\0';
1055 }
1056 return result;
1057 }
1058 if (argv[0][0] == '-' && argv[0][1] &&
1059 (argv[0][1] < '0' || argv[0][1] > '9')) {
1060 ignore_errors = 1;
1061 ++argv[0];
1062 }
1063
1064 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1065 /*
1066 * If this command is allowed to be abbreviated,
1067 * check to see if this is it.
1068 */
1069 if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1070 (strncmp(argv[0], tp->name, tp->minlen) == 0))
1071 break;
1072
1073 if (strcmp(argv[0], tp->name) == 0)
1074 break;
1075 }
1076
1077 /*
1078 * If we don't find a command by this name, see if the first
1079 * few characters of this match any of the known commands.
1080 * e.g., md1c20 should match md.
1081 */
1082 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1083 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1084 if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
1085 break;
1086 }
1087 }
1088
1089 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1090 int result;
1091
1092 if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
1093 return KDB_NOPERM;
1094
1095 KDB_STATE_SET(CMD);
1096 result = (*tp->func)(argc-1, (const char **)argv);
1097 if (result && ignore_errors && result > KDB_CMD_GO)
1098 result = 0;
1099 KDB_STATE_CLEAR(CMD);
1100
1101 if (tp->flags & KDB_REPEAT_WITH_ARGS)
1102 return result;
1103
1104 argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1105 if (argv[argc])
1106 *(argv[argc]) = '\0';
1107 return result;
1108 }
1109
1110 /*
1111 * If the input with which we were presented does not
1112 * map to an existing command, attempt to parse it as an
1113 * address argument and display the result. Useful for
1114 * obtaining the address of a variable, or the nearest symbol
1115 * to an address contained in a register.
1116 */
1117 {
1118 unsigned long value;
1119 char *name = NULL;
1120 long offset;
1121 int nextarg = 0;
1122
1123 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1124 &value, &offset, &name)) {
1125 return KDB_NOTFOUND;
1126 }
1127
1128 kdb_printf("%s = ", argv[0]);
1129 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1130 kdb_printf("\n");
1131 return 0;
1132 }
1133}
1134
1135
1136static int handle_ctrl_cmd(char *cmd)
1137{
1138#define CTRL_P 16
1139#define CTRL_N 14
1140
1141 /* initial situation */
1142 if (cmd_head == cmd_tail)
1143 return 0;
1144 switch (*cmd) {
1145 case CTRL_P:
1146 if (cmdptr != cmd_tail)
1147 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1148 KDB_CMD_HISTORY_COUNT;
1149 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1150 return 1;
1151 case CTRL_N:
1152 if (cmdptr != cmd_head)
1153 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1154 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1155 return 1;
1156 }
1157 return 0;
1158}
1159
1160/*
1161 * kdb_reboot - This function implements the 'reboot' command. Reboot
1162 * the system immediately, or loop for ever on failure.
1163 */
1164static int kdb_reboot(int argc, const char **argv)
1165{
1166 emergency_restart();
1167 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1168 while (1)
1169 cpu_relax();
1170 /* NOTREACHED */
1171 return 0;
1172}
1173
1174static void kdb_dumpregs(struct pt_regs *regs)
1175{
1176 int old_lvl = console_loglevel;
1177 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1178 kdb_trap_printk++;
1179 show_regs(regs);
1180 kdb_trap_printk--;
1181 kdb_printf("\n");
1182 console_loglevel = old_lvl;
1183}
1184
1185static void kdb_set_current_task(struct task_struct *p)
1186{
1187 kdb_current_task = p;
1188
1189 if (kdb_task_has_cpu(p)) {
1190 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1191 return;
1192 }
1193 kdb_current_regs = NULL;
1194}
1195
1196static void drop_newline(char *buf)
1197{
1198 size_t len = strlen(buf);
1199
1200 if (len == 0)
1201 return;
1202 if (*(buf + len - 1) == '\n')
1203 *(buf + len - 1) = '\0';
1204}
1205
1206/*
1207 * kdb_local - The main code for kdb. This routine is invoked on a
1208 * specific processor, it is not global. The main kdb() routine
1209 * ensures that only one processor at a time is in this routine.
1210 * This code is called with the real reason code on the first
1211 * entry to a kdb session, thereafter it is called with reason
1212 * SWITCH, even if the user goes back to the original cpu.
1213 * Inputs:
1214 * reason The reason KDB was invoked
1215 * error The hardware-defined error code
1216 * regs The exception frame at time of fault/breakpoint.
1217 * db_result Result code from the break or debug point.
1218 * Returns:
1219 * 0 KDB was invoked for an event which it wasn't responsible
1220 * 1 KDB handled the event for which it was invoked.
1221 * KDB_CMD_GO User typed 'go'.
1222 * KDB_CMD_CPU User switched to another cpu.
1223 * KDB_CMD_SS Single step.
1224 */
1225static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1226 kdb_dbtrap_t db_result)
1227{
1228 char *cmdbuf;
1229 int diag;
1230 struct task_struct *kdb_current =
1231 kdb_curr_task(raw_smp_processor_id());
1232
1233 KDB_DEBUG_STATE("kdb_local 1", reason);
1234
1235 kdb_check_for_lockdown();
1236
1237 kdb_go_count = 0;
1238 if (reason == KDB_REASON_DEBUG) {
1239 /* special case below */
1240 } else {
1241 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1242 kdb_current, kdb_current ? kdb_current->pid : 0);
1243#if defined(CONFIG_SMP)
1244 kdb_printf("on processor %d ", raw_smp_processor_id());
1245#endif
1246 }
1247
1248 switch (reason) {
1249 case KDB_REASON_DEBUG:
1250 {
1251 /*
1252 * If re-entering kdb after a single step
1253 * command, don't print the message.
1254 */
1255 switch (db_result) {
1256 case KDB_DB_BPT:
1257 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1258 kdb_current, kdb_current->pid);
1259#if defined(CONFIG_SMP)
1260 kdb_printf("on processor %d ", raw_smp_processor_id());
1261#endif
1262 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1263 instruction_pointer(regs));
1264 break;
1265 case KDB_DB_SS:
1266 break;
1267 case KDB_DB_SSBPT:
1268 KDB_DEBUG_STATE("kdb_local 4", reason);
1269 return 1; /* kdba_db_trap did the work */
1270 default:
1271 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1272 db_result);
1273 break;
1274 }
1275
1276 }
1277 break;
1278 case KDB_REASON_ENTER:
1279 if (KDB_STATE(KEYBOARD))
1280 kdb_printf("due to Keyboard Entry\n");
1281 else
1282 kdb_printf("due to KDB_ENTER()\n");
1283 break;
1284 case KDB_REASON_KEYBOARD:
1285 KDB_STATE_SET(KEYBOARD);
1286 kdb_printf("due to Keyboard Entry\n");
1287 break;
1288 case KDB_REASON_ENTER_SLAVE:
1289 /* drop through, slaves only get released via cpu switch */
1290 case KDB_REASON_SWITCH:
1291 kdb_printf("due to cpu switch\n");
1292 break;
1293 case KDB_REASON_OOPS:
1294 kdb_printf("Oops: %s\n", kdb_diemsg);
1295 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1296 instruction_pointer(regs));
1297 kdb_dumpregs(regs);
1298 break;
1299 case KDB_REASON_SYSTEM_NMI:
1300 kdb_printf("due to System NonMaskable Interrupt\n");
1301 break;
1302 case KDB_REASON_NMI:
1303 kdb_printf("due to NonMaskable Interrupt @ "
1304 kdb_machreg_fmt "\n",
1305 instruction_pointer(regs));
1306 break;
1307 case KDB_REASON_SSTEP:
1308 case KDB_REASON_BREAK:
1309 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1310 reason == KDB_REASON_BREAK ?
1311 "Breakpoint" : "SS trap", instruction_pointer(regs));
1312 /*
1313 * Determine if this breakpoint is one that we
1314 * are interested in.
1315 */
1316 if (db_result != KDB_DB_BPT) {
1317 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1318 db_result);
1319 KDB_DEBUG_STATE("kdb_local 6", reason);
1320 return 0; /* Not for us, dismiss it */
1321 }
1322 break;
1323 case KDB_REASON_RECURSE:
1324 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1325 instruction_pointer(regs));
1326 break;
1327 default:
1328 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1329 KDB_DEBUG_STATE("kdb_local 8", reason);
1330 return 0; /* Not for us, dismiss it */
1331 }
1332
1333 while (1) {
1334 /*
1335 * Initialize pager context.
1336 */
1337 kdb_nextline = 1;
1338 KDB_STATE_CLEAR(SUPPRESS);
1339 kdb_grepping_flag = 0;
1340 /* ensure the old search does not leak into '/' commands */
1341 kdb_grep_string[0] = '\0';
1342
1343 cmdbuf = cmd_cur;
1344 *cmdbuf = '\0';
1345 *(cmd_hist[cmd_head]) = '\0';
1346
1347do_full_getstr:
1348 /* PROMPT can only be set if we have MEM_READ permission. */
1349 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1350 raw_smp_processor_id());
1351
1352 /*
1353 * Fetch command from keyboard
1354 */
1355 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1356 if (*cmdbuf != '\n') {
1357 if (*cmdbuf < 32) {
1358 if (cmdptr == cmd_head) {
1359 strscpy(cmd_hist[cmd_head], cmd_cur,
1360 CMD_BUFLEN);
1361 *(cmd_hist[cmd_head] +
1362 strlen(cmd_hist[cmd_head])-1) = '\0';
1363 }
1364 if (!handle_ctrl_cmd(cmdbuf))
1365 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1366 cmdbuf = cmd_cur;
1367 goto do_full_getstr;
1368 } else {
1369 strscpy(cmd_hist[cmd_head], cmd_cur,
1370 CMD_BUFLEN);
1371 }
1372
1373 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1374 if (cmd_head == cmd_tail)
1375 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1376 }
1377
1378 cmdptr = cmd_head;
1379 diag = kdb_parse(cmdbuf);
1380 if (diag == KDB_NOTFOUND) {
1381 drop_newline(cmdbuf);
1382 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1383 diag = 0;
1384 }
1385 if (diag == KDB_CMD_GO
1386 || diag == KDB_CMD_CPU
1387 || diag == KDB_CMD_SS
1388 || diag == KDB_CMD_KGDB)
1389 break;
1390
1391 if (diag)
1392 kdb_cmderror(diag);
1393 }
1394 KDB_DEBUG_STATE("kdb_local 9", diag);
1395 return diag;
1396}
1397
1398
1399/*
1400 * kdb_print_state - Print the state data for the current processor
1401 * for debugging.
1402 * Inputs:
1403 * text Identifies the debug point
1404 * value Any integer value to be printed, e.g. reason code.
1405 */
1406void kdb_print_state(const char *text, int value)
1407{
1408 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1409 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1410 kdb_state);
1411}
1412
1413/*
1414 * kdb_main_loop - After initial setup and assignment of the
1415 * controlling cpu, all cpus are in this loop. One cpu is in
1416 * control and will issue the kdb prompt, the others will spin
1417 * until 'go' or cpu switch.
1418 *
1419 * To get a consistent view of the kernel stacks for all
1420 * processes, this routine is invoked from the main kdb code via
1421 * an architecture specific routine. kdba_main_loop is
1422 * responsible for making the kernel stacks consistent for all
1423 * processes, there should be no difference between a blocked
1424 * process and a running process as far as kdb is concerned.
1425 * Inputs:
1426 * reason The reason KDB was invoked
1427 * error The hardware-defined error code
1428 * reason2 kdb's current reason code.
1429 * Initially error but can change
1430 * according to kdb state.
1431 * db_result Result code from break or debug point.
1432 * regs The exception frame at time of fault/breakpoint.
1433 * should always be valid.
1434 * Returns:
1435 * 0 KDB was invoked for an event which it wasn't responsible
1436 * 1 KDB handled the event for which it was invoked.
1437 */
1438int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1439 kdb_dbtrap_t db_result, struct pt_regs *regs)
1440{
1441 int result = 1;
1442 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1443 while (1) {
1444 /*
1445 * All processors except the one that is in control
1446 * will spin here.
1447 */
1448 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1449 while (KDB_STATE(HOLD_CPU)) {
1450 /* state KDB is turned off by kdb_cpu to see if the
1451 * other cpus are still live, each cpu in this loop
1452 * turns it back on.
1453 */
1454 if (!KDB_STATE(KDB))
1455 KDB_STATE_SET(KDB);
1456 }
1457
1458 KDB_STATE_CLEAR(SUPPRESS);
1459 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1460 if (KDB_STATE(LEAVING))
1461 break; /* Another cpu said 'go' */
1462 /* Still using kdb, this processor is in control */
1463 result = kdb_local(reason2, error, regs, db_result);
1464 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1465
1466 if (result == KDB_CMD_CPU)
1467 break;
1468
1469 if (result == KDB_CMD_SS) {
1470 KDB_STATE_SET(DOING_SS);
1471 break;
1472 }
1473
1474 if (result == KDB_CMD_KGDB) {
1475 if (!KDB_STATE(DOING_KGDB))
1476 kdb_printf("Entering please attach debugger "
1477 "or use $D#44+ or $3#33\n");
1478 break;
1479 }
1480 if (result && result != 1 && result != KDB_CMD_GO)
1481 kdb_printf("\nUnexpected kdb_local return code %d\n",
1482 result);
1483 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1484 break;
1485 }
1486 if (KDB_STATE(DOING_SS))
1487 KDB_STATE_CLEAR(SSBPT);
1488
1489 /* Clean up any keyboard devices before leaving */
1490 kdb_kbd_cleanup_state();
1491
1492 return result;
1493}
1494
1495/*
1496 * kdb_mdr - This function implements the guts of the 'mdr', memory
1497 * read command.
1498 * mdr <addr arg>,<byte count>
1499 * Inputs:
1500 * addr Start address
1501 * count Number of bytes
1502 * Returns:
1503 * Always 0. Any errors are detected and printed by kdb_getarea.
1504 */
1505static int kdb_mdr(unsigned long addr, unsigned int count)
1506{
1507 unsigned char c;
1508 while (count--) {
1509 if (kdb_getarea(c, addr))
1510 return 0;
1511 kdb_printf("%02x", c);
1512 addr++;
1513 }
1514 kdb_printf("\n");
1515 return 0;
1516}
1517
1518/*
1519 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1520 * 'md8' 'mdr' and 'mds' commands.
1521 *
1522 * md|mds [<addr arg> [<line count> [<radix>]]]
1523 * mdWcN [<addr arg> [<line count> [<radix>]]]
1524 * where W = is the width (1, 2, 4 or 8) and N is the count.
1525 * for eg., md1c20 reads 20 bytes, 1 at a time.
1526 * mdr <addr arg>,<byte count>
1527 */
1528static void kdb_md_line(const char *fmtstr, unsigned long addr,
1529 int symbolic, int nosect, int bytesperword,
1530 int num, int repeat, int phys)
1531{
1532 /* print just one line of data */
1533 kdb_symtab_t symtab;
1534 char cbuf[32];
1535 char *c = cbuf;
1536 int i;
1537 int j;
1538 unsigned long word;
1539
1540 memset(cbuf, '\0', sizeof(cbuf));
1541 if (phys)
1542 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1543 else
1544 kdb_printf(kdb_machreg_fmt0 " ", addr);
1545
1546 for (i = 0; i < num && repeat--; i++) {
1547 if (phys) {
1548 if (kdb_getphysword(&word, addr, bytesperword))
1549 break;
1550 } else if (kdb_getword(&word, addr, bytesperword))
1551 break;
1552 kdb_printf(fmtstr, word);
1553 if (symbolic)
1554 kdbnearsym(word, &symtab);
1555 else
1556 memset(&symtab, 0, sizeof(symtab));
1557 if (symtab.sym_name) {
1558 kdb_symbol_print(word, &symtab, 0);
1559 if (!nosect) {
1560 kdb_printf("\n");
1561 kdb_printf(" %s %s "
1562 kdb_machreg_fmt " "
1563 kdb_machreg_fmt " "
1564 kdb_machreg_fmt, symtab.mod_name,
1565 symtab.sec_name, symtab.sec_start,
1566 symtab.sym_start, symtab.sym_end);
1567 }
1568 addr += bytesperword;
1569 } else {
1570 union {
1571 u64 word;
1572 unsigned char c[8];
1573 } wc;
1574 unsigned char *cp;
1575#ifdef __BIG_ENDIAN
1576 cp = wc.c + 8 - bytesperword;
1577#else
1578 cp = wc.c;
1579#endif
1580 wc.word = word;
1581#define printable_char(c) \
1582 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1583 for (j = 0; j < bytesperword; j++)
1584 *c++ = printable_char(*cp++);
1585 addr += bytesperword;
1586#undef printable_char
1587 }
1588 }
1589 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1590 " ", cbuf);
1591}
1592
1593static int kdb_md(int argc, const char **argv)
1594{
1595 static unsigned long last_addr;
1596 static int last_radix, last_bytesperword, last_repeat;
1597 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1598 int nosect = 0;
1599 char fmtchar, fmtstr[64];
1600 unsigned long addr;
1601 unsigned long word;
1602 long offset = 0;
1603 int symbolic = 0;
1604 int valid = 0;
1605 int phys = 0;
1606 int raw = 0;
1607
1608 kdbgetintenv("MDCOUNT", &mdcount);
1609 kdbgetintenv("RADIX", &radix);
1610 kdbgetintenv("BYTESPERWORD", &bytesperword);
1611
1612 /* Assume 'md <addr>' and start with environment values */
1613 repeat = mdcount * 16 / bytesperword;
1614
1615 if (strcmp(argv[0], "mdr") == 0) {
1616 if (argc == 2 || (argc == 0 && last_addr != 0))
1617 valid = raw = 1;
1618 else
1619 return KDB_ARGCOUNT;
1620 } else if (isdigit(argv[0][2])) {
1621 bytesperword = (int)(argv[0][2] - '0');
1622 if (bytesperword == 0) {
1623 bytesperword = last_bytesperword;
1624 if (bytesperword == 0)
1625 bytesperword = 4;
1626 }
1627 last_bytesperword = bytesperword;
1628 repeat = mdcount * 16 / bytesperword;
1629 if (!argv[0][3])
1630 valid = 1;
1631 else if (argv[0][3] == 'c' && argv[0][4]) {
1632 char *p;
1633 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1634 mdcount = ((repeat * bytesperword) + 15) / 16;
1635 valid = !*p;
1636 }
1637 last_repeat = repeat;
1638 } else if (strcmp(argv[0], "md") == 0)
1639 valid = 1;
1640 else if (strcmp(argv[0], "mds") == 0)
1641 valid = 1;
1642 else if (strcmp(argv[0], "mdp") == 0) {
1643 phys = valid = 1;
1644 }
1645 if (!valid)
1646 return KDB_NOTFOUND;
1647
1648 if (argc == 0) {
1649 if (last_addr == 0)
1650 return KDB_ARGCOUNT;
1651 addr = last_addr;
1652 radix = last_radix;
1653 bytesperword = last_bytesperword;
1654 repeat = last_repeat;
1655 if (raw)
1656 mdcount = repeat;
1657 else
1658 mdcount = ((repeat * bytesperword) + 15) / 16;
1659 }
1660
1661 if (argc) {
1662 unsigned long val;
1663 int diag, nextarg = 1;
1664 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1665 &offset, NULL);
1666 if (diag)
1667 return diag;
1668 if (argc > nextarg+2)
1669 return KDB_ARGCOUNT;
1670
1671 if (argc >= nextarg) {
1672 diag = kdbgetularg(argv[nextarg], &val);
1673 if (!diag) {
1674 mdcount = (int) val;
1675 if (raw)
1676 repeat = mdcount;
1677 else
1678 repeat = mdcount * 16 / bytesperword;
1679 }
1680 }
1681 if (argc >= nextarg+1) {
1682 diag = kdbgetularg(argv[nextarg+1], &val);
1683 if (!diag)
1684 radix = (int) val;
1685 }
1686 }
1687
1688 if (strcmp(argv[0], "mdr") == 0) {
1689 int ret;
1690 last_addr = addr;
1691 ret = kdb_mdr(addr, mdcount);
1692 last_addr += mdcount;
1693 last_repeat = mdcount;
1694 last_bytesperword = bytesperword; // to make REPEAT happy
1695 return ret;
1696 }
1697
1698 switch (radix) {
1699 case 10:
1700 fmtchar = 'd';
1701 break;
1702 case 16:
1703 fmtchar = 'x';
1704 break;
1705 case 8:
1706 fmtchar = 'o';
1707 break;
1708 default:
1709 return KDB_BADRADIX;
1710 }
1711
1712 last_radix = radix;
1713
1714 if (bytesperword > KDB_WORD_SIZE)
1715 return KDB_BADWIDTH;
1716
1717 switch (bytesperword) {
1718 case 8:
1719 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1720 break;
1721 case 4:
1722 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1723 break;
1724 case 2:
1725 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1726 break;
1727 case 1:
1728 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1729 break;
1730 default:
1731 return KDB_BADWIDTH;
1732 }
1733
1734 last_repeat = repeat;
1735 last_bytesperword = bytesperword;
1736
1737 if (strcmp(argv[0], "mds") == 0) {
1738 symbolic = 1;
1739 /* Do not save these changes as last_*, they are temporary mds
1740 * overrides.
1741 */
1742 bytesperword = KDB_WORD_SIZE;
1743 repeat = mdcount;
1744 kdbgetintenv("NOSECT", &nosect);
1745 }
1746
1747 /* Round address down modulo BYTESPERWORD */
1748
1749 addr &= ~(bytesperword-1);
1750
1751 while (repeat > 0) {
1752 unsigned long a;
1753 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1754
1755 if (KDB_FLAG(CMD_INTERRUPT))
1756 return 0;
1757 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1758 if (phys) {
1759 if (kdb_getphysword(&word, a, bytesperword)
1760 || word)
1761 break;
1762 } else if (kdb_getword(&word, a, bytesperword) || word)
1763 break;
1764 }
1765 n = min(num, repeat);
1766 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1767 num, repeat, phys);
1768 addr += bytesperword * n;
1769 repeat -= n;
1770 z = (z + num - 1) / num;
1771 if (z > 2) {
1772 int s = num * (z-2);
1773 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1774 " zero suppressed\n",
1775 addr, addr + bytesperword * s - 1);
1776 addr += bytesperword * s;
1777 repeat -= s;
1778 }
1779 }
1780 last_addr = addr;
1781
1782 return 0;
1783}
1784
1785/*
1786 * kdb_mm - This function implements the 'mm' command.
1787 * mm address-expression new-value
1788 * Remarks:
1789 * mm works on machine words, mmW works on bytes.
1790 */
1791static int kdb_mm(int argc, const char **argv)
1792{
1793 int diag;
1794 unsigned long addr;
1795 long offset = 0;
1796 unsigned long contents;
1797 int nextarg;
1798 int width;
1799
1800 if (argv[0][2] && !isdigit(argv[0][2]))
1801 return KDB_NOTFOUND;
1802
1803 if (argc < 2)
1804 return KDB_ARGCOUNT;
1805
1806 nextarg = 1;
1807 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1808 if (diag)
1809 return diag;
1810
1811 if (nextarg > argc)
1812 return KDB_ARGCOUNT;
1813 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1814 if (diag)
1815 return diag;
1816
1817 if (nextarg != argc + 1)
1818 return KDB_ARGCOUNT;
1819
1820 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1821 diag = kdb_putword(addr, contents, width);
1822 if (diag)
1823 return diag;
1824
1825 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1826
1827 return 0;
1828}
1829
1830/*
1831 * kdb_go - This function implements the 'go' command.
1832 * go [address-expression]
1833 */
1834static int kdb_go(int argc, const char **argv)
1835{
1836 unsigned long addr;
1837 int diag;
1838 int nextarg;
1839 long offset;
1840
1841 if (raw_smp_processor_id() != kdb_initial_cpu) {
1842 kdb_printf("go must execute on the entry cpu, "
1843 "please use \"cpu %d\" and then execute go\n",
1844 kdb_initial_cpu);
1845 return KDB_BADCPUNUM;
1846 }
1847 if (argc == 1) {
1848 nextarg = 1;
1849 diag = kdbgetaddrarg(argc, argv, &nextarg,
1850 &addr, &offset, NULL);
1851 if (diag)
1852 return diag;
1853 } else if (argc) {
1854 return KDB_ARGCOUNT;
1855 }
1856
1857 diag = KDB_CMD_GO;
1858 if (KDB_FLAG(CATASTROPHIC)) {
1859 kdb_printf("Catastrophic error detected\n");
1860 kdb_printf("kdb_continue_catastrophic=%d, ",
1861 kdb_continue_catastrophic);
1862 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1863 kdb_printf("type go a second time if you really want "
1864 "to continue\n");
1865 return 0;
1866 }
1867 if (kdb_continue_catastrophic == 2) {
1868 kdb_printf("forcing reboot\n");
1869 kdb_reboot(0, NULL);
1870 }
1871 kdb_printf("attempting to continue\n");
1872 }
1873 return diag;
1874}
1875
1876/*
1877 * kdb_rd - This function implements the 'rd' command.
1878 */
1879static int kdb_rd(int argc, const char **argv)
1880{
1881 int len = kdb_check_regs();
1882#if DBG_MAX_REG_NUM > 0
1883 int i;
1884 char *rname;
1885 int rsize;
1886 u64 reg64;
1887 u32 reg32;
1888 u16 reg16;
1889 u8 reg8;
1890
1891 if (len)
1892 return len;
1893
1894 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1895 rsize = dbg_reg_def[i].size * 2;
1896 if (rsize > 16)
1897 rsize = 2;
1898 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1899 len = 0;
1900 kdb_printf("\n");
1901 }
1902 if (len)
1903 len += kdb_printf(" ");
1904 switch(dbg_reg_def[i].size * 8) {
1905 case 8:
1906 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1907 if (!rname)
1908 break;
1909 len += kdb_printf("%s: %02x", rname, reg8);
1910 break;
1911 case 16:
1912 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1913 if (!rname)
1914 break;
1915 len += kdb_printf("%s: %04x", rname, reg16);
1916 break;
1917 case 32:
1918 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1919 if (!rname)
1920 break;
1921 len += kdb_printf("%s: %08x", rname, reg32);
1922 break;
1923 case 64:
1924 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1925 if (!rname)
1926 break;
1927 len += kdb_printf("%s: %016llx", rname, reg64);
1928 break;
1929 default:
1930 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1931 }
1932 }
1933 kdb_printf("\n");
1934#else
1935 if (len)
1936 return len;
1937
1938 kdb_dumpregs(kdb_current_regs);
1939#endif
1940 return 0;
1941}
1942
1943/*
1944 * kdb_rm - This function implements the 'rm' (register modify) command.
1945 * rm register-name new-contents
1946 * Remarks:
1947 * Allows register modification with the same restrictions as gdb
1948 */
1949static int kdb_rm(int argc, const char **argv)
1950{
1951#if DBG_MAX_REG_NUM > 0
1952 int diag;
1953 const char *rname;
1954 int i;
1955 u64 reg64;
1956 u32 reg32;
1957 u16 reg16;
1958 u8 reg8;
1959
1960 if (argc != 2)
1961 return KDB_ARGCOUNT;
1962 /*
1963 * Allow presence or absence of leading '%' symbol.
1964 */
1965 rname = argv[1];
1966 if (*rname == '%')
1967 rname++;
1968
1969 diag = kdbgetu64arg(argv[2], ®64);
1970 if (diag)
1971 return diag;
1972
1973 diag = kdb_check_regs();
1974 if (diag)
1975 return diag;
1976
1977 diag = KDB_BADREG;
1978 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1979 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1980 diag = 0;
1981 break;
1982 }
1983 }
1984 if (!diag) {
1985 switch(dbg_reg_def[i].size * 8) {
1986 case 8:
1987 reg8 = reg64;
1988 dbg_set_reg(i, ®8, kdb_current_regs);
1989 break;
1990 case 16:
1991 reg16 = reg64;
1992 dbg_set_reg(i, ®16, kdb_current_regs);
1993 break;
1994 case 32:
1995 reg32 = reg64;
1996 dbg_set_reg(i, ®32, kdb_current_regs);
1997 break;
1998 case 64:
1999 dbg_set_reg(i, ®64, kdb_current_regs);
2000 break;
2001 }
2002 }
2003 return diag;
2004#else
2005 kdb_printf("ERROR: Register set currently not implemented\n");
2006 return 0;
2007#endif
2008}
2009
2010#if defined(CONFIG_MAGIC_SYSRQ)
2011/*
2012 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
2013 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
2014 * sr <magic-sysrq-code>
2015 */
2016static int kdb_sr(int argc, const char **argv)
2017{
2018 bool check_mask =
2019 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
2020
2021 if (argc != 1)
2022 return KDB_ARGCOUNT;
2023
2024 kdb_trap_printk++;
2025 __handle_sysrq(*argv[1], check_mask);
2026 kdb_trap_printk--;
2027
2028 return 0;
2029}
2030#endif /* CONFIG_MAGIC_SYSRQ */
2031
2032/*
2033 * kdb_ef - This function implements the 'regs' (display exception
2034 * frame) command. This command takes an address and expects to
2035 * find an exception frame at that address, formats and prints
2036 * it.
2037 * regs address-expression
2038 * Remarks:
2039 * Not done yet.
2040 */
2041static int kdb_ef(int argc, const char **argv)
2042{
2043 int diag;
2044 unsigned long addr;
2045 long offset;
2046 int nextarg;
2047
2048 if (argc != 1)
2049 return KDB_ARGCOUNT;
2050
2051 nextarg = 1;
2052 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2053 if (diag)
2054 return diag;
2055 show_regs((struct pt_regs *)addr);
2056 return 0;
2057}
2058
2059/*
2060 * kdb_env - This function implements the 'env' command. Display the
2061 * current environment variables.
2062 */
2063
2064static int kdb_env(int argc, const char **argv)
2065{
2066 kdb_printenv();
2067
2068 if (KDB_DEBUG(MASK))
2069 kdb_printf("KDBDEBUG=0x%x\n",
2070 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2071
2072 return 0;
2073}
2074
2075#ifdef CONFIG_PRINTK
2076/*
2077 * kdb_dmesg - This function implements the 'dmesg' command to display
2078 * the contents of the syslog buffer.
2079 * dmesg [lines] [adjust]
2080 */
2081static int kdb_dmesg(int argc, const char **argv)
2082{
2083 int diag;
2084 int logging;
2085 int lines = 0;
2086 int adjust = 0;
2087 int n = 0;
2088 int skip = 0;
2089 struct kmsg_dump_iter iter;
2090 size_t len;
2091 char buf[201];
2092
2093 if (argc > 2)
2094 return KDB_ARGCOUNT;
2095 if (argc) {
2096 char *cp;
2097 lines = simple_strtol(argv[1], &cp, 0);
2098 if (*cp)
2099 lines = 0;
2100 if (argc > 1) {
2101 adjust = simple_strtoul(argv[2], &cp, 0);
2102 if (*cp || adjust < 0)
2103 adjust = 0;
2104 }
2105 }
2106
2107 /* disable LOGGING if set */
2108 diag = kdbgetintenv("LOGGING", &logging);
2109 if (!diag && logging) {
2110 const char *setargs[] = { "set", "LOGGING", "0" };
2111 kdb_set(2, setargs);
2112 }
2113
2114 kmsg_dump_rewind(&iter);
2115 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2116 n++;
2117
2118 if (lines < 0) {
2119 if (adjust >= n)
2120 kdb_printf("buffer only contains %d lines, nothing "
2121 "printed\n", n);
2122 else if (adjust - lines >= n)
2123 kdb_printf("buffer only contains %d lines, last %d "
2124 "lines printed\n", n, n - adjust);
2125 skip = adjust;
2126 lines = abs(lines);
2127 } else if (lines > 0) {
2128 skip = n - lines - adjust;
2129 lines = abs(lines);
2130 if (adjust >= n) {
2131 kdb_printf("buffer only contains %d lines, "
2132 "nothing printed\n", n);
2133 skip = n;
2134 } else if (skip < 0) {
2135 lines += skip;
2136 skip = 0;
2137 kdb_printf("buffer only contains %d lines, first "
2138 "%d lines printed\n", n, lines);
2139 }
2140 } else {
2141 lines = n;
2142 }
2143
2144 if (skip >= n || skip < 0)
2145 return 0;
2146
2147 kmsg_dump_rewind(&iter);
2148 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2149 if (skip) {
2150 skip--;
2151 continue;
2152 }
2153 if (!lines--)
2154 break;
2155 if (KDB_FLAG(CMD_INTERRUPT))
2156 return 0;
2157
2158 kdb_printf("%.*s\n", (int)len - 1, buf);
2159 }
2160
2161 return 0;
2162}
2163#endif /* CONFIG_PRINTK */
2164
2165/* Make sure we balance enable/disable calls, must disable first. */
2166static atomic_t kdb_nmi_disabled;
2167
2168static int kdb_disable_nmi(int argc, const char *argv[])
2169{
2170 if (atomic_read(&kdb_nmi_disabled))
2171 return 0;
2172 atomic_set(&kdb_nmi_disabled, 1);
2173 arch_kgdb_ops.enable_nmi(0);
2174 return 0;
2175}
2176
2177static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2178{
2179 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2180 return -EINVAL;
2181 arch_kgdb_ops.enable_nmi(1);
2182 return 0;
2183}
2184
2185static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2186 .set = kdb_param_enable_nmi,
2187};
2188module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2189
2190/*
2191 * kdb_cpu - This function implements the 'cpu' command.
2192 * cpu [<cpunum>]
2193 * Returns:
2194 * KDB_CMD_CPU for success, a kdb diagnostic if error
2195 */
2196static void kdb_cpu_status(void)
2197{
2198 int i, start_cpu, first_print = 1;
2199 char state, prev_state = '?';
2200
2201 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2202 kdb_printf("Available cpus: ");
2203 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2204 if (!cpu_online(i)) {
2205 state = 'F'; /* cpu is offline */
2206 } else if (!kgdb_info[i].enter_kgdb) {
2207 state = 'D'; /* cpu is online but unresponsive */
2208 } else {
2209 state = ' '; /* cpu is responding to kdb */
2210 if (kdb_task_state_char(KDB_TSK(i)) == '-')
2211 state = '-'; /* idle task */
2212 }
2213 if (state != prev_state) {
2214 if (prev_state != '?') {
2215 if (!first_print)
2216 kdb_printf(", ");
2217 first_print = 0;
2218 kdb_printf("%d", start_cpu);
2219 if (start_cpu < i-1)
2220 kdb_printf("-%d", i-1);
2221 if (prev_state != ' ')
2222 kdb_printf("(%c)", prev_state);
2223 }
2224 prev_state = state;
2225 start_cpu = i;
2226 }
2227 }
2228 /* print the trailing cpus, ignoring them if they are all offline */
2229 if (prev_state != 'F') {
2230 if (!first_print)
2231 kdb_printf(", ");
2232 kdb_printf("%d", start_cpu);
2233 if (start_cpu < i-1)
2234 kdb_printf("-%d", i-1);
2235 if (prev_state != ' ')
2236 kdb_printf("(%c)", prev_state);
2237 }
2238 kdb_printf("\n");
2239}
2240
2241static int kdb_cpu(int argc, const char **argv)
2242{
2243 unsigned long cpunum;
2244 int diag;
2245
2246 if (argc == 0) {
2247 kdb_cpu_status();
2248 return 0;
2249 }
2250
2251 if (argc != 1)
2252 return KDB_ARGCOUNT;
2253
2254 diag = kdbgetularg(argv[1], &cpunum);
2255 if (diag)
2256 return diag;
2257
2258 /*
2259 * Validate cpunum
2260 */
2261 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2262 return KDB_BADCPUNUM;
2263
2264 dbg_switch_cpu = cpunum;
2265
2266 /*
2267 * Switch to other cpu
2268 */
2269 return KDB_CMD_CPU;
2270}
2271
2272/* The user may not realize that ps/bta with no parameters does not print idle
2273 * or sleeping system daemon processes, so tell them how many were suppressed.
2274 */
2275void kdb_ps_suppressed(void)
2276{
2277 int idle = 0, daemon = 0;
2278 unsigned long cpu;
2279 const struct task_struct *p, *g;
2280 for_each_online_cpu(cpu) {
2281 p = kdb_curr_task(cpu);
2282 if (kdb_task_state(p, "-"))
2283 ++idle;
2284 }
2285 for_each_process_thread(g, p) {
2286 if (kdb_task_state(p, "ims"))
2287 ++daemon;
2288 }
2289 if (idle || daemon) {
2290 if (idle)
2291 kdb_printf("%d idle process%s (state -)%s\n",
2292 idle, idle == 1 ? "" : "es",
2293 daemon ? " and " : "");
2294 if (daemon)
2295 kdb_printf("%d sleeping system daemon (state [ims]) "
2296 "process%s", daemon,
2297 daemon == 1 ? "" : "es");
2298 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2299 }
2300}
2301
2302void kdb_ps1(const struct task_struct *p)
2303{
2304 int cpu;
2305 unsigned long tmp;
2306
2307 if (!p ||
2308 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2309 return;
2310
2311 cpu = kdb_process_cpu(p);
2312 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2313 (void *)p, p->pid, p->parent->pid,
2314 kdb_task_has_cpu(p), kdb_process_cpu(p),
2315 kdb_task_state_char(p),
2316 (void *)(&p->thread),
2317 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2318 p->comm);
2319 if (kdb_task_has_cpu(p)) {
2320 if (!KDB_TSK(cpu)) {
2321 kdb_printf(" Error: no saved data for this cpu\n");
2322 } else {
2323 if (KDB_TSK(cpu) != p)
2324 kdb_printf(" Error: does not match running "
2325 "process table (0x%px)\n", KDB_TSK(cpu));
2326 }
2327 }
2328}
2329
2330/*
2331 * kdb_ps - This function implements the 'ps' command which shows a
2332 * list of the active processes.
2333 *
2334 * ps [<state_chars>] Show processes, optionally selecting only those whose
2335 * state character is found in <state_chars>.
2336 */
2337static int kdb_ps(int argc, const char **argv)
2338{
2339 struct task_struct *g, *p;
2340 const char *mask;
2341 unsigned long cpu;
2342
2343 if (argc == 0)
2344 kdb_ps_suppressed();
2345 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2346 (int)(2*sizeof(void *))+2, "Task Addr",
2347 (int)(2*sizeof(void *))+2, "Thread");
2348 mask = argc ? argv[1] : kdbgetenv("PS");
2349 /* Run the active tasks first */
2350 for_each_online_cpu(cpu) {
2351 if (KDB_FLAG(CMD_INTERRUPT))
2352 return 0;
2353 p = kdb_curr_task(cpu);
2354 if (kdb_task_state(p, mask))
2355 kdb_ps1(p);
2356 }
2357 kdb_printf("\n");
2358 /* Now the real tasks */
2359 for_each_process_thread(g, p) {
2360 if (KDB_FLAG(CMD_INTERRUPT))
2361 return 0;
2362 if (kdb_task_state(p, mask))
2363 kdb_ps1(p);
2364 }
2365
2366 return 0;
2367}
2368
2369/*
2370 * kdb_pid - This function implements the 'pid' command which switches
2371 * the currently active process.
2372 * pid [<pid> | R]
2373 */
2374static int kdb_pid(int argc, const char **argv)
2375{
2376 struct task_struct *p;
2377 unsigned long val;
2378 int diag;
2379
2380 if (argc > 1)
2381 return KDB_ARGCOUNT;
2382
2383 if (argc) {
2384 if (strcmp(argv[1], "R") == 0) {
2385 p = KDB_TSK(kdb_initial_cpu);
2386 } else {
2387 diag = kdbgetularg(argv[1], &val);
2388 if (diag)
2389 return KDB_BADINT;
2390
2391 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2392 if (!p) {
2393 kdb_printf("No task with pid=%d\n", (pid_t)val);
2394 return 0;
2395 }
2396 }
2397 kdb_set_current_task(p);
2398 }
2399 kdb_printf("KDB current process is %s(pid=%d)\n",
2400 kdb_current_task->comm,
2401 kdb_current_task->pid);
2402
2403 return 0;
2404}
2405
2406static int kdb_kgdb(int argc, const char **argv)
2407{
2408 return KDB_CMD_KGDB;
2409}
2410
2411/*
2412 * kdb_help - This function implements the 'help' and '?' commands.
2413 */
2414static int kdb_help(int argc, const char **argv)
2415{
2416 kdbtab_t *kt;
2417
2418 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2419 kdb_printf("-----------------------------"
2420 "-----------------------------\n");
2421 list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2422 char *space = "";
2423 if (KDB_FLAG(CMD_INTERRUPT))
2424 return 0;
2425 if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
2426 continue;
2427 if (strlen(kt->usage) > 20)
2428 space = "\n ";
2429 kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2430 kt->usage, space, kt->help);
2431 }
2432 return 0;
2433}
2434
2435/*
2436 * kdb_kill - This function implements the 'kill' commands.
2437 */
2438static int kdb_kill(int argc, const char **argv)
2439{
2440 long sig, pid;
2441 char *endp;
2442 struct task_struct *p;
2443
2444 if (argc != 2)
2445 return KDB_ARGCOUNT;
2446
2447 sig = simple_strtol(argv[1], &endp, 0);
2448 if (*endp)
2449 return KDB_BADINT;
2450 if ((sig >= 0) || !valid_signal(-sig)) {
2451 kdb_printf("Invalid signal parameter.<-signal>\n");
2452 return 0;
2453 }
2454 sig = -sig;
2455
2456 pid = simple_strtol(argv[2], &endp, 0);
2457 if (*endp)
2458 return KDB_BADINT;
2459 if (pid <= 0) {
2460 kdb_printf("Process ID must be large than 0.\n");
2461 return 0;
2462 }
2463
2464 /* Find the process. */
2465 p = find_task_by_pid_ns(pid, &init_pid_ns);
2466 if (!p) {
2467 kdb_printf("The specified process isn't found.\n");
2468 return 0;
2469 }
2470 p = p->group_leader;
2471 kdb_send_sig(p, sig);
2472 return 0;
2473}
2474
2475/*
2476 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2477 * I cannot call that code directly from kdb, it has an unconditional
2478 * cli()/sti() and calls routines that take locks which can stop the debugger.
2479 */
2480static void kdb_sysinfo(struct sysinfo *val)
2481{
2482 u64 uptime = ktime_get_mono_fast_ns();
2483
2484 memset(val, 0, sizeof(*val));
2485 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2486 val->loads[0] = avenrun[0];
2487 val->loads[1] = avenrun[1];
2488 val->loads[2] = avenrun[2];
2489 val->procs = nr_threads-1;
2490 si_meminfo(val);
2491
2492 return;
2493}
2494
2495/*
2496 * kdb_summary - This function implements the 'summary' command.
2497 */
2498static int kdb_summary(int argc, const char **argv)
2499{
2500 time64_t now;
2501 struct sysinfo val;
2502
2503 if (argc)
2504 return KDB_ARGCOUNT;
2505
2506 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2507 kdb_printf("release %s\n", init_uts_ns.name.release);
2508 kdb_printf("version %s\n", init_uts_ns.name.version);
2509 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2510 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2511 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2512
2513 now = __ktime_get_real_seconds();
2514 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2515 kdb_sysinfo(&val);
2516 kdb_printf("uptime ");
2517 if (val.uptime > (24*60*60)) {
2518 int days = val.uptime / (24*60*60);
2519 val.uptime %= (24*60*60);
2520 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2521 }
2522 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2523
2524 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2525 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2526 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2527 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2528
2529 /* Display in kilobytes */
2530#define K(x) ((x) << (PAGE_SHIFT - 10))
2531 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2532 "Buffers: %8lu kB\n",
2533 K(val.totalram), K(val.freeram), K(val.bufferram));
2534 return 0;
2535}
2536
2537/*
2538 * kdb_per_cpu - This function implements the 'per_cpu' command.
2539 */
2540static int kdb_per_cpu(int argc, const char **argv)
2541{
2542 char fmtstr[64];
2543 int cpu, diag, nextarg = 1;
2544 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2545
2546 if (argc < 1 || argc > 3)
2547 return KDB_ARGCOUNT;
2548
2549 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2550 if (diag)
2551 return diag;
2552
2553 if (argc >= 2) {
2554 diag = kdbgetularg(argv[2], &bytesperword);
2555 if (diag)
2556 return diag;
2557 }
2558 if (!bytesperword)
2559 bytesperword = KDB_WORD_SIZE;
2560 else if (bytesperword > KDB_WORD_SIZE)
2561 return KDB_BADWIDTH;
2562 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2563 if (argc >= 3) {
2564 diag = kdbgetularg(argv[3], &whichcpu);
2565 if (diag)
2566 return diag;
2567 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2568 kdb_printf("cpu %ld is not online\n", whichcpu);
2569 return KDB_BADCPUNUM;
2570 }
2571 }
2572
2573 /* Most architectures use __per_cpu_offset[cpu], some use
2574 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2575 */
2576#ifdef __per_cpu_offset
2577#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2578#else
2579#ifdef CONFIG_SMP
2580#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2581#else
2582#define KDB_PCU(cpu) 0
2583#endif
2584#endif
2585 for_each_online_cpu(cpu) {
2586 if (KDB_FLAG(CMD_INTERRUPT))
2587 return 0;
2588
2589 if (whichcpu != ~0UL && whichcpu != cpu)
2590 continue;
2591 addr = symaddr + KDB_PCU(cpu);
2592 diag = kdb_getword(&val, addr, bytesperword);
2593 if (diag) {
2594 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2595 "read, diag=%d\n", cpu, addr, diag);
2596 continue;
2597 }
2598 kdb_printf("%5d ", cpu);
2599 kdb_md_line(fmtstr, addr,
2600 bytesperword == KDB_WORD_SIZE,
2601 1, bytesperword, 1, 1, 0);
2602 }
2603#undef KDB_PCU
2604 return 0;
2605}
2606
2607/*
2608 * display help for the use of cmd | grep pattern
2609 */
2610static int kdb_grep_help(int argc, const char **argv)
2611{
2612 kdb_printf("Usage of cmd args | grep pattern:\n");
2613 kdb_printf(" Any command's output may be filtered through an ");
2614 kdb_printf("emulated 'pipe'.\n");
2615 kdb_printf(" 'grep' is just a key word.\n");
2616 kdb_printf(" The pattern may include a very limited set of "
2617 "metacharacters:\n");
2618 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2619 kdb_printf(" And if there are spaces in the pattern, you may "
2620 "quote it:\n");
2621 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2622 " or \"^pat tern$\"\n");
2623 return 0;
2624}
2625
2626/**
2627 * kdb_register() - This function is used to register a kernel debugger
2628 * command.
2629 * @cmd: pointer to kdb command
2630 *
2631 * Note that it's the job of the caller to keep the memory for the cmd
2632 * allocated until unregister is called.
2633 */
2634int kdb_register(kdbtab_t *cmd)
2635{
2636 kdbtab_t *kp;
2637
2638 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2639 if (strcmp(kp->name, cmd->name) == 0) {
2640 kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
2641 cmd->name, cmd->func, cmd->help);
2642 return 1;
2643 }
2644 }
2645
2646 list_add_tail(&cmd->list_node, &kdb_cmds_head);
2647 return 0;
2648}
2649EXPORT_SYMBOL_GPL(kdb_register);
2650
2651/**
2652 * kdb_register_table() - This function is used to register a kdb command
2653 * table.
2654 * @kp: pointer to kdb command table
2655 * @len: length of kdb command table
2656 */
2657void kdb_register_table(kdbtab_t *kp, size_t len)
2658{
2659 while (len--) {
2660 list_add_tail(&kp->list_node, &kdb_cmds_head);
2661 kp++;
2662 }
2663}
2664
2665/**
2666 * kdb_unregister() - This function is used to unregister a kernel debugger
2667 * command. It is generally called when a module which
2668 * implements kdb command is unloaded.
2669 * @cmd: pointer to kdb command
2670 */
2671void kdb_unregister(kdbtab_t *cmd)
2672{
2673 list_del(&cmd->list_node);
2674}
2675EXPORT_SYMBOL_GPL(kdb_unregister);
2676
2677static kdbtab_t maintab[] = {
2678 { .name = "md",
2679 .func = kdb_md,
2680 .usage = "<vaddr>",
2681 .help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2682 .minlen = 1,
2683 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2684 },
2685 { .name = "mdr",
2686 .func = kdb_md,
2687 .usage = "<vaddr> <bytes>",
2688 .help = "Display Raw Memory",
2689 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2690 },
2691 { .name = "mdp",
2692 .func = kdb_md,
2693 .usage = "<paddr> <bytes>",
2694 .help = "Display Physical Memory",
2695 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2696 },
2697 { .name = "mds",
2698 .func = kdb_md,
2699 .usage = "<vaddr>",
2700 .help = "Display Memory Symbolically",
2701 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2702 },
2703 { .name = "mm",
2704 .func = kdb_mm,
2705 .usage = "<vaddr> <contents>",
2706 .help = "Modify Memory Contents",
2707 .flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2708 },
2709 { .name = "go",
2710 .func = kdb_go,
2711 .usage = "[<vaddr>]",
2712 .help = "Continue Execution",
2713 .minlen = 1,
2714 .flags = KDB_ENABLE_REG_WRITE |
2715 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2716 },
2717 { .name = "rd",
2718 .func = kdb_rd,
2719 .usage = "",
2720 .help = "Display Registers",
2721 .flags = KDB_ENABLE_REG_READ,
2722 },
2723 { .name = "rm",
2724 .func = kdb_rm,
2725 .usage = "<reg> <contents>",
2726 .help = "Modify Registers",
2727 .flags = KDB_ENABLE_REG_WRITE,
2728 },
2729 { .name = "ef",
2730 .func = kdb_ef,
2731 .usage = "<vaddr>",
2732 .help = "Display exception frame",
2733 .flags = KDB_ENABLE_MEM_READ,
2734 },
2735 { .name = "bt",
2736 .func = kdb_bt,
2737 .usage = "[<vaddr>]",
2738 .help = "Stack traceback",
2739 .minlen = 1,
2740 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2741 },
2742 { .name = "btp",
2743 .func = kdb_bt,
2744 .usage = "<pid>",
2745 .help = "Display stack for process <pid>",
2746 .flags = KDB_ENABLE_INSPECT,
2747 },
2748 { .name = "bta",
2749 .func = kdb_bt,
2750 .usage = "[<state_chars>|A]",
2751 .help = "Backtrace all processes whose state matches",
2752 .flags = KDB_ENABLE_INSPECT,
2753 },
2754 { .name = "btc",
2755 .func = kdb_bt,
2756 .usage = "",
2757 .help = "Backtrace current process on each cpu",
2758 .flags = KDB_ENABLE_INSPECT,
2759 },
2760 { .name = "btt",
2761 .func = kdb_bt,
2762 .usage = "<vaddr>",
2763 .help = "Backtrace process given its struct task address",
2764 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2765 },
2766 { .name = "env",
2767 .func = kdb_env,
2768 .usage = "",
2769 .help = "Show environment variables",
2770 .flags = KDB_ENABLE_ALWAYS_SAFE,
2771 },
2772 { .name = "set",
2773 .func = kdb_set,
2774 .usage = "",
2775 .help = "Set environment variables",
2776 .flags = KDB_ENABLE_ALWAYS_SAFE,
2777 },
2778 { .name = "help",
2779 .func = kdb_help,
2780 .usage = "",
2781 .help = "Display Help Message",
2782 .minlen = 1,
2783 .flags = KDB_ENABLE_ALWAYS_SAFE,
2784 },
2785 { .name = "?",
2786 .func = kdb_help,
2787 .usage = "",
2788 .help = "Display Help Message",
2789 .flags = KDB_ENABLE_ALWAYS_SAFE,
2790 },
2791 { .name = "cpu",
2792 .func = kdb_cpu,
2793 .usage = "<cpunum>",
2794 .help = "Switch to new cpu",
2795 .flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2796 },
2797 { .name = "kgdb",
2798 .func = kdb_kgdb,
2799 .usage = "",
2800 .help = "Enter kgdb mode",
2801 .flags = 0,
2802 },
2803 { .name = "ps",
2804 .func = kdb_ps,
2805 .usage = "[<state_chars>|A]",
2806 .help = "Display active task list",
2807 .flags = KDB_ENABLE_INSPECT,
2808 },
2809 { .name = "pid",
2810 .func = kdb_pid,
2811 .usage = "<pidnum>",
2812 .help = "Switch to another task",
2813 .flags = KDB_ENABLE_INSPECT,
2814 },
2815 { .name = "reboot",
2816 .func = kdb_reboot,
2817 .usage = "",
2818 .help = "Reboot the machine immediately",
2819 .flags = KDB_ENABLE_REBOOT,
2820 },
2821#if defined(CONFIG_MODULES)
2822 { .name = "lsmod",
2823 .func = kdb_lsmod,
2824 .usage = "",
2825 .help = "List loaded kernel modules",
2826 .flags = KDB_ENABLE_INSPECT,
2827 },
2828#endif
2829#if defined(CONFIG_MAGIC_SYSRQ)
2830 { .name = "sr",
2831 .func = kdb_sr,
2832 .usage = "<key>",
2833 .help = "Magic SysRq key",
2834 .flags = KDB_ENABLE_ALWAYS_SAFE,
2835 },
2836#endif
2837#if defined(CONFIG_PRINTK)
2838 { .name = "dmesg",
2839 .func = kdb_dmesg,
2840 .usage = "[lines]",
2841 .help = "Display syslog buffer",
2842 .flags = KDB_ENABLE_ALWAYS_SAFE,
2843 },
2844#endif
2845 { .name = "defcmd",
2846 .func = kdb_defcmd,
2847 .usage = "name \"usage\" \"help\"",
2848 .help = "Define a set of commands, down to endefcmd",
2849 /*
2850 * Macros are always safe because when executed each
2851 * internal command re-enters kdb_parse() and is safety
2852 * checked individually.
2853 */
2854 .flags = KDB_ENABLE_ALWAYS_SAFE,
2855 },
2856 { .name = "kill",
2857 .func = kdb_kill,
2858 .usage = "<-signal> <pid>",
2859 .help = "Send a signal to a process",
2860 .flags = KDB_ENABLE_SIGNAL,
2861 },
2862 { .name = "summary",
2863 .func = kdb_summary,
2864 .usage = "",
2865 .help = "Summarize the system",
2866 .minlen = 4,
2867 .flags = KDB_ENABLE_ALWAYS_SAFE,
2868 },
2869 { .name = "per_cpu",
2870 .func = kdb_per_cpu,
2871 .usage = "<sym> [<bytes>] [<cpu>]",
2872 .help = "Display per_cpu variables",
2873 .minlen = 3,
2874 .flags = KDB_ENABLE_MEM_READ,
2875 },
2876 { .name = "grephelp",
2877 .func = kdb_grep_help,
2878 .usage = "",
2879 .help = "Display help on | grep",
2880 .flags = KDB_ENABLE_ALWAYS_SAFE,
2881 },
2882};
2883
2884static kdbtab_t nmicmd = {
2885 .name = "disable_nmi",
2886 .func = kdb_disable_nmi,
2887 .usage = "",
2888 .help = "Disable NMI entry to KDB",
2889 .flags = KDB_ENABLE_ALWAYS_SAFE,
2890};
2891
2892/* Initialize the kdb command table. */
2893static void __init kdb_inittab(void)
2894{
2895 kdb_register_table(maintab, ARRAY_SIZE(maintab));
2896 if (arch_kgdb_ops.enable_nmi)
2897 kdb_register_table(&nmicmd, 1);
2898}
2899
2900/* Execute any commands defined in kdb_cmds. */
2901static void __init kdb_cmd_init(void)
2902{
2903 int i, diag;
2904 for (i = 0; kdb_cmds[i]; ++i) {
2905 diag = kdb_parse(kdb_cmds[i]);
2906 if (diag)
2907 kdb_printf("kdb command %s failed, kdb diag %d\n",
2908 kdb_cmds[i], diag);
2909 }
2910 if (defcmd_in_progress) {
2911 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2912 kdb_parse("endefcmd");
2913 }
2914}
2915
2916/* Initialize kdb_printf, breakpoint tables and kdb state */
2917void __init kdb_init(int lvl)
2918{
2919 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2920 int i;
2921
2922 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2923 return;
2924 for (i = kdb_init_lvl; i < lvl; i++) {
2925 switch (i) {
2926 case KDB_NOT_INITIALIZED:
2927 kdb_inittab(); /* Initialize Command Table */
2928 kdb_initbptab(); /* Initialize Breakpoints */
2929 break;
2930 case KDB_INIT_EARLY:
2931 kdb_cmd_init(); /* Build kdb_cmds tables */
2932 break;
2933 }
2934 }
2935 kdb_init_lvl = lvl;
2936}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/reboot.h>
18#include <linux/sched.h>
19#include <linux/sysrq.h>
20#include <linux/smp.h>
21#include <linux/utsname.h>
22#include <linux/vmalloc.h>
23#include <linux/module.h>
24#include <linux/mm.h>
25#include <linux/init.h>
26#include <linux/kallsyms.h>
27#include <linux/kgdb.h>
28#include <linux/kdb.h>
29#include <linux/notifier.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/nmi.h>
33#include <linux/time.h>
34#include <linux/ptrace.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/kdebug.h>
38#include <linux/proc_fs.h>
39#include <linux/uaccess.h>
40#include <linux/slab.h>
41#include "kdb_private.h"
42
43#define GREP_LEN 256
44char kdb_grep_string[GREP_LEN];
45int kdb_grepping_flag;
46EXPORT_SYMBOL(kdb_grepping_flag);
47int kdb_grep_leading;
48int kdb_grep_trailing;
49
50/*
51 * Kernel debugger state flags
52 */
53int kdb_flags;
54atomic_t kdb_event;
55
56/*
57 * kdb_lock protects updates to kdb_initial_cpu. Used to
58 * single thread processors through the kernel debugger.
59 */
60int kdb_initial_cpu = -1; /* cpu number that owns kdb */
61int kdb_nextline = 1;
62int kdb_state; /* General KDB state */
63
64struct task_struct *kdb_current_task;
65EXPORT_SYMBOL(kdb_current_task);
66struct pt_regs *kdb_current_regs;
67
68const char *kdb_diemsg;
69static int kdb_go_count;
70#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
71static unsigned int kdb_continue_catastrophic =
72 CONFIG_KDB_CONTINUE_CATASTROPHIC;
73#else
74static unsigned int kdb_continue_catastrophic;
75#endif
76
77/* kdb_commands describes the available commands. */
78static kdbtab_t *kdb_commands;
79#define KDB_BASE_CMD_MAX 50
80static int kdb_max_commands = KDB_BASE_CMD_MAX;
81static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
82#define for_each_kdbcmd(cmd, num) \
83 for ((cmd) = kdb_base_commands, (num) = 0; \
84 num < kdb_max_commands; \
85 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
86
87typedef struct _kdbmsg {
88 int km_diag; /* kdb diagnostic */
89 char *km_msg; /* Corresponding message text */
90} kdbmsg_t;
91
92#define KDBMSG(msgnum, text) \
93 { KDB_##msgnum, text }
94
95static kdbmsg_t kdbmsgs[] = {
96 KDBMSG(NOTFOUND, "Command Not Found"),
97 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
98 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
99 "8 is only allowed on 64 bit systems"),
100 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
101 KDBMSG(NOTENV, "Cannot find environment variable"),
102 KDBMSG(NOENVVALUE, "Environment variable should have value"),
103 KDBMSG(NOTIMP, "Command not implemented"),
104 KDBMSG(ENVFULL, "Environment full"),
105 KDBMSG(ENVBUFFULL, "Environment buffer full"),
106 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
107#ifdef CONFIG_CPU_XSCALE
108 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
109#else
110 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
111#endif
112 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
113 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
114 KDBMSG(BADMODE, "Invalid IDMODE"),
115 KDBMSG(BADINT, "Illegal numeric value"),
116 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
117 KDBMSG(BADREG, "Invalid register name"),
118 KDBMSG(BADCPUNUM, "Invalid cpu number"),
119 KDBMSG(BADLENGTH, "Invalid length field"),
120 KDBMSG(NOBP, "No Breakpoint exists"),
121 KDBMSG(BADADDR, "Invalid address"),
122};
123#undef KDBMSG
124
125static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
126
127
128/*
129 * Initial environment. This is all kept static and local to
130 * this file. We don't want to rely on the memory allocation
131 * mechanisms in the kernel, so we use a very limited allocate-only
132 * heap for new and altered environment variables. The entire
133 * environment is limited to a fixed number of entries (add more
134 * to __env[] if required) and a fixed amount of heap (add more to
135 * KDB_ENVBUFSIZE if required).
136 */
137
138static char *__env[] = {
139#if defined(CONFIG_SMP)
140 "PROMPT=[%d]kdb> ",
141 "MOREPROMPT=[%d]more> ",
142#else
143 "PROMPT=kdb> ",
144 "MOREPROMPT=more> ",
145#endif
146 "RADIX=16",
147 "MDCOUNT=8", /* lines of md output */
148 KDB_PLATFORM_ENV,
149 "DTABCOUNT=30",
150 "NOSECT=1",
151 (char *)0,
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175};
176
177static const int __nenv = (sizeof(__env) / sizeof(char *));
178
179struct task_struct *kdb_curr_task(int cpu)
180{
181 struct task_struct *p = curr_task(cpu);
182#ifdef _TIF_MCA_INIT
183 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
184 p = krp->p;
185#endif
186 return p;
187}
188
189/*
190 * kdbgetenv - This function will return the character string value of
191 * an environment variable.
192 * Parameters:
193 * match A character string representing an environment variable.
194 * Returns:
195 * NULL No environment variable matches 'match'
196 * char* Pointer to string value of environment variable.
197 */
198char *kdbgetenv(const char *match)
199{
200 char **ep = __env;
201 int matchlen = strlen(match);
202 int i;
203
204 for (i = 0; i < __nenv; i++) {
205 char *e = *ep++;
206
207 if (!e)
208 continue;
209
210 if ((strncmp(match, e, matchlen) == 0)
211 && ((e[matchlen] == '\0')
212 || (e[matchlen] == '='))) {
213 char *cp = strchr(e, '=');
214 return cp ? ++cp : "";
215 }
216 }
217 return NULL;
218}
219
220/*
221 * kdballocenv - This function is used to allocate bytes for
222 * environment entries.
223 * Parameters:
224 * match A character string representing a numeric value
225 * Outputs:
226 * *value the unsigned long representation of the env variable 'match'
227 * Returns:
228 * Zero on success, a kdb diagnostic on failure.
229 * Remarks:
230 * We use a static environment buffer (envbuffer) to hold the values
231 * of dynamically generated environment variables (see kdb_set). Buffer
232 * space once allocated is never free'd, so over time, the amount of space
233 * (currently 512 bytes) will be exhausted if env variables are changed
234 * frequently.
235 */
236static char *kdballocenv(size_t bytes)
237{
238#define KDB_ENVBUFSIZE 512
239 static char envbuffer[KDB_ENVBUFSIZE];
240 static int envbufsize;
241 char *ep = NULL;
242
243 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
244 ep = &envbuffer[envbufsize];
245 envbufsize += bytes;
246 }
247 return ep;
248}
249
250/*
251 * kdbgetulenv - This function will return the value of an unsigned
252 * long-valued environment variable.
253 * Parameters:
254 * match A character string representing a numeric value
255 * Outputs:
256 * *value the unsigned long represntation of the env variable 'match'
257 * Returns:
258 * Zero on success, a kdb diagnostic on failure.
259 */
260static int kdbgetulenv(const char *match, unsigned long *value)
261{
262 char *ep;
263
264 ep = kdbgetenv(match);
265 if (!ep)
266 return KDB_NOTENV;
267 if (strlen(ep) == 0)
268 return KDB_NOENVVALUE;
269
270 *value = simple_strtoul(ep, NULL, 0);
271
272 return 0;
273}
274
275/*
276 * kdbgetintenv - This function will return the value of an
277 * integer-valued environment variable.
278 * Parameters:
279 * match A character string representing an integer-valued env variable
280 * Outputs:
281 * *value the integer representation of the environment variable 'match'
282 * Returns:
283 * Zero on success, a kdb diagnostic on failure.
284 */
285int kdbgetintenv(const char *match, int *value)
286{
287 unsigned long val;
288 int diag;
289
290 diag = kdbgetulenv(match, &val);
291 if (!diag)
292 *value = (int) val;
293 return diag;
294}
295
296/*
297 * kdbgetularg - This function will convert a numeric string into an
298 * unsigned long value.
299 * Parameters:
300 * arg A character string representing a numeric value
301 * Outputs:
302 * *value the unsigned long represntation of arg.
303 * Returns:
304 * Zero on success, a kdb diagnostic on failure.
305 */
306int kdbgetularg(const char *arg, unsigned long *value)
307{
308 char *endp;
309 unsigned long val;
310
311 val = simple_strtoul(arg, &endp, 0);
312
313 if (endp == arg) {
314 /*
315 * Also try base 16, for us folks too lazy to type the
316 * leading 0x...
317 */
318 val = simple_strtoul(arg, &endp, 16);
319 if (endp == arg)
320 return KDB_BADINT;
321 }
322
323 *value = val;
324
325 return 0;
326}
327
328int kdbgetu64arg(const char *arg, u64 *value)
329{
330 char *endp;
331 u64 val;
332
333 val = simple_strtoull(arg, &endp, 0);
334
335 if (endp == arg) {
336
337 val = simple_strtoull(arg, &endp, 16);
338 if (endp == arg)
339 return KDB_BADINT;
340 }
341
342 *value = val;
343
344 return 0;
345}
346
347/*
348 * kdb_set - This function implements the 'set' command. Alter an
349 * existing environment variable or create a new one.
350 */
351int kdb_set(int argc, const char **argv)
352{
353 int i;
354 char *ep;
355 size_t varlen, vallen;
356
357 /*
358 * we can be invoked two ways:
359 * set var=value argv[1]="var", argv[2]="value"
360 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
361 * - if the latter, shift 'em down.
362 */
363 if (argc == 3) {
364 argv[2] = argv[3];
365 argc--;
366 }
367
368 if (argc != 2)
369 return KDB_ARGCOUNT;
370
371 /*
372 * Check for internal variables
373 */
374 if (strcmp(argv[1], "KDBDEBUG") == 0) {
375 unsigned int debugflags;
376 char *cp;
377
378 debugflags = simple_strtoul(argv[2], &cp, 0);
379 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
380 kdb_printf("kdb: illegal debug flags '%s'\n",
381 argv[2]);
382 return 0;
383 }
384 kdb_flags = (kdb_flags &
385 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
386 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
387
388 return 0;
389 }
390
391 /*
392 * Tokenizer squashed the '=' sign. argv[1] is variable
393 * name, argv[2] = value.
394 */
395 varlen = strlen(argv[1]);
396 vallen = strlen(argv[2]);
397 ep = kdballocenv(varlen + vallen + 2);
398 if (ep == (char *)0)
399 return KDB_ENVBUFFULL;
400
401 sprintf(ep, "%s=%s", argv[1], argv[2]);
402
403 ep[varlen+vallen+1] = '\0';
404
405 for (i = 0; i < __nenv; i++) {
406 if (__env[i]
407 && ((strncmp(__env[i], argv[1], varlen) == 0)
408 && ((__env[i][varlen] == '\0')
409 || (__env[i][varlen] == '=')))) {
410 __env[i] = ep;
411 return 0;
412 }
413 }
414
415 /*
416 * Wasn't existing variable. Fit into slot.
417 */
418 for (i = 0; i < __nenv-1; i++) {
419 if (__env[i] == (char *)0) {
420 __env[i] = ep;
421 return 0;
422 }
423 }
424
425 return KDB_ENVFULL;
426}
427
428static int kdb_check_regs(void)
429{
430 if (!kdb_current_regs) {
431 kdb_printf("No current kdb registers."
432 " You may need to select another task\n");
433 return KDB_BADREG;
434 }
435 return 0;
436}
437
438/*
439 * kdbgetaddrarg - This function is responsible for parsing an
440 * address-expression and returning the value of the expression,
441 * symbol name, and offset to the caller.
442 *
443 * The argument may consist of a numeric value (decimal or
444 * hexidecimal), a symbol name, a register name (preceded by the
445 * percent sign), an environment variable with a numeric value
446 * (preceded by a dollar sign) or a simple arithmetic expression
447 * consisting of a symbol name, +/-, and a numeric constant value
448 * (offset).
449 * Parameters:
450 * argc - count of arguments in argv
451 * argv - argument vector
452 * *nextarg - index to next unparsed argument in argv[]
453 * regs - Register state at time of KDB entry
454 * Outputs:
455 * *value - receives the value of the address-expression
456 * *offset - receives the offset specified, if any
457 * *name - receives the symbol name, if any
458 * *nextarg - index to next unparsed argument in argv[]
459 * Returns:
460 * zero is returned on success, a kdb diagnostic code is
461 * returned on error.
462 */
463int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
464 unsigned long *value, long *offset,
465 char **name)
466{
467 unsigned long addr;
468 unsigned long off = 0;
469 int positive;
470 int diag;
471 int found = 0;
472 char *symname;
473 char symbol = '\0';
474 char *cp;
475 kdb_symtab_t symtab;
476
477 /*
478 * Process arguments which follow the following syntax:
479 *
480 * symbol | numeric-address [+/- numeric-offset]
481 * %register
482 * $environment-variable
483 */
484
485 if (*nextarg > argc)
486 return KDB_ARGCOUNT;
487
488 symname = (char *)argv[*nextarg];
489
490 /*
491 * If there is no whitespace between the symbol
492 * or address and the '+' or '-' symbols, we
493 * remember the character and replace it with a
494 * null so the symbol/value can be properly parsed
495 */
496 cp = strpbrk(symname, "+-");
497 if (cp != NULL) {
498 symbol = *cp;
499 *cp++ = '\0';
500 }
501
502 if (symname[0] == '$') {
503 diag = kdbgetulenv(&symname[1], &addr);
504 if (diag)
505 return diag;
506 } else if (symname[0] == '%') {
507 diag = kdb_check_regs();
508 if (diag)
509 return diag;
510 /* Implement register values with % at a later time as it is
511 * arch optional.
512 */
513 return KDB_NOTIMP;
514 } else {
515 found = kdbgetsymval(symname, &symtab);
516 if (found) {
517 addr = symtab.sym_start;
518 } else {
519 diag = kdbgetularg(argv[*nextarg], &addr);
520 if (diag)
521 return diag;
522 }
523 }
524
525 if (!found)
526 found = kdbnearsym(addr, &symtab);
527
528 (*nextarg)++;
529
530 if (name)
531 *name = symname;
532 if (value)
533 *value = addr;
534 if (offset && name && *name)
535 *offset = addr - symtab.sym_start;
536
537 if ((*nextarg > argc)
538 && (symbol == '\0'))
539 return 0;
540
541 /*
542 * check for +/- and offset
543 */
544
545 if (symbol == '\0') {
546 if ((argv[*nextarg][0] != '+')
547 && (argv[*nextarg][0] != '-')) {
548 /*
549 * Not our argument. Return.
550 */
551 return 0;
552 } else {
553 positive = (argv[*nextarg][0] == '+');
554 (*nextarg)++;
555 }
556 } else
557 positive = (symbol == '+');
558
559 /*
560 * Now there must be an offset!
561 */
562 if ((*nextarg > argc)
563 && (symbol == '\0')) {
564 return KDB_INVADDRFMT;
565 }
566
567 if (!symbol) {
568 cp = (char *)argv[*nextarg];
569 (*nextarg)++;
570 }
571
572 diag = kdbgetularg(cp, &off);
573 if (diag)
574 return diag;
575
576 if (!positive)
577 off = -off;
578
579 if (offset)
580 *offset += off;
581
582 if (value)
583 *value += off;
584
585 return 0;
586}
587
588static void kdb_cmderror(int diag)
589{
590 int i;
591
592 if (diag >= 0) {
593 kdb_printf("no error detected (diagnostic is %d)\n", diag);
594 return;
595 }
596
597 for (i = 0; i < __nkdb_err; i++) {
598 if (kdbmsgs[i].km_diag == diag) {
599 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
600 return;
601 }
602 }
603
604 kdb_printf("Unknown diag %d\n", -diag);
605}
606
607/*
608 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
609 * command which defines one command as a set of other commands,
610 * terminated by endefcmd. kdb_defcmd processes the initial
611 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
612 * the following commands until 'endefcmd'.
613 * Inputs:
614 * argc argument count
615 * argv argument vector
616 * Returns:
617 * zero for success, a kdb diagnostic if error
618 */
619struct defcmd_set {
620 int count;
621 int usable;
622 char *name;
623 char *usage;
624 char *help;
625 char **command;
626};
627static struct defcmd_set *defcmd_set;
628static int defcmd_set_count;
629static int defcmd_in_progress;
630
631/* Forward references */
632static int kdb_exec_defcmd(int argc, const char **argv);
633
634static int kdb_defcmd2(const char *cmdstr, const char *argv0)
635{
636 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
637 char **save_command = s->command;
638 if (strcmp(argv0, "endefcmd") == 0) {
639 defcmd_in_progress = 0;
640 if (!s->count)
641 s->usable = 0;
642 if (s->usable)
643 kdb_register(s->name, kdb_exec_defcmd,
644 s->usage, s->help, 0);
645 return 0;
646 }
647 if (!s->usable)
648 return KDB_NOTIMP;
649 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
650 if (!s->command) {
651 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
652 cmdstr);
653 s->usable = 0;
654 return KDB_NOTIMP;
655 }
656 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
657 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
658 kfree(save_command);
659 return 0;
660}
661
662static int kdb_defcmd(int argc, const char **argv)
663{
664 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
665 if (defcmd_in_progress) {
666 kdb_printf("kdb: nested defcmd detected, assuming missing "
667 "endefcmd\n");
668 kdb_defcmd2("endefcmd", "endefcmd");
669 }
670 if (argc == 0) {
671 int i;
672 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
673 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
674 s->usage, s->help);
675 for (i = 0; i < s->count; ++i)
676 kdb_printf("%s", s->command[i]);
677 kdb_printf("endefcmd\n");
678 }
679 return 0;
680 }
681 if (argc != 3)
682 return KDB_ARGCOUNT;
683 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
684 GFP_KDB);
685 if (!defcmd_set) {
686 kdb_printf("Could not allocate new defcmd_set entry for %s\n",
687 argv[1]);
688 defcmd_set = save_defcmd_set;
689 return KDB_NOTIMP;
690 }
691 memcpy(defcmd_set, save_defcmd_set,
692 defcmd_set_count * sizeof(*defcmd_set));
693 kfree(save_defcmd_set);
694 s = defcmd_set + defcmd_set_count;
695 memset(s, 0, sizeof(*s));
696 s->usable = 1;
697 s->name = kdb_strdup(argv[1], GFP_KDB);
698 s->usage = kdb_strdup(argv[2], GFP_KDB);
699 s->help = kdb_strdup(argv[3], GFP_KDB);
700 if (s->usage[0] == '"') {
701 strcpy(s->usage, s->usage+1);
702 s->usage[strlen(s->usage)-1] = '\0';
703 }
704 if (s->help[0] == '"') {
705 strcpy(s->help, s->help+1);
706 s->help[strlen(s->help)-1] = '\0';
707 }
708 ++defcmd_set_count;
709 defcmd_in_progress = 1;
710 return 0;
711}
712
713/*
714 * kdb_exec_defcmd - Execute the set of commands associated with this
715 * defcmd name.
716 * Inputs:
717 * argc argument count
718 * argv argument vector
719 * Returns:
720 * zero for success, a kdb diagnostic if error
721 */
722static int kdb_exec_defcmd(int argc, const char **argv)
723{
724 int i, ret;
725 struct defcmd_set *s;
726 if (argc != 0)
727 return KDB_ARGCOUNT;
728 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
729 if (strcmp(s->name, argv[0]) == 0)
730 break;
731 }
732 if (i == defcmd_set_count) {
733 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
734 argv[0]);
735 return KDB_NOTIMP;
736 }
737 for (i = 0; i < s->count; ++i) {
738 /* Recursive use of kdb_parse, do not use argv after
739 * this point */
740 argv = NULL;
741 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
742 ret = kdb_parse(s->command[i]);
743 if (ret)
744 return ret;
745 }
746 return 0;
747}
748
749/* Command history */
750#define KDB_CMD_HISTORY_COUNT 32
751#define CMD_BUFLEN 200 /* kdb_printf: max printline
752 * size == 256 */
753static unsigned int cmd_head, cmd_tail;
754static unsigned int cmdptr;
755static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
756static char cmd_cur[CMD_BUFLEN];
757
758/*
759 * The "str" argument may point to something like | grep xyz
760 */
761static void parse_grep(const char *str)
762{
763 int len;
764 char *cp = (char *)str, *cp2;
765
766 /* sanity check: we should have been called with the \ first */
767 if (*cp != '|')
768 return;
769 cp++;
770 while (isspace(*cp))
771 cp++;
772 if (strncmp(cp, "grep ", 5)) {
773 kdb_printf("invalid 'pipe', see grephelp\n");
774 return;
775 }
776 cp += 5;
777 while (isspace(*cp))
778 cp++;
779 cp2 = strchr(cp, '\n');
780 if (cp2)
781 *cp2 = '\0'; /* remove the trailing newline */
782 len = strlen(cp);
783 if (len == 0) {
784 kdb_printf("invalid 'pipe', see grephelp\n");
785 return;
786 }
787 /* now cp points to a nonzero length search string */
788 if (*cp == '"') {
789 /* allow it be "x y z" by removing the "'s - there must
790 be two of them */
791 cp++;
792 cp2 = strchr(cp, '"');
793 if (!cp2) {
794 kdb_printf("invalid quoted string, see grephelp\n");
795 return;
796 }
797 *cp2 = '\0'; /* end the string where the 2nd " was */
798 }
799 kdb_grep_leading = 0;
800 if (*cp == '^') {
801 kdb_grep_leading = 1;
802 cp++;
803 }
804 len = strlen(cp);
805 kdb_grep_trailing = 0;
806 if (*(cp+len-1) == '$') {
807 kdb_grep_trailing = 1;
808 *(cp+len-1) = '\0';
809 }
810 len = strlen(cp);
811 if (!len)
812 return;
813 if (len >= GREP_LEN) {
814 kdb_printf("search string too long\n");
815 return;
816 }
817 strcpy(kdb_grep_string, cp);
818 kdb_grepping_flag++;
819 return;
820}
821
822/*
823 * kdb_parse - Parse the command line, search the command table for a
824 * matching command and invoke the command function. This
825 * function may be called recursively, if it is, the second call
826 * will overwrite argv and cbuf. It is the caller's
827 * responsibility to save their argv if they recursively call
828 * kdb_parse().
829 * Parameters:
830 * cmdstr The input command line to be parsed.
831 * regs The registers at the time kdb was entered.
832 * Returns:
833 * Zero for success, a kdb diagnostic if failure.
834 * Remarks:
835 * Limited to 20 tokens.
836 *
837 * Real rudimentary tokenization. Basically only whitespace
838 * is considered a token delimeter (but special consideration
839 * is taken of the '=' sign as used by the 'set' command).
840 *
841 * The algorithm used to tokenize the input string relies on
842 * there being at least one whitespace (or otherwise useless)
843 * character between tokens as the character immediately following
844 * the token is altered in-place to a null-byte to terminate the
845 * token string.
846 */
847
848#define MAXARGC 20
849
850int kdb_parse(const char *cmdstr)
851{
852 static char *argv[MAXARGC];
853 static int argc;
854 static char cbuf[CMD_BUFLEN+2];
855 char *cp;
856 char *cpp, quoted;
857 kdbtab_t *tp;
858 int i, escaped, ignore_errors = 0, check_grep;
859
860 /*
861 * First tokenize the command string.
862 */
863 cp = (char *)cmdstr;
864 kdb_grepping_flag = check_grep = 0;
865
866 if (KDB_FLAG(CMD_INTERRUPT)) {
867 /* Previous command was interrupted, newline must not
868 * repeat the command */
869 KDB_FLAG_CLEAR(CMD_INTERRUPT);
870 KDB_STATE_SET(PAGER);
871 argc = 0; /* no repeat */
872 }
873
874 if (*cp != '\n' && *cp != '\0') {
875 argc = 0;
876 cpp = cbuf;
877 while (*cp) {
878 /* skip whitespace */
879 while (isspace(*cp))
880 cp++;
881 if ((*cp == '\0') || (*cp == '\n') ||
882 (*cp == '#' && !defcmd_in_progress))
883 break;
884 /* special case: check for | grep pattern */
885 if (*cp == '|') {
886 check_grep++;
887 break;
888 }
889 if (cpp >= cbuf + CMD_BUFLEN) {
890 kdb_printf("kdb_parse: command buffer "
891 "overflow, command ignored\n%s\n",
892 cmdstr);
893 return KDB_NOTFOUND;
894 }
895 if (argc >= MAXARGC - 1) {
896 kdb_printf("kdb_parse: too many arguments, "
897 "command ignored\n%s\n", cmdstr);
898 return KDB_NOTFOUND;
899 }
900 argv[argc++] = cpp;
901 escaped = 0;
902 quoted = '\0';
903 /* Copy to next unquoted and unescaped
904 * whitespace or '=' */
905 while (*cp && *cp != '\n' &&
906 (escaped || quoted || !isspace(*cp))) {
907 if (cpp >= cbuf + CMD_BUFLEN)
908 break;
909 if (escaped) {
910 escaped = 0;
911 *cpp++ = *cp++;
912 continue;
913 }
914 if (*cp == '\\') {
915 escaped = 1;
916 ++cp;
917 continue;
918 }
919 if (*cp == quoted)
920 quoted = '\0';
921 else if (*cp == '\'' || *cp == '"')
922 quoted = *cp;
923 *cpp = *cp++;
924 if (*cpp == '=' && !quoted)
925 break;
926 ++cpp;
927 }
928 *cpp++ = '\0'; /* Squash a ws or '=' character */
929 }
930 }
931 if (!argc)
932 return 0;
933 if (check_grep)
934 parse_grep(cp);
935 if (defcmd_in_progress) {
936 int result = kdb_defcmd2(cmdstr, argv[0]);
937 if (!defcmd_in_progress) {
938 argc = 0; /* avoid repeat on endefcmd */
939 *(argv[0]) = '\0';
940 }
941 return result;
942 }
943 if (argv[0][0] == '-' && argv[0][1] &&
944 (argv[0][1] < '0' || argv[0][1] > '9')) {
945 ignore_errors = 1;
946 ++argv[0];
947 }
948
949 for_each_kdbcmd(tp, i) {
950 if (tp->cmd_name) {
951 /*
952 * If this command is allowed to be abbreviated,
953 * check to see if this is it.
954 */
955
956 if (tp->cmd_minlen
957 && (strlen(argv[0]) <= tp->cmd_minlen)) {
958 if (strncmp(argv[0],
959 tp->cmd_name,
960 tp->cmd_minlen) == 0) {
961 break;
962 }
963 }
964
965 if (strcmp(argv[0], tp->cmd_name) == 0)
966 break;
967 }
968 }
969
970 /*
971 * If we don't find a command by this name, see if the first
972 * few characters of this match any of the known commands.
973 * e.g., md1c20 should match md.
974 */
975 if (i == kdb_max_commands) {
976 for_each_kdbcmd(tp, i) {
977 if (tp->cmd_name) {
978 if (strncmp(argv[0],
979 tp->cmd_name,
980 strlen(tp->cmd_name)) == 0) {
981 break;
982 }
983 }
984 }
985 }
986
987 if (i < kdb_max_commands) {
988 int result;
989 KDB_STATE_SET(CMD);
990 result = (*tp->cmd_func)(argc-1, (const char **)argv);
991 if (result && ignore_errors && result > KDB_CMD_GO)
992 result = 0;
993 KDB_STATE_CLEAR(CMD);
994 switch (tp->cmd_repeat) {
995 case KDB_REPEAT_NONE:
996 argc = 0;
997 if (argv[0])
998 *(argv[0]) = '\0';
999 break;
1000 case KDB_REPEAT_NO_ARGS:
1001 argc = 1;
1002 if (argv[1])
1003 *(argv[1]) = '\0';
1004 break;
1005 case KDB_REPEAT_WITH_ARGS:
1006 break;
1007 }
1008 return result;
1009 }
1010
1011 /*
1012 * If the input with which we were presented does not
1013 * map to an existing command, attempt to parse it as an
1014 * address argument and display the result. Useful for
1015 * obtaining the address of a variable, or the nearest symbol
1016 * to an address contained in a register.
1017 */
1018 {
1019 unsigned long value;
1020 char *name = NULL;
1021 long offset;
1022 int nextarg = 0;
1023
1024 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1025 &value, &offset, &name)) {
1026 return KDB_NOTFOUND;
1027 }
1028
1029 kdb_printf("%s = ", argv[0]);
1030 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1031 kdb_printf("\n");
1032 return 0;
1033 }
1034}
1035
1036
1037static int handle_ctrl_cmd(char *cmd)
1038{
1039#define CTRL_P 16
1040#define CTRL_N 14
1041
1042 /* initial situation */
1043 if (cmd_head == cmd_tail)
1044 return 0;
1045 switch (*cmd) {
1046 case CTRL_P:
1047 if (cmdptr != cmd_tail)
1048 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1049 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1050 return 1;
1051 case CTRL_N:
1052 if (cmdptr != cmd_head)
1053 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1054 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1055 return 1;
1056 }
1057 return 0;
1058}
1059
1060/*
1061 * kdb_reboot - This function implements the 'reboot' command. Reboot
1062 * the system immediately, or loop for ever on failure.
1063 */
1064static int kdb_reboot(int argc, const char **argv)
1065{
1066 emergency_restart();
1067 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1068 while (1)
1069 cpu_relax();
1070 /* NOTREACHED */
1071 return 0;
1072}
1073
1074static void kdb_dumpregs(struct pt_regs *regs)
1075{
1076 int old_lvl = console_loglevel;
1077 console_loglevel = 15;
1078 kdb_trap_printk++;
1079 show_regs(regs);
1080 kdb_trap_printk--;
1081 kdb_printf("\n");
1082 console_loglevel = old_lvl;
1083}
1084
1085void kdb_set_current_task(struct task_struct *p)
1086{
1087 kdb_current_task = p;
1088
1089 if (kdb_task_has_cpu(p)) {
1090 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1091 return;
1092 }
1093 kdb_current_regs = NULL;
1094}
1095
1096/*
1097 * kdb_local - The main code for kdb. This routine is invoked on a
1098 * specific processor, it is not global. The main kdb() routine
1099 * ensures that only one processor at a time is in this routine.
1100 * This code is called with the real reason code on the first
1101 * entry to a kdb session, thereafter it is called with reason
1102 * SWITCH, even if the user goes back to the original cpu.
1103 * Inputs:
1104 * reason The reason KDB was invoked
1105 * error The hardware-defined error code
1106 * regs The exception frame at time of fault/breakpoint.
1107 * db_result Result code from the break or debug point.
1108 * Returns:
1109 * 0 KDB was invoked for an event which it wasn't responsible
1110 * 1 KDB handled the event for which it was invoked.
1111 * KDB_CMD_GO User typed 'go'.
1112 * KDB_CMD_CPU User switched to another cpu.
1113 * KDB_CMD_SS Single step.
1114 * KDB_CMD_SSB Single step until branch.
1115 */
1116static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1117 kdb_dbtrap_t db_result)
1118{
1119 char *cmdbuf;
1120 int diag;
1121 struct task_struct *kdb_current =
1122 kdb_curr_task(raw_smp_processor_id());
1123
1124 KDB_DEBUG_STATE("kdb_local 1", reason);
1125 kdb_go_count = 0;
1126 if (reason == KDB_REASON_DEBUG) {
1127 /* special case below */
1128 } else {
1129 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1130 kdb_current, kdb_current ? kdb_current->pid : 0);
1131#if defined(CONFIG_SMP)
1132 kdb_printf("on processor %d ", raw_smp_processor_id());
1133#endif
1134 }
1135
1136 switch (reason) {
1137 case KDB_REASON_DEBUG:
1138 {
1139 /*
1140 * If re-entering kdb after a single step
1141 * command, don't print the message.
1142 */
1143 switch (db_result) {
1144 case KDB_DB_BPT:
1145 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1146 kdb_current, kdb_current->pid);
1147#if defined(CONFIG_SMP)
1148 kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1151 instruction_pointer(regs));
1152 break;
1153 case KDB_DB_SSB:
1154 /*
1155 * In the midst of ssb command. Just return.
1156 */
1157 KDB_DEBUG_STATE("kdb_local 3", reason);
1158 return KDB_CMD_SSB; /* Continue with SSB command */
1159
1160 break;
1161 case KDB_DB_SS:
1162 break;
1163 case KDB_DB_SSBPT:
1164 KDB_DEBUG_STATE("kdb_local 4", reason);
1165 return 1; /* kdba_db_trap did the work */
1166 default:
1167 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1168 db_result);
1169 break;
1170 }
1171
1172 }
1173 break;
1174 case KDB_REASON_ENTER:
1175 if (KDB_STATE(KEYBOARD))
1176 kdb_printf("due to Keyboard Entry\n");
1177 else
1178 kdb_printf("due to KDB_ENTER()\n");
1179 break;
1180 case KDB_REASON_KEYBOARD:
1181 KDB_STATE_SET(KEYBOARD);
1182 kdb_printf("due to Keyboard Entry\n");
1183 break;
1184 case KDB_REASON_ENTER_SLAVE:
1185 /* drop through, slaves only get released via cpu switch */
1186 case KDB_REASON_SWITCH:
1187 kdb_printf("due to cpu switch\n");
1188 break;
1189 case KDB_REASON_OOPS:
1190 kdb_printf("Oops: %s\n", kdb_diemsg);
1191 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1192 instruction_pointer(regs));
1193 kdb_dumpregs(regs);
1194 break;
1195 case KDB_REASON_NMI:
1196 kdb_printf("due to NonMaskable Interrupt @ "
1197 kdb_machreg_fmt "\n",
1198 instruction_pointer(regs));
1199 kdb_dumpregs(regs);
1200 break;
1201 case KDB_REASON_SSTEP:
1202 case KDB_REASON_BREAK:
1203 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1204 reason == KDB_REASON_BREAK ?
1205 "Breakpoint" : "SS trap", instruction_pointer(regs));
1206 /*
1207 * Determine if this breakpoint is one that we
1208 * are interested in.
1209 */
1210 if (db_result != KDB_DB_BPT) {
1211 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1212 db_result);
1213 KDB_DEBUG_STATE("kdb_local 6", reason);
1214 return 0; /* Not for us, dismiss it */
1215 }
1216 break;
1217 case KDB_REASON_RECURSE:
1218 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1219 instruction_pointer(regs));
1220 break;
1221 default:
1222 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1223 KDB_DEBUG_STATE("kdb_local 8", reason);
1224 return 0; /* Not for us, dismiss it */
1225 }
1226
1227 while (1) {
1228 /*
1229 * Initialize pager context.
1230 */
1231 kdb_nextline = 1;
1232 KDB_STATE_CLEAR(SUPPRESS);
1233
1234 cmdbuf = cmd_cur;
1235 *cmdbuf = '\0';
1236 *(cmd_hist[cmd_head]) = '\0';
1237
1238 if (KDB_FLAG(ONLY_DO_DUMP)) {
1239 /* kdb is off but a catastrophic error requires a dump.
1240 * Take the dump and reboot.
1241 * Turn on logging so the kdb output appears in the log
1242 * buffer in the dump.
1243 */
1244 const char *setargs[] = { "set", "LOGGING", "1" };
1245 kdb_set(2, setargs);
1246 kdb_reboot(0, NULL);
1247 /*NOTREACHED*/
1248 }
1249
1250do_full_getstr:
1251#if defined(CONFIG_SMP)
1252 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1253 raw_smp_processor_id());
1254#else
1255 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1256#endif
1257 if (defcmd_in_progress)
1258 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1259
1260 /*
1261 * Fetch command from keyboard
1262 */
1263 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1264 if (*cmdbuf != '\n') {
1265 if (*cmdbuf < 32) {
1266 if (cmdptr == cmd_head) {
1267 strncpy(cmd_hist[cmd_head], cmd_cur,
1268 CMD_BUFLEN);
1269 *(cmd_hist[cmd_head] +
1270 strlen(cmd_hist[cmd_head])-1) = '\0';
1271 }
1272 if (!handle_ctrl_cmd(cmdbuf))
1273 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1274 cmdbuf = cmd_cur;
1275 goto do_full_getstr;
1276 } else {
1277 strncpy(cmd_hist[cmd_head], cmd_cur,
1278 CMD_BUFLEN);
1279 }
1280
1281 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1282 if (cmd_head == cmd_tail)
1283 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1284 }
1285
1286 cmdptr = cmd_head;
1287 diag = kdb_parse(cmdbuf);
1288 if (diag == KDB_NOTFOUND) {
1289 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1290 diag = 0;
1291 }
1292 if (diag == KDB_CMD_GO
1293 || diag == KDB_CMD_CPU
1294 || diag == KDB_CMD_SS
1295 || diag == KDB_CMD_SSB
1296 || diag == KDB_CMD_KGDB)
1297 break;
1298
1299 if (diag)
1300 kdb_cmderror(diag);
1301 }
1302 KDB_DEBUG_STATE("kdb_local 9", diag);
1303 return diag;
1304}
1305
1306
1307/*
1308 * kdb_print_state - Print the state data for the current processor
1309 * for debugging.
1310 * Inputs:
1311 * text Identifies the debug point
1312 * value Any integer value to be printed, e.g. reason code.
1313 */
1314void kdb_print_state(const char *text, int value)
1315{
1316 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1317 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1318 kdb_state);
1319}
1320
1321/*
1322 * kdb_main_loop - After initial setup and assignment of the
1323 * controlling cpu, all cpus are in this loop. One cpu is in
1324 * control and will issue the kdb prompt, the others will spin
1325 * until 'go' or cpu switch.
1326 *
1327 * To get a consistent view of the kernel stacks for all
1328 * processes, this routine is invoked from the main kdb code via
1329 * an architecture specific routine. kdba_main_loop is
1330 * responsible for making the kernel stacks consistent for all
1331 * processes, there should be no difference between a blocked
1332 * process and a running process as far as kdb is concerned.
1333 * Inputs:
1334 * reason The reason KDB was invoked
1335 * error The hardware-defined error code
1336 * reason2 kdb's current reason code.
1337 * Initially error but can change
1338 * according to kdb state.
1339 * db_result Result code from break or debug point.
1340 * regs The exception frame at time of fault/breakpoint.
1341 * should always be valid.
1342 * Returns:
1343 * 0 KDB was invoked for an event which it wasn't responsible
1344 * 1 KDB handled the event for which it was invoked.
1345 */
1346int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1347 kdb_dbtrap_t db_result, struct pt_regs *regs)
1348{
1349 int result = 1;
1350 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1351 while (1) {
1352 /*
1353 * All processors except the one that is in control
1354 * will spin here.
1355 */
1356 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1357 while (KDB_STATE(HOLD_CPU)) {
1358 /* state KDB is turned off by kdb_cpu to see if the
1359 * other cpus are still live, each cpu in this loop
1360 * turns it back on.
1361 */
1362 if (!KDB_STATE(KDB))
1363 KDB_STATE_SET(KDB);
1364 }
1365
1366 KDB_STATE_CLEAR(SUPPRESS);
1367 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1368 if (KDB_STATE(LEAVING))
1369 break; /* Another cpu said 'go' */
1370 /* Still using kdb, this processor is in control */
1371 result = kdb_local(reason2, error, regs, db_result);
1372 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1373
1374 if (result == KDB_CMD_CPU)
1375 break;
1376
1377 if (result == KDB_CMD_SS) {
1378 KDB_STATE_SET(DOING_SS);
1379 break;
1380 }
1381
1382 if (result == KDB_CMD_SSB) {
1383 KDB_STATE_SET(DOING_SS);
1384 KDB_STATE_SET(DOING_SSB);
1385 break;
1386 }
1387
1388 if (result == KDB_CMD_KGDB) {
1389 if (!KDB_STATE(DOING_KGDB))
1390 kdb_printf("Entering please attach debugger "
1391 "or use $D#44+ or $3#33\n");
1392 break;
1393 }
1394 if (result && result != 1 && result != KDB_CMD_GO)
1395 kdb_printf("\nUnexpected kdb_local return code %d\n",
1396 result);
1397 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1398 break;
1399 }
1400 if (KDB_STATE(DOING_SS))
1401 KDB_STATE_CLEAR(SSBPT);
1402
1403 return result;
1404}
1405
1406/*
1407 * kdb_mdr - This function implements the guts of the 'mdr', memory
1408 * read command.
1409 * mdr <addr arg>,<byte count>
1410 * Inputs:
1411 * addr Start address
1412 * count Number of bytes
1413 * Returns:
1414 * Always 0. Any errors are detected and printed by kdb_getarea.
1415 */
1416static int kdb_mdr(unsigned long addr, unsigned int count)
1417{
1418 unsigned char c;
1419 while (count--) {
1420 if (kdb_getarea(c, addr))
1421 return 0;
1422 kdb_printf("%02x", c);
1423 addr++;
1424 }
1425 kdb_printf("\n");
1426 return 0;
1427}
1428
1429/*
1430 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1431 * 'md8' 'mdr' and 'mds' commands.
1432 *
1433 * md|mds [<addr arg> [<line count> [<radix>]]]
1434 * mdWcN [<addr arg> [<line count> [<radix>]]]
1435 * where W = is the width (1, 2, 4 or 8) and N is the count.
1436 * for eg., md1c20 reads 20 bytes, 1 at a time.
1437 * mdr <addr arg>,<byte count>
1438 */
1439static void kdb_md_line(const char *fmtstr, unsigned long addr,
1440 int symbolic, int nosect, int bytesperword,
1441 int num, int repeat, int phys)
1442{
1443 /* print just one line of data */
1444 kdb_symtab_t symtab;
1445 char cbuf[32];
1446 char *c = cbuf;
1447 int i;
1448 unsigned long word;
1449
1450 memset(cbuf, '\0', sizeof(cbuf));
1451 if (phys)
1452 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1453 else
1454 kdb_printf(kdb_machreg_fmt0 " ", addr);
1455
1456 for (i = 0; i < num && repeat--; i++) {
1457 if (phys) {
1458 if (kdb_getphysword(&word, addr, bytesperword))
1459 break;
1460 } else if (kdb_getword(&word, addr, bytesperword))
1461 break;
1462 kdb_printf(fmtstr, word);
1463 if (symbolic)
1464 kdbnearsym(word, &symtab);
1465 else
1466 memset(&symtab, 0, sizeof(symtab));
1467 if (symtab.sym_name) {
1468 kdb_symbol_print(word, &symtab, 0);
1469 if (!nosect) {
1470 kdb_printf("\n");
1471 kdb_printf(" %s %s "
1472 kdb_machreg_fmt " "
1473 kdb_machreg_fmt " "
1474 kdb_machreg_fmt, symtab.mod_name,
1475 symtab.sec_name, symtab.sec_start,
1476 symtab.sym_start, symtab.sym_end);
1477 }
1478 addr += bytesperword;
1479 } else {
1480 union {
1481 u64 word;
1482 unsigned char c[8];
1483 } wc;
1484 unsigned char *cp;
1485#ifdef __BIG_ENDIAN
1486 cp = wc.c + 8 - bytesperword;
1487#else
1488 cp = wc.c;
1489#endif
1490 wc.word = word;
1491#define printable_char(c) \
1492 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1493 switch (bytesperword) {
1494 case 8:
1495 *c++ = printable_char(*cp++);
1496 *c++ = printable_char(*cp++);
1497 *c++ = printable_char(*cp++);
1498 *c++ = printable_char(*cp++);
1499 addr += 4;
1500 case 4:
1501 *c++ = printable_char(*cp++);
1502 *c++ = printable_char(*cp++);
1503 addr += 2;
1504 case 2:
1505 *c++ = printable_char(*cp++);
1506 addr++;
1507 case 1:
1508 *c++ = printable_char(*cp++);
1509 addr++;
1510 break;
1511 }
1512#undef printable_char
1513 }
1514 }
1515 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1516 " ", cbuf);
1517}
1518
1519static int kdb_md(int argc, const char **argv)
1520{
1521 static unsigned long last_addr;
1522 static int last_radix, last_bytesperword, last_repeat;
1523 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1524 int nosect = 0;
1525 char fmtchar, fmtstr[64];
1526 unsigned long addr;
1527 unsigned long word;
1528 long offset = 0;
1529 int symbolic = 0;
1530 int valid = 0;
1531 int phys = 0;
1532
1533 kdbgetintenv("MDCOUNT", &mdcount);
1534 kdbgetintenv("RADIX", &radix);
1535 kdbgetintenv("BYTESPERWORD", &bytesperword);
1536
1537 /* Assume 'md <addr>' and start with environment values */
1538 repeat = mdcount * 16 / bytesperword;
1539
1540 if (strcmp(argv[0], "mdr") == 0) {
1541 if (argc != 2)
1542 return KDB_ARGCOUNT;
1543 valid = 1;
1544 } else if (isdigit(argv[0][2])) {
1545 bytesperword = (int)(argv[0][2] - '0');
1546 if (bytesperword == 0) {
1547 bytesperword = last_bytesperword;
1548 if (bytesperword == 0)
1549 bytesperword = 4;
1550 }
1551 last_bytesperword = bytesperword;
1552 repeat = mdcount * 16 / bytesperword;
1553 if (!argv[0][3])
1554 valid = 1;
1555 else if (argv[0][3] == 'c' && argv[0][4]) {
1556 char *p;
1557 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1558 mdcount = ((repeat * bytesperword) + 15) / 16;
1559 valid = !*p;
1560 }
1561 last_repeat = repeat;
1562 } else if (strcmp(argv[0], "md") == 0)
1563 valid = 1;
1564 else if (strcmp(argv[0], "mds") == 0)
1565 valid = 1;
1566 else if (strcmp(argv[0], "mdp") == 0) {
1567 phys = valid = 1;
1568 }
1569 if (!valid)
1570 return KDB_NOTFOUND;
1571
1572 if (argc == 0) {
1573 if (last_addr == 0)
1574 return KDB_ARGCOUNT;
1575 addr = last_addr;
1576 radix = last_radix;
1577 bytesperword = last_bytesperword;
1578 repeat = last_repeat;
1579 mdcount = ((repeat * bytesperword) + 15) / 16;
1580 }
1581
1582 if (argc) {
1583 unsigned long val;
1584 int diag, nextarg = 1;
1585 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1586 &offset, NULL);
1587 if (diag)
1588 return diag;
1589 if (argc > nextarg+2)
1590 return KDB_ARGCOUNT;
1591
1592 if (argc >= nextarg) {
1593 diag = kdbgetularg(argv[nextarg], &val);
1594 if (!diag) {
1595 mdcount = (int) val;
1596 repeat = mdcount * 16 / bytesperword;
1597 }
1598 }
1599 if (argc >= nextarg+1) {
1600 diag = kdbgetularg(argv[nextarg+1], &val);
1601 if (!diag)
1602 radix = (int) val;
1603 }
1604 }
1605
1606 if (strcmp(argv[0], "mdr") == 0)
1607 return kdb_mdr(addr, mdcount);
1608
1609 switch (radix) {
1610 case 10:
1611 fmtchar = 'd';
1612 break;
1613 case 16:
1614 fmtchar = 'x';
1615 break;
1616 case 8:
1617 fmtchar = 'o';
1618 break;
1619 default:
1620 return KDB_BADRADIX;
1621 }
1622
1623 last_radix = radix;
1624
1625 if (bytesperword > KDB_WORD_SIZE)
1626 return KDB_BADWIDTH;
1627
1628 switch (bytesperword) {
1629 case 8:
1630 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1631 break;
1632 case 4:
1633 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1634 break;
1635 case 2:
1636 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1637 break;
1638 case 1:
1639 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1640 break;
1641 default:
1642 return KDB_BADWIDTH;
1643 }
1644
1645 last_repeat = repeat;
1646 last_bytesperword = bytesperword;
1647
1648 if (strcmp(argv[0], "mds") == 0) {
1649 symbolic = 1;
1650 /* Do not save these changes as last_*, they are temporary mds
1651 * overrides.
1652 */
1653 bytesperword = KDB_WORD_SIZE;
1654 repeat = mdcount;
1655 kdbgetintenv("NOSECT", &nosect);
1656 }
1657
1658 /* Round address down modulo BYTESPERWORD */
1659
1660 addr &= ~(bytesperword-1);
1661
1662 while (repeat > 0) {
1663 unsigned long a;
1664 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1665
1666 if (KDB_FLAG(CMD_INTERRUPT))
1667 return 0;
1668 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1669 if (phys) {
1670 if (kdb_getphysword(&word, a, bytesperword)
1671 || word)
1672 break;
1673 } else if (kdb_getword(&word, a, bytesperword) || word)
1674 break;
1675 }
1676 n = min(num, repeat);
1677 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1678 num, repeat, phys);
1679 addr += bytesperword * n;
1680 repeat -= n;
1681 z = (z + num - 1) / num;
1682 if (z > 2) {
1683 int s = num * (z-2);
1684 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1685 " zero suppressed\n",
1686 addr, addr + bytesperword * s - 1);
1687 addr += bytesperword * s;
1688 repeat -= s;
1689 }
1690 }
1691 last_addr = addr;
1692
1693 return 0;
1694}
1695
1696/*
1697 * kdb_mm - This function implements the 'mm' command.
1698 * mm address-expression new-value
1699 * Remarks:
1700 * mm works on machine words, mmW works on bytes.
1701 */
1702static int kdb_mm(int argc, const char **argv)
1703{
1704 int diag;
1705 unsigned long addr;
1706 long offset = 0;
1707 unsigned long contents;
1708 int nextarg;
1709 int width;
1710
1711 if (argv[0][2] && !isdigit(argv[0][2]))
1712 return KDB_NOTFOUND;
1713
1714 if (argc < 2)
1715 return KDB_ARGCOUNT;
1716
1717 nextarg = 1;
1718 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1719 if (diag)
1720 return diag;
1721
1722 if (nextarg > argc)
1723 return KDB_ARGCOUNT;
1724 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1725 if (diag)
1726 return diag;
1727
1728 if (nextarg != argc + 1)
1729 return KDB_ARGCOUNT;
1730
1731 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1732 diag = kdb_putword(addr, contents, width);
1733 if (diag)
1734 return diag;
1735
1736 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1737
1738 return 0;
1739}
1740
1741/*
1742 * kdb_go - This function implements the 'go' command.
1743 * go [address-expression]
1744 */
1745static int kdb_go(int argc, const char **argv)
1746{
1747 unsigned long addr;
1748 int diag;
1749 int nextarg;
1750 long offset;
1751
1752 if (raw_smp_processor_id() != kdb_initial_cpu) {
1753 kdb_printf("go must execute on the entry cpu, "
1754 "please use \"cpu %d\" and then execute go\n",
1755 kdb_initial_cpu);
1756 return KDB_BADCPUNUM;
1757 }
1758 if (argc == 1) {
1759 nextarg = 1;
1760 diag = kdbgetaddrarg(argc, argv, &nextarg,
1761 &addr, &offset, NULL);
1762 if (diag)
1763 return diag;
1764 } else if (argc) {
1765 return KDB_ARGCOUNT;
1766 }
1767
1768 diag = KDB_CMD_GO;
1769 if (KDB_FLAG(CATASTROPHIC)) {
1770 kdb_printf("Catastrophic error detected\n");
1771 kdb_printf("kdb_continue_catastrophic=%d, ",
1772 kdb_continue_catastrophic);
1773 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1774 kdb_printf("type go a second time if you really want "
1775 "to continue\n");
1776 return 0;
1777 }
1778 if (kdb_continue_catastrophic == 2) {
1779 kdb_printf("forcing reboot\n");
1780 kdb_reboot(0, NULL);
1781 }
1782 kdb_printf("attempting to continue\n");
1783 }
1784 return diag;
1785}
1786
1787/*
1788 * kdb_rd - This function implements the 'rd' command.
1789 */
1790static int kdb_rd(int argc, const char **argv)
1791{
1792 int len = kdb_check_regs();
1793#if DBG_MAX_REG_NUM > 0
1794 int i;
1795 char *rname;
1796 int rsize;
1797 u64 reg64;
1798 u32 reg32;
1799 u16 reg16;
1800 u8 reg8;
1801
1802 if (len)
1803 return len;
1804
1805 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1806 rsize = dbg_reg_def[i].size * 2;
1807 if (rsize > 16)
1808 rsize = 2;
1809 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1810 len = 0;
1811 kdb_printf("\n");
1812 }
1813 if (len)
1814 len += kdb_printf(" ");
1815 switch(dbg_reg_def[i].size * 8) {
1816 case 8:
1817 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1818 if (!rname)
1819 break;
1820 len += kdb_printf("%s: %02x", rname, reg8);
1821 break;
1822 case 16:
1823 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1824 if (!rname)
1825 break;
1826 len += kdb_printf("%s: %04x", rname, reg16);
1827 break;
1828 case 32:
1829 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1830 if (!rname)
1831 break;
1832 len += kdb_printf("%s: %08x", rname, reg32);
1833 break;
1834 case 64:
1835 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1836 if (!rname)
1837 break;
1838 len += kdb_printf("%s: %016llx", rname, reg64);
1839 break;
1840 default:
1841 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1842 }
1843 }
1844 kdb_printf("\n");
1845#else
1846 if (len)
1847 return len;
1848
1849 kdb_dumpregs(kdb_current_regs);
1850#endif
1851 return 0;
1852}
1853
1854/*
1855 * kdb_rm - This function implements the 'rm' (register modify) command.
1856 * rm register-name new-contents
1857 * Remarks:
1858 * Allows register modification with the same restrictions as gdb
1859 */
1860static int kdb_rm(int argc, const char **argv)
1861{
1862#if DBG_MAX_REG_NUM > 0
1863 int diag;
1864 const char *rname;
1865 int i;
1866 u64 reg64;
1867 u32 reg32;
1868 u16 reg16;
1869 u8 reg8;
1870
1871 if (argc != 2)
1872 return KDB_ARGCOUNT;
1873 /*
1874 * Allow presence or absence of leading '%' symbol.
1875 */
1876 rname = argv[1];
1877 if (*rname == '%')
1878 rname++;
1879
1880 diag = kdbgetu64arg(argv[2], ®64);
1881 if (diag)
1882 return diag;
1883
1884 diag = kdb_check_regs();
1885 if (diag)
1886 return diag;
1887
1888 diag = KDB_BADREG;
1889 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1890 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1891 diag = 0;
1892 break;
1893 }
1894 }
1895 if (!diag) {
1896 switch(dbg_reg_def[i].size * 8) {
1897 case 8:
1898 reg8 = reg64;
1899 dbg_set_reg(i, ®8, kdb_current_regs);
1900 break;
1901 case 16:
1902 reg16 = reg64;
1903 dbg_set_reg(i, ®16, kdb_current_regs);
1904 break;
1905 case 32:
1906 reg32 = reg64;
1907 dbg_set_reg(i, ®32, kdb_current_regs);
1908 break;
1909 case 64:
1910 dbg_set_reg(i, ®64, kdb_current_regs);
1911 break;
1912 }
1913 }
1914 return diag;
1915#else
1916 kdb_printf("ERROR: Register set currently not implemented\n");
1917 return 0;
1918#endif
1919}
1920
1921#if defined(CONFIG_MAGIC_SYSRQ)
1922/*
1923 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1924 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1925 * sr <magic-sysrq-code>
1926 */
1927static int kdb_sr(int argc, const char **argv)
1928{
1929 if (argc != 1)
1930 return KDB_ARGCOUNT;
1931 kdb_trap_printk++;
1932 __handle_sysrq(*argv[1], false);
1933 kdb_trap_printk--;
1934
1935 return 0;
1936}
1937#endif /* CONFIG_MAGIC_SYSRQ */
1938
1939/*
1940 * kdb_ef - This function implements the 'regs' (display exception
1941 * frame) command. This command takes an address and expects to
1942 * find an exception frame at that address, formats and prints
1943 * it.
1944 * regs address-expression
1945 * Remarks:
1946 * Not done yet.
1947 */
1948static int kdb_ef(int argc, const char **argv)
1949{
1950 int diag;
1951 unsigned long addr;
1952 long offset;
1953 int nextarg;
1954
1955 if (argc != 1)
1956 return KDB_ARGCOUNT;
1957
1958 nextarg = 1;
1959 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1960 if (diag)
1961 return diag;
1962 show_regs((struct pt_regs *)addr);
1963 return 0;
1964}
1965
1966#if defined(CONFIG_MODULES)
1967/*
1968 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1969 * currently loaded kernel modules.
1970 * Mostly taken from userland lsmod.
1971 */
1972static int kdb_lsmod(int argc, const char **argv)
1973{
1974 struct module *mod;
1975
1976 if (argc != 0)
1977 return KDB_ARGCOUNT;
1978
1979 kdb_printf("Module Size modstruct Used by\n");
1980 list_for_each_entry(mod, kdb_modules, list) {
1981
1982 kdb_printf("%-20s%8u 0x%p ", mod->name,
1983 mod->core_size, (void *)mod);
1984#ifdef CONFIG_MODULE_UNLOAD
1985 kdb_printf("%4d ", module_refcount(mod));
1986#endif
1987 if (mod->state == MODULE_STATE_GOING)
1988 kdb_printf(" (Unloading)");
1989 else if (mod->state == MODULE_STATE_COMING)
1990 kdb_printf(" (Loading)");
1991 else
1992 kdb_printf(" (Live)");
1993 kdb_printf(" 0x%p", mod->module_core);
1994
1995#ifdef CONFIG_MODULE_UNLOAD
1996 {
1997 struct module_use *use;
1998 kdb_printf(" [ ");
1999 list_for_each_entry(use, &mod->source_list,
2000 source_list)
2001 kdb_printf("%s ", use->target->name);
2002 kdb_printf("]\n");
2003 }
2004#endif
2005 }
2006
2007 return 0;
2008}
2009
2010#endif /* CONFIG_MODULES */
2011
2012/*
2013 * kdb_env - This function implements the 'env' command. Display the
2014 * current environment variables.
2015 */
2016
2017static int kdb_env(int argc, const char **argv)
2018{
2019 int i;
2020
2021 for (i = 0; i < __nenv; i++) {
2022 if (__env[i])
2023 kdb_printf("%s\n", __env[i]);
2024 }
2025
2026 if (KDB_DEBUG(MASK))
2027 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2028
2029 return 0;
2030}
2031
2032#ifdef CONFIG_PRINTK
2033/*
2034 * kdb_dmesg - This function implements the 'dmesg' command to display
2035 * the contents of the syslog buffer.
2036 * dmesg [lines] [adjust]
2037 */
2038static int kdb_dmesg(int argc, const char **argv)
2039{
2040 char *syslog_data[4], *start, *end, c = '\0', *p;
2041 int diag, logging, logsize, lines = 0, adjust = 0, n;
2042
2043 if (argc > 2)
2044 return KDB_ARGCOUNT;
2045 if (argc) {
2046 char *cp;
2047 lines = simple_strtol(argv[1], &cp, 0);
2048 if (*cp)
2049 lines = 0;
2050 if (argc > 1) {
2051 adjust = simple_strtoul(argv[2], &cp, 0);
2052 if (*cp || adjust < 0)
2053 adjust = 0;
2054 }
2055 }
2056
2057 /* disable LOGGING if set */
2058 diag = kdbgetintenv("LOGGING", &logging);
2059 if (!diag && logging) {
2060 const char *setargs[] = { "set", "LOGGING", "0" };
2061 kdb_set(2, setargs);
2062 }
2063
2064 /* syslog_data[0,1] physical start, end+1. syslog_data[2,3]
2065 * logical start, end+1. */
2066 kdb_syslog_data(syslog_data);
2067 if (syslog_data[2] == syslog_data[3])
2068 return 0;
2069 logsize = syslog_data[1] - syslog_data[0];
2070 start = syslog_data[2];
2071 end = syslog_data[3];
2072#define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0])
2073 for (n = 0, p = start; p < end; ++p) {
2074 c = *KDB_WRAP(p);
2075 if (c == '\n')
2076 ++n;
2077 }
2078 if (c != '\n')
2079 ++n;
2080 if (lines < 0) {
2081 if (adjust >= n)
2082 kdb_printf("buffer only contains %d lines, nothing "
2083 "printed\n", n);
2084 else if (adjust - lines >= n)
2085 kdb_printf("buffer only contains %d lines, last %d "
2086 "lines printed\n", n, n - adjust);
2087 if (adjust) {
2088 for (; start < end && adjust; ++start) {
2089 if (*KDB_WRAP(start) == '\n')
2090 --adjust;
2091 }
2092 if (start < end)
2093 ++start;
2094 }
2095 for (p = start; p < end && lines; ++p) {
2096 if (*KDB_WRAP(p) == '\n')
2097 ++lines;
2098 }
2099 end = p;
2100 } else if (lines > 0) {
2101 int skip = n - (adjust + lines);
2102 if (adjust >= n) {
2103 kdb_printf("buffer only contains %d lines, "
2104 "nothing printed\n", n);
2105 skip = n;
2106 } else if (skip < 0) {
2107 lines += skip;
2108 skip = 0;
2109 kdb_printf("buffer only contains %d lines, first "
2110 "%d lines printed\n", n, lines);
2111 }
2112 for (; start < end && skip; ++start) {
2113 if (*KDB_WRAP(start) == '\n')
2114 --skip;
2115 }
2116 for (p = start; p < end && lines; ++p) {
2117 if (*KDB_WRAP(p) == '\n')
2118 --lines;
2119 }
2120 end = p;
2121 }
2122 /* Do a line at a time (max 200 chars) to reduce protocol overhead */
2123 c = '\n';
2124 while (start != end) {
2125 char buf[201];
2126 p = buf;
2127 if (KDB_FLAG(CMD_INTERRUPT))
2128 return 0;
2129 while (start < end && (c = *KDB_WRAP(start)) &&
2130 (p - buf) < sizeof(buf)-1) {
2131 ++start;
2132 *p++ = c;
2133 if (c == '\n')
2134 break;
2135 }
2136 *p = '\0';
2137 kdb_printf("%s", buf);
2138 }
2139 if (c != '\n')
2140 kdb_printf("\n");
2141
2142 return 0;
2143}
2144#endif /* CONFIG_PRINTK */
2145/*
2146 * kdb_cpu - This function implements the 'cpu' command.
2147 * cpu [<cpunum>]
2148 * Returns:
2149 * KDB_CMD_CPU for success, a kdb diagnostic if error
2150 */
2151static void kdb_cpu_status(void)
2152{
2153 int i, start_cpu, first_print = 1;
2154 char state, prev_state = '?';
2155
2156 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2157 kdb_printf("Available cpus: ");
2158 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2159 if (!cpu_online(i)) {
2160 state = 'F'; /* cpu is offline */
2161 } else {
2162 state = ' '; /* cpu is responding to kdb */
2163 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2164 state = 'I'; /* idle task */
2165 }
2166 if (state != prev_state) {
2167 if (prev_state != '?') {
2168 if (!first_print)
2169 kdb_printf(", ");
2170 first_print = 0;
2171 kdb_printf("%d", start_cpu);
2172 if (start_cpu < i-1)
2173 kdb_printf("-%d", i-1);
2174 if (prev_state != ' ')
2175 kdb_printf("(%c)", prev_state);
2176 }
2177 prev_state = state;
2178 start_cpu = i;
2179 }
2180 }
2181 /* print the trailing cpus, ignoring them if they are all offline */
2182 if (prev_state != 'F') {
2183 if (!first_print)
2184 kdb_printf(", ");
2185 kdb_printf("%d", start_cpu);
2186 if (start_cpu < i-1)
2187 kdb_printf("-%d", i-1);
2188 if (prev_state != ' ')
2189 kdb_printf("(%c)", prev_state);
2190 }
2191 kdb_printf("\n");
2192}
2193
2194static int kdb_cpu(int argc, const char **argv)
2195{
2196 unsigned long cpunum;
2197 int diag;
2198
2199 if (argc == 0) {
2200 kdb_cpu_status();
2201 return 0;
2202 }
2203
2204 if (argc != 1)
2205 return KDB_ARGCOUNT;
2206
2207 diag = kdbgetularg(argv[1], &cpunum);
2208 if (diag)
2209 return diag;
2210
2211 /*
2212 * Validate cpunum
2213 */
2214 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2215 return KDB_BADCPUNUM;
2216
2217 dbg_switch_cpu = cpunum;
2218
2219 /*
2220 * Switch to other cpu
2221 */
2222 return KDB_CMD_CPU;
2223}
2224
2225/* The user may not realize that ps/bta with no parameters does not print idle
2226 * or sleeping system daemon processes, so tell them how many were suppressed.
2227 */
2228void kdb_ps_suppressed(void)
2229{
2230 int idle = 0, daemon = 0;
2231 unsigned long mask_I = kdb_task_state_string("I"),
2232 mask_M = kdb_task_state_string("M");
2233 unsigned long cpu;
2234 const struct task_struct *p, *g;
2235 for_each_online_cpu(cpu) {
2236 p = kdb_curr_task(cpu);
2237 if (kdb_task_state(p, mask_I))
2238 ++idle;
2239 }
2240 kdb_do_each_thread(g, p) {
2241 if (kdb_task_state(p, mask_M))
2242 ++daemon;
2243 } kdb_while_each_thread(g, p);
2244 if (idle || daemon) {
2245 if (idle)
2246 kdb_printf("%d idle process%s (state I)%s\n",
2247 idle, idle == 1 ? "" : "es",
2248 daemon ? " and " : "");
2249 if (daemon)
2250 kdb_printf("%d sleeping system daemon (state M) "
2251 "process%s", daemon,
2252 daemon == 1 ? "" : "es");
2253 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2254 }
2255}
2256
2257/*
2258 * kdb_ps - This function implements the 'ps' command which shows a
2259 * list of the active processes.
2260 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2261 */
2262void kdb_ps1(const struct task_struct *p)
2263{
2264 int cpu;
2265 unsigned long tmp;
2266
2267 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2268 return;
2269
2270 cpu = kdb_process_cpu(p);
2271 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2272 (void *)p, p->pid, p->parent->pid,
2273 kdb_task_has_cpu(p), kdb_process_cpu(p),
2274 kdb_task_state_char(p),
2275 (void *)(&p->thread),
2276 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2277 p->comm);
2278 if (kdb_task_has_cpu(p)) {
2279 if (!KDB_TSK(cpu)) {
2280 kdb_printf(" Error: no saved data for this cpu\n");
2281 } else {
2282 if (KDB_TSK(cpu) != p)
2283 kdb_printf(" Error: does not match running "
2284 "process table (0x%p)\n", KDB_TSK(cpu));
2285 }
2286 }
2287}
2288
2289static int kdb_ps(int argc, const char **argv)
2290{
2291 struct task_struct *g, *p;
2292 unsigned long mask, cpu;
2293
2294 if (argc == 0)
2295 kdb_ps_suppressed();
2296 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2297 (int)(2*sizeof(void *))+2, "Task Addr",
2298 (int)(2*sizeof(void *))+2, "Thread");
2299 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2300 /* Run the active tasks first */
2301 for_each_online_cpu(cpu) {
2302 if (KDB_FLAG(CMD_INTERRUPT))
2303 return 0;
2304 p = kdb_curr_task(cpu);
2305 if (kdb_task_state(p, mask))
2306 kdb_ps1(p);
2307 }
2308 kdb_printf("\n");
2309 /* Now the real tasks */
2310 kdb_do_each_thread(g, p) {
2311 if (KDB_FLAG(CMD_INTERRUPT))
2312 return 0;
2313 if (kdb_task_state(p, mask))
2314 kdb_ps1(p);
2315 } kdb_while_each_thread(g, p);
2316
2317 return 0;
2318}
2319
2320/*
2321 * kdb_pid - This function implements the 'pid' command which switches
2322 * the currently active process.
2323 * pid [<pid> | R]
2324 */
2325static int kdb_pid(int argc, const char **argv)
2326{
2327 struct task_struct *p;
2328 unsigned long val;
2329 int diag;
2330
2331 if (argc > 1)
2332 return KDB_ARGCOUNT;
2333
2334 if (argc) {
2335 if (strcmp(argv[1], "R") == 0) {
2336 p = KDB_TSK(kdb_initial_cpu);
2337 } else {
2338 diag = kdbgetularg(argv[1], &val);
2339 if (diag)
2340 return KDB_BADINT;
2341
2342 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2343 if (!p) {
2344 kdb_printf("No task with pid=%d\n", (pid_t)val);
2345 return 0;
2346 }
2347 }
2348 kdb_set_current_task(p);
2349 }
2350 kdb_printf("KDB current process is %s(pid=%d)\n",
2351 kdb_current_task->comm,
2352 kdb_current_task->pid);
2353
2354 return 0;
2355}
2356
2357/*
2358 * kdb_ll - This function implements the 'll' command which follows a
2359 * linked list and executes an arbitrary command for each
2360 * element.
2361 */
2362static int kdb_ll(int argc, const char **argv)
2363{
2364 int diag = 0;
2365 unsigned long addr;
2366 long offset = 0;
2367 unsigned long va;
2368 unsigned long linkoffset;
2369 int nextarg;
2370 const char *command;
2371
2372 if (argc != 3)
2373 return KDB_ARGCOUNT;
2374
2375 nextarg = 1;
2376 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2377 if (diag)
2378 return diag;
2379
2380 diag = kdbgetularg(argv[2], &linkoffset);
2381 if (diag)
2382 return diag;
2383
2384 /*
2385 * Using the starting address as
2386 * the first element in the list, and assuming that
2387 * the list ends with a null pointer.
2388 */
2389
2390 va = addr;
2391 command = kdb_strdup(argv[3], GFP_KDB);
2392 if (!command) {
2393 kdb_printf("%s: cannot duplicate command\n", __func__);
2394 return 0;
2395 }
2396 /* Recursive use of kdb_parse, do not use argv after this point */
2397 argv = NULL;
2398
2399 while (va) {
2400 char buf[80];
2401
2402 if (KDB_FLAG(CMD_INTERRUPT))
2403 goto out;
2404
2405 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2406 diag = kdb_parse(buf);
2407 if (diag)
2408 goto out;
2409
2410 addr = va + linkoffset;
2411 if (kdb_getword(&va, addr, sizeof(va)))
2412 goto out;
2413 }
2414
2415out:
2416 kfree(command);
2417 return diag;
2418}
2419
2420static int kdb_kgdb(int argc, const char **argv)
2421{
2422 return KDB_CMD_KGDB;
2423}
2424
2425/*
2426 * kdb_help - This function implements the 'help' and '?' commands.
2427 */
2428static int kdb_help(int argc, const char **argv)
2429{
2430 kdbtab_t *kt;
2431 int i;
2432
2433 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2434 kdb_printf("-----------------------------"
2435 "-----------------------------\n");
2436 for_each_kdbcmd(kt, i) {
2437 if (kt->cmd_name)
2438 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2439 kt->cmd_usage, kt->cmd_help);
2440 if (KDB_FLAG(CMD_INTERRUPT))
2441 return 0;
2442 }
2443 return 0;
2444}
2445
2446/*
2447 * kdb_kill - This function implements the 'kill' commands.
2448 */
2449static int kdb_kill(int argc, const char **argv)
2450{
2451 long sig, pid;
2452 char *endp;
2453 struct task_struct *p;
2454 struct siginfo info;
2455
2456 if (argc != 2)
2457 return KDB_ARGCOUNT;
2458
2459 sig = simple_strtol(argv[1], &endp, 0);
2460 if (*endp)
2461 return KDB_BADINT;
2462 if (sig >= 0) {
2463 kdb_printf("Invalid signal parameter.<-signal>\n");
2464 return 0;
2465 }
2466 sig = -sig;
2467
2468 pid = simple_strtol(argv[2], &endp, 0);
2469 if (*endp)
2470 return KDB_BADINT;
2471 if (pid <= 0) {
2472 kdb_printf("Process ID must be large than 0.\n");
2473 return 0;
2474 }
2475
2476 /* Find the process. */
2477 p = find_task_by_pid_ns(pid, &init_pid_ns);
2478 if (!p) {
2479 kdb_printf("The specified process isn't found.\n");
2480 return 0;
2481 }
2482 p = p->group_leader;
2483 info.si_signo = sig;
2484 info.si_errno = 0;
2485 info.si_code = SI_USER;
2486 info.si_pid = pid; /* same capabilities as process being signalled */
2487 info.si_uid = 0; /* kdb has root authority */
2488 kdb_send_sig_info(p, &info);
2489 return 0;
2490}
2491
2492struct kdb_tm {
2493 int tm_sec; /* seconds */
2494 int tm_min; /* minutes */
2495 int tm_hour; /* hours */
2496 int tm_mday; /* day of the month */
2497 int tm_mon; /* month */
2498 int tm_year; /* year */
2499};
2500
2501static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2502{
2503 /* This will work from 1970-2099, 2100 is not a leap year */
2504 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2505 31, 30, 31, 30, 31 };
2506 memset(tm, 0, sizeof(*tm));
2507 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2508 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2509 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2510 tm->tm_min = tm->tm_sec / 60 % 60;
2511 tm->tm_hour = tm->tm_sec / 60 / 60;
2512 tm->tm_sec = tm->tm_sec % 60;
2513 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2514 tm->tm_mday %= (4*365+1);
2515 mon_day[1] = 29;
2516 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2517 tm->tm_mday -= mon_day[tm->tm_mon];
2518 if (++tm->tm_mon == 12) {
2519 tm->tm_mon = 0;
2520 ++tm->tm_year;
2521 mon_day[1] = 28;
2522 }
2523 }
2524 ++tm->tm_mday;
2525}
2526
2527/*
2528 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2529 * I cannot call that code directly from kdb, it has an unconditional
2530 * cli()/sti() and calls routines that take locks which can stop the debugger.
2531 */
2532static void kdb_sysinfo(struct sysinfo *val)
2533{
2534 struct timespec uptime;
2535 do_posix_clock_monotonic_gettime(&uptime);
2536 memset(val, 0, sizeof(*val));
2537 val->uptime = uptime.tv_sec;
2538 val->loads[0] = avenrun[0];
2539 val->loads[1] = avenrun[1];
2540 val->loads[2] = avenrun[2];
2541 val->procs = nr_threads-1;
2542 si_meminfo(val);
2543
2544 return;
2545}
2546
2547/*
2548 * kdb_summary - This function implements the 'summary' command.
2549 */
2550static int kdb_summary(int argc, const char **argv)
2551{
2552 struct timespec now;
2553 struct kdb_tm tm;
2554 struct sysinfo val;
2555
2556 if (argc)
2557 return KDB_ARGCOUNT;
2558
2559 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2560 kdb_printf("release %s\n", init_uts_ns.name.release);
2561 kdb_printf("version %s\n", init_uts_ns.name.version);
2562 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2563 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2564 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2565 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2566
2567 now = __current_kernel_time();
2568 kdb_gmtime(&now, &tm);
2569 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2570 "tz_minuteswest %d\n",
2571 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2572 tm.tm_hour, tm.tm_min, tm.tm_sec,
2573 sys_tz.tz_minuteswest);
2574
2575 kdb_sysinfo(&val);
2576 kdb_printf("uptime ");
2577 if (val.uptime > (24*60*60)) {
2578 int days = val.uptime / (24*60*60);
2579 val.uptime %= (24*60*60);
2580 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2581 }
2582 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2583
2584 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2585
2586#define LOAD_INT(x) ((x) >> FSHIFT)
2587#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2588 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2589 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2590 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2591 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2592#undef LOAD_INT
2593#undef LOAD_FRAC
2594 /* Display in kilobytes */
2595#define K(x) ((x) << (PAGE_SHIFT - 10))
2596 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2597 "Buffers: %8lu kB\n",
2598 val.totalram, val.freeram, val.bufferram);
2599 return 0;
2600}
2601
2602/*
2603 * kdb_per_cpu - This function implements the 'per_cpu' command.
2604 */
2605static int kdb_per_cpu(int argc, const char **argv)
2606{
2607 char fmtstr[64];
2608 int cpu, diag, nextarg = 1;
2609 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2610
2611 if (argc < 1 || argc > 3)
2612 return KDB_ARGCOUNT;
2613
2614 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2615 if (diag)
2616 return diag;
2617
2618 if (argc >= 2) {
2619 diag = kdbgetularg(argv[2], &bytesperword);
2620 if (diag)
2621 return diag;
2622 }
2623 if (!bytesperword)
2624 bytesperword = KDB_WORD_SIZE;
2625 else if (bytesperword > KDB_WORD_SIZE)
2626 return KDB_BADWIDTH;
2627 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2628 if (argc >= 3) {
2629 diag = kdbgetularg(argv[3], &whichcpu);
2630 if (diag)
2631 return diag;
2632 if (!cpu_online(whichcpu)) {
2633 kdb_printf("cpu %ld is not online\n", whichcpu);
2634 return KDB_BADCPUNUM;
2635 }
2636 }
2637
2638 /* Most architectures use __per_cpu_offset[cpu], some use
2639 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2640 */
2641#ifdef __per_cpu_offset
2642#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2643#else
2644#ifdef CONFIG_SMP
2645#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2646#else
2647#define KDB_PCU(cpu) 0
2648#endif
2649#endif
2650 for_each_online_cpu(cpu) {
2651 if (KDB_FLAG(CMD_INTERRUPT))
2652 return 0;
2653
2654 if (whichcpu != ~0UL && whichcpu != cpu)
2655 continue;
2656 addr = symaddr + KDB_PCU(cpu);
2657 diag = kdb_getword(&val, addr, bytesperword);
2658 if (diag) {
2659 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2660 "read, diag=%d\n", cpu, addr, diag);
2661 continue;
2662 }
2663 kdb_printf("%5d ", cpu);
2664 kdb_md_line(fmtstr, addr,
2665 bytesperword == KDB_WORD_SIZE,
2666 1, bytesperword, 1, 1, 0);
2667 }
2668#undef KDB_PCU
2669 return 0;
2670}
2671
2672/*
2673 * display help for the use of cmd | grep pattern
2674 */
2675static int kdb_grep_help(int argc, const char **argv)
2676{
2677 kdb_printf("Usage of cmd args | grep pattern:\n");
2678 kdb_printf(" Any command's output may be filtered through an ");
2679 kdb_printf("emulated 'pipe'.\n");
2680 kdb_printf(" 'grep' is just a key word.\n");
2681 kdb_printf(" The pattern may include a very limited set of "
2682 "metacharacters:\n");
2683 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2684 kdb_printf(" And if there are spaces in the pattern, you may "
2685 "quote it:\n");
2686 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2687 " or \"^pat tern$\"\n");
2688 return 0;
2689}
2690
2691/*
2692 * kdb_register_repeat - This function is used to register a kernel
2693 * debugger command.
2694 * Inputs:
2695 * cmd Command name
2696 * func Function to execute the command
2697 * usage A simple usage string showing arguments
2698 * help A simple help string describing command
2699 * repeat Does the command auto repeat on enter?
2700 * Returns:
2701 * zero for success, one if a duplicate command.
2702 */
2703#define kdb_command_extend 50 /* arbitrary */
2704int kdb_register_repeat(char *cmd,
2705 kdb_func_t func,
2706 char *usage,
2707 char *help,
2708 short minlen,
2709 kdb_repeat_t repeat)
2710{
2711 int i;
2712 kdbtab_t *kp;
2713
2714 /*
2715 * Brute force method to determine duplicates
2716 */
2717 for_each_kdbcmd(kp, i) {
2718 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2719 kdb_printf("Duplicate kdb command registered: "
2720 "%s, func %p help %s\n", cmd, func, help);
2721 return 1;
2722 }
2723 }
2724
2725 /*
2726 * Insert command into first available location in table
2727 */
2728 for_each_kdbcmd(kp, i) {
2729 if (kp->cmd_name == NULL)
2730 break;
2731 }
2732
2733 if (i >= kdb_max_commands) {
2734 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2735 kdb_command_extend) * sizeof(*new), GFP_KDB);
2736 if (!new) {
2737 kdb_printf("Could not allocate new kdb_command "
2738 "table\n");
2739 return 1;
2740 }
2741 if (kdb_commands) {
2742 memcpy(new, kdb_commands,
2743 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2744 kfree(kdb_commands);
2745 }
2746 memset(new + kdb_max_commands, 0,
2747 kdb_command_extend * sizeof(*new));
2748 kdb_commands = new;
2749 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2750 kdb_max_commands += kdb_command_extend;
2751 }
2752
2753 kp->cmd_name = cmd;
2754 kp->cmd_func = func;
2755 kp->cmd_usage = usage;
2756 kp->cmd_help = help;
2757 kp->cmd_flags = 0;
2758 kp->cmd_minlen = minlen;
2759 kp->cmd_repeat = repeat;
2760
2761 return 0;
2762}
2763EXPORT_SYMBOL_GPL(kdb_register_repeat);
2764
2765
2766/*
2767 * kdb_register - Compatibility register function for commands that do
2768 * not need to specify a repeat state. Equivalent to
2769 * kdb_register_repeat with KDB_REPEAT_NONE.
2770 * Inputs:
2771 * cmd Command name
2772 * func Function to execute the command
2773 * usage A simple usage string showing arguments
2774 * help A simple help string describing command
2775 * Returns:
2776 * zero for success, one if a duplicate command.
2777 */
2778int kdb_register(char *cmd,
2779 kdb_func_t func,
2780 char *usage,
2781 char *help,
2782 short minlen)
2783{
2784 return kdb_register_repeat(cmd, func, usage, help, minlen,
2785 KDB_REPEAT_NONE);
2786}
2787EXPORT_SYMBOL_GPL(kdb_register);
2788
2789/*
2790 * kdb_unregister - This function is used to unregister a kernel
2791 * debugger command. It is generally called when a module which
2792 * implements kdb commands is unloaded.
2793 * Inputs:
2794 * cmd Command name
2795 * Returns:
2796 * zero for success, one command not registered.
2797 */
2798int kdb_unregister(char *cmd)
2799{
2800 int i;
2801 kdbtab_t *kp;
2802
2803 /*
2804 * find the command.
2805 */
2806 for_each_kdbcmd(kp, i) {
2807 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2808 kp->cmd_name = NULL;
2809 return 0;
2810 }
2811 }
2812
2813 /* Couldn't find it. */
2814 return 1;
2815}
2816EXPORT_SYMBOL_GPL(kdb_unregister);
2817
2818/* Initialize the kdb command table. */
2819static void __init kdb_inittab(void)
2820{
2821 int i;
2822 kdbtab_t *kp;
2823
2824 for_each_kdbcmd(kp, i)
2825 kp->cmd_name = NULL;
2826
2827 kdb_register_repeat("md", kdb_md, "<vaddr>",
2828 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2829 KDB_REPEAT_NO_ARGS);
2830 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2831 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2832 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2833 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2834 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2835 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2836 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2837 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2838 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2839 "Continue Execution", 1, KDB_REPEAT_NONE);
2840 kdb_register_repeat("rd", kdb_rd, "",
2841 "Display Registers", 0, KDB_REPEAT_NONE);
2842 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2843 "Modify Registers", 0, KDB_REPEAT_NONE);
2844 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2845 "Display exception frame", 0, KDB_REPEAT_NONE);
2846 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2847 "Stack traceback", 1, KDB_REPEAT_NONE);
2848 kdb_register_repeat("btp", kdb_bt, "<pid>",
2849 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2850 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2851 "Display stack all processes", 0, KDB_REPEAT_NONE);
2852 kdb_register_repeat("btc", kdb_bt, "",
2853 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2854 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2855 "Backtrace process given its struct task address", 0,
2856 KDB_REPEAT_NONE);
2857 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2858 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2859 kdb_register_repeat("env", kdb_env, "",
2860 "Show environment variables", 0, KDB_REPEAT_NONE);
2861 kdb_register_repeat("set", kdb_set, "",
2862 "Set environment variables", 0, KDB_REPEAT_NONE);
2863 kdb_register_repeat("help", kdb_help, "",
2864 "Display Help Message", 1, KDB_REPEAT_NONE);
2865 kdb_register_repeat("?", kdb_help, "",
2866 "Display Help Message", 0, KDB_REPEAT_NONE);
2867 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2868 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2869 kdb_register_repeat("kgdb", kdb_kgdb, "",
2870 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2871 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2872 "Display active task list", 0, KDB_REPEAT_NONE);
2873 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2874 "Switch to another task", 0, KDB_REPEAT_NONE);
2875 kdb_register_repeat("reboot", kdb_reboot, "",
2876 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2877#if defined(CONFIG_MODULES)
2878 kdb_register_repeat("lsmod", kdb_lsmod, "",
2879 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2880#endif
2881#if defined(CONFIG_MAGIC_SYSRQ)
2882 kdb_register_repeat("sr", kdb_sr, "<key>",
2883 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2884#endif
2885#if defined(CONFIG_PRINTK)
2886 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2887 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2888#endif
2889 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2890 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2891 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2892 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2893 kdb_register_repeat("summary", kdb_summary, "",
2894 "Summarize the system", 4, KDB_REPEAT_NONE);
2895 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2896 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2897 kdb_register_repeat("grephelp", kdb_grep_help, "",
2898 "Display help on | grep", 0, KDB_REPEAT_NONE);
2899}
2900
2901/* Execute any commands defined in kdb_cmds. */
2902static void __init kdb_cmd_init(void)
2903{
2904 int i, diag;
2905 for (i = 0; kdb_cmds[i]; ++i) {
2906 diag = kdb_parse(kdb_cmds[i]);
2907 if (diag)
2908 kdb_printf("kdb command %s failed, kdb diag %d\n",
2909 kdb_cmds[i], diag);
2910 }
2911 if (defcmd_in_progress) {
2912 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2913 kdb_parse("endefcmd");
2914 }
2915}
2916
2917/* Initialize kdb_printf, breakpoint tables and kdb state */
2918void __init kdb_init(int lvl)
2919{
2920 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2921 int i;
2922
2923 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2924 return;
2925 for (i = kdb_init_lvl; i < lvl; i++) {
2926 switch (i) {
2927 case KDB_NOT_INITIALIZED:
2928 kdb_inittab(); /* Initialize Command Table */
2929 kdb_initbptab(); /* Initialize Breakpoints */
2930 break;
2931 case KDB_INIT_EARLY:
2932 kdb_cmd_init(); /* Build kdb_cmds tables */
2933 break;
2934 }
2935 }
2936 kdb_init_lvl = lvl;
2937}