Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      sd.c Copyright (C) 1992 Drew Eckhardt
   4 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
   5 *
   6 *      Linux scsi disk driver
   7 *              Initial versions: Drew Eckhardt
   8 *              Subsequent revisions: Eric Youngdale
   9 *	Modification history:
  10 *       - Drew Eckhardt <drew@colorado.edu> original
  11 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
  12 *         outstanding request, and other enhancements.
  13 *         Support loadable low-level scsi drivers.
  14 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
  15 *         eight major numbers.
  16 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
  17 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
  18 *	   sd_init and cleanups.
  19 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
  20 *	   not being read in sd_open. Fix problem where removable media 
  21 *	   could be ejected after sd_open.
  22 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
  23 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
  24 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
  25 *	   Support 32k/1M disks.
  26 *
  27 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
  28 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
  29 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
  30 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
  31 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
  32 *	Note: when the logging level is set by the user, it must be greater
  33 *	than the level indicated above to trigger output.	
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/fs.h>
  38#include <linux/kernel.h>
  39#include <linux/mm.h>
  40#include <linux/bio.h>
 
  41#include <linux/hdreg.h>
  42#include <linux/errno.h>
  43#include <linux/idr.h>
  44#include <linux/interrupt.h>
  45#include <linux/init.h>
  46#include <linux/blkdev.h>
  47#include <linux/blkpg.h>
  48#include <linux/blk-pm.h>
  49#include <linux/delay.h>
  50#include <linux/major.h>
  51#include <linux/mutex.h>
  52#include <linux/string_helpers.h>
 
  53#include <linux/slab.h>
  54#include <linux/sed-opal.h>
  55#include <linux/pm_runtime.h>
  56#include <linux/pr.h>
  57#include <linux/t10-pi.h>
  58#include <linux/uaccess.h>
  59#include <asm/unaligned.h>
  60
  61#include <scsi/scsi.h>
  62#include <scsi/scsi_cmnd.h>
  63#include <scsi/scsi_dbg.h>
  64#include <scsi/scsi_device.h>
  65#include <scsi/scsi_driver.h>
  66#include <scsi/scsi_eh.h>
  67#include <scsi/scsi_host.h>
  68#include <scsi/scsi_ioctl.h>
  69#include <scsi/scsicam.h>
  70#include <scsi/scsi_common.h>
  71
  72#include "sd.h"
  73#include "scsi_priv.h"
  74#include "scsi_logging.h"
  75
  76MODULE_AUTHOR("Eric Youngdale");
  77MODULE_DESCRIPTION("SCSI disk (sd) driver");
  78MODULE_LICENSE("GPL");
  79
  80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
  81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
  82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
  83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
  84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
  85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
  86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
  87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
  88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
  89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
  90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
  91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
  92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
  93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
  94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
  95MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
  96MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
  97MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
  98MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
  99MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
 100
 
 101#define SD_MINORS	16
 
 
 
 102
 103static void sd_config_discard(struct scsi_disk *, unsigned int);
 104static void sd_config_write_same(struct scsi_disk *);
 105static int  sd_revalidate_disk(struct gendisk *);
 106static void sd_unlock_native_capacity(struct gendisk *disk);
 
 
 107static void sd_shutdown(struct device *);
 
 
 
 
 
 
 
 
 
 108static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
 109static void scsi_disk_release(struct device *cdev);
 
 
 110
 111static DEFINE_IDA(sd_index_ida);
 112
 
 
 
 
 
 
 
 113static mempool_t *sd_page_pool;
 114static struct lock_class_key sd_bio_compl_lkclass;
 115
 116static const char *sd_cache_types[] = {
 117	"write through", "none", "write back",
 118	"write back, no read (daft)"
 119};
 120
 121static void sd_set_flush_flag(struct scsi_disk *sdkp)
 122{
 123	bool wc = false, fua = false;
 124
 125	if (sdkp->WCE) {
 126		wc = true;
 127		if (sdkp->DPOFUA)
 128			fua = true;
 129	}
 130
 131	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
 132}
 133
 134static ssize_t
 135cache_type_store(struct device *dev, struct device_attribute *attr,
 136		 const char *buf, size_t count)
 137{
 138	int ct, rcd, wce, sp;
 139	struct scsi_disk *sdkp = to_scsi_disk(dev);
 140	struct scsi_device *sdp = sdkp->device;
 141	char buffer[64];
 142	char *buffer_data;
 143	struct scsi_mode_data data;
 144	struct scsi_sense_hdr sshdr;
 145	static const char temp[] = "temporary ";
 146	int len, ret;
 147
 148	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 149		/* no cache control on RBC devices; theoretically they
 150		 * can do it, but there's probably so many exceptions
 151		 * it's not worth the risk */
 152		return -EINVAL;
 153
 154	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
 155		buf += sizeof(temp) - 1;
 156		sdkp->cache_override = 1;
 157	} else {
 158		sdkp->cache_override = 0;
 159	}
 160
 161	ct = sysfs_match_string(sd_cache_types, buf);
 162	if (ct < 0)
 163		return -EINVAL;
 164
 165	rcd = ct & 0x01 ? 1 : 0;
 166	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
 167
 168	if (sdkp->cache_override) {
 169		sdkp->WCE = wce;
 170		sdkp->RCD = rcd;
 171		sd_set_flush_flag(sdkp);
 172		return count;
 173	}
 174
 175	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
 176			    sdkp->max_retries, &data, NULL))
 177		return -EINVAL;
 178	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
 179		  data.block_descriptor_length);
 180	buffer_data = buffer + data.header_length +
 181		data.block_descriptor_length;
 182	buffer_data[2] &= ~0x05;
 183	buffer_data[2] |= wce << 2 | rcd;
 184	sp = buffer_data[0] & 0x80 ? 1 : 0;
 185	buffer_data[0] &= ~0x80;
 186
 187	/*
 188	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
 189	 * received mode parameter buffer before doing MODE SELECT.
 190	 */
 191	data.device_specific = 0;
 192
 193	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
 194			       sdkp->max_retries, &data, &sshdr);
 195	if (ret) {
 196		if (ret > 0 && scsi_sense_valid(&sshdr))
 197			sd_print_sense_hdr(sdkp, &sshdr);
 198		return -EINVAL;
 199	}
 200	sd_revalidate_disk(sdkp->disk);
 201	return count;
 202}
 203
 204static ssize_t
 205manage_start_stop_show(struct device *dev,
 206		       struct device_attribute *attr, char *buf)
 207{
 208	struct scsi_disk *sdkp = to_scsi_disk(dev);
 209	struct scsi_device *sdp = sdkp->device;
 210
 211	return sysfs_emit(buf, "%u\n",
 212			  sdp->manage_system_start_stop &&
 213			  sdp->manage_runtime_start_stop &&
 214			  sdp->manage_shutdown);
 215}
 216static DEVICE_ATTR_RO(manage_start_stop);
 217
 218static ssize_t
 219manage_system_start_stop_show(struct device *dev,
 220			      struct device_attribute *attr, char *buf)
 221{
 222	struct scsi_disk *sdkp = to_scsi_disk(dev);
 223	struct scsi_device *sdp = sdkp->device;
 224
 225	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
 226}
 227
 228static ssize_t
 229manage_system_start_stop_store(struct device *dev,
 230			       struct device_attribute *attr,
 231			       const char *buf, size_t count)
 232{
 233	struct scsi_disk *sdkp = to_scsi_disk(dev);
 234	struct scsi_device *sdp = sdkp->device;
 235	bool v;
 236
 237	if (!capable(CAP_SYS_ADMIN))
 238		return -EACCES;
 239
 240	if (kstrtobool(buf, &v))
 241		return -EINVAL;
 242
 243	sdp->manage_system_start_stop = v;
 244
 245	return count;
 246}
 247static DEVICE_ATTR_RW(manage_system_start_stop);
 248
 249static ssize_t
 250manage_runtime_start_stop_show(struct device *dev,
 251			       struct device_attribute *attr, char *buf)
 252{
 253	struct scsi_disk *sdkp = to_scsi_disk(dev);
 254	struct scsi_device *sdp = sdkp->device;
 255
 256	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
 257}
 258
 259static ssize_t
 260manage_runtime_start_stop_store(struct device *dev,
 261				struct device_attribute *attr,
 262				const char *buf, size_t count)
 263{
 264	struct scsi_disk *sdkp = to_scsi_disk(dev);
 265	struct scsi_device *sdp = sdkp->device;
 266	bool v;
 267
 268	if (!capable(CAP_SYS_ADMIN))
 269		return -EACCES;
 270
 271	if (kstrtobool(buf, &v))
 272		return -EINVAL;
 273
 274	sdp->manage_runtime_start_stop = v;
 275
 276	return count;
 277}
 278static DEVICE_ATTR_RW(manage_runtime_start_stop);
 279
 280static ssize_t manage_shutdown_show(struct device *dev,
 281				    struct device_attribute *attr, char *buf)
 282{
 283	struct scsi_disk *sdkp = to_scsi_disk(dev);
 284	struct scsi_device *sdp = sdkp->device;
 285
 286	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
 287}
 288
 289static ssize_t manage_shutdown_store(struct device *dev,
 290				     struct device_attribute *attr,
 291				     const char *buf, size_t count)
 292{
 293	struct scsi_disk *sdkp = to_scsi_disk(dev);
 294	struct scsi_device *sdp = sdkp->device;
 295	bool v;
 296
 297	if (!capable(CAP_SYS_ADMIN))
 298		return -EACCES;
 299
 300	if (kstrtobool(buf, &v))
 301		return -EINVAL;
 302
 303	sdp->manage_shutdown = v;
 304
 305	return count;
 306}
 307static DEVICE_ATTR_RW(manage_shutdown);
 308
 309static ssize_t
 310allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
 311{
 312	struct scsi_disk *sdkp = to_scsi_disk(dev);
 313
 314	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
 315}
 316
 317static ssize_t
 318allow_restart_store(struct device *dev, struct device_attribute *attr,
 319		    const char *buf, size_t count)
 320{
 321	bool v;
 322	struct scsi_disk *sdkp = to_scsi_disk(dev);
 323	struct scsi_device *sdp = sdkp->device;
 324
 325	if (!capable(CAP_SYS_ADMIN))
 326		return -EACCES;
 327
 328	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 329		return -EINVAL;
 330
 331	if (kstrtobool(buf, &v))
 332		return -EINVAL;
 333
 334	sdp->allow_restart = v;
 335
 336	return count;
 337}
 338static DEVICE_ATTR_RW(allow_restart);
 339
 340static ssize_t
 341cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
 342{
 343	struct scsi_disk *sdkp = to_scsi_disk(dev);
 344	int ct = sdkp->RCD + 2*sdkp->WCE;
 345
 346	return sprintf(buf, "%s\n", sd_cache_types[ct]);
 347}
 348static DEVICE_ATTR_RW(cache_type);
 349
 350static ssize_t
 351FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
 352{
 353	struct scsi_disk *sdkp = to_scsi_disk(dev);
 354
 355	return sprintf(buf, "%u\n", sdkp->DPOFUA);
 356}
 357static DEVICE_ATTR_RO(FUA);
 358
 359static ssize_t
 360protection_type_show(struct device *dev, struct device_attribute *attr,
 361		     char *buf)
 362{
 363	struct scsi_disk *sdkp = to_scsi_disk(dev);
 364
 365	return sprintf(buf, "%u\n", sdkp->protection_type);
 366}
 367
 368static ssize_t
 369protection_type_store(struct device *dev, struct device_attribute *attr,
 370		      const char *buf, size_t count)
 371{
 372	struct scsi_disk *sdkp = to_scsi_disk(dev);
 373	unsigned int val;
 374	int err;
 375
 376	if (!capable(CAP_SYS_ADMIN))
 377		return -EACCES;
 378
 379	err = kstrtouint(buf, 10, &val);
 380
 381	if (err)
 382		return err;
 383
 384	if (val <= T10_PI_TYPE3_PROTECTION)
 385		sdkp->protection_type = val;
 386
 387	return count;
 388}
 389static DEVICE_ATTR_RW(protection_type);
 390
 391static ssize_t
 392protection_mode_show(struct device *dev, struct device_attribute *attr,
 393		     char *buf)
 394{
 395	struct scsi_disk *sdkp = to_scsi_disk(dev);
 396	struct scsi_device *sdp = sdkp->device;
 397	unsigned int dif, dix;
 398
 399	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
 400	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
 401
 402	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
 403		dif = 0;
 404		dix = 1;
 405	}
 406
 407	if (!dif && !dix)
 408		return sprintf(buf, "none\n");
 409
 410	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
 411}
 412static DEVICE_ATTR_RO(protection_mode);
 413
 414static ssize_t
 415app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
 416{
 417	struct scsi_disk *sdkp = to_scsi_disk(dev);
 418
 419	return sprintf(buf, "%u\n", sdkp->ATO);
 420}
 421static DEVICE_ATTR_RO(app_tag_own);
 422
 423static ssize_t
 424thin_provisioning_show(struct device *dev, struct device_attribute *attr,
 425		       char *buf)
 426{
 427	struct scsi_disk *sdkp = to_scsi_disk(dev);
 428
 429	return sprintf(buf, "%u\n", sdkp->lbpme);
 430}
 431static DEVICE_ATTR_RO(thin_provisioning);
 432
 433/* sysfs_match_string() requires dense arrays */
 434static const char *lbp_mode[] = {
 435	[SD_LBP_FULL]		= "full",
 436	[SD_LBP_UNMAP]		= "unmap",
 437	[SD_LBP_WS16]		= "writesame_16",
 438	[SD_LBP_WS10]		= "writesame_10",
 439	[SD_LBP_ZERO]		= "writesame_zero",
 440	[SD_LBP_DISABLE]	= "disabled",
 441};
 442
 443static ssize_t
 444provisioning_mode_show(struct device *dev, struct device_attribute *attr,
 445		       char *buf)
 446{
 447	struct scsi_disk *sdkp = to_scsi_disk(dev);
 448
 449	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
 450}
 451
 452static ssize_t
 453provisioning_mode_store(struct device *dev, struct device_attribute *attr,
 454			const char *buf, size_t count)
 455{
 456	struct scsi_disk *sdkp = to_scsi_disk(dev);
 457	struct scsi_device *sdp = sdkp->device;
 458	int mode;
 459
 460	if (!capable(CAP_SYS_ADMIN))
 461		return -EACCES;
 462
 463	if (sd_is_zoned(sdkp)) {
 464		sd_config_discard(sdkp, SD_LBP_DISABLE);
 465		return count;
 466	}
 467
 468	if (sdp->type != TYPE_DISK)
 469		return -EINVAL;
 470
 471	mode = sysfs_match_string(lbp_mode, buf);
 472	if (mode < 0)
 473		return -EINVAL;
 474
 475	sd_config_discard(sdkp, mode);
 476
 477	return count;
 478}
 479static DEVICE_ATTR_RW(provisioning_mode);
 480
 481/* sysfs_match_string() requires dense arrays */
 482static const char *zeroing_mode[] = {
 483	[SD_ZERO_WRITE]		= "write",
 484	[SD_ZERO_WS]		= "writesame",
 485	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
 486	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
 487};
 488
 489static ssize_t
 490zeroing_mode_show(struct device *dev, struct device_attribute *attr,
 491		  char *buf)
 492{
 493	struct scsi_disk *sdkp = to_scsi_disk(dev);
 494
 495	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
 496}
 497
 498static ssize_t
 499zeroing_mode_store(struct device *dev, struct device_attribute *attr,
 500		   const char *buf, size_t count)
 501{
 502	struct scsi_disk *sdkp = to_scsi_disk(dev);
 503	int mode;
 504
 505	if (!capable(CAP_SYS_ADMIN))
 506		return -EACCES;
 507
 508	mode = sysfs_match_string(zeroing_mode, buf);
 509	if (mode < 0)
 510		return -EINVAL;
 511
 512	sdkp->zeroing_mode = mode;
 513
 514	return count;
 515}
 516static DEVICE_ATTR_RW(zeroing_mode);
 517
 518static ssize_t
 519max_medium_access_timeouts_show(struct device *dev,
 520				struct device_attribute *attr, char *buf)
 521{
 522	struct scsi_disk *sdkp = to_scsi_disk(dev);
 523
 524	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
 525}
 526
 527static ssize_t
 528max_medium_access_timeouts_store(struct device *dev,
 529				 struct device_attribute *attr, const char *buf,
 530				 size_t count)
 531{
 532	struct scsi_disk *sdkp = to_scsi_disk(dev);
 533	int err;
 534
 535	if (!capable(CAP_SYS_ADMIN))
 536		return -EACCES;
 537
 538	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
 539
 540	return err ? err : count;
 541}
 542static DEVICE_ATTR_RW(max_medium_access_timeouts);
 543
 544static ssize_t
 545max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
 546			   char *buf)
 547{
 548	struct scsi_disk *sdkp = to_scsi_disk(dev);
 549
 550	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
 551}
 552
 553static ssize_t
 554max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
 555			    const char *buf, size_t count)
 556{
 557	struct scsi_disk *sdkp = to_scsi_disk(dev);
 558	struct scsi_device *sdp = sdkp->device;
 559	unsigned long max;
 560	int err;
 561
 562	if (!capable(CAP_SYS_ADMIN))
 563		return -EACCES;
 564
 565	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 566		return -EINVAL;
 567
 568	err = kstrtoul(buf, 10, &max);
 569
 570	if (err)
 571		return err;
 572
 573	if (max == 0)
 574		sdp->no_write_same = 1;
 575	else if (max <= SD_MAX_WS16_BLOCKS) {
 576		sdp->no_write_same = 0;
 577		sdkp->max_ws_blocks = max;
 578	}
 579
 580	sd_config_write_same(sdkp);
 581
 582	return count;
 583}
 584static DEVICE_ATTR_RW(max_write_same_blocks);
 585
 586static ssize_t
 587zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
 588{
 589	struct scsi_disk *sdkp = to_scsi_disk(dev);
 590
 591	if (sdkp->device->type == TYPE_ZBC)
 592		return sprintf(buf, "host-managed\n");
 593	if (sdkp->zoned == 1)
 594		return sprintf(buf, "host-aware\n");
 595	if (sdkp->zoned == 2)
 596		return sprintf(buf, "drive-managed\n");
 597	return sprintf(buf, "none\n");
 598}
 599static DEVICE_ATTR_RO(zoned_cap);
 600
 601static ssize_t
 602max_retries_store(struct device *dev, struct device_attribute *attr,
 603		  const char *buf, size_t count)
 604{
 605	struct scsi_disk *sdkp = to_scsi_disk(dev);
 606	struct scsi_device *sdev = sdkp->device;
 607	int retries, err;
 608
 609	err = kstrtoint(buf, 10, &retries);
 610	if (err)
 611		return err;
 612
 613	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
 614		sdkp->max_retries = retries;
 615		return count;
 616	}
 617
 618	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
 619		    SD_MAX_RETRIES);
 620	return -EINVAL;
 621}
 622
 623static ssize_t
 624max_retries_show(struct device *dev, struct device_attribute *attr,
 625		 char *buf)
 626{
 627	struct scsi_disk *sdkp = to_scsi_disk(dev);
 628
 629	return sprintf(buf, "%d\n", sdkp->max_retries);
 630}
 631
 632static DEVICE_ATTR_RW(max_retries);
 633
 634static struct attribute *sd_disk_attrs[] = {
 635	&dev_attr_cache_type.attr,
 636	&dev_attr_FUA.attr,
 637	&dev_attr_allow_restart.attr,
 638	&dev_attr_manage_start_stop.attr,
 639	&dev_attr_manage_system_start_stop.attr,
 640	&dev_attr_manage_runtime_start_stop.attr,
 641	&dev_attr_manage_shutdown.attr,
 642	&dev_attr_protection_type.attr,
 643	&dev_attr_protection_mode.attr,
 644	&dev_attr_app_tag_own.attr,
 645	&dev_attr_thin_provisioning.attr,
 646	&dev_attr_provisioning_mode.attr,
 647	&dev_attr_zeroing_mode.attr,
 648	&dev_attr_max_write_same_blocks.attr,
 649	&dev_attr_max_medium_access_timeouts.attr,
 650	&dev_attr_zoned_cap.attr,
 651	&dev_attr_max_retries.attr,
 652	NULL,
 653};
 654ATTRIBUTE_GROUPS(sd_disk);
 655
 656static struct class sd_disk_class = {
 657	.name		= "scsi_disk",
 
 658	.dev_release	= scsi_disk_release,
 659	.dev_groups	= sd_disk_groups,
 660};
 661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662/*
 663 * Don't request a new module, as that could deadlock in multipath
 664 * environment.
 
 665 */
 666static void sd_default_probe(dev_t devt)
 667{
 
 668}
 669
 670/*
 671 * Device no to disk mapping:
 672 * 
 673 *       major         disc2     disc  p1
 674 *   |............|.............|....|....| <- dev_t
 675 *    31        20 19          8 7  4 3  0
 676 * 
 677 * Inside a major, we have 16k disks, however mapped non-
 678 * contiguously. The first 16 disks are for major0, the next
 679 * ones with major1, ... Disk 256 is for major0 again, disk 272 
 680 * for major1, ... 
 681 * As we stay compatible with our numbering scheme, we can reuse 
 682 * the well-know SCSI majors 8, 65--71, 136--143.
 683 */
 684static int sd_major(int major_idx)
 685{
 686	switch (major_idx) {
 687	case 0:
 688		return SCSI_DISK0_MAJOR;
 689	case 1 ... 7:
 690		return SCSI_DISK1_MAJOR + major_idx - 1;
 691	case 8 ... 15:
 692		return SCSI_DISK8_MAJOR + major_idx - 8;
 693	default:
 694		BUG();
 695		return 0;	/* shut up gcc */
 696	}
 697}
 698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699#ifdef CONFIG_BLK_SED_OPAL
 700static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
 701		size_t len, bool send)
 702{
 703	struct scsi_disk *sdkp = data;
 704	struct scsi_device *sdev = sdkp->device;
 705	u8 cdb[12] = { 0, };
 706	const struct scsi_exec_args exec_args = {
 707		.req_flags = BLK_MQ_REQ_PM,
 708	};
 709	int ret;
 710
 711	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
 712	cdb[1] = secp;
 713	put_unaligned_be16(spsp, &cdb[2]);
 714	put_unaligned_be32(len, &cdb[6]);
 715
 716	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
 717			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
 718			       &exec_args);
 719	return ret <= 0 ? ret : -EIO;
 720}
 721#endif /* CONFIG_BLK_SED_OPAL */
 722
 723/*
 724 * Look up the DIX operation based on whether the command is read or
 725 * write and whether dix and dif are enabled.
 726 */
 727static unsigned int sd_prot_op(bool write, bool dix, bool dif)
 728{
 729	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
 730	static const unsigned int ops[] = {	/* wrt dix dif */
 731		SCSI_PROT_NORMAL,		/*  0	0   0  */
 732		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
 733		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
 734		SCSI_PROT_READ_PASS,		/*  0	1   1  */
 735		SCSI_PROT_NORMAL,		/*  1	0   0  */
 736		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
 737		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
 738		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
 739	};
 740
 741	return ops[write << 2 | dix << 1 | dif];
 742}
 743
 744/*
 745 * Returns a mask of the protection flags that are valid for a given DIX
 746 * operation.
 747 */
 748static unsigned int sd_prot_flag_mask(unsigned int prot_op)
 749{
 750	static const unsigned int flag_mask[] = {
 751		[SCSI_PROT_NORMAL]		= 0,
 752
 753		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
 754						  SCSI_PROT_GUARD_CHECK |
 755						  SCSI_PROT_REF_CHECK |
 756						  SCSI_PROT_REF_INCREMENT,
 757
 758		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
 759						  SCSI_PROT_IP_CHECKSUM,
 760
 761		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
 762						  SCSI_PROT_GUARD_CHECK |
 763						  SCSI_PROT_REF_CHECK |
 764						  SCSI_PROT_REF_INCREMENT |
 765						  SCSI_PROT_IP_CHECKSUM,
 766
 767		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
 768						  SCSI_PROT_REF_INCREMENT,
 769
 770		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
 771						  SCSI_PROT_REF_CHECK |
 772						  SCSI_PROT_REF_INCREMENT |
 773						  SCSI_PROT_IP_CHECKSUM,
 774
 775		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
 776						  SCSI_PROT_GUARD_CHECK |
 777						  SCSI_PROT_REF_CHECK |
 778						  SCSI_PROT_REF_INCREMENT |
 779						  SCSI_PROT_IP_CHECKSUM,
 780	};
 781
 782	return flag_mask[prot_op];
 783}
 784
 785static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
 786					   unsigned int dix, unsigned int dif)
 787{
 788	struct request *rq = scsi_cmd_to_rq(scmd);
 789	struct bio *bio = rq->bio;
 790	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
 791	unsigned int protect = 0;
 792
 793	if (dix) {				/* DIX Type 0, 1, 2, 3 */
 794		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
 795			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
 796
 797		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 798			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
 799	}
 800
 801	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
 802		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
 803
 804		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 805			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
 806	}
 807
 808	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
 809		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
 810
 811		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
 812			protect = 3 << 5;	/* Disable target PI checking */
 813		else
 814			protect = 1 << 5;	/* Enable target PI checking */
 815	}
 816
 817	scsi_set_prot_op(scmd, prot_op);
 818	scsi_set_prot_type(scmd, dif);
 819	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
 820
 821	return protect;
 822}
 823
 824static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
 825{
 826	struct request_queue *q = sdkp->disk->queue;
 827	unsigned int logical_block_size = sdkp->device->sector_size;
 828	unsigned int max_blocks = 0;
 829
 830	q->limits.discard_alignment =
 831		sdkp->unmap_alignment * logical_block_size;
 832	q->limits.discard_granularity =
 833		max(sdkp->physical_block_size,
 834		    sdkp->unmap_granularity * logical_block_size);
 835	sdkp->provisioning_mode = mode;
 836
 837	switch (mode) {
 838
 839	case SD_LBP_FULL:
 840	case SD_LBP_DISABLE:
 841		blk_queue_max_discard_sectors(q, 0);
 
 842		return;
 843
 844	case SD_LBP_UNMAP:
 845		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
 846					  (u32)SD_MAX_WS16_BLOCKS);
 847		break;
 848
 849	case SD_LBP_WS16:
 850		if (sdkp->device->unmap_limit_for_ws)
 851			max_blocks = sdkp->max_unmap_blocks;
 852		else
 853			max_blocks = sdkp->max_ws_blocks;
 854
 855		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
 856		break;
 857
 858	case SD_LBP_WS10:
 859		if (sdkp->device->unmap_limit_for_ws)
 860			max_blocks = sdkp->max_unmap_blocks;
 861		else
 862			max_blocks = sdkp->max_ws_blocks;
 863
 864		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
 865		break;
 866
 867	case SD_LBP_ZERO:
 868		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 869					  (u32)SD_MAX_WS10_BLOCKS);
 870		break;
 871	}
 872
 873	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
 874}
 875
 876static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
 877{
 878	struct page *page;
 879
 880	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 881	if (!page)
 882		return NULL;
 883	clear_highpage(page);
 884	bvec_set_page(&rq->special_vec, page, data_len, 0);
 885	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 886	return bvec_virt(&rq->special_vec);
 887}
 888
 889static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
 890{
 891	struct scsi_device *sdp = cmd->device;
 892	struct request *rq = scsi_cmd_to_rq(cmd);
 893	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 894	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 895	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 896	unsigned int data_len = 24;
 897	char *buf;
 898
 899	buf = sd_set_special_bvec(rq, data_len);
 900	if (!buf)
 901		return BLK_STS_RESOURCE;
 
 
 
 
 902
 903	cmd->cmd_len = 10;
 904	cmd->cmnd[0] = UNMAP;
 905	cmd->cmnd[8] = 24;
 906
 
 907	put_unaligned_be16(6 + 16, &buf[0]);
 908	put_unaligned_be16(16, &buf[2]);
 909	put_unaligned_be64(lba, &buf[8]);
 910	put_unaligned_be32(nr_blocks, &buf[16]);
 911
 912	cmd->allowed = sdkp->max_retries;
 913	cmd->transfersize = data_len;
 914	rq->timeout = SD_TIMEOUT;
 915
 916	return scsi_alloc_sgtables(cmd);
 917}
 918
 919static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
 920		bool unmap)
 921{
 922	struct scsi_device *sdp = cmd->device;
 923	struct request *rq = scsi_cmd_to_rq(cmd);
 924	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 925	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 926	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 927	u32 data_len = sdp->sector_size;
 928
 929	if (!sd_set_special_bvec(rq, data_len))
 
 930		return BLK_STS_RESOURCE;
 
 
 
 
 931
 932	cmd->cmd_len = 16;
 933	cmd->cmnd[0] = WRITE_SAME_16;
 934	if (unmap)
 935		cmd->cmnd[1] = 0x8; /* UNMAP */
 936	put_unaligned_be64(lba, &cmd->cmnd[2]);
 937	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
 938
 939	cmd->allowed = sdkp->max_retries;
 940	cmd->transfersize = data_len;
 941	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 942
 943	return scsi_alloc_sgtables(cmd);
 944}
 945
 946static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
 947		bool unmap)
 948{
 949	struct scsi_device *sdp = cmd->device;
 950	struct request *rq = scsi_cmd_to_rq(cmd);
 951	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 952	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 953	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 954	u32 data_len = sdp->sector_size;
 955
 956	if (!sd_set_special_bvec(rq, data_len))
 
 957		return BLK_STS_RESOURCE;
 
 
 
 
 958
 959	cmd->cmd_len = 10;
 960	cmd->cmnd[0] = WRITE_SAME;
 961	if (unmap)
 962		cmd->cmnd[1] = 0x8; /* UNMAP */
 963	put_unaligned_be32(lba, &cmd->cmnd[2]);
 964	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
 965
 966	cmd->allowed = sdkp->max_retries;
 967	cmd->transfersize = data_len;
 968	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 969
 970	return scsi_alloc_sgtables(cmd);
 971}
 972
 973static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
 974{
 975	struct request *rq = scsi_cmd_to_rq(cmd);
 976	struct scsi_device *sdp = cmd->device;
 977	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 978	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 979	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 980
 981	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
 982		switch (sdkp->zeroing_mode) {
 983		case SD_ZERO_WS16_UNMAP:
 984			return sd_setup_write_same16_cmnd(cmd, true);
 985		case SD_ZERO_WS10_UNMAP:
 986			return sd_setup_write_same10_cmnd(cmd, true);
 987		}
 988	}
 989
 990	if (sdp->no_write_same) {
 991		rq->rq_flags |= RQF_QUIET;
 992		return BLK_STS_TARGET;
 993	}
 994
 995	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
 996		return sd_setup_write_same16_cmnd(cmd, false);
 997
 998	return sd_setup_write_same10_cmnd(cmd, false);
 999}
1000
1001static void sd_config_write_same(struct scsi_disk *sdkp)
1002{
1003	struct request_queue *q = sdkp->disk->queue;
1004	unsigned int logical_block_size = sdkp->device->sector_size;
1005
1006	if (sdkp->device->no_write_same) {
1007		sdkp->max_ws_blocks = 0;
1008		goto out;
1009	}
1010
1011	/* Some devices can not handle block counts above 0xffff despite
1012	 * supporting WRITE SAME(16). Consequently we default to 64k
1013	 * blocks per I/O unless the device explicitly advertises a
1014	 * bigger limit.
1015	 */
1016	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1017		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1018						   (u32)SD_MAX_WS16_BLOCKS);
1019	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1020		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1021						   (u32)SD_MAX_WS10_BLOCKS);
1022	else {
1023		sdkp->device->no_write_same = 1;
1024		sdkp->max_ws_blocks = 0;
1025	}
1026
1027	if (sdkp->lbprz && sdkp->lbpws)
1028		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1029	else if (sdkp->lbprz && sdkp->lbpws10)
1030		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1031	else if (sdkp->max_ws_blocks)
1032		sdkp->zeroing_mode = SD_ZERO_WS;
1033	else
1034		sdkp->zeroing_mode = SD_ZERO_WRITE;
1035
1036	if (sdkp->max_ws_blocks &&
1037	    sdkp->physical_block_size > logical_block_size) {
1038		/*
1039		 * Reporting a maximum number of blocks that is not aligned
1040		 * on the device physical size would cause a large write same
1041		 * request to be split into physically unaligned chunks by
1042		 * __blkdev_issue_write_zeroes() even if the caller of this
1043		 * functions took care to align the large request. So make sure
1044		 * the maximum reported is aligned to the device physical block
1045		 * size. This is only an optional optimization for regular
1046		 * disks, but this is mandatory to avoid failure of large write
1047		 * same requests directed at sequential write required zones of
1048		 * host-managed ZBC disks.
1049		 */
1050		sdkp->max_ws_blocks =
1051			round_down(sdkp->max_ws_blocks,
1052				   bytes_to_logical(sdkp->device,
1053						    sdkp->physical_block_size));
1054	}
1055
1056out:
 
 
1057	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1058					 (logical_block_size >> 9));
1059}
1060
1061static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
 
 
 
 
 
 
 
1062{
1063	struct request *rq = scsi_cmd_to_rq(cmd);
1064	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 
 
 
 
 
1065
1066	/* flush requests don't perform I/O, zero the S/G table */
1067	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 
 
1068
1069	if (cmd->device->use_16_for_sync) {
1070		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
 
1071		cmd->cmd_len = 16;
 
 
 
1072	} else {
1073		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1074		cmd->cmd_len = 10;
 
 
 
1075	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076	cmd->transfersize = 0;
1077	cmd->allowed = sdkp->max_retries;
1078
1079	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1080	return BLK_STS_OK;
1081}
1082
1083static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1084				       sector_t lba, unsigned int nr_blocks,
1085				       unsigned char flags, unsigned int dld)
1086{
 
 
 
 
1087	cmd->cmd_len = SD_EXT_CDB_SIZE;
 
 
1088	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1089	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1090	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1091	cmd->cmnd[10] = flags;
1092	cmd->cmnd[11] = dld & 0x07;
1093	put_unaligned_be64(lba, &cmd->cmnd[12]);
1094	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1095	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1096
1097	return BLK_STS_OK;
1098}
1099
1100static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1101				       sector_t lba, unsigned int nr_blocks,
1102				       unsigned char flags, unsigned int dld)
1103{
1104	cmd->cmd_len  = 16;
1105	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1106	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1107	cmd->cmnd[14] = (dld & 0x03) << 6;
1108	cmd->cmnd[15] = 0;
1109	put_unaligned_be64(lba, &cmd->cmnd[2]);
1110	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1111
1112	return BLK_STS_OK;
1113}
1114
1115static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1116				       sector_t lba, unsigned int nr_blocks,
1117				       unsigned char flags)
1118{
1119	cmd->cmd_len = 10;
1120	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1121	cmd->cmnd[1] = flags;
1122	cmd->cmnd[6] = 0;
1123	cmd->cmnd[9] = 0;
1124	put_unaligned_be32(lba, &cmd->cmnd[2]);
1125	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1126
1127	return BLK_STS_OK;
1128}
1129
1130static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1131				      sector_t lba, unsigned int nr_blocks,
1132				      unsigned char flags)
1133{
1134	/* Avoid that 0 blocks gets translated into 256 blocks. */
1135	if (WARN_ON_ONCE(nr_blocks == 0))
1136		return BLK_STS_IOERR;
1137
1138	if (unlikely(flags & 0x8)) {
1139		/*
1140		 * This happens only if this drive failed 10byte rw
1141		 * command with ILLEGAL_REQUEST during operation and
1142		 * thus turned off use_10_for_rw.
1143		 */
1144		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1145		return BLK_STS_IOERR;
1146	}
1147
1148	cmd->cmd_len = 6;
1149	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1150	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1151	cmd->cmnd[2] = (lba >> 8) & 0xff;
1152	cmd->cmnd[3] = lba & 0xff;
1153	cmd->cmnd[4] = nr_blocks;
1154	cmd->cmnd[5] = 0;
1155
1156	return BLK_STS_OK;
1157}
1158
1159/*
1160 * Check if a command has a duration limit set. If it does, and the target
1161 * device supports CDL and the feature is enabled, return the limit
1162 * descriptor index to use. Return 0 (no limit) otherwise.
1163 */
1164static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1165{
1166	struct scsi_device *sdp = sdkp->device;
1167	int hint;
1168
1169	if (!sdp->cdl_supported || !sdp->cdl_enable)
1170		return 0;
1171
1172	/*
1173	 * Use "no limit" if the request ioprio does not specify a duration
1174	 * limit hint.
1175	 */
1176	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1177	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1178	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1179		return 0;
1180
1181	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1182}
1183
1184static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1185{
1186	struct request *rq = scsi_cmd_to_rq(cmd);
1187	struct scsi_device *sdp = cmd->device;
1188	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1189	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1190	sector_t threshold;
1191	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1192	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1193	bool write = rq_data_dir(rq) == WRITE;
1194	unsigned char protect, fua;
1195	unsigned int dld;
1196	blk_status_t ret;
1197	unsigned int dif;
1198	bool dix;
1199
1200	ret = scsi_alloc_sgtables(cmd);
1201	if (ret != BLK_STS_OK)
1202		return ret;
1203
1204	ret = BLK_STS_IOERR;
1205	if (!scsi_device_online(sdp) || sdp->changed) {
1206		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1207		goto fail;
1208	}
1209
1210	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1211		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1212		goto fail;
1213	}
1214
1215	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1216		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1217		goto fail;
1218	}
1219
1220	/*
1221	 * Some SD card readers can't handle accesses which touch the
1222	 * last one or two logical blocks. Split accesses as needed.
1223	 */
1224	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1225
1226	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1227		if (lba < threshold) {
1228			/* Access up to the threshold but not beyond */
1229			nr_blocks = threshold - lba;
1230		} else {
1231			/* Access only a single logical block */
1232			nr_blocks = 1;
1233		}
1234	}
1235
1236	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1237		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1238		if (ret)
1239			goto fail;
1240	}
1241
1242	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1243	dix = scsi_prot_sg_count(cmd);
1244	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1245	dld = sd_cdl_dld(sdkp, cmd);
1246
1247	if (dif || dix)
1248		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1249	else
1250		protect = 0;
1251
1252	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1253		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1254					 protect | fua, dld);
1255	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1256		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1257					 protect | fua, dld);
1258	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1259		   sdp->use_10_for_rw || protect) {
1260		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1261					 protect | fua);
1262	} else {
1263		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1264					protect | fua);
1265	}
1266
1267	if (unlikely(ret != BLK_STS_OK))
1268		goto fail;
1269
1270	/*
1271	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1272	 * host adapter, it's safe to assume that we can at least transfer
1273	 * this many bytes between each connect / disconnect.
1274	 */
1275	cmd->transfersize = sdp->sector_size;
1276	cmd->underflow = nr_blocks << 9;
1277	cmd->allowed = sdkp->max_retries;
1278	cmd->sdb.length = nr_blocks * sdp->sector_size;
1279
1280	SCSI_LOG_HLQUEUE(1,
1281			 scmd_printk(KERN_INFO, cmd,
1282				     "%s: block=%llu, count=%d\n", __func__,
1283				     (unsigned long long)blk_rq_pos(rq),
1284				     blk_rq_sectors(rq)));
1285	SCSI_LOG_HLQUEUE(2,
1286			 scmd_printk(KERN_INFO, cmd,
1287				     "%s %d/%u 512 byte blocks.\n",
1288				     write ? "writing" : "reading", nr_blocks,
1289				     blk_rq_sectors(rq)));
1290
1291	/*
1292	 * This indicates that the command is ready from our end to be queued.
 
1293	 */
1294	return BLK_STS_OK;
1295fail:
1296	scsi_free_sgtables(cmd);
1297	return ret;
1298}
1299
1300static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1301{
1302	struct request *rq = scsi_cmd_to_rq(cmd);
1303
1304	switch (req_op(rq)) {
1305	case REQ_OP_DISCARD:
1306		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1307		case SD_LBP_UNMAP:
1308			return sd_setup_unmap_cmnd(cmd);
1309		case SD_LBP_WS16:
1310			return sd_setup_write_same16_cmnd(cmd, true);
1311		case SD_LBP_WS10:
1312			return sd_setup_write_same10_cmnd(cmd, true);
1313		case SD_LBP_ZERO:
1314			return sd_setup_write_same10_cmnd(cmd, false);
1315		default:
1316			return BLK_STS_TARGET;
1317		}
1318	case REQ_OP_WRITE_ZEROES:
1319		return sd_setup_write_zeroes_cmnd(cmd);
 
 
1320	case REQ_OP_FLUSH:
1321		return sd_setup_flush_cmnd(cmd);
1322	case REQ_OP_READ:
1323	case REQ_OP_WRITE:
1324	case REQ_OP_ZONE_APPEND:
1325		return sd_setup_read_write_cmnd(cmd);
1326	case REQ_OP_ZONE_RESET:
1327		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1328						   false);
1329	case REQ_OP_ZONE_RESET_ALL:
1330		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1331						   true);
1332	case REQ_OP_ZONE_OPEN:
1333		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1334	case REQ_OP_ZONE_CLOSE:
1335		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1336	case REQ_OP_ZONE_FINISH:
1337		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1338	default:
1339		WARN_ON_ONCE(1);
1340		return BLK_STS_NOTSUPP;
1341	}
1342}
1343
1344static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1345{
1346	struct request *rq = scsi_cmd_to_rq(SCpnt);
 
1347
1348	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1349		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1350}
1351
1352static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1353{
1354	if (sdkp->device->removable || sdkp->write_prot) {
1355		if (disk_check_media_change(disk))
1356			return true;
1357	}
1358
1359	/*
1360	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1361	 * nothing to do with partitions, BLKRRPART is used to force a full
1362	 * revalidate after things like a format for historical reasons.
1363	 */
1364	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1365}
1366
1367/**
1368 *	sd_open - open a scsi disk device
1369 *	@disk: disk to open
1370 *	@mode: open mode
1371 *
1372 *	Returns 0 if successful. Returns a negated errno value in case 
1373 *	of error.
1374 *
1375 *	Note: This can be called from a user context (e.g. fsck(1) )
1376 *	or from within the kernel (e.g. as a result of a mount(1) ).
1377 *	In the latter case @inode and @filp carry an abridged amount
1378 *	of information as noted above.
1379 *
1380 *	Locking: called with disk->open_mutex held.
1381 **/
1382static int sd_open(struct gendisk *disk, blk_mode_t mode)
1383{
1384	struct scsi_disk *sdkp = scsi_disk(disk);
1385	struct scsi_device *sdev = sdkp->device;
1386	int retval;
1387
1388	if (scsi_device_get(sdev))
1389		return -ENXIO;
1390
1391	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1392
 
 
1393	/*
1394	 * If the device is in error recovery, wait until it is done.
1395	 * If the device is offline, then disallow any access to it.
1396	 */
1397	retval = -ENXIO;
1398	if (!scsi_block_when_processing_errors(sdev))
1399		goto error_out;
1400
1401	if (sd_need_revalidate(disk, sdkp))
1402		sd_revalidate_disk(disk);
1403
1404	/*
1405	 * If the drive is empty, just let the open fail.
1406	 */
1407	retval = -ENOMEDIUM;
1408	if (sdev->removable && !sdkp->media_present &&
1409	    !(mode & BLK_OPEN_NDELAY))
1410		goto error_out;
1411
1412	/*
1413	 * If the device has the write protect tab set, have the open fail
1414	 * if the user expects to be able to write to the thing.
1415	 */
1416	retval = -EROFS;
1417	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1418		goto error_out;
1419
1420	/*
1421	 * It is possible that the disk changing stuff resulted in
1422	 * the device being taken offline.  If this is the case,
1423	 * report this to the user, and don't pretend that the
1424	 * open actually succeeded.
1425	 */
1426	retval = -ENXIO;
1427	if (!scsi_device_online(sdev))
1428		goto error_out;
1429
1430	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1431		if (scsi_block_when_processing_errors(sdev))
1432			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1433	}
1434
1435	return 0;
1436
1437error_out:
1438	scsi_device_put(sdev);
1439	return retval;	
1440}
1441
1442/**
1443 *	sd_release - invoked when the (last) close(2) is called on this
1444 *	scsi disk.
1445 *	@disk: disk to release
 
1446 *
1447 *	Returns 0. 
1448 *
1449 *	Note: may block (uninterruptible) if error recovery is underway
1450 *	on this disk.
1451 *
1452 *	Locking: called with disk->open_mutex held.
1453 **/
1454static void sd_release(struct gendisk *disk)
1455{
1456	struct scsi_disk *sdkp = scsi_disk(disk);
1457	struct scsi_device *sdev = sdkp->device;
1458
1459	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1460
1461	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1462		if (scsi_block_when_processing_errors(sdev))
1463			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1464	}
1465
1466	scsi_device_put(sdev);
1467}
1468
1469static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1470{
1471	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1472	struct scsi_device *sdp = sdkp->device;
1473	struct Scsi_Host *host = sdp->host;
1474	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1475	int diskinfo[4];
1476
1477	/* default to most commonly used values */
1478	diskinfo[0] = 0x40;	/* 1 << 6 */
1479	diskinfo[1] = 0x20;	/* 1 << 5 */
1480	diskinfo[2] = capacity >> 11;
1481
1482	/* override with calculated, extended default, or driver values */
1483	if (host->hostt->bios_param)
1484		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1485	else
1486		scsicam_bios_param(bdev, capacity, diskinfo);
1487
1488	geo->heads = diskinfo[0];
1489	geo->sectors = diskinfo[1];
1490	geo->cylinders = diskinfo[2];
1491	return 0;
1492}
1493
1494/**
1495 *	sd_ioctl - process an ioctl
1496 *	@bdev: target block device
1497 *	@mode: open mode
1498 *	@cmd: ioctl command number
1499 *	@arg: this is third argument given to ioctl(2) system call.
1500 *	Often contains a pointer.
1501 *
1502 *	Returns 0 if successful (some ioctls return positive numbers on
1503 *	success as well). Returns a negated errno value in case of error.
1504 *
1505 *	Note: most ioctls are forward onto the block subsystem or further
1506 *	down in the scsi subsystem.
1507 **/
1508static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1509		    unsigned int cmd, unsigned long arg)
1510{
1511	struct gendisk *disk = bdev->bd_disk;
1512	struct scsi_disk *sdkp = scsi_disk(disk);
1513	struct scsi_device *sdp = sdkp->device;
1514	void __user *p = (void __user *)arg;
1515	int error;
1516    
1517	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1518				    "cmd=0x%x\n", disk->disk_name, cmd));
1519
1520	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1521		return -ENOIOCTLCMD;
 
1522
1523	/*
1524	 * If we are in the middle of error recovery, don't let anyone
1525	 * else try and use this device.  Also, if error recovery fails, it
1526	 * may try and take the device offline, in which case all further
1527	 * access to the device is prohibited.
1528	 */
1529	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1530			(mode & BLK_OPEN_NDELAY));
1531	if (error)
1532		return error;
1533
1534	if (is_sed_ioctl(cmd))
1535		return sed_ioctl(sdkp->opal_dev, cmd, p);
1536	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537}
1538
1539static void set_media_not_present(struct scsi_disk *sdkp)
1540{
1541	if (sdkp->media_present)
1542		sdkp->device->changed = 1;
1543
1544	if (sdkp->device->removable) {
1545		sdkp->media_present = 0;
1546		sdkp->capacity = 0;
1547	}
1548}
1549
1550static int media_not_present(struct scsi_disk *sdkp,
1551			     struct scsi_sense_hdr *sshdr)
1552{
1553	if (!scsi_sense_valid(sshdr))
1554		return 0;
1555
1556	/* not invoked for commands that could return deferred errors */
1557	switch (sshdr->sense_key) {
1558	case UNIT_ATTENTION:
1559	case NOT_READY:
1560		/* medium not present */
1561		if (sshdr->asc == 0x3A) {
1562			set_media_not_present(sdkp);
1563			return 1;
1564		}
1565	}
1566	return 0;
1567}
1568
1569/**
1570 *	sd_check_events - check media events
1571 *	@disk: kernel device descriptor
1572 *	@clearing: disk events currently being cleared
1573 *
1574 *	Returns mask of DISK_EVENT_*.
1575 *
1576 *	Note: this function is invoked from the block subsystem.
1577 **/
1578static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1579{
1580	struct scsi_disk *sdkp = disk->private_data;
1581	struct scsi_device *sdp;
1582	int retval;
1583	bool disk_changed;
1584
1585	if (!sdkp)
1586		return 0;
1587
1588	sdp = sdkp->device;
1589	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1590
1591	/*
1592	 * If the device is offline, don't send any commands - just pretend as
1593	 * if the command failed.  If the device ever comes back online, we
1594	 * can deal with it then.  It is only because of unrecoverable errors
1595	 * that we would ever take a device offline in the first place.
1596	 */
1597	if (!scsi_device_online(sdp)) {
1598		set_media_not_present(sdkp);
1599		goto out;
1600	}
1601
1602	/*
1603	 * Using TEST_UNIT_READY enables differentiation between drive with
1604	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1605	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1606	 *
1607	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1608	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1609	 * sd_revalidate() is called.
1610	 */
1611	if (scsi_block_when_processing_errors(sdp)) {
1612		struct scsi_sense_hdr sshdr = { 0, };
1613
1614		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1615					      &sshdr);
1616
1617		/* failed to execute TUR, assume media not present */
1618		if (retval < 0 || host_byte(retval)) {
1619			set_media_not_present(sdkp);
1620			goto out;
1621		}
1622
1623		if (media_not_present(sdkp, &sshdr))
1624			goto out;
1625	}
1626
1627	/*
1628	 * For removable scsi disk we have to recognise the presence
1629	 * of a disk in the drive.
1630	 */
1631	if (!sdkp->media_present)
1632		sdp->changed = 1;
1633	sdkp->media_present = 1;
1634out:
1635	/*
1636	 * sdp->changed is set under the following conditions:
1637	 *
1638	 *	Medium present state has changed in either direction.
1639	 *	Device has indicated UNIT_ATTENTION.
1640	 */
1641	disk_changed = sdp->changed;
1642	sdp->changed = 0;
1643	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
 
1644}
1645
1646static int sd_sync_cache(struct scsi_disk *sdkp)
1647{
1648	int retries, res;
1649	struct scsi_device *sdp = sdkp->device;
1650	const int timeout = sdp->request_queue->rq_timeout
1651		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1652	struct scsi_sense_hdr sshdr;
1653	const struct scsi_exec_args exec_args = {
1654		.req_flags = BLK_MQ_REQ_PM,
1655		.sshdr = &sshdr,
1656	};
1657
1658	if (!scsi_device_online(sdp))
1659		return -ENODEV;
1660
 
 
 
 
1661	for (retries = 3; retries > 0; --retries) {
1662		unsigned char cmd[16] = { 0 };
1663
1664		if (sdp->use_16_for_sync)
1665			cmd[0] = SYNCHRONIZE_CACHE_16;
1666		else
1667			cmd[0] = SYNCHRONIZE_CACHE;
1668		/*
1669		 * Leave the rest of the command zero to indicate
1670		 * flush everything.
1671		 */
1672		res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1673				       timeout, sdkp->max_retries, &exec_args);
1674		if (res == 0)
1675			break;
1676	}
1677
1678	if (res) {
1679		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1680
1681		if (res < 0)
1682			return res;
1683
1684		if (scsi_status_is_check_condition(res) &&
1685		    scsi_sense_valid(&sshdr)) {
1686			sd_print_sense_hdr(sdkp, &sshdr);
1687
1688			/* we need to evaluate the error return  */
1689			if (sshdr.asc == 0x3a ||	/* medium not present */
1690			    sshdr.asc == 0x20 ||	/* invalid command */
1691			    (sshdr.asc == 0x74 && sshdr.ascq == 0x71))	/* drive is password locked */
1692				/* this is no error here */
1693				return 0;
1694			/*
1695			 * This drive doesn't support sync and there's not much
1696			 * we can do because this is called during shutdown
1697			 * or suspend so just return success so those operations
1698			 * can proceed.
1699			 */
1700			if (sshdr.sense_key == ILLEGAL_REQUEST)
1701				return 0;
1702		}
1703
1704		switch (host_byte(res)) {
1705		/* ignore errors due to racing a disconnection */
1706		case DID_BAD_TARGET:
1707		case DID_NO_CONNECT:
1708			return 0;
1709		/* signal the upper layer it might try again */
1710		case DID_BUS_BUSY:
1711		case DID_IMM_RETRY:
1712		case DID_REQUEUE:
1713		case DID_SOFT_ERROR:
1714			return -EBUSY;
1715		default:
1716			return -EIO;
1717		}
1718	}
1719	return 0;
1720}
1721
1722static void sd_rescan(struct device *dev)
1723{
1724	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1725
1726	sd_revalidate_disk(sdkp->disk);
1727}
1728
1729static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1730		enum blk_unique_id type)
1731{
1732	struct scsi_device *sdev = scsi_disk(disk)->device;
1733	const struct scsi_vpd *vpd;
1734	const unsigned char *d;
1735	int ret = -ENXIO, len;
1736
1737	rcu_read_lock();
1738	vpd = rcu_dereference(sdev->vpd_pg83);
1739	if (!vpd)
1740		goto out_unlock;
1741
1742	ret = -EINVAL;
1743	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1744		/* we only care about designators with LU association */
1745		if (((d[1] >> 4) & 0x3) != 0x00)
1746			continue;
1747		if ((d[1] & 0xf) != type)
1748			continue;
1749
1750		/*
1751		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1752		 * keep looking as one with more entropy might still show up.
1753		 */
1754		len = d[3];
1755		if (len != 8 && len != 12 && len != 16)
1756			continue;
1757		ret = len;
1758		memcpy(id, d + 4, len);
1759		if (len == 16)
1760			break;
1761	}
1762out_unlock:
1763	rcu_read_unlock();
1764	return ret;
1765}
1766
1767static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1768{
1769	switch (host_byte(result)) {
1770	case DID_TRANSPORT_MARGINAL:
1771	case DID_TRANSPORT_DISRUPTED:
1772	case DID_BUS_BUSY:
1773		return PR_STS_RETRY_PATH_FAILURE;
1774	case DID_NO_CONNECT:
1775		return PR_STS_PATH_FAILED;
1776	case DID_TRANSPORT_FAILFAST:
1777		return PR_STS_PATH_FAST_FAILED;
1778	}
1779
1780	switch (status_byte(result)) {
1781	case SAM_STAT_RESERVATION_CONFLICT:
1782		return PR_STS_RESERVATION_CONFLICT;
1783	case SAM_STAT_CHECK_CONDITION:
1784		if (!scsi_sense_valid(sshdr))
1785			return PR_STS_IOERR;
1786
1787		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1788		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1789			return -EINVAL;
1790
1791		fallthrough;
1792	default:
1793		return PR_STS_IOERR;
1794	}
1795}
1796
1797static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1798			    unsigned char *data, int data_len)
1799{
1800	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1801	struct scsi_device *sdev = sdkp->device;
1802	struct scsi_sense_hdr sshdr;
1803	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1804	const struct scsi_exec_args exec_args = {
1805		.sshdr = &sshdr,
1806	};
1807	int result;
1808
1809	put_unaligned_be16(data_len, &cmd[7]);
1810
1811	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1812				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1813	if (scsi_status_is_check_condition(result) &&
1814	    scsi_sense_valid(&sshdr)) {
1815		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1816		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1817	}
1818
1819	if (result <= 0)
1820		return result;
1821
1822	return sd_scsi_to_pr_err(&sshdr, result);
1823}
1824
1825static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
 
 
 
1826{
1827	int result, i, data_offset, num_copy_keys;
1828	u32 num_keys = keys_info->num_keys;
1829	int data_len = num_keys * 8 + 8;
1830	u8 *data;
1831
1832	data = kzalloc(data_len, GFP_KERNEL);
1833	if (!data)
1834		return -ENOMEM;
1835
1836	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1837	if (result)
1838		goto free_data;
1839
1840	keys_info->generation = get_unaligned_be32(&data[0]);
1841	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1842
1843	data_offset = 8;
1844	num_copy_keys = min(num_keys, keys_info->num_keys);
1845
1846	for (i = 0; i < num_copy_keys; i++) {
1847		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1848		data_offset += 8;
1849	}
1850
1851free_data:
1852	kfree(data);
1853	return result;
 
 
 
 
 
 
 
 
1854}
 
1855
1856static int sd_pr_read_reservation(struct block_device *bdev,
1857				  struct pr_held_reservation *rsv)
1858{
1859	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1860	struct scsi_device *sdev = sdkp->device;
1861	u8 data[24] = { };
1862	int result, len;
1863
1864	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1865	if (result)
1866		return result;
1867
1868	len = get_unaligned_be32(&data[4]);
1869	if (!len)
 
 
 
1870		return 0;
1871
1872	/* Make sure we have at least the key and type */
1873	if (len < 14) {
1874		sdev_printk(KERN_INFO, sdev,
1875			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
1876			    len);
1877		return -EINVAL;
1878	}
 
1879
1880	rsv->generation = get_unaligned_be32(&data[0]);
1881	rsv->key = get_unaligned_be64(&data[8]);
1882	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1883	return 0;
1884}
1885
1886static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1887			     u64 sa_key, enum scsi_pr_type type, u8 flags)
1888{
1889	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1890	struct scsi_device *sdev = sdkp->device;
1891	struct scsi_sense_hdr sshdr;
1892	const struct scsi_exec_args exec_args = {
1893		.sshdr = &sshdr,
1894	};
1895	int result;
1896	u8 cmd[16] = { 0, };
1897	u8 data[24] = { 0, };
1898
1899	cmd[0] = PERSISTENT_RESERVE_OUT;
1900	cmd[1] = sa;
1901	cmd[2] = type;
1902	put_unaligned_be32(sizeof(data), &cmd[5]);
1903
1904	put_unaligned_be64(key, &data[0]);
1905	put_unaligned_be64(sa_key, &data[8]);
1906	data[20] = flags;
1907
1908	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1909				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1910				  &exec_args);
1911
1912	if (scsi_status_is_check_condition(result) &&
1913	    scsi_sense_valid(&sshdr)) {
1914		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1915		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1916	}
1917
1918	if (result <= 0)
1919		return result;
1920
1921	return sd_scsi_to_pr_err(&sshdr, result);
1922}
1923
1924static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1925		u32 flags)
1926{
1927	if (flags & ~PR_FL_IGNORE_KEY)
1928		return -EOPNOTSUPP;
1929	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1930			old_key, new_key, 0,
1931			(1 << 0) /* APTPL */);
1932}
1933
1934static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1935		u32 flags)
1936{
1937	if (flags)
1938		return -EOPNOTSUPP;
1939	return sd_pr_out_command(bdev, 0x01, key, 0,
1940				 block_pr_type_to_scsi(type), 0);
1941}
1942
1943static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1944{
1945	return sd_pr_out_command(bdev, 0x02, key, 0,
1946				 block_pr_type_to_scsi(type), 0);
1947}
1948
1949static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1950		enum pr_type type, bool abort)
1951{
1952	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1953				 block_pr_type_to_scsi(type), 0);
1954}
1955
1956static int sd_pr_clear(struct block_device *bdev, u64 key)
1957{
1958	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1959}
1960
1961static const struct pr_ops sd_pr_ops = {
1962	.pr_register	= sd_pr_register,
1963	.pr_reserve	= sd_pr_reserve,
1964	.pr_release	= sd_pr_release,
1965	.pr_preempt	= sd_pr_preempt,
1966	.pr_clear	= sd_pr_clear,
1967	.pr_read_keys	= sd_pr_read_keys,
1968	.pr_read_reservation = sd_pr_read_reservation,
1969};
1970
1971static void scsi_disk_free_disk(struct gendisk *disk)
1972{
1973	struct scsi_disk *sdkp = scsi_disk(disk);
1974
1975	put_device(&sdkp->disk_dev);
1976}
1977
1978static const struct block_device_operations sd_fops = {
1979	.owner			= THIS_MODULE,
1980	.open			= sd_open,
1981	.release		= sd_release,
1982	.ioctl			= sd_ioctl,
1983	.getgeo			= sd_getgeo,
1984	.compat_ioctl		= blkdev_compat_ptr_ioctl,
 
 
1985	.check_events		= sd_check_events,
 
1986	.unlock_native_capacity	= sd_unlock_native_capacity,
1987	.report_zones		= sd_zbc_report_zones,
1988	.get_unique_id		= sd_get_unique_id,
1989	.free_disk		= scsi_disk_free_disk,
1990	.pr_ops			= &sd_pr_ops,
1991};
1992
1993/**
1994 *	sd_eh_reset - reset error handling callback
1995 *	@scmd:		sd-issued command that has failed
1996 *
1997 *	This function is called by the SCSI midlayer before starting
1998 *	SCSI EH. When counting medium access failures we have to be
1999 *	careful to register it only only once per device and SCSI EH run;
2000 *	there might be several timed out commands which will cause the
2001 *	'max_medium_access_timeouts' counter to trigger after the first
2002 *	SCSI EH run already and set the device to offline.
2003 *	So this function resets the internal counter before starting SCSI EH.
2004 **/
2005static void sd_eh_reset(struct scsi_cmnd *scmd)
2006{
2007	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2008
2009	/* New SCSI EH run, reset gate variable */
2010	sdkp->ignore_medium_access_errors = false;
2011}
2012
2013/**
2014 *	sd_eh_action - error handling callback
2015 *	@scmd:		sd-issued command that has failed
2016 *	@eh_disp:	The recovery disposition suggested by the midlayer
2017 *
2018 *	This function is called by the SCSI midlayer upon completion of an
2019 *	error test command (currently TEST UNIT READY). The result of sending
2020 *	the eh command is passed in eh_disp.  We're looking for devices that
2021 *	fail medium access commands but are OK with non access commands like
2022 *	test unit ready (so wrongly see the device as having a successful
2023 *	recovery)
2024 **/
2025static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2026{
2027	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2028	struct scsi_device *sdev = scmd->device;
2029
2030	if (!scsi_device_online(sdev) ||
2031	    !scsi_medium_access_command(scmd) ||
2032	    host_byte(scmd->result) != DID_TIME_OUT ||
2033	    eh_disp != SUCCESS)
2034		return eh_disp;
2035
2036	/*
2037	 * The device has timed out executing a medium access command.
2038	 * However, the TEST UNIT READY command sent during error
2039	 * handling completed successfully. Either the device is in the
2040	 * process of recovering or has it suffered an internal failure
2041	 * that prevents access to the storage medium.
2042	 */
2043	if (!sdkp->ignore_medium_access_errors) {
2044		sdkp->medium_access_timed_out++;
2045		sdkp->ignore_medium_access_errors = true;
2046	}
2047
2048	/*
2049	 * If the device keeps failing read/write commands but TEST UNIT
2050	 * READY always completes successfully we assume that medium
2051	 * access is no longer possible and take the device offline.
2052	 */
2053	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2054		scmd_printk(KERN_ERR, scmd,
2055			    "Medium access timeout failure. Offlining disk!\n");
2056		mutex_lock(&sdev->state_mutex);
2057		scsi_device_set_state(sdev, SDEV_OFFLINE);
2058		mutex_unlock(&sdev->state_mutex);
2059
2060		return SUCCESS;
2061	}
2062
2063	return eh_disp;
2064}
2065
2066static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2067{
2068	struct request *req = scsi_cmd_to_rq(scmd);
2069	struct scsi_device *sdev = scmd->device;
2070	unsigned int transferred, good_bytes;
2071	u64 start_lba, end_lba, bad_lba;
2072
2073	/*
2074	 * Some commands have a payload smaller than the device logical
2075	 * block size (e.g. INQUIRY on a 4K disk).
2076	 */
2077	if (scsi_bufflen(scmd) <= sdev->sector_size)
2078		return 0;
2079
2080	/* Check if we have a 'bad_lba' information */
2081	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2082				     SCSI_SENSE_BUFFERSIZE,
2083				     &bad_lba))
2084		return 0;
2085
2086	/*
2087	 * If the bad lba was reported incorrectly, we have no idea where
2088	 * the error is.
2089	 */
2090	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2091	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2092	if (bad_lba < start_lba || bad_lba >= end_lba)
2093		return 0;
2094
2095	/*
2096	 * resid is optional but mostly filled in.  When it's unused,
2097	 * its value is zero, so we assume the whole buffer transferred
2098	 */
2099	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2100
2101	/* This computation should always be done in terms of the
2102	 * resolution of the device's medium.
2103	 */
2104	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2105
2106	return min(good_bytes, transferred);
2107}
2108
2109/**
2110 *	sd_done - bottom half handler: called when the lower level
2111 *	driver has completed (successfully or otherwise) a scsi command.
2112 *	@SCpnt: mid-level's per command structure.
2113 *
2114 *	Note: potentially run from within an ISR. Must not block.
2115 **/
2116static int sd_done(struct scsi_cmnd *SCpnt)
2117{
2118	int result = SCpnt->result;
2119	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2120	unsigned int sector_size = SCpnt->device->sector_size;
2121	unsigned int resid;
2122	struct scsi_sense_hdr sshdr;
2123	struct request *req = scsi_cmd_to_rq(SCpnt);
2124	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2125	int sense_valid = 0;
2126	int sense_deferred = 0;
2127
2128	switch (req_op(req)) {
2129	case REQ_OP_DISCARD:
2130	case REQ_OP_WRITE_ZEROES:
 
2131	case REQ_OP_ZONE_RESET:
2132	case REQ_OP_ZONE_RESET_ALL:
2133	case REQ_OP_ZONE_OPEN:
2134	case REQ_OP_ZONE_CLOSE:
2135	case REQ_OP_ZONE_FINISH:
2136		if (!result) {
2137			good_bytes = blk_rq_bytes(req);
2138			scsi_set_resid(SCpnt, 0);
2139		} else {
2140			good_bytes = 0;
2141			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2142		}
2143		break;
2144	default:
2145		/*
2146		 * In case of bogus fw or device, we could end up having
2147		 * an unaligned partial completion. Check this here and force
2148		 * alignment.
2149		 */
2150		resid = scsi_get_resid(SCpnt);
2151		if (resid & (sector_size - 1)) {
2152			sd_printk(KERN_INFO, sdkp,
2153				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2154				resid, sector_size);
2155			scsi_print_command(SCpnt);
2156			resid = min(scsi_bufflen(SCpnt),
2157				    round_up(resid, sector_size));
2158			scsi_set_resid(SCpnt, resid);
2159		}
2160	}
2161
2162	if (result) {
2163		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2164		if (sense_valid)
2165			sense_deferred = scsi_sense_is_deferred(&sshdr);
2166	}
2167	sdkp->medium_access_timed_out = 0;
2168
2169	if (!scsi_status_is_check_condition(result) &&
2170	    (!sense_valid || sense_deferred))
2171		goto out;
2172
2173	switch (sshdr.sense_key) {
2174	case HARDWARE_ERROR:
2175	case MEDIUM_ERROR:
2176		good_bytes = sd_completed_bytes(SCpnt);
2177		break;
2178	case RECOVERED_ERROR:
2179		good_bytes = scsi_bufflen(SCpnt);
2180		break;
2181	case NO_SENSE:
2182		/* This indicates a false check condition, so ignore it.  An
2183		 * unknown amount of data was transferred so treat it as an
2184		 * error.
2185		 */
2186		SCpnt->result = 0;
2187		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2188		break;
2189	case ABORTED_COMMAND:
2190		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2191			good_bytes = sd_completed_bytes(SCpnt);
2192		break;
2193	case ILLEGAL_REQUEST:
2194		switch (sshdr.asc) {
2195		case 0x10:	/* DIX: Host detected corruption */
2196			good_bytes = sd_completed_bytes(SCpnt);
2197			break;
2198		case 0x20:	/* INVALID COMMAND OPCODE */
2199		case 0x24:	/* INVALID FIELD IN CDB */
2200			switch (SCpnt->cmnd[0]) {
2201			case UNMAP:
2202				sd_config_discard(sdkp, SD_LBP_DISABLE);
2203				break;
2204			case WRITE_SAME_16:
2205			case WRITE_SAME:
2206				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2207					sd_config_discard(sdkp, SD_LBP_DISABLE);
2208				} else {
2209					sdkp->device->no_write_same = 1;
2210					sd_config_write_same(sdkp);
2211					req->rq_flags |= RQF_QUIET;
2212				}
2213				break;
2214			}
2215		}
2216		break;
2217	default:
2218		break;
2219	}
2220
2221 out:
2222	if (sd_is_zoned(sdkp))
2223		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2224
2225	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2226					   "sd_done: completed %d of %d bytes\n",
2227					   good_bytes, scsi_bufflen(SCpnt)));
2228
2229	return good_bytes;
2230}
2231
2232/*
2233 * spinup disk - called only in sd_revalidate_disk()
2234 */
2235static void
2236sd_spinup_disk(struct scsi_disk *sdkp)
2237{
2238	unsigned char cmd[10];
2239	unsigned long spintime_expire = 0;
2240	int retries, spintime;
2241	unsigned int the_result;
2242	struct scsi_sense_hdr sshdr;
2243	const struct scsi_exec_args exec_args = {
2244		.sshdr = &sshdr,
2245	};
2246	int sense_valid = 0;
2247
2248	spintime = 0;
2249
2250	/* Spin up drives, as required.  Only do this at boot time */
2251	/* Spinup needs to be done for module loads too. */
2252	do {
2253		retries = 0;
2254
2255		do {
2256			bool media_was_present = sdkp->media_present;
2257
2258			cmd[0] = TEST_UNIT_READY;
2259			memset((void *) &cmd[1], 0, 9);
2260
2261			the_result = scsi_execute_cmd(sdkp->device, cmd,
2262						      REQ_OP_DRV_IN, NULL, 0,
2263						      SD_TIMEOUT,
2264						      sdkp->max_retries,
2265						      &exec_args);
2266
2267			if (the_result > 0) {
2268				/*
2269				 * If the drive has indicated to us that it
2270				 * doesn't have any media in it, don't bother
2271				 * with any more polling.
2272				 */
2273				if (media_not_present(sdkp, &sshdr)) {
2274					if (media_was_present)
2275						sd_printk(KERN_NOTICE, sdkp,
2276							  "Media removed, stopped polling\n");
2277					return;
2278				}
2279
 
2280				sense_valid = scsi_sense_valid(&sshdr);
2281			}
2282			retries++;
2283		} while (retries < 3 &&
2284			 (!scsi_status_is_good(the_result) ||
2285			  (scsi_status_is_check_condition(the_result) &&
2286			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2287
2288		if (!scsi_status_is_check_condition(the_result)) {
2289			/* no sense, TUR either succeeded or failed
2290			 * with a status error */
2291			if(!spintime && !scsi_status_is_good(the_result)) {
2292				sd_print_result(sdkp, "Test Unit Ready failed",
2293						the_result);
2294			}
2295			break;
2296		}
2297
2298		/*
2299		 * The device does not want the automatic start to be issued.
2300		 */
2301		if (sdkp->device->no_start_on_add)
2302			break;
2303
2304		if (sense_valid && sshdr.sense_key == NOT_READY) {
2305			if (sshdr.asc == 4 && sshdr.ascq == 3)
2306				break;	/* manual intervention required */
2307			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2308				break;	/* standby */
2309			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2310				break;	/* unavailable */
2311			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2312				break;	/* sanitize in progress */
2313			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2314				break;	/* depopulation in progress */
2315			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2316				break;	/* depopulation restoration in progress */
2317			/*
2318			 * Issue command to spin up drive when not ready
2319			 */
2320			if (!spintime) {
2321				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2322				cmd[0] = START_STOP;
2323				cmd[1] = 1;	/* Return immediately */
2324				memset((void *) &cmd[2], 0, 8);
2325				cmd[4] = 1;	/* Start spin cycle */
2326				if (sdkp->device->start_stop_pwr_cond)
2327					cmd[4] |= 1 << 4;
2328				scsi_execute_cmd(sdkp->device, cmd,
2329						 REQ_OP_DRV_IN, NULL, 0,
2330						 SD_TIMEOUT, sdkp->max_retries,
2331						 &exec_args);
2332				spintime_expire = jiffies + 100 * HZ;
2333				spintime = 1;
2334			}
2335			/* Wait 1 second for next try */
2336			msleep(1000);
2337			printk(KERN_CONT ".");
2338
2339		/*
2340		 * Wait for USB flash devices with slow firmware.
2341		 * Yes, this sense key/ASC combination shouldn't
2342		 * occur here.  It's characteristic of these devices.
2343		 */
2344		} else if (sense_valid &&
2345				sshdr.sense_key == UNIT_ATTENTION &&
2346				sshdr.asc == 0x28) {
2347			if (!spintime) {
2348				spintime_expire = jiffies + 5 * HZ;
2349				spintime = 1;
2350			}
2351			/* Wait 1 second for next try */
2352			msleep(1000);
2353		} else {
2354			/* we don't understand the sense code, so it's
2355			 * probably pointless to loop */
2356			if(!spintime) {
2357				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2358				sd_print_sense_hdr(sdkp, &sshdr);
2359			}
2360			break;
2361		}
2362				
2363	} while (spintime && time_before_eq(jiffies, spintime_expire));
2364
2365	if (spintime) {
2366		if (scsi_status_is_good(the_result))
2367			printk(KERN_CONT "ready\n");
2368		else
2369			printk(KERN_CONT "not responding...\n");
2370	}
2371}
2372
2373/*
2374 * Determine whether disk supports Data Integrity Field.
2375 */
2376static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2377{
2378	struct scsi_device *sdp = sdkp->device;
2379	u8 type;
 
2380
2381	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2382		sdkp->protection_type = 0;
2383		return 0;
2384	}
2385
2386	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2387
2388	if (type > T10_PI_TYPE3_PROTECTION) {
2389		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2390			  " protection type %u. Disabling disk!\n",
2391			  type);
2392		sdkp->protection_type = 0;
2393		return -ENODEV;
2394	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2395
2396	sdkp->protection_type = type;
2397
2398	return 0;
2399}
2400
2401static void sd_config_protection(struct scsi_disk *sdkp)
2402{
2403	struct scsi_device *sdp = sdkp->device;
2404
2405	sd_dif_config_host(sdkp);
2406
2407	if (!sdkp->protection_type)
2408		return;
2409
2410	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2411		sd_first_printk(KERN_NOTICE, sdkp,
2412				"Disabling DIF Type %u protection\n",
2413				sdkp->protection_type);
2414		sdkp->protection_type = 0;
2415	}
2416
2417	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2418			sdkp->protection_type);
2419}
2420
2421static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2422			struct scsi_sense_hdr *sshdr, int sense_valid,
2423			int the_result)
2424{
2425	if (sense_valid)
2426		sd_print_sense_hdr(sdkp, sshdr);
2427	else
2428		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2429
2430	/*
2431	 * Set dirty bit for removable devices if not ready -
2432	 * sometimes drives will not report this properly.
2433	 */
2434	if (sdp->removable &&
2435	    sense_valid && sshdr->sense_key == NOT_READY)
2436		set_media_not_present(sdkp);
2437
2438	/*
2439	 * We used to set media_present to 0 here to indicate no media
2440	 * in the drive, but some drives fail read capacity even with
2441	 * media present, so we can't do that.
2442	 */
2443	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2444}
2445
2446#define RC16_LEN 32
2447#if RC16_LEN > SD_BUF_SIZE
2448#error RC16_LEN must not be more than SD_BUF_SIZE
2449#endif
2450
2451#define READ_CAPACITY_RETRIES_ON_RESET	10
2452
2453static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2454						unsigned char *buffer)
2455{
2456	unsigned char cmd[16];
2457	struct scsi_sense_hdr sshdr;
2458	const struct scsi_exec_args exec_args = {
2459		.sshdr = &sshdr,
2460	};
2461	int sense_valid = 0;
2462	int the_result;
2463	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2464	unsigned int alignment;
2465	unsigned long long lba;
2466	unsigned sector_size;
2467
2468	if (sdp->no_read_capacity_16)
2469		return -EINVAL;
2470
2471	do {
2472		memset(cmd, 0, 16);
2473		cmd[0] = SERVICE_ACTION_IN_16;
2474		cmd[1] = SAI_READ_CAPACITY_16;
2475		cmd[13] = RC16_LEN;
2476		memset(buffer, 0, RC16_LEN);
2477
2478		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2479					      buffer, RC16_LEN, SD_TIMEOUT,
2480					      sdkp->max_retries, &exec_args);
2481		if (the_result > 0) {
2482			if (media_not_present(sdkp, &sshdr))
2483				return -ENODEV;
2484
 
2485			sense_valid = scsi_sense_valid(&sshdr);
2486			if (sense_valid &&
2487			    sshdr.sense_key == ILLEGAL_REQUEST &&
2488			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2489			    sshdr.ascq == 0x00)
2490				/* Invalid Command Operation Code or
2491				 * Invalid Field in CDB, just retry
2492				 * silently with RC10 */
2493				return -EINVAL;
2494			if (sense_valid &&
2495			    sshdr.sense_key == UNIT_ATTENTION &&
2496			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2497				/* Device reset might occur several times,
2498				 * give it one more chance */
2499				if (--reset_retries > 0)
2500					continue;
2501		}
2502		retries--;
2503
2504	} while (the_result && retries);
2505
2506	if (the_result) {
2507		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2508		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2509		return -EINVAL;
2510	}
2511
2512	sector_size = get_unaligned_be32(&buffer[8]);
2513	lba = get_unaligned_be64(&buffer[0]);
2514
2515	if (sd_read_protection_type(sdkp, buffer) < 0) {
2516		sdkp->capacity = 0;
2517		return -ENODEV;
2518	}
2519
2520	/* Logical blocks per physical block exponent */
2521	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2522
2523	/* RC basis */
2524	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2525
2526	/* Lowest aligned logical block */
2527	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2528	blk_queue_alignment_offset(sdp->request_queue, alignment);
2529	if (alignment && sdkp->first_scan)
2530		sd_printk(KERN_NOTICE, sdkp,
2531			  "physical block alignment offset: %u\n", alignment);
2532
2533	if (buffer[14] & 0x80) { /* LBPME */
2534		sdkp->lbpme = 1;
2535
2536		if (buffer[14] & 0x40) /* LBPRZ */
2537			sdkp->lbprz = 1;
2538
2539		sd_config_discard(sdkp, SD_LBP_WS16);
2540	}
2541
2542	sdkp->capacity = lba + 1;
2543	return sector_size;
2544}
2545
2546static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2547						unsigned char *buffer)
2548{
2549	unsigned char cmd[16];
2550	struct scsi_sense_hdr sshdr;
2551	const struct scsi_exec_args exec_args = {
2552		.sshdr = &sshdr,
2553	};
2554	int sense_valid = 0;
2555	int the_result;
2556	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2557	sector_t lba;
2558	unsigned sector_size;
2559
2560	do {
2561		cmd[0] = READ_CAPACITY;
2562		memset(&cmd[1], 0, 9);
2563		memset(buffer, 0, 8);
2564
2565		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2566					      8, SD_TIMEOUT, sdkp->max_retries,
2567					      &exec_args);
2568
2569		if (media_not_present(sdkp, &sshdr))
2570			return -ENODEV;
2571
2572		if (the_result > 0) {
2573			sense_valid = scsi_sense_valid(&sshdr);
2574			if (sense_valid &&
2575			    sshdr.sense_key == UNIT_ATTENTION &&
2576			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2577				/* Device reset might occur several times,
2578				 * give it one more chance */
2579				if (--reset_retries > 0)
2580					continue;
2581		}
2582		retries--;
2583
2584	} while (the_result && retries);
2585
2586	if (the_result) {
2587		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2588		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2589		return -EINVAL;
2590	}
2591
2592	sector_size = get_unaligned_be32(&buffer[4]);
2593	lba = get_unaligned_be32(&buffer[0]);
2594
2595	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2596		/* Some buggy (usb cardreader) devices return an lba of
2597		   0xffffffff when the want to report a size of 0 (with
2598		   which they really mean no media is present) */
2599		sdkp->capacity = 0;
2600		sdkp->physical_block_size = sector_size;
2601		return sector_size;
2602	}
2603
2604	sdkp->capacity = lba + 1;
2605	sdkp->physical_block_size = sector_size;
2606	return sector_size;
2607}
2608
2609static int sd_try_rc16_first(struct scsi_device *sdp)
2610{
2611	if (sdp->host->max_cmd_len < 16)
2612		return 0;
2613	if (sdp->try_rc_10_first)
2614		return 0;
2615	if (sdp->scsi_level > SCSI_SPC_2)
2616		return 1;
2617	if (scsi_device_protection(sdp))
2618		return 1;
2619	return 0;
2620}
2621
2622/*
2623 * read disk capacity
2624 */
2625static void
2626sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2627{
2628	int sector_size;
2629	struct scsi_device *sdp = sdkp->device;
2630
2631	if (sd_try_rc16_first(sdp)) {
2632		sector_size = read_capacity_16(sdkp, sdp, buffer);
2633		if (sector_size == -EOVERFLOW)
2634			goto got_data;
2635		if (sector_size == -ENODEV)
2636			return;
2637		if (sector_size < 0)
2638			sector_size = read_capacity_10(sdkp, sdp, buffer);
2639		if (sector_size < 0)
2640			return;
2641	} else {
2642		sector_size = read_capacity_10(sdkp, sdp, buffer);
2643		if (sector_size == -EOVERFLOW)
2644			goto got_data;
2645		if (sector_size < 0)
2646			return;
2647		if ((sizeof(sdkp->capacity) > 4) &&
2648		    (sdkp->capacity > 0xffffffffULL)) {
2649			int old_sector_size = sector_size;
2650			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2651					"Trying to use READ CAPACITY(16).\n");
2652			sector_size = read_capacity_16(sdkp, sdp, buffer);
2653			if (sector_size < 0) {
2654				sd_printk(KERN_NOTICE, sdkp,
2655					"Using 0xffffffff as device size\n");
2656				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2657				sector_size = old_sector_size;
2658				goto got_data;
2659			}
2660			/* Remember that READ CAPACITY(16) succeeded */
2661			sdp->try_rc_10_first = 0;
2662		}
2663	}
2664
2665	/* Some devices are known to return the total number of blocks,
2666	 * not the highest block number.  Some devices have versions
2667	 * which do this and others which do not.  Some devices we might
2668	 * suspect of doing this but we don't know for certain.
2669	 *
2670	 * If we know the reported capacity is wrong, decrement it.  If
2671	 * we can only guess, then assume the number of blocks is even
2672	 * (usually true but not always) and err on the side of lowering
2673	 * the capacity.
2674	 */
2675	if (sdp->fix_capacity ||
2676	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2677		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2678				"from its reported value: %llu\n",
2679				(unsigned long long) sdkp->capacity);
2680		--sdkp->capacity;
2681	}
2682
2683got_data:
2684	if (sector_size == 0) {
2685		sector_size = 512;
2686		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2687			  "assuming 512.\n");
2688	}
2689
2690	if (sector_size != 512 &&
2691	    sector_size != 1024 &&
2692	    sector_size != 2048 &&
2693	    sector_size != 4096) {
2694		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2695			  sector_size);
2696		/*
2697		 * The user might want to re-format the drive with
2698		 * a supported sectorsize.  Once this happens, it
2699		 * would be relatively trivial to set the thing up.
2700		 * For this reason, we leave the thing in the table.
2701		 */
2702		sdkp->capacity = 0;
2703		/*
2704		 * set a bogus sector size so the normal read/write
2705		 * logic in the block layer will eventually refuse any
2706		 * request on this device without tripping over power
2707		 * of two sector size assumptions
2708		 */
2709		sector_size = 512;
2710	}
2711	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2712	blk_queue_physical_block_size(sdp->request_queue,
2713				      sdkp->physical_block_size);
2714	sdkp->device->sector_size = sector_size;
2715
2716	if (sdkp->capacity > 0xffffffff)
2717		sdp->use_16_for_rw = 1;
2718
2719}
2720
2721/*
2722 * Print disk capacity
2723 */
2724static void
2725sd_print_capacity(struct scsi_disk *sdkp,
2726		  sector_t old_capacity)
2727{
2728	int sector_size = sdkp->device->sector_size;
2729	char cap_str_2[10], cap_str_10[10];
2730
2731	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2732		return;
2733
2734	string_get_size(sdkp->capacity, sector_size,
2735			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2736	string_get_size(sdkp->capacity, sector_size,
2737			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2738
2739	sd_printk(KERN_NOTICE, sdkp,
2740		  "%llu %d-byte logical blocks: (%s/%s)\n",
2741		  (unsigned long long)sdkp->capacity,
2742		  sector_size, cap_str_10, cap_str_2);
2743
2744	if (sdkp->physical_block_size != sector_size)
2745		sd_printk(KERN_NOTICE, sdkp,
2746			  "%u-byte physical blocks\n",
2747			  sdkp->physical_block_size);
 
 
2748}
2749
2750/* called with buffer of length 512 */
2751static inline int
2752sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2753		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2754		 struct scsi_sense_hdr *sshdr)
2755{
2756	/*
2757	 * If we must use MODE SENSE(10), make sure that the buffer length
2758	 * is at least 8 bytes so that the mode sense header fits.
2759	 */
2760	if (sdkp->device->use_10_for_ms && len < 8)
2761		len = 8;
2762
2763	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2764			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2765}
2766
2767/*
2768 * read write protect setting, if possible - called only in sd_revalidate_disk()
2769 * called with buffer of length SD_BUF_SIZE
2770 */
2771static void
2772sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2773{
2774	int res;
2775	struct scsi_device *sdp = sdkp->device;
2776	struct scsi_mode_data data;
2777	int old_wp = sdkp->write_prot;
2778
2779	set_disk_ro(sdkp->disk, 0);
2780	if (sdp->skip_ms_page_3f) {
2781		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2782		return;
2783	}
2784
2785	if (sdp->use_192_bytes_for_3f) {
2786		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2787	} else {
2788		/*
2789		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2790		 * We have to start carefully: some devices hang if we ask
2791		 * for more than is available.
2792		 */
2793		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2794
2795		/*
2796		 * Second attempt: ask for page 0 When only page 0 is
2797		 * implemented, a request for page 3F may return Sense Key
2798		 * 5: Illegal Request, Sense Code 24: Invalid field in
2799		 * CDB.
2800		 */
2801		if (res < 0)
2802			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2803
2804		/*
2805		 * Third attempt: ask 255 bytes, as we did earlier.
2806		 */
2807		if (res < 0)
2808			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2809					       &data, NULL);
2810	}
2811
2812	if (res < 0) {
2813		sd_first_printk(KERN_WARNING, sdkp,
2814			  "Test WP failed, assume Write Enabled\n");
2815	} else {
2816		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2817		set_disk_ro(sdkp->disk, sdkp->write_prot);
2818		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2819			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2820				  sdkp->write_prot ? "on" : "off");
2821			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2822		}
2823	}
2824}
2825
2826/*
2827 * sd_read_cache_type - called only from sd_revalidate_disk()
2828 * called with buffer of length SD_BUF_SIZE
2829 */
2830static void
2831sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2832{
2833	int len = 0, res;
2834	struct scsi_device *sdp = sdkp->device;
2835
2836	int dbd;
2837	int modepage;
2838	int first_len;
2839	struct scsi_mode_data data;
2840	struct scsi_sense_hdr sshdr;
2841	int old_wce = sdkp->WCE;
2842	int old_rcd = sdkp->RCD;
2843	int old_dpofua = sdkp->DPOFUA;
2844
2845
2846	if (sdkp->cache_override)
2847		return;
2848
2849	first_len = 4;
2850	if (sdp->skip_ms_page_8) {
2851		if (sdp->type == TYPE_RBC)
2852			goto defaults;
2853		else {
2854			if (sdp->skip_ms_page_3f)
2855				goto defaults;
2856			modepage = 0x3F;
2857			if (sdp->use_192_bytes_for_3f)
2858				first_len = 192;
2859			dbd = 0;
2860		}
2861	} else if (sdp->type == TYPE_RBC) {
2862		modepage = 6;
2863		dbd = 8;
2864	} else {
2865		modepage = 8;
2866		dbd = 0;
2867	}
2868
2869	/* cautiously ask */
2870	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2871			&data, &sshdr);
2872
2873	if (res < 0)
2874		goto bad_sense;
2875
2876	if (!data.header_length) {
2877		modepage = 6;
2878		first_len = 0;
2879		sd_first_printk(KERN_ERR, sdkp,
2880				"Missing header in MODE_SENSE response\n");
2881	}
2882
2883	/* that went OK, now ask for the proper length */
2884	len = data.length;
2885
2886	/*
2887	 * We're only interested in the first three bytes, actually.
2888	 * But the data cache page is defined for the first 20.
2889	 */
2890	if (len < 3)
2891		goto bad_sense;
2892	else if (len > SD_BUF_SIZE) {
2893		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2894			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2895		len = SD_BUF_SIZE;
2896	}
2897	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2898		len = 192;
2899
2900	/* Get the data */
2901	if (len > first_len)
2902		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2903				&data, &sshdr);
2904
2905	if (!res) {
2906		int offset = data.header_length + data.block_descriptor_length;
2907
2908		while (offset < len) {
2909			u8 page_code = buffer[offset] & 0x3F;
2910			u8 spf       = buffer[offset] & 0x40;
2911
2912			if (page_code == 8 || page_code == 6) {
2913				/* We're interested only in the first 3 bytes.
2914				 */
2915				if (len - offset <= 2) {
2916					sd_first_printk(KERN_ERR, sdkp,
2917						"Incomplete mode parameter "
2918							"data\n");
2919					goto defaults;
2920				} else {
2921					modepage = page_code;
2922					goto Page_found;
2923				}
2924			} else {
2925				/* Go to the next page */
2926				if (spf && len - offset > 3)
2927					offset += 4 + (buffer[offset+2] << 8) +
2928						buffer[offset+3];
2929				else if (!spf && len - offset > 1)
2930					offset += 2 + buffer[offset+1];
2931				else {
2932					sd_first_printk(KERN_ERR, sdkp,
2933							"Incomplete mode "
2934							"parameter data\n");
2935					goto defaults;
2936				}
2937			}
2938		}
2939
2940		sd_first_printk(KERN_WARNING, sdkp,
2941				"No Caching mode page found\n");
2942		goto defaults;
2943
2944	Page_found:
2945		if (modepage == 8) {
2946			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2947			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2948		} else {
2949			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2950			sdkp->RCD = 0;
2951		}
2952
2953		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2954		if (sdp->broken_fua) {
2955			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2956			sdkp->DPOFUA = 0;
2957		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2958			   !sdkp->device->use_16_for_rw) {
2959			sd_first_printk(KERN_NOTICE, sdkp,
2960				  "Uses READ/WRITE(6), disabling FUA\n");
2961			sdkp->DPOFUA = 0;
2962		}
2963
2964		/* No cache flush allowed for write protected devices */
2965		if (sdkp->WCE && sdkp->write_prot)
2966			sdkp->WCE = 0;
2967
2968		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2969		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2970			sd_printk(KERN_NOTICE, sdkp,
2971				  "Write cache: %s, read cache: %s, %s\n",
2972				  sdkp->WCE ? "enabled" : "disabled",
2973				  sdkp->RCD ? "disabled" : "enabled",
2974				  sdkp->DPOFUA ? "supports DPO and FUA"
2975				  : "doesn't support DPO or FUA");
2976
2977		return;
2978	}
2979
2980bad_sense:
2981	if (res == -EIO && scsi_sense_valid(&sshdr) &&
2982	    sshdr.sense_key == ILLEGAL_REQUEST &&
2983	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2984		/* Invalid field in CDB */
2985		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2986	else
2987		sd_first_printk(KERN_ERR, sdkp,
2988				"Asking for cache data failed\n");
2989
2990defaults:
2991	if (sdp->wce_default_on) {
2992		sd_first_printk(KERN_NOTICE, sdkp,
2993				"Assuming drive cache: write back\n");
2994		sdkp->WCE = 1;
2995	} else {
2996		sd_first_printk(KERN_WARNING, sdkp,
2997				"Assuming drive cache: write through\n");
2998		sdkp->WCE = 0;
2999	}
3000	sdkp->RCD = 0;
3001	sdkp->DPOFUA = 0;
3002}
3003
3004/*
3005 * The ATO bit indicates whether the DIF application tag is available
3006 * for use by the operating system.
3007 */
3008static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3009{
3010	int res, offset;
3011	struct scsi_device *sdp = sdkp->device;
3012	struct scsi_mode_data data;
3013	struct scsi_sense_hdr sshdr;
3014
3015	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3016		return;
3017
3018	if (sdkp->protection_type == 0)
3019		return;
3020
3021	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3022			      sdkp->max_retries, &data, &sshdr);
3023
3024	if (res < 0 || !data.header_length ||
3025	    data.length < 6) {
3026		sd_first_printk(KERN_WARNING, sdkp,
3027			  "getting Control mode page failed, assume no ATO\n");
3028
3029		if (res == -EIO && scsi_sense_valid(&sshdr))
3030			sd_print_sense_hdr(sdkp, &sshdr);
3031
3032		return;
3033	}
3034
3035	offset = data.header_length + data.block_descriptor_length;
3036
3037	if ((buffer[offset] & 0x3f) != 0x0a) {
3038		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3039		return;
3040	}
3041
3042	if ((buffer[offset + 5] & 0x80) == 0)
3043		return;
3044
3045	sdkp->ATO = 1;
3046
3047	return;
3048}
3049
3050/**
3051 * sd_read_block_limits - Query disk device for preferred I/O sizes.
3052 * @sdkp: disk to query
3053 */
3054static void sd_read_block_limits(struct scsi_disk *sdkp)
3055{
3056	struct scsi_vpd *vpd;
3057
3058	rcu_read_lock();
3059
3060	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3061	if (!vpd || vpd->len < 16)
 
3062		goto out;
3063
3064	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3065	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3066	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
 
 
3067
3068	if (vpd->len >= 64) {
3069		unsigned int lba_count, desc_count;
3070
3071		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3072
3073		if (!sdkp->lbpme)
3074			goto out;
3075
3076		lba_count = get_unaligned_be32(&vpd->data[20]);
3077		desc_count = get_unaligned_be32(&vpd->data[24]);
3078
3079		if (lba_count && desc_count)
3080			sdkp->max_unmap_blocks = lba_count;
3081
3082		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3083
3084		if (vpd->data[32] & 0x80)
3085			sdkp->unmap_alignment =
3086				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3087
3088		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3089
3090			if (sdkp->max_unmap_blocks)
3091				sd_config_discard(sdkp, SD_LBP_UNMAP);
3092			else
3093				sd_config_discard(sdkp, SD_LBP_WS16);
3094
3095		} else {	/* LBP VPD page tells us what to use */
3096			if (sdkp->lbpu && sdkp->max_unmap_blocks)
3097				sd_config_discard(sdkp, SD_LBP_UNMAP);
3098			else if (sdkp->lbpws)
3099				sd_config_discard(sdkp, SD_LBP_WS16);
3100			else if (sdkp->lbpws10)
3101				sd_config_discard(sdkp, SD_LBP_WS10);
3102			else
3103				sd_config_discard(sdkp, SD_LBP_DISABLE);
3104		}
3105	}
3106
3107 out:
3108	rcu_read_unlock();
3109}
3110
3111/**
3112 * sd_read_block_characteristics - Query block dev. characteristics
3113 * @sdkp: disk to query
3114 */
3115static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3116{
3117	struct request_queue *q = sdkp->disk->queue;
3118	struct scsi_vpd *vpd;
3119	u16 rot;
 
3120
3121	rcu_read_lock();
3122	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3123
3124	if (!vpd || vpd->len < 8) {
3125		rcu_read_unlock();
3126	        return;
3127	}
3128
3129	rot = get_unaligned_be16(&vpd->data[4]);
3130	sdkp->zoned = (vpd->data[8] >> 4) & 3;
3131	rcu_read_unlock();
3132
3133	if (rot == 1) {
3134		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3135		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3136	}
3137
3138
3139#ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */
3140	if (sdkp->device->type == TYPE_ZBC) {
3141		/*
3142		 * Host-managed.
3143		 */
3144		disk_set_zoned(sdkp->disk);
3145
3146		/*
3147		 * Per ZBC and ZAC specifications, writes in sequential write
3148		 * required zones of host-managed devices must be aligned to
3149		 * the device physical block size.
3150		 */
3151		blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3152	} else {
3153		/*
3154		 * Host-aware devices are treated as conventional.
3155		 */
3156		WARN_ON_ONCE(blk_queue_is_zoned(q));
 
 
 
 
 
 
3157	}
3158#endif /* CONFIG_BLK_DEV_ZONED */
 
 
3159
3160	if (!sdkp->first_scan)
3161		return;
3162
3163	if (blk_queue_is_zoned(q))
3164		sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3165	else if (sdkp->zoned == 1)
3166		sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3167	else if (sdkp->zoned == 2)
3168		sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3169}
3170
3171/**
3172 * sd_read_block_provisioning - Query provisioning VPD page
3173 * @sdkp: disk to query
3174 */
3175static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3176{
3177	struct scsi_vpd *vpd;
 
3178
3179	if (sdkp->lbpme == 0)
3180		return;
3181
3182	rcu_read_lock();
3183	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3184
3185	if (!vpd || vpd->len < 8) {
3186		rcu_read_unlock();
3187		return;
3188	}
3189
3190	sdkp->lbpvpd	= 1;
3191	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3192	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3193	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3194	rcu_read_unlock();
 
 
3195}
3196
3197static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3198{
3199	struct scsi_device *sdev = sdkp->device;
3200
3201	if (sdev->host->no_write_same) {
3202		sdev->no_write_same = 1;
3203
3204		return;
3205	}
3206
3207	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3208		struct scsi_vpd *vpd;
 
3209
3210		sdev->no_report_opcodes = 1;
3211
3212		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3213		 * CODES is unsupported and the device has an ATA
3214		 * Information VPD page (SAT).
3215		 */
3216		rcu_read_lock();
3217		vpd = rcu_dereference(sdev->vpd_pg89);
3218		if (vpd)
3219			sdev->no_write_same = 1;
3220		rcu_read_unlock();
3221	}
3222
3223	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3224		sdkp->ws16 = 1;
3225
3226	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3227		sdkp->ws10 = 1;
3228}
3229
3230static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3231{
3232	struct scsi_device *sdev = sdkp->device;
3233
3234	if (!sdev->security_supported)
3235		return;
3236
3237	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3238			SECURITY_PROTOCOL_IN, 0) == 1 &&
3239	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3240			SECURITY_PROTOCOL_OUT, 0) == 1)
3241		sdkp->security = 1;
3242}
3243
3244static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3245{
3246	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3247}
3248
3249/**
3250 * sd_read_cpr - Query concurrent positioning ranges
3251 * @sdkp:	disk to query
3252 */
3253static void sd_read_cpr(struct scsi_disk *sdkp)
3254{
3255	struct blk_independent_access_ranges *iars = NULL;
3256	unsigned char *buffer = NULL;
3257	unsigned int nr_cpr = 0;
3258	int i, vpd_len, buf_len = SD_BUF_SIZE;
3259	u8 *desc;
3260
3261	/*
3262	 * We need to have the capacity set first for the block layer to be
3263	 * able to check the ranges.
3264	 */
3265	if (sdkp->first_scan)
3266		return;
3267
3268	if (!sdkp->capacity)
3269		goto out;
3270
3271	/*
3272	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3273	 * leading to a maximum page size of 64 + 256*32 bytes.
3274	 */
3275	buf_len = 64 + 256*32;
3276	buffer = kmalloc(buf_len, GFP_KERNEL);
3277	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3278		goto out;
3279
3280	/* We must have at least a 64B header and one 32B range descriptor */
3281	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3282	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3283		sd_printk(KERN_ERR, sdkp,
3284			  "Invalid Concurrent Positioning Ranges VPD page\n");
3285		goto out;
3286	}
3287
3288	nr_cpr = (vpd_len - 64) / 32;
3289	if (nr_cpr == 1) {
3290		nr_cpr = 0;
3291		goto out;
3292	}
3293
3294	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3295	if (!iars) {
3296		nr_cpr = 0;
3297		goto out;
3298	}
3299
3300	desc = &buffer[64];
3301	for (i = 0; i < nr_cpr; i++, desc += 32) {
3302		if (desc[0] != i) {
3303			sd_printk(KERN_ERR, sdkp,
3304				"Invalid Concurrent Positioning Range number\n");
3305			nr_cpr = 0;
3306			break;
3307		}
3308
3309		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3310		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3311	}
3312
3313out:
3314	disk_set_independent_access_ranges(sdkp->disk, iars);
3315	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3316		sd_printk(KERN_NOTICE, sdkp,
3317			  "%u concurrent positioning ranges\n", nr_cpr);
3318		sdkp->nr_actuators = nr_cpr;
3319	}
3320
3321	kfree(buffer);
3322}
3323
3324static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3325{
3326	struct scsi_device *sdp = sdkp->device;
3327	unsigned int min_xfer_bytes =
3328		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3329
3330	if (sdkp->min_xfer_blocks == 0)
3331		return false;
3332
3333	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3334		sd_first_printk(KERN_WARNING, sdkp,
3335				"Preferred minimum I/O size %u bytes not a " \
3336				"multiple of physical block size (%u bytes)\n",
3337				min_xfer_bytes, sdkp->physical_block_size);
3338		sdkp->min_xfer_blocks = 0;
3339		return false;
3340	}
3341
3342	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3343			min_xfer_bytes);
3344	return true;
3345}
3346
3347/*
3348 * Determine the device's preferred I/O size for reads and writes
3349 * unless the reported value is unreasonably small, large, not a
3350 * multiple of the physical block size, or simply garbage.
3351 */
3352static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3353				      unsigned int dev_max)
3354{
3355	struct scsi_device *sdp = sdkp->device;
3356	unsigned int opt_xfer_bytes =
3357		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3358	unsigned int min_xfer_bytes =
3359		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3360
3361	if (sdkp->opt_xfer_blocks == 0)
3362		return false;
3363
3364	if (sdkp->opt_xfer_blocks > dev_max) {
3365		sd_first_printk(KERN_WARNING, sdkp,
3366				"Optimal transfer size %u logical blocks " \
3367				"> dev_max (%u logical blocks)\n",
3368				sdkp->opt_xfer_blocks, dev_max);
3369		return false;
3370	}
3371
3372	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3373		sd_first_printk(KERN_WARNING, sdkp,
3374				"Optimal transfer size %u logical blocks " \
3375				"> sd driver limit (%u logical blocks)\n",
3376				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3377		return false;
3378	}
3379
3380	if (opt_xfer_bytes < PAGE_SIZE) {
3381		sd_first_printk(KERN_WARNING, sdkp,
3382				"Optimal transfer size %u bytes < " \
3383				"PAGE_SIZE (%u bytes)\n",
3384				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3385		return false;
3386	}
3387
3388	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3389		sd_first_printk(KERN_WARNING, sdkp,
3390				"Optimal transfer size %u bytes not a " \
3391				"multiple of preferred minimum block " \
3392				"size (%u bytes)\n",
3393				opt_xfer_bytes, min_xfer_bytes);
3394		return false;
3395	}
3396
3397	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3398		sd_first_printk(KERN_WARNING, sdkp,
3399				"Optimal transfer size %u bytes not a " \
3400				"multiple of physical block size (%u bytes)\n",
3401				opt_xfer_bytes, sdkp->physical_block_size);
3402		return false;
3403	}
3404
3405	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3406			opt_xfer_bytes);
3407	return true;
3408}
3409
3410static void sd_read_block_zero(struct scsi_disk *sdkp)
3411{
3412	unsigned int buf_len = sdkp->device->sector_size;
3413	char *buffer, cmd[10] = { };
3414
3415	buffer = kmalloc(buf_len, GFP_KERNEL);
3416	if (!buffer)
3417		return;
3418
3419	cmd[0] = READ_10;
3420	put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3421	put_unaligned_be16(1, &cmd[7]);	/* Transfer 1 logical block */
3422
3423	scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3424			 SD_TIMEOUT, sdkp->max_retries, NULL);
3425	kfree(buffer);
3426}
3427
3428/**
3429 *	sd_revalidate_disk - called the first time a new disk is seen,
3430 *	performs disk spin up, read_capacity, etc.
3431 *	@disk: struct gendisk we care about
3432 **/
3433static int sd_revalidate_disk(struct gendisk *disk)
3434{
3435	struct scsi_disk *sdkp = scsi_disk(disk);
3436	struct scsi_device *sdp = sdkp->device;
3437	struct request_queue *q = sdkp->disk->queue;
3438	sector_t old_capacity = sdkp->capacity;
3439	unsigned char *buffer;
3440	unsigned int dev_max, rw_max;
3441
3442	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3443				      "sd_revalidate_disk\n"));
3444
3445	/*
3446	 * If the device is offline, don't try and read capacity or any
3447	 * of the other niceties.
3448	 */
3449	if (!scsi_device_online(sdp))
3450		goto out;
3451
3452	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3453	if (!buffer) {
3454		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3455			  "allocation failure.\n");
3456		goto out;
3457	}
3458
3459	sd_spinup_disk(sdkp);
3460
3461	/*
3462	 * Without media there is no reason to ask; moreover, some devices
3463	 * react badly if we do.
3464	 */
3465	if (sdkp->media_present) {
3466		sd_read_capacity(sdkp, buffer);
3467		/*
3468		 * Some USB/UAS devices return generic values for mode pages
3469		 * until the media has been accessed. Trigger a READ operation
3470		 * to force the device to populate mode pages.
3471		 */
3472		if (sdp->read_before_ms)
3473			sd_read_block_zero(sdkp);
3474		/*
3475		 * set the default to rotational.  All non-rotational devices
3476		 * support the block characteristics VPD page, which will
3477		 * cause this to be updated correctly and any device which
3478		 * doesn't support it should be treated as rotational.
3479		 */
3480		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3481		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3482
3483		if (scsi_device_supports_vpd(sdp)) {
3484			sd_read_block_provisioning(sdkp);
3485			sd_read_block_limits(sdkp);
3486			sd_read_block_characteristics(sdkp);
3487			sd_zbc_read_zones(sdkp, buffer);
3488			sd_read_cpr(sdkp);
3489		}
3490
3491		sd_print_capacity(sdkp, old_capacity);
3492
3493		sd_read_write_protect_flag(sdkp, buffer);
3494		sd_read_cache_type(sdkp, buffer);
3495		sd_read_app_tag_own(sdkp, buffer);
3496		sd_read_write_same(sdkp, buffer);
3497		sd_read_security(sdkp, buffer);
3498		sd_config_protection(sdkp);
3499	}
3500
3501	/*
3502	 * We now have all cache related info, determine how we deal
3503	 * with flush requests.
3504	 */
3505	sd_set_flush_flag(sdkp);
3506
3507	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3508	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3509
3510	/* Some devices report a maximum block count for READ/WRITE requests. */
3511	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3512	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3513
3514	if (sd_validate_min_xfer_size(sdkp))
3515		blk_queue_io_min(sdkp->disk->queue,
3516				 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3517	else
3518		blk_queue_io_min(sdkp->disk->queue, 0);
3519
3520	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3521		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3522		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3523	} else {
3524		q->limits.io_opt = 0;
3525		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3526				      (sector_t)BLK_DEF_MAX_SECTORS_CAP);
3527	}
3528
3529	/*
3530	 * Limit default to SCSI host optimal sector limit if set. There may be
3531	 * an impact on performance for when the size of a request exceeds this
3532	 * host limit.
3533	 */
3534	rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3535
3536	/* Do not exceed controller limit */
3537	rw_max = min(rw_max, queue_max_hw_sectors(q));
3538
3539	/*
3540	 * Only update max_sectors if previously unset or if the current value
3541	 * exceeds the capabilities of the hardware.
3542	 */
3543	if (sdkp->first_scan ||
3544	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3545	    q->limits.max_sectors > q->limits.max_hw_sectors)
3546		q->limits.max_sectors = rw_max;
3547
3548	sdkp->first_scan = 0;
3549
3550	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3551	sd_config_write_same(sdkp);
3552	kfree(buffer);
3553
3554	/*
3555	 * For a zoned drive, revalidating the zones can be done only once
3556	 * the gendisk capacity is set. So if this fails, set back the gendisk
3557	 * capacity to 0.
3558	 */
3559	if (sd_zbc_revalidate_zones(sdkp))
3560		set_capacity_and_notify(disk, 0);
3561
3562 out:
3563	return 0;
3564}
3565
3566/**
3567 *	sd_unlock_native_capacity - unlock native capacity
3568 *	@disk: struct gendisk to set capacity for
3569 *
3570 *	Block layer calls this function if it detects that partitions
3571 *	on @disk reach beyond the end of the device.  If the SCSI host
3572 *	implements ->unlock_native_capacity() method, it's invoked to
3573 *	give it a chance to adjust the device capacity.
3574 *
3575 *	CONTEXT:
3576 *	Defined by block layer.  Might sleep.
3577 */
3578static void sd_unlock_native_capacity(struct gendisk *disk)
3579{
3580	struct scsi_device *sdev = scsi_disk(disk)->device;
3581
3582	if (sdev->host->hostt->unlock_native_capacity)
3583		sdev->host->hostt->unlock_native_capacity(sdev);
3584}
3585
3586/**
3587 *	sd_format_disk_name - format disk name
3588 *	@prefix: name prefix - ie. "sd" for SCSI disks
3589 *	@index: index of the disk to format name for
3590 *	@buf: output buffer
3591 *	@buflen: length of the output buffer
3592 *
3593 *	SCSI disk names starts at sda.  The 26th device is sdz and the
3594 *	27th is sdaa.  The last one for two lettered suffix is sdzz
3595 *	which is followed by sdaaa.
3596 *
3597 *	This is basically 26 base counting with one extra 'nil' entry
3598 *	at the beginning from the second digit on and can be
3599 *	determined using similar method as 26 base conversion with the
3600 *	index shifted -1 after each digit is computed.
3601 *
3602 *	CONTEXT:
3603 *	Don't care.
3604 *
3605 *	RETURNS:
3606 *	0 on success, -errno on failure.
3607 */
3608static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3609{
3610	const int base = 'z' - 'a' + 1;
3611	char *begin = buf + strlen(prefix);
3612	char *end = buf + buflen;
3613	char *p;
3614	int unit;
3615
3616	p = end - 1;
3617	*p = '\0';
3618	unit = base;
3619	do {
3620		if (p == begin)
3621			return -EINVAL;
3622		*--p = 'a' + (index % unit);
3623		index = (index / unit) - 1;
3624	} while (index >= 0);
3625
3626	memmove(begin, p, end - p);
3627	memcpy(buf, prefix, strlen(prefix));
3628
3629	return 0;
3630}
3631
3632/**
3633 *	sd_probe - called during driver initialization and whenever a
3634 *	new scsi device is attached to the system. It is called once
3635 *	for each scsi device (not just disks) present.
3636 *	@dev: pointer to device object
3637 *
3638 *	Returns 0 if successful (or not interested in this scsi device 
3639 *	(e.g. scanner)); 1 when there is an error.
3640 *
3641 *	Note: this function is invoked from the scsi mid-level.
3642 *	This function sets up the mapping between a given 
3643 *	<host,channel,id,lun> (found in sdp) and new device name 
3644 *	(e.g. /dev/sda). More precisely it is the block device major 
3645 *	and minor number that is chosen here.
3646 *
3647 *	Assume sd_probe is not re-entrant (for time being)
3648 *	Also think about sd_probe() and sd_remove() running coincidentally.
3649 **/
3650static int sd_probe(struct device *dev)
3651{
3652	struct scsi_device *sdp = to_scsi_device(dev);
3653	struct scsi_disk *sdkp;
3654	struct gendisk *gd;
3655	int index;
3656	int error;
3657
3658	scsi_autopm_get_device(sdp);
3659	error = -ENODEV;
3660	if (sdp->type != TYPE_DISK &&
3661	    sdp->type != TYPE_ZBC &&
3662	    sdp->type != TYPE_MOD &&
3663	    sdp->type != TYPE_RBC)
3664		goto out;
3665
3666	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3667		sdev_printk(KERN_WARNING, sdp,
3668			    "Unsupported ZBC host-managed device.\n");
3669		goto out;
3670	}
3671
3672	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3673					"sd_probe\n"));
3674
3675	error = -ENOMEM;
3676	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3677	if (!sdkp)
3678		goto out;
3679
3680	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3681					 &sd_bio_compl_lkclass);
3682	if (!gd)
3683		goto out_free;
3684
3685	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3686	if (index < 0) {
3687		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3688		goto out_put;
3689	}
3690
3691	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3692	if (error) {
3693		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3694		goto out_free_index;
3695	}
3696
3697	sdkp->device = sdp;
 
3698	sdkp->disk = gd;
3699	sdkp->index = index;
3700	sdkp->max_retries = SD_MAX_RETRIES;
3701	atomic_set(&sdkp->openers, 0);
3702	atomic_set(&sdkp->device->ioerr_cnt, 0);
3703
3704	if (!sdp->request_queue->rq_timeout) {
3705		if (sdp->type != TYPE_MOD)
3706			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3707		else
3708			blk_queue_rq_timeout(sdp->request_queue,
3709					     SD_MOD_TIMEOUT);
3710	}
3711
3712	device_initialize(&sdkp->disk_dev);
3713	sdkp->disk_dev.parent = get_device(dev);
3714	sdkp->disk_dev.class = &sd_disk_class;
3715	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3716
3717	error = device_add(&sdkp->disk_dev);
3718	if (error) {
3719		put_device(&sdkp->disk_dev);
3720		goto out;
3721	}
3722
 
3723	dev_set_drvdata(dev, sdkp);
3724
3725	gd->major = sd_major((index & 0xf0) >> 4);
3726	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3727	gd->minors = SD_MINORS;
3728
3729	gd->fops = &sd_fops;
3730	gd->private_data = sdkp;
 
3731
3732	/* defaults, until the device tells us otherwise */
3733	sdp->sector_size = 512;
3734	sdkp->capacity = 0;
3735	sdkp->media_present = 1;
3736	sdkp->write_prot = 0;
3737	sdkp->cache_override = 0;
3738	sdkp->WCE = 0;
3739	sdkp->RCD = 0;
3740	sdkp->ATO = 0;
3741	sdkp->first_scan = 1;
3742	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3743
3744	sd_revalidate_disk(gd);
3745
 
3746	if (sdp->removable) {
3747		gd->flags |= GENHD_FL_REMOVABLE;
3748		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3749		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3750	}
3751
3752	blk_pm_runtime_init(sdp->request_queue, dev);
3753	if (sdp->rpm_autosuspend) {
3754		pm_runtime_set_autosuspend_delay(dev,
3755			sdp->host->hostt->rpm_autosuspend_delay);
3756	}
3757
3758	error = device_add_disk(dev, gd, NULL);
3759	if (error) {
3760		put_device(&sdkp->disk_dev);
3761		put_disk(gd);
3762		goto out;
3763	}
3764
3765	if (sdkp->security) {
3766		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3767		if (sdkp->opal_dev)
3768			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3769	}
3770
3771	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3772		  sdp->removable ? "removable " : "");
3773	scsi_autopm_put_device(sdp);
3774
3775	return 0;
3776
3777 out_free_index:
3778	ida_free(&sd_index_ida, index);
3779 out_put:
3780	put_disk(gd);
3781 out_free:
3782	kfree(sdkp);
3783 out:
3784	scsi_autopm_put_device(sdp);
3785	return error;
3786}
3787
3788/**
3789 *	sd_remove - called whenever a scsi disk (previously recognized by
3790 *	sd_probe) is detached from the system. It is called (potentially
3791 *	multiple times) during sd module unload.
3792 *	@dev: pointer to device object
3793 *
3794 *	Note: this function is invoked from the scsi mid-level.
3795 *	This function potentially frees up a device name (e.g. /dev/sdc)
3796 *	that could be re-used by a subsequent sd_probe().
3797 *	This function is not called when the built-in sd driver is "exit-ed".
3798 **/
3799static int sd_remove(struct device *dev)
3800{
3801	struct scsi_disk *sdkp = dev_get_drvdata(dev);
 
3802
 
 
3803	scsi_autopm_get_device(sdkp->device);
3804
3805	device_del(&sdkp->disk_dev);
 
3806	del_gendisk(sdkp->disk);
3807	if (!sdkp->suspended)
3808		sd_shutdown(dev);
 
 
 
 
 
 
 
 
 
3809
3810	put_disk(sdkp->disk);
3811	return 0;
3812}
3813
 
 
 
 
 
 
 
 
 
3814static void scsi_disk_release(struct device *dev)
3815{
3816	struct scsi_disk *sdkp = to_scsi_disk(dev);
 
 
3817
3818	ida_free(&sd_index_ida, sdkp->index);
3819	sd_zbc_free_zone_info(sdkp);
 
 
 
 
 
 
 
 
 
 
 
 
 
3820	put_device(&sdkp->device->sdev_gendev);
3821	free_opal_dev(sdkp->opal_dev);
3822
3823	kfree(sdkp);
3824}
3825
3826static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3827{
3828	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3829	struct scsi_sense_hdr sshdr;
3830	const struct scsi_exec_args exec_args = {
3831		.sshdr = &sshdr,
3832		.req_flags = BLK_MQ_REQ_PM,
3833	};
3834	struct scsi_device *sdp = sdkp->device;
3835	int res;
3836
3837	if (start)
3838		cmd[4] |= 1;	/* START */
3839
3840	if (sdp->start_stop_pwr_cond)
3841		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3842
3843	if (!scsi_device_online(sdp))
3844		return -ENODEV;
3845
3846	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3847			       sdkp->max_retries, &exec_args);
3848	if (res) {
3849		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3850		if (res > 0 && scsi_sense_valid(&sshdr)) {
3851			sd_print_sense_hdr(sdkp, &sshdr);
 
3852			/* 0x3a is medium not present */
3853			if (sshdr.asc == 0x3a)
3854				res = 0;
3855		}
3856	}
3857
3858	/* SCSI error codes must not go to the generic layer */
3859	if (res)
3860		return -EIO;
3861
3862	return 0;
3863}
3864
3865/*
3866 * Send a SYNCHRONIZE CACHE instruction down to the device through
3867 * the normal SCSI command structure.  Wait for the command to
3868 * complete.
3869 */
3870static void sd_shutdown(struct device *dev)
3871{
3872	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3873
3874	if (!sdkp)
3875		return;         /* this can happen */
3876
3877	if (pm_runtime_suspended(dev))
3878		return;
3879
3880	if (sdkp->WCE && sdkp->media_present) {
3881		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3882		sd_sync_cache(sdkp);
3883	}
3884
3885	if ((system_state != SYSTEM_RESTART &&
3886	     sdkp->device->manage_system_start_stop) ||
3887	    (system_state == SYSTEM_POWER_OFF &&
3888	     sdkp->device->manage_shutdown)) {
3889		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3890		sd_start_stop_device(sdkp, 0);
3891	}
3892}
3893
3894static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
3895{
3896	return (sdev->manage_system_start_stop && !runtime) ||
3897		(sdev->manage_runtime_start_stop && runtime);
3898}
3899
3900static int sd_suspend_common(struct device *dev, bool runtime)
3901{
3902	struct scsi_disk *sdkp = dev_get_drvdata(dev);
 
3903	int ret = 0;
3904
3905	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3906		return 0;
3907
3908	if (sdkp->WCE && sdkp->media_present) {
3909		if (!sdkp->device->silence_suspend)
3910			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3911		ret = sd_sync_cache(sdkp);
3912		/* ignore OFFLINE device */
3913		if (ret == -ENODEV)
3914			return 0;
3915
3916		if (ret)
3917			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3918	}
3919
3920	if (sd_do_start_stop(sdkp->device, runtime)) {
3921		if (!sdkp->device->silence_suspend)
3922			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3923		/* an error is not worth aborting a system sleep */
3924		ret = sd_start_stop_device(sdkp, 0);
3925		if (!runtime)
3926			ret = 0;
3927	}
3928
3929	if (!ret)
3930		sdkp->suspended = true;
3931
3932	return ret;
3933}
3934
3935static int sd_suspend_system(struct device *dev)
3936{
3937	if (pm_runtime_suspended(dev))
3938		return 0;
3939
3940	return sd_suspend_common(dev, false);
3941}
3942
3943static int sd_suspend_runtime(struct device *dev)
3944{
3945	return sd_suspend_common(dev, true);
3946}
3947
3948static int sd_resume(struct device *dev, bool runtime)
3949{
3950	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3951	int ret;
3952
3953	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3954		return 0;
3955
3956	if (!sd_do_start_stop(sdkp->device, runtime)) {
3957		sdkp->suspended = false;
3958		return 0;
3959	}
3960
3961	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3962	ret = sd_start_stop_device(sdkp, 1);
3963	if (!ret) {
3964		opal_unlock_from_suspend(sdkp->opal_dev);
3965		sdkp->suspended = false;
3966	}
3967
3968	return ret;
3969}
3970
3971static int sd_resume_system(struct device *dev)
3972{
3973	if (pm_runtime_suspended(dev)) {
3974		struct scsi_disk *sdkp = dev_get_drvdata(dev);
3975		struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
3976
3977		if (sdp && sdp->force_runtime_start_on_system_start)
3978			pm_request_resume(dev);
3979
3980		return 0;
3981	}
3982
3983	return sd_resume(dev, false);
3984}
3985
3986static int sd_resume_runtime(struct device *dev)
3987{
3988	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3989	struct scsi_device *sdp;
3990
3991	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3992		return 0;
3993
3994	sdp = sdkp->device;
3995
3996	if (sdp->ignore_media_change) {
3997		/* clear the device's sense data */
3998		static const u8 cmd[10] = { REQUEST_SENSE };
3999		const struct scsi_exec_args exec_args = {
4000			.req_flags = BLK_MQ_REQ_PM,
4001		};
4002
4003		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4004				     sdp->request_queue->rq_timeout, 1,
4005				     &exec_args))
4006			sd_printk(KERN_NOTICE, sdkp,
4007				  "Failed to clear sense data\n");
4008	}
4009
4010	return sd_resume(dev, true);
4011}
4012
4013static const struct dev_pm_ops sd_pm_ops = {
4014	.suspend		= sd_suspend_system,
4015	.resume			= sd_resume_system,
4016	.poweroff		= sd_suspend_system,
4017	.restore		= sd_resume_system,
4018	.runtime_suspend	= sd_suspend_runtime,
4019	.runtime_resume		= sd_resume_runtime,
4020};
4021
4022static struct scsi_driver sd_template = {
4023	.gendrv = {
4024		.name		= "sd",
4025		.owner		= THIS_MODULE,
4026		.probe		= sd_probe,
4027		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4028		.remove		= sd_remove,
4029		.shutdown	= sd_shutdown,
4030		.pm		= &sd_pm_ops,
4031	},
4032	.rescan			= sd_rescan,
4033	.init_command		= sd_init_command,
4034	.uninit_command		= sd_uninit_command,
4035	.done			= sd_done,
4036	.eh_action		= sd_eh_action,
4037	.eh_reset		= sd_eh_reset,
4038};
4039
4040/**
4041 *	init_sd - entry point for this driver (both when built in or when
4042 *	a module).
4043 *
4044 *	Note: this function registers this driver with the scsi mid-level.
4045 **/
4046static int __init init_sd(void)
4047{
4048	int majors = 0, i, err;
4049
4050	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4051
4052	for (i = 0; i < SD_MAJORS; i++) {
4053		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4054			continue;
4055		majors++;
 
 
4056	}
4057
4058	if (!majors)
4059		return -ENODEV;
4060
4061	err = class_register(&sd_disk_class);
4062	if (err)
4063		goto err_out;
4064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4065	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4066	if (!sd_page_pool) {
4067		printk(KERN_ERR "sd: can't init discard page pool\n");
4068		err = -ENOMEM;
4069		goto err_out_class;
4070	}
4071
4072	err = scsi_register_driver(&sd_template.gendrv);
4073	if (err)
4074		goto err_out_driver;
4075
4076	return 0;
4077
4078err_out_driver:
4079	mempool_destroy(sd_page_pool);
 
 
 
 
 
 
 
4080err_out_class:
4081	class_unregister(&sd_disk_class);
4082err_out:
4083	for (i = 0; i < SD_MAJORS; i++)
4084		unregister_blkdev(sd_major(i), "sd");
4085	return err;
4086}
4087
4088/**
4089 *	exit_sd - exit point for this driver (when it is a module).
4090 *
4091 *	Note: this function unregisters this driver from the scsi mid-level.
4092 **/
4093static void __exit exit_sd(void)
4094{
4095	int i;
4096
4097	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4098
4099	scsi_unregister_driver(&sd_template.gendrv);
 
4100	mempool_destroy(sd_page_pool);
 
4101
4102	class_unregister(&sd_disk_class);
4103
4104	for (i = 0; i < SD_MAJORS; i++)
 
4105		unregister_blkdev(sd_major(i), "sd");
 
4106}
4107
4108module_init(init_sd);
4109module_exit(exit_sd);
4110
4111void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
 
4112{
4113	scsi_print_sense_hdr(sdkp->device,
4114			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4115}
4116
4117void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
 
4118{
4119	const char *hb_string = scsi_hostbyte_string(result);
 
4120
4121	if (hb_string)
4122		sd_printk(KERN_INFO, sdkp,
4123			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4124			  hb_string ? hb_string : "invalid",
4125			  "DRIVER_OK");
4126	else
4127		sd_printk(KERN_INFO, sdkp,
4128			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4129			  msg, host_byte(result), "DRIVER_OK");
4130}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      sd.c Copyright (C) 1992 Drew Eckhardt
   4 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
   5 *
   6 *      Linux scsi disk driver
   7 *              Initial versions: Drew Eckhardt
   8 *              Subsequent revisions: Eric Youngdale
   9 *	Modification history:
  10 *       - Drew Eckhardt <drew@colorado.edu> original
  11 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
  12 *         outstanding request, and other enhancements.
  13 *         Support loadable low-level scsi drivers.
  14 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
  15 *         eight major numbers.
  16 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
  17 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
  18 *	   sd_init and cleanups.
  19 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
  20 *	   not being read in sd_open. Fix problem where removable media 
  21 *	   could be ejected after sd_open.
  22 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
  23 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
  24 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
  25 *	   Support 32k/1M disks.
  26 *
  27 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
  28 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
  29 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
  30 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
  31 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
  32 *	Note: when the logging level is set by the user, it must be greater
  33 *	than the level indicated above to trigger output.	
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/fs.h>
  38#include <linux/kernel.h>
  39#include <linux/mm.h>
  40#include <linux/bio.h>
  41#include <linux/genhd.h>
  42#include <linux/hdreg.h>
  43#include <linux/errno.h>
  44#include <linux/idr.h>
  45#include <linux/interrupt.h>
  46#include <linux/init.h>
  47#include <linux/blkdev.h>
  48#include <linux/blkpg.h>
  49#include <linux/blk-pm.h>
  50#include <linux/delay.h>
 
  51#include <linux/mutex.h>
  52#include <linux/string_helpers.h>
  53#include <linux/async.h>
  54#include <linux/slab.h>
  55#include <linux/sed-opal.h>
  56#include <linux/pm_runtime.h>
  57#include <linux/pr.h>
  58#include <linux/t10-pi.h>
  59#include <linux/uaccess.h>
  60#include <asm/unaligned.h>
  61
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_dbg.h>
  65#include <scsi/scsi_device.h>
  66#include <scsi/scsi_driver.h>
  67#include <scsi/scsi_eh.h>
  68#include <scsi/scsi_host.h>
  69#include <scsi/scsi_ioctl.h>
  70#include <scsi/scsicam.h>
 
  71
  72#include "sd.h"
  73#include "scsi_priv.h"
  74#include "scsi_logging.h"
  75
  76MODULE_AUTHOR("Eric Youngdale");
  77MODULE_DESCRIPTION("SCSI disk (sd) driver");
  78MODULE_LICENSE("GPL");
  79
  80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
  81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
  82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
  83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
  84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
  85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
  86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
  87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
  88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
  89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
  90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
  91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
  92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
  93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
  94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
  95MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
  96MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
  97MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
  98MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
  99MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
 100
 101#if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
 102#define SD_MINORS	16
 103#else
 104#define SD_MINORS	0
 105#endif
 106
 107static void sd_config_discard(struct scsi_disk *, unsigned int);
 108static void sd_config_write_same(struct scsi_disk *);
 109static int  sd_revalidate_disk(struct gendisk *);
 110static void sd_unlock_native_capacity(struct gendisk *disk);
 111static int  sd_probe(struct device *);
 112static int  sd_remove(struct device *);
 113static void sd_shutdown(struct device *);
 114static int sd_suspend_system(struct device *);
 115static int sd_suspend_runtime(struct device *);
 116static int sd_resume(struct device *);
 117static void sd_rescan(struct device *);
 118static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
 119static void sd_uninit_command(struct scsi_cmnd *SCpnt);
 120static int sd_done(struct scsi_cmnd *);
 121static void sd_eh_reset(struct scsi_cmnd *);
 122static int sd_eh_action(struct scsi_cmnd *, int);
 123static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
 124static void scsi_disk_release(struct device *cdev);
 125static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
 126static void sd_print_result(const struct scsi_disk *, const char *, int);
 127
 128static DEFINE_IDA(sd_index_ida);
 129
 130/* This semaphore is used to mediate the 0->1 reference get in the
 131 * face of object destruction (i.e. we can't allow a get on an
 132 * object after last put) */
 133static DEFINE_MUTEX(sd_ref_mutex);
 134
 135static struct kmem_cache *sd_cdb_cache;
 136static mempool_t *sd_cdb_pool;
 137static mempool_t *sd_page_pool;
 
 138
 139static const char *sd_cache_types[] = {
 140	"write through", "none", "write back",
 141	"write back, no read (daft)"
 142};
 143
 144static void sd_set_flush_flag(struct scsi_disk *sdkp)
 145{
 146	bool wc = false, fua = false;
 147
 148	if (sdkp->WCE) {
 149		wc = true;
 150		if (sdkp->DPOFUA)
 151			fua = true;
 152	}
 153
 154	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
 155}
 156
 157static ssize_t
 158cache_type_store(struct device *dev, struct device_attribute *attr,
 159		 const char *buf, size_t count)
 160{
 161	int ct, rcd, wce, sp;
 162	struct scsi_disk *sdkp = to_scsi_disk(dev);
 163	struct scsi_device *sdp = sdkp->device;
 164	char buffer[64];
 165	char *buffer_data;
 166	struct scsi_mode_data data;
 167	struct scsi_sense_hdr sshdr;
 168	static const char temp[] = "temporary ";
 169	int len;
 170
 171	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 172		/* no cache control on RBC devices; theoretically they
 173		 * can do it, but there's probably so many exceptions
 174		 * it's not worth the risk */
 175		return -EINVAL;
 176
 177	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
 178		buf += sizeof(temp) - 1;
 179		sdkp->cache_override = 1;
 180	} else {
 181		sdkp->cache_override = 0;
 182	}
 183
 184	ct = sysfs_match_string(sd_cache_types, buf);
 185	if (ct < 0)
 186		return -EINVAL;
 187
 188	rcd = ct & 0x01 ? 1 : 0;
 189	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
 190
 191	if (sdkp->cache_override) {
 192		sdkp->WCE = wce;
 193		sdkp->RCD = rcd;
 194		sd_set_flush_flag(sdkp);
 195		return count;
 196	}
 197
 198	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
 199			    SD_MAX_RETRIES, &data, NULL))
 200		return -EINVAL;
 201	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
 202		  data.block_descriptor_length);
 203	buffer_data = buffer + data.header_length +
 204		data.block_descriptor_length;
 205	buffer_data[2] &= ~0x05;
 206	buffer_data[2] |= wce << 2 | rcd;
 207	sp = buffer_data[0] & 0x80 ? 1 : 0;
 208	buffer_data[0] &= ~0x80;
 209
 210	/*
 211	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
 212	 * received mode parameter buffer before doing MODE SELECT.
 213	 */
 214	data.device_specific = 0;
 215
 216	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
 217			     SD_MAX_RETRIES, &data, &sshdr)) {
 218		if (scsi_sense_valid(&sshdr))
 
 219			sd_print_sense_hdr(sdkp, &sshdr);
 220		return -EINVAL;
 221	}
 222	revalidate_disk(sdkp->disk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223	return count;
 224}
 
 225
 226static ssize_t
 227manage_start_stop_show(struct device *dev, struct device_attribute *attr,
 228		       char *buf)
 229{
 230	struct scsi_disk *sdkp = to_scsi_disk(dev);
 231	struct scsi_device *sdp = sdkp->device;
 232
 233	return sprintf(buf, "%u\n", sdp->manage_start_stop);
 234}
 235
 236static ssize_t
 237manage_start_stop_store(struct device *dev, struct device_attribute *attr,
 238			const char *buf, size_t count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239{
 240	struct scsi_disk *sdkp = to_scsi_disk(dev);
 241	struct scsi_device *sdp = sdkp->device;
 242	bool v;
 243
 244	if (!capable(CAP_SYS_ADMIN))
 245		return -EACCES;
 246
 247	if (kstrtobool(buf, &v))
 248		return -EINVAL;
 249
 250	sdp->manage_start_stop = v;
 251
 252	return count;
 253}
 254static DEVICE_ATTR_RW(manage_start_stop);
 255
 256static ssize_t
 257allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
 258{
 259	struct scsi_disk *sdkp = to_scsi_disk(dev);
 260
 261	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
 262}
 263
 264static ssize_t
 265allow_restart_store(struct device *dev, struct device_attribute *attr,
 266		    const char *buf, size_t count)
 267{
 268	bool v;
 269	struct scsi_disk *sdkp = to_scsi_disk(dev);
 270	struct scsi_device *sdp = sdkp->device;
 271
 272	if (!capable(CAP_SYS_ADMIN))
 273		return -EACCES;
 274
 275	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 276		return -EINVAL;
 277
 278	if (kstrtobool(buf, &v))
 279		return -EINVAL;
 280
 281	sdp->allow_restart = v;
 282
 283	return count;
 284}
 285static DEVICE_ATTR_RW(allow_restart);
 286
 287static ssize_t
 288cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
 289{
 290	struct scsi_disk *sdkp = to_scsi_disk(dev);
 291	int ct = sdkp->RCD + 2*sdkp->WCE;
 292
 293	return sprintf(buf, "%s\n", sd_cache_types[ct]);
 294}
 295static DEVICE_ATTR_RW(cache_type);
 296
 297static ssize_t
 298FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
 299{
 300	struct scsi_disk *sdkp = to_scsi_disk(dev);
 301
 302	return sprintf(buf, "%u\n", sdkp->DPOFUA);
 303}
 304static DEVICE_ATTR_RO(FUA);
 305
 306static ssize_t
 307protection_type_show(struct device *dev, struct device_attribute *attr,
 308		     char *buf)
 309{
 310	struct scsi_disk *sdkp = to_scsi_disk(dev);
 311
 312	return sprintf(buf, "%u\n", sdkp->protection_type);
 313}
 314
 315static ssize_t
 316protection_type_store(struct device *dev, struct device_attribute *attr,
 317		      const char *buf, size_t count)
 318{
 319	struct scsi_disk *sdkp = to_scsi_disk(dev);
 320	unsigned int val;
 321	int err;
 322
 323	if (!capable(CAP_SYS_ADMIN))
 324		return -EACCES;
 325
 326	err = kstrtouint(buf, 10, &val);
 327
 328	if (err)
 329		return err;
 330
 331	if (val <= T10_PI_TYPE3_PROTECTION)
 332		sdkp->protection_type = val;
 333
 334	return count;
 335}
 336static DEVICE_ATTR_RW(protection_type);
 337
 338static ssize_t
 339protection_mode_show(struct device *dev, struct device_attribute *attr,
 340		     char *buf)
 341{
 342	struct scsi_disk *sdkp = to_scsi_disk(dev);
 343	struct scsi_device *sdp = sdkp->device;
 344	unsigned int dif, dix;
 345
 346	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
 347	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
 348
 349	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
 350		dif = 0;
 351		dix = 1;
 352	}
 353
 354	if (!dif && !dix)
 355		return sprintf(buf, "none\n");
 356
 357	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
 358}
 359static DEVICE_ATTR_RO(protection_mode);
 360
 361static ssize_t
 362app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
 363{
 364	struct scsi_disk *sdkp = to_scsi_disk(dev);
 365
 366	return sprintf(buf, "%u\n", sdkp->ATO);
 367}
 368static DEVICE_ATTR_RO(app_tag_own);
 369
 370static ssize_t
 371thin_provisioning_show(struct device *dev, struct device_attribute *attr,
 372		       char *buf)
 373{
 374	struct scsi_disk *sdkp = to_scsi_disk(dev);
 375
 376	return sprintf(buf, "%u\n", sdkp->lbpme);
 377}
 378static DEVICE_ATTR_RO(thin_provisioning);
 379
 380/* sysfs_match_string() requires dense arrays */
 381static const char *lbp_mode[] = {
 382	[SD_LBP_FULL]		= "full",
 383	[SD_LBP_UNMAP]		= "unmap",
 384	[SD_LBP_WS16]		= "writesame_16",
 385	[SD_LBP_WS10]		= "writesame_10",
 386	[SD_LBP_ZERO]		= "writesame_zero",
 387	[SD_LBP_DISABLE]	= "disabled",
 388};
 389
 390static ssize_t
 391provisioning_mode_show(struct device *dev, struct device_attribute *attr,
 392		       char *buf)
 393{
 394	struct scsi_disk *sdkp = to_scsi_disk(dev);
 395
 396	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
 397}
 398
 399static ssize_t
 400provisioning_mode_store(struct device *dev, struct device_attribute *attr,
 401			const char *buf, size_t count)
 402{
 403	struct scsi_disk *sdkp = to_scsi_disk(dev);
 404	struct scsi_device *sdp = sdkp->device;
 405	int mode;
 406
 407	if (!capable(CAP_SYS_ADMIN))
 408		return -EACCES;
 409
 410	if (sd_is_zoned(sdkp)) {
 411		sd_config_discard(sdkp, SD_LBP_DISABLE);
 412		return count;
 413	}
 414
 415	if (sdp->type != TYPE_DISK)
 416		return -EINVAL;
 417
 418	mode = sysfs_match_string(lbp_mode, buf);
 419	if (mode < 0)
 420		return -EINVAL;
 421
 422	sd_config_discard(sdkp, mode);
 423
 424	return count;
 425}
 426static DEVICE_ATTR_RW(provisioning_mode);
 427
 428/* sysfs_match_string() requires dense arrays */
 429static const char *zeroing_mode[] = {
 430	[SD_ZERO_WRITE]		= "write",
 431	[SD_ZERO_WS]		= "writesame",
 432	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
 433	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
 434};
 435
 436static ssize_t
 437zeroing_mode_show(struct device *dev, struct device_attribute *attr,
 438		  char *buf)
 439{
 440	struct scsi_disk *sdkp = to_scsi_disk(dev);
 441
 442	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
 443}
 444
 445static ssize_t
 446zeroing_mode_store(struct device *dev, struct device_attribute *attr,
 447		   const char *buf, size_t count)
 448{
 449	struct scsi_disk *sdkp = to_scsi_disk(dev);
 450	int mode;
 451
 452	if (!capable(CAP_SYS_ADMIN))
 453		return -EACCES;
 454
 455	mode = sysfs_match_string(zeroing_mode, buf);
 456	if (mode < 0)
 457		return -EINVAL;
 458
 459	sdkp->zeroing_mode = mode;
 460
 461	return count;
 462}
 463static DEVICE_ATTR_RW(zeroing_mode);
 464
 465static ssize_t
 466max_medium_access_timeouts_show(struct device *dev,
 467				struct device_attribute *attr, char *buf)
 468{
 469	struct scsi_disk *sdkp = to_scsi_disk(dev);
 470
 471	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
 472}
 473
 474static ssize_t
 475max_medium_access_timeouts_store(struct device *dev,
 476				 struct device_attribute *attr, const char *buf,
 477				 size_t count)
 478{
 479	struct scsi_disk *sdkp = to_scsi_disk(dev);
 480	int err;
 481
 482	if (!capable(CAP_SYS_ADMIN))
 483		return -EACCES;
 484
 485	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
 486
 487	return err ? err : count;
 488}
 489static DEVICE_ATTR_RW(max_medium_access_timeouts);
 490
 491static ssize_t
 492max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
 493			   char *buf)
 494{
 495	struct scsi_disk *sdkp = to_scsi_disk(dev);
 496
 497	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
 498}
 499
 500static ssize_t
 501max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
 502			    const char *buf, size_t count)
 503{
 504	struct scsi_disk *sdkp = to_scsi_disk(dev);
 505	struct scsi_device *sdp = sdkp->device;
 506	unsigned long max;
 507	int err;
 508
 509	if (!capable(CAP_SYS_ADMIN))
 510		return -EACCES;
 511
 512	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 513		return -EINVAL;
 514
 515	err = kstrtoul(buf, 10, &max);
 516
 517	if (err)
 518		return err;
 519
 520	if (max == 0)
 521		sdp->no_write_same = 1;
 522	else if (max <= SD_MAX_WS16_BLOCKS) {
 523		sdp->no_write_same = 0;
 524		sdkp->max_ws_blocks = max;
 525	}
 526
 527	sd_config_write_same(sdkp);
 528
 529	return count;
 530}
 531static DEVICE_ATTR_RW(max_write_same_blocks);
 532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533static struct attribute *sd_disk_attrs[] = {
 534	&dev_attr_cache_type.attr,
 535	&dev_attr_FUA.attr,
 536	&dev_attr_allow_restart.attr,
 537	&dev_attr_manage_start_stop.attr,
 
 
 
 538	&dev_attr_protection_type.attr,
 539	&dev_attr_protection_mode.attr,
 540	&dev_attr_app_tag_own.attr,
 541	&dev_attr_thin_provisioning.attr,
 542	&dev_attr_provisioning_mode.attr,
 543	&dev_attr_zeroing_mode.attr,
 544	&dev_attr_max_write_same_blocks.attr,
 545	&dev_attr_max_medium_access_timeouts.attr,
 
 
 546	NULL,
 547};
 548ATTRIBUTE_GROUPS(sd_disk);
 549
 550static struct class sd_disk_class = {
 551	.name		= "scsi_disk",
 552	.owner		= THIS_MODULE,
 553	.dev_release	= scsi_disk_release,
 554	.dev_groups	= sd_disk_groups,
 555};
 556
 557static const struct dev_pm_ops sd_pm_ops = {
 558	.suspend		= sd_suspend_system,
 559	.resume			= sd_resume,
 560	.poweroff		= sd_suspend_system,
 561	.restore		= sd_resume,
 562	.runtime_suspend	= sd_suspend_runtime,
 563	.runtime_resume		= sd_resume,
 564};
 565
 566static struct scsi_driver sd_template = {
 567	.gendrv = {
 568		.name		= "sd",
 569		.owner		= THIS_MODULE,
 570		.probe		= sd_probe,
 571		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
 572		.remove		= sd_remove,
 573		.shutdown	= sd_shutdown,
 574		.pm		= &sd_pm_ops,
 575	},
 576	.rescan			= sd_rescan,
 577	.init_command		= sd_init_command,
 578	.uninit_command		= sd_uninit_command,
 579	.done			= sd_done,
 580	.eh_action		= sd_eh_action,
 581	.eh_reset		= sd_eh_reset,
 582};
 583
 584/*
 585 * Dummy kobj_map->probe function.
 586 * The default ->probe function will call modprobe, which is
 587 * pointless as this module is already loaded.
 588 */
 589static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
 590{
 591	return NULL;
 592}
 593
 594/*
 595 * Device no to disk mapping:
 596 * 
 597 *       major         disc2     disc  p1
 598 *   |............|.............|....|....| <- dev_t
 599 *    31        20 19          8 7  4 3  0
 600 * 
 601 * Inside a major, we have 16k disks, however mapped non-
 602 * contiguously. The first 16 disks are for major0, the next
 603 * ones with major1, ... Disk 256 is for major0 again, disk 272 
 604 * for major1, ... 
 605 * As we stay compatible with our numbering scheme, we can reuse 
 606 * the well-know SCSI majors 8, 65--71, 136--143.
 607 */
 608static int sd_major(int major_idx)
 609{
 610	switch (major_idx) {
 611	case 0:
 612		return SCSI_DISK0_MAJOR;
 613	case 1 ... 7:
 614		return SCSI_DISK1_MAJOR + major_idx - 1;
 615	case 8 ... 15:
 616		return SCSI_DISK8_MAJOR + major_idx - 8;
 617	default:
 618		BUG();
 619		return 0;	/* shut up gcc */
 620	}
 621}
 622
 623static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
 624{
 625	struct scsi_disk *sdkp = NULL;
 626
 627	mutex_lock(&sd_ref_mutex);
 628
 629	if (disk->private_data) {
 630		sdkp = scsi_disk(disk);
 631		if (scsi_device_get(sdkp->device) == 0)
 632			get_device(&sdkp->dev);
 633		else
 634			sdkp = NULL;
 635	}
 636	mutex_unlock(&sd_ref_mutex);
 637	return sdkp;
 638}
 639
 640static void scsi_disk_put(struct scsi_disk *sdkp)
 641{
 642	struct scsi_device *sdev = sdkp->device;
 643
 644	mutex_lock(&sd_ref_mutex);
 645	put_device(&sdkp->dev);
 646	scsi_device_put(sdev);
 647	mutex_unlock(&sd_ref_mutex);
 648}
 649
 650#ifdef CONFIG_BLK_SED_OPAL
 651static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
 652		size_t len, bool send)
 653{
 654	struct scsi_device *sdev = data;
 
 655	u8 cdb[12] = { 0, };
 
 
 
 656	int ret;
 657
 658	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
 659	cdb[1] = secp;
 660	put_unaligned_be16(spsp, &cdb[2]);
 661	put_unaligned_be32(len, &cdb[6]);
 662
 663	ret = scsi_execute_req(sdev, cdb,
 664			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
 665			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
 666	return ret <= 0 ? ret : -EIO;
 667}
 668#endif /* CONFIG_BLK_SED_OPAL */
 669
 670/*
 671 * Look up the DIX operation based on whether the command is read or
 672 * write and whether dix and dif are enabled.
 673 */
 674static unsigned int sd_prot_op(bool write, bool dix, bool dif)
 675{
 676	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
 677	static const unsigned int ops[] = {	/* wrt dix dif */
 678		SCSI_PROT_NORMAL,		/*  0	0   0  */
 679		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
 680		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
 681		SCSI_PROT_READ_PASS,		/*  0	1   1  */
 682		SCSI_PROT_NORMAL,		/*  1	0   0  */
 683		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
 684		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
 685		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
 686	};
 687
 688	return ops[write << 2 | dix << 1 | dif];
 689}
 690
 691/*
 692 * Returns a mask of the protection flags that are valid for a given DIX
 693 * operation.
 694 */
 695static unsigned int sd_prot_flag_mask(unsigned int prot_op)
 696{
 697	static const unsigned int flag_mask[] = {
 698		[SCSI_PROT_NORMAL]		= 0,
 699
 700		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
 701						  SCSI_PROT_GUARD_CHECK |
 702						  SCSI_PROT_REF_CHECK |
 703						  SCSI_PROT_REF_INCREMENT,
 704
 705		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
 706						  SCSI_PROT_IP_CHECKSUM,
 707
 708		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
 709						  SCSI_PROT_GUARD_CHECK |
 710						  SCSI_PROT_REF_CHECK |
 711						  SCSI_PROT_REF_INCREMENT |
 712						  SCSI_PROT_IP_CHECKSUM,
 713
 714		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
 715						  SCSI_PROT_REF_INCREMENT,
 716
 717		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
 718						  SCSI_PROT_REF_CHECK |
 719						  SCSI_PROT_REF_INCREMENT |
 720						  SCSI_PROT_IP_CHECKSUM,
 721
 722		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
 723						  SCSI_PROT_GUARD_CHECK |
 724						  SCSI_PROT_REF_CHECK |
 725						  SCSI_PROT_REF_INCREMENT |
 726						  SCSI_PROT_IP_CHECKSUM,
 727	};
 728
 729	return flag_mask[prot_op];
 730}
 731
 732static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
 733					   unsigned int dix, unsigned int dif)
 734{
 735	struct bio *bio = scmd->request->bio;
 736	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
 
 737	unsigned int protect = 0;
 738
 739	if (dix) {				/* DIX Type 0, 1, 2, 3 */
 740		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
 741			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
 742
 743		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 744			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
 745	}
 746
 747	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
 748		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
 749
 750		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 751			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
 752	}
 753
 754	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
 755		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
 756
 757		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
 758			protect = 3 << 5;	/* Disable target PI checking */
 759		else
 760			protect = 1 << 5;	/* Enable target PI checking */
 761	}
 762
 763	scsi_set_prot_op(scmd, prot_op);
 764	scsi_set_prot_type(scmd, dif);
 765	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
 766
 767	return protect;
 768}
 769
 770static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
 771{
 772	struct request_queue *q = sdkp->disk->queue;
 773	unsigned int logical_block_size = sdkp->device->sector_size;
 774	unsigned int max_blocks = 0;
 775
 776	q->limits.discard_alignment =
 777		sdkp->unmap_alignment * logical_block_size;
 778	q->limits.discard_granularity =
 779		max(sdkp->physical_block_size,
 780		    sdkp->unmap_granularity * logical_block_size);
 781	sdkp->provisioning_mode = mode;
 782
 783	switch (mode) {
 784
 785	case SD_LBP_FULL:
 786	case SD_LBP_DISABLE:
 787		blk_queue_max_discard_sectors(q, 0);
 788		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
 789		return;
 790
 791	case SD_LBP_UNMAP:
 792		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
 793					  (u32)SD_MAX_WS16_BLOCKS);
 794		break;
 795
 796	case SD_LBP_WS16:
 797		if (sdkp->device->unmap_limit_for_ws)
 798			max_blocks = sdkp->max_unmap_blocks;
 799		else
 800			max_blocks = sdkp->max_ws_blocks;
 801
 802		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
 803		break;
 804
 805	case SD_LBP_WS10:
 806		if (sdkp->device->unmap_limit_for_ws)
 807			max_blocks = sdkp->max_unmap_blocks;
 808		else
 809			max_blocks = sdkp->max_ws_blocks;
 810
 811		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
 812		break;
 813
 814	case SD_LBP_ZERO:
 815		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 816					  (u32)SD_MAX_WS10_BLOCKS);
 817		break;
 818	}
 819
 820	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
 821	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
 
 
 
 
 
 
 
 
 
 
 
 
 822}
 823
 824static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
 825{
 826	struct scsi_device *sdp = cmd->device;
 827	struct request *rq = cmd->request;
 
 828	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 829	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 830	unsigned int data_len = 24;
 831	char *buf;
 832
 833	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 834	if (!rq->special_vec.bv_page)
 835		return BLK_STS_RESOURCE;
 836	clear_highpage(rq->special_vec.bv_page);
 837	rq->special_vec.bv_offset = 0;
 838	rq->special_vec.bv_len = data_len;
 839	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 840
 841	cmd->cmd_len = 10;
 842	cmd->cmnd[0] = UNMAP;
 843	cmd->cmnd[8] = 24;
 844
 845	buf = page_address(rq->special_vec.bv_page);
 846	put_unaligned_be16(6 + 16, &buf[0]);
 847	put_unaligned_be16(16, &buf[2]);
 848	put_unaligned_be64(lba, &buf[8]);
 849	put_unaligned_be32(nr_blocks, &buf[16]);
 850
 851	cmd->allowed = SD_MAX_RETRIES;
 852	cmd->transfersize = data_len;
 853	rq->timeout = SD_TIMEOUT;
 854
 855	return scsi_init_io(cmd);
 856}
 857
 858static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
 859		bool unmap)
 860{
 861	struct scsi_device *sdp = cmd->device;
 862	struct request *rq = cmd->request;
 
 863	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 864	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 865	u32 data_len = sdp->sector_size;
 866
 867	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 868	if (!rq->special_vec.bv_page)
 869		return BLK_STS_RESOURCE;
 870	clear_highpage(rq->special_vec.bv_page);
 871	rq->special_vec.bv_offset = 0;
 872	rq->special_vec.bv_len = data_len;
 873	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 874
 875	cmd->cmd_len = 16;
 876	cmd->cmnd[0] = WRITE_SAME_16;
 877	if (unmap)
 878		cmd->cmnd[1] = 0x8; /* UNMAP */
 879	put_unaligned_be64(lba, &cmd->cmnd[2]);
 880	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
 881
 882	cmd->allowed = SD_MAX_RETRIES;
 883	cmd->transfersize = data_len;
 884	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 885
 886	return scsi_init_io(cmd);
 887}
 888
 889static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
 890		bool unmap)
 891{
 892	struct scsi_device *sdp = cmd->device;
 893	struct request *rq = cmd->request;
 
 894	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 895	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 896	u32 data_len = sdp->sector_size;
 897
 898	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 899	if (!rq->special_vec.bv_page)
 900		return BLK_STS_RESOURCE;
 901	clear_highpage(rq->special_vec.bv_page);
 902	rq->special_vec.bv_offset = 0;
 903	rq->special_vec.bv_len = data_len;
 904	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 905
 906	cmd->cmd_len = 10;
 907	cmd->cmnd[0] = WRITE_SAME;
 908	if (unmap)
 909		cmd->cmnd[1] = 0x8; /* UNMAP */
 910	put_unaligned_be32(lba, &cmd->cmnd[2]);
 911	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
 912
 913	cmd->allowed = SD_MAX_RETRIES;
 914	cmd->transfersize = data_len;
 915	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 916
 917	return scsi_init_io(cmd);
 918}
 919
 920static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
 921{
 922	struct request *rq = cmd->request;
 923	struct scsi_device *sdp = cmd->device;
 924	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
 925	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 926	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 927
 928	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
 929		switch (sdkp->zeroing_mode) {
 930		case SD_ZERO_WS16_UNMAP:
 931			return sd_setup_write_same16_cmnd(cmd, true);
 932		case SD_ZERO_WS10_UNMAP:
 933			return sd_setup_write_same10_cmnd(cmd, true);
 934		}
 935	}
 936
 937	if (sdp->no_write_same)
 
 938		return BLK_STS_TARGET;
 
 939
 940	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
 941		return sd_setup_write_same16_cmnd(cmd, false);
 942
 943	return sd_setup_write_same10_cmnd(cmd, false);
 944}
 945
 946static void sd_config_write_same(struct scsi_disk *sdkp)
 947{
 948	struct request_queue *q = sdkp->disk->queue;
 949	unsigned int logical_block_size = sdkp->device->sector_size;
 950
 951	if (sdkp->device->no_write_same) {
 952		sdkp->max_ws_blocks = 0;
 953		goto out;
 954	}
 955
 956	/* Some devices can not handle block counts above 0xffff despite
 957	 * supporting WRITE SAME(16). Consequently we default to 64k
 958	 * blocks per I/O unless the device explicitly advertises a
 959	 * bigger limit.
 960	 */
 961	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
 962		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 963						   (u32)SD_MAX_WS16_BLOCKS);
 964	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
 965		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 966						   (u32)SD_MAX_WS10_BLOCKS);
 967	else {
 968		sdkp->device->no_write_same = 1;
 969		sdkp->max_ws_blocks = 0;
 970	}
 971
 972	if (sdkp->lbprz && sdkp->lbpws)
 973		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
 974	else if (sdkp->lbprz && sdkp->lbpws10)
 975		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
 976	else if (sdkp->max_ws_blocks)
 977		sdkp->zeroing_mode = SD_ZERO_WS;
 978	else
 979		sdkp->zeroing_mode = SD_ZERO_WRITE;
 980
 981	if (sdkp->max_ws_blocks &&
 982	    sdkp->physical_block_size > logical_block_size) {
 983		/*
 984		 * Reporting a maximum number of blocks that is not aligned
 985		 * on the device physical size would cause a large write same
 986		 * request to be split into physically unaligned chunks by
 987		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
 988		 * even if the caller of these functions took care to align the
 989		 * large request. So make sure the maximum reported is aligned
 990		 * to the device physical block size. This is only an optional
 991		 * optimization for regular disks, but this is mandatory to
 992		 * avoid failure of large write same requests directed at
 993		 * sequential write required zones of host-managed ZBC disks.
 994		 */
 995		sdkp->max_ws_blocks =
 996			round_down(sdkp->max_ws_blocks,
 997				   bytes_to_logical(sdkp->device,
 998						    sdkp->physical_block_size));
 999	}
1000
1001out:
1002	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1003					 (logical_block_size >> 9));
1004	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1005					 (logical_block_size >> 9));
1006}
1007
1008/**
1009 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1010 * @cmd: command to prepare
1011 *
1012 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1013 * the preference indicated by the target device.
1014 **/
1015static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1016{
1017	struct request *rq = cmd->request;
1018	struct scsi_device *sdp = cmd->device;
1019	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1020	struct bio *bio = rq->bio;
1021	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1022	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1023	blk_status_t ret;
1024
1025	if (sdkp->device->no_write_same)
1026		return BLK_STS_TARGET;
1027
1028	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1029
1030	rq->timeout = SD_WRITE_SAME_TIMEOUT;
1031
1032	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1033		cmd->cmd_len = 16;
1034		cmd->cmnd[0] = WRITE_SAME_16;
1035		put_unaligned_be64(lba, &cmd->cmnd[2]);
1036		put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1037	} else {
 
1038		cmd->cmd_len = 10;
1039		cmd->cmnd[0] = WRITE_SAME;
1040		put_unaligned_be32(lba, &cmd->cmnd[2]);
1041		put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1042	}
1043
1044	cmd->transfersize = sdp->sector_size;
1045	cmd->allowed = SD_MAX_RETRIES;
1046
1047	/*
1048	 * For WRITE SAME the data transferred via the DATA OUT buffer is
1049	 * different from the amount of data actually written to the target.
1050	 *
1051	 * We set up __data_len to the amount of data transferred via the
1052	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1053	 * to transfer a single sector of data first, but then reset it to
1054	 * the amount of data to be written right after so that the I/O path
1055	 * knows how much to actually write.
1056	 */
1057	rq->__data_len = sdp->sector_size;
1058	ret = scsi_init_io(cmd);
1059	rq->__data_len = blk_rq_bytes(rq);
1060
1061	return ret;
1062}
1063
1064static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1065{
1066	struct request *rq = cmd->request;
1067
1068	/* flush requests don't perform I/O, zero the S/G table */
1069	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1070
1071	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1072	cmd->cmd_len = 10;
1073	cmd->transfersize = 0;
1074	cmd->allowed = SD_MAX_RETRIES;
1075
1076	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1077	return BLK_STS_OK;
1078}
1079
1080static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1081				       sector_t lba, unsigned int nr_blocks,
1082				       unsigned char flags)
1083{
1084	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1085	if (unlikely(cmd->cmnd == NULL))
1086		return BLK_STS_RESOURCE;
1087
1088	cmd->cmd_len = SD_EXT_CDB_SIZE;
1089	memset(cmd->cmnd, 0, cmd->cmd_len);
1090
1091	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1092	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1093	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1094	cmd->cmnd[10] = flags;
 
1095	put_unaligned_be64(lba, &cmd->cmnd[12]);
1096	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1097	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1098
1099	return BLK_STS_OK;
1100}
1101
1102static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1103				       sector_t lba, unsigned int nr_blocks,
1104				       unsigned char flags)
1105{
1106	cmd->cmd_len  = 16;
1107	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1108	cmd->cmnd[1]  = flags;
1109	cmd->cmnd[14] = 0;
1110	cmd->cmnd[15] = 0;
1111	put_unaligned_be64(lba, &cmd->cmnd[2]);
1112	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1113
1114	return BLK_STS_OK;
1115}
1116
1117static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1118				       sector_t lba, unsigned int nr_blocks,
1119				       unsigned char flags)
1120{
1121	cmd->cmd_len = 10;
1122	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1123	cmd->cmnd[1] = flags;
1124	cmd->cmnd[6] = 0;
1125	cmd->cmnd[9] = 0;
1126	put_unaligned_be32(lba, &cmd->cmnd[2]);
1127	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1128
1129	return BLK_STS_OK;
1130}
1131
1132static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1133				      sector_t lba, unsigned int nr_blocks,
1134				      unsigned char flags)
1135{
1136	/* Avoid that 0 blocks gets translated into 256 blocks. */
1137	if (WARN_ON_ONCE(nr_blocks == 0))
1138		return BLK_STS_IOERR;
1139
1140	if (unlikely(flags & 0x8)) {
1141		/*
1142		 * This happens only if this drive failed 10byte rw
1143		 * command with ILLEGAL_REQUEST during operation and
1144		 * thus turned off use_10_for_rw.
1145		 */
1146		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1147		return BLK_STS_IOERR;
1148	}
1149
1150	cmd->cmd_len = 6;
1151	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1152	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1153	cmd->cmnd[2] = (lba >> 8) & 0xff;
1154	cmd->cmnd[3] = lba & 0xff;
1155	cmd->cmnd[4] = nr_blocks;
1156	cmd->cmnd[5] = 0;
1157
1158	return BLK_STS_OK;
1159}
1160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1161static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1162{
1163	struct request *rq = cmd->request;
1164	struct scsi_device *sdp = cmd->device;
1165	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1166	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1167	sector_t threshold;
1168	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1169	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1170	bool write = rq_data_dir(rq) == WRITE;
1171	unsigned char protect, fua;
 
1172	blk_status_t ret;
1173	unsigned int dif;
1174	bool dix;
1175
1176	ret = scsi_init_io(cmd);
1177	if (ret != BLK_STS_OK)
1178		return ret;
1179
 
1180	if (!scsi_device_online(sdp) || sdp->changed) {
1181		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1182		return BLK_STS_IOERR;
1183	}
1184
1185	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1186		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1187		return BLK_STS_IOERR;
1188	}
1189
1190	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1191		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1192		return BLK_STS_IOERR;
1193	}
1194
1195	/*
1196	 * Some SD card readers can't handle accesses which touch the
1197	 * last one or two logical blocks. Split accesses as needed.
1198	 */
1199	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1200
1201	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1202		if (lba < threshold) {
1203			/* Access up to the threshold but not beyond */
1204			nr_blocks = threshold - lba;
1205		} else {
1206			/* Access only a single logical block */
1207			nr_blocks = 1;
1208		}
1209	}
1210
 
 
 
 
 
 
1211	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1212	dix = scsi_prot_sg_count(cmd);
1213	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
 
1214
1215	if (dif || dix)
1216		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1217	else
1218		protect = 0;
1219
1220	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1221		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1222					 protect | fua);
1223	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1224		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1225					 protect | fua);
1226	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1227		   sdp->use_10_for_rw || protect) {
1228		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1229					 protect | fua);
1230	} else {
1231		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1232					protect | fua);
1233	}
1234
1235	if (unlikely(ret != BLK_STS_OK))
1236		return ret;
1237
1238	/*
1239	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1240	 * host adapter, it's safe to assume that we can at least transfer
1241	 * this many bytes between each connect / disconnect.
1242	 */
1243	cmd->transfersize = sdp->sector_size;
1244	cmd->underflow = nr_blocks << 9;
1245	cmd->allowed = SD_MAX_RETRIES;
1246	cmd->sdb.length = nr_blocks * sdp->sector_size;
1247
1248	SCSI_LOG_HLQUEUE(1,
1249			 scmd_printk(KERN_INFO, cmd,
1250				     "%s: block=%llu, count=%d\n", __func__,
1251				     (unsigned long long)blk_rq_pos(rq),
1252				     blk_rq_sectors(rq)));
1253	SCSI_LOG_HLQUEUE(2,
1254			 scmd_printk(KERN_INFO, cmd,
1255				     "%s %d/%u 512 byte blocks.\n",
1256				     write ? "writing" : "reading", nr_blocks,
1257				     blk_rq_sectors(rq)));
1258
1259	/*
1260	 * This indicates that the command is ready from our end to be
1261	 * queued.
1262	 */
1263	return BLK_STS_OK;
 
 
 
1264}
1265
1266static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1267{
1268	struct request *rq = cmd->request;
1269
1270	switch (req_op(rq)) {
1271	case REQ_OP_DISCARD:
1272		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1273		case SD_LBP_UNMAP:
1274			return sd_setup_unmap_cmnd(cmd);
1275		case SD_LBP_WS16:
1276			return sd_setup_write_same16_cmnd(cmd, true);
1277		case SD_LBP_WS10:
1278			return sd_setup_write_same10_cmnd(cmd, true);
1279		case SD_LBP_ZERO:
1280			return sd_setup_write_same10_cmnd(cmd, false);
1281		default:
1282			return BLK_STS_TARGET;
1283		}
1284	case REQ_OP_WRITE_ZEROES:
1285		return sd_setup_write_zeroes_cmnd(cmd);
1286	case REQ_OP_WRITE_SAME:
1287		return sd_setup_write_same_cmnd(cmd);
1288	case REQ_OP_FLUSH:
1289		return sd_setup_flush_cmnd(cmd);
1290	case REQ_OP_READ:
1291	case REQ_OP_WRITE:
 
1292		return sd_setup_read_write_cmnd(cmd);
1293	case REQ_OP_ZONE_RESET:
1294		return sd_zbc_setup_reset_cmnd(cmd, false);
 
1295	case REQ_OP_ZONE_RESET_ALL:
1296		return sd_zbc_setup_reset_cmnd(cmd, true);
 
 
 
 
 
 
 
1297	default:
1298		WARN_ON_ONCE(1);
1299		return BLK_STS_NOTSUPP;
1300	}
1301}
1302
1303static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1304{
1305	struct request *rq = SCpnt->request;
1306	u8 *cmnd;
1307
1308	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1309		mempool_free(rq->special_vec.bv_page, sd_page_pool);
 
1310
1311	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1312		cmnd = SCpnt->cmnd;
1313		SCpnt->cmnd = NULL;
1314		SCpnt->cmd_len = 0;
1315		mempool_free(cmnd, sd_cdb_pool);
1316	}
 
 
 
 
 
 
 
1317}
1318
1319/**
1320 *	sd_open - open a scsi disk device
1321 *	@bdev: Block device of the scsi disk to open
1322 *	@mode: FMODE_* mask
1323 *
1324 *	Returns 0 if successful. Returns a negated errno value in case 
1325 *	of error.
1326 *
1327 *	Note: This can be called from a user context (e.g. fsck(1) )
1328 *	or from within the kernel (e.g. as a result of a mount(1) ).
1329 *	In the latter case @inode and @filp carry an abridged amount
1330 *	of information as noted above.
1331 *
1332 *	Locking: called with bdev->bd_mutex held.
1333 **/
1334static int sd_open(struct block_device *bdev, fmode_t mode)
1335{
1336	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1337	struct scsi_device *sdev;
1338	int retval;
1339
1340	if (!sdkp)
1341		return -ENXIO;
1342
1343	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1344
1345	sdev = sdkp->device;
1346
1347	/*
1348	 * If the device is in error recovery, wait until it is done.
1349	 * If the device is offline, then disallow any access to it.
1350	 */
1351	retval = -ENXIO;
1352	if (!scsi_block_when_processing_errors(sdev))
1353		goto error_out;
1354
1355	if (sdev->removable || sdkp->write_prot)
1356		check_disk_change(bdev);
1357
1358	/*
1359	 * If the drive is empty, just let the open fail.
1360	 */
1361	retval = -ENOMEDIUM;
1362	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
 
1363		goto error_out;
1364
1365	/*
1366	 * If the device has the write protect tab set, have the open fail
1367	 * if the user expects to be able to write to the thing.
1368	 */
1369	retval = -EROFS;
1370	if (sdkp->write_prot && (mode & FMODE_WRITE))
1371		goto error_out;
1372
1373	/*
1374	 * It is possible that the disk changing stuff resulted in
1375	 * the device being taken offline.  If this is the case,
1376	 * report this to the user, and don't pretend that the
1377	 * open actually succeeded.
1378	 */
1379	retval = -ENXIO;
1380	if (!scsi_device_online(sdev))
1381		goto error_out;
1382
1383	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1384		if (scsi_block_when_processing_errors(sdev))
1385			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1386	}
1387
1388	return 0;
1389
1390error_out:
1391	scsi_disk_put(sdkp);
1392	return retval;	
1393}
1394
1395/**
1396 *	sd_release - invoked when the (last) close(2) is called on this
1397 *	scsi disk.
1398 *	@disk: disk to release
1399 *	@mode: FMODE_* mask
1400 *
1401 *	Returns 0. 
1402 *
1403 *	Note: may block (uninterruptible) if error recovery is underway
1404 *	on this disk.
1405 *
1406 *	Locking: called with bdev->bd_mutex held.
1407 **/
1408static void sd_release(struct gendisk *disk, fmode_t mode)
1409{
1410	struct scsi_disk *sdkp = scsi_disk(disk);
1411	struct scsi_device *sdev = sdkp->device;
1412
1413	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1414
1415	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1416		if (scsi_block_when_processing_errors(sdev))
1417			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1418	}
1419
1420	scsi_disk_put(sdkp);
1421}
1422
1423static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1424{
1425	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1426	struct scsi_device *sdp = sdkp->device;
1427	struct Scsi_Host *host = sdp->host;
1428	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1429	int diskinfo[4];
1430
1431	/* default to most commonly used values */
1432	diskinfo[0] = 0x40;	/* 1 << 6 */
1433	diskinfo[1] = 0x20;	/* 1 << 5 */
1434	diskinfo[2] = capacity >> 11;
1435
1436	/* override with calculated, extended default, or driver values */
1437	if (host->hostt->bios_param)
1438		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1439	else
1440		scsicam_bios_param(bdev, capacity, diskinfo);
1441
1442	geo->heads = diskinfo[0];
1443	geo->sectors = diskinfo[1];
1444	geo->cylinders = diskinfo[2];
1445	return 0;
1446}
1447
1448/**
1449 *	sd_ioctl - process an ioctl
1450 *	@bdev: target block device
1451 *	@mode: FMODE_* mask
1452 *	@cmd: ioctl command number
1453 *	@arg: this is third argument given to ioctl(2) system call.
1454 *	Often contains a pointer.
1455 *
1456 *	Returns 0 if successful (some ioctls return positive numbers on
1457 *	success as well). Returns a negated errno value in case of error.
1458 *
1459 *	Note: most ioctls are forward onto the block subsystem or further
1460 *	down in the scsi subsystem.
1461 **/
1462static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1463		    unsigned int cmd, unsigned long arg)
1464{
1465	struct gendisk *disk = bdev->bd_disk;
1466	struct scsi_disk *sdkp = scsi_disk(disk);
1467	struct scsi_device *sdp = sdkp->device;
1468	void __user *p = (void __user *)arg;
1469	int error;
1470    
1471	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1472				    "cmd=0x%x\n", disk->disk_name, cmd));
1473
1474	error = scsi_verify_blk_ioctl(bdev, cmd);
1475	if (error < 0)
1476		return error;
1477
1478	/*
1479	 * If we are in the middle of error recovery, don't let anyone
1480	 * else try and use this device.  Also, if error recovery fails, it
1481	 * may try and take the device offline, in which case all further
1482	 * access to the device is prohibited.
1483	 */
1484	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1485			(mode & FMODE_NDELAY) != 0);
1486	if (error)
1487		goto out;
1488
1489	if (is_sed_ioctl(cmd))
1490		return sed_ioctl(sdkp->opal_dev, cmd, p);
1491
1492	/*
1493	 * Send SCSI addressing ioctls directly to mid level, send other
1494	 * ioctls to block level and then onto mid level if they can't be
1495	 * resolved.
1496	 */
1497	switch (cmd) {
1498		case SCSI_IOCTL_GET_IDLUN:
1499		case SCSI_IOCTL_GET_BUS_NUMBER:
1500			error = scsi_ioctl(sdp, cmd, p);
1501			break;
1502		default:
1503			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1504			if (error != -ENOTTY)
1505				break;
1506			error = scsi_ioctl(sdp, cmd, p);
1507			break;
1508	}
1509out:
1510	return error;
1511}
1512
1513static void set_media_not_present(struct scsi_disk *sdkp)
1514{
1515	if (sdkp->media_present)
1516		sdkp->device->changed = 1;
1517
1518	if (sdkp->device->removable) {
1519		sdkp->media_present = 0;
1520		sdkp->capacity = 0;
1521	}
1522}
1523
1524static int media_not_present(struct scsi_disk *sdkp,
1525			     struct scsi_sense_hdr *sshdr)
1526{
1527	if (!scsi_sense_valid(sshdr))
1528		return 0;
1529
1530	/* not invoked for commands that could return deferred errors */
1531	switch (sshdr->sense_key) {
1532	case UNIT_ATTENTION:
1533	case NOT_READY:
1534		/* medium not present */
1535		if (sshdr->asc == 0x3A) {
1536			set_media_not_present(sdkp);
1537			return 1;
1538		}
1539	}
1540	return 0;
1541}
1542
1543/**
1544 *	sd_check_events - check media events
1545 *	@disk: kernel device descriptor
1546 *	@clearing: disk events currently being cleared
1547 *
1548 *	Returns mask of DISK_EVENT_*.
1549 *
1550 *	Note: this function is invoked from the block subsystem.
1551 **/
1552static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1553{
1554	struct scsi_disk *sdkp = scsi_disk_get(disk);
1555	struct scsi_device *sdp;
1556	int retval;
 
1557
1558	if (!sdkp)
1559		return 0;
1560
1561	sdp = sdkp->device;
1562	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1563
1564	/*
1565	 * If the device is offline, don't send any commands - just pretend as
1566	 * if the command failed.  If the device ever comes back online, we
1567	 * can deal with it then.  It is only because of unrecoverable errors
1568	 * that we would ever take a device offline in the first place.
1569	 */
1570	if (!scsi_device_online(sdp)) {
1571		set_media_not_present(sdkp);
1572		goto out;
1573	}
1574
1575	/*
1576	 * Using TEST_UNIT_READY enables differentiation between drive with
1577	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1578	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1579	 *
1580	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1581	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1582	 * sd_revalidate() is called.
1583	 */
1584	if (scsi_block_when_processing_errors(sdp)) {
1585		struct scsi_sense_hdr sshdr = { 0, };
1586
1587		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1588					      &sshdr);
1589
1590		/* failed to execute TUR, assume media not present */
1591		if (host_byte(retval)) {
1592			set_media_not_present(sdkp);
1593			goto out;
1594		}
1595
1596		if (media_not_present(sdkp, &sshdr))
1597			goto out;
1598	}
1599
1600	/*
1601	 * For removable scsi disk we have to recognise the presence
1602	 * of a disk in the drive.
1603	 */
1604	if (!sdkp->media_present)
1605		sdp->changed = 1;
1606	sdkp->media_present = 1;
1607out:
1608	/*
1609	 * sdp->changed is set under the following conditions:
1610	 *
1611	 *	Medium present state has changed in either direction.
1612	 *	Device has indicated UNIT_ATTENTION.
1613	 */
1614	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1615	sdp->changed = 0;
1616	scsi_disk_put(sdkp);
1617	return retval;
1618}
1619
1620static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1621{
1622	int retries, res;
1623	struct scsi_device *sdp = sdkp->device;
1624	const int timeout = sdp->request_queue->rq_timeout
1625		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1626	struct scsi_sense_hdr my_sshdr;
 
 
 
 
1627
1628	if (!scsi_device_online(sdp))
1629		return -ENODEV;
1630
1631	/* caller might not be interested in sense, but we need it */
1632	if (!sshdr)
1633		sshdr = &my_sshdr;
1634
1635	for (retries = 3; retries > 0; --retries) {
1636		unsigned char cmd[10] = { 0 };
1637
1638		cmd[0] = SYNCHRONIZE_CACHE;
 
 
 
1639		/*
1640		 * Leave the rest of the command zero to indicate
1641		 * flush everything.
1642		 */
1643		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1644				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1645		if (res == 0)
1646			break;
1647	}
1648
1649	if (res) {
1650		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1651
1652		if (driver_byte(res) == DRIVER_SENSE)
1653			sd_print_sense_hdr(sdkp, sshdr);
1654
1655		/* we need to evaluate the error return  */
1656		if (scsi_sense_valid(sshdr) &&
1657			(sshdr->asc == 0x3a ||	/* medium not present */
1658			 sshdr->asc == 0x20 ||	/* invalid command */
1659			 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)))	/* drive is password locked */
 
 
 
1660				/* this is no error here */
1661				return 0;
 
 
 
 
 
 
 
 
 
1662
1663		switch (host_byte(res)) {
1664		/* ignore errors due to racing a disconnection */
1665		case DID_BAD_TARGET:
1666		case DID_NO_CONNECT:
1667			return 0;
1668		/* signal the upper layer it might try again */
1669		case DID_BUS_BUSY:
1670		case DID_IMM_RETRY:
1671		case DID_REQUEUE:
1672		case DID_SOFT_ERROR:
1673			return -EBUSY;
1674		default:
1675			return -EIO;
1676		}
1677	}
1678	return 0;
1679}
1680
1681static void sd_rescan(struct device *dev)
1682{
1683	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1684
1685	revalidate_disk(sdkp->disk);
1686}
1687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1688
1689#ifdef CONFIG_COMPAT
1690/* 
1691 * This gets directly called from VFS. When the ioctl 
1692 * is not recognized we go back to the other translation paths. 
1693 */
1694static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1695			   unsigned int cmd, unsigned long arg)
1696{
1697	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1698	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699
1700	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1701			(mode & FMODE_NDELAY) != 0);
1702	if (error)
1703		return error;
1704	       
1705	/* 
1706	 * Let the static ioctl translation table take care of it.
1707	 */
1708	if (!sdev->host->hostt->compat_ioctl)
1709		return -ENOIOCTLCMD; 
1710	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1711}
1712#endif
1713
1714static char sd_pr_type(enum pr_type type)
 
1715{
1716	switch (type) {
1717	case PR_WRITE_EXCLUSIVE:
1718		return 0x01;
1719	case PR_EXCLUSIVE_ACCESS:
1720		return 0x03;
1721	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1722		return 0x05;
1723	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1724		return 0x06;
1725	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1726		return 0x07;
1727	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1728		return 0x08;
1729	default:
1730		return 0;
 
 
 
 
 
 
 
1731	}
1732};
1733
1734static int sd_pr_command(struct block_device *bdev, u8 sa,
1735		u64 key, u64 sa_key, u8 type, u8 flags)
 
 
 
 
 
 
1736{
1737	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
 
1738	struct scsi_sense_hdr sshdr;
 
 
 
1739	int result;
1740	u8 cmd[16] = { 0, };
1741	u8 data[24] = { 0, };
1742
1743	cmd[0] = PERSISTENT_RESERVE_OUT;
1744	cmd[1] = sa;
1745	cmd[2] = type;
1746	put_unaligned_be32(sizeof(data), &cmd[5]);
1747
1748	put_unaligned_be64(key, &data[0]);
1749	put_unaligned_be64(sa_key, &data[8]);
1750	data[20] = flags;
1751
1752	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1753			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
 
1754
1755	if (driver_byte(result) == DRIVER_SENSE &&
1756	    scsi_sense_valid(&sshdr)) {
1757		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1758		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1759	}
1760
1761	return result;
 
 
 
1762}
1763
1764static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1765		u32 flags)
1766{
1767	if (flags & ~PR_FL_IGNORE_KEY)
1768		return -EOPNOTSUPP;
1769	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1770			old_key, new_key, 0,
1771			(1 << 0) /* APTPL */);
1772}
1773
1774static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1775		u32 flags)
1776{
1777	if (flags)
1778		return -EOPNOTSUPP;
1779	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
 
1780}
1781
1782static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1783{
1784	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
 
1785}
1786
1787static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1788		enum pr_type type, bool abort)
1789{
1790	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1791			     sd_pr_type(type), 0);
1792}
1793
1794static int sd_pr_clear(struct block_device *bdev, u64 key)
1795{
1796	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1797}
1798
1799static const struct pr_ops sd_pr_ops = {
1800	.pr_register	= sd_pr_register,
1801	.pr_reserve	= sd_pr_reserve,
1802	.pr_release	= sd_pr_release,
1803	.pr_preempt	= sd_pr_preempt,
1804	.pr_clear	= sd_pr_clear,
 
 
1805};
1806
 
 
 
 
 
 
 
1807static const struct block_device_operations sd_fops = {
1808	.owner			= THIS_MODULE,
1809	.open			= sd_open,
1810	.release		= sd_release,
1811	.ioctl			= sd_ioctl,
1812	.getgeo			= sd_getgeo,
1813#ifdef CONFIG_COMPAT
1814	.compat_ioctl		= sd_compat_ioctl,
1815#endif
1816	.check_events		= sd_check_events,
1817	.revalidate_disk	= sd_revalidate_disk,
1818	.unlock_native_capacity	= sd_unlock_native_capacity,
1819	.report_zones		= sd_zbc_report_zones,
 
 
1820	.pr_ops			= &sd_pr_ops,
1821};
1822
1823/**
1824 *	sd_eh_reset - reset error handling callback
1825 *	@scmd:		sd-issued command that has failed
1826 *
1827 *	This function is called by the SCSI midlayer before starting
1828 *	SCSI EH. When counting medium access failures we have to be
1829 *	careful to register it only only once per device and SCSI EH run;
1830 *	there might be several timed out commands which will cause the
1831 *	'max_medium_access_timeouts' counter to trigger after the first
1832 *	SCSI EH run already and set the device to offline.
1833 *	So this function resets the internal counter before starting SCSI EH.
1834 **/
1835static void sd_eh_reset(struct scsi_cmnd *scmd)
1836{
1837	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1838
1839	/* New SCSI EH run, reset gate variable */
1840	sdkp->ignore_medium_access_errors = false;
1841}
1842
1843/**
1844 *	sd_eh_action - error handling callback
1845 *	@scmd:		sd-issued command that has failed
1846 *	@eh_disp:	The recovery disposition suggested by the midlayer
1847 *
1848 *	This function is called by the SCSI midlayer upon completion of an
1849 *	error test command (currently TEST UNIT READY). The result of sending
1850 *	the eh command is passed in eh_disp.  We're looking for devices that
1851 *	fail medium access commands but are OK with non access commands like
1852 *	test unit ready (so wrongly see the device as having a successful
1853 *	recovery)
1854 **/
1855static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1856{
1857	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1858	struct scsi_device *sdev = scmd->device;
1859
1860	if (!scsi_device_online(sdev) ||
1861	    !scsi_medium_access_command(scmd) ||
1862	    host_byte(scmd->result) != DID_TIME_OUT ||
1863	    eh_disp != SUCCESS)
1864		return eh_disp;
1865
1866	/*
1867	 * The device has timed out executing a medium access command.
1868	 * However, the TEST UNIT READY command sent during error
1869	 * handling completed successfully. Either the device is in the
1870	 * process of recovering or has it suffered an internal failure
1871	 * that prevents access to the storage medium.
1872	 */
1873	if (!sdkp->ignore_medium_access_errors) {
1874		sdkp->medium_access_timed_out++;
1875		sdkp->ignore_medium_access_errors = true;
1876	}
1877
1878	/*
1879	 * If the device keeps failing read/write commands but TEST UNIT
1880	 * READY always completes successfully we assume that medium
1881	 * access is no longer possible and take the device offline.
1882	 */
1883	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1884		scmd_printk(KERN_ERR, scmd,
1885			    "Medium access timeout failure. Offlining disk!\n");
1886		mutex_lock(&sdev->state_mutex);
1887		scsi_device_set_state(sdev, SDEV_OFFLINE);
1888		mutex_unlock(&sdev->state_mutex);
1889
1890		return SUCCESS;
1891	}
1892
1893	return eh_disp;
1894}
1895
1896static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1897{
1898	struct request *req = scmd->request;
1899	struct scsi_device *sdev = scmd->device;
1900	unsigned int transferred, good_bytes;
1901	u64 start_lba, end_lba, bad_lba;
1902
1903	/*
1904	 * Some commands have a payload smaller than the device logical
1905	 * block size (e.g. INQUIRY on a 4K disk).
1906	 */
1907	if (scsi_bufflen(scmd) <= sdev->sector_size)
1908		return 0;
1909
1910	/* Check if we have a 'bad_lba' information */
1911	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1912				     SCSI_SENSE_BUFFERSIZE,
1913				     &bad_lba))
1914		return 0;
1915
1916	/*
1917	 * If the bad lba was reported incorrectly, we have no idea where
1918	 * the error is.
1919	 */
1920	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1921	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1922	if (bad_lba < start_lba || bad_lba >= end_lba)
1923		return 0;
1924
1925	/*
1926	 * resid is optional but mostly filled in.  When it's unused,
1927	 * its value is zero, so we assume the whole buffer transferred
1928	 */
1929	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1930
1931	/* This computation should always be done in terms of the
1932	 * resolution of the device's medium.
1933	 */
1934	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1935
1936	return min(good_bytes, transferred);
1937}
1938
1939/**
1940 *	sd_done - bottom half handler: called when the lower level
1941 *	driver has completed (successfully or otherwise) a scsi command.
1942 *	@SCpnt: mid-level's per command structure.
1943 *
1944 *	Note: potentially run from within an ISR. Must not block.
1945 **/
1946static int sd_done(struct scsi_cmnd *SCpnt)
1947{
1948	int result = SCpnt->result;
1949	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1950	unsigned int sector_size = SCpnt->device->sector_size;
1951	unsigned int resid;
1952	struct scsi_sense_hdr sshdr;
1953	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1954	struct request *req = SCpnt->request;
1955	int sense_valid = 0;
1956	int sense_deferred = 0;
1957
1958	switch (req_op(req)) {
1959	case REQ_OP_DISCARD:
1960	case REQ_OP_WRITE_ZEROES:
1961	case REQ_OP_WRITE_SAME:
1962	case REQ_OP_ZONE_RESET:
1963	case REQ_OP_ZONE_RESET_ALL:
 
 
 
1964		if (!result) {
1965			good_bytes = blk_rq_bytes(req);
1966			scsi_set_resid(SCpnt, 0);
1967		} else {
1968			good_bytes = 0;
1969			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1970		}
1971		break;
1972	default:
1973		/*
1974		 * In case of bogus fw or device, we could end up having
1975		 * an unaligned partial completion. Check this here and force
1976		 * alignment.
1977		 */
1978		resid = scsi_get_resid(SCpnt);
1979		if (resid & (sector_size - 1)) {
1980			sd_printk(KERN_INFO, sdkp,
1981				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1982				resid, sector_size);
1983			scsi_print_command(SCpnt);
1984			resid = min(scsi_bufflen(SCpnt),
1985				    round_up(resid, sector_size));
1986			scsi_set_resid(SCpnt, resid);
1987		}
1988	}
1989
1990	if (result) {
1991		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1992		if (sense_valid)
1993			sense_deferred = scsi_sense_is_deferred(&sshdr);
1994	}
1995	sdkp->medium_access_timed_out = 0;
1996
1997	if (driver_byte(result) != DRIVER_SENSE &&
1998	    (!sense_valid || sense_deferred))
1999		goto out;
2000
2001	switch (sshdr.sense_key) {
2002	case HARDWARE_ERROR:
2003	case MEDIUM_ERROR:
2004		good_bytes = sd_completed_bytes(SCpnt);
2005		break;
2006	case RECOVERED_ERROR:
2007		good_bytes = scsi_bufflen(SCpnt);
2008		break;
2009	case NO_SENSE:
2010		/* This indicates a false check condition, so ignore it.  An
2011		 * unknown amount of data was transferred so treat it as an
2012		 * error.
2013		 */
2014		SCpnt->result = 0;
2015		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2016		break;
2017	case ABORTED_COMMAND:
2018		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2019			good_bytes = sd_completed_bytes(SCpnt);
2020		break;
2021	case ILLEGAL_REQUEST:
2022		switch (sshdr.asc) {
2023		case 0x10:	/* DIX: Host detected corruption */
2024			good_bytes = sd_completed_bytes(SCpnt);
2025			break;
2026		case 0x20:	/* INVALID COMMAND OPCODE */
2027		case 0x24:	/* INVALID FIELD IN CDB */
2028			switch (SCpnt->cmnd[0]) {
2029			case UNMAP:
2030				sd_config_discard(sdkp, SD_LBP_DISABLE);
2031				break;
2032			case WRITE_SAME_16:
2033			case WRITE_SAME:
2034				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2035					sd_config_discard(sdkp, SD_LBP_DISABLE);
2036				} else {
2037					sdkp->device->no_write_same = 1;
2038					sd_config_write_same(sdkp);
2039					req->rq_flags |= RQF_QUIET;
2040				}
2041				break;
2042			}
2043		}
2044		break;
2045	default:
2046		break;
2047	}
2048
2049 out:
2050	if (sd_is_zoned(sdkp))
2051		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2052
2053	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2054					   "sd_done: completed %d of %d bytes\n",
2055					   good_bytes, scsi_bufflen(SCpnt)));
2056
2057	return good_bytes;
2058}
2059
2060/*
2061 * spinup disk - called only in sd_revalidate_disk()
2062 */
2063static void
2064sd_spinup_disk(struct scsi_disk *sdkp)
2065{
2066	unsigned char cmd[10];
2067	unsigned long spintime_expire = 0;
2068	int retries, spintime;
2069	unsigned int the_result;
2070	struct scsi_sense_hdr sshdr;
 
 
 
2071	int sense_valid = 0;
2072
2073	spintime = 0;
2074
2075	/* Spin up drives, as required.  Only do this at boot time */
2076	/* Spinup needs to be done for module loads too. */
2077	do {
2078		retries = 0;
2079
2080		do {
 
 
2081			cmd[0] = TEST_UNIT_READY;
2082			memset((void *) &cmd[1], 0, 9);
2083
2084			the_result = scsi_execute_req(sdkp->device, cmd,
2085						      DMA_NONE, NULL, 0,
2086						      &sshdr, SD_TIMEOUT,
2087						      SD_MAX_RETRIES, NULL);
2088
2089			/*
2090			 * If the drive has indicated to us that it
2091			 * doesn't have any media in it, don't bother
2092			 * with any more polling.
2093			 */
2094			if (media_not_present(sdkp, &sshdr))
2095				return;
 
 
 
 
 
 
2096
2097			if (the_result)
2098				sense_valid = scsi_sense_valid(&sshdr);
 
2099			retries++;
2100		} while (retries < 3 && 
2101			 (!scsi_status_is_good(the_result) ||
2102			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2103			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2104
2105		if (driver_byte(the_result) != DRIVER_SENSE) {
2106			/* no sense, TUR either succeeded or failed
2107			 * with a status error */
2108			if(!spintime && !scsi_status_is_good(the_result)) {
2109				sd_print_result(sdkp, "Test Unit Ready failed",
2110						the_result);
2111			}
2112			break;
2113		}
2114
2115		/*
2116		 * The device does not want the automatic start to be issued.
2117		 */
2118		if (sdkp->device->no_start_on_add)
2119			break;
2120
2121		if (sense_valid && sshdr.sense_key == NOT_READY) {
2122			if (sshdr.asc == 4 && sshdr.ascq == 3)
2123				break;	/* manual intervention required */
2124			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2125				break;	/* standby */
2126			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2127				break;	/* unavailable */
2128			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2129				break;	/* sanitize in progress */
 
 
 
 
2130			/*
2131			 * Issue command to spin up drive when not ready
2132			 */
2133			if (!spintime) {
2134				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2135				cmd[0] = START_STOP;
2136				cmd[1] = 1;	/* Return immediately */
2137				memset((void *) &cmd[2], 0, 8);
2138				cmd[4] = 1;	/* Start spin cycle */
2139				if (sdkp->device->start_stop_pwr_cond)
2140					cmd[4] |= 1 << 4;
2141				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2142						 NULL, 0, &sshdr,
2143						 SD_TIMEOUT, SD_MAX_RETRIES,
2144						 NULL);
2145				spintime_expire = jiffies + 100 * HZ;
2146				spintime = 1;
2147			}
2148			/* Wait 1 second for next try */
2149			msleep(1000);
2150			printk(KERN_CONT ".");
2151
2152		/*
2153		 * Wait for USB flash devices with slow firmware.
2154		 * Yes, this sense key/ASC combination shouldn't
2155		 * occur here.  It's characteristic of these devices.
2156		 */
2157		} else if (sense_valid &&
2158				sshdr.sense_key == UNIT_ATTENTION &&
2159				sshdr.asc == 0x28) {
2160			if (!spintime) {
2161				spintime_expire = jiffies + 5 * HZ;
2162				spintime = 1;
2163			}
2164			/* Wait 1 second for next try */
2165			msleep(1000);
2166		} else {
2167			/* we don't understand the sense code, so it's
2168			 * probably pointless to loop */
2169			if(!spintime) {
2170				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2171				sd_print_sense_hdr(sdkp, &sshdr);
2172			}
2173			break;
2174		}
2175				
2176	} while (spintime && time_before_eq(jiffies, spintime_expire));
2177
2178	if (spintime) {
2179		if (scsi_status_is_good(the_result))
2180			printk(KERN_CONT "ready\n");
2181		else
2182			printk(KERN_CONT "not responding...\n");
2183	}
2184}
2185
2186/*
2187 * Determine whether disk supports Data Integrity Field.
2188 */
2189static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2190{
2191	struct scsi_device *sdp = sdkp->device;
2192	u8 type;
2193	int ret = 0;
2194
2195	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2196		return ret;
 
 
2197
2198	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2199
2200	if (type > T10_PI_TYPE3_PROTECTION)
2201		ret = -ENODEV;
2202	else if (scsi_host_dif_capable(sdp->host, type))
2203		ret = 1;
2204
2205	if (sdkp->first_scan || type != sdkp->protection_type)
2206		switch (ret) {
2207		case -ENODEV:
2208			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2209				  " protection type %u. Disabling disk!\n",
2210				  type);
2211			break;
2212		case 1:
2213			sd_printk(KERN_NOTICE, sdkp,
2214				  "Enabling DIF Type %u protection\n", type);
2215			break;
2216		case 0:
2217			sd_printk(KERN_NOTICE, sdkp,
2218				  "Disabling DIF Type %u protection\n", type);
2219			break;
2220		}
2221
2222	sdkp->protection_type = type;
2223
2224	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2225}
2226
2227static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2228			struct scsi_sense_hdr *sshdr, int sense_valid,
2229			int the_result)
2230{
2231	if (driver_byte(the_result) == DRIVER_SENSE)
2232		sd_print_sense_hdr(sdkp, sshdr);
2233	else
2234		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2235
2236	/*
2237	 * Set dirty bit for removable devices if not ready -
2238	 * sometimes drives will not report this properly.
2239	 */
2240	if (sdp->removable &&
2241	    sense_valid && sshdr->sense_key == NOT_READY)
2242		set_media_not_present(sdkp);
2243
2244	/*
2245	 * We used to set media_present to 0 here to indicate no media
2246	 * in the drive, but some drives fail read capacity even with
2247	 * media present, so we can't do that.
2248	 */
2249	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2250}
2251
2252#define RC16_LEN 32
2253#if RC16_LEN > SD_BUF_SIZE
2254#error RC16_LEN must not be more than SD_BUF_SIZE
2255#endif
2256
2257#define READ_CAPACITY_RETRIES_ON_RESET	10
2258
2259static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2260						unsigned char *buffer)
2261{
2262	unsigned char cmd[16];
2263	struct scsi_sense_hdr sshdr;
 
 
 
2264	int sense_valid = 0;
2265	int the_result;
2266	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2267	unsigned int alignment;
2268	unsigned long long lba;
2269	unsigned sector_size;
2270
2271	if (sdp->no_read_capacity_16)
2272		return -EINVAL;
2273
2274	do {
2275		memset(cmd, 0, 16);
2276		cmd[0] = SERVICE_ACTION_IN_16;
2277		cmd[1] = SAI_READ_CAPACITY_16;
2278		cmd[13] = RC16_LEN;
2279		memset(buffer, 0, RC16_LEN);
2280
2281		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2282					buffer, RC16_LEN, &sshdr,
2283					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2284
2285		if (media_not_present(sdkp, &sshdr))
2286			return -ENODEV;
2287
2288		if (the_result) {
2289			sense_valid = scsi_sense_valid(&sshdr);
2290			if (sense_valid &&
2291			    sshdr.sense_key == ILLEGAL_REQUEST &&
2292			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2293			    sshdr.ascq == 0x00)
2294				/* Invalid Command Operation Code or
2295				 * Invalid Field in CDB, just retry
2296				 * silently with RC10 */
2297				return -EINVAL;
2298			if (sense_valid &&
2299			    sshdr.sense_key == UNIT_ATTENTION &&
2300			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2301				/* Device reset might occur several times,
2302				 * give it one more chance */
2303				if (--reset_retries > 0)
2304					continue;
2305		}
2306		retries--;
2307
2308	} while (the_result && retries);
2309
2310	if (the_result) {
2311		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2312		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2313		return -EINVAL;
2314	}
2315
2316	sector_size = get_unaligned_be32(&buffer[8]);
2317	lba = get_unaligned_be64(&buffer[0]);
2318
2319	if (sd_read_protection_type(sdkp, buffer) < 0) {
2320		sdkp->capacity = 0;
2321		return -ENODEV;
2322	}
2323
2324	/* Logical blocks per physical block exponent */
2325	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2326
2327	/* RC basis */
2328	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2329
2330	/* Lowest aligned logical block */
2331	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2332	blk_queue_alignment_offset(sdp->request_queue, alignment);
2333	if (alignment && sdkp->first_scan)
2334		sd_printk(KERN_NOTICE, sdkp,
2335			  "physical block alignment offset: %u\n", alignment);
2336
2337	if (buffer[14] & 0x80) { /* LBPME */
2338		sdkp->lbpme = 1;
2339
2340		if (buffer[14] & 0x40) /* LBPRZ */
2341			sdkp->lbprz = 1;
2342
2343		sd_config_discard(sdkp, SD_LBP_WS16);
2344	}
2345
2346	sdkp->capacity = lba + 1;
2347	return sector_size;
2348}
2349
2350static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2351						unsigned char *buffer)
2352{
2353	unsigned char cmd[16];
2354	struct scsi_sense_hdr sshdr;
 
 
 
2355	int sense_valid = 0;
2356	int the_result;
2357	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2358	sector_t lba;
2359	unsigned sector_size;
2360
2361	do {
2362		cmd[0] = READ_CAPACITY;
2363		memset(&cmd[1], 0, 9);
2364		memset(buffer, 0, 8);
2365
2366		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2367					buffer, 8, &sshdr,
2368					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2369
2370		if (media_not_present(sdkp, &sshdr))
2371			return -ENODEV;
2372
2373		if (the_result) {
2374			sense_valid = scsi_sense_valid(&sshdr);
2375			if (sense_valid &&
2376			    sshdr.sense_key == UNIT_ATTENTION &&
2377			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2378				/* Device reset might occur several times,
2379				 * give it one more chance */
2380				if (--reset_retries > 0)
2381					continue;
2382		}
2383		retries--;
2384
2385	} while (the_result && retries);
2386
2387	if (the_result) {
2388		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2389		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2390		return -EINVAL;
2391	}
2392
2393	sector_size = get_unaligned_be32(&buffer[4]);
2394	lba = get_unaligned_be32(&buffer[0]);
2395
2396	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2397		/* Some buggy (usb cardreader) devices return an lba of
2398		   0xffffffff when the want to report a size of 0 (with
2399		   which they really mean no media is present) */
2400		sdkp->capacity = 0;
2401		sdkp->physical_block_size = sector_size;
2402		return sector_size;
2403	}
2404
2405	sdkp->capacity = lba + 1;
2406	sdkp->physical_block_size = sector_size;
2407	return sector_size;
2408}
2409
2410static int sd_try_rc16_first(struct scsi_device *sdp)
2411{
2412	if (sdp->host->max_cmd_len < 16)
2413		return 0;
2414	if (sdp->try_rc_10_first)
2415		return 0;
2416	if (sdp->scsi_level > SCSI_SPC_2)
2417		return 1;
2418	if (scsi_device_protection(sdp))
2419		return 1;
2420	return 0;
2421}
2422
2423/*
2424 * read disk capacity
2425 */
2426static void
2427sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2428{
2429	int sector_size;
2430	struct scsi_device *sdp = sdkp->device;
2431
2432	if (sd_try_rc16_first(sdp)) {
2433		sector_size = read_capacity_16(sdkp, sdp, buffer);
2434		if (sector_size == -EOVERFLOW)
2435			goto got_data;
2436		if (sector_size == -ENODEV)
2437			return;
2438		if (sector_size < 0)
2439			sector_size = read_capacity_10(sdkp, sdp, buffer);
2440		if (sector_size < 0)
2441			return;
2442	} else {
2443		sector_size = read_capacity_10(sdkp, sdp, buffer);
2444		if (sector_size == -EOVERFLOW)
2445			goto got_data;
2446		if (sector_size < 0)
2447			return;
2448		if ((sizeof(sdkp->capacity) > 4) &&
2449		    (sdkp->capacity > 0xffffffffULL)) {
2450			int old_sector_size = sector_size;
2451			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2452					"Trying to use READ CAPACITY(16).\n");
2453			sector_size = read_capacity_16(sdkp, sdp, buffer);
2454			if (sector_size < 0) {
2455				sd_printk(KERN_NOTICE, sdkp,
2456					"Using 0xffffffff as device size\n");
2457				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2458				sector_size = old_sector_size;
2459				goto got_data;
2460			}
2461			/* Remember that READ CAPACITY(16) succeeded */
2462			sdp->try_rc_10_first = 0;
2463		}
2464	}
2465
2466	/* Some devices are known to return the total number of blocks,
2467	 * not the highest block number.  Some devices have versions
2468	 * which do this and others which do not.  Some devices we might
2469	 * suspect of doing this but we don't know for certain.
2470	 *
2471	 * If we know the reported capacity is wrong, decrement it.  If
2472	 * we can only guess, then assume the number of blocks is even
2473	 * (usually true but not always) and err on the side of lowering
2474	 * the capacity.
2475	 */
2476	if (sdp->fix_capacity ||
2477	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2478		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2479				"from its reported value: %llu\n",
2480				(unsigned long long) sdkp->capacity);
2481		--sdkp->capacity;
2482	}
2483
2484got_data:
2485	if (sector_size == 0) {
2486		sector_size = 512;
2487		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2488			  "assuming 512.\n");
2489	}
2490
2491	if (sector_size != 512 &&
2492	    sector_size != 1024 &&
2493	    sector_size != 2048 &&
2494	    sector_size != 4096) {
2495		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2496			  sector_size);
2497		/*
2498		 * The user might want to re-format the drive with
2499		 * a supported sectorsize.  Once this happens, it
2500		 * would be relatively trivial to set the thing up.
2501		 * For this reason, we leave the thing in the table.
2502		 */
2503		sdkp->capacity = 0;
2504		/*
2505		 * set a bogus sector size so the normal read/write
2506		 * logic in the block layer will eventually refuse any
2507		 * request on this device without tripping over power
2508		 * of two sector size assumptions
2509		 */
2510		sector_size = 512;
2511	}
2512	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2513	blk_queue_physical_block_size(sdp->request_queue,
2514				      sdkp->physical_block_size);
2515	sdkp->device->sector_size = sector_size;
2516
2517	if (sdkp->capacity > 0xffffffff)
2518		sdp->use_16_for_rw = 1;
2519
2520}
2521
2522/*
2523 * Print disk capacity
2524 */
2525static void
2526sd_print_capacity(struct scsi_disk *sdkp,
2527		  sector_t old_capacity)
2528{
2529	int sector_size = sdkp->device->sector_size;
2530	char cap_str_2[10], cap_str_10[10];
2531
2532	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2533		return;
2534
2535	string_get_size(sdkp->capacity, sector_size,
2536			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2537	string_get_size(sdkp->capacity, sector_size,
2538			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2539
2540	sd_printk(KERN_NOTICE, sdkp,
2541		  "%llu %d-byte logical blocks: (%s/%s)\n",
2542		  (unsigned long long)sdkp->capacity,
2543		  sector_size, cap_str_10, cap_str_2);
2544
2545	if (sdkp->physical_block_size != sector_size)
2546		sd_printk(KERN_NOTICE, sdkp,
2547			  "%u-byte physical blocks\n",
2548			  sdkp->physical_block_size);
2549
2550	sd_zbc_print_zones(sdkp);
2551}
2552
2553/* called with buffer of length 512 */
2554static inline int
2555sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2556		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2557		 struct scsi_sense_hdr *sshdr)
2558{
2559	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2560			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2561			       sshdr);
 
 
 
 
 
 
2562}
2563
2564/*
2565 * read write protect setting, if possible - called only in sd_revalidate_disk()
2566 * called with buffer of length SD_BUF_SIZE
2567 */
2568static void
2569sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2570{
2571	int res;
2572	struct scsi_device *sdp = sdkp->device;
2573	struct scsi_mode_data data;
2574	int old_wp = sdkp->write_prot;
2575
2576	set_disk_ro(sdkp->disk, 0);
2577	if (sdp->skip_ms_page_3f) {
2578		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2579		return;
2580	}
2581
2582	if (sdp->use_192_bytes_for_3f) {
2583		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2584	} else {
2585		/*
2586		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2587		 * We have to start carefully: some devices hang if we ask
2588		 * for more than is available.
2589		 */
2590		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2591
2592		/*
2593		 * Second attempt: ask for page 0 When only page 0 is
2594		 * implemented, a request for page 3F may return Sense Key
2595		 * 5: Illegal Request, Sense Code 24: Invalid field in
2596		 * CDB.
2597		 */
2598		if (!scsi_status_is_good(res))
2599			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2600
2601		/*
2602		 * Third attempt: ask 255 bytes, as we did earlier.
2603		 */
2604		if (!scsi_status_is_good(res))
2605			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2606					       &data, NULL);
2607	}
2608
2609	if (!scsi_status_is_good(res)) {
2610		sd_first_printk(KERN_WARNING, sdkp,
2611			  "Test WP failed, assume Write Enabled\n");
2612	} else {
2613		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2614		set_disk_ro(sdkp->disk, sdkp->write_prot);
2615		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2616			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2617				  sdkp->write_prot ? "on" : "off");
2618			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2619		}
2620	}
2621}
2622
2623/*
2624 * sd_read_cache_type - called only from sd_revalidate_disk()
2625 * called with buffer of length SD_BUF_SIZE
2626 */
2627static void
2628sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2629{
2630	int len = 0, res;
2631	struct scsi_device *sdp = sdkp->device;
2632
2633	int dbd;
2634	int modepage;
2635	int first_len;
2636	struct scsi_mode_data data;
2637	struct scsi_sense_hdr sshdr;
2638	int old_wce = sdkp->WCE;
2639	int old_rcd = sdkp->RCD;
2640	int old_dpofua = sdkp->DPOFUA;
2641
2642
2643	if (sdkp->cache_override)
2644		return;
2645
2646	first_len = 4;
2647	if (sdp->skip_ms_page_8) {
2648		if (sdp->type == TYPE_RBC)
2649			goto defaults;
2650		else {
2651			if (sdp->skip_ms_page_3f)
2652				goto defaults;
2653			modepage = 0x3F;
2654			if (sdp->use_192_bytes_for_3f)
2655				first_len = 192;
2656			dbd = 0;
2657		}
2658	} else if (sdp->type == TYPE_RBC) {
2659		modepage = 6;
2660		dbd = 8;
2661	} else {
2662		modepage = 8;
2663		dbd = 0;
2664	}
2665
2666	/* cautiously ask */
2667	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2668			&data, &sshdr);
2669
2670	if (!scsi_status_is_good(res))
2671		goto bad_sense;
2672
2673	if (!data.header_length) {
2674		modepage = 6;
2675		first_len = 0;
2676		sd_first_printk(KERN_ERR, sdkp,
2677				"Missing header in MODE_SENSE response\n");
2678	}
2679
2680	/* that went OK, now ask for the proper length */
2681	len = data.length;
2682
2683	/*
2684	 * We're only interested in the first three bytes, actually.
2685	 * But the data cache page is defined for the first 20.
2686	 */
2687	if (len < 3)
2688		goto bad_sense;
2689	else if (len > SD_BUF_SIZE) {
2690		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2691			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2692		len = SD_BUF_SIZE;
2693	}
2694	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2695		len = 192;
2696
2697	/* Get the data */
2698	if (len > first_len)
2699		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2700				&data, &sshdr);
2701
2702	if (scsi_status_is_good(res)) {
2703		int offset = data.header_length + data.block_descriptor_length;
2704
2705		while (offset < len) {
2706			u8 page_code = buffer[offset] & 0x3F;
2707			u8 spf       = buffer[offset] & 0x40;
2708
2709			if (page_code == 8 || page_code == 6) {
2710				/* We're interested only in the first 3 bytes.
2711				 */
2712				if (len - offset <= 2) {
2713					sd_first_printk(KERN_ERR, sdkp,
2714						"Incomplete mode parameter "
2715							"data\n");
2716					goto defaults;
2717				} else {
2718					modepage = page_code;
2719					goto Page_found;
2720				}
2721			} else {
2722				/* Go to the next page */
2723				if (spf && len - offset > 3)
2724					offset += 4 + (buffer[offset+2] << 8) +
2725						buffer[offset+3];
2726				else if (!spf && len - offset > 1)
2727					offset += 2 + buffer[offset+1];
2728				else {
2729					sd_first_printk(KERN_ERR, sdkp,
2730							"Incomplete mode "
2731							"parameter data\n");
2732					goto defaults;
2733				}
2734			}
2735		}
2736
2737		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
 
2738		goto defaults;
2739
2740	Page_found:
2741		if (modepage == 8) {
2742			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2743			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2744		} else {
2745			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2746			sdkp->RCD = 0;
2747		}
2748
2749		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2750		if (sdp->broken_fua) {
2751			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2752			sdkp->DPOFUA = 0;
2753		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2754			   !sdkp->device->use_16_for_rw) {
2755			sd_first_printk(KERN_NOTICE, sdkp,
2756				  "Uses READ/WRITE(6), disabling FUA\n");
2757			sdkp->DPOFUA = 0;
2758		}
2759
2760		/* No cache flush allowed for write protected devices */
2761		if (sdkp->WCE && sdkp->write_prot)
2762			sdkp->WCE = 0;
2763
2764		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2765		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2766			sd_printk(KERN_NOTICE, sdkp,
2767				  "Write cache: %s, read cache: %s, %s\n",
2768				  sdkp->WCE ? "enabled" : "disabled",
2769				  sdkp->RCD ? "disabled" : "enabled",
2770				  sdkp->DPOFUA ? "supports DPO and FUA"
2771				  : "doesn't support DPO or FUA");
2772
2773		return;
2774	}
2775
2776bad_sense:
2777	if (scsi_sense_valid(&sshdr) &&
2778	    sshdr.sense_key == ILLEGAL_REQUEST &&
2779	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2780		/* Invalid field in CDB */
2781		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2782	else
2783		sd_first_printk(KERN_ERR, sdkp,
2784				"Asking for cache data failed\n");
2785
2786defaults:
2787	if (sdp->wce_default_on) {
2788		sd_first_printk(KERN_NOTICE, sdkp,
2789				"Assuming drive cache: write back\n");
2790		sdkp->WCE = 1;
2791	} else {
2792		sd_first_printk(KERN_ERR, sdkp,
2793				"Assuming drive cache: write through\n");
2794		sdkp->WCE = 0;
2795	}
2796	sdkp->RCD = 0;
2797	sdkp->DPOFUA = 0;
2798}
2799
2800/*
2801 * The ATO bit indicates whether the DIF application tag is available
2802 * for use by the operating system.
2803 */
2804static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2805{
2806	int res, offset;
2807	struct scsi_device *sdp = sdkp->device;
2808	struct scsi_mode_data data;
2809	struct scsi_sense_hdr sshdr;
2810
2811	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2812		return;
2813
2814	if (sdkp->protection_type == 0)
2815		return;
2816
2817	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2818			      SD_MAX_RETRIES, &data, &sshdr);
2819
2820	if (!scsi_status_is_good(res) || !data.header_length ||
2821	    data.length < 6) {
2822		sd_first_printk(KERN_WARNING, sdkp,
2823			  "getting Control mode page failed, assume no ATO\n");
2824
2825		if (scsi_sense_valid(&sshdr))
2826			sd_print_sense_hdr(sdkp, &sshdr);
2827
2828		return;
2829	}
2830
2831	offset = data.header_length + data.block_descriptor_length;
2832
2833	if ((buffer[offset] & 0x3f) != 0x0a) {
2834		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2835		return;
2836	}
2837
2838	if ((buffer[offset + 5] & 0x80) == 0)
2839		return;
2840
2841	sdkp->ATO = 1;
2842
2843	return;
2844}
2845
2846/**
2847 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2848 * @sdkp: disk to query
2849 */
2850static void sd_read_block_limits(struct scsi_disk *sdkp)
2851{
2852	unsigned int sector_sz = sdkp->device->sector_size;
2853	const int vpd_len = 64;
2854	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2855
2856	if (!buffer ||
2857	    /* Block Limits VPD */
2858	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2859		goto out;
2860
2861	blk_queue_io_min(sdkp->disk->queue,
2862			 get_unaligned_be16(&buffer[6]) * sector_sz);
2863
2864	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2865	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2866
2867	if (buffer[3] == 0x3c) {
2868		unsigned int lba_count, desc_count;
2869
2870		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2871
2872		if (!sdkp->lbpme)
2873			goto out;
2874
2875		lba_count = get_unaligned_be32(&buffer[20]);
2876		desc_count = get_unaligned_be32(&buffer[24]);
2877
2878		if (lba_count && desc_count)
2879			sdkp->max_unmap_blocks = lba_count;
2880
2881		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2882
2883		if (buffer[32] & 0x80)
2884			sdkp->unmap_alignment =
2885				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2886
2887		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2888
2889			if (sdkp->max_unmap_blocks)
2890				sd_config_discard(sdkp, SD_LBP_UNMAP);
2891			else
2892				sd_config_discard(sdkp, SD_LBP_WS16);
2893
2894		} else {	/* LBP VPD page tells us what to use */
2895			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2896				sd_config_discard(sdkp, SD_LBP_UNMAP);
2897			else if (sdkp->lbpws)
2898				sd_config_discard(sdkp, SD_LBP_WS16);
2899			else if (sdkp->lbpws10)
2900				sd_config_discard(sdkp, SD_LBP_WS10);
2901			else
2902				sd_config_discard(sdkp, SD_LBP_DISABLE);
2903		}
2904	}
2905
2906 out:
2907	kfree(buffer);
2908}
2909
2910/**
2911 * sd_read_block_characteristics - Query block dev. characteristics
2912 * @sdkp: disk to query
2913 */
2914static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2915{
2916	struct request_queue *q = sdkp->disk->queue;
2917	unsigned char *buffer;
2918	u16 rot;
2919	const int vpd_len = 64;
2920
2921	buffer = kmalloc(vpd_len, GFP_KERNEL);
 
2922
2923	if (!buffer ||
2924	    /* Block Device Characteristics VPD */
2925	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2926		goto out;
2927
2928	rot = get_unaligned_be16(&buffer[4]);
 
 
2929
2930	if (rot == 1) {
2931		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2932		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2933	}
2934
 
 
2935	if (sdkp->device->type == TYPE_ZBC) {
2936		/* Host-managed */
2937		q->limits.zoned = BLK_ZONED_HM;
 
 
 
 
 
 
 
 
 
2938	} else {
2939		sdkp->zoned = (buffer[8] >> 4) & 3;
2940		if (sdkp->zoned == 1)
2941			/* Host-aware */
2942			q->limits.zoned = BLK_ZONED_HA;
2943		else
2944			/*
2945			 * Treat drive-managed devices as
2946			 * regular block devices.
2947			 */
2948			q->limits.zoned = BLK_ZONED_NONE;
2949	}
2950	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2951		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2952		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2953
2954 out:
2955	kfree(buffer);
 
 
 
 
 
 
 
2956}
2957
2958/**
2959 * sd_read_block_provisioning - Query provisioning VPD page
2960 * @sdkp: disk to query
2961 */
2962static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2963{
2964	unsigned char *buffer;
2965	const int vpd_len = 8;
2966
2967	if (sdkp->lbpme == 0)
2968		return;
2969
2970	buffer = kmalloc(vpd_len, GFP_KERNEL);
 
2971
2972	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2973		goto out;
 
 
2974
2975	sdkp->lbpvpd	= 1;
2976	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
2977	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
2978	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
2979
2980 out:
2981	kfree(buffer);
2982}
2983
2984static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2985{
2986	struct scsi_device *sdev = sdkp->device;
2987
2988	if (sdev->host->no_write_same) {
2989		sdev->no_write_same = 1;
2990
2991		return;
2992	}
2993
2994	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2995		/* too large values might cause issues with arcmsr */
2996		int vpd_buf_len = 64;
2997
2998		sdev->no_report_opcodes = 1;
2999
3000		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3001		 * CODES is unsupported and the device has an ATA
3002		 * Information VPD page (SAT).
3003		 */
3004		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
 
 
3005			sdev->no_write_same = 1;
 
3006	}
3007
3008	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3009		sdkp->ws16 = 1;
3010
3011	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3012		sdkp->ws10 = 1;
3013}
3014
3015static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3016{
3017	struct scsi_device *sdev = sdkp->device;
3018
3019	if (!sdev->security_supported)
3020		return;
3021
3022	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3023			SECURITY_PROTOCOL_IN) == 1 &&
3024	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3025			SECURITY_PROTOCOL_OUT) == 1)
3026		sdkp->security = 1;
3027}
3028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3029/*
3030 * Determine the device's preferred I/O size for reads and writes
3031 * unless the reported value is unreasonably small, large, not a
3032 * multiple of the physical block size, or simply garbage.
3033 */
3034static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3035				      unsigned int dev_max)
3036{
3037	struct scsi_device *sdp = sdkp->device;
3038	unsigned int opt_xfer_bytes =
3039		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
 
 
3040
3041	if (sdkp->opt_xfer_blocks == 0)
3042		return false;
3043
3044	if (sdkp->opt_xfer_blocks > dev_max) {
3045		sd_first_printk(KERN_WARNING, sdkp,
3046				"Optimal transfer size %u logical blocks " \
3047				"> dev_max (%u logical blocks)\n",
3048				sdkp->opt_xfer_blocks, dev_max);
3049		return false;
3050	}
3051
3052	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3053		sd_first_printk(KERN_WARNING, sdkp,
3054				"Optimal transfer size %u logical blocks " \
3055				"> sd driver limit (%u logical blocks)\n",
3056				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3057		return false;
3058	}
3059
3060	if (opt_xfer_bytes < PAGE_SIZE) {
3061		sd_first_printk(KERN_WARNING, sdkp,
3062				"Optimal transfer size %u bytes < " \
3063				"PAGE_SIZE (%u bytes)\n",
3064				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3065		return false;
3066	}
3067
 
 
 
 
 
 
 
 
 
3068	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3069		sd_first_printk(KERN_WARNING, sdkp,
3070				"Optimal transfer size %u bytes not a " \
3071				"multiple of physical block size (%u bytes)\n",
3072				opt_xfer_bytes, sdkp->physical_block_size);
3073		return false;
3074	}
3075
3076	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3077			opt_xfer_bytes);
3078	return true;
3079}
3080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3081/**
3082 *	sd_revalidate_disk - called the first time a new disk is seen,
3083 *	performs disk spin up, read_capacity, etc.
3084 *	@disk: struct gendisk we care about
3085 **/
3086static int sd_revalidate_disk(struct gendisk *disk)
3087{
3088	struct scsi_disk *sdkp = scsi_disk(disk);
3089	struct scsi_device *sdp = sdkp->device;
3090	struct request_queue *q = sdkp->disk->queue;
3091	sector_t old_capacity = sdkp->capacity;
3092	unsigned char *buffer;
3093	unsigned int dev_max, rw_max;
3094
3095	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3096				      "sd_revalidate_disk\n"));
3097
3098	/*
3099	 * If the device is offline, don't try and read capacity or any
3100	 * of the other niceties.
3101	 */
3102	if (!scsi_device_online(sdp))
3103		goto out;
3104
3105	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3106	if (!buffer) {
3107		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3108			  "allocation failure.\n");
3109		goto out;
3110	}
3111
3112	sd_spinup_disk(sdkp);
3113
3114	/*
3115	 * Without media there is no reason to ask; moreover, some devices
3116	 * react badly if we do.
3117	 */
3118	if (sdkp->media_present) {
3119		sd_read_capacity(sdkp, buffer);
3120
 
 
 
 
 
 
3121		/*
3122		 * set the default to rotational.  All non-rotational devices
3123		 * support the block characteristics VPD page, which will
3124		 * cause this to be updated correctly and any device which
3125		 * doesn't support it should be treated as rotational.
3126		 */
3127		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3128		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3129
3130		if (scsi_device_supports_vpd(sdp)) {
3131			sd_read_block_provisioning(sdkp);
3132			sd_read_block_limits(sdkp);
3133			sd_read_block_characteristics(sdkp);
3134			sd_zbc_read_zones(sdkp, buffer);
 
3135		}
3136
3137		sd_print_capacity(sdkp, old_capacity);
3138
3139		sd_read_write_protect_flag(sdkp, buffer);
3140		sd_read_cache_type(sdkp, buffer);
3141		sd_read_app_tag_own(sdkp, buffer);
3142		sd_read_write_same(sdkp, buffer);
3143		sd_read_security(sdkp, buffer);
 
3144	}
3145
3146	/*
3147	 * We now have all cache related info, determine how we deal
3148	 * with flush requests.
3149	 */
3150	sd_set_flush_flag(sdkp);
3151
3152	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3153	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3154
3155	/* Some devices report a maximum block count for READ/WRITE requests. */
3156	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3157	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3158
 
 
 
 
 
 
3159	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3160		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3161		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3162	} else
 
3163		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3164				      (sector_t)BLK_DEF_MAX_SECTORS);
 
 
 
 
 
 
 
 
3165
3166	/* Do not exceed controller limit */
3167	rw_max = min(rw_max, queue_max_hw_sectors(q));
3168
3169	/*
3170	 * Only update max_sectors if previously unset or if the current value
3171	 * exceeds the capabilities of the hardware.
3172	 */
3173	if (sdkp->first_scan ||
3174	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3175	    q->limits.max_sectors > q->limits.max_hw_sectors)
3176		q->limits.max_sectors = rw_max;
3177
3178	sdkp->first_scan = 0;
3179
3180	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3181	sd_config_write_same(sdkp);
3182	kfree(buffer);
3183
 
 
 
 
 
 
 
 
3184 out:
3185	return 0;
3186}
3187
3188/**
3189 *	sd_unlock_native_capacity - unlock native capacity
3190 *	@disk: struct gendisk to set capacity for
3191 *
3192 *	Block layer calls this function if it detects that partitions
3193 *	on @disk reach beyond the end of the device.  If the SCSI host
3194 *	implements ->unlock_native_capacity() method, it's invoked to
3195 *	give it a chance to adjust the device capacity.
3196 *
3197 *	CONTEXT:
3198 *	Defined by block layer.  Might sleep.
3199 */
3200static void sd_unlock_native_capacity(struct gendisk *disk)
3201{
3202	struct scsi_device *sdev = scsi_disk(disk)->device;
3203
3204	if (sdev->host->hostt->unlock_native_capacity)
3205		sdev->host->hostt->unlock_native_capacity(sdev);
3206}
3207
3208/**
3209 *	sd_format_disk_name - format disk name
3210 *	@prefix: name prefix - ie. "sd" for SCSI disks
3211 *	@index: index of the disk to format name for
3212 *	@buf: output buffer
3213 *	@buflen: length of the output buffer
3214 *
3215 *	SCSI disk names starts at sda.  The 26th device is sdz and the
3216 *	27th is sdaa.  The last one for two lettered suffix is sdzz
3217 *	which is followed by sdaaa.
3218 *
3219 *	This is basically 26 base counting with one extra 'nil' entry
3220 *	at the beginning from the second digit on and can be
3221 *	determined using similar method as 26 base conversion with the
3222 *	index shifted -1 after each digit is computed.
3223 *
3224 *	CONTEXT:
3225 *	Don't care.
3226 *
3227 *	RETURNS:
3228 *	0 on success, -errno on failure.
3229 */
3230static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3231{
3232	const int base = 'z' - 'a' + 1;
3233	char *begin = buf + strlen(prefix);
3234	char *end = buf + buflen;
3235	char *p;
3236	int unit;
3237
3238	p = end - 1;
3239	*p = '\0';
3240	unit = base;
3241	do {
3242		if (p == begin)
3243			return -EINVAL;
3244		*--p = 'a' + (index % unit);
3245		index = (index / unit) - 1;
3246	} while (index >= 0);
3247
3248	memmove(begin, p, end - p);
3249	memcpy(buf, prefix, strlen(prefix));
3250
3251	return 0;
3252}
3253
3254/**
3255 *	sd_probe - called during driver initialization and whenever a
3256 *	new scsi device is attached to the system. It is called once
3257 *	for each scsi device (not just disks) present.
3258 *	@dev: pointer to device object
3259 *
3260 *	Returns 0 if successful (or not interested in this scsi device 
3261 *	(e.g. scanner)); 1 when there is an error.
3262 *
3263 *	Note: this function is invoked from the scsi mid-level.
3264 *	This function sets up the mapping between a given 
3265 *	<host,channel,id,lun> (found in sdp) and new device name 
3266 *	(e.g. /dev/sda). More precisely it is the block device major 
3267 *	and minor number that is chosen here.
3268 *
3269 *	Assume sd_probe is not re-entrant (for time being)
3270 *	Also think about sd_probe() and sd_remove() running coincidentally.
3271 **/
3272static int sd_probe(struct device *dev)
3273{
3274	struct scsi_device *sdp = to_scsi_device(dev);
3275	struct scsi_disk *sdkp;
3276	struct gendisk *gd;
3277	int index;
3278	int error;
3279
3280	scsi_autopm_get_device(sdp);
3281	error = -ENODEV;
3282	if (sdp->type != TYPE_DISK &&
3283	    sdp->type != TYPE_ZBC &&
3284	    sdp->type != TYPE_MOD &&
3285	    sdp->type != TYPE_RBC)
3286		goto out;
3287
3288#ifndef CONFIG_BLK_DEV_ZONED
3289	if (sdp->type == TYPE_ZBC)
 
3290		goto out;
3291#endif
 
3292	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3293					"sd_probe\n"));
3294
3295	error = -ENOMEM;
3296	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3297	if (!sdkp)
3298		goto out;
3299
3300	gd = alloc_disk(SD_MINORS);
 
3301	if (!gd)
3302		goto out_free;
3303
3304	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3305	if (index < 0) {
3306		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3307		goto out_put;
3308	}
3309
3310	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3311	if (error) {
3312		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3313		goto out_free_index;
3314	}
3315
3316	sdkp->device = sdp;
3317	sdkp->driver = &sd_template;
3318	sdkp->disk = gd;
3319	sdkp->index = index;
 
3320	atomic_set(&sdkp->openers, 0);
3321	atomic_set(&sdkp->device->ioerr_cnt, 0);
3322
3323	if (!sdp->request_queue->rq_timeout) {
3324		if (sdp->type != TYPE_MOD)
3325			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3326		else
3327			blk_queue_rq_timeout(sdp->request_queue,
3328					     SD_MOD_TIMEOUT);
3329	}
3330
3331	device_initialize(&sdkp->dev);
3332	sdkp->dev.parent = dev;
3333	sdkp->dev.class = &sd_disk_class;
3334	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3335
3336	error = device_add(&sdkp->dev);
3337	if (error)
3338		goto out_free_index;
 
 
3339
3340	get_device(dev);
3341	dev_set_drvdata(dev, sdkp);
3342
3343	gd->major = sd_major((index & 0xf0) >> 4);
3344	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
 
3345
3346	gd->fops = &sd_fops;
3347	gd->private_data = &sdkp->driver;
3348	gd->queue = sdkp->device->request_queue;
3349
3350	/* defaults, until the device tells us otherwise */
3351	sdp->sector_size = 512;
3352	sdkp->capacity = 0;
3353	sdkp->media_present = 1;
3354	sdkp->write_prot = 0;
3355	sdkp->cache_override = 0;
3356	sdkp->WCE = 0;
3357	sdkp->RCD = 0;
3358	sdkp->ATO = 0;
3359	sdkp->first_scan = 1;
3360	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3361
3362	sd_revalidate_disk(gd);
3363
3364	gd->flags = GENHD_FL_EXT_DEVT;
3365	if (sdp->removable) {
3366		gd->flags |= GENHD_FL_REMOVABLE;
3367		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3368		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3369	}
3370
3371	blk_pm_runtime_init(sdp->request_queue, dev);
3372	device_add_disk(dev, gd, NULL);
3373	if (sdkp->capacity)
3374		sd_dif_config_host(sdkp);
 
3375
3376	sd_revalidate_disk(gd);
 
 
 
 
 
3377
3378	if (sdkp->security) {
3379		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3380		if (sdkp->opal_dev)
3381			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3382	}
3383
3384	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3385		  sdp->removable ? "removable " : "");
3386	scsi_autopm_put_device(sdp);
3387
3388	return 0;
3389
3390 out_free_index:
3391	ida_free(&sd_index_ida, index);
3392 out_put:
3393	put_disk(gd);
3394 out_free:
3395	kfree(sdkp);
3396 out:
3397	scsi_autopm_put_device(sdp);
3398	return error;
3399}
3400
3401/**
3402 *	sd_remove - called whenever a scsi disk (previously recognized by
3403 *	sd_probe) is detached from the system. It is called (potentially
3404 *	multiple times) during sd module unload.
3405 *	@dev: pointer to device object
3406 *
3407 *	Note: this function is invoked from the scsi mid-level.
3408 *	This function potentially frees up a device name (e.g. /dev/sdc)
3409 *	that could be re-used by a subsequent sd_probe().
3410 *	This function is not called when the built-in sd driver is "exit-ed".
3411 **/
3412static int sd_remove(struct device *dev)
3413{
3414	struct scsi_disk *sdkp;
3415	dev_t devt;
3416
3417	sdkp = dev_get_drvdata(dev);
3418	devt = disk_devt(sdkp->disk);
3419	scsi_autopm_get_device(sdkp->device);
3420
3421	async_synchronize_full_domain(&scsi_sd_pm_domain);
3422	device_del(&sdkp->dev);
3423	del_gendisk(sdkp->disk);
3424	sd_shutdown(dev);
3425
3426	free_opal_dev(sdkp->opal_dev);
3427
3428	blk_register_region(devt, SD_MINORS, NULL,
3429			    sd_default_probe, NULL, NULL);
3430
3431	mutex_lock(&sd_ref_mutex);
3432	dev_set_drvdata(dev, NULL);
3433	put_device(&sdkp->dev);
3434	mutex_unlock(&sd_ref_mutex);
3435
 
3436	return 0;
3437}
3438
3439/**
3440 *	scsi_disk_release - Called to free the scsi_disk structure
3441 *	@dev: pointer to embedded class device
3442 *
3443 *	sd_ref_mutex must be held entering this routine.  Because it is
3444 *	called on last put, you should always use the scsi_disk_get()
3445 *	scsi_disk_put() helpers which manipulate the semaphore directly
3446 *	and never do a direct put_device.
3447 **/
3448static void scsi_disk_release(struct device *dev)
3449{
3450	struct scsi_disk *sdkp = to_scsi_disk(dev);
3451	struct gendisk *disk = sdkp->disk;
3452	struct request_queue *q = disk->queue;
3453
3454	ida_free(&sd_index_ida, sdkp->index);
3455
3456	/*
3457	 * Wait until all requests that are in progress have completed.
3458	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3459	 * due to clearing the disk->private_data pointer. Wait from inside
3460	 * scsi_disk_release() instead of from sd_release() to avoid that
3461	 * freezing and unfreezing the request queue affects user space I/O
3462	 * in case multiple processes open a /dev/sd... node concurrently.
3463	 */
3464	blk_mq_freeze_queue(q);
3465	blk_mq_unfreeze_queue(q);
3466
3467	disk->private_data = NULL;
3468	put_disk(disk);
3469	put_device(&sdkp->device->sdev_gendev);
 
3470
3471	kfree(sdkp);
3472}
3473
3474static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3475{
3476	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3477	struct scsi_sense_hdr sshdr;
 
 
 
 
3478	struct scsi_device *sdp = sdkp->device;
3479	int res;
3480
3481	if (start)
3482		cmd[4] |= 1;	/* START */
3483
3484	if (sdp->start_stop_pwr_cond)
3485		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3486
3487	if (!scsi_device_online(sdp))
3488		return -ENODEV;
3489
3490	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3491			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3492	if (res) {
3493		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3494		if (driver_byte(res) == DRIVER_SENSE)
3495			sd_print_sense_hdr(sdkp, &sshdr);
3496		if (scsi_sense_valid(&sshdr) &&
3497			/* 0x3a is medium not present */
3498			sshdr.asc == 0x3a)
3499			res = 0;
 
3500	}
3501
3502	/* SCSI error codes must not go to the generic layer */
3503	if (res)
3504		return -EIO;
3505
3506	return 0;
3507}
3508
3509/*
3510 * Send a SYNCHRONIZE CACHE instruction down to the device through
3511 * the normal SCSI command structure.  Wait for the command to
3512 * complete.
3513 */
3514static void sd_shutdown(struct device *dev)
3515{
3516	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3517
3518	if (!sdkp)
3519		return;         /* this can happen */
3520
3521	if (pm_runtime_suspended(dev))
3522		return;
3523
3524	if (sdkp->WCE && sdkp->media_present) {
3525		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3526		sd_sync_cache(sdkp, NULL);
3527	}
3528
3529	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
 
 
 
3530		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3531		sd_start_stop_device(sdkp, 0);
3532	}
3533}
3534
3535static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
 
 
 
 
 
 
3536{
3537	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3538	struct scsi_sense_hdr sshdr;
3539	int ret = 0;
3540
3541	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3542		return 0;
3543
3544	if (sdkp->WCE && sdkp->media_present) {
3545		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3546		ret = sd_sync_cache(sdkp, &sshdr);
 
 
 
 
3547
3548		if (ret) {
3549			/* ignore OFFLINE device */
3550			if (ret == -ENODEV)
3551				return 0;
3552
3553			if (!scsi_sense_valid(&sshdr) ||
3554			    sshdr.sense_key != ILLEGAL_REQUEST)
3555				return ret;
3556
3557			/*
3558			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3559			 * doesn't support sync. There's not much to do and
3560			 * suspend shouldn't fail.
3561			 */
3562			ret = 0;
3563		}
3564	}
3565
3566	if (sdkp->device->manage_start_stop) {
3567		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
 
3568		/* an error is not worth aborting a system sleep */
3569		ret = sd_start_stop_device(sdkp, 0);
3570		if (ignore_stop_errors)
3571			ret = 0;
3572	}
3573
 
 
 
3574	return ret;
3575}
3576
3577static int sd_suspend_system(struct device *dev)
3578{
3579	return sd_suspend_common(dev, true);
 
 
 
3580}
3581
3582static int sd_suspend_runtime(struct device *dev)
3583{
3584	return sd_suspend_common(dev, false);
3585}
3586
3587static int sd_resume(struct device *dev)
3588{
3589	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3590	int ret;
3591
3592	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3593		return 0;
3594
3595	if (!sdkp->device->manage_start_stop)
 
3596		return 0;
 
3597
3598	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3599	ret = sd_start_stop_device(sdkp, 1);
3600	if (!ret)
3601		opal_unlock_from_suspend(sdkp->opal_dev);
 
 
 
3602	return ret;
3603}
3604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3605/**
3606 *	init_sd - entry point for this driver (both when built in or when
3607 *	a module).
3608 *
3609 *	Note: this function registers this driver with the scsi mid-level.
3610 **/
3611static int __init init_sd(void)
3612{
3613	int majors = 0, i, err;
3614
3615	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3616
3617	for (i = 0; i < SD_MAJORS; i++) {
3618		if (register_blkdev(sd_major(i), "sd") != 0)
3619			continue;
3620		majors++;
3621		blk_register_region(sd_major(i), SD_MINORS, NULL,
3622				    sd_default_probe, NULL, NULL);
3623	}
3624
3625	if (!majors)
3626		return -ENODEV;
3627
3628	err = class_register(&sd_disk_class);
3629	if (err)
3630		goto err_out;
3631
3632	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3633					 0, 0, NULL);
3634	if (!sd_cdb_cache) {
3635		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3636		err = -ENOMEM;
3637		goto err_out_class;
3638	}
3639
3640	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3641	if (!sd_cdb_pool) {
3642		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3643		err = -ENOMEM;
3644		goto err_out_cache;
3645	}
3646
3647	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3648	if (!sd_page_pool) {
3649		printk(KERN_ERR "sd: can't init discard page pool\n");
3650		err = -ENOMEM;
3651		goto err_out_ppool;
3652	}
3653
3654	err = scsi_register_driver(&sd_template.gendrv);
3655	if (err)
3656		goto err_out_driver;
3657
3658	return 0;
3659
3660err_out_driver:
3661	mempool_destroy(sd_page_pool);
3662
3663err_out_ppool:
3664	mempool_destroy(sd_cdb_pool);
3665
3666err_out_cache:
3667	kmem_cache_destroy(sd_cdb_cache);
3668
3669err_out_class:
3670	class_unregister(&sd_disk_class);
3671err_out:
3672	for (i = 0; i < SD_MAJORS; i++)
3673		unregister_blkdev(sd_major(i), "sd");
3674	return err;
3675}
3676
3677/**
3678 *	exit_sd - exit point for this driver (when it is a module).
3679 *
3680 *	Note: this function unregisters this driver from the scsi mid-level.
3681 **/
3682static void __exit exit_sd(void)
3683{
3684	int i;
3685
3686	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3687
3688	scsi_unregister_driver(&sd_template.gendrv);
3689	mempool_destroy(sd_cdb_pool);
3690	mempool_destroy(sd_page_pool);
3691	kmem_cache_destroy(sd_cdb_cache);
3692
3693	class_unregister(&sd_disk_class);
3694
3695	for (i = 0; i < SD_MAJORS; i++) {
3696		blk_unregister_region(sd_major(i), SD_MINORS);
3697		unregister_blkdev(sd_major(i), "sd");
3698	}
3699}
3700
3701module_init(init_sd);
3702module_exit(exit_sd);
3703
3704static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3705			       struct scsi_sense_hdr *sshdr)
3706{
3707	scsi_print_sense_hdr(sdkp->device,
3708			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3709}
3710
3711static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3712			    int result)
3713{
3714	const char *hb_string = scsi_hostbyte_string(result);
3715	const char *db_string = scsi_driverbyte_string(result);
3716
3717	if (hb_string || db_string)
3718		sd_printk(KERN_INFO, sdkp,
3719			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3720			  hb_string ? hb_string : "invalid",
3721			  db_string ? db_string : "invalid");
3722	else
3723		sd_printk(KERN_INFO, sdkp,
3724			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3725			  msg, host_byte(result), driver_byte(result));
3726}
3727