Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sched/loadavg.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sysrq.h>
  25#include <linux/smp.h>
  26#include <linux/utsname.h>
  27#include <linux/vmalloc.h>
  28#include <linux/atomic.h>
  29#include <linux/moduleparam.h>
  30#include <linux/mm.h>
  31#include <linux/init.h>
  32#include <linux/kallsyms.h>
  33#include <linux/kgdb.h>
  34#include <linux/kdb.h>
  35#include <linux/notifier.h>
  36#include <linux/interrupt.h>
  37#include <linux/delay.h>
  38#include <linux/nmi.h>
  39#include <linux/time.h>
  40#include <linux/ptrace.h>
  41#include <linux/sysctl.h>
  42#include <linux/cpu.h>
  43#include <linux/kdebug.h>
  44#include <linux/proc_fs.h>
  45#include <linux/uaccess.h>
  46#include <linux/slab.h>
  47#include <linux/security.h>
  48#include "kdb_private.h"
  49
  50#undef	MODULE_PARAM_PREFIX
  51#define	MODULE_PARAM_PREFIX "kdb."
  52
  53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  55
  56char kdb_grep_string[KDB_GREP_STRLEN];
  57int kdb_grepping_flag;
  58EXPORT_SYMBOL(kdb_grepping_flag);
  59int kdb_grep_leading;
  60int kdb_grep_trailing;
  61
  62/*
  63 * Kernel debugger state flags
  64 */
  65unsigned int kdb_flags;
 
  66
  67/*
  68 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  69 * single thread processors through the kernel debugger.
  70 */
  71int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  72int kdb_nextline = 1;
  73int kdb_state;			/* General KDB state */
  74
  75struct task_struct *kdb_current_task;
 
  76struct pt_regs *kdb_current_regs;
  77
  78const char *kdb_diemsg;
  79static int kdb_go_count;
  80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  81static unsigned int kdb_continue_catastrophic =
  82	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  83#else
  84static unsigned int kdb_continue_catastrophic;
  85#endif
  86
  87/* kdb_cmds_head describes the available commands. */
  88static LIST_HEAD(kdb_cmds_head);
 
 
 
 
 
 
 
  89
  90typedef struct _kdbmsg {
  91	int	km_diag;	/* kdb diagnostic */
  92	char	*km_msg;	/* Corresponding message text */
  93} kdbmsg_t;
  94
  95#define KDBMSG(msgnum, text) \
  96	{ KDB_##msgnum, text }
  97
  98static kdbmsg_t kdbmsgs[] = {
  99	KDBMSG(NOTFOUND, "Command Not Found"),
 100	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 101	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 102	       "8 is only allowed on 64 bit systems"),
 103	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 104	KDBMSG(NOTENV, "Cannot find environment variable"),
 105	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 106	KDBMSG(NOTIMP, "Command not implemented"),
 107	KDBMSG(ENVFULL, "Environment full"),
 108	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 109	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 110#ifdef CONFIG_CPU_XSCALE
 111	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 112#else
 113	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 114#endif
 115	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 116	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 117	KDBMSG(BADMODE, "Invalid IDMODE"),
 118	KDBMSG(BADINT, "Illegal numeric value"),
 119	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 120	KDBMSG(BADREG, "Invalid register name"),
 121	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 122	KDBMSG(BADLENGTH, "Invalid length field"),
 123	KDBMSG(NOBP, "No Breakpoint exists"),
 124	KDBMSG(BADADDR, "Invalid address"),
 125	KDBMSG(NOPERM, "Permission denied"),
 126};
 127#undef KDBMSG
 128
 129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 130
 131
 132/*
 133 * Initial environment.   This is all kept static and local to
 134 * this file.   We don't want to rely on the memory allocation
 135 * mechanisms in the kernel, so we use a very limited allocate-only
 136 * heap for new and altered environment variables.  The entire
 137 * environment is limited to a fixed number of entries (add more
 138 * to __env[] if required) and a fixed amount of heap (add more to
 139 * KDB_ENVBUFSIZE if required).
 140 */
 141
 142static char *__env[31] = {
 143#if defined(CONFIG_SMP)
 144	"PROMPT=[%d]kdb> ",
 145#else
 146	"PROMPT=kdb> ",
 147#endif
 148	"MOREPROMPT=more> ",
 149	"RADIX=16",
 150	"MDCOUNT=8",		/* lines of md output */
 151	KDB_PLATFORM_ENV,
 152	"DTABCOUNT=30",
 153	"NOSECT=1",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154};
 155
 156static const int __nenv = ARRAY_SIZE(__env);
 157
 158struct task_struct *kdb_curr_task(int cpu)
 159{
 160	struct task_struct *p = curr_task(cpu);
 161#ifdef	_TIF_MCA_INIT
 162	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 163		p = krp->p;
 164#endif
 165	return p;
 166}
 167
 168/*
 169 * Update the permissions flags (kdb_cmd_enabled) to match the
 170 * current lockdown state.
 171 *
 172 * Within this function the calls to security_locked_down() are "lazy". We
 173 * avoid calling them if the current value of kdb_cmd_enabled already excludes
 174 * flags that might be subject to lockdown. Additionally we deliberately check
 175 * the lockdown flags independently (even though read lockdown implies write
 176 * lockdown) since that results in both simpler code and clearer messages to
 177 * the user on first-time debugger entry.
 178 *
 179 * The permission masks during a read+write lockdown permits the following
 180 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
 181 *
 182 * The INSPECT commands are not blocked during lockdown because they are
 183 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
 184 * forcing them to have no arguments) and lsmod. These commands do expose
 185 * some kernel state but do not allow the developer seated at the console to
 186 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
 187 * given these are allowed for root during lockdown already.
 188 */
 189static void kdb_check_for_lockdown(void)
 190{
 191	const int write_flags = KDB_ENABLE_MEM_WRITE |
 192				KDB_ENABLE_REG_WRITE |
 193				KDB_ENABLE_FLOW_CTRL;
 194	const int read_flags = KDB_ENABLE_MEM_READ |
 195			       KDB_ENABLE_REG_READ;
 196
 197	bool need_to_lockdown_write = false;
 198	bool need_to_lockdown_read = false;
 199
 200	if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
 201		need_to_lockdown_write =
 202			security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
 203
 204	if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
 205		need_to_lockdown_read =
 206			security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
 207
 208	/* De-compose KDB_ENABLE_ALL if required */
 209	if (need_to_lockdown_write || need_to_lockdown_read)
 210		if (kdb_cmd_enabled & KDB_ENABLE_ALL)
 211			kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
 212
 213	if (need_to_lockdown_write)
 214		kdb_cmd_enabled &= ~write_flags;
 215
 216	if (need_to_lockdown_read)
 217		kdb_cmd_enabled &= ~read_flags;
 218}
 219
 220/*
 221 * Check whether the flags of the current command, the permissions of the kdb
 222 * console and the lockdown state allow a command to be run.
 223 */
 224static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 225				   bool no_args)
 226{
 227	/* permissions comes from userspace so needs massaging slightly */
 228	permissions &= KDB_ENABLE_MASK;
 229	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 230
 231	/* some commands change group when launched with no arguments */
 232	if (no_args)
 233		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 234
 235	flags |= KDB_ENABLE_ALL;
 236
 237	return permissions & flags;
 238}
 239
 240/*
 241 * kdbgetenv - This function will return the character string value of
 242 *	an environment variable.
 243 * Parameters:
 244 *	match	A character string representing an environment variable.
 245 * Returns:
 246 *	NULL	No environment variable matches 'match'
 247 *	char*	Pointer to string value of environment variable.
 248 */
 249char *kdbgetenv(const char *match)
 250{
 251	char **ep = __env;
 252	int matchlen = strlen(match);
 253	int i;
 254
 255	for (i = 0; i < __nenv; i++) {
 256		char *e = *ep++;
 257
 258		if (!e)
 259			continue;
 260
 261		if ((strncmp(match, e, matchlen) == 0)
 262		 && ((e[matchlen] == '\0')
 263		   || (e[matchlen] == '='))) {
 264			char *cp = strchr(e, '=');
 265			return cp ? ++cp : "";
 266		}
 267	}
 268	return NULL;
 269}
 270
 271/*
 272 * kdballocenv - This function is used to allocate bytes for
 273 *	environment entries.
 274 * Parameters:
 275 *	bytes	The number of bytes to allocate in the static buffer.
 
 
 276 * Returns:
 277 *	A pointer to the allocated space in the buffer on success.
 278 *	NULL if bytes > size available in the envbuffer.
 279 * Remarks:
 280 *	We use a static environment buffer (envbuffer) to hold the values
 281 *	of dynamically generated environment variables (see kdb_set).  Buffer
 282 *	space once allocated is never free'd, so over time, the amount of space
 283 *	(currently 512 bytes) will be exhausted if env variables are changed
 284 *	frequently.
 285 */
 286static char *kdballocenv(size_t bytes)
 287{
 288#define	KDB_ENVBUFSIZE	512
 289	static char envbuffer[KDB_ENVBUFSIZE];
 290	static int envbufsize;
 291	char *ep = NULL;
 292
 293	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 294		ep = &envbuffer[envbufsize];
 295		envbufsize += bytes;
 296	}
 297	return ep;
 298}
 299
 300/*
 301 * kdbgetulenv - This function will return the value of an unsigned
 302 *	long-valued environment variable.
 303 * Parameters:
 304 *	match	A character string representing a numeric value
 305 * Outputs:
 306 *	*value  the unsigned long representation of the env variable 'match'
 307 * Returns:
 308 *	Zero on success, a kdb diagnostic on failure.
 309 */
 310static int kdbgetulenv(const char *match, unsigned long *value)
 311{
 312	char *ep;
 313
 314	ep = kdbgetenv(match);
 315	if (!ep)
 316		return KDB_NOTENV;
 317	if (strlen(ep) == 0)
 318		return KDB_NOENVVALUE;
 319
 320	*value = simple_strtoul(ep, NULL, 0);
 321
 322	return 0;
 323}
 324
 325/*
 326 * kdbgetintenv - This function will return the value of an
 327 *	integer-valued environment variable.
 328 * Parameters:
 329 *	match	A character string representing an integer-valued env variable
 330 * Outputs:
 331 *	*value  the integer representation of the environment variable 'match'
 332 * Returns:
 333 *	Zero on success, a kdb diagnostic on failure.
 334 */
 335int kdbgetintenv(const char *match, int *value)
 336{
 337	unsigned long val;
 338	int diag;
 339
 340	diag = kdbgetulenv(match, &val);
 341	if (!diag)
 342		*value = (int) val;
 343	return diag;
 344}
 345
 346/*
 347 * kdb_setenv() - Alter an existing environment variable or create a new one.
 348 * @var: Name of the variable
 349 * @val: Value of the variable
 350 *
 351 * Return: Zero on success, a kdb diagnostic on failure.
 352 */
 353static int kdb_setenv(const char *var, const char *val)
 354{
 355	int i;
 356	char *ep;
 357	size_t varlen, vallen;
 358
 359	varlen = strlen(var);
 360	vallen = strlen(val);
 361	ep = kdballocenv(varlen + vallen + 2);
 362	if (ep == (char *)0)
 363		return KDB_ENVBUFFULL;
 364
 365	sprintf(ep, "%s=%s", var, val);
 366
 367	for (i = 0; i < __nenv; i++) {
 368		if (__env[i]
 369		 && ((strncmp(__env[i], var, varlen) == 0)
 370		   && ((__env[i][varlen] == '\0')
 371		    || (__env[i][varlen] == '=')))) {
 372			__env[i] = ep;
 373			return 0;
 374		}
 375	}
 376
 377	/*
 378	 * Wasn't existing variable.  Fit into slot.
 379	 */
 380	for (i = 0; i < __nenv-1; i++) {
 381		if (__env[i] == (char *)0) {
 382			__env[i] = ep;
 383			return 0;
 384		}
 385	}
 386
 387	return KDB_ENVFULL;
 388}
 389
 390/*
 391 * kdb_printenv() - Display the current environment variables.
 392 */
 393static void kdb_printenv(void)
 394{
 395	int i;
 396
 397	for (i = 0; i < __nenv; i++) {
 398		if (__env[i])
 399			kdb_printf("%s\n", __env[i]);
 400	}
 401}
 402
 403/*
 404 * kdbgetularg - This function will convert a numeric string into an
 405 *	unsigned long value.
 406 * Parameters:
 407 *	arg	A character string representing a numeric value
 408 * Outputs:
 409 *	*value  the unsigned long representation of arg.
 410 * Returns:
 411 *	Zero on success, a kdb diagnostic on failure.
 412 */
 413int kdbgetularg(const char *arg, unsigned long *value)
 414{
 415	char *endp;
 416	unsigned long val;
 417
 418	val = simple_strtoul(arg, &endp, 0);
 419
 420	if (endp == arg) {
 421		/*
 422		 * Also try base 16, for us folks too lazy to type the
 423		 * leading 0x...
 424		 */
 425		val = simple_strtoul(arg, &endp, 16);
 426		if (endp == arg)
 427			return KDB_BADINT;
 428	}
 429
 430	*value = val;
 431
 432	return 0;
 433}
 434
 435int kdbgetu64arg(const char *arg, u64 *value)
 436{
 437	char *endp;
 438	u64 val;
 439
 440	val = simple_strtoull(arg, &endp, 0);
 441
 442	if (endp == arg) {
 443
 444		val = simple_strtoull(arg, &endp, 16);
 445		if (endp == arg)
 446			return KDB_BADINT;
 447	}
 448
 449	*value = val;
 450
 451	return 0;
 452}
 453
 454/*
 455 * kdb_set - This function implements the 'set' command.  Alter an
 456 *	existing environment variable or create a new one.
 457 */
 458int kdb_set(int argc, const char **argv)
 459{
 
 
 
 
 460	/*
 461	 * we can be invoked two ways:
 462	 *   set var=value    argv[1]="var", argv[2]="value"
 463	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 464	 * - if the latter, shift 'em down.
 465	 */
 466	if (argc == 3) {
 467		argv[2] = argv[3];
 468		argc--;
 469	}
 470
 471	if (argc != 2)
 472		return KDB_ARGCOUNT;
 473
 474	/*
 475	 * Censor sensitive variables
 476	 */
 477	if (strcmp(argv[1], "PROMPT") == 0 &&
 478	    !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
 479		return KDB_NOPERM;
 480
 481	/*
 482	 * Check for internal variables
 483	 */
 484	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 485		unsigned int debugflags;
 486		char *cp;
 487
 488		debugflags = simple_strtoul(argv[2], &cp, 0);
 489		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 490			kdb_printf("kdb: illegal debug flags '%s'\n",
 491				    argv[2]);
 492			return 0;
 493		}
 494		kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
 
 495			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 496
 497		return 0;
 498	}
 499
 500	/*
 501	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 502	 * name, argv[2] = value.
 503	 */
 504	return kdb_setenv(argv[1], argv[2]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505}
 506
 507static int kdb_check_regs(void)
 508{
 509	if (!kdb_current_regs) {
 510		kdb_printf("No current kdb registers."
 511			   "  You may need to select another task\n");
 512		return KDB_BADREG;
 513	}
 514	return 0;
 515}
 516
 517/*
 518 * kdbgetaddrarg - This function is responsible for parsing an
 519 *	address-expression and returning the value of the expression,
 520 *	symbol name, and offset to the caller.
 521 *
 522 *	The argument may consist of a numeric value (decimal or
 523 *	hexadecimal), a symbol name, a register name (preceded by the
 524 *	percent sign), an environment variable with a numeric value
 525 *	(preceded by a dollar sign) or a simple arithmetic expression
 526 *	consisting of a symbol name, +/-, and a numeric constant value
 527 *	(offset).
 528 * Parameters:
 529 *	argc	- count of arguments in argv
 530 *	argv	- argument vector
 531 *	*nextarg - index to next unparsed argument in argv[]
 532 *	regs	- Register state at time of KDB entry
 533 * Outputs:
 534 *	*value	- receives the value of the address-expression
 535 *	*offset - receives the offset specified, if any
 536 *	*name   - receives the symbol name, if any
 537 *	*nextarg - index to next unparsed argument in argv[]
 538 * Returns:
 539 *	zero is returned on success, a kdb diagnostic code is
 540 *      returned on error.
 541 */
 542int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 543		  unsigned long *value,  long *offset,
 544		  char **name)
 545{
 546	unsigned long addr;
 547	unsigned long off = 0;
 548	int positive;
 549	int diag;
 550	int found = 0;
 551	char *symname;
 552	char symbol = '\0';
 553	char *cp;
 554	kdb_symtab_t symtab;
 555
 556	/*
 557	 * If the enable flags prohibit both arbitrary memory access
 558	 * and flow control then there are no reasonable grounds to
 559	 * provide symbol lookup.
 560	 */
 561	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 562			     kdb_cmd_enabled, false))
 563		return KDB_NOPERM;
 564
 565	/*
 566	 * Process arguments which follow the following syntax:
 567	 *
 568	 *  symbol | numeric-address [+/- numeric-offset]
 569	 *  %register
 570	 *  $environment-variable
 571	 */
 572
 573	if (*nextarg > argc)
 574		return KDB_ARGCOUNT;
 575
 576	symname = (char *)argv[*nextarg];
 577
 578	/*
 579	 * If there is no whitespace between the symbol
 580	 * or address and the '+' or '-' symbols, we
 581	 * remember the character and replace it with a
 582	 * null so the symbol/value can be properly parsed
 583	 */
 584	cp = strpbrk(symname, "+-");
 585	if (cp != NULL) {
 586		symbol = *cp;
 587		*cp++ = '\0';
 588	}
 589
 590	if (symname[0] == '$') {
 591		diag = kdbgetulenv(&symname[1], &addr);
 592		if (diag)
 593			return diag;
 594	} else if (symname[0] == '%') {
 595		diag = kdb_check_regs();
 596		if (diag)
 597			return diag;
 598		/* Implement register values with % at a later time as it is
 599		 * arch optional.
 600		 */
 601		return KDB_NOTIMP;
 602	} else {
 603		found = kdbgetsymval(symname, &symtab);
 604		if (found) {
 605			addr = symtab.sym_start;
 606		} else {
 607			diag = kdbgetularg(argv[*nextarg], &addr);
 608			if (diag)
 609				return diag;
 610		}
 611	}
 612
 613	if (!found)
 614		found = kdbnearsym(addr, &symtab);
 615
 616	(*nextarg)++;
 617
 618	if (name)
 619		*name = symname;
 620	if (value)
 621		*value = addr;
 622	if (offset && name && *name)
 623		*offset = addr - symtab.sym_start;
 624
 625	if ((*nextarg > argc)
 626	 && (symbol == '\0'))
 627		return 0;
 628
 629	/*
 630	 * check for +/- and offset
 631	 */
 632
 633	if (symbol == '\0') {
 634		if ((argv[*nextarg][0] != '+')
 635		 && (argv[*nextarg][0] != '-')) {
 636			/*
 637			 * Not our argument.  Return.
 638			 */
 639			return 0;
 640		} else {
 641			positive = (argv[*nextarg][0] == '+');
 642			(*nextarg)++;
 643		}
 644	} else
 645		positive = (symbol == '+');
 646
 647	/*
 648	 * Now there must be an offset!
 649	 */
 650	if ((*nextarg > argc)
 651	 && (symbol == '\0')) {
 652		return KDB_INVADDRFMT;
 653	}
 654
 655	if (!symbol) {
 656		cp = (char *)argv[*nextarg];
 657		(*nextarg)++;
 658	}
 659
 660	diag = kdbgetularg(cp, &off);
 661	if (diag)
 662		return diag;
 663
 664	if (!positive)
 665		off = -off;
 666
 667	if (offset)
 668		*offset += off;
 669
 670	if (value)
 671		*value += off;
 672
 673	return 0;
 674}
 675
 676static void kdb_cmderror(int diag)
 677{
 678	int i;
 679
 680	if (diag >= 0) {
 681		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 682		return;
 683	}
 684
 685	for (i = 0; i < __nkdb_err; i++) {
 686		if (kdbmsgs[i].km_diag == diag) {
 687			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 688			return;
 689		}
 690	}
 691
 692	kdb_printf("Unknown diag %d\n", -diag);
 693}
 694
 695/*
 696 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 697 *	command which defines one command as a set of other commands,
 698 *	terminated by endefcmd.  kdb_defcmd processes the initial
 699 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 700 *	the following commands until 'endefcmd'.
 701 * Inputs:
 702 *	argc	argument count
 703 *	argv	argument vector
 704 * Returns:
 705 *	zero for success, a kdb diagnostic if error
 706 */
 707struct kdb_macro {
 708	kdbtab_t cmd;			/* Macro command */
 709	struct list_head statements;	/* Associated statement list */
 710};
 711
 712struct kdb_macro_statement {
 713	char *statement;		/* Statement text */
 714	struct list_head list_node;	/* Statement list node */
 715};
 716
 717static struct kdb_macro *kdb_macro;
 718static bool defcmd_in_progress;
 719
 720/* Forward references */
 721static int kdb_exec_defcmd(int argc, const char **argv);
 722
 723static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 724{
 725	struct kdb_macro_statement *kms;
 726
 727	if (!kdb_macro)
 728		return KDB_NOTIMP;
 729
 730	if (strcmp(argv0, "endefcmd") == 0) {
 731		defcmd_in_progress = false;
 732		if (!list_empty(&kdb_macro->statements))
 733			kdb_register(&kdb_macro->cmd);
 
 
 
 734		return 0;
 735	}
 736
 737	kms = kmalloc(sizeof(*kms), GFP_KDB);
 738	if (!kms) {
 739		kdb_printf("Could not allocate new kdb macro command: %s\n",
 
 740			   cmdstr);
 
 741		return KDB_NOTIMP;
 742	}
 743
 744	kms->statement = kdb_strdup(cmdstr, GFP_KDB);
 745	list_add_tail(&kms->list_node, &kdb_macro->statements);
 746
 747	return 0;
 748}
 749
 750static int kdb_defcmd(int argc, const char **argv)
 751{
 752	kdbtab_t *mp;
 753
 754	if (defcmd_in_progress) {
 755		kdb_printf("kdb: nested defcmd detected, assuming missing "
 756			   "endefcmd\n");
 757		kdb_defcmd2("endefcmd", "endefcmd");
 758	}
 759	if (argc == 0) {
 760		kdbtab_t *kp;
 761		struct kdb_macro *kmp;
 762		struct kdb_macro_statement *kms;
 763
 764		list_for_each_entry(kp, &kdb_cmds_head, list_node) {
 765			if (kp->func == kdb_exec_defcmd) {
 766				kdb_printf("defcmd %s \"%s\" \"%s\"\n",
 767					   kp->name, kp->usage, kp->help);
 768				kmp = container_of(kp, struct kdb_macro, cmd);
 769				list_for_each_entry(kms, &kmp->statements,
 770						    list_node)
 771					kdb_printf("%s", kms->statement);
 772				kdb_printf("endefcmd\n");
 773			}
 774		}
 775		return 0;
 776	}
 777	if (argc != 3)
 778		return KDB_ARGCOUNT;
 779	if (in_dbg_master()) {
 780		kdb_printf("Command only available during kdb_init()\n");
 781		return KDB_NOTIMP;
 782	}
 783	kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
 784	if (!kdb_macro)
 
 785		goto fail_defcmd;
 786
 787	mp = &kdb_macro->cmd;
 788	mp->func = kdb_exec_defcmd;
 789	mp->minlen = 0;
 790	mp->flags = KDB_ENABLE_ALWAYS_SAFE;
 791	mp->name = kdb_strdup(argv[1], GFP_KDB);
 792	if (!mp->name)
 793		goto fail_name;
 794	mp->usage = kdb_strdup(argv[2], GFP_KDB);
 795	if (!mp->usage)
 796		goto fail_usage;
 797	mp->help = kdb_strdup(argv[3], GFP_KDB);
 798	if (!mp->help)
 799		goto fail_help;
 800	if (mp->usage[0] == '"') {
 801		strcpy(mp->usage, argv[2]+1);
 802		mp->usage[strlen(mp->usage)-1] = '\0';
 803	}
 804	if (mp->help[0] == '"') {
 805		strcpy(mp->help, argv[3]+1);
 806		mp->help[strlen(mp->help)-1] = '\0';
 807	}
 808
 809	INIT_LIST_HEAD(&kdb_macro->statements);
 810	defcmd_in_progress = true;
 811	return 0;
 812fail_help:
 813	kfree(mp->usage);
 814fail_usage:
 815	kfree(mp->name);
 816fail_name:
 817	kfree(kdb_macro);
 818fail_defcmd:
 819	kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
 
 820	return KDB_NOTIMP;
 821}
 822
 823/*
 824 * kdb_exec_defcmd - Execute the set of commands associated with this
 825 *	defcmd name.
 826 * Inputs:
 827 *	argc	argument count
 828 *	argv	argument vector
 829 * Returns:
 830 *	zero for success, a kdb diagnostic if error
 831 */
 832static int kdb_exec_defcmd(int argc, const char **argv)
 833{
 834	int ret;
 835	kdbtab_t *kp;
 836	struct kdb_macro *kmp;
 837	struct kdb_macro_statement *kms;
 838
 839	if (argc != 0)
 840		return KDB_ARGCOUNT;
 841
 842	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
 843		if (strcmp(kp->name, argv[0]) == 0)
 844			break;
 845	}
 846	if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
 847		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 848			   argv[0]);
 849		return KDB_NOTIMP;
 850	}
 851	kmp = container_of(kp, struct kdb_macro, cmd);
 852	list_for_each_entry(kms, &kmp->statements, list_node) {
 853		/*
 854		 * Recursive use of kdb_parse, do not use argv after this point.
 855		 */
 856		argv = NULL;
 857		kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
 858		ret = kdb_parse(kms->statement);
 859		if (ret)
 860			return ret;
 861	}
 862	return 0;
 863}
 864
 865/* Command history */
 866#define KDB_CMD_HISTORY_COUNT	32
 867#define CMD_BUFLEN		200	/* kdb_printf: max printline
 868					 * size == 256 */
 869static unsigned int cmd_head, cmd_tail;
 870static unsigned int cmdptr;
 871static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 872static char cmd_cur[CMD_BUFLEN];
 873
 874/*
 875 * The "str" argument may point to something like  | grep xyz
 876 */
 877static void parse_grep(const char *str)
 878{
 879	int	len;
 880	char	*cp = (char *)str, *cp2;
 881
 882	/* sanity check: we should have been called with the \ first */
 883	if (*cp != '|')
 884		return;
 885	cp++;
 886	while (isspace(*cp))
 887		cp++;
 888	if (!str_has_prefix(cp, "grep ")) {
 889		kdb_printf("invalid 'pipe', see grephelp\n");
 890		return;
 891	}
 892	cp += 5;
 893	while (isspace(*cp))
 894		cp++;
 895	cp2 = strchr(cp, '\n');
 896	if (cp2)
 897		*cp2 = '\0'; /* remove the trailing newline */
 898	len = strlen(cp);
 899	if (len == 0) {
 900		kdb_printf("invalid 'pipe', see grephelp\n");
 901		return;
 902	}
 903	/* now cp points to a nonzero length search string */
 904	if (*cp == '"') {
 905		/* allow it be "x y z" by removing the "'s - there must
 906		   be two of them */
 907		cp++;
 908		cp2 = strchr(cp, '"');
 909		if (!cp2) {
 910			kdb_printf("invalid quoted string, see grephelp\n");
 911			return;
 912		}
 913		*cp2 = '\0'; /* end the string where the 2nd " was */
 914	}
 915	kdb_grep_leading = 0;
 916	if (*cp == '^') {
 917		kdb_grep_leading = 1;
 918		cp++;
 919	}
 920	len = strlen(cp);
 921	kdb_grep_trailing = 0;
 922	if (*(cp+len-1) == '$') {
 923		kdb_grep_trailing = 1;
 924		*(cp+len-1) = '\0';
 925	}
 926	len = strlen(cp);
 927	if (!len)
 928		return;
 929	if (len >= KDB_GREP_STRLEN) {
 930		kdb_printf("search string too long\n");
 931		return;
 932	}
 933	strcpy(kdb_grep_string, cp);
 934	kdb_grepping_flag++;
 935	return;
 936}
 937
 938/*
 939 * kdb_parse - Parse the command line, search the command table for a
 940 *	matching command and invoke the command function.  This
 941 *	function may be called recursively, if it is, the second call
 942 *	will overwrite argv and cbuf.  It is the caller's
 943 *	responsibility to save their argv if they recursively call
 944 *	kdb_parse().
 945 * Parameters:
 946 *      cmdstr	The input command line to be parsed.
 947 *	regs	The registers at the time kdb was entered.
 948 * Returns:
 949 *	Zero for success, a kdb diagnostic if failure.
 950 * Remarks:
 951 *	Limited to 20 tokens.
 952 *
 953 *	Real rudimentary tokenization. Basically only whitespace
 954 *	is considered a token delimiter (but special consideration
 955 *	is taken of the '=' sign as used by the 'set' command).
 956 *
 957 *	The algorithm used to tokenize the input string relies on
 958 *	there being at least one whitespace (or otherwise useless)
 959 *	character between tokens as the character immediately following
 960 *	the token is altered in-place to a null-byte to terminate the
 961 *	token string.
 962 */
 963
 964#define MAXARGC	20
 965
 966int kdb_parse(const char *cmdstr)
 967{
 968	static char *argv[MAXARGC];
 969	static int argc;
 970	static char cbuf[CMD_BUFLEN+2];
 971	char *cp;
 972	char *cpp, quoted;
 973	kdbtab_t *tp;
 974	int escaped, ignore_errors = 0, check_grep = 0;
 975
 976	/*
 977	 * First tokenize the command string.
 978	 */
 979	cp = (char *)cmdstr;
 
 980
 981	if (KDB_FLAG(CMD_INTERRUPT)) {
 982		/* Previous command was interrupted, newline must not
 983		 * repeat the command */
 984		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 985		KDB_STATE_SET(PAGER);
 986		argc = 0;	/* no repeat */
 987	}
 988
 989	if (*cp != '\n' && *cp != '\0') {
 990		argc = 0;
 991		cpp = cbuf;
 992		while (*cp) {
 993			/* skip whitespace */
 994			while (isspace(*cp))
 995				cp++;
 996			if ((*cp == '\0') || (*cp == '\n') ||
 997			    (*cp == '#' && !defcmd_in_progress))
 998				break;
 999			/* special case: check for | grep pattern */
1000			if (*cp == '|') {
1001				check_grep++;
1002				break;
1003			}
1004			if (cpp >= cbuf + CMD_BUFLEN) {
1005				kdb_printf("kdb_parse: command buffer "
1006					   "overflow, command ignored\n%s\n",
1007					   cmdstr);
1008				return KDB_NOTFOUND;
1009			}
1010			if (argc >= MAXARGC - 1) {
1011				kdb_printf("kdb_parse: too many arguments, "
1012					   "command ignored\n%s\n", cmdstr);
1013				return KDB_NOTFOUND;
1014			}
1015			argv[argc++] = cpp;
1016			escaped = 0;
1017			quoted = '\0';
1018			/* Copy to next unquoted and unescaped
1019			 * whitespace or '=' */
1020			while (*cp && *cp != '\n' &&
1021			       (escaped || quoted || !isspace(*cp))) {
1022				if (cpp >= cbuf + CMD_BUFLEN)
1023					break;
1024				if (escaped) {
1025					escaped = 0;
1026					*cpp++ = *cp++;
1027					continue;
1028				}
1029				if (*cp == '\\') {
1030					escaped = 1;
1031					++cp;
1032					continue;
1033				}
1034				if (*cp == quoted)
1035					quoted = '\0';
1036				else if (*cp == '\'' || *cp == '"')
1037					quoted = *cp;
1038				*cpp = *cp++;
1039				if (*cpp == '=' && !quoted)
1040					break;
1041				++cpp;
1042			}
1043			*cpp++ = '\0';	/* Squash a ws or '=' character */
1044		}
1045	}
1046	if (!argc)
1047		return 0;
1048	if (check_grep)
1049		parse_grep(cp);
1050	if (defcmd_in_progress) {
1051		int result = kdb_defcmd2(cmdstr, argv[0]);
1052		if (!defcmd_in_progress) {
1053			argc = 0;	/* avoid repeat on endefcmd */
1054			*(argv[0]) = '\0';
1055		}
1056		return result;
1057	}
1058	if (argv[0][0] == '-' && argv[0][1] &&
1059	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1060		ignore_errors = 1;
1061		++argv[0];
1062	}
1063
1064	list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1065		/*
1066		 * If this command is allowed to be abbreviated,
1067		 * check to see if this is it.
1068		 */
1069		if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1070		    (strncmp(argv[0], tp->name, tp->minlen) == 0))
1071			break;
1072
1073		if (strcmp(argv[0], tp->name) == 0)
1074			break;
 
 
 
 
 
 
 
 
 
 
1075	}
1076
1077	/*
1078	 * If we don't find a command by this name, see if the first
1079	 * few characters of this match any of the known commands.
1080	 * e.g., md1c20 should match md.
1081	 */
1082	if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1083		list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1084			if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
1085				break;
 
 
 
 
 
1086		}
1087	}
1088
1089	if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1090		int result;
1091
1092		if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
1093			return KDB_NOPERM;
1094
1095		KDB_STATE_SET(CMD);
1096		result = (*tp->func)(argc-1, (const char **)argv);
1097		if (result && ignore_errors && result > KDB_CMD_GO)
1098			result = 0;
1099		KDB_STATE_CLEAR(CMD);
1100
1101		if (tp->flags & KDB_REPEAT_WITH_ARGS)
1102			return result;
1103
1104		argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1105		if (argv[argc])
1106			*(argv[argc]) = '\0';
 
 
 
 
 
 
 
1107		return result;
1108	}
1109
1110	/*
1111	 * If the input with which we were presented does not
1112	 * map to an existing command, attempt to parse it as an
1113	 * address argument and display the result.   Useful for
1114	 * obtaining the address of a variable, or the nearest symbol
1115	 * to an address contained in a register.
1116	 */
1117	{
1118		unsigned long value;
1119		char *name = NULL;
1120		long offset;
1121		int nextarg = 0;
1122
1123		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1124				  &value, &offset, &name)) {
1125			return KDB_NOTFOUND;
1126		}
1127
1128		kdb_printf("%s = ", argv[0]);
1129		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1130		kdb_printf("\n");
1131		return 0;
1132	}
1133}
1134
1135
1136static int handle_ctrl_cmd(char *cmd)
1137{
1138#define CTRL_P	16
1139#define CTRL_N	14
1140
1141	/* initial situation */
1142	if (cmd_head == cmd_tail)
1143		return 0;
1144	switch (*cmd) {
1145	case CTRL_P:
1146		if (cmdptr != cmd_tail)
1147			cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1148				 KDB_CMD_HISTORY_COUNT;
1149		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1150		return 1;
1151	case CTRL_N:
1152		if (cmdptr != cmd_head)
1153			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1154		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1155		return 1;
1156	}
1157	return 0;
1158}
1159
1160/*
1161 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1162 *	the system immediately, or loop for ever on failure.
1163 */
1164static int kdb_reboot(int argc, const char **argv)
1165{
1166	emergency_restart();
1167	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1168	while (1)
1169		cpu_relax();
1170	/* NOTREACHED */
1171	return 0;
1172}
1173
1174static void kdb_dumpregs(struct pt_regs *regs)
1175{
1176	int old_lvl = console_loglevel;
1177	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1178	kdb_trap_printk++;
1179	show_regs(regs);
1180	kdb_trap_printk--;
1181	kdb_printf("\n");
1182	console_loglevel = old_lvl;
1183}
1184
1185static void kdb_set_current_task(struct task_struct *p)
1186{
1187	kdb_current_task = p;
1188
1189	if (kdb_task_has_cpu(p)) {
1190		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1191		return;
1192	}
1193	kdb_current_regs = NULL;
1194}
1195
1196static void drop_newline(char *buf)
1197{
1198	size_t len = strlen(buf);
1199
1200	if (len == 0)
1201		return;
1202	if (*(buf + len - 1) == '\n')
1203		*(buf + len - 1) = '\0';
1204}
1205
1206/*
1207 * kdb_local - The main code for kdb.  This routine is invoked on a
1208 *	specific processor, it is not global.  The main kdb() routine
1209 *	ensures that only one processor at a time is in this routine.
1210 *	This code is called with the real reason code on the first
1211 *	entry to a kdb session, thereafter it is called with reason
1212 *	SWITCH, even if the user goes back to the original cpu.
1213 * Inputs:
1214 *	reason		The reason KDB was invoked
1215 *	error		The hardware-defined error code
1216 *	regs		The exception frame at time of fault/breakpoint.
1217 *	db_result	Result code from the break or debug point.
1218 * Returns:
1219 *	0	KDB was invoked for an event which it wasn't responsible
1220 *	1	KDB handled the event for which it was invoked.
1221 *	KDB_CMD_GO	User typed 'go'.
1222 *	KDB_CMD_CPU	User switched to another cpu.
1223 *	KDB_CMD_SS	Single step.
1224 */
1225static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1226		     kdb_dbtrap_t db_result)
1227{
1228	char *cmdbuf;
1229	int diag;
1230	struct task_struct *kdb_current =
1231		kdb_curr_task(raw_smp_processor_id());
1232
1233	KDB_DEBUG_STATE("kdb_local 1", reason);
1234
1235	kdb_check_for_lockdown();
1236
1237	kdb_go_count = 0;
1238	if (reason == KDB_REASON_DEBUG) {
1239		/* special case below */
1240	} else {
1241		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1242			   kdb_current, kdb_current ? kdb_current->pid : 0);
1243#if defined(CONFIG_SMP)
1244		kdb_printf("on processor %d ", raw_smp_processor_id());
1245#endif
1246	}
1247
1248	switch (reason) {
1249	case KDB_REASON_DEBUG:
1250	{
1251		/*
1252		 * If re-entering kdb after a single step
1253		 * command, don't print the message.
1254		 */
1255		switch (db_result) {
1256		case KDB_DB_BPT:
1257			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1258				   kdb_current, kdb_current->pid);
1259#if defined(CONFIG_SMP)
1260			kdb_printf("on processor %d ", raw_smp_processor_id());
1261#endif
1262			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1263				   instruction_pointer(regs));
1264			break;
1265		case KDB_DB_SS:
1266			break;
1267		case KDB_DB_SSBPT:
1268			KDB_DEBUG_STATE("kdb_local 4", reason);
1269			return 1;	/* kdba_db_trap did the work */
1270		default:
1271			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1272				   db_result);
1273			break;
1274		}
1275
1276	}
1277		break;
1278	case KDB_REASON_ENTER:
1279		if (KDB_STATE(KEYBOARD))
1280			kdb_printf("due to Keyboard Entry\n");
1281		else
1282			kdb_printf("due to KDB_ENTER()\n");
1283		break;
1284	case KDB_REASON_KEYBOARD:
1285		KDB_STATE_SET(KEYBOARD);
1286		kdb_printf("due to Keyboard Entry\n");
1287		break;
1288	case KDB_REASON_ENTER_SLAVE:
1289		/* drop through, slaves only get released via cpu switch */
1290	case KDB_REASON_SWITCH:
1291		kdb_printf("due to cpu switch\n");
1292		break;
1293	case KDB_REASON_OOPS:
1294		kdb_printf("Oops: %s\n", kdb_diemsg);
1295		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1296			   instruction_pointer(regs));
1297		kdb_dumpregs(regs);
1298		break;
1299	case KDB_REASON_SYSTEM_NMI:
1300		kdb_printf("due to System NonMaskable Interrupt\n");
1301		break;
1302	case KDB_REASON_NMI:
1303		kdb_printf("due to NonMaskable Interrupt @ "
1304			   kdb_machreg_fmt "\n",
1305			   instruction_pointer(regs));
 
1306		break;
1307	case KDB_REASON_SSTEP:
1308	case KDB_REASON_BREAK:
1309		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1310			   reason == KDB_REASON_BREAK ?
1311			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1312		/*
1313		 * Determine if this breakpoint is one that we
1314		 * are interested in.
1315		 */
1316		if (db_result != KDB_DB_BPT) {
1317			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1318				   db_result);
1319			KDB_DEBUG_STATE("kdb_local 6", reason);
1320			return 0;	/* Not for us, dismiss it */
1321		}
1322		break;
1323	case KDB_REASON_RECURSE:
1324		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1325			   instruction_pointer(regs));
1326		break;
1327	default:
1328		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1329		KDB_DEBUG_STATE("kdb_local 8", reason);
1330		return 0;	/* Not for us, dismiss it */
1331	}
1332
1333	while (1) {
1334		/*
1335		 * Initialize pager context.
1336		 */
1337		kdb_nextline = 1;
1338		KDB_STATE_CLEAR(SUPPRESS);
1339		kdb_grepping_flag = 0;
1340		/* ensure the old search does not leak into '/' commands */
1341		kdb_grep_string[0] = '\0';
1342
1343		cmdbuf = cmd_cur;
1344		*cmdbuf = '\0';
1345		*(cmd_hist[cmd_head]) = '\0';
1346
1347do_full_getstr:
1348		/* PROMPT can only be set if we have MEM_READ permission. */
1349		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1350			 raw_smp_processor_id());
 
 
 
 
 
1351
1352		/*
1353		 * Fetch command from keyboard
1354		 */
1355		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1356		if (*cmdbuf != '\n') {
1357			if (*cmdbuf < 32) {
1358				if (cmdptr == cmd_head) {
1359					strscpy(cmd_hist[cmd_head], cmd_cur,
1360						CMD_BUFLEN);
1361					*(cmd_hist[cmd_head] +
1362					  strlen(cmd_hist[cmd_head])-1) = '\0';
1363				}
1364				if (!handle_ctrl_cmd(cmdbuf))
1365					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1366				cmdbuf = cmd_cur;
1367				goto do_full_getstr;
1368			} else {
1369				strscpy(cmd_hist[cmd_head], cmd_cur,
1370					CMD_BUFLEN);
1371			}
1372
1373			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1374			if (cmd_head == cmd_tail)
1375				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1376		}
1377
1378		cmdptr = cmd_head;
1379		diag = kdb_parse(cmdbuf);
1380		if (diag == KDB_NOTFOUND) {
1381			drop_newline(cmdbuf);
1382			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1383			diag = 0;
1384		}
1385		if (diag == KDB_CMD_GO
1386		 || diag == KDB_CMD_CPU
1387		 || diag == KDB_CMD_SS
1388		 || diag == KDB_CMD_KGDB)
1389			break;
1390
1391		if (diag)
1392			kdb_cmderror(diag);
1393	}
1394	KDB_DEBUG_STATE("kdb_local 9", diag);
1395	return diag;
1396}
1397
1398
1399/*
1400 * kdb_print_state - Print the state data for the current processor
1401 *	for debugging.
1402 * Inputs:
1403 *	text		Identifies the debug point
1404 *	value		Any integer value to be printed, e.g. reason code.
1405 */
1406void kdb_print_state(const char *text, int value)
1407{
1408	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1409		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1410		   kdb_state);
1411}
1412
1413/*
1414 * kdb_main_loop - After initial setup and assignment of the
1415 *	controlling cpu, all cpus are in this loop.  One cpu is in
1416 *	control and will issue the kdb prompt, the others will spin
1417 *	until 'go' or cpu switch.
1418 *
1419 *	To get a consistent view of the kernel stacks for all
1420 *	processes, this routine is invoked from the main kdb code via
1421 *	an architecture specific routine.  kdba_main_loop is
1422 *	responsible for making the kernel stacks consistent for all
1423 *	processes, there should be no difference between a blocked
1424 *	process and a running process as far as kdb is concerned.
1425 * Inputs:
1426 *	reason		The reason KDB was invoked
1427 *	error		The hardware-defined error code
1428 *	reason2		kdb's current reason code.
1429 *			Initially error but can change
1430 *			according to kdb state.
1431 *	db_result	Result code from break or debug point.
1432 *	regs		The exception frame at time of fault/breakpoint.
1433 *			should always be valid.
1434 * Returns:
1435 *	0	KDB was invoked for an event which it wasn't responsible
1436 *	1	KDB handled the event for which it was invoked.
1437 */
1438int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1439	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1440{
1441	int result = 1;
1442	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1443	while (1) {
1444		/*
1445		 * All processors except the one that is in control
1446		 * will spin here.
1447		 */
1448		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1449		while (KDB_STATE(HOLD_CPU)) {
1450			/* state KDB is turned off by kdb_cpu to see if the
1451			 * other cpus are still live, each cpu in this loop
1452			 * turns it back on.
1453			 */
1454			if (!KDB_STATE(KDB))
1455				KDB_STATE_SET(KDB);
1456		}
1457
1458		KDB_STATE_CLEAR(SUPPRESS);
1459		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1460		if (KDB_STATE(LEAVING))
1461			break;	/* Another cpu said 'go' */
1462		/* Still using kdb, this processor is in control */
1463		result = kdb_local(reason2, error, regs, db_result);
1464		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1465
1466		if (result == KDB_CMD_CPU)
1467			break;
1468
1469		if (result == KDB_CMD_SS) {
1470			KDB_STATE_SET(DOING_SS);
1471			break;
1472		}
1473
1474		if (result == KDB_CMD_KGDB) {
1475			if (!KDB_STATE(DOING_KGDB))
1476				kdb_printf("Entering please attach debugger "
1477					   "or use $D#44+ or $3#33\n");
1478			break;
1479		}
1480		if (result && result != 1 && result != KDB_CMD_GO)
1481			kdb_printf("\nUnexpected kdb_local return code %d\n",
1482				   result);
1483		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1484		break;
1485	}
1486	if (KDB_STATE(DOING_SS))
1487		KDB_STATE_CLEAR(SSBPT);
1488
1489	/* Clean up any keyboard devices before leaving */
1490	kdb_kbd_cleanup_state();
1491
1492	return result;
1493}
1494
1495/*
1496 * kdb_mdr - This function implements the guts of the 'mdr', memory
1497 * read command.
1498 *	mdr  <addr arg>,<byte count>
1499 * Inputs:
1500 *	addr	Start address
1501 *	count	Number of bytes
1502 * Returns:
1503 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1504 */
1505static int kdb_mdr(unsigned long addr, unsigned int count)
1506{
1507	unsigned char c;
1508	while (count--) {
1509		if (kdb_getarea(c, addr))
1510			return 0;
1511		kdb_printf("%02x", c);
1512		addr++;
1513	}
1514	kdb_printf("\n");
1515	return 0;
1516}
1517
1518/*
1519 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1520 *	'md8' 'mdr' and 'mds' commands.
1521 *
1522 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1523 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1524 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1525 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1526 *	mdr  <addr arg>,<byte count>
1527 */
1528static void kdb_md_line(const char *fmtstr, unsigned long addr,
1529			int symbolic, int nosect, int bytesperword,
1530			int num, int repeat, int phys)
1531{
1532	/* print just one line of data */
1533	kdb_symtab_t symtab;
1534	char cbuf[32];
1535	char *c = cbuf;
1536	int i;
1537	int j;
1538	unsigned long word;
1539
1540	memset(cbuf, '\0', sizeof(cbuf));
1541	if (phys)
1542		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1543	else
1544		kdb_printf(kdb_machreg_fmt0 " ", addr);
1545
1546	for (i = 0; i < num && repeat--; i++) {
1547		if (phys) {
1548			if (kdb_getphysword(&word, addr, bytesperword))
1549				break;
1550		} else if (kdb_getword(&word, addr, bytesperword))
1551			break;
1552		kdb_printf(fmtstr, word);
1553		if (symbolic)
1554			kdbnearsym(word, &symtab);
1555		else
1556			memset(&symtab, 0, sizeof(symtab));
1557		if (symtab.sym_name) {
1558			kdb_symbol_print(word, &symtab, 0);
1559			if (!nosect) {
1560				kdb_printf("\n");
1561				kdb_printf("                       %s %s "
1562					   kdb_machreg_fmt " "
1563					   kdb_machreg_fmt " "
1564					   kdb_machreg_fmt, symtab.mod_name,
1565					   symtab.sec_name, symtab.sec_start,
1566					   symtab.sym_start, symtab.sym_end);
1567			}
1568			addr += bytesperword;
1569		} else {
1570			union {
1571				u64 word;
1572				unsigned char c[8];
1573			} wc;
1574			unsigned char *cp;
1575#ifdef	__BIG_ENDIAN
1576			cp = wc.c + 8 - bytesperword;
1577#else
1578			cp = wc.c;
1579#endif
1580			wc.word = word;
1581#define printable_char(c) \
1582	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1583			for (j = 0; j < bytesperword; j++)
 
1584				*c++ = printable_char(*cp++);
1585			addr += bytesperword;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586#undef printable_char
1587		}
1588	}
1589	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1590		   " ", cbuf);
1591}
1592
1593static int kdb_md(int argc, const char **argv)
1594{
1595	static unsigned long last_addr;
1596	static int last_radix, last_bytesperword, last_repeat;
1597	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1598	int nosect = 0;
1599	char fmtchar, fmtstr[64];
1600	unsigned long addr;
1601	unsigned long word;
1602	long offset = 0;
1603	int symbolic = 0;
1604	int valid = 0;
1605	int phys = 0;
1606	int raw = 0;
1607
1608	kdbgetintenv("MDCOUNT", &mdcount);
1609	kdbgetintenv("RADIX", &radix);
1610	kdbgetintenv("BYTESPERWORD", &bytesperword);
1611
1612	/* Assume 'md <addr>' and start with environment values */
1613	repeat = mdcount * 16 / bytesperword;
1614
1615	if (strcmp(argv[0], "mdr") == 0) {
1616		if (argc == 2 || (argc == 0 && last_addr != 0))
1617			valid = raw = 1;
1618		else
1619			return KDB_ARGCOUNT;
 
1620	} else if (isdigit(argv[0][2])) {
1621		bytesperword = (int)(argv[0][2] - '0');
1622		if (bytesperword == 0) {
1623			bytesperword = last_bytesperword;
1624			if (bytesperword == 0)
1625				bytesperword = 4;
1626		}
1627		last_bytesperword = bytesperword;
1628		repeat = mdcount * 16 / bytesperword;
1629		if (!argv[0][3])
1630			valid = 1;
1631		else if (argv[0][3] == 'c' && argv[0][4]) {
1632			char *p;
1633			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1634			mdcount = ((repeat * bytesperword) + 15) / 16;
1635			valid = !*p;
1636		}
1637		last_repeat = repeat;
1638	} else if (strcmp(argv[0], "md") == 0)
1639		valid = 1;
1640	else if (strcmp(argv[0], "mds") == 0)
1641		valid = 1;
1642	else if (strcmp(argv[0], "mdp") == 0) {
1643		phys = valid = 1;
1644	}
1645	if (!valid)
1646		return KDB_NOTFOUND;
1647
1648	if (argc == 0) {
1649		if (last_addr == 0)
1650			return KDB_ARGCOUNT;
1651		addr = last_addr;
1652		radix = last_radix;
1653		bytesperword = last_bytesperword;
1654		repeat = last_repeat;
1655		if (raw)
1656			mdcount = repeat;
1657		else
1658			mdcount = ((repeat * bytesperword) + 15) / 16;
1659	}
1660
1661	if (argc) {
1662		unsigned long val;
1663		int diag, nextarg = 1;
1664		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1665				     &offset, NULL);
1666		if (diag)
1667			return diag;
1668		if (argc > nextarg+2)
1669			return KDB_ARGCOUNT;
1670
1671		if (argc >= nextarg) {
1672			diag = kdbgetularg(argv[nextarg], &val);
1673			if (!diag) {
1674				mdcount = (int) val;
1675				if (raw)
1676					repeat = mdcount;
1677				else
1678					repeat = mdcount * 16 / bytesperword;
1679			}
1680		}
1681		if (argc >= nextarg+1) {
1682			diag = kdbgetularg(argv[nextarg+1], &val);
1683			if (!diag)
1684				radix = (int) val;
1685		}
1686	}
1687
1688	if (strcmp(argv[0], "mdr") == 0) {
1689		int ret;
1690		last_addr = addr;
1691		ret = kdb_mdr(addr, mdcount);
1692		last_addr += mdcount;
1693		last_repeat = mdcount;
1694		last_bytesperword = bytesperword; // to make REPEAT happy
1695		return ret;
1696	}
1697
1698	switch (radix) {
1699	case 10:
1700		fmtchar = 'd';
1701		break;
1702	case 16:
1703		fmtchar = 'x';
1704		break;
1705	case 8:
1706		fmtchar = 'o';
1707		break;
1708	default:
1709		return KDB_BADRADIX;
1710	}
1711
1712	last_radix = radix;
1713
1714	if (bytesperword > KDB_WORD_SIZE)
1715		return KDB_BADWIDTH;
1716
1717	switch (bytesperword) {
1718	case 8:
1719		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1720		break;
1721	case 4:
1722		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1723		break;
1724	case 2:
1725		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1726		break;
1727	case 1:
1728		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1729		break;
1730	default:
1731		return KDB_BADWIDTH;
1732	}
1733
1734	last_repeat = repeat;
1735	last_bytesperword = bytesperword;
1736
1737	if (strcmp(argv[0], "mds") == 0) {
1738		symbolic = 1;
1739		/* Do not save these changes as last_*, they are temporary mds
1740		 * overrides.
1741		 */
1742		bytesperword = KDB_WORD_SIZE;
1743		repeat = mdcount;
1744		kdbgetintenv("NOSECT", &nosect);
1745	}
1746
1747	/* Round address down modulo BYTESPERWORD */
1748
1749	addr &= ~(bytesperword-1);
1750
1751	while (repeat > 0) {
1752		unsigned long a;
1753		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1754
1755		if (KDB_FLAG(CMD_INTERRUPT))
1756			return 0;
1757		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1758			if (phys) {
1759				if (kdb_getphysword(&word, a, bytesperword)
1760						|| word)
1761					break;
1762			} else if (kdb_getword(&word, a, bytesperword) || word)
1763				break;
1764		}
1765		n = min(num, repeat);
1766		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1767			    num, repeat, phys);
1768		addr += bytesperword * n;
1769		repeat -= n;
1770		z = (z + num - 1) / num;
1771		if (z > 2) {
1772			int s = num * (z-2);
1773			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1774				   " zero suppressed\n",
1775				addr, addr + bytesperword * s - 1);
1776			addr += bytesperword * s;
1777			repeat -= s;
1778		}
1779	}
1780	last_addr = addr;
1781
1782	return 0;
1783}
1784
1785/*
1786 * kdb_mm - This function implements the 'mm' command.
1787 *	mm address-expression new-value
1788 * Remarks:
1789 *	mm works on machine words, mmW works on bytes.
1790 */
1791static int kdb_mm(int argc, const char **argv)
1792{
1793	int diag;
1794	unsigned long addr;
1795	long offset = 0;
1796	unsigned long contents;
1797	int nextarg;
1798	int width;
1799
1800	if (argv[0][2] && !isdigit(argv[0][2]))
1801		return KDB_NOTFOUND;
1802
1803	if (argc < 2)
1804		return KDB_ARGCOUNT;
1805
1806	nextarg = 1;
1807	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1808	if (diag)
1809		return diag;
1810
1811	if (nextarg > argc)
1812		return KDB_ARGCOUNT;
1813	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1814	if (diag)
1815		return diag;
1816
1817	if (nextarg != argc + 1)
1818		return KDB_ARGCOUNT;
1819
1820	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1821	diag = kdb_putword(addr, contents, width);
1822	if (diag)
1823		return diag;
1824
1825	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1826
1827	return 0;
1828}
1829
1830/*
1831 * kdb_go - This function implements the 'go' command.
1832 *	go [address-expression]
1833 */
1834static int kdb_go(int argc, const char **argv)
1835{
1836	unsigned long addr;
1837	int diag;
1838	int nextarg;
1839	long offset;
1840
1841	if (raw_smp_processor_id() != kdb_initial_cpu) {
1842		kdb_printf("go must execute on the entry cpu, "
1843			   "please use \"cpu %d\" and then execute go\n",
1844			   kdb_initial_cpu);
1845		return KDB_BADCPUNUM;
1846	}
1847	if (argc == 1) {
1848		nextarg = 1;
1849		diag = kdbgetaddrarg(argc, argv, &nextarg,
1850				     &addr, &offset, NULL);
1851		if (diag)
1852			return diag;
1853	} else if (argc) {
1854		return KDB_ARGCOUNT;
1855	}
1856
1857	diag = KDB_CMD_GO;
1858	if (KDB_FLAG(CATASTROPHIC)) {
1859		kdb_printf("Catastrophic error detected\n");
1860		kdb_printf("kdb_continue_catastrophic=%d, ",
1861			kdb_continue_catastrophic);
1862		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1863			kdb_printf("type go a second time if you really want "
1864				   "to continue\n");
1865			return 0;
1866		}
1867		if (kdb_continue_catastrophic == 2) {
1868			kdb_printf("forcing reboot\n");
1869			kdb_reboot(0, NULL);
1870		}
1871		kdb_printf("attempting to continue\n");
1872	}
1873	return diag;
1874}
1875
1876/*
1877 * kdb_rd - This function implements the 'rd' command.
1878 */
1879static int kdb_rd(int argc, const char **argv)
1880{
1881	int len = kdb_check_regs();
1882#if DBG_MAX_REG_NUM > 0
1883	int i;
1884	char *rname;
1885	int rsize;
1886	u64 reg64;
1887	u32 reg32;
1888	u16 reg16;
1889	u8 reg8;
1890
1891	if (len)
1892		return len;
1893
1894	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1895		rsize = dbg_reg_def[i].size * 2;
1896		if (rsize > 16)
1897			rsize = 2;
1898		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1899			len = 0;
1900			kdb_printf("\n");
1901		}
1902		if (len)
1903			len += kdb_printf("  ");
1904		switch(dbg_reg_def[i].size * 8) {
1905		case 8:
1906			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1907			if (!rname)
1908				break;
1909			len += kdb_printf("%s: %02x", rname, reg8);
1910			break;
1911		case 16:
1912			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1913			if (!rname)
1914				break;
1915			len += kdb_printf("%s: %04x", rname, reg16);
1916			break;
1917		case 32:
1918			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1919			if (!rname)
1920				break;
1921			len += kdb_printf("%s: %08x", rname, reg32);
1922			break;
1923		case 64:
1924			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1925			if (!rname)
1926				break;
1927			len += kdb_printf("%s: %016llx", rname, reg64);
1928			break;
1929		default:
1930			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1931		}
1932	}
1933	kdb_printf("\n");
1934#else
1935	if (len)
1936		return len;
1937
1938	kdb_dumpregs(kdb_current_regs);
1939#endif
1940	return 0;
1941}
1942
1943/*
1944 * kdb_rm - This function implements the 'rm' (register modify)  command.
1945 *	rm register-name new-contents
1946 * Remarks:
1947 *	Allows register modification with the same restrictions as gdb
1948 */
1949static int kdb_rm(int argc, const char **argv)
1950{
1951#if DBG_MAX_REG_NUM > 0
1952	int diag;
1953	const char *rname;
1954	int i;
1955	u64 reg64;
1956	u32 reg32;
1957	u16 reg16;
1958	u8 reg8;
1959
1960	if (argc != 2)
1961		return KDB_ARGCOUNT;
1962	/*
1963	 * Allow presence or absence of leading '%' symbol.
1964	 */
1965	rname = argv[1];
1966	if (*rname == '%')
1967		rname++;
1968
1969	diag = kdbgetu64arg(argv[2], &reg64);
1970	if (diag)
1971		return diag;
1972
1973	diag = kdb_check_regs();
1974	if (diag)
1975		return diag;
1976
1977	diag = KDB_BADREG;
1978	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1979		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1980			diag = 0;
1981			break;
1982		}
1983	}
1984	if (!diag) {
1985		switch(dbg_reg_def[i].size * 8) {
1986		case 8:
1987			reg8 = reg64;
1988			dbg_set_reg(i, &reg8, kdb_current_regs);
1989			break;
1990		case 16:
1991			reg16 = reg64;
1992			dbg_set_reg(i, &reg16, kdb_current_regs);
1993			break;
1994		case 32:
1995			reg32 = reg64;
1996			dbg_set_reg(i, &reg32, kdb_current_regs);
1997			break;
1998		case 64:
1999			dbg_set_reg(i, &reg64, kdb_current_regs);
2000			break;
2001		}
2002	}
2003	return diag;
2004#else
2005	kdb_printf("ERROR: Register set currently not implemented\n");
2006    return 0;
2007#endif
2008}
2009
2010#if defined(CONFIG_MAGIC_SYSRQ)
2011/*
2012 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
2013 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
2014 *		sr <magic-sysrq-code>
2015 */
2016static int kdb_sr(int argc, const char **argv)
2017{
2018	bool check_mask =
2019	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
2020
2021	if (argc != 1)
2022		return KDB_ARGCOUNT;
2023
2024	kdb_trap_printk++;
2025	__handle_sysrq(*argv[1], check_mask);
2026	kdb_trap_printk--;
2027
2028	return 0;
2029}
2030#endif	/* CONFIG_MAGIC_SYSRQ */
2031
2032/*
2033 * kdb_ef - This function implements the 'regs' (display exception
2034 *	frame) command.  This command takes an address and expects to
2035 *	find an exception frame at that address, formats and prints
2036 *	it.
2037 *		regs address-expression
2038 * Remarks:
2039 *	Not done yet.
2040 */
2041static int kdb_ef(int argc, const char **argv)
2042{
2043	int diag;
2044	unsigned long addr;
2045	long offset;
2046	int nextarg;
2047
2048	if (argc != 1)
2049		return KDB_ARGCOUNT;
2050
2051	nextarg = 1;
2052	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2053	if (diag)
2054		return diag;
2055	show_regs((struct pt_regs *)addr);
2056	return 0;
2057}
2058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2059/*
2060 * kdb_env - This function implements the 'env' command.  Display the
2061 *	current environment variables.
2062 */
2063
2064static int kdb_env(int argc, const char **argv)
2065{
2066	kdb_printenv();
 
 
 
 
 
2067
2068	if (KDB_DEBUG(MASK))
2069		kdb_printf("KDBDEBUG=0x%x\n",
2070			(kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2071
2072	return 0;
2073}
2074
2075#ifdef CONFIG_PRINTK
2076/*
2077 * kdb_dmesg - This function implements the 'dmesg' command to display
2078 *	the contents of the syslog buffer.
2079 *		dmesg [lines] [adjust]
2080 */
2081static int kdb_dmesg(int argc, const char **argv)
2082{
2083	int diag;
2084	int logging;
2085	int lines = 0;
2086	int adjust = 0;
2087	int n = 0;
2088	int skip = 0;
2089	struct kmsg_dump_iter iter;
2090	size_t len;
2091	char buf[201];
2092
2093	if (argc > 2)
2094		return KDB_ARGCOUNT;
2095	if (argc) {
2096		char *cp;
2097		lines = simple_strtol(argv[1], &cp, 0);
2098		if (*cp)
2099			lines = 0;
2100		if (argc > 1) {
2101			adjust = simple_strtoul(argv[2], &cp, 0);
2102			if (*cp || adjust < 0)
2103				adjust = 0;
2104		}
2105	}
2106
2107	/* disable LOGGING if set */
2108	diag = kdbgetintenv("LOGGING", &logging);
2109	if (!diag && logging) {
2110		const char *setargs[] = { "set", "LOGGING", "0" };
2111		kdb_set(2, setargs);
2112	}
2113
2114	kmsg_dump_rewind(&iter);
2115	while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2116		n++;
2117
2118	if (lines < 0) {
2119		if (adjust >= n)
2120			kdb_printf("buffer only contains %d lines, nothing "
2121				   "printed\n", n);
2122		else if (adjust - lines >= n)
2123			kdb_printf("buffer only contains %d lines, last %d "
2124				   "lines printed\n", n, n - adjust);
2125		skip = adjust;
2126		lines = abs(lines);
2127	} else if (lines > 0) {
2128		skip = n - lines - adjust;
2129		lines = abs(lines);
2130		if (adjust >= n) {
2131			kdb_printf("buffer only contains %d lines, "
2132				   "nothing printed\n", n);
2133			skip = n;
2134		} else if (skip < 0) {
2135			lines += skip;
2136			skip = 0;
2137			kdb_printf("buffer only contains %d lines, first "
2138				   "%d lines printed\n", n, lines);
2139		}
2140	} else {
2141		lines = n;
2142	}
2143
2144	if (skip >= n || skip < 0)
2145		return 0;
2146
2147	kmsg_dump_rewind(&iter);
2148	while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2149		if (skip) {
2150			skip--;
2151			continue;
2152		}
2153		if (!lines--)
2154			break;
2155		if (KDB_FLAG(CMD_INTERRUPT))
2156			return 0;
2157
2158		kdb_printf("%.*s\n", (int)len - 1, buf);
2159	}
2160
2161	return 0;
2162}
2163#endif /* CONFIG_PRINTK */
2164
2165/* Make sure we balance enable/disable calls, must disable first. */
2166static atomic_t kdb_nmi_disabled;
2167
2168static int kdb_disable_nmi(int argc, const char *argv[])
2169{
2170	if (atomic_read(&kdb_nmi_disabled))
2171		return 0;
2172	atomic_set(&kdb_nmi_disabled, 1);
2173	arch_kgdb_ops.enable_nmi(0);
2174	return 0;
2175}
2176
2177static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2178{
2179	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2180		return -EINVAL;
2181	arch_kgdb_ops.enable_nmi(1);
2182	return 0;
2183}
2184
2185static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2186	.set = kdb_param_enable_nmi,
2187};
2188module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2189
2190/*
2191 * kdb_cpu - This function implements the 'cpu' command.
2192 *	cpu	[<cpunum>]
2193 * Returns:
2194 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2195 */
2196static void kdb_cpu_status(void)
2197{
2198	int i, start_cpu, first_print = 1;
2199	char state, prev_state = '?';
2200
2201	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2202	kdb_printf("Available cpus: ");
2203	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2204		if (!cpu_online(i)) {
2205			state = 'F';	/* cpu is offline */
2206		} else if (!kgdb_info[i].enter_kgdb) {
2207			state = 'D';	/* cpu is online but unresponsive */
2208		} else {
2209			state = ' ';	/* cpu is responding to kdb */
2210			if (kdb_task_state_char(KDB_TSK(i)) == '-')
2211				state = '-';	/* idle task */
2212		}
2213		if (state != prev_state) {
2214			if (prev_state != '?') {
2215				if (!first_print)
2216					kdb_printf(", ");
2217				first_print = 0;
2218				kdb_printf("%d", start_cpu);
2219				if (start_cpu < i-1)
2220					kdb_printf("-%d", i-1);
2221				if (prev_state != ' ')
2222					kdb_printf("(%c)", prev_state);
2223			}
2224			prev_state = state;
2225			start_cpu = i;
2226		}
2227	}
2228	/* print the trailing cpus, ignoring them if they are all offline */
2229	if (prev_state != 'F') {
2230		if (!first_print)
2231			kdb_printf(", ");
2232		kdb_printf("%d", start_cpu);
2233		if (start_cpu < i-1)
2234			kdb_printf("-%d", i-1);
2235		if (prev_state != ' ')
2236			kdb_printf("(%c)", prev_state);
2237	}
2238	kdb_printf("\n");
2239}
2240
2241static int kdb_cpu(int argc, const char **argv)
2242{
2243	unsigned long cpunum;
2244	int diag;
2245
2246	if (argc == 0) {
2247		kdb_cpu_status();
2248		return 0;
2249	}
2250
2251	if (argc != 1)
2252		return KDB_ARGCOUNT;
2253
2254	diag = kdbgetularg(argv[1], &cpunum);
2255	if (diag)
2256		return diag;
2257
2258	/*
2259	 * Validate cpunum
2260	 */
2261	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2262		return KDB_BADCPUNUM;
2263
2264	dbg_switch_cpu = cpunum;
2265
2266	/*
2267	 * Switch to other cpu
2268	 */
2269	return KDB_CMD_CPU;
2270}
2271
2272/* The user may not realize that ps/bta with no parameters does not print idle
2273 * or sleeping system daemon processes, so tell them how many were suppressed.
2274 */
2275void kdb_ps_suppressed(void)
2276{
2277	int idle = 0, daemon = 0;
 
 
2278	unsigned long cpu;
2279	const struct task_struct *p, *g;
2280	for_each_online_cpu(cpu) {
2281		p = kdb_curr_task(cpu);
2282		if (kdb_task_state(p, "-"))
2283			++idle;
2284	}
2285	for_each_process_thread(g, p) {
2286		if (kdb_task_state(p, "ims"))
2287			++daemon;
2288	}
2289	if (idle || daemon) {
2290		if (idle)
2291			kdb_printf("%d idle process%s (state -)%s\n",
2292				   idle, idle == 1 ? "" : "es",
2293				   daemon ? " and " : "");
2294		if (daemon)
2295			kdb_printf("%d sleeping system daemon (state [ims]) "
2296				   "process%s", daemon,
2297				   daemon == 1 ? "" : "es");
2298		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2299	}
2300}
2301
 
 
 
 
 
2302void kdb_ps1(const struct task_struct *p)
2303{
2304	int cpu;
2305	unsigned long tmp;
2306
2307	if (!p ||
2308	    copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2309		return;
2310
2311	cpu = kdb_process_cpu(p);
2312	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2313		   (void *)p, p->pid, p->parent->pid,
2314		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2315		   kdb_task_state_char(p),
2316		   (void *)(&p->thread),
2317		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2318		   p->comm);
2319	if (kdb_task_has_cpu(p)) {
2320		if (!KDB_TSK(cpu)) {
2321			kdb_printf("  Error: no saved data for this cpu\n");
2322		} else {
2323			if (KDB_TSK(cpu) != p)
2324				kdb_printf("  Error: does not match running "
2325				   "process table (0x%px)\n", KDB_TSK(cpu));
2326		}
2327	}
2328}
2329
2330/*
2331 * kdb_ps - This function implements the 'ps' command which shows a
2332 *	    list of the active processes.
2333 *
2334 * ps [<state_chars>]   Show processes, optionally selecting only those whose
2335 *                      state character is found in <state_chars>.
2336 */
2337static int kdb_ps(int argc, const char **argv)
2338{
2339	struct task_struct *g, *p;
2340	const char *mask;
2341	unsigned long cpu;
2342
2343	if (argc == 0)
2344		kdb_ps_suppressed();
2345	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2346		(int)(2*sizeof(void *))+2, "Task Addr",
2347		(int)(2*sizeof(void *))+2, "Thread");
2348	mask = argc ? argv[1] : kdbgetenv("PS");
2349	/* Run the active tasks first */
2350	for_each_online_cpu(cpu) {
2351		if (KDB_FLAG(CMD_INTERRUPT))
2352			return 0;
2353		p = kdb_curr_task(cpu);
2354		if (kdb_task_state(p, mask))
2355			kdb_ps1(p);
2356	}
2357	kdb_printf("\n");
2358	/* Now the real tasks */
2359	for_each_process_thread(g, p) {
2360		if (KDB_FLAG(CMD_INTERRUPT))
2361			return 0;
2362		if (kdb_task_state(p, mask))
2363			kdb_ps1(p);
2364	}
2365
2366	return 0;
2367}
2368
2369/*
2370 * kdb_pid - This function implements the 'pid' command which switches
2371 *	the currently active process.
2372 *		pid [<pid> | R]
2373 */
2374static int kdb_pid(int argc, const char **argv)
2375{
2376	struct task_struct *p;
2377	unsigned long val;
2378	int diag;
2379
2380	if (argc > 1)
2381		return KDB_ARGCOUNT;
2382
2383	if (argc) {
2384		if (strcmp(argv[1], "R") == 0) {
2385			p = KDB_TSK(kdb_initial_cpu);
2386		} else {
2387			diag = kdbgetularg(argv[1], &val);
2388			if (diag)
2389				return KDB_BADINT;
2390
2391			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2392			if (!p) {
2393				kdb_printf("No task with pid=%d\n", (pid_t)val);
2394				return 0;
2395			}
2396		}
2397		kdb_set_current_task(p);
2398	}
2399	kdb_printf("KDB current process is %s(pid=%d)\n",
2400		   kdb_current_task->comm,
2401		   kdb_current_task->pid);
2402
2403	return 0;
2404}
2405
2406static int kdb_kgdb(int argc, const char **argv)
2407{
2408	return KDB_CMD_KGDB;
2409}
2410
2411/*
2412 * kdb_help - This function implements the 'help' and '?' commands.
2413 */
2414static int kdb_help(int argc, const char **argv)
2415{
2416	kdbtab_t *kt;
 
2417
2418	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2419	kdb_printf("-----------------------------"
2420		   "-----------------------------\n");
2421	list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2422		char *space = "";
2423		if (KDB_FLAG(CMD_INTERRUPT))
2424			return 0;
2425		if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
2426			continue;
2427		if (strlen(kt->usage) > 20)
2428			space = "\n                                    ";
2429		kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2430			   kt->usage, space, kt->help);
2431	}
2432	return 0;
2433}
2434
2435/*
2436 * kdb_kill - This function implements the 'kill' commands.
2437 */
2438static int kdb_kill(int argc, const char **argv)
2439{
2440	long sig, pid;
2441	char *endp;
2442	struct task_struct *p;
 
2443
2444	if (argc != 2)
2445		return KDB_ARGCOUNT;
2446
2447	sig = simple_strtol(argv[1], &endp, 0);
2448	if (*endp)
2449		return KDB_BADINT;
2450	if ((sig >= 0) || !valid_signal(-sig)) {
2451		kdb_printf("Invalid signal parameter.<-signal>\n");
2452		return 0;
2453	}
2454	sig = -sig;
2455
2456	pid = simple_strtol(argv[2], &endp, 0);
2457	if (*endp)
2458		return KDB_BADINT;
2459	if (pid <= 0) {
2460		kdb_printf("Process ID must be large than 0.\n");
2461		return 0;
2462	}
2463
2464	/* Find the process. */
2465	p = find_task_by_pid_ns(pid, &init_pid_ns);
2466	if (!p) {
2467		kdb_printf("The specified process isn't found.\n");
2468		return 0;
2469	}
2470	p = p->group_leader;
2471	kdb_send_sig(p, sig);
 
 
 
 
 
2472	return 0;
2473}
2474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2475/*
2476 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2477 * I cannot call that code directly from kdb, it has an unconditional
2478 * cli()/sti() and calls routines that take locks which can stop the debugger.
2479 */
2480static void kdb_sysinfo(struct sysinfo *val)
2481{
2482	u64 uptime = ktime_get_mono_fast_ns();
2483
2484	memset(val, 0, sizeof(*val));
2485	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2486	val->loads[0] = avenrun[0];
2487	val->loads[1] = avenrun[1];
2488	val->loads[2] = avenrun[2];
2489	val->procs = nr_threads-1;
2490	si_meminfo(val);
2491
2492	return;
2493}
2494
2495/*
2496 * kdb_summary - This function implements the 'summary' command.
2497 */
2498static int kdb_summary(int argc, const char **argv)
2499{
2500	time64_t now;
 
2501	struct sysinfo val;
2502
2503	if (argc)
2504		return KDB_ARGCOUNT;
2505
2506	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2507	kdb_printf("release    %s\n", init_uts_ns.name.release);
2508	kdb_printf("version    %s\n", init_uts_ns.name.version);
2509	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2510	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2511	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
 
 
 
 
 
 
 
 
 
2512
2513	now = __ktime_get_real_seconds();
2514	kdb_printf("date       %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2515	kdb_sysinfo(&val);
2516	kdb_printf("uptime     ");
2517	if (val.uptime > (24*60*60)) {
2518		int days = val.uptime / (24*60*60);
2519		val.uptime %= (24*60*60);
2520		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2521	}
2522	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2523
 
 
 
 
2524	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2525		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2526		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2527		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2528
 
2529	/* Display in kilobytes */
2530#define K(x) ((x) << (PAGE_SHIFT - 10))
2531	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2532		   "Buffers:        %8lu kB\n",
2533		   K(val.totalram), K(val.freeram), K(val.bufferram));
2534	return 0;
2535}
2536
2537/*
2538 * kdb_per_cpu - This function implements the 'per_cpu' command.
2539 */
2540static int kdb_per_cpu(int argc, const char **argv)
2541{
2542	char fmtstr[64];
2543	int cpu, diag, nextarg = 1;
2544	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2545
2546	if (argc < 1 || argc > 3)
2547		return KDB_ARGCOUNT;
2548
2549	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2550	if (diag)
2551		return diag;
2552
2553	if (argc >= 2) {
2554		diag = kdbgetularg(argv[2], &bytesperword);
2555		if (diag)
2556			return diag;
2557	}
2558	if (!bytesperword)
2559		bytesperword = KDB_WORD_SIZE;
2560	else if (bytesperword > KDB_WORD_SIZE)
2561		return KDB_BADWIDTH;
2562	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2563	if (argc >= 3) {
2564		diag = kdbgetularg(argv[3], &whichcpu);
2565		if (diag)
2566			return diag;
2567		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2568			kdb_printf("cpu %ld is not online\n", whichcpu);
2569			return KDB_BADCPUNUM;
2570		}
2571	}
2572
2573	/* Most architectures use __per_cpu_offset[cpu], some use
2574	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2575	 */
2576#ifdef	__per_cpu_offset
2577#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2578#else
2579#ifdef	CONFIG_SMP
2580#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2581#else
2582#define KDB_PCU(cpu) 0
2583#endif
2584#endif
2585	for_each_online_cpu(cpu) {
2586		if (KDB_FLAG(CMD_INTERRUPT))
2587			return 0;
2588
2589		if (whichcpu != ~0UL && whichcpu != cpu)
2590			continue;
2591		addr = symaddr + KDB_PCU(cpu);
2592		diag = kdb_getword(&val, addr, bytesperword);
2593		if (diag) {
2594			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2595				   "read, diag=%d\n", cpu, addr, diag);
2596			continue;
2597		}
2598		kdb_printf("%5d ", cpu);
2599		kdb_md_line(fmtstr, addr,
2600			bytesperword == KDB_WORD_SIZE,
2601			1, bytesperword, 1, 1, 0);
2602	}
2603#undef KDB_PCU
2604	return 0;
2605}
2606
2607/*
2608 * display help for the use of cmd | grep pattern
2609 */
2610static int kdb_grep_help(int argc, const char **argv)
2611{
2612	kdb_printf("Usage of  cmd args | grep pattern:\n");
2613	kdb_printf("  Any command's output may be filtered through an ");
2614	kdb_printf("emulated 'pipe'.\n");
2615	kdb_printf("  'grep' is just a key word.\n");
2616	kdb_printf("  The pattern may include a very limited set of "
2617		   "metacharacters:\n");
2618	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2619	kdb_printf("  And if there are spaces in the pattern, you may "
2620		   "quote it:\n");
2621	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2622		   " or \"^pat tern$\"\n");
2623	return 0;
2624}
2625
2626/**
2627 * kdb_register() - This function is used to register a kernel debugger
2628 *                  command.
2629 * @cmd: pointer to kdb command
2630 *
2631 * Note that it's the job of the caller to keep the memory for the cmd
2632 * allocated until unregister is called.
 
 
 
 
2633 */
2634int kdb_register(kdbtab_t *cmd)
 
 
 
 
 
 
2635{
 
2636	kdbtab_t *kp;
2637
2638	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2639		if (strcmp(kp->name, cmd->name) == 0) {
2640			kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
2641				   cmd->name, cmd->func, cmd->help);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642			return 1;
2643		}
 
 
 
 
 
 
 
 
 
 
2644	}
2645
2646	list_add_tail(&cmd->list_node, &kdb_cmds_head);
 
 
 
 
 
 
 
2647	return 0;
2648}
2649EXPORT_SYMBOL_GPL(kdb_register);
 
2650
2651/**
2652 * kdb_register_table() - This function is used to register a kdb command
2653 *                        table.
2654 * @kp: pointer to kdb command table
2655 * @len: length of kdb command table
 
 
 
 
 
 
2656 */
2657void kdb_register_table(kdbtab_t *kp, size_t len)
 
 
 
 
2658{
2659	while (len--) {
2660		list_add_tail(&kp->list_node, &kdb_cmds_head);
2661		kp++;
2662	}
2663}
 
2664
2665/**
2666 * kdb_unregister() - This function is used to unregister a kernel debugger
2667 *                    command. It is generally called when a module which
2668 *                    implements kdb command is unloaded.
2669 * @cmd: pointer to kdb command
 
 
 
2670 */
2671void kdb_unregister(kdbtab_t *cmd)
2672{
2673	list_del(&cmd->list_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2674}
2675EXPORT_SYMBOL_GPL(kdb_unregister);
2676
2677static kdbtab_t maintab[] = {
2678	{	.name = "md",
2679		.func = kdb_md,
2680		.usage = "<vaddr>",
2681		.help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2682		.minlen = 1,
2683		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2684	},
2685	{	.name = "mdr",
2686		.func = kdb_md,
2687		.usage = "<vaddr> <bytes>",
2688		.help = "Display Raw Memory",
2689		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2690	},
2691	{	.name = "mdp",
2692		.func = kdb_md,
2693		.usage = "<paddr> <bytes>",
2694		.help = "Display Physical Memory",
2695		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2696	},
2697	{	.name = "mds",
2698		.func = kdb_md,
2699		.usage = "<vaddr>",
2700		.help = "Display Memory Symbolically",
2701		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2702	},
2703	{	.name = "mm",
2704		.func = kdb_mm,
2705		.usage = "<vaddr> <contents>",
2706		.help = "Modify Memory Contents",
2707		.flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2708	},
2709	{	.name = "go",
2710		.func = kdb_go,
2711		.usage = "[<vaddr>]",
2712		.help = "Continue Execution",
2713		.minlen = 1,
2714		.flags = KDB_ENABLE_REG_WRITE |
2715			     KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2716	},
2717	{	.name = "rd",
2718		.func = kdb_rd,
2719		.usage = "",
2720		.help = "Display Registers",
2721		.flags = KDB_ENABLE_REG_READ,
2722	},
2723	{	.name = "rm",
2724		.func = kdb_rm,
2725		.usage = "<reg> <contents>",
2726		.help = "Modify Registers",
2727		.flags = KDB_ENABLE_REG_WRITE,
2728	},
2729	{	.name = "ef",
2730		.func = kdb_ef,
2731		.usage = "<vaddr>",
2732		.help = "Display exception frame",
2733		.flags = KDB_ENABLE_MEM_READ,
2734	},
2735	{	.name = "bt",
2736		.func = kdb_bt,
2737		.usage = "[<vaddr>]",
2738		.help = "Stack traceback",
2739		.minlen = 1,
2740		.flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2741	},
2742	{	.name = "btp",
2743		.func = kdb_bt,
2744		.usage = "<pid>",
2745		.help = "Display stack for process <pid>",
2746		.flags = KDB_ENABLE_INSPECT,
2747	},
2748	{	.name = "bta",
2749		.func = kdb_bt,
2750		.usage = "[<state_chars>|A]",
2751		.help = "Backtrace all processes whose state matches",
2752		.flags = KDB_ENABLE_INSPECT,
2753	},
2754	{	.name = "btc",
2755		.func = kdb_bt,
2756		.usage = "",
2757		.help = "Backtrace current process on each cpu",
2758		.flags = KDB_ENABLE_INSPECT,
2759	},
2760	{	.name = "btt",
2761		.func = kdb_bt,
2762		.usage = "<vaddr>",
2763		.help = "Backtrace process given its struct task address",
2764		.flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2765	},
2766	{	.name = "env",
2767		.func = kdb_env,
2768		.usage = "",
2769		.help = "Show environment variables",
2770		.flags = KDB_ENABLE_ALWAYS_SAFE,
2771	},
2772	{	.name = "set",
2773		.func = kdb_set,
2774		.usage = "",
2775		.help = "Set environment variables",
2776		.flags = KDB_ENABLE_ALWAYS_SAFE,
2777	},
2778	{	.name = "help",
2779		.func = kdb_help,
2780		.usage = "",
2781		.help = "Display Help Message",
2782		.minlen = 1,
2783		.flags = KDB_ENABLE_ALWAYS_SAFE,
2784	},
2785	{	.name = "?",
2786		.func = kdb_help,
2787		.usage = "",
2788		.help = "Display Help Message",
2789		.flags = KDB_ENABLE_ALWAYS_SAFE,
2790	},
2791	{	.name = "cpu",
2792		.func = kdb_cpu,
2793		.usage = "<cpunum>",
2794		.help = "Switch to new cpu",
2795		.flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2796	},
2797	{	.name = "kgdb",
2798		.func = kdb_kgdb,
2799		.usage = "",
2800		.help = "Enter kgdb mode",
2801		.flags = 0,
2802	},
2803	{	.name = "ps",
2804		.func = kdb_ps,
2805		.usage = "[<state_chars>|A]",
2806		.help = "Display active task list",
2807		.flags = KDB_ENABLE_INSPECT,
2808	},
2809	{	.name = "pid",
2810		.func = kdb_pid,
2811		.usage = "<pidnum>",
2812		.help = "Switch to another task",
2813		.flags = KDB_ENABLE_INSPECT,
2814	},
2815	{	.name = "reboot",
2816		.func = kdb_reboot,
2817		.usage = "",
2818		.help = "Reboot the machine immediately",
2819		.flags = KDB_ENABLE_REBOOT,
2820	},
2821#if defined(CONFIG_MODULES)
2822	{	.name = "lsmod",
2823		.func = kdb_lsmod,
2824		.usage = "",
2825		.help = "List loaded kernel modules",
2826		.flags = KDB_ENABLE_INSPECT,
2827	},
2828#endif
2829#if defined(CONFIG_MAGIC_SYSRQ)
2830	{	.name = "sr",
2831		.func = kdb_sr,
2832		.usage = "<key>",
2833		.help = "Magic SysRq key",
2834		.flags = KDB_ENABLE_ALWAYS_SAFE,
2835	},
2836#endif
2837#if defined(CONFIG_PRINTK)
2838	{	.name = "dmesg",
2839		.func = kdb_dmesg,
2840		.usage = "[lines]",
2841		.help = "Display syslog buffer",
2842		.flags = KDB_ENABLE_ALWAYS_SAFE,
2843	},
2844#endif
2845	{	.name = "defcmd",
2846		.func = kdb_defcmd,
2847		.usage = "name \"usage\" \"help\"",
2848		.help = "Define a set of commands, down to endefcmd",
2849		/*
2850		 * Macros are always safe because when executed each
2851		 * internal command re-enters kdb_parse() and is safety
2852		 * checked individually.
2853		 */
2854		.flags = KDB_ENABLE_ALWAYS_SAFE,
2855	},
2856	{	.name = "kill",
2857		.func = kdb_kill,
2858		.usage = "<-signal> <pid>",
2859		.help = "Send a signal to a process",
2860		.flags = KDB_ENABLE_SIGNAL,
2861	},
2862	{	.name = "summary",
2863		.func = kdb_summary,
2864		.usage = "",
2865		.help = "Summarize the system",
2866		.minlen = 4,
2867		.flags = KDB_ENABLE_ALWAYS_SAFE,
2868	},
2869	{	.name = "per_cpu",
2870		.func = kdb_per_cpu,
2871		.usage = "<sym> [<bytes>] [<cpu>]",
2872		.help = "Display per_cpu variables",
2873		.minlen = 3,
2874		.flags = KDB_ENABLE_MEM_READ,
2875	},
2876	{	.name = "grephelp",
2877		.func = kdb_grep_help,
2878		.usage = "",
2879		.help = "Display help on | grep",
2880		.flags = KDB_ENABLE_ALWAYS_SAFE,
2881	},
2882};
2883
2884static kdbtab_t nmicmd = {
2885	.name = "disable_nmi",
2886	.func = kdb_disable_nmi,
2887	.usage = "",
2888	.help = "Disable NMI entry to KDB",
2889	.flags = KDB_ENABLE_ALWAYS_SAFE,
2890};
2891
2892/* Initialize the kdb command table. */
2893static void __init kdb_inittab(void)
2894{
2895	kdb_register_table(maintab, ARRAY_SIZE(maintab));
2896	if (arch_kgdb_ops.enable_nmi)
2897		kdb_register_table(&nmicmd, 1);
2898}
2899
2900/* Execute any commands defined in kdb_cmds.  */
2901static void __init kdb_cmd_init(void)
2902{
2903	int i, diag;
2904	for (i = 0; kdb_cmds[i]; ++i) {
2905		diag = kdb_parse(kdb_cmds[i]);
2906		if (diag)
2907			kdb_printf("kdb command %s failed, kdb diag %d\n",
2908				kdb_cmds[i], diag);
2909	}
2910	if (defcmd_in_progress) {
2911		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2912		kdb_parse("endefcmd");
2913	}
2914}
2915
2916/* Initialize kdb_printf, breakpoint tables and kdb state */
2917void __init kdb_init(int lvl)
2918{
2919	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2920	int i;
2921
2922	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2923		return;
2924	for (i = kdb_init_lvl; i < lvl; i++) {
2925		switch (i) {
2926		case KDB_NOT_INITIALIZED:
2927			kdb_inittab();		/* Initialize Command Table */
2928			kdb_initbptab();	/* Initialize Breakpoints */
2929			break;
2930		case KDB_INIT_EARLY:
2931			kdb_cmd_init();		/* Build kdb_cmds tables */
2932			break;
2933		}
2934	}
2935	kdb_init_lvl = lvl;
2936}
v3.15
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
 
  15#include <linux/string.h>
  16#include <linux/kernel.h>
  17#include <linux/kmsg_dump.h>
  18#include <linux/reboot.h>
  19#include <linux/sched.h>
 
 
 
  20#include <linux/sysrq.h>
  21#include <linux/smp.h>
  22#include <linux/utsname.h>
  23#include <linux/vmalloc.h>
  24#include <linux/atomic.h>
  25#include <linux/module.h>
  26#include <linux/mm.h>
  27#include <linux/init.h>
  28#include <linux/kallsyms.h>
  29#include <linux/kgdb.h>
  30#include <linux/kdb.h>
  31#include <linux/notifier.h>
  32#include <linux/interrupt.h>
  33#include <linux/delay.h>
  34#include <linux/nmi.h>
  35#include <linux/time.h>
  36#include <linux/ptrace.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/kdebug.h>
  40#include <linux/proc_fs.h>
  41#include <linux/uaccess.h>
  42#include <linux/slab.h>
 
  43#include "kdb_private.h"
  44
  45#define GREP_LEN 256
  46char kdb_grep_string[GREP_LEN];
 
 
 
 
 
  47int kdb_grepping_flag;
  48EXPORT_SYMBOL(kdb_grepping_flag);
  49int kdb_grep_leading;
  50int kdb_grep_trailing;
  51
  52/*
  53 * Kernel debugger state flags
  54 */
  55int kdb_flags;
  56atomic_t kdb_event;
  57
  58/*
  59 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  60 * single thread processors through the kernel debugger.
  61 */
  62int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  63int kdb_nextline = 1;
  64int kdb_state;			/* General KDB state */
  65
  66struct task_struct *kdb_current_task;
  67EXPORT_SYMBOL(kdb_current_task);
  68struct pt_regs *kdb_current_regs;
  69
  70const char *kdb_diemsg;
  71static int kdb_go_count;
  72#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  73static unsigned int kdb_continue_catastrophic =
  74	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  75#else
  76static unsigned int kdb_continue_catastrophic;
  77#endif
  78
  79/* kdb_commands describes the available commands. */
  80static kdbtab_t *kdb_commands;
  81#define KDB_BASE_CMD_MAX 50
  82static int kdb_max_commands = KDB_BASE_CMD_MAX;
  83static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  84#define for_each_kdbcmd(cmd, num)					\
  85	for ((cmd) = kdb_base_commands, (num) = 0;			\
  86	     num < kdb_max_commands;					\
  87	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  88
  89typedef struct _kdbmsg {
  90	int	km_diag;	/* kdb diagnostic */
  91	char	*km_msg;	/* Corresponding message text */
  92} kdbmsg_t;
  93
  94#define KDBMSG(msgnum, text) \
  95	{ KDB_##msgnum, text }
  96
  97static kdbmsg_t kdbmsgs[] = {
  98	KDBMSG(NOTFOUND, "Command Not Found"),
  99	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 100	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 101	       "8 is only allowed on 64 bit systems"),
 102	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 103	KDBMSG(NOTENV, "Cannot find environment variable"),
 104	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 105	KDBMSG(NOTIMP, "Command not implemented"),
 106	KDBMSG(ENVFULL, "Environment full"),
 107	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 108	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 109#ifdef CONFIG_CPU_XSCALE
 110	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 111#else
 112	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 113#endif
 114	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 115	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 116	KDBMSG(BADMODE, "Invalid IDMODE"),
 117	KDBMSG(BADINT, "Illegal numeric value"),
 118	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 119	KDBMSG(BADREG, "Invalid register name"),
 120	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 121	KDBMSG(BADLENGTH, "Invalid length field"),
 122	KDBMSG(NOBP, "No Breakpoint exists"),
 123	KDBMSG(BADADDR, "Invalid address"),
 
 124};
 125#undef KDBMSG
 126
 127static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 128
 129
 130/*
 131 * Initial environment.   This is all kept static and local to
 132 * this file.   We don't want to rely on the memory allocation
 133 * mechanisms in the kernel, so we use a very limited allocate-only
 134 * heap for new and altered environment variables.  The entire
 135 * environment is limited to a fixed number of entries (add more
 136 * to __env[] if required) and a fixed amount of heap (add more to
 137 * KDB_ENVBUFSIZE if required).
 138 */
 139
 140static char *__env[] = {
 141#if defined(CONFIG_SMP)
 142 "PROMPT=[%d]kdb> ",
 143#else
 144 "PROMPT=kdb> ",
 145#endif
 146 "MOREPROMPT=more> ",
 147 "RADIX=16",
 148 "MDCOUNT=8",			/* lines of md output */
 149 KDB_PLATFORM_ENV,
 150 "DTABCOUNT=30",
 151 "NOSECT=1",
 152 (char *)0,
 153 (char *)0,
 154 (char *)0,
 155 (char *)0,
 156 (char *)0,
 157 (char *)0,
 158 (char *)0,
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176};
 177
 178static const int __nenv = ARRAY_SIZE(__env);
 179
 180struct task_struct *kdb_curr_task(int cpu)
 181{
 182	struct task_struct *p = curr_task(cpu);
 183#ifdef	_TIF_MCA_INIT
 184	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 185		p = krp->p;
 186#endif
 187	return p;
 188}
 189
 190/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191 * kdbgetenv - This function will return the character string value of
 192 *	an environment variable.
 193 * Parameters:
 194 *	match	A character string representing an environment variable.
 195 * Returns:
 196 *	NULL	No environment variable matches 'match'
 197 *	char*	Pointer to string value of environment variable.
 198 */
 199char *kdbgetenv(const char *match)
 200{
 201	char **ep = __env;
 202	int matchlen = strlen(match);
 203	int i;
 204
 205	for (i = 0; i < __nenv; i++) {
 206		char *e = *ep++;
 207
 208		if (!e)
 209			continue;
 210
 211		if ((strncmp(match, e, matchlen) == 0)
 212		 && ((e[matchlen] == '\0')
 213		   || (e[matchlen] == '='))) {
 214			char *cp = strchr(e, '=');
 215			return cp ? ++cp : "";
 216		}
 217	}
 218	return NULL;
 219}
 220
 221/*
 222 * kdballocenv - This function is used to allocate bytes for
 223 *	environment entries.
 224 * Parameters:
 225 *	match	A character string representing a numeric value
 226 * Outputs:
 227 *	*value  the unsigned long representation of the env variable 'match'
 228 * Returns:
 229 *	Zero on success, a kdb diagnostic on failure.
 
 230 * Remarks:
 231 *	We use a static environment buffer (envbuffer) to hold the values
 232 *	of dynamically generated environment variables (see kdb_set).  Buffer
 233 *	space once allocated is never free'd, so over time, the amount of space
 234 *	(currently 512 bytes) will be exhausted if env variables are changed
 235 *	frequently.
 236 */
 237static char *kdballocenv(size_t bytes)
 238{
 239#define	KDB_ENVBUFSIZE	512
 240	static char envbuffer[KDB_ENVBUFSIZE];
 241	static int envbufsize;
 242	char *ep = NULL;
 243
 244	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 245		ep = &envbuffer[envbufsize];
 246		envbufsize += bytes;
 247	}
 248	return ep;
 249}
 250
 251/*
 252 * kdbgetulenv - This function will return the value of an unsigned
 253 *	long-valued environment variable.
 254 * Parameters:
 255 *	match	A character string representing a numeric value
 256 * Outputs:
 257 *	*value  the unsigned long represntation of the env variable 'match'
 258 * Returns:
 259 *	Zero on success, a kdb diagnostic on failure.
 260 */
 261static int kdbgetulenv(const char *match, unsigned long *value)
 262{
 263	char *ep;
 264
 265	ep = kdbgetenv(match);
 266	if (!ep)
 267		return KDB_NOTENV;
 268	if (strlen(ep) == 0)
 269		return KDB_NOENVVALUE;
 270
 271	*value = simple_strtoul(ep, NULL, 0);
 272
 273	return 0;
 274}
 275
 276/*
 277 * kdbgetintenv - This function will return the value of an
 278 *	integer-valued environment variable.
 279 * Parameters:
 280 *	match	A character string representing an integer-valued env variable
 281 * Outputs:
 282 *	*value  the integer representation of the environment variable 'match'
 283 * Returns:
 284 *	Zero on success, a kdb diagnostic on failure.
 285 */
 286int kdbgetintenv(const char *match, int *value)
 287{
 288	unsigned long val;
 289	int diag;
 290
 291	diag = kdbgetulenv(match, &val);
 292	if (!diag)
 293		*value = (int) val;
 294	return diag;
 295}
 296
 297/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298 * kdbgetularg - This function will convert a numeric string into an
 299 *	unsigned long value.
 300 * Parameters:
 301 *	arg	A character string representing a numeric value
 302 * Outputs:
 303 *	*value  the unsigned long represntation of arg.
 304 * Returns:
 305 *	Zero on success, a kdb diagnostic on failure.
 306 */
 307int kdbgetularg(const char *arg, unsigned long *value)
 308{
 309	char *endp;
 310	unsigned long val;
 311
 312	val = simple_strtoul(arg, &endp, 0);
 313
 314	if (endp == arg) {
 315		/*
 316		 * Also try base 16, for us folks too lazy to type the
 317		 * leading 0x...
 318		 */
 319		val = simple_strtoul(arg, &endp, 16);
 320		if (endp == arg)
 321			return KDB_BADINT;
 322	}
 323
 324	*value = val;
 325
 326	return 0;
 327}
 328
 329int kdbgetu64arg(const char *arg, u64 *value)
 330{
 331	char *endp;
 332	u64 val;
 333
 334	val = simple_strtoull(arg, &endp, 0);
 335
 336	if (endp == arg) {
 337
 338		val = simple_strtoull(arg, &endp, 16);
 339		if (endp == arg)
 340			return KDB_BADINT;
 341	}
 342
 343	*value = val;
 344
 345	return 0;
 346}
 347
 348/*
 349 * kdb_set - This function implements the 'set' command.  Alter an
 350 *	existing environment variable or create a new one.
 351 */
 352int kdb_set(int argc, const char **argv)
 353{
 354	int i;
 355	char *ep;
 356	size_t varlen, vallen;
 357
 358	/*
 359	 * we can be invoked two ways:
 360	 *   set var=value    argv[1]="var", argv[2]="value"
 361	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 362	 * - if the latter, shift 'em down.
 363	 */
 364	if (argc == 3) {
 365		argv[2] = argv[3];
 366		argc--;
 367	}
 368
 369	if (argc != 2)
 370		return KDB_ARGCOUNT;
 371
 372	/*
 
 
 
 
 
 
 
 373	 * Check for internal variables
 374	 */
 375	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 376		unsigned int debugflags;
 377		char *cp;
 378
 379		debugflags = simple_strtoul(argv[2], &cp, 0);
 380		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 381			kdb_printf("kdb: illegal debug flags '%s'\n",
 382				    argv[2]);
 383			return 0;
 384		}
 385		kdb_flags = (kdb_flags &
 386			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 387			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 388
 389		return 0;
 390	}
 391
 392	/*
 393	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 394	 * name, argv[2] = value.
 395	 */
 396	varlen = strlen(argv[1]);
 397	vallen = strlen(argv[2]);
 398	ep = kdballocenv(varlen + vallen + 2);
 399	if (ep == (char *)0)
 400		return KDB_ENVBUFFULL;
 401
 402	sprintf(ep, "%s=%s", argv[1], argv[2]);
 403
 404	ep[varlen+vallen+1] = '\0';
 405
 406	for (i = 0; i < __nenv; i++) {
 407		if (__env[i]
 408		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 409		   && ((__env[i][varlen] == '\0')
 410		    || (__env[i][varlen] == '=')))) {
 411			__env[i] = ep;
 412			return 0;
 413		}
 414	}
 415
 416	/*
 417	 * Wasn't existing variable.  Fit into slot.
 418	 */
 419	for (i = 0; i < __nenv-1; i++) {
 420		if (__env[i] == (char *)0) {
 421			__env[i] = ep;
 422			return 0;
 423		}
 424	}
 425
 426	return KDB_ENVFULL;
 427}
 428
 429static int kdb_check_regs(void)
 430{
 431	if (!kdb_current_regs) {
 432		kdb_printf("No current kdb registers."
 433			   "  You may need to select another task\n");
 434		return KDB_BADREG;
 435	}
 436	return 0;
 437}
 438
 439/*
 440 * kdbgetaddrarg - This function is responsible for parsing an
 441 *	address-expression and returning the value of the expression,
 442 *	symbol name, and offset to the caller.
 443 *
 444 *	The argument may consist of a numeric value (decimal or
 445 *	hexidecimal), a symbol name, a register name (preceded by the
 446 *	percent sign), an environment variable with a numeric value
 447 *	(preceded by a dollar sign) or a simple arithmetic expression
 448 *	consisting of a symbol name, +/-, and a numeric constant value
 449 *	(offset).
 450 * Parameters:
 451 *	argc	- count of arguments in argv
 452 *	argv	- argument vector
 453 *	*nextarg - index to next unparsed argument in argv[]
 454 *	regs	- Register state at time of KDB entry
 455 * Outputs:
 456 *	*value	- receives the value of the address-expression
 457 *	*offset - receives the offset specified, if any
 458 *	*name   - receives the symbol name, if any
 459 *	*nextarg - index to next unparsed argument in argv[]
 460 * Returns:
 461 *	zero is returned on success, a kdb diagnostic code is
 462 *      returned on error.
 463 */
 464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 465		  unsigned long *value,  long *offset,
 466		  char **name)
 467{
 468	unsigned long addr;
 469	unsigned long off = 0;
 470	int positive;
 471	int diag;
 472	int found = 0;
 473	char *symname;
 474	char symbol = '\0';
 475	char *cp;
 476	kdb_symtab_t symtab;
 477
 478	/*
 
 
 
 
 
 
 
 
 
 479	 * Process arguments which follow the following syntax:
 480	 *
 481	 *  symbol | numeric-address [+/- numeric-offset]
 482	 *  %register
 483	 *  $environment-variable
 484	 */
 485
 486	if (*nextarg > argc)
 487		return KDB_ARGCOUNT;
 488
 489	symname = (char *)argv[*nextarg];
 490
 491	/*
 492	 * If there is no whitespace between the symbol
 493	 * or address and the '+' or '-' symbols, we
 494	 * remember the character and replace it with a
 495	 * null so the symbol/value can be properly parsed
 496	 */
 497	cp = strpbrk(symname, "+-");
 498	if (cp != NULL) {
 499		symbol = *cp;
 500		*cp++ = '\0';
 501	}
 502
 503	if (symname[0] == '$') {
 504		diag = kdbgetulenv(&symname[1], &addr);
 505		if (diag)
 506			return diag;
 507	} else if (symname[0] == '%') {
 508		diag = kdb_check_regs();
 509		if (diag)
 510			return diag;
 511		/* Implement register values with % at a later time as it is
 512		 * arch optional.
 513		 */
 514		return KDB_NOTIMP;
 515	} else {
 516		found = kdbgetsymval(symname, &symtab);
 517		if (found) {
 518			addr = symtab.sym_start;
 519		} else {
 520			diag = kdbgetularg(argv[*nextarg], &addr);
 521			if (diag)
 522				return diag;
 523		}
 524	}
 525
 526	if (!found)
 527		found = kdbnearsym(addr, &symtab);
 528
 529	(*nextarg)++;
 530
 531	if (name)
 532		*name = symname;
 533	if (value)
 534		*value = addr;
 535	if (offset && name && *name)
 536		*offset = addr - symtab.sym_start;
 537
 538	if ((*nextarg > argc)
 539	 && (symbol == '\0'))
 540		return 0;
 541
 542	/*
 543	 * check for +/- and offset
 544	 */
 545
 546	if (symbol == '\0') {
 547		if ((argv[*nextarg][0] != '+')
 548		 && (argv[*nextarg][0] != '-')) {
 549			/*
 550			 * Not our argument.  Return.
 551			 */
 552			return 0;
 553		} else {
 554			positive = (argv[*nextarg][0] == '+');
 555			(*nextarg)++;
 556		}
 557	} else
 558		positive = (symbol == '+');
 559
 560	/*
 561	 * Now there must be an offset!
 562	 */
 563	if ((*nextarg > argc)
 564	 && (symbol == '\0')) {
 565		return KDB_INVADDRFMT;
 566	}
 567
 568	if (!symbol) {
 569		cp = (char *)argv[*nextarg];
 570		(*nextarg)++;
 571	}
 572
 573	diag = kdbgetularg(cp, &off);
 574	if (diag)
 575		return diag;
 576
 577	if (!positive)
 578		off = -off;
 579
 580	if (offset)
 581		*offset += off;
 582
 583	if (value)
 584		*value += off;
 585
 586	return 0;
 587}
 588
 589static void kdb_cmderror(int diag)
 590{
 591	int i;
 592
 593	if (diag >= 0) {
 594		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 595		return;
 596	}
 597
 598	for (i = 0; i < __nkdb_err; i++) {
 599		if (kdbmsgs[i].km_diag == diag) {
 600			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 601			return;
 602		}
 603	}
 604
 605	kdb_printf("Unknown diag %d\n", -diag);
 606}
 607
 608/*
 609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 610 *	command which defines one command as a set of other commands,
 611 *	terminated by endefcmd.  kdb_defcmd processes the initial
 612 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 613 *	the following commands until 'endefcmd'.
 614 * Inputs:
 615 *	argc	argument count
 616 *	argv	argument vector
 617 * Returns:
 618 *	zero for success, a kdb diagnostic if error
 619 */
 620struct defcmd_set {
 621	int count;
 622	int usable;
 623	char *name;
 624	char *usage;
 625	char *help;
 626	char **command;
 
 627};
 628static struct defcmd_set *defcmd_set;
 629static int defcmd_set_count;
 630static int defcmd_in_progress;
 631
 632/* Forward references */
 633static int kdb_exec_defcmd(int argc, const char **argv);
 634
 635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 636{
 637	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 638	char **save_command = s->command;
 
 
 
 639	if (strcmp(argv0, "endefcmd") == 0) {
 640		defcmd_in_progress = 0;
 641		if (!s->count)
 642			s->usable = 0;
 643		if (s->usable)
 644			kdb_register(s->name, kdb_exec_defcmd,
 645				     s->usage, s->help, 0);
 646		return 0;
 647	}
 648	if (!s->usable)
 649		return KDB_NOTIMP;
 650	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 651	if (!s->command) {
 652		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 653			   cmdstr);
 654		s->usable = 0;
 655		return KDB_NOTIMP;
 656	}
 657	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 658	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 659	kfree(save_command);
 
 660	return 0;
 661}
 662
 663static int kdb_defcmd(int argc, const char **argv)
 664{
 665	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 
 666	if (defcmd_in_progress) {
 667		kdb_printf("kdb: nested defcmd detected, assuming missing "
 668			   "endefcmd\n");
 669		kdb_defcmd2("endefcmd", "endefcmd");
 670	}
 671	if (argc == 0) {
 672		int i;
 673		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 674			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 675				   s->usage, s->help);
 676			for (i = 0; i < s->count; ++i)
 677				kdb_printf("%s", s->command[i]);
 678			kdb_printf("endefcmd\n");
 
 
 
 
 
 
 
 679		}
 680		return 0;
 681	}
 682	if (argc != 3)
 683		return KDB_ARGCOUNT;
 684	if (in_dbg_master()) {
 685		kdb_printf("Command only available during kdb_init()\n");
 686		return KDB_NOTIMP;
 687	}
 688	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 689			     GFP_KDB);
 690	if (!defcmd_set)
 691		goto fail_defcmd;
 692	memcpy(defcmd_set, save_defcmd_set,
 693	       defcmd_set_count * sizeof(*defcmd_set));
 694	s = defcmd_set + defcmd_set_count;
 695	memset(s, 0, sizeof(*s));
 696	s->usable = 1;
 697	s->name = kdb_strdup(argv[1], GFP_KDB);
 698	if (!s->name)
 699		goto fail_name;
 700	s->usage = kdb_strdup(argv[2], GFP_KDB);
 701	if (!s->usage)
 702		goto fail_usage;
 703	s->help = kdb_strdup(argv[3], GFP_KDB);
 704	if (!s->help)
 705		goto fail_help;
 706	if (s->usage[0] == '"') {
 707		strcpy(s->usage, argv[2]+1);
 708		s->usage[strlen(s->usage)-1] = '\0';
 709	}
 710	if (s->help[0] == '"') {
 711		strcpy(s->help, argv[3]+1);
 712		s->help[strlen(s->help)-1] = '\0';
 713	}
 714	++defcmd_set_count;
 715	defcmd_in_progress = 1;
 716	kfree(save_defcmd_set);
 717	return 0;
 718fail_help:
 719	kfree(s->usage);
 720fail_usage:
 721	kfree(s->name);
 722fail_name:
 723	kfree(defcmd_set);
 724fail_defcmd:
 725	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 726	defcmd_set = save_defcmd_set;
 727	return KDB_NOTIMP;
 728}
 729
 730/*
 731 * kdb_exec_defcmd - Execute the set of commands associated with this
 732 *	defcmd name.
 733 * Inputs:
 734 *	argc	argument count
 735 *	argv	argument vector
 736 * Returns:
 737 *	zero for success, a kdb diagnostic if error
 738 */
 739static int kdb_exec_defcmd(int argc, const char **argv)
 740{
 741	int i, ret;
 742	struct defcmd_set *s;
 
 
 
 743	if (argc != 0)
 744		return KDB_ARGCOUNT;
 745	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 746		if (strcmp(s->name, argv[0]) == 0)
 
 747			break;
 748	}
 749	if (i == defcmd_set_count) {
 750		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 751			   argv[0]);
 752		return KDB_NOTIMP;
 753	}
 754	for (i = 0; i < s->count; ++i) {
 755		/* Recursive use of kdb_parse, do not use argv after
 756		 * this point */
 
 
 757		argv = NULL;
 758		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 759		ret = kdb_parse(s->command[i]);
 760		if (ret)
 761			return ret;
 762	}
 763	return 0;
 764}
 765
 766/* Command history */
 767#define KDB_CMD_HISTORY_COUNT	32
 768#define CMD_BUFLEN		200	/* kdb_printf: max printline
 769					 * size == 256 */
 770static unsigned int cmd_head, cmd_tail;
 771static unsigned int cmdptr;
 772static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 773static char cmd_cur[CMD_BUFLEN];
 774
 775/*
 776 * The "str" argument may point to something like  | grep xyz
 777 */
 778static void parse_grep(const char *str)
 779{
 780	int	len;
 781	char	*cp = (char *)str, *cp2;
 782
 783	/* sanity check: we should have been called with the \ first */
 784	if (*cp != '|')
 785		return;
 786	cp++;
 787	while (isspace(*cp))
 788		cp++;
 789	if (strncmp(cp, "grep ", 5)) {
 790		kdb_printf("invalid 'pipe', see grephelp\n");
 791		return;
 792	}
 793	cp += 5;
 794	while (isspace(*cp))
 795		cp++;
 796	cp2 = strchr(cp, '\n');
 797	if (cp2)
 798		*cp2 = '\0'; /* remove the trailing newline */
 799	len = strlen(cp);
 800	if (len == 0) {
 801		kdb_printf("invalid 'pipe', see grephelp\n");
 802		return;
 803	}
 804	/* now cp points to a nonzero length search string */
 805	if (*cp == '"') {
 806		/* allow it be "x y z" by removing the "'s - there must
 807		   be two of them */
 808		cp++;
 809		cp2 = strchr(cp, '"');
 810		if (!cp2) {
 811			kdb_printf("invalid quoted string, see grephelp\n");
 812			return;
 813		}
 814		*cp2 = '\0'; /* end the string where the 2nd " was */
 815	}
 816	kdb_grep_leading = 0;
 817	if (*cp == '^') {
 818		kdb_grep_leading = 1;
 819		cp++;
 820	}
 821	len = strlen(cp);
 822	kdb_grep_trailing = 0;
 823	if (*(cp+len-1) == '$') {
 824		kdb_grep_trailing = 1;
 825		*(cp+len-1) = '\0';
 826	}
 827	len = strlen(cp);
 828	if (!len)
 829		return;
 830	if (len >= GREP_LEN) {
 831		kdb_printf("search string too long\n");
 832		return;
 833	}
 834	strcpy(kdb_grep_string, cp);
 835	kdb_grepping_flag++;
 836	return;
 837}
 838
 839/*
 840 * kdb_parse - Parse the command line, search the command table for a
 841 *	matching command and invoke the command function.  This
 842 *	function may be called recursively, if it is, the second call
 843 *	will overwrite argv and cbuf.  It is the caller's
 844 *	responsibility to save their argv if they recursively call
 845 *	kdb_parse().
 846 * Parameters:
 847 *      cmdstr	The input command line to be parsed.
 848 *	regs	The registers at the time kdb was entered.
 849 * Returns:
 850 *	Zero for success, a kdb diagnostic if failure.
 851 * Remarks:
 852 *	Limited to 20 tokens.
 853 *
 854 *	Real rudimentary tokenization. Basically only whitespace
 855 *	is considered a token delimeter (but special consideration
 856 *	is taken of the '=' sign as used by the 'set' command).
 857 *
 858 *	The algorithm used to tokenize the input string relies on
 859 *	there being at least one whitespace (or otherwise useless)
 860 *	character between tokens as the character immediately following
 861 *	the token is altered in-place to a null-byte to terminate the
 862 *	token string.
 863 */
 864
 865#define MAXARGC	20
 866
 867int kdb_parse(const char *cmdstr)
 868{
 869	static char *argv[MAXARGC];
 870	static int argc;
 871	static char cbuf[CMD_BUFLEN+2];
 872	char *cp;
 873	char *cpp, quoted;
 874	kdbtab_t *tp;
 875	int i, escaped, ignore_errors = 0, check_grep;
 876
 877	/*
 878	 * First tokenize the command string.
 879	 */
 880	cp = (char *)cmdstr;
 881	kdb_grepping_flag = check_grep = 0;
 882
 883	if (KDB_FLAG(CMD_INTERRUPT)) {
 884		/* Previous command was interrupted, newline must not
 885		 * repeat the command */
 886		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 887		KDB_STATE_SET(PAGER);
 888		argc = 0;	/* no repeat */
 889	}
 890
 891	if (*cp != '\n' && *cp != '\0') {
 892		argc = 0;
 893		cpp = cbuf;
 894		while (*cp) {
 895			/* skip whitespace */
 896			while (isspace(*cp))
 897				cp++;
 898			if ((*cp == '\0') || (*cp == '\n') ||
 899			    (*cp == '#' && !defcmd_in_progress))
 900				break;
 901			/* special case: check for | grep pattern */
 902			if (*cp == '|') {
 903				check_grep++;
 904				break;
 905			}
 906			if (cpp >= cbuf + CMD_BUFLEN) {
 907				kdb_printf("kdb_parse: command buffer "
 908					   "overflow, command ignored\n%s\n",
 909					   cmdstr);
 910				return KDB_NOTFOUND;
 911			}
 912			if (argc >= MAXARGC - 1) {
 913				kdb_printf("kdb_parse: too many arguments, "
 914					   "command ignored\n%s\n", cmdstr);
 915				return KDB_NOTFOUND;
 916			}
 917			argv[argc++] = cpp;
 918			escaped = 0;
 919			quoted = '\0';
 920			/* Copy to next unquoted and unescaped
 921			 * whitespace or '=' */
 922			while (*cp && *cp != '\n' &&
 923			       (escaped || quoted || !isspace(*cp))) {
 924				if (cpp >= cbuf + CMD_BUFLEN)
 925					break;
 926				if (escaped) {
 927					escaped = 0;
 928					*cpp++ = *cp++;
 929					continue;
 930				}
 931				if (*cp == '\\') {
 932					escaped = 1;
 933					++cp;
 934					continue;
 935				}
 936				if (*cp == quoted)
 937					quoted = '\0';
 938				else if (*cp == '\'' || *cp == '"')
 939					quoted = *cp;
 940				*cpp = *cp++;
 941				if (*cpp == '=' && !quoted)
 942					break;
 943				++cpp;
 944			}
 945			*cpp++ = '\0';	/* Squash a ws or '=' character */
 946		}
 947	}
 948	if (!argc)
 949		return 0;
 950	if (check_grep)
 951		parse_grep(cp);
 952	if (defcmd_in_progress) {
 953		int result = kdb_defcmd2(cmdstr, argv[0]);
 954		if (!defcmd_in_progress) {
 955			argc = 0;	/* avoid repeat on endefcmd */
 956			*(argv[0]) = '\0';
 957		}
 958		return result;
 959	}
 960	if (argv[0][0] == '-' && argv[0][1] &&
 961	    (argv[0][1] < '0' || argv[0][1] > '9')) {
 962		ignore_errors = 1;
 963		++argv[0];
 964	}
 965
 966	for_each_kdbcmd(tp, i) {
 967		if (tp->cmd_name) {
 968			/*
 969			 * If this command is allowed to be abbreviated,
 970			 * check to see if this is it.
 971			 */
 
 
 972
 973			if (tp->cmd_minlen
 974			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
 975				if (strncmp(argv[0],
 976					    tp->cmd_name,
 977					    tp->cmd_minlen) == 0) {
 978					break;
 979				}
 980			}
 981
 982			if (strcmp(argv[0], tp->cmd_name) == 0)
 983				break;
 984		}
 985	}
 986
 987	/*
 988	 * If we don't find a command by this name, see if the first
 989	 * few characters of this match any of the known commands.
 990	 * e.g., md1c20 should match md.
 991	 */
 992	if (i == kdb_max_commands) {
 993		for_each_kdbcmd(tp, i) {
 994			if (tp->cmd_name) {
 995				if (strncmp(argv[0],
 996					    tp->cmd_name,
 997					    strlen(tp->cmd_name)) == 0) {
 998					break;
 999				}
1000			}
1001		}
1002	}
1003
1004	if (i < kdb_max_commands) {
1005		int result;
 
 
 
 
1006		KDB_STATE_SET(CMD);
1007		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1008		if (result && ignore_errors && result > KDB_CMD_GO)
1009			result = 0;
1010		KDB_STATE_CLEAR(CMD);
1011		switch (tp->cmd_repeat) {
1012		case KDB_REPEAT_NONE:
1013			argc = 0;
1014			if (argv[0])
1015				*(argv[0]) = '\0';
1016			break;
1017		case KDB_REPEAT_NO_ARGS:
1018			argc = 1;
1019			if (argv[1])
1020				*(argv[1]) = '\0';
1021			break;
1022		case KDB_REPEAT_WITH_ARGS:
1023			break;
1024		}
1025		return result;
1026	}
1027
1028	/*
1029	 * If the input with which we were presented does not
1030	 * map to an existing command, attempt to parse it as an
1031	 * address argument and display the result.   Useful for
1032	 * obtaining the address of a variable, or the nearest symbol
1033	 * to an address contained in a register.
1034	 */
1035	{
1036		unsigned long value;
1037		char *name = NULL;
1038		long offset;
1039		int nextarg = 0;
1040
1041		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1042				  &value, &offset, &name)) {
1043			return KDB_NOTFOUND;
1044		}
1045
1046		kdb_printf("%s = ", argv[0]);
1047		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1048		kdb_printf("\n");
1049		return 0;
1050	}
1051}
1052
1053
1054static int handle_ctrl_cmd(char *cmd)
1055{
1056#define CTRL_P	16
1057#define CTRL_N	14
1058
1059	/* initial situation */
1060	if (cmd_head == cmd_tail)
1061		return 0;
1062	switch (*cmd) {
1063	case CTRL_P:
1064		if (cmdptr != cmd_tail)
1065			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1066		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
 
1067		return 1;
1068	case CTRL_N:
1069		if (cmdptr != cmd_head)
1070			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1071		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1072		return 1;
1073	}
1074	return 0;
1075}
1076
1077/*
1078 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1079 *	the system immediately, or loop for ever on failure.
1080 */
1081static int kdb_reboot(int argc, const char **argv)
1082{
1083	emergency_restart();
1084	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1085	while (1)
1086		cpu_relax();
1087	/* NOTREACHED */
1088	return 0;
1089}
1090
1091static void kdb_dumpregs(struct pt_regs *regs)
1092{
1093	int old_lvl = console_loglevel;
1094	console_loglevel = 15;
1095	kdb_trap_printk++;
1096	show_regs(regs);
1097	kdb_trap_printk--;
1098	kdb_printf("\n");
1099	console_loglevel = old_lvl;
1100}
1101
1102void kdb_set_current_task(struct task_struct *p)
1103{
1104	kdb_current_task = p;
1105
1106	if (kdb_task_has_cpu(p)) {
1107		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1108		return;
1109	}
1110	kdb_current_regs = NULL;
1111}
1112
 
 
 
 
 
 
 
 
 
 
1113/*
1114 * kdb_local - The main code for kdb.  This routine is invoked on a
1115 *	specific processor, it is not global.  The main kdb() routine
1116 *	ensures that only one processor at a time is in this routine.
1117 *	This code is called with the real reason code on the first
1118 *	entry to a kdb session, thereafter it is called with reason
1119 *	SWITCH, even if the user goes back to the original cpu.
1120 * Inputs:
1121 *	reason		The reason KDB was invoked
1122 *	error		The hardware-defined error code
1123 *	regs		The exception frame at time of fault/breakpoint.
1124 *	db_result	Result code from the break or debug point.
1125 * Returns:
1126 *	0	KDB was invoked for an event which it wasn't responsible
1127 *	1	KDB handled the event for which it was invoked.
1128 *	KDB_CMD_GO	User typed 'go'.
1129 *	KDB_CMD_CPU	User switched to another cpu.
1130 *	KDB_CMD_SS	Single step.
1131 */
1132static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1133		     kdb_dbtrap_t db_result)
1134{
1135	char *cmdbuf;
1136	int diag;
1137	struct task_struct *kdb_current =
1138		kdb_curr_task(raw_smp_processor_id());
1139
1140	KDB_DEBUG_STATE("kdb_local 1", reason);
 
 
 
1141	kdb_go_count = 0;
1142	if (reason == KDB_REASON_DEBUG) {
1143		/* special case below */
1144	} else {
1145		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1146			   kdb_current, kdb_current ? kdb_current->pid : 0);
1147#if defined(CONFIG_SMP)
1148		kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150	}
1151
1152	switch (reason) {
1153	case KDB_REASON_DEBUG:
1154	{
1155		/*
1156		 * If re-entering kdb after a single step
1157		 * command, don't print the message.
1158		 */
1159		switch (db_result) {
1160		case KDB_DB_BPT:
1161			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1162				   kdb_current, kdb_current->pid);
1163#if defined(CONFIG_SMP)
1164			kdb_printf("on processor %d ", raw_smp_processor_id());
1165#endif
1166			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1167				   instruction_pointer(regs));
1168			break;
1169		case KDB_DB_SS:
1170			break;
1171		case KDB_DB_SSBPT:
1172			KDB_DEBUG_STATE("kdb_local 4", reason);
1173			return 1;	/* kdba_db_trap did the work */
1174		default:
1175			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1176				   db_result);
1177			break;
1178		}
1179
1180	}
1181		break;
1182	case KDB_REASON_ENTER:
1183		if (KDB_STATE(KEYBOARD))
1184			kdb_printf("due to Keyboard Entry\n");
1185		else
1186			kdb_printf("due to KDB_ENTER()\n");
1187		break;
1188	case KDB_REASON_KEYBOARD:
1189		KDB_STATE_SET(KEYBOARD);
1190		kdb_printf("due to Keyboard Entry\n");
1191		break;
1192	case KDB_REASON_ENTER_SLAVE:
1193		/* drop through, slaves only get released via cpu switch */
1194	case KDB_REASON_SWITCH:
1195		kdb_printf("due to cpu switch\n");
1196		break;
1197	case KDB_REASON_OOPS:
1198		kdb_printf("Oops: %s\n", kdb_diemsg);
1199		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1200			   instruction_pointer(regs));
1201		kdb_dumpregs(regs);
1202		break;
1203	case KDB_REASON_SYSTEM_NMI:
1204		kdb_printf("due to System NonMaskable Interrupt\n");
1205		break;
1206	case KDB_REASON_NMI:
1207		kdb_printf("due to NonMaskable Interrupt @ "
1208			   kdb_machreg_fmt "\n",
1209			   instruction_pointer(regs));
1210		kdb_dumpregs(regs);
1211		break;
1212	case KDB_REASON_SSTEP:
1213	case KDB_REASON_BREAK:
1214		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1215			   reason == KDB_REASON_BREAK ?
1216			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1217		/*
1218		 * Determine if this breakpoint is one that we
1219		 * are interested in.
1220		 */
1221		if (db_result != KDB_DB_BPT) {
1222			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1223				   db_result);
1224			KDB_DEBUG_STATE("kdb_local 6", reason);
1225			return 0;	/* Not for us, dismiss it */
1226		}
1227		break;
1228	case KDB_REASON_RECURSE:
1229		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1230			   instruction_pointer(regs));
1231		break;
1232	default:
1233		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1234		KDB_DEBUG_STATE("kdb_local 8", reason);
1235		return 0;	/* Not for us, dismiss it */
1236	}
1237
1238	while (1) {
1239		/*
1240		 * Initialize pager context.
1241		 */
1242		kdb_nextline = 1;
1243		KDB_STATE_CLEAR(SUPPRESS);
 
 
 
1244
1245		cmdbuf = cmd_cur;
1246		*cmdbuf = '\0';
1247		*(cmd_hist[cmd_head]) = '\0';
1248
1249do_full_getstr:
1250#if defined(CONFIG_SMP)
1251		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1252			 raw_smp_processor_id());
1253#else
1254		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1255#endif
1256		if (defcmd_in_progress)
1257			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1258
1259		/*
1260		 * Fetch command from keyboard
1261		 */
1262		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1263		if (*cmdbuf != '\n') {
1264			if (*cmdbuf < 32) {
1265				if (cmdptr == cmd_head) {
1266					strncpy(cmd_hist[cmd_head], cmd_cur,
1267						CMD_BUFLEN);
1268					*(cmd_hist[cmd_head] +
1269					  strlen(cmd_hist[cmd_head])-1) = '\0';
1270				}
1271				if (!handle_ctrl_cmd(cmdbuf))
1272					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1273				cmdbuf = cmd_cur;
1274				goto do_full_getstr;
1275			} else {
1276				strncpy(cmd_hist[cmd_head], cmd_cur,
1277					CMD_BUFLEN);
1278			}
1279
1280			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1281			if (cmd_head == cmd_tail)
1282				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1283		}
1284
1285		cmdptr = cmd_head;
1286		diag = kdb_parse(cmdbuf);
1287		if (diag == KDB_NOTFOUND) {
 
1288			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1289			diag = 0;
1290		}
1291		if (diag == KDB_CMD_GO
1292		 || diag == KDB_CMD_CPU
1293		 || diag == KDB_CMD_SS
1294		 || diag == KDB_CMD_KGDB)
1295			break;
1296
1297		if (diag)
1298			kdb_cmderror(diag);
1299	}
1300	KDB_DEBUG_STATE("kdb_local 9", diag);
1301	return diag;
1302}
1303
1304
1305/*
1306 * kdb_print_state - Print the state data for the current processor
1307 *	for debugging.
1308 * Inputs:
1309 *	text		Identifies the debug point
1310 *	value		Any integer value to be printed, e.g. reason code.
1311 */
1312void kdb_print_state(const char *text, int value)
1313{
1314	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1315		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1316		   kdb_state);
1317}
1318
1319/*
1320 * kdb_main_loop - After initial setup and assignment of the
1321 *	controlling cpu, all cpus are in this loop.  One cpu is in
1322 *	control and will issue the kdb prompt, the others will spin
1323 *	until 'go' or cpu switch.
1324 *
1325 *	To get a consistent view of the kernel stacks for all
1326 *	processes, this routine is invoked from the main kdb code via
1327 *	an architecture specific routine.  kdba_main_loop is
1328 *	responsible for making the kernel stacks consistent for all
1329 *	processes, there should be no difference between a blocked
1330 *	process and a running process as far as kdb is concerned.
1331 * Inputs:
1332 *	reason		The reason KDB was invoked
1333 *	error		The hardware-defined error code
1334 *	reason2		kdb's current reason code.
1335 *			Initially error but can change
1336 *			according to kdb state.
1337 *	db_result	Result code from break or debug point.
1338 *	regs		The exception frame at time of fault/breakpoint.
1339 *			should always be valid.
1340 * Returns:
1341 *	0	KDB was invoked for an event which it wasn't responsible
1342 *	1	KDB handled the event for which it was invoked.
1343 */
1344int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1345	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1346{
1347	int result = 1;
1348	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1349	while (1) {
1350		/*
1351		 * All processors except the one that is in control
1352		 * will spin here.
1353		 */
1354		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1355		while (KDB_STATE(HOLD_CPU)) {
1356			/* state KDB is turned off by kdb_cpu to see if the
1357			 * other cpus are still live, each cpu in this loop
1358			 * turns it back on.
1359			 */
1360			if (!KDB_STATE(KDB))
1361				KDB_STATE_SET(KDB);
1362		}
1363
1364		KDB_STATE_CLEAR(SUPPRESS);
1365		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1366		if (KDB_STATE(LEAVING))
1367			break;	/* Another cpu said 'go' */
1368		/* Still using kdb, this processor is in control */
1369		result = kdb_local(reason2, error, regs, db_result);
1370		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1371
1372		if (result == KDB_CMD_CPU)
1373			break;
1374
1375		if (result == KDB_CMD_SS) {
1376			KDB_STATE_SET(DOING_SS);
1377			break;
1378		}
1379
1380		if (result == KDB_CMD_KGDB) {
1381			if (!KDB_STATE(DOING_KGDB))
1382				kdb_printf("Entering please attach debugger "
1383					   "or use $D#44+ or $3#33\n");
1384			break;
1385		}
1386		if (result && result != 1 && result != KDB_CMD_GO)
1387			kdb_printf("\nUnexpected kdb_local return code %d\n",
1388				   result);
1389		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1390		break;
1391	}
1392	if (KDB_STATE(DOING_SS))
1393		KDB_STATE_CLEAR(SSBPT);
1394
1395	/* Clean up any keyboard devices before leaving */
1396	kdb_kbd_cleanup_state();
1397
1398	return result;
1399}
1400
1401/*
1402 * kdb_mdr - This function implements the guts of the 'mdr', memory
1403 * read command.
1404 *	mdr  <addr arg>,<byte count>
1405 * Inputs:
1406 *	addr	Start address
1407 *	count	Number of bytes
1408 * Returns:
1409 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1410 */
1411static int kdb_mdr(unsigned long addr, unsigned int count)
1412{
1413	unsigned char c;
1414	while (count--) {
1415		if (kdb_getarea(c, addr))
1416			return 0;
1417		kdb_printf("%02x", c);
1418		addr++;
1419	}
1420	kdb_printf("\n");
1421	return 0;
1422}
1423
1424/*
1425 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1426 *	'md8' 'mdr' and 'mds' commands.
1427 *
1428 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1429 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1430 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1431 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1432 *	mdr  <addr arg>,<byte count>
1433 */
1434static void kdb_md_line(const char *fmtstr, unsigned long addr,
1435			int symbolic, int nosect, int bytesperword,
1436			int num, int repeat, int phys)
1437{
1438	/* print just one line of data */
1439	kdb_symtab_t symtab;
1440	char cbuf[32];
1441	char *c = cbuf;
1442	int i;
 
1443	unsigned long word;
1444
1445	memset(cbuf, '\0', sizeof(cbuf));
1446	if (phys)
1447		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1448	else
1449		kdb_printf(kdb_machreg_fmt0 " ", addr);
1450
1451	for (i = 0; i < num && repeat--; i++) {
1452		if (phys) {
1453			if (kdb_getphysword(&word, addr, bytesperword))
1454				break;
1455		} else if (kdb_getword(&word, addr, bytesperword))
1456			break;
1457		kdb_printf(fmtstr, word);
1458		if (symbolic)
1459			kdbnearsym(word, &symtab);
1460		else
1461			memset(&symtab, 0, sizeof(symtab));
1462		if (symtab.sym_name) {
1463			kdb_symbol_print(word, &symtab, 0);
1464			if (!nosect) {
1465				kdb_printf("\n");
1466				kdb_printf("                       %s %s "
1467					   kdb_machreg_fmt " "
1468					   kdb_machreg_fmt " "
1469					   kdb_machreg_fmt, symtab.mod_name,
1470					   symtab.sec_name, symtab.sec_start,
1471					   symtab.sym_start, symtab.sym_end);
1472			}
1473			addr += bytesperword;
1474		} else {
1475			union {
1476				u64 word;
1477				unsigned char c[8];
1478			} wc;
1479			unsigned char *cp;
1480#ifdef	__BIG_ENDIAN
1481			cp = wc.c + 8 - bytesperword;
1482#else
1483			cp = wc.c;
1484#endif
1485			wc.word = word;
1486#define printable_char(c) \
1487	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1488			switch (bytesperword) {
1489			case 8:
1490				*c++ = printable_char(*cp++);
1491				*c++ = printable_char(*cp++);
1492				*c++ = printable_char(*cp++);
1493				*c++ = printable_char(*cp++);
1494				addr += 4;
1495			case 4:
1496				*c++ = printable_char(*cp++);
1497				*c++ = printable_char(*cp++);
1498				addr += 2;
1499			case 2:
1500				*c++ = printable_char(*cp++);
1501				addr++;
1502			case 1:
1503				*c++ = printable_char(*cp++);
1504				addr++;
1505				break;
1506			}
1507#undef printable_char
1508		}
1509	}
1510	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1511		   " ", cbuf);
1512}
1513
1514static int kdb_md(int argc, const char **argv)
1515{
1516	static unsigned long last_addr;
1517	static int last_radix, last_bytesperword, last_repeat;
1518	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1519	int nosect = 0;
1520	char fmtchar, fmtstr[64];
1521	unsigned long addr;
1522	unsigned long word;
1523	long offset = 0;
1524	int symbolic = 0;
1525	int valid = 0;
1526	int phys = 0;
 
1527
1528	kdbgetintenv("MDCOUNT", &mdcount);
1529	kdbgetintenv("RADIX", &radix);
1530	kdbgetintenv("BYTESPERWORD", &bytesperword);
1531
1532	/* Assume 'md <addr>' and start with environment values */
1533	repeat = mdcount * 16 / bytesperword;
1534
1535	if (strcmp(argv[0], "mdr") == 0) {
1536		if (argc != 2)
 
 
1537			return KDB_ARGCOUNT;
1538		valid = 1;
1539	} else if (isdigit(argv[0][2])) {
1540		bytesperword = (int)(argv[0][2] - '0');
1541		if (bytesperword == 0) {
1542			bytesperword = last_bytesperword;
1543			if (bytesperword == 0)
1544				bytesperword = 4;
1545		}
1546		last_bytesperword = bytesperword;
1547		repeat = mdcount * 16 / bytesperword;
1548		if (!argv[0][3])
1549			valid = 1;
1550		else if (argv[0][3] == 'c' && argv[0][4]) {
1551			char *p;
1552			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1553			mdcount = ((repeat * bytesperword) + 15) / 16;
1554			valid = !*p;
1555		}
1556		last_repeat = repeat;
1557	} else if (strcmp(argv[0], "md") == 0)
1558		valid = 1;
1559	else if (strcmp(argv[0], "mds") == 0)
1560		valid = 1;
1561	else if (strcmp(argv[0], "mdp") == 0) {
1562		phys = valid = 1;
1563	}
1564	if (!valid)
1565		return KDB_NOTFOUND;
1566
1567	if (argc == 0) {
1568		if (last_addr == 0)
1569			return KDB_ARGCOUNT;
1570		addr = last_addr;
1571		radix = last_radix;
1572		bytesperword = last_bytesperword;
1573		repeat = last_repeat;
1574		mdcount = ((repeat * bytesperword) + 15) / 16;
 
 
 
1575	}
1576
1577	if (argc) {
1578		unsigned long val;
1579		int diag, nextarg = 1;
1580		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1581				     &offset, NULL);
1582		if (diag)
1583			return diag;
1584		if (argc > nextarg+2)
1585			return KDB_ARGCOUNT;
1586
1587		if (argc >= nextarg) {
1588			diag = kdbgetularg(argv[nextarg], &val);
1589			if (!diag) {
1590				mdcount = (int) val;
1591				repeat = mdcount * 16 / bytesperword;
 
 
 
1592			}
1593		}
1594		if (argc >= nextarg+1) {
1595			diag = kdbgetularg(argv[nextarg+1], &val);
1596			if (!diag)
1597				radix = (int) val;
1598		}
1599	}
1600
1601	if (strcmp(argv[0], "mdr") == 0)
1602		return kdb_mdr(addr, mdcount);
 
 
 
 
 
 
 
1603
1604	switch (radix) {
1605	case 10:
1606		fmtchar = 'd';
1607		break;
1608	case 16:
1609		fmtchar = 'x';
1610		break;
1611	case 8:
1612		fmtchar = 'o';
1613		break;
1614	default:
1615		return KDB_BADRADIX;
1616	}
1617
1618	last_radix = radix;
1619
1620	if (bytesperword > KDB_WORD_SIZE)
1621		return KDB_BADWIDTH;
1622
1623	switch (bytesperword) {
1624	case 8:
1625		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1626		break;
1627	case 4:
1628		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1629		break;
1630	case 2:
1631		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1632		break;
1633	case 1:
1634		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1635		break;
1636	default:
1637		return KDB_BADWIDTH;
1638	}
1639
1640	last_repeat = repeat;
1641	last_bytesperword = bytesperword;
1642
1643	if (strcmp(argv[0], "mds") == 0) {
1644		symbolic = 1;
1645		/* Do not save these changes as last_*, they are temporary mds
1646		 * overrides.
1647		 */
1648		bytesperword = KDB_WORD_SIZE;
1649		repeat = mdcount;
1650		kdbgetintenv("NOSECT", &nosect);
1651	}
1652
1653	/* Round address down modulo BYTESPERWORD */
1654
1655	addr &= ~(bytesperword-1);
1656
1657	while (repeat > 0) {
1658		unsigned long a;
1659		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1660
1661		if (KDB_FLAG(CMD_INTERRUPT))
1662			return 0;
1663		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1664			if (phys) {
1665				if (kdb_getphysword(&word, a, bytesperword)
1666						|| word)
1667					break;
1668			} else if (kdb_getword(&word, a, bytesperword) || word)
1669				break;
1670		}
1671		n = min(num, repeat);
1672		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1673			    num, repeat, phys);
1674		addr += bytesperword * n;
1675		repeat -= n;
1676		z = (z + num - 1) / num;
1677		if (z > 2) {
1678			int s = num * (z-2);
1679			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1680				   " zero suppressed\n",
1681				addr, addr + bytesperword * s - 1);
1682			addr += bytesperword * s;
1683			repeat -= s;
1684		}
1685	}
1686	last_addr = addr;
1687
1688	return 0;
1689}
1690
1691/*
1692 * kdb_mm - This function implements the 'mm' command.
1693 *	mm address-expression new-value
1694 * Remarks:
1695 *	mm works on machine words, mmW works on bytes.
1696 */
1697static int kdb_mm(int argc, const char **argv)
1698{
1699	int diag;
1700	unsigned long addr;
1701	long offset = 0;
1702	unsigned long contents;
1703	int nextarg;
1704	int width;
1705
1706	if (argv[0][2] && !isdigit(argv[0][2]))
1707		return KDB_NOTFOUND;
1708
1709	if (argc < 2)
1710		return KDB_ARGCOUNT;
1711
1712	nextarg = 1;
1713	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1714	if (diag)
1715		return diag;
1716
1717	if (nextarg > argc)
1718		return KDB_ARGCOUNT;
1719	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1720	if (diag)
1721		return diag;
1722
1723	if (nextarg != argc + 1)
1724		return KDB_ARGCOUNT;
1725
1726	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1727	diag = kdb_putword(addr, contents, width);
1728	if (diag)
1729		return diag;
1730
1731	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1732
1733	return 0;
1734}
1735
1736/*
1737 * kdb_go - This function implements the 'go' command.
1738 *	go [address-expression]
1739 */
1740static int kdb_go(int argc, const char **argv)
1741{
1742	unsigned long addr;
1743	int diag;
1744	int nextarg;
1745	long offset;
1746
1747	if (raw_smp_processor_id() != kdb_initial_cpu) {
1748		kdb_printf("go must execute on the entry cpu, "
1749			   "please use \"cpu %d\" and then execute go\n",
1750			   kdb_initial_cpu);
1751		return KDB_BADCPUNUM;
1752	}
1753	if (argc == 1) {
1754		nextarg = 1;
1755		diag = kdbgetaddrarg(argc, argv, &nextarg,
1756				     &addr, &offset, NULL);
1757		if (diag)
1758			return diag;
1759	} else if (argc) {
1760		return KDB_ARGCOUNT;
1761	}
1762
1763	diag = KDB_CMD_GO;
1764	if (KDB_FLAG(CATASTROPHIC)) {
1765		kdb_printf("Catastrophic error detected\n");
1766		kdb_printf("kdb_continue_catastrophic=%d, ",
1767			kdb_continue_catastrophic);
1768		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1769			kdb_printf("type go a second time if you really want "
1770				   "to continue\n");
1771			return 0;
1772		}
1773		if (kdb_continue_catastrophic == 2) {
1774			kdb_printf("forcing reboot\n");
1775			kdb_reboot(0, NULL);
1776		}
1777		kdb_printf("attempting to continue\n");
1778	}
1779	return diag;
1780}
1781
1782/*
1783 * kdb_rd - This function implements the 'rd' command.
1784 */
1785static int kdb_rd(int argc, const char **argv)
1786{
1787	int len = kdb_check_regs();
1788#if DBG_MAX_REG_NUM > 0
1789	int i;
1790	char *rname;
1791	int rsize;
1792	u64 reg64;
1793	u32 reg32;
1794	u16 reg16;
1795	u8 reg8;
1796
1797	if (len)
1798		return len;
1799
1800	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1801		rsize = dbg_reg_def[i].size * 2;
1802		if (rsize > 16)
1803			rsize = 2;
1804		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1805			len = 0;
1806			kdb_printf("\n");
1807		}
1808		if (len)
1809			len += kdb_printf("  ");
1810		switch(dbg_reg_def[i].size * 8) {
1811		case 8:
1812			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1813			if (!rname)
1814				break;
1815			len += kdb_printf("%s: %02x", rname, reg8);
1816			break;
1817		case 16:
1818			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1819			if (!rname)
1820				break;
1821			len += kdb_printf("%s: %04x", rname, reg16);
1822			break;
1823		case 32:
1824			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1825			if (!rname)
1826				break;
1827			len += kdb_printf("%s: %08x", rname, reg32);
1828			break;
1829		case 64:
1830			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1831			if (!rname)
1832				break;
1833			len += kdb_printf("%s: %016llx", rname, reg64);
1834			break;
1835		default:
1836			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1837		}
1838	}
1839	kdb_printf("\n");
1840#else
1841	if (len)
1842		return len;
1843
1844	kdb_dumpregs(kdb_current_regs);
1845#endif
1846	return 0;
1847}
1848
1849/*
1850 * kdb_rm - This function implements the 'rm' (register modify)  command.
1851 *	rm register-name new-contents
1852 * Remarks:
1853 *	Allows register modification with the same restrictions as gdb
1854 */
1855static int kdb_rm(int argc, const char **argv)
1856{
1857#if DBG_MAX_REG_NUM > 0
1858	int diag;
1859	const char *rname;
1860	int i;
1861	u64 reg64;
1862	u32 reg32;
1863	u16 reg16;
1864	u8 reg8;
1865
1866	if (argc != 2)
1867		return KDB_ARGCOUNT;
1868	/*
1869	 * Allow presence or absence of leading '%' symbol.
1870	 */
1871	rname = argv[1];
1872	if (*rname == '%')
1873		rname++;
1874
1875	diag = kdbgetu64arg(argv[2], &reg64);
1876	if (diag)
1877		return diag;
1878
1879	diag = kdb_check_regs();
1880	if (diag)
1881		return diag;
1882
1883	diag = KDB_BADREG;
1884	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1885		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1886			diag = 0;
1887			break;
1888		}
1889	}
1890	if (!diag) {
1891		switch(dbg_reg_def[i].size * 8) {
1892		case 8:
1893			reg8 = reg64;
1894			dbg_set_reg(i, &reg8, kdb_current_regs);
1895			break;
1896		case 16:
1897			reg16 = reg64;
1898			dbg_set_reg(i, &reg16, kdb_current_regs);
1899			break;
1900		case 32:
1901			reg32 = reg64;
1902			dbg_set_reg(i, &reg32, kdb_current_regs);
1903			break;
1904		case 64:
1905			dbg_set_reg(i, &reg64, kdb_current_regs);
1906			break;
1907		}
1908	}
1909	return diag;
1910#else
1911	kdb_printf("ERROR: Register set currently not implemented\n");
1912    return 0;
1913#endif
1914}
1915
1916#if defined(CONFIG_MAGIC_SYSRQ)
1917/*
1918 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1919 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1920 *		sr <magic-sysrq-code>
1921 */
1922static int kdb_sr(int argc, const char **argv)
1923{
 
 
 
1924	if (argc != 1)
1925		return KDB_ARGCOUNT;
 
1926	kdb_trap_printk++;
1927	__handle_sysrq(*argv[1], false);
1928	kdb_trap_printk--;
1929
1930	return 0;
1931}
1932#endif	/* CONFIG_MAGIC_SYSRQ */
1933
1934/*
1935 * kdb_ef - This function implements the 'regs' (display exception
1936 *	frame) command.  This command takes an address and expects to
1937 *	find an exception frame at that address, formats and prints
1938 *	it.
1939 *		regs address-expression
1940 * Remarks:
1941 *	Not done yet.
1942 */
1943static int kdb_ef(int argc, const char **argv)
1944{
1945	int diag;
1946	unsigned long addr;
1947	long offset;
1948	int nextarg;
1949
1950	if (argc != 1)
1951		return KDB_ARGCOUNT;
1952
1953	nextarg = 1;
1954	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1955	if (diag)
1956		return diag;
1957	show_regs((struct pt_regs *)addr);
1958	return 0;
1959}
1960
1961#if defined(CONFIG_MODULES)
1962/*
1963 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
1964 *	currently loaded kernel modules.
1965 *	Mostly taken from userland lsmod.
1966 */
1967static int kdb_lsmod(int argc, const char **argv)
1968{
1969	struct module *mod;
1970
1971	if (argc != 0)
1972		return KDB_ARGCOUNT;
1973
1974	kdb_printf("Module                  Size  modstruct     Used by\n");
1975	list_for_each_entry(mod, kdb_modules, list) {
1976		if (mod->state == MODULE_STATE_UNFORMED)
1977			continue;
1978
1979		kdb_printf("%-20s%8u  0x%p ", mod->name,
1980			   mod->core_size, (void *)mod);
1981#ifdef CONFIG_MODULE_UNLOAD
1982		kdb_printf("%4ld ", module_refcount(mod));
1983#endif
1984		if (mod->state == MODULE_STATE_GOING)
1985			kdb_printf(" (Unloading)");
1986		else if (mod->state == MODULE_STATE_COMING)
1987			kdb_printf(" (Loading)");
1988		else
1989			kdb_printf(" (Live)");
1990		kdb_printf(" 0x%p", mod->module_core);
1991
1992#ifdef CONFIG_MODULE_UNLOAD
1993		{
1994			struct module_use *use;
1995			kdb_printf(" [ ");
1996			list_for_each_entry(use, &mod->source_list,
1997					    source_list)
1998				kdb_printf("%s ", use->target->name);
1999			kdb_printf("]\n");
2000		}
2001#endif
2002	}
2003
2004	return 0;
2005}
2006
2007#endif	/* CONFIG_MODULES */
2008
2009/*
2010 * kdb_env - This function implements the 'env' command.  Display the
2011 *	current environment variables.
2012 */
2013
2014static int kdb_env(int argc, const char **argv)
2015{
2016	int i;
2017
2018	for (i = 0; i < __nenv; i++) {
2019		if (__env[i])
2020			kdb_printf("%s\n", __env[i]);
2021	}
2022
2023	if (KDB_DEBUG(MASK))
2024		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
 
2025
2026	return 0;
2027}
2028
2029#ifdef CONFIG_PRINTK
2030/*
2031 * kdb_dmesg - This function implements the 'dmesg' command to display
2032 *	the contents of the syslog buffer.
2033 *		dmesg [lines] [adjust]
2034 */
2035static int kdb_dmesg(int argc, const char **argv)
2036{
2037	int diag;
2038	int logging;
2039	int lines = 0;
2040	int adjust = 0;
2041	int n = 0;
2042	int skip = 0;
2043	struct kmsg_dumper dumper = { .active = 1 };
2044	size_t len;
2045	char buf[201];
2046
2047	if (argc > 2)
2048		return KDB_ARGCOUNT;
2049	if (argc) {
2050		char *cp;
2051		lines = simple_strtol(argv[1], &cp, 0);
2052		if (*cp)
2053			lines = 0;
2054		if (argc > 1) {
2055			adjust = simple_strtoul(argv[2], &cp, 0);
2056			if (*cp || adjust < 0)
2057				adjust = 0;
2058		}
2059	}
2060
2061	/* disable LOGGING if set */
2062	diag = kdbgetintenv("LOGGING", &logging);
2063	if (!diag && logging) {
2064		const char *setargs[] = { "set", "LOGGING", "0" };
2065		kdb_set(2, setargs);
2066	}
2067
2068	kmsg_dump_rewind_nolock(&dumper);
2069	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2070		n++;
2071
2072	if (lines < 0) {
2073		if (adjust >= n)
2074			kdb_printf("buffer only contains %d lines, nothing "
2075				   "printed\n", n);
2076		else if (adjust - lines >= n)
2077			kdb_printf("buffer only contains %d lines, last %d "
2078				   "lines printed\n", n, n - adjust);
2079		skip = adjust;
2080		lines = abs(lines);
2081	} else if (lines > 0) {
2082		skip = n - lines - adjust;
2083		lines = abs(lines);
2084		if (adjust >= n) {
2085			kdb_printf("buffer only contains %d lines, "
2086				   "nothing printed\n", n);
2087			skip = n;
2088		} else if (skip < 0) {
2089			lines += skip;
2090			skip = 0;
2091			kdb_printf("buffer only contains %d lines, first "
2092				   "%d lines printed\n", n, lines);
2093		}
2094	} else {
2095		lines = n;
2096	}
2097
2098	if (skip >= n || skip < 0)
2099		return 0;
2100
2101	kmsg_dump_rewind_nolock(&dumper);
2102	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2103		if (skip) {
2104			skip--;
2105			continue;
2106		}
2107		if (!lines--)
2108			break;
2109		if (KDB_FLAG(CMD_INTERRUPT))
2110			return 0;
2111
2112		kdb_printf("%.*s\n", (int)len - 1, buf);
2113	}
2114
2115	return 0;
2116}
2117#endif /* CONFIG_PRINTK */
2118
2119/* Make sure we balance enable/disable calls, must disable first. */
2120static atomic_t kdb_nmi_disabled;
2121
2122static int kdb_disable_nmi(int argc, const char *argv[])
2123{
2124	if (atomic_read(&kdb_nmi_disabled))
2125		return 0;
2126	atomic_set(&kdb_nmi_disabled, 1);
2127	arch_kgdb_ops.enable_nmi(0);
2128	return 0;
2129}
2130
2131static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2132{
2133	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2134		return -EINVAL;
2135	arch_kgdb_ops.enable_nmi(1);
2136	return 0;
2137}
2138
2139static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2140	.set = kdb_param_enable_nmi,
2141};
2142module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2143
2144/*
2145 * kdb_cpu - This function implements the 'cpu' command.
2146 *	cpu	[<cpunum>]
2147 * Returns:
2148 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2149 */
2150static void kdb_cpu_status(void)
2151{
2152	int i, start_cpu, first_print = 1;
2153	char state, prev_state = '?';
2154
2155	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2156	kdb_printf("Available cpus: ");
2157	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2158		if (!cpu_online(i)) {
2159			state = 'F';	/* cpu is offline */
 
 
2160		} else {
2161			state = ' ';	/* cpu is responding to kdb */
2162			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2163				state = 'I';	/* idle task */
2164		}
2165		if (state != prev_state) {
2166			if (prev_state != '?') {
2167				if (!first_print)
2168					kdb_printf(", ");
2169				first_print = 0;
2170				kdb_printf("%d", start_cpu);
2171				if (start_cpu < i-1)
2172					kdb_printf("-%d", i-1);
2173				if (prev_state != ' ')
2174					kdb_printf("(%c)", prev_state);
2175			}
2176			prev_state = state;
2177			start_cpu = i;
2178		}
2179	}
2180	/* print the trailing cpus, ignoring them if they are all offline */
2181	if (prev_state != 'F') {
2182		if (!first_print)
2183			kdb_printf(", ");
2184		kdb_printf("%d", start_cpu);
2185		if (start_cpu < i-1)
2186			kdb_printf("-%d", i-1);
2187		if (prev_state != ' ')
2188			kdb_printf("(%c)", prev_state);
2189	}
2190	kdb_printf("\n");
2191}
2192
2193static int kdb_cpu(int argc, const char **argv)
2194{
2195	unsigned long cpunum;
2196	int diag;
2197
2198	if (argc == 0) {
2199		kdb_cpu_status();
2200		return 0;
2201	}
2202
2203	if (argc != 1)
2204		return KDB_ARGCOUNT;
2205
2206	diag = kdbgetularg(argv[1], &cpunum);
2207	if (diag)
2208		return diag;
2209
2210	/*
2211	 * Validate cpunum
2212	 */
2213	if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2214		return KDB_BADCPUNUM;
2215
2216	dbg_switch_cpu = cpunum;
2217
2218	/*
2219	 * Switch to other cpu
2220	 */
2221	return KDB_CMD_CPU;
2222}
2223
2224/* The user may not realize that ps/bta with no parameters does not print idle
2225 * or sleeping system daemon processes, so tell them how many were suppressed.
2226 */
2227void kdb_ps_suppressed(void)
2228{
2229	int idle = 0, daemon = 0;
2230	unsigned long mask_I = kdb_task_state_string("I"),
2231		      mask_M = kdb_task_state_string("M");
2232	unsigned long cpu;
2233	const struct task_struct *p, *g;
2234	for_each_online_cpu(cpu) {
2235		p = kdb_curr_task(cpu);
2236		if (kdb_task_state(p, mask_I))
2237			++idle;
2238	}
2239	kdb_do_each_thread(g, p) {
2240		if (kdb_task_state(p, mask_M))
2241			++daemon;
2242	} kdb_while_each_thread(g, p);
2243	if (idle || daemon) {
2244		if (idle)
2245			kdb_printf("%d idle process%s (state I)%s\n",
2246				   idle, idle == 1 ? "" : "es",
2247				   daemon ? " and " : "");
2248		if (daemon)
2249			kdb_printf("%d sleeping system daemon (state M) "
2250				   "process%s", daemon,
2251				   daemon == 1 ? "" : "es");
2252		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2253	}
2254}
2255
2256/*
2257 * kdb_ps - This function implements the 'ps' command which shows a
2258 *	list of the active processes.
2259 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2260 */
2261void kdb_ps1(const struct task_struct *p)
2262{
2263	int cpu;
2264	unsigned long tmp;
2265
2266	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
 
2267		return;
2268
2269	cpu = kdb_process_cpu(p);
2270	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2271		   (void *)p, p->pid, p->parent->pid,
2272		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2273		   kdb_task_state_char(p),
2274		   (void *)(&p->thread),
2275		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2276		   p->comm);
2277	if (kdb_task_has_cpu(p)) {
2278		if (!KDB_TSK(cpu)) {
2279			kdb_printf("  Error: no saved data for this cpu\n");
2280		} else {
2281			if (KDB_TSK(cpu) != p)
2282				kdb_printf("  Error: does not match running "
2283				   "process table (0x%p)\n", KDB_TSK(cpu));
2284		}
2285	}
2286}
2287
 
 
 
 
 
 
 
2288static int kdb_ps(int argc, const char **argv)
2289{
2290	struct task_struct *g, *p;
2291	unsigned long mask, cpu;
 
2292
2293	if (argc == 0)
2294		kdb_ps_suppressed();
2295	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2296		(int)(2*sizeof(void *))+2, "Task Addr",
2297		(int)(2*sizeof(void *))+2, "Thread");
2298	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2299	/* Run the active tasks first */
2300	for_each_online_cpu(cpu) {
2301		if (KDB_FLAG(CMD_INTERRUPT))
2302			return 0;
2303		p = kdb_curr_task(cpu);
2304		if (kdb_task_state(p, mask))
2305			kdb_ps1(p);
2306	}
2307	kdb_printf("\n");
2308	/* Now the real tasks */
2309	kdb_do_each_thread(g, p) {
2310		if (KDB_FLAG(CMD_INTERRUPT))
2311			return 0;
2312		if (kdb_task_state(p, mask))
2313			kdb_ps1(p);
2314	} kdb_while_each_thread(g, p);
2315
2316	return 0;
2317}
2318
2319/*
2320 * kdb_pid - This function implements the 'pid' command which switches
2321 *	the currently active process.
2322 *		pid [<pid> | R]
2323 */
2324static int kdb_pid(int argc, const char **argv)
2325{
2326	struct task_struct *p;
2327	unsigned long val;
2328	int diag;
2329
2330	if (argc > 1)
2331		return KDB_ARGCOUNT;
2332
2333	if (argc) {
2334		if (strcmp(argv[1], "R") == 0) {
2335			p = KDB_TSK(kdb_initial_cpu);
2336		} else {
2337			diag = kdbgetularg(argv[1], &val);
2338			if (diag)
2339				return KDB_BADINT;
2340
2341			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2342			if (!p) {
2343				kdb_printf("No task with pid=%d\n", (pid_t)val);
2344				return 0;
2345			}
2346		}
2347		kdb_set_current_task(p);
2348	}
2349	kdb_printf("KDB current process is %s(pid=%d)\n",
2350		   kdb_current_task->comm,
2351		   kdb_current_task->pid);
2352
2353	return 0;
2354}
2355
2356static int kdb_kgdb(int argc, const char **argv)
2357{
2358	return KDB_CMD_KGDB;
2359}
2360
2361/*
2362 * kdb_help - This function implements the 'help' and '?' commands.
2363 */
2364static int kdb_help(int argc, const char **argv)
2365{
2366	kdbtab_t *kt;
2367	int i;
2368
2369	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2370	kdb_printf("-----------------------------"
2371		   "-----------------------------\n");
2372	for_each_kdbcmd(kt, i) {
2373		char *space = "";
2374		if (KDB_FLAG(CMD_INTERRUPT))
2375			return 0;
2376		if (!kt->cmd_name)
2377			continue;
2378		if (strlen(kt->cmd_usage) > 20)
2379			space = "\n                                    ";
2380		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2381			   kt->cmd_usage, space, kt->cmd_help);
2382	}
2383	return 0;
2384}
2385
2386/*
2387 * kdb_kill - This function implements the 'kill' commands.
2388 */
2389static int kdb_kill(int argc, const char **argv)
2390{
2391	long sig, pid;
2392	char *endp;
2393	struct task_struct *p;
2394	struct siginfo info;
2395
2396	if (argc != 2)
2397		return KDB_ARGCOUNT;
2398
2399	sig = simple_strtol(argv[1], &endp, 0);
2400	if (*endp)
2401		return KDB_BADINT;
2402	if (sig >= 0) {
2403		kdb_printf("Invalid signal parameter.<-signal>\n");
2404		return 0;
2405	}
2406	sig = -sig;
2407
2408	pid = simple_strtol(argv[2], &endp, 0);
2409	if (*endp)
2410		return KDB_BADINT;
2411	if (pid <= 0) {
2412		kdb_printf("Process ID must be large than 0.\n");
2413		return 0;
2414	}
2415
2416	/* Find the process. */
2417	p = find_task_by_pid_ns(pid, &init_pid_ns);
2418	if (!p) {
2419		kdb_printf("The specified process isn't found.\n");
2420		return 0;
2421	}
2422	p = p->group_leader;
2423	info.si_signo = sig;
2424	info.si_errno = 0;
2425	info.si_code = SI_USER;
2426	info.si_pid = pid;  /* same capabilities as process being signalled */
2427	info.si_uid = 0;    /* kdb has root authority */
2428	kdb_send_sig_info(p, &info);
2429	return 0;
2430}
2431
2432struct kdb_tm {
2433	int tm_sec;	/* seconds */
2434	int tm_min;	/* minutes */
2435	int tm_hour;	/* hours */
2436	int tm_mday;	/* day of the month */
2437	int tm_mon;	/* month */
2438	int tm_year;	/* year */
2439};
2440
2441static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2442{
2443	/* This will work from 1970-2099, 2100 is not a leap year */
2444	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2445				 31, 30, 31, 30, 31 };
2446	memset(tm, 0, sizeof(*tm));
2447	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2448	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2449		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2450	tm->tm_min =  tm->tm_sec / 60 % 60;
2451	tm->tm_hour = tm->tm_sec / 60 / 60;
2452	tm->tm_sec =  tm->tm_sec % 60;
2453	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2454	tm->tm_mday %= (4*365+1);
2455	mon_day[1] = 29;
2456	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2457		tm->tm_mday -= mon_day[tm->tm_mon];
2458		if (++tm->tm_mon == 12) {
2459			tm->tm_mon = 0;
2460			++tm->tm_year;
2461			mon_day[1] = 28;
2462		}
2463	}
2464	++tm->tm_mday;
2465}
2466
2467/*
2468 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2469 * I cannot call that code directly from kdb, it has an unconditional
2470 * cli()/sti() and calls routines that take locks which can stop the debugger.
2471 */
2472static void kdb_sysinfo(struct sysinfo *val)
2473{
2474	struct timespec uptime;
2475	do_posix_clock_monotonic_gettime(&uptime);
2476	memset(val, 0, sizeof(*val));
2477	val->uptime = uptime.tv_sec;
2478	val->loads[0] = avenrun[0];
2479	val->loads[1] = avenrun[1];
2480	val->loads[2] = avenrun[2];
2481	val->procs = nr_threads-1;
2482	si_meminfo(val);
2483
2484	return;
2485}
2486
2487/*
2488 * kdb_summary - This function implements the 'summary' command.
2489 */
2490static int kdb_summary(int argc, const char **argv)
2491{
2492	struct timespec now;
2493	struct kdb_tm tm;
2494	struct sysinfo val;
2495
2496	if (argc)
2497		return KDB_ARGCOUNT;
2498
2499	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2500	kdb_printf("release    %s\n", init_uts_ns.name.release);
2501	kdb_printf("version    %s\n", init_uts_ns.name.version);
2502	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2503	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2504	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2505	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2506
2507	now = __current_kernel_time();
2508	kdb_gmtime(&now, &tm);
2509	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2510		   "tz_minuteswest %d\n",
2511		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2512		tm.tm_hour, tm.tm_min, tm.tm_sec,
2513		sys_tz.tz_minuteswest);
2514
 
 
2515	kdb_sysinfo(&val);
2516	kdb_printf("uptime     ");
2517	if (val.uptime > (24*60*60)) {
2518		int days = val.uptime / (24*60*60);
2519		val.uptime %= (24*60*60);
2520		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2521	}
2522	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2523
2524	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2525
2526#define LOAD_INT(x) ((x) >> FSHIFT)
2527#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2528	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2529		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2530		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2531		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2532#undef LOAD_INT
2533#undef LOAD_FRAC
2534	/* Display in kilobytes */
2535#define K(x) ((x) << (PAGE_SHIFT - 10))
2536	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2537		   "Buffers:        %8lu kB\n",
2538		   val.totalram, val.freeram, val.bufferram);
2539	return 0;
2540}
2541
2542/*
2543 * kdb_per_cpu - This function implements the 'per_cpu' command.
2544 */
2545static int kdb_per_cpu(int argc, const char **argv)
2546{
2547	char fmtstr[64];
2548	int cpu, diag, nextarg = 1;
2549	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2550
2551	if (argc < 1 || argc > 3)
2552		return KDB_ARGCOUNT;
2553
2554	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2555	if (diag)
2556		return diag;
2557
2558	if (argc >= 2) {
2559		diag = kdbgetularg(argv[2], &bytesperword);
2560		if (diag)
2561			return diag;
2562	}
2563	if (!bytesperword)
2564		bytesperword = KDB_WORD_SIZE;
2565	else if (bytesperword > KDB_WORD_SIZE)
2566		return KDB_BADWIDTH;
2567	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2568	if (argc >= 3) {
2569		diag = kdbgetularg(argv[3], &whichcpu);
2570		if (diag)
2571			return diag;
2572		if (!cpu_online(whichcpu)) {
2573			kdb_printf("cpu %ld is not online\n", whichcpu);
2574			return KDB_BADCPUNUM;
2575		}
2576	}
2577
2578	/* Most architectures use __per_cpu_offset[cpu], some use
2579	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2580	 */
2581#ifdef	__per_cpu_offset
2582#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2583#else
2584#ifdef	CONFIG_SMP
2585#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2586#else
2587#define KDB_PCU(cpu) 0
2588#endif
2589#endif
2590	for_each_online_cpu(cpu) {
2591		if (KDB_FLAG(CMD_INTERRUPT))
2592			return 0;
2593
2594		if (whichcpu != ~0UL && whichcpu != cpu)
2595			continue;
2596		addr = symaddr + KDB_PCU(cpu);
2597		diag = kdb_getword(&val, addr, bytesperword);
2598		if (diag) {
2599			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2600				   "read, diag=%d\n", cpu, addr, diag);
2601			continue;
2602		}
2603		kdb_printf("%5d ", cpu);
2604		kdb_md_line(fmtstr, addr,
2605			bytesperword == KDB_WORD_SIZE,
2606			1, bytesperword, 1, 1, 0);
2607	}
2608#undef KDB_PCU
2609	return 0;
2610}
2611
2612/*
2613 * display help for the use of cmd | grep pattern
2614 */
2615static int kdb_grep_help(int argc, const char **argv)
2616{
2617	kdb_printf("Usage of  cmd args | grep pattern:\n");
2618	kdb_printf("  Any command's output may be filtered through an ");
2619	kdb_printf("emulated 'pipe'.\n");
2620	kdb_printf("  'grep' is just a key word.\n");
2621	kdb_printf("  The pattern may include a very limited set of "
2622		   "metacharacters:\n");
2623	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2624	kdb_printf("  And if there are spaces in the pattern, you may "
2625		   "quote it:\n");
2626	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2627		   " or \"^pat tern$\"\n");
2628	return 0;
2629}
2630
2631/*
2632 * kdb_register_repeat - This function is used to register a kernel
2633 * 	debugger command.
2634 * Inputs:
2635 *	cmd	Command name
2636 *	func	Function to execute the command
2637 *	usage	A simple usage string showing arguments
2638 *	help	A simple help string describing command
2639 *	repeat	Does the command auto repeat on enter?
2640 * Returns:
2641 *	zero for success, one if a duplicate command.
2642 */
2643#define kdb_command_extend 50	/* arbitrary */
2644int kdb_register_repeat(char *cmd,
2645			kdb_func_t func,
2646			char *usage,
2647			char *help,
2648			short minlen,
2649			kdb_repeat_t repeat)
2650{
2651	int i;
2652	kdbtab_t *kp;
2653
2654	/*
2655	 *  Brute force method to determine duplicates
2656	 */
2657	for_each_kdbcmd(kp, i) {
2658		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2659			kdb_printf("Duplicate kdb command registered: "
2660				"%s, func %p help %s\n", cmd, func, help);
2661			return 1;
2662		}
2663	}
2664
2665	/*
2666	 * Insert command into first available location in table
2667	 */
2668	for_each_kdbcmd(kp, i) {
2669		if (kp->cmd_name == NULL)
2670			break;
2671	}
2672
2673	if (i >= kdb_max_commands) {
2674		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2675			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2676		if (!new) {
2677			kdb_printf("Could not allocate new kdb_command "
2678				   "table\n");
2679			return 1;
2680		}
2681		if (kdb_commands) {
2682			memcpy(new, kdb_commands,
2683			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2684			kfree(kdb_commands);
2685		}
2686		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2687		       kdb_command_extend * sizeof(*new));
2688		kdb_commands = new;
2689		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2690		kdb_max_commands += kdb_command_extend;
2691	}
2692
2693	kp->cmd_name   = cmd;
2694	kp->cmd_func   = func;
2695	kp->cmd_usage  = usage;
2696	kp->cmd_help   = help;
2697	kp->cmd_flags  = 0;
2698	kp->cmd_minlen = minlen;
2699	kp->cmd_repeat = repeat;
2700
2701	return 0;
2702}
2703EXPORT_SYMBOL_GPL(kdb_register_repeat);
2704
2705
2706/*
2707 * kdb_register - Compatibility register function for commands that do
2708 *	not need to specify a repeat state.  Equivalent to
2709 *	kdb_register_repeat with KDB_REPEAT_NONE.
2710 * Inputs:
2711 *	cmd	Command name
2712 *	func	Function to execute the command
2713 *	usage	A simple usage string showing arguments
2714 *	help	A simple help string describing command
2715 * Returns:
2716 *	zero for success, one if a duplicate command.
2717 */
2718int kdb_register(char *cmd,
2719	     kdb_func_t func,
2720	     char *usage,
2721	     char *help,
2722	     short minlen)
2723{
2724	return kdb_register_repeat(cmd, func, usage, help, minlen,
2725				   KDB_REPEAT_NONE);
 
 
2726}
2727EXPORT_SYMBOL_GPL(kdb_register);
2728
2729/*
2730 * kdb_unregister - This function is used to unregister a kernel
2731 *	debugger command.  It is generally called when a module which
2732 *	implements kdb commands is unloaded.
2733 * Inputs:
2734 *	cmd	Command name
2735 * Returns:
2736 *	zero for success, one command not registered.
2737 */
2738int kdb_unregister(char *cmd)
2739{
2740	int i;
2741	kdbtab_t *kp;
2742
2743	/*
2744	 *  find the command.
2745	 */
2746	for_each_kdbcmd(kp, i) {
2747		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2748			kp->cmd_name = NULL;
2749			return 0;
2750		}
2751	}
2752
2753	/* Couldn't find it.  */
2754	return 1;
2755}
2756EXPORT_SYMBOL_GPL(kdb_unregister);
2757
2758/* Initialize the kdb command table. */
2759static void __init kdb_inittab(void)
2760{
2761	int i;
2762	kdbtab_t *kp;
2763
2764	for_each_kdbcmd(kp, i)
2765		kp->cmd_name = NULL;
2766
2767	kdb_register_repeat("md", kdb_md, "<vaddr>",
2768	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2769			    KDB_REPEAT_NO_ARGS);
2770	kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2771	  "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2772	kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2773	  "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2774	kdb_register_repeat("mds", kdb_md, "<vaddr>",
2775	  "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2776	kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2777	  "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2778	kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2779	  "Continue Execution", 1, KDB_REPEAT_NONE);
2780	kdb_register_repeat("rd", kdb_rd, "",
2781	  "Display Registers", 0, KDB_REPEAT_NONE);
2782	kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2783	  "Modify Registers", 0, KDB_REPEAT_NONE);
2784	kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2785	  "Display exception frame", 0, KDB_REPEAT_NONE);
2786	kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2787	  "Stack traceback", 1, KDB_REPEAT_NONE);
2788	kdb_register_repeat("btp", kdb_bt, "<pid>",
2789	  "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2790	kdb_register_repeat("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2791	  "Backtrace all processes matching state flag", 0, KDB_REPEAT_NONE);
2792	kdb_register_repeat("btc", kdb_bt, "",
2793	  "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2794	kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2795	  "Backtrace process given its struct task address", 0,
2796			    KDB_REPEAT_NONE);
2797	kdb_register_repeat("env", kdb_env, "",
2798	  "Show environment variables", 0, KDB_REPEAT_NONE);
2799	kdb_register_repeat("set", kdb_set, "",
2800	  "Set environment variables", 0, KDB_REPEAT_NONE);
2801	kdb_register_repeat("help", kdb_help, "",
2802	  "Display Help Message", 1, KDB_REPEAT_NONE);
2803	kdb_register_repeat("?", kdb_help, "",
2804	  "Display Help Message", 0, KDB_REPEAT_NONE);
2805	kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2806	  "Switch to new cpu", 0, KDB_REPEAT_NONE);
2807	kdb_register_repeat("kgdb", kdb_kgdb, "",
2808	  "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2809	kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2810	  "Display active task list", 0, KDB_REPEAT_NONE);
2811	kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2812	  "Switch to another task", 0, KDB_REPEAT_NONE);
2813	kdb_register_repeat("reboot", kdb_reboot, "",
2814	  "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2815#if defined(CONFIG_MODULES)
2816	kdb_register_repeat("lsmod", kdb_lsmod, "",
2817	  "List loaded kernel modules", 0, KDB_REPEAT_NONE);
 
 
 
 
2818#endif
2819#if defined(CONFIG_MAGIC_SYSRQ)
2820	kdb_register_repeat("sr", kdb_sr, "<key>",
2821	  "Magic SysRq key", 0, KDB_REPEAT_NONE);
 
 
 
 
2822#endif
2823#if defined(CONFIG_PRINTK)
2824	kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2825	  "Display syslog buffer", 0, KDB_REPEAT_NONE);
 
 
 
 
2826#endif
2827	if (arch_kgdb_ops.enable_nmi) {
2828		kdb_register_repeat("disable_nmi", kdb_disable_nmi, "",
2829		  "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE);
2830	}
2831	kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2832	  "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2833	kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2834	  "Send a signal to a process", 0, KDB_REPEAT_NONE);
2835	kdb_register_repeat("summary", kdb_summary, "",
2836	  "Summarize the system", 4, KDB_REPEAT_NONE);
2837	kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2838	  "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2839	kdb_register_repeat("grephelp", kdb_grep_help, "",
2840	  "Display help on | grep", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2841}
2842
2843/* Execute any commands defined in kdb_cmds.  */
2844static void __init kdb_cmd_init(void)
2845{
2846	int i, diag;
2847	for (i = 0; kdb_cmds[i]; ++i) {
2848		diag = kdb_parse(kdb_cmds[i]);
2849		if (diag)
2850			kdb_printf("kdb command %s failed, kdb diag %d\n",
2851				kdb_cmds[i], diag);
2852	}
2853	if (defcmd_in_progress) {
2854		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2855		kdb_parse("endefcmd");
2856	}
2857}
2858
2859/* Initialize kdb_printf, breakpoint tables and kdb state */
2860void __init kdb_init(int lvl)
2861{
2862	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2863	int i;
2864
2865	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2866		return;
2867	for (i = kdb_init_lvl; i < lvl; i++) {
2868		switch (i) {
2869		case KDB_NOT_INITIALIZED:
2870			kdb_inittab();		/* Initialize Command Table */
2871			kdb_initbptab();	/* Initialize Breakpoints */
2872			break;
2873		case KDB_INIT_EARLY:
2874			kdb_cmd_init();		/* Build kdb_cmds tables */
2875			break;
2876		}
2877	}
2878	kdb_init_lvl = lvl;
2879}