Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      sd.c Copyright (C) 1992 Drew Eckhardt
   4 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
   5 *
   6 *      Linux scsi disk driver
   7 *              Initial versions: Drew Eckhardt
   8 *              Subsequent revisions: Eric Youngdale
   9 *	Modification history:
  10 *       - Drew Eckhardt <drew@colorado.edu> original
  11 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
  12 *         outstanding request, and other enhancements.
  13 *         Support loadable low-level scsi drivers.
  14 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
  15 *         eight major numbers.
  16 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
  17 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
  18 *	   sd_init and cleanups.
  19 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
  20 *	   not being read in sd_open. Fix problem where removable media 
  21 *	   could be ejected after sd_open.
  22 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
  23 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
  24 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
  25 *	   Support 32k/1M disks.
  26 *
  27 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
  28 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
  29 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
  30 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
  31 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
  32 *	Note: when the logging level is set by the user, it must be greater
  33 *	than the level indicated above to trigger output.	
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/fs.h>
  38#include <linux/kernel.h>
  39#include <linux/mm.h>
  40#include <linux/bio.h>
  41#include <linux/hdreg.h>
  42#include <linux/errno.h>
  43#include <linux/idr.h>
  44#include <linux/interrupt.h>
  45#include <linux/init.h>
  46#include <linux/blkdev.h>
  47#include <linux/blkpg.h>
  48#include <linux/blk-pm.h>
  49#include <linux/delay.h>
  50#include <linux/major.h>
  51#include <linux/mutex.h>
  52#include <linux/string_helpers.h>
  53#include <linux/slab.h>
  54#include <linux/sed-opal.h>
  55#include <linux/pm_runtime.h>
  56#include <linux/pr.h>
  57#include <linux/t10-pi.h>
  58#include <linux/uaccess.h>
  59#include <asm/unaligned.h>
  60
  61#include <scsi/scsi.h>
  62#include <scsi/scsi_cmnd.h>
  63#include <scsi/scsi_dbg.h>
  64#include <scsi/scsi_device.h>
  65#include <scsi/scsi_driver.h>
  66#include <scsi/scsi_eh.h>
  67#include <scsi/scsi_host.h>
  68#include <scsi/scsi_ioctl.h>
  69#include <scsi/scsicam.h>
  70#include <scsi/scsi_common.h>
  71
  72#include "sd.h"
  73#include "scsi_priv.h"
  74#include "scsi_logging.h"
  75
  76MODULE_AUTHOR("Eric Youngdale");
  77MODULE_DESCRIPTION("SCSI disk (sd) driver");
  78MODULE_LICENSE("GPL");
  79
  80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
  81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
  82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
  83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
  84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
  85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
  86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
  87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
  88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
  89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
  90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
  91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
  92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
  93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
  94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
  95MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
  96MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
  97MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
  98MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
  99MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
 100
 101#define SD_MINORS	16
 102
 103static void sd_config_discard(struct scsi_disk *, unsigned int);
 104static void sd_config_write_same(struct scsi_disk *);
 105static int  sd_revalidate_disk(struct gendisk *);
 106static void sd_unlock_native_capacity(struct gendisk *disk);
 
 
 107static void sd_shutdown(struct device *);
 
 
 
 
 
 
 
 
 
 
 108static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
 109static void scsi_disk_release(struct device *cdev);
 110
 111static DEFINE_IDA(sd_index_ida);
 112
 
 113static mempool_t *sd_page_pool;
 114static struct lock_class_key sd_bio_compl_lkclass;
 115
 116static const char *sd_cache_types[] = {
 117	"write through", "none", "write back",
 118	"write back, no read (daft)"
 119};
 120
 121static void sd_set_flush_flag(struct scsi_disk *sdkp)
 122{
 123	bool wc = false, fua = false;
 124
 125	if (sdkp->WCE) {
 126		wc = true;
 127		if (sdkp->DPOFUA)
 128			fua = true;
 129	}
 130
 131	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
 132}
 133
 134static ssize_t
 135cache_type_store(struct device *dev, struct device_attribute *attr,
 136		 const char *buf, size_t count)
 137{
 138	int ct, rcd, wce, sp;
 139	struct scsi_disk *sdkp = to_scsi_disk(dev);
 140	struct scsi_device *sdp = sdkp->device;
 141	char buffer[64];
 142	char *buffer_data;
 143	struct scsi_mode_data data;
 144	struct scsi_sense_hdr sshdr;
 145	static const char temp[] = "temporary ";
 146	int len, ret;
 147
 148	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 149		/* no cache control on RBC devices; theoretically they
 150		 * can do it, but there's probably so many exceptions
 151		 * it's not worth the risk */
 152		return -EINVAL;
 153
 154	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
 155		buf += sizeof(temp) - 1;
 156		sdkp->cache_override = 1;
 157	} else {
 158		sdkp->cache_override = 0;
 159	}
 160
 161	ct = sysfs_match_string(sd_cache_types, buf);
 162	if (ct < 0)
 163		return -EINVAL;
 164
 165	rcd = ct & 0x01 ? 1 : 0;
 166	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
 167
 168	if (sdkp->cache_override) {
 169		sdkp->WCE = wce;
 170		sdkp->RCD = rcd;
 171		sd_set_flush_flag(sdkp);
 172		return count;
 173	}
 174
 175	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
 176			    sdkp->max_retries, &data, NULL))
 177		return -EINVAL;
 178	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
 179		  data.block_descriptor_length);
 180	buffer_data = buffer + data.header_length +
 181		data.block_descriptor_length;
 182	buffer_data[2] &= ~0x05;
 183	buffer_data[2] |= wce << 2 | rcd;
 184	sp = buffer_data[0] & 0x80 ? 1 : 0;
 185	buffer_data[0] &= ~0x80;
 186
 187	/*
 188	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
 189	 * received mode parameter buffer before doing MODE SELECT.
 190	 */
 191	data.device_specific = 0;
 192
 193	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
 194			       sdkp->max_retries, &data, &sshdr);
 195	if (ret) {
 196		if (ret > 0 && scsi_sense_valid(&sshdr))
 197			sd_print_sense_hdr(sdkp, &sshdr);
 198		return -EINVAL;
 199	}
 200	sd_revalidate_disk(sdkp->disk);
 201	return count;
 202}
 203
 204static ssize_t
 205manage_start_stop_show(struct device *dev,
 206		       struct device_attribute *attr, char *buf)
 207{
 208	struct scsi_disk *sdkp = to_scsi_disk(dev);
 209	struct scsi_device *sdp = sdkp->device;
 210
 211	return sysfs_emit(buf, "%u\n",
 212			  sdp->manage_system_start_stop &&
 213			  sdp->manage_runtime_start_stop &&
 214			  sdp->manage_shutdown);
 215}
 216static DEVICE_ATTR_RO(manage_start_stop);
 217
 218static ssize_t
 219manage_system_start_stop_show(struct device *dev,
 220			      struct device_attribute *attr, char *buf)
 221{
 222	struct scsi_disk *sdkp = to_scsi_disk(dev);
 223	struct scsi_device *sdp = sdkp->device;
 224
 225	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
 226}
 227
 228static ssize_t
 229manage_system_start_stop_store(struct device *dev,
 230			       struct device_attribute *attr,
 231			       const char *buf, size_t count)
 232{
 233	struct scsi_disk *sdkp = to_scsi_disk(dev);
 234	struct scsi_device *sdp = sdkp->device;
 235	bool v;
 236
 237	if (!capable(CAP_SYS_ADMIN))
 238		return -EACCES;
 239
 240	if (kstrtobool(buf, &v))
 241		return -EINVAL;
 242
 243	sdp->manage_system_start_stop = v;
 244
 245	return count;
 246}
 247static DEVICE_ATTR_RW(manage_system_start_stop);
 248
 249static ssize_t
 250manage_runtime_start_stop_show(struct device *dev,
 251			       struct device_attribute *attr, char *buf)
 252{
 253	struct scsi_disk *sdkp = to_scsi_disk(dev);
 254	struct scsi_device *sdp = sdkp->device;
 255
 256	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
 257}
 258
 259static ssize_t
 260manage_runtime_start_stop_store(struct device *dev,
 261				struct device_attribute *attr,
 262				const char *buf, size_t count)
 263{
 264	struct scsi_disk *sdkp = to_scsi_disk(dev);
 265	struct scsi_device *sdp = sdkp->device;
 266	bool v;
 267
 268	if (!capable(CAP_SYS_ADMIN))
 269		return -EACCES;
 270
 271	if (kstrtobool(buf, &v))
 272		return -EINVAL;
 273
 274	sdp->manage_runtime_start_stop = v;
 275
 276	return count;
 277}
 278static DEVICE_ATTR_RW(manage_runtime_start_stop);
 279
 280static ssize_t manage_shutdown_show(struct device *dev,
 281				    struct device_attribute *attr, char *buf)
 282{
 283	struct scsi_disk *sdkp = to_scsi_disk(dev);
 284	struct scsi_device *sdp = sdkp->device;
 285
 286	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
 287}
 288
 289static ssize_t manage_shutdown_store(struct device *dev,
 290				     struct device_attribute *attr,
 291				     const char *buf, size_t count)
 292{
 293	struct scsi_disk *sdkp = to_scsi_disk(dev);
 294	struct scsi_device *sdp = sdkp->device;
 295	bool v;
 296
 297	if (!capable(CAP_SYS_ADMIN))
 298		return -EACCES;
 299
 300	if (kstrtobool(buf, &v))
 301		return -EINVAL;
 302
 303	sdp->manage_shutdown = v;
 304
 305	return count;
 306}
 307static DEVICE_ATTR_RW(manage_shutdown);
 308
 309static ssize_t
 310allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
 311{
 312	struct scsi_disk *sdkp = to_scsi_disk(dev);
 313
 314	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
 315}
 316
 317static ssize_t
 318allow_restart_store(struct device *dev, struct device_attribute *attr,
 319		    const char *buf, size_t count)
 320{
 321	bool v;
 322	struct scsi_disk *sdkp = to_scsi_disk(dev);
 323	struct scsi_device *sdp = sdkp->device;
 324
 325	if (!capable(CAP_SYS_ADMIN))
 326		return -EACCES;
 327
 328	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 329		return -EINVAL;
 330
 331	if (kstrtobool(buf, &v))
 332		return -EINVAL;
 333
 334	sdp->allow_restart = v;
 335
 336	return count;
 337}
 338static DEVICE_ATTR_RW(allow_restart);
 339
 340static ssize_t
 341cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
 342{
 343	struct scsi_disk *sdkp = to_scsi_disk(dev);
 344	int ct = sdkp->RCD + 2*sdkp->WCE;
 345
 346	return sprintf(buf, "%s\n", sd_cache_types[ct]);
 347}
 348static DEVICE_ATTR_RW(cache_type);
 349
 350static ssize_t
 351FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
 352{
 353	struct scsi_disk *sdkp = to_scsi_disk(dev);
 354
 355	return sprintf(buf, "%u\n", sdkp->DPOFUA);
 356}
 357static DEVICE_ATTR_RO(FUA);
 358
 359static ssize_t
 360protection_type_show(struct device *dev, struct device_attribute *attr,
 361		     char *buf)
 362{
 363	struct scsi_disk *sdkp = to_scsi_disk(dev);
 364
 365	return sprintf(buf, "%u\n", sdkp->protection_type);
 366}
 367
 368static ssize_t
 369protection_type_store(struct device *dev, struct device_attribute *attr,
 370		      const char *buf, size_t count)
 371{
 372	struct scsi_disk *sdkp = to_scsi_disk(dev);
 373	unsigned int val;
 374	int err;
 375
 376	if (!capable(CAP_SYS_ADMIN))
 377		return -EACCES;
 378
 379	err = kstrtouint(buf, 10, &val);
 380
 381	if (err)
 382		return err;
 383
 384	if (val <= T10_PI_TYPE3_PROTECTION)
 385		sdkp->protection_type = val;
 386
 387	return count;
 388}
 389static DEVICE_ATTR_RW(protection_type);
 390
 391static ssize_t
 392protection_mode_show(struct device *dev, struct device_attribute *attr,
 393		     char *buf)
 394{
 395	struct scsi_disk *sdkp = to_scsi_disk(dev);
 396	struct scsi_device *sdp = sdkp->device;
 397	unsigned int dif, dix;
 398
 399	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
 400	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
 401
 402	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
 403		dif = 0;
 404		dix = 1;
 405	}
 406
 407	if (!dif && !dix)
 408		return sprintf(buf, "none\n");
 409
 410	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
 411}
 412static DEVICE_ATTR_RO(protection_mode);
 413
 414static ssize_t
 415app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
 416{
 417	struct scsi_disk *sdkp = to_scsi_disk(dev);
 418
 419	return sprintf(buf, "%u\n", sdkp->ATO);
 420}
 421static DEVICE_ATTR_RO(app_tag_own);
 422
 423static ssize_t
 424thin_provisioning_show(struct device *dev, struct device_attribute *attr,
 425		       char *buf)
 426{
 427	struct scsi_disk *sdkp = to_scsi_disk(dev);
 428
 429	return sprintf(buf, "%u\n", sdkp->lbpme);
 430}
 431static DEVICE_ATTR_RO(thin_provisioning);
 432
 433/* sysfs_match_string() requires dense arrays */
 434static const char *lbp_mode[] = {
 435	[SD_LBP_FULL]		= "full",
 436	[SD_LBP_UNMAP]		= "unmap",
 437	[SD_LBP_WS16]		= "writesame_16",
 438	[SD_LBP_WS10]		= "writesame_10",
 439	[SD_LBP_ZERO]		= "writesame_zero",
 440	[SD_LBP_DISABLE]	= "disabled",
 441};
 442
 443static ssize_t
 444provisioning_mode_show(struct device *dev, struct device_attribute *attr,
 445		       char *buf)
 446{
 447	struct scsi_disk *sdkp = to_scsi_disk(dev);
 448
 449	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
 450}
 451
 452static ssize_t
 453provisioning_mode_store(struct device *dev, struct device_attribute *attr,
 454			const char *buf, size_t count)
 455{
 456	struct scsi_disk *sdkp = to_scsi_disk(dev);
 457	struct scsi_device *sdp = sdkp->device;
 458	int mode;
 459
 460	if (!capable(CAP_SYS_ADMIN))
 461		return -EACCES;
 462
 463	if (sd_is_zoned(sdkp)) {
 464		sd_config_discard(sdkp, SD_LBP_DISABLE);
 465		return count;
 466	}
 467
 468	if (sdp->type != TYPE_DISK)
 469		return -EINVAL;
 470
 471	mode = sysfs_match_string(lbp_mode, buf);
 472	if (mode < 0)
 473		return -EINVAL;
 474
 475	sd_config_discard(sdkp, mode);
 476
 477	return count;
 478}
 479static DEVICE_ATTR_RW(provisioning_mode);
 480
 481/* sysfs_match_string() requires dense arrays */
 482static const char *zeroing_mode[] = {
 483	[SD_ZERO_WRITE]		= "write",
 484	[SD_ZERO_WS]		= "writesame",
 485	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
 486	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
 487};
 488
 489static ssize_t
 490zeroing_mode_show(struct device *dev, struct device_attribute *attr,
 491		  char *buf)
 492{
 493	struct scsi_disk *sdkp = to_scsi_disk(dev);
 494
 495	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
 496}
 497
 498static ssize_t
 499zeroing_mode_store(struct device *dev, struct device_attribute *attr,
 500		   const char *buf, size_t count)
 501{
 502	struct scsi_disk *sdkp = to_scsi_disk(dev);
 503	int mode;
 504
 505	if (!capable(CAP_SYS_ADMIN))
 506		return -EACCES;
 507
 508	mode = sysfs_match_string(zeroing_mode, buf);
 509	if (mode < 0)
 510		return -EINVAL;
 511
 512	sdkp->zeroing_mode = mode;
 513
 514	return count;
 515}
 516static DEVICE_ATTR_RW(zeroing_mode);
 517
 518static ssize_t
 519max_medium_access_timeouts_show(struct device *dev,
 520				struct device_attribute *attr, char *buf)
 521{
 522	struct scsi_disk *sdkp = to_scsi_disk(dev);
 523
 524	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
 525}
 526
 527static ssize_t
 528max_medium_access_timeouts_store(struct device *dev,
 529				 struct device_attribute *attr, const char *buf,
 530				 size_t count)
 531{
 532	struct scsi_disk *sdkp = to_scsi_disk(dev);
 533	int err;
 534
 535	if (!capable(CAP_SYS_ADMIN))
 536		return -EACCES;
 537
 538	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
 539
 540	return err ? err : count;
 541}
 542static DEVICE_ATTR_RW(max_medium_access_timeouts);
 543
 544static ssize_t
 545max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
 546			   char *buf)
 547{
 548	struct scsi_disk *sdkp = to_scsi_disk(dev);
 549
 550	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
 551}
 552
 553static ssize_t
 554max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
 555			    const char *buf, size_t count)
 556{
 557	struct scsi_disk *sdkp = to_scsi_disk(dev);
 558	struct scsi_device *sdp = sdkp->device;
 559	unsigned long max;
 560	int err;
 561
 562	if (!capable(CAP_SYS_ADMIN))
 563		return -EACCES;
 564
 565	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 566		return -EINVAL;
 567
 568	err = kstrtoul(buf, 10, &max);
 569
 570	if (err)
 571		return err;
 572
 573	if (max == 0)
 574		sdp->no_write_same = 1;
 575	else if (max <= SD_MAX_WS16_BLOCKS) {
 576		sdp->no_write_same = 0;
 577		sdkp->max_ws_blocks = max;
 578	}
 579
 580	sd_config_write_same(sdkp);
 581
 582	return count;
 583}
 584static DEVICE_ATTR_RW(max_write_same_blocks);
 585
 586static ssize_t
 587zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
 588{
 589	struct scsi_disk *sdkp = to_scsi_disk(dev);
 590
 591	if (sdkp->device->type == TYPE_ZBC)
 592		return sprintf(buf, "host-managed\n");
 593	if (sdkp->zoned == 1)
 594		return sprintf(buf, "host-aware\n");
 595	if (sdkp->zoned == 2)
 596		return sprintf(buf, "drive-managed\n");
 597	return sprintf(buf, "none\n");
 598}
 599static DEVICE_ATTR_RO(zoned_cap);
 600
 601static ssize_t
 602max_retries_store(struct device *dev, struct device_attribute *attr,
 603		  const char *buf, size_t count)
 604{
 605	struct scsi_disk *sdkp = to_scsi_disk(dev);
 606	struct scsi_device *sdev = sdkp->device;
 607	int retries, err;
 608
 609	err = kstrtoint(buf, 10, &retries);
 610	if (err)
 611		return err;
 612
 613	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
 614		sdkp->max_retries = retries;
 615		return count;
 616	}
 617
 618	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
 619		    SD_MAX_RETRIES);
 620	return -EINVAL;
 621}
 622
 623static ssize_t
 624max_retries_show(struct device *dev, struct device_attribute *attr,
 625		 char *buf)
 626{
 627	struct scsi_disk *sdkp = to_scsi_disk(dev);
 628
 629	return sprintf(buf, "%d\n", sdkp->max_retries);
 630}
 631
 632static DEVICE_ATTR_RW(max_retries);
 633
 634static struct attribute *sd_disk_attrs[] = {
 635	&dev_attr_cache_type.attr,
 636	&dev_attr_FUA.attr,
 637	&dev_attr_allow_restart.attr,
 638	&dev_attr_manage_start_stop.attr,
 639	&dev_attr_manage_system_start_stop.attr,
 640	&dev_attr_manage_runtime_start_stop.attr,
 641	&dev_attr_manage_shutdown.attr,
 642	&dev_attr_protection_type.attr,
 643	&dev_attr_protection_mode.attr,
 644	&dev_attr_app_tag_own.attr,
 645	&dev_attr_thin_provisioning.attr,
 646	&dev_attr_provisioning_mode.attr,
 647	&dev_attr_zeroing_mode.attr,
 648	&dev_attr_max_write_same_blocks.attr,
 649	&dev_attr_max_medium_access_timeouts.attr,
 650	&dev_attr_zoned_cap.attr,
 651	&dev_attr_max_retries.attr,
 652	NULL,
 653};
 654ATTRIBUTE_GROUPS(sd_disk);
 655
 656static struct class sd_disk_class = {
 657	.name		= "scsi_disk",
 
 658	.dev_release	= scsi_disk_release,
 659	.dev_groups	= sd_disk_groups,
 660};
 661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662/*
 663 * Don't request a new module, as that could deadlock in multipath
 664 * environment.
 665 */
 666static void sd_default_probe(dev_t devt)
 667{
 668}
 669
 670/*
 671 * Device no to disk mapping:
 672 * 
 673 *       major         disc2     disc  p1
 674 *   |............|.............|....|....| <- dev_t
 675 *    31        20 19          8 7  4 3  0
 676 * 
 677 * Inside a major, we have 16k disks, however mapped non-
 678 * contiguously. The first 16 disks are for major0, the next
 679 * ones with major1, ... Disk 256 is for major0 again, disk 272 
 680 * for major1, ... 
 681 * As we stay compatible with our numbering scheme, we can reuse 
 682 * the well-know SCSI majors 8, 65--71, 136--143.
 683 */
 684static int sd_major(int major_idx)
 685{
 686	switch (major_idx) {
 687	case 0:
 688		return SCSI_DISK0_MAJOR;
 689	case 1 ... 7:
 690		return SCSI_DISK1_MAJOR + major_idx - 1;
 691	case 8 ... 15:
 692		return SCSI_DISK8_MAJOR + major_idx - 8;
 693	default:
 694		BUG();
 695		return 0;	/* shut up gcc */
 696	}
 697}
 698
 699#ifdef CONFIG_BLK_SED_OPAL
 700static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
 701		size_t len, bool send)
 702{
 703	struct scsi_disk *sdkp = data;
 704	struct scsi_device *sdev = sdkp->device;
 705	u8 cdb[12] = { 0, };
 706	const struct scsi_exec_args exec_args = {
 707		.req_flags = BLK_MQ_REQ_PM,
 708	};
 709	int ret;
 710
 711	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
 712	cdb[1] = secp;
 713	put_unaligned_be16(spsp, &cdb[2]);
 714	put_unaligned_be32(len, &cdb[6]);
 715
 716	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
 717			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
 718			       &exec_args);
 719	return ret <= 0 ? ret : -EIO;
 720}
 721#endif /* CONFIG_BLK_SED_OPAL */
 722
 723/*
 724 * Look up the DIX operation based on whether the command is read or
 725 * write and whether dix and dif are enabled.
 726 */
 727static unsigned int sd_prot_op(bool write, bool dix, bool dif)
 728{
 729	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
 730	static const unsigned int ops[] = {	/* wrt dix dif */
 731		SCSI_PROT_NORMAL,		/*  0	0   0  */
 732		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
 733		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
 734		SCSI_PROT_READ_PASS,		/*  0	1   1  */
 735		SCSI_PROT_NORMAL,		/*  1	0   0  */
 736		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
 737		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
 738		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
 739	};
 740
 741	return ops[write << 2 | dix << 1 | dif];
 742}
 743
 744/*
 745 * Returns a mask of the protection flags that are valid for a given DIX
 746 * operation.
 747 */
 748static unsigned int sd_prot_flag_mask(unsigned int prot_op)
 749{
 750	static const unsigned int flag_mask[] = {
 751		[SCSI_PROT_NORMAL]		= 0,
 752
 753		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
 754						  SCSI_PROT_GUARD_CHECK |
 755						  SCSI_PROT_REF_CHECK |
 756						  SCSI_PROT_REF_INCREMENT,
 757
 758		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
 759						  SCSI_PROT_IP_CHECKSUM,
 760
 761		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
 762						  SCSI_PROT_GUARD_CHECK |
 763						  SCSI_PROT_REF_CHECK |
 764						  SCSI_PROT_REF_INCREMENT |
 765						  SCSI_PROT_IP_CHECKSUM,
 766
 767		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
 768						  SCSI_PROT_REF_INCREMENT,
 769
 770		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
 771						  SCSI_PROT_REF_CHECK |
 772						  SCSI_PROT_REF_INCREMENT |
 773						  SCSI_PROT_IP_CHECKSUM,
 774
 775		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
 776						  SCSI_PROT_GUARD_CHECK |
 777						  SCSI_PROT_REF_CHECK |
 778						  SCSI_PROT_REF_INCREMENT |
 779						  SCSI_PROT_IP_CHECKSUM,
 780	};
 781
 782	return flag_mask[prot_op];
 783}
 784
 785static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
 786					   unsigned int dix, unsigned int dif)
 787{
 788	struct request *rq = scsi_cmd_to_rq(scmd);
 789	struct bio *bio = rq->bio;
 790	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
 791	unsigned int protect = 0;
 792
 793	if (dix) {				/* DIX Type 0, 1, 2, 3 */
 794		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
 795			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
 796
 797		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 798			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
 799	}
 800
 801	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
 802		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
 803
 804		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 805			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
 806	}
 807
 808	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
 809		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
 810
 811		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
 812			protect = 3 << 5;	/* Disable target PI checking */
 813		else
 814			protect = 1 << 5;	/* Enable target PI checking */
 815	}
 816
 817	scsi_set_prot_op(scmd, prot_op);
 818	scsi_set_prot_type(scmd, dif);
 819	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
 820
 821	return protect;
 822}
 823
 824static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
 825{
 826	struct request_queue *q = sdkp->disk->queue;
 827	unsigned int logical_block_size = sdkp->device->sector_size;
 828	unsigned int max_blocks = 0;
 829
 830	q->limits.discard_alignment =
 831		sdkp->unmap_alignment * logical_block_size;
 832	q->limits.discard_granularity =
 833		max(sdkp->physical_block_size,
 834		    sdkp->unmap_granularity * logical_block_size);
 835	sdkp->provisioning_mode = mode;
 836
 837	switch (mode) {
 838
 839	case SD_LBP_FULL:
 840	case SD_LBP_DISABLE:
 841		blk_queue_max_discard_sectors(q, 0);
 842		return;
 843
 844	case SD_LBP_UNMAP:
 845		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
 846					  (u32)SD_MAX_WS16_BLOCKS);
 847		break;
 848
 849	case SD_LBP_WS16:
 850		if (sdkp->device->unmap_limit_for_ws)
 851			max_blocks = sdkp->max_unmap_blocks;
 852		else
 853			max_blocks = sdkp->max_ws_blocks;
 854
 855		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
 856		break;
 857
 858	case SD_LBP_WS10:
 859		if (sdkp->device->unmap_limit_for_ws)
 860			max_blocks = sdkp->max_unmap_blocks;
 861		else
 862			max_blocks = sdkp->max_ws_blocks;
 863
 864		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
 865		break;
 866
 867	case SD_LBP_ZERO:
 868		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 869					  (u32)SD_MAX_WS10_BLOCKS);
 870		break;
 871	}
 872
 873	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
 874}
 875
 876static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
 877{
 878	struct page *page;
 879
 880	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 881	if (!page)
 882		return NULL;
 883	clear_highpage(page);
 884	bvec_set_page(&rq->special_vec, page, data_len, 0);
 885	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 886	return bvec_virt(&rq->special_vec);
 887}
 888
 889static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
 890{
 891	struct scsi_device *sdp = cmd->device;
 892	struct request *rq = scsi_cmd_to_rq(cmd);
 893	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 894	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 895	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 896	unsigned int data_len = 24;
 897	char *buf;
 898
 899	buf = sd_set_special_bvec(rq, data_len);
 900	if (!buf)
 901		return BLK_STS_RESOURCE;
 
 
 
 
 902
 903	cmd->cmd_len = 10;
 904	cmd->cmnd[0] = UNMAP;
 905	cmd->cmnd[8] = 24;
 906
 
 907	put_unaligned_be16(6 + 16, &buf[0]);
 908	put_unaligned_be16(16, &buf[2]);
 909	put_unaligned_be64(lba, &buf[8]);
 910	put_unaligned_be32(nr_blocks, &buf[16]);
 911
 912	cmd->allowed = sdkp->max_retries;
 913	cmd->transfersize = data_len;
 914	rq->timeout = SD_TIMEOUT;
 915
 916	return scsi_alloc_sgtables(cmd);
 917}
 918
 919static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
 920		bool unmap)
 921{
 922	struct scsi_device *sdp = cmd->device;
 923	struct request *rq = scsi_cmd_to_rq(cmd);
 924	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 925	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 926	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 927	u32 data_len = sdp->sector_size;
 928
 929	if (!sd_set_special_bvec(rq, data_len))
 
 930		return BLK_STS_RESOURCE;
 
 
 
 
 931
 932	cmd->cmd_len = 16;
 933	cmd->cmnd[0] = WRITE_SAME_16;
 934	if (unmap)
 935		cmd->cmnd[1] = 0x8; /* UNMAP */
 936	put_unaligned_be64(lba, &cmd->cmnd[2]);
 937	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
 938
 939	cmd->allowed = sdkp->max_retries;
 940	cmd->transfersize = data_len;
 941	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 942
 943	return scsi_alloc_sgtables(cmd);
 944}
 945
 946static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
 947		bool unmap)
 948{
 949	struct scsi_device *sdp = cmd->device;
 950	struct request *rq = scsi_cmd_to_rq(cmd);
 951	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 952	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 953	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 954	u32 data_len = sdp->sector_size;
 955
 956	if (!sd_set_special_bvec(rq, data_len))
 
 957		return BLK_STS_RESOURCE;
 
 
 
 
 958
 959	cmd->cmd_len = 10;
 960	cmd->cmnd[0] = WRITE_SAME;
 961	if (unmap)
 962		cmd->cmnd[1] = 0x8; /* UNMAP */
 963	put_unaligned_be32(lba, &cmd->cmnd[2]);
 964	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
 965
 966	cmd->allowed = sdkp->max_retries;
 967	cmd->transfersize = data_len;
 968	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 969
 970	return scsi_alloc_sgtables(cmd);
 971}
 972
 973static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
 974{
 975	struct request *rq = scsi_cmd_to_rq(cmd);
 976	struct scsi_device *sdp = cmd->device;
 977	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 978	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 979	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 980
 981	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
 982		switch (sdkp->zeroing_mode) {
 983		case SD_ZERO_WS16_UNMAP:
 984			return sd_setup_write_same16_cmnd(cmd, true);
 985		case SD_ZERO_WS10_UNMAP:
 986			return sd_setup_write_same10_cmnd(cmd, true);
 987		}
 988	}
 989
 990	if (sdp->no_write_same) {
 991		rq->rq_flags |= RQF_QUIET;
 992		return BLK_STS_TARGET;
 993	}
 994
 995	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
 996		return sd_setup_write_same16_cmnd(cmd, false);
 997
 998	return sd_setup_write_same10_cmnd(cmd, false);
 999}
1000
1001static void sd_config_write_same(struct scsi_disk *sdkp)
1002{
1003	struct request_queue *q = sdkp->disk->queue;
1004	unsigned int logical_block_size = sdkp->device->sector_size;
1005
1006	if (sdkp->device->no_write_same) {
1007		sdkp->max_ws_blocks = 0;
1008		goto out;
1009	}
1010
1011	/* Some devices can not handle block counts above 0xffff despite
1012	 * supporting WRITE SAME(16). Consequently we default to 64k
1013	 * blocks per I/O unless the device explicitly advertises a
1014	 * bigger limit.
1015	 */
1016	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1017		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1018						   (u32)SD_MAX_WS16_BLOCKS);
1019	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1020		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1021						   (u32)SD_MAX_WS10_BLOCKS);
1022	else {
1023		sdkp->device->no_write_same = 1;
1024		sdkp->max_ws_blocks = 0;
1025	}
1026
1027	if (sdkp->lbprz && sdkp->lbpws)
1028		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1029	else if (sdkp->lbprz && sdkp->lbpws10)
1030		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1031	else if (sdkp->max_ws_blocks)
1032		sdkp->zeroing_mode = SD_ZERO_WS;
1033	else
1034		sdkp->zeroing_mode = SD_ZERO_WRITE;
1035
1036	if (sdkp->max_ws_blocks &&
1037	    sdkp->physical_block_size > logical_block_size) {
1038		/*
1039		 * Reporting a maximum number of blocks that is not aligned
1040		 * on the device physical size would cause a large write same
1041		 * request to be split into physically unaligned chunks by
1042		 * __blkdev_issue_write_zeroes() even if the caller of this
1043		 * functions took care to align the large request. So make sure
1044		 * the maximum reported is aligned to the device physical block
1045		 * size. This is only an optional optimization for regular
1046		 * disks, but this is mandatory to avoid failure of large write
1047		 * same requests directed at sequential write required zones of
1048		 * host-managed ZBC disks.
1049		 */
1050		sdkp->max_ws_blocks =
1051			round_down(sdkp->max_ws_blocks,
1052				   bytes_to_logical(sdkp->device,
1053						    sdkp->physical_block_size));
1054	}
1055
1056out:
1057	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1058					 (logical_block_size >> 9));
1059}
1060
1061static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1062{
1063	struct request *rq = scsi_cmd_to_rq(cmd);
1064	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1065
1066	/* flush requests don't perform I/O, zero the S/G table */
1067	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1068
1069	if (cmd->device->use_16_for_sync) {
1070		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1071		cmd->cmd_len = 16;
1072	} else {
1073		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1074		cmd->cmd_len = 10;
1075	}
1076	cmd->transfersize = 0;
1077	cmd->allowed = sdkp->max_retries;
1078
1079	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1080	return BLK_STS_OK;
1081}
1082
1083static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1084				       sector_t lba, unsigned int nr_blocks,
1085				       unsigned char flags, unsigned int dld)
1086{
1087	cmd->cmd_len = SD_EXT_CDB_SIZE;
1088	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1089	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1090	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1091	cmd->cmnd[10] = flags;
1092	cmd->cmnd[11] = dld & 0x07;
1093	put_unaligned_be64(lba, &cmd->cmnd[12]);
1094	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1095	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1096
1097	return BLK_STS_OK;
1098}
1099
1100static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1101				       sector_t lba, unsigned int nr_blocks,
1102				       unsigned char flags, unsigned int dld)
1103{
1104	cmd->cmd_len  = 16;
1105	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1106	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1107	cmd->cmnd[14] = (dld & 0x03) << 6;
1108	cmd->cmnd[15] = 0;
1109	put_unaligned_be64(lba, &cmd->cmnd[2]);
1110	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1111
1112	return BLK_STS_OK;
1113}
1114
1115static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1116				       sector_t lba, unsigned int nr_blocks,
1117				       unsigned char flags)
1118{
1119	cmd->cmd_len = 10;
1120	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1121	cmd->cmnd[1] = flags;
1122	cmd->cmnd[6] = 0;
1123	cmd->cmnd[9] = 0;
1124	put_unaligned_be32(lba, &cmd->cmnd[2]);
1125	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1126
1127	return BLK_STS_OK;
1128}
1129
1130static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1131				      sector_t lba, unsigned int nr_blocks,
1132				      unsigned char flags)
1133{
1134	/* Avoid that 0 blocks gets translated into 256 blocks. */
1135	if (WARN_ON_ONCE(nr_blocks == 0))
1136		return BLK_STS_IOERR;
1137
1138	if (unlikely(flags & 0x8)) {
1139		/*
1140		 * This happens only if this drive failed 10byte rw
1141		 * command with ILLEGAL_REQUEST during operation and
1142		 * thus turned off use_10_for_rw.
1143		 */
1144		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1145		return BLK_STS_IOERR;
1146	}
1147
1148	cmd->cmd_len = 6;
1149	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1150	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1151	cmd->cmnd[2] = (lba >> 8) & 0xff;
1152	cmd->cmnd[3] = lba & 0xff;
1153	cmd->cmnd[4] = nr_blocks;
1154	cmd->cmnd[5] = 0;
1155
1156	return BLK_STS_OK;
1157}
1158
1159/*
1160 * Check if a command has a duration limit set. If it does, and the target
1161 * device supports CDL and the feature is enabled, return the limit
1162 * descriptor index to use. Return 0 (no limit) otherwise.
1163 */
1164static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1165{
1166	struct scsi_device *sdp = sdkp->device;
1167	int hint;
1168
1169	if (!sdp->cdl_supported || !sdp->cdl_enable)
1170		return 0;
1171
1172	/*
1173	 * Use "no limit" if the request ioprio does not specify a duration
1174	 * limit hint.
1175	 */
1176	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1177	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1178	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1179		return 0;
1180
1181	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1182}
1183
1184static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1185{
1186	struct request *rq = scsi_cmd_to_rq(cmd);
1187	struct scsi_device *sdp = cmd->device;
1188	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1189	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1190	sector_t threshold;
1191	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1192	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1193	bool write = rq_data_dir(rq) == WRITE;
1194	unsigned char protect, fua;
1195	unsigned int dld;
1196	blk_status_t ret;
1197	unsigned int dif;
1198	bool dix;
1199
1200	ret = scsi_alloc_sgtables(cmd);
1201	if (ret != BLK_STS_OK)
1202		return ret;
1203
1204	ret = BLK_STS_IOERR;
1205	if (!scsi_device_online(sdp) || sdp->changed) {
1206		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1207		goto fail;
1208	}
1209
1210	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1211		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1212		goto fail;
1213	}
1214
1215	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1216		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1217		goto fail;
1218	}
1219
1220	/*
1221	 * Some SD card readers can't handle accesses which touch the
1222	 * last one or two logical blocks. Split accesses as needed.
1223	 */
1224	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1225
1226	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1227		if (lba < threshold) {
1228			/* Access up to the threshold but not beyond */
1229			nr_blocks = threshold - lba;
1230		} else {
1231			/* Access only a single logical block */
1232			nr_blocks = 1;
1233		}
1234	}
1235
1236	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1237		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1238		if (ret)
1239			goto fail;
1240	}
1241
1242	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1243	dix = scsi_prot_sg_count(cmd);
1244	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1245	dld = sd_cdl_dld(sdkp, cmd);
1246
1247	if (dif || dix)
1248		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1249	else
1250		protect = 0;
1251
1252	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1253		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1254					 protect | fua, dld);
1255	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1256		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1257					 protect | fua, dld);
1258	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1259		   sdp->use_10_for_rw || protect) {
1260		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1261					 protect | fua);
1262	} else {
1263		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1264					protect | fua);
1265	}
1266
1267	if (unlikely(ret != BLK_STS_OK))
1268		goto fail;
1269
1270	/*
1271	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1272	 * host adapter, it's safe to assume that we can at least transfer
1273	 * this many bytes between each connect / disconnect.
1274	 */
1275	cmd->transfersize = sdp->sector_size;
1276	cmd->underflow = nr_blocks << 9;
1277	cmd->allowed = sdkp->max_retries;
1278	cmd->sdb.length = nr_blocks * sdp->sector_size;
1279
1280	SCSI_LOG_HLQUEUE(1,
1281			 scmd_printk(KERN_INFO, cmd,
1282				     "%s: block=%llu, count=%d\n", __func__,
1283				     (unsigned long long)blk_rq_pos(rq),
1284				     blk_rq_sectors(rq)));
1285	SCSI_LOG_HLQUEUE(2,
1286			 scmd_printk(KERN_INFO, cmd,
1287				     "%s %d/%u 512 byte blocks.\n",
1288				     write ? "writing" : "reading", nr_blocks,
1289				     blk_rq_sectors(rq)));
1290
1291	/*
1292	 * This indicates that the command is ready from our end to be queued.
1293	 */
1294	return BLK_STS_OK;
1295fail:
1296	scsi_free_sgtables(cmd);
1297	return ret;
1298}
1299
1300static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1301{
1302	struct request *rq = scsi_cmd_to_rq(cmd);
1303
1304	switch (req_op(rq)) {
1305	case REQ_OP_DISCARD:
1306		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1307		case SD_LBP_UNMAP:
1308			return sd_setup_unmap_cmnd(cmd);
1309		case SD_LBP_WS16:
1310			return sd_setup_write_same16_cmnd(cmd, true);
1311		case SD_LBP_WS10:
1312			return sd_setup_write_same10_cmnd(cmd, true);
1313		case SD_LBP_ZERO:
1314			return sd_setup_write_same10_cmnd(cmd, false);
1315		default:
1316			return BLK_STS_TARGET;
1317		}
1318	case REQ_OP_WRITE_ZEROES:
1319		return sd_setup_write_zeroes_cmnd(cmd);
1320	case REQ_OP_FLUSH:
1321		return sd_setup_flush_cmnd(cmd);
1322	case REQ_OP_READ:
1323	case REQ_OP_WRITE:
1324	case REQ_OP_ZONE_APPEND:
1325		return sd_setup_read_write_cmnd(cmd);
1326	case REQ_OP_ZONE_RESET:
1327		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1328						   false);
1329	case REQ_OP_ZONE_RESET_ALL:
1330		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1331						   true);
1332	case REQ_OP_ZONE_OPEN:
1333		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1334	case REQ_OP_ZONE_CLOSE:
1335		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1336	case REQ_OP_ZONE_FINISH:
1337		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1338	default:
1339		WARN_ON_ONCE(1);
1340		return BLK_STS_NOTSUPP;
1341	}
1342}
1343
1344static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1345{
1346	struct request *rq = scsi_cmd_to_rq(SCpnt);
1347
1348	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1349		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1350}
1351
1352static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
 
1353{
1354	if (sdkp->device->removable || sdkp->write_prot) {
1355		if (disk_check_media_change(disk))
1356			return true;
1357	}
1358
1359	/*
1360	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1361	 * nothing to do with partitions, BLKRRPART is used to force a full
1362	 * revalidate after things like a format for historical reasons.
1363	 */
1364	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1365}
1366
1367/**
1368 *	sd_open - open a scsi disk device
1369 *	@disk: disk to open
1370 *	@mode: open mode
1371 *
1372 *	Returns 0 if successful. Returns a negated errno value in case 
1373 *	of error.
1374 *
1375 *	Note: This can be called from a user context (e.g. fsck(1) )
1376 *	or from within the kernel (e.g. as a result of a mount(1) ).
1377 *	In the latter case @inode and @filp carry an abridged amount
1378 *	of information as noted above.
1379 *
1380 *	Locking: called with disk->open_mutex held.
1381 **/
1382static int sd_open(struct gendisk *disk, blk_mode_t mode)
1383{
1384	struct scsi_disk *sdkp = scsi_disk(disk);
1385	struct scsi_device *sdev = sdkp->device;
1386	int retval;
1387
1388	if (scsi_device_get(sdev))
1389		return -ENXIO;
1390
1391	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1392
1393	/*
1394	 * If the device is in error recovery, wait until it is done.
1395	 * If the device is offline, then disallow any access to it.
1396	 */
1397	retval = -ENXIO;
1398	if (!scsi_block_when_processing_errors(sdev))
1399		goto error_out;
1400
1401	if (sd_need_revalidate(disk, sdkp))
1402		sd_revalidate_disk(disk);
1403
1404	/*
1405	 * If the drive is empty, just let the open fail.
1406	 */
1407	retval = -ENOMEDIUM;
1408	if (sdev->removable && !sdkp->media_present &&
1409	    !(mode & BLK_OPEN_NDELAY))
1410		goto error_out;
1411
1412	/*
1413	 * If the device has the write protect tab set, have the open fail
1414	 * if the user expects to be able to write to the thing.
1415	 */
1416	retval = -EROFS;
1417	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1418		goto error_out;
1419
1420	/*
1421	 * It is possible that the disk changing stuff resulted in
1422	 * the device being taken offline.  If this is the case,
1423	 * report this to the user, and don't pretend that the
1424	 * open actually succeeded.
1425	 */
1426	retval = -ENXIO;
1427	if (!scsi_device_online(sdev))
1428		goto error_out;
1429
1430	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1431		if (scsi_block_when_processing_errors(sdev))
1432			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1433	}
1434
1435	return 0;
1436
1437error_out:
1438	scsi_device_put(sdev);
1439	return retval;	
1440}
1441
1442/**
1443 *	sd_release - invoked when the (last) close(2) is called on this
1444 *	scsi disk.
1445 *	@disk: disk to release
 
1446 *
1447 *	Returns 0. 
1448 *
1449 *	Note: may block (uninterruptible) if error recovery is underway
1450 *	on this disk.
1451 *
1452 *	Locking: called with disk->open_mutex held.
1453 **/
1454static void sd_release(struct gendisk *disk)
1455{
1456	struct scsi_disk *sdkp = scsi_disk(disk);
1457	struct scsi_device *sdev = sdkp->device;
1458
1459	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1460
1461	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1462		if (scsi_block_when_processing_errors(sdev))
1463			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1464	}
1465
1466	scsi_device_put(sdev);
1467}
1468
1469static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1470{
1471	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1472	struct scsi_device *sdp = sdkp->device;
1473	struct Scsi_Host *host = sdp->host;
1474	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1475	int diskinfo[4];
1476
1477	/* default to most commonly used values */
1478	diskinfo[0] = 0x40;	/* 1 << 6 */
1479	diskinfo[1] = 0x20;	/* 1 << 5 */
1480	diskinfo[2] = capacity >> 11;
1481
1482	/* override with calculated, extended default, or driver values */
1483	if (host->hostt->bios_param)
1484		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1485	else
1486		scsicam_bios_param(bdev, capacity, diskinfo);
1487
1488	geo->heads = diskinfo[0];
1489	geo->sectors = diskinfo[1];
1490	geo->cylinders = diskinfo[2];
1491	return 0;
1492}
1493
1494/**
1495 *	sd_ioctl - process an ioctl
1496 *	@bdev: target block device
1497 *	@mode: open mode
1498 *	@cmd: ioctl command number
1499 *	@arg: this is third argument given to ioctl(2) system call.
1500 *	Often contains a pointer.
1501 *
1502 *	Returns 0 if successful (some ioctls return positive numbers on
1503 *	success as well). Returns a negated errno value in case of error.
1504 *
1505 *	Note: most ioctls are forward onto the block subsystem or further
1506 *	down in the scsi subsystem.
1507 **/
1508static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1509		    unsigned int cmd, unsigned long arg)
1510{
1511	struct gendisk *disk = bdev->bd_disk;
1512	struct scsi_disk *sdkp = scsi_disk(disk);
1513	struct scsi_device *sdp = sdkp->device;
1514	void __user *p = (void __user *)arg;
1515	int error;
1516    
1517	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1518				    "cmd=0x%x\n", disk->disk_name, cmd));
1519
1520	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1521		return -ENOIOCTLCMD;
1522
1523	/*
1524	 * If we are in the middle of error recovery, don't let anyone
1525	 * else try and use this device.  Also, if error recovery fails, it
1526	 * may try and take the device offline, in which case all further
1527	 * access to the device is prohibited.
1528	 */
1529	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1530			(mode & BLK_OPEN_NDELAY));
1531	if (error)
1532		return error;
1533
1534	if (is_sed_ioctl(cmd))
1535		return sed_ioctl(sdkp->opal_dev, cmd, p);
1536	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1537}
1538
1539static void set_media_not_present(struct scsi_disk *sdkp)
1540{
1541	if (sdkp->media_present)
1542		sdkp->device->changed = 1;
1543
1544	if (sdkp->device->removable) {
1545		sdkp->media_present = 0;
1546		sdkp->capacity = 0;
1547	}
1548}
1549
1550static int media_not_present(struct scsi_disk *sdkp,
1551			     struct scsi_sense_hdr *sshdr)
1552{
1553	if (!scsi_sense_valid(sshdr))
1554		return 0;
1555
1556	/* not invoked for commands that could return deferred errors */
1557	switch (sshdr->sense_key) {
1558	case UNIT_ATTENTION:
1559	case NOT_READY:
1560		/* medium not present */
1561		if (sshdr->asc == 0x3A) {
1562			set_media_not_present(sdkp);
1563			return 1;
1564		}
1565	}
1566	return 0;
1567}
1568
1569/**
1570 *	sd_check_events - check media events
1571 *	@disk: kernel device descriptor
1572 *	@clearing: disk events currently being cleared
1573 *
1574 *	Returns mask of DISK_EVENT_*.
1575 *
1576 *	Note: this function is invoked from the block subsystem.
1577 **/
1578static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1579{
1580	struct scsi_disk *sdkp = disk->private_data;
1581	struct scsi_device *sdp;
1582	int retval;
1583	bool disk_changed;
1584
1585	if (!sdkp)
1586		return 0;
1587
1588	sdp = sdkp->device;
1589	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1590
1591	/*
1592	 * If the device is offline, don't send any commands - just pretend as
1593	 * if the command failed.  If the device ever comes back online, we
1594	 * can deal with it then.  It is only because of unrecoverable errors
1595	 * that we would ever take a device offline in the first place.
1596	 */
1597	if (!scsi_device_online(sdp)) {
1598		set_media_not_present(sdkp);
1599		goto out;
1600	}
1601
1602	/*
1603	 * Using TEST_UNIT_READY enables differentiation between drive with
1604	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1605	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1606	 *
1607	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1608	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1609	 * sd_revalidate() is called.
1610	 */
1611	if (scsi_block_when_processing_errors(sdp)) {
1612		struct scsi_sense_hdr sshdr = { 0, };
1613
1614		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1615					      &sshdr);
1616
1617		/* failed to execute TUR, assume media not present */
1618		if (retval < 0 || host_byte(retval)) {
1619			set_media_not_present(sdkp);
1620			goto out;
1621		}
1622
1623		if (media_not_present(sdkp, &sshdr))
1624			goto out;
1625	}
1626
1627	/*
1628	 * For removable scsi disk we have to recognise the presence
1629	 * of a disk in the drive.
1630	 */
1631	if (!sdkp->media_present)
1632		sdp->changed = 1;
1633	sdkp->media_present = 1;
1634out:
1635	/*
1636	 * sdp->changed is set under the following conditions:
1637	 *
1638	 *	Medium present state has changed in either direction.
1639	 *	Device has indicated UNIT_ATTENTION.
1640	 */
1641	disk_changed = sdp->changed;
1642	sdp->changed = 0;
1643	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1644}
1645
1646static int sd_sync_cache(struct scsi_disk *sdkp)
1647{
1648	int retries, res;
1649	struct scsi_device *sdp = sdkp->device;
1650	const int timeout = sdp->request_queue->rq_timeout
1651		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1652	struct scsi_sense_hdr sshdr;
1653	const struct scsi_exec_args exec_args = {
1654		.req_flags = BLK_MQ_REQ_PM,
1655		.sshdr = &sshdr,
1656	};
1657
1658	if (!scsi_device_online(sdp))
1659		return -ENODEV;
1660
 
 
 
 
1661	for (retries = 3; retries > 0; --retries) {
1662		unsigned char cmd[16] = { 0 };
1663
1664		if (sdp->use_16_for_sync)
1665			cmd[0] = SYNCHRONIZE_CACHE_16;
1666		else
1667			cmd[0] = SYNCHRONIZE_CACHE;
1668		/*
1669		 * Leave the rest of the command zero to indicate
1670		 * flush everything.
1671		 */
1672		res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1673				       timeout, sdkp->max_retries, &exec_args);
1674		if (res == 0)
1675			break;
1676	}
1677
1678	if (res) {
1679		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1680
1681		if (res < 0)
1682			return res;
1683
1684		if (scsi_status_is_check_condition(res) &&
1685		    scsi_sense_valid(&sshdr)) {
1686			sd_print_sense_hdr(sdkp, &sshdr);
1687
1688			/* we need to evaluate the error return  */
1689			if (sshdr.asc == 0x3a ||	/* medium not present */
1690			    sshdr.asc == 0x20 ||	/* invalid command */
1691			    (sshdr.asc == 0x74 && sshdr.ascq == 0x71))	/* drive is password locked */
1692				/* this is no error here */
1693				return 0;
1694			/*
1695			 * This drive doesn't support sync and there's not much
1696			 * we can do because this is called during shutdown
1697			 * or suspend so just return success so those operations
1698			 * can proceed.
1699			 */
1700			if (sshdr.sense_key == ILLEGAL_REQUEST)
1701				return 0;
1702		}
1703
1704		switch (host_byte(res)) {
1705		/* ignore errors due to racing a disconnection */
1706		case DID_BAD_TARGET:
1707		case DID_NO_CONNECT:
1708			return 0;
1709		/* signal the upper layer it might try again */
1710		case DID_BUS_BUSY:
1711		case DID_IMM_RETRY:
1712		case DID_REQUEUE:
1713		case DID_SOFT_ERROR:
1714			return -EBUSY;
1715		default:
1716			return -EIO;
1717		}
1718	}
1719	return 0;
1720}
1721
1722static void sd_rescan(struct device *dev)
1723{
1724	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1725
1726	sd_revalidate_disk(sdkp->disk);
1727}
1728
1729static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1730		enum blk_unique_id type)
1731{
1732	struct scsi_device *sdev = scsi_disk(disk)->device;
1733	const struct scsi_vpd *vpd;
1734	const unsigned char *d;
1735	int ret = -ENXIO, len;
1736
1737	rcu_read_lock();
1738	vpd = rcu_dereference(sdev->vpd_pg83);
1739	if (!vpd)
1740		goto out_unlock;
1741
1742	ret = -EINVAL;
1743	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1744		/* we only care about designators with LU association */
1745		if (((d[1] >> 4) & 0x3) != 0x00)
1746			continue;
1747		if ((d[1] & 0xf) != type)
1748			continue;
1749
1750		/*
1751		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1752		 * keep looking as one with more entropy might still show up.
1753		 */
1754		len = d[3];
1755		if (len != 8 && len != 12 && len != 16)
1756			continue;
1757		ret = len;
1758		memcpy(id, d + 4, len);
1759		if (len == 16)
1760			break;
1761	}
1762out_unlock:
1763	rcu_read_unlock();
1764	return ret;
1765}
1766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1767static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1768{
1769	switch (host_byte(result)) {
1770	case DID_TRANSPORT_MARGINAL:
1771	case DID_TRANSPORT_DISRUPTED:
1772	case DID_BUS_BUSY:
1773		return PR_STS_RETRY_PATH_FAILURE;
1774	case DID_NO_CONNECT:
1775		return PR_STS_PATH_FAILED;
1776	case DID_TRANSPORT_FAILFAST:
1777		return PR_STS_PATH_FAST_FAILED;
1778	}
1779
1780	switch (status_byte(result)) {
1781	case SAM_STAT_RESERVATION_CONFLICT:
1782		return PR_STS_RESERVATION_CONFLICT;
1783	case SAM_STAT_CHECK_CONDITION:
1784		if (!scsi_sense_valid(sshdr))
1785			return PR_STS_IOERR;
1786
1787		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1788		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1789			return -EINVAL;
1790
1791		fallthrough;
1792	default:
1793		return PR_STS_IOERR;
1794	}
1795}
1796
1797static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1798			    unsigned char *data, int data_len)
1799{
1800	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1801	struct scsi_device *sdev = sdkp->device;
1802	struct scsi_sense_hdr sshdr;
1803	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1804	const struct scsi_exec_args exec_args = {
1805		.sshdr = &sshdr,
1806	};
1807	int result;
1808
1809	put_unaligned_be16(data_len, &cmd[7]);
1810
1811	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1812				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1813	if (scsi_status_is_check_condition(result) &&
1814	    scsi_sense_valid(&sshdr)) {
1815		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1816		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1817	}
1818
1819	if (result <= 0)
1820		return result;
1821
1822	return sd_scsi_to_pr_err(&sshdr, result);
1823}
1824
1825static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1826{
1827	int result, i, data_offset, num_copy_keys;
1828	u32 num_keys = keys_info->num_keys;
1829	int data_len = num_keys * 8 + 8;
1830	u8 *data;
1831
1832	data = kzalloc(data_len, GFP_KERNEL);
1833	if (!data)
1834		return -ENOMEM;
1835
1836	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1837	if (result)
1838		goto free_data;
1839
1840	keys_info->generation = get_unaligned_be32(&data[0]);
1841	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1842
1843	data_offset = 8;
1844	num_copy_keys = min(num_keys, keys_info->num_keys);
1845
1846	for (i = 0; i < num_copy_keys; i++) {
1847		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1848		data_offset += 8;
1849	}
1850
1851free_data:
1852	kfree(data);
1853	return result;
1854}
1855
1856static int sd_pr_read_reservation(struct block_device *bdev,
1857				  struct pr_held_reservation *rsv)
1858{
1859	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1860	struct scsi_device *sdev = sdkp->device;
1861	u8 data[24] = { };
1862	int result, len;
1863
1864	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1865	if (result)
1866		return result;
1867
1868	len = get_unaligned_be32(&data[4]);
1869	if (!len)
1870		return 0;
1871
1872	/* Make sure we have at least the key and type */
1873	if (len < 14) {
1874		sdev_printk(KERN_INFO, sdev,
1875			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
1876			    len);
1877		return -EINVAL;
1878	}
1879
1880	rsv->generation = get_unaligned_be32(&data[0]);
1881	rsv->key = get_unaligned_be64(&data[8]);
1882	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1883	return 0;
1884}
1885
1886static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1887			     u64 sa_key, enum scsi_pr_type type, u8 flags)
1888{
1889	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1890	struct scsi_device *sdev = sdkp->device;
1891	struct scsi_sense_hdr sshdr;
1892	const struct scsi_exec_args exec_args = {
1893		.sshdr = &sshdr,
1894	};
1895	int result;
1896	u8 cmd[16] = { 0, };
1897	u8 data[24] = { 0, };
1898
1899	cmd[0] = PERSISTENT_RESERVE_OUT;
1900	cmd[1] = sa;
1901	cmd[2] = type;
1902	put_unaligned_be32(sizeof(data), &cmd[5]);
1903
1904	put_unaligned_be64(key, &data[0]);
1905	put_unaligned_be64(sa_key, &data[8]);
1906	data[20] = flags;
1907
1908	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1909				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1910				  &exec_args);
1911
1912	if (scsi_status_is_check_condition(result) &&
1913	    scsi_sense_valid(&sshdr)) {
1914		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1915		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1916	}
1917
1918	if (result <= 0)
1919		return result;
1920
1921	return sd_scsi_to_pr_err(&sshdr, result);
1922}
1923
1924static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1925		u32 flags)
1926{
1927	if (flags & ~PR_FL_IGNORE_KEY)
1928		return -EOPNOTSUPP;
1929	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1930			old_key, new_key, 0,
1931			(1 << 0) /* APTPL */);
1932}
1933
1934static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1935		u32 flags)
1936{
1937	if (flags)
1938		return -EOPNOTSUPP;
1939	return sd_pr_out_command(bdev, 0x01, key, 0,
1940				 block_pr_type_to_scsi(type), 0);
1941}
1942
1943static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1944{
1945	return sd_pr_out_command(bdev, 0x02, key, 0,
1946				 block_pr_type_to_scsi(type), 0);
1947}
1948
1949static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1950		enum pr_type type, bool abort)
1951{
1952	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1953				 block_pr_type_to_scsi(type), 0);
1954}
1955
1956static int sd_pr_clear(struct block_device *bdev, u64 key)
1957{
1958	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1959}
1960
1961static const struct pr_ops sd_pr_ops = {
1962	.pr_register	= sd_pr_register,
1963	.pr_reserve	= sd_pr_reserve,
1964	.pr_release	= sd_pr_release,
1965	.pr_preempt	= sd_pr_preempt,
1966	.pr_clear	= sd_pr_clear,
1967	.pr_read_keys	= sd_pr_read_keys,
1968	.pr_read_reservation = sd_pr_read_reservation,
1969};
1970
1971static void scsi_disk_free_disk(struct gendisk *disk)
1972{
1973	struct scsi_disk *sdkp = scsi_disk(disk);
1974
1975	put_device(&sdkp->disk_dev);
1976}
1977
1978static const struct block_device_operations sd_fops = {
1979	.owner			= THIS_MODULE,
1980	.open			= sd_open,
1981	.release		= sd_release,
1982	.ioctl			= sd_ioctl,
1983	.getgeo			= sd_getgeo,
1984	.compat_ioctl		= blkdev_compat_ptr_ioctl,
1985	.check_events		= sd_check_events,
1986	.unlock_native_capacity	= sd_unlock_native_capacity,
1987	.report_zones		= sd_zbc_report_zones,
1988	.get_unique_id		= sd_get_unique_id,
1989	.free_disk		= scsi_disk_free_disk,
1990	.pr_ops			= &sd_pr_ops,
1991};
1992
1993/**
1994 *	sd_eh_reset - reset error handling callback
1995 *	@scmd:		sd-issued command that has failed
1996 *
1997 *	This function is called by the SCSI midlayer before starting
1998 *	SCSI EH. When counting medium access failures we have to be
1999 *	careful to register it only only once per device and SCSI EH run;
2000 *	there might be several timed out commands which will cause the
2001 *	'max_medium_access_timeouts' counter to trigger after the first
2002 *	SCSI EH run already and set the device to offline.
2003 *	So this function resets the internal counter before starting SCSI EH.
2004 **/
2005static void sd_eh_reset(struct scsi_cmnd *scmd)
2006{
2007	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2008
2009	/* New SCSI EH run, reset gate variable */
2010	sdkp->ignore_medium_access_errors = false;
2011}
2012
2013/**
2014 *	sd_eh_action - error handling callback
2015 *	@scmd:		sd-issued command that has failed
2016 *	@eh_disp:	The recovery disposition suggested by the midlayer
2017 *
2018 *	This function is called by the SCSI midlayer upon completion of an
2019 *	error test command (currently TEST UNIT READY). The result of sending
2020 *	the eh command is passed in eh_disp.  We're looking for devices that
2021 *	fail medium access commands but are OK with non access commands like
2022 *	test unit ready (so wrongly see the device as having a successful
2023 *	recovery)
2024 **/
2025static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2026{
2027	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2028	struct scsi_device *sdev = scmd->device;
2029
2030	if (!scsi_device_online(sdev) ||
2031	    !scsi_medium_access_command(scmd) ||
2032	    host_byte(scmd->result) != DID_TIME_OUT ||
2033	    eh_disp != SUCCESS)
2034		return eh_disp;
2035
2036	/*
2037	 * The device has timed out executing a medium access command.
2038	 * However, the TEST UNIT READY command sent during error
2039	 * handling completed successfully. Either the device is in the
2040	 * process of recovering or has it suffered an internal failure
2041	 * that prevents access to the storage medium.
2042	 */
2043	if (!sdkp->ignore_medium_access_errors) {
2044		sdkp->medium_access_timed_out++;
2045		sdkp->ignore_medium_access_errors = true;
2046	}
2047
2048	/*
2049	 * If the device keeps failing read/write commands but TEST UNIT
2050	 * READY always completes successfully we assume that medium
2051	 * access is no longer possible and take the device offline.
2052	 */
2053	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2054		scmd_printk(KERN_ERR, scmd,
2055			    "Medium access timeout failure. Offlining disk!\n");
2056		mutex_lock(&sdev->state_mutex);
2057		scsi_device_set_state(sdev, SDEV_OFFLINE);
2058		mutex_unlock(&sdev->state_mutex);
2059
2060		return SUCCESS;
2061	}
2062
2063	return eh_disp;
2064}
2065
2066static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2067{
2068	struct request *req = scsi_cmd_to_rq(scmd);
2069	struct scsi_device *sdev = scmd->device;
2070	unsigned int transferred, good_bytes;
2071	u64 start_lba, end_lba, bad_lba;
2072
2073	/*
2074	 * Some commands have a payload smaller than the device logical
2075	 * block size (e.g. INQUIRY on a 4K disk).
2076	 */
2077	if (scsi_bufflen(scmd) <= sdev->sector_size)
2078		return 0;
2079
2080	/* Check if we have a 'bad_lba' information */
2081	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2082				     SCSI_SENSE_BUFFERSIZE,
2083				     &bad_lba))
2084		return 0;
2085
2086	/*
2087	 * If the bad lba was reported incorrectly, we have no idea where
2088	 * the error is.
2089	 */
2090	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2091	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2092	if (bad_lba < start_lba || bad_lba >= end_lba)
2093		return 0;
2094
2095	/*
2096	 * resid is optional but mostly filled in.  When it's unused,
2097	 * its value is zero, so we assume the whole buffer transferred
2098	 */
2099	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2100
2101	/* This computation should always be done in terms of the
2102	 * resolution of the device's medium.
2103	 */
2104	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2105
2106	return min(good_bytes, transferred);
2107}
2108
2109/**
2110 *	sd_done - bottom half handler: called when the lower level
2111 *	driver has completed (successfully or otherwise) a scsi command.
2112 *	@SCpnt: mid-level's per command structure.
2113 *
2114 *	Note: potentially run from within an ISR. Must not block.
2115 **/
2116static int sd_done(struct scsi_cmnd *SCpnt)
2117{
2118	int result = SCpnt->result;
2119	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2120	unsigned int sector_size = SCpnt->device->sector_size;
2121	unsigned int resid;
2122	struct scsi_sense_hdr sshdr;
2123	struct request *req = scsi_cmd_to_rq(SCpnt);
2124	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2125	int sense_valid = 0;
2126	int sense_deferred = 0;
2127
2128	switch (req_op(req)) {
2129	case REQ_OP_DISCARD:
2130	case REQ_OP_WRITE_ZEROES:
2131	case REQ_OP_ZONE_RESET:
2132	case REQ_OP_ZONE_RESET_ALL:
2133	case REQ_OP_ZONE_OPEN:
2134	case REQ_OP_ZONE_CLOSE:
2135	case REQ_OP_ZONE_FINISH:
2136		if (!result) {
2137			good_bytes = blk_rq_bytes(req);
2138			scsi_set_resid(SCpnt, 0);
2139		} else {
2140			good_bytes = 0;
2141			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2142		}
2143		break;
2144	default:
2145		/*
2146		 * In case of bogus fw or device, we could end up having
2147		 * an unaligned partial completion. Check this here and force
2148		 * alignment.
2149		 */
2150		resid = scsi_get_resid(SCpnt);
2151		if (resid & (sector_size - 1)) {
2152			sd_printk(KERN_INFO, sdkp,
2153				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2154				resid, sector_size);
2155			scsi_print_command(SCpnt);
2156			resid = min(scsi_bufflen(SCpnt),
2157				    round_up(resid, sector_size));
2158			scsi_set_resid(SCpnt, resid);
2159		}
2160	}
2161
2162	if (result) {
2163		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2164		if (sense_valid)
2165			sense_deferred = scsi_sense_is_deferred(&sshdr);
2166	}
2167	sdkp->medium_access_timed_out = 0;
2168
2169	if (!scsi_status_is_check_condition(result) &&
2170	    (!sense_valid || sense_deferred))
2171		goto out;
2172
2173	switch (sshdr.sense_key) {
2174	case HARDWARE_ERROR:
2175	case MEDIUM_ERROR:
2176		good_bytes = sd_completed_bytes(SCpnt);
2177		break;
2178	case RECOVERED_ERROR:
2179		good_bytes = scsi_bufflen(SCpnt);
2180		break;
2181	case NO_SENSE:
2182		/* This indicates a false check condition, so ignore it.  An
2183		 * unknown amount of data was transferred so treat it as an
2184		 * error.
2185		 */
2186		SCpnt->result = 0;
2187		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2188		break;
2189	case ABORTED_COMMAND:
2190		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2191			good_bytes = sd_completed_bytes(SCpnt);
2192		break;
2193	case ILLEGAL_REQUEST:
2194		switch (sshdr.asc) {
2195		case 0x10:	/* DIX: Host detected corruption */
2196			good_bytes = sd_completed_bytes(SCpnt);
2197			break;
2198		case 0x20:	/* INVALID COMMAND OPCODE */
2199		case 0x24:	/* INVALID FIELD IN CDB */
2200			switch (SCpnt->cmnd[0]) {
2201			case UNMAP:
2202				sd_config_discard(sdkp, SD_LBP_DISABLE);
2203				break;
2204			case WRITE_SAME_16:
2205			case WRITE_SAME:
2206				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2207					sd_config_discard(sdkp, SD_LBP_DISABLE);
2208				} else {
2209					sdkp->device->no_write_same = 1;
2210					sd_config_write_same(sdkp);
2211					req->rq_flags |= RQF_QUIET;
2212				}
2213				break;
2214			}
2215		}
2216		break;
2217	default:
2218		break;
2219	}
2220
2221 out:
2222	if (sd_is_zoned(sdkp))
2223		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2224
2225	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2226					   "sd_done: completed %d of %d bytes\n",
2227					   good_bytes, scsi_bufflen(SCpnt)));
2228
2229	return good_bytes;
2230}
2231
2232/*
2233 * spinup disk - called only in sd_revalidate_disk()
2234 */
2235static void
2236sd_spinup_disk(struct scsi_disk *sdkp)
2237{
2238	unsigned char cmd[10];
2239	unsigned long spintime_expire = 0;
2240	int retries, spintime;
2241	unsigned int the_result;
2242	struct scsi_sense_hdr sshdr;
2243	const struct scsi_exec_args exec_args = {
2244		.sshdr = &sshdr,
2245	};
2246	int sense_valid = 0;
2247
2248	spintime = 0;
2249
2250	/* Spin up drives, as required.  Only do this at boot time */
2251	/* Spinup needs to be done for module loads too. */
2252	do {
2253		retries = 0;
2254
2255		do {
2256			bool media_was_present = sdkp->media_present;
2257
2258			cmd[0] = TEST_UNIT_READY;
2259			memset((void *) &cmd[1], 0, 9);
2260
2261			the_result = scsi_execute_cmd(sdkp->device, cmd,
2262						      REQ_OP_DRV_IN, NULL, 0,
2263						      SD_TIMEOUT,
2264						      sdkp->max_retries,
2265						      &exec_args);
2266
2267			if (the_result > 0) {
2268				/*
2269				 * If the drive has indicated to us that it
2270				 * doesn't have any media in it, don't bother
2271				 * with any more polling.
2272				 */
2273				if (media_not_present(sdkp, &sshdr)) {
2274					if (media_was_present)
2275						sd_printk(KERN_NOTICE, sdkp,
2276							  "Media removed, stopped polling\n");
2277					return;
2278				}
2279
2280				sense_valid = scsi_sense_valid(&sshdr);
 
 
 
 
 
 
 
 
2281			}
 
 
 
2282			retries++;
2283		} while (retries < 3 &&
2284			 (!scsi_status_is_good(the_result) ||
2285			  (scsi_status_is_check_condition(the_result) &&
2286			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2287
2288		if (!scsi_status_is_check_condition(the_result)) {
2289			/* no sense, TUR either succeeded or failed
2290			 * with a status error */
2291			if(!spintime && !scsi_status_is_good(the_result)) {
2292				sd_print_result(sdkp, "Test Unit Ready failed",
2293						the_result);
2294			}
2295			break;
2296		}
2297
2298		/*
2299		 * The device does not want the automatic start to be issued.
2300		 */
2301		if (sdkp->device->no_start_on_add)
2302			break;
2303
2304		if (sense_valid && sshdr.sense_key == NOT_READY) {
2305			if (sshdr.asc == 4 && sshdr.ascq == 3)
2306				break;	/* manual intervention required */
2307			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2308				break;	/* standby */
2309			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2310				break;	/* unavailable */
2311			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2312				break;	/* sanitize in progress */
2313			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2314				break;	/* depopulation in progress */
2315			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2316				break;	/* depopulation restoration in progress */
2317			/*
2318			 * Issue command to spin up drive when not ready
2319			 */
2320			if (!spintime) {
2321				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2322				cmd[0] = START_STOP;
2323				cmd[1] = 1;	/* Return immediately */
2324				memset((void *) &cmd[2], 0, 8);
2325				cmd[4] = 1;	/* Start spin cycle */
2326				if (sdkp->device->start_stop_pwr_cond)
2327					cmd[4] |= 1 << 4;
2328				scsi_execute_cmd(sdkp->device, cmd,
2329						 REQ_OP_DRV_IN, NULL, 0,
2330						 SD_TIMEOUT, sdkp->max_retries,
2331						 &exec_args);
2332				spintime_expire = jiffies + 100 * HZ;
2333				spintime = 1;
2334			}
2335			/* Wait 1 second for next try */
2336			msleep(1000);
2337			printk(KERN_CONT ".");
2338
2339		/*
2340		 * Wait for USB flash devices with slow firmware.
2341		 * Yes, this sense key/ASC combination shouldn't
2342		 * occur here.  It's characteristic of these devices.
2343		 */
2344		} else if (sense_valid &&
2345				sshdr.sense_key == UNIT_ATTENTION &&
2346				sshdr.asc == 0x28) {
2347			if (!spintime) {
2348				spintime_expire = jiffies + 5 * HZ;
2349				spintime = 1;
2350			}
2351			/* Wait 1 second for next try */
2352			msleep(1000);
2353		} else {
2354			/* we don't understand the sense code, so it's
2355			 * probably pointless to loop */
2356			if(!spintime) {
2357				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2358				sd_print_sense_hdr(sdkp, &sshdr);
2359			}
2360			break;
2361		}
2362				
2363	} while (spintime && time_before_eq(jiffies, spintime_expire));
2364
2365	if (spintime) {
2366		if (scsi_status_is_good(the_result))
2367			printk(KERN_CONT "ready\n");
2368		else
2369			printk(KERN_CONT "not responding...\n");
2370	}
2371}
2372
2373/*
2374 * Determine whether disk supports Data Integrity Field.
2375 */
2376static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2377{
2378	struct scsi_device *sdp = sdkp->device;
2379	u8 type;
2380
2381	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2382		sdkp->protection_type = 0;
2383		return 0;
2384	}
2385
2386	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2387
2388	if (type > T10_PI_TYPE3_PROTECTION) {
2389		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2390			  " protection type %u. Disabling disk!\n",
2391			  type);
2392		sdkp->protection_type = 0;
2393		return -ENODEV;
2394	}
2395
2396	sdkp->protection_type = type;
2397
2398	return 0;
2399}
2400
2401static void sd_config_protection(struct scsi_disk *sdkp)
2402{
2403	struct scsi_device *sdp = sdkp->device;
2404
 
 
 
2405	sd_dif_config_host(sdkp);
2406
2407	if (!sdkp->protection_type)
2408		return;
2409
2410	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2411		sd_first_printk(KERN_NOTICE, sdkp,
2412				"Disabling DIF Type %u protection\n",
2413				sdkp->protection_type);
2414		sdkp->protection_type = 0;
2415	}
2416
2417	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2418			sdkp->protection_type);
2419}
2420
2421static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2422			struct scsi_sense_hdr *sshdr, int sense_valid,
2423			int the_result)
2424{
2425	if (sense_valid)
2426		sd_print_sense_hdr(sdkp, sshdr);
2427	else
2428		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2429
2430	/*
2431	 * Set dirty bit for removable devices if not ready -
2432	 * sometimes drives will not report this properly.
2433	 */
2434	if (sdp->removable &&
2435	    sense_valid && sshdr->sense_key == NOT_READY)
2436		set_media_not_present(sdkp);
2437
2438	/*
2439	 * We used to set media_present to 0 here to indicate no media
2440	 * in the drive, but some drives fail read capacity even with
2441	 * media present, so we can't do that.
2442	 */
2443	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2444}
2445
2446#define RC16_LEN 32
2447#if RC16_LEN > SD_BUF_SIZE
2448#error RC16_LEN must not be more than SD_BUF_SIZE
2449#endif
2450
2451#define READ_CAPACITY_RETRIES_ON_RESET	10
2452
2453static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2454						unsigned char *buffer)
2455{
2456	unsigned char cmd[16];
2457	struct scsi_sense_hdr sshdr;
2458	const struct scsi_exec_args exec_args = {
2459		.sshdr = &sshdr,
2460	};
2461	int sense_valid = 0;
2462	int the_result;
2463	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2464	unsigned int alignment;
2465	unsigned long long lba;
2466	unsigned sector_size;
2467
2468	if (sdp->no_read_capacity_16)
2469		return -EINVAL;
2470
2471	do {
2472		memset(cmd, 0, 16);
2473		cmd[0] = SERVICE_ACTION_IN_16;
2474		cmd[1] = SAI_READ_CAPACITY_16;
2475		cmd[13] = RC16_LEN;
2476		memset(buffer, 0, RC16_LEN);
2477
2478		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2479					      buffer, RC16_LEN, SD_TIMEOUT,
2480					      sdkp->max_retries, &exec_args);
2481		if (the_result > 0) {
2482			if (media_not_present(sdkp, &sshdr))
2483				return -ENODEV;
2484
 
 
 
 
2485			sense_valid = scsi_sense_valid(&sshdr);
2486			if (sense_valid &&
2487			    sshdr.sense_key == ILLEGAL_REQUEST &&
2488			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2489			    sshdr.ascq == 0x00)
2490				/* Invalid Command Operation Code or
2491				 * Invalid Field in CDB, just retry
2492				 * silently with RC10 */
2493				return -EINVAL;
2494			if (sense_valid &&
2495			    sshdr.sense_key == UNIT_ATTENTION &&
2496			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2497				/* Device reset might occur several times,
2498				 * give it one more chance */
2499				if (--reset_retries > 0)
2500					continue;
2501		}
2502		retries--;
2503
2504	} while (the_result && retries);
2505
2506	if (the_result) {
2507		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2508		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2509		return -EINVAL;
2510	}
2511
2512	sector_size = get_unaligned_be32(&buffer[8]);
2513	lba = get_unaligned_be64(&buffer[0]);
2514
2515	if (sd_read_protection_type(sdkp, buffer) < 0) {
2516		sdkp->capacity = 0;
2517		return -ENODEV;
2518	}
2519
2520	/* Logical blocks per physical block exponent */
2521	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2522
2523	/* RC basis */
2524	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2525
2526	/* Lowest aligned logical block */
2527	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2528	blk_queue_alignment_offset(sdp->request_queue, alignment);
2529	if (alignment && sdkp->first_scan)
2530		sd_printk(KERN_NOTICE, sdkp,
2531			  "physical block alignment offset: %u\n", alignment);
2532
2533	if (buffer[14] & 0x80) { /* LBPME */
2534		sdkp->lbpme = 1;
2535
2536		if (buffer[14] & 0x40) /* LBPRZ */
2537			sdkp->lbprz = 1;
2538
2539		sd_config_discard(sdkp, SD_LBP_WS16);
2540	}
2541
2542	sdkp->capacity = lba + 1;
2543	return sector_size;
2544}
2545
2546static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2547						unsigned char *buffer)
2548{
2549	unsigned char cmd[16];
2550	struct scsi_sense_hdr sshdr;
2551	const struct scsi_exec_args exec_args = {
2552		.sshdr = &sshdr,
2553	};
2554	int sense_valid = 0;
2555	int the_result;
2556	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2557	sector_t lba;
2558	unsigned sector_size;
2559
2560	do {
2561		cmd[0] = READ_CAPACITY;
2562		memset(&cmd[1], 0, 9);
2563		memset(buffer, 0, 8);
2564
2565		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2566					      8, SD_TIMEOUT, sdkp->max_retries,
2567					      &exec_args);
2568
2569		if (media_not_present(sdkp, &sshdr))
2570			return -ENODEV;
2571
2572		if (the_result > 0) {
2573			sense_valid = scsi_sense_valid(&sshdr);
2574			if (sense_valid &&
2575			    sshdr.sense_key == UNIT_ATTENTION &&
2576			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2577				/* Device reset might occur several times,
2578				 * give it one more chance */
2579				if (--reset_retries > 0)
2580					continue;
2581		}
2582		retries--;
2583
2584	} while (the_result && retries);
2585
2586	if (the_result) {
2587		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2588		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2589		return -EINVAL;
2590	}
2591
2592	sector_size = get_unaligned_be32(&buffer[4]);
2593	lba = get_unaligned_be32(&buffer[0]);
2594
2595	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2596		/* Some buggy (usb cardreader) devices return an lba of
2597		   0xffffffff when the want to report a size of 0 (with
2598		   which they really mean no media is present) */
2599		sdkp->capacity = 0;
2600		sdkp->physical_block_size = sector_size;
2601		return sector_size;
2602	}
2603
2604	sdkp->capacity = lba + 1;
2605	sdkp->physical_block_size = sector_size;
2606	return sector_size;
2607}
2608
2609static int sd_try_rc16_first(struct scsi_device *sdp)
2610{
2611	if (sdp->host->max_cmd_len < 16)
2612		return 0;
2613	if (sdp->try_rc_10_first)
2614		return 0;
2615	if (sdp->scsi_level > SCSI_SPC_2)
2616		return 1;
2617	if (scsi_device_protection(sdp))
2618		return 1;
2619	return 0;
2620}
2621
2622/*
2623 * read disk capacity
2624 */
2625static void
2626sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2627{
2628	int sector_size;
2629	struct scsi_device *sdp = sdkp->device;
2630
2631	if (sd_try_rc16_first(sdp)) {
2632		sector_size = read_capacity_16(sdkp, sdp, buffer);
2633		if (sector_size == -EOVERFLOW)
2634			goto got_data;
2635		if (sector_size == -ENODEV)
2636			return;
2637		if (sector_size < 0)
2638			sector_size = read_capacity_10(sdkp, sdp, buffer);
2639		if (sector_size < 0)
2640			return;
2641	} else {
2642		sector_size = read_capacity_10(sdkp, sdp, buffer);
2643		if (sector_size == -EOVERFLOW)
2644			goto got_data;
2645		if (sector_size < 0)
2646			return;
2647		if ((sizeof(sdkp->capacity) > 4) &&
2648		    (sdkp->capacity > 0xffffffffULL)) {
2649			int old_sector_size = sector_size;
2650			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2651					"Trying to use READ CAPACITY(16).\n");
2652			sector_size = read_capacity_16(sdkp, sdp, buffer);
2653			if (sector_size < 0) {
2654				sd_printk(KERN_NOTICE, sdkp,
2655					"Using 0xffffffff as device size\n");
2656				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2657				sector_size = old_sector_size;
2658				goto got_data;
2659			}
2660			/* Remember that READ CAPACITY(16) succeeded */
2661			sdp->try_rc_10_first = 0;
2662		}
2663	}
2664
2665	/* Some devices are known to return the total number of blocks,
2666	 * not the highest block number.  Some devices have versions
2667	 * which do this and others which do not.  Some devices we might
2668	 * suspect of doing this but we don't know for certain.
2669	 *
2670	 * If we know the reported capacity is wrong, decrement it.  If
2671	 * we can only guess, then assume the number of blocks is even
2672	 * (usually true but not always) and err on the side of lowering
2673	 * the capacity.
2674	 */
2675	if (sdp->fix_capacity ||
2676	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2677		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2678				"from its reported value: %llu\n",
2679				(unsigned long long) sdkp->capacity);
2680		--sdkp->capacity;
2681	}
2682
2683got_data:
2684	if (sector_size == 0) {
2685		sector_size = 512;
2686		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2687			  "assuming 512.\n");
2688	}
2689
2690	if (sector_size != 512 &&
2691	    sector_size != 1024 &&
2692	    sector_size != 2048 &&
2693	    sector_size != 4096) {
2694		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2695			  sector_size);
2696		/*
2697		 * The user might want to re-format the drive with
2698		 * a supported sectorsize.  Once this happens, it
2699		 * would be relatively trivial to set the thing up.
2700		 * For this reason, we leave the thing in the table.
2701		 */
2702		sdkp->capacity = 0;
2703		/*
2704		 * set a bogus sector size so the normal read/write
2705		 * logic in the block layer will eventually refuse any
2706		 * request on this device without tripping over power
2707		 * of two sector size assumptions
2708		 */
2709		sector_size = 512;
2710	}
2711	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2712	blk_queue_physical_block_size(sdp->request_queue,
2713				      sdkp->physical_block_size);
2714	sdkp->device->sector_size = sector_size;
2715
2716	if (sdkp->capacity > 0xffffffff)
2717		sdp->use_16_for_rw = 1;
2718
2719}
2720
2721/*
2722 * Print disk capacity
2723 */
2724static void
2725sd_print_capacity(struct scsi_disk *sdkp,
2726		  sector_t old_capacity)
2727{
2728	int sector_size = sdkp->device->sector_size;
2729	char cap_str_2[10], cap_str_10[10];
2730
2731	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2732		return;
2733
2734	string_get_size(sdkp->capacity, sector_size,
2735			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2736	string_get_size(sdkp->capacity, sector_size,
2737			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2738
2739	sd_printk(KERN_NOTICE, sdkp,
2740		  "%llu %d-byte logical blocks: (%s/%s)\n",
2741		  (unsigned long long)sdkp->capacity,
2742		  sector_size, cap_str_10, cap_str_2);
2743
2744	if (sdkp->physical_block_size != sector_size)
2745		sd_printk(KERN_NOTICE, sdkp,
2746			  "%u-byte physical blocks\n",
2747			  sdkp->physical_block_size);
2748}
2749
2750/* called with buffer of length 512 */
2751static inline int
2752sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2753		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2754		 struct scsi_sense_hdr *sshdr)
2755{
2756	/*
2757	 * If we must use MODE SENSE(10), make sure that the buffer length
2758	 * is at least 8 bytes so that the mode sense header fits.
2759	 */
2760	if (sdkp->device->use_10_for_ms && len < 8)
2761		len = 8;
2762
2763	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2764			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
 
2765}
2766
2767/*
2768 * read write protect setting, if possible - called only in sd_revalidate_disk()
2769 * called with buffer of length SD_BUF_SIZE
2770 */
2771static void
2772sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2773{
2774	int res;
2775	struct scsi_device *sdp = sdkp->device;
2776	struct scsi_mode_data data;
2777	int old_wp = sdkp->write_prot;
2778
2779	set_disk_ro(sdkp->disk, 0);
2780	if (sdp->skip_ms_page_3f) {
2781		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2782		return;
2783	}
2784
2785	if (sdp->use_192_bytes_for_3f) {
2786		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2787	} else {
2788		/*
2789		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2790		 * We have to start carefully: some devices hang if we ask
2791		 * for more than is available.
2792		 */
2793		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2794
2795		/*
2796		 * Second attempt: ask for page 0 When only page 0 is
2797		 * implemented, a request for page 3F may return Sense Key
2798		 * 5: Illegal Request, Sense Code 24: Invalid field in
2799		 * CDB.
2800		 */
2801		if (res < 0)
2802			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2803
2804		/*
2805		 * Third attempt: ask 255 bytes, as we did earlier.
2806		 */
2807		if (res < 0)
2808			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2809					       &data, NULL);
2810	}
2811
2812	if (res < 0) {
2813		sd_first_printk(KERN_WARNING, sdkp,
2814			  "Test WP failed, assume Write Enabled\n");
2815	} else {
2816		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2817		set_disk_ro(sdkp->disk, sdkp->write_prot);
2818		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2819			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2820				  sdkp->write_prot ? "on" : "off");
2821			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2822		}
2823	}
2824}
2825
2826/*
2827 * sd_read_cache_type - called only from sd_revalidate_disk()
2828 * called with buffer of length SD_BUF_SIZE
2829 */
2830static void
2831sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2832{
2833	int len = 0, res;
2834	struct scsi_device *sdp = sdkp->device;
2835
2836	int dbd;
2837	int modepage;
2838	int first_len;
2839	struct scsi_mode_data data;
2840	struct scsi_sense_hdr sshdr;
2841	int old_wce = sdkp->WCE;
2842	int old_rcd = sdkp->RCD;
2843	int old_dpofua = sdkp->DPOFUA;
2844
2845
2846	if (sdkp->cache_override)
2847		return;
2848
2849	first_len = 4;
2850	if (sdp->skip_ms_page_8) {
2851		if (sdp->type == TYPE_RBC)
2852			goto defaults;
2853		else {
2854			if (sdp->skip_ms_page_3f)
2855				goto defaults;
2856			modepage = 0x3F;
2857			if (sdp->use_192_bytes_for_3f)
2858				first_len = 192;
2859			dbd = 0;
2860		}
2861	} else if (sdp->type == TYPE_RBC) {
2862		modepage = 6;
2863		dbd = 8;
2864	} else {
2865		modepage = 8;
2866		dbd = 0;
2867	}
2868
2869	/* cautiously ask */
2870	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2871			&data, &sshdr);
2872
2873	if (res < 0)
2874		goto bad_sense;
2875
2876	if (!data.header_length) {
2877		modepage = 6;
2878		first_len = 0;
2879		sd_first_printk(KERN_ERR, sdkp,
2880				"Missing header in MODE_SENSE response\n");
2881	}
2882
2883	/* that went OK, now ask for the proper length */
2884	len = data.length;
2885
2886	/*
2887	 * We're only interested in the first three bytes, actually.
2888	 * But the data cache page is defined for the first 20.
2889	 */
2890	if (len < 3)
2891		goto bad_sense;
2892	else if (len > SD_BUF_SIZE) {
2893		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2894			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2895		len = SD_BUF_SIZE;
2896	}
2897	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2898		len = 192;
2899
2900	/* Get the data */
2901	if (len > first_len)
2902		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2903				&data, &sshdr);
2904
2905	if (!res) {
2906		int offset = data.header_length + data.block_descriptor_length;
2907
2908		while (offset < len) {
2909			u8 page_code = buffer[offset] & 0x3F;
2910			u8 spf       = buffer[offset] & 0x40;
2911
2912			if (page_code == 8 || page_code == 6) {
2913				/* We're interested only in the first 3 bytes.
2914				 */
2915				if (len - offset <= 2) {
2916					sd_first_printk(KERN_ERR, sdkp,
2917						"Incomplete mode parameter "
2918							"data\n");
2919					goto defaults;
2920				} else {
2921					modepage = page_code;
2922					goto Page_found;
2923				}
2924			} else {
2925				/* Go to the next page */
2926				if (spf && len - offset > 3)
2927					offset += 4 + (buffer[offset+2] << 8) +
2928						buffer[offset+3];
2929				else if (!spf && len - offset > 1)
2930					offset += 2 + buffer[offset+1];
2931				else {
2932					sd_first_printk(KERN_ERR, sdkp,
2933							"Incomplete mode "
2934							"parameter data\n");
2935					goto defaults;
2936				}
2937			}
2938		}
2939
2940		sd_first_printk(KERN_WARNING, sdkp,
2941				"No Caching mode page found\n");
2942		goto defaults;
2943
2944	Page_found:
2945		if (modepage == 8) {
2946			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2947			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2948		} else {
2949			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2950			sdkp->RCD = 0;
2951		}
2952
2953		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2954		if (sdp->broken_fua) {
2955			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2956			sdkp->DPOFUA = 0;
2957		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2958			   !sdkp->device->use_16_for_rw) {
2959			sd_first_printk(KERN_NOTICE, sdkp,
2960				  "Uses READ/WRITE(6), disabling FUA\n");
2961			sdkp->DPOFUA = 0;
2962		}
2963
2964		/* No cache flush allowed for write protected devices */
2965		if (sdkp->WCE && sdkp->write_prot)
2966			sdkp->WCE = 0;
2967
2968		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2969		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2970			sd_printk(KERN_NOTICE, sdkp,
2971				  "Write cache: %s, read cache: %s, %s\n",
2972				  sdkp->WCE ? "enabled" : "disabled",
2973				  sdkp->RCD ? "disabled" : "enabled",
2974				  sdkp->DPOFUA ? "supports DPO and FUA"
2975				  : "doesn't support DPO or FUA");
2976
2977		return;
2978	}
2979
2980bad_sense:
2981	if (res == -EIO && scsi_sense_valid(&sshdr) &&
2982	    sshdr.sense_key == ILLEGAL_REQUEST &&
2983	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2984		/* Invalid field in CDB */
2985		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2986	else
2987		sd_first_printk(KERN_ERR, sdkp,
2988				"Asking for cache data failed\n");
2989
2990defaults:
2991	if (sdp->wce_default_on) {
2992		sd_first_printk(KERN_NOTICE, sdkp,
2993				"Assuming drive cache: write back\n");
2994		sdkp->WCE = 1;
2995	} else {
2996		sd_first_printk(KERN_WARNING, sdkp,
2997				"Assuming drive cache: write through\n");
2998		sdkp->WCE = 0;
2999	}
3000	sdkp->RCD = 0;
3001	sdkp->DPOFUA = 0;
3002}
3003
3004/*
3005 * The ATO bit indicates whether the DIF application tag is available
3006 * for use by the operating system.
3007 */
3008static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3009{
3010	int res, offset;
3011	struct scsi_device *sdp = sdkp->device;
3012	struct scsi_mode_data data;
3013	struct scsi_sense_hdr sshdr;
3014
3015	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3016		return;
3017
3018	if (sdkp->protection_type == 0)
3019		return;
3020
3021	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3022			      sdkp->max_retries, &data, &sshdr);
3023
3024	if (res < 0 || !data.header_length ||
3025	    data.length < 6) {
3026		sd_first_printk(KERN_WARNING, sdkp,
3027			  "getting Control mode page failed, assume no ATO\n");
3028
3029		if (res == -EIO && scsi_sense_valid(&sshdr))
3030			sd_print_sense_hdr(sdkp, &sshdr);
3031
3032		return;
3033	}
3034
3035	offset = data.header_length + data.block_descriptor_length;
3036
3037	if ((buffer[offset] & 0x3f) != 0x0a) {
3038		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3039		return;
3040	}
3041
3042	if ((buffer[offset + 5] & 0x80) == 0)
3043		return;
3044
3045	sdkp->ATO = 1;
3046
3047	return;
3048}
3049
3050/**
3051 * sd_read_block_limits - Query disk device for preferred I/O sizes.
3052 * @sdkp: disk to query
3053 */
3054static void sd_read_block_limits(struct scsi_disk *sdkp)
3055{
3056	struct scsi_vpd *vpd;
3057
3058	rcu_read_lock();
3059
3060	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3061	if (!vpd || vpd->len < 16)
3062		goto out;
3063
3064	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3065	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3066	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3067
3068	if (vpd->len >= 64) {
3069		unsigned int lba_count, desc_count;
3070
3071		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3072
3073		if (!sdkp->lbpme)
3074			goto out;
3075
3076		lba_count = get_unaligned_be32(&vpd->data[20]);
3077		desc_count = get_unaligned_be32(&vpd->data[24]);
3078
3079		if (lba_count && desc_count)
3080			sdkp->max_unmap_blocks = lba_count;
3081
3082		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3083
3084		if (vpd->data[32] & 0x80)
3085			sdkp->unmap_alignment =
3086				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3087
3088		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3089
3090			if (sdkp->max_unmap_blocks)
3091				sd_config_discard(sdkp, SD_LBP_UNMAP);
3092			else
3093				sd_config_discard(sdkp, SD_LBP_WS16);
3094
3095		} else {	/* LBP VPD page tells us what to use */
3096			if (sdkp->lbpu && sdkp->max_unmap_blocks)
3097				sd_config_discard(sdkp, SD_LBP_UNMAP);
3098			else if (sdkp->lbpws)
3099				sd_config_discard(sdkp, SD_LBP_WS16);
3100			else if (sdkp->lbpws10)
3101				sd_config_discard(sdkp, SD_LBP_WS10);
3102			else
3103				sd_config_discard(sdkp, SD_LBP_DISABLE);
3104		}
3105	}
3106
3107 out:
3108	rcu_read_unlock();
3109}
3110
3111/**
3112 * sd_read_block_characteristics - Query block dev. characteristics
3113 * @sdkp: disk to query
3114 */
3115static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3116{
3117	struct request_queue *q = sdkp->disk->queue;
3118	struct scsi_vpd *vpd;
3119	u16 rot;
 
3120
3121	rcu_read_lock();
3122	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3123
3124	if (!vpd || vpd->len < 8) {
3125		rcu_read_unlock();
3126	        return;
3127	}
3128
3129	rot = get_unaligned_be16(&vpd->data[4]);
3130	sdkp->zoned = (vpd->data[8] >> 4) & 3;
3131	rcu_read_unlock();
3132
3133	if (rot == 1) {
3134		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3135		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3136	}
3137
3138
3139#ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */
3140	if (sdkp->device->type == TYPE_ZBC) {
3141		/*
3142		 * Host-managed.
3143		 */
3144		disk_set_zoned(sdkp->disk);
3145
3146		/*
3147		 * Per ZBC and ZAC specifications, writes in sequential write
3148		 * required zones of host-managed devices must be aligned to
3149		 * the device physical block size.
3150		 */
3151		blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3152	} else {
3153		/*
3154		 * Host-aware devices are treated as conventional.
3155		 */
3156		WARN_ON_ONCE(blk_queue_is_zoned(q));
 
 
 
 
3157	}
3158#endif /* CONFIG_BLK_DEV_ZONED */
3159
3160	if (!sdkp->first_scan)
3161		return;
3162
3163	if (blk_queue_is_zoned(q))
3164		sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3165	else if (sdkp->zoned == 1)
3166		sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3167	else if (sdkp->zoned == 2)
3168		sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
 
 
 
 
 
3169}
3170
3171/**
3172 * sd_read_block_provisioning - Query provisioning VPD page
3173 * @sdkp: disk to query
3174 */
3175static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3176{
3177	struct scsi_vpd *vpd;
3178
3179	if (sdkp->lbpme == 0)
3180		return;
3181
3182	rcu_read_lock();
3183	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3184
3185	if (!vpd || vpd->len < 8) {
3186		rcu_read_unlock();
3187		return;
3188	}
3189
3190	sdkp->lbpvpd	= 1;
3191	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3192	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3193	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3194	rcu_read_unlock();
3195}
3196
3197static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3198{
3199	struct scsi_device *sdev = sdkp->device;
3200
3201	if (sdev->host->no_write_same) {
3202		sdev->no_write_same = 1;
3203
3204		return;
3205	}
3206
3207	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3208		struct scsi_vpd *vpd;
3209
3210		sdev->no_report_opcodes = 1;
3211
3212		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3213		 * CODES is unsupported and the device has an ATA
3214		 * Information VPD page (SAT).
3215		 */
3216		rcu_read_lock();
3217		vpd = rcu_dereference(sdev->vpd_pg89);
3218		if (vpd)
3219			sdev->no_write_same = 1;
3220		rcu_read_unlock();
3221	}
3222
3223	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3224		sdkp->ws16 = 1;
3225
3226	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3227		sdkp->ws10 = 1;
3228}
3229
3230static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3231{
3232	struct scsi_device *sdev = sdkp->device;
3233
3234	if (!sdev->security_supported)
3235		return;
3236
3237	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3238			SECURITY_PROTOCOL_IN, 0) == 1 &&
3239	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3240			SECURITY_PROTOCOL_OUT, 0) == 1)
3241		sdkp->security = 1;
3242}
3243
3244static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3245{
3246	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3247}
3248
3249/**
3250 * sd_read_cpr - Query concurrent positioning ranges
3251 * @sdkp:	disk to query
3252 */
3253static void sd_read_cpr(struct scsi_disk *sdkp)
3254{
3255	struct blk_independent_access_ranges *iars = NULL;
3256	unsigned char *buffer = NULL;
3257	unsigned int nr_cpr = 0;
3258	int i, vpd_len, buf_len = SD_BUF_SIZE;
3259	u8 *desc;
3260
3261	/*
3262	 * We need to have the capacity set first for the block layer to be
3263	 * able to check the ranges.
3264	 */
3265	if (sdkp->first_scan)
3266		return;
3267
3268	if (!sdkp->capacity)
3269		goto out;
3270
3271	/*
3272	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3273	 * leading to a maximum page size of 64 + 256*32 bytes.
3274	 */
3275	buf_len = 64 + 256*32;
3276	buffer = kmalloc(buf_len, GFP_KERNEL);
3277	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3278		goto out;
3279
3280	/* We must have at least a 64B header and one 32B range descriptor */
3281	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3282	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3283		sd_printk(KERN_ERR, sdkp,
3284			  "Invalid Concurrent Positioning Ranges VPD page\n");
3285		goto out;
3286	}
3287
3288	nr_cpr = (vpd_len - 64) / 32;
3289	if (nr_cpr == 1) {
3290		nr_cpr = 0;
3291		goto out;
3292	}
3293
3294	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3295	if (!iars) {
3296		nr_cpr = 0;
3297		goto out;
3298	}
3299
3300	desc = &buffer[64];
3301	for (i = 0; i < nr_cpr; i++, desc += 32) {
3302		if (desc[0] != i) {
3303			sd_printk(KERN_ERR, sdkp,
3304				"Invalid Concurrent Positioning Range number\n");
3305			nr_cpr = 0;
3306			break;
3307		}
3308
3309		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3310		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3311	}
3312
3313out:
3314	disk_set_independent_access_ranges(sdkp->disk, iars);
3315	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3316		sd_printk(KERN_NOTICE, sdkp,
3317			  "%u concurrent positioning ranges\n", nr_cpr);
3318		sdkp->nr_actuators = nr_cpr;
3319	}
3320
3321	kfree(buffer);
3322}
3323
3324static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3325{
3326	struct scsi_device *sdp = sdkp->device;
3327	unsigned int min_xfer_bytes =
3328		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3329
3330	if (sdkp->min_xfer_blocks == 0)
3331		return false;
3332
3333	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3334		sd_first_printk(KERN_WARNING, sdkp,
3335				"Preferred minimum I/O size %u bytes not a " \
3336				"multiple of physical block size (%u bytes)\n",
3337				min_xfer_bytes, sdkp->physical_block_size);
3338		sdkp->min_xfer_blocks = 0;
3339		return false;
3340	}
3341
3342	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3343			min_xfer_bytes);
3344	return true;
3345}
3346
3347/*
3348 * Determine the device's preferred I/O size for reads and writes
3349 * unless the reported value is unreasonably small, large, not a
3350 * multiple of the physical block size, or simply garbage.
3351 */
3352static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3353				      unsigned int dev_max)
3354{
3355	struct scsi_device *sdp = sdkp->device;
3356	unsigned int opt_xfer_bytes =
3357		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3358	unsigned int min_xfer_bytes =
3359		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3360
3361	if (sdkp->opt_xfer_blocks == 0)
3362		return false;
3363
3364	if (sdkp->opt_xfer_blocks > dev_max) {
3365		sd_first_printk(KERN_WARNING, sdkp,
3366				"Optimal transfer size %u logical blocks " \
3367				"> dev_max (%u logical blocks)\n",
3368				sdkp->opt_xfer_blocks, dev_max);
3369		return false;
3370	}
3371
3372	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3373		sd_first_printk(KERN_WARNING, sdkp,
3374				"Optimal transfer size %u logical blocks " \
3375				"> sd driver limit (%u logical blocks)\n",
3376				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3377		return false;
3378	}
3379
3380	if (opt_xfer_bytes < PAGE_SIZE) {
3381		sd_first_printk(KERN_WARNING, sdkp,
3382				"Optimal transfer size %u bytes < " \
3383				"PAGE_SIZE (%u bytes)\n",
3384				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3385		return false;
3386	}
3387
3388	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3389		sd_first_printk(KERN_WARNING, sdkp,
3390				"Optimal transfer size %u bytes not a " \
3391				"multiple of preferred minimum block " \
3392				"size (%u bytes)\n",
3393				opt_xfer_bytes, min_xfer_bytes);
3394		return false;
3395	}
3396
3397	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3398		sd_first_printk(KERN_WARNING, sdkp,
3399				"Optimal transfer size %u bytes not a " \
3400				"multiple of physical block size (%u bytes)\n",
3401				opt_xfer_bytes, sdkp->physical_block_size);
3402		return false;
3403	}
3404
3405	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3406			opt_xfer_bytes);
3407	return true;
3408}
3409
3410static void sd_read_block_zero(struct scsi_disk *sdkp)
3411{
3412	unsigned int buf_len = sdkp->device->sector_size;
3413	char *buffer, cmd[10] = { };
3414
3415	buffer = kmalloc(buf_len, GFP_KERNEL);
3416	if (!buffer)
3417		return;
3418
3419	cmd[0] = READ_10;
3420	put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3421	put_unaligned_be16(1, &cmd[7]);	/* Transfer 1 logical block */
3422
3423	scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3424			 SD_TIMEOUT, sdkp->max_retries, NULL);
3425	kfree(buffer);
3426}
3427
3428/**
3429 *	sd_revalidate_disk - called the first time a new disk is seen,
3430 *	performs disk spin up, read_capacity, etc.
3431 *	@disk: struct gendisk we care about
3432 **/
3433static int sd_revalidate_disk(struct gendisk *disk)
3434{
3435	struct scsi_disk *sdkp = scsi_disk(disk);
3436	struct scsi_device *sdp = sdkp->device;
3437	struct request_queue *q = sdkp->disk->queue;
3438	sector_t old_capacity = sdkp->capacity;
3439	unsigned char *buffer;
3440	unsigned int dev_max, rw_max;
3441
3442	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3443				      "sd_revalidate_disk\n"));
3444
3445	/*
3446	 * If the device is offline, don't try and read capacity or any
3447	 * of the other niceties.
3448	 */
3449	if (!scsi_device_online(sdp))
3450		goto out;
3451
3452	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3453	if (!buffer) {
3454		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3455			  "allocation failure.\n");
3456		goto out;
3457	}
3458
3459	sd_spinup_disk(sdkp);
3460
3461	/*
3462	 * Without media there is no reason to ask; moreover, some devices
3463	 * react badly if we do.
3464	 */
3465	if (sdkp->media_present) {
3466		sd_read_capacity(sdkp, buffer);
3467		/*
3468		 * Some USB/UAS devices return generic values for mode pages
3469		 * until the media has been accessed. Trigger a READ operation
3470		 * to force the device to populate mode pages.
3471		 */
3472		if (sdp->read_before_ms)
3473			sd_read_block_zero(sdkp);
3474		/*
3475		 * set the default to rotational.  All non-rotational devices
3476		 * support the block characteristics VPD page, which will
3477		 * cause this to be updated correctly and any device which
3478		 * doesn't support it should be treated as rotational.
3479		 */
3480		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3481		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3482
3483		if (scsi_device_supports_vpd(sdp)) {
3484			sd_read_block_provisioning(sdkp);
3485			sd_read_block_limits(sdkp);
3486			sd_read_block_characteristics(sdkp);
3487			sd_zbc_read_zones(sdkp, buffer);
3488			sd_read_cpr(sdkp);
3489		}
3490
3491		sd_print_capacity(sdkp, old_capacity);
3492
3493		sd_read_write_protect_flag(sdkp, buffer);
3494		sd_read_cache_type(sdkp, buffer);
3495		sd_read_app_tag_own(sdkp, buffer);
3496		sd_read_write_same(sdkp, buffer);
3497		sd_read_security(sdkp, buffer);
3498		sd_config_protection(sdkp);
3499	}
3500
3501	/*
3502	 * We now have all cache related info, determine how we deal
3503	 * with flush requests.
3504	 */
3505	sd_set_flush_flag(sdkp);
3506
3507	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3508	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3509
3510	/* Some devices report a maximum block count for READ/WRITE requests. */
3511	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3512	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3513
3514	if (sd_validate_min_xfer_size(sdkp))
3515		blk_queue_io_min(sdkp->disk->queue,
3516				 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3517	else
3518		blk_queue_io_min(sdkp->disk->queue, 0);
3519
3520	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3521		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3522		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3523	} else {
3524		q->limits.io_opt = 0;
3525		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3526				      (sector_t)BLK_DEF_MAX_SECTORS_CAP);
3527	}
3528
3529	/*
3530	 * Limit default to SCSI host optimal sector limit if set. There may be
3531	 * an impact on performance for when the size of a request exceeds this
3532	 * host limit.
3533	 */
3534	rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3535
3536	/* Do not exceed controller limit */
3537	rw_max = min(rw_max, queue_max_hw_sectors(q));
3538
3539	/*
3540	 * Only update max_sectors if previously unset or if the current value
3541	 * exceeds the capabilities of the hardware.
3542	 */
3543	if (sdkp->first_scan ||
3544	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3545	    q->limits.max_sectors > q->limits.max_hw_sectors)
3546		q->limits.max_sectors = rw_max;
3547
3548	sdkp->first_scan = 0;
3549
3550	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3551	sd_config_write_same(sdkp);
3552	kfree(buffer);
3553
3554	/*
3555	 * For a zoned drive, revalidating the zones can be done only once
3556	 * the gendisk capacity is set. So if this fails, set back the gendisk
3557	 * capacity to 0.
3558	 */
3559	if (sd_zbc_revalidate_zones(sdkp))
3560		set_capacity_and_notify(disk, 0);
3561
3562 out:
3563	return 0;
3564}
3565
3566/**
3567 *	sd_unlock_native_capacity - unlock native capacity
3568 *	@disk: struct gendisk to set capacity for
3569 *
3570 *	Block layer calls this function if it detects that partitions
3571 *	on @disk reach beyond the end of the device.  If the SCSI host
3572 *	implements ->unlock_native_capacity() method, it's invoked to
3573 *	give it a chance to adjust the device capacity.
3574 *
3575 *	CONTEXT:
3576 *	Defined by block layer.  Might sleep.
3577 */
3578static void sd_unlock_native_capacity(struct gendisk *disk)
3579{
3580	struct scsi_device *sdev = scsi_disk(disk)->device;
3581
3582	if (sdev->host->hostt->unlock_native_capacity)
3583		sdev->host->hostt->unlock_native_capacity(sdev);
3584}
3585
3586/**
3587 *	sd_format_disk_name - format disk name
3588 *	@prefix: name prefix - ie. "sd" for SCSI disks
3589 *	@index: index of the disk to format name for
3590 *	@buf: output buffer
3591 *	@buflen: length of the output buffer
3592 *
3593 *	SCSI disk names starts at sda.  The 26th device is sdz and the
3594 *	27th is sdaa.  The last one for two lettered suffix is sdzz
3595 *	which is followed by sdaaa.
3596 *
3597 *	This is basically 26 base counting with one extra 'nil' entry
3598 *	at the beginning from the second digit on and can be
3599 *	determined using similar method as 26 base conversion with the
3600 *	index shifted -1 after each digit is computed.
3601 *
3602 *	CONTEXT:
3603 *	Don't care.
3604 *
3605 *	RETURNS:
3606 *	0 on success, -errno on failure.
3607 */
3608static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3609{
3610	const int base = 'z' - 'a' + 1;
3611	char *begin = buf + strlen(prefix);
3612	char *end = buf + buflen;
3613	char *p;
3614	int unit;
3615
3616	p = end - 1;
3617	*p = '\0';
3618	unit = base;
3619	do {
3620		if (p == begin)
3621			return -EINVAL;
3622		*--p = 'a' + (index % unit);
3623		index = (index / unit) - 1;
3624	} while (index >= 0);
3625
3626	memmove(begin, p, end - p);
3627	memcpy(buf, prefix, strlen(prefix));
3628
3629	return 0;
3630}
3631
3632/**
3633 *	sd_probe - called during driver initialization and whenever a
3634 *	new scsi device is attached to the system. It is called once
3635 *	for each scsi device (not just disks) present.
3636 *	@dev: pointer to device object
3637 *
3638 *	Returns 0 if successful (or not interested in this scsi device 
3639 *	(e.g. scanner)); 1 when there is an error.
3640 *
3641 *	Note: this function is invoked from the scsi mid-level.
3642 *	This function sets up the mapping between a given 
3643 *	<host,channel,id,lun> (found in sdp) and new device name 
3644 *	(e.g. /dev/sda). More precisely it is the block device major 
3645 *	and minor number that is chosen here.
3646 *
3647 *	Assume sd_probe is not re-entrant (for time being)
3648 *	Also think about sd_probe() and sd_remove() running coincidentally.
3649 **/
3650static int sd_probe(struct device *dev)
3651{
3652	struct scsi_device *sdp = to_scsi_device(dev);
3653	struct scsi_disk *sdkp;
3654	struct gendisk *gd;
3655	int index;
3656	int error;
3657
3658	scsi_autopm_get_device(sdp);
3659	error = -ENODEV;
3660	if (sdp->type != TYPE_DISK &&
3661	    sdp->type != TYPE_ZBC &&
3662	    sdp->type != TYPE_MOD &&
3663	    sdp->type != TYPE_RBC)
3664		goto out;
3665
3666	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3667		sdev_printk(KERN_WARNING, sdp,
3668			    "Unsupported ZBC host-managed device.\n");
3669		goto out;
3670	}
3671
3672	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3673					"sd_probe\n"));
3674
3675	error = -ENOMEM;
3676	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3677	if (!sdkp)
3678		goto out;
3679
3680	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3681					 &sd_bio_compl_lkclass);
3682	if (!gd)
3683		goto out_free;
3684
3685	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3686	if (index < 0) {
3687		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3688		goto out_put;
3689	}
3690
3691	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3692	if (error) {
3693		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3694		goto out_free_index;
3695	}
3696
3697	sdkp->device = sdp;
3698	sdkp->disk = gd;
3699	sdkp->index = index;
3700	sdkp->max_retries = SD_MAX_RETRIES;
3701	atomic_set(&sdkp->openers, 0);
3702	atomic_set(&sdkp->device->ioerr_cnt, 0);
3703
3704	if (!sdp->request_queue->rq_timeout) {
3705		if (sdp->type != TYPE_MOD)
3706			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3707		else
3708			blk_queue_rq_timeout(sdp->request_queue,
3709					     SD_MOD_TIMEOUT);
3710	}
3711
3712	device_initialize(&sdkp->disk_dev);
3713	sdkp->disk_dev.parent = get_device(dev);
3714	sdkp->disk_dev.class = &sd_disk_class;
3715	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3716
3717	error = device_add(&sdkp->disk_dev);
3718	if (error) {
3719		put_device(&sdkp->disk_dev);
3720		goto out;
3721	}
3722
3723	dev_set_drvdata(dev, sdkp);
3724
3725	gd->major = sd_major((index & 0xf0) >> 4);
3726	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3727	gd->minors = SD_MINORS;
3728
3729	gd->fops = &sd_fops;
3730	gd->private_data = sdkp;
3731
3732	/* defaults, until the device tells us otherwise */
3733	sdp->sector_size = 512;
3734	sdkp->capacity = 0;
3735	sdkp->media_present = 1;
3736	sdkp->write_prot = 0;
3737	sdkp->cache_override = 0;
3738	sdkp->WCE = 0;
3739	sdkp->RCD = 0;
3740	sdkp->ATO = 0;
3741	sdkp->first_scan = 1;
3742	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3743
3744	sd_revalidate_disk(gd);
3745
3746	if (sdp->removable) {
3747		gd->flags |= GENHD_FL_REMOVABLE;
3748		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3749		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3750	}
3751
3752	blk_pm_runtime_init(sdp->request_queue, dev);
3753	if (sdp->rpm_autosuspend) {
3754		pm_runtime_set_autosuspend_delay(dev,
3755			sdp->host->hostt->rpm_autosuspend_delay);
3756	}
3757
3758	error = device_add_disk(dev, gd, NULL);
3759	if (error) {
3760		put_device(&sdkp->disk_dev);
3761		put_disk(gd);
3762		goto out;
3763	}
3764
3765	if (sdkp->security) {
3766		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3767		if (sdkp->opal_dev)
3768			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3769	}
3770
3771	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3772		  sdp->removable ? "removable " : "");
3773	scsi_autopm_put_device(sdp);
3774
3775	return 0;
3776
3777 out_free_index:
3778	ida_free(&sd_index_ida, index);
3779 out_put:
3780	put_disk(gd);
3781 out_free:
3782	kfree(sdkp);
3783 out:
3784	scsi_autopm_put_device(sdp);
3785	return error;
3786}
3787
3788/**
3789 *	sd_remove - called whenever a scsi disk (previously recognized by
3790 *	sd_probe) is detached from the system. It is called (potentially
3791 *	multiple times) during sd module unload.
3792 *	@dev: pointer to device object
3793 *
3794 *	Note: this function is invoked from the scsi mid-level.
3795 *	This function potentially frees up a device name (e.g. /dev/sdc)
3796 *	that could be re-used by a subsequent sd_probe().
3797 *	This function is not called when the built-in sd driver is "exit-ed".
3798 **/
3799static int sd_remove(struct device *dev)
3800{
3801	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3802
3803	scsi_autopm_get_device(sdkp->device);
3804
3805	device_del(&sdkp->disk_dev);
3806	del_gendisk(sdkp->disk);
3807	if (!sdkp->suspended)
3808		sd_shutdown(dev);
3809
3810	put_disk(sdkp->disk);
3811	return 0;
3812}
3813
3814static void scsi_disk_release(struct device *dev)
3815{
3816	struct scsi_disk *sdkp = to_scsi_disk(dev);
3817
3818	ida_free(&sd_index_ida, sdkp->index);
3819	sd_zbc_free_zone_info(sdkp);
3820	put_device(&sdkp->device->sdev_gendev);
3821	free_opal_dev(sdkp->opal_dev);
3822
3823	kfree(sdkp);
3824}
3825
3826static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3827{
3828	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3829	struct scsi_sense_hdr sshdr;
3830	const struct scsi_exec_args exec_args = {
3831		.sshdr = &sshdr,
3832		.req_flags = BLK_MQ_REQ_PM,
3833	};
3834	struct scsi_device *sdp = sdkp->device;
3835	int res;
3836
3837	if (start)
3838		cmd[4] |= 1;	/* START */
3839
3840	if (sdp->start_stop_pwr_cond)
3841		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3842
3843	if (!scsi_device_online(sdp))
3844		return -ENODEV;
3845
3846	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3847			       sdkp->max_retries, &exec_args);
3848	if (res) {
3849		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3850		if (res > 0 && scsi_sense_valid(&sshdr)) {
3851			sd_print_sense_hdr(sdkp, &sshdr);
3852			/* 0x3a is medium not present */
3853			if (sshdr.asc == 0x3a)
3854				res = 0;
3855		}
3856	}
3857
3858	/* SCSI error codes must not go to the generic layer */
3859	if (res)
3860		return -EIO;
3861
3862	return 0;
3863}
3864
3865/*
3866 * Send a SYNCHRONIZE CACHE instruction down to the device through
3867 * the normal SCSI command structure.  Wait for the command to
3868 * complete.
3869 */
3870static void sd_shutdown(struct device *dev)
3871{
3872	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3873
3874	if (!sdkp)
3875		return;         /* this can happen */
3876
3877	if (pm_runtime_suspended(dev))
3878		return;
3879
3880	if (sdkp->WCE && sdkp->media_present) {
3881		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3882		sd_sync_cache(sdkp);
3883	}
3884
3885	if ((system_state != SYSTEM_RESTART &&
3886	     sdkp->device->manage_system_start_stop) ||
3887	    (system_state == SYSTEM_POWER_OFF &&
3888	     sdkp->device->manage_shutdown)) {
3889		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3890		sd_start_stop_device(sdkp, 0);
3891	}
3892}
3893
3894static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
3895{
3896	return (sdev->manage_system_start_stop && !runtime) ||
3897		(sdev->manage_runtime_start_stop && runtime);
3898}
3899
3900static int sd_suspend_common(struct device *dev, bool runtime)
3901{
3902	struct scsi_disk *sdkp = dev_get_drvdata(dev);
 
3903	int ret = 0;
3904
3905	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3906		return 0;
3907
3908	if (sdkp->WCE && sdkp->media_present) {
3909		if (!sdkp->device->silence_suspend)
3910			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3911		ret = sd_sync_cache(sdkp);
3912		/* ignore OFFLINE device */
3913		if (ret == -ENODEV)
3914			return 0;
3915
3916		if (ret)
3917			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3918	}
3919
3920	if (sd_do_start_stop(sdkp->device, runtime)) {
3921		if (!sdkp->device->silence_suspend)
3922			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3923		/* an error is not worth aborting a system sleep */
3924		ret = sd_start_stop_device(sdkp, 0);
3925		if (!runtime)
3926			ret = 0;
3927	}
3928
3929	if (!ret)
3930		sdkp->suspended = true;
3931
3932	return ret;
3933}
3934
3935static int sd_suspend_system(struct device *dev)
3936{
3937	if (pm_runtime_suspended(dev))
3938		return 0;
3939
3940	return sd_suspend_common(dev, false);
3941}
3942
3943static int sd_suspend_runtime(struct device *dev)
3944{
3945	return sd_suspend_common(dev, true);
3946}
3947
3948static int sd_resume(struct device *dev, bool runtime)
3949{
3950	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3951	int ret;
3952
3953	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3954		return 0;
3955
3956	if (!sd_do_start_stop(sdkp->device, runtime)) {
3957		sdkp->suspended = false;
3958		return 0;
3959	}
3960
3961	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3962	ret = sd_start_stop_device(sdkp, 1);
3963	if (!ret) {
3964		opal_unlock_from_suspend(sdkp->opal_dev);
3965		sdkp->suspended = false;
3966	}
3967
3968	return ret;
3969}
3970
3971static int sd_resume_system(struct device *dev)
3972{
3973	if (pm_runtime_suspended(dev)) {
3974		struct scsi_disk *sdkp = dev_get_drvdata(dev);
3975		struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
3976
3977		if (sdp && sdp->force_runtime_start_on_system_start)
3978			pm_request_resume(dev);
3979
3980		return 0;
3981	}
3982
3983	return sd_resume(dev, false);
3984}
3985
3986static int sd_resume_runtime(struct device *dev)
3987{
3988	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3989	struct scsi_device *sdp;
3990
3991	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3992		return 0;
3993
3994	sdp = sdkp->device;
3995
3996	if (sdp->ignore_media_change) {
3997		/* clear the device's sense data */
3998		static const u8 cmd[10] = { REQUEST_SENSE };
3999		const struct scsi_exec_args exec_args = {
4000			.req_flags = BLK_MQ_REQ_PM,
4001		};
4002
4003		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4004				     sdp->request_queue->rq_timeout, 1,
4005				     &exec_args))
4006			sd_printk(KERN_NOTICE, sdkp,
4007				  "Failed to clear sense data\n");
4008	}
4009
4010	return sd_resume(dev, true);
4011}
4012
4013static const struct dev_pm_ops sd_pm_ops = {
4014	.suspend		= sd_suspend_system,
4015	.resume			= sd_resume_system,
4016	.poweroff		= sd_suspend_system,
4017	.restore		= sd_resume_system,
4018	.runtime_suspend	= sd_suspend_runtime,
4019	.runtime_resume		= sd_resume_runtime,
4020};
4021
4022static struct scsi_driver sd_template = {
4023	.gendrv = {
4024		.name		= "sd",
4025		.owner		= THIS_MODULE,
4026		.probe		= sd_probe,
4027		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4028		.remove		= sd_remove,
4029		.shutdown	= sd_shutdown,
4030		.pm		= &sd_pm_ops,
4031	},
4032	.rescan			= sd_rescan,
4033	.init_command		= sd_init_command,
4034	.uninit_command		= sd_uninit_command,
4035	.done			= sd_done,
4036	.eh_action		= sd_eh_action,
4037	.eh_reset		= sd_eh_reset,
4038};
4039
4040/**
4041 *	init_sd - entry point for this driver (both when built in or when
4042 *	a module).
4043 *
4044 *	Note: this function registers this driver with the scsi mid-level.
4045 **/
4046static int __init init_sd(void)
4047{
4048	int majors = 0, i, err;
4049
4050	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4051
4052	for (i = 0; i < SD_MAJORS; i++) {
4053		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4054			continue;
4055		majors++;
4056	}
4057
4058	if (!majors)
4059		return -ENODEV;
4060
4061	err = class_register(&sd_disk_class);
4062	if (err)
4063		goto err_out;
4064
 
 
 
 
 
 
 
 
4065	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4066	if (!sd_page_pool) {
4067		printk(KERN_ERR "sd: can't init discard page pool\n");
4068		err = -ENOMEM;
4069		goto err_out_class;
4070	}
4071
4072	err = scsi_register_driver(&sd_template.gendrv);
4073	if (err)
4074		goto err_out_driver;
4075
4076	return 0;
4077
4078err_out_driver:
4079	mempool_destroy(sd_page_pool);
 
 
 
 
4080err_out_class:
4081	class_unregister(&sd_disk_class);
4082err_out:
4083	for (i = 0; i < SD_MAJORS; i++)
4084		unregister_blkdev(sd_major(i), "sd");
4085	return err;
4086}
4087
4088/**
4089 *	exit_sd - exit point for this driver (when it is a module).
4090 *
4091 *	Note: this function unregisters this driver from the scsi mid-level.
4092 **/
4093static void __exit exit_sd(void)
4094{
4095	int i;
4096
4097	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4098
4099	scsi_unregister_driver(&sd_template.gendrv);
4100	mempool_destroy(sd_page_pool);
 
4101
4102	class_unregister(&sd_disk_class);
4103
4104	for (i = 0; i < SD_MAJORS; i++)
4105		unregister_blkdev(sd_major(i), "sd");
4106}
4107
4108module_init(init_sd);
4109module_exit(exit_sd);
4110
4111void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4112{
4113	scsi_print_sense_hdr(sdkp->device,
4114			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4115}
4116
4117void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4118{
4119	const char *hb_string = scsi_hostbyte_string(result);
4120
4121	if (hb_string)
4122		sd_printk(KERN_INFO, sdkp,
4123			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4124			  hb_string ? hb_string : "invalid",
4125			  "DRIVER_OK");
4126	else
4127		sd_printk(KERN_INFO, sdkp,
4128			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4129			  msg, host_byte(result), "DRIVER_OK");
4130}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      sd.c Copyright (C) 1992 Drew Eckhardt
   4 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
   5 *
   6 *      Linux scsi disk driver
   7 *              Initial versions: Drew Eckhardt
   8 *              Subsequent revisions: Eric Youngdale
   9 *	Modification history:
  10 *       - Drew Eckhardt <drew@colorado.edu> original
  11 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
  12 *         outstanding request, and other enhancements.
  13 *         Support loadable low-level scsi drivers.
  14 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
  15 *         eight major numbers.
  16 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
  17 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
  18 *	   sd_init and cleanups.
  19 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
  20 *	   not being read in sd_open. Fix problem where removable media 
  21 *	   could be ejected after sd_open.
  22 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
  23 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
  24 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
  25 *	   Support 32k/1M disks.
  26 *
  27 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
  28 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
  29 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
  30 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
  31 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
  32 *	Note: when the logging level is set by the user, it must be greater
  33 *	than the level indicated above to trigger output.	
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/fs.h>
  38#include <linux/kernel.h>
  39#include <linux/mm.h>
  40#include <linux/bio.h>
  41#include <linux/hdreg.h>
  42#include <linux/errno.h>
  43#include <linux/idr.h>
  44#include <linux/interrupt.h>
  45#include <linux/init.h>
  46#include <linux/blkdev.h>
  47#include <linux/blkpg.h>
  48#include <linux/blk-pm.h>
  49#include <linux/delay.h>
  50#include <linux/major.h>
  51#include <linux/mutex.h>
  52#include <linux/string_helpers.h>
  53#include <linux/slab.h>
  54#include <linux/sed-opal.h>
  55#include <linux/pm_runtime.h>
  56#include <linux/pr.h>
  57#include <linux/t10-pi.h>
  58#include <linux/uaccess.h>
  59#include <asm/unaligned.h>
  60
  61#include <scsi/scsi.h>
  62#include <scsi/scsi_cmnd.h>
  63#include <scsi/scsi_dbg.h>
  64#include <scsi/scsi_device.h>
  65#include <scsi/scsi_driver.h>
  66#include <scsi/scsi_eh.h>
  67#include <scsi/scsi_host.h>
  68#include <scsi/scsi_ioctl.h>
  69#include <scsi/scsicam.h>
 
  70
  71#include "sd.h"
  72#include "scsi_priv.h"
  73#include "scsi_logging.h"
  74
  75MODULE_AUTHOR("Eric Youngdale");
  76MODULE_DESCRIPTION("SCSI disk (sd) driver");
  77MODULE_LICENSE("GPL");
  78
  79MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
  80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
  81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
  82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
  83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
  84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
  85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
  86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
  87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
  88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
  89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
  90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
  91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
  92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
  93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
  94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
  95MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
  96MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
  97MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
  98MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
  99
 100#define SD_MINORS	16
 101
 102static void sd_config_discard(struct scsi_disk *, unsigned int);
 103static void sd_config_write_same(struct scsi_disk *);
 104static int  sd_revalidate_disk(struct gendisk *);
 105static void sd_unlock_native_capacity(struct gendisk *disk);
 106static int  sd_probe(struct device *);
 107static int  sd_remove(struct device *);
 108static void sd_shutdown(struct device *);
 109static int sd_suspend_system(struct device *);
 110static int sd_suspend_runtime(struct device *);
 111static int sd_resume_system(struct device *);
 112static int sd_resume_runtime(struct device *);
 113static void sd_rescan(struct device *);
 114static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
 115static void sd_uninit_command(struct scsi_cmnd *SCpnt);
 116static int sd_done(struct scsi_cmnd *);
 117static void sd_eh_reset(struct scsi_cmnd *);
 118static int sd_eh_action(struct scsi_cmnd *, int);
 119static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
 120static void scsi_disk_release(struct device *cdev);
 121
 122static DEFINE_IDA(sd_index_ida);
 123
 124static struct kmem_cache *sd_cdb_cache;
 125static mempool_t *sd_page_pool;
 126static struct lock_class_key sd_bio_compl_lkclass;
 127
 128static const char *sd_cache_types[] = {
 129	"write through", "none", "write back",
 130	"write back, no read (daft)"
 131};
 132
 133static void sd_set_flush_flag(struct scsi_disk *sdkp)
 134{
 135	bool wc = false, fua = false;
 136
 137	if (sdkp->WCE) {
 138		wc = true;
 139		if (sdkp->DPOFUA)
 140			fua = true;
 141	}
 142
 143	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
 144}
 145
 146static ssize_t
 147cache_type_store(struct device *dev, struct device_attribute *attr,
 148		 const char *buf, size_t count)
 149{
 150	int ct, rcd, wce, sp;
 151	struct scsi_disk *sdkp = to_scsi_disk(dev);
 152	struct scsi_device *sdp = sdkp->device;
 153	char buffer[64];
 154	char *buffer_data;
 155	struct scsi_mode_data data;
 156	struct scsi_sense_hdr sshdr;
 157	static const char temp[] = "temporary ";
 158	int len;
 159
 160	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 161		/* no cache control on RBC devices; theoretically they
 162		 * can do it, but there's probably so many exceptions
 163		 * it's not worth the risk */
 164		return -EINVAL;
 165
 166	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
 167		buf += sizeof(temp) - 1;
 168		sdkp->cache_override = 1;
 169	} else {
 170		sdkp->cache_override = 0;
 171	}
 172
 173	ct = sysfs_match_string(sd_cache_types, buf);
 174	if (ct < 0)
 175		return -EINVAL;
 176
 177	rcd = ct & 0x01 ? 1 : 0;
 178	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
 179
 180	if (sdkp->cache_override) {
 181		sdkp->WCE = wce;
 182		sdkp->RCD = rcd;
 183		sd_set_flush_flag(sdkp);
 184		return count;
 185	}
 186
 187	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
 188			    sdkp->max_retries, &data, NULL))
 189		return -EINVAL;
 190	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
 191		  data.block_descriptor_length);
 192	buffer_data = buffer + data.header_length +
 193		data.block_descriptor_length;
 194	buffer_data[2] &= ~0x05;
 195	buffer_data[2] |= wce << 2 | rcd;
 196	sp = buffer_data[0] & 0x80 ? 1 : 0;
 197	buffer_data[0] &= ~0x80;
 198
 199	/*
 200	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
 201	 * received mode parameter buffer before doing MODE SELECT.
 202	 */
 203	data.device_specific = 0;
 204
 205	if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
 206			     sdkp->max_retries, &data, &sshdr)) {
 207		if (scsi_sense_valid(&sshdr))
 
 208			sd_print_sense_hdr(sdkp, &sshdr);
 209		return -EINVAL;
 210	}
 211	sd_revalidate_disk(sdkp->disk);
 212	return count;
 213}
 214
 215static ssize_t
 216manage_start_stop_show(struct device *dev, struct device_attribute *attr,
 217		       char *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218{
 219	struct scsi_disk *sdkp = to_scsi_disk(dev);
 220	struct scsi_device *sdp = sdkp->device;
 221
 222	return sprintf(buf, "%u\n", sdp->manage_start_stop);
 223}
 224
 225static ssize_t
 226manage_start_stop_store(struct device *dev, struct device_attribute *attr,
 227			const char *buf, size_t count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228{
 229	struct scsi_disk *sdkp = to_scsi_disk(dev);
 230	struct scsi_device *sdp = sdkp->device;
 231	bool v;
 232
 233	if (!capable(CAP_SYS_ADMIN))
 234		return -EACCES;
 235
 236	if (kstrtobool(buf, &v))
 237		return -EINVAL;
 238
 239	sdp->manage_start_stop = v;
 240
 241	return count;
 242}
 243static DEVICE_ATTR_RW(manage_start_stop);
 244
 245static ssize_t
 246allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
 247{
 248	struct scsi_disk *sdkp = to_scsi_disk(dev);
 249
 250	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
 251}
 252
 253static ssize_t
 254allow_restart_store(struct device *dev, struct device_attribute *attr,
 255		    const char *buf, size_t count)
 256{
 257	bool v;
 258	struct scsi_disk *sdkp = to_scsi_disk(dev);
 259	struct scsi_device *sdp = sdkp->device;
 260
 261	if (!capable(CAP_SYS_ADMIN))
 262		return -EACCES;
 263
 264	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 265		return -EINVAL;
 266
 267	if (kstrtobool(buf, &v))
 268		return -EINVAL;
 269
 270	sdp->allow_restart = v;
 271
 272	return count;
 273}
 274static DEVICE_ATTR_RW(allow_restart);
 275
 276static ssize_t
 277cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
 278{
 279	struct scsi_disk *sdkp = to_scsi_disk(dev);
 280	int ct = sdkp->RCD + 2*sdkp->WCE;
 281
 282	return sprintf(buf, "%s\n", sd_cache_types[ct]);
 283}
 284static DEVICE_ATTR_RW(cache_type);
 285
 286static ssize_t
 287FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
 288{
 289	struct scsi_disk *sdkp = to_scsi_disk(dev);
 290
 291	return sprintf(buf, "%u\n", sdkp->DPOFUA);
 292}
 293static DEVICE_ATTR_RO(FUA);
 294
 295static ssize_t
 296protection_type_show(struct device *dev, struct device_attribute *attr,
 297		     char *buf)
 298{
 299	struct scsi_disk *sdkp = to_scsi_disk(dev);
 300
 301	return sprintf(buf, "%u\n", sdkp->protection_type);
 302}
 303
 304static ssize_t
 305protection_type_store(struct device *dev, struct device_attribute *attr,
 306		      const char *buf, size_t count)
 307{
 308	struct scsi_disk *sdkp = to_scsi_disk(dev);
 309	unsigned int val;
 310	int err;
 311
 312	if (!capable(CAP_SYS_ADMIN))
 313		return -EACCES;
 314
 315	err = kstrtouint(buf, 10, &val);
 316
 317	if (err)
 318		return err;
 319
 320	if (val <= T10_PI_TYPE3_PROTECTION)
 321		sdkp->protection_type = val;
 322
 323	return count;
 324}
 325static DEVICE_ATTR_RW(protection_type);
 326
 327static ssize_t
 328protection_mode_show(struct device *dev, struct device_attribute *attr,
 329		     char *buf)
 330{
 331	struct scsi_disk *sdkp = to_scsi_disk(dev);
 332	struct scsi_device *sdp = sdkp->device;
 333	unsigned int dif, dix;
 334
 335	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
 336	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
 337
 338	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
 339		dif = 0;
 340		dix = 1;
 341	}
 342
 343	if (!dif && !dix)
 344		return sprintf(buf, "none\n");
 345
 346	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
 347}
 348static DEVICE_ATTR_RO(protection_mode);
 349
 350static ssize_t
 351app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
 352{
 353	struct scsi_disk *sdkp = to_scsi_disk(dev);
 354
 355	return sprintf(buf, "%u\n", sdkp->ATO);
 356}
 357static DEVICE_ATTR_RO(app_tag_own);
 358
 359static ssize_t
 360thin_provisioning_show(struct device *dev, struct device_attribute *attr,
 361		       char *buf)
 362{
 363	struct scsi_disk *sdkp = to_scsi_disk(dev);
 364
 365	return sprintf(buf, "%u\n", sdkp->lbpme);
 366}
 367static DEVICE_ATTR_RO(thin_provisioning);
 368
 369/* sysfs_match_string() requires dense arrays */
 370static const char *lbp_mode[] = {
 371	[SD_LBP_FULL]		= "full",
 372	[SD_LBP_UNMAP]		= "unmap",
 373	[SD_LBP_WS16]		= "writesame_16",
 374	[SD_LBP_WS10]		= "writesame_10",
 375	[SD_LBP_ZERO]		= "writesame_zero",
 376	[SD_LBP_DISABLE]	= "disabled",
 377};
 378
 379static ssize_t
 380provisioning_mode_show(struct device *dev, struct device_attribute *attr,
 381		       char *buf)
 382{
 383	struct scsi_disk *sdkp = to_scsi_disk(dev);
 384
 385	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
 386}
 387
 388static ssize_t
 389provisioning_mode_store(struct device *dev, struct device_attribute *attr,
 390			const char *buf, size_t count)
 391{
 392	struct scsi_disk *sdkp = to_scsi_disk(dev);
 393	struct scsi_device *sdp = sdkp->device;
 394	int mode;
 395
 396	if (!capable(CAP_SYS_ADMIN))
 397		return -EACCES;
 398
 399	if (sd_is_zoned(sdkp)) {
 400		sd_config_discard(sdkp, SD_LBP_DISABLE);
 401		return count;
 402	}
 403
 404	if (sdp->type != TYPE_DISK)
 405		return -EINVAL;
 406
 407	mode = sysfs_match_string(lbp_mode, buf);
 408	if (mode < 0)
 409		return -EINVAL;
 410
 411	sd_config_discard(sdkp, mode);
 412
 413	return count;
 414}
 415static DEVICE_ATTR_RW(provisioning_mode);
 416
 417/* sysfs_match_string() requires dense arrays */
 418static const char *zeroing_mode[] = {
 419	[SD_ZERO_WRITE]		= "write",
 420	[SD_ZERO_WS]		= "writesame",
 421	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
 422	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
 423};
 424
 425static ssize_t
 426zeroing_mode_show(struct device *dev, struct device_attribute *attr,
 427		  char *buf)
 428{
 429	struct scsi_disk *sdkp = to_scsi_disk(dev);
 430
 431	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
 432}
 433
 434static ssize_t
 435zeroing_mode_store(struct device *dev, struct device_attribute *attr,
 436		   const char *buf, size_t count)
 437{
 438	struct scsi_disk *sdkp = to_scsi_disk(dev);
 439	int mode;
 440
 441	if (!capable(CAP_SYS_ADMIN))
 442		return -EACCES;
 443
 444	mode = sysfs_match_string(zeroing_mode, buf);
 445	if (mode < 0)
 446		return -EINVAL;
 447
 448	sdkp->zeroing_mode = mode;
 449
 450	return count;
 451}
 452static DEVICE_ATTR_RW(zeroing_mode);
 453
 454static ssize_t
 455max_medium_access_timeouts_show(struct device *dev,
 456				struct device_attribute *attr, char *buf)
 457{
 458	struct scsi_disk *sdkp = to_scsi_disk(dev);
 459
 460	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
 461}
 462
 463static ssize_t
 464max_medium_access_timeouts_store(struct device *dev,
 465				 struct device_attribute *attr, const char *buf,
 466				 size_t count)
 467{
 468	struct scsi_disk *sdkp = to_scsi_disk(dev);
 469	int err;
 470
 471	if (!capable(CAP_SYS_ADMIN))
 472		return -EACCES;
 473
 474	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
 475
 476	return err ? err : count;
 477}
 478static DEVICE_ATTR_RW(max_medium_access_timeouts);
 479
 480static ssize_t
 481max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
 482			   char *buf)
 483{
 484	struct scsi_disk *sdkp = to_scsi_disk(dev);
 485
 486	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
 487}
 488
 489static ssize_t
 490max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
 491			    const char *buf, size_t count)
 492{
 493	struct scsi_disk *sdkp = to_scsi_disk(dev);
 494	struct scsi_device *sdp = sdkp->device;
 495	unsigned long max;
 496	int err;
 497
 498	if (!capable(CAP_SYS_ADMIN))
 499		return -EACCES;
 500
 501	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 502		return -EINVAL;
 503
 504	err = kstrtoul(buf, 10, &max);
 505
 506	if (err)
 507		return err;
 508
 509	if (max == 0)
 510		sdp->no_write_same = 1;
 511	else if (max <= SD_MAX_WS16_BLOCKS) {
 512		sdp->no_write_same = 0;
 513		sdkp->max_ws_blocks = max;
 514	}
 515
 516	sd_config_write_same(sdkp);
 517
 518	return count;
 519}
 520static DEVICE_ATTR_RW(max_write_same_blocks);
 521
 522static ssize_t
 523zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
 524{
 525	struct scsi_disk *sdkp = to_scsi_disk(dev);
 526
 527	if (sdkp->device->type == TYPE_ZBC)
 528		return sprintf(buf, "host-managed\n");
 529	if (sdkp->zoned == 1)
 530		return sprintf(buf, "host-aware\n");
 531	if (sdkp->zoned == 2)
 532		return sprintf(buf, "drive-managed\n");
 533	return sprintf(buf, "none\n");
 534}
 535static DEVICE_ATTR_RO(zoned_cap);
 536
 537static ssize_t
 538max_retries_store(struct device *dev, struct device_attribute *attr,
 539		  const char *buf, size_t count)
 540{
 541	struct scsi_disk *sdkp = to_scsi_disk(dev);
 542	struct scsi_device *sdev = sdkp->device;
 543	int retries, err;
 544
 545	err = kstrtoint(buf, 10, &retries);
 546	if (err)
 547		return err;
 548
 549	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
 550		sdkp->max_retries = retries;
 551		return count;
 552	}
 553
 554	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
 555		    SD_MAX_RETRIES);
 556	return -EINVAL;
 557}
 558
 559static ssize_t
 560max_retries_show(struct device *dev, struct device_attribute *attr,
 561		 char *buf)
 562{
 563	struct scsi_disk *sdkp = to_scsi_disk(dev);
 564
 565	return sprintf(buf, "%d\n", sdkp->max_retries);
 566}
 567
 568static DEVICE_ATTR_RW(max_retries);
 569
 570static struct attribute *sd_disk_attrs[] = {
 571	&dev_attr_cache_type.attr,
 572	&dev_attr_FUA.attr,
 573	&dev_attr_allow_restart.attr,
 574	&dev_attr_manage_start_stop.attr,
 
 
 
 575	&dev_attr_protection_type.attr,
 576	&dev_attr_protection_mode.attr,
 577	&dev_attr_app_tag_own.attr,
 578	&dev_attr_thin_provisioning.attr,
 579	&dev_attr_provisioning_mode.attr,
 580	&dev_attr_zeroing_mode.attr,
 581	&dev_attr_max_write_same_blocks.attr,
 582	&dev_attr_max_medium_access_timeouts.attr,
 583	&dev_attr_zoned_cap.attr,
 584	&dev_attr_max_retries.attr,
 585	NULL,
 586};
 587ATTRIBUTE_GROUPS(sd_disk);
 588
 589static struct class sd_disk_class = {
 590	.name		= "scsi_disk",
 591	.owner		= THIS_MODULE,
 592	.dev_release	= scsi_disk_release,
 593	.dev_groups	= sd_disk_groups,
 594};
 595
 596static const struct dev_pm_ops sd_pm_ops = {
 597	.suspend		= sd_suspend_system,
 598	.resume			= sd_resume_system,
 599	.poweroff		= sd_suspend_system,
 600	.restore		= sd_resume_system,
 601	.runtime_suspend	= sd_suspend_runtime,
 602	.runtime_resume		= sd_resume_runtime,
 603};
 604
 605static struct scsi_driver sd_template = {
 606	.gendrv = {
 607		.name		= "sd",
 608		.owner		= THIS_MODULE,
 609		.probe		= sd_probe,
 610		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
 611		.remove		= sd_remove,
 612		.shutdown	= sd_shutdown,
 613		.pm		= &sd_pm_ops,
 614	},
 615	.rescan			= sd_rescan,
 616	.init_command		= sd_init_command,
 617	.uninit_command		= sd_uninit_command,
 618	.done			= sd_done,
 619	.eh_action		= sd_eh_action,
 620	.eh_reset		= sd_eh_reset,
 621};
 622
 623/*
 624 * Don't request a new module, as that could deadlock in multipath
 625 * environment.
 626 */
 627static void sd_default_probe(dev_t devt)
 628{
 629}
 630
 631/*
 632 * Device no to disk mapping:
 633 * 
 634 *       major         disc2     disc  p1
 635 *   |............|.............|....|....| <- dev_t
 636 *    31        20 19          8 7  4 3  0
 637 * 
 638 * Inside a major, we have 16k disks, however mapped non-
 639 * contiguously. The first 16 disks are for major0, the next
 640 * ones with major1, ... Disk 256 is for major0 again, disk 272 
 641 * for major1, ... 
 642 * As we stay compatible with our numbering scheme, we can reuse 
 643 * the well-know SCSI majors 8, 65--71, 136--143.
 644 */
 645static int sd_major(int major_idx)
 646{
 647	switch (major_idx) {
 648	case 0:
 649		return SCSI_DISK0_MAJOR;
 650	case 1 ... 7:
 651		return SCSI_DISK1_MAJOR + major_idx - 1;
 652	case 8 ... 15:
 653		return SCSI_DISK8_MAJOR + major_idx - 8;
 654	default:
 655		BUG();
 656		return 0;	/* shut up gcc */
 657	}
 658}
 659
 660#ifdef CONFIG_BLK_SED_OPAL
 661static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
 662		size_t len, bool send)
 663{
 664	struct scsi_disk *sdkp = data;
 665	struct scsi_device *sdev = sdkp->device;
 666	u8 cdb[12] = { 0, };
 
 
 
 667	int ret;
 668
 669	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
 670	cdb[1] = secp;
 671	put_unaligned_be16(spsp, &cdb[2]);
 672	put_unaligned_be32(len, &cdb[6]);
 673
 674	ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
 675		buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
 676		RQF_PM, NULL);
 677	return ret <= 0 ? ret : -EIO;
 678}
 679#endif /* CONFIG_BLK_SED_OPAL */
 680
 681/*
 682 * Look up the DIX operation based on whether the command is read or
 683 * write and whether dix and dif are enabled.
 684 */
 685static unsigned int sd_prot_op(bool write, bool dix, bool dif)
 686{
 687	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
 688	static const unsigned int ops[] = {	/* wrt dix dif */
 689		SCSI_PROT_NORMAL,		/*  0	0   0  */
 690		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
 691		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
 692		SCSI_PROT_READ_PASS,		/*  0	1   1  */
 693		SCSI_PROT_NORMAL,		/*  1	0   0  */
 694		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
 695		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
 696		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
 697	};
 698
 699	return ops[write << 2 | dix << 1 | dif];
 700}
 701
 702/*
 703 * Returns a mask of the protection flags that are valid for a given DIX
 704 * operation.
 705 */
 706static unsigned int sd_prot_flag_mask(unsigned int prot_op)
 707{
 708	static const unsigned int flag_mask[] = {
 709		[SCSI_PROT_NORMAL]		= 0,
 710
 711		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
 712						  SCSI_PROT_GUARD_CHECK |
 713						  SCSI_PROT_REF_CHECK |
 714						  SCSI_PROT_REF_INCREMENT,
 715
 716		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
 717						  SCSI_PROT_IP_CHECKSUM,
 718
 719		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
 720						  SCSI_PROT_GUARD_CHECK |
 721						  SCSI_PROT_REF_CHECK |
 722						  SCSI_PROT_REF_INCREMENT |
 723						  SCSI_PROT_IP_CHECKSUM,
 724
 725		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
 726						  SCSI_PROT_REF_INCREMENT,
 727
 728		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
 729						  SCSI_PROT_REF_CHECK |
 730						  SCSI_PROT_REF_INCREMENT |
 731						  SCSI_PROT_IP_CHECKSUM,
 732
 733		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
 734						  SCSI_PROT_GUARD_CHECK |
 735						  SCSI_PROT_REF_CHECK |
 736						  SCSI_PROT_REF_INCREMENT |
 737						  SCSI_PROT_IP_CHECKSUM,
 738	};
 739
 740	return flag_mask[prot_op];
 741}
 742
 743static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
 744					   unsigned int dix, unsigned int dif)
 745{
 746	struct request *rq = scsi_cmd_to_rq(scmd);
 747	struct bio *bio = rq->bio;
 748	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
 749	unsigned int protect = 0;
 750
 751	if (dix) {				/* DIX Type 0, 1, 2, 3 */
 752		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
 753			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
 754
 755		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 756			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
 757	}
 758
 759	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
 760		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
 761
 762		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 763			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
 764	}
 765
 766	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
 767		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
 768
 769		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
 770			protect = 3 << 5;	/* Disable target PI checking */
 771		else
 772			protect = 1 << 5;	/* Enable target PI checking */
 773	}
 774
 775	scsi_set_prot_op(scmd, prot_op);
 776	scsi_set_prot_type(scmd, dif);
 777	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
 778
 779	return protect;
 780}
 781
 782static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
 783{
 784	struct request_queue *q = sdkp->disk->queue;
 785	unsigned int logical_block_size = sdkp->device->sector_size;
 786	unsigned int max_blocks = 0;
 787
 788	q->limits.discard_alignment =
 789		sdkp->unmap_alignment * logical_block_size;
 790	q->limits.discard_granularity =
 791		max(sdkp->physical_block_size,
 792		    sdkp->unmap_granularity * logical_block_size);
 793	sdkp->provisioning_mode = mode;
 794
 795	switch (mode) {
 796
 797	case SD_LBP_FULL:
 798	case SD_LBP_DISABLE:
 799		blk_queue_max_discard_sectors(q, 0);
 800		return;
 801
 802	case SD_LBP_UNMAP:
 803		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
 804					  (u32)SD_MAX_WS16_BLOCKS);
 805		break;
 806
 807	case SD_LBP_WS16:
 808		if (sdkp->device->unmap_limit_for_ws)
 809			max_blocks = sdkp->max_unmap_blocks;
 810		else
 811			max_blocks = sdkp->max_ws_blocks;
 812
 813		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
 814		break;
 815
 816	case SD_LBP_WS10:
 817		if (sdkp->device->unmap_limit_for_ws)
 818			max_blocks = sdkp->max_unmap_blocks;
 819		else
 820			max_blocks = sdkp->max_ws_blocks;
 821
 822		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
 823		break;
 824
 825	case SD_LBP_ZERO:
 826		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 827					  (u32)SD_MAX_WS10_BLOCKS);
 828		break;
 829	}
 830
 831	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
 832}
 833
 
 
 
 
 
 
 
 
 
 
 
 
 
 834static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
 835{
 836	struct scsi_device *sdp = cmd->device;
 837	struct request *rq = scsi_cmd_to_rq(cmd);
 838	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 839	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 840	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 841	unsigned int data_len = 24;
 842	char *buf;
 843
 844	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 845	if (!rq->special_vec.bv_page)
 846		return BLK_STS_RESOURCE;
 847	clear_highpage(rq->special_vec.bv_page);
 848	rq->special_vec.bv_offset = 0;
 849	rq->special_vec.bv_len = data_len;
 850	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 851
 852	cmd->cmd_len = 10;
 853	cmd->cmnd[0] = UNMAP;
 854	cmd->cmnd[8] = 24;
 855
 856	buf = bvec_virt(&rq->special_vec);
 857	put_unaligned_be16(6 + 16, &buf[0]);
 858	put_unaligned_be16(16, &buf[2]);
 859	put_unaligned_be64(lba, &buf[8]);
 860	put_unaligned_be32(nr_blocks, &buf[16]);
 861
 862	cmd->allowed = sdkp->max_retries;
 863	cmd->transfersize = data_len;
 864	rq->timeout = SD_TIMEOUT;
 865
 866	return scsi_alloc_sgtables(cmd);
 867}
 868
 869static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
 870		bool unmap)
 871{
 872	struct scsi_device *sdp = cmd->device;
 873	struct request *rq = scsi_cmd_to_rq(cmd);
 874	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 875	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 876	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 877	u32 data_len = sdp->sector_size;
 878
 879	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 880	if (!rq->special_vec.bv_page)
 881		return BLK_STS_RESOURCE;
 882	clear_highpage(rq->special_vec.bv_page);
 883	rq->special_vec.bv_offset = 0;
 884	rq->special_vec.bv_len = data_len;
 885	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 886
 887	cmd->cmd_len = 16;
 888	cmd->cmnd[0] = WRITE_SAME_16;
 889	if (unmap)
 890		cmd->cmnd[1] = 0x8; /* UNMAP */
 891	put_unaligned_be64(lba, &cmd->cmnd[2]);
 892	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
 893
 894	cmd->allowed = sdkp->max_retries;
 895	cmd->transfersize = data_len;
 896	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 897
 898	return scsi_alloc_sgtables(cmd);
 899}
 900
 901static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
 902		bool unmap)
 903{
 904	struct scsi_device *sdp = cmd->device;
 905	struct request *rq = scsi_cmd_to_rq(cmd);
 906	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 907	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 908	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 909	u32 data_len = sdp->sector_size;
 910
 911	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 912	if (!rq->special_vec.bv_page)
 913		return BLK_STS_RESOURCE;
 914	clear_highpage(rq->special_vec.bv_page);
 915	rq->special_vec.bv_offset = 0;
 916	rq->special_vec.bv_len = data_len;
 917	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 918
 919	cmd->cmd_len = 10;
 920	cmd->cmnd[0] = WRITE_SAME;
 921	if (unmap)
 922		cmd->cmnd[1] = 0x8; /* UNMAP */
 923	put_unaligned_be32(lba, &cmd->cmnd[2]);
 924	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
 925
 926	cmd->allowed = sdkp->max_retries;
 927	cmd->transfersize = data_len;
 928	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 929
 930	return scsi_alloc_sgtables(cmd);
 931}
 932
 933static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
 934{
 935	struct request *rq = scsi_cmd_to_rq(cmd);
 936	struct scsi_device *sdp = cmd->device;
 937	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 938	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 939	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 940
 941	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
 942		switch (sdkp->zeroing_mode) {
 943		case SD_ZERO_WS16_UNMAP:
 944			return sd_setup_write_same16_cmnd(cmd, true);
 945		case SD_ZERO_WS10_UNMAP:
 946			return sd_setup_write_same10_cmnd(cmd, true);
 947		}
 948	}
 949
 950	if (sdp->no_write_same) {
 951		rq->rq_flags |= RQF_QUIET;
 952		return BLK_STS_TARGET;
 953	}
 954
 955	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
 956		return sd_setup_write_same16_cmnd(cmd, false);
 957
 958	return sd_setup_write_same10_cmnd(cmd, false);
 959}
 960
 961static void sd_config_write_same(struct scsi_disk *sdkp)
 962{
 963	struct request_queue *q = sdkp->disk->queue;
 964	unsigned int logical_block_size = sdkp->device->sector_size;
 965
 966	if (sdkp->device->no_write_same) {
 967		sdkp->max_ws_blocks = 0;
 968		goto out;
 969	}
 970
 971	/* Some devices can not handle block counts above 0xffff despite
 972	 * supporting WRITE SAME(16). Consequently we default to 64k
 973	 * blocks per I/O unless the device explicitly advertises a
 974	 * bigger limit.
 975	 */
 976	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
 977		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 978						   (u32)SD_MAX_WS16_BLOCKS);
 979	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
 980		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 981						   (u32)SD_MAX_WS10_BLOCKS);
 982	else {
 983		sdkp->device->no_write_same = 1;
 984		sdkp->max_ws_blocks = 0;
 985	}
 986
 987	if (sdkp->lbprz && sdkp->lbpws)
 988		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
 989	else if (sdkp->lbprz && sdkp->lbpws10)
 990		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
 991	else if (sdkp->max_ws_blocks)
 992		sdkp->zeroing_mode = SD_ZERO_WS;
 993	else
 994		sdkp->zeroing_mode = SD_ZERO_WRITE;
 995
 996	if (sdkp->max_ws_blocks &&
 997	    sdkp->physical_block_size > logical_block_size) {
 998		/*
 999		 * Reporting a maximum number of blocks that is not aligned
1000		 * on the device physical size would cause a large write same
1001		 * request to be split into physically unaligned chunks by
1002		 * __blkdev_issue_write_zeroes() even if the caller of this
1003		 * functions took care to align the large request. So make sure
1004		 * the maximum reported is aligned to the device physical block
1005		 * size. This is only an optional optimization for regular
1006		 * disks, but this is mandatory to avoid failure of large write
1007		 * same requests directed at sequential write required zones of
1008		 * host-managed ZBC disks.
1009		 */
1010		sdkp->max_ws_blocks =
1011			round_down(sdkp->max_ws_blocks,
1012				   bytes_to_logical(sdkp->device,
1013						    sdkp->physical_block_size));
1014	}
1015
1016out:
1017	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1018					 (logical_block_size >> 9));
1019}
1020
1021static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1022{
1023	struct request *rq = scsi_cmd_to_rq(cmd);
1024	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1025
1026	/* flush requests don't perform I/O, zero the S/G table */
1027	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1028
1029	if (cmd->device->use_16_for_sync) {
1030		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1031		cmd->cmd_len = 16;
1032	} else {
1033		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1034		cmd->cmd_len = 10;
1035	}
1036	cmd->transfersize = 0;
1037	cmd->allowed = sdkp->max_retries;
1038
1039	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1040	return BLK_STS_OK;
1041}
1042
1043static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1044				       sector_t lba, unsigned int nr_blocks,
1045				       unsigned char flags)
1046{
1047	cmd->cmd_len = SD_EXT_CDB_SIZE;
1048	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1049	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1050	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1051	cmd->cmnd[10] = flags;
 
1052	put_unaligned_be64(lba, &cmd->cmnd[12]);
1053	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1054	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1055
1056	return BLK_STS_OK;
1057}
1058
1059static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1060				       sector_t lba, unsigned int nr_blocks,
1061				       unsigned char flags)
1062{
1063	cmd->cmd_len  = 16;
1064	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1065	cmd->cmnd[1]  = flags;
1066	cmd->cmnd[14] = 0;
1067	cmd->cmnd[15] = 0;
1068	put_unaligned_be64(lba, &cmd->cmnd[2]);
1069	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1070
1071	return BLK_STS_OK;
1072}
1073
1074static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1075				       sector_t lba, unsigned int nr_blocks,
1076				       unsigned char flags)
1077{
1078	cmd->cmd_len = 10;
1079	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1080	cmd->cmnd[1] = flags;
1081	cmd->cmnd[6] = 0;
1082	cmd->cmnd[9] = 0;
1083	put_unaligned_be32(lba, &cmd->cmnd[2]);
1084	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1085
1086	return BLK_STS_OK;
1087}
1088
1089static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1090				      sector_t lba, unsigned int nr_blocks,
1091				      unsigned char flags)
1092{
1093	/* Avoid that 0 blocks gets translated into 256 blocks. */
1094	if (WARN_ON_ONCE(nr_blocks == 0))
1095		return BLK_STS_IOERR;
1096
1097	if (unlikely(flags & 0x8)) {
1098		/*
1099		 * This happens only if this drive failed 10byte rw
1100		 * command with ILLEGAL_REQUEST during operation and
1101		 * thus turned off use_10_for_rw.
1102		 */
1103		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1104		return BLK_STS_IOERR;
1105	}
1106
1107	cmd->cmd_len = 6;
1108	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1109	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1110	cmd->cmnd[2] = (lba >> 8) & 0xff;
1111	cmd->cmnd[3] = lba & 0xff;
1112	cmd->cmnd[4] = nr_blocks;
1113	cmd->cmnd[5] = 0;
1114
1115	return BLK_STS_OK;
1116}
1117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1119{
1120	struct request *rq = scsi_cmd_to_rq(cmd);
1121	struct scsi_device *sdp = cmd->device;
1122	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1123	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1124	sector_t threshold;
1125	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1126	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1127	bool write = rq_data_dir(rq) == WRITE;
1128	unsigned char protect, fua;
 
1129	blk_status_t ret;
1130	unsigned int dif;
1131	bool dix;
1132
1133	ret = scsi_alloc_sgtables(cmd);
1134	if (ret != BLK_STS_OK)
1135		return ret;
1136
1137	ret = BLK_STS_IOERR;
1138	if (!scsi_device_online(sdp) || sdp->changed) {
1139		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1140		goto fail;
1141	}
1142
1143	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1144		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1145		goto fail;
1146	}
1147
1148	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1149		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1150		goto fail;
1151	}
1152
1153	/*
1154	 * Some SD card readers can't handle accesses which touch the
1155	 * last one or two logical blocks. Split accesses as needed.
1156	 */
1157	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1158
1159	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1160		if (lba < threshold) {
1161			/* Access up to the threshold but not beyond */
1162			nr_blocks = threshold - lba;
1163		} else {
1164			/* Access only a single logical block */
1165			nr_blocks = 1;
1166		}
1167	}
1168
1169	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1170		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1171		if (ret)
1172			goto fail;
1173	}
1174
1175	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1176	dix = scsi_prot_sg_count(cmd);
1177	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
 
1178
1179	if (dif || dix)
1180		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1181	else
1182		protect = 0;
1183
1184	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1185		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1186					 protect | fua);
1187	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1188		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1189					 protect | fua);
1190	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1191		   sdp->use_10_for_rw || protect) {
1192		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1193					 protect | fua);
1194	} else {
1195		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1196					protect | fua);
1197	}
1198
1199	if (unlikely(ret != BLK_STS_OK))
1200		goto fail;
1201
1202	/*
1203	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1204	 * host adapter, it's safe to assume that we can at least transfer
1205	 * this many bytes between each connect / disconnect.
1206	 */
1207	cmd->transfersize = sdp->sector_size;
1208	cmd->underflow = nr_blocks << 9;
1209	cmd->allowed = sdkp->max_retries;
1210	cmd->sdb.length = nr_blocks * sdp->sector_size;
1211
1212	SCSI_LOG_HLQUEUE(1,
1213			 scmd_printk(KERN_INFO, cmd,
1214				     "%s: block=%llu, count=%d\n", __func__,
1215				     (unsigned long long)blk_rq_pos(rq),
1216				     blk_rq_sectors(rq)));
1217	SCSI_LOG_HLQUEUE(2,
1218			 scmd_printk(KERN_INFO, cmd,
1219				     "%s %d/%u 512 byte blocks.\n",
1220				     write ? "writing" : "reading", nr_blocks,
1221				     blk_rq_sectors(rq)));
1222
1223	/*
1224	 * This indicates that the command is ready from our end to be queued.
1225	 */
1226	return BLK_STS_OK;
1227fail:
1228	scsi_free_sgtables(cmd);
1229	return ret;
1230}
1231
1232static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1233{
1234	struct request *rq = scsi_cmd_to_rq(cmd);
1235
1236	switch (req_op(rq)) {
1237	case REQ_OP_DISCARD:
1238		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1239		case SD_LBP_UNMAP:
1240			return sd_setup_unmap_cmnd(cmd);
1241		case SD_LBP_WS16:
1242			return sd_setup_write_same16_cmnd(cmd, true);
1243		case SD_LBP_WS10:
1244			return sd_setup_write_same10_cmnd(cmd, true);
1245		case SD_LBP_ZERO:
1246			return sd_setup_write_same10_cmnd(cmd, false);
1247		default:
1248			return BLK_STS_TARGET;
1249		}
1250	case REQ_OP_WRITE_ZEROES:
1251		return sd_setup_write_zeroes_cmnd(cmd);
1252	case REQ_OP_FLUSH:
1253		return sd_setup_flush_cmnd(cmd);
1254	case REQ_OP_READ:
1255	case REQ_OP_WRITE:
1256	case REQ_OP_ZONE_APPEND:
1257		return sd_setup_read_write_cmnd(cmd);
1258	case REQ_OP_ZONE_RESET:
1259		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1260						   false);
1261	case REQ_OP_ZONE_RESET_ALL:
1262		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1263						   true);
1264	case REQ_OP_ZONE_OPEN:
1265		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1266	case REQ_OP_ZONE_CLOSE:
1267		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1268	case REQ_OP_ZONE_FINISH:
1269		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1270	default:
1271		WARN_ON_ONCE(1);
1272		return BLK_STS_NOTSUPP;
1273	}
1274}
1275
1276static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1277{
1278	struct request *rq = scsi_cmd_to_rq(SCpnt);
1279
1280	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1281		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1282}
1283
1284static bool sd_need_revalidate(struct block_device *bdev,
1285		struct scsi_disk *sdkp)
1286{
1287	if (sdkp->device->removable || sdkp->write_prot) {
1288		if (bdev_check_media_change(bdev))
1289			return true;
1290	}
1291
1292	/*
1293	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1294	 * nothing to do with partitions, BLKRRPART is used to force a full
1295	 * revalidate after things like a format for historical reasons.
1296	 */
1297	return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1298}
1299
1300/**
1301 *	sd_open - open a scsi disk device
1302 *	@bdev: Block device of the scsi disk to open
1303 *	@mode: FMODE_* mask
1304 *
1305 *	Returns 0 if successful. Returns a negated errno value in case 
1306 *	of error.
1307 *
1308 *	Note: This can be called from a user context (e.g. fsck(1) )
1309 *	or from within the kernel (e.g. as a result of a mount(1) ).
1310 *	In the latter case @inode and @filp carry an abridged amount
1311 *	of information as noted above.
1312 *
1313 *	Locking: called with bdev->bd_disk->open_mutex held.
1314 **/
1315static int sd_open(struct block_device *bdev, fmode_t mode)
1316{
1317	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1318	struct scsi_device *sdev = sdkp->device;
1319	int retval;
1320
1321	if (scsi_device_get(sdev))
1322		return -ENXIO;
1323
1324	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1325
1326	/*
1327	 * If the device is in error recovery, wait until it is done.
1328	 * If the device is offline, then disallow any access to it.
1329	 */
1330	retval = -ENXIO;
1331	if (!scsi_block_when_processing_errors(sdev))
1332		goto error_out;
1333
1334	if (sd_need_revalidate(bdev, sdkp))
1335		sd_revalidate_disk(bdev->bd_disk);
1336
1337	/*
1338	 * If the drive is empty, just let the open fail.
1339	 */
1340	retval = -ENOMEDIUM;
1341	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
 
1342		goto error_out;
1343
1344	/*
1345	 * If the device has the write protect tab set, have the open fail
1346	 * if the user expects to be able to write to the thing.
1347	 */
1348	retval = -EROFS;
1349	if (sdkp->write_prot && (mode & FMODE_WRITE))
1350		goto error_out;
1351
1352	/*
1353	 * It is possible that the disk changing stuff resulted in
1354	 * the device being taken offline.  If this is the case,
1355	 * report this to the user, and don't pretend that the
1356	 * open actually succeeded.
1357	 */
1358	retval = -ENXIO;
1359	if (!scsi_device_online(sdev))
1360		goto error_out;
1361
1362	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1363		if (scsi_block_when_processing_errors(sdev))
1364			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1365	}
1366
1367	return 0;
1368
1369error_out:
1370	scsi_device_put(sdev);
1371	return retval;	
1372}
1373
1374/**
1375 *	sd_release - invoked when the (last) close(2) is called on this
1376 *	scsi disk.
1377 *	@disk: disk to release
1378 *	@mode: FMODE_* mask
1379 *
1380 *	Returns 0. 
1381 *
1382 *	Note: may block (uninterruptible) if error recovery is underway
1383 *	on this disk.
1384 *
1385 *	Locking: called with bdev->bd_disk->open_mutex held.
1386 **/
1387static void sd_release(struct gendisk *disk, fmode_t mode)
1388{
1389	struct scsi_disk *sdkp = scsi_disk(disk);
1390	struct scsi_device *sdev = sdkp->device;
1391
1392	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1393
1394	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1395		if (scsi_block_when_processing_errors(sdev))
1396			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1397	}
1398
1399	scsi_device_put(sdev);
1400}
1401
1402static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1403{
1404	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1405	struct scsi_device *sdp = sdkp->device;
1406	struct Scsi_Host *host = sdp->host;
1407	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1408	int diskinfo[4];
1409
1410	/* default to most commonly used values */
1411	diskinfo[0] = 0x40;	/* 1 << 6 */
1412	diskinfo[1] = 0x20;	/* 1 << 5 */
1413	diskinfo[2] = capacity >> 11;
1414
1415	/* override with calculated, extended default, or driver values */
1416	if (host->hostt->bios_param)
1417		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1418	else
1419		scsicam_bios_param(bdev, capacity, diskinfo);
1420
1421	geo->heads = diskinfo[0];
1422	geo->sectors = diskinfo[1];
1423	geo->cylinders = diskinfo[2];
1424	return 0;
1425}
1426
1427/**
1428 *	sd_ioctl - process an ioctl
1429 *	@bdev: target block device
1430 *	@mode: FMODE_* mask
1431 *	@cmd: ioctl command number
1432 *	@arg: this is third argument given to ioctl(2) system call.
1433 *	Often contains a pointer.
1434 *
1435 *	Returns 0 if successful (some ioctls return positive numbers on
1436 *	success as well). Returns a negated errno value in case of error.
1437 *
1438 *	Note: most ioctls are forward onto the block subsystem or further
1439 *	down in the scsi subsystem.
1440 **/
1441static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1442		    unsigned int cmd, unsigned long arg)
1443{
1444	struct gendisk *disk = bdev->bd_disk;
1445	struct scsi_disk *sdkp = scsi_disk(disk);
1446	struct scsi_device *sdp = sdkp->device;
1447	void __user *p = (void __user *)arg;
1448	int error;
1449    
1450	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1451				    "cmd=0x%x\n", disk->disk_name, cmd));
1452
1453	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1454		return -ENOIOCTLCMD;
1455
1456	/*
1457	 * If we are in the middle of error recovery, don't let anyone
1458	 * else try and use this device.  Also, if error recovery fails, it
1459	 * may try and take the device offline, in which case all further
1460	 * access to the device is prohibited.
1461	 */
1462	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1463			(mode & FMODE_NDELAY) != 0);
1464	if (error)
1465		return error;
1466
1467	if (is_sed_ioctl(cmd))
1468		return sed_ioctl(sdkp->opal_dev, cmd, p);
1469	return scsi_ioctl(sdp, mode, cmd, p);
1470}
1471
1472static void set_media_not_present(struct scsi_disk *sdkp)
1473{
1474	if (sdkp->media_present)
1475		sdkp->device->changed = 1;
1476
1477	if (sdkp->device->removable) {
1478		sdkp->media_present = 0;
1479		sdkp->capacity = 0;
1480	}
1481}
1482
1483static int media_not_present(struct scsi_disk *sdkp,
1484			     struct scsi_sense_hdr *sshdr)
1485{
1486	if (!scsi_sense_valid(sshdr))
1487		return 0;
1488
1489	/* not invoked for commands that could return deferred errors */
1490	switch (sshdr->sense_key) {
1491	case UNIT_ATTENTION:
1492	case NOT_READY:
1493		/* medium not present */
1494		if (sshdr->asc == 0x3A) {
1495			set_media_not_present(sdkp);
1496			return 1;
1497		}
1498	}
1499	return 0;
1500}
1501
1502/**
1503 *	sd_check_events - check media events
1504 *	@disk: kernel device descriptor
1505 *	@clearing: disk events currently being cleared
1506 *
1507 *	Returns mask of DISK_EVENT_*.
1508 *
1509 *	Note: this function is invoked from the block subsystem.
1510 **/
1511static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1512{
1513	struct scsi_disk *sdkp = disk->private_data;
1514	struct scsi_device *sdp;
1515	int retval;
1516	bool disk_changed;
1517
1518	if (!sdkp)
1519		return 0;
1520
1521	sdp = sdkp->device;
1522	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1523
1524	/*
1525	 * If the device is offline, don't send any commands - just pretend as
1526	 * if the command failed.  If the device ever comes back online, we
1527	 * can deal with it then.  It is only because of unrecoverable errors
1528	 * that we would ever take a device offline in the first place.
1529	 */
1530	if (!scsi_device_online(sdp)) {
1531		set_media_not_present(sdkp);
1532		goto out;
1533	}
1534
1535	/*
1536	 * Using TEST_UNIT_READY enables differentiation between drive with
1537	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1538	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1539	 *
1540	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1541	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1542	 * sd_revalidate() is called.
1543	 */
1544	if (scsi_block_when_processing_errors(sdp)) {
1545		struct scsi_sense_hdr sshdr = { 0, };
1546
1547		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1548					      &sshdr);
1549
1550		/* failed to execute TUR, assume media not present */
1551		if (retval < 0 || host_byte(retval)) {
1552			set_media_not_present(sdkp);
1553			goto out;
1554		}
1555
1556		if (media_not_present(sdkp, &sshdr))
1557			goto out;
1558	}
1559
1560	/*
1561	 * For removable scsi disk we have to recognise the presence
1562	 * of a disk in the drive.
1563	 */
1564	if (!sdkp->media_present)
1565		sdp->changed = 1;
1566	sdkp->media_present = 1;
1567out:
1568	/*
1569	 * sdp->changed is set under the following conditions:
1570	 *
1571	 *	Medium present state has changed in either direction.
1572	 *	Device has indicated UNIT_ATTENTION.
1573	 */
1574	disk_changed = sdp->changed;
1575	sdp->changed = 0;
1576	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1577}
1578
1579static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1580{
1581	int retries, res;
1582	struct scsi_device *sdp = sdkp->device;
1583	const int timeout = sdp->request_queue->rq_timeout
1584		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1585	struct scsi_sense_hdr my_sshdr;
 
 
 
 
1586
1587	if (!scsi_device_online(sdp))
1588		return -ENODEV;
1589
1590	/* caller might not be interested in sense, but we need it */
1591	if (!sshdr)
1592		sshdr = &my_sshdr;
1593
1594	for (retries = 3; retries > 0; --retries) {
1595		unsigned char cmd[16] = { 0 };
1596
1597		if (sdp->use_16_for_sync)
1598			cmd[0] = SYNCHRONIZE_CACHE_16;
1599		else
1600			cmd[0] = SYNCHRONIZE_CACHE;
1601		/*
1602		 * Leave the rest of the command zero to indicate
1603		 * flush everything.
1604		 */
1605		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1606				timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1607		if (res == 0)
1608			break;
1609	}
1610
1611	if (res) {
1612		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1613
1614		if (res < 0)
1615			return res;
1616
1617		if (scsi_status_is_check_condition(res) &&
1618		    scsi_sense_valid(sshdr)) {
1619			sd_print_sense_hdr(sdkp, sshdr);
1620
1621			/* we need to evaluate the error return  */
1622			if (sshdr->asc == 0x3a ||	/* medium not present */
1623			    sshdr->asc == 0x20 ||	/* invalid command */
1624			    (sshdr->asc == 0x74 && sshdr->ascq == 0x71))	/* drive is password locked */
1625				/* this is no error here */
1626				return 0;
 
 
 
 
 
 
 
 
1627		}
1628
1629		switch (host_byte(res)) {
1630		/* ignore errors due to racing a disconnection */
1631		case DID_BAD_TARGET:
1632		case DID_NO_CONNECT:
1633			return 0;
1634		/* signal the upper layer it might try again */
1635		case DID_BUS_BUSY:
1636		case DID_IMM_RETRY:
1637		case DID_REQUEUE:
1638		case DID_SOFT_ERROR:
1639			return -EBUSY;
1640		default:
1641			return -EIO;
1642		}
1643	}
1644	return 0;
1645}
1646
1647static void sd_rescan(struct device *dev)
1648{
1649	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1650
1651	sd_revalidate_disk(sdkp->disk);
1652}
1653
1654static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1655		enum blk_unique_id type)
1656{
1657	struct scsi_device *sdev = scsi_disk(disk)->device;
1658	const struct scsi_vpd *vpd;
1659	const unsigned char *d;
1660	int ret = -ENXIO, len;
1661
1662	rcu_read_lock();
1663	vpd = rcu_dereference(sdev->vpd_pg83);
1664	if (!vpd)
1665		goto out_unlock;
1666
1667	ret = -EINVAL;
1668	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1669		/* we only care about designators with LU association */
1670		if (((d[1] >> 4) & 0x3) != 0x00)
1671			continue;
1672		if ((d[1] & 0xf) != type)
1673			continue;
1674
1675		/*
1676		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1677		 * keep looking as one with more entropy might still show up.
1678		 */
1679		len = d[3];
1680		if (len != 8 && len != 12 && len != 16)
1681			continue;
1682		ret = len;
1683		memcpy(id, d + 4, len);
1684		if (len == 16)
1685			break;
1686	}
1687out_unlock:
1688	rcu_read_unlock();
1689	return ret;
1690}
1691
1692static char sd_pr_type(enum pr_type type)
1693{
1694	switch (type) {
1695	case PR_WRITE_EXCLUSIVE:
1696		return 0x01;
1697	case PR_EXCLUSIVE_ACCESS:
1698		return 0x03;
1699	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1700		return 0x05;
1701	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1702		return 0x06;
1703	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1704		return 0x07;
1705	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1706		return 0x08;
1707	default:
1708		return 0;
1709	}
1710};
1711
1712static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1713{
1714	switch (host_byte(result)) {
1715	case DID_TRANSPORT_MARGINAL:
1716	case DID_TRANSPORT_DISRUPTED:
1717	case DID_BUS_BUSY:
1718		return PR_STS_RETRY_PATH_FAILURE;
1719	case DID_NO_CONNECT:
1720		return PR_STS_PATH_FAILED;
1721	case DID_TRANSPORT_FAILFAST:
1722		return PR_STS_PATH_FAST_FAILED;
1723	}
1724
1725	switch (status_byte(result)) {
1726	case SAM_STAT_RESERVATION_CONFLICT:
1727		return PR_STS_RESERVATION_CONFLICT;
1728	case SAM_STAT_CHECK_CONDITION:
1729		if (!scsi_sense_valid(sshdr))
1730			return PR_STS_IOERR;
1731
1732		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1733		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1734			return -EINVAL;
1735
1736		fallthrough;
1737	default:
1738		return PR_STS_IOERR;
1739	}
1740}
1741
1742static int sd_pr_command(struct block_device *bdev, u8 sa,
1743		u64 key, u64 sa_key, u8 type, u8 flags)
1744{
1745	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1746	struct scsi_device *sdev = sdkp->device;
1747	struct scsi_sense_hdr sshdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1748	int result;
1749	u8 cmd[16] = { 0, };
1750	u8 data[24] = { 0, };
1751
1752	cmd[0] = PERSISTENT_RESERVE_OUT;
1753	cmd[1] = sa;
1754	cmd[2] = type;
1755	put_unaligned_be32(sizeof(data), &cmd[5]);
1756
1757	put_unaligned_be64(key, &data[0]);
1758	put_unaligned_be64(sa_key, &data[8]);
1759	data[20] = flags;
1760
1761	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1762			&sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
 
1763
1764	if (scsi_status_is_check_condition(result) &&
1765	    scsi_sense_valid(&sshdr)) {
1766		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1767		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1768	}
1769
1770	if (result <= 0)
1771		return result;
1772
1773	return sd_scsi_to_pr_err(&sshdr, result);
1774}
1775
1776static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1777		u32 flags)
1778{
1779	if (flags & ~PR_FL_IGNORE_KEY)
1780		return -EOPNOTSUPP;
1781	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1782			old_key, new_key, 0,
1783			(1 << 0) /* APTPL */);
1784}
1785
1786static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1787		u32 flags)
1788{
1789	if (flags)
1790		return -EOPNOTSUPP;
1791	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
 
1792}
1793
1794static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1795{
1796	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
 
1797}
1798
1799static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1800		enum pr_type type, bool abort)
1801{
1802	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1803			     sd_pr_type(type), 0);
1804}
1805
1806static int sd_pr_clear(struct block_device *bdev, u64 key)
1807{
1808	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1809}
1810
1811static const struct pr_ops sd_pr_ops = {
1812	.pr_register	= sd_pr_register,
1813	.pr_reserve	= sd_pr_reserve,
1814	.pr_release	= sd_pr_release,
1815	.pr_preempt	= sd_pr_preempt,
1816	.pr_clear	= sd_pr_clear,
 
 
1817};
1818
1819static void scsi_disk_free_disk(struct gendisk *disk)
1820{
1821	struct scsi_disk *sdkp = scsi_disk(disk);
1822
1823	put_device(&sdkp->disk_dev);
1824}
1825
1826static const struct block_device_operations sd_fops = {
1827	.owner			= THIS_MODULE,
1828	.open			= sd_open,
1829	.release		= sd_release,
1830	.ioctl			= sd_ioctl,
1831	.getgeo			= sd_getgeo,
1832	.compat_ioctl		= blkdev_compat_ptr_ioctl,
1833	.check_events		= sd_check_events,
1834	.unlock_native_capacity	= sd_unlock_native_capacity,
1835	.report_zones		= sd_zbc_report_zones,
1836	.get_unique_id		= sd_get_unique_id,
1837	.free_disk		= scsi_disk_free_disk,
1838	.pr_ops			= &sd_pr_ops,
1839};
1840
1841/**
1842 *	sd_eh_reset - reset error handling callback
1843 *	@scmd:		sd-issued command that has failed
1844 *
1845 *	This function is called by the SCSI midlayer before starting
1846 *	SCSI EH. When counting medium access failures we have to be
1847 *	careful to register it only only once per device and SCSI EH run;
1848 *	there might be several timed out commands which will cause the
1849 *	'max_medium_access_timeouts' counter to trigger after the first
1850 *	SCSI EH run already and set the device to offline.
1851 *	So this function resets the internal counter before starting SCSI EH.
1852 **/
1853static void sd_eh_reset(struct scsi_cmnd *scmd)
1854{
1855	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1856
1857	/* New SCSI EH run, reset gate variable */
1858	sdkp->ignore_medium_access_errors = false;
1859}
1860
1861/**
1862 *	sd_eh_action - error handling callback
1863 *	@scmd:		sd-issued command that has failed
1864 *	@eh_disp:	The recovery disposition suggested by the midlayer
1865 *
1866 *	This function is called by the SCSI midlayer upon completion of an
1867 *	error test command (currently TEST UNIT READY). The result of sending
1868 *	the eh command is passed in eh_disp.  We're looking for devices that
1869 *	fail medium access commands but are OK with non access commands like
1870 *	test unit ready (so wrongly see the device as having a successful
1871 *	recovery)
1872 **/
1873static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1874{
1875	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1876	struct scsi_device *sdev = scmd->device;
1877
1878	if (!scsi_device_online(sdev) ||
1879	    !scsi_medium_access_command(scmd) ||
1880	    host_byte(scmd->result) != DID_TIME_OUT ||
1881	    eh_disp != SUCCESS)
1882		return eh_disp;
1883
1884	/*
1885	 * The device has timed out executing a medium access command.
1886	 * However, the TEST UNIT READY command sent during error
1887	 * handling completed successfully. Either the device is in the
1888	 * process of recovering or has it suffered an internal failure
1889	 * that prevents access to the storage medium.
1890	 */
1891	if (!sdkp->ignore_medium_access_errors) {
1892		sdkp->medium_access_timed_out++;
1893		sdkp->ignore_medium_access_errors = true;
1894	}
1895
1896	/*
1897	 * If the device keeps failing read/write commands but TEST UNIT
1898	 * READY always completes successfully we assume that medium
1899	 * access is no longer possible and take the device offline.
1900	 */
1901	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1902		scmd_printk(KERN_ERR, scmd,
1903			    "Medium access timeout failure. Offlining disk!\n");
1904		mutex_lock(&sdev->state_mutex);
1905		scsi_device_set_state(sdev, SDEV_OFFLINE);
1906		mutex_unlock(&sdev->state_mutex);
1907
1908		return SUCCESS;
1909	}
1910
1911	return eh_disp;
1912}
1913
1914static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1915{
1916	struct request *req = scsi_cmd_to_rq(scmd);
1917	struct scsi_device *sdev = scmd->device;
1918	unsigned int transferred, good_bytes;
1919	u64 start_lba, end_lba, bad_lba;
1920
1921	/*
1922	 * Some commands have a payload smaller than the device logical
1923	 * block size (e.g. INQUIRY on a 4K disk).
1924	 */
1925	if (scsi_bufflen(scmd) <= sdev->sector_size)
1926		return 0;
1927
1928	/* Check if we have a 'bad_lba' information */
1929	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1930				     SCSI_SENSE_BUFFERSIZE,
1931				     &bad_lba))
1932		return 0;
1933
1934	/*
1935	 * If the bad lba was reported incorrectly, we have no idea where
1936	 * the error is.
1937	 */
1938	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1939	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1940	if (bad_lba < start_lba || bad_lba >= end_lba)
1941		return 0;
1942
1943	/*
1944	 * resid is optional but mostly filled in.  When it's unused,
1945	 * its value is zero, so we assume the whole buffer transferred
1946	 */
1947	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1948
1949	/* This computation should always be done in terms of the
1950	 * resolution of the device's medium.
1951	 */
1952	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1953
1954	return min(good_bytes, transferred);
1955}
1956
1957/**
1958 *	sd_done - bottom half handler: called when the lower level
1959 *	driver has completed (successfully or otherwise) a scsi command.
1960 *	@SCpnt: mid-level's per command structure.
1961 *
1962 *	Note: potentially run from within an ISR. Must not block.
1963 **/
1964static int sd_done(struct scsi_cmnd *SCpnt)
1965{
1966	int result = SCpnt->result;
1967	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1968	unsigned int sector_size = SCpnt->device->sector_size;
1969	unsigned int resid;
1970	struct scsi_sense_hdr sshdr;
1971	struct request *req = scsi_cmd_to_rq(SCpnt);
1972	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
1973	int sense_valid = 0;
1974	int sense_deferred = 0;
1975
1976	switch (req_op(req)) {
1977	case REQ_OP_DISCARD:
1978	case REQ_OP_WRITE_ZEROES:
1979	case REQ_OP_ZONE_RESET:
1980	case REQ_OP_ZONE_RESET_ALL:
1981	case REQ_OP_ZONE_OPEN:
1982	case REQ_OP_ZONE_CLOSE:
1983	case REQ_OP_ZONE_FINISH:
1984		if (!result) {
1985			good_bytes = blk_rq_bytes(req);
1986			scsi_set_resid(SCpnt, 0);
1987		} else {
1988			good_bytes = 0;
1989			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1990		}
1991		break;
1992	default:
1993		/*
1994		 * In case of bogus fw or device, we could end up having
1995		 * an unaligned partial completion. Check this here and force
1996		 * alignment.
1997		 */
1998		resid = scsi_get_resid(SCpnt);
1999		if (resid & (sector_size - 1)) {
2000			sd_printk(KERN_INFO, sdkp,
2001				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2002				resid, sector_size);
2003			scsi_print_command(SCpnt);
2004			resid = min(scsi_bufflen(SCpnt),
2005				    round_up(resid, sector_size));
2006			scsi_set_resid(SCpnt, resid);
2007		}
2008	}
2009
2010	if (result) {
2011		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2012		if (sense_valid)
2013			sense_deferred = scsi_sense_is_deferred(&sshdr);
2014	}
2015	sdkp->medium_access_timed_out = 0;
2016
2017	if (!scsi_status_is_check_condition(result) &&
2018	    (!sense_valid || sense_deferred))
2019		goto out;
2020
2021	switch (sshdr.sense_key) {
2022	case HARDWARE_ERROR:
2023	case MEDIUM_ERROR:
2024		good_bytes = sd_completed_bytes(SCpnt);
2025		break;
2026	case RECOVERED_ERROR:
2027		good_bytes = scsi_bufflen(SCpnt);
2028		break;
2029	case NO_SENSE:
2030		/* This indicates a false check condition, so ignore it.  An
2031		 * unknown amount of data was transferred so treat it as an
2032		 * error.
2033		 */
2034		SCpnt->result = 0;
2035		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2036		break;
2037	case ABORTED_COMMAND:
2038		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2039			good_bytes = sd_completed_bytes(SCpnt);
2040		break;
2041	case ILLEGAL_REQUEST:
2042		switch (sshdr.asc) {
2043		case 0x10:	/* DIX: Host detected corruption */
2044			good_bytes = sd_completed_bytes(SCpnt);
2045			break;
2046		case 0x20:	/* INVALID COMMAND OPCODE */
2047		case 0x24:	/* INVALID FIELD IN CDB */
2048			switch (SCpnt->cmnd[0]) {
2049			case UNMAP:
2050				sd_config_discard(sdkp, SD_LBP_DISABLE);
2051				break;
2052			case WRITE_SAME_16:
2053			case WRITE_SAME:
2054				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2055					sd_config_discard(sdkp, SD_LBP_DISABLE);
2056				} else {
2057					sdkp->device->no_write_same = 1;
2058					sd_config_write_same(sdkp);
2059					req->rq_flags |= RQF_QUIET;
2060				}
2061				break;
2062			}
2063		}
2064		break;
2065	default:
2066		break;
2067	}
2068
2069 out:
2070	if (sd_is_zoned(sdkp))
2071		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2072
2073	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2074					   "sd_done: completed %d of %d bytes\n",
2075					   good_bytes, scsi_bufflen(SCpnt)));
2076
2077	return good_bytes;
2078}
2079
2080/*
2081 * spinup disk - called only in sd_revalidate_disk()
2082 */
2083static void
2084sd_spinup_disk(struct scsi_disk *sdkp)
2085{
2086	unsigned char cmd[10];
2087	unsigned long spintime_expire = 0;
2088	int retries, spintime;
2089	unsigned int the_result;
2090	struct scsi_sense_hdr sshdr;
 
 
 
2091	int sense_valid = 0;
2092
2093	spintime = 0;
2094
2095	/* Spin up drives, as required.  Only do this at boot time */
2096	/* Spinup needs to be done for module loads too. */
2097	do {
2098		retries = 0;
2099
2100		do {
2101			bool media_was_present = sdkp->media_present;
2102
2103			cmd[0] = TEST_UNIT_READY;
2104			memset((void *) &cmd[1], 0, 9);
2105
2106			the_result = scsi_execute_req(sdkp->device, cmd,
2107						      DMA_NONE, NULL, 0,
2108						      &sshdr, SD_TIMEOUT,
2109						      sdkp->max_retries, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2110
2111			/*
2112			 * If the drive has indicated to us that it
2113			 * doesn't have any media in it, don't bother
2114			 * with any more polling.
2115			 */
2116			if (media_not_present(sdkp, &sshdr)) {
2117				if (media_was_present)
2118					sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2119				return;
2120			}
2121
2122			if (the_result)
2123				sense_valid = scsi_sense_valid(&sshdr);
2124			retries++;
2125		} while (retries < 3 &&
2126			 (!scsi_status_is_good(the_result) ||
2127			  (scsi_status_is_check_condition(the_result) &&
2128			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2129
2130		if (!scsi_status_is_check_condition(the_result)) {
2131			/* no sense, TUR either succeeded or failed
2132			 * with a status error */
2133			if(!spintime && !scsi_status_is_good(the_result)) {
2134				sd_print_result(sdkp, "Test Unit Ready failed",
2135						the_result);
2136			}
2137			break;
2138		}
2139
2140		/*
2141		 * The device does not want the automatic start to be issued.
2142		 */
2143		if (sdkp->device->no_start_on_add)
2144			break;
2145
2146		if (sense_valid && sshdr.sense_key == NOT_READY) {
2147			if (sshdr.asc == 4 && sshdr.ascq == 3)
2148				break;	/* manual intervention required */
2149			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2150				break;	/* standby */
2151			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2152				break;	/* unavailable */
2153			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2154				break;	/* sanitize in progress */
 
 
 
 
2155			/*
2156			 * Issue command to spin up drive when not ready
2157			 */
2158			if (!spintime) {
2159				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2160				cmd[0] = START_STOP;
2161				cmd[1] = 1;	/* Return immediately */
2162				memset((void *) &cmd[2], 0, 8);
2163				cmd[4] = 1;	/* Start spin cycle */
2164				if (sdkp->device->start_stop_pwr_cond)
2165					cmd[4] |= 1 << 4;
2166				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2167						 NULL, 0, &sshdr,
2168						 SD_TIMEOUT, sdkp->max_retries,
2169						 NULL);
2170				spintime_expire = jiffies + 100 * HZ;
2171				spintime = 1;
2172			}
2173			/* Wait 1 second for next try */
2174			msleep(1000);
2175			printk(KERN_CONT ".");
2176
2177		/*
2178		 * Wait for USB flash devices with slow firmware.
2179		 * Yes, this sense key/ASC combination shouldn't
2180		 * occur here.  It's characteristic of these devices.
2181		 */
2182		} else if (sense_valid &&
2183				sshdr.sense_key == UNIT_ATTENTION &&
2184				sshdr.asc == 0x28) {
2185			if (!spintime) {
2186				spintime_expire = jiffies + 5 * HZ;
2187				spintime = 1;
2188			}
2189			/* Wait 1 second for next try */
2190			msleep(1000);
2191		} else {
2192			/* we don't understand the sense code, so it's
2193			 * probably pointless to loop */
2194			if(!spintime) {
2195				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2196				sd_print_sense_hdr(sdkp, &sshdr);
2197			}
2198			break;
2199		}
2200				
2201	} while (spintime && time_before_eq(jiffies, spintime_expire));
2202
2203	if (spintime) {
2204		if (scsi_status_is_good(the_result))
2205			printk(KERN_CONT "ready\n");
2206		else
2207			printk(KERN_CONT "not responding...\n");
2208	}
2209}
2210
2211/*
2212 * Determine whether disk supports Data Integrity Field.
2213 */
2214static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2215{
2216	struct scsi_device *sdp = sdkp->device;
2217	u8 type;
2218
2219	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2220		sdkp->protection_type = 0;
2221		return 0;
2222	}
2223
2224	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2225
2226	if (type > T10_PI_TYPE3_PROTECTION) {
2227		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2228			  " protection type %u. Disabling disk!\n",
2229			  type);
2230		sdkp->protection_type = 0;
2231		return -ENODEV;
2232	}
2233
2234	sdkp->protection_type = type;
2235
2236	return 0;
2237}
2238
2239static void sd_config_protection(struct scsi_disk *sdkp)
2240{
2241	struct scsi_device *sdp = sdkp->device;
2242
2243	if (!sdkp->first_scan)
2244		return;
2245
2246	sd_dif_config_host(sdkp);
2247
2248	if (!sdkp->protection_type)
2249		return;
2250
2251	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2252		sd_printk(KERN_NOTICE, sdkp,
2253			  "Disabling DIF Type %u protection\n",
2254			  sdkp->protection_type);
2255		sdkp->protection_type = 0;
2256	}
2257
2258	sd_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2259		  sdkp->protection_type);
2260}
2261
2262static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2263			struct scsi_sense_hdr *sshdr, int sense_valid,
2264			int the_result)
2265{
2266	if (sense_valid)
2267		sd_print_sense_hdr(sdkp, sshdr);
2268	else
2269		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2270
2271	/*
2272	 * Set dirty bit for removable devices if not ready -
2273	 * sometimes drives will not report this properly.
2274	 */
2275	if (sdp->removable &&
2276	    sense_valid && sshdr->sense_key == NOT_READY)
2277		set_media_not_present(sdkp);
2278
2279	/*
2280	 * We used to set media_present to 0 here to indicate no media
2281	 * in the drive, but some drives fail read capacity even with
2282	 * media present, so we can't do that.
2283	 */
2284	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2285}
2286
2287#define RC16_LEN 32
2288#if RC16_LEN > SD_BUF_SIZE
2289#error RC16_LEN must not be more than SD_BUF_SIZE
2290#endif
2291
2292#define READ_CAPACITY_RETRIES_ON_RESET	10
2293
2294static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2295						unsigned char *buffer)
2296{
2297	unsigned char cmd[16];
2298	struct scsi_sense_hdr sshdr;
 
 
 
2299	int sense_valid = 0;
2300	int the_result;
2301	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2302	unsigned int alignment;
2303	unsigned long long lba;
2304	unsigned sector_size;
2305
2306	if (sdp->no_read_capacity_16)
2307		return -EINVAL;
2308
2309	do {
2310		memset(cmd, 0, 16);
2311		cmd[0] = SERVICE_ACTION_IN_16;
2312		cmd[1] = SAI_READ_CAPACITY_16;
2313		cmd[13] = RC16_LEN;
2314		memset(buffer, 0, RC16_LEN);
2315
2316		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2317					buffer, RC16_LEN, &sshdr,
2318					SD_TIMEOUT, sdkp->max_retries, NULL);
 
 
 
2319
2320		if (media_not_present(sdkp, &sshdr))
2321			return -ENODEV;
2322
2323		if (the_result > 0) {
2324			sense_valid = scsi_sense_valid(&sshdr);
2325			if (sense_valid &&
2326			    sshdr.sense_key == ILLEGAL_REQUEST &&
2327			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2328			    sshdr.ascq == 0x00)
2329				/* Invalid Command Operation Code or
2330				 * Invalid Field in CDB, just retry
2331				 * silently with RC10 */
2332				return -EINVAL;
2333			if (sense_valid &&
2334			    sshdr.sense_key == UNIT_ATTENTION &&
2335			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2336				/* Device reset might occur several times,
2337				 * give it one more chance */
2338				if (--reset_retries > 0)
2339					continue;
2340		}
2341		retries--;
2342
2343	} while (the_result && retries);
2344
2345	if (the_result) {
2346		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2347		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2348		return -EINVAL;
2349	}
2350
2351	sector_size = get_unaligned_be32(&buffer[8]);
2352	lba = get_unaligned_be64(&buffer[0]);
2353
2354	if (sd_read_protection_type(sdkp, buffer) < 0) {
2355		sdkp->capacity = 0;
2356		return -ENODEV;
2357	}
2358
2359	/* Logical blocks per physical block exponent */
2360	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2361
2362	/* RC basis */
2363	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2364
2365	/* Lowest aligned logical block */
2366	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2367	blk_queue_alignment_offset(sdp->request_queue, alignment);
2368	if (alignment && sdkp->first_scan)
2369		sd_printk(KERN_NOTICE, sdkp,
2370			  "physical block alignment offset: %u\n", alignment);
2371
2372	if (buffer[14] & 0x80) { /* LBPME */
2373		sdkp->lbpme = 1;
2374
2375		if (buffer[14] & 0x40) /* LBPRZ */
2376			sdkp->lbprz = 1;
2377
2378		sd_config_discard(sdkp, SD_LBP_WS16);
2379	}
2380
2381	sdkp->capacity = lba + 1;
2382	return sector_size;
2383}
2384
2385static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2386						unsigned char *buffer)
2387{
2388	unsigned char cmd[16];
2389	struct scsi_sense_hdr sshdr;
 
 
 
2390	int sense_valid = 0;
2391	int the_result;
2392	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2393	sector_t lba;
2394	unsigned sector_size;
2395
2396	do {
2397		cmd[0] = READ_CAPACITY;
2398		memset(&cmd[1], 0, 9);
2399		memset(buffer, 0, 8);
2400
2401		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2402					buffer, 8, &sshdr,
2403					SD_TIMEOUT, sdkp->max_retries, NULL);
2404
2405		if (media_not_present(sdkp, &sshdr))
2406			return -ENODEV;
2407
2408		if (the_result > 0) {
2409			sense_valid = scsi_sense_valid(&sshdr);
2410			if (sense_valid &&
2411			    sshdr.sense_key == UNIT_ATTENTION &&
2412			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2413				/* Device reset might occur several times,
2414				 * give it one more chance */
2415				if (--reset_retries > 0)
2416					continue;
2417		}
2418		retries--;
2419
2420	} while (the_result && retries);
2421
2422	if (the_result) {
2423		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2424		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2425		return -EINVAL;
2426	}
2427
2428	sector_size = get_unaligned_be32(&buffer[4]);
2429	lba = get_unaligned_be32(&buffer[0]);
2430
2431	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2432		/* Some buggy (usb cardreader) devices return an lba of
2433		   0xffffffff when the want to report a size of 0 (with
2434		   which they really mean no media is present) */
2435		sdkp->capacity = 0;
2436		sdkp->physical_block_size = sector_size;
2437		return sector_size;
2438	}
2439
2440	sdkp->capacity = lba + 1;
2441	sdkp->physical_block_size = sector_size;
2442	return sector_size;
2443}
2444
2445static int sd_try_rc16_first(struct scsi_device *sdp)
2446{
2447	if (sdp->host->max_cmd_len < 16)
2448		return 0;
2449	if (sdp->try_rc_10_first)
2450		return 0;
2451	if (sdp->scsi_level > SCSI_SPC_2)
2452		return 1;
2453	if (scsi_device_protection(sdp))
2454		return 1;
2455	return 0;
2456}
2457
2458/*
2459 * read disk capacity
2460 */
2461static void
2462sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2463{
2464	int sector_size;
2465	struct scsi_device *sdp = sdkp->device;
2466
2467	if (sd_try_rc16_first(sdp)) {
2468		sector_size = read_capacity_16(sdkp, sdp, buffer);
2469		if (sector_size == -EOVERFLOW)
2470			goto got_data;
2471		if (sector_size == -ENODEV)
2472			return;
2473		if (sector_size < 0)
2474			sector_size = read_capacity_10(sdkp, sdp, buffer);
2475		if (sector_size < 0)
2476			return;
2477	} else {
2478		sector_size = read_capacity_10(sdkp, sdp, buffer);
2479		if (sector_size == -EOVERFLOW)
2480			goto got_data;
2481		if (sector_size < 0)
2482			return;
2483		if ((sizeof(sdkp->capacity) > 4) &&
2484		    (sdkp->capacity > 0xffffffffULL)) {
2485			int old_sector_size = sector_size;
2486			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2487					"Trying to use READ CAPACITY(16).\n");
2488			sector_size = read_capacity_16(sdkp, sdp, buffer);
2489			if (sector_size < 0) {
2490				sd_printk(KERN_NOTICE, sdkp,
2491					"Using 0xffffffff as device size\n");
2492				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2493				sector_size = old_sector_size;
2494				goto got_data;
2495			}
2496			/* Remember that READ CAPACITY(16) succeeded */
2497			sdp->try_rc_10_first = 0;
2498		}
2499	}
2500
2501	/* Some devices are known to return the total number of blocks,
2502	 * not the highest block number.  Some devices have versions
2503	 * which do this and others which do not.  Some devices we might
2504	 * suspect of doing this but we don't know for certain.
2505	 *
2506	 * If we know the reported capacity is wrong, decrement it.  If
2507	 * we can only guess, then assume the number of blocks is even
2508	 * (usually true but not always) and err on the side of lowering
2509	 * the capacity.
2510	 */
2511	if (sdp->fix_capacity ||
2512	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2513		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2514				"from its reported value: %llu\n",
2515				(unsigned long long) sdkp->capacity);
2516		--sdkp->capacity;
2517	}
2518
2519got_data:
2520	if (sector_size == 0) {
2521		sector_size = 512;
2522		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2523			  "assuming 512.\n");
2524	}
2525
2526	if (sector_size != 512 &&
2527	    sector_size != 1024 &&
2528	    sector_size != 2048 &&
2529	    sector_size != 4096) {
2530		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2531			  sector_size);
2532		/*
2533		 * The user might want to re-format the drive with
2534		 * a supported sectorsize.  Once this happens, it
2535		 * would be relatively trivial to set the thing up.
2536		 * For this reason, we leave the thing in the table.
2537		 */
2538		sdkp->capacity = 0;
2539		/*
2540		 * set a bogus sector size so the normal read/write
2541		 * logic in the block layer will eventually refuse any
2542		 * request on this device without tripping over power
2543		 * of two sector size assumptions
2544		 */
2545		sector_size = 512;
2546	}
2547	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2548	blk_queue_physical_block_size(sdp->request_queue,
2549				      sdkp->physical_block_size);
2550	sdkp->device->sector_size = sector_size;
2551
2552	if (sdkp->capacity > 0xffffffff)
2553		sdp->use_16_for_rw = 1;
2554
2555}
2556
2557/*
2558 * Print disk capacity
2559 */
2560static void
2561sd_print_capacity(struct scsi_disk *sdkp,
2562		  sector_t old_capacity)
2563{
2564	int sector_size = sdkp->device->sector_size;
2565	char cap_str_2[10], cap_str_10[10];
2566
2567	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2568		return;
2569
2570	string_get_size(sdkp->capacity, sector_size,
2571			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2572	string_get_size(sdkp->capacity, sector_size,
2573			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2574
2575	sd_printk(KERN_NOTICE, sdkp,
2576		  "%llu %d-byte logical blocks: (%s/%s)\n",
2577		  (unsigned long long)sdkp->capacity,
2578		  sector_size, cap_str_10, cap_str_2);
2579
2580	if (sdkp->physical_block_size != sector_size)
2581		sd_printk(KERN_NOTICE, sdkp,
2582			  "%u-byte physical blocks\n",
2583			  sdkp->physical_block_size);
2584}
2585
2586/* called with buffer of length 512 */
2587static inline int
2588sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2589		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2590		 struct scsi_sense_hdr *sshdr)
2591{
2592	/*
2593	 * If we must use MODE SENSE(10), make sure that the buffer length
2594	 * is at least 8 bytes so that the mode sense header fits.
2595	 */
2596	if (sdkp->device->use_10_for_ms && len < 8)
2597		len = 8;
2598
2599	return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2600			       SD_TIMEOUT, sdkp->max_retries, data,
2601			       sshdr);
2602}
2603
2604/*
2605 * read write protect setting, if possible - called only in sd_revalidate_disk()
2606 * called with buffer of length SD_BUF_SIZE
2607 */
2608static void
2609sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2610{
2611	int res;
2612	struct scsi_device *sdp = sdkp->device;
2613	struct scsi_mode_data data;
2614	int old_wp = sdkp->write_prot;
2615
2616	set_disk_ro(sdkp->disk, 0);
2617	if (sdp->skip_ms_page_3f) {
2618		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2619		return;
2620	}
2621
2622	if (sdp->use_192_bytes_for_3f) {
2623		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2624	} else {
2625		/*
2626		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2627		 * We have to start carefully: some devices hang if we ask
2628		 * for more than is available.
2629		 */
2630		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2631
2632		/*
2633		 * Second attempt: ask for page 0 When only page 0 is
2634		 * implemented, a request for page 3F may return Sense Key
2635		 * 5: Illegal Request, Sense Code 24: Invalid field in
2636		 * CDB.
2637		 */
2638		if (res < 0)
2639			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2640
2641		/*
2642		 * Third attempt: ask 255 bytes, as we did earlier.
2643		 */
2644		if (res < 0)
2645			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2646					       &data, NULL);
2647	}
2648
2649	if (res < 0) {
2650		sd_first_printk(KERN_WARNING, sdkp,
2651			  "Test WP failed, assume Write Enabled\n");
2652	} else {
2653		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2654		set_disk_ro(sdkp->disk, sdkp->write_prot);
2655		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2656			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2657				  sdkp->write_prot ? "on" : "off");
2658			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2659		}
2660	}
2661}
2662
2663/*
2664 * sd_read_cache_type - called only from sd_revalidate_disk()
2665 * called with buffer of length SD_BUF_SIZE
2666 */
2667static void
2668sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2669{
2670	int len = 0, res;
2671	struct scsi_device *sdp = sdkp->device;
2672
2673	int dbd;
2674	int modepage;
2675	int first_len;
2676	struct scsi_mode_data data;
2677	struct scsi_sense_hdr sshdr;
2678	int old_wce = sdkp->WCE;
2679	int old_rcd = sdkp->RCD;
2680	int old_dpofua = sdkp->DPOFUA;
2681
2682
2683	if (sdkp->cache_override)
2684		return;
2685
2686	first_len = 4;
2687	if (sdp->skip_ms_page_8) {
2688		if (sdp->type == TYPE_RBC)
2689			goto defaults;
2690		else {
2691			if (sdp->skip_ms_page_3f)
2692				goto defaults;
2693			modepage = 0x3F;
2694			if (sdp->use_192_bytes_for_3f)
2695				first_len = 192;
2696			dbd = 0;
2697		}
2698	} else if (sdp->type == TYPE_RBC) {
2699		modepage = 6;
2700		dbd = 8;
2701	} else {
2702		modepage = 8;
2703		dbd = 0;
2704	}
2705
2706	/* cautiously ask */
2707	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2708			&data, &sshdr);
2709
2710	if (res < 0)
2711		goto bad_sense;
2712
2713	if (!data.header_length) {
2714		modepage = 6;
2715		first_len = 0;
2716		sd_first_printk(KERN_ERR, sdkp,
2717				"Missing header in MODE_SENSE response\n");
2718	}
2719
2720	/* that went OK, now ask for the proper length */
2721	len = data.length;
2722
2723	/*
2724	 * We're only interested in the first three bytes, actually.
2725	 * But the data cache page is defined for the first 20.
2726	 */
2727	if (len < 3)
2728		goto bad_sense;
2729	else if (len > SD_BUF_SIZE) {
2730		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2731			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2732		len = SD_BUF_SIZE;
2733	}
2734	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2735		len = 192;
2736
2737	/* Get the data */
2738	if (len > first_len)
2739		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2740				&data, &sshdr);
2741
2742	if (!res) {
2743		int offset = data.header_length + data.block_descriptor_length;
2744
2745		while (offset < len) {
2746			u8 page_code = buffer[offset] & 0x3F;
2747			u8 spf       = buffer[offset] & 0x40;
2748
2749			if (page_code == 8 || page_code == 6) {
2750				/* We're interested only in the first 3 bytes.
2751				 */
2752				if (len - offset <= 2) {
2753					sd_first_printk(KERN_ERR, sdkp,
2754						"Incomplete mode parameter "
2755							"data\n");
2756					goto defaults;
2757				} else {
2758					modepage = page_code;
2759					goto Page_found;
2760				}
2761			} else {
2762				/* Go to the next page */
2763				if (spf && len - offset > 3)
2764					offset += 4 + (buffer[offset+2] << 8) +
2765						buffer[offset+3];
2766				else if (!spf && len - offset > 1)
2767					offset += 2 + buffer[offset+1];
2768				else {
2769					sd_first_printk(KERN_ERR, sdkp,
2770							"Incomplete mode "
2771							"parameter data\n");
2772					goto defaults;
2773				}
2774			}
2775		}
2776
2777		sd_first_printk(KERN_WARNING, sdkp,
2778				"No Caching mode page found\n");
2779		goto defaults;
2780
2781	Page_found:
2782		if (modepage == 8) {
2783			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2784			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2785		} else {
2786			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2787			sdkp->RCD = 0;
2788		}
2789
2790		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2791		if (sdp->broken_fua) {
2792			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2793			sdkp->DPOFUA = 0;
2794		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2795			   !sdkp->device->use_16_for_rw) {
2796			sd_first_printk(KERN_NOTICE, sdkp,
2797				  "Uses READ/WRITE(6), disabling FUA\n");
2798			sdkp->DPOFUA = 0;
2799		}
2800
2801		/* No cache flush allowed for write protected devices */
2802		if (sdkp->WCE && sdkp->write_prot)
2803			sdkp->WCE = 0;
2804
2805		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2806		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2807			sd_printk(KERN_NOTICE, sdkp,
2808				  "Write cache: %s, read cache: %s, %s\n",
2809				  sdkp->WCE ? "enabled" : "disabled",
2810				  sdkp->RCD ? "disabled" : "enabled",
2811				  sdkp->DPOFUA ? "supports DPO and FUA"
2812				  : "doesn't support DPO or FUA");
2813
2814		return;
2815	}
2816
2817bad_sense:
2818	if (scsi_sense_valid(&sshdr) &&
2819	    sshdr.sense_key == ILLEGAL_REQUEST &&
2820	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2821		/* Invalid field in CDB */
2822		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2823	else
2824		sd_first_printk(KERN_ERR, sdkp,
2825				"Asking for cache data failed\n");
2826
2827defaults:
2828	if (sdp->wce_default_on) {
2829		sd_first_printk(KERN_NOTICE, sdkp,
2830				"Assuming drive cache: write back\n");
2831		sdkp->WCE = 1;
2832	} else {
2833		sd_first_printk(KERN_WARNING, sdkp,
2834				"Assuming drive cache: write through\n");
2835		sdkp->WCE = 0;
2836	}
2837	sdkp->RCD = 0;
2838	sdkp->DPOFUA = 0;
2839}
2840
2841/*
2842 * The ATO bit indicates whether the DIF application tag is available
2843 * for use by the operating system.
2844 */
2845static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2846{
2847	int res, offset;
2848	struct scsi_device *sdp = sdkp->device;
2849	struct scsi_mode_data data;
2850	struct scsi_sense_hdr sshdr;
2851
2852	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2853		return;
2854
2855	if (sdkp->protection_type == 0)
2856		return;
2857
2858	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2859			      sdkp->max_retries, &data, &sshdr);
2860
2861	if (res < 0 || !data.header_length ||
2862	    data.length < 6) {
2863		sd_first_printk(KERN_WARNING, sdkp,
2864			  "getting Control mode page failed, assume no ATO\n");
2865
2866		if (scsi_sense_valid(&sshdr))
2867			sd_print_sense_hdr(sdkp, &sshdr);
2868
2869		return;
2870	}
2871
2872	offset = data.header_length + data.block_descriptor_length;
2873
2874	if ((buffer[offset] & 0x3f) != 0x0a) {
2875		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2876		return;
2877	}
2878
2879	if ((buffer[offset + 5] & 0x80) == 0)
2880		return;
2881
2882	sdkp->ATO = 1;
2883
2884	return;
2885}
2886
2887/**
2888 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2889 * @sdkp: disk to query
2890 */
2891static void sd_read_block_limits(struct scsi_disk *sdkp)
2892{
2893	struct scsi_vpd *vpd;
2894
2895	rcu_read_lock();
2896
2897	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
2898	if (!vpd || vpd->len < 16)
2899		goto out;
2900
2901	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
2902	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
2903	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
2904
2905	if (vpd->len >= 64) {
2906		unsigned int lba_count, desc_count;
2907
2908		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
2909
2910		if (!sdkp->lbpme)
2911			goto out;
2912
2913		lba_count = get_unaligned_be32(&vpd->data[20]);
2914		desc_count = get_unaligned_be32(&vpd->data[24]);
2915
2916		if (lba_count && desc_count)
2917			sdkp->max_unmap_blocks = lba_count;
2918
2919		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
2920
2921		if (vpd->data[32] & 0x80)
2922			sdkp->unmap_alignment =
2923				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
2924
2925		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2926
2927			if (sdkp->max_unmap_blocks)
2928				sd_config_discard(sdkp, SD_LBP_UNMAP);
2929			else
2930				sd_config_discard(sdkp, SD_LBP_WS16);
2931
2932		} else {	/* LBP VPD page tells us what to use */
2933			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2934				sd_config_discard(sdkp, SD_LBP_UNMAP);
2935			else if (sdkp->lbpws)
2936				sd_config_discard(sdkp, SD_LBP_WS16);
2937			else if (sdkp->lbpws10)
2938				sd_config_discard(sdkp, SD_LBP_WS10);
2939			else
2940				sd_config_discard(sdkp, SD_LBP_DISABLE);
2941		}
2942	}
2943
2944 out:
2945	rcu_read_unlock();
2946}
2947
2948/**
2949 * sd_read_block_characteristics - Query block dev. characteristics
2950 * @sdkp: disk to query
2951 */
2952static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2953{
2954	struct request_queue *q = sdkp->disk->queue;
2955	struct scsi_vpd *vpd;
2956	u16 rot;
2957	u8 zoned;
2958
2959	rcu_read_lock();
2960	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
2961
2962	if (!vpd || vpd->len < 8) {
2963		rcu_read_unlock();
2964	        return;
2965	}
2966
2967	rot = get_unaligned_be16(&vpd->data[4]);
2968	zoned = (vpd->data[8] >> 4) & 3;
2969	rcu_read_unlock();
2970
2971	if (rot == 1) {
2972		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2973		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2974	}
2975
 
 
2976	if (sdkp->device->type == TYPE_ZBC) {
2977		/* Host-managed */
2978		disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
 
 
 
 
 
 
 
 
 
2979	} else {
2980		sdkp->zoned = zoned;
2981		if (sdkp->zoned == 1) {
2982			/* Host-aware */
2983			disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
2984		} else {
2985			/* Regular disk or drive managed disk */
2986			disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
2987		}
2988	}
 
2989
2990	if (!sdkp->first_scan)
2991		return;
2992
2993	if (blk_queue_is_zoned(q)) {
2994		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2995		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2996	} else {
2997		if (sdkp->zoned == 1)
2998			sd_printk(KERN_NOTICE, sdkp,
2999				  "Host-aware SMR disk used as regular disk\n");
3000		else if (sdkp->zoned == 2)
3001			sd_printk(KERN_NOTICE, sdkp,
3002				  "Drive-managed SMR disk\n");
3003	}
3004}
3005
3006/**
3007 * sd_read_block_provisioning - Query provisioning VPD page
3008 * @sdkp: disk to query
3009 */
3010static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3011{
3012	struct scsi_vpd *vpd;
3013
3014	if (sdkp->lbpme == 0)
3015		return;
3016
3017	rcu_read_lock();
3018	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3019
3020	if (!vpd || vpd->len < 8) {
3021		rcu_read_unlock();
3022		return;
3023	}
3024
3025	sdkp->lbpvpd	= 1;
3026	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3027	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3028	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3029	rcu_read_unlock();
3030}
3031
3032static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3033{
3034	struct scsi_device *sdev = sdkp->device;
3035
3036	if (sdev->host->no_write_same) {
3037		sdev->no_write_same = 1;
3038
3039		return;
3040	}
3041
3042	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3043		struct scsi_vpd *vpd;
3044
3045		sdev->no_report_opcodes = 1;
3046
3047		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3048		 * CODES is unsupported and the device has an ATA
3049		 * Information VPD page (SAT).
3050		 */
3051		rcu_read_lock();
3052		vpd = rcu_dereference(sdev->vpd_pg89);
3053		if (vpd)
3054			sdev->no_write_same = 1;
3055		rcu_read_unlock();
3056	}
3057
3058	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3059		sdkp->ws16 = 1;
3060
3061	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3062		sdkp->ws10 = 1;
3063}
3064
3065static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3066{
3067	struct scsi_device *sdev = sdkp->device;
3068
3069	if (!sdev->security_supported)
3070		return;
3071
3072	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3073			SECURITY_PROTOCOL_IN) == 1 &&
3074	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3075			SECURITY_PROTOCOL_OUT) == 1)
3076		sdkp->security = 1;
3077}
3078
3079static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3080{
3081	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3082}
3083
3084/**
3085 * sd_read_cpr - Query concurrent positioning ranges
3086 * @sdkp:	disk to query
3087 */
3088static void sd_read_cpr(struct scsi_disk *sdkp)
3089{
3090	struct blk_independent_access_ranges *iars = NULL;
3091	unsigned char *buffer = NULL;
3092	unsigned int nr_cpr = 0;
3093	int i, vpd_len, buf_len = SD_BUF_SIZE;
3094	u8 *desc;
3095
3096	/*
3097	 * We need to have the capacity set first for the block layer to be
3098	 * able to check the ranges.
3099	 */
3100	if (sdkp->first_scan)
3101		return;
3102
3103	if (!sdkp->capacity)
3104		goto out;
3105
3106	/*
3107	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3108	 * leading to a maximum page size of 64 + 256*32 bytes.
3109	 */
3110	buf_len = 64 + 256*32;
3111	buffer = kmalloc(buf_len, GFP_KERNEL);
3112	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3113		goto out;
3114
3115	/* We must have at least a 64B header and one 32B range descriptor */
3116	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3117	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3118		sd_printk(KERN_ERR, sdkp,
3119			  "Invalid Concurrent Positioning Ranges VPD page\n");
3120		goto out;
3121	}
3122
3123	nr_cpr = (vpd_len - 64) / 32;
3124	if (nr_cpr == 1) {
3125		nr_cpr = 0;
3126		goto out;
3127	}
3128
3129	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3130	if (!iars) {
3131		nr_cpr = 0;
3132		goto out;
3133	}
3134
3135	desc = &buffer[64];
3136	for (i = 0; i < nr_cpr; i++, desc += 32) {
3137		if (desc[0] != i) {
3138			sd_printk(KERN_ERR, sdkp,
3139				"Invalid Concurrent Positioning Range number\n");
3140			nr_cpr = 0;
3141			break;
3142		}
3143
3144		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3145		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3146	}
3147
3148out:
3149	disk_set_independent_access_ranges(sdkp->disk, iars);
3150	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3151		sd_printk(KERN_NOTICE, sdkp,
3152			  "%u concurrent positioning ranges\n", nr_cpr);
3153		sdkp->nr_actuators = nr_cpr;
3154	}
3155
3156	kfree(buffer);
3157}
3158
3159static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3160{
3161	struct scsi_device *sdp = sdkp->device;
3162	unsigned int min_xfer_bytes =
3163		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3164
3165	if (sdkp->min_xfer_blocks == 0)
3166		return false;
3167
3168	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3169		sd_first_printk(KERN_WARNING, sdkp,
3170				"Preferred minimum I/O size %u bytes not a " \
3171				"multiple of physical block size (%u bytes)\n",
3172				min_xfer_bytes, sdkp->physical_block_size);
3173		sdkp->min_xfer_blocks = 0;
3174		return false;
3175	}
3176
3177	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3178			min_xfer_bytes);
3179	return true;
3180}
3181
3182/*
3183 * Determine the device's preferred I/O size for reads and writes
3184 * unless the reported value is unreasonably small, large, not a
3185 * multiple of the physical block size, or simply garbage.
3186 */
3187static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3188				      unsigned int dev_max)
3189{
3190	struct scsi_device *sdp = sdkp->device;
3191	unsigned int opt_xfer_bytes =
3192		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3193	unsigned int min_xfer_bytes =
3194		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3195
3196	if (sdkp->opt_xfer_blocks == 0)
3197		return false;
3198
3199	if (sdkp->opt_xfer_blocks > dev_max) {
3200		sd_first_printk(KERN_WARNING, sdkp,
3201				"Optimal transfer size %u logical blocks " \
3202				"> dev_max (%u logical blocks)\n",
3203				sdkp->opt_xfer_blocks, dev_max);
3204		return false;
3205	}
3206
3207	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3208		sd_first_printk(KERN_WARNING, sdkp,
3209				"Optimal transfer size %u logical blocks " \
3210				"> sd driver limit (%u logical blocks)\n",
3211				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3212		return false;
3213	}
3214
3215	if (opt_xfer_bytes < PAGE_SIZE) {
3216		sd_first_printk(KERN_WARNING, sdkp,
3217				"Optimal transfer size %u bytes < " \
3218				"PAGE_SIZE (%u bytes)\n",
3219				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3220		return false;
3221	}
3222
3223	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3224		sd_first_printk(KERN_WARNING, sdkp,
3225				"Optimal transfer size %u bytes not a " \
3226				"multiple of preferred minimum block " \
3227				"size (%u bytes)\n",
3228				opt_xfer_bytes, min_xfer_bytes);
3229		return false;
3230	}
3231
3232	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3233		sd_first_printk(KERN_WARNING, sdkp,
3234				"Optimal transfer size %u bytes not a " \
3235				"multiple of physical block size (%u bytes)\n",
3236				opt_xfer_bytes, sdkp->physical_block_size);
3237		return false;
3238	}
3239
3240	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3241			opt_xfer_bytes);
3242	return true;
3243}
3244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3245/**
3246 *	sd_revalidate_disk - called the first time a new disk is seen,
3247 *	performs disk spin up, read_capacity, etc.
3248 *	@disk: struct gendisk we care about
3249 **/
3250static int sd_revalidate_disk(struct gendisk *disk)
3251{
3252	struct scsi_disk *sdkp = scsi_disk(disk);
3253	struct scsi_device *sdp = sdkp->device;
3254	struct request_queue *q = sdkp->disk->queue;
3255	sector_t old_capacity = sdkp->capacity;
3256	unsigned char *buffer;
3257	unsigned int dev_max, rw_max;
3258
3259	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3260				      "sd_revalidate_disk\n"));
3261
3262	/*
3263	 * If the device is offline, don't try and read capacity or any
3264	 * of the other niceties.
3265	 */
3266	if (!scsi_device_online(sdp))
3267		goto out;
3268
3269	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3270	if (!buffer) {
3271		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3272			  "allocation failure.\n");
3273		goto out;
3274	}
3275
3276	sd_spinup_disk(sdkp);
3277
3278	/*
3279	 * Without media there is no reason to ask; moreover, some devices
3280	 * react badly if we do.
3281	 */
3282	if (sdkp->media_present) {
3283		sd_read_capacity(sdkp, buffer);
3284
 
 
 
 
 
 
3285		/*
3286		 * set the default to rotational.  All non-rotational devices
3287		 * support the block characteristics VPD page, which will
3288		 * cause this to be updated correctly and any device which
3289		 * doesn't support it should be treated as rotational.
3290		 */
3291		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3292		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3293
3294		if (scsi_device_supports_vpd(sdp)) {
3295			sd_read_block_provisioning(sdkp);
3296			sd_read_block_limits(sdkp);
3297			sd_read_block_characteristics(sdkp);
3298			sd_zbc_read_zones(sdkp, buffer);
3299			sd_read_cpr(sdkp);
3300		}
3301
3302		sd_print_capacity(sdkp, old_capacity);
3303
3304		sd_read_write_protect_flag(sdkp, buffer);
3305		sd_read_cache_type(sdkp, buffer);
3306		sd_read_app_tag_own(sdkp, buffer);
3307		sd_read_write_same(sdkp, buffer);
3308		sd_read_security(sdkp, buffer);
3309		sd_config_protection(sdkp);
3310	}
3311
3312	/*
3313	 * We now have all cache related info, determine how we deal
3314	 * with flush requests.
3315	 */
3316	sd_set_flush_flag(sdkp);
3317
3318	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3319	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3320
3321	/* Some devices report a maximum block count for READ/WRITE requests. */
3322	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3323	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3324
3325	if (sd_validate_min_xfer_size(sdkp))
3326		blk_queue_io_min(sdkp->disk->queue,
3327				 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3328	else
3329		blk_queue_io_min(sdkp->disk->queue, 0);
3330
3331	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3332		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3333		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3334	} else {
3335		q->limits.io_opt = 0;
3336		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3337				      (sector_t)BLK_DEF_MAX_SECTORS);
3338	}
3339
3340	/*
3341	 * Limit default to SCSI host optimal sector limit if set. There may be
3342	 * an impact on performance for when the size of a request exceeds this
3343	 * host limit.
3344	 */
3345	rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3346
3347	/* Do not exceed controller limit */
3348	rw_max = min(rw_max, queue_max_hw_sectors(q));
3349
3350	/*
3351	 * Only update max_sectors if previously unset or if the current value
3352	 * exceeds the capabilities of the hardware.
3353	 */
3354	if (sdkp->first_scan ||
3355	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3356	    q->limits.max_sectors > q->limits.max_hw_sectors)
3357		q->limits.max_sectors = rw_max;
3358
3359	sdkp->first_scan = 0;
3360
3361	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3362	sd_config_write_same(sdkp);
3363	kfree(buffer);
3364
3365	/*
3366	 * For a zoned drive, revalidating the zones can be done only once
3367	 * the gendisk capacity is set. So if this fails, set back the gendisk
3368	 * capacity to 0.
3369	 */
3370	if (sd_zbc_revalidate_zones(sdkp))
3371		set_capacity_and_notify(disk, 0);
3372
3373 out:
3374	return 0;
3375}
3376
3377/**
3378 *	sd_unlock_native_capacity - unlock native capacity
3379 *	@disk: struct gendisk to set capacity for
3380 *
3381 *	Block layer calls this function if it detects that partitions
3382 *	on @disk reach beyond the end of the device.  If the SCSI host
3383 *	implements ->unlock_native_capacity() method, it's invoked to
3384 *	give it a chance to adjust the device capacity.
3385 *
3386 *	CONTEXT:
3387 *	Defined by block layer.  Might sleep.
3388 */
3389static void sd_unlock_native_capacity(struct gendisk *disk)
3390{
3391	struct scsi_device *sdev = scsi_disk(disk)->device;
3392
3393	if (sdev->host->hostt->unlock_native_capacity)
3394		sdev->host->hostt->unlock_native_capacity(sdev);
3395}
3396
3397/**
3398 *	sd_format_disk_name - format disk name
3399 *	@prefix: name prefix - ie. "sd" for SCSI disks
3400 *	@index: index of the disk to format name for
3401 *	@buf: output buffer
3402 *	@buflen: length of the output buffer
3403 *
3404 *	SCSI disk names starts at sda.  The 26th device is sdz and the
3405 *	27th is sdaa.  The last one for two lettered suffix is sdzz
3406 *	which is followed by sdaaa.
3407 *
3408 *	This is basically 26 base counting with one extra 'nil' entry
3409 *	at the beginning from the second digit on and can be
3410 *	determined using similar method as 26 base conversion with the
3411 *	index shifted -1 after each digit is computed.
3412 *
3413 *	CONTEXT:
3414 *	Don't care.
3415 *
3416 *	RETURNS:
3417 *	0 on success, -errno on failure.
3418 */
3419static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3420{
3421	const int base = 'z' - 'a' + 1;
3422	char *begin = buf + strlen(prefix);
3423	char *end = buf + buflen;
3424	char *p;
3425	int unit;
3426
3427	p = end - 1;
3428	*p = '\0';
3429	unit = base;
3430	do {
3431		if (p == begin)
3432			return -EINVAL;
3433		*--p = 'a' + (index % unit);
3434		index = (index / unit) - 1;
3435	} while (index >= 0);
3436
3437	memmove(begin, p, end - p);
3438	memcpy(buf, prefix, strlen(prefix));
3439
3440	return 0;
3441}
3442
3443/**
3444 *	sd_probe - called during driver initialization and whenever a
3445 *	new scsi device is attached to the system. It is called once
3446 *	for each scsi device (not just disks) present.
3447 *	@dev: pointer to device object
3448 *
3449 *	Returns 0 if successful (or not interested in this scsi device 
3450 *	(e.g. scanner)); 1 when there is an error.
3451 *
3452 *	Note: this function is invoked from the scsi mid-level.
3453 *	This function sets up the mapping between a given 
3454 *	<host,channel,id,lun> (found in sdp) and new device name 
3455 *	(e.g. /dev/sda). More precisely it is the block device major 
3456 *	and minor number that is chosen here.
3457 *
3458 *	Assume sd_probe is not re-entrant (for time being)
3459 *	Also think about sd_probe() and sd_remove() running coincidentally.
3460 **/
3461static int sd_probe(struct device *dev)
3462{
3463	struct scsi_device *sdp = to_scsi_device(dev);
3464	struct scsi_disk *sdkp;
3465	struct gendisk *gd;
3466	int index;
3467	int error;
3468
3469	scsi_autopm_get_device(sdp);
3470	error = -ENODEV;
3471	if (sdp->type != TYPE_DISK &&
3472	    sdp->type != TYPE_ZBC &&
3473	    sdp->type != TYPE_MOD &&
3474	    sdp->type != TYPE_RBC)
3475		goto out;
3476
3477	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3478		sdev_printk(KERN_WARNING, sdp,
3479			    "Unsupported ZBC host-managed device.\n");
3480		goto out;
3481	}
3482
3483	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3484					"sd_probe\n"));
3485
3486	error = -ENOMEM;
3487	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3488	if (!sdkp)
3489		goto out;
3490
3491	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3492					 &sd_bio_compl_lkclass);
3493	if (!gd)
3494		goto out_free;
3495
3496	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3497	if (index < 0) {
3498		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3499		goto out_put;
3500	}
3501
3502	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3503	if (error) {
3504		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3505		goto out_free_index;
3506	}
3507
3508	sdkp->device = sdp;
3509	sdkp->disk = gd;
3510	sdkp->index = index;
3511	sdkp->max_retries = SD_MAX_RETRIES;
3512	atomic_set(&sdkp->openers, 0);
3513	atomic_set(&sdkp->device->ioerr_cnt, 0);
3514
3515	if (!sdp->request_queue->rq_timeout) {
3516		if (sdp->type != TYPE_MOD)
3517			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3518		else
3519			blk_queue_rq_timeout(sdp->request_queue,
3520					     SD_MOD_TIMEOUT);
3521	}
3522
3523	device_initialize(&sdkp->disk_dev);
3524	sdkp->disk_dev.parent = get_device(dev);
3525	sdkp->disk_dev.class = &sd_disk_class;
3526	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3527
3528	error = device_add(&sdkp->disk_dev);
3529	if (error) {
3530		put_device(&sdkp->disk_dev);
3531		goto out;
3532	}
3533
3534	dev_set_drvdata(dev, sdkp);
3535
3536	gd->major = sd_major((index & 0xf0) >> 4);
3537	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3538	gd->minors = SD_MINORS;
3539
3540	gd->fops = &sd_fops;
3541	gd->private_data = sdkp;
3542
3543	/* defaults, until the device tells us otherwise */
3544	sdp->sector_size = 512;
3545	sdkp->capacity = 0;
3546	sdkp->media_present = 1;
3547	sdkp->write_prot = 0;
3548	sdkp->cache_override = 0;
3549	sdkp->WCE = 0;
3550	sdkp->RCD = 0;
3551	sdkp->ATO = 0;
3552	sdkp->first_scan = 1;
3553	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3554
3555	sd_revalidate_disk(gd);
3556
3557	if (sdp->removable) {
3558		gd->flags |= GENHD_FL_REMOVABLE;
3559		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3560		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3561	}
3562
3563	blk_pm_runtime_init(sdp->request_queue, dev);
3564	if (sdp->rpm_autosuspend) {
3565		pm_runtime_set_autosuspend_delay(dev,
3566			sdp->host->hostt->rpm_autosuspend_delay);
3567	}
3568
3569	error = device_add_disk(dev, gd, NULL);
3570	if (error) {
3571		put_device(&sdkp->disk_dev);
3572		put_disk(gd);
3573		goto out;
3574	}
3575
3576	if (sdkp->security) {
3577		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3578		if (sdkp->opal_dev)
3579			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3580	}
3581
3582	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3583		  sdp->removable ? "removable " : "");
3584	scsi_autopm_put_device(sdp);
3585
3586	return 0;
3587
3588 out_free_index:
3589	ida_free(&sd_index_ida, index);
3590 out_put:
3591	put_disk(gd);
3592 out_free:
3593	kfree(sdkp);
3594 out:
3595	scsi_autopm_put_device(sdp);
3596	return error;
3597}
3598
3599/**
3600 *	sd_remove - called whenever a scsi disk (previously recognized by
3601 *	sd_probe) is detached from the system. It is called (potentially
3602 *	multiple times) during sd module unload.
3603 *	@dev: pointer to device object
3604 *
3605 *	Note: this function is invoked from the scsi mid-level.
3606 *	This function potentially frees up a device name (e.g. /dev/sdc)
3607 *	that could be re-used by a subsequent sd_probe().
3608 *	This function is not called when the built-in sd driver is "exit-ed".
3609 **/
3610static int sd_remove(struct device *dev)
3611{
3612	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3613
3614	scsi_autopm_get_device(sdkp->device);
3615
3616	device_del(&sdkp->disk_dev);
3617	del_gendisk(sdkp->disk);
3618	sd_shutdown(dev);
 
3619
3620	put_disk(sdkp->disk);
3621	return 0;
3622}
3623
3624static void scsi_disk_release(struct device *dev)
3625{
3626	struct scsi_disk *sdkp = to_scsi_disk(dev);
3627
3628	ida_free(&sd_index_ida, sdkp->index);
3629	sd_zbc_free_zone_info(sdkp);
3630	put_device(&sdkp->device->sdev_gendev);
3631	free_opal_dev(sdkp->opal_dev);
3632
3633	kfree(sdkp);
3634}
3635
3636static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3637{
3638	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3639	struct scsi_sense_hdr sshdr;
 
 
 
 
3640	struct scsi_device *sdp = sdkp->device;
3641	int res;
3642
3643	if (start)
3644		cmd[4] |= 1;	/* START */
3645
3646	if (sdp->start_stop_pwr_cond)
3647		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3648
3649	if (!scsi_device_online(sdp))
3650		return -ENODEV;
3651
3652	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3653			SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3654	if (res) {
3655		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3656		if (res > 0 && scsi_sense_valid(&sshdr)) {
3657			sd_print_sense_hdr(sdkp, &sshdr);
3658			/* 0x3a is medium not present */
3659			if (sshdr.asc == 0x3a)
3660				res = 0;
3661		}
3662	}
3663
3664	/* SCSI error codes must not go to the generic layer */
3665	if (res)
3666		return -EIO;
3667
3668	return 0;
3669}
3670
3671/*
3672 * Send a SYNCHRONIZE CACHE instruction down to the device through
3673 * the normal SCSI command structure.  Wait for the command to
3674 * complete.
3675 */
3676static void sd_shutdown(struct device *dev)
3677{
3678	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3679
3680	if (!sdkp)
3681		return;         /* this can happen */
3682
3683	if (pm_runtime_suspended(dev))
3684		return;
3685
3686	if (sdkp->WCE && sdkp->media_present) {
3687		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3688		sd_sync_cache(sdkp, NULL);
3689	}
3690
3691	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
 
 
 
3692		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3693		sd_start_stop_device(sdkp, 0);
3694	}
3695}
3696
3697static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
 
 
 
 
 
 
3698{
3699	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3700	struct scsi_sense_hdr sshdr;
3701	int ret = 0;
3702
3703	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3704		return 0;
3705
3706	if (sdkp->WCE && sdkp->media_present) {
3707		if (!sdkp->device->silence_suspend)
3708			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3709		ret = sd_sync_cache(sdkp, &sshdr);
 
 
 
3710
3711		if (ret) {
3712			/* ignore OFFLINE device */
3713			if (ret == -ENODEV)
3714				return 0;
3715
3716			if (!scsi_sense_valid(&sshdr) ||
3717			    sshdr.sense_key != ILLEGAL_REQUEST)
3718				return ret;
3719
3720			/*
3721			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3722			 * doesn't support sync. There's not much to do and
3723			 * suspend shouldn't fail.
3724			 */
3725			ret = 0;
3726		}
3727	}
3728
3729	if (sdkp->device->manage_start_stop) {
3730		if (!sdkp->device->silence_suspend)
3731			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3732		/* an error is not worth aborting a system sleep */
3733		ret = sd_start_stop_device(sdkp, 0);
3734		if (ignore_stop_errors)
3735			ret = 0;
3736	}
3737
 
 
 
3738	return ret;
3739}
3740
3741static int sd_suspend_system(struct device *dev)
3742{
3743	if (pm_runtime_suspended(dev))
3744		return 0;
3745
3746	return sd_suspend_common(dev, true);
3747}
3748
3749static int sd_suspend_runtime(struct device *dev)
3750{
3751	return sd_suspend_common(dev, false);
3752}
3753
3754static int sd_resume(struct device *dev)
3755{
3756	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3757	int ret;
3758
3759	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3760		return 0;
3761
3762	if (!sdkp->device->manage_start_stop)
 
3763		return 0;
 
3764
3765	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3766	ret = sd_start_stop_device(sdkp, 1);
3767	if (!ret)
3768		opal_unlock_from_suspend(sdkp->opal_dev);
 
 
 
3769	return ret;
3770}
3771
3772static int sd_resume_system(struct device *dev)
3773{
3774	if (pm_runtime_suspended(dev))
 
 
 
 
 
 
3775		return 0;
 
3776
3777	return sd_resume(dev);
3778}
3779
3780static int sd_resume_runtime(struct device *dev)
3781{
3782	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3783	struct scsi_device *sdp;
3784
3785	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3786		return 0;
3787
3788	sdp = sdkp->device;
3789
3790	if (sdp->ignore_media_change) {
3791		/* clear the device's sense data */
3792		static const u8 cmd[10] = { REQUEST_SENSE };
3793
3794		if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3795				 NULL, sdp->request_queue->rq_timeout, 1, 0,
3796				 RQF_PM, NULL))
 
 
 
3797			sd_printk(KERN_NOTICE, sdkp,
3798				  "Failed to clear sense data\n");
3799	}
3800
3801	return sd_resume(dev);
3802}
3803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3804/**
3805 *	init_sd - entry point for this driver (both when built in or when
3806 *	a module).
3807 *
3808 *	Note: this function registers this driver with the scsi mid-level.
3809 **/
3810static int __init init_sd(void)
3811{
3812	int majors = 0, i, err;
3813
3814	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3815
3816	for (i = 0; i < SD_MAJORS; i++) {
3817		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3818			continue;
3819		majors++;
3820	}
3821
3822	if (!majors)
3823		return -ENODEV;
3824
3825	err = class_register(&sd_disk_class);
3826	if (err)
3827		goto err_out;
3828
3829	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3830					 0, 0, NULL);
3831	if (!sd_cdb_cache) {
3832		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3833		err = -ENOMEM;
3834		goto err_out_class;
3835	}
3836
3837	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3838	if (!sd_page_pool) {
3839		printk(KERN_ERR "sd: can't init discard page pool\n");
3840		err = -ENOMEM;
3841		goto err_out_cache;
3842	}
3843
3844	err = scsi_register_driver(&sd_template.gendrv);
3845	if (err)
3846		goto err_out_driver;
3847
3848	return 0;
3849
3850err_out_driver:
3851	mempool_destroy(sd_page_pool);
3852
3853err_out_cache:
3854	kmem_cache_destroy(sd_cdb_cache);
3855
3856err_out_class:
3857	class_unregister(&sd_disk_class);
3858err_out:
3859	for (i = 0; i < SD_MAJORS; i++)
3860		unregister_blkdev(sd_major(i), "sd");
3861	return err;
3862}
3863
3864/**
3865 *	exit_sd - exit point for this driver (when it is a module).
3866 *
3867 *	Note: this function unregisters this driver from the scsi mid-level.
3868 **/
3869static void __exit exit_sd(void)
3870{
3871	int i;
3872
3873	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3874
3875	scsi_unregister_driver(&sd_template.gendrv);
3876	mempool_destroy(sd_page_pool);
3877	kmem_cache_destroy(sd_cdb_cache);
3878
3879	class_unregister(&sd_disk_class);
3880
3881	for (i = 0; i < SD_MAJORS; i++)
3882		unregister_blkdev(sd_major(i), "sd");
3883}
3884
3885module_init(init_sd);
3886module_exit(exit_sd);
3887
3888void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3889{
3890	scsi_print_sense_hdr(sdkp->device,
3891			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3892}
3893
3894void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3895{
3896	const char *hb_string = scsi_hostbyte_string(result);
3897
3898	if (hb_string)
3899		sd_printk(KERN_INFO, sdkp,
3900			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3901			  hb_string ? hb_string : "invalid",
3902			  "DRIVER_OK");
3903	else
3904		sd_printk(KERN_INFO, sdkp,
3905			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3906			  msg, host_byte(result), "DRIVER_OK");
3907}