Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sched/loadavg.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sysrq.h>
  25#include <linux/smp.h>
  26#include <linux/utsname.h>
  27#include <linux/vmalloc.h>
  28#include <linux/atomic.h>
 
  29#include <linux/moduleparam.h>
  30#include <linux/mm.h>
  31#include <linux/init.h>
  32#include <linux/kallsyms.h>
  33#include <linux/kgdb.h>
  34#include <linux/kdb.h>
  35#include <linux/notifier.h>
  36#include <linux/interrupt.h>
  37#include <linux/delay.h>
  38#include <linux/nmi.h>
  39#include <linux/time.h>
  40#include <linux/ptrace.h>
  41#include <linux/sysctl.h>
  42#include <linux/cpu.h>
  43#include <linux/kdebug.h>
  44#include <linux/proc_fs.h>
  45#include <linux/uaccess.h>
  46#include <linux/slab.h>
  47#include <linux/security.h>
  48#include "kdb_private.h"
  49
  50#undef	MODULE_PARAM_PREFIX
  51#define	MODULE_PARAM_PREFIX "kdb."
  52
  53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  55
  56char kdb_grep_string[KDB_GREP_STRLEN];
  57int kdb_grepping_flag;
  58EXPORT_SYMBOL(kdb_grepping_flag);
  59int kdb_grep_leading;
  60int kdb_grep_trailing;
  61
  62/*
  63 * Kernel debugger state flags
  64 */
  65unsigned int kdb_flags;
 
  66
  67/*
  68 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  69 * single thread processors through the kernel debugger.
  70 */
  71int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  72int kdb_nextline = 1;
  73int kdb_state;			/* General KDB state */
  74
  75struct task_struct *kdb_current_task;
 
  76struct pt_regs *kdb_current_regs;
  77
  78const char *kdb_diemsg;
  79static int kdb_go_count;
  80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  81static unsigned int kdb_continue_catastrophic =
  82	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  83#else
  84static unsigned int kdb_continue_catastrophic;
  85#endif
  86
  87/* kdb_cmds_head describes the available commands. */
  88static LIST_HEAD(kdb_cmds_head);
 
 
 
 
 
 
 
  89
  90typedef struct _kdbmsg {
  91	int	km_diag;	/* kdb diagnostic */
  92	char	*km_msg;	/* Corresponding message text */
  93} kdbmsg_t;
  94
  95#define KDBMSG(msgnum, text) \
  96	{ KDB_##msgnum, text }
  97
  98static kdbmsg_t kdbmsgs[] = {
  99	KDBMSG(NOTFOUND, "Command Not Found"),
 100	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 101	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 102	       "8 is only allowed on 64 bit systems"),
 103	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 104	KDBMSG(NOTENV, "Cannot find environment variable"),
 105	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 106	KDBMSG(NOTIMP, "Command not implemented"),
 107	KDBMSG(ENVFULL, "Environment full"),
 108	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 109	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 110#ifdef CONFIG_CPU_XSCALE
 111	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 112#else
 113	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 114#endif
 115	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 116	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 117	KDBMSG(BADMODE, "Invalid IDMODE"),
 118	KDBMSG(BADINT, "Illegal numeric value"),
 119	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 120	KDBMSG(BADREG, "Invalid register name"),
 121	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 122	KDBMSG(BADLENGTH, "Invalid length field"),
 123	KDBMSG(NOBP, "No Breakpoint exists"),
 124	KDBMSG(BADADDR, "Invalid address"),
 125	KDBMSG(NOPERM, "Permission denied"),
 126};
 127#undef KDBMSG
 128
 129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 130
 131
 132/*
 133 * Initial environment.   This is all kept static and local to
 134 * this file.   We don't want to rely on the memory allocation
 135 * mechanisms in the kernel, so we use a very limited allocate-only
 136 * heap for new and altered environment variables.  The entire
 137 * environment is limited to a fixed number of entries (add more
 138 * to __env[] if required) and a fixed amount of heap (add more to
 139 * KDB_ENVBUFSIZE if required).
 140 */
 141
 142static char *__env[31] = {
 143#if defined(CONFIG_SMP)
 144	"PROMPT=[%d]kdb> ",
 145#else
 146	"PROMPT=kdb> ",
 147#endif
 148	"MOREPROMPT=more> ",
 149	"RADIX=16",
 150	"MDCOUNT=8",		/* lines of md output */
 151	KDB_PLATFORM_ENV,
 152	"DTABCOUNT=30",
 153	"NOSECT=1",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154};
 155
 156static const int __nenv = ARRAY_SIZE(__env);
 157
 158struct task_struct *kdb_curr_task(int cpu)
 159{
 160	struct task_struct *p = curr_task(cpu);
 161#ifdef	_TIF_MCA_INIT
 162	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 163		p = krp->p;
 164#endif
 165	return p;
 166}
 167
 168/*
 169 * Update the permissions flags (kdb_cmd_enabled) to match the
 170 * current lockdown state.
 171 *
 172 * Within this function the calls to security_locked_down() are "lazy". We
 173 * avoid calling them if the current value of kdb_cmd_enabled already excludes
 174 * flags that might be subject to lockdown. Additionally we deliberately check
 175 * the lockdown flags independently (even though read lockdown implies write
 176 * lockdown) since that results in both simpler code and clearer messages to
 177 * the user on first-time debugger entry.
 178 *
 179 * The permission masks during a read+write lockdown permits the following
 180 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
 181 *
 182 * The INSPECT commands are not blocked during lockdown because they are
 183 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
 184 * forcing them to have no arguments) and lsmod. These commands do expose
 185 * some kernel state but do not allow the developer seated at the console to
 186 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
 187 * given these are allowed for root during lockdown already.
 188 */
 189static void kdb_check_for_lockdown(void)
 190{
 191	const int write_flags = KDB_ENABLE_MEM_WRITE |
 192				KDB_ENABLE_REG_WRITE |
 193				KDB_ENABLE_FLOW_CTRL;
 194	const int read_flags = KDB_ENABLE_MEM_READ |
 195			       KDB_ENABLE_REG_READ;
 196
 197	bool need_to_lockdown_write = false;
 198	bool need_to_lockdown_read = false;
 199
 200	if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
 201		need_to_lockdown_write =
 202			security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
 203
 204	if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
 205		need_to_lockdown_read =
 206			security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
 207
 208	/* De-compose KDB_ENABLE_ALL if required */
 209	if (need_to_lockdown_write || need_to_lockdown_read)
 210		if (kdb_cmd_enabled & KDB_ENABLE_ALL)
 211			kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
 212
 213	if (need_to_lockdown_write)
 214		kdb_cmd_enabled &= ~write_flags;
 215
 216	if (need_to_lockdown_read)
 217		kdb_cmd_enabled &= ~read_flags;
 218}
 219
 220/*
 221 * Check whether the flags of the current command, the permissions of the kdb
 222 * console and the lockdown state allow a command to be run.
 223 */
 224static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 225				   bool no_args)
 226{
 227	/* permissions comes from userspace so needs massaging slightly */
 228	permissions &= KDB_ENABLE_MASK;
 229	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 230
 231	/* some commands change group when launched with no arguments */
 232	if (no_args)
 233		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 234
 235	flags |= KDB_ENABLE_ALL;
 236
 237	return permissions & flags;
 238}
 239
 240/*
 241 * kdbgetenv - This function will return the character string value of
 242 *	an environment variable.
 243 * Parameters:
 244 *	match	A character string representing an environment variable.
 245 * Returns:
 246 *	NULL	No environment variable matches 'match'
 247 *	char*	Pointer to string value of environment variable.
 248 */
 249char *kdbgetenv(const char *match)
 250{
 251	char **ep = __env;
 252	int matchlen = strlen(match);
 253	int i;
 254
 255	for (i = 0; i < __nenv; i++) {
 256		char *e = *ep++;
 257
 258		if (!e)
 259			continue;
 260
 261		if ((strncmp(match, e, matchlen) == 0)
 262		 && ((e[matchlen] == '\0')
 263		   || (e[matchlen] == '='))) {
 264			char *cp = strchr(e, '=');
 265			return cp ? ++cp : "";
 266		}
 267	}
 268	return NULL;
 269}
 270
 271/*
 272 * kdballocenv - This function is used to allocate bytes for
 273 *	environment entries.
 274 * Parameters:
 275 *	bytes	The number of bytes to allocate in the static buffer.
 
 
 276 * Returns:
 277 *	A pointer to the allocated space in the buffer on success.
 278 *	NULL if bytes > size available in the envbuffer.
 279 * Remarks:
 280 *	We use a static environment buffer (envbuffer) to hold the values
 281 *	of dynamically generated environment variables (see kdb_set).  Buffer
 282 *	space once allocated is never free'd, so over time, the amount of space
 283 *	(currently 512 bytes) will be exhausted if env variables are changed
 284 *	frequently.
 285 */
 286static char *kdballocenv(size_t bytes)
 287{
 288#define	KDB_ENVBUFSIZE	512
 289	static char envbuffer[KDB_ENVBUFSIZE];
 290	static int envbufsize;
 291	char *ep = NULL;
 292
 293	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 294		ep = &envbuffer[envbufsize];
 295		envbufsize += bytes;
 296	}
 297	return ep;
 298}
 299
 300/*
 301 * kdbgetulenv - This function will return the value of an unsigned
 302 *	long-valued environment variable.
 303 * Parameters:
 304 *	match	A character string representing a numeric value
 305 * Outputs:
 306 *	*value  the unsigned long representation of the env variable 'match'
 307 * Returns:
 308 *	Zero on success, a kdb diagnostic on failure.
 309 */
 310static int kdbgetulenv(const char *match, unsigned long *value)
 311{
 312	char *ep;
 313
 314	ep = kdbgetenv(match);
 315	if (!ep)
 316		return KDB_NOTENV;
 317	if (strlen(ep) == 0)
 318		return KDB_NOENVVALUE;
 319
 320	*value = simple_strtoul(ep, NULL, 0);
 321
 322	return 0;
 323}
 324
 325/*
 326 * kdbgetintenv - This function will return the value of an
 327 *	integer-valued environment variable.
 328 * Parameters:
 329 *	match	A character string representing an integer-valued env variable
 330 * Outputs:
 331 *	*value  the integer representation of the environment variable 'match'
 332 * Returns:
 333 *	Zero on success, a kdb diagnostic on failure.
 334 */
 335int kdbgetintenv(const char *match, int *value)
 336{
 337	unsigned long val;
 338	int diag;
 339
 340	diag = kdbgetulenv(match, &val);
 341	if (!diag)
 342		*value = (int) val;
 343	return diag;
 344}
 345
 346/*
 347 * kdb_setenv() - Alter an existing environment variable or create a new one.
 348 * @var: Name of the variable
 349 * @val: Value of the variable
 350 *
 351 * Return: Zero on success, a kdb diagnostic on failure.
 352 */
 353static int kdb_setenv(const char *var, const char *val)
 354{
 355	int i;
 356	char *ep;
 357	size_t varlen, vallen;
 358
 359	varlen = strlen(var);
 360	vallen = strlen(val);
 361	ep = kdballocenv(varlen + vallen + 2);
 362	if (ep == (char *)0)
 363		return KDB_ENVBUFFULL;
 364
 365	sprintf(ep, "%s=%s", var, val);
 366
 367	for (i = 0; i < __nenv; i++) {
 368		if (__env[i]
 369		 && ((strncmp(__env[i], var, varlen) == 0)
 370		   && ((__env[i][varlen] == '\0')
 371		    || (__env[i][varlen] == '=')))) {
 372			__env[i] = ep;
 373			return 0;
 374		}
 375	}
 376
 377	/*
 378	 * Wasn't existing variable.  Fit into slot.
 379	 */
 380	for (i = 0; i < __nenv-1; i++) {
 381		if (__env[i] == (char *)0) {
 382			__env[i] = ep;
 383			return 0;
 384		}
 385	}
 386
 387	return KDB_ENVFULL;
 388}
 389
 390/*
 391 * kdb_printenv() - Display the current environment variables.
 392 */
 393static void kdb_printenv(void)
 394{
 395	int i;
 396
 397	for (i = 0; i < __nenv; i++) {
 398		if (__env[i])
 399			kdb_printf("%s\n", __env[i]);
 400	}
 401}
 402
 403/*
 404 * kdbgetularg - This function will convert a numeric string into an
 405 *	unsigned long value.
 406 * Parameters:
 407 *	arg	A character string representing a numeric value
 408 * Outputs:
 409 *	*value  the unsigned long representation of arg.
 410 * Returns:
 411 *	Zero on success, a kdb diagnostic on failure.
 412 */
 413int kdbgetularg(const char *arg, unsigned long *value)
 414{
 415	char *endp;
 416	unsigned long val;
 417
 418	val = simple_strtoul(arg, &endp, 0);
 419
 420	if (endp == arg) {
 421		/*
 422		 * Also try base 16, for us folks too lazy to type the
 423		 * leading 0x...
 424		 */
 425		val = simple_strtoul(arg, &endp, 16);
 426		if (endp == arg)
 427			return KDB_BADINT;
 428	}
 429
 430	*value = val;
 431
 432	return 0;
 433}
 434
 435int kdbgetu64arg(const char *arg, u64 *value)
 436{
 437	char *endp;
 438	u64 val;
 439
 440	val = simple_strtoull(arg, &endp, 0);
 441
 442	if (endp == arg) {
 443
 444		val = simple_strtoull(arg, &endp, 16);
 445		if (endp == arg)
 446			return KDB_BADINT;
 447	}
 448
 449	*value = val;
 450
 451	return 0;
 452}
 453
 454/*
 455 * kdb_set - This function implements the 'set' command.  Alter an
 456 *	existing environment variable or create a new one.
 457 */
 458int kdb_set(int argc, const char **argv)
 459{
 
 
 
 
 460	/*
 461	 * we can be invoked two ways:
 462	 *   set var=value    argv[1]="var", argv[2]="value"
 463	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 464	 * - if the latter, shift 'em down.
 465	 */
 466	if (argc == 3) {
 467		argv[2] = argv[3];
 468		argc--;
 469	}
 470
 471	if (argc != 2)
 472		return KDB_ARGCOUNT;
 473
 474	/*
 475	 * Censor sensitive variables
 476	 */
 477	if (strcmp(argv[1], "PROMPT") == 0 &&
 478	    !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
 479		return KDB_NOPERM;
 480
 481	/*
 482	 * Check for internal variables
 483	 */
 484	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 485		unsigned int debugflags;
 486		char *cp;
 487
 488		debugflags = simple_strtoul(argv[2], &cp, 0);
 489		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 490			kdb_printf("kdb: illegal debug flags '%s'\n",
 491				    argv[2]);
 492			return 0;
 493		}
 494		kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
 
 495			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 496
 497		return 0;
 498	}
 499
 500	/*
 501	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 502	 * name, argv[2] = value.
 503	 */
 504	return kdb_setenv(argv[1], argv[2]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505}
 506
 507static int kdb_check_regs(void)
 508{
 509	if (!kdb_current_regs) {
 510		kdb_printf("No current kdb registers."
 511			   "  You may need to select another task\n");
 512		return KDB_BADREG;
 513	}
 514	return 0;
 515}
 516
 517/*
 518 * kdbgetaddrarg - This function is responsible for parsing an
 519 *	address-expression and returning the value of the expression,
 520 *	symbol name, and offset to the caller.
 521 *
 522 *	The argument may consist of a numeric value (decimal or
 523 *	hexadecimal), a symbol name, a register name (preceded by the
 524 *	percent sign), an environment variable with a numeric value
 525 *	(preceded by a dollar sign) or a simple arithmetic expression
 526 *	consisting of a symbol name, +/-, and a numeric constant value
 527 *	(offset).
 528 * Parameters:
 529 *	argc	- count of arguments in argv
 530 *	argv	- argument vector
 531 *	*nextarg - index to next unparsed argument in argv[]
 532 *	regs	- Register state at time of KDB entry
 533 * Outputs:
 534 *	*value	- receives the value of the address-expression
 535 *	*offset - receives the offset specified, if any
 536 *	*name   - receives the symbol name, if any
 537 *	*nextarg - index to next unparsed argument in argv[]
 538 * Returns:
 539 *	zero is returned on success, a kdb diagnostic code is
 540 *      returned on error.
 541 */
 542int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 543		  unsigned long *value,  long *offset,
 544		  char **name)
 545{
 546	unsigned long addr;
 547	unsigned long off = 0;
 548	int positive;
 549	int diag;
 550	int found = 0;
 551	char *symname;
 552	char symbol = '\0';
 553	char *cp;
 554	kdb_symtab_t symtab;
 555
 556	/*
 557	 * If the enable flags prohibit both arbitrary memory access
 558	 * and flow control then there are no reasonable grounds to
 559	 * provide symbol lookup.
 560	 */
 561	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 562			     kdb_cmd_enabled, false))
 563		return KDB_NOPERM;
 564
 565	/*
 566	 * Process arguments which follow the following syntax:
 567	 *
 568	 *  symbol | numeric-address [+/- numeric-offset]
 569	 *  %register
 570	 *  $environment-variable
 571	 */
 572
 573	if (*nextarg > argc)
 574		return KDB_ARGCOUNT;
 575
 576	symname = (char *)argv[*nextarg];
 577
 578	/*
 579	 * If there is no whitespace between the symbol
 580	 * or address and the '+' or '-' symbols, we
 581	 * remember the character and replace it with a
 582	 * null so the symbol/value can be properly parsed
 583	 */
 584	cp = strpbrk(symname, "+-");
 585	if (cp != NULL) {
 586		symbol = *cp;
 587		*cp++ = '\0';
 588	}
 589
 590	if (symname[0] == '$') {
 591		diag = kdbgetulenv(&symname[1], &addr);
 592		if (diag)
 593			return diag;
 594	} else if (symname[0] == '%') {
 595		diag = kdb_check_regs();
 596		if (diag)
 597			return diag;
 598		/* Implement register values with % at a later time as it is
 599		 * arch optional.
 600		 */
 601		return KDB_NOTIMP;
 602	} else {
 603		found = kdbgetsymval(symname, &symtab);
 604		if (found) {
 605			addr = symtab.sym_start;
 606		} else {
 607			diag = kdbgetularg(argv[*nextarg], &addr);
 608			if (diag)
 609				return diag;
 610		}
 611	}
 612
 613	if (!found)
 614		found = kdbnearsym(addr, &symtab);
 615
 616	(*nextarg)++;
 617
 618	if (name)
 619		*name = symname;
 620	if (value)
 621		*value = addr;
 622	if (offset && name && *name)
 623		*offset = addr - symtab.sym_start;
 624
 625	if ((*nextarg > argc)
 626	 && (symbol == '\0'))
 627		return 0;
 628
 629	/*
 630	 * check for +/- and offset
 631	 */
 632
 633	if (symbol == '\0') {
 634		if ((argv[*nextarg][0] != '+')
 635		 && (argv[*nextarg][0] != '-')) {
 636			/*
 637			 * Not our argument.  Return.
 638			 */
 639			return 0;
 640		} else {
 641			positive = (argv[*nextarg][0] == '+');
 642			(*nextarg)++;
 643		}
 644	} else
 645		positive = (symbol == '+');
 646
 647	/*
 648	 * Now there must be an offset!
 649	 */
 650	if ((*nextarg > argc)
 651	 && (symbol == '\0')) {
 652		return KDB_INVADDRFMT;
 653	}
 654
 655	if (!symbol) {
 656		cp = (char *)argv[*nextarg];
 657		(*nextarg)++;
 658	}
 659
 660	diag = kdbgetularg(cp, &off);
 661	if (diag)
 662		return diag;
 663
 664	if (!positive)
 665		off = -off;
 666
 667	if (offset)
 668		*offset += off;
 669
 670	if (value)
 671		*value += off;
 672
 673	return 0;
 674}
 675
 676static void kdb_cmderror(int diag)
 677{
 678	int i;
 679
 680	if (diag >= 0) {
 681		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 682		return;
 683	}
 684
 685	for (i = 0; i < __nkdb_err; i++) {
 686		if (kdbmsgs[i].km_diag == diag) {
 687			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 688			return;
 689		}
 690	}
 691
 692	kdb_printf("Unknown diag %d\n", -diag);
 693}
 694
 695/*
 696 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 697 *	command which defines one command as a set of other commands,
 698 *	terminated by endefcmd.  kdb_defcmd processes the initial
 699 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 700 *	the following commands until 'endefcmd'.
 701 * Inputs:
 702 *	argc	argument count
 703 *	argv	argument vector
 704 * Returns:
 705 *	zero for success, a kdb diagnostic if error
 706 */
 707struct kdb_macro {
 708	kdbtab_t cmd;			/* Macro command */
 709	struct list_head statements;	/* Associated statement list */
 710};
 711
 712struct kdb_macro_statement {
 713	char *statement;		/* Statement text */
 714	struct list_head list_node;	/* Statement list node */
 715};
 716
 717static struct kdb_macro *kdb_macro;
 718static bool defcmd_in_progress;
 719
 720/* Forward references */
 721static int kdb_exec_defcmd(int argc, const char **argv);
 722
 723static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 724{
 725	struct kdb_macro_statement *kms;
 726
 727	if (!kdb_macro)
 728		return KDB_NOTIMP;
 729
 730	if (strcmp(argv0, "endefcmd") == 0) {
 731		defcmd_in_progress = false;
 732		if (!list_empty(&kdb_macro->statements))
 733			kdb_register(&kdb_macro->cmd);
 
 
 
 
 
 
 
 
 734		return 0;
 735	}
 736
 737	kms = kmalloc(sizeof(*kms), GFP_KDB);
 738	if (!kms) {
 739		kdb_printf("Could not allocate new kdb macro command: %s\n",
 
 740			   cmdstr);
 
 741		return KDB_NOTIMP;
 742	}
 743
 744	kms->statement = kdb_strdup(cmdstr, GFP_KDB);
 745	list_add_tail(&kms->list_node, &kdb_macro->statements);
 746
 747	return 0;
 748}
 749
 750static int kdb_defcmd(int argc, const char **argv)
 751{
 752	kdbtab_t *mp;
 753
 754	if (defcmd_in_progress) {
 755		kdb_printf("kdb: nested defcmd detected, assuming missing "
 756			   "endefcmd\n");
 757		kdb_defcmd2("endefcmd", "endefcmd");
 758	}
 759	if (argc == 0) {
 760		kdbtab_t *kp;
 761		struct kdb_macro *kmp;
 762		struct kdb_macro_statement *kms;
 763
 764		list_for_each_entry(kp, &kdb_cmds_head, list_node) {
 765			if (kp->func == kdb_exec_defcmd) {
 766				kdb_printf("defcmd %s \"%s\" \"%s\"\n",
 767					   kp->name, kp->usage, kp->help);
 768				kmp = container_of(kp, struct kdb_macro, cmd);
 769				list_for_each_entry(kms, &kmp->statements,
 770						    list_node)
 771					kdb_printf("%s", kms->statement);
 772				kdb_printf("endefcmd\n");
 773			}
 774		}
 775		return 0;
 776	}
 777	if (argc != 3)
 778		return KDB_ARGCOUNT;
 779	if (in_dbg_master()) {
 780		kdb_printf("Command only available during kdb_init()\n");
 781		return KDB_NOTIMP;
 782	}
 783	kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
 784	if (!kdb_macro)
 
 785		goto fail_defcmd;
 786
 787	mp = &kdb_macro->cmd;
 788	mp->func = kdb_exec_defcmd;
 789	mp->minlen = 0;
 790	mp->flags = KDB_ENABLE_ALWAYS_SAFE;
 791	mp->name = kdb_strdup(argv[1], GFP_KDB);
 792	if (!mp->name)
 793		goto fail_name;
 794	mp->usage = kdb_strdup(argv[2], GFP_KDB);
 795	if (!mp->usage)
 796		goto fail_usage;
 797	mp->help = kdb_strdup(argv[3], GFP_KDB);
 798	if (!mp->help)
 799		goto fail_help;
 800	if (mp->usage[0] == '"') {
 801		strcpy(mp->usage, argv[2]+1);
 802		mp->usage[strlen(mp->usage)-1] = '\0';
 803	}
 804	if (mp->help[0] == '"') {
 805		strcpy(mp->help, argv[3]+1);
 806		mp->help[strlen(mp->help)-1] = '\0';
 807	}
 808
 809	INIT_LIST_HEAD(&kdb_macro->statements);
 810	defcmd_in_progress = true;
 811	return 0;
 812fail_help:
 813	kfree(mp->usage);
 814fail_usage:
 815	kfree(mp->name);
 816fail_name:
 817	kfree(kdb_macro);
 818fail_defcmd:
 819	kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
 
 820	return KDB_NOTIMP;
 821}
 822
 823/*
 824 * kdb_exec_defcmd - Execute the set of commands associated with this
 825 *	defcmd name.
 826 * Inputs:
 827 *	argc	argument count
 828 *	argv	argument vector
 829 * Returns:
 830 *	zero for success, a kdb diagnostic if error
 831 */
 832static int kdb_exec_defcmd(int argc, const char **argv)
 833{
 834	int ret;
 835	kdbtab_t *kp;
 836	struct kdb_macro *kmp;
 837	struct kdb_macro_statement *kms;
 838
 839	if (argc != 0)
 840		return KDB_ARGCOUNT;
 841
 842	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
 843		if (strcmp(kp->name, argv[0]) == 0)
 844			break;
 845	}
 846	if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
 847		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 848			   argv[0]);
 849		return KDB_NOTIMP;
 850	}
 851	kmp = container_of(kp, struct kdb_macro, cmd);
 852	list_for_each_entry(kms, &kmp->statements, list_node) {
 853		/*
 854		 * Recursive use of kdb_parse, do not use argv after this point.
 855		 */
 856		argv = NULL;
 857		kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
 858		ret = kdb_parse(kms->statement);
 859		if (ret)
 860			return ret;
 861	}
 862	return 0;
 863}
 864
 865/* Command history */
 866#define KDB_CMD_HISTORY_COUNT	32
 867#define CMD_BUFLEN		200	/* kdb_printf: max printline
 868					 * size == 256 */
 869static unsigned int cmd_head, cmd_tail;
 870static unsigned int cmdptr;
 871static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 872static char cmd_cur[CMD_BUFLEN];
 873
 874/*
 875 * The "str" argument may point to something like  | grep xyz
 876 */
 877static void parse_grep(const char *str)
 878{
 879	int	len;
 880	char	*cp = (char *)str, *cp2;
 881
 882	/* sanity check: we should have been called with the \ first */
 883	if (*cp != '|')
 884		return;
 885	cp++;
 886	while (isspace(*cp))
 887		cp++;
 888	if (!str_has_prefix(cp, "grep ")) {
 889		kdb_printf("invalid 'pipe', see grephelp\n");
 890		return;
 891	}
 892	cp += 5;
 893	while (isspace(*cp))
 894		cp++;
 895	cp2 = strchr(cp, '\n');
 896	if (cp2)
 897		*cp2 = '\0'; /* remove the trailing newline */
 898	len = strlen(cp);
 899	if (len == 0) {
 900		kdb_printf("invalid 'pipe', see grephelp\n");
 901		return;
 902	}
 903	/* now cp points to a nonzero length search string */
 904	if (*cp == '"') {
 905		/* allow it be "x y z" by removing the "'s - there must
 906		   be two of them */
 907		cp++;
 908		cp2 = strchr(cp, '"');
 909		if (!cp2) {
 910			kdb_printf("invalid quoted string, see grephelp\n");
 911			return;
 912		}
 913		*cp2 = '\0'; /* end the string where the 2nd " was */
 914	}
 915	kdb_grep_leading = 0;
 916	if (*cp == '^') {
 917		kdb_grep_leading = 1;
 918		cp++;
 919	}
 920	len = strlen(cp);
 921	kdb_grep_trailing = 0;
 922	if (*(cp+len-1) == '$') {
 923		kdb_grep_trailing = 1;
 924		*(cp+len-1) = '\0';
 925	}
 926	len = strlen(cp);
 927	if (!len)
 928		return;
 929	if (len >= KDB_GREP_STRLEN) {
 930		kdb_printf("search string too long\n");
 931		return;
 932	}
 933	strcpy(kdb_grep_string, cp);
 934	kdb_grepping_flag++;
 935	return;
 936}
 937
 938/*
 939 * kdb_parse - Parse the command line, search the command table for a
 940 *	matching command and invoke the command function.  This
 941 *	function may be called recursively, if it is, the second call
 942 *	will overwrite argv and cbuf.  It is the caller's
 943 *	responsibility to save their argv if they recursively call
 944 *	kdb_parse().
 945 * Parameters:
 946 *      cmdstr	The input command line to be parsed.
 947 *	regs	The registers at the time kdb was entered.
 948 * Returns:
 949 *	Zero for success, a kdb diagnostic if failure.
 950 * Remarks:
 951 *	Limited to 20 tokens.
 952 *
 953 *	Real rudimentary tokenization. Basically only whitespace
 954 *	is considered a token delimiter (but special consideration
 955 *	is taken of the '=' sign as used by the 'set' command).
 956 *
 957 *	The algorithm used to tokenize the input string relies on
 958 *	there being at least one whitespace (or otherwise useless)
 959 *	character between tokens as the character immediately following
 960 *	the token is altered in-place to a null-byte to terminate the
 961 *	token string.
 962 */
 963
 964#define MAXARGC	20
 965
 966int kdb_parse(const char *cmdstr)
 967{
 968	static char *argv[MAXARGC];
 969	static int argc;
 970	static char cbuf[CMD_BUFLEN+2];
 971	char *cp;
 972	char *cpp, quoted;
 973	kdbtab_t *tp;
 974	int escaped, ignore_errors = 0, check_grep = 0;
 975
 976	/*
 977	 * First tokenize the command string.
 978	 */
 979	cp = (char *)cmdstr;
 980
 981	if (KDB_FLAG(CMD_INTERRUPT)) {
 982		/* Previous command was interrupted, newline must not
 983		 * repeat the command */
 984		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 985		KDB_STATE_SET(PAGER);
 986		argc = 0;	/* no repeat */
 987	}
 988
 989	if (*cp != '\n' && *cp != '\0') {
 990		argc = 0;
 991		cpp = cbuf;
 992		while (*cp) {
 993			/* skip whitespace */
 994			while (isspace(*cp))
 995				cp++;
 996			if ((*cp == '\0') || (*cp == '\n') ||
 997			    (*cp == '#' && !defcmd_in_progress))
 998				break;
 999			/* special case: check for | grep pattern */
1000			if (*cp == '|') {
1001				check_grep++;
1002				break;
1003			}
1004			if (cpp >= cbuf + CMD_BUFLEN) {
1005				kdb_printf("kdb_parse: command buffer "
1006					   "overflow, command ignored\n%s\n",
1007					   cmdstr);
1008				return KDB_NOTFOUND;
1009			}
1010			if (argc >= MAXARGC - 1) {
1011				kdb_printf("kdb_parse: too many arguments, "
1012					   "command ignored\n%s\n", cmdstr);
1013				return KDB_NOTFOUND;
1014			}
1015			argv[argc++] = cpp;
1016			escaped = 0;
1017			quoted = '\0';
1018			/* Copy to next unquoted and unescaped
1019			 * whitespace or '=' */
1020			while (*cp && *cp != '\n' &&
1021			       (escaped || quoted || !isspace(*cp))) {
1022				if (cpp >= cbuf + CMD_BUFLEN)
1023					break;
1024				if (escaped) {
1025					escaped = 0;
1026					*cpp++ = *cp++;
1027					continue;
1028				}
1029				if (*cp == '\\') {
1030					escaped = 1;
1031					++cp;
1032					continue;
1033				}
1034				if (*cp == quoted)
1035					quoted = '\0';
1036				else if (*cp == '\'' || *cp == '"')
1037					quoted = *cp;
1038				*cpp = *cp++;
1039				if (*cpp == '=' && !quoted)
1040					break;
1041				++cpp;
1042			}
1043			*cpp++ = '\0';	/* Squash a ws or '=' character */
1044		}
1045	}
1046	if (!argc)
1047		return 0;
1048	if (check_grep)
1049		parse_grep(cp);
1050	if (defcmd_in_progress) {
1051		int result = kdb_defcmd2(cmdstr, argv[0]);
1052		if (!defcmd_in_progress) {
1053			argc = 0;	/* avoid repeat on endefcmd */
1054			*(argv[0]) = '\0';
1055		}
1056		return result;
1057	}
1058	if (argv[0][0] == '-' && argv[0][1] &&
1059	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1060		ignore_errors = 1;
1061		++argv[0];
1062	}
1063
1064	list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1065		/*
1066		 * If this command is allowed to be abbreviated,
1067		 * check to see if this is it.
1068		 */
1069		if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1070		    (strncmp(argv[0], tp->name, tp->minlen) == 0))
1071			break;
1072
1073		if (strcmp(argv[0], tp->name) == 0)
1074			break;
 
 
 
 
 
 
 
 
 
 
1075	}
1076
1077	/*
1078	 * If we don't find a command by this name, see if the first
1079	 * few characters of this match any of the known commands.
1080	 * e.g., md1c20 should match md.
1081	 */
1082	if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1083		list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1084			if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
1085				break;
 
 
 
 
 
1086		}
1087	}
1088
1089	if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1090		int result;
1091
1092		if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
1093			return KDB_NOPERM;
1094
1095		KDB_STATE_SET(CMD);
1096		result = (*tp->func)(argc-1, (const char **)argv);
1097		if (result && ignore_errors && result > KDB_CMD_GO)
1098			result = 0;
1099		KDB_STATE_CLEAR(CMD);
1100
1101		if (tp->flags & KDB_REPEAT_WITH_ARGS)
1102			return result;
1103
1104		argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1105		if (argv[argc])
1106			*(argv[argc]) = '\0';
1107		return result;
1108	}
1109
1110	/*
1111	 * If the input with which we were presented does not
1112	 * map to an existing command, attempt to parse it as an
1113	 * address argument and display the result.   Useful for
1114	 * obtaining the address of a variable, or the nearest symbol
1115	 * to an address contained in a register.
1116	 */
1117	{
1118		unsigned long value;
1119		char *name = NULL;
1120		long offset;
1121		int nextarg = 0;
1122
1123		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1124				  &value, &offset, &name)) {
1125			return KDB_NOTFOUND;
1126		}
1127
1128		kdb_printf("%s = ", argv[0]);
1129		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1130		kdb_printf("\n");
1131		return 0;
1132	}
1133}
1134
1135
1136static int handle_ctrl_cmd(char *cmd)
1137{
1138#define CTRL_P	16
1139#define CTRL_N	14
1140
1141	/* initial situation */
1142	if (cmd_head == cmd_tail)
1143		return 0;
1144	switch (*cmd) {
1145	case CTRL_P:
1146		if (cmdptr != cmd_tail)
1147			cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1148				 KDB_CMD_HISTORY_COUNT;
1149		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1150		return 1;
1151	case CTRL_N:
1152		if (cmdptr != cmd_head)
1153			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1154		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1155		return 1;
1156	}
1157	return 0;
1158}
1159
1160/*
1161 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1162 *	the system immediately, or loop for ever on failure.
1163 */
1164static int kdb_reboot(int argc, const char **argv)
1165{
1166	emergency_restart();
1167	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1168	while (1)
1169		cpu_relax();
1170	/* NOTREACHED */
1171	return 0;
1172}
1173
1174static void kdb_dumpregs(struct pt_regs *regs)
1175{
1176	int old_lvl = console_loglevel;
1177	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1178	kdb_trap_printk++;
1179	show_regs(regs);
1180	kdb_trap_printk--;
1181	kdb_printf("\n");
1182	console_loglevel = old_lvl;
1183}
1184
1185static void kdb_set_current_task(struct task_struct *p)
1186{
1187	kdb_current_task = p;
1188
1189	if (kdb_task_has_cpu(p)) {
1190		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1191		return;
1192	}
1193	kdb_current_regs = NULL;
1194}
1195
1196static void drop_newline(char *buf)
1197{
1198	size_t len = strlen(buf);
1199
1200	if (len == 0)
1201		return;
1202	if (*(buf + len - 1) == '\n')
1203		*(buf + len - 1) = '\0';
1204}
1205
1206/*
1207 * kdb_local - The main code for kdb.  This routine is invoked on a
1208 *	specific processor, it is not global.  The main kdb() routine
1209 *	ensures that only one processor at a time is in this routine.
1210 *	This code is called with the real reason code on the first
1211 *	entry to a kdb session, thereafter it is called with reason
1212 *	SWITCH, even if the user goes back to the original cpu.
1213 * Inputs:
1214 *	reason		The reason KDB was invoked
1215 *	error		The hardware-defined error code
1216 *	regs		The exception frame at time of fault/breakpoint.
1217 *	db_result	Result code from the break or debug point.
1218 * Returns:
1219 *	0	KDB was invoked for an event which it wasn't responsible
1220 *	1	KDB handled the event for which it was invoked.
1221 *	KDB_CMD_GO	User typed 'go'.
1222 *	KDB_CMD_CPU	User switched to another cpu.
1223 *	KDB_CMD_SS	Single step.
1224 */
1225static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1226		     kdb_dbtrap_t db_result)
1227{
1228	char *cmdbuf;
1229	int diag;
1230	struct task_struct *kdb_current =
1231		kdb_curr_task(raw_smp_processor_id());
1232
1233	KDB_DEBUG_STATE("kdb_local 1", reason);
1234
1235	kdb_check_for_lockdown();
1236
1237	kdb_go_count = 0;
1238	if (reason == KDB_REASON_DEBUG) {
1239		/* special case below */
1240	} else {
1241		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1242			   kdb_current, kdb_current ? kdb_current->pid : 0);
1243#if defined(CONFIG_SMP)
1244		kdb_printf("on processor %d ", raw_smp_processor_id());
1245#endif
1246	}
1247
1248	switch (reason) {
1249	case KDB_REASON_DEBUG:
1250	{
1251		/*
1252		 * If re-entering kdb after a single step
1253		 * command, don't print the message.
1254		 */
1255		switch (db_result) {
1256		case KDB_DB_BPT:
1257			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1258				   kdb_current, kdb_current->pid);
1259#if defined(CONFIG_SMP)
1260			kdb_printf("on processor %d ", raw_smp_processor_id());
1261#endif
1262			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1263				   instruction_pointer(regs));
1264			break;
1265		case KDB_DB_SS:
1266			break;
1267		case KDB_DB_SSBPT:
1268			KDB_DEBUG_STATE("kdb_local 4", reason);
1269			return 1;	/* kdba_db_trap did the work */
1270		default:
1271			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1272				   db_result);
1273			break;
1274		}
1275
1276	}
1277		break;
1278	case KDB_REASON_ENTER:
1279		if (KDB_STATE(KEYBOARD))
1280			kdb_printf("due to Keyboard Entry\n");
1281		else
1282			kdb_printf("due to KDB_ENTER()\n");
1283		break;
1284	case KDB_REASON_KEYBOARD:
1285		KDB_STATE_SET(KEYBOARD);
1286		kdb_printf("due to Keyboard Entry\n");
1287		break;
1288	case KDB_REASON_ENTER_SLAVE:
1289		/* drop through, slaves only get released via cpu switch */
1290	case KDB_REASON_SWITCH:
1291		kdb_printf("due to cpu switch\n");
1292		break;
1293	case KDB_REASON_OOPS:
1294		kdb_printf("Oops: %s\n", kdb_diemsg);
1295		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1296			   instruction_pointer(regs));
1297		kdb_dumpregs(regs);
1298		break;
1299	case KDB_REASON_SYSTEM_NMI:
1300		kdb_printf("due to System NonMaskable Interrupt\n");
1301		break;
1302	case KDB_REASON_NMI:
1303		kdb_printf("due to NonMaskable Interrupt @ "
1304			   kdb_machreg_fmt "\n",
1305			   instruction_pointer(regs));
1306		break;
1307	case KDB_REASON_SSTEP:
1308	case KDB_REASON_BREAK:
1309		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1310			   reason == KDB_REASON_BREAK ?
1311			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1312		/*
1313		 * Determine if this breakpoint is one that we
1314		 * are interested in.
1315		 */
1316		if (db_result != KDB_DB_BPT) {
1317			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1318				   db_result);
1319			KDB_DEBUG_STATE("kdb_local 6", reason);
1320			return 0;	/* Not for us, dismiss it */
1321		}
1322		break;
1323	case KDB_REASON_RECURSE:
1324		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1325			   instruction_pointer(regs));
1326		break;
1327	default:
1328		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1329		KDB_DEBUG_STATE("kdb_local 8", reason);
1330		return 0;	/* Not for us, dismiss it */
1331	}
1332
1333	while (1) {
1334		/*
1335		 * Initialize pager context.
1336		 */
1337		kdb_nextline = 1;
1338		KDB_STATE_CLEAR(SUPPRESS);
1339		kdb_grepping_flag = 0;
1340		/* ensure the old search does not leak into '/' commands */
1341		kdb_grep_string[0] = '\0';
1342
1343		cmdbuf = cmd_cur;
1344		*cmdbuf = '\0';
1345		*(cmd_hist[cmd_head]) = '\0';
1346
1347do_full_getstr:
1348		/* PROMPT can only be set if we have MEM_READ permission. */
1349		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1350			 raw_smp_processor_id());
 
 
 
 
 
1351
1352		/*
1353		 * Fetch command from keyboard
1354		 */
1355		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1356		if (*cmdbuf != '\n') {
1357			if (*cmdbuf < 32) {
1358				if (cmdptr == cmd_head) {
1359					strscpy(cmd_hist[cmd_head], cmd_cur,
1360						CMD_BUFLEN);
1361					*(cmd_hist[cmd_head] +
1362					  strlen(cmd_hist[cmd_head])-1) = '\0';
1363				}
1364				if (!handle_ctrl_cmd(cmdbuf))
1365					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1366				cmdbuf = cmd_cur;
1367				goto do_full_getstr;
1368			} else {
1369				strscpy(cmd_hist[cmd_head], cmd_cur,
1370					CMD_BUFLEN);
1371			}
1372
1373			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1374			if (cmd_head == cmd_tail)
1375				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1376		}
1377
1378		cmdptr = cmd_head;
1379		diag = kdb_parse(cmdbuf);
1380		if (diag == KDB_NOTFOUND) {
1381			drop_newline(cmdbuf);
1382			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1383			diag = 0;
1384		}
1385		if (diag == KDB_CMD_GO
1386		 || diag == KDB_CMD_CPU
1387		 || diag == KDB_CMD_SS
1388		 || diag == KDB_CMD_KGDB)
1389			break;
1390
1391		if (diag)
1392			kdb_cmderror(diag);
1393	}
1394	KDB_DEBUG_STATE("kdb_local 9", diag);
1395	return diag;
1396}
1397
1398
1399/*
1400 * kdb_print_state - Print the state data for the current processor
1401 *	for debugging.
1402 * Inputs:
1403 *	text		Identifies the debug point
1404 *	value		Any integer value to be printed, e.g. reason code.
1405 */
1406void kdb_print_state(const char *text, int value)
1407{
1408	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1409		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1410		   kdb_state);
1411}
1412
1413/*
1414 * kdb_main_loop - After initial setup and assignment of the
1415 *	controlling cpu, all cpus are in this loop.  One cpu is in
1416 *	control and will issue the kdb prompt, the others will spin
1417 *	until 'go' or cpu switch.
1418 *
1419 *	To get a consistent view of the kernel stacks for all
1420 *	processes, this routine is invoked from the main kdb code via
1421 *	an architecture specific routine.  kdba_main_loop is
1422 *	responsible for making the kernel stacks consistent for all
1423 *	processes, there should be no difference between a blocked
1424 *	process and a running process as far as kdb is concerned.
1425 * Inputs:
1426 *	reason		The reason KDB was invoked
1427 *	error		The hardware-defined error code
1428 *	reason2		kdb's current reason code.
1429 *			Initially error but can change
1430 *			according to kdb state.
1431 *	db_result	Result code from break or debug point.
1432 *	regs		The exception frame at time of fault/breakpoint.
1433 *			should always be valid.
1434 * Returns:
1435 *	0	KDB was invoked for an event which it wasn't responsible
1436 *	1	KDB handled the event for which it was invoked.
1437 */
1438int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1439	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1440{
1441	int result = 1;
1442	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1443	while (1) {
1444		/*
1445		 * All processors except the one that is in control
1446		 * will spin here.
1447		 */
1448		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1449		while (KDB_STATE(HOLD_CPU)) {
1450			/* state KDB is turned off by kdb_cpu to see if the
1451			 * other cpus are still live, each cpu in this loop
1452			 * turns it back on.
1453			 */
1454			if (!KDB_STATE(KDB))
1455				KDB_STATE_SET(KDB);
1456		}
1457
1458		KDB_STATE_CLEAR(SUPPRESS);
1459		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1460		if (KDB_STATE(LEAVING))
1461			break;	/* Another cpu said 'go' */
1462		/* Still using kdb, this processor is in control */
1463		result = kdb_local(reason2, error, regs, db_result);
1464		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1465
1466		if (result == KDB_CMD_CPU)
1467			break;
1468
1469		if (result == KDB_CMD_SS) {
1470			KDB_STATE_SET(DOING_SS);
1471			break;
1472		}
1473
1474		if (result == KDB_CMD_KGDB) {
1475			if (!KDB_STATE(DOING_KGDB))
1476				kdb_printf("Entering please attach debugger "
1477					   "or use $D#44+ or $3#33\n");
1478			break;
1479		}
1480		if (result && result != 1 && result != KDB_CMD_GO)
1481			kdb_printf("\nUnexpected kdb_local return code %d\n",
1482				   result);
1483		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1484		break;
1485	}
1486	if (KDB_STATE(DOING_SS))
1487		KDB_STATE_CLEAR(SSBPT);
1488
1489	/* Clean up any keyboard devices before leaving */
1490	kdb_kbd_cleanup_state();
1491
1492	return result;
1493}
1494
1495/*
1496 * kdb_mdr - This function implements the guts of the 'mdr', memory
1497 * read command.
1498 *	mdr  <addr arg>,<byte count>
1499 * Inputs:
1500 *	addr	Start address
1501 *	count	Number of bytes
1502 * Returns:
1503 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1504 */
1505static int kdb_mdr(unsigned long addr, unsigned int count)
1506{
1507	unsigned char c;
1508	while (count--) {
1509		if (kdb_getarea(c, addr))
1510			return 0;
1511		kdb_printf("%02x", c);
1512		addr++;
1513	}
1514	kdb_printf("\n");
1515	return 0;
1516}
1517
1518/*
1519 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1520 *	'md8' 'mdr' and 'mds' commands.
1521 *
1522 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1523 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1524 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1525 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1526 *	mdr  <addr arg>,<byte count>
1527 */
1528static void kdb_md_line(const char *fmtstr, unsigned long addr,
1529			int symbolic, int nosect, int bytesperword,
1530			int num, int repeat, int phys)
1531{
1532	/* print just one line of data */
1533	kdb_symtab_t symtab;
1534	char cbuf[32];
1535	char *c = cbuf;
1536	int i;
1537	int j;
1538	unsigned long word;
1539
1540	memset(cbuf, '\0', sizeof(cbuf));
1541	if (phys)
1542		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1543	else
1544		kdb_printf(kdb_machreg_fmt0 " ", addr);
1545
1546	for (i = 0; i < num && repeat--; i++) {
1547		if (phys) {
1548			if (kdb_getphysword(&word, addr, bytesperword))
1549				break;
1550		} else if (kdb_getword(&word, addr, bytesperword))
1551			break;
1552		kdb_printf(fmtstr, word);
1553		if (symbolic)
1554			kdbnearsym(word, &symtab);
1555		else
1556			memset(&symtab, 0, sizeof(symtab));
1557		if (symtab.sym_name) {
1558			kdb_symbol_print(word, &symtab, 0);
1559			if (!nosect) {
1560				kdb_printf("\n");
1561				kdb_printf("                       %s %s "
1562					   kdb_machreg_fmt " "
1563					   kdb_machreg_fmt " "
1564					   kdb_machreg_fmt, symtab.mod_name,
1565					   symtab.sec_name, symtab.sec_start,
1566					   symtab.sym_start, symtab.sym_end);
1567			}
1568			addr += bytesperword;
1569		} else {
1570			union {
1571				u64 word;
1572				unsigned char c[8];
1573			} wc;
1574			unsigned char *cp;
1575#ifdef	__BIG_ENDIAN
1576			cp = wc.c + 8 - bytesperword;
1577#else
1578			cp = wc.c;
1579#endif
1580			wc.word = word;
1581#define printable_char(c) \
1582	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1583			for (j = 0; j < bytesperword; j++)
 
1584				*c++ = printable_char(*cp++);
1585			addr += bytesperword;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586#undef printable_char
1587		}
1588	}
1589	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1590		   " ", cbuf);
1591}
1592
1593static int kdb_md(int argc, const char **argv)
1594{
1595	static unsigned long last_addr;
1596	static int last_radix, last_bytesperword, last_repeat;
1597	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1598	int nosect = 0;
1599	char fmtchar, fmtstr[64];
1600	unsigned long addr;
1601	unsigned long word;
1602	long offset = 0;
1603	int symbolic = 0;
1604	int valid = 0;
1605	int phys = 0;
1606	int raw = 0;
1607
1608	kdbgetintenv("MDCOUNT", &mdcount);
1609	kdbgetintenv("RADIX", &radix);
1610	kdbgetintenv("BYTESPERWORD", &bytesperword);
1611
1612	/* Assume 'md <addr>' and start with environment values */
1613	repeat = mdcount * 16 / bytesperword;
1614
1615	if (strcmp(argv[0], "mdr") == 0) {
1616		if (argc == 2 || (argc == 0 && last_addr != 0))
1617			valid = raw = 1;
1618		else
1619			return KDB_ARGCOUNT;
 
1620	} else if (isdigit(argv[0][2])) {
1621		bytesperword = (int)(argv[0][2] - '0');
1622		if (bytesperword == 0) {
1623			bytesperword = last_bytesperword;
1624			if (bytesperword == 0)
1625				bytesperword = 4;
1626		}
1627		last_bytesperword = bytesperword;
1628		repeat = mdcount * 16 / bytesperword;
1629		if (!argv[0][3])
1630			valid = 1;
1631		else if (argv[0][3] == 'c' && argv[0][4]) {
1632			char *p;
1633			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1634			mdcount = ((repeat * bytesperword) + 15) / 16;
1635			valid = !*p;
1636		}
1637		last_repeat = repeat;
1638	} else if (strcmp(argv[0], "md") == 0)
1639		valid = 1;
1640	else if (strcmp(argv[0], "mds") == 0)
1641		valid = 1;
1642	else if (strcmp(argv[0], "mdp") == 0) {
1643		phys = valid = 1;
1644	}
1645	if (!valid)
1646		return KDB_NOTFOUND;
1647
1648	if (argc == 0) {
1649		if (last_addr == 0)
1650			return KDB_ARGCOUNT;
1651		addr = last_addr;
1652		radix = last_radix;
1653		bytesperword = last_bytesperword;
1654		repeat = last_repeat;
1655		if (raw)
1656			mdcount = repeat;
1657		else
1658			mdcount = ((repeat * bytesperword) + 15) / 16;
1659	}
1660
1661	if (argc) {
1662		unsigned long val;
1663		int diag, nextarg = 1;
1664		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1665				     &offset, NULL);
1666		if (diag)
1667			return diag;
1668		if (argc > nextarg+2)
1669			return KDB_ARGCOUNT;
1670
1671		if (argc >= nextarg) {
1672			diag = kdbgetularg(argv[nextarg], &val);
1673			if (!diag) {
1674				mdcount = (int) val;
1675				if (raw)
1676					repeat = mdcount;
1677				else
1678					repeat = mdcount * 16 / bytesperword;
1679			}
1680		}
1681		if (argc >= nextarg+1) {
1682			diag = kdbgetularg(argv[nextarg+1], &val);
1683			if (!diag)
1684				radix = (int) val;
1685		}
1686	}
1687
1688	if (strcmp(argv[0], "mdr") == 0) {
1689		int ret;
1690		last_addr = addr;
1691		ret = kdb_mdr(addr, mdcount);
1692		last_addr += mdcount;
1693		last_repeat = mdcount;
1694		last_bytesperword = bytesperword; // to make REPEAT happy
1695		return ret;
1696	}
1697
1698	switch (radix) {
1699	case 10:
1700		fmtchar = 'd';
1701		break;
1702	case 16:
1703		fmtchar = 'x';
1704		break;
1705	case 8:
1706		fmtchar = 'o';
1707		break;
1708	default:
1709		return KDB_BADRADIX;
1710	}
1711
1712	last_radix = radix;
1713
1714	if (bytesperword > KDB_WORD_SIZE)
1715		return KDB_BADWIDTH;
1716
1717	switch (bytesperword) {
1718	case 8:
1719		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1720		break;
1721	case 4:
1722		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1723		break;
1724	case 2:
1725		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1726		break;
1727	case 1:
1728		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1729		break;
1730	default:
1731		return KDB_BADWIDTH;
1732	}
1733
1734	last_repeat = repeat;
1735	last_bytesperword = bytesperword;
1736
1737	if (strcmp(argv[0], "mds") == 0) {
1738		symbolic = 1;
1739		/* Do not save these changes as last_*, they are temporary mds
1740		 * overrides.
1741		 */
1742		bytesperword = KDB_WORD_SIZE;
1743		repeat = mdcount;
1744		kdbgetintenv("NOSECT", &nosect);
1745	}
1746
1747	/* Round address down modulo BYTESPERWORD */
1748
1749	addr &= ~(bytesperword-1);
1750
1751	while (repeat > 0) {
1752		unsigned long a;
1753		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1754
1755		if (KDB_FLAG(CMD_INTERRUPT))
1756			return 0;
1757		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1758			if (phys) {
1759				if (kdb_getphysword(&word, a, bytesperword)
1760						|| word)
1761					break;
1762			} else if (kdb_getword(&word, a, bytesperword) || word)
1763				break;
1764		}
1765		n = min(num, repeat);
1766		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1767			    num, repeat, phys);
1768		addr += bytesperword * n;
1769		repeat -= n;
1770		z = (z + num - 1) / num;
1771		if (z > 2) {
1772			int s = num * (z-2);
1773			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1774				   " zero suppressed\n",
1775				addr, addr + bytesperword * s - 1);
1776			addr += bytesperword * s;
1777			repeat -= s;
1778		}
1779	}
1780	last_addr = addr;
1781
1782	return 0;
1783}
1784
1785/*
1786 * kdb_mm - This function implements the 'mm' command.
1787 *	mm address-expression new-value
1788 * Remarks:
1789 *	mm works on machine words, mmW works on bytes.
1790 */
1791static int kdb_mm(int argc, const char **argv)
1792{
1793	int diag;
1794	unsigned long addr;
1795	long offset = 0;
1796	unsigned long contents;
1797	int nextarg;
1798	int width;
1799
1800	if (argv[0][2] && !isdigit(argv[0][2]))
1801		return KDB_NOTFOUND;
1802
1803	if (argc < 2)
1804		return KDB_ARGCOUNT;
1805
1806	nextarg = 1;
1807	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1808	if (diag)
1809		return diag;
1810
1811	if (nextarg > argc)
1812		return KDB_ARGCOUNT;
1813	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1814	if (diag)
1815		return diag;
1816
1817	if (nextarg != argc + 1)
1818		return KDB_ARGCOUNT;
1819
1820	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1821	diag = kdb_putword(addr, contents, width);
1822	if (diag)
1823		return diag;
1824
1825	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1826
1827	return 0;
1828}
1829
1830/*
1831 * kdb_go - This function implements the 'go' command.
1832 *	go [address-expression]
1833 */
1834static int kdb_go(int argc, const char **argv)
1835{
1836	unsigned long addr;
1837	int diag;
1838	int nextarg;
1839	long offset;
1840
1841	if (raw_smp_processor_id() != kdb_initial_cpu) {
1842		kdb_printf("go must execute on the entry cpu, "
1843			   "please use \"cpu %d\" and then execute go\n",
1844			   kdb_initial_cpu);
1845		return KDB_BADCPUNUM;
1846	}
1847	if (argc == 1) {
1848		nextarg = 1;
1849		diag = kdbgetaddrarg(argc, argv, &nextarg,
1850				     &addr, &offset, NULL);
1851		if (diag)
1852			return diag;
1853	} else if (argc) {
1854		return KDB_ARGCOUNT;
1855	}
1856
1857	diag = KDB_CMD_GO;
1858	if (KDB_FLAG(CATASTROPHIC)) {
1859		kdb_printf("Catastrophic error detected\n");
1860		kdb_printf("kdb_continue_catastrophic=%d, ",
1861			kdb_continue_catastrophic);
1862		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1863			kdb_printf("type go a second time if you really want "
1864				   "to continue\n");
1865			return 0;
1866		}
1867		if (kdb_continue_catastrophic == 2) {
1868			kdb_printf("forcing reboot\n");
1869			kdb_reboot(0, NULL);
1870		}
1871		kdb_printf("attempting to continue\n");
1872	}
1873	return diag;
1874}
1875
1876/*
1877 * kdb_rd - This function implements the 'rd' command.
1878 */
1879static int kdb_rd(int argc, const char **argv)
1880{
1881	int len = kdb_check_regs();
1882#if DBG_MAX_REG_NUM > 0
1883	int i;
1884	char *rname;
1885	int rsize;
1886	u64 reg64;
1887	u32 reg32;
1888	u16 reg16;
1889	u8 reg8;
1890
1891	if (len)
1892		return len;
1893
1894	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1895		rsize = dbg_reg_def[i].size * 2;
1896		if (rsize > 16)
1897			rsize = 2;
1898		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1899			len = 0;
1900			kdb_printf("\n");
1901		}
1902		if (len)
1903			len += kdb_printf("  ");
1904		switch(dbg_reg_def[i].size * 8) {
1905		case 8:
1906			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1907			if (!rname)
1908				break;
1909			len += kdb_printf("%s: %02x", rname, reg8);
1910			break;
1911		case 16:
1912			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1913			if (!rname)
1914				break;
1915			len += kdb_printf("%s: %04x", rname, reg16);
1916			break;
1917		case 32:
1918			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1919			if (!rname)
1920				break;
1921			len += kdb_printf("%s: %08x", rname, reg32);
1922			break;
1923		case 64:
1924			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1925			if (!rname)
1926				break;
1927			len += kdb_printf("%s: %016llx", rname, reg64);
1928			break;
1929		default:
1930			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1931		}
1932	}
1933	kdb_printf("\n");
1934#else
1935	if (len)
1936		return len;
1937
1938	kdb_dumpregs(kdb_current_regs);
1939#endif
1940	return 0;
1941}
1942
1943/*
1944 * kdb_rm - This function implements the 'rm' (register modify)  command.
1945 *	rm register-name new-contents
1946 * Remarks:
1947 *	Allows register modification with the same restrictions as gdb
1948 */
1949static int kdb_rm(int argc, const char **argv)
1950{
1951#if DBG_MAX_REG_NUM > 0
1952	int diag;
1953	const char *rname;
1954	int i;
1955	u64 reg64;
1956	u32 reg32;
1957	u16 reg16;
1958	u8 reg8;
1959
1960	if (argc != 2)
1961		return KDB_ARGCOUNT;
1962	/*
1963	 * Allow presence or absence of leading '%' symbol.
1964	 */
1965	rname = argv[1];
1966	if (*rname == '%')
1967		rname++;
1968
1969	diag = kdbgetu64arg(argv[2], &reg64);
1970	if (diag)
1971		return diag;
1972
1973	diag = kdb_check_regs();
1974	if (diag)
1975		return diag;
1976
1977	diag = KDB_BADREG;
1978	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1979		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1980			diag = 0;
1981			break;
1982		}
1983	}
1984	if (!diag) {
1985		switch(dbg_reg_def[i].size * 8) {
1986		case 8:
1987			reg8 = reg64;
1988			dbg_set_reg(i, &reg8, kdb_current_regs);
1989			break;
1990		case 16:
1991			reg16 = reg64;
1992			dbg_set_reg(i, &reg16, kdb_current_regs);
1993			break;
1994		case 32:
1995			reg32 = reg64;
1996			dbg_set_reg(i, &reg32, kdb_current_regs);
1997			break;
1998		case 64:
1999			dbg_set_reg(i, &reg64, kdb_current_regs);
2000			break;
2001		}
2002	}
2003	return diag;
2004#else
2005	kdb_printf("ERROR: Register set currently not implemented\n");
2006    return 0;
2007#endif
2008}
2009
2010#if defined(CONFIG_MAGIC_SYSRQ)
2011/*
2012 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
2013 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
2014 *		sr <magic-sysrq-code>
2015 */
2016static int kdb_sr(int argc, const char **argv)
2017{
2018	bool check_mask =
2019	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
2020
2021	if (argc != 1)
2022		return KDB_ARGCOUNT;
2023
2024	kdb_trap_printk++;
2025	__handle_sysrq(*argv[1], check_mask);
2026	kdb_trap_printk--;
2027
2028	return 0;
2029}
2030#endif	/* CONFIG_MAGIC_SYSRQ */
2031
2032/*
2033 * kdb_ef - This function implements the 'regs' (display exception
2034 *	frame) command.  This command takes an address and expects to
2035 *	find an exception frame at that address, formats and prints
2036 *	it.
2037 *		regs address-expression
2038 * Remarks:
2039 *	Not done yet.
2040 */
2041static int kdb_ef(int argc, const char **argv)
2042{
2043	int diag;
2044	unsigned long addr;
2045	long offset;
2046	int nextarg;
2047
2048	if (argc != 1)
2049		return KDB_ARGCOUNT;
2050
2051	nextarg = 1;
2052	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2053	if (diag)
2054		return diag;
2055	show_regs((struct pt_regs *)addr);
2056	return 0;
2057}
2058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2059/*
2060 * kdb_env - This function implements the 'env' command.  Display the
2061 *	current environment variables.
2062 */
2063
2064static int kdb_env(int argc, const char **argv)
2065{
2066	kdb_printenv();
 
 
 
 
 
2067
2068	if (KDB_DEBUG(MASK))
2069		kdb_printf("KDBDEBUG=0x%x\n",
2070			(kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2071
2072	return 0;
2073}
2074
2075#ifdef CONFIG_PRINTK
2076/*
2077 * kdb_dmesg - This function implements the 'dmesg' command to display
2078 *	the contents of the syslog buffer.
2079 *		dmesg [lines] [adjust]
2080 */
2081static int kdb_dmesg(int argc, const char **argv)
2082{
2083	int diag;
2084	int logging;
2085	int lines = 0;
2086	int adjust = 0;
2087	int n = 0;
2088	int skip = 0;
2089	struct kmsg_dump_iter iter;
2090	size_t len;
2091	char buf[201];
2092
2093	if (argc > 2)
2094		return KDB_ARGCOUNT;
2095	if (argc) {
2096		char *cp;
2097		lines = simple_strtol(argv[1], &cp, 0);
2098		if (*cp)
2099			lines = 0;
2100		if (argc > 1) {
2101			adjust = simple_strtoul(argv[2], &cp, 0);
2102			if (*cp || adjust < 0)
2103				adjust = 0;
2104		}
2105	}
2106
2107	/* disable LOGGING if set */
2108	diag = kdbgetintenv("LOGGING", &logging);
2109	if (!diag && logging) {
2110		const char *setargs[] = { "set", "LOGGING", "0" };
2111		kdb_set(2, setargs);
2112	}
2113
2114	kmsg_dump_rewind(&iter);
2115	while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2116		n++;
2117
2118	if (lines < 0) {
2119		if (adjust >= n)
2120			kdb_printf("buffer only contains %d lines, nothing "
2121				   "printed\n", n);
2122		else if (adjust - lines >= n)
2123			kdb_printf("buffer only contains %d lines, last %d "
2124				   "lines printed\n", n, n - adjust);
2125		skip = adjust;
2126		lines = abs(lines);
2127	} else if (lines > 0) {
2128		skip = n - lines - adjust;
2129		lines = abs(lines);
2130		if (adjust >= n) {
2131			kdb_printf("buffer only contains %d lines, "
2132				   "nothing printed\n", n);
2133			skip = n;
2134		} else if (skip < 0) {
2135			lines += skip;
2136			skip = 0;
2137			kdb_printf("buffer only contains %d lines, first "
2138				   "%d lines printed\n", n, lines);
2139		}
2140	} else {
2141		lines = n;
2142	}
2143
2144	if (skip >= n || skip < 0)
2145		return 0;
2146
2147	kmsg_dump_rewind(&iter);
2148	while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2149		if (skip) {
2150			skip--;
2151			continue;
2152		}
2153		if (!lines--)
2154			break;
2155		if (KDB_FLAG(CMD_INTERRUPT))
2156			return 0;
2157
2158		kdb_printf("%.*s\n", (int)len - 1, buf);
2159	}
2160
2161	return 0;
2162}
2163#endif /* CONFIG_PRINTK */
2164
2165/* Make sure we balance enable/disable calls, must disable first. */
2166static atomic_t kdb_nmi_disabled;
2167
2168static int kdb_disable_nmi(int argc, const char *argv[])
2169{
2170	if (atomic_read(&kdb_nmi_disabled))
2171		return 0;
2172	atomic_set(&kdb_nmi_disabled, 1);
2173	arch_kgdb_ops.enable_nmi(0);
2174	return 0;
2175}
2176
2177static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2178{
2179	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2180		return -EINVAL;
2181	arch_kgdb_ops.enable_nmi(1);
2182	return 0;
2183}
2184
2185static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2186	.set = kdb_param_enable_nmi,
2187};
2188module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2189
2190/*
2191 * kdb_cpu - This function implements the 'cpu' command.
2192 *	cpu	[<cpunum>]
2193 * Returns:
2194 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2195 */
2196static void kdb_cpu_status(void)
2197{
2198	int i, start_cpu, first_print = 1;
2199	char state, prev_state = '?';
2200
2201	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2202	kdb_printf("Available cpus: ");
2203	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2204		if (!cpu_online(i)) {
2205			state = 'F';	/* cpu is offline */
2206		} else if (!kgdb_info[i].enter_kgdb) {
2207			state = 'D';	/* cpu is online but unresponsive */
2208		} else {
2209			state = ' ';	/* cpu is responding to kdb */
2210			if (kdb_task_state_char(KDB_TSK(i)) == '-')
2211				state = '-';	/* idle task */
2212		}
2213		if (state != prev_state) {
2214			if (prev_state != '?') {
2215				if (!first_print)
2216					kdb_printf(", ");
2217				first_print = 0;
2218				kdb_printf("%d", start_cpu);
2219				if (start_cpu < i-1)
2220					kdb_printf("-%d", i-1);
2221				if (prev_state != ' ')
2222					kdb_printf("(%c)", prev_state);
2223			}
2224			prev_state = state;
2225			start_cpu = i;
2226		}
2227	}
2228	/* print the trailing cpus, ignoring them if they are all offline */
2229	if (prev_state != 'F') {
2230		if (!first_print)
2231			kdb_printf(", ");
2232		kdb_printf("%d", start_cpu);
2233		if (start_cpu < i-1)
2234			kdb_printf("-%d", i-1);
2235		if (prev_state != ' ')
2236			kdb_printf("(%c)", prev_state);
2237	}
2238	kdb_printf("\n");
2239}
2240
2241static int kdb_cpu(int argc, const char **argv)
2242{
2243	unsigned long cpunum;
2244	int diag;
2245
2246	if (argc == 0) {
2247		kdb_cpu_status();
2248		return 0;
2249	}
2250
2251	if (argc != 1)
2252		return KDB_ARGCOUNT;
2253
2254	diag = kdbgetularg(argv[1], &cpunum);
2255	if (diag)
2256		return diag;
2257
2258	/*
2259	 * Validate cpunum
2260	 */
2261	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2262		return KDB_BADCPUNUM;
2263
2264	dbg_switch_cpu = cpunum;
2265
2266	/*
2267	 * Switch to other cpu
2268	 */
2269	return KDB_CMD_CPU;
2270}
2271
2272/* The user may not realize that ps/bta with no parameters does not print idle
2273 * or sleeping system daemon processes, so tell them how many were suppressed.
2274 */
2275void kdb_ps_suppressed(void)
2276{
2277	int idle = 0, daemon = 0;
 
 
2278	unsigned long cpu;
2279	const struct task_struct *p, *g;
2280	for_each_online_cpu(cpu) {
2281		p = kdb_curr_task(cpu);
2282		if (kdb_task_state(p, "-"))
2283			++idle;
2284	}
2285	for_each_process_thread(g, p) {
2286		if (kdb_task_state(p, "ims"))
2287			++daemon;
2288	}
2289	if (idle || daemon) {
2290		if (idle)
2291			kdb_printf("%d idle process%s (state -)%s\n",
2292				   idle, idle == 1 ? "" : "es",
2293				   daemon ? " and " : "");
2294		if (daemon)
2295			kdb_printf("%d sleeping system daemon (state [ims]) "
2296				   "process%s", daemon,
2297				   daemon == 1 ? "" : "es");
2298		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2299	}
2300}
2301
 
 
 
 
 
2302void kdb_ps1(const struct task_struct *p)
2303{
2304	int cpu;
2305	unsigned long tmp;
2306
2307	if (!p ||
2308	    copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2309		return;
2310
2311	cpu = kdb_process_cpu(p);
2312	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2313		   (void *)p, p->pid, p->parent->pid,
2314		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2315		   kdb_task_state_char(p),
2316		   (void *)(&p->thread),
2317		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2318		   p->comm);
2319	if (kdb_task_has_cpu(p)) {
2320		if (!KDB_TSK(cpu)) {
2321			kdb_printf("  Error: no saved data for this cpu\n");
2322		} else {
2323			if (KDB_TSK(cpu) != p)
2324				kdb_printf("  Error: does not match running "
2325				   "process table (0x%px)\n", KDB_TSK(cpu));
2326		}
2327	}
2328}
2329
2330/*
2331 * kdb_ps - This function implements the 'ps' command which shows a
2332 *	    list of the active processes.
2333 *
2334 * ps [<state_chars>]   Show processes, optionally selecting only those whose
2335 *                      state character is found in <state_chars>.
2336 */
2337static int kdb_ps(int argc, const char **argv)
2338{
2339	struct task_struct *g, *p;
2340	const char *mask;
2341	unsigned long cpu;
2342
2343	if (argc == 0)
2344		kdb_ps_suppressed();
2345	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2346		(int)(2*sizeof(void *))+2, "Task Addr",
2347		(int)(2*sizeof(void *))+2, "Thread");
2348	mask = argc ? argv[1] : kdbgetenv("PS");
2349	/* Run the active tasks first */
2350	for_each_online_cpu(cpu) {
2351		if (KDB_FLAG(CMD_INTERRUPT))
2352			return 0;
2353		p = kdb_curr_task(cpu);
2354		if (kdb_task_state(p, mask))
2355			kdb_ps1(p);
2356	}
2357	kdb_printf("\n");
2358	/* Now the real tasks */
2359	for_each_process_thread(g, p) {
2360		if (KDB_FLAG(CMD_INTERRUPT))
2361			return 0;
2362		if (kdb_task_state(p, mask))
2363			kdb_ps1(p);
2364	}
2365
2366	return 0;
2367}
2368
2369/*
2370 * kdb_pid - This function implements the 'pid' command which switches
2371 *	the currently active process.
2372 *		pid [<pid> | R]
2373 */
2374static int kdb_pid(int argc, const char **argv)
2375{
2376	struct task_struct *p;
2377	unsigned long val;
2378	int diag;
2379
2380	if (argc > 1)
2381		return KDB_ARGCOUNT;
2382
2383	if (argc) {
2384		if (strcmp(argv[1], "R") == 0) {
2385			p = KDB_TSK(kdb_initial_cpu);
2386		} else {
2387			diag = kdbgetularg(argv[1], &val);
2388			if (diag)
2389				return KDB_BADINT;
2390
2391			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2392			if (!p) {
2393				kdb_printf("No task with pid=%d\n", (pid_t)val);
2394				return 0;
2395			}
2396		}
2397		kdb_set_current_task(p);
2398	}
2399	kdb_printf("KDB current process is %s(pid=%d)\n",
2400		   kdb_current_task->comm,
2401		   kdb_current_task->pid);
2402
2403	return 0;
2404}
2405
2406static int kdb_kgdb(int argc, const char **argv)
2407{
2408	return KDB_CMD_KGDB;
2409}
2410
2411/*
2412 * kdb_help - This function implements the 'help' and '?' commands.
2413 */
2414static int kdb_help(int argc, const char **argv)
2415{
2416	kdbtab_t *kt;
 
2417
2418	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2419	kdb_printf("-----------------------------"
2420		   "-----------------------------\n");
2421	list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2422		char *space = "";
2423		if (KDB_FLAG(CMD_INTERRUPT))
2424			return 0;
2425		if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
 
 
2426			continue;
2427		if (strlen(kt->usage) > 20)
2428			space = "\n                                    ";
2429		kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2430			   kt->usage, space, kt->help);
2431	}
2432	return 0;
2433}
2434
2435/*
2436 * kdb_kill - This function implements the 'kill' commands.
2437 */
2438static int kdb_kill(int argc, const char **argv)
2439{
2440	long sig, pid;
2441	char *endp;
2442	struct task_struct *p;
 
2443
2444	if (argc != 2)
2445		return KDB_ARGCOUNT;
2446
2447	sig = simple_strtol(argv[1], &endp, 0);
2448	if (*endp)
2449		return KDB_BADINT;
2450	if ((sig >= 0) || !valid_signal(-sig)) {
2451		kdb_printf("Invalid signal parameter.<-signal>\n");
2452		return 0;
2453	}
2454	sig = -sig;
2455
2456	pid = simple_strtol(argv[2], &endp, 0);
2457	if (*endp)
2458		return KDB_BADINT;
2459	if (pid <= 0) {
2460		kdb_printf("Process ID must be large than 0.\n");
2461		return 0;
2462	}
2463
2464	/* Find the process. */
2465	p = find_task_by_pid_ns(pid, &init_pid_ns);
2466	if (!p) {
2467		kdb_printf("The specified process isn't found.\n");
2468		return 0;
2469	}
2470	p = p->group_leader;
2471	kdb_send_sig(p, sig);
 
 
 
 
 
2472	return 0;
2473}
2474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2475/*
2476 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2477 * I cannot call that code directly from kdb, it has an unconditional
2478 * cli()/sti() and calls routines that take locks which can stop the debugger.
2479 */
2480static void kdb_sysinfo(struct sysinfo *val)
2481{
2482	u64 uptime = ktime_get_mono_fast_ns();
2483
2484	memset(val, 0, sizeof(*val));
2485	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2486	val->loads[0] = avenrun[0];
2487	val->loads[1] = avenrun[1];
2488	val->loads[2] = avenrun[2];
2489	val->procs = nr_threads-1;
2490	si_meminfo(val);
2491
2492	return;
2493}
2494
2495/*
2496 * kdb_summary - This function implements the 'summary' command.
2497 */
2498static int kdb_summary(int argc, const char **argv)
2499{
2500	time64_t now;
 
2501	struct sysinfo val;
2502
2503	if (argc)
2504		return KDB_ARGCOUNT;
2505
2506	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2507	kdb_printf("release    %s\n", init_uts_ns.name.release);
2508	kdb_printf("version    %s\n", init_uts_ns.name.version);
2509	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2510	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2511	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
 
 
 
 
 
 
 
 
 
2512
2513	now = __ktime_get_real_seconds();
2514	kdb_printf("date       %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2515	kdb_sysinfo(&val);
2516	kdb_printf("uptime     ");
2517	if (val.uptime > (24*60*60)) {
2518		int days = val.uptime / (24*60*60);
2519		val.uptime %= (24*60*60);
2520		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2521	}
2522	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2523
 
 
 
 
2524	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2525		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2526		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2527		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2528
 
2529	/* Display in kilobytes */
2530#define K(x) ((x) << (PAGE_SHIFT - 10))
2531	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2532		   "Buffers:        %8lu kB\n",
2533		   K(val.totalram), K(val.freeram), K(val.bufferram));
2534	return 0;
2535}
2536
2537/*
2538 * kdb_per_cpu - This function implements the 'per_cpu' command.
2539 */
2540static int kdb_per_cpu(int argc, const char **argv)
2541{
2542	char fmtstr[64];
2543	int cpu, diag, nextarg = 1;
2544	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2545
2546	if (argc < 1 || argc > 3)
2547		return KDB_ARGCOUNT;
2548
2549	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2550	if (diag)
2551		return diag;
2552
2553	if (argc >= 2) {
2554		diag = kdbgetularg(argv[2], &bytesperword);
2555		if (diag)
2556			return diag;
2557	}
2558	if (!bytesperword)
2559		bytesperword = KDB_WORD_SIZE;
2560	else if (bytesperword > KDB_WORD_SIZE)
2561		return KDB_BADWIDTH;
2562	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2563	if (argc >= 3) {
2564		diag = kdbgetularg(argv[3], &whichcpu);
2565		if (diag)
2566			return diag;
2567		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2568			kdb_printf("cpu %ld is not online\n", whichcpu);
2569			return KDB_BADCPUNUM;
2570		}
2571	}
2572
2573	/* Most architectures use __per_cpu_offset[cpu], some use
2574	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2575	 */
2576#ifdef	__per_cpu_offset
2577#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2578#else
2579#ifdef	CONFIG_SMP
2580#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2581#else
2582#define KDB_PCU(cpu) 0
2583#endif
2584#endif
2585	for_each_online_cpu(cpu) {
2586		if (KDB_FLAG(CMD_INTERRUPT))
2587			return 0;
2588
2589		if (whichcpu != ~0UL && whichcpu != cpu)
2590			continue;
2591		addr = symaddr + KDB_PCU(cpu);
2592		diag = kdb_getword(&val, addr, bytesperword);
2593		if (diag) {
2594			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2595				   "read, diag=%d\n", cpu, addr, diag);
2596			continue;
2597		}
2598		kdb_printf("%5d ", cpu);
2599		kdb_md_line(fmtstr, addr,
2600			bytesperword == KDB_WORD_SIZE,
2601			1, bytesperword, 1, 1, 0);
2602	}
2603#undef KDB_PCU
2604	return 0;
2605}
2606
2607/*
2608 * display help for the use of cmd | grep pattern
2609 */
2610static int kdb_grep_help(int argc, const char **argv)
2611{
2612	kdb_printf("Usage of  cmd args | grep pattern:\n");
2613	kdb_printf("  Any command's output may be filtered through an ");
2614	kdb_printf("emulated 'pipe'.\n");
2615	kdb_printf("  'grep' is just a key word.\n");
2616	kdb_printf("  The pattern may include a very limited set of "
2617		   "metacharacters:\n");
2618	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2619	kdb_printf("  And if there are spaces in the pattern, you may "
2620		   "quote it:\n");
2621	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2622		   " or \"^pat tern$\"\n");
2623	return 0;
2624}
2625
2626/**
2627 * kdb_register() - This function is used to register a kernel debugger
2628 *                  command.
2629 * @cmd: pointer to kdb command
2630 *
2631 * Note that it's the job of the caller to keep the memory for the cmd
2632 * allocated until unregister is called.
 
 
 
 
2633 */
2634int kdb_register(kdbtab_t *cmd)
 
 
 
 
 
 
2635{
 
2636	kdbtab_t *kp;
2637
2638	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2639		if (strcmp(kp->name, cmd->name) == 0) {
2640			kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
2641				   cmd->name, cmd->func, cmd->help);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642			return 1;
2643		}
 
 
 
 
 
 
 
 
 
 
2644	}
2645
2646	list_add_tail(&cmd->list_node, &kdb_cmds_head);
 
 
 
 
 
 
2647	return 0;
2648}
2649EXPORT_SYMBOL_GPL(kdb_register);
 
2650
2651/**
2652 * kdb_register_table() - This function is used to register a kdb command
2653 *                        table.
2654 * @kp: pointer to kdb command table
2655 * @len: length of kdb command table
 
 
 
 
 
 
2656 */
2657void kdb_register_table(kdbtab_t *kp, size_t len)
 
 
 
 
2658{
2659	while (len--) {
2660		list_add_tail(&kp->list_node, &kdb_cmds_head);
2661		kp++;
2662	}
2663}
 
2664
2665/**
2666 * kdb_unregister() - This function is used to unregister a kernel debugger
2667 *                    command. It is generally called when a module which
2668 *                    implements kdb command is unloaded.
2669 * @cmd: pointer to kdb command
 
 
 
2670 */
2671void kdb_unregister(kdbtab_t *cmd)
2672{
2673	list_del(&cmd->list_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2674}
2675EXPORT_SYMBOL_GPL(kdb_unregister);
2676
2677static kdbtab_t maintab[] = {
2678	{	.name = "md",
2679		.func = kdb_md,
2680		.usage = "<vaddr>",
2681		.help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2682		.minlen = 1,
2683		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2684	},
2685	{	.name = "mdr",
2686		.func = kdb_md,
2687		.usage = "<vaddr> <bytes>",
2688		.help = "Display Raw Memory",
2689		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2690	},
2691	{	.name = "mdp",
2692		.func = kdb_md,
2693		.usage = "<paddr> <bytes>",
2694		.help = "Display Physical Memory",
2695		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2696	},
2697	{	.name = "mds",
2698		.func = kdb_md,
2699		.usage = "<vaddr>",
2700		.help = "Display Memory Symbolically",
2701		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2702	},
2703	{	.name = "mm",
2704		.func = kdb_mm,
2705		.usage = "<vaddr> <contents>",
2706		.help = "Modify Memory Contents",
2707		.flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2708	},
2709	{	.name = "go",
2710		.func = kdb_go,
2711		.usage = "[<vaddr>]",
2712		.help = "Continue Execution",
2713		.minlen = 1,
2714		.flags = KDB_ENABLE_REG_WRITE |
2715			     KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2716	},
2717	{	.name = "rd",
2718		.func = kdb_rd,
2719		.usage = "",
2720		.help = "Display Registers",
2721		.flags = KDB_ENABLE_REG_READ,
2722	},
2723	{	.name = "rm",
2724		.func = kdb_rm,
2725		.usage = "<reg> <contents>",
2726		.help = "Modify Registers",
2727		.flags = KDB_ENABLE_REG_WRITE,
2728	},
2729	{	.name = "ef",
2730		.func = kdb_ef,
2731		.usage = "<vaddr>",
2732		.help = "Display exception frame",
2733		.flags = KDB_ENABLE_MEM_READ,
2734	},
2735	{	.name = "bt",
2736		.func = kdb_bt,
2737		.usage = "[<vaddr>]",
2738		.help = "Stack traceback",
2739		.minlen = 1,
2740		.flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2741	},
2742	{	.name = "btp",
2743		.func = kdb_bt,
2744		.usage = "<pid>",
2745		.help = "Display stack for process <pid>",
2746		.flags = KDB_ENABLE_INSPECT,
2747	},
2748	{	.name = "bta",
2749		.func = kdb_bt,
2750		.usage = "[<state_chars>|A]",
2751		.help = "Backtrace all processes whose state matches",
2752		.flags = KDB_ENABLE_INSPECT,
2753	},
2754	{	.name = "btc",
2755		.func = kdb_bt,
2756		.usage = "",
2757		.help = "Backtrace current process on each cpu",
2758		.flags = KDB_ENABLE_INSPECT,
2759	},
2760	{	.name = "btt",
2761		.func = kdb_bt,
2762		.usage = "<vaddr>",
2763		.help = "Backtrace process given its struct task address",
2764		.flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2765	},
2766	{	.name = "env",
2767		.func = kdb_env,
2768		.usage = "",
2769		.help = "Show environment variables",
2770		.flags = KDB_ENABLE_ALWAYS_SAFE,
2771	},
2772	{	.name = "set",
2773		.func = kdb_set,
2774		.usage = "",
2775		.help = "Set environment variables",
2776		.flags = KDB_ENABLE_ALWAYS_SAFE,
2777	},
2778	{	.name = "help",
2779		.func = kdb_help,
2780		.usage = "",
2781		.help = "Display Help Message",
2782		.minlen = 1,
2783		.flags = KDB_ENABLE_ALWAYS_SAFE,
2784	},
2785	{	.name = "?",
2786		.func = kdb_help,
2787		.usage = "",
2788		.help = "Display Help Message",
2789		.flags = KDB_ENABLE_ALWAYS_SAFE,
2790	},
2791	{	.name = "cpu",
2792		.func = kdb_cpu,
2793		.usage = "<cpunum>",
2794		.help = "Switch to new cpu",
2795		.flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2796	},
2797	{	.name = "kgdb",
2798		.func = kdb_kgdb,
2799		.usage = "",
2800		.help = "Enter kgdb mode",
2801		.flags = 0,
2802	},
2803	{	.name = "ps",
2804		.func = kdb_ps,
2805		.usage = "[<state_chars>|A]",
2806		.help = "Display active task list",
2807		.flags = KDB_ENABLE_INSPECT,
2808	},
2809	{	.name = "pid",
2810		.func = kdb_pid,
2811		.usage = "<pidnum>",
2812		.help = "Switch to another task",
2813		.flags = KDB_ENABLE_INSPECT,
2814	},
2815	{	.name = "reboot",
2816		.func = kdb_reboot,
2817		.usage = "",
2818		.help = "Reboot the machine immediately",
2819		.flags = KDB_ENABLE_REBOOT,
2820	},
2821#if defined(CONFIG_MODULES)
2822	{	.name = "lsmod",
2823		.func = kdb_lsmod,
2824		.usage = "",
2825		.help = "List loaded kernel modules",
2826		.flags = KDB_ENABLE_INSPECT,
2827	},
2828#endif
2829#if defined(CONFIG_MAGIC_SYSRQ)
2830	{	.name = "sr",
2831		.func = kdb_sr,
2832		.usage = "<key>",
2833		.help = "Magic SysRq key",
2834		.flags = KDB_ENABLE_ALWAYS_SAFE,
2835	},
2836#endif
2837#if defined(CONFIG_PRINTK)
2838	{	.name = "dmesg",
2839		.func = kdb_dmesg,
2840		.usage = "[lines]",
2841		.help = "Display syslog buffer",
2842		.flags = KDB_ENABLE_ALWAYS_SAFE,
2843	},
2844#endif
2845	{	.name = "defcmd",
2846		.func = kdb_defcmd,
2847		.usage = "name \"usage\" \"help\"",
2848		.help = "Define a set of commands, down to endefcmd",
2849		/*
2850		 * Macros are always safe because when executed each
2851		 * internal command re-enters kdb_parse() and is safety
2852		 * checked individually.
2853		 */
2854		.flags = KDB_ENABLE_ALWAYS_SAFE,
2855	},
2856	{	.name = "kill",
2857		.func = kdb_kill,
2858		.usage = "<-signal> <pid>",
2859		.help = "Send a signal to a process",
2860		.flags = KDB_ENABLE_SIGNAL,
2861	},
2862	{	.name = "summary",
2863		.func = kdb_summary,
2864		.usage = "",
2865		.help = "Summarize the system",
2866		.minlen = 4,
2867		.flags = KDB_ENABLE_ALWAYS_SAFE,
2868	},
2869	{	.name = "per_cpu",
2870		.func = kdb_per_cpu,
2871		.usage = "<sym> [<bytes>] [<cpu>]",
2872		.help = "Display per_cpu variables",
2873		.minlen = 3,
2874		.flags = KDB_ENABLE_MEM_READ,
2875	},
2876	{	.name = "grephelp",
2877		.func = kdb_grep_help,
2878		.usage = "",
2879		.help = "Display help on | grep",
2880		.flags = KDB_ENABLE_ALWAYS_SAFE,
2881	},
2882};
2883
2884static kdbtab_t nmicmd = {
2885	.name = "disable_nmi",
2886	.func = kdb_disable_nmi,
2887	.usage = "",
2888	.help = "Disable NMI entry to KDB",
2889	.flags = KDB_ENABLE_ALWAYS_SAFE,
2890};
2891
2892/* Initialize the kdb command table. */
2893static void __init kdb_inittab(void)
2894{
2895	kdb_register_table(maintab, ARRAY_SIZE(maintab));
2896	if (arch_kgdb_ops.enable_nmi)
2897		kdb_register_table(&nmicmd, 1);
2898}
2899
2900/* Execute any commands defined in kdb_cmds.  */
2901static void __init kdb_cmd_init(void)
2902{
2903	int i, diag;
2904	for (i = 0; kdb_cmds[i]; ++i) {
2905		diag = kdb_parse(kdb_cmds[i]);
2906		if (diag)
2907			kdb_printf("kdb command %s failed, kdb diag %d\n",
2908				kdb_cmds[i], diag);
2909	}
2910	if (defcmd_in_progress) {
2911		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2912		kdb_parse("endefcmd");
2913	}
2914}
2915
2916/* Initialize kdb_printf, breakpoint tables and kdb state */
2917void __init kdb_init(int lvl)
2918{
2919	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2920	int i;
2921
2922	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2923		return;
2924	for (i = kdb_init_lvl; i < lvl; i++) {
2925		switch (i) {
2926		case KDB_NOT_INITIALIZED:
2927			kdb_inittab();		/* Initialize Command Table */
2928			kdb_initbptab();	/* Initialize Breakpoints */
2929			break;
2930		case KDB_INIT_EARLY:
2931			kdb_cmd_init();		/* Build kdb_cmds tables */
2932			break;
2933		}
2934	}
2935	kdb_init_lvl = lvl;
2936}
v4.6
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
 
 
 
  21#include <linux/sysrq.h>
  22#include <linux/smp.h>
  23#include <linux/utsname.h>
  24#include <linux/vmalloc.h>
  25#include <linux/atomic.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/mm.h>
  29#include <linux/init.h>
  30#include <linux/kallsyms.h>
  31#include <linux/kgdb.h>
  32#include <linux/kdb.h>
  33#include <linux/notifier.h>
  34#include <linux/interrupt.h>
  35#include <linux/delay.h>
  36#include <linux/nmi.h>
  37#include <linux/time.h>
  38#include <linux/ptrace.h>
  39#include <linux/sysctl.h>
  40#include <linux/cpu.h>
  41#include <linux/kdebug.h>
  42#include <linux/proc_fs.h>
  43#include <linux/uaccess.h>
  44#include <linux/slab.h>
 
  45#include "kdb_private.h"
  46
  47#undef	MODULE_PARAM_PREFIX
  48#define	MODULE_PARAM_PREFIX "kdb."
  49
  50static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  51module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  52
  53char kdb_grep_string[KDB_GREP_STRLEN];
  54int kdb_grepping_flag;
  55EXPORT_SYMBOL(kdb_grepping_flag);
  56int kdb_grep_leading;
  57int kdb_grep_trailing;
  58
  59/*
  60 * Kernel debugger state flags
  61 */
  62int kdb_flags;
  63atomic_t kdb_event;
  64
  65/*
  66 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  67 * single thread processors through the kernel debugger.
  68 */
  69int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  70int kdb_nextline = 1;
  71int kdb_state;			/* General KDB state */
  72
  73struct task_struct *kdb_current_task;
  74EXPORT_SYMBOL(kdb_current_task);
  75struct pt_regs *kdb_current_regs;
  76
  77const char *kdb_diemsg;
  78static int kdb_go_count;
  79#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  80static unsigned int kdb_continue_catastrophic =
  81	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  82#else
  83static unsigned int kdb_continue_catastrophic;
  84#endif
  85
  86/* kdb_commands describes the available commands. */
  87static kdbtab_t *kdb_commands;
  88#define KDB_BASE_CMD_MAX 50
  89static int kdb_max_commands = KDB_BASE_CMD_MAX;
  90static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  91#define for_each_kdbcmd(cmd, num)					\
  92	for ((cmd) = kdb_base_commands, (num) = 0;			\
  93	     num < kdb_max_commands;					\
  94	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  95
  96typedef struct _kdbmsg {
  97	int	km_diag;	/* kdb diagnostic */
  98	char	*km_msg;	/* Corresponding message text */
  99} kdbmsg_t;
 100
 101#define KDBMSG(msgnum, text) \
 102	{ KDB_##msgnum, text }
 103
 104static kdbmsg_t kdbmsgs[] = {
 105	KDBMSG(NOTFOUND, "Command Not Found"),
 106	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 107	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 108	       "8 is only allowed on 64 bit systems"),
 109	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 110	KDBMSG(NOTENV, "Cannot find environment variable"),
 111	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 112	KDBMSG(NOTIMP, "Command not implemented"),
 113	KDBMSG(ENVFULL, "Environment full"),
 114	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 115	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 116#ifdef CONFIG_CPU_XSCALE
 117	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 118#else
 119	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 120#endif
 121	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 122	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 123	KDBMSG(BADMODE, "Invalid IDMODE"),
 124	KDBMSG(BADINT, "Illegal numeric value"),
 125	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 126	KDBMSG(BADREG, "Invalid register name"),
 127	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 128	KDBMSG(BADLENGTH, "Invalid length field"),
 129	KDBMSG(NOBP, "No Breakpoint exists"),
 130	KDBMSG(BADADDR, "Invalid address"),
 131	KDBMSG(NOPERM, "Permission denied"),
 132};
 133#undef KDBMSG
 134
 135static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 136
 137
 138/*
 139 * Initial environment.   This is all kept static and local to
 140 * this file.   We don't want to rely on the memory allocation
 141 * mechanisms in the kernel, so we use a very limited allocate-only
 142 * heap for new and altered environment variables.  The entire
 143 * environment is limited to a fixed number of entries (add more
 144 * to __env[] if required) and a fixed amount of heap (add more to
 145 * KDB_ENVBUFSIZE if required).
 146 */
 147
 148static char *__env[] = {
 149#if defined(CONFIG_SMP)
 150 "PROMPT=[%d]kdb> ",
 151#else
 152 "PROMPT=kdb> ",
 153#endif
 154 "MOREPROMPT=more> ",
 155 "RADIX=16",
 156 "MDCOUNT=8",			/* lines of md output */
 157 KDB_PLATFORM_ENV,
 158 "DTABCOUNT=30",
 159 "NOSECT=1",
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176 (char *)0,
 177 (char *)0,
 178 (char *)0,
 179 (char *)0,
 180 (char *)0,
 181 (char *)0,
 182 (char *)0,
 183 (char *)0,
 184};
 185
 186static const int __nenv = ARRAY_SIZE(__env);
 187
 188struct task_struct *kdb_curr_task(int cpu)
 189{
 190	struct task_struct *p = curr_task(cpu);
 191#ifdef	_TIF_MCA_INIT
 192	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 193		p = krp->p;
 194#endif
 195	return p;
 196}
 197
 198/*
 199 * Check whether the flags of the current command and the permissions
 200 * of the kdb console has allow a command to be run.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 201 */
 202static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203				   bool no_args)
 204{
 205	/* permissions comes from userspace so needs massaging slightly */
 206	permissions &= KDB_ENABLE_MASK;
 207	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 208
 209	/* some commands change group when launched with no arguments */
 210	if (no_args)
 211		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 212
 213	flags |= KDB_ENABLE_ALL;
 214
 215	return permissions & flags;
 216}
 217
 218/*
 219 * kdbgetenv - This function will return the character string value of
 220 *	an environment variable.
 221 * Parameters:
 222 *	match	A character string representing an environment variable.
 223 * Returns:
 224 *	NULL	No environment variable matches 'match'
 225 *	char*	Pointer to string value of environment variable.
 226 */
 227char *kdbgetenv(const char *match)
 228{
 229	char **ep = __env;
 230	int matchlen = strlen(match);
 231	int i;
 232
 233	for (i = 0; i < __nenv; i++) {
 234		char *e = *ep++;
 235
 236		if (!e)
 237			continue;
 238
 239		if ((strncmp(match, e, matchlen) == 0)
 240		 && ((e[matchlen] == '\0')
 241		   || (e[matchlen] == '='))) {
 242			char *cp = strchr(e, '=');
 243			return cp ? ++cp : "";
 244		}
 245	}
 246	return NULL;
 247}
 248
 249/*
 250 * kdballocenv - This function is used to allocate bytes for
 251 *	environment entries.
 252 * Parameters:
 253 *	match	A character string representing a numeric value
 254 * Outputs:
 255 *	*value  the unsigned long representation of the env variable 'match'
 256 * Returns:
 257 *	Zero on success, a kdb diagnostic on failure.
 
 258 * Remarks:
 259 *	We use a static environment buffer (envbuffer) to hold the values
 260 *	of dynamically generated environment variables (see kdb_set).  Buffer
 261 *	space once allocated is never free'd, so over time, the amount of space
 262 *	(currently 512 bytes) will be exhausted if env variables are changed
 263 *	frequently.
 264 */
 265static char *kdballocenv(size_t bytes)
 266{
 267#define	KDB_ENVBUFSIZE	512
 268	static char envbuffer[KDB_ENVBUFSIZE];
 269	static int envbufsize;
 270	char *ep = NULL;
 271
 272	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 273		ep = &envbuffer[envbufsize];
 274		envbufsize += bytes;
 275	}
 276	return ep;
 277}
 278
 279/*
 280 * kdbgetulenv - This function will return the value of an unsigned
 281 *	long-valued environment variable.
 282 * Parameters:
 283 *	match	A character string representing a numeric value
 284 * Outputs:
 285 *	*value  the unsigned long represntation of the env variable 'match'
 286 * Returns:
 287 *	Zero on success, a kdb diagnostic on failure.
 288 */
 289static int kdbgetulenv(const char *match, unsigned long *value)
 290{
 291	char *ep;
 292
 293	ep = kdbgetenv(match);
 294	if (!ep)
 295		return KDB_NOTENV;
 296	if (strlen(ep) == 0)
 297		return KDB_NOENVVALUE;
 298
 299	*value = simple_strtoul(ep, NULL, 0);
 300
 301	return 0;
 302}
 303
 304/*
 305 * kdbgetintenv - This function will return the value of an
 306 *	integer-valued environment variable.
 307 * Parameters:
 308 *	match	A character string representing an integer-valued env variable
 309 * Outputs:
 310 *	*value  the integer representation of the environment variable 'match'
 311 * Returns:
 312 *	Zero on success, a kdb diagnostic on failure.
 313 */
 314int kdbgetintenv(const char *match, int *value)
 315{
 316	unsigned long val;
 317	int diag;
 318
 319	diag = kdbgetulenv(match, &val);
 320	if (!diag)
 321		*value = (int) val;
 322	return diag;
 323}
 324
 325/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326 * kdbgetularg - This function will convert a numeric string into an
 327 *	unsigned long value.
 328 * Parameters:
 329 *	arg	A character string representing a numeric value
 330 * Outputs:
 331 *	*value  the unsigned long represntation of arg.
 332 * Returns:
 333 *	Zero on success, a kdb diagnostic on failure.
 334 */
 335int kdbgetularg(const char *arg, unsigned long *value)
 336{
 337	char *endp;
 338	unsigned long val;
 339
 340	val = simple_strtoul(arg, &endp, 0);
 341
 342	if (endp == arg) {
 343		/*
 344		 * Also try base 16, for us folks too lazy to type the
 345		 * leading 0x...
 346		 */
 347		val = simple_strtoul(arg, &endp, 16);
 348		if (endp == arg)
 349			return KDB_BADINT;
 350	}
 351
 352	*value = val;
 353
 354	return 0;
 355}
 356
 357int kdbgetu64arg(const char *arg, u64 *value)
 358{
 359	char *endp;
 360	u64 val;
 361
 362	val = simple_strtoull(arg, &endp, 0);
 363
 364	if (endp == arg) {
 365
 366		val = simple_strtoull(arg, &endp, 16);
 367		if (endp == arg)
 368			return KDB_BADINT;
 369	}
 370
 371	*value = val;
 372
 373	return 0;
 374}
 375
 376/*
 377 * kdb_set - This function implements the 'set' command.  Alter an
 378 *	existing environment variable or create a new one.
 379 */
 380int kdb_set(int argc, const char **argv)
 381{
 382	int i;
 383	char *ep;
 384	size_t varlen, vallen;
 385
 386	/*
 387	 * we can be invoked two ways:
 388	 *   set var=value    argv[1]="var", argv[2]="value"
 389	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 390	 * - if the latter, shift 'em down.
 391	 */
 392	if (argc == 3) {
 393		argv[2] = argv[3];
 394		argc--;
 395	}
 396
 397	if (argc != 2)
 398		return KDB_ARGCOUNT;
 399
 400	/*
 
 
 
 
 
 
 
 401	 * Check for internal variables
 402	 */
 403	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 404		unsigned int debugflags;
 405		char *cp;
 406
 407		debugflags = simple_strtoul(argv[2], &cp, 0);
 408		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 409			kdb_printf("kdb: illegal debug flags '%s'\n",
 410				    argv[2]);
 411			return 0;
 412		}
 413		kdb_flags = (kdb_flags &
 414			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 415			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 416
 417		return 0;
 418	}
 419
 420	/*
 421	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 422	 * name, argv[2] = value.
 423	 */
 424	varlen = strlen(argv[1]);
 425	vallen = strlen(argv[2]);
 426	ep = kdballocenv(varlen + vallen + 2);
 427	if (ep == (char *)0)
 428		return KDB_ENVBUFFULL;
 429
 430	sprintf(ep, "%s=%s", argv[1], argv[2]);
 431
 432	ep[varlen+vallen+1] = '\0';
 433
 434	for (i = 0; i < __nenv; i++) {
 435		if (__env[i]
 436		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 437		   && ((__env[i][varlen] == '\0')
 438		    || (__env[i][varlen] == '=')))) {
 439			__env[i] = ep;
 440			return 0;
 441		}
 442	}
 443
 444	/*
 445	 * Wasn't existing variable.  Fit into slot.
 446	 */
 447	for (i = 0; i < __nenv-1; i++) {
 448		if (__env[i] == (char *)0) {
 449			__env[i] = ep;
 450			return 0;
 451		}
 452	}
 453
 454	return KDB_ENVFULL;
 455}
 456
 457static int kdb_check_regs(void)
 458{
 459	if (!kdb_current_regs) {
 460		kdb_printf("No current kdb registers."
 461			   "  You may need to select another task\n");
 462		return KDB_BADREG;
 463	}
 464	return 0;
 465}
 466
 467/*
 468 * kdbgetaddrarg - This function is responsible for parsing an
 469 *	address-expression and returning the value of the expression,
 470 *	symbol name, and offset to the caller.
 471 *
 472 *	The argument may consist of a numeric value (decimal or
 473 *	hexidecimal), a symbol name, a register name (preceded by the
 474 *	percent sign), an environment variable with a numeric value
 475 *	(preceded by a dollar sign) or a simple arithmetic expression
 476 *	consisting of a symbol name, +/-, and a numeric constant value
 477 *	(offset).
 478 * Parameters:
 479 *	argc	- count of arguments in argv
 480 *	argv	- argument vector
 481 *	*nextarg - index to next unparsed argument in argv[]
 482 *	regs	- Register state at time of KDB entry
 483 * Outputs:
 484 *	*value	- receives the value of the address-expression
 485 *	*offset - receives the offset specified, if any
 486 *	*name   - receives the symbol name, if any
 487 *	*nextarg - index to next unparsed argument in argv[]
 488 * Returns:
 489 *	zero is returned on success, a kdb diagnostic code is
 490 *      returned on error.
 491 */
 492int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 493		  unsigned long *value,  long *offset,
 494		  char **name)
 495{
 496	unsigned long addr;
 497	unsigned long off = 0;
 498	int positive;
 499	int diag;
 500	int found = 0;
 501	char *symname;
 502	char symbol = '\0';
 503	char *cp;
 504	kdb_symtab_t symtab;
 505
 506	/*
 507	 * If the enable flags prohibit both arbitrary memory access
 508	 * and flow control then there are no reasonable grounds to
 509	 * provide symbol lookup.
 510	 */
 511	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 512			     kdb_cmd_enabled, false))
 513		return KDB_NOPERM;
 514
 515	/*
 516	 * Process arguments which follow the following syntax:
 517	 *
 518	 *  symbol | numeric-address [+/- numeric-offset]
 519	 *  %register
 520	 *  $environment-variable
 521	 */
 522
 523	if (*nextarg > argc)
 524		return KDB_ARGCOUNT;
 525
 526	symname = (char *)argv[*nextarg];
 527
 528	/*
 529	 * If there is no whitespace between the symbol
 530	 * or address and the '+' or '-' symbols, we
 531	 * remember the character and replace it with a
 532	 * null so the symbol/value can be properly parsed
 533	 */
 534	cp = strpbrk(symname, "+-");
 535	if (cp != NULL) {
 536		symbol = *cp;
 537		*cp++ = '\0';
 538	}
 539
 540	if (symname[0] == '$') {
 541		diag = kdbgetulenv(&symname[1], &addr);
 542		if (diag)
 543			return diag;
 544	} else if (symname[0] == '%') {
 545		diag = kdb_check_regs();
 546		if (diag)
 547			return diag;
 548		/* Implement register values with % at a later time as it is
 549		 * arch optional.
 550		 */
 551		return KDB_NOTIMP;
 552	} else {
 553		found = kdbgetsymval(symname, &symtab);
 554		if (found) {
 555			addr = symtab.sym_start;
 556		} else {
 557			diag = kdbgetularg(argv[*nextarg], &addr);
 558			if (diag)
 559				return diag;
 560		}
 561	}
 562
 563	if (!found)
 564		found = kdbnearsym(addr, &symtab);
 565
 566	(*nextarg)++;
 567
 568	if (name)
 569		*name = symname;
 570	if (value)
 571		*value = addr;
 572	if (offset && name && *name)
 573		*offset = addr - symtab.sym_start;
 574
 575	if ((*nextarg > argc)
 576	 && (symbol == '\0'))
 577		return 0;
 578
 579	/*
 580	 * check for +/- and offset
 581	 */
 582
 583	if (symbol == '\0') {
 584		if ((argv[*nextarg][0] != '+')
 585		 && (argv[*nextarg][0] != '-')) {
 586			/*
 587			 * Not our argument.  Return.
 588			 */
 589			return 0;
 590		} else {
 591			positive = (argv[*nextarg][0] == '+');
 592			(*nextarg)++;
 593		}
 594	} else
 595		positive = (symbol == '+');
 596
 597	/*
 598	 * Now there must be an offset!
 599	 */
 600	if ((*nextarg > argc)
 601	 && (symbol == '\0')) {
 602		return KDB_INVADDRFMT;
 603	}
 604
 605	if (!symbol) {
 606		cp = (char *)argv[*nextarg];
 607		(*nextarg)++;
 608	}
 609
 610	diag = kdbgetularg(cp, &off);
 611	if (diag)
 612		return diag;
 613
 614	if (!positive)
 615		off = -off;
 616
 617	if (offset)
 618		*offset += off;
 619
 620	if (value)
 621		*value += off;
 622
 623	return 0;
 624}
 625
 626static void kdb_cmderror(int diag)
 627{
 628	int i;
 629
 630	if (diag >= 0) {
 631		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 632		return;
 633	}
 634
 635	for (i = 0; i < __nkdb_err; i++) {
 636		if (kdbmsgs[i].km_diag == diag) {
 637			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 638			return;
 639		}
 640	}
 641
 642	kdb_printf("Unknown diag %d\n", -diag);
 643}
 644
 645/*
 646 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 647 *	command which defines one command as a set of other commands,
 648 *	terminated by endefcmd.  kdb_defcmd processes the initial
 649 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 650 *	the following commands until 'endefcmd'.
 651 * Inputs:
 652 *	argc	argument count
 653 *	argv	argument vector
 654 * Returns:
 655 *	zero for success, a kdb diagnostic if error
 656 */
 657struct defcmd_set {
 658	int count;
 659	int usable;
 660	char *name;
 661	char *usage;
 662	char *help;
 663	char **command;
 
 664};
 665static struct defcmd_set *defcmd_set;
 666static int defcmd_set_count;
 667static int defcmd_in_progress;
 668
 669/* Forward references */
 670static int kdb_exec_defcmd(int argc, const char **argv);
 671
 672static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 673{
 674	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 675	char **save_command = s->command;
 
 
 
 676	if (strcmp(argv0, "endefcmd") == 0) {
 677		defcmd_in_progress = 0;
 678		if (!s->count)
 679			s->usable = 0;
 680		if (s->usable)
 681			/* macros are always safe because when executed each
 682			 * internal command re-enters kdb_parse() and is
 683			 * safety checked individually.
 684			 */
 685			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 686					   s->help, 0,
 687					   KDB_ENABLE_ALWAYS_SAFE);
 688		return 0;
 689	}
 690	if (!s->usable)
 691		return KDB_NOTIMP;
 692	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 693	if (!s->command) {
 694		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 695			   cmdstr);
 696		s->usable = 0;
 697		return KDB_NOTIMP;
 698	}
 699	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 700	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 701	kfree(save_command);
 
 702	return 0;
 703}
 704
 705static int kdb_defcmd(int argc, const char **argv)
 706{
 707	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 
 708	if (defcmd_in_progress) {
 709		kdb_printf("kdb: nested defcmd detected, assuming missing "
 710			   "endefcmd\n");
 711		kdb_defcmd2("endefcmd", "endefcmd");
 712	}
 713	if (argc == 0) {
 714		int i;
 715		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 716			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 717				   s->usage, s->help);
 718			for (i = 0; i < s->count; ++i)
 719				kdb_printf("%s", s->command[i]);
 720			kdb_printf("endefcmd\n");
 
 
 
 
 
 
 
 721		}
 722		return 0;
 723	}
 724	if (argc != 3)
 725		return KDB_ARGCOUNT;
 726	if (in_dbg_master()) {
 727		kdb_printf("Command only available during kdb_init()\n");
 728		return KDB_NOTIMP;
 729	}
 730	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 731			     GFP_KDB);
 732	if (!defcmd_set)
 733		goto fail_defcmd;
 734	memcpy(defcmd_set, save_defcmd_set,
 735	       defcmd_set_count * sizeof(*defcmd_set));
 736	s = defcmd_set + defcmd_set_count;
 737	memset(s, 0, sizeof(*s));
 738	s->usable = 1;
 739	s->name = kdb_strdup(argv[1], GFP_KDB);
 740	if (!s->name)
 741		goto fail_name;
 742	s->usage = kdb_strdup(argv[2], GFP_KDB);
 743	if (!s->usage)
 744		goto fail_usage;
 745	s->help = kdb_strdup(argv[3], GFP_KDB);
 746	if (!s->help)
 747		goto fail_help;
 748	if (s->usage[0] == '"') {
 749		strcpy(s->usage, argv[2]+1);
 750		s->usage[strlen(s->usage)-1] = '\0';
 751	}
 752	if (s->help[0] == '"') {
 753		strcpy(s->help, argv[3]+1);
 754		s->help[strlen(s->help)-1] = '\0';
 755	}
 756	++defcmd_set_count;
 757	defcmd_in_progress = 1;
 758	kfree(save_defcmd_set);
 759	return 0;
 760fail_help:
 761	kfree(s->usage);
 762fail_usage:
 763	kfree(s->name);
 764fail_name:
 765	kfree(defcmd_set);
 766fail_defcmd:
 767	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 768	defcmd_set = save_defcmd_set;
 769	return KDB_NOTIMP;
 770}
 771
 772/*
 773 * kdb_exec_defcmd - Execute the set of commands associated with this
 774 *	defcmd name.
 775 * Inputs:
 776 *	argc	argument count
 777 *	argv	argument vector
 778 * Returns:
 779 *	zero for success, a kdb diagnostic if error
 780 */
 781static int kdb_exec_defcmd(int argc, const char **argv)
 782{
 783	int i, ret;
 784	struct defcmd_set *s;
 
 
 
 785	if (argc != 0)
 786		return KDB_ARGCOUNT;
 787	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 788		if (strcmp(s->name, argv[0]) == 0)
 
 789			break;
 790	}
 791	if (i == defcmd_set_count) {
 792		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 793			   argv[0]);
 794		return KDB_NOTIMP;
 795	}
 796	for (i = 0; i < s->count; ++i) {
 797		/* Recursive use of kdb_parse, do not use argv after
 798		 * this point */
 
 
 799		argv = NULL;
 800		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 801		ret = kdb_parse(s->command[i]);
 802		if (ret)
 803			return ret;
 804	}
 805	return 0;
 806}
 807
 808/* Command history */
 809#define KDB_CMD_HISTORY_COUNT	32
 810#define CMD_BUFLEN		200	/* kdb_printf: max printline
 811					 * size == 256 */
 812static unsigned int cmd_head, cmd_tail;
 813static unsigned int cmdptr;
 814static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 815static char cmd_cur[CMD_BUFLEN];
 816
 817/*
 818 * The "str" argument may point to something like  | grep xyz
 819 */
 820static void parse_grep(const char *str)
 821{
 822	int	len;
 823	char	*cp = (char *)str, *cp2;
 824
 825	/* sanity check: we should have been called with the \ first */
 826	if (*cp != '|')
 827		return;
 828	cp++;
 829	while (isspace(*cp))
 830		cp++;
 831	if (strncmp(cp, "grep ", 5)) {
 832		kdb_printf("invalid 'pipe', see grephelp\n");
 833		return;
 834	}
 835	cp += 5;
 836	while (isspace(*cp))
 837		cp++;
 838	cp2 = strchr(cp, '\n');
 839	if (cp2)
 840		*cp2 = '\0'; /* remove the trailing newline */
 841	len = strlen(cp);
 842	if (len == 0) {
 843		kdb_printf("invalid 'pipe', see grephelp\n");
 844		return;
 845	}
 846	/* now cp points to a nonzero length search string */
 847	if (*cp == '"') {
 848		/* allow it be "x y z" by removing the "'s - there must
 849		   be two of them */
 850		cp++;
 851		cp2 = strchr(cp, '"');
 852		if (!cp2) {
 853			kdb_printf("invalid quoted string, see grephelp\n");
 854			return;
 855		}
 856		*cp2 = '\0'; /* end the string where the 2nd " was */
 857	}
 858	kdb_grep_leading = 0;
 859	if (*cp == '^') {
 860		kdb_grep_leading = 1;
 861		cp++;
 862	}
 863	len = strlen(cp);
 864	kdb_grep_trailing = 0;
 865	if (*(cp+len-1) == '$') {
 866		kdb_grep_trailing = 1;
 867		*(cp+len-1) = '\0';
 868	}
 869	len = strlen(cp);
 870	if (!len)
 871		return;
 872	if (len >= KDB_GREP_STRLEN) {
 873		kdb_printf("search string too long\n");
 874		return;
 875	}
 876	strcpy(kdb_grep_string, cp);
 877	kdb_grepping_flag++;
 878	return;
 879}
 880
 881/*
 882 * kdb_parse - Parse the command line, search the command table for a
 883 *	matching command and invoke the command function.  This
 884 *	function may be called recursively, if it is, the second call
 885 *	will overwrite argv and cbuf.  It is the caller's
 886 *	responsibility to save their argv if they recursively call
 887 *	kdb_parse().
 888 * Parameters:
 889 *      cmdstr	The input command line to be parsed.
 890 *	regs	The registers at the time kdb was entered.
 891 * Returns:
 892 *	Zero for success, a kdb diagnostic if failure.
 893 * Remarks:
 894 *	Limited to 20 tokens.
 895 *
 896 *	Real rudimentary tokenization. Basically only whitespace
 897 *	is considered a token delimeter (but special consideration
 898 *	is taken of the '=' sign as used by the 'set' command).
 899 *
 900 *	The algorithm used to tokenize the input string relies on
 901 *	there being at least one whitespace (or otherwise useless)
 902 *	character between tokens as the character immediately following
 903 *	the token is altered in-place to a null-byte to terminate the
 904 *	token string.
 905 */
 906
 907#define MAXARGC	20
 908
 909int kdb_parse(const char *cmdstr)
 910{
 911	static char *argv[MAXARGC];
 912	static int argc;
 913	static char cbuf[CMD_BUFLEN+2];
 914	char *cp;
 915	char *cpp, quoted;
 916	kdbtab_t *tp;
 917	int i, escaped, ignore_errors = 0, check_grep = 0;
 918
 919	/*
 920	 * First tokenize the command string.
 921	 */
 922	cp = (char *)cmdstr;
 923
 924	if (KDB_FLAG(CMD_INTERRUPT)) {
 925		/* Previous command was interrupted, newline must not
 926		 * repeat the command */
 927		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 928		KDB_STATE_SET(PAGER);
 929		argc = 0;	/* no repeat */
 930	}
 931
 932	if (*cp != '\n' && *cp != '\0') {
 933		argc = 0;
 934		cpp = cbuf;
 935		while (*cp) {
 936			/* skip whitespace */
 937			while (isspace(*cp))
 938				cp++;
 939			if ((*cp == '\0') || (*cp == '\n') ||
 940			    (*cp == '#' && !defcmd_in_progress))
 941				break;
 942			/* special case: check for | grep pattern */
 943			if (*cp == '|') {
 944				check_grep++;
 945				break;
 946			}
 947			if (cpp >= cbuf + CMD_BUFLEN) {
 948				kdb_printf("kdb_parse: command buffer "
 949					   "overflow, command ignored\n%s\n",
 950					   cmdstr);
 951				return KDB_NOTFOUND;
 952			}
 953			if (argc >= MAXARGC - 1) {
 954				kdb_printf("kdb_parse: too many arguments, "
 955					   "command ignored\n%s\n", cmdstr);
 956				return KDB_NOTFOUND;
 957			}
 958			argv[argc++] = cpp;
 959			escaped = 0;
 960			quoted = '\0';
 961			/* Copy to next unquoted and unescaped
 962			 * whitespace or '=' */
 963			while (*cp && *cp != '\n' &&
 964			       (escaped || quoted || !isspace(*cp))) {
 965				if (cpp >= cbuf + CMD_BUFLEN)
 966					break;
 967				if (escaped) {
 968					escaped = 0;
 969					*cpp++ = *cp++;
 970					continue;
 971				}
 972				if (*cp == '\\') {
 973					escaped = 1;
 974					++cp;
 975					continue;
 976				}
 977				if (*cp == quoted)
 978					quoted = '\0';
 979				else if (*cp == '\'' || *cp == '"')
 980					quoted = *cp;
 981				*cpp = *cp++;
 982				if (*cpp == '=' && !quoted)
 983					break;
 984				++cpp;
 985			}
 986			*cpp++ = '\0';	/* Squash a ws or '=' character */
 987		}
 988	}
 989	if (!argc)
 990		return 0;
 991	if (check_grep)
 992		parse_grep(cp);
 993	if (defcmd_in_progress) {
 994		int result = kdb_defcmd2(cmdstr, argv[0]);
 995		if (!defcmd_in_progress) {
 996			argc = 0;	/* avoid repeat on endefcmd */
 997			*(argv[0]) = '\0';
 998		}
 999		return result;
1000	}
1001	if (argv[0][0] == '-' && argv[0][1] &&
1002	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1003		ignore_errors = 1;
1004		++argv[0];
1005	}
1006
1007	for_each_kdbcmd(tp, i) {
1008		if (tp->cmd_name) {
1009			/*
1010			 * If this command is allowed to be abbreviated,
1011			 * check to see if this is it.
1012			 */
 
 
1013
1014			if (tp->cmd_minlen
1015			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1016				if (strncmp(argv[0],
1017					    tp->cmd_name,
1018					    tp->cmd_minlen) == 0) {
1019					break;
1020				}
1021			}
1022
1023			if (strcmp(argv[0], tp->cmd_name) == 0)
1024				break;
1025		}
1026	}
1027
1028	/*
1029	 * If we don't find a command by this name, see if the first
1030	 * few characters of this match any of the known commands.
1031	 * e.g., md1c20 should match md.
1032	 */
1033	if (i == kdb_max_commands) {
1034		for_each_kdbcmd(tp, i) {
1035			if (tp->cmd_name) {
1036				if (strncmp(argv[0],
1037					    tp->cmd_name,
1038					    strlen(tp->cmd_name)) == 0) {
1039					break;
1040				}
1041			}
1042		}
1043	}
1044
1045	if (i < kdb_max_commands) {
1046		int result;
1047
1048		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1049			return KDB_NOPERM;
1050
1051		KDB_STATE_SET(CMD);
1052		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1053		if (result && ignore_errors && result > KDB_CMD_GO)
1054			result = 0;
1055		KDB_STATE_CLEAR(CMD);
1056
1057		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1058			return result;
1059
1060		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1061		if (argv[argc])
1062			*(argv[argc]) = '\0';
1063		return result;
1064	}
1065
1066	/*
1067	 * If the input with which we were presented does not
1068	 * map to an existing command, attempt to parse it as an
1069	 * address argument and display the result.   Useful for
1070	 * obtaining the address of a variable, or the nearest symbol
1071	 * to an address contained in a register.
1072	 */
1073	{
1074		unsigned long value;
1075		char *name = NULL;
1076		long offset;
1077		int nextarg = 0;
1078
1079		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1080				  &value, &offset, &name)) {
1081			return KDB_NOTFOUND;
1082		}
1083
1084		kdb_printf("%s = ", argv[0]);
1085		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1086		kdb_printf("\n");
1087		return 0;
1088	}
1089}
1090
1091
1092static int handle_ctrl_cmd(char *cmd)
1093{
1094#define CTRL_P	16
1095#define CTRL_N	14
1096
1097	/* initial situation */
1098	if (cmd_head == cmd_tail)
1099		return 0;
1100	switch (*cmd) {
1101	case CTRL_P:
1102		if (cmdptr != cmd_tail)
1103			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1104		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
 
1105		return 1;
1106	case CTRL_N:
1107		if (cmdptr != cmd_head)
1108			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1109		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1110		return 1;
1111	}
1112	return 0;
1113}
1114
1115/*
1116 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1117 *	the system immediately, or loop for ever on failure.
1118 */
1119static int kdb_reboot(int argc, const char **argv)
1120{
1121	emergency_restart();
1122	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1123	while (1)
1124		cpu_relax();
1125	/* NOTREACHED */
1126	return 0;
1127}
1128
1129static void kdb_dumpregs(struct pt_regs *regs)
1130{
1131	int old_lvl = console_loglevel;
1132	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1133	kdb_trap_printk++;
1134	show_regs(regs);
1135	kdb_trap_printk--;
1136	kdb_printf("\n");
1137	console_loglevel = old_lvl;
1138}
1139
1140void kdb_set_current_task(struct task_struct *p)
1141{
1142	kdb_current_task = p;
1143
1144	if (kdb_task_has_cpu(p)) {
1145		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1146		return;
1147	}
1148	kdb_current_regs = NULL;
1149}
1150
 
 
 
 
 
 
 
 
 
 
1151/*
1152 * kdb_local - The main code for kdb.  This routine is invoked on a
1153 *	specific processor, it is not global.  The main kdb() routine
1154 *	ensures that only one processor at a time is in this routine.
1155 *	This code is called with the real reason code on the first
1156 *	entry to a kdb session, thereafter it is called with reason
1157 *	SWITCH, even if the user goes back to the original cpu.
1158 * Inputs:
1159 *	reason		The reason KDB was invoked
1160 *	error		The hardware-defined error code
1161 *	regs		The exception frame at time of fault/breakpoint.
1162 *	db_result	Result code from the break or debug point.
1163 * Returns:
1164 *	0	KDB was invoked for an event which it wasn't responsible
1165 *	1	KDB handled the event for which it was invoked.
1166 *	KDB_CMD_GO	User typed 'go'.
1167 *	KDB_CMD_CPU	User switched to another cpu.
1168 *	KDB_CMD_SS	Single step.
1169 */
1170static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1171		     kdb_dbtrap_t db_result)
1172{
1173	char *cmdbuf;
1174	int diag;
1175	struct task_struct *kdb_current =
1176		kdb_curr_task(raw_smp_processor_id());
1177
1178	KDB_DEBUG_STATE("kdb_local 1", reason);
 
 
 
1179	kdb_go_count = 0;
1180	if (reason == KDB_REASON_DEBUG) {
1181		/* special case below */
1182	} else {
1183		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1184			   kdb_current, kdb_current ? kdb_current->pid : 0);
1185#if defined(CONFIG_SMP)
1186		kdb_printf("on processor %d ", raw_smp_processor_id());
1187#endif
1188	}
1189
1190	switch (reason) {
1191	case KDB_REASON_DEBUG:
1192	{
1193		/*
1194		 * If re-entering kdb after a single step
1195		 * command, don't print the message.
1196		 */
1197		switch (db_result) {
1198		case KDB_DB_BPT:
1199			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1200				   kdb_current, kdb_current->pid);
1201#if defined(CONFIG_SMP)
1202			kdb_printf("on processor %d ", raw_smp_processor_id());
1203#endif
1204			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1205				   instruction_pointer(regs));
1206			break;
1207		case KDB_DB_SS:
1208			break;
1209		case KDB_DB_SSBPT:
1210			KDB_DEBUG_STATE("kdb_local 4", reason);
1211			return 1;	/* kdba_db_trap did the work */
1212		default:
1213			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1214				   db_result);
1215			break;
1216		}
1217
1218	}
1219		break;
1220	case KDB_REASON_ENTER:
1221		if (KDB_STATE(KEYBOARD))
1222			kdb_printf("due to Keyboard Entry\n");
1223		else
1224			kdb_printf("due to KDB_ENTER()\n");
1225		break;
1226	case KDB_REASON_KEYBOARD:
1227		KDB_STATE_SET(KEYBOARD);
1228		kdb_printf("due to Keyboard Entry\n");
1229		break;
1230	case KDB_REASON_ENTER_SLAVE:
1231		/* drop through, slaves only get released via cpu switch */
1232	case KDB_REASON_SWITCH:
1233		kdb_printf("due to cpu switch\n");
1234		break;
1235	case KDB_REASON_OOPS:
1236		kdb_printf("Oops: %s\n", kdb_diemsg);
1237		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1238			   instruction_pointer(regs));
1239		kdb_dumpregs(regs);
1240		break;
1241	case KDB_REASON_SYSTEM_NMI:
1242		kdb_printf("due to System NonMaskable Interrupt\n");
1243		break;
1244	case KDB_REASON_NMI:
1245		kdb_printf("due to NonMaskable Interrupt @ "
1246			   kdb_machreg_fmt "\n",
1247			   instruction_pointer(regs));
1248		break;
1249	case KDB_REASON_SSTEP:
1250	case KDB_REASON_BREAK:
1251		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1252			   reason == KDB_REASON_BREAK ?
1253			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1254		/*
1255		 * Determine if this breakpoint is one that we
1256		 * are interested in.
1257		 */
1258		if (db_result != KDB_DB_BPT) {
1259			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1260				   db_result);
1261			KDB_DEBUG_STATE("kdb_local 6", reason);
1262			return 0;	/* Not for us, dismiss it */
1263		}
1264		break;
1265	case KDB_REASON_RECURSE:
1266		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1267			   instruction_pointer(regs));
1268		break;
1269	default:
1270		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1271		KDB_DEBUG_STATE("kdb_local 8", reason);
1272		return 0;	/* Not for us, dismiss it */
1273	}
1274
1275	while (1) {
1276		/*
1277		 * Initialize pager context.
1278		 */
1279		kdb_nextline = 1;
1280		KDB_STATE_CLEAR(SUPPRESS);
1281		kdb_grepping_flag = 0;
1282		/* ensure the old search does not leak into '/' commands */
1283		kdb_grep_string[0] = '\0';
1284
1285		cmdbuf = cmd_cur;
1286		*cmdbuf = '\0';
1287		*(cmd_hist[cmd_head]) = '\0';
1288
1289do_full_getstr:
1290#if defined(CONFIG_SMP)
1291		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1292			 raw_smp_processor_id());
1293#else
1294		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1295#endif
1296		if (defcmd_in_progress)
1297			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1298
1299		/*
1300		 * Fetch command from keyboard
1301		 */
1302		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1303		if (*cmdbuf != '\n') {
1304			if (*cmdbuf < 32) {
1305				if (cmdptr == cmd_head) {
1306					strncpy(cmd_hist[cmd_head], cmd_cur,
1307						CMD_BUFLEN);
1308					*(cmd_hist[cmd_head] +
1309					  strlen(cmd_hist[cmd_head])-1) = '\0';
1310				}
1311				if (!handle_ctrl_cmd(cmdbuf))
1312					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1313				cmdbuf = cmd_cur;
1314				goto do_full_getstr;
1315			} else {
1316				strncpy(cmd_hist[cmd_head], cmd_cur,
1317					CMD_BUFLEN);
1318			}
1319
1320			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1321			if (cmd_head == cmd_tail)
1322				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1323		}
1324
1325		cmdptr = cmd_head;
1326		diag = kdb_parse(cmdbuf);
1327		if (diag == KDB_NOTFOUND) {
 
1328			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1329			diag = 0;
1330		}
1331		if (diag == KDB_CMD_GO
1332		 || diag == KDB_CMD_CPU
1333		 || diag == KDB_CMD_SS
1334		 || diag == KDB_CMD_KGDB)
1335			break;
1336
1337		if (diag)
1338			kdb_cmderror(diag);
1339	}
1340	KDB_DEBUG_STATE("kdb_local 9", diag);
1341	return diag;
1342}
1343
1344
1345/*
1346 * kdb_print_state - Print the state data for the current processor
1347 *	for debugging.
1348 * Inputs:
1349 *	text		Identifies the debug point
1350 *	value		Any integer value to be printed, e.g. reason code.
1351 */
1352void kdb_print_state(const char *text, int value)
1353{
1354	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1355		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1356		   kdb_state);
1357}
1358
1359/*
1360 * kdb_main_loop - After initial setup and assignment of the
1361 *	controlling cpu, all cpus are in this loop.  One cpu is in
1362 *	control and will issue the kdb prompt, the others will spin
1363 *	until 'go' or cpu switch.
1364 *
1365 *	To get a consistent view of the kernel stacks for all
1366 *	processes, this routine is invoked from the main kdb code via
1367 *	an architecture specific routine.  kdba_main_loop is
1368 *	responsible for making the kernel stacks consistent for all
1369 *	processes, there should be no difference between a blocked
1370 *	process and a running process as far as kdb is concerned.
1371 * Inputs:
1372 *	reason		The reason KDB was invoked
1373 *	error		The hardware-defined error code
1374 *	reason2		kdb's current reason code.
1375 *			Initially error but can change
1376 *			according to kdb state.
1377 *	db_result	Result code from break or debug point.
1378 *	regs		The exception frame at time of fault/breakpoint.
1379 *			should always be valid.
1380 * Returns:
1381 *	0	KDB was invoked for an event which it wasn't responsible
1382 *	1	KDB handled the event for which it was invoked.
1383 */
1384int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1385	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1386{
1387	int result = 1;
1388	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1389	while (1) {
1390		/*
1391		 * All processors except the one that is in control
1392		 * will spin here.
1393		 */
1394		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1395		while (KDB_STATE(HOLD_CPU)) {
1396			/* state KDB is turned off by kdb_cpu to see if the
1397			 * other cpus are still live, each cpu in this loop
1398			 * turns it back on.
1399			 */
1400			if (!KDB_STATE(KDB))
1401				KDB_STATE_SET(KDB);
1402		}
1403
1404		KDB_STATE_CLEAR(SUPPRESS);
1405		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1406		if (KDB_STATE(LEAVING))
1407			break;	/* Another cpu said 'go' */
1408		/* Still using kdb, this processor is in control */
1409		result = kdb_local(reason2, error, regs, db_result);
1410		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1411
1412		if (result == KDB_CMD_CPU)
1413			break;
1414
1415		if (result == KDB_CMD_SS) {
1416			KDB_STATE_SET(DOING_SS);
1417			break;
1418		}
1419
1420		if (result == KDB_CMD_KGDB) {
1421			if (!KDB_STATE(DOING_KGDB))
1422				kdb_printf("Entering please attach debugger "
1423					   "or use $D#44+ or $3#33\n");
1424			break;
1425		}
1426		if (result && result != 1 && result != KDB_CMD_GO)
1427			kdb_printf("\nUnexpected kdb_local return code %d\n",
1428				   result);
1429		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1430		break;
1431	}
1432	if (KDB_STATE(DOING_SS))
1433		KDB_STATE_CLEAR(SSBPT);
1434
1435	/* Clean up any keyboard devices before leaving */
1436	kdb_kbd_cleanup_state();
1437
1438	return result;
1439}
1440
1441/*
1442 * kdb_mdr - This function implements the guts of the 'mdr', memory
1443 * read command.
1444 *	mdr  <addr arg>,<byte count>
1445 * Inputs:
1446 *	addr	Start address
1447 *	count	Number of bytes
1448 * Returns:
1449 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1450 */
1451static int kdb_mdr(unsigned long addr, unsigned int count)
1452{
1453	unsigned char c;
1454	while (count--) {
1455		if (kdb_getarea(c, addr))
1456			return 0;
1457		kdb_printf("%02x", c);
1458		addr++;
1459	}
1460	kdb_printf("\n");
1461	return 0;
1462}
1463
1464/*
1465 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1466 *	'md8' 'mdr' and 'mds' commands.
1467 *
1468 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1469 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1470 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1471 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1472 *	mdr  <addr arg>,<byte count>
1473 */
1474static void kdb_md_line(const char *fmtstr, unsigned long addr,
1475			int symbolic, int nosect, int bytesperword,
1476			int num, int repeat, int phys)
1477{
1478	/* print just one line of data */
1479	kdb_symtab_t symtab;
1480	char cbuf[32];
1481	char *c = cbuf;
1482	int i;
 
1483	unsigned long word;
1484
1485	memset(cbuf, '\0', sizeof(cbuf));
1486	if (phys)
1487		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1488	else
1489		kdb_printf(kdb_machreg_fmt0 " ", addr);
1490
1491	for (i = 0; i < num && repeat--; i++) {
1492		if (phys) {
1493			if (kdb_getphysword(&word, addr, bytesperword))
1494				break;
1495		} else if (kdb_getword(&word, addr, bytesperword))
1496			break;
1497		kdb_printf(fmtstr, word);
1498		if (symbolic)
1499			kdbnearsym(word, &symtab);
1500		else
1501			memset(&symtab, 0, sizeof(symtab));
1502		if (symtab.sym_name) {
1503			kdb_symbol_print(word, &symtab, 0);
1504			if (!nosect) {
1505				kdb_printf("\n");
1506				kdb_printf("                       %s %s "
1507					   kdb_machreg_fmt " "
1508					   kdb_machreg_fmt " "
1509					   kdb_machreg_fmt, symtab.mod_name,
1510					   symtab.sec_name, symtab.sec_start,
1511					   symtab.sym_start, symtab.sym_end);
1512			}
1513			addr += bytesperword;
1514		} else {
1515			union {
1516				u64 word;
1517				unsigned char c[8];
1518			} wc;
1519			unsigned char *cp;
1520#ifdef	__BIG_ENDIAN
1521			cp = wc.c + 8 - bytesperword;
1522#else
1523			cp = wc.c;
1524#endif
1525			wc.word = word;
1526#define printable_char(c) \
1527	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1528			switch (bytesperword) {
1529			case 8:
1530				*c++ = printable_char(*cp++);
1531				*c++ = printable_char(*cp++);
1532				*c++ = printable_char(*cp++);
1533				*c++ = printable_char(*cp++);
1534				addr += 4;
1535			case 4:
1536				*c++ = printable_char(*cp++);
1537				*c++ = printable_char(*cp++);
1538				addr += 2;
1539			case 2:
1540				*c++ = printable_char(*cp++);
1541				addr++;
1542			case 1:
1543				*c++ = printable_char(*cp++);
1544				addr++;
1545				break;
1546			}
1547#undef printable_char
1548		}
1549	}
1550	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1551		   " ", cbuf);
1552}
1553
1554static int kdb_md(int argc, const char **argv)
1555{
1556	static unsigned long last_addr;
1557	static int last_radix, last_bytesperword, last_repeat;
1558	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1559	int nosect = 0;
1560	char fmtchar, fmtstr[64];
1561	unsigned long addr;
1562	unsigned long word;
1563	long offset = 0;
1564	int symbolic = 0;
1565	int valid = 0;
1566	int phys = 0;
 
1567
1568	kdbgetintenv("MDCOUNT", &mdcount);
1569	kdbgetintenv("RADIX", &radix);
1570	kdbgetintenv("BYTESPERWORD", &bytesperword);
1571
1572	/* Assume 'md <addr>' and start with environment values */
1573	repeat = mdcount * 16 / bytesperword;
1574
1575	if (strcmp(argv[0], "mdr") == 0) {
1576		if (argc != 2)
 
 
1577			return KDB_ARGCOUNT;
1578		valid = 1;
1579	} else if (isdigit(argv[0][2])) {
1580		bytesperword = (int)(argv[0][2] - '0');
1581		if (bytesperword == 0) {
1582			bytesperword = last_bytesperword;
1583			if (bytesperword == 0)
1584				bytesperword = 4;
1585		}
1586		last_bytesperword = bytesperword;
1587		repeat = mdcount * 16 / bytesperword;
1588		if (!argv[0][3])
1589			valid = 1;
1590		else if (argv[0][3] == 'c' && argv[0][4]) {
1591			char *p;
1592			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1593			mdcount = ((repeat * bytesperword) + 15) / 16;
1594			valid = !*p;
1595		}
1596		last_repeat = repeat;
1597	} else if (strcmp(argv[0], "md") == 0)
1598		valid = 1;
1599	else if (strcmp(argv[0], "mds") == 0)
1600		valid = 1;
1601	else if (strcmp(argv[0], "mdp") == 0) {
1602		phys = valid = 1;
1603	}
1604	if (!valid)
1605		return KDB_NOTFOUND;
1606
1607	if (argc == 0) {
1608		if (last_addr == 0)
1609			return KDB_ARGCOUNT;
1610		addr = last_addr;
1611		radix = last_radix;
1612		bytesperword = last_bytesperword;
1613		repeat = last_repeat;
1614		mdcount = ((repeat * bytesperword) + 15) / 16;
 
 
 
1615	}
1616
1617	if (argc) {
1618		unsigned long val;
1619		int diag, nextarg = 1;
1620		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1621				     &offset, NULL);
1622		if (diag)
1623			return diag;
1624		if (argc > nextarg+2)
1625			return KDB_ARGCOUNT;
1626
1627		if (argc >= nextarg) {
1628			diag = kdbgetularg(argv[nextarg], &val);
1629			if (!diag) {
1630				mdcount = (int) val;
1631				repeat = mdcount * 16 / bytesperword;
 
 
 
1632			}
1633		}
1634		if (argc >= nextarg+1) {
1635			diag = kdbgetularg(argv[nextarg+1], &val);
1636			if (!diag)
1637				radix = (int) val;
1638		}
1639	}
1640
1641	if (strcmp(argv[0], "mdr") == 0)
1642		return kdb_mdr(addr, mdcount);
 
 
 
 
 
 
 
1643
1644	switch (radix) {
1645	case 10:
1646		fmtchar = 'd';
1647		break;
1648	case 16:
1649		fmtchar = 'x';
1650		break;
1651	case 8:
1652		fmtchar = 'o';
1653		break;
1654	default:
1655		return KDB_BADRADIX;
1656	}
1657
1658	last_radix = radix;
1659
1660	if (bytesperword > KDB_WORD_SIZE)
1661		return KDB_BADWIDTH;
1662
1663	switch (bytesperword) {
1664	case 8:
1665		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1666		break;
1667	case 4:
1668		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1669		break;
1670	case 2:
1671		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1672		break;
1673	case 1:
1674		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1675		break;
1676	default:
1677		return KDB_BADWIDTH;
1678	}
1679
1680	last_repeat = repeat;
1681	last_bytesperword = bytesperword;
1682
1683	if (strcmp(argv[0], "mds") == 0) {
1684		symbolic = 1;
1685		/* Do not save these changes as last_*, they are temporary mds
1686		 * overrides.
1687		 */
1688		bytesperword = KDB_WORD_SIZE;
1689		repeat = mdcount;
1690		kdbgetintenv("NOSECT", &nosect);
1691	}
1692
1693	/* Round address down modulo BYTESPERWORD */
1694
1695	addr &= ~(bytesperword-1);
1696
1697	while (repeat > 0) {
1698		unsigned long a;
1699		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1700
1701		if (KDB_FLAG(CMD_INTERRUPT))
1702			return 0;
1703		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1704			if (phys) {
1705				if (kdb_getphysword(&word, a, bytesperword)
1706						|| word)
1707					break;
1708			} else if (kdb_getword(&word, a, bytesperword) || word)
1709				break;
1710		}
1711		n = min(num, repeat);
1712		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1713			    num, repeat, phys);
1714		addr += bytesperword * n;
1715		repeat -= n;
1716		z = (z + num - 1) / num;
1717		if (z > 2) {
1718			int s = num * (z-2);
1719			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1720				   " zero suppressed\n",
1721				addr, addr + bytesperword * s - 1);
1722			addr += bytesperword * s;
1723			repeat -= s;
1724		}
1725	}
1726	last_addr = addr;
1727
1728	return 0;
1729}
1730
1731/*
1732 * kdb_mm - This function implements the 'mm' command.
1733 *	mm address-expression new-value
1734 * Remarks:
1735 *	mm works on machine words, mmW works on bytes.
1736 */
1737static int kdb_mm(int argc, const char **argv)
1738{
1739	int diag;
1740	unsigned long addr;
1741	long offset = 0;
1742	unsigned long contents;
1743	int nextarg;
1744	int width;
1745
1746	if (argv[0][2] && !isdigit(argv[0][2]))
1747		return KDB_NOTFOUND;
1748
1749	if (argc < 2)
1750		return KDB_ARGCOUNT;
1751
1752	nextarg = 1;
1753	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1754	if (diag)
1755		return diag;
1756
1757	if (nextarg > argc)
1758		return KDB_ARGCOUNT;
1759	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1760	if (diag)
1761		return diag;
1762
1763	if (nextarg != argc + 1)
1764		return KDB_ARGCOUNT;
1765
1766	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1767	diag = kdb_putword(addr, contents, width);
1768	if (diag)
1769		return diag;
1770
1771	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1772
1773	return 0;
1774}
1775
1776/*
1777 * kdb_go - This function implements the 'go' command.
1778 *	go [address-expression]
1779 */
1780static int kdb_go(int argc, const char **argv)
1781{
1782	unsigned long addr;
1783	int diag;
1784	int nextarg;
1785	long offset;
1786
1787	if (raw_smp_processor_id() != kdb_initial_cpu) {
1788		kdb_printf("go must execute on the entry cpu, "
1789			   "please use \"cpu %d\" and then execute go\n",
1790			   kdb_initial_cpu);
1791		return KDB_BADCPUNUM;
1792	}
1793	if (argc == 1) {
1794		nextarg = 1;
1795		diag = kdbgetaddrarg(argc, argv, &nextarg,
1796				     &addr, &offset, NULL);
1797		if (diag)
1798			return diag;
1799	} else if (argc) {
1800		return KDB_ARGCOUNT;
1801	}
1802
1803	diag = KDB_CMD_GO;
1804	if (KDB_FLAG(CATASTROPHIC)) {
1805		kdb_printf("Catastrophic error detected\n");
1806		kdb_printf("kdb_continue_catastrophic=%d, ",
1807			kdb_continue_catastrophic);
1808		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1809			kdb_printf("type go a second time if you really want "
1810				   "to continue\n");
1811			return 0;
1812		}
1813		if (kdb_continue_catastrophic == 2) {
1814			kdb_printf("forcing reboot\n");
1815			kdb_reboot(0, NULL);
1816		}
1817		kdb_printf("attempting to continue\n");
1818	}
1819	return diag;
1820}
1821
1822/*
1823 * kdb_rd - This function implements the 'rd' command.
1824 */
1825static int kdb_rd(int argc, const char **argv)
1826{
1827	int len = kdb_check_regs();
1828#if DBG_MAX_REG_NUM > 0
1829	int i;
1830	char *rname;
1831	int rsize;
1832	u64 reg64;
1833	u32 reg32;
1834	u16 reg16;
1835	u8 reg8;
1836
1837	if (len)
1838		return len;
1839
1840	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1841		rsize = dbg_reg_def[i].size * 2;
1842		if (rsize > 16)
1843			rsize = 2;
1844		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1845			len = 0;
1846			kdb_printf("\n");
1847		}
1848		if (len)
1849			len += kdb_printf("  ");
1850		switch(dbg_reg_def[i].size * 8) {
1851		case 8:
1852			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1853			if (!rname)
1854				break;
1855			len += kdb_printf("%s: %02x", rname, reg8);
1856			break;
1857		case 16:
1858			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1859			if (!rname)
1860				break;
1861			len += kdb_printf("%s: %04x", rname, reg16);
1862			break;
1863		case 32:
1864			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1865			if (!rname)
1866				break;
1867			len += kdb_printf("%s: %08x", rname, reg32);
1868			break;
1869		case 64:
1870			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1871			if (!rname)
1872				break;
1873			len += kdb_printf("%s: %016llx", rname, reg64);
1874			break;
1875		default:
1876			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1877		}
1878	}
1879	kdb_printf("\n");
1880#else
1881	if (len)
1882		return len;
1883
1884	kdb_dumpregs(kdb_current_regs);
1885#endif
1886	return 0;
1887}
1888
1889/*
1890 * kdb_rm - This function implements the 'rm' (register modify)  command.
1891 *	rm register-name new-contents
1892 * Remarks:
1893 *	Allows register modification with the same restrictions as gdb
1894 */
1895static int kdb_rm(int argc, const char **argv)
1896{
1897#if DBG_MAX_REG_NUM > 0
1898	int diag;
1899	const char *rname;
1900	int i;
1901	u64 reg64;
1902	u32 reg32;
1903	u16 reg16;
1904	u8 reg8;
1905
1906	if (argc != 2)
1907		return KDB_ARGCOUNT;
1908	/*
1909	 * Allow presence or absence of leading '%' symbol.
1910	 */
1911	rname = argv[1];
1912	if (*rname == '%')
1913		rname++;
1914
1915	diag = kdbgetu64arg(argv[2], &reg64);
1916	if (diag)
1917		return diag;
1918
1919	diag = kdb_check_regs();
1920	if (diag)
1921		return diag;
1922
1923	diag = KDB_BADREG;
1924	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1925		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1926			diag = 0;
1927			break;
1928		}
1929	}
1930	if (!diag) {
1931		switch(dbg_reg_def[i].size * 8) {
1932		case 8:
1933			reg8 = reg64;
1934			dbg_set_reg(i, &reg8, kdb_current_regs);
1935			break;
1936		case 16:
1937			reg16 = reg64;
1938			dbg_set_reg(i, &reg16, kdb_current_regs);
1939			break;
1940		case 32:
1941			reg32 = reg64;
1942			dbg_set_reg(i, &reg32, kdb_current_regs);
1943			break;
1944		case 64:
1945			dbg_set_reg(i, &reg64, kdb_current_regs);
1946			break;
1947		}
1948	}
1949	return diag;
1950#else
1951	kdb_printf("ERROR: Register set currently not implemented\n");
1952    return 0;
1953#endif
1954}
1955
1956#if defined(CONFIG_MAGIC_SYSRQ)
1957/*
1958 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1959 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1960 *		sr <magic-sysrq-code>
1961 */
1962static int kdb_sr(int argc, const char **argv)
1963{
1964	bool check_mask =
1965	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1966
1967	if (argc != 1)
1968		return KDB_ARGCOUNT;
1969
1970	kdb_trap_printk++;
1971	__handle_sysrq(*argv[1], check_mask);
1972	kdb_trap_printk--;
1973
1974	return 0;
1975}
1976#endif	/* CONFIG_MAGIC_SYSRQ */
1977
1978/*
1979 * kdb_ef - This function implements the 'regs' (display exception
1980 *	frame) command.  This command takes an address and expects to
1981 *	find an exception frame at that address, formats and prints
1982 *	it.
1983 *		regs address-expression
1984 * Remarks:
1985 *	Not done yet.
1986 */
1987static int kdb_ef(int argc, const char **argv)
1988{
1989	int diag;
1990	unsigned long addr;
1991	long offset;
1992	int nextarg;
1993
1994	if (argc != 1)
1995		return KDB_ARGCOUNT;
1996
1997	nextarg = 1;
1998	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1999	if (diag)
2000		return diag;
2001	show_regs((struct pt_regs *)addr);
2002	return 0;
2003}
2004
2005#if defined(CONFIG_MODULES)
2006/*
2007 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2008 *	currently loaded kernel modules.
2009 *	Mostly taken from userland lsmod.
2010 */
2011static int kdb_lsmod(int argc, const char **argv)
2012{
2013	struct module *mod;
2014
2015	if (argc != 0)
2016		return KDB_ARGCOUNT;
2017
2018	kdb_printf("Module                  Size  modstruct     Used by\n");
2019	list_for_each_entry(mod, kdb_modules, list) {
2020		if (mod->state == MODULE_STATE_UNFORMED)
2021			continue;
2022
2023		kdb_printf("%-20s%8u  0x%p ", mod->name,
2024			   mod->core_layout.size, (void *)mod);
2025#ifdef CONFIG_MODULE_UNLOAD
2026		kdb_printf("%4d ", module_refcount(mod));
2027#endif
2028		if (mod->state == MODULE_STATE_GOING)
2029			kdb_printf(" (Unloading)");
2030		else if (mod->state == MODULE_STATE_COMING)
2031			kdb_printf(" (Loading)");
2032		else
2033			kdb_printf(" (Live)");
2034		kdb_printf(" 0x%p", mod->core_layout.base);
2035
2036#ifdef CONFIG_MODULE_UNLOAD
2037		{
2038			struct module_use *use;
2039			kdb_printf(" [ ");
2040			list_for_each_entry(use, &mod->source_list,
2041					    source_list)
2042				kdb_printf("%s ", use->target->name);
2043			kdb_printf("]\n");
2044		}
2045#endif
2046	}
2047
2048	return 0;
2049}
2050
2051#endif	/* CONFIG_MODULES */
2052
2053/*
2054 * kdb_env - This function implements the 'env' command.  Display the
2055 *	current environment variables.
2056 */
2057
2058static int kdb_env(int argc, const char **argv)
2059{
2060	int i;
2061
2062	for (i = 0; i < __nenv; i++) {
2063		if (__env[i])
2064			kdb_printf("%s\n", __env[i]);
2065	}
2066
2067	if (KDB_DEBUG(MASK))
2068		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
 
2069
2070	return 0;
2071}
2072
2073#ifdef CONFIG_PRINTK
2074/*
2075 * kdb_dmesg - This function implements the 'dmesg' command to display
2076 *	the contents of the syslog buffer.
2077 *		dmesg [lines] [adjust]
2078 */
2079static int kdb_dmesg(int argc, const char **argv)
2080{
2081	int diag;
2082	int logging;
2083	int lines = 0;
2084	int adjust = 0;
2085	int n = 0;
2086	int skip = 0;
2087	struct kmsg_dumper dumper = { .active = 1 };
2088	size_t len;
2089	char buf[201];
2090
2091	if (argc > 2)
2092		return KDB_ARGCOUNT;
2093	if (argc) {
2094		char *cp;
2095		lines = simple_strtol(argv[1], &cp, 0);
2096		if (*cp)
2097			lines = 0;
2098		if (argc > 1) {
2099			adjust = simple_strtoul(argv[2], &cp, 0);
2100			if (*cp || adjust < 0)
2101				adjust = 0;
2102		}
2103	}
2104
2105	/* disable LOGGING if set */
2106	diag = kdbgetintenv("LOGGING", &logging);
2107	if (!diag && logging) {
2108		const char *setargs[] = { "set", "LOGGING", "0" };
2109		kdb_set(2, setargs);
2110	}
2111
2112	kmsg_dump_rewind_nolock(&dumper);
2113	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2114		n++;
2115
2116	if (lines < 0) {
2117		if (adjust >= n)
2118			kdb_printf("buffer only contains %d lines, nothing "
2119				   "printed\n", n);
2120		else if (adjust - lines >= n)
2121			kdb_printf("buffer only contains %d lines, last %d "
2122				   "lines printed\n", n, n - adjust);
2123		skip = adjust;
2124		lines = abs(lines);
2125	} else if (lines > 0) {
2126		skip = n - lines - adjust;
2127		lines = abs(lines);
2128		if (adjust >= n) {
2129			kdb_printf("buffer only contains %d lines, "
2130				   "nothing printed\n", n);
2131			skip = n;
2132		} else if (skip < 0) {
2133			lines += skip;
2134			skip = 0;
2135			kdb_printf("buffer only contains %d lines, first "
2136				   "%d lines printed\n", n, lines);
2137		}
2138	} else {
2139		lines = n;
2140	}
2141
2142	if (skip >= n || skip < 0)
2143		return 0;
2144
2145	kmsg_dump_rewind_nolock(&dumper);
2146	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2147		if (skip) {
2148			skip--;
2149			continue;
2150		}
2151		if (!lines--)
2152			break;
2153		if (KDB_FLAG(CMD_INTERRUPT))
2154			return 0;
2155
2156		kdb_printf("%.*s\n", (int)len - 1, buf);
2157	}
2158
2159	return 0;
2160}
2161#endif /* CONFIG_PRINTK */
2162
2163/* Make sure we balance enable/disable calls, must disable first. */
2164static atomic_t kdb_nmi_disabled;
2165
2166static int kdb_disable_nmi(int argc, const char *argv[])
2167{
2168	if (atomic_read(&kdb_nmi_disabled))
2169		return 0;
2170	atomic_set(&kdb_nmi_disabled, 1);
2171	arch_kgdb_ops.enable_nmi(0);
2172	return 0;
2173}
2174
2175static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2176{
2177	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2178		return -EINVAL;
2179	arch_kgdb_ops.enable_nmi(1);
2180	return 0;
2181}
2182
2183static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2184	.set = kdb_param_enable_nmi,
2185};
2186module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2187
2188/*
2189 * kdb_cpu - This function implements the 'cpu' command.
2190 *	cpu	[<cpunum>]
2191 * Returns:
2192 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2193 */
2194static void kdb_cpu_status(void)
2195{
2196	int i, start_cpu, first_print = 1;
2197	char state, prev_state = '?';
2198
2199	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2200	kdb_printf("Available cpus: ");
2201	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2202		if (!cpu_online(i)) {
2203			state = 'F';	/* cpu is offline */
2204		} else if (!kgdb_info[i].enter_kgdb) {
2205			state = 'D';	/* cpu is online but unresponsive */
2206		} else {
2207			state = ' ';	/* cpu is responding to kdb */
2208			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2209				state = 'I';	/* idle task */
2210		}
2211		if (state != prev_state) {
2212			if (prev_state != '?') {
2213				if (!first_print)
2214					kdb_printf(", ");
2215				first_print = 0;
2216				kdb_printf("%d", start_cpu);
2217				if (start_cpu < i-1)
2218					kdb_printf("-%d", i-1);
2219				if (prev_state != ' ')
2220					kdb_printf("(%c)", prev_state);
2221			}
2222			prev_state = state;
2223			start_cpu = i;
2224		}
2225	}
2226	/* print the trailing cpus, ignoring them if they are all offline */
2227	if (prev_state != 'F') {
2228		if (!first_print)
2229			kdb_printf(", ");
2230		kdb_printf("%d", start_cpu);
2231		if (start_cpu < i-1)
2232			kdb_printf("-%d", i-1);
2233		if (prev_state != ' ')
2234			kdb_printf("(%c)", prev_state);
2235	}
2236	kdb_printf("\n");
2237}
2238
2239static int kdb_cpu(int argc, const char **argv)
2240{
2241	unsigned long cpunum;
2242	int diag;
2243
2244	if (argc == 0) {
2245		kdb_cpu_status();
2246		return 0;
2247	}
2248
2249	if (argc != 1)
2250		return KDB_ARGCOUNT;
2251
2252	diag = kdbgetularg(argv[1], &cpunum);
2253	if (diag)
2254		return diag;
2255
2256	/*
2257	 * Validate cpunum
2258	 */
2259	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2260		return KDB_BADCPUNUM;
2261
2262	dbg_switch_cpu = cpunum;
2263
2264	/*
2265	 * Switch to other cpu
2266	 */
2267	return KDB_CMD_CPU;
2268}
2269
2270/* The user may not realize that ps/bta with no parameters does not print idle
2271 * or sleeping system daemon processes, so tell them how many were suppressed.
2272 */
2273void kdb_ps_suppressed(void)
2274{
2275	int idle = 0, daemon = 0;
2276	unsigned long mask_I = kdb_task_state_string("I"),
2277		      mask_M = kdb_task_state_string("M");
2278	unsigned long cpu;
2279	const struct task_struct *p, *g;
2280	for_each_online_cpu(cpu) {
2281		p = kdb_curr_task(cpu);
2282		if (kdb_task_state(p, mask_I))
2283			++idle;
2284	}
2285	kdb_do_each_thread(g, p) {
2286		if (kdb_task_state(p, mask_M))
2287			++daemon;
2288	} kdb_while_each_thread(g, p);
2289	if (idle || daemon) {
2290		if (idle)
2291			kdb_printf("%d idle process%s (state I)%s\n",
2292				   idle, idle == 1 ? "" : "es",
2293				   daemon ? " and " : "");
2294		if (daemon)
2295			kdb_printf("%d sleeping system daemon (state M) "
2296				   "process%s", daemon,
2297				   daemon == 1 ? "" : "es");
2298		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2299	}
2300}
2301
2302/*
2303 * kdb_ps - This function implements the 'ps' command which shows a
2304 *	list of the active processes.
2305 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2306 */
2307void kdb_ps1(const struct task_struct *p)
2308{
2309	int cpu;
2310	unsigned long tmp;
2311
2312	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
 
2313		return;
2314
2315	cpu = kdb_process_cpu(p);
2316	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2317		   (void *)p, p->pid, p->parent->pid,
2318		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2319		   kdb_task_state_char(p),
2320		   (void *)(&p->thread),
2321		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2322		   p->comm);
2323	if (kdb_task_has_cpu(p)) {
2324		if (!KDB_TSK(cpu)) {
2325			kdb_printf("  Error: no saved data for this cpu\n");
2326		} else {
2327			if (KDB_TSK(cpu) != p)
2328				kdb_printf("  Error: does not match running "
2329				   "process table (0x%p)\n", KDB_TSK(cpu));
2330		}
2331	}
2332}
2333
 
 
 
 
 
 
 
2334static int kdb_ps(int argc, const char **argv)
2335{
2336	struct task_struct *g, *p;
2337	unsigned long mask, cpu;
 
2338
2339	if (argc == 0)
2340		kdb_ps_suppressed();
2341	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2342		(int)(2*sizeof(void *))+2, "Task Addr",
2343		(int)(2*sizeof(void *))+2, "Thread");
2344	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2345	/* Run the active tasks first */
2346	for_each_online_cpu(cpu) {
2347		if (KDB_FLAG(CMD_INTERRUPT))
2348			return 0;
2349		p = kdb_curr_task(cpu);
2350		if (kdb_task_state(p, mask))
2351			kdb_ps1(p);
2352	}
2353	kdb_printf("\n");
2354	/* Now the real tasks */
2355	kdb_do_each_thread(g, p) {
2356		if (KDB_FLAG(CMD_INTERRUPT))
2357			return 0;
2358		if (kdb_task_state(p, mask))
2359			kdb_ps1(p);
2360	} kdb_while_each_thread(g, p);
2361
2362	return 0;
2363}
2364
2365/*
2366 * kdb_pid - This function implements the 'pid' command which switches
2367 *	the currently active process.
2368 *		pid [<pid> | R]
2369 */
2370static int kdb_pid(int argc, const char **argv)
2371{
2372	struct task_struct *p;
2373	unsigned long val;
2374	int diag;
2375
2376	if (argc > 1)
2377		return KDB_ARGCOUNT;
2378
2379	if (argc) {
2380		if (strcmp(argv[1], "R") == 0) {
2381			p = KDB_TSK(kdb_initial_cpu);
2382		} else {
2383			diag = kdbgetularg(argv[1], &val);
2384			if (diag)
2385				return KDB_BADINT;
2386
2387			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2388			if (!p) {
2389				kdb_printf("No task with pid=%d\n", (pid_t)val);
2390				return 0;
2391			}
2392		}
2393		kdb_set_current_task(p);
2394	}
2395	kdb_printf("KDB current process is %s(pid=%d)\n",
2396		   kdb_current_task->comm,
2397		   kdb_current_task->pid);
2398
2399	return 0;
2400}
2401
2402static int kdb_kgdb(int argc, const char **argv)
2403{
2404	return KDB_CMD_KGDB;
2405}
2406
2407/*
2408 * kdb_help - This function implements the 'help' and '?' commands.
2409 */
2410static int kdb_help(int argc, const char **argv)
2411{
2412	kdbtab_t *kt;
2413	int i;
2414
2415	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2416	kdb_printf("-----------------------------"
2417		   "-----------------------------\n");
2418	for_each_kdbcmd(kt, i) {
2419		char *space = "";
2420		if (KDB_FLAG(CMD_INTERRUPT))
2421			return 0;
2422		if (!kt->cmd_name)
2423			continue;
2424		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2425			continue;
2426		if (strlen(kt->cmd_usage) > 20)
2427			space = "\n                                    ";
2428		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2429			   kt->cmd_usage, space, kt->cmd_help);
2430	}
2431	return 0;
2432}
2433
2434/*
2435 * kdb_kill - This function implements the 'kill' commands.
2436 */
2437static int kdb_kill(int argc, const char **argv)
2438{
2439	long sig, pid;
2440	char *endp;
2441	struct task_struct *p;
2442	struct siginfo info;
2443
2444	if (argc != 2)
2445		return KDB_ARGCOUNT;
2446
2447	sig = simple_strtol(argv[1], &endp, 0);
2448	if (*endp)
2449		return KDB_BADINT;
2450	if (sig >= 0) {
2451		kdb_printf("Invalid signal parameter.<-signal>\n");
2452		return 0;
2453	}
2454	sig = -sig;
2455
2456	pid = simple_strtol(argv[2], &endp, 0);
2457	if (*endp)
2458		return KDB_BADINT;
2459	if (pid <= 0) {
2460		kdb_printf("Process ID must be large than 0.\n");
2461		return 0;
2462	}
2463
2464	/* Find the process. */
2465	p = find_task_by_pid_ns(pid, &init_pid_ns);
2466	if (!p) {
2467		kdb_printf("The specified process isn't found.\n");
2468		return 0;
2469	}
2470	p = p->group_leader;
2471	info.si_signo = sig;
2472	info.si_errno = 0;
2473	info.si_code = SI_USER;
2474	info.si_pid = pid;  /* same capabilities as process being signalled */
2475	info.si_uid = 0;    /* kdb has root authority */
2476	kdb_send_sig_info(p, &info);
2477	return 0;
2478}
2479
2480struct kdb_tm {
2481	int tm_sec;	/* seconds */
2482	int tm_min;	/* minutes */
2483	int tm_hour;	/* hours */
2484	int tm_mday;	/* day of the month */
2485	int tm_mon;	/* month */
2486	int tm_year;	/* year */
2487};
2488
2489static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2490{
2491	/* This will work from 1970-2099, 2100 is not a leap year */
2492	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2493				 31, 30, 31, 30, 31 };
2494	memset(tm, 0, sizeof(*tm));
2495	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2496	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2497		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2498	tm->tm_min =  tm->tm_sec / 60 % 60;
2499	tm->tm_hour = tm->tm_sec / 60 / 60;
2500	tm->tm_sec =  tm->tm_sec % 60;
2501	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2502	tm->tm_mday %= (4*365+1);
2503	mon_day[1] = 29;
2504	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2505		tm->tm_mday -= mon_day[tm->tm_mon];
2506		if (++tm->tm_mon == 12) {
2507			tm->tm_mon = 0;
2508			++tm->tm_year;
2509			mon_day[1] = 28;
2510		}
2511	}
2512	++tm->tm_mday;
2513}
2514
2515/*
2516 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2517 * I cannot call that code directly from kdb, it has an unconditional
2518 * cli()/sti() and calls routines that take locks which can stop the debugger.
2519 */
2520static void kdb_sysinfo(struct sysinfo *val)
2521{
2522	struct timespec uptime;
2523	ktime_get_ts(&uptime);
2524	memset(val, 0, sizeof(*val));
2525	val->uptime = uptime.tv_sec;
2526	val->loads[0] = avenrun[0];
2527	val->loads[1] = avenrun[1];
2528	val->loads[2] = avenrun[2];
2529	val->procs = nr_threads-1;
2530	si_meminfo(val);
2531
2532	return;
2533}
2534
2535/*
2536 * kdb_summary - This function implements the 'summary' command.
2537 */
2538static int kdb_summary(int argc, const char **argv)
2539{
2540	struct timespec now;
2541	struct kdb_tm tm;
2542	struct sysinfo val;
2543
2544	if (argc)
2545		return KDB_ARGCOUNT;
2546
2547	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2548	kdb_printf("release    %s\n", init_uts_ns.name.release);
2549	kdb_printf("version    %s\n", init_uts_ns.name.version);
2550	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2551	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2552	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2553	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2554
2555	now = __current_kernel_time();
2556	kdb_gmtime(&now, &tm);
2557	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2558		   "tz_minuteswest %d\n",
2559		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2560		tm.tm_hour, tm.tm_min, tm.tm_sec,
2561		sys_tz.tz_minuteswest);
2562
 
 
2563	kdb_sysinfo(&val);
2564	kdb_printf("uptime     ");
2565	if (val.uptime > (24*60*60)) {
2566		int days = val.uptime / (24*60*60);
2567		val.uptime %= (24*60*60);
2568		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2569	}
2570	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2571
2572	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2573
2574#define LOAD_INT(x) ((x) >> FSHIFT)
2575#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2576	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2577		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2578		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2579		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2580#undef LOAD_INT
2581#undef LOAD_FRAC
2582	/* Display in kilobytes */
2583#define K(x) ((x) << (PAGE_SHIFT - 10))
2584	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2585		   "Buffers:        %8lu kB\n",
2586		   K(val.totalram), K(val.freeram), K(val.bufferram));
2587	return 0;
2588}
2589
2590/*
2591 * kdb_per_cpu - This function implements the 'per_cpu' command.
2592 */
2593static int kdb_per_cpu(int argc, const char **argv)
2594{
2595	char fmtstr[64];
2596	int cpu, diag, nextarg = 1;
2597	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2598
2599	if (argc < 1 || argc > 3)
2600		return KDB_ARGCOUNT;
2601
2602	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2603	if (diag)
2604		return diag;
2605
2606	if (argc >= 2) {
2607		diag = kdbgetularg(argv[2], &bytesperword);
2608		if (diag)
2609			return diag;
2610	}
2611	if (!bytesperword)
2612		bytesperword = KDB_WORD_SIZE;
2613	else if (bytesperword > KDB_WORD_SIZE)
2614		return KDB_BADWIDTH;
2615	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2616	if (argc >= 3) {
2617		diag = kdbgetularg(argv[3], &whichcpu);
2618		if (diag)
2619			return diag;
2620		if (!cpu_online(whichcpu)) {
2621			kdb_printf("cpu %ld is not online\n", whichcpu);
2622			return KDB_BADCPUNUM;
2623		}
2624	}
2625
2626	/* Most architectures use __per_cpu_offset[cpu], some use
2627	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2628	 */
2629#ifdef	__per_cpu_offset
2630#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2631#else
2632#ifdef	CONFIG_SMP
2633#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2634#else
2635#define KDB_PCU(cpu) 0
2636#endif
2637#endif
2638	for_each_online_cpu(cpu) {
2639		if (KDB_FLAG(CMD_INTERRUPT))
2640			return 0;
2641
2642		if (whichcpu != ~0UL && whichcpu != cpu)
2643			continue;
2644		addr = symaddr + KDB_PCU(cpu);
2645		diag = kdb_getword(&val, addr, bytesperword);
2646		if (diag) {
2647			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2648				   "read, diag=%d\n", cpu, addr, diag);
2649			continue;
2650		}
2651		kdb_printf("%5d ", cpu);
2652		kdb_md_line(fmtstr, addr,
2653			bytesperword == KDB_WORD_SIZE,
2654			1, bytesperword, 1, 1, 0);
2655	}
2656#undef KDB_PCU
2657	return 0;
2658}
2659
2660/*
2661 * display help for the use of cmd | grep pattern
2662 */
2663static int kdb_grep_help(int argc, const char **argv)
2664{
2665	kdb_printf("Usage of  cmd args | grep pattern:\n");
2666	kdb_printf("  Any command's output may be filtered through an ");
2667	kdb_printf("emulated 'pipe'.\n");
2668	kdb_printf("  'grep' is just a key word.\n");
2669	kdb_printf("  The pattern may include a very limited set of "
2670		   "metacharacters:\n");
2671	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2672	kdb_printf("  And if there are spaces in the pattern, you may "
2673		   "quote it:\n");
2674	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2675		   " or \"^pat tern$\"\n");
2676	return 0;
2677}
2678
2679/*
2680 * kdb_register_flags - This function is used to register a kernel
2681 * 	debugger command.
2682 * Inputs:
2683 *	cmd	Command name
2684 *	func	Function to execute the command
2685 *	usage	A simple usage string showing arguments
2686 *	help	A simple help string describing command
2687 *	repeat	Does the command auto repeat on enter?
2688 * Returns:
2689 *	zero for success, one if a duplicate command.
2690 */
2691#define kdb_command_extend 50	/* arbitrary */
2692int kdb_register_flags(char *cmd,
2693		       kdb_func_t func,
2694		       char *usage,
2695		       char *help,
2696		       short minlen,
2697		       kdb_cmdflags_t flags)
2698{
2699	int i;
2700	kdbtab_t *kp;
2701
2702	/*
2703	 *  Brute force method to determine duplicates
2704	 */
2705	for_each_kdbcmd(kp, i) {
2706		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2707			kdb_printf("Duplicate kdb command registered: "
2708				"%s, func %p help %s\n", cmd, func, help);
2709			return 1;
2710		}
2711	}
2712
2713	/*
2714	 * Insert command into first available location in table
2715	 */
2716	for_each_kdbcmd(kp, i) {
2717		if (kp->cmd_name == NULL)
2718			break;
2719	}
2720
2721	if (i >= kdb_max_commands) {
2722		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2723			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2724		if (!new) {
2725			kdb_printf("Could not allocate new kdb_command "
2726				   "table\n");
2727			return 1;
2728		}
2729		if (kdb_commands) {
2730			memcpy(new, kdb_commands,
2731			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2732			kfree(kdb_commands);
2733		}
2734		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2735		       kdb_command_extend * sizeof(*new));
2736		kdb_commands = new;
2737		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2738		kdb_max_commands += kdb_command_extend;
2739	}
2740
2741	kp->cmd_name   = cmd;
2742	kp->cmd_func   = func;
2743	kp->cmd_usage  = usage;
2744	kp->cmd_help   = help;
2745	kp->cmd_minlen = minlen;
2746	kp->cmd_flags  = flags;
2747
2748	return 0;
2749}
2750EXPORT_SYMBOL_GPL(kdb_register_flags);
2751
2752
2753/*
2754 * kdb_register - Compatibility register function for commands that do
2755 *	not need to specify a repeat state.  Equivalent to
2756 *	kdb_register_flags with flags set to 0.
2757 * Inputs:
2758 *	cmd	Command name
2759 *	func	Function to execute the command
2760 *	usage	A simple usage string showing arguments
2761 *	help	A simple help string describing command
2762 * Returns:
2763 *	zero for success, one if a duplicate command.
2764 */
2765int kdb_register(char *cmd,
2766	     kdb_func_t func,
2767	     char *usage,
2768	     char *help,
2769	     short minlen)
2770{
2771	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
 
 
 
2772}
2773EXPORT_SYMBOL_GPL(kdb_register);
2774
2775/*
2776 * kdb_unregister - This function is used to unregister a kernel
2777 *	debugger command.  It is generally called when a module which
2778 *	implements kdb commands is unloaded.
2779 * Inputs:
2780 *	cmd	Command name
2781 * Returns:
2782 *	zero for success, one command not registered.
2783 */
2784int kdb_unregister(char *cmd)
2785{
2786	int i;
2787	kdbtab_t *kp;
2788
2789	/*
2790	 *  find the command.
2791	 */
2792	for_each_kdbcmd(kp, i) {
2793		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2794			kp->cmd_name = NULL;
2795			return 0;
2796		}
2797	}
2798
2799	/* Couldn't find it.  */
2800	return 1;
2801}
2802EXPORT_SYMBOL_GPL(kdb_unregister);
2803
2804/* Initialize the kdb command table. */
2805static void __init kdb_inittab(void)
2806{
2807	int i;
2808	kdbtab_t *kp;
2809
2810	for_each_kdbcmd(kp, i)
2811		kp->cmd_name = NULL;
2812
2813	kdb_register_flags("md", kdb_md, "<vaddr>",
2814	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2815	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2816	kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2817	  "Display Raw Memory", 0,
2818	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2819	kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2820	  "Display Physical Memory", 0,
2821	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2822	kdb_register_flags("mds", kdb_md, "<vaddr>",
2823	  "Display Memory Symbolically", 0,
2824	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2825	kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2826	  "Modify Memory Contents", 0,
2827	  KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2828	kdb_register_flags("go", kdb_go, "[<vaddr>]",
2829	  "Continue Execution", 1,
2830	  KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2831	kdb_register_flags("rd", kdb_rd, "",
2832	  "Display Registers", 0,
2833	  KDB_ENABLE_REG_READ);
2834	kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2835	  "Modify Registers", 0,
2836	  KDB_ENABLE_REG_WRITE);
2837	kdb_register_flags("ef", kdb_ef, "<vaddr>",
2838	  "Display exception frame", 0,
2839	  KDB_ENABLE_MEM_READ);
2840	kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2841	  "Stack traceback", 1,
2842	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2843	kdb_register_flags("btp", kdb_bt, "<pid>",
2844	  "Display stack for process <pid>", 0,
2845	  KDB_ENABLE_INSPECT);
2846	kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2847	  "Backtrace all processes matching state flag", 0,
2848	  KDB_ENABLE_INSPECT);
2849	kdb_register_flags("btc", kdb_bt, "",
2850	  "Backtrace current process on each cpu", 0,
2851	  KDB_ENABLE_INSPECT);
2852	kdb_register_flags("btt", kdb_bt, "<vaddr>",
2853	  "Backtrace process given its struct task address", 0,
2854	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2855	kdb_register_flags("env", kdb_env, "",
2856	  "Show environment variables", 0,
2857	  KDB_ENABLE_ALWAYS_SAFE);
2858	kdb_register_flags("set", kdb_set, "",
2859	  "Set environment variables", 0,
2860	  KDB_ENABLE_ALWAYS_SAFE);
2861	kdb_register_flags("help", kdb_help, "",
2862	  "Display Help Message", 1,
2863	  KDB_ENABLE_ALWAYS_SAFE);
2864	kdb_register_flags("?", kdb_help, "",
2865	  "Display Help Message", 0,
2866	  KDB_ENABLE_ALWAYS_SAFE);
2867	kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2868	  "Switch to new cpu", 0,
2869	  KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2870	kdb_register_flags("kgdb", kdb_kgdb, "",
2871	  "Enter kgdb mode", 0, 0);
2872	kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2873	  "Display active task list", 0,
2874	  KDB_ENABLE_INSPECT);
2875	kdb_register_flags("pid", kdb_pid, "<pidnum>",
2876	  "Switch to another task", 0,
2877	  KDB_ENABLE_INSPECT);
2878	kdb_register_flags("reboot", kdb_reboot, "",
2879	  "Reboot the machine immediately", 0,
2880	  KDB_ENABLE_REBOOT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2881#if defined(CONFIG_MODULES)
2882	kdb_register_flags("lsmod", kdb_lsmod, "",
2883	  "List loaded kernel modules", 0,
2884	  KDB_ENABLE_INSPECT);
 
 
 
2885#endif
2886#if defined(CONFIG_MAGIC_SYSRQ)
2887	kdb_register_flags("sr", kdb_sr, "<key>",
2888	  "Magic SysRq key", 0,
2889	  KDB_ENABLE_ALWAYS_SAFE);
 
 
 
2890#endif
2891#if defined(CONFIG_PRINTK)
2892	kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2893	  "Display syslog buffer", 0,
2894	  KDB_ENABLE_ALWAYS_SAFE);
 
 
 
2895#endif
2896	if (arch_kgdb_ops.enable_nmi) {
2897		kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2898		  "Disable NMI entry to KDB", 0,
2899		  KDB_ENABLE_ALWAYS_SAFE);
2900	}
2901	kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2902	  "Define a set of commands, down to endefcmd", 0,
2903	  KDB_ENABLE_ALWAYS_SAFE);
2904	kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2905	  "Send a signal to a process", 0,
2906	  KDB_ENABLE_SIGNAL);
2907	kdb_register_flags("summary", kdb_summary, "",
2908	  "Summarize the system", 4,
2909	  KDB_ENABLE_ALWAYS_SAFE);
2910	kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2911	  "Display per_cpu variables", 3,
2912	  KDB_ENABLE_MEM_READ);
2913	kdb_register_flags("grephelp", kdb_grep_help, "",
2914	  "Display help on | grep", 0,
2915	  KDB_ENABLE_ALWAYS_SAFE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2916}
2917
2918/* Execute any commands defined in kdb_cmds.  */
2919static void __init kdb_cmd_init(void)
2920{
2921	int i, diag;
2922	for (i = 0; kdb_cmds[i]; ++i) {
2923		diag = kdb_parse(kdb_cmds[i]);
2924		if (diag)
2925			kdb_printf("kdb command %s failed, kdb diag %d\n",
2926				kdb_cmds[i], diag);
2927	}
2928	if (defcmd_in_progress) {
2929		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2930		kdb_parse("endefcmd");
2931	}
2932}
2933
2934/* Initialize kdb_printf, breakpoint tables and kdb state */
2935void __init kdb_init(int lvl)
2936{
2937	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2938	int i;
2939
2940	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2941		return;
2942	for (i = kdb_init_lvl; i < lvl; i++) {
2943		switch (i) {
2944		case KDB_NOT_INITIALIZED:
2945			kdb_inittab();		/* Initialize Command Table */
2946			kdb_initbptab();	/* Initialize Breakpoints */
2947			break;
2948		case KDB_INIT_EARLY:
2949			kdb_cmd_init();		/* Build kdb_cmds tables */
2950			break;
2951		}
2952	}
2953	kdb_init_lvl = lvl;
2954}