Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      sd.c Copyright (C) 1992 Drew Eckhardt
   4 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
   5 *
   6 *      Linux scsi disk driver
   7 *              Initial versions: Drew Eckhardt
   8 *              Subsequent revisions: Eric Youngdale
   9 *	Modification history:
  10 *       - Drew Eckhardt <drew@colorado.edu> original
  11 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
  12 *         outstanding request, and other enhancements.
  13 *         Support loadable low-level scsi drivers.
  14 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
  15 *         eight major numbers.
  16 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
  17 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
  18 *	   sd_init and cleanups.
  19 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
  20 *	   not being read in sd_open. Fix problem where removable media 
  21 *	   could be ejected after sd_open.
  22 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
  23 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
  24 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
  25 *	   Support 32k/1M disks.
  26 *
  27 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
  28 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
  29 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
  30 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
  31 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
  32 *	Note: when the logging level is set by the user, it must be greater
  33 *	than the level indicated above to trigger output.	
  34 */
  35
 
  36#include <linux/module.h>
  37#include <linux/fs.h>
  38#include <linux/kernel.h>
  39#include <linux/mm.h>
  40#include <linux/bio.h>
  41#include <linux/hdreg.h>
  42#include <linux/errno.h>
  43#include <linux/idr.h>
  44#include <linux/interrupt.h>
  45#include <linux/init.h>
  46#include <linux/blkdev.h>
  47#include <linux/blkpg.h>
  48#include <linux/blk-pm.h>
  49#include <linux/delay.h>
 
  50#include <linux/major.h>
  51#include <linux/mutex.h>
  52#include <linux/string_helpers.h>
  53#include <linux/slab.h>
  54#include <linux/sed-opal.h>
  55#include <linux/pm_runtime.h>
  56#include <linux/pr.h>
  57#include <linux/t10-pi.h>
  58#include <linux/uaccess.h>
  59#include <asm/unaligned.h>
  60
  61#include <scsi/scsi.h>
  62#include <scsi/scsi_cmnd.h>
  63#include <scsi/scsi_dbg.h>
  64#include <scsi/scsi_device.h>
 
  65#include <scsi/scsi_driver.h>
  66#include <scsi/scsi_eh.h>
  67#include <scsi/scsi_host.h>
  68#include <scsi/scsi_ioctl.h>
  69#include <scsi/scsicam.h>
  70#include <scsi/scsi_common.h>
  71
  72#include "sd.h"
  73#include "scsi_priv.h"
  74#include "scsi_logging.h"
  75
  76MODULE_AUTHOR("Eric Youngdale");
  77MODULE_DESCRIPTION("SCSI disk (sd) driver");
  78MODULE_LICENSE("GPL");
  79
  80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
  81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
  82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
  83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
  84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
  85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
  86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
  87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
  88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
  89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
  90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
  91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
  92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
  93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
  94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
  95MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
  96MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
  97MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
  98MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
  99MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
 100
 101#define SD_MINORS	16
 102
 103static void sd_config_discard(struct scsi_disk *, unsigned int);
 104static void sd_config_write_same(struct scsi_disk *);
 
 
 105static int  sd_revalidate_disk(struct gendisk *);
 106static void sd_unlock_native_capacity(struct gendisk *disk);
 107static void sd_shutdown(struct device *);
 108static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
 109static void scsi_disk_release(struct device *cdev);
 110
 111static DEFINE_IDA(sd_index_ida);
 112
 113static mempool_t *sd_page_pool;
 114static struct lock_class_key sd_bio_compl_lkclass;
 115
 116static const char *sd_cache_types[] = {
 117	"write through", "none", "write back",
 118	"write back, no read (daft)"
 119};
 120
 121static void sd_set_flush_flag(struct scsi_disk *sdkp)
 
 122{
 123	bool wc = false, fua = false;
 124
 125	if (sdkp->WCE) {
 126		wc = true;
 127		if (sdkp->DPOFUA)
 128			fua = true;
 
 
 
 
 129	}
 130
 131	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
 132}
 133
 134static ssize_t
 135cache_type_store(struct device *dev, struct device_attribute *attr,
 136		 const char *buf, size_t count)
 137{
 138	int ct, rcd, wce, sp;
 139	struct scsi_disk *sdkp = to_scsi_disk(dev);
 140	struct scsi_device *sdp = sdkp->device;
 141	char buffer[64];
 142	char *buffer_data;
 143	struct scsi_mode_data data;
 144	struct scsi_sense_hdr sshdr;
 145	static const char temp[] = "temporary ";
 146	int len, ret;
 147
 148	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 149		/* no cache control on RBC devices; theoretically they
 150		 * can do it, but there's probably so many exceptions
 151		 * it's not worth the risk */
 152		return -EINVAL;
 153
 154	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
 155		buf += sizeof(temp) - 1;
 156		sdkp->cache_override = 1;
 157	} else {
 158		sdkp->cache_override = 0;
 159	}
 160
 161	ct = sysfs_match_string(sd_cache_types, buf);
 162	if (ct < 0)
 163		return -EINVAL;
 164
 165	rcd = ct & 0x01 ? 1 : 0;
 166	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
 167
 168	if (sdkp->cache_override) {
 
 
 169		sdkp->WCE = wce;
 170		sdkp->RCD = rcd;
 171		sd_set_flush_flag(sdkp);
 
 
 
 
 
 
 172		return count;
 173	}
 174
 175	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
 176			    sdkp->max_retries, &data, NULL))
 177		return -EINVAL;
 178	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
 179		  data.block_descriptor_length);
 180	buffer_data = buffer + data.header_length +
 181		data.block_descriptor_length;
 182	buffer_data[2] &= ~0x05;
 183	buffer_data[2] |= wce << 2 | rcd;
 184	sp = buffer_data[0] & 0x80 ? 1 : 0;
 185	buffer_data[0] &= ~0x80;
 186
 187	/*
 188	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
 189	 * received mode parameter buffer before doing MODE SELECT.
 190	 */
 191	data.device_specific = 0;
 192
 193	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
 194			       sdkp->max_retries, &data, &sshdr);
 195	if (ret) {
 196		if (ret > 0 && scsi_sense_valid(&sshdr))
 197			sd_print_sense_hdr(sdkp, &sshdr);
 198		return -EINVAL;
 199	}
 200	sd_revalidate_disk(sdkp->disk);
 201	return count;
 202}
 203
 204static ssize_t
 205manage_start_stop_show(struct device *dev,
 206		       struct device_attribute *attr, char *buf)
 207{
 208	struct scsi_disk *sdkp = to_scsi_disk(dev);
 209	struct scsi_device *sdp = sdkp->device;
 210
 211	return sysfs_emit(buf, "%u\n",
 212			  sdp->manage_system_start_stop &&
 213			  sdp->manage_runtime_start_stop &&
 214			  sdp->manage_shutdown);
 215}
 216static DEVICE_ATTR_RO(manage_start_stop);
 217
 218static ssize_t
 219manage_system_start_stop_show(struct device *dev,
 220			      struct device_attribute *attr, char *buf)
 221{
 222	struct scsi_disk *sdkp = to_scsi_disk(dev);
 223	struct scsi_device *sdp = sdkp->device;
 224
 225	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
 226}
 227
 228static ssize_t
 229manage_system_start_stop_store(struct device *dev,
 230			       struct device_attribute *attr,
 231			       const char *buf, size_t count)
 232{
 233	struct scsi_disk *sdkp = to_scsi_disk(dev);
 234	struct scsi_device *sdp = sdkp->device;
 235	bool v;
 236
 237	if (!capable(CAP_SYS_ADMIN))
 238		return -EACCES;
 239
 240	if (kstrtobool(buf, &v))
 241		return -EINVAL;
 242
 243	sdp->manage_system_start_stop = v;
 244
 245	return count;
 246}
 247static DEVICE_ATTR_RW(manage_system_start_stop);
 248
 249static ssize_t
 250manage_runtime_start_stop_show(struct device *dev,
 251			       struct device_attribute *attr, char *buf)
 252{
 253	struct scsi_disk *sdkp = to_scsi_disk(dev);
 254	struct scsi_device *sdp = sdkp->device;
 255
 256	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
 257}
 258
 259static ssize_t
 260manage_runtime_start_stop_store(struct device *dev,
 261				struct device_attribute *attr,
 262				const char *buf, size_t count)
 263{
 264	struct scsi_disk *sdkp = to_scsi_disk(dev);
 265	struct scsi_device *sdp = sdkp->device;
 266	bool v;
 267
 268	if (!capable(CAP_SYS_ADMIN))
 269		return -EACCES;
 270
 271	if (kstrtobool(buf, &v))
 272		return -EINVAL;
 273
 274	sdp->manage_runtime_start_stop = v;
 275
 276	return count;
 277}
 278static DEVICE_ATTR_RW(manage_runtime_start_stop);
 279
 280static ssize_t manage_shutdown_show(struct device *dev,
 281				    struct device_attribute *attr, char *buf)
 282{
 283	struct scsi_disk *sdkp = to_scsi_disk(dev);
 284	struct scsi_device *sdp = sdkp->device;
 285
 286	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
 287}
 288
 289static ssize_t manage_shutdown_store(struct device *dev,
 290				     struct device_attribute *attr,
 291				     const char *buf, size_t count)
 292{
 293	struct scsi_disk *sdkp = to_scsi_disk(dev);
 294	struct scsi_device *sdp = sdkp->device;
 295	bool v;
 296
 297	if (!capable(CAP_SYS_ADMIN))
 298		return -EACCES;
 299
 300	if (kstrtobool(buf, &v))
 301		return -EINVAL;
 302
 303	sdp->manage_shutdown = v;
 304
 305	return count;
 306}
 307static DEVICE_ATTR_RW(manage_shutdown);
 308
 309static ssize_t
 310allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
 311{
 312	struct scsi_disk *sdkp = to_scsi_disk(dev);
 313
 314	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
 315}
 316
 317static ssize_t
 318allow_restart_store(struct device *dev, struct device_attribute *attr,
 319		    const char *buf, size_t count)
 320{
 321	bool v;
 322	struct scsi_disk *sdkp = to_scsi_disk(dev);
 323	struct scsi_device *sdp = sdkp->device;
 324
 325	if (!capable(CAP_SYS_ADMIN))
 326		return -EACCES;
 327
 328	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 329		return -EINVAL;
 330
 331	if (kstrtobool(buf, &v))
 332		return -EINVAL;
 333
 334	sdp->allow_restart = v;
 335
 336	return count;
 337}
 338static DEVICE_ATTR_RW(allow_restart);
 339
 340static ssize_t
 341cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
 342{
 343	struct scsi_disk *sdkp = to_scsi_disk(dev);
 344	int ct = sdkp->RCD + 2*sdkp->WCE;
 345
 346	return sprintf(buf, "%s\n", sd_cache_types[ct]);
 347}
 348static DEVICE_ATTR_RW(cache_type);
 349
 350static ssize_t
 351FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
 352{
 353	struct scsi_disk *sdkp = to_scsi_disk(dev);
 354
 355	return sprintf(buf, "%u\n", sdkp->DPOFUA);
 356}
 357static DEVICE_ATTR_RO(FUA);
 358
 359static ssize_t
 360protection_type_show(struct device *dev, struct device_attribute *attr,
 361		     char *buf)
 362{
 363	struct scsi_disk *sdkp = to_scsi_disk(dev);
 364
 365	return sprintf(buf, "%u\n", sdkp->protection_type);
 366}
 367
 368static ssize_t
 369protection_type_store(struct device *dev, struct device_attribute *attr,
 370		      const char *buf, size_t count)
 371{
 372	struct scsi_disk *sdkp = to_scsi_disk(dev);
 373	unsigned int val;
 374	int err;
 375
 376	if (!capable(CAP_SYS_ADMIN))
 377		return -EACCES;
 378
 379	err = kstrtouint(buf, 10, &val);
 380
 381	if (err)
 382		return err;
 383
 384	if (val <= T10_PI_TYPE3_PROTECTION)
 385		sdkp->protection_type = val;
 386
 387	return count;
 388}
 389static DEVICE_ATTR_RW(protection_type);
 390
 391static ssize_t
 392protection_mode_show(struct device *dev, struct device_attribute *attr,
 393		     char *buf)
 394{
 395	struct scsi_disk *sdkp = to_scsi_disk(dev);
 396	struct scsi_device *sdp = sdkp->device;
 397	unsigned int dif, dix;
 398
 399	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
 400	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
 401
 402	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
 403		dif = 0;
 404		dix = 1;
 405	}
 406
 407	if (!dif && !dix)
 408		return sprintf(buf, "none\n");
 409
 410	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
 411}
 412static DEVICE_ATTR_RO(protection_mode);
 413
 414static ssize_t
 415app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
 416{
 417	struct scsi_disk *sdkp = to_scsi_disk(dev);
 418
 419	return sprintf(buf, "%u\n", sdkp->ATO);
 420}
 421static DEVICE_ATTR_RO(app_tag_own);
 422
 423static ssize_t
 424thin_provisioning_show(struct device *dev, struct device_attribute *attr,
 425		       char *buf)
 426{
 427	struct scsi_disk *sdkp = to_scsi_disk(dev);
 428
 429	return sprintf(buf, "%u\n", sdkp->lbpme);
 430}
 431static DEVICE_ATTR_RO(thin_provisioning);
 432
 433/* sysfs_match_string() requires dense arrays */
 434static const char *lbp_mode[] = {
 435	[SD_LBP_FULL]		= "full",
 436	[SD_LBP_UNMAP]		= "unmap",
 437	[SD_LBP_WS16]		= "writesame_16",
 438	[SD_LBP_WS10]		= "writesame_10",
 439	[SD_LBP_ZERO]		= "writesame_zero",
 440	[SD_LBP_DISABLE]	= "disabled",
 441};
 442
 443static ssize_t
 444provisioning_mode_show(struct device *dev, struct device_attribute *attr,
 445		       char *buf)
 446{
 447	struct scsi_disk *sdkp = to_scsi_disk(dev);
 448
 449	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
 450}
 451
 452static ssize_t
 453provisioning_mode_store(struct device *dev, struct device_attribute *attr,
 454			const char *buf, size_t count)
 455{
 456	struct scsi_disk *sdkp = to_scsi_disk(dev);
 457	struct scsi_device *sdp = sdkp->device;
 458	int mode;
 
 459
 460	if (!capable(CAP_SYS_ADMIN))
 461		return -EACCES;
 462
 463	if (sd_is_zoned(sdkp)) {
 464		sd_config_discard(sdkp, SD_LBP_DISABLE);
 465		return count;
 466	}
 467
 468	if (sdp->type != TYPE_DISK)
 469		return -EINVAL;
 470
 471	mode = sysfs_match_string(lbp_mode, buf);
 472	if (mode < 0)
 473		return -EINVAL;
 474
 475	sd_config_discard(sdkp, mode);
 476
 
 
 
 477	return count;
 478}
 479static DEVICE_ATTR_RW(provisioning_mode);
 480
 481/* sysfs_match_string() requires dense arrays */
 482static const char *zeroing_mode[] = {
 483	[SD_ZERO_WRITE]		= "write",
 484	[SD_ZERO_WS]		= "writesame",
 485	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
 486	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
 487};
 488
 489static ssize_t
 490zeroing_mode_show(struct device *dev, struct device_attribute *attr,
 491		  char *buf)
 492{
 493	struct scsi_disk *sdkp = to_scsi_disk(dev);
 494
 495	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
 496}
 497
 498static ssize_t
 499zeroing_mode_store(struct device *dev, struct device_attribute *attr,
 500		   const char *buf, size_t count)
 501{
 502	struct scsi_disk *sdkp = to_scsi_disk(dev);
 503	int mode;
 504
 505	if (!capable(CAP_SYS_ADMIN))
 506		return -EACCES;
 507
 508	mode = sysfs_match_string(zeroing_mode, buf);
 509	if (mode < 0)
 510		return -EINVAL;
 511
 512	sdkp->zeroing_mode = mode;
 513
 514	return count;
 515}
 516static DEVICE_ATTR_RW(zeroing_mode);
 517
 518static ssize_t
 519max_medium_access_timeouts_show(struct device *dev,
 520				struct device_attribute *attr, char *buf)
 521{
 522	struct scsi_disk *sdkp = to_scsi_disk(dev);
 523
 524	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
 525}
 526
 527static ssize_t
 528max_medium_access_timeouts_store(struct device *dev,
 529				 struct device_attribute *attr, const char *buf,
 530				 size_t count)
 531{
 532	struct scsi_disk *sdkp = to_scsi_disk(dev);
 533	int err;
 534
 535	if (!capable(CAP_SYS_ADMIN))
 536		return -EACCES;
 537
 538	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
 539
 540	return err ? err : count;
 541}
 542static DEVICE_ATTR_RW(max_medium_access_timeouts);
 543
 544static ssize_t
 545max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
 546			   char *buf)
 547{
 548	struct scsi_disk *sdkp = to_scsi_disk(dev);
 549
 550	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
 551}
 552
 553static ssize_t
 554max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
 555			    const char *buf, size_t count)
 556{
 557	struct scsi_disk *sdkp = to_scsi_disk(dev);
 558	struct scsi_device *sdp = sdkp->device;
 
 559	unsigned long max;
 560	int err;
 561
 562	if (!capable(CAP_SYS_ADMIN))
 563		return -EACCES;
 564
 565	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 566		return -EINVAL;
 567
 568	err = kstrtoul(buf, 10, &max);
 569
 570	if (err)
 571		return err;
 572
 573	if (max == 0)
 574		sdp->no_write_same = 1;
 575	else if (max <= SD_MAX_WS16_BLOCKS) {
 576		sdp->no_write_same = 0;
 577		sdkp->max_ws_blocks = max;
 578	}
 579
 580	sd_config_write_same(sdkp);
 581
 
 
 
 582	return count;
 583}
 584static DEVICE_ATTR_RW(max_write_same_blocks);
 585
 586static ssize_t
 587zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
 588{
 589	struct scsi_disk *sdkp = to_scsi_disk(dev);
 590
 591	if (sdkp->device->type == TYPE_ZBC)
 592		return sprintf(buf, "host-managed\n");
 593	if (sdkp->zoned == 1)
 594		return sprintf(buf, "host-aware\n");
 595	if (sdkp->zoned == 2)
 596		return sprintf(buf, "drive-managed\n");
 597	return sprintf(buf, "none\n");
 598}
 599static DEVICE_ATTR_RO(zoned_cap);
 600
 601static ssize_t
 602max_retries_store(struct device *dev, struct device_attribute *attr,
 603		  const char *buf, size_t count)
 604{
 605	struct scsi_disk *sdkp = to_scsi_disk(dev);
 606	struct scsi_device *sdev = sdkp->device;
 607	int retries, err;
 608
 609	err = kstrtoint(buf, 10, &retries);
 610	if (err)
 611		return err;
 612
 613	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
 614		sdkp->max_retries = retries;
 615		return count;
 616	}
 617
 618	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
 619		    SD_MAX_RETRIES);
 620	return -EINVAL;
 621}
 622
 623static ssize_t
 624max_retries_show(struct device *dev, struct device_attribute *attr,
 625		 char *buf)
 626{
 627	struct scsi_disk *sdkp = to_scsi_disk(dev);
 628
 629	return sprintf(buf, "%d\n", sdkp->max_retries);
 630}
 631
 632static DEVICE_ATTR_RW(max_retries);
 633
 634static struct attribute *sd_disk_attrs[] = {
 635	&dev_attr_cache_type.attr,
 636	&dev_attr_FUA.attr,
 637	&dev_attr_allow_restart.attr,
 638	&dev_attr_manage_start_stop.attr,
 639	&dev_attr_manage_system_start_stop.attr,
 640	&dev_attr_manage_runtime_start_stop.attr,
 641	&dev_attr_manage_shutdown.attr,
 642	&dev_attr_protection_type.attr,
 643	&dev_attr_protection_mode.attr,
 644	&dev_attr_app_tag_own.attr,
 645	&dev_attr_thin_provisioning.attr,
 646	&dev_attr_provisioning_mode.attr,
 647	&dev_attr_zeroing_mode.attr,
 648	&dev_attr_max_write_same_blocks.attr,
 649	&dev_attr_max_medium_access_timeouts.attr,
 650	&dev_attr_zoned_cap.attr,
 651	&dev_attr_max_retries.attr,
 652	NULL,
 653};
 654ATTRIBUTE_GROUPS(sd_disk);
 655
 656static struct class sd_disk_class = {
 657	.name		= "scsi_disk",
 658	.dev_release	= scsi_disk_release,
 659	.dev_groups	= sd_disk_groups,
 660};
 661
 662/*
 663 * Don't request a new module, as that could deadlock in multipath
 664 * environment.
 665 */
 666static void sd_default_probe(dev_t devt)
 667{
 668}
 669
 670/*
 671 * Device no to disk mapping:
 672 * 
 673 *       major         disc2     disc  p1
 674 *   |............|.............|....|....| <- dev_t
 675 *    31        20 19          8 7  4 3  0
 676 * 
 677 * Inside a major, we have 16k disks, however mapped non-
 678 * contiguously. The first 16 disks are for major0, the next
 679 * ones with major1, ... Disk 256 is for major0 again, disk 272 
 680 * for major1, ... 
 681 * As we stay compatible with our numbering scheme, we can reuse 
 682 * the well-know SCSI majors 8, 65--71, 136--143.
 683 */
 684static int sd_major(int major_idx)
 685{
 686	switch (major_idx) {
 687	case 0:
 688		return SCSI_DISK0_MAJOR;
 689	case 1 ... 7:
 690		return SCSI_DISK1_MAJOR + major_idx - 1;
 691	case 8 ... 15:
 692		return SCSI_DISK8_MAJOR + major_idx - 8;
 693	default:
 694		BUG();
 695		return 0;	/* shut up gcc */
 696	}
 697}
 698
 699#ifdef CONFIG_BLK_SED_OPAL
 700static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
 701		size_t len, bool send)
 702{
 703	struct scsi_disk *sdkp = data;
 704	struct scsi_device *sdev = sdkp->device;
 705	u8 cdb[12] = { 0, };
 706	const struct scsi_exec_args exec_args = {
 707		.req_flags = BLK_MQ_REQ_PM,
 708	};
 709	int ret;
 710
 711	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
 712	cdb[1] = secp;
 713	put_unaligned_be16(spsp, &cdb[2]);
 714	put_unaligned_be32(len, &cdb[6]);
 715
 716	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
 717			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
 718			       &exec_args);
 719	return ret <= 0 ? ret : -EIO;
 720}
 721#endif /* CONFIG_BLK_SED_OPAL */
 722
 723/*
 724 * Look up the DIX operation based on whether the command is read or
 725 * write and whether dix and dif are enabled.
 726 */
 727static unsigned int sd_prot_op(bool write, bool dix, bool dif)
 728{
 729	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
 730	static const unsigned int ops[] = {	/* wrt dix dif */
 731		SCSI_PROT_NORMAL,		/*  0	0   0  */
 732		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
 733		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
 734		SCSI_PROT_READ_PASS,		/*  0	1   1  */
 735		SCSI_PROT_NORMAL,		/*  1	0   0  */
 736		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
 737		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
 738		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
 739	};
 740
 741	return ops[write << 2 | dix << 1 | dif];
 742}
 743
 744/*
 745 * Returns a mask of the protection flags that are valid for a given DIX
 746 * operation.
 747 */
 748static unsigned int sd_prot_flag_mask(unsigned int prot_op)
 749{
 750	static const unsigned int flag_mask[] = {
 751		[SCSI_PROT_NORMAL]		= 0,
 752
 753		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
 754						  SCSI_PROT_GUARD_CHECK |
 755						  SCSI_PROT_REF_CHECK |
 756						  SCSI_PROT_REF_INCREMENT,
 757
 758		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
 759						  SCSI_PROT_IP_CHECKSUM,
 760
 761		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
 762						  SCSI_PROT_GUARD_CHECK |
 763						  SCSI_PROT_REF_CHECK |
 764						  SCSI_PROT_REF_INCREMENT |
 765						  SCSI_PROT_IP_CHECKSUM,
 766
 767		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
 768						  SCSI_PROT_REF_INCREMENT,
 769
 770		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
 771						  SCSI_PROT_REF_CHECK |
 772						  SCSI_PROT_REF_INCREMENT |
 773						  SCSI_PROT_IP_CHECKSUM,
 774
 775		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
 776						  SCSI_PROT_GUARD_CHECK |
 777						  SCSI_PROT_REF_CHECK |
 778						  SCSI_PROT_REF_INCREMENT |
 779						  SCSI_PROT_IP_CHECKSUM,
 780	};
 781
 782	return flag_mask[prot_op];
 783}
 784
 785static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
 786					   unsigned int dix, unsigned int dif)
 787{
 788	struct request *rq = scsi_cmd_to_rq(scmd);
 789	struct bio *bio = rq->bio;
 790	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
 791	unsigned int protect = 0;
 792
 793	if (dix) {				/* DIX Type 0, 1, 2, 3 */
 794		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
 795			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
 796
 797		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 798			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
 799	}
 800
 801	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
 802		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
 803
 804		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 805			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
 806	}
 807
 808	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
 809		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
 810
 811		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
 812			protect = 3 << 5;	/* Disable target PI checking */
 813		else
 814			protect = 1 << 5;	/* Enable target PI checking */
 815	}
 816
 817	scsi_set_prot_op(scmd, prot_op);
 818	scsi_set_prot_type(scmd, dif);
 819	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
 820
 821	return protect;
 822}
 823
 824static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
 
 
 
 
 
 
 
 825{
 826	struct request_queue *q = sdkp->disk->queue;
 827	unsigned int logical_block_size = sdkp->device->sector_size;
 828	unsigned int max_blocks = 0;
 829
 830	q->limits.discard_alignment =
 831		sdkp->unmap_alignment * logical_block_size;
 832	q->limits.discard_granularity =
 833		max(sdkp->physical_block_size,
 834		    sdkp->unmap_granularity * logical_block_size);
 835	sdkp->provisioning_mode = mode;
 836
 837	switch (mode) {
 838
 839	case SD_LBP_FULL:
 840	case SD_LBP_DISABLE:
 841		blk_queue_max_discard_sectors(q, 0);
 842		return;
 843
 844	case SD_LBP_UNMAP:
 845		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
 846					  (u32)SD_MAX_WS16_BLOCKS);
 847		break;
 848
 849	case SD_LBP_WS16:
 850		if (sdkp->device->unmap_limit_for_ws)
 851			max_blocks = sdkp->max_unmap_blocks;
 852		else
 853			max_blocks = sdkp->max_ws_blocks;
 854
 855		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
 856		break;
 857
 858	case SD_LBP_WS10:
 859		if (sdkp->device->unmap_limit_for_ws)
 860			max_blocks = sdkp->max_unmap_blocks;
 861		else
 862			max_blocks = sdkp->max_ws_blocks;
 863
 864		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
 865		break;
 866
 867	case SD_LBP_ZERO:
 868		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 869					  (u32)SD_MAX_WS10_BLOCKS);
 870		break;
 871	}
 872
 873	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
 
 874}
 875
 876static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
 877{
 878	struct page *page;
 879
 880	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 881	if (!page)
 882		return NULL;
 883	clear_highpage(page);
 884	bvec_set_page(&rq->special_vec, page, data_len, 0);
 885	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 886	return bvec_virt(&rq->special_vec);
 887}
 888
 889static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
 890{
 891	struct scsi_device *sdp = cmd->device;
 892	struct request *rq = scsi_cmd_to_rq(cmd);
 893	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 894	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 895	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 896	unsigned int data_len = 24;
 897	char *buf;
 898
 899	buf = sd_set_special_bvec(rq, data_len);
 900	if (!buf)
 901		return BLK_STS_RESOURCE;
 902
 903	cmd->cmd_len = 10;
 904	cmd->cmnd[0] = UNMAP;
 905	cmd->cmnd[8] = 24;
 906
 907	put_unaligned_be16(6 + 16, &buf[0]);
 908	put_unaligned_be16(16, &buf[2]);
 909	put_unaligned_be64(lba, &buf[8]);
 910	put_unaligned_be32(nr_blocks, &buf[16]);
 911
 912	cmd->allowed = sdkp->max_retries;
 913	cmd->transfersize = data_len;
 914	rq->timeout = SD_TIMEOUT;
 915
 916	return scsi_alloc_sgtables(cmd);
 917}
 918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
 920		bool unmap)
 921{
 922	struct scsi_device *sdp = cmd->device;
 923	struct request *rq = scsi_cmd_to_rq(cmd);
 924	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 925	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 926	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 927	u32 data_len = sdp->sector_size;
 928
 929	if (!sd_set_special_bvec(rq, data_len))
 930		return BLK_STS_RESOURCE;
 931
 932	cmd->cmd_len = 16;
 933	cmd->cmnd[0] = WRITE_SAME_16;
 934	if (unmap)
 935		cmd->cmnd[1] = 0x8; /* UNMAP */
 936	put_unaligned_be64(lba, &cmd->cmnd[2]);
 937	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
 938
 939	cmd->allowed = sdkp->max_retries;
 940	cmd->transfersize = data_len;
 941	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 942
 943	return scsi_alloc_sgtables(cmd);
 944}
 945
 946static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
 947		bool unmap)
 948{
 949	struct scsi_device *sdp = cmd->device;
 950	struct request *rq = scsi_cmd_to_rq(cmd);
 951	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 952	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 953	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 954	u32 data_len = sdp->sector_size;
 955
 956	if (!sd_set_special_bvec(rq, data_len))
 957		return BLK_STS_RESOURCE;
 958
 959	cmd->cmd_len = 10;
 960	cmd->cmnd[0] = WRITE_SAME;
 961	if (unmap)
 962		cmd->cmnd[1] = 0x8; /* UNMAP */
 963	put_unaligned_be32(lba, &cmd->cmnd[2]);
 964	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
 965
 966	cmd->allowed = sdkp->max_retries;
 967	cmd->transfersize = data_len;
 968	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 969
 970	return scsi_alloc_sgtables(cmd);
 971}
 972
 973static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
 974{
 975	struct request *rq = scsi_cmd_to_rq(cmd);
 976	struct scsi_device *sdp = cmd->device;
 977	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 978	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 979	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 980
 981	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
 982		switch (sdkp->zeroing_mode) {
 983		case SD_ZERO_WS16_UNMAP:
 984			return sd_setup_write_same16_cmnd(cmd, true);
 985		case SD_ZERO_WS10_UNMAP:
 986			return sd_setup_write_same10_cmnd(cmd, true);
 987		}
 988	}
 989
 990	if (sdp->no_write_same) {
 991		rq->rq_flags |= RQF_QUIET;
 992		return BLK_STS_TARGET;
 993	}
 994
 995	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
 996		return sd_setup_write_same16_cmnd(cmd, false);
 997
 998	return sd_setup_write_same10_cmnd(cmd, false);
 999}
1000
1001static void sd_config_write_same(struct scsi_disk *sdkp)
 
 
 
 
 
 
 
 
1002{
1003	struct request_queue *q = sdkp->disk->queue;
1004	unsigned int logical_block_size = sdkp->device->sector_size;
1005
1006	if (sdkp->device->no_write_same) {
1007		sdkp->max_ws_blocks = 0;
1008		goto out;
1009	}
1010
1011	/* Some devices can not handle block counts above 0xffff despite
1012	 * supporting WRITE SAME(16). Consequently we default to 64k
1013	 * blocks per I/O unless the device explicitly advertises a
1014	 * bigger limit.
1015	 */
1016	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1017		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1018						   (u32)SD_MAX_WS16_BLOCKS);
1019	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1020		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1021						   (u32)SD_MAX_WS10_BLOCKS);
1022	else {
1023		sdkp->device->no_write_same = 1;
1024		sdkp->max_ws_blocks = 0;
1025	}
1026
1027	if (sdkp->lbprz && sdkp->lbpws)
1028		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1029	else if (sdkp->lbprz && sdkp->lbpws10)
1030		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1031	else if (sdkp->max_ws_blocks)
1032		sdkp->zeroing_mode = SD_ZERO_WS;
1033	else
1034		sdkp->zeroing_mode = SD_ZERO_WRITE;
1035
1036	if (sdkp->max_ws_blocks &&
1037	    sdkp->physical_block_size > logical_block_size) {
1038		/*
1039		 * Reporting a maximum number of blocks that is not aligned
1040		 * on the device physical size would cause a large write same
1041		 * request to be split into physically unaligned chunks by
1042		 * __blkdev_issue_write_zeroes() even if the caller of this
1043		 * functions took care to align the large request. So make sure
1044		 * the maximum reported is aligned to the device physical block
1045		 * size. This is only an optional optimization for regular
1046		 * disks, but this is mandatory to avoid failure of large write
1047		 * same requests directed at sequential write required zones of
1048		 * host-managed ZBC disks.
1049		 */
1050		sdkp->max_ws_blocks =
1051			round_down(sdkp->max_ws_blocks,
1052				   bytes_to_logical(sdkp->device,
1053						    sdkp->physical_block_size));
1054	}
1055
1056out:
1057	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1058					 (logical_block_size >> 9));
1059}
1060
1061static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1062{
1063	struct request *rq = scsi_cmd_to_rq(cmd);
1064	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1065
1066	/* flush requests don't perform I/O, zero the S/G table */
1067	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1068
1069	if (cmd->device->use_16_for_sync) {
1070		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1071		cmd->cmd_len = 16;
1072	} else {
1073		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1074		cmd->cmd_len = 10;
1075	}
1076	cmd->transfersize = 0;
1077	cmd->allowed = sdkp->max_retries;
1078
1079	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1080	return BLK_STS_OK;
1081}
1082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1084				       sector_t lba, unsigned int nr_blocks,
1085				       unsigned char flags, unsigned int dld)
1086{
1087	cmd->cmd_len = SD_EXT_CDB_SIZE;
1088	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
 
1089	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1090	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1091	cmd->cmnd[10] = flags;
1092	cmd->cmnd[11] = dld & 0x07;
1093	put_unaligned_be64(lba, &cmd->cmnd[12]);
1094	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1095	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1096
1097	return BLK_STS_OK;
1098}
1099
1100static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1101				       sector_t lba, unsigned int nr_blocks,
1102				       unsigned char flags, unsigned int dld)
1103{
1104	cmd->cmd_len  = 16;
1105	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1106	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1107	cmd->cmnd[14] = (dld & 0x03) << 6;
1108	cmd->cmnd[15] = 0;
1109	put_unaligned_be64(lba, &cmd->cmnd[2]);
1110	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1111
1112	return BLK_STS_OK;
1113}
1114
1115static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1116				       sector_t lba, unsigned int nr_blocks,
1117				       unsigned char flags)
1118{
1119	cmd->cmd_len = 10;
1120	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1121	cmd->cmnd[1] = flags;
1122	cmd->cmnd[6] = 0;
1123	cmd->cmnd[9] = 0;
1124	put_unaligned_be32(lba, &cmd->cmnd[2]);
1125	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1126
1127	return BLK_STS_OK;
1128}
1129
1130static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1131				      sector_t lba, unsigned int nr_blocks,
1132				      unsigned char flags)
1133{
1134	/* Avoid that 0 blocks gets translated into 256 blocks. */
1135	if (WARN_ON_ONCE(nr_blocks == 0))
1136		return BLK_STS_IOERR;
1137
1138	if (unlikely(flags & 0x8)) {
1139		/*
1140		 * This happens only if this drive failed 10byte rw
1141		 * command with ILLEGAL_REQUEST during operation and
1142		 * thus turned off use_10_for_rw.
1143		 */
1144		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1145		return BLK_STS_IOERR;
1146	}
1147
1148	cmd->cmd_len = 6;
1149	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1150	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1151	cmd->cmnd[2] = (lba >> 8) & 0xff;
1152	cmd->cmnd[3] = lba & 0xff;
1153	cmd->cmnd[4] = nr_blocks;
1154	cmd->cmnd[5] = 0;
1155
1156	return BLK_STS_OK;
1157}
1158
1159/*
1160 * Check if a command has a duration limit set. If it does, and the target
1161 * device supports CDL and the feature is enabled, return the limit
1162 * descriptor index to use. Return 0 (no limit) otherwise.
1163 */
1164static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1165{
1166	struct scsi_device *sdp = sdkp->device;
1167	int hint;
1168
1169	if (!sdp->cdl_supported || !sdp->cdl_enable)
1170		return 0;
1171
1172	/*
1173	 * Use "no limit" if the request ioprio does not specify a duration
1174	 * limit hint.
1175	 */
1176	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1177	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1178	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1179		return 0;
1180
1181	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1182}
1183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1185{
1186	struct request *rq = scsi_cmd_to_rq(cmd);
1187	struct scsi_device *sdp = cmd->device;
1188	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1189	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1190	sector_t threshold;
1191	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1192	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1193	bool write = rq_data_dir(rq) == WRITE;
1194	unsigned char protect, fua;
1195	unsigned int dld;
1196	blk_status_t ret;
1197	unsigned int dif;
1198	bool dix;
1199
1200	ret = scsi_alloc_sgtables(cmd);
1201	if (ret != BLK_STS_OK)
1202		return ret;
1203
1204	ret = BLK_STS_IOERR;
1205	if (!scsi_device_online(sdp) || sdp->changed) {
1206		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1207		goto fail;
1208	}
1209
1210	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1211		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1212		goto fail;
1213	}
1214
1215	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1216		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1217		goto fail;
1218	}
1219
1220	/*
1221	 * Some SD card readers can't handle accesses which touch the
1222	 * last one or two logical blocks. Split accesses as needed.
1223	 */
1224	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1225
1226	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1227		if (lba < threshold) {
1228			/* Access up to the threshold but not beyond */
1229			nr_blocks = threshold - lba;
1230		} else {
1231			/* Access only a single logical block */
1232			nr_blocks = 1;
1233		}
1234	}
1235
1236	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1237		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1238		if (ret)
1239			goto fail;
1240	}
1241
1242	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1243	dix = scsi_prot_sg_count(cmd);
1244	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1245	dld = sd_cdl_dld(sdkp, cmd);
1246
1247	if (dif || dix)
1248		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1249	else
1250		protect = 0;
1251
1252	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1253		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1254					 protect | fua, dld);
 
 
 
 
1255	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1256		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1257					 protect | fua, dld);
1258	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1259		   sdp->use_10_for_rw || protect) {
1260		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1261					 protect | fua);
1262	} else {
1263		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1264					protect | fua);
1265	}
1266
1267	if (unlikely(ret != BLK_STS_OK))
1268		goto fail;
1269
1270	/*
1271	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1272	 * host adapter, it's safe to assume that we can at least transfer
1273	 * this many bytes between each connect / disconnect.
1274	 */
1275	cmd->transfersize = sdp->sector_size;
1276	cmd->underflow = nr_blocks << 9;
1277	cmd->allowed = sdkp->max_retries;
1278	cmd->sdb.length = nr_blocks * sdp->sector_size;
1279
1280	SCSI_LOG_HLQUEUE(1,
1281			 scmd_printk(KERN_INFO, cmd,
1282				     "%s: block=%llu, count=%d\n", __func__,
1283				     (unsigned long long)blk_rq_pos(rq),
1284				     blk_rq_sectors(rq)));
1285	SCSI_LOG_HLQUEUE(2,
1286			 scmd_printk(KERN_INFO, cmd,
1287				     "%s %d/%u 512 byte blocks.\n",
1288				     write ? "writing" : "reading", nr_blocks,
1289				     blk_rq_sectors(rq)));
1290
1291	/*
1292	 * This indicates that the command is ready from our end to be queued.
1293	 */
1294	return BLK_STS_OK;
1295fail:
1296	scsi_free_sgtables(cmd);
1297	return ret;
1298}
1299
1300static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1301{
1302	struct request *rq = scsi_cmd_to_rq(cmd);
1303
1304	switch (req_op(rq)) {
1305	case REQ_OP_DISCARD:
1306		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1307		case SD_LBP_UNMAP:
1308			return sd_setup_unmap_cmnd(cmd);
1309		case SD_LBP_WS16:
1310			return sd_setup_write_same16_cmnd(cmd, true);
1311		case SD_LBP_WS10:
1312			return sd_setup_write_same10_cmnd(cmd, true);
1313		case SD_LBP_ZERO:
1314			return sd_setup_write_same10_cmnd(cmd, false);
1315		default:
1316			return BLK_STS_TARGET;
1317		}
1318	case REQ_OP_WRITE_ZEROES:
1319		return sd_setup_write_zeroes_cmnd(cmd);
1320	case REQ_OP_FLUSH:
1321		return sd_setup_flush_cmnd(cmd);
1322	case REQ_OP_READ:
1323	case REQ_OP_WRITE:
1324	case REQ_OP_ZONE_APPEND:
1325		return sd_setup_read_write_cmnd(cmd);
1326	case REQ_OP_ZONE_RESET:
1327		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1328						   false);
1329	case REQ_OP_ZONE_RESET_ALL:
1330		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1331						   true);
1332	case REQ_OP_ZONE_OPEN:
1333		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1334	case REQ_OP_ZONE_CLOSE:
1335		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1336	case REQ_OP_ZONE_FINISH:
1337		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1338	default:
1339		WARN_ON_ONCE(1);
1340		return BLK_STS_NOTSUPP;
1341	}
1342}
1343
1344static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1345{
1346	struct request *rq = scsi_cmd_to_rq(SCpnt);
1347
1348	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1349		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1350}
1351
1352static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1353{
1354	if (sdkp->device->removable || sdkp->write_prot) {
1355		if (disk_check_media_change(disk))
1356			return true;
1357	}
1358
1359	/*
1360	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1361	 * nothing to do with partitions, BLKRRPART is used to force a full
1362	 * revalidate after things like a format for historical reasons.
1363	 */
1364	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1365}
1366
1367/**
1368 *	sd_open - open a scsi disk device
1369 *	@disk: disk to open
1370 *	@mode: open mode
1371 *
1372 *	Returns 0 if successful. Returns a negated errno value in case 
1373 *	of error.
1374 *
1375 *	Note: This can be called from a user context (e.g. fsck(1) )
1376 *	or from within the kernel (e.g. as a result of a mount(1) ).
1377 *	In the latter case @inode and @filp carry an abridged amount
1378 *	of information as noted above.
1379 *
1380 *	Locking: called with disk->open_mutex held.
1381 **/
1382static int sd_open(struct gendisk *disk, blk_mode_t mode)
1383{
1384	struct scsi_disk *sdkp = scsi_disk(disk);
1385	struct scsi_device *sdev = sdkp->device;
1386	int retval;
1387
1388	if (scsi_device_get(sdev))
1389		return -ENXIO;
1390
1391	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1392
1393	/*
1394	 * If the device is in error recovery, wait until it is done.
1395	 * If the device is offline, then disallow any access to it.
1396	 */
1397	retval = -ENXIO;
1398	if (!scsi_block_when_processing_errors(sdev))
1399		goto error_out;
1400
1401	if (sd_need_revalidate(disk, sdkp))
1402		sd_revalidate_disk(disk);
1403
1404	/*
1405	 * If the drive is empty, just let the open fail.
1406	 */
1407	retval = -ENOMEDIUM;
1408	if (sdev->removable && !sdkp->media_present &&
1409	    !(mode & BLK_OPEN_NDELAY))
1410		goto error_out;
1411
1412	/*
1413	 * If the device has the write protect tab set, have the open fail
1414	 * if the user expects to be able to write to the thing.
1415	 */
1416	retval = -EROFS;
1417	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1418		goto error_out;
1419
1420	/*
1421	 * It is possible that the disk changing stuff resulted in
1422	 * the device being taken offline.  If this is the case,
1423	 * report this to the user, and don't pretend that the
1424	 * open actually succeeded.
1425	 */
1426	retval = -ENXIO;
1427	if (!scsi_device_online(sdev))
1428		goto error_out;
1429
1430	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1431		if (scsi_block_when_processing_errors(sdev))
1432			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1433	}
1434
1435	return 0;
1436
1437error_out:
1438	scsi_device_put(sdev);
1439	return retval;	
1440}
1441
1442/**
1443 *	sd_release - invoked when the (last) close(2) is called on this
1444 *	scsi disk.
1445 *	@disk: disk to release
1446 *
1447 *	Returns 0. 
1448 *
1449 *	Note: may block (uninterruptible) if error recovery is underway
1450 *	on this disk.
1451 *
1452 *	Locking: called with disk->open_mutex held.
1453 **/
1454static void sd_release(struct gendisk *disk)
1455{
1456	struct scsi_disk *sdkp = scsi_disk(disk);
1457	struct scsi_device *sdev = sdkp->device;
1458
1459	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1460
1461	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1462		if (scsi_block_when_processing_errors(sdev))
1463			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1464	}
1465
1466	scsi_device_put(sdev);
1467}
1468
1469static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1470{
1471	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1472	struct scsi_device *sdp = sdkp->device;
1473	struct Scsi_Host *host = sdp->host;
1474	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1475	int diskinfo[4];
1476
1477	/* default to most commonly used values */
1478	diskinfo[0] = 0x40;	/* 1 << 6 */
1479	diskinfo[1] = 0x20;	/* 1 << 5 */
1480	diskinfo[2] = capacity >> 11;
1481
1482	/* override with calculated, extended default, or driver values */
1483	if (host->hostt->bios_param)
1484		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1485	else
1486		scsicam_bios_param(bdev, capacity, diskinfo);
1487
1488	geo->heads = diskinfo[0];
1489	geo->sectors = diskinfo[1];
1490	geo->cylinders = diskinfo[2];
1491	return 0;
1492}
1493
1494/**
1495 *	sd_ioctl - process an ioctl
1496 *	@bdev: target block device
1497 *	@mode: open mode
1498 *	@cmd: ioctl command number
1499 *	@arg: this is third argument given to ioctl(2) system call.
1500 *	Often contains a pointer.
1501 *
1502 *	Returns 0 if successful (some ioctls return positive numbers on
1503 *	success as well). Returns a negated errno value in case of error.
1504 *
1505 *	Note: most ioctls are forward onto the block subsystem or further
1506 *	down in the scsi subsystem.
1507 **/
1508static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1509		    unsigned int cmd, unsigned long arg)
1510{
1511	struct gendisk *disk = bdev->bd_disk;
1512	struct scsi_disk *sdkp = scsi_disk(disk);
1513	struct scsi_device *sdp = sdkp->device;
1514	void __user *p = (void __user *)arg;
1515	int error;
1516    
1517	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1518				    "cmd=0x%x\n", disk->disk_name, cmd));
1519
1520	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1521		return -ENOIOCTLCMD;
1522
1523	/*
1524	 * If we are in the middle of error recovery, don't let anyone
1525	 * else try and use this device.  Also, if error recovery fails, it
1526	 * may try and take the device offline, in which case all further
1527	 * access to the device is prohibited.
1528	 */
1529	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1530			(mode & BLK_OPEN_NDELAY));
1531	if (error)
1532		return error;
1533
1534	if (is_sed_ioctl(cmd))
1535		return sed_ioctl(sdkp->opal_dev, cmd, p);
1536	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1537}
1538
1539static void set_media_not_present(struct scsi_disk *sdkp)
1540{
1541	if (sdkp->media_present)
1542		sdkp->device->changed = 1;
1543
1544	if (sdkp->device->removable) {
1545		sdkp->media_present = 0;
1546		sdkp->capacity = 0;
1547	}
1548}
1549
1550static int media_not_present(struct scsi_disk *sdkp,
1551			     struct scsi_sense_hdr *sshdr)
1552{
1553	if (!scsi_sense_valid(sshdr))
1554		return 0;
1555
1556	/* not invoked for commands that could return deferred errors */
1557	switch (sshdr->sense_key) {
1558	case UNIT_ATTENTION:
1559	case NOT_READY:
1560		/* medium not present */
1561		if (sshdr->asc == 0x3A) {
1562			set_media_not_present(sdkp);
1563			return 1;
1564		}
1565	}
1566	return 0;
1567}
1568
1569/**
1570 *	sd_check_events - check media events
1571 *	@disk: kernel device descriptor
1572 *	@clearing: disk events currently being cleared
1573 *
1574 *	Returns mask of DISK_EVENT_*.
1575 *
1576 *	Note: this function is invoked from the block subsystem.
1577 **/
1578static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1579{
1580	struct scsi_disk *sdkp = disk->private_data;
1581	struct scsi_device *sdp;
1582	int retval;
1583	bool disk_changed;
1584
1585	if (!sdkp)
1586		return 0;
1587
1588	sdp = sdkp->device;
1589	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1590
1591	/*
1592	 * If the device is offline, don't send any commands - just pretend as
1593	 * if the command failed.  If the device ever comes back online, we
1594	 * can deal with it then.  It is only because of unrecoverable errors
1595	 * that we would ever take a device offline in the first place.
1596	 */
1597	if (!scsi_device_online(sdp)) {
1598		set_media_not_present(sdkp);
1599		goto out;
1600	}
1601
1602	/*
1603	 * Using TEST_UNIT_READY enables differentiation between drive with
1604	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1605	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1606	 *
1607	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1608	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1609	 * sd_revalidate() is called.
1610	 */
1611	if (scsi_block_when_processing_errors(sdp)) {
1612		struct scsi_sense_hdr sshdr = { 0, };
1613
1614		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1615					      &sshdr);
1616
1617		/* failed to execute TUR, assume media not present */
1618		if (retval < 0 || host_byte(retval)) {
1619			set_media_not_present(sdkp);
1620			goto out;
1621		}
1622
1623		if (media_not_present(sdkp, &sshdr))
1624			goto out;
1625	}
1626
1627	/*
1628	 * For removable scsi disk we have to recognise the presence
1629	 * of a disk in the drive.
1630	 */
1631	if (!sdkp->media_present)
1632		sdp->changed = 1;
1633	sdkp->media_present = 1;
1634out:
1635	/*
1636	 * sdp->changed is set under the following conditions:
1637	 *
1638	 *	Medium present state has changed in either direction.
1639	 *	Device has indicated UNIT_ATTENTION.
1640	 */
1641	disk_changed = sdp->changed;
1642	sdp->changed = 0;
1643	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1644}
1645
1646static int sd_sync_cache(struct scsi_disk *sdkp)
1647{
1648	int retries, res;
1649	struct scsi_device *sdp = sdkp->device;
1650	const int timeout = sdp->request_queue->rq_timeout
1651		* SD_FLUSH_TIMEOUT_MULTIPLIER;
 
 
 
1652	struct scsi_sense_hdr sshdr;
 
 
 
 
 
 
 
 
 
 
1653	const struct scsi_exec_args exec_args = {
1654		.req_flags = BLK_MQ_REQ_PM,
1655		.sshdr = &sshdr,
 
1656	};
1657
1658	if (!scsi_device_online(sdp))
1659		return -ENODEV;
1660
1661	for (retries = 3; retries > 0; --retries) {
1662		unsigned char cmd[16] = { 0 };
1663
1664		if (sdp->use_16_for_sync)
1665			cmd[0] = SYNCHRONIZE_CACHE_16;
1666		else
1667			cmd[0] = SYNCHRONIZE_CACHE;
1668		/*
1669		 * Leave the rest of the command zero to indicate
1670		 * flush everything.
1671		 */
1672		res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1673				       timeout, sdkp->max_retries, &exec_args);
1674		if (res == 0)
1675			break;
1676	}
1677
1678	if (res) {
1679		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1680
1681		if (res < 0)
1682			return res;
1683
1684		if (scsi_status_is_check_condition(res) &&
1685		    scsi_sense_valid(&sshdr)) {
1686			sd_print_sense_hdr(sdkp, &sshdr);
1687
1688			/* we need to evaluate the error return  */
1689			if (sshdr.asc == 0x3a ||	/* medium not present */
1690			    sshdr.asc == 0x20 ||	/* invalid command */
1691			    (sshdr.asc == 0x74 && sshdr.ascq == 0x71))	/* drive is password locked */
1692				/* this is no error here */
1693				return 0;
 
1694			/*
1695			 * This drive doesn't support sync and there's not much
1696			 * we can do because this is called during shutdown
1697			 * or suspend so just return success so those operations
1698			 * can proceed.
1699			 */
1700			if (sshdr.sense_key == ILLEGAL_REQUEST)
 
1701				return 0;
1702		}
1703
1704		switch (host_byte(res)) {
1705		/* ignore errors due to racing a disconnection */
1706		case DID_BAD_TARGET:
1707		case DID_NO_CONNECT:
1708			return 0;
1709		/* signal the upper layer it might try again */
1710		case DID_BUS_BUSY:
1711		case DID_IMM_RETRY:
1712		case DID_REQUEUE:
1713		case DID_SOFT_ERROR:
1714			return -EBUSY;
1715		default:
1716			return -EIO;
1717		}
1718	}
1719	return 0;
1720}
1721
1722static void sd_rescan(struct device *dev)
1723{
1724	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1725
1726	sd_revalidate_disk(sdkp->disk);
1727}
1728
1729static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1730		enum blk_unique_id type)
1731{
1732	struct scsi_device *sdev = scsi_disk(disk)->device;
1733	const struct scsi_vpd *vpd;
1734	const unsigned char *d;
1735	int ret = -ENXIO, len;
1736
1737	rcu_read_lock();
1738	vpd = rcu_dereference(sdev->vpd_pg83);
1739	if (!vpd)
1740		goto out_unlock;
1741
1742	ret = -EINVAL;
1743	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1744		/* we only care about designators with LU association */
1745		if (((d[1] >> 4) & 0x3) != 0x00)
1746			continue;
1747		if ((d[1] & 0xf) != type)
1748			continue;
1749
1750		/*
1751		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1752		 * keep looking as one with more entropy might still show up.
1753		 */
1754		len = d[3];
1755		if (len != 8 && len != 12 && len != 16)
1756			continue;
1757		ret = len;
1758		memcpy(id, d + 4, len);
1759		if (len == 16)
1760			break;
1761	}
1762out_unlock:
1763	rcu_read_unlock();
1764	return ret;
1765}
1766
1767static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1768{
1769	switch (host_byte(result)) {
1770	case DID_TRANSPORT_MARGINAL:
1771	case DID_TRANSPORT_DISRUPTED:
1772	case DID_BUS_BUSY:
1773		return PR_STS_RETRY_PATH_FAILURE;
1774	case DID_NO_CONNECT:
1775		return PR_STS_PATH_FAILED;
1776	case DID_TRANSPORT_FAILFAST:
1777		return PR_STS_PATH_FAST_FAILED;
1778	}
1779
1780	switch (status_byte(result)) {
1781	case SAM_STAT_RESERVATION_CONFLICT:
1782		return PR_STS_RESERVATION_CONFLICT;
1783	case SAM_STAT_CHECK_CONDITION:
1784		if (!scsi_sense_valid(sshdr))
1785			return PR_STS_IOERR;
1786
1787		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1788		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1789			return -EINVAL;
1790
1791		fallthrough;
1792	default:
1793		return PR_STS_IOERR;
1794	}
1795}
1796
1797static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1798			    unsigned char *data, int data_len)
1799{
1800	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1801	struct scsi_device *sdev = sdkp->device;
1802	struct scsi_sense_hdr sshdr;
1803	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
 
 
 
 
 
 
 
 
 
 
 
 
 
1804	const struct scsi_exec_args exec_args = {
1805		.sshdr = &sshdr,
 
1806	};
1807	int result;
1808
1809	put_unaligned_be16(data_len, &cmd[7]);
1810
1811	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1812				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1813	if (scsi_status_is_check_condition(result) &&
1814	    scsi_sense_valid(&sshdr)) {
1815		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1816		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1817	}
1818
1819	if (result <= 0)
1820		return result;
1821
1822	return sd_scsi_to_pr_err(&sshdr, result);
1823}
1824
1825static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1826{
1827	int result, i, data_offset, num_copy_keys;
1828	u32 num_keys = keys_info->num_keys;
1829	int data_len = num_keys * 8 + 8;
1830	u8 *data;
1831
1832	data = kzalloc(data_len, GFP_KERNEL);
1833	if (!data)
1834		return -ENOMEM;
1835
1836	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1837	if (result)
1838		goto free_data;
1839
1840	keys_info->generation = get_unaligned_be32(&data[0]);
1841	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1842
1843	data_offset = 8;
1844	num_copy_keys = min(num_keys, keys_info->num_keys);
1845
1846	for (i = 0; i < num_copy_keys; i++) {
1847		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1848		data_offset += 8;
1849	}
1850
1851free_data:
1852	kfree(data);
1853	return result;
1854}
1855
1856static int sd_pr_read_reservation(struct block_device *bdev,
1857				  struct pr_held_reservation *rsv)
1858{
1859	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1860	struct scsi_device *sdev = sdkp->device;
1861	u8 data[24] = { };
1862	int result, len;
1863
1864	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1865	if (result)
1866		return result;
1867
1868	len = get_unaligned_be32(&data[4]);
1869	if (!len)
1870		return 0;
1871
1872	/* Make sure we have at least the key and type */
1873	if (len < 14) {
1874		sdev_printk(KERN_INFO, sdev,
1875			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
1876			    len);
1877		return -EINVAL;
1878	}
1879
1880	rsv->generation = get_unaligned_be32(&data[0]);
1881	rsv->key = get_unaligned_be64(&data[8]);
1882	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1883	return 0;
1884}
1885
1886static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1887			     u64 sa_key, enum scsi_pr_type type, u8 flags)
1888{
1889	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1890	struct scsi_device *sdev = sdkp->device;
1891	struct scsi_sense_hdr sshdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
1892	const struct scsi_exec_args exec_args = {
1893		.sshdr = &sshdr,
 
1894	};
1895	int result;
1896	u8 cmd[16] = { 0, };
1897	u8 data[24] = { 0, };
1898
1899	cmd[0] = PERSISTENT_RESERVE_OUT;
1900	cmd[1] = sa;
1901	cmd[2] = type;
1902	put_unaligned_be32(sizeof(data), &cmd[5]);
1903
1904	put_unaligned_be64(key, &data[0]);
1905	put_unaligned_be64(sa_key, &data[8]);
1906	data[20] = flags;
1907
1908	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1909				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1910				  &exec_args);
1911
1912	if (scsi_status_is_check_condition(result) &&
1913	    scsi_sense_valid(&sshdr)) {
1914		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1915		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1916	}
1917
1918	if (result <= 0)
1919		return result;
1920
1921	return sd_scsi_to_pr_err(&sshdr, result);
1922}
1923
1924static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1925		u32 flags)
1926{
1927	if (flags & ~PR_FL_IGNORE_KEY)
1928		return -EOPNOTSUPP;
1929	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1930			old_key, new_key, 0,
1931			(1 << 0) /* APTPL */);
1932}
1933
1934static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1935		u32 flags)
1936{
1937	if (flags)
1938		return -EOPNOTSUPP;
1939	return sd_pr_out_command(bdev, 0x01, key, 0,
1940				 block_pr_type_to_scsi(type), 0);
1941}
1942
1943static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1944{
1945	return sd_pr_out_command(bdev, 0x02, key, 0,
1946				 block_pr_type_to_scsi(type), 0);
1947}
1948
1949static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1950		enum pr_type type, bool abort)
1951{
1952	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1953				 block_pr_type_to_scsi(type), 0);
1954}
1955
1956static int sd_pr_clear(struct block_device *bdev, u64 key)
1957{
1958	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1959}
1960
1961static const struct pr_ops sd_pr_ops = {
1962	.pr_register	= sd_pr_register,
1963	.pr_reserve	= sd_pr_reserve,
1964	.pr_release	= sd_pr_release,
1965	.pr_preempt	= sd_pr_preempt,
1966	.pr_clear	= sd_pr_clear,
1967	.pr_read_keys	= sd_pr_read_keys,
1968	.pr_read_reservation = sd_pr_read_reservation,
1969};
1970
1971static void scsi_disk_free_disk(struct gendisk *disk)
1972{
1973	struct scsi_disk *sdkp = scsi_disk(disk);
1974
1975	put_device(&sdkp->disk_dev);
1976}
1977
1978static const struct block_device_operations sd_fops = {
1979	.owner			= THIS_MODULE,
1980	.open			= sd_open,
1981	.release		= sd_release,
1982	.ioctl			= sd_ioctl,
1983	.getgeo			= sd_getgeo,
1984	.compat_ioctl		= blkdev_compat_ptr_ioctl,
1985	.check_events		= sd_check_events,
1986	.unlock_native_capacity	= sd_unlock_native_capacity,
1987	.report_zones		= sd_zbc_report_zones,
1988	.get_unique_id		= sd_get_unique_id,
1989	.free_disk		= scsi_disk_free_disk,
1990	.pr_ops			= &sd_pr_ops,
1991};
1992
1993/**
1994 *	sd_eh_reset - reset error handling callback
1995 *	@scmd:		sd-issued command that has failed
1996 *
1997 *	This function is called by the SCSI midlayer before starting
1998 *	SCSI EH. When counting medium access failures we have to be
1999 *	careful to register it only only once per device and SCSI EH run;
2000 *	there might be several timed out commands which will cause the
2001 *	'max_medium_access_timeouts' counter to trigger after the first
2002 *	SCSI EH run already and set the device to offline.
2003 *	So this function resets the internal counter before starting SCSI EH.
2004 **/
2005static void sd_eh_reset(struct scsi_cmnd *scmd)
2006{
2007	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2008
2009	/* New SCSI EH run, reset gate variable */
2010	sdkp->ignore_medium_access_errors = false;
2011}
2012
2013/**
2014 *	sd_eh_action - error handling callback
2015 *	@scmd:		sd-issued command that has failed
2016 *	@eh_disp:	The recovery disposition suggested by the midlayer
2017 *
2018 *	This function is called by the SCSI midlayer upon completion of an
2019 *	error test command (currently TEST UNIT READY). The result of sending
2020 *	the eh command is passed in eh_disp.  We're looking for devices that
2021 *	fail medium access commands but are OK with non access commands like
2022 *	test unit ready (so wrongly see the device as having a successful
2023 *	recovery)
2024 **/
2025static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2026{
2027	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2028	struct scsi_device *sdev = scmd->device;
2029
2030	if (!scsi_device_online(sdev) ||
2031	    !scsi_medium_access_command(scmd) ||
2032	    host_byte(scmd->result) != DID_TIME_OUT ||
2033	    eh_disp != SUCCESS)
2034		return eh_disp;
2035
2036	/*
2037	 * The device has timed out executing a medium access command.
2038	 * However, the TEST UNIT READY command sent during error
2039	 * handling completed successfully. Either the device is in the
2040	 * process of recovering or has it suffered an internal failure
2041	 * that prevents access to the storage medium.
2042	 */
2043	if (!sdkp->ignore_medium_access_errors) {
2044		sdkp->medium_access_timed_out++;
2045		sdkp->ignore_medium_access_errors = true;
2046	}
2047
2048	/*
2049	 * If the device keeps failing read/write commands but TEST UNIT
2050	 * READY always completes successfully we assume that medium
2051	 * access is no longer possible and take the device offline.
2052	 */
2053	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2054		scmd_printk(KERN_ERR, scmd,
2055			    "Medium access timeout failure. Offlining disk!\n");
2056		mutex_lock(&sdev->state_mutex);
2057		scsi_device_set_state(sdev, SDEV_OFFLINE);
2058		mutex_unlock(&sdev->state_mutex);
2059
2060		return SUCCESS;
2061	}
2062
2063	return eh_disp;
2064}
2065
2066static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2067{
2068	struct request *req = scsi_cmd_to_rq(scmd);
2069	struct scsi_device *sdev = scmd->device;
2070	unsigned int transferred, good_bytes;
2071	u64 start_lba, end_lba, bad_lba;
2072
2073	/*
2074	 * Some commands have a payload smaller than the device logical
2075	 * block size (e.g. INQUIRY on a 4K disk).
2076	 */
2077	if (scsi_bufflen(scmd) <= sdev->sector_size)
2078		return 0;
2079
2080	/* Check if we have a 'bad_lba' information */
2081	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2082				     SCSI_SENSE_BUFFERSIZE,
2083				     &bad_lba))
2084		return 0;
2085
2086	/*
2087	 * If the bad lba was reported incorrectly, we have no idea where
2088	 * the error is.
2089	 */
2090	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2091	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2092	if (bad_lba < start_lba || bad_lba >= end_lba)
2093		return 0;
2094
2095	/*
2096	 * resid is optional but mostly filled in.  When it's unused,
2097	 * its value is zero, so we assume the whole buffer transferred
2098	 */
2099	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2100
2101	/* This computation should always be done in terms of the
2102	 * resolution of the device's medium.
2103	 */
2104	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2105
2106	return min(good_bytes, transferred);
2107}
2108
2109/**
2110 *	sd_done - bottom half handler: called when the lower level
2111 *	driver has completed (successfully or otherwise) a scsi command.
2112 *	@SCpnt: mid-level's per command structure.
2113 *
2114 *	Note: potentially run from within an ISR. Must not block.
2115 **/
2116static int sd_done(struct scsi_cmnd *SCpnt)
2117{
2118	int result = SCpnt->result;
2119	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2120	unsigned int sector_size = SCpnt->device->sector_size;
2121	unsigned int resid;
2122	struct scsi_sense_hdr sshdr;
2123	struct request *req = scsi_cmd_to_rq(SCpnt);
2124	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2125	int sense_valid = 0;
2126	int sense_deferred = 0;
2127
2128	switch (req_op(req)) {
2129	case REQ_OP_DISCARD:
2130	case REQ_OP_WRITE_ZEROES:
2131	case REQ_OP_ZONE_RESET:
2132	case REQ_OP_ZONE_RESET_ALL:
2133	case REQ_OP_ZONE_OPEN:
2134	case REQ_OP_ZONE_CLOSE:
2135	case REQ_OP_ZONE_FINISH:
2136		if (!result) {
2137			good_bytes = blk_rq_bytes(req);
2138			scsi_set_resid(SCpnt, 0);
2139		} else {
2140			good_bytes = 0;
2141			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2142		}
2143		break;
2144	default:
2145		/*
2146		 * In case of bogus fw or device, we could end up having
2147		 * an unaligned partial completion. Check this here and force
2148		 * alignment.
2149		 */
2150		resid = scsi_get_resid(SCpnt);
2151		if (resid & (sector_size - 1)) {
2152			sd_printk(KERN_INFO, sdkp,
2153				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2154				resid, sector_size);
2155			scsi_print_command(SCpnt);
2156			resid = min(scsi_bufflen(SCpnt),
2157				    round_up(resid, sector_size));
2158			scsi_set_resid(SCpnt, resid);
2159		}
2160	}
2161
2162	if (result) {
2163		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2164		if (sense_valid)
2165			sense_deferred = scsi_sense_is_deferred(&sshdr);
2166	}
2167	sdkp->medium_access_timed_out = 0;
2168
2169	if (!scsi_status_is_check_condition(result) &&
2170	    (!sense_valid || sense_deferred))
2171		goto out;
2172
2173	switch (sshdr.sense_key) {
2174	case HARDWARE_ERROR:
2175	case MEDIUM_ERROR:
2176		good_bytes = sd_completed_bytes(SCpnt);
2177		break;
2178	case RECOVERED_ERROR:
2179		good_bytes = scsi_bufflen(SCpnt);
2180		break;
2181	case NO_SENSE:
2182		/* This indicates a false check condition, so ignore it.  An
2183		 * unknown amount of data was transferred so treat it as an
2184		 * error.
2185		 */
2186		SCpnt->result = 0;
2187		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2188		break;
2189	case ABORTED_COMMAND:
2190		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2191			good_bytes = sd_completed_bytes(SCpnt);
2192		break;
2193	case ILLEGAL_REQUEST:
2194		switch (sshdr.asc) {
2195		case 0x10:	/* DIX: Host detected corruption */
2196			good_bytes = sd_completed_bytes(SCpnt);
2197			break;
2198		case 0x20:	/* INVALID COMMAND OPCODE */
2199		case 0x24:	/* INVALID FIELD IN CDB */
2200			switch (SCpnt->cmnd[0]) {
2201			case UNMAP:
2202				sd_config_discard(sdkp, SD_LBP_DISABLE);
2203				break;
2204			case WRITE_SAME_16:
2205			case WRITE_SAME:
2206				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2207					sd_config_discard(sdkp, SD_LBP_DISABLE);
2208				} else {
2209					sdkp->device->no_write_same = 1;
2210					sd_config_write_same(sdkp);
2211					req->rq_flags |= RQF_QUIET;
2212				}
2213				break;
2214			}
2215		}
2216		break;
2217	default:
2218		break;
2219	}
2220
2221 out:
2222	if (sd_is_zoned(sdkp))
2223		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2224
2225	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2226					   "sd_done: completed %d of %d bytes\n",
2227					   good_bytes, scsi_bufflen(SCpnt)));
2228
2229	return good_bytes;
2230}
2231
2232/*
2233 * spinup disk - called only in sd_revalidate_disk()
2234 */
2235static void
2236sd_spinup_disk(struct scsi_disk *sdkp)
2237{
2238	unsigned char cmd[10];
2239	unsigned long spintime_expire = 0;
2240	int retries, spintime;
2241	unsigned int the_result;
2242	struct scsi_sense_hdr sshdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2243	const struct scsi_exec_args exec_args = {
2244		.sshdr = &sshdr,
 
2245	};
2246	int sense_valid = 0;
2247
2248	spintime = 0;
2249
2250	/* Spin up drives, as required.  Only do this at boot time */
2251	/* Spinup needs to be done for module loads too. */
2252	do {
2253		retries = 0;
2254
2255		do {
2256			bool media_was_present = sdkp->media_present;
2257
2258			cmd[0] = TEST_UNIT_READY;
2259			memset((void *) &cmd[1], 0, 9);
 
2260
2261			the_result = scsi_execute_cmd(sdkp->device, cmd,
2262						      REQ_OP_DRV_IN, NULL, 0,
2263						      SD_TIMEOUT,
2264						      sdkp->max_retries,
2265						      &exec_args);
2266
2267			if (the_result > 0) {
2268				/*
2269				 * If the drive has indicated to us that it
2270				 * doesn't have any media in it, don't bother
2271				 * with any more polling.
2272				 */
2273				if (media_not_present(sdkp, &sshdr)) {
2274					if (media_was_present)
2275						sd_printk(KERN_NOTICE, sdkp,
2276							  "Media removed, stopped polling\n");
2277					return;
2278				}
2279
2280				sense_valid = scsi_sense_valid(&sshdr);
 
 
 
 
 
 
 
 
 
 
2281			}
2282			retries++;
2283		} while (retries < 3 &&
2284			 (!scsi_status_is_good(the_result) ||
2285			  (scsi_status_is_check_condition(the_result) &&
2286			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2287
2288		if (!scsi_status_is_check_condition(the_result)) {
2289			/* no sense, TUR either succeeded or failed
2290			 * with a status error */
2291			if(!spintime && !scsi_status_is_good(the_result)) {
2292				sd_print_result(sdkp, "Test Unit Ready failed",
2293						the_result);
2294			}
2295			break;
2296		}
2297
2298		/*
2299		 * The device does not want the automatic start to be issued.
2300		 */
2301		if (sdkp->device->no_start_on_add)
2302			break;
2303
2304		if (sense_valid && sshdr.sense_key == NOT_READY) {
2305			if (sshdr.asc == 4 && sshdr.ascq == 3)
2306				break;	/* manual intervention required */
2307			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2308				break;	/* standby */
2309			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2310				break;	/* unavailable */
2311			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2312				break;	/* sanitize in progress */
2313			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2314				break;	/* depopulation in progress */
2315			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2316				break;	/* depopulation restoration in progress */
2317			/*
2318			 * Issue command to spin up drive when not ready
2319			 */
2320			if (!spintime) {
 
 
 
 
 
 
 
 
2321				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2322				cmd[0] = START_STOP;
2323				cmd[1] = 1;	/* Return immediately */
2324				memset((void *) &cmd[2], 0, 8);
2325				cmd[4] = 1;	/* Start spin cycle */
2326				if (sdkp->device->start_stop_pwr_cond)
2327					cmd[4] |= 1 << 4;
2328				scsi_execute_cmd(sdkp->device, cmd,
2329						 REQ_OP_DRV_IN, NULL, 0,
2330						 SD_TIMEOUT, sdkp->max_retries,
2331						 &exec_args);
2332				spintime_expire = jiffies + 100 * HZ;
2333				spintime = 1;
2334			}
2335			/* Wait 1 second for next try */
2336			msleep(1000);
2337			printk(KERN_CONT ".");
2338
2339		/*
2340		 * Wait for USB flash devices with slow firmware.
2341		 * Yes, this sense key/ASC combination shouldn't
2342		 * occur here.  It's characteristic of these devices.
2343		 */
2344		} else if (sense_valid &&
2345				sshdr.sense_key == UNIT_ATTENTION &&
2346				sshdr.asc == 0x28) {
2347			if (!spintime) {
2348				spintime_expire = jiffies + 5 * HZ;
2349				spintime = 1;
2350			}
2351			/* Wait 1 second for next try */
2352			msleep(1000);
2353		} else {
2354			/* we don't understand the sense code, so it's
2355			 * probably pointless to loop */
2356			if(!spintime) {
2357				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2358				sd_print_sense_hdr(sdkp, &sshdr);
2359			}
2360			break;
2361		}
2362				
2363	} while (spintime && time_before_eq(jiffies, spintime_expire));
2364
2365	if (spintime) {
2366		if (scsi_status_is_good(the_result))
2367			printk(KERN_CONT "ready\n");
2368		else
2369			printk(KERN_CONT "not responding...\n");
2370	}
2371}
2372
2373/*
2374 * Determine whether disk supports Data Integrity Field.
2375 */
2376static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2377{
2378	struct scsi_device *sdp = sdkp->device;
2379	u8 type;
2380
2381	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2382		sdkp->protection_type = 0;
2383		return 0;
2384	}
2385
2386	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2387
2388	if (type > T10_PI_TYPE3_PROTECTION) {
2389		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2390			  " protection type %u. Disabling disk!\n",
2391			  type);
2392		sdkp->protection_type = 0;
2393		return -ENODEV;
2394	}
2395
2396	sdkp->protection_type = type;
2397
2398	return 0;
2399}
2400
2401static void sd_config_protection(struct scsi_disk *sdkp)
 
2402{
2403	struct scsi_device *sdp = sdkp->device;
2404
2405	sd_dif_config_host(sdkp);
 
2406
2407	if (!sdkp->protection_type)
2408		return;
2409
2410	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2411		sd_first_printk(KERN_NOTICE, sdkp,
2412				"Disabling DIF Type %u protection\n",
2413				sdkp->protection_type);
2414		sdkp->protection_type = 0;
2415	}
2416
2417	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2418			sdkp->protection_type);
2419}
2420
2421static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2422			struct scsi_sense_hdr *sshdr, int sense_valid,
2423			int the_result)
2424{
2425	if (sense_valid)
2426		sd_print_sense_hdr(sdkp, sshdr);
2427	else
2428		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2429
2430	/*
2431	 * Set dirty bit for removable devices if not ready -
2432	 * sometimes drives will not report this properly.
2433	 */
2434	if (sdp->removable &&
2435	    sense_valid && sshdr->sense_key == NOT_READY)
2436		set_media_not_present(sdkp);
2437
2438	/*
2439	 * We used to set media_present to 0 here to indicate no media
2440	 * in the drive, but some drives fail read capacity even with
2441	 * media present, so we can't do that.
2442	 */
2443	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2444}
2445
2446#define RC16_LEN 32
2447#if RC16_LEN > SD_BUF_SIZE
2448#error RC16_LEN must not be more than SD_BUF_SIZE
2449#endif
2450
2451#define READ_CAPACITY_RETRIES_ON_RESET	10
2452
2453static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2454						unsigned char *buffer)
2455{
2456	unsigned char cmd[16];
2457	struct scsi_sense_hdr sshdr;
2458	const struct scsi_exec_args exec_args = {
2459		.sshdr = &sshdr,
2460	};
2461	int sense_valid = 0;
2462	int the_result;
2463	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2464	unsigned int alignment;
2465	unsigned long long lba;
2466	unsigned sector_size;
2467
2468	if (sdp->no_read_capacity_16)
2469		return -EINVAL;
2470
2471	do {
2472		memset(cmd, 0, 16);
2473		cmd[0] = SERVICE_ACTION_IN_16;
2474		cmd[1] = SAI_READ_CAPACITY_16;
2475		cmd[13] = RC16_LEN;
2476		memset(buffer, 0, RC16_LEN);
2477
2478		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2479					      buffer, RC16_LEN, SD_TIMEOUT,
2480					      sdkp->max_retries, &exec_args);
2481		if (the_result > 0) {
2482			if (media_not_present(sdkp, &sshdr))
2483				return -ENODEV;
2484
2485			sense_valid = scsi_sense_valid(&sshdr);
2486			if (sense_valid &&
2487			    sshdr.sense_key == ILLEGAL_REQUEST &&
2488			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2489			    sshdr.ascq == 0x00)
2490				/* Invalid Command Operation Code or
2491				 * Invalid Field in CDB, just retry
2492				 * silently with RC10 */
2493				return -EINVAL;
2494			if (sense_valid &&
2495			    sshdr.sense_key == UNIT_ATTENTION &&
2496			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2497				/* Device reset might occur several times,
2498				 * give it one more chance */
2499				if (--reset_retries > 0)
2500					continue;
2501		}
2502		retries--;
2503
2504	} while (the_result && retries);
2505
2506	if (the_result) {
2507		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2508		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2509		return -EINVAL;
2510	}
2511
2512	sector_size = get_unaligned_be32(&buffer[8]);
2513	lba = get_unaligned_be64(&buffer[0]);
2514
2515	if (sd_read_protection_type(sdkp, buffer) < 0) {
2516		sdkp->capacity = 0;
2517		return -ENODEV;
2518	}
2519
2520	/* Logical blocks per physical block exponent */
2521	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2522
2523	/* RC basis */
2524	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2525
2526	/* Lowest aligned logical block */
2527	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2528	blk_queue_alignment_offset(sdp->request_queue, alignment);
2529	if (alignment && sdkp->first_scan)
2530		sd_printk(KERN_NOTICE, sdkp,
2531			  "physical block alignment offset: %u\n", alignment);
2532
2533	if (buffer[14] & 0x80) { /* LBPME */
2534		sdkp->lbpme = 1;
2535
2536		if (buffer[14] & 0x40) /* LBPRZ */
2537			sdkp->lbprz = 1;
2538
2539		sd_config_discard(sdkp, SD_LBP_WS16);
2540	}
2541
2542	sdkp->capacity = lba + 1;
2543	return sector_size;
2544}
2545
2546static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2547						unsigned char *buffer)
2548{
2549	unsigned char cmd[16];
2550	struct scsi_sense_hdr sshdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2551	const struct scsi_exec_args exec_args = {
2552		.sshdr = &sshdr,
 
2553	};
2554	int sense_valid = 0;
2555	int the_result;
2556	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2557	sector_t lba;
2558	unsigned sector_size;
2559
2560	do {
2561		cmd[0] = READ_CAPACITY;
2562		memset(&cmd[1], 0, 9);
2563		memset(buffer, 0, 8);
2564
2565		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2566					      8, SD_TIMEOUT, sdkp->max_retries,
2567					      &exec_args);
2568
2569		if (media_not_present(sdkp, &sshdr))
2570			return -ENODEV;
 
2571
2572		if (the_result > 0) {
2573			sense_valid = scsi_sense_valid(&sshdr);
2574			if (sense_valid &&
2575			    sshdr.sense_key == UNIT_ATTENTION &&
2576			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2577				/* Device reset might occur several times,
2578				 * give it one more chance */
2579				if (--reset_retries > 0)
2580					continue;
2581		}
2582		retries--;
2583
2584	} while (the_result && retries);
 
 
2585
2586	if (the_result) {
2587		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2588		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2589		return -EINVAL;
2590	}
2591
2592	sector_size = get_unaligned_be32(&buffer[4]);
2593	lba = get_unaligned_be32(&buffer[0]);
2594
2595	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2596		/* Some buggy (usb cardreader) devices return an lba of
2597		   0xffffffff when the want to report a size of 0 (with
2598		   which they really mean no media is present) */
2599		sdkp->capacity = 0;
2600		sdkp->physical_block_size = sector_size;
2601		return sector_size;
2602	}
2603
2604	sdkp->capacity = lba + 1;
2605	sdkp->physical_block_size = sector_size;
2606	return sector_size;
2607}
2608
2609static int sd_try_rc16_first(struct scsi_device *sdp)
2610{
2611	if (sdp->host->max_cmd_len < 16)
2612		return 0;
2613	if (sdp->try_rc_10_first)
2614		return 0;
2615	if (sdp->scsi_level > SCSI_SPC_2)
2616		return 1;
2617	if (scsi_device_protection(sdp))
2618		return 1;
2619	return 0;
2620}
2621
2622/*
2623 * read disk capacity
2624 */
2625static void
2626sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
 
2627{
2628	int sector_size;
2629	struct scsi_device *sdp = sdkp->device;
2630
2631	if (sd_try_rc16_first(sdp)) {
2632		sector_size = read_capacity_16(sdkp, sdp, buffer);
2633		if (sector_size == -EOVERFLOW)
2634			goto got_data;
2635		if (sector_size == -ENODEV)
2636			return;
2637		if (sector_size < 0)
2638			sector_size = read_capacity_10(sdkp, sdp, buffer);
2639		if (sector_size < 0)
2640			return;
2641	} else {
2642		sector_size = read_capacity_10(sdkp, sdp, buffer);
2643		if (sector_size == -EOVERFLOW)
2644			goto got_data;
2645		if (sector_size < 0)
2646			return;
2647		if ((sizeof(sdkp->capacity) > 4) &&
2648		    (sdkp->capacity > 0xffffffffULL)) {
2649			int old_sector_size = sector_size;
2650			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2651					"Trying to use READ CAPACITY(16).\n");
2652			sector_size = read_capacity_16(sdkp, sdp, buffer);
2653			if (sector_size < 0) {
2654				sd_printk(KERN_NOTICE, sdkp,
2655					"Using 0xffffffff as device size\n");
2656				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2657				sector_size = old_sector_size;
2658				goto got_data;
2659			}
2660			/* Remember that READ CAPACITY(16) succeeded */
2661			sdp->try_rc_10_first = 0;
2662		}
2663	}
2664
2665	/* Some devices are known to return the total number of blocks,
2666	 * not the highest block number.  Some devices have versions
2667	 * which do this and others which do not.  Some devices we might
2668	 * suspect of doing this but we don't know for certain.
2669	 *
2670	 * If we know the reported capacity is wrong, decrement it.  If
2671	 * we can only guess, then assume the number of blocks is even
2672	 * (usually true but not always) and err on the side of lowering
2673	 * the capacity.
2674	 */
2675	if (sdp->fix_capacity ||
2676	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2677		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2678				"from its reported value: %llu\n",
2679				(unsigned long long) sdkp->capacity);
2680		--sdkp->capacity;
2681	}
2682
2683got_data:
2684	if (sector_size == 0) {
2685		sector_size = 512;
2686		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2687			  "assuming 512.\n");
2688	}
2689
2690	if (sector_size != 512 &&
2691	    sector_size != 1024 &&
2692	    sector_size != 2048 &&
2693	    sector_size != 4096) {
2694		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2695			  sector_size);
2696		/*
2697		 * The user might want to re-format the drive with
2698		 * a supported sectorsize.  Once this happens, it
2699		 * would be relatively trivial to set the thing up.
2700		 * For this reason, we leave the thing in the table.
2701		 */
2702		sdkp->capacity = 0;
2703		/*
2704		 * set a bogus sector size so the normal read/write
2705		 * logic in the block layer will eventually refuse any
2706		 * request on this device without tripping over power
2707		 * of two sector size assumptions
2708		 */
2709		sector_size = 512;
2710	}
2711	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2712	blk_queue_physical_block_size(sdp->request_queue,
2713				      sdkp->physical_block_size);
2714	sdkp->device->sector_size = sector_size;
2715
2716	if (sdkp->capacity > 0xffffffff)
2717		sdp->use_16_for_rw = 1;
2718
2719}
2720
2721/*
2722 * Print disk capacity
2723 */
2724static void
2725sd_print_capacity(struct scsi_disk *sdkp,
2726		  sector_t old_capacity)
2727{
2728	int sector_size = sdkp->device->sector_size;
2729	char cap_str_2[10], cap_str_10[10];
2730
2731	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2732		return;
2733
2734	string_get_size(sdkp->capacity, sector_size,
2735			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2736	string_get_size(sdkp->capacity, sector_size,
2737			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2738
2739	sd_printk(KERN_NOTICE, sdkp,
2740		  "%llu %d-byte logical blocks: (%s/%s)\n",
2741		  (unsigned long long)sdkp->capacity,
2742		  sector_size, cap_str_10, cap_str_2);
2743
2744	if (sdkp->physical_block_size != sector_size)
2745		sd_printk(KERN_NOTICE, sdkp,
2746			  "%u-byte physical blocks\n",
2747			  sdkp->physical_block_size);
2748}
2749
2750/* called with buffer of length 512 */
2751static inline int
2752sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2753		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2754		 struct scsi_sense_hdr *sshdr)
2755{
2756	/*
2757	 * If we must use MODE SENSE(10), make sure that the buffer length
2758	 * is at least 8 bytes so that the mode sense header fits.
2759	 */
2760	if (sdkp->device->use_10_for_ms && len < 8)
2761		len = 8;
2762
2763	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2764			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2765}
2766
2767/*
2768 * read write protect setting, if possible - called only in sd_revalidate_disk()
2769 * called with buffer of length SD_BUF_SIZE
2770 */
2771static void
2772sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2773{
2774	int res;
2775	struct scsi_device *sdp = sdkp->device;
2776	struct scsi_mode_data data;
2777	int old_wp = sdkp->write_prot;
2778
2779	set_disk_ro(sdkp->disk, 0);
2780	if (sdp->skip_ms_page_3f) {
2781		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2782		return;
2783	}
2784
2785	if (sdp->use_192_bytes_for_3f) {
2786		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2787	} else {
2788		/*
2789		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2790		 * We have to start carefully: some devices hang if we ask
2791		 * for more than is available.
2792		 */
2793		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2794
2795		/*
2796		 * Second attempt: ask for page 0 When only page 0 is
2797		 * implemented, a request for page 3F may return Sense Key
2798		 * 5: Illegal Request, Sense Code 24: Invalid field in
2799		 * CDB.
2800		 */
2801		if (res < 0)
2802			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2803
2804		/*
2805		 * Third attempt: ask 255 bytes, as we did earlier.
2806		 */
2807		if (res < 0)
2808			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2809					       &data, NULL);
2810	}
2811
2812	if (res < 0) {
2813		sd_first_printk(KERN_WARNING, sdkp,
2814			  "Test WP failed, assume Write Enabled\n");
2815	} else {
2816		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2817		set_disk_ro(sdkp->disk, sdkp->write_prot);
2818		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2819			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2820				  sdkp->write_prot ? "on" : "off");
2821			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2822		}
2823	}
2824}
2825
2826/*
2827 * sd_read_cache_type - called only from sd_revalidate_disk()
2828 * called with buffer of length SD_BUF_SIZE
2829 */
2830static void
2831sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2832{
2833	int len = 0, res;
2834	struct scsi_device *sdp = sdkp->device;
2835
2836	int dbd;
2837	int modepage;
2838	int first_len;
2839	struct scsi_mode_data data;
2840	struct scsi_sense_hdr sshdr;
2841	int old_wce = sdkp->WCE;
2842	int old_rcd = sdkp->RCD;
2843	int old_dpofua = sdkp->DPOFUA;
2844
2845
2846	if (sdkp->cache_override)
2847		return;
2848
2849	first_len = 4;
2850	if (sdp->skip_ms_page_8) {
2851		if (sdp->type == TYPE_RBC)
2852			goto defaults;
2853		else {
2854			if (sdp->skip_ms_page_3f)
2855				goto defaults;
2856			modepage = 0x3F;
2857			if (sdp->use_192_bytes_for_3f)
2858				first_len = 192;
2859			dbd = 0;
2860		}
2861	} else if (sdp->type == TYPE_RBC) {
2862		modepage = 6;
2863		dbd = 8;
2864	} else {
2865		modepage = 8;
2866		dbd = 0;
2867	}
2868
2869	/* cautiously ask */
2870	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2871			&data, &sshdr);
2872
2873	if (res < 0)
2874		goto bad_sense;
2875
2876	if (!data.header_length) {
2877		modepage = 6;
2878		first_len = 0;
2879		sd_first_printk(KERN_ERR, sdkp,
2880				"Missing header in MODE_SENSE response\n");
2881	}
2882
2883	/* that went OK, now ask for the proper length */
2884	len = data.length;
2885
2886	/*
2887	 * We're only interested in the first three bytes, actually.
2888	 * But the data cache page is defined for the first 20.
2889	 */
2890	if (len < 3)
2891		goto bad_sense;
2892	else if (len > SD_BUF_SIZE) {
2893		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2894			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2895		len = SD_BUF_SIZE;
2896	}
2897	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2898		len = 192;
2899
2900	/* Get the data */
2901	if (len > first_len)
2902		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2903				&data, &sshdr);
2904
2905	if (!res) {
2906		int offset = data.header_length + data.block_descriptor_length;
2907
2908		while (offset < len) {
2909			u8 page_code = buffer[offset] & 0x3F;
2910			u8 spf       = buffer[offset] & 0x40;
2911
2912			if (page_code == 8 || page_code == 6) {
2913				/* We're interested only in the first 3 bytes.
2914				 */
2915				if (len - offset <= 2) {
2916					sd_first_printk(KERN_ERR, sdkp,
2917						"Incomplete mode parameter "
2918							"data\n");
2919					goto defaults;
2920				} else {
2921					modepage = page_code;
2922					goto Page_found;
2923				}
2924			} else {
2925				/* Go to the next page */
2926				if (spf && len - offset > 3)
2927					offset += 4 + (buffer[offset+2] << 8) +
2928						buffer[offset+3];
2929				else if (!spf && len - offset > 1)
2930					offset += 2 + buffer[offset+1];
2931				else {
2932					sd_first_printk(KERN_ERR, sdkp,
2933							"Incomplete mode "
2934							"parameter data\n");
2935					goto defaults;
2936				}
2937			}
2938		}
2939
2940		sd_first_printk(KERN_WARNING, sdkp,
2941				"No Caching mode page found\n");
2942		goto defaults;
2943
2944	Page_found:
2945		if (modepage == 8) {
2946			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2947			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2948		} else {
2949			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2950			sdkp->RCD = 0;
2951		}
2952
2953		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2954		if (sdp->broken_fua) {
2955			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2956			sdkp->DPOFUA = 0;
2957		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2958			   !sdkp->device->use_16_for_rw) {
2959			sd_first_printk(KERN_NOTICE, sdkp,
2960				  "Uses READ/WRITE(6), disabling FUA\n");
2961			sdkp->DPOFUA = 0;
2962		}
2963
2964		/* No cache flush allowed for write protected devices */
2965		if (sdkp->WCE && sdkp->write_prot)
2966			sdkp->WCE = 0;
2967
2968		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2969		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2970			sd_printk(KERN_NOTICE, sdkp,
2971				  "Write cache: %s, read cache: %s, %s\n",
2972				  sdkp->WCE ? "enabled" : "disabled",
2973				  sdkp->RCD ? "disabled" : "enabled",
2974				  sdkp->DPOFUA ? "supports DPO and FUA"
2975				  : "doesn't support DPO or FUA");
2976
2977		return;
2978	}
2979
2980bad_sense:
2981	if (res == -EIO && scsi_sense_valid(&sshdr) &&
2982	    sshdr.sense_key == ILLEGAL_REQUEST &&
2983	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2984		/* Invalid field in CDB */
2985		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2986	else
2987		sd_first_printk(KERN_ERR, sdkp,
2988				"Asking for cache data failed\n");
2989
2990defaults:
2991	if (sdp->wce_default_on) {
2992		sd_first_printk(KERN_NOTICE, sdkp,
2993				"Assuming drive cache: write back\n");
2994		sdkp->WCE = 1;
2995	} else {
2996		sd_first_printk(KERN_WARNING, sdkp,
2997				"Assuming drive cache: write through\n");
2998		sdkp->WCE = 0;
2999	}
3000	sdkp->RCD = 0;
3001	sdkp->DPOFUA = 0;
3002}
3003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3004/*
3005 * The ATO bit indicates whether the DIF application tag is available
3006 * for use by the operating system.
3007 */
3008static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3009{
3010	int res, offset;
3011	struct scsi_device *sdp = sdkp->device;
3012	struct scsi_mode_data data;
3013	struct scsi_sense_hdr sshdr;
3014
3015	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3016		return;
3017
3018	if (sdkp->protection_type == 0)
3019		return;
3020
3021	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3022			      sdkp->max_retries, &data, &sshdr);
3023
3024	if (res < 0 || !data.header_length ||
3025	    data.length < 6) {
3026		sd_first_printk(KERN_WARNING, sdkp,
3027			  "getting Control mode page failed, assume no ATO\n");
3028
3029		if (res == -EIO && scsi_sense_valid(&sshdr))
3030			sd_print_sense_hdr(sdkp, &sshdr);
3031
3032		return;
3033	}
3034
3035	offset = data.header_length + data.block_descriptor_length;
3036
3037	if ((buffer[offset] & 0x3f) != 0x0a) {
3038		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3039		return;
3040	}
3041
3042	if ((buffer[offset + 5] & 0x80) == 0)
3043		return;
3044
3045	sdkp->ATO = 1;
3046
3047	return;
3048}
3049
3050/**
3051 * sd_read_block_limits - Query disk device for preferred I/O sizes.
3052 * @sdkp: disk to query
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3053 */
3054static void sd_read_block_limits(struct scsi_disk *sdkp)
 
3055{
3056	struct scsi_vpd *vpd;
3057
3058	rcu_read_lock();
3059
3060	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3061	if (!vpd || vpd->len < 16)
3062		goto out;
3063
3064	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3065	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3066	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3067
3068	if (vpd->len >= 64) {
3069		unsigned int lba_count, desc_count;
3070
3071		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3072
3073		if (!sdkp->lbpme)
3074			goto out;
3075
3076		lba_count = get_unaligned_be32(&vpd->data[20]);
3077		desc_count = get_unaligned_be32(&vpd->data[24]);
3078
3079		if (lba_count && desc_count)
3080			sdkp->max_unmap_blocks = lba_count;
3081
3082		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3083
3084		if (vpd->data[32] & 0x80)
3085			sdkp->unmap_alignment =
3086				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3087
3088		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
 
 
 
 
 
3089
3090			if (sdkp->max_unmap_blocks)
3091				sd_config_discard(sdkp, SD_LBP_UNMAP);
3092			else
3093				sd_config_discard(sdkp, SD_LBP_WS16);
3094
3095		} else {	/* LBP VPD page tells us what to use */
3096			if (sdkp->lbpu && sdkp->max_unmap_blocks)
3097				sd_config_discard(sdkp, SD_LBP_UNMAP);
3098			else if (sdkp->lbpws)
3099				sd_config_discard(sdkp, SD_LBP_WS16);
3100			else if (sdkp->lbpws10)
3101				sd_config_discard(sdkp, SD_LBP_WS10);
3102			else
3103				sd_config_discard(sdkp, SD_LBP_DISABLE);
3104		}
3105	}
3106
3107 out:
3108	rcu_read_unlock();
3109}
3110
3111/**
3112 * sd_read_block_characteristics - Query block dev. characteristics
3113 * @sdkp: disk to query
3114 */
3115static void sd_read_block_characteristics(struct scsi_disk *sdkp)
 
 
 
 
 
 
 
 
 
 
3116{
3117	struct request_queue *q = sdkp->disk->queue;
3118	struct scsi_vpd *vpd;
3119	u16 rot;
3120
3121	rcu_read_lock();
3122	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3123
3124	if (!vpd || vpd->len < 8) {
3125		rcu_read_unlock();
3126	        return;
3127	}
3128
3129	rot = get_unaligned_be16(&vpd->data[4]);
3130	sdkp->zoned = (vpd->data[8] >> 4) & 3;
3131	rcu_read_unlock();
3132
3133	if (rot == 1) {
3134		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3135		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3136	}
3137
3138
3139#ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */
3140	if (sdkp->device->type == TYPE_ZBC) {
3141		/*
3142		 * Host-managed.
3143		 */
3144		disk_set_zoned(sdkp->disk);
3145
3146		/*
3147		 * Per ZBC and ZAC specifications, writes in sequential write
3148		 * required zones of host-managed devices must be aligned to
3149		 * the device physical block size.
3150		 */
3151		blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3152	} else {
3153		/*
3154		 * Host-aware devices are treated as conventional.
3155		 */
3156		WARN_ON_ONCE(blk_queue_is_zoned(q));
3157	}
3158#endif /* CONFIG_BLK_DEV_ZONED */
3159
3160	if (!sdkp->first_scan)
3161		return;
3162
3163	if (blk_queue_is_zoned(q))
3164		sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3165	else if (sdkp->zoned == 1)
3166		sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3167	else if (sdkp->zoned == 2)
3168		sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3169}
3170
3171/**
3172 * sd_read_block_provisioning - Query provisioning VPD page
3173 * @sdkp: disk to query
3174 */
3175static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3176{
3177	struct scsi_vpd *vpd;
3178
3179	if (sdkp->lbpme == 0)
3180		return;
3181
3182	rcu_read_lock();
3183	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3184
3185	if (!vpd || vpd->len < 8) {
3186		rcu_read_unlock();
3187		return;
3188	}
3189
3190	sdkp->lbpvpd	= 1;
3191	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3192	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3193	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3194	rcu_read_unlock();
3195}
3196
3197static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3198{
3199	struct scsi_device *sdev = sdkp->device;
3200
3201	if (sdev->host->no_write_same) {
3202		sdev->no_write_same = 1;
3203
3204		return;
3205	}
3206
3207	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3208		struct scsi_vpd *vpd;
3209
3210		sdev->no_report_opcodes = 1;
3211
3212		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3213		 * CODES is unsupported and the device has an ATA
3214		 * Information VPD page (SAT).
3215		 */
3216		rcu_read_lock();
3217		vpd = rcu_dereference(sdev->vpd_pg89);
3218		if (vpd)
3219			sdev->no_write_same = 1;
3220		rcu_read_unlock();
3221	}
3222
3223	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3224		sdkp->ws16 = 1;
3225
3226	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3227		sdkp->ws10 = 1;
3228}
3229
3230static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3231{
3232	struct scsi_device *sdev = sdkp->device;
3233
3234	if (!sdev->security_supported)
3235		return;
3236
3237	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3238			SECURITY_PROTOCOL_IN, 0) == 1 &&
3239	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3240			SECURITY_PROTOCOL_OUT, 0) == 1)
3241		sdkp->security = 1;
3242}
3243
3244static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3245{
3246	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3247}
3248
3249/**
3250 * sd_read_cpr - Query concurrent positioning ranges
3251 * @sdkp:	disk to query
3252 */
3253static void sd_read_cpr(struct scsi_disk *sdkp)
3254{
3255	struct blk_independent_access_ranges *iars = NULL;
3256	unsigned char *buffer = NULL;
3257	unsigned int nr_cpr = 0;
3258	int i, vpd_len, buf_len = SD_BUF_SIZE;
3259	u8 *desc;
3260
3261	/*
3262	 * We need to have the capacity set first for the block layer to be
3263	 * able to check the ranges.
3264	 */
3265	if (sdkp->first_scan)
3266		return;
3267
3268	if (!sdkp->capacity)
3269		goto out;
3270
3271	/*
3272	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3273	 * leading to a maximum page size of 64 + 256*32 bytes.
3274	 */
3275	buf_len = 64 + 256*32;
3276	buffer = kmalloc(buf_len, GFP_KERNEL);
3277	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3278		goto out;
3279
3280	/* We must have at least a 64B header and one 32B range descriptor */
3281	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3282	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3283		sd_printk(KERN_ERR, sdkp,
3284			  "Invalid Concurrent Positioning Ranges VPD page\n");
3285		goto out;
3286	}
3287
3288	nr_cpr = (vpd_len - 64) / 32;
3289	if (nr_cpr == 1) {
3290		nr_cpr = 0;
3291		goto out;
3292	}
3293
3294	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3295	if (!iars) {
3296		nr_cpr = 0;
3297		goto out;
3298	}
3299
3300	desc = &buffer[64];
3301	for (i = 0; i < nr_cpr; i++, desc += 32) {
3302		if (desc[0] != i) {
3303			sd_printk(KERN_ERR, sdkp,
3304				"Invalid Concurrent Positioning Range number\n");
3305			nr_cpr = 0;
3306			break;
3307		}
3308
3309		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3310		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3311	}
3312
3313out:
3314	disk_set_independent_access_ranges(sdkp->disk, iars);
3315	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3316		sd_printk(KERN_NOTICE, sdkp,
3317			  "%u concurrent positioning ranges\n", nr_cpr);
3318		sdkp->nr_actuators = nr_cpr;
3319	}
3320
3321	kfree(buffer);
3322}
3323
3324static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3325{
3326	struct scsi_device *sdp = sdkp->device;
3327	unsigned int min_xfer_bytes =
3328		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3329
3330	if (sdkp->min_xfer_blocks == 0)
3331		return false;
3332
3333	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3334		sd_first_printk(KERN_WARNING, sdkp,
3335				"Preferred minimum I/O size %u bytes not a " \
3336				"multiple of physical block size (%u bytes)\n",
3337				min_xfer_bytes, sdkp->physical_block_size);
3338		sdkp->min_xfer_blocks = 0;
3339		return false;
3340	}
3341
3342	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3343			min_xfer_bytes);
3344	return true;
3345}
3346
3347/*
3348 * Determine the device's preferred I/O size for reads and writes
3349 * unless the reported value is unreasonably small, large, not a
3350 * multiple of the physical block size, or simply garbage.
3351 */
3352static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3353				      unsigned int dev_max)
3354{
3355	struct scsi_device *sdp = sdkp->device;
3356	unsigned int opt_xfer_bytes =
3357		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3358	unsigned int min_xfer_bytes =
3359		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3360
3361	if (sdkp->opt_xfer_blocks == 0)
3362		return false;
3363
3364	if (sdkp->opt_xfer_blocks > dev_max) {
3365		sd_first_printk(KERN_WARNING, sdkp,
3366				"Optimal transfer size %u logical blocks " \
3367				"> dev_max (%u logical blocks)\n",
3368				sdkp->opt_xfer_blocks, dev_max);
3369		return false;
3370	}
3371
3372	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3373		sd_first_printk(KERN_WARNING, sdkp,
3374				"Optimal transfer size %u logical blocks " \
3375				"> sd driver limit (%u logical blocks)\n",
3376				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3377		return false;
3378	}
3379
3380	if (opt_xfer_bytes < PAGE_SIZE) {
3381		sd_first_printk(KERN_WARNING, sdkp,
3382				"Optimal transfer size %u bytes < " \
3383				"PAGE_SIZE (%u bytes)\n",
3384				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3385		return false;
3386	}
3387
3388	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3389		sd_first_printk(KERN_WARNING, sdkp,
3390				"Optimal transfer size %u bytes not a " \
3391				"multiple of preferred minimum block " \
3392				"size (%u bytes)\n",
3393				opt_xfer_bytes, min_xfer_bytes);
3394		return false;
3395	}
3396
3397	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3398		sd_first_printk(KERN_WARNING, sdkp,
3399				"Optimal transfer size %u bytes not a " \
3400				"multiple of physical block size (%u bytes)\n",
3401				opt_xfer_bytes, sdkp->physical_block_size);
3402		return false;
3403	}
3404
3405	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3406			opt_xfer_bytes);
3407	return true;
3408}
3409
3410static void sd_read_block_zero(struct scsi_disk *sdkp)
3411{
3412	unsigned int buf_len = sdkp->device->sector_size;
3413	char *buffer, cmd[10] = { };
 
3414
3415	buffer = kmalloc(buf_len, GFP_KERNEL);
3416	if (!buffer)
3417		return;
3418
3419	cmd[0] = READ_10;
3420	put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3421	put_unaligned_be16(1, &cmd[7]);	/* Transfer 1 logical block */
 
 
 
 
 
 
3422
3423	scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3424			 SD_TIMEOUT, sdkp->max_retries, NULL);
3425	kfree(buffer);
3426}
3427
3428/**
3429 *	sd_revalidate_disk - called the first time a new disk is seen,
3430 *	performs disk spin up, read_capacity, etc.
3431 *	@disk: struct gendisk we care about
3432 **/
3433static int sd_revalidate_disk(struct gendisk *disk)
3434{
3435	struct scsi_disk *sdkp = scsi_disk(disk);
3436	struct scsi_device *sdp = sdkp->device;
3437	struct request_queue *q = sdkp->disk->queue;
3438	sector_t old_capacity = sdkp->capacity;
 
3439	unsigned char *buffer;
3440	unsigned int dev_max, rw_max;
 
3441
3442	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3443				      "sd_revalidate_disk\n"));
3444
3445	/*
3446	 * If the device is offline, don't try and read capacity or any
3447	 * of the other niceties.
3448	 */
3449	if (!scsi_device_online(sdp))
3450		goto out;
3451
3452	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3453	if (!buffer) {
3454		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3455			  "allocation failure.\n");
3456		goto out;
3457	}
3458
3459	sd_spinup_disk(sdkp);
3460
 
 
3461	/*
3462	 * Without media there is no reason to ask; moreover, some devices
3463	 * react badly if we do.
3464	 */
3465	if (sdkp->media_present) {
3466		sd_read_capacity(sdkp, buffer);
3467		/*
3468		 * Some USB/UAS devices return generic values for mode pages
3469		 * until the media has been accessed. Trigger a READ operation
3470		 * to force the device to populate mode pages.
3471		 */
3472		if (sdp->read_before_ms)
3473			sd_read_block_zero(sdkp);
3474		/*
3475		 * set the default to rotational.  All non-rotational devices
3476		 * support the block characteristics VPD page, which will
3477		 * cause this to be updated correctly and any device which
3478		 * doesn't support it should be treated as rotational.
3479		 */
3480		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3481		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3482
3483		if (scsi_device_supports_vpd(sdp)) {
3484			sd_read_block_provisioning(sdkp);
3485			sd_read_block_limits(sdkp);
3486			sd_read_block_characteristics(sdkp);
3487			sd_zbc_read_zones(sdkp, buffer);
3488			sd_read_cpr(sdkp);
3489		}
3490
 
 
3491		sd_print_capacity(sdkp, old_capacity);
3492
3493		sd_read_write_protect_flag(sdkp, buffer);
3494		sd_read_cache_type(sdkp, buffer);
 
3495		sd_read_app_tag_own(sdkp, buffer);
3496		sd_read_write_same(sdkp, buffer);
3497		sd_read_security(sdkp, buffer);
3498		sd_config_protection(sdkp);
3499	}
3500
3501	/*
3502	 * We now have all cache related info, determine how we deal
3503	 * with flush requests.
3504	 */
3505	sd_set_flush_flag(sdkp);
3506
3507	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3508	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3509
3510	/* Some devices report a maximum block count for READ/WRITE requests. */
3511	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3512	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3513
3514	if (sd_validate_min_xfer_size(sdkp))
3515		blk_queue_io_min(sdkp->disk->queue,
3516				 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3517	else
3518		blk_queue_io_min(sdkp->disk->queue, 0);
3519
3520	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3521		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3522		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3523	} else {
3524		q->limits.io_opt = 0;
3525		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3526				      (sector_t)BLK_DEF_MAX_SECTORS_CAP);
3527	}
3528
3529	/*
3530	 * Limit default to SCSI host optimal sector limit if set. There may be
3531	 * an impact on performance for when the size of a request exceeds this
3532	 * host limit.
3533	 */
3534	rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3535
3536	/* Do not exceed controller limit */
3537	rw_max = min(rw_max, queue_max_hw_sectors(q));
3538
3539	/*
3540	 * Only update max_sectors if previously unset or if the current value
3541	 * exceeds the capabilities of the hardware.
3542	 */
3543	if (sdkp->first_scan ||
3544	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3545	    q->limits.max_sectors > q->limits.max_hw_sectors)
3546		q->limits.max_sectors = rw_max;
3547
3548	sdkp->first_scan = 0;
3549
3550	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3551	sd_config_write_same(sdkp);
3552	kfree(buffer);
3553
 
 
 
 
 
 
 
 
 
 
 
 
3554	/*
3555	 * For a zoned drive, revalidating the zones can be done only once
3556	 * the gendisk capacity is set. So if this fails, set back the gendisk
3557	 * capacity to 0.
3558	 */
3559	if (sd_zbc_revalidate_zones(sdkp))
3560		set_capacity_and_notify(disk, 0);
3561
3562 out:
3563	return 0;
3564}
3565
3566/**
3567 *	sd_unlock_native_capacity - unlock native capacity
3568 *	@disk: struct gendisk to set capacity for
3569 *
3570 *	Block layer calls this function if it detects that partitions
3571 *	on @disk reach beyond the end of the device.  If the SCSI host
3572 *	implements ->unlock_native_capacity() method, it's invoked to
3573 *	give it a chance to adjust the device capacity.
3574 *
3575 *	CONTEXT:
3576 *	Defined by block layer.  Might sleep.
3577 */
3578static void sd_unlock_native_capacity(struct gendisk *disk)
3579{
3580	struct scsi_device *sdev = scsi_disk(disk)->device;
3581
3582	if (sdev->host->hostt->unlock_native_capacity)
3583		sdev->host->hostt->unlock_native_capacity(sdev);
3584}
3585
3586/**
3587 *	sd_format_disk_name - format disk name
3588 *	@prefix: name prefix - ie. "sd" for SCSI disks
3589 *	@index: index of the disk to format name for
3590 *	@buf: output buffer
3591 *	@buflen: length of the output buffer
3592 *
3593 *	SCSI disk names starts at sda.  The 26th device is sdz and the
3594 *	27th is sdaa.  The last one for two lettered suffix is sdzz
3595 *	which is followed by sdaaa.
3596 *
3597 *	This is basically 26 base counting with one extra 'nil' entry
3598 *	at the beginning from the second digit on and can be
3599 *	determined using similar method as 26 base conversion with the
3600 *	index shifted -1 after each digit is computed.
3601 *
3602 *	CONTEXT:
3603 *	Don't care.
3604 *
3605 *	RETURNS:
3606 *	0 on success, -errno on failure.
3607 */
3608static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3609{
3610	const int base = 'z' - 'a' + 1;
3611	char *begin = buf + strlen(prefix);
3612	char *end = buf + buflen;
3613	char *p;
3614	int unit;
3615
3616	p = end - 1;
3617	*p = '\0';
3618	unit = base;
3619	do {
3620		if (p == begin)
3621			return -EINVAL;
3622		*--p = 'a' + (index % unit);
3623		index = (index / unit) - 1;
3624	} while (index >= 0);
3625
3626	memmove(begin, p, end - p);
3627	memcpy(buf, prefix, strlen(prefix));
3628
3629	return 0;
3630}
3631
3632/**
3633 *	sd_probe - called during driver initialization and whenever a
3634 *	new scsi device is attached to the system. It is called once
3635 *	for each scsi device (not just disks) present.
3636 *	@dev: pointer to device object
3637 *
3638 *	Returns 0 if successful (or not interested in this scsi device 
3639 *	(e.g. scanner)); 1 when there is an error.
3640 *
3641 *	Note: this function is invoked from the scsi mid-level.
3642 *	This function sets up the mapping between a given 
3643 *	<host,channel,id,lun> (found in sdp) and new device name 
3644 *	(e.g. /dev/sda). More precisely it is the block device major 
3645 *	and minor number that is chosen here.
3646 *
3647 *	Assume sd_probe is not re-entrant (for time being)
3648 *	Also think about sd_probe() and sd_remove() running coincidentally.
3649 **/
3650static int sd_probe(struct device *dev)
3651{
3652	struct scsi_device *sdp = to_scsi_device(dev);
3653	struct scsi_disk *sdkp;
3654	struct gendisk *gd;
3655	int index;
3656	int error;
3657
3658	scsi_autopm_get_device(sdp);
3659	error = -ENODEV;
3660	if (sdp->type != TYPE_DISK &&
3661	    sdp->type != TYPE_ZBC &&
3662	    sdp->type != TYPE_MOD &&
3663	    sdp->type != TYPE_RBC)
3664		goto out;
3665
3666	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3667		sdev_printk(KERN_WARNING, sdp,
3668			    "Unsupported ZBC host-managed device.\n");
3669		goto out;
3670	}
3671
3672	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3673					"sd_probe\n"));
3674
3675	error = -ENOMEM;
3676	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3677	if (!sdkp)
3678		goto out;
3679
3680	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3681					 &sd_bio_compl_lkclass);
3682	if (!gd)
3683		goto out_free;
3684
3685	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3686	if (index < 0) {
3687		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3688		goto out_put;
3689	}
3690
3691	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3692	if (error) {
3693		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3694		goto out_free_index;
3695	}
3696
3697	sdkp->device = sdp;
3698	sdkp->disk = gd;
3699	sdkp->index = index;
3700	sdkp->max_retries = SD_MAX_RETRIES;
3701	atomic_set(&sdkp->openers, 0);
3702	atomic_set(&sdkp->device->ioerr_cnt, 0);
3703
3704	if (!sdp->request_queue->rq_timeout) {
3705		if (sdp->type != TYPE_MOD)
3706			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3707		else
3708			blk_queue_rq_timeout(sdp->request_queue,
3709					     SD_MOD_TIMEOUT);
3710	}
3711
3712	device_initialize(&sdkp->disk_dev);
3713	sdkp->disk_dev.parent = get_device(dev);
3714	sdkp->disk_dev.class = &sd_disk_class;
3715	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3716
3717	error = device_add(&sdkp->disk_dev);
3718	if (error) {
3719		put_device(&sdkp->disk_dev);
3720		goto out;
3721	}
3722
3723	dev_set_drvdata(dev, sdkp);
3724
3725	gd->major = sd_major((index & 0xf0) >> 4);
3726	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3727	gd->minors = SD_MINORS;
3728
3729	gd->fops = &sd_fops;
3730	gd->private_data = sdkp;
3731
3732	/* defaults, until the device tells us otherwise */
3733	sdp->sector_size = 512;
3734	sdkp->capacity = 0;
3735	sdkp->media_present = 1;
3736	sdkp->write_prot = 0;
3737	sdkp->cache_override = 0;
3738	sdkp->WCE = 0;
3739	sdkp->RCD = 0;
3740	sdkp->ATO = 0;
3741	sdkp->first_scan = 1;
3742	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3743
3744	sd_revalidate_disk(gd);
3745
3746	if (sdp->removable) {
3747		gd->flags |= GENHD_FL_REMOVABLE;
3748		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3749		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3750	}
3751
3752	blk_pm_runtime_init(sdp->request_queue, dev);
3753	if (sdp->rpm_autosuspend) {
3754		pm_runtime_set_autosuspend_delay(dev,
3755			sdp->host->hostt->rpm_autosuspend_delay);
3756	}
3757
3758	error = device_add_disk(dev, gd, NULL);
3759	if (error) {
3760		put_device(&sdkp->disk_dev);
3761		put_disk(gd);
3762		goto out;
3763	}
3764
3765	if (sdkp->security) {
3766		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3767		if (sdkp->opal_dev)
3768			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3769	}
3770
3771	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3772		  sdp->removable ? "removable " : "");
3773	scsi_autopm_put_device(sdp);
3774
3775	return 0;
3776
3777 out_free_index:
3778	ida_free(&sd_index_ida, index);
3779 out_put:
3780	put_disk(gd);
3781 out_free:
3782	kfree(sdkp);
3783 out:
3784	scsi_autopm_put_device(sdp);
3785	return error;
3786}
3787
3788/**
3789 *	sd_remove - called whenever a scsi disk (previously recognized by
3790 *	sd_probe) is detached from the system. It is called (potentially
3791 *	multiple times) during sd module unload.
3792 *	@dev: pointer to device object
3793 *
3794 *	Note: this function is invoked from the scsi mid-level.
3795 *	This function potentially frees up a device name (e.g. /dev/sdc)
3796 *	that could be re-used by a subsequent sd_probe().
3797 *	This function is not called when the built-in sd driver is "exit-ed".
3798 **/
3799static int sd_remove(struct device *dev)
3800{
3801	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3802
3803	scsi_autopm_get_device(sdkp->device);
3804
3805	device_del(&sdkp->disk_dev);
3806	del_gendisk(sdkp->disk);
3807	if (!sdkp->suspended)
3808		sd_shutdown(dev);
3809
3810	put_disk(sdkp->disk);
3811	return 0;
3812}
3813
3814static void scsi_disk_release(struct device *dev)
3815{
3816	struct scsi_disk *sdkp = to_scsi_disk(dev);
3817
3818	ida_free(&sd_index_ida, sdkp->index);
3819	sd_zbc_free_zone_info(sdkp);
3820	put_device(&sdkp->device->sdev_gendev);
3821	free_opal_dev(sdkp->opal_dev);
3822
3823	kfree(sdkp);
3824}
3825
3826static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3827{
3828	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3829	struct scsi_sense_hdr sshdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3830	const struct scsi_exec_args exec_args = {
3831		.sshdr = &sshdr,
3832		.req_flags = BLK_MQ_REQ_PM,
 
3833	};
3834	struct scsi_device *sdp = sdkp->device;
3835	int res;
3836
3837	if (start)
3838		cmd[4] |= 1;	/* START */
3839
3840	if (sdp->start_stop_pwr_cond)
3841		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3842
3843	if (!scsi_device_online(sdp))
3844		return -ENODEV;
3845
3846	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3847			       sdkp->max_retries, &exec_args);
3848	if (res) {
3849		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3850		if (res > 0 && scsi_sense_valid(&sshdr)) {
3851			sd_print_sense_hdr(sdkp, &sshdr);
3852			/* 0x3a is medium not present */
3853			if (sshdr.asc == 0x3a)
3854				res = 0;
3855		}
3856	}
3857
3858	/* SCSI error codes must not go to the generic layer */
3859	if (res)
3860		return -EIO;
3861
3862	return 0;
3863}
3864
3865/*
3866 * Send a SYNCHRONIZE CACHE instruction down to the device through
3867 * the normal SCSI command structure.  Wait for the command to
3868 * complete.
3869 */
3870static void sd_shutdown(struct device *dev)
3871{
3872	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3873
3874	if (!sdkp)
3875		return;         /* this can happen */
3876
3877	if (pm_runtime_suspended(dev))
3878		return;
3879
3880	if (sdkp->WCE && sdkp->media_present) {
3881		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3882		sd_sync_cache(sdkp);
3883	}
3884
3885	if ((system_state != SYSTEM_RESTART &&
3886	     sdkp->device->manage_system_start_stop) ||
3887	    (system_state == SYSTEM_POWER_OFF &&
3888	     sdkp->device->manage_shutdown)) {
3889		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3890		sd_start_stop_device(sdkp, 0);
3891	}
3892}
3893
3894static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
3895{
3896	return (sdev->manage_system_start_stop && !runtime) ||
3897		(sdev->manage_runtime_start_stop && runtime);
3898}
3899
3900static int sd_suspend_common(struct device *dev, bool runtime)
3901{
3902	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3903	int ret = 0;
3904
3905	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3906		return 0;
3907
3908	if (sdkp->WCE && sdkp->media_present) {
3909		if (!sdkp->device->silence_suspend)
3910			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3911		ret = sd_sync_cache(sdkp);
3912		/* ignore OFFLINE device */
3913		if (ret == -ENODEV)
3914			return 0;
3915
3916		if (ret)
3917			return ret;
3918	}
3919
3920	if (sd_do_start_stop(sdkp->device, runtime)) {
3921		if (!sdkp->device->silence_suspend)
3922			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3923		/* an error is not worth aborting a system sleep */
3924		ret = sd_start_stop_device(sdkp, 0);
3925		if (!runtime)
3926			ret = 0;
3927	}
3928
3929	if (!ret)
3930		sdkp->suspended = true;
3931
3932	return ret;
3933}
3934
3935static int sd_suspend_system(struct device *dev)
3936{
3937	if (pm_runtime_suspended(dev))
3938		return 0;
3939
3940	return sd_suspend_common(dev, false);
3941}
3942
3943static int sd_suspend_runtime(struct device *dev)
3944{
3945	return sd_suspend_common(dev, true);
3946}
3947
3948static int sd_resume(struct device *dev, bool runtime)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3949{
3950	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3951	int ret;
3952
3953	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3954		return 0;
3955
3956	if (!sd_do_start_stop(sdkp->device, runtime)) {
3957		sdkp->suspended = false;
3958		return 0;
3959	}
3960
3961	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3962	ret = sd_start_stop_device(sdkp, 1);
3963	if (!ret) {
3964		opal_unlock_from_suspend(sdkp->opal_dev);
3965		sdkp->suspended = false;
3966	}
3967
3968	return ret;
3969}
3970
3971static int sd_resume_system(struct device *dev)
3972{
3973	if (pm_runtime_suspended(dev)) {
3974		struct scsi_disk *sdkp = dev_get_drvdata(dev);
3975		struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
3976
3977		if (sdp && sdp->force_runtime_start_on_system_start)
3978			pm_request_resume(dev);
3979
3980		return 0;
3981	}
3982
3983	return sd_resume(dev, false);
3984}
3985
3986static int sd_resume_runtime(struct device *dev)
3987{
3988	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3989	struct scsi_device *sdp;
3990
3991	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3992		return 0;
3993
3994	sdp = sdkp->device;
3995
3996	if (sdp->ignore_media_change) {
3997		/* clear the device's sense data */
3998		static const u8 cmd[10] = { REQUEST_SENSE };
3999		const struct scsi_exec_args exec_args = {
4000			.req_flags = BLK_MQ_REQ_PM,
4001		};
4002
4003		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4004				     sdp->request_queue->rq_timeout, 1,
4005				     &exec_args))
4006			sd_printk(KERN_NOTICE, sdkp,
4007				  "Failed to clear sense data\n");
4008	}
4009
4010	return sd_resume(dev, true);
4011}
4012
4013static const struct dev_pm_ops sd_pm_ops = {
4014	.suspend		= sd_suspend_system,
4015	.resume			= sd_resume_system,
4016	.poweroff		= sd_suspend_system,
4017	.restore		= sd_resume_system,
4018	.runtime_suspend	= sd_suspend_runtime,
4019	.runtime_resume		= sd_resume_runtime,
4020};
4021
4022static struct scsi_driver sd_template = {
4023	.gendrv = {
4024		.name		= "sd",
4025		.owner		= THIS_MODULE,
4026		.probe		= sd_probe,
4027		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4028		.remove		= sd_remove,
4029		.shutdown	= sd_shutdown,
4030		.pm		= &sd_pm_ops,
4031	},
4032	.rescan			= sd_rescan,
 
4033	.init_command		= sd_init_command,
4034	.uninit_command		= sd_uninit_command,
4035	.done			= sd_done,
4036	.eh_action		= sd_eh_action,
4037	.eh_reset		= sd_eh_reset,
4038};
4039
4040/**
4041 *	init_sd - entry point for this driver (both when built in or when
4042 *	a module).
4043 *
4044 *	Note: this function registers this driver with the scsi mid-level.
4045 **/
4046static int __init init_sd(void)
4047{
4048	int majors = 0, i, err;
4049
4050	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4051
4052	for (i = 0; i < SD_MAJORS; i++) {
4053		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4054			continue;
4055		majors++;
4056	}
4057
4058	if (!majors)
4059		return -ENODEV;
4060
4061	err = class_register(&sd_disk_class);
4062	if (err)
4063		goto err_out;
4064
4065	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4066	if (!sd_page_pool) {
4067		printk(KERN_ERR "sd: can't init discard page pool\n");
4068		err = -ENOMEM;
4069		goto err_out_class;
4070	}
4071
4072	err = scsi_register_driver(&sd_template.gendrv);
4073	if (err)
4074		goto err_out_driver;
4075
4076	return 0;
4077
4078err_out_driver:
4079	mempool_destroy(sd_page_pool);
4080err_out_class:
4081	class_unregister(&sd_disk_class);
4082err_out:
4083	for (i = 0; i < SD_MAJORS; i++)
4084		unregister_blkdev(sd_major(i), "sd");
4085	return err;
4086}
4087
4088/**
4089 *	exit_sd - exit point for this driver (when it is a module).
4090 *
4091 *	Note: this function unregisters this driver from the scsi mid-level.
4092 **/
4093static void __exit exit_sd(void)
4094{
4095	int i;
4096
4097	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4098
4099	scsi_unregister_driver(&sd_template.gendrv);
4100	mempool_destroy(sd_page_pool);
4101
4102	class_unregister(&sd_disk_class);
4103
4104	for (i = 0; i < SD_MAJORS; i++)
4105		unregister_blkdev(sd_major(i), "sd");
4106}
4107
4108module_init(init_sd);
4109module_exit(exit_sd);
4110
4111void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4112{
4113	scsi_print_sense_hdr(sdkp->device,
4114			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4115}
4116
4117void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4118{
4119	const char *hb_string = scsi_hostbyte_string(result);
4120
4121	if (hb_string)
4122		sd_printk(KERN_INFO, sdkp,
4123			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4124			  hb_string ? hb_string : "invalid",
4125			  "DRIVER_OK");
4126	else
4127		sd_printk(KERN_INFO, sdkp,
4128			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4129			  msg, host_byte(result), "DRIVER_OK");
4130}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      sd.c Copyright (C) 1992 Drew Eckhardt
   4 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
   5 *
   6 *      Linux scsi disk driver
   7 *              Initial versions: Drew Eckhardt
   8 *              Subsequent revisions: Eric Youngdale
   9 *	Modification history:
  10 *       - Drew Eckhardt <drew@colorado.edu> original
  11 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
  12 *         outstanding request, and other enhancements.
  13 *         Support loadable low-level scsi drivers.
  14 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
  15 *         eight major numbers.
  16 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
  17 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
  18 *	   sd_init and cleanups.
  19 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
  20 *	   not being read in sd_open. Fix problem where removable media 
  21 *	   could be ejected after sd_open.
  22 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
  23 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
  24 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
  25 *	   Support 32k/1M disks.
  26 *
  27 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
  28 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
  29 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
  30 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
  31 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
  32 *	Note: when the logging level is set by the user, it must be greater
  33 *	than the level indicated above to trigger output.	
  34 */
  35
  36#include <linux/bio-integrity.h>
  37#include <linux/module.h>
  38#include <linux/fs.h>
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
 
  41#include <linux/hdreg.h>
  42#include <linux/errno.h>
  43#include <linux/idr.h>
  44#include <linux/interrupt.h>
  45#include <linux/init.h>
  46#include <linux/blkdev.h>
  47#include <linux/blkpg.h>
  48#include <linux/blk-pm.h>
  49#include <linux/delay.h>
  50#include <linux/rw_hint.h>
  51#include <linux/major.h>
  52#include <linux/mutex.h>
  53#include <linux/string_helpers.h>
  54#include <linux/slab.h>
  55#include <linux/sed-opal.h>
  56#include <linux/pm_runtime.h>
  57#include <linux/pr.h>
  58#include <linux/t10-pi.h>
  59#include <linux/uaccess.h>
  60#include <linux/unaligned.h>
  61
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_dbg.h>
  65#include <scsi/scsi_device.h>
  66#include <scsi/scsi_devinfo.h>
  67#include <scsi/scsi_driver.h>
  68#include <scsi/scsi_eh.h>
  69#include <scsi/scsi_host.h>
  70#include <scsi/scsi_ioctl.h>
  71#include <scsi/scsicam.h>
  72#include <scsi/scsi_common.h>
  73
  74#include "sd.h"
  75#include "scsi_priv.h"
  76#include "scsi_logging.h"
  77
  78MODULE_AUTHOR("Eric Youngdale");
  79MODULE_DESCRIPTION("SCSI disk (sd) driver");
  80MODULE_LICENSE("GPL");
  81
  82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
  83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
  84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
  85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
  86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
  87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
  88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
  89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
  90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
  91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
  92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
  93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
  94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
  95MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
  96MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
  97MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
  98MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
  99MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
 100MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
 101MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
 102
 103#define SD_MINORS	16
 104
 105static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
 106		unsigned int mode);
 107static void sd_config_write_same(struct scsi_disk *sdkp,
 108		struct queue_limits *lim);
 109static int  sd_revalidate_disk(struct gendisk *);
 110static void sd_unlock_native_capacity(struct gendisk *disk);
 111static void sd_shutdown(struct device *);
 
 112static void scsi_disk_release(struct device *cdev);
 113
 114static DEFINE_IDA(sd_index_ida);
 115
 116static mempool_t *sd_page_pool;
 117static struct lock_class_key sd_bio_compl_lkclass;
 118
 119static const char *sd_cache_types[] = {
 120	"write through", "none", "write back",
 121	"write back, no read (daft)"
 122};
 123
 124static void sd_set_flush_flag(struct scsi_disk *sdkp,
 125		struct queue_limits *lim)
 126{
 
 
 127	if (sdkp->WCE) {
 128		lim->features |= BLK_FEAT_WRITE_CACHE;
 129		if (sdkp->DPOFUA)
 130			lim->features |= BLK_FEAT_FUA;
 131		else
 132			lim->features &= ~BLK_FEAT_FUA;
 133	} else {
 134		lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
 135	}
 
 
 136}
 137
 138static ssize_t
 139cache_type_store(struct device *dev, struct device_attribute *attr,
 140		 const char *buf, size_t count)
 141{
 142	int ct, rcd, wce, sp;
 143	struct scsi_disk *sdkp = to_scsi_disk(dev);
 144	struct scsi_device *sdp = sdkp->device;
 145	char buffer[64];
 146	char *buffer_data;
 147	struct scsi_mode_data data;
 148	struct scsi_sense_hdr sshdr;
 149	static const char temp[] = "temporary ";
 150	int len, ret;
 151
 152	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 153		/* no cache control on RBC devices; theoretically they
 154		 * can do it, but there's probably so many exceptions
 155		 * it's not worth the risk */
 156		return -EINVAL;
 157
 158	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
 159		buf += sizeof(temp) - 1;
 160		sdkp->cache_override = 1;
 161	} else {
 162		sdkp->cache_override = 0;
 163	}
 164
 165	ct = sysfs_match_string(sd_cache_types, buf);
 166	if (ct < 0)
 167		return -EINVAL;
 168
 169	rcd = ct & 0x01 ? 1 : 0;
 170	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
 171
 172	if (sdkp->cache_override) {
 173		struct queue_limits lim;
 174
 175		sdkp->WCE = wce;
 176		sdkp->RCD = rcd;
 177
 178		lim = queue_limits_start_update(sdkp->disk->queue);
 179		sd_set_flush_flag(sdkp, &lim);
 180		ret = queue_limits_commit_update_frozen(sdkp->disk->queue,
 181				&lim);
 182		if (ret)
 183			return ret;
 184		return count;
 185	}
 186
 187	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
 188			    sdkp->max_retries, &data, NULL))
 189		return -EINVAL;
 190	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
 191		  data.block_descriptor_length);
 192	buffer_data = buffer + data.header_length +
 193		data.block_descriptor_length;
 194	buffer_data[2] &= ~0x05;
 195	buffer_data[2] |= wce << 2 | rcd;
 196	sp = buffer_data[0] & 0x80 ? 1 : 0;
 197	buffer_data[0] &= ~0x80;
 198
 199	/*
 200	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
 201	 * received mode parameter buffer before doing MODE SELECT.
 202	 */
 203	data.device_specific = 0;
 204
 205	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
 206			       sdkp->max_retries, &data, &sshdr);
 207	if (ret) {
 208		if (ret > 0 && scsi_sense_valid(&sshdr))
 209			sd_print_sense_hdr(sdkp, &sshdr);
 210		return -EINVAL;
 211	}
 212	sd_revalidate_disk(sdkp->disk);
 213	return count;
 214}
 215
 216static ssize_t
 217manage_start_stop_show(struct device *dev,
 218		       struct device_attribute *attr, char *buf)
 219{
 220	struct scsi_disk *sdkp = to_scsi_disk(dev);
 221	struct scsi_device *sdp = sdkp->device;
 222
 223	return sysfs_emit(buf, "%u\n",
 224			  sdp->manage_system_start_stop &&
 225			  sdp->manage_runtime_start_stop &&
 226			  sdp->manage_shutdown);
 227}
 228static DEVICE_ATTR_RO(manage_start_stop);
 229
 230static ssize_t
 231manage_system_start_stop_show(struct device *dev,
 232			      struct device_attribute *attr, char *buf)
 233{
 234	struct scsi_disk *sdkp = to_scsi_disk(dev);
 235	struct scsi_device *sdp = sdkp->device;
 236
 237	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
 238}
 239
 240static ssize_t
 241manage_system_start_stop_store(struct device *dev,
 242			       struct device_attribute *attr,
 243			       const char *buf, size_t count)
 244{
 245	struct scsi_disk *sdkp = to_scsi_disk(dev);
 246	struct scsi_device *sdp = sdkp->device;
 247	bool v;
 248
 249	if (!capable(CAP_SYS_ADMIN))
 250		return -EACCES;
 251
 252	if (kstrtobool(buf, &v))
 253		return -EINVAL;
 254
 255	sdp->manage_system_start_stop = v;
 256
 257	return count;
 258}
 259static DEVICE_ATTR_RW(manage_system_start_stop);
 260
 261static ssize_t
 262manage_runtime_start_stop_show(struct device *dev,
 263			       struct device_attribute *attr, char *buf)
 264{
 265	struct scsi_disk *sdkp = to_scsi_disk(dev);
 266	struct scsi_device *sdp = sdkp->device;
 267
 268	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
 269}
 270
 271static ssize_t
 272manage_runtime_start_stop_store(struct device *dev,
 273				struct device_attribute *attr,
 274				const char *buf, size_t count)
 275{
 276	struct scsi_disk *sdkp = to_scsi_disk(dev);
 277	struct scsi_device *sdp = sdkp->device;
 278	bool v;
 279
 280	if (!capable(CAP_SYS_ADMIN))
 281		return -EACCES;
 282
 283	if (kstrtobool(buf, &v))
 284		return -EINVAL;
 285
 286	sdp->manage_runtime_start_stop = v;
 287
 288	return count;
 289}
 290static DEVICE_ATTR_RW(manage_runtime_start_stop);
 291
 292static ssize_t manage_shutdown_show(struct device *dev,
 293				    struct device_attribute *attr, char *buf)
 294{
 295	struct scsi_disk *sdkp = to_scsi_disk(dev);
 296	struct scsi_device *sdp = sdkp->device;
 297
 298	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
 299}
 300
 301static ssize_t manage_shutdown_store(struct device *dev,
 302				     struct device_attribute *attr,
 303				     const char *buf, size_t count)
 304{
 305	struct scsi_disk *sdkp = to_scsi_disk(dev);
 306	struct scsi_device *sdp = sdkp->device;
 307	bool v;
 308
 309	if (!capable(CAP_SYS_ADMIN))
 310		return -EACCES;
 311
 312	if (kstrtobool(buf, &v))
 313		return -EINVAL;
 314
 315	sdp->manage_shutdown = v;
 316
 317	return count;
 318}
 319static DEVICE_ATTR_RW(manage_shutdown);
 320
 321static ssize_t
 322allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
 323{
 324	struct scsi_disk *sdkp = to_scsi_disk(dev);
 325
 326	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
 327}
 328
 329static ssize_t
 330allow_restart_store(struct device *dev, struct device_attribute *attr,
 331		    const char *buf, size_t count)
 332{
 333	bool v;
 334	struct scsi_disk *sdkp = to_scsi_disk(dev);
 335	struct scsi_device *sdp = sdkp->device;
 336
 337	if (!capable(CAP_SYS_ADMIN))
 338		return -EACCES;
 339
 340	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 341		return -EINVAL;
 342
 343	if (kstrtobool(buf, &v))
 344		return -EINVAL;
 345
 346	sdp->allow_restart = v;
 347
 348	return count;
 349}
 350static DEVICE_ATTR_RW(allow_restart);
 351
 352static ssize_t
 353cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
 354{
 355	struct scsi_disk *sdkp = to_scsi_disk(dev);
 356	int ct = sdkp->RCD + 2*sdkp->WCE;
 357
 358	return sprintf(buf, "%s\n", sd_cache_types[ct]);
 359}
 360static DEVICE_ATTR_RW(cache_type);
 361
 362static ssize_t
 363FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
 364{
 365	struct scsi_disk *sdkp = to_scsi_disk(dev);
 366
 367	return sprintf(buf, "%u\n", sdkp->DPOFUA);
 368}
 369static DEVICE_ATTR_RO(FUA);
 370
 371static ssize_t
 372protection_type_show(struct device *dev, struct device_attribute *attr,
 373		     char *buf)
 374{
 375	struct scsi_disk *sdkp = to_scsi_disk(dev);
 376
 377	return sprintf(buf, "%u\n", sdkp->protection_type);
 378}
 379
 380static ssize_t
 381protection_type_store(struct device *dev, struct device_attribute *attr,
 382		      const char *buf, size_t count)
 383{
 384	struct scsi_disk *sdkp = to_scsi_disk(dev);
 385	unsigned int val;
 386	int err;
 387
 388	if (!capable(CAP_SYS_ADMIN))
 389		return -EACCES;
 390
 391	err = kstrtouint(buf, 10, &val);
 392
 393	if (err)
 394		return err;
 395
 396	if (val <= T10_PI_TYPE3_PROTECTION)
 397		sdkp->protection_type = val;
 398
 399	return count;
 400}
 401static DEVICE_ATTR_RW(protection_type);
 402
 403static ssize_t
 404protection_mode_show(struct device *dev, struct device_attribute *attr,
 405		     char *buf)
 406{
 407	struct scsi_disk *sdkp = to_scsi_disk(dev);
 408	struct scsi_device *sdp = sdkp->device;
 409	unsigned int dif, dix;
 410
 411	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
 412	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
 413
 414	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
 415		dif = 0;
 416		dix = 1;
 417	}
 418
 419	if (!dif && !dix)
 420		return sprintf(buf, "none\n");
 421
 422	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
 423}
 424static DEVICE_ATTR_RO(protection_mode);
 425
 426static ssize_t
 427app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
 428{
 429	struct scsi_disk *sdkp = to_scsi_disk(dev);
 430
 431	return sprintf(buf, "%u\n", sdkp->ATO);
 432}
 433static DEVICE_ATTR_RO(app_tag_own);
 434
 435static ssize_t
 436thin_provisioning_show(struct device *dev, struct device_attribute *attr,
 437		       char *buf)
 438{
 439	struct scsi_disk *sdkp = to_scsi_disk(dev);
 440
 441	return sprintf(buf, "%u\n", sdkp->lbpme);
 442}
 443static DEVICE_ATTR_RO(thin_provisioning);
 444
 445/* sysfs_match_string() requires dense arrays */
 446static const char *lbp_mode[] = {
 447	[SD_LBP_FULL]		= "full",
 448	[SD_LBP_UNMAP]		= "unmap",
 449	[SD_LBP_WS16]		= "writesame_16",
 450	[SD_LBP_WS10]		= "writesame_10",
 451	[SD_LBP_ZERO]		= "writesame_zero",
 452	[SD_LBP_DISABLE]	= "disabled",
 453};
 454
 455static ssize_t
 456provisioning_mode_show(struct device *dev, struct device_attribute *attr,
 457		       char *buf)
 458{
 459	struct scsi_disk *sdkp = to_scsi_disk(dev);
 460
 461	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
 462}
 463
 464static ssize_t
 465provisioning_mode_store(struct device *dev, struct device_attribute *attr,
 466			const char *buf, size_t count)
 467{
 468	struct scsi_disk *sdkp = to_scsi_disk(dev);
 469	struct scsi_device *sdp = sdkp->device;
 470	struct queue_limits lim;
 471	int mode, err;
 472
 473	if (!capable(CAP_SYS_ADMIN))
 474		return -EACCES;
 475
 
 
 
 
 
 476	if (sdp->type != TYPE_DISK)
 477		return -EINVAL;
 478
 479	mode = sysfs_match_string(lbp_mode, buf);
 480	if (mode < 0)
 481		return -EINVAL;
 482
 483	lim = queue_limits_start_update(sdkp->disk->queue);
 484	sd_config_discard(sdkp, &lim, mode);
 485	err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
 486	if (err)
 487		return err;
 488	return count;
 489}
 490static DEVICE_ATTR_RW(provisioning_mode);
 491
 492/* sysfs_match_string() requires dense arrays */
 493static const char *zeroing_mode[] = {
 494	[SD_ZERO_WRITE]		= "write",
 495	[SD_ZERO_WS]		= "writesame",
 496	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
 497	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
 498};
 499
 500static ssize_t
 501zeroing_mode_show(struct device *dev, struct device_attribute *attr,
 502		  char *buf)
 503{
 504	struct scsi_disk *sdkp = to_scsi_disk(dev);
 505
 506	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
 507}
 508
 509static ssize_t
 510zeroing_mode_store(struct device *dev, struct device_attribute *attr,
 511		   const char *buf, size_t count)
 512{
 513	struct scsi_disk *sdkp = to_scsi_disk(dev);
 514	int mode;
 515
 516	if (!capable(CAP_SYS_ADMIN))
 517		return -EACCES;
 518
 519	mode = sysfs_match_string(zeroing_mode, buf);
 520	if (mode < 0)
 521		return -EINVAL;
 522
 523	sdkp->zeroing_mode = mode;
 524
 525	return count;
 526}
 527static DEVICE_ATTR_RW(zeroing_mode);
 528
 529static ssize_t
 530max_medium_access_timeouts_show(struct device *dev,
 531				struct device_attribute *attr, char *buf)
 532{
 533	struct scsi_disk *sdkp = to_scsi_disk(dev);
 534
 535	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
 536}
 537
 538static ssize_t
 539max_medium_access_timeouts_store(struct device *dev,
 540				 struct device_attribute *attr, const char *buf,
 541				 size_t count)
 542{
 543	struct scsi_disk *sdkp = to_scsi_disk(dev);
 544	int err;
 545
 546	if (!capable(CAP_SYS_ADMIN))
 547		return -EACCES;
 548
 549	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
 550
 551	return err ? err : count;
 552}
 553static DEVICE_ATTR_RW(max_medium_access_timeouts);
 554
 555static ssize_t
 556max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
 557			   char *buf)
 558{
 559	struct scsi_disk *sdkp = to_scsi_disk(dev);
 560
 561	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
 562}
 563
 564static ssize_t
 565max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
 566			    const char *buf, size_t count)
 567{
 568	struct scsi_disk *sdkp = to_scsi_disk(dev);
 569	struct scsi_device *sdp = sdkp->device;
 570	struct queue_limits lim;
 571	unsigned long max;
 572	int err;
 573
 574	if (!capable(CAP_SYS_ADMIN))
 575		return -EACCES;
 576
 577	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 578		return -EINVAL;
 579
 580	err = kstrtoul(buf, 10, &max);
 581
 582	if (err)
 583		return err;
 584
 585	if (max == 0)
 586		sdp->no_write_same = 1;
 587	else if (max <= SD_MAX_WS16_BLOCKS) {
 588		sdp->no_write_same = 0;
 589		sdkp->max_ws_blocks = max;
 590	}
 591
 592	lim = queue_limits_start_update(sdkp->disk->queue);
 593	sd_config_write_same(sdkp, &lim);
 594	err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
 595	if (err)
 596		return err;
 597	return count;
 598}
 599static DEVICE_ATTR_RW(max_write_same_blocks);
 600
 601static ssize_t
 602zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
 603{
 604	struct scsi_disk *sdkp = to_scsi_disk(dev);
 605
 606	if (sdkp->device->type == TYPE_ZBC)
 607		return sprintf(buf, "host-managed\n");
 608	if (sdkp->zoned == 1)
 609		return sprintf(buf, "host-aware\n");
 610	if (sdkp->zoned == 2)
 611		return sprintf(buf, "drive-managed\n");
 612	return sprintf(buf, "none\n");
 613}
 614static DEVICE_ATTR_RO(zoned_cap);
 615
 616static ssize_t
 617max_retries_store(struct device *dev, struct device_attribute *attr,
 618		  const char *buf, size_t count)
 619{
 620	struct scsi_disk *sdkp = to_scsi_disk(dev);
 621	struct scsi_device *sdev = sdkp->device;
 622	int retries, err;
 623
 624	err = kstrtoint(buf, 10, &retries);
 625	if (err)
 626		return err;
 627
 628	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
 629		sdkp->max_retries = retries;
 630		return count;
 631	}
 632
 633	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
 634		    SD_MAX_RETRIES);
 635	return -EINVAL;
 636}
 637
 638static ssize_t
 639max_retries_show(struct device *dev, struct device_attribute *attr,
 640		 char *buf)
 641{
 642	struct scsi_disk *sdkp = to_scsi_disk(dev);
 643
 644	return sprintf(buf, "%d\n", sdkp->max_retries);
 645}
 646
 647static DEVICE_ATTR_RW(max_retries);
 648
 649static struct attribute *sd_disk_attrs[] = {
 650	&dev_attr_cache_type.attr,
 651	&dev_attr_FUA.attr,
 652	&dev_attr_allow_restart.attr,
 653	&dev_attr_manage_start_stop.attr,
 654	&dev_attr_manage_system_start_stop.attr,
 655	&dev_attr_manage_runtime_start_stop.attr,
 656	&dev_attr_manage_shutdown.attr,
 657	&dev_attr_protection_type.attr,
 658	&dev_attr_protection_mode.attr,
 659	&dev_attr_app_tag_own.attr,
 660	&dev_attr_thin_provisioning.attr,
 661	&dev_attr_provisioning_mode.attr,
 662	&dev_attr_zeroing_mode.attr,
 663	&dev_attr_max_write_same_blocks.attr,
 664	&dev_attr_max_medium_access_timeouts.attr,
 665	&dev_attr_zoned_cap.attr,
 666	&dev_attr_max_retries.attr,
 667	NULL,
 668};
 669ATTRIBUTE_GROUPS(sd_disk);
 670
 671static struct class sd_disk_class = {
 672	.name		= "scsi_disk",
 673	.dev_release	= scsi_disk_release,
 674	.dev_groups	= sd_disk_groups,
 675};
 676
 677/*
 678 * Don't request a new module, as that could deadlock in multipath
 679 * environment.
 680 */
 681static void sd_default_probe(dev_t devt)
 682{
 683}
 684
 685/*
 686 * Device no to disk mapping:
 687 * 
 688 *       major         disc2     disc  p1
 689 *   |............|.............|....|....| <- dev_t
 690 *    31        20 19          8 7  4 3  0
 691 * 
 692 * Inside a major, we have 16k disks, however mapped non-
 693 * contiguously. The first 16 disks are for major0, the next
 694 * ones with major1, ... Disk 256 is for major0 again, disk 272 
 695 * for major1, ... 
 696 * As we stay compatible with our numbering scheme, we can reuse 
 697 * the well-know SCSI majors 8, 65--71, 136--143.
 698 */
 699static int sd_major(int major_idx)
 700{
 701	switch (major_idx) {
 702	case 0:
 703		return SCSI_DISK0_MAJOR;
 704	case 1 ... 7:
 705		return SCSI_DISK1_MAJOR + major_idx - 1;
 706	case 8 ... 15:
 707		return SCSI_DISK8_MAJOR + major_idx - 8;
 708	default:
 709		BUG();
 710		return 0;	/* shut up gcc */
 711	}
 712}
 713
 714#ifdef CONFIG_BLK_SED_OPAL
 715static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
 716		size_t len, bool send)
 717{
 718	struct scsi_disk *sdkp = data;
 719	struct scsi_device *sdev = sdkp->device;
 720	u8 cdb[12] = { 0, };
 721	const struct scsi_exec_args exec_args = {
 722		.req_flags = BLK_MQ_REQ_PM,
 723	};
 724	int ret;
 725
 726	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
 727	cdb[1] = secp;
 728	put_unaligned_be16(spsp, &cdb[2]);
 729	put_unaligned_be32(len, &cdb[6]);
 730
 731	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
 732			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
 733			       &exec_args);
 734	return ret <= 0 ? ret : -EIO;
 735}
 736#endif /* CONFIG_BLK_SED_OPAL */
 737
 738/*
 739 * Look up the DIX operation based on whether the command is read or
 740 * write and whether dix and dif are enabled.
 741 */
 742static unsigned int sd_prot_op(bool write, bool dix, bool dif)
 743{
 744	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
 745	static const unsigned int ops[] = {	/* wrt dix dif */
 746		SCSI_PROT_NORMAL,		/*  0	0   0  */
 747		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
 748		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
 749		SCSI_PROT_READ_PASS,		/*  0	1   1  */
 750		SCSI_PROT_NORMAL,		/*  1	0   0  */
 751		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
 752		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
 753		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
 754	};
 755
 756	return ops[write << 2 | dix << 1 | dif];
 757}
 758
 759/*
 760 * Returns a mask of the protection flags that are valid for a given DIX
 761 * operation.
 762 */
 763static unsigned int sd_prot_flag_mask(unsigned int prot_op)
 764{
 765	static const unsigned int flag_mask[] = {
 766		[SCSI_PROT_NORMAL]		= 0,
 767
 768		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
 769						  SCSI_PROT_GUARD_CHECK |
 770						  SCSI_PROT_REF_CHECK |
 771						  SCSI_PROT_REF_INCREMENT,
 772
 773		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
 774						  SCSI_PROT_IP_CHECKSUM,
 775
 776		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
 777						  SCSI_PROT_GUARD_CHECK |
 778						  SCSI_PROT_REF_CHECK |
 779						  SCSI_PROT_REF_INCREMENT |
 780						  SCSI_PROT_IP_CHECKSUM,
 781
 782		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
 783						  SCSI_PROT_REF_INCREMENT,
 784
 785		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
 786						  SCSI_PROT_REF_CHECK |
 787						  SCSI_PROT_REF_INCREMENT |
 788						  SCSI_PROT_IP_CHECKSUM,
 789
 790		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
 791						  SCSI_PROT_GUARD_CHECK |
 792						  SCSI_PROT_REF_CHECK |
 793						  SCSI_PROT_REF_INCREMENT |
 794						  SCSI_PROT_IP_CHECKSUM,
 795	};
 796
 797	return flag_mask[prot_op];
 798}
 799
 800static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
 801					   unsigned int dix, unsigned int dif)
 802{
 803	struct request *rq = scsi_cmd_to_rq(scmd);
 804	struct bio *bio = rq->bio;
 805	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
 806	unsigned int protect = 0;
 807
 808	if (dix) {				/* DIX Type 0, 1, 2, 3 */
 809		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
 810			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
 811
 812		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 813			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
 814	}
 815
 816	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
 817		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
 818
 819		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 820			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
 821	}
 822
 823	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
 824		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
 825
 826		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
 827			protect = 3 << 5;	/* Disable target PI checking */
 828		else
 829			protect = 1 << 5;	/* Enable target PI checking */
 830	}
 831
 832	scsi_set_prot_op(scmd, prot_op);
 833	scsi_set_prot_type(scmd, dif);
 834	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
 835
 836	return protect;
 837}
 838
 839static void sd_disable_discard(struct scsi_disk *sdkp)
 840{
 841	sdkp->provisioning_mode = SD_LBP_DISABLE;
 842	blk_queue_disable_discard(sdkp->disk->queue);
 843}
 844
 845static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
 846		unsigned int mode)
 847{
 
 848	unsigned int logical_block_size = sdkp->device->sector_size;
 849	unsigned int max_blocks = 0;
 850
 851	lim->discard_alignment = sdkp->unmap_alignment * logical_block_size;
 852	lim->discard_granularity = max(sdkp->physical_block_size,
 853			sdkp->unmap_granularity * logical_block_size);
 
 
 854	sdkp->provisioning_mode = mode;
 855
 856	switch (mode) {
 857
 858	case SD_LBP_FULL:
 859	case SD_LBP_DISABLE:
 860		break;
 
 861
 862	case SD_LBP_UNMAP:
 863		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
 864					  (u32)SD_MAX_WS16_BLOCKS);
 865		break;
 866
 867	case SD_LBP_WS16:
 868		if (sdkp->device->unmap_limit_for_ws)
 869			max_blocks = sdkp->max_unmap_blocks;
 870		else
 871			max_blocks = sdkp->max_ws_blocks;
 872
 873		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
 874		break;
 875
 876	case SD_LBP_WS10:
 877		if (sdkp->device->unmap_limit_for_ws)
 878			max_blocks = sdkp->max_unmap_blocks;
 879		else
 880			max_blocks = sdkp->max_ws_blocks;
 881
 882		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
 883		break;
 884
 885	case SD_LBP_ZERO:
 886		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 887					  (u32)SD_MAX_WS10_BLOCKS);
 888		break;
 889	}
 890
 891	lim->max_hw_discard_sectors = max_blocks *
 892		(logical_block_size >> SECTOR_SHIFT);
 893}
 894
 895static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
 896{
 897	struct page *page;
 898
 899	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 900	if (!page)
 901		return NULL;
 902	clear_highpage(page);
 903	bvec_set_page(&rq->special_vec, page, data_len, 0);
 904	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 905	return bvec_virt(&rq->special_vec);
 906}
 907
 908static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
 909{
 910	struct scsi_device *sdp = cmd->device;
 911	struct request *rq = scsi_cmd_to_rq(cmd);
 912	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 913	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 914	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 915	unsigned int data_len = 24;
 916	char *buf;
 917
 918	buf = sd_set_special_bvec(rq, data_len);
 919	if (!buf)
 920		return BLK_STS_RESOURCE;
 921
 922	cmd->cmd_len = 10;
 923	cmd->cmnd[0] = UNMAP;
 924	cmd->cmnd[8] = 24;
 925
 926	put_unaligned_be16(6 + 16, &buf[0]);
 927	put_unaligned_be16(16, &buf[2]);
 928	put_unaligned_be64(lba, &buf[8]);
 929	put_unaligned_be32(nr_blocks, &buf[16]);
 930
 931	cmd->allowed = sdkp->max_retries;
 932	cmd->transfersize = data_len;
 933	rq->timeout = SD_TIMEOUT;
 934
 935	return scsi_alloc_sgtables(cmd);
 936}
 937
 938static void sd_config_atomic(struct scsi_disk *sdkp, struct queue_limits *lim)
 939{
 940	unsigned int logical_block_size = sdkp->device->sector_size,
 941		physical_block_size_sectors, max_atomic, unit_min, unit_max;
 942
 943	if ((!sdkp->max_atomic && !sdkp->max_atomic_with_boundary) ||
 944	    sdkp->protection_type == T10_PI_TYPE2_PROTECTION)
 945		return;
 946
 947	physical_block_size_sectors = sdkp->physical_block_size /
 948					sdkp->device->sector_size;
 949
 950	unit_min = rounddown_pow_of_two(sdkp->atomic_granularity ?
 951					sdkp->atomic_granularity :
 952					physical_block_size_sectors);
 953
 954	/*
 955	 * Only use atomic boundary when we have the odd scenario of
 956	 * sdkp->max_atomic == 0, which the spec does permit.
 957	 */
 958	if (sdkp->max_atomic) {
 959		max_atomic = sdkp->max_atomic;
 960		unit_max = rounddown_pow_of_two(sdkp->max_atomic);
 961		sdkp->use_atomic_write_boundary = 0;
 962	} else {
 963		max_atomic = sdkp->max_atomic_with_boundary;
 964		unit_max = rounddown_pow_of_two(sdkp->max_atomic_boundary);
 965		sdkp->use_atomic_write_boundary = 1;
 966	}
 967
 968	/*
 969	 * Ensure compliance with granularity and alignment. For now, keep it
 970	 * simple and just don't support atomic writes for values mismatched
 971	 * with max_{boundary}atomic, physical block size, and
 972	 * atomic_granularity itself.
 973	 *
 974	 * We're really being distrustful by checking unit_max also...
 975	 */
 976	if (sdkp->atomic_granularity > 1) {
 977		if (unit_min > 1 && unit_min % sdkp->atomic_granularity)
 978			return;
 979		if (unit_max > 1 && unit_max % sdkp->atomic_granularity)
 980			return;
 981	}
 982
 983	if (sdkp->atomic_alignment > 1) {
 984		if (unit_min > 1 && unit_min % sdkp->atomic_alignment)
 985			return;
 986		if (unit_max > 1 && unit_max % sdkp->atomic_alignment)
 987			return;
 988	}
 989
 990	lim->atomic_write_hw_max = max_atomic * logical_block_size;
 991	lim->atomic_write_hw_boundary = 0;
 992	lim->atomic_write_hw_unit_min = unit_min * logical_block_size;
 993	lim->atomic_write_hw_unit_max = unit_max * logical_block_size;
 994}
 995
 996static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
 997		bool unmap)
 998{
 999	struct scsi_device *sdp = cmd->device;
1000	struct request *rq = scsi_cmd_to_rq(cmd);
1001	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1002	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1003	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1004	u32 data_len = sdp->sector_size;
1005
1006	if (!sd_set_special_bvec(rq, data_len))
1007		return BLK_STS_RESOURCE;
1008
1009	cmd->cmd_len = 16;
1010	cmd->cmnd[0] = WRITE_SAME_16;
1011	if (unmap)
1012		cmd->cmnd[1] = 0x8; /* UNMAP */
1013	put_unaligned_be64(lba, &cmd->cmnd[2]);
1014	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1015
1016	cmd->allowed = sdkp->max_retries;
1017	cmd->transfersize = data_len;
1018	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
1019
1020	return scsi_alloc_sgtables(cmd);
1021}
1022
1023static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
1024		bool unmap)
1025{
1026	struct scsi_device *sdp = cmd->device;
1027	struct request *rq = scsi_cmd_to_rq(cmd);
1028	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1029	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1030	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1031	u32 data_len = sdp->sector_size;
1032
1033	if (!sd_set_special_bvec(rq, data_len))
1034		return BLK_STS_RESOURCE;
1035
1036	cmd->cmd_len = 10;
1037	cmd->cmnd[0] = WRITE_SAME;
1038	if (unmap)
1039		cmd->cmnd[1] = 0x8; /* UNMAP */
1040	put_unaligned_be32(lba, &cmd->cmnd[2]);
1041	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1042
1043	cmd->allowed = sdkp->max_retries;
1044	cmd->transfersize = data_len;
1045	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
1046
1047	return scsi_alloc_sgtables(cmd);
1048}
1049
1050static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
1051{
1052	struct request *rq = scsi_cmd_to_rq(cmd);
1053	struct scsi_device *sdp = cmd->device;
1054	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1055	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1056	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1057
1058	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
1059		switch (sdkp->zeroing_mode) {
1060		case SD_ZERO_WS16_UNMAP:
1061			return sd_setup_write_same16_cmnd(cmd, true);
1062		case SD_ZERO_WS10_UNMAP:
1063			return sd_setup_write_same10_cmnd(cmd, true);
1064		}
1065	}
1066
1067	if (sdp->no_write_same) {
1068		rq->rq_flags |= RQF_QUIET;
1069		return BLK_STS_TARGET;
1070	}
1071
1072	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
1073		return sd_setup_write_same16_cmnd(cmd, false);
1074
1075	return sd_setup_write_same10_cmnd(cmd, false);
1076}
1077
1078static void sd_disable_write_same(struct scsi_disk *sdkp)
1079{
1080	sdkp->device->no_write_same = 1;
1081	sdkp->max_ws_blocks = 0;
1082	blk_queue_disable_write_zeroes(sdkp->disk->queue);
1083}
1084
1085static void sd_config_write_same(struct scsi_disk *sdkp,
1086		struct queue_limits *lim)
1087{
 
1088	unsigned int logical_block_size = sdkp->device->sector_size;
1089
1090	if (sdkp->device->no_write_same) {
1091		sdkp->max_ws_blocks = 0;
1092		goto out;
1093	}
1094
1095	/* Some devices can not handle block counts above 0xffff despite
1096	 * supporting WRITE SAME(16). Consequently we default to 64k
1097	 * blocks per I/O unless the device explicitly advertises a
1098	 * bigger limit.
1099	 */
1100	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1101		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1102						   (u32)SD_MAX_WS16_BLOCKS);
1103	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1104		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1105						   (u32)SD_MAX_WS10_BLOCKS);
1106	else {
1107		sdkp->device->no_write_same = 1;
1108		sdkp->max_ws_blocks = 0;
1109	}
1110
1111	if (sdkp->lbprz && sdkp->lbpws)
1112		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1113	else if (sdkp->lbprz && sdkp->lbpws10)
1114		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1115	else if (sdkp->max_ws_blocks)
1116		sdkp->zeroing_mode = SD_ZERO_WS;
1117	else
1118		sdkp->zeroing_mode = SD_ZERO_WRITE;
1119
1120	if (sdkp->max_ws_blocks &&
1121	    sdkp->physical_block_size > logical_block_size) {
1122		/*
1123		 * Reporting a maximum number of blocks that is not aligned
1124		 * on the device physical size would cause a large write same
1125		 * request to be split into physically unaligned chunks by
1126		 * __blkdev_issue_write_zeroes() even if the caller of this
1127		 * functions took care to align the large request. So make sure
1128		 * the maximum reported is aligned to the device physical block
1129		 * size. This is only an optional optimization for regular
1130		 * disks, but this is mandatory to avoid failure of large write
1131		 * same requests directed at sequential write required zones of
1132		 * host-managed ZBC disks.
1133		 */
1134		sdkp->max_ws_blocks =
1135			round_down(sdkp->max_ws_blocks,
1136				   bytes_to_logical(sdkp->device,
1137						    sdkp->physical_block_size));
1138	}
1139
1140out:
1141	lim->max_write_zeroes_sectors =
1142		sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT);
1143}
1144
1145static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1146{
1147	struct request *rq = scsi_cmd_to_rq(cmd);
1148	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1149
1150	/* flush requests don't perform I/O, zero the S/G table */
1151	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1152
1153	if (cmd->device->use_16_for_sync) {
1154		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1155		cmd->cmd_len = 16;
1156	} else {
1157		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1158		cmd->cmd_len = 10;
1159	}
1160	cmd->transfersize = 0;
1161	cmd->allowed = sdkp->max_retries;
1162
1163	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1164	return BLK_STS_OK;
1165}
1166
1167/**
1168 * sd_group_number() - Compute the GROUP NUMBER field
1169 * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
1170 *	field.
1171 *
1172 * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
1173 * 0: no relative lifetime.
1174 * 1: shortest relative lifetime.
1175 * 2: second shortest relative lifetime.
1176 * 3 - 0x3d: intermediate relative lifetimes.
1177 * 0x3e: second longest relative lifetime.
1178 * 0x3f: longest relative lifetime.
1179 */
1180static u8 sd_group_number(struct scsi_cmnd *cmd)
1181{
1182	const struct request *rq = scsi_cmd_to_rq(cmd);
1183	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1184
1185	if (!sdkp->rscs)
1186		return 0;
1187
1188	return min3((u32)rq->bio->bi_write_hint,
1189		    (u32)sdkp->permanent_stream_count, 0x3fu);
1190}
1191
1192static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1193				       sector_t lba, unsigned int nr_blocks,
1194				       unsigned char flags, unsigned int dld)
1195{
1196	cmd->cmd_len = SD_EXT_CDB_SIZE;
1197	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1198	cmd->cmnd[6]  = sd_group_number(cmd);
1199	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1200	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1201	cmd->cmnd[10] = flags;
1202	cmd->cmnd[11] = dld & 0x07;
1203	put_unaligned_be64(lba, &cmd->cmnd[12]);
1204	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1205	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1206
1207	return BLK_STS_OK;
1208}
1209
1210static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1211				       sector_t lba, unsigned int nr_blocks,
1212				       unsigned char flags, unsigned int dld)
1213{
1214	cmd->cmd_len  = 16;
1215	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1216	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1217	cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
1218	cmd->cmnd[15] = 0;
1219	put_unaligned_be64(lba, &cmd->cmnd[2]);
1220	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1221
1222	return BLK_STS_OK;
1223}
1224
1225static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1226				       sector_t lba, unsigned int nr_blocks,
1227				       unsigned char flags)
1228{
1229	cmd->cmd_len = 10;
1230	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1231	cmd->cmnd[1] = flags;
1232	cmd->cmnd[6] = sd_group_number(cmd);
1233	cmd->cmnd[9] = 0;
1234	put_unaligned_be32(lba, &cmd->cmnd[2]);
1235	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1236
1237	return BLK_STS_OK;
1238}
1239
1240static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1241				      sector_t lba, unsigned int nr_blocks,
1242				      unsigned char flags)
1243{
1244	/* Avoid that 0 blocks gets translated into 256 blocks. */
1245	if (WARN_ON_ONCE(nr_blocks == 0))
1246		return BLK_STS_IOERR;
1247
1248	if (unlikely(flags & 0x8)) {
1249		/*
1250		 * This happens only if this drive failed 10byte rw
1251		 * command with ILLEGAL_REQUEST during operation and
1252		 * thus turned off use_10_for_rw.
1253		 */
1254		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1255		return BLK_STS_IOERR;
1256	}
1257
1258	cmd->cmd_len = 6;
1259	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1260	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1261	cmd->cmnd[2] = (lba >> 8) & 0xff;
1262	cmd->cmnd[3] = lba & 0xff;
1263	cmd->cmnd[4] = nr_blocks;
1264	cmd->cmnd[5] = 0;
1265
1266	return BLK_STS_OK;
1267}
1268
1269/*
1270 * Check if a command has a duration limit set. If it does, and the target
1271 * device supports CDL and the feature is enabled, return the limit
1272 * descriptor index to use. Return 0 (no limit) otherwise.
1273 */
1274static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1275{
1276	struct scsi_device *sdp = sdkp->device;
1277	int hint;
1278
1279	if (!sdp->cdl_supported || !sdp->cdl_enable)
1280		return 0;
1281
1282	/*
1283	 * Use "no limit" if the request ioprio does not specify a duration
1284	 * limit hint.
1285	 */
1286	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1287	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1288	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1289		return 0;
1290
1291	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1292}
1293
1294static blk_status_t sd_setup_atomic_cmnd(struct scsi_cmnd *cmd,
1295					sector_t lba, unsigned int nr_blocks,
1296					bool boundary, unsigned char flags)
1297{
1298	cmd->cmd_len  = 16;
1299	cmd->cmnd[0]  = WRITE_ATOMIC_16;
1300	cmd->cmnd[1]  = flags;
1301	put_unaligned_be64(lba, &cmd->cmnd[2]);
1302	put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
1303	if (boundary)
1304		put_unaligned_be16(nr_blocks, &cmd->cmnd[10]);
1305	else
1306		put_unaligned_be16(0, &cmd->cmnd[10]);
1307	put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
1308	cmd->cmnd[14] = 0;
1309	cmd->cmnd[15] = 0;
1310
1311	return BLK_STS_OK;
1312}
1313
1314static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1315{
1316	struct request *rq = scsi_cmd_to_rq(cmd);
1317	struct scsi_device *sdp = cmd->device;
1318	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1319	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1320	sector_t threshold;
1321	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1322	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1323	bool write = rq_data_dir(rq) == WRITE;
1324	unsigned char protect, fua;
1325	unsigned int dld;
1326	blk_status_t ret;
1327	unsigned int dif;
1328	bool dix;
1329
1330	ret = scsi_alloc_sgtables(cmd);
1331	if (ret != BLK_STS_OK)
1332		return ret;
1333
1334	ret = BLK_STS_IOERR;
1335	if (!scsi_device_online(sdp) || sdp->changed) {
1336		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1337		goto fail;
1338	}
1339
1340	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1341		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1342		goto fail;
1343	}
1344
1345	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1346		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1347		goto fail;
1348	}
1349
1350	/*
1351	 * Some SD card readers can't handle accesses which touch the
1352	 * last one or two logical blocks. Split accesses as needed.
1353	 */
1354	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1355
1356	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1357		if (lba < threshold) {
1358			/* Access up to the threshold but not beyond */
1359			nr_blocks = threshold - lba;
1360		} else {
1361			/* Access only a single logical block */
1362			nr_blocks = 1;
1363		}
1364	}
1365
 
 
 
 
 
 
1366	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1367	dix = scsi_prot_sg_count(cmd);
1368	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1369	dld = sd_cdl_dld(sdkp, cmd);
1370
1371	if (dif || dix)
1372		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1373	else
1374		protect = 0;
1375
1376	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1377		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1378					 protect | fua, dld);
1379	} else if (rq->cmd_flags & REQ_ATOMIC) {
1380		ret = sd_setup_atomic_cmnd(cmd, lba, nr_blocks,
1381				sdkp->use_atomic_write_boundary,
1382				protect | fua);
1383	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1384		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1385					 protect | fua, dld);
1386	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1387		   sdp->use_10_for_rw || protect || rq->bio->bi_write_hint) {
1388		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1389					 protect | fua);
1390	} else {
1391		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1392					protect | fua);
1393	}
1394
1395	if (unlikely(ret != BLK_STS_OK))
1396		goto fail;
1397
1398	/*
1399	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1400	 * host adapter, it's safe to assume that we can at least transfer
1401	 * this many bytes between each connect / disconnect.
1402	 */
1403	cmd->transfersize = sdp->sector_size;
1404	cmd->underflow = nr_blocks << 9;
1405	cmd->allowed = sdkp->max_retries;
1406	cmd->sdb.length = nr_blocks * sdp->sector_size;
1407
1408	SCSI_LOG_HLQUEUE(1,
1409			 scmd_printk(KERN_INFO, cmd,
1410				     "%s: block=%llu, count=%d\n", __func__,
1411				     (unsigned long long)blk_rq_pos(rq),
1412				     blk_rq_sectors(rq)));
1413	SCSI_LOG_HLQUEUE(2,
1414			 scmd_printk(KERN_INFO, cmd,
1415				     "%s %d/%u 512 byte blocks.\n",
1416				     write ? "writing" : "reading", nr_blocks,
1417				     blk_rq_sectors(rq)));
1418
1419	/*
1420	 * This indicates that the command is ready from our end to be queued.
1421	 */
1422	return BLK_STS_OK;
1423fail:
1424	scsi_free_sgtables(cmd);
1425	return ret;
1426}
1427
1428static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1429{
1430	struct request *rq = scsi_cmd_to_rq(cmd);
1431
1432	switch (req_op(rq)) {
1433	case REQ_OP_DISCARD:
1434		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1435		case SD_LBP_UNMAP:
1436			return sd_setup_unmap_cmnd(cmd);
1437		case SD_LBP_WS16:
1438			return sd_setup_write_same16_cmnd(cmd, true);
1439		case SD_LBP_WS10:
1440			return sd_setup_write_same10_cmnd(cmd, true);
1441		case SD_LBP_ZERO:
1442			return sd_setup_write_same10_cmnd(cmd, false);
1443		default:
1444			return BLK_STS_TARGET;
1445		}
1446	case REQ_OP_WRITE_ZEROES:
1447		return sd_setup_write_zeroes_cmnd(cmd);
1448	case REQ_OP_FLUSH:
1449		return sd_setup_flush_cmnd(cmd);
1450	case REQ_OP_READ:
1451	case REQ_OP_WRITE:
 
1452		return sd_setup_read_write_cmnd(cmd);
1453	case REQ_OP_ZONE_RESET:
1454		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1455						   false);
1456	case REQ_OP_ZONE_RESET_ALL:
1457		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1458						   true);
1459	case REQ_OP_ZONE_OPEN:
1460		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1461	case REQ_OP_ZONE_CLOSE:
1462		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1463	case REQ_OP_ZONE_FINISH:
1464		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1465	default:
1466		WARN_ON_ONCE(1);
1467		return BLK_STS_NOTSUPP;
1468	}
1469}
1470
1471static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1472{
1473	struct request *rq = scsi_cmd_to_rq(SCpnt);
1474
1475	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1476		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1477}
1478
1479static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1480{
1481	if (sdkp->device->removable || sdkp->write_prot) {
1482		if (disk_check_media_change(disk))
1483			return true;
1484	}
1485
1486	/*
1487	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1488	 * nothing to do with partitions, BLKRRPART is used to force a full
1489	 * revalidate after things like a format for historical reasons.
1490	 */
1491	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1492}
1493
1494/**
1495 *	sd_open - open a scsi disk device
1496 *	@disk: disk to open
1497 *	@mode: open mode
1498 *
1499 *	Returns 0 if successful. Returns a negated errno value in case 
1500 *	of error.
1501 *
1502 *	Note: This can be called from a user context (e.g. fsck(1) )
1503 *	or from within the kernel (e.g. as a result of a mount(1) ).
1504 *	In the latter case @inode and @filp carry an abridged amount
1505 *	of information as noted above.
1506 *
1507 *	Locking: called with disk->open_mutex held.
1508 **/
1509static int sd_open(struct gendisk *disk, blk_mode_t mode)
1510{
1511	struct scsi_disk *sdkp = scsi_disk(disk);
1512	struct scsi_device *sdev = sdkp->device;
1513	int retval;
1514
1515	if (scsi_device_get(sdev))
1516		return -ENXIO;
1517
1518	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1519
1520	/*
1521	 * If the device is in error recovery, wait until it is done.
1522	 * If the device is offline, then disallow any access to it.
1523	 */
1524	retval = -ENXIO;
1525	if (!scsi_block_when_processing_errors(sdev))
1526		goto error_out;
1527
1528	if (sd_need_revalidate(disk, sdkp))
1529		sd_revalidate_disk(disk);
1530
1531	/*
1532	 * If the drive is empty, just let the open fail.
1533	 */
1534	retval = -ENOMEDIUM;
1535	if (sdev->removable && !sdkp->media_present &&
1536	    !(mode & BLK_OPEN_NDELAY))
1537		goto error_out;
1538
1539	/*
1540	 * If the device has the write protect tab set, have the open fail
1541	 * if the user expects to be able to write to the thing.
1542	 */
1543	retval = -EROFS;
1544	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1545		goto error_out;
1546
1547	/*
1548	 * It is possible that the disk changing stuff resulted in
1549	 * the device being taken offline.  If this is the case,
1550	 * report this to the user, and don't pretend that the
1551	 * open actually succeeded.
1552	 */
1553	retval = -ENXIO;
1554	if (!scsi_device_online(sdev))
1555		goto error_out;
1556
1557	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1558		if (scsi_block_when_processing_errors(sdev))
1559			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1560	}
1561
1562	return 0;
1563
1564error_out:
1565	scsi_device_put(sdev);
1566	return retval;	
1567}
1568
1569/**
1570 *	sd_release - invoked when the (last) close(2) is called on this
1571 *	scsi disk.
1572 *	@disk: disk to release
1573 *
1574 *	Returns 0. 
1575 *
1576 *	Note: may block (uninterruptible) if error recovery is underway
1577 *	on this disk.
1578 *
1579 *	Locking: called with disk->open_mutex held.
1580 **/
1581static void sd_release(struct gendisk *disk)
1582{
1583	struct scsi_disk *sdkp = scsi_disk(disk);
1584	struct scsi_device *sdev = sdkp->device;
1585
1586	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1587
1588	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1589		if (scsi_block_when_processing_errors(sdev))
1590			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1591	}
1592
1593	scsi_device_put(sdev);
1594}
1595
1596static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1597{
1598	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1599	struct scsi_device *sdp = sdkp->device;
1600	struct Scsi_Host *host = sdp->host;
1601	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1602	int diskinfo[4];
1603
1604	/* default to most commonly used values */
1605	diskinfo[0] = 0x40;	/* 1 << 6 */
1606	diskinfo[1] = 0x20;	/* 1 << 5 */
1607	diskinfo[2] = capacity >> 11;
1608
1609	/* override with calculated, extended default, or driver values */
1610	if (host->hostt->bios_param)
1611		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1612	else
1613		scsicam_bios_param(bdev, capacity, diskinfo);
1614
1615	geo->heads = diskinfo[0];
1616	geo->sectors = diskinfo[1];
1617	geo->cylinders = diskinfo[2];
1618	return 0;
1619}
1620
1621/**
1622 *	sd_ioctl - process an ioctl
1623 *	@bdev: target block device
1624 *	@mode: open mode
1625 *	@cmd: ioctl command number
1626 *	@arg: this is third argument given to ioctl(2) system call.
1627 *	Often contains a pointer.
1628 *
1629 *	Returns 0 if successful (some ioctls return positive numbers on
1630 *	success as well). Returns a negated errno value in case of error.
1631 *
1632 *	Note: most ioctls are forward onto the block subsystem or further
1633 *	down in the scsi subsystem.
1634 **/
1635static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1636		    unsigned int cmd, unsigned long arg)
1637{
1638	struct gendisk *disk = bdev->bd_disk;
1639	struct scsi_disk *sdkp = scsi_disk(disk);
1640	struct scsi_device *sdp = sdkp->device;
1641	void __user *p = (void __user *)arg;
1642	int error;
1643    
1644	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1645				    "cmd=0x%x\n", disk->disk_name, cmd));
1646
1647	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1648		return -ENOIOCTLCMD;
1649
1650	/*
1651	 * If we are in the middle of error recovery, don't let anyone
1652	 * else try and use this device.  Also, if error recovery fails, it
1653	 * may try and take the device offline, in which case all further
1654	 * access to the device is prohibited.
1655	 */
1656	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1657			(mode & BLK_OPEN_NDELAY));
1658	if (error)
1659		return error;
1660
1661	if (is_sed_ioctl(cmd))
1662		return sed_ioctl(sdkp->opal_dev, cmd, p);
1663	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1664}
1665
1666static void set_media_not_present(struct scsi_disk *sdkp)
1667{
1668	if (sdkp->media_present)
1669		sdkp->device->changed = 1;
1670
1671	if (sdkp->device->removable) {
1672		sdkp->media_present = 0;
1673		sdkp->capacity = 0;
1674	}
1675}
1676
1677static int media_not_present(struct scsi_disk *sdkp,
1678			     struct scsi_sense_hdr *sshdr)
1679{
1680	if (!scsi_sense_valid(sshdr))
1681		return 0;
1682
1683	/* not invoked for commands that could return deferred errors */
1684	switch (sshdr->sense_key) {
1685	case UNIT_ATTENTION:
1686	case NOT_READY:
1687		/* medium not present */
1688		if (sshdr->asc == 0x3A) {
1689			set_media_not_present(sdkp);
1690			return 1;
1691		}
1692	}
1693	return 0;
1694}
1695
1696/**
1697 *	sd_check_events - check media events
1698 *	@disk: kernel device descriptor
1699 *	@clearing: disk events currently being cleared
1700 *
1701 *	Returns mask of DISK_EVENT_*.
1702 *
1703 *	Note: this function is invoked from the block subsystem.
1704 **/
1705static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1706{
1707	struct scsi_disk *sdkp = disk->private_data;
1708	struct scsi_device *sdp;
1709	int retval;
1710	bool disk_changed;
1711
1712	if (!sdkp)
1713		return 0;
1714
1715	sdp = sdkp->device;
1716	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1717
1718	/*
1719	 * If the device is offline, don't send any commands - just pretend as
1720	 * if the command failed.  If the device ever comes back online, we
1721	 * can deal with it then.  It is only because of unrecoverable errors
1722	 * that we would ever take a device offline in the first place.
1723	 */
1724	if (!scsi_device_online(sdp)) {
1725		set_media_not_present(sdkp);
1726		goto out;
1727	}
1728
1729	/*
1730	 * Using TEST_UNIT_READY enables differentiation between drive with
1731	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1732	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1733	 *
1734	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1735	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1736	 * sd_revalidate() is called.
1737	 */
1738	if (scsi_block_when_processing_errors(sdp)) {
1739		struct scsi_sense_hdr sshdr = { 0, };
1740
1741		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1742					      &sshdr);
1743
1744		/* failed to execute TUR, assume media not present */
1745		if (retval < 0 || host_byte(retval)) {
1746			set_media_not_present(sdkp);
1747			goto out;
1748		}
1749
1750		if (media_not_present(sdkp, &sshdr))
1751			goto out;
1752	}
1753
1754	/*
1755	 * For removable scsi disk we have to recognise the presence
1756	 * of a disk in the drive.
1757	 */
1758	if (!sdkp->media_present)
1759		sdp->changed = 1;
1760	sdkp->media_present = 1;
1761out:
1762	/*
1763	 * sdp->changed is set under the following conditions:
1764	 *
1765	 *	Medium present state has changed in either direction.
1766	 *	Device has indicated UNIT_ATTENTION.
1767	 */
1768	disk_changed = sdp->changed;
1769	sdp->changed = 0;
1770	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1771}
1772
1773static int sd_sync_cache(struct scsi_disk *sdkp)
1774{
1775	int res;
1776	struct scsi_device *sdp = sdkp->device;
1777	const int timeout = sdp->request_queue->rq_timeout
1778		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1779	/* Leave the rest of the command zero to indicate flush everything. */
1780	const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1781				SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1782	struct scsi_sense_hdr sshdr;
1783	struct scsi_failure failure_defs[] = {
1784		{
1785			.allowed = 3,
1786			.result = SCMD_FAILURE_RESULT_ANY,
1787		},
1788		{}
1789	};
1790	struct scsi_failures failures = {
1791		.failure_definitions = failure_defs,
1792	};
1793	const struct scsi_exec_args exec_args = {
1794		.req_flags = BLK_MQ_REQ_PM,
1795		.sshdr = &sshdr,
1796		.failures = &failures,
1797	};
1798
1799	if (!scsi_device_online(sdp))
1800		return -ENODEV;
1801
1802	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1803			       sdkp->max_retries, &exec_args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1804	if (res) {
1805		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1806
1807		if (res < 0)
1808			return res;
1809
1810		if (scsi_status_is_check_condition(res) &&
1811		    scsi_sense_valid(&sshdr)) {
1812			sd_print_sense_hdr(sdkp, &sshdr);
1813
1814			/* we need to evaluate the error return  */
1815			if (sshdr.asc == 0x3a ||	/* medium not present */
1816			    sshdr.asc == 0x20 ||	/* invalid command */
1817			    (sshdr.asc == 0x74 && sshdr.ascq == 0x71))	/* drive is password locked */
1818				/* this is no error here */
1819				return 0;
1820
1821			/*
1822			 * If a format is in progress or if the drive does not
1823			 * support sync, there is not much we can do because
1824			 * this is called during shutdown or suspend so just
1825			 * return success so those operations can proceed.
1826			 */
1827			if ((sshdr.asc == 0x04 && sshdr.ascq == 0x04) ||
1828			    sshdr.sense_key == ILLEGAL_REQUEST)
1829				return 0;
1830		}
1831
1832		switch (host_byte(res)) {
1833		/* ignore errors due to racing a disconnection */
1834		case DID_BAD_TARGET:
1835		case DID_NO_CONNECT:
1836			return 0;
1837		/* signal the upper layer it might try again */
1838		case DID_BUS_BUSY:
1839		case DID_IMM_RETRY:
1840		case DID_REQUEUE:
1841		case DID_SOFT_ERROR:
1842			return -EBUSY;
1843		default:
1844			return -EIO;
1845		}
1846	}
1847	return 0;
1848}
1849
1850static void sd_rescan(struct device *dev)
1851{
1852	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1853
1854	sd_revalidate_disk(sdkp->disk);
1855}
1856
1857static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1858		enum blk_unique_id type)
1859{
1860	struct scsi_device *sdev = scsi_disk(disk)->device;
1861	const struct scsi_vpd *vpd;
1862	const unsigned char *d;
1863	int ret = -ENXIO, len;
1864
1865	rcu_read_lock();
1866	vpd = rcu_dereference(sdev->vpd_pg83);
1867	if (!vpd)
1868		goto out_unlock;
1869
1870	ret = -EINVAL;
1871	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1872		/* we only care about designators with LU association */
1873		if (((d[1] >> 4) & 0x3) != 0x00)
1874			continue;
1875		if ((d[1] & 0xf) != type)
1876			continue;
1877
1878		/*
1879		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1880		 * keep looking as one with more entropy might still show up.
1881		 */
1882		len = d[3];
1883		if (len != 8 && len != 12 && len != 16)
1884			continue;
1885		ret = len;
1886		memcpy(id, d + 4, len);
1887		if (len == 16)
1888			break;
1889	}
1890out_unlock:
1891	rcu_read_unlock();
1892	return ret;
1893}
1894
1895static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1896{
1897	switch (host_byte(result)) {
1898	case DID_TRANSPORT_MARGINAL:
1899	case DID_TRANSPORT_DISRUPTED:
1900	case DID_BUS_BUSY:
1901		return PR_STS_RETRY_PATH_FAILURE;
1902	case DID_NO_CONNECT:
1903		return PR_STS_PATH_FAILED;
1904	case DID_TRANSPORT_FAILFAST:
1905		return PR_STS_PATH_FAST_FAILED;
1906	}
1907
1908	switch (status_byte(result)) {
1909	case SAM_STAT_RESERVATION_CONFLICT:
1910		return PR_STS_RESERVATION_CONFLICT;
1911	case SAM_STAT_CHECK_CONDITION:
1912		if (!scsi_sense_valid(sshdr))
1913			return PR_STS_IOERR;
1914
1915		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1916		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1917			return -EINVAL;
1918
1919		fallthrough;
1920	default:
1921		return PR_STS_IOERR;
1922	}
1923}
1924
1925static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1926			    unsigned char *data, int data_len)
1927{
1928	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1929	struct scsi_device *sdev = sdkp->device;
1930	struct scsi_sense_hdr sshdr;
1931	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1932	struct scsi_failure failure_defs[] = {
1933		{
1934			.sense = UNIT_ATTENTION,
1935			.asc = SCMD_FAILURE_ASC_ANY,
1936			.ascq = SCMD_FAILURE_ASCQ_ANY,
1937			.allowed = 5,
1938			.result = SAM_STAT_CHECK_CONDITION,
1939		},
1940		{}
1941	};
1942	struct scsi_failures failures = {
1943		.failure_definitions = failure_defs,
1944	};
1945	const struct scsi_exec_args exec_args = {
1946		.sshdr = &sshdr,
1947		.failures = &failures,
1948	};
1949	int result;
1950
1951	put_unaligned_be16(data_len, &cmd[7]);
1952
1953	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1954				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1955	if (scsi_status_is_check_condition(result) &&
1956	    scsi_sense_valid(&sshdr)) {
1957		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1958		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1959	}
1960
1961	if (result <= 0)
1962		return result;
1963
1964	return sd_scsi_to_pr_err(&sshdr, result);
1965}
1966
1967static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1968{
1969	int result, i, data_offset, num_copy_keys;
1970	u32 num_keys = keys_info->num_keys;
1971	int data_len = num_keys * 8 + 8;
1972	u8 *data;
1973
1974	data = kzalloc(data_len, GFP_KERNEL);
1975	if (!data)
1976		return -ENOMEM;
1977
1978	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1979	if (result)
1980		goto free_data;
1981
1982	keys_info->generation = get_unaligned_be32(&data[0]);
1983	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1984
1985	data_offset = 8;
1986	num_copy_keys = min(num_keys, keys_info->num_keys);
1987
1988	for (i = 0; i < num_copy_keys; i++) {
1989		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1990		data_offset += 8;
1991	}
1992
1993free_data:
1994	kfree(data);
1995	return result;
1996}
1997
1998static int sd_pr_read_reservation(struct block_device *bdev,
1999				  struct pr_held_reservation *rsv)
2000{
2001	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
2002	struct scsi_device *sdev = sdkp->device;
2003	u8 data[24] = { };
2004	int result, len;
2005
2006	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
2007	if (result)
2008		return result;
2009
2010	len = get_unaligned_be32(&data[4]);
2011	if (!len)
2012		return 0;
2013
2014	/* Make sure we have at least the key and type */
2015	if (len < 14) {
2016		sdev_printk(KERN_INFO, sdev,
2017			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
2018			    len);
2019		return -EINVAL;
2020	}
2021
2022	rsv->generation = get_unaligned_be32(&data[0]);
2023	rsv->key = get_unaligned_be64(&data[8]);
2024	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
2025	return 0;
2026}
2027
2028static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
2029			     u64 sa_key, enum scsi_pr_type type, u8 flags)
2030{
2031	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
2032	struct scsi_device *sdev = sdkp->device;
2033	struct scsi_sense_hdr sshdr;
2034	struct scsi_failure failure_defs[] = {
2035		{
2036			.sense = UNIT_ATTENTION,
2037			.asc = SCMD_FAILURE_ASC_ANY,
2038			.ascq = SCMD_FAILURE_ASCQ_ANY,
2039			.allowed = 5,
2040			.result = SAM_STAT_CHECK_CONDITION,
2041		},
2042		{}
2043	};
2044	struct scsi_failures failures = {
2045		.failure_definitions = failure_defs,
2046	};
2047	const struct scsi_exec_args exec_args = {
2048		.sshdr = &sshdr,
2049		.failures = &failures,
2050	};
2051	int result;
2052	u8 cmd[16] = { 0, };
2053	u8 data[24] = { 0, };
2054
2055	cmd[0] = PERSISTENT_RESERVE_OUT;
2056	cmd[1] = sa;
2057	cmd[2] = type;
2058	put_unaligned_be32(sizeof(data), &cmd[5]);
2059
2060	put_unaligned_be64(key, &data[0]);
2061	put_unaligned_be64(sa_key, &data[8]);
2062	data[20] = flags;
2063
2064	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
2065				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
2066				  &exec_args);
2067
2068	if (scsi_status_is_check_condition(result) &&
2069	    scsi_sense_valid(&sshdr)) {
2070		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
2071		scsi_print_sense_hdr(sdev, NULL, &sshdr);
2072	}
2073
2074	if (result <= 0)
2075		return result;
2076
2077	return sd_scsi_to_pr_err(&sshdr, result);
2078}
2079
2080static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2081		u32 flags)
2082{
2083	if (flags & ~PR_FL_IGNORE_KEY)
2084		return -EOPNOTSUPP;
2085	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
2086			old_key, new_key, 0,
2087			(1 << 0) /* APTPL */);
2088}
2089
2090static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2091		u32 flags)
2092{
2093	if (flags)
2094		return -EOPNOTSUPP;
2095	return sd_pr_out_command(bdev, 0x01, key, 0,
2096				 block_pr_type_to_scsi(type), 0);
2097}
2098
2099static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2100{
2101	return sd_pr_out_command(bdev, 0x02, key, 0,
2102				 block_pr_type_to_scsi(type), 0);
2103}
2104
2105static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2106		enum pr_type type, bool abort)
2107{
2108	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
2109				 block_pr_type_to_scsi(type), 0);
2110}
2111
2112static int sd_pr_clear(struct block_device *bdev, u64 key)
2113{
2114	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
2115}
2116
2117static const struct pr_ops sd_pr_ops = {
2118	.pr_register	= sd_pr_register,
2119	.pr_reserve	= sd_pr_reserve,
2120	.pr_release	= sd_pr_release,
2121	.pr_preempt	= sd_pr_preempt,
2122	.pr_clear	= sd_pr_clear,
2123	.pr_read_keys	= sd_pr_read_keys,
2124	.pr_read_reservation = sd_pr_read_reservation,
2125};
2126
2127static void scsi_disk_free_disk(struct gendisk *disk)
2128{
2129	struct scsi_disk *sdkp = scsi_disk(disk);
2130
2131	put_device(&sdkp->disk_dev);
2132}
2133
2134static const struct block_device_operations sd_fops = {
2135	.owner			= THIS_MODULE,
2136	.open			= sd_open,
2137	.release		= sd_release,
2138	.ioctl			= sd_ioctl,
2139	.getgeo			= sd_getgeo,
2140	.compat_ioctl		= blkdev_compat_ptr_ioctl,
2141	.check_events		= sd_check_events,
2142	.unlock_native_capacity	= sd_unlock_native_capacity,
2143	.report_zones		= sd_zbc_report_zones,
2144	.get_unique_id		= sd_get_unique_id,
2145	.free_disk		= scsi_disk_free_disk,
2146	.pr_ops			= &sd_pr_ops,
2147};
2148
2149/**
2150 *	sd_eh_reset - reset error handling callback
2151 *	@scmd:		sd-issued command that has failed
2152 *
2153 *	This function is called by the SCSI midlayer before starting
2154 *	SCSI EH. When counting medium access failures we have to be
2155 *	careful to register it only only once per device and SCSI EH run;
2156 *	there might be several timed out commands which will cause the
2157 *	'max_medium_access_timeouts' counter to trigger after the first
2158 *	SCSI EH run already and set the device to offline.
2159 *	So this function resets the internal counter before starting SCSI EH.
2160 **/
2161static void sd_eh_reset(struct scsi_cmnd *scmd)
2162{
2163	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2164
2165	/* New SCSI EH run, reset gate variable */
2166	sdkp->ignore_medium_access_errors = false;
2167}
2168
2169/**
2170 *	sd_eh_action - error handling callback
2171 *	@scmd:		sd-issued command that has failed
2172 *	@eh_disp:	The recovery disposition suggested by the midlayer
2173 *
2174 *	This function is called by the SCSI midlayer upon completion of an
2175 *	error test command (currently TEST UNIT READY). The result of sending
2176 *	the eh command is passed in eh_disp.  We're looking for devices that
2177 *	fail medium access commands but are OK with non access commands like
2178 *	test unit ready (so wrongly see the device as having a successful
2179 *	recovery)
2180 **/
2181static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2182{
2183	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2184	struct scsi_device *sdev = scmd->device;
2185
2186	if (!scsi_device_online(sdev) ||
2187	    !scsi_medium_access_command(scmd) ||
2188	    host_byte(scmd->result) != DID_TIME_OUT ||
2189	    eh_disp != SUCCESS)
2190		return eh_disp;
2191
2192	/*
2193	 * The device has timed out executing a medium access command.
2194	 * However, the TEST UNIT READY command sent during error
2195	 * handling completed successfully. Either the device is in the
2196	 * process of recovering or has it suffered an internal failure
2197	 * that prevents access to the storage medium.
2198	 */
2199	if (!sdkp->ignore_medium_access_errors) {
2200		sdkp->medium_access_timed_out++;
2201		sdkp->ignore_medium_access_errors = true;
2202	}
2203
2204	/*
2205	 * If the device keeps failing read/write commands but TEST UNIT
2206	 * READY always completes successfully we assume that medium
2207	 * access is no longer possible and take the device offline.
2208	 */
2209	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2210		scmd_printk(KERN_ERR, scmd,
2211			    "Medium access timeout failure. Offlining disk!\n");
2212		mutex_lock(&sdev->state_mutex);
2213		scsi_device_set_state(sdev, SDEV_OFFLINE);
2214		mutex_unlock(&sdev->state_mutex);
2215
2216		return SUCCESS;
2217	}
2218
2219	return eh_disp;
2220}
2221
2222static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2223{
2224	struct request *req = scsi_cmd_to_rq(scmd);
2225	struct scsi_device *sdev = scmd->device;
2226	unsigned int transferred, good_bytes;
2227	u64 start_lba, end_lba, bad_lba;
2228
2229	/*
2230	 * Some commands have a payload smaller than the device logical
2231	 * block size (e.g. INQUIRY on a 4K disk).
2232	 */
2233	if (scsi_bufflen(scmd) <= sdev->sector_size)
2234		return 0;
2235
2236	/* Check if we have a 'bad_lba' information */
2237	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2238				     SCSI_SENSE_BUFFERSIZE,
2239				     &bad_lba))
2240		return 0;
2241
2242	/*
2243	 * If the bad lba was reported incorrectly, we have no idea where
2244	 * the error is.
2245	 */
2246	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2247	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2248	if (bad_lba < start_lba || bad_lba >= end_lba)
2249		return 0;
2250
2251	/*
2252	 * resid is optional but mostly filled in.  When it's unused,
2253	 * its value is zero, so we assume the whole buffer transferred
2254	 */
2255	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2256
2257	/* This computation should always be done in terms of the
2258	 * resolution of the device's medium.
2259	 */
2260	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2261
2262	return min(good_bytes, transferred);
2263}
2264
2265/**
2266 *	sd_done - bottom half handler: called when the lower level
2267 *	driver has completed (successfully or otherwise) a scsi command.
2268 *	@SCpnt: mid-level's per command structure.
2269 *
2270 *	Note: potentially run from within an ISR. Must not block.
2271 **/
2272static int sd_done(struct scsi_cmnd *SCpnt)
2273{
2274	int result = SCpnt->result;
2275	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2276	unsigned int sector_size = SCpnt->device->sector_size;
2277	unsigned int resid;
2278	struct scsi_sense_hdr sshdr;
2279	struct request *req = scsi_cmd_to_rq(SCpnt);
2280	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2281	int sense_valid = 0;
2282	int sense_deferred = 0;
2283
2284	switch (req_op(req)) {
2285	case REQ_OP_DISCARD:
2286	case REQ_OP_WRITE_ZEROES:
2287	case REQ_OP_ZONE_RESET:
2288	case REQ_OP_ZONE_RESET_ALL:
2289	case REQ_OP_ZONE_OPEN:
2290	case REQ_OP_ZONE_CLOSE:
2291	case REQ_OP_ZONE_FINISH:
2292		if (!result) {
2293			good_bytes = blk_rq_bytes(req);
2294			scsi_set_resid(SCpnt, 0);
2295		} else {
2296			good_bytes = 0;
2297			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2298		}
2299		break;
2300	default:
2301		/*
2302		 * In case of bogus fw or device, we could end up having
2303		 * an unaligned partial completion. Check this here and force
2304		 * alignment.
2305		 */
2306		resid = scsi_get_resid(SCpnt);
2307		if (resid & (sector_size - 1)) {
2308			sd_printk(KERN_INFO, sdkp,
2309				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2310				resid, sector_size);
2311			scsi_print_command(SCpnt);
2312			resid = min(scsi_bufflen(SCpnt),
2313				    round_up(resid, sector_size));
2314			scsi_set_resid(SCpnt, resid);
2315		}
2316	}
2317
2318	if (result) {
2319		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2320		if (sense_valid)
2321			sense_deferred = scsi_sense_is_deferred(&sshdr);
2322	}
2323	sdkp->medium_access_timed_out = 0;
2324
2325	if (!scsi_status_is_check_condition(result) &&
2326	    (!sense_valid || sense_deferred))
2327		goto out;
2328
2329	switch (sshdr.sense_key) {
2330	case HARDWARE_ERROR:
2331	case MEDIUM_ERROR:
2332		good_bytes = sd_completed_bytes(SCpnt);
2333		break;
2334	case RECOVERED_ERROR:
2335		good_bytes = scsi_bufflen(SCpnt);
2336		break;
2337	case NO_SENSE:
2338		/* This indicates a false check condition, so ignore it.  An
2339		 * unknown amount of data was transferred so treat it as an
2340		 * error.
2341		 */
2342		SCpnt->result = 0;
2343		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2344		break;
2345	case ABORTED_COMMAND:
2346		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2347			good_bytes = sd_completed_bytes(SCpnt);
2348		break;
2349	case ILLEGAL_REQUEST:
2350		switch (sshdr.asc) {
2351		case 0x10:	/* DIX: Host detected corruption */
2352			good_bytes = sd_completed_bytes(SCpnt);
2353			break;
2354		case 0x20:	/* INVALID COMMAND OPCODE */
2355		case 0x24:	/* INVALID FIELD IN CDB */
2356			switch (SCpnt->cmnd[0]) {
2357			case UNMAP:
2358				sd_disable_discard(sdkp);
2359				break;
2360			case WRITE_SAME_16:
2361			case WRITE_SAME:
2362				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2363					sd_disable_discard(sdkp);
2364				} else {
2365					sd_disable_write_same(sdkp);
 
2366					req->rq_flags |= RQF_QUIET;
2367				}
2368				break;
2369			}
2370		}
2371		break;
2372	default:
2373		break;
2374	}
2375
2376 out:
2377	if (sdkp->device->type == TYPE_ZBC)
2378		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2379
2380	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2381					   "sd_done: completed %d of %d bytes\n",
2382					   good_bytes, scsi_bufflen(SCpnt)));
2383
2384	return good_bytes;
2385}
2386
2387/*
2388 * spinup disk - called only in sd_revalidate_disk()
2389 */
2390static void
2391sd_spinup_disk(struct scsi_disk *sdkp)
2392{
2393	static const u8 cmd[10] = { TEST_UNIT_READY };
2394	unsigned long spintime_expire = 0;
2395	int spintime, sense_valid = 0;
2396	unsigned int the_result;
2397	struct scsi_sense_hdr sshdr;
2398	struct scsi_failure failure_defs[] = {
2399		/* Do not retry Medium Not Present */
2400		{
2401			.sense = UNIT_ATTENTION,
2402			.asc = 0x3A,
2403			.ascq = SCMD_FAILURE_ASCQ_ANY,
2404			.result = SAM_STAT_CHECK_CONDITION,
2405		},
2406		{
2407			.sense = NOT_READY,
2408			.asc = 0x3A,
2409			.ascq = SCMD_FAILURE_ASCQ_ANY,
2410			.result = SAM_STAT_CHECK_CONDITION,
2411		},
2412		/* Retry when scsi_status_is_good would return false 3 times */
2413		{
2414			.result = SCMD_FAILURE_STAT_ANY,
2415			.allowed = 3,
2416		},
2417		{}
2418	};
2419	struct scsi_failures failures = {
2420		.failure_definitions = failure_defs,
2421	};
2422	const struct scsi_exec_args exec_args = {
2423		.sshdr = &sshdr,
2424		.failures = &failures,
2425	};
 
2426
2427	spintime = 0;
2428
2429	/* Spin up drives, as required.  Only do this at boot time */
2430	/* Spinup needs to be done for module loads too. */
2431	do {
2432		bool media_was_present = sdkp->media_present;
2433
2434		scsi_failures_reset_retries(&failures);
 
2435
2436		the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2437					      NULL, 0, SD_TIMEOUT,
2438					      sdkp->max_retries, &exec_args);
2439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2440
2441		if (the_result > 0) {
2442			/*
2443			 * If the drive has indicated to us that it doesn't
2444			 * have any media in it, don't bother with any more
2445			 * polling.
2446			 */
2447			if (media_not_present(sdkp, &sshdr)) {
2448				if (media_was_present)
2449					sd_printk(KERN_NOTICE, sdkp,
2450						  "Media removed, stopped polling\n");
2451				return;
2452			}
2453			sense_valid = scsi_sense_valid(&sshdr);
2454		}
 
 
 
2455
2456		if (!scsi_status_is_check_condition(the_result)) {
2457			/* no sense, TUR either succeeded or failed
2458			 * with a status error */
2459			if(!spintime && !scsi_status_is_good(the_result)) {
2460				sd_print_result(sdkp, "Test Unit Ready failed",
2461						the_result);
2462			}
2463			break;
2464		}
2465
2466		/*
2467		 * The device does not want the automatic start to be issued.
2468		 */
2469		if (sdkp->device->no_start_on_add)
2470			break;
2471
2472		if (sense_valid && sshdr.sense_key == NOT_READY) {
2473			if (sshdr.asc == 4 && sshdr.ascq == 3)
2474				break;	/* manual intervention required */
2475			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2476				break;	/* standby */
2477			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2478				break;	/* unavailable */
2479			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2480				break;	/* sanitize in progress */
2481			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2482				break;	/* depopulation in progress */
2483			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2484				break;	/* depopulation restoration in progress */
2485			/*
2486			 * Issue command to spin up drive when not ready
2487			 */
2488			if (!spintime) {
2489				/* Return immediately and start spin cycle */
2490				const u8 start_cmd[10] = {
2491					[0] = START_STOP,
2492					[1] = 1,
2493					[4] = sdkp->device->start_stop_pwr_cond ?
2494						0x11 : 1,
2495				};
2496
2497				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2498				scsi_execute_cmd(sdkp->device, start_cmd,
 
 
 
 
 
 
2499						 REQ_OP_DRV_IN, NULL, 0,
2500						 SD_TIMEOUT, sdkp->max_retries,
2501						 &exec_args);
2502				spintime_expire = jiffies + 100 * HZ;
2503				spintime = 1;
2504			}
2505			/* Wait 1 second for next try */
2506			msleep(1000);
2507			printk(KERN_CONT ".");
2508
2509		/*
2510		 * Wait for USB flash devices with slow firmware.
2511		 * Yes, this sense key/ASC combination shouldn't
2512		 * occur here.  It's characteristic of these devices.
2513		 */
2514		} else if (sense_valid &&
2515				sshdr.sense_key == UNIT_ATTENTION &&
2516				sshdr.asc == 0x28) {
2517			if (!spintime) {
2518				spintime_expire = jiffies + 5 * HZ;
2519				spintime = 1;
2520			}
2521			/* Wait 1 second for next try */
2522			msleep(1000);
2523		} else {
2524			/* we don't understand the sense code, so it's
2525			 * probably pointless to loop */
2526			if(!spintime) {
2527				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2528				sd_print_sense_hdr(sdkp, &sshdr);
2529			}
2530			break;
2531		}
2532				
2533	} while (spintime && time_before_eq(jiffies, spintime_expire));
2534
2535	if (spintime) {
2536		if (scsi_status_is_good(the_result))
2537			printk(KERN_CONT "ready\n");
2538		else
2539			printk(KERN_CONT "not responding...\n");
2540	}
2541}
2542
2543/*
2544 * Determine whether disk supports Data Integrity Field.
2545 */
2546static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2547{
2548	struct scsi_device *sdp = sdkp->device;
2549	u8 type;
2550
2551	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2552		sdkp->protection_type = 0;
2553		return 0;
2554	}
2555
2556	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2557
2558	if (type > T10_PI_TYPE3_PROTECTION) {
2559		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2560			  " protection type %u. Disabling disk!\n",
2561			  type);
2562		sdkp->protection_type = 0;
2563		return -ENODEV;
2564	}
2565
2566	sdkp->protection_type = type;
2567
2568	return 0;
2569}
2570
2571static void sd_config_protection(struct scsi_disk *sdkp,
2572		struct queue_limits *lim)
2573{
2574	struct scsi_device *sdp = sdkp->device;
2575
2576	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
2577		sd_dif_config_host(sdkp, lim);
2578
2579	if (!sdkp->protection_type)
2580		return;
2581
2582	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2583		sd_first_printk(KERN_NOTICE, sdkp,
2584				"Disabling DIF Type %u protection\n",
2585				sdkp->protection_type);
2586		sdkp->protection_type = 0;
2587	}
2588
2589	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2590			sdkp->protection_type);
2591}
2592
2593static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2594			struct scsi_sense_hdr *sshdr, int sense_valid,
2595			int the_result)
2596{
2597	if (sense_valid)
2598		sd_print_sense_hdr(sdkp, sshdr);
2599	else
2600		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2601
2602	/*
2603	 * Set dirty bit for removable devices if not ready -
2604	 * sometimes drives will not report this properly.
2605	 */
2606	if (sdp->removable &&
2607	    sense_valid && sshdr->sense_key == NOT_READY)
2608		set_media_not_present(sdkp);
2609
2610	/*
2611	 * We used to set media_present to 0 here to indicate no media
2612	 * in the drive, but some drives fail read capacity even with
2613	 * media present, so we can't do that.
2614	 */
2615	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2616}
2617
2618#define RC16_LEN 32
2619#if RC16_LEN > SD_BUF_SIZE
2620#error RC16_LEN must not be more than SD_BUF_SIZE
2621#endif
2622
2623#define READ_CAPACITY_RETRIES_ON_RESET	10
2624
2625static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2626		struct queue_limits *lim, unsigned char *buffer)
2627{
2628	unsigned char cmd[16];
2629	struct scsi_sense_hdr sshdr;
2630	const struct scsi_exec_args exec_args = {
2631		.sshdr = &sshdr,
2632	};
2633	int sense_valid = 0;
2634	int the_result;
2635	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2636	unsigned int alignment;
2637	unsigned long long lba;
2638	unsigned sector_size;
2639
2640	if (sdp->no_read_capacity_16)
2641		return -EINVAL;
2642
2643	do {
2644		memset(cmd, 0, 16);
2645		cmd[0] = SERVICE_ACTION_IN_16;
2646		cmd[1] = SAI_READ_CAPACITY_16;
2647		cmd[13] = RC16_LEN;
2648		memset(buffer, 0, RC16_LEN);
2649
2650		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2651					      buffer, RC16_LEN, SD_TIMEOUT,
2652					      sdkp->max_retries, &exec_args);
2653		if (the_result > 0) {
2654			if (media_not_present(sdkp, &sshdr))
2655				return -ENODEV;
2656
2657			sense_valid = scsi_sense_valid(&sshdr);
2658			if (sense_valid &&
2659			    sshdr.sense_key == ILLEGAL_REQUEST &&
2660			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2661			    sshdr.ascq == 0x00)
2662				/* Invalid Command Operation Code or
2663				 * Invalid Field in CDB, just retry
2664				 * silently with RC10 */
2665				return -EINVAL;
2666			if (sense_valid &&
2667			    sshdr.sense_key == UNIT_ATTENTION &&
2668			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2669				/* Device reset might occur several times,
2670				 * give it one more chance */
2671				if (--reset_retries > 0)
2672					continue;
2673		}
2674		retries--;
2675
2676	} while (the_result && retries);
2677
2678	if (the_result) {
2679		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2680		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2681		return -EINVAL;
2682	}
2683
2684	sector_size = get_unaligned_be32(&buffer[8]);
2685	lba = get_unaligned_be64(&buffer[0]);
2686
2687	if (sd_read_protection_type(sdkp, buffer) < 0) {
2688		sdkp->capacity = 0;
2689		return -ENODEV;
2690	}
2691
2692	/* Logical blocks per physical block exponent */
2693	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2694
2695	/* RC basis */
2696	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2697
2698	/* Lowest aligned logical block */
2699	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2700	lim->alignment_offset = alignment;
2701	if (alignment && sdkp->first_scan)
2702		sd_printk(KERN_NOTICE, sdkp,
2703			  "physical block alignment offset: %u\n", alignment);
2704
2705	if (buffer[14] & 0x80) { /* LBPME */
2706		sdkp->lbpme = 1;
2707
2708		if (buffer[14] & 0x40) /* LBPRZ */
2709			sdkp->lbprz = 1;
 
 
2710	}
2711
2712	sdkp->capacity = lba + 1;
2713	return sector_size;
2714}
2715
2716static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2717						unsigned char *buffer)
2718{
2719	static const u8 cmd[10] = { READ_CAPACITY };
2720	struct scsi_sense_hdr sshdr;
2721	struct scsi_failure failure_defs[] = {
2722		/* Do not retry Medium Not Present */
2723		{
2724			.sense = UNIT_ATTENTION,
2725			.asc = 0x3A,
2726			.result = SAM_STAT_CHECK_CONDITION,
2727		},
2728		{
2729			.sense = NOT_READY,
2730			.asc = 0x3A,
2731			.result = SAM_STAT_CHECK_CONDITION,
2732		},
2733		 /* Device reset might occur several times so retry a lot */
2734		{
2735			.sense = UNIT_ATTENTION,
2736			.asc = 0x29,
2737			.allowed = READ_CAPACITY_RETRIES_ON_RESET,
2738			.result = SAM_STAT_CHECK_CONDITION,
2739		},
2740		/* Any other error not listed above retry 3 times */
2741		{
2742			.result = SCMD_FAILURE_RESULT_ANY,
2743			.allowed = 3,
2744		},
2745		{}
2746	};
2747	struct scsi_failures failures = {
2748		.failure_definitions = failure_defs,
2749	};
2750	const struct scsi_exec_args exec_args = {
2751		.sshdr = &sshdr,
2752		.failures = &failures,
2753	};
2754	int sense_valid = 0;
2755	int the_result;
 
2756	sector_t lba;
2757	unsigned sector_size;
2758
2759	memset(buffer, 0, 8);
 
 
 
 
 
 
 
2760
2761	the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2762				      8, SD_TIMEOUT, sdkp->max_retries,
2763				      &exec_args);
2764
2765	if (the_result > 0) {
2766		sense_valid = scsi_sense_valid(&sshdr);
 
 
 
 
 
 
 
 
 
2767
2768		if (media_not_present(sdkp, &sshdr))
2769			return -ENODEV;
2770	}
2771
2772	if (the_result) {
2773		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2774		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2775		return -EINVAL;
2776	}
2777
2778	sector_size = get_unaligned_be32(&buffer[4]);
2779	lba = get_unaligned_be32(&buffer[0]);
2780
2781	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2782		/* Some buggy (usb cardreader) devices return an lba of
2783		   0xffffffff when the want to report a size of 0 (with
2784		   which they really mean no media is present) */
2785		sdkp->capacity = 0;
2786		sdkp->physical_block_size = sector_size;
2787		return sector_size;
2788	}
2789
2790	sdkp->capacity = lba + 1;
2791	sdkp->physical_block_size = sector_size;
2792	return sector_size;
2793}
2794
2795static int sd_try_rc16_first(struct scsi_device *sdp)
2796{
2797	if (sdp->host->max_cmd_len < 16)
2798		return 0;
2799	if (sdp->try_rc_10_first)
2800		return 0;
2801	if (sdp->scsi_level > SCSI_SPC_2)
2802		return 1;
2803	if (scsi_device_protection(sdp))
2804		return 1;
2805	return 0;
2806}
2807
2808/*
2809 * read disk capacity
2810 */
2811static void
2812sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim,
2813		unsigned char *buffer)
2814{
2815	int sector_size;
2816	struct scsi_device *sdp = sdkp->device;
2817
2818	if (sd_try_rc16_first(sdp)) {
2819		sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2820		if (sector_size == -EOVERFLOW)
2821			goto got_data;
2822		if (sector_size == -ENODEV)
2823			return;
2824		if (sector_size < 0)
2825			sector_size = read_capacity_10(sdkp, sdp, buffer);
2826		if (sector_size < 0)
2827			return;
2828	} else {
2829		sector_size = read_capacity_10(sdkp, sdp, buffer);
2830		if (sector_size == -EOVERFLOW)
2831			goto got_data;
2832		if (sector_size < 0)
2833			return;
2834		if ((sizeof(sdkp->capacity) > 4) &&
2835		    (sdkp->capacity > 0xffffffffULL)) {
2836			int old_sector_size = sector_size;
2837			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2838					"Trying to use READ CAPACITY(16).\n");
2839			sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2840			if (sector_size < 0) {
2841				sd_printk(KERN_NOTICE, sdkp,
2842					"Using 0xffffffff as device size\n");
2843				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2844				sector_size = old_sector_size;
2845				goto got_data;
2846			}
2847			/* Remember that READ CAPACITY(16) succeeded */
2848			sdp->try_rc_10_first = 0;
2849		}
2850	}
2851
2852	/* Some devices are known to return the total number of blocks,
2853	 * not the highest block number.  Some devices have versions
2854	 * which do this and others which do not.  Some devices we might
2855	 * suspect of doing this but we don't know for certain.
2856	 *
2857	 * If we know the reported capacity is wrong, decrement it.  If
2858	 * we can only guess, then assume the number of blocks is even
2859	 * (usually true but not always) and err on the side of lowering
2860	 * the capacity.
2861	 */
2862	if (sdp->fix_capacity ||
2863	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2864		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2865				"from its reported value: %llu\n",
2866				(unsigned long long) sdkp->capacity);
2867		--sdkp->capacity;
2868	}
2869
2870got_data:
2871	if (sector_size == 0) {
2872		sector_size = 512;
2873		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2874			  "assuming 512.\n");
2875	}
2876
2877	if (sector_size != 512 &&
2878	    sector_size != 1024 &&
2879	    sector_size != 2048 &&
2880	    sector_size != 4096) {
2881		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2882			  sector_size);
2883		/*
2884		 * The user might want to re-format the drive with
2885		 * a supported sectorsize.  Once this happens, it
2886		 * would be relatively trivial to set the thing up.
2887		 * For this reason, we leave the thing in the table.
2888		 */
2889		sdkp->capacity = 0;
2890		/*
2891		 * set a bogus sector size so the normal read/write
2892		 * logic in the block layer will eventually refuse any
2893		 * request on this device without tripping over power
2894		 * of two sector size assumptions
2895		 */
2896		sector_size = 512;
2897	}
2898	lim->logical_block_size = sector_size;
2899	lim->physical_block_size = sdkp->physical_block_size;
 
2900	sdkp->device->sector_size = sector_size;
2901
2902	if (sdkp->capacity > 0xffffffff)
2903		sdp->use_16_for_rw = 1;
2904
2905}
2906
2907/*
2908 * Print disk capacity
2909 */
2910static void
2911sd_print_capacity(struct scsi_disk *sdkp,
2912		  sector_t old_capacity)
2913{
2914	int sector_size = sdkp->device->sector_size;
2915	char cap_str_2[10], cap_str_10[10];
2916
2917	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2918		return;
2919
2920	string_get_size(sdkp->capacity, sector_size,
2921			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2922	string_get_size(sdkp->capacity, sector_size,
2923			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2924
2925	sd_printk(KERN_NOTICE, sdkp,
2926		  "%llu %d-byte logical blocks: (%s/%s)\n",
2927		  (unsigned long long)sdkp->capacity,
2928		  sector_size, cap_str_10, cap_str_2);
2929
2930	if (sdkp->physical_block_size != sector_size)
2931		sd_printk(KERN_NOTICE, sdkp,
2932			  "%u-byte physical blocks\n",
2933			  sdkp->physical_block_size);
2934}
2935
2936/* called with buffer of length 512 */
2937static inline int
2938sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2939		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2940		 struct scsi_sense_hdr *sshdr)
2941{
2942	/*
2943	 * If we must use MODE SENSE(10), make sure that the buffer length
2944	 * is at least 8 bytes so that the mode sense header fits.
2945	 */
2946	if (sdkp->device->use_10_for_ms && len < 8)
2947		len = 8;
2948
2949	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2950			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2951}
2952
2953/*
2954 * read write protect setting, if possible - called only in sd_revalidate_disk()
2955 * called with buffer of length SD_BUF_SIZE
2956 */
2957static void
2958sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2959{
2960	int res;
2961	struct scsi_device *sdp = sdkp->device;
2962	struct scsi_mode_data data;
2963	int old_wp = sdkp->write_prot;
2964
2965	set_disk_ro(sdkp->disk, 0);
2966	if (sdp->skip_ms_page_3f) {
2967		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2968		return;
2969	}
2970
2971	if (sdp->use_192_bytes_for_3f) {
2972		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2973	} else {
2974		/*
2975		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2976		 * We have to start carefully: some devices hang if we ask
2977		 * for more than is available.
2978		 */
2979		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2980
2981		/*
2982		 * Second attempt: ask for page 0 When only page 0 is
2983		 * implemented, a request for page 3F may return Sense Key
2984		 * 5: Illegal Request, Sense Code 24: Invalid field in
2985		 * CDB.
2986		 */
2987		if (res < 0)
2988			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2989
2990		/*
2991		 * Third attempt: ask 255 bytes, as we did earlier.
2992		 */
2993		if (res < 0)
2994			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2995					       &data, NULL);
2996	}
2997
2998	if (res < 0) {
2999		sd_first_printk(KERN_WARNING, sdkp,
3000			  "Test WP failed, assume Write Enabled\n");
3001	} else {
3002		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
3003		set_disk_ro(sdkp->disk, sdkp->write_prot);
3004		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
3005			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
3006				  sdkp->write_prot ? "on" : "off");
3007			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
3008		}
3009	}
3010}
3011
3012/*
3013 * sd_read_cache_type - called only from sd_revalidate_disk()
3014 * called with buffer of length SD_BUF_SIZE
3015 */
3016static void
3017sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
3018{
3019	int len = 0, res;
3020	struct scsi_device *sdp = sdkp->device;
3021
3022	int dbd;
3023	int modepage;
3024	int first_len;
3025	struct scsi_mode_data data;
3026	struct scsi_sense_hdr sshdr;
3027	int old_wce = sdkp->WCE;
3028	int old_rcd = sdkp->RCD;
3029	int old_dpofua = sdkp->DPOFUA;
3030
3031
3032	if (sdkp->cache_override)
3033		return;
3034
3035	first_len = 4;
3036	if (sdp->skip_ms_page_8) {
3037		if (sdp->type == TYPE_RBC)
3038			goto defaults;
3039		else {
3040			if (sdp->skip_ms_page_3f)
3041				goto defaults;
3042			modepage = 0x3F;
3043			if (sdp->use_192_bytes_for_3f)
3044				first_len = 192;
3045			dbd = 0;
3046		}
3047	} else if (sdp->type == TYPE_RBC) {
3048		modepage = 6;
3049		dbd = 8;
3050	} else {
3051		modepage = 8;
3052		dbd = 0;
3053	}
3054
3055	/* cautiously ask */
3056	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
3057			&data, &sshdr);
3058
3059	if (res < 0)
3060		goto bad_sense;
3061
3062	if (!data.header_length) {
3063		modepage = 6;
3064		first_len = 0;
3065		sd_first_printk(KERN_ERR, sdkp,
3066				"Missing header in MODE_SENSE response\n");
3067	}
3068
3069	/* that went OK, now ask for the proper length */
3070	len = data.length;
3071
3072	/*
3073	 * We're only interested in the first three bytes, actually.
3074	 * But the data cache page is defined for the first 20.
3075	 */
3076	if (len < 3)
3077		goto bad_sense;
3078	else if (len > SD_BUF_SIZE) {
3079		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
3080			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
3081		len = SD_BUF_SIZE;
3082	}
3083	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
3084		len = 192;
3085
3086	/* Get the data */
3087	if (len > first_len)
3088		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
3089				&data, &sshdr);
3090
3091	if (!res) {
3092		int offset = data.header_length + data.block_descriptor_length;
3093
3094		while (offset < len) {
3095			u8 page_code = buffer[offset] & 0x3F;
3096			u8 spf       = buffer[offset] & 0x40;
3097
3098			if (page_code == 8 || page_code == 6) {
3099				/* We're interested only in the first 3 bytes.
3100				 */
3101				if (len - offset <= 2) {
3102					sd_first_printk(KERN_ERR, sdkp,
3103						"Incomplete mode parameter "
3104							"data\n");
3105					goto defaults;
3106				} else {
3107					modepage = page_code;
3108					goto Page_found;
3109				}
3110			} else {
3111				/* Go to the next page */
3112				if (spf && len - offset > 3)
3113					offset += 4 + (buffer[offset+2] << 8) +
3114						buffer[offset+3];
3115				else if (!spf && len - offset > 1)
3116					offset += 2 + buffer[offset+1];
3117				else {
3118					sd_first_printk(KERN_ERR, sdkp,
3119							"Incomplete mode "
3120							"parameter data\n");
3121					goto defaults;
3122				}
3123			}
3124		}
3125
3126		sd_first_printk(KERN_WARNING, sdkp,
3127				"No Caching mode page found\n");
3128		goto defaults;
3129
3130	Page_found:
3131		if (modepage == 8) {
3132			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3133			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3134		} else {
3135			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3136			sdkp->RCD = 0;
3137		}
3138
3139		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3140		if (sdp->broken_fua) {
3141			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3142			sdkp->DPOFUA = 0;
3143		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3144			   !sdkp->device->use_16_for_rw) {
3145			sd_first_printk(KERN_NOTICE, sdkp,
3146				  "Uses READ/WRITE(6), disabling FUA\n");
3147			sdkp->DPOFUA = 0;
3148		}
3149
3150		/* No cache flush allowed for write protected devices */
3151		if (sdkp->WCE && sdkp->write_prot)
3152			sdkp->WCE = 0;
3153
3154		if (sdkp->first_scan || old_wce != sdkp->WCE ||
3155		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3156			sd_printk(KERN_NOTICE, sdkp,
3157				  "Write cache: %s, read cache: %s, %s\n",
3158				  sdkp->WCE ? "enabled" : "disabled",
3159				  sdkp->RCD ? "disabled" : "enabled",
3160				  sdkp->DPOFUA ? "supports DPO and FUA"
3161				  : "doesn't support DPO or FUA");
3162
3163		return;
3164	}
3165
3166bad_sense:
3167	if (res == -EIO && scsi_sense_valid(&sshdr) &&
3168	    sshdr.sense_key == ILLEGAL_REQUEST &&
3169	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3170		/* Invalid field in CDB */
3171		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3172	else
3173		sd_first_printk(KERN_ERR, sdkp,
3174				"Asking for cache data failed\n");
3175
3176defaults:
3177	if (sdp->wce_default_on) {
3178		sd_first_printk(KERN_NOTICE, sdkp,
3179				"Assuming drive cache: write back\n");
3180		sdkp->WCE = 1;
3181	} else {
3182		sd_first_printk(KERN_WARNING, sdkp,
3183				"Assuming drive cache: write through\n");
3184		sdkp->WCE = 0;
3185	}
3186	sdkp->RCD = 0;
3187	sdkp->DPOFUA = 0;
3188}
3189
3190static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
3191{
3192	u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
3193	struct {
3194		struct scsi_stream_status_header h;
3195		struct scsi_stream_status s;
3196	} buf;
3197	struct scsi_device *sdev = sdkp->device;
3198	struct scsi_sense_hdr sshdr;
3199	const struct scsi_exec_args exec_args = {
3200		.sshdr = &sshdr,
3201	};
3202	int res;
3203
3204	put_unaligned_be16(stream_id, &cdb[4]);
3205	put_unaligned_be32(sizeof(buf), &cdb[10]);
3206
3207	res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
3208			       SD_TIMEOUT, sdkp->max_retries, &exec_args);
3209	if (res < 0)
3210		return false;
3211	if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
3212		sd_print_sense_hdr(sdkp, &sshdr);
3213	if (res)
3214		return false;
3215	if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
3216		return false;
3217	return buf.h.stream_status[0].perm;
3218}
3219
3220static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
3221{
3222	struct scsi_device *sdp = sdkp->device;
3223	const struct scsi_io_group_descriptor *desc, *start, *end;
3224	u16 permanent_stream_count_old;
3225	struct scsi_sense_hdr sshdr;
3226	struct scsi_mode_data data;
3227	int res;
3228
3229	if (sdp->sdev_bflags & BLIST_SKIP_IO_HINTS)
3230		return;
3231
3232	res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
3233			      /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
3234			      sdkp->max_retries, &data, &sshdr);
3235	if (res < 0)
3236		return;
3237	start = (void *)buffer + data.header_length + 16;
3238	end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
3239					  sizeof(*end));
3240	/*
3241	 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
3242	 * should assign the lowest numbered stream identifiers to permanent
3243	 * streams.
3244	 */
3245	for (desc = start; desc < end; desc++)
3246		if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
3247			break;
3248	permanent_stream_count_old = sdkp->permanent_stream_count;
3249	sdkp->permanent_stream_count = desc - start;
3250	if (sdkp->rscs && sdkp->permanent_stream_count < 2)
3251		sd_printk(KERN_INFO, sdkp,
3252			  "Unexpected: RSCS has been set and the permanent stream count is %u\n",
3253			  sdkp->permanent_stream_count);
3254	else if (sdkp->permanent_stream_count != permanent_stream_count_old)
3255		sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
3256			  sdkp->permanent_stream_count);
3257}
3258
3259/*
3260 * The ATO bit indicates whether the DIF application tag is available
3261 * for use by the operating system.
3262 */
3263static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3264{
3265	int res, offset;
3266	struct scsi_device *sdp = sdkp->device;
3267	struct scsi_mode_data data;
3268	struct scsi_sense_hdr sshdr;
3269
3270	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3271		return;
3272
3273	if (sdkp->protection_type == 0)
3274		return;
3275
3276	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3277			      sdkp->max_retries, &data, &sshdr);
3278
3279	if (res < 0 || !data.header_length ||
3280	    data.length < 6) {
3281		sd_first_printk(KERN_WARNING, sdkp,
3282			  "getting Control mode page failed, assume no ATO\n");
3283
3284		if (res == -EIO && scsi_sense_valid(&sshdr))
3285			sd_print_sense_hdr(sdkp, &sshdr);
3286
3287		return;
3288	}
3289
3290	offset = data.header_length + data.block_descriptor_length;
3291
3292	if ((buffer[offset] & 0x3f) != 0x0a) {
3293		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3294		return;
3295	}
3296
3297	if ((buffer[offset + 5] & 0x80) == 0)
3298		return;
3299
3300	sdkp->ATO = 1;
3301
3302	return;
3303}
3304
3305static unsigned int sd_discard_mode(struct scsi_disk *sdkp)
3306{
3307	if (!sdkp->lbpme)
3308		return SD_LBP_FULL;
3309
3310	if (!sdkp->lbpvpd) {
3311		/* LBP VPD page not provided */
3312		if (sdkp->max_unmap_blocks)
3313			return SD_LBP_UNMAP;
3314		return SD_LBP_WS16;
3315	}
3316
3317	/* LBP VPD page tells us what to use */
3318	if (sdkp->lbpu && sdkp->max_unmap_blocks)
3319		return SD_LBP_UNMAP;
3320	if (sdkp->lbpws)
3321		return SD_LBP_WS16;
3322	if (sdkp->lbpws10)
3323		return SD_LBP_WS10;
3324	return SD_LBP_DISABLE;
3325}
3326
3327/*
3328 * Query disk device for preferred I/O sizes.
3329 */
3330static void sd_read_block_limits(struct scsi_disk *sdkp,
3331		struct queue_limits *lim)
3332{
3333	struct scsi_vpd *vpd;
3334
3335	rcu_read_lock();
3336
3337	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3338	if (!vpd || vpd->len < 16)
3339		goto out;
3340
3341	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3342	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3343	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3344
3345	if (vpd->len >= 64) {
3346		unsigned int lba_count, desc_count;
3347
3348		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3349
3350		if (!sdkp->lbpme)
3351			goto config_atomic;
3352
3353		lba_count = get_unaligned_be32(&vpd->data[20]);
3354		desc_count = get_unaligned_be32(&vpd->data[24]);
3355
3356		if (lba_count && desc_count)
3357			sdkp->max_unmap_blocks = lba_count;
3358
3359		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3360
3361		if (vpd->data[32] & 0x80)
3362			sdkp->unmap_alignment =
3363				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3364
3365config_atomic:
3366		sdkp->max_atomic = get_unaligned_be32(&vpd->data[44]);
3367		sdkp->atomic_alignment = get_unaligned_be32(&vpd->data[48]);
3368		sdkp->atomic_granularity = get_unaligned_be32(&vpd->data[52]);
3369		sdkp->max_atomic_with_boundary = get_unaligned_be32(&vpd->data[56]);
3370		sdkp->max_atomic_boundary = get_unaligned_be32(&vpd->data[60]);
3371
3372		sd_config_atomic(sdkp, lim);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3373	}
3374
3375 out:
3376	rcu_read_unlock();
3377}
3378
3379/* Parse the Block Limits Extension VPD page (0xb7) */
3380static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
3381{
3382	struct scsi_vpd *vpd;
3383
3384	rcu_read_lock();
3385	vpd = rcu_dereference(sdkp->device->vpd_pgb7);
3386	if (vpd && vpd->len >= 2)
3387		sdkp->rscs = vpd->data[5] & 1;
3388	rcu_read_unlock();
3389}
3390
3391/* Query block device characteristics */
3392static void sd_read_block_characteristics(struct scsi_disk *sdkp,
3393		struct queue_limits *lim)
3394{
 
3395	struct scsi_vpd *vpd;
3396	u16 rot;
3397
3398	rcu_read_lock();
3399	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3400
3401	if (!vpd || vpd->len <= 8) {
3402		rcu_read_unlock();
3403	        return;
3404	}
3405
3406	rot = get_unaligned_be16(&vpd->data[4]);
3407	sdkp->zoned = (vpd->data[8] >> 4) & 3;
3408	rcu_read_unlock();
3409
3410	if (rot == 1)
3411		lim->features &= ~(BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3412
3413	if (!sdkp->first_scan)
3414		return;
3415
3416	if (sdkp->device->type == TYPE_ZBC)
3417		sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3418	else if (sdkp->zoned == 1)
3419		sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3420	else if (sdkp->zoned == 2)
3421		sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3422}
3423
3424/**
3425 * sd_read_block_provisioning - Query provisioning VPD page
3426 * @sdkp: disk to query
3427 */
3428static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3429{
3430	struct scsi_vpd *vpd;
3431
3432	if (sdkp->lbpme == 0)
3433		return;
3434
3435	rcu_read_lock();
3436	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3437
3438	if (!vpd || vpd->len < 8) {
3439		rcu_read_unlock();
3440		return;
3441	}
3442
3443	sdkp->lbpvpd	= 1;
3444	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3445	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3446	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3447	rcu_read_unlock();
3448}
3449
3450static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3451{
3452	struct scsi_device *sdev = sdkp->device;
3453
3454	if (sdev->host->no_write_same) {
3455		sdev->no_write_same = 1;
3456
3457		return;
3458	}
3459
3460	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3461		struct scsi_vpd *vpd;
3462
3463		sdev->no_report_opcodes = 1;
3464
3465		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3466		 * CODES is unsupported and the device has an ATA
3467		 * Information VPD page (SAT).
3468		 */
3469		rcu_read_lock();
3470		vpd = rcu_dereference(sdev->vpd_pg89);
3471		if (vpd)
3472			sdev->no_write_same = 1;
3473		rcu_read_unlock();
3474	}
3475
3476	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3477		sdkp->ws16 = 1;
3478
3479	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3480		sdkp->ws10 = 1;
3481}
3482
3483static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3484{
3485	struct scsi_device *sdev = sdkp->device;
3486
3487	if (!sdev->security_supported)
3488		return;
3489
3490	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3491			SECURITY_PROTOCOL_IN, 0) == 1 &&
3492	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3493			SECURITY_PROTOCOL_OUT, 0) == 1)
3494		sdkp->security = 1;
3495}
3496
3497static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3498{
3499	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3500}
3501
3502/**
3503 * sd_read_cpr - Query concurrent positioning ranges
3504 * @sdkp:	disk to query
3505 */
3506static void sd_read_cpr(struct scsi_disk *sdkp)
3507{
3508	struct blk_independent_access_ranges *iars = NULL;
3509	unsigned char *buffer = NULL;
3510	unsigned int nr_cpr = 0;
3511	int i, vpd_len, buf_len = SD_BUF_SIZE;
3512	u8 *desc;
3513
3514	/*
3515	 * We need to have the capacity set first for the block layer to be
3516	 * able to check the ranges.
3517	 */
3518	if (sdkp->first_scan)
3519		return;
3520
3521	if (!sdkp->capacity)
3522		goto out;
3523
3524	/*
3525	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3526	 * leading to a maximum page size of 64 + 256*32 bytes.
3527	 */
3528	buf_len = 64 + 256*32;
3529	buffer = kmalloc(buf_len, GFP_KERNEL);
3530	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3531		goto out;
3532
3533	/* We must have at least a 64B header and one 32B range descriptor */
3534	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3535	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3536		sd_printk(KERN_ERR, sdkp,
3537			  "Invalid Concurrent Positioning Ranges VPD page\n");
3538		goto out;
3539	}
3540
3541	nr_cpr = (vpd_len - 64) / 32;
3542	if (nr_cpr == 1) {
3543		nr_cpr = 0;
3544		goto out;
3545	}
3546
3547	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3548	if (!iars) {
3549		nr_cpr = 0;
3550		goto out;
3551	}
3552
3553	desc = &buffer[64];
3554	for (i = 0; i < nr_cpr; i++, desc += 32) {
3555		if (desc[0] != i) {
3556			sd_printk(KERN_ERR, sdkp,
3557				"Invalid Concurrent Positioning Range number\n");
3558			nr_cpr = 0;
3559			break;
3560		}
3561
3562		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3563		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3564	}
3565
3566out:
3567	disk_set_independent_access_ranges(sdkp->disk, iars);
3568	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3569		sd_printk(KERN_NOTICE, sdkp,
3570			  "%u concurrent positioning ranges\n", nr_cpr);
3571		sdkp->nr_actuators = nr_cpr;
3572	}
3573
3574	kfree(buffer);
3575}
3576
3577static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3578{
3579	struct scsi_device *sdp = sdkp->device;
3580	unsigned int min_xfer_bytes =
3581		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3582
3583	if (sdkp->min_xfer_blocks == 0)
3584		return false;
3585
3586	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3587		sd_first_printk(KERN_WARNING, sdkp,
3588				"Preferred minimum I/O size %u bytes not a " \
3589				"multiple of physical block size (%u bytes)\n",
3590				min_xfer_bytes, sdkp->physical_block_size);
3591		sdkp->min_xfer_blocks = 0;
3592		return false;
3593	}
3594
3595	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3596			min_xfer_bytes);
3597	return true;
3598}
3599
3600/*
3601 * Determine the device's preferred I/O size for reads and writes
3602 * unless the reported value is unreasonably small, large, not a
3603 * multiple of the physical block size, or simply garbage.
3604 */
3605static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3606				      unsigned int dev_max)
3607{
3608	struct scsi_device *sdp = sdkp->device;
3609	unsigned int opt_xfer_bytes =
3610		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3611	unsigned int min_xfer_bytes =
3612		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3613
3614	if (sdkp->opt_xfer_blocks == 0)
3615		return false;
3616
3617	if (sdkp->opt_xfer_blocks > dev_max) {
3618		sd_first_printk(KERN_WARNING, sdkp,
3619				"Optimal transfer size %u logical blocks " \
3620				"> dev_max (%u logical blocks)\n",
3621				sdkp->opt_xfer_blocks, dev_max);
3622		return false;
3623	}
3624
3625	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3626		sd_first_printk(KERN_WARNING, sdkp,
3627				"Optimal transfer size %u logical blocks " \
3628				"> sd driver limit (%u logical blocks)\n",
3629				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3630		return false;
3631	}
3632
3633	if (opt_xfer_bytes < PAGE_SIZE) {
3634		sd_first_printk(KERN_WARNING, sdkp,
3635				"Optimal transfer size %u bytes < " \
3636				"PAGE_SIZE (%u bytes)\n",
3637				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3638		return false;
3639	}
3640
3641	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3642		sd_first_printk(KERN_WARNING, sdkp,
3643				"Optimal transfer size %u bytes not a " \
3644				"multiple of preferred minimum block " \
3645				"size (%u bytes)\n",
3646				opt_xfer_bytes, min_xfer_bytes);
3647		return false;
3648	}
3649
3650	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3651		sd_first_printk(KERN_WARNING, sdkp,
3652				"Optimal transfer size %u bytes not a " \
3653				"multiple of physical block size (%u bytes)\n",
3654				opt_xfer_bytes, sdkp->physical_block_size);
3655		return false;
3656	}
3657
3658	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3659			opt_xfer_bytes);
3660	return true;
3661}
3662
3663static void sd_read_block_zero(struct scsi_disk *sdkp)
3664{
3665	struct scsi_device *sdev = sdkp->device;
3666	unsigned int buf_len = sdev->sector_size;
3667	u8 *buffer, cmd[16] = { };
3668
3669	buffer = kmalloc(buf_len, GFP_KERNEL);
3670	if (!buffer)
3671		return;
3672
3673	if (sdev->use_16_for_rw) {
3674		cmd[0] = READ_16;
3675		put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */
3676		put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */
3677	} else {
3678		cmd[0] = READ_10;
3679		put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3680		put_unaligned_be16(1, &cmd[7]);	/* Transfer 1 logical block */
3681	}
3682
3683	scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3684			 SD_TIMEOUT, sdkp->max_retries, NULL);
3685	kfree(buffer);
3686}
3687
3688/**
3689 *	sd_revalidate_disk - called the first time a new disk is seen,
3690 *	performs disk spin up, read_capacity, etc.
3691 *	@disk: struct gendisk we care about
3692 **/
3693static int sd_revalidate_disk(struct gendisk *disk)
3694{
3695	struct scsi_disk *sdkp = scsi_disk(disk);
3696	struct scsi_device *sdp = sdkp->device;
 
3697	sector_t old_capacity = sdkp->capacity;
3698	struct queue_limits lim;
3699	unsigned char *buffer;
3700	unsigned int dev_max;
3701	int err;
3702
3703	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3704				      "sd_revalidate_disk\n"));
3705
3706	/*
3707	 * If the device is offline, don't try and read capacity or any
3708	 * of the other niceties.
3709	 */
3710	if (!scsi_device_online(sdp))
3711		goto out;
3712
3713	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3714	if (!buffer) {
3715		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3716			  "allocation failure.\n");
3717		goto out;
3718	}
3719
3720	sd_spinup_disk(sdkp);
3721
3722	lim = queue_limits_start_update(sdkp->disk->queue);
3723
3724	/*
3725	 * Without media there is no reason to ask; moreover, some devices
3726	 * react badly if we do.
3727	 */
3728	if (sdkp->media_present) {
3729		sd_read_capacity(sdkp, &lim, buffer);
3730		/*
3731		 * Some USB/UAS devices return generic values for mode pages
3732		 * until the media has been accessed. Trigger a READ operation
3733		 * to force the device to populate mode pages.
3734		 */
3735		if (sdp->read_before_ms)
3736			sd_read_block_zero(sdkp);
3737		/*
3738		 * set the default to rotational.  All non-rotational devices
3739		 * support the block characteristics VPD page, which will
3740		 * cause this to be updated correctly and any device which
3741		 * doesn't support it should be treated as rotational.
3742		 */
3743		lim.features |= (BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
 
3744
3745		if (scsi_device_supports_vpd(sdp)) {
3746			sd_read_block_provisioning(sdkp);
3747			sd_read_block_limits(sdkp, &lim);
3748			sd_read_block_limits_ext(sdkp);
3749			sd_read_block_characteristics(sdkp, &lim);
3750			sd_zbc_read_zones(sdkp, &lim, buffer);
3751		}
3752
3753		sd_config_discard(sdkp, &lim, sd_discard_mode(sdkp));
3754
3755		sd_print_capacity(sdkp, old_capacity);
3756
3757		sd_read_write_protect_flag(sdkp, buffer);
3758		sd_read_cache_type(sdkp, buffer);
3759		sd_read_io_hints(sdkp, buffer);
3760		sd_read_app_tag_own(sdkp, buffer);
3761		sd_read_write_same(sdkp, buffer);
3762		sd_read_security(sdkp, buffer);
3763		sd_config_protection(sdkp, &lim);
3764	}
3765
3766	/*
3767	 * We now have all cache related info, determine how we deal
3768	 * with flush requests.
3769	 */
3770	sd_set_flush_flag(sdkp, &lim);
3771
3772	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3773	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3774
3775	/* Some devices report a maximum block count for READ/WRITE requests. */
3776	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3777	lim.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3778
3779	if (sd_validate_min_xfer_size(sdkp))
3780		lim.io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks);
 
3781	else
3782		lim.io_min = 0;
 
 
 
 
 
 
 
 
 
3783
3784	/*
3785	 * Limit default to SCSI host optimal sector limit if set. There may be
3786	 * an impact on performance for when the size of a request exceeds this
3787	 * host limit.
3788	 */
3789	lim.io_opt = sdp->host->opt_sectors << SECTOR_SHIFT;
3790	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3791		lim.io_opt = min_not_zero(lim.io_opt,
3792				logical_to_bytes(sdp, sdkp->opt_xfer_blocks));
3793	}
 
 
 
 
 
 
 
 
3794
3795	sdkp->first_scan = 0;
3796
3797	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3798	sd_config_write_same(sdkp, &lim);
3799	kfree(buffer);
3800
3801	err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
3802	if (err)
3803		return err;
3804
3805	/*
3806	 * Query concurrent positioning ranges after
3807	 * queue_limits_commit_update() unlocked q->limits_lock to avoid
3808	 * deadlock with q->sysfs_dir_lock and q->sysfs_lock.
3809	 */
3810	if (sdkp->media_present && scsi_device_supports_vpd(sdp))
3811		sd_read_cpr(sdkp);
3812
3813	/*
3814	 * For a zoned drive, revalidating the zones can be done only once
3815	 * the gendisk capacity is set. So if this fails, set back the gendisk
3816	 * capacity to 0.
3817	 */
3818	if (sd_zbc_revalidate_zones(sdkp))
3819		set_capacity_and_notify(disk, 0);
3820
3821 out:
3822	return 0;
3823}
3824
3825/**
3826 *	sd_unlock_native_capacity - unlock native capacity
3827 *	@disk: struct gendisk to set capacity for
3828 *
3829 *	Block layer calls this function if it detects that partitions
3830 *	on @disk reach beyond the end of the device.  If the SCSI host
3831 *	implements ->unlock_native_capacity() method, it's invoked to
3832 *	give it a chance to adjust the device capacity.
3833 *
3834 *	CONTEXT:
3835 *	Defined by block layer.  Might sleep.
3836 */
3837static void sd_unlock_native_capacity(struct gendisk *disk)
3838{
3839	struct scsi_device *sdev = scsi_disk(disk)->device;
3840
3841	if (sdev->host->hostt->unlock_native_capacity)
3842		sdev->host->hostt->unlock_native_capacity(sdev);
3843}
3844
3845/**
3846 *	sd_format_disk_name - format disk name
3847 *	@prefix: name prefix - ie. "sd" for SCSI disks
3848 *	@index: index of the disk to format name for
3849 *	@buf: output buffer
3850 *	@buflen: length of the output buffer
3851 *
3852 *	SCSI disk names starts at sda.  The 26th device is sdz and the
3853 *	27th is sdaa.  The last one for two lettered suffix is sdzz
3854 *	which is followed by sdaaa.
3855 *
3856 *	This is basically 26 base counting with one extra 'nil' entry
3857 *	at the beginning from the second digit on and can be
3858 *	determined using similar method as 26 base conversion with the
3859 *	index shifted -1 after each digit is computed.
3860 *
3861 *	CONTEXT:
3862 *	Don't care.
3863 *
3864 *	RETURNS:
3865 *	0 on success, -errno on failure.
3866 */
3867static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3868{
3869	const int base = 'z' - 'a' + 1;
3870	char *begin = buf + strlen(prefix);
3871	char *end = buf + buflen;
3872	char *p;
3873	int unit;
3874
3875	p = end - 1;
3876	*p = '\0';
3877	unit = base;
3878	do {
3879		if (p == begin)
3880			return -EINVAL;
3881		*--p = 'a' + (index % unit);
3882		index = (index / unit) - 1;
3883	} while (index >= 0);
3884
3885	memmove(begin, p, end - p);
3886	memcpy(buf, prefix, strlen(prefix));
3887
3888	return 0;
3889}
3890
3891/**
3892 *	sd_probe - called during driver initialization and whenever a
3893 *	new scsi device is attached to the system. It is called once
3894 *	for each scsi device (not just disks) present.
3895 *	@dev: pointer to device object
3896 *
3897 *	Returns 0 if successful (or not interested in this scsi device 
3898 *	(e.g. scanner)); 1 when there is an error.
3899 *
3900 *	Note: this function is invoked from the scsi mid-level.
3901 *	This function sets up the mapping between a given 
3902 *	<host,channel,id,lun> (found in sdp) and new device name 
3903 *	(e.g. /dev/sda). More precisely it is the block device major 
3904 *	and minor number that is chosen here.
3905 *
3906 *	Assume sd_probe is not re-entrant (for time being)
3907 *	Also think about sd_probe() and sd_remove() running coincidentally.
3908 **/
3909static int sd_probe(struct device *dev)
3910{
3911	struct scsi_device *sdp = to_scsi_device(dev);
3912	struct scsi_disk *sdkp;
3913	struct gendisk *gd;
3914	int index;
3915	int error;
3916
3917	scsi_autopm_get_device(sdp);
3918	error = -ENODEV;
3919	if (sdp->type != TYPE_DISK &&
3920	    sdp->type != TYPE_ZBC &&
3921	    sdp->type != TYPE_MOD &&
3922	    sdp->type != TYPE_RBC)
3923		goto out;
3924
3925	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3926		sdev_printk(KERN_WARNING, sdp,
3927			    "Unsupported ZBC host-managed device.\n");
3928		goto out;
3929	}
3930
3931	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3932					"sd_probe\n"));
3933
3934	error = -ENOMEM;
3935	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3936	if (!sdkp)
3937		goto out;
3938
3939	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3940					 &sd_bio_compl_lkclass);
3941	if (!gd)
3942		goto out_free;
3943
3944	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3945	if (index < 0) {
3946		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3947		goto out_put;
3948	}
3949
3950	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3951	if (error) {
3952		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3953		goto out_free_index;
3954	}
3955
3956	sdkp->device = sdp;
3957	sdkp->disk = gd;
3958	sdkp->index = index;
3959	sdkp->max_retries = SD_MAX_RETRIES;
3960	atomic_set(&sdkp->openers, 0);
3961	atomic_set(&sdkp->device->ioerr_cnt, 0);
3962
3963	if (!sdp->request_queue->rq_timeout) {
3964		if (sdp->type != TYPE_MOD)
3965			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3966		else
3967			blk_queue_rq_timeout(sdp->request_queue,
3968					     SD_MOD_TIMEOUT);
3969	}
3970
3971	device_initialize(&sdkp->disk_dev);
3972	sdkp->disk_dev.parent = get_device(dev);
3973	sdkp->disk_dev.class = &sd_disk_class;
3974	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3975
3976	error = device_add(&sdkp->disk_dev);
3977	if (error) {
3978		put_device(&sdkp->disk_dev);
3979		goto out;
3980	}
3981
3982	dev_set_drvdata(dev, sdkp);
3983
3984	gd->major = sd_major((index & 0xf0) >> 4);
3985	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3986	gd->minors = SD_MINORS;
3987
3988	gd->fops = &sd_fops;
3989	gd->private_data = sdkp;
3990
3991	/* defaults, until the device tells us otherwise */
3992	sdp->sector_size = 512;
3993	sdkp->capacity = 0;
3994	sdkp->media_present = 1;
3995	sdkp->write_prot = 0;
3996	sdkp->cache_override = 0;
3997	sdkp->WCE = 0;
3998	sdkp->RCD = 0;
3999	sdkp->ATO = 0;
4000	sdkp->first_scan = 1;
4001	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
4002
4003	sd_revalidate_disk(gd);
4004
4005	if (sdp->removable) {
4006		gd->flags |= GENHD_FL_REMOVABLE;
4007		gd->events |= DISK_EVENT_MEDIA_CHANGE;
4008		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
4009	}
4010
4011	blk_pm_runtime_init(sdp->request_queue, dev);
4012	if (sdp->rpm_autosuspend) {
4013		pm_runtime_set_autosuspend_delay(dev,
4014			sdp->host->rpm_autosuspend_delay);
4015	}
4016
4017	error = device_add_disk(dev, gd, NULL);
4018	if (error) {
4019		device_unregister(&sdkp->disk_dev);
4020		put_disk(gd);
4021		goto out;
4022	}
4023
4024	if (sdkp->security) {
4025		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
4026		if (sdkp->opal_dev)
4027			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
4028	}
4029
4030	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
4031		  sdp->removable ? "removable " : "");
4032	scsi_autopm_put_device(sdp);
4033
4034	return 0;
4035
4036 out_free_index:
4037	ida_free(&sd_index_ida, index);
4038 out_put:
4039	put_disk(gd);
4040 out_free:
4041	kfree(sdkp);
4042 out:
4043	scsi_autopm_put_device(sdp);
4044	return error;
4045}
4046
4047/**
4048 *	sd_remove - called whenever a scsi disk (previously recognized by
4049 *	sd_probe) is detached from the system. It is called (potentially
4050 *	multiple times) during sd module unload.
4051 *	@dev: pointer to device object
4052 *
4053 *	Note: this function is invoked from the scsi mid-level.
4054 *	This function potentially frees up a device name (e.g. /dev/sdc)
4055 *	that could be re-used by a subsequent sd_probe().
4056 *	This function is not called when the built-in sd driver is "exit-ed".
4057 **/
4058static int sd_remove(struct device *dev)
4059{
4060	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4061
4062	scsi_autopm_get_device(sdkp->device);
4063
4064	device_del(&sdkp->disk_dev);
4065	del_gendisk(sdkp->disk);
4066	if (!sdkp->suspended)
4067		sd_shutdown(dev);
4068
4069	put_disk(sdkp->disk);
4070	return 0;
4071}
4072
4073static void scsi_disk_release(struct device *dev)
4074{
4075	struct scsi_disk *sdkp = to_scsi_disk(dev);
4076
4077	ida_free(&sd_index_ida, sdkp->index);
 
4078	put_device(&sdkp->device->sdev_gendev);
4079	free_opal_dev(sdkp->opal_dev);
4080
4081	kfree(sdkp);
4082}
4083
4084static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
4085{
4086	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
4087	struct scsi_sense_hdr sshdr;
4088	struct scsi_failure failure_defs[] = {
4089		{
4090			/* Power on, reset, or bus device reset occurred */
4091			.sense = UNIT_ATTENTION,
4092			.asc = 0x29,
4093			.ascq = 0,
4094			.result = SAM_STAT_CHECK_CONDITION,
4095		},
4096		{
4097			/* Power on occurred */
4098			.sense = UNIT_ATTENTION,
4099			.asc = 0x29,
4100			.ascq = 1,
4101			.result = SAM_STAT_CHECK_CONDITION,
4102		},
4103		{
4104			/* SCSI bus reset */
4105			.sense = UNIT_ATTENTION,
4106			.asc = 0x29,
4107			.ascq = 2,
4108			.result = SAM_STAT_CHECK_CONDITION,
4109		},
4110		{}
4111	};
4112	struct scsi_failures failures = {
4113		.total_allowed = 3,
4114		.failure_definitions = failure_defs,
4115	};
4116	const struct scsi_exec_args exec_args = {
4117		.sshdr = &sshdr,
4118		.req_flags = BLK_MQ_REQ_PM,
4119		.failures = &failures,
4120	};
4121	struct scsi_device *sdp = sdkp->device;
4122	int res;
4123
4124	if (start)
4125		cmd[4] |= 1;	/* START */
4126
4127	if (sdp->start_stop_pwr_cond)
4128		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
4129
4130	if (!scsi_device_online(sdp))
4131		return -ENODEV;
4132
4133	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
4134			       sdkp->max_retries, &exec_args);
4135	if (res) {
4136		sd_print_result(sdkp, "Start/Stop Unit failed", res);
4137		if (res > 0 && scsi_sense_valid(&sshdr)) {
4138			sd_print_sense_hdr(sdkp, &sshdr);
4139			/* 0x3a is medium not present */
4140			if (sshdr.asc == 0x3a)
4141				res = 0;
4142		}
4143	}
4144
4145	/* SCSI error codes must not go to the generic layer */
4146	if (res)
4147		return -EIO;
4148
4149	return 0;
4150}
4151
4152/*
4153 * Send a SYNCHRONIZE CACHE instruction down to the device through
4154 * the normal SCSI command structure.  Wait for the command to
4155 * complete.
4156 */
4157static void sd_shutdown(struct device *dev)
4158{
4159	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4160
4161	if (!sdkp)
4162		return;         /* this can happen */
4163
4164	if (pm_runtime_suspended(dev))
4165		return;
4166
4167	if (sdkp->WCE && sdkp->media_present) {
4168		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4169		sd_sync_cache(sdkp);
4170	}
4171
4172	if ((system_state != SYSTEM_RESTART &&
4173	     sdkp->device->manage_system_start_stop) ||
4174	    (system_state == SYSTEM_POWER_OFF &&
4175	     sdkp->device->manage_shutdown)) {
4176		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4177		sd_start_stop_device(sdkp, 0);
4178	}
4179}
4180
4181static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
4182{
4183	return (sdev->manage_system_start_stop && !runtime) ||
4184		(sdev->manage_runtime_start_stop && runtime);
4185}
4186
4187static int sd_suspend_common(struct device *dev, bool runtime)
4188{
4189	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4190	int ret = 0;
4191
4192	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
4193		return 0;
4194
4195	if (sdkp->WCE && sdkp->media_present) {
4196		if (!sdkp->device->silence_suspend)
4197			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4198		ret = sd_sync_cache(sdkp);
4199		/* ignore OFFLINE device */
4200		if (ret == -ENODEV)
4201			return 0;
4202
4203		if (ret)
4204			return ret;
4205	}
4206
4207	if (sd_do_start_stop(sdkp->device, runtime)) {
4208		if (!sdkp->device->silence_suspend)
4209			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4210		/* an error is not worth aborting a system sleep */
4211		ret = sd_start_stop_device(sdkp, 0);
4212		if (!runtime)
4213			ret = 0;
4214	}
4215
4216	if (!ret)
4217		sdkp->suspended = true;
4218
4219	return ret;
4220}
4221
4222static int sd_suspend_system(struct device *dev)
4223{
4224	if (pm_runtime_suspended(dev))
4225		return 0;
4226
4227	return sd_suspend_common(dev, false);
4228}
4229
4230static int sd_suspend_runtime(struct device *dev)
4231{
4232	return sd_suspend_common(dev, true);
4233}
4234
4235static int sd_resume(struct device *dev)
4236{
4237	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4238
4239	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4240
4241	if (opal_unlock_from_suspend(sdkp->opal_dev)) {
4242		sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
4243		return -EIO;
4244	}
4245
4246	return 0;
4247}
4248
4249static int sd_resume_common(struct device *dev, bool runtime)
4250{
4251	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4252	int ret;
4253
4254	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4255		return 0;
4256
4257	if (!sd_do_start_stop(sdkp->device, runtime)) {
4258		sdkp->suspended = false;
4259		return 0;
4260	}
4261
4262	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4263	ret = sd_start_stop_device(sdkp, 1);
4264	if (!ret) {
4265		sd_resume(dev);
4266		sdkp->suspended = false;
4267	}
4268
4269	return ret;
4270}
4271
4272static int sd_resume_system(struct device *dev)
4273{
4274	if (pm_runtime_suspended(dev)) {
4275		struct scsi_disk *sdkp = dev_get_drvdata(dev);
4276		struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4277
4278		if (sdp && sdp->force_runtime_start_on_system_start)
4279			pm_request_resume(dev);
4280
4281		return 0;
4282	}
4283
4284	return sd_resume_common(dev, false);
4285}
4286
4287static int sd_resume_runtime(struct device *dev)
4288{
4289	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4290	struct scsi_device *sdp;
4291
4292	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4293		return 0;
4294
4295	sdp = sdkp->device;
4296
4297	if (sdp->ignore_media_change) {
4298		/* clear the device's sense data */
4299		static const u8 cmd[10] = { REQUEST_SENSE };
4300		const struct scsi_exec_args exec_args = {
4301			.req_flags = BLK_MQ_REQ_PM,
4302		};
4303
4304		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4305				     sdp->request_queue->rq_timeout, 1,
4306				     &exec_args))
4307			sd_printk(KERN_NOTICE, sdkp,
4308				  "Failed to clear sense data\n");
4309	}
4310
4311	return sd_resume_common(dev, true);
4312}
4313
4314static const struct dev_pm_ops sd_pm_ops = {
4315	.suspend		= sd_suspend_system,
4316	.resume			= sd_resume_system,
4317	.poweroff		= sd_suspend_system,
4318	.restore		= sd_resume_system,
4319	.runtime_suspend	= sd_suspend_runtime,
4320	.runtime_resume		= sd_resume_runtime,
4321};
4322
4323static struct scsi_driver sd_template = {
4324	.gendrv = {
4325		.name		= "sd",
 
4326		.probe		= sd_probe,
4327		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4328		.remove		= sd_remove,
4329		.shutdown	= sd_shutdown,
4330		.pm		= &sd_pm_ops,
4331	},
4332	.rescan			= sd_rescan,
4333	.resume			= sd_resume,
4334	.init_command		= sd_init_command,
4335	.uninit_command		= sd_uninit_command,
4336	.done			= sd_done,
4337	.eh_action		= sd_eh_action,
4338	.eh_reset		= sd_eh_reset,
4339};
4340
4341/**
4342 *	init_sd - entry point for this driver (both when built in or when
4343 *	a module).
4344 *
4345 *	Note: this function registers this driver with the scsi mid-level.
4346 **/
4347static int __init init_sd(void)
4348{
4349	int majors = 0, i, err;
4350
4351	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4352
4353	for (i = 0; i < SD_MAJORS; i++) {
4354		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4355			continue;
4356		majors++;
4357	}
4358
4359	if (!majors)
4360		return -ENODEV;
4361
4362	err = class_register(&sd_disk_class);
4363	if (err)
4364		goto err_out;
4365
4366	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4367	if (!sd_page_pool) {
4368		printk(KERN_ERR "sd: can't init discard page pool\n");
4369		err = -ENOMEM;
4370		goto err_out_class;
4371	}
4372
4373	err = scsi_register_driver(&sd_template.gendrv);
4374	if (err)
4375		goto err_out_driver;
4376
4377	return 0;
4378
4379err_out_driver:
4380	mempool_destroy(sd_page_pool);
4381err_out_class:
4382	class_unregister(&sd_disk_class);
4383err_out:
4384	for (i = 0; i < SD_MAJORS; i++)
4385		unregister_blkdev(sd_major(i), "sd");
4386	return err;
4387}
4388
4389/**
4390 *	exit_sd - exit point for this driver (when it is a module).
4391 *
4392 *	Note: this function unregisters this driver from the scsi mid-level.
4393 **/
4394static void __exit exit_sd(void)
4395{
4396	int i;
4397
4398	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4399
4400	scsi_unregister_driver(&sd_template.gendrv);
4401	mempool_destroy(sd_page_pool);
4402
4403	class_unregister(&sd_disk_class);
4404
4405	for (i = 0; i < SD_MAJORS; i++)
4406		unregister_blkdev(sd_major(i), "sd");
4407}
4408
4409module_init(init_sd);
4410module_exit(exit_sd);
4411
4412void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4413{
4414	scsi_print_sense_hdr(sdkp->device,
4415			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4416}
4417
4418void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4419{
4420	const char *hb_string = scsi_hostbyte_string(result);
4421
4422	if (hb_string)
4423		sd_printk(KERN_INFO, sdkp,
4424			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4425			  hb_string ? hb_string : "invalid",
4426			  "DRIVER_OK");
4427	else
4428		sd_printk(KERN_INFO, sdkp,
4429			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4430			  msg, host_byte(result), "DRIVER_OK");
4431}