Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      sd.c Copyright (C) 1992 Drew Eckhardt
   4 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
   5 *
   6 *      Linux scsi disk driver
   7 *              Initial versions: Drew Eckhardt
   8 *              Subsequent revisions: Eric Youngdale
   9 *	Modification history:
  10 *       - Drew Eckhardt <drew@colorado.edu> original
  11 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
  12 *         outstanding request, and other enhancements.
  13 *         Support loadable low-level scsi drivers.
  14 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
  15 *         eight major numbers.
  16 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
  17 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
  18 *	   sd_init and cleanups.
  19 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
  20 *	   not being read in sd_open. Fix problem where removable media 
  21 *	   could be ejected after sd_open.
  22 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
  23 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
  24 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
  25 *	   Support 32k/1M disks.
  26 *
  27 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
  28 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
  29 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
  30 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
  31 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
  32 *	Note: when the logging level is set by the user, it must be greater
  33 *	than the level indicated above to trigger output.	
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/fs.h>
  38#include <linux/kernel.h>
  39#include <linux/mm.h>
  40#include <linux/bio.h>
 
  41#include <linux/hdreg.h>
  42#include <linux/errno.h>
  43#include <linux/idr.h>
  44#include <linux/interrupt.h>
  45#include <linux/init.h>
  46#include <linux/blkdev.h>
  47#include <linux/blkpg.h>
  48#include <linux/blk-pm.h>
  49#include <linux/delay.h>
  50#include <linux/major.h>
  51#include <linux/mutex.h>
  52#include <linux/string_helpers.h>
 
  53#include <linux/slab.h>
  54#include <linux/sed-opal.h>
  55#include <linux/pm_runtime.h>
  56#include <linux/pr.h>
  57#include <linux/t10-pi.h>
  58#include <linux/uaccess.h>
  59#include <asm/unaligned.h>
  60
  61#include <scsi/scsi.h>
  62#include <scsi/scsi_cmnd.h>
  63#include <scsi/scsi_dbg.h>
  64#include <scsi/scsi_device.h>
  65#include <scsi/scsi_driver.h>
  66#include <scsi/scsi_eh.h>
  67#include <scsi/scsi_host.h>
  68#include <scsi/scsi_ioctl.h>
  69#include <scsi/scsicam.h>
  70#include <scsi/scsi_common.h>
  71
  72#include "sd.h"
  73#include "scsi_priv.h"
  74#include "scsi_logging.h"
  75
  76MODULE_AUTHOR("Eric Youngdale");
  77MODULE_DESCRIPTION("SCSI disk (sd) driver");
  78MODULE_LICENSE("GPL");
  79
  80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
  81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
  82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
  83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
  84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
  85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
  86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
  87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
  88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
  89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
  90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
  91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
  92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
  93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
  94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
  95MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
  96MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
  97MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
  98MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
  99MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
 100
 
 101#define SD_MINORS	16
 
 
 
 102
 103static void sd_config_discard(struct scsi_disk *, unsigned int);
 104static void sd_config_write_same(struct scsi_disk *);
 105static int  sd_revalidate_disk(struct gendisk *);
 106static void sd_unlock_native_capacity(struct gendisk *disk);
 
 
 107static void sd_shutdown(struct device *);
 
 
 
 
 
 
 108static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
 109static void scsi_disk_release(struct device *cdev);
 
 
 110
 
 111static DEFINE_IDA(sd_index_ida);
 112
 113static mempool_t *sd_page_pool;
 114static struct lock_class_key sd_bio_compl_lkclass;
 
 
 
 
 
 115
 116static const char *sd_cache_types[] = {
 117	"write through", "none", "write back",
 118	"write back, no read (daft)"
 119};
 120
 121static void sd_set_flush_flag(struct scsi_disk *sdkp)
 122{
 123	bool wc = false, fua = false;
 124
 125	if (sdkp->WCE) {
 126		wc = true;
 127		if (sdkp->DPOFUA)
 128			fua = true;
 129	}
 130
 131	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
 132}
 133
 134static ssize_t
 135cache_type_store(struct device *dev, struct device_attribute *attr,
 136		 const char *buf, size_t count)
 137{
 138	int ct, rcd, wce, sp;
 139	struct scsi_disk *sdkp = to_scsi_disk(dev);
 140	struct scsi_device *sdp = sdkp->device;
 141	char buffer[64];
 142	char *buffer_data;
 143	struct scsi_mode_data data;
 144	struct scsi_sense_hdr sshdr;
 145	static const char temp[] = "temporary ";
 146	int len, ret;
 147
 148	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 149		/* no cache control on RBC devices; theoretically they
 150		 * can do it, but there's probably so many exceptions
 151		 * it's not worth the risk */
 152		return -EINVAL;
 153
 154	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
 155		buf += sizeof(temp) - 1;
 156		sdkp->cache_override = 1;
 157	} else {
 158		sdkp->cache_override = 0;
 159	}
 160
 161	ct = sysfs_match_string(sd_cache_types, buf);
 
 
 
 
 
 
 
 162	if (ct < 0)
 163		return -EINVAL;
 164
 165	rcd = ct & 0x01 ? 1 : 0;
 166	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
 167
 168	if (sdkp->cache_override) {
 169		sdkp->WCE = wce;
 170		sdkp->RCD = rcd;
 171		sd_set_flush_flag(sdkp);
 172		return count;
 173	}
 174
 175	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
 176			    sdkp->max_retries, &data, NULL))
 177		return -EINVAL;
 178	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
 179		  data.block_descriptor_length);
 180	buffer_data = buffer + data.header_length +
 181		data.block_descriptor_length;
 182	buffer_data[2] &= ~0x05;
 183	buffer_data[2] |= wce << 2 | rcd;
 184	sp = buffer_data[0] & 0x80 ? 1 : 0;
 185	buffer_data[0] &= ~0x80;
 186
 187	/*
 188	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
 189	 * received mode parameter buffer before doing MODE SELECT.
 190	 */
 191	data.device_specific = 0;
 192
 193	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
 194			       sdkp->max_retries, &data, &sshdr);
 195	if (ret) {
 196		if (ret > 0 && scsi_sense_valid(&sshdr))
 197			sd_print_sense_hdr(sdkp, &sshdr);
 198		return -EINVAL;
 199	}
 200	sd_revalidate_disk(sdkp->disk);
 201	return count;
 202}
 203
 204static ssize_t
 205manage_start_stop_show(struct device *dev,
 206		       struct device_attribute *attr, char *buf)
 207{
 208	struct scsi_disk *sdkp = to_scsi_disk(dev);
 209	struct scsi_device *sdp = sdkp->device;
 210
 211	return sysfs_emit(buf, "%u\n",
 212			  sdp->manage_system_start_stop &&
 213			  sdp->manage_runtime_start_stop &&
 214			  sdp->manage_shutdown);
 215}
 216static DEVICE_ATTR_RO(manage_start_stop);
 217
 218static ssize_t
 219manage_system_start_stop_show(struct device *dev,
 220			      struct device_attribute *attr, char *buf)
 221{
 222	struct scsi_disk *sdkp = to_scsi_disk(dev);
 223	struct scsi_device *sdp = sdkp->device;
 224
 225	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
 226}
 227
 228static ssize_t
 229manage_system_start_stop_store(struct device *dev,
 230			       struct device_attribute *attr,
 231			       const char *buf, size_t count)
 232{
 233	struct scsi_disk *sdkp = to_scsi_disk(dev);
 234	struct scsi_device *sdp = sdkp->device;
 235	bool v;
 236
 237	if (!capable(CAP_SYS_ADMIN))
 238		return -EACCES;
 239
 240	if (kstrtobool(buf, &v))
 241		return -EINVAL;
 242
 243	sdp->manage_system_start_stop = v;
 244
 245	return count;
 246}
 247static DEVICE_ATTR_RW(manage_system_start_stop);
 248
 249static ssize_t
 250manage_runtime_start_stop_show(struct device *dev,
 251			       struct device_attribute *attr, char *buf)
 252{
 253	struct scsi_disk *sdkp = to_scsi_disk(dev);
 254	struct scsi_device *sdp = sdkp->device;
 255
 256	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
 257}
 258
 259static ssize_t
 260manage_runtime_start_stop_store(struct device *dev,
 261				struct device_attribute *attr,
 262				const char *buf, size_t count)
 263{
 264	struct scsi_disk *sdkp = to_scsi_disk(dev);
 265	struct scsi_device *sdp = sdkp->device;
 266	bool v;
 267
 268	if (!capable(CAP_SYS_ADMIN))
 269		return -EACCES;
 270
 271	if (kstrtobool(buf, &v))
 272		return -EINVAL;
 273
 274	sdp->manage_runtime_start_stop = v;
 275
 276	return count;
 277}
 278static DEVICE_ATTR_RW(manage_runtime_start_stop);
 279
 280static ssize_t manage_shutdown_show(struct device *dev,
 281				    struct device_attribute *attr, char *buf)
 282{
 283	struct scsi_disk *sdkp = to_scsi_disk(dev);
 284	struct scsi_device *sdp = sdkp->device;
 285
 286	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
 287}
 288
 289static ssize_t manage_shutdown_store(struct device *dev,
 290				     struct device_attribute *attr,
 291				     const char *buf, size_t count)
 292{
 293	struct scsi_disk *sdkp = to_scsi_disk(dev);
 294	struct scsi_device *sdp = sdkp->device;
 295	bool v;
 296
 297	if (!capable(CAP_SYS_ADMIN))
 298		return -EACCES;
 299
 300	if (kstrtobool(buf, &v))
 301		return -EINVAL;
 302
 303	sdp->manage_shutdown = v;
 304
 305	return count;
 306}
 307static DEVICE_ATTR_RW(manage_shutdown);
 308
 309static ssize_t
 310allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
 311{
 312	struct scsi_disk *sdkp = to_scsi_disk(dev);
 313
 314	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
 315}
 316
 317static ssize_t
 318allow_restart_store(struct device *dev, struct device_attribute *attr,
 319		    const char *buf, size_t count)
 320{
 321	bool v;
 322	struct scsi_disk *sdkp = to_scsi_disk(dev);
 323	struct scsi_device *sdp = sdkp->device;
 324
 325	if (!capable(CAP_SYS_ADMIN))
 326		return -EACCES;
 327
 328	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 329		return -EINVAL;
 330
 331	if (kstrtobool(buf, &v))
 332		return -EINVAL;
 333
 334	sdp->allow_restart = v;
 335
 336	return count;
 337}
 338static DEVICE_ATTR_RW(allow_restart);
 339
 340static ssize_t
 341cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
 342{
 343	struct scsi_disk *sdkp = to_scsi_disk(dev);
 344	int ct = sdkp->RCD + 2*sdkp->WCE;
 345
 346	return sprintf(buf, "%s\n", sd_cache_types[ct]);
 347}
 348static DEVICE_ATTR_RW(cache_type);
 349
 350static ssize_t
 351FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
 352{
 353	struct scsi_disk *sdkp = to_scsi_disk(dev);
 354
 355	return sprintf(buf, "%u\n", sdkp->DPOFUA);
 356}
 357static DEVICE_ATTR_RO(FUA);
 358
 359static ssize_t
 360protection_type_show(struct device *dev, struct device_attribute *attr,
 361		     char *buf)
 362{
 363	struct scsi_disk *sdkp = to_scsi_disk(dev);
 364
 365	return sprintf(buf, "%u\n", sdkp->protection_type);
 366}
 367
 368static ssize_t
 369protection_type_store(struct device *dev, struct device_attribute *attr,
 370		      const char *buf, size_t count)
 371{
 372	struct scsi_disk *sdkp = to_scsi_disk(dev);
 373	unsigned int val;
 374	int err;
 375
 376	if (!capable(CAP_SYS_ADMIN))
 377		return -EACCES;
 378
 379	err = kstrtouint(buf, 10, &val);
 380
 381	if (err)
 382		return err;
 383
 384	if (val <= T10_PI_TYPE3_PROTECTION)
 385		sdkp->protection_type = val;
 386
 387	return count;
 388}
 389static DEVICE_ATTR_RW(protection_type);
 390
 391static ssize_t
 392protection_mode_show(struct device *dev, struct device_attribute *attr,
 393		     char *buf)
 394{
 395	struct scsi_disk *sdkp = to_scsi_disk(dev);
 396	struct scsi_device *sdp = sdkp->device;
 397	unsigned int dif, dix;
 398
 399	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
 400	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
 401
 402	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
 403		dif = 0;
 404		dix = 1;
 405	}
 406
 407	if (!dif && !dix)
 408		return sprintf(buf, "none\n");
 409
 410	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
 411}
 412static DEVICE_ATTR_RO(protection_mode);
 413
 414static ssize_t
 415app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
 416{
 417	struct scsi_disk *sdkp = to_scsi_disk(dev);
 418
 419	return sprintf(buf, "%u\n", sdkp->ATO);
 420}
 421static DEVICE_ATTR_RO(app_tag_own);
 422
 423static ssize_t
 424thin_provisioning_show(struct device *dev, struct device_attribute *attr,
 425		       char *buf)
 426{
 427	struct scsi_disk *sdkp = to_scsi_disk(dev);
 428
 429	return sprintf(buf, "%u\n", sdkp->lbpme);
 430}
 431static DEVICE_ATTR_RO(thin_provisioning);
 432
 433/* sysfs_match_string() requires dense arrays */
 434static const char *lbp_mode[] = {
 435	[SD_LBP_FULL]		= "full",
 436	[SD_LBP_UNMAP]		= "unmap",
 437	[SD_LBP_WS16]		= "writesame_16",
 438	[SD_LBP_WS10]		= "writesame_10",
 439	[SD_LBP_ZERO]		= "writesame_zero",
 440	[SD_LBP_DISABLE]	= "disabled",
 441};
 442
 443static ssize_t
 444provisioning_mode_show(struct device *dev, struct device_attribute *attr,
 445		       char *buf)
 446{
 447	struct scsi_disk *sdkp = to_scsi_disk(dev);
 448
 449	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
 450}
 451
 452static ssize_t
 453provisioning_mode_store(struct device *dev, struct device_attribute *attr,
 454			const char *buf, size_t count)
 455{
 456	struct scsi_disk *sdkp = to_scsi_disk(dev);
 457	struct scsi_device *sdp = sdkp->device;
 458	int mode;
 459
 460	if (!capable(CAP_SYS_ADMIN))
 461		return -EACCES;
 462
 463	if (sd_is_zoned(sdkp)) {
 464		sd_config_discard(sdkp, SD_LBP_DISABLE);
 465		return count;
 466	}
 467
 468	if (sdp->type != TYPE_DISK)
 469		return -EINVAL;
 470
 471	mode = sysfs_match_string(lbp_mode, buf);
 472	if (mode < 0)
 
 
 
 
 
 
 
 
 
 473		return -EINVAL;
 474
 475	sd_config_discard(sdkp, mode);
 476
 477	return count;
 478}
 479static DEVICE_ATTR_RW(provisioning_mode);
 480
 481/* sysfs_match_string() requires dense arrays */
 482static const char *zeroing_mode[] = {
 483	[SD_ZERO_WRITE]		= "write",
 484	[SD_ZERO_WS]		= "writesame",
 485	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
 486	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
 487};
 488
 489static ssize_t
 490zeroing_mode_show(struct device *dev, struct device_attribute *attr,
 491		  char *buf)
 492{
 493	struct scsi_disk *sdkp = to_scsi_disk(dev);
 494
 495	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
 496}
 497
 498static ssize_t
 499zeroing_mode_store(struct device *dev, struct device_attribute *attr,
 500		   const char *buf, size_t count)
 501{
 502	struct scsi_disk *sdkp = to_scsi_disk(dev);
 503	int mode;
 504
 505	if (!capable(CAP_SYS_ADMIN))
 506		return -EACCES;
 507
 508	mode = sysfs_match_string(zeroing_mode, buf);
 509	if (mode < 0)
 510		return -EINVAL;
 511
 512	sdkp->zeroing_mode = mode;
 513
 514	return count;
 515}
 516static DEVICE_ATTR_RW(zeroing_mode);
 517
 518static ssize_t
 519max_medium_access_timeouts_show(struct device *dev,
 520				struct device_attribute *attr, char *buf)
 521{
 522	struct scsi_disk *sdkp = to_scsi_disk(dev);
 523
 524	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
 525}
 526
 527static ssize_t
 528max_medium_access_timeouts_store(struct device *dev,
 529				 struct device_attribute *attr, const char *buf,
 530				 size_t count)
 531{
 532	struct scsi_disk *sdkp = to_scsi_disk(dev);
 533	int err;
 534
 535	if (!capable(CAP_SYS_ADMIN))
 536		return -EACCES;
 537
 538	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
 539
 540	return err ? err : count;
 541}
 542static DEVICE_ATTR_RW(max_medium_access_timeouts);
 543
 544static ssize_t
 545max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
 546			   char *buf)
 547{
 548	struct scsi_disk *sdkp = to_scsi_disk(dev);
 549
 550	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
 551}
 552
 553static ssize_t
 554max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
 555			    const char *buf, size_t count)
 556{
 557	struct scsi_disk *sdkp = to_scsi_disk(dev);
 558	struct scsi_device *sdp = sdkp->device;
 559	unsigned long max;
 560	int err;
 561
 562	if (!capable(CAP_SYS_ADMIN))
 563		return -EACCES;
 564
 565	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
 566		return -EINVAL;
 567
 568	err = kstrtoul(buf, 10, &max);
 569
 570	if (err)
 571		return err;
 572
 573	if (max == 0)
 574		sdp->no_write_same = 1;
 575	else if (max <= SD_MAX_WS16_BLOCKS) {
 576		sdp->no_write_same = 0;
 577		sdkp->max_ws_blocks = max;
 578	}
 579
 580	sd_config_write_same(sdkp);
 581
 582	return count;
 583}
 584static DEVICE_ATTR_RW(max_write_same_blocks);
 585
 586static ssize_t
 587zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
 588{
 589	struct scsi_disk *sdkp = to_scsi_disk(dev);
 590
 591	if (sdkp->device->type == TYPE_ZBC)
 592		return sprintf(buf, "host-managed\n");
 593	if (sdkp->zoned == 1)
 594		return sprintf(buf, "host-aware\n");
 595	if (sdkp->zoned == 2)
 596		return sprintf(buf, "drive-managed\n");
 597	return sprintf(buf, "none\n");
 598}
 599static DEVICE_ATTR_RO(zoned_cap);
 600
 601static ssize_t
 602max_retries_store(struct device *dev, struct device_attribute *attr,
 603		  const char *buf, size_t count)
 604{
 605	struct scsi_disk *sdkp = to_scsi_disk(dev);
 606	struct scsi_device *sdev = sdkp->device;
 607	int retries, err;
 608
 609	err = kstrtoint(buf, 10, &retries);
 610	if (err)
 611		return err;
 612
 613	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
 614		sdkp->max_retries = retries;
 615		return count;
 616	}
 617
 618	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
 619		    SD_MAX_RETRIES);
 620	return -EINVAL;
 621}
 622
 623static ssize_t
 624max_retries_show(struct device *dev, struct device_attribute *attr,
 625		 char *buf)
 626{
 627	struct scsi_disk *sdkp = to_scsi_disk(dev);
 628
 629	return sprintf(buf, "%d\n", sdkp->max_retries);
 630}
 631
 632static DEVICE_ATTR_RW(max_retries);
 633
 634static struct attribute *sd_disk_attrs[] = {
 635	&dev_attr_cache_type.attr,
 636	&dev_attr_FUA.attr,
 637	&dev_attr_allow_restart.attr,
 638	&dev_attr_manage_start_stop.attr,
 639	&dev_attr_manage_system_start_stop.attr,
 640	&dev_attr_manage_runtime_start_stop.attr,
 641	&dev_attr_manage_shutdown.attr,
 642	&dev_attr_protection_type.attr,
 643	&dev_attr_protection_mode.attr,
 644	&dev_attr_app_tag_own.attr,
 645	&dev_attr_thin_provisioning.attr,
 646	&dev_attr_provisioning_mode.attr,
 647	&dev_attr_zeroing_mode.attr,
 648	&dev_attr_max_write_same_blocks.attr,
 649	&dev_attr_max_medium_access_timeouts.attr,
 650	&dev_attr_zoned_cap.attr,
 651	&dev_attr_max_retries.attr,
 652	NULL,
 653};
 654ATTRIBUTE_GROUPS(sd_disk);
 655
 656static struct class sd_disk_class = {
 657	.name		= "scsi_disk",
 
 658	.dev_release	= scsi_disk_release,
 659	.dev_groups	= sd_disk_groups,
 660};
 661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662/*
 663 * Don't request a new module, as that could deadlock in multipath
 664 * environment.
 
 665 */
 666static void sd_default_probe(dev_t devt)
 667{
 
 668}
 669
 670/*
 671 * Device no to disk mapping:
 672 * 
 673 *       major         disc2     disc  p1
 674 *   |............|.............|....|....| <- dev_t
 675 *    31        20 19          8 7  4 3  0
 676 * 
 677 * Inside a major, we have 16k disks, however mapped non-
 678 * contiguously. The first 16 disks are for major0, the next
 679 * ones with major1, ... Disk 256 is for major0 again, disk 272 
 680 * for major1, ... 
 681 * As we stay compatible with our numbering scheme, we can reuse 
 682 * the well-know SCSI majors 8, 65--71, 136--143.
 683 */
 684static int sd_major(int major_idx)
 685{
 686	switch (major_idx) {
 687	case 0:
 688		return SCSI_DISK0_MAJOR;
 689	case 1 ... 7:
 690		return SCSI_DISK1_MAJOR + major_idx - 1;
 691	case 8 ... 15:
 692		return SCSI_DISK8_MAJOR + major_idx - 8;
 693	default:
 694		BUG();
 695		return 0;	/* shut up gcc */
 696	}
 697}
 698
 699#ifdef CONFIG_BLK_SED_OPAL
 700static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
 701		size_t len, bool send)
 702{
 703	struct scsi_disk *sdkp = data;
 704	struct scsi_device *sdev = sdkp->device;
 705	u8 cdb[12] = { 0, };
 706	const struct scsi_exec_args exec_args = {
 707		.req_flags = BLK_MQ_REQ_PM,
 708	};
 709	int ret;
 710
 711	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
 712	cdb[1] = secp;
 713	put_unaligned_be16(spsp, &cdb[2]);
 714	put_unaligned_be32(len, &cdb[6]);
 715
 716	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
 717			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
 718			       &exec_args);
 719	return ret <= 0 ? ret : -EIO;
 720}
 721#endif /* CONFIG_BLK_SED_OPAL */
 722
 723/*
 724 * Look up the DIX operation based on whether the command is read or
 725 * write and whether dix and dif are enabled.
 726 */
 727static unsigned int sd_prot_op(bool write, bool dix, bool dif)
 728{
 729	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
 730	static const unsigned int ops[] = {	/* wrt dix dif */
 731		SCSI_PROT_NORMAL,		/*  0	0   0  */
 732		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
 733		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
 734		SCSI_PROT_READ_PASS,		/*  0	1   1  */
 735		SCSI_PROT_NORMAL,		/*  1	0   0  */
 736		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
 737		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
 738		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
 739	};
 740
 741	return ops[write << 2 | dix << 1 | dif];
 
 
 
 742}
 743
 744/*
 745 * Returns a mask of the protection flags that are valid for a given DIX
 746 * operation.
 747 */
 748static unsigned int sd_prot_flag_mask(unsigned int prot_op)
 749{
 750	static const unsigned int flag_mask[] = {
 751		[SCSI_PROT_NORMAL]		= 0,
 752
 753		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
 754						  SCSI_PROT_GUARD_CHECK |
 755						  SCSI_PROT_REF_CHECK |
 756						  SCSI_PROT_REF_INCREMENT,
 757
 758		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
 759						  SCSI_PROT_IP_CHECKSUM,
 760
 761		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
 762						  SCSI_PROT_GUARD_CHECK |
 763						  SCSI_PROT_REF_CHECK |
 764						  SCSI_PROT_REF_INCREMENT |
 765						  SCSI_PROT_IP_CHECKSUM,
 766
 767		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
 768						  SCSI_PROT_REF_INCREMENT,
 769
 770		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
 771						  SCSI_PROT_REF_CHECK |
 772						  SCSI_PROT_REF_INCREMENT |
 773						  SCSI_PROT_IP_CHECKSUM,
 774
 775		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
 776						  SCSI_PROT_GUARD_CHECK |
 777						  SCSI_PROT_REF_CHECK |
 778						  SCSI_PROT_REF_INCREMENT |
 779						  SCSI_PROT_IP_CHECKSUM,
 780	};
 781
 782	return flag_mask[prot_op];
 
 
 
 
 
 783}
 784
 785static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
 786					   unsigned int dix, unsigned int dif)
 787{
 788	struct request *rq = scsi_cmd_to_rq(scmd);
 789	struct bio *bio = rq->bio;
 790	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
 791	unsigned int protect = 0;
 792
 793	if (dix) {				/* DIX Type 0, 1, 2, 3 */
 794		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
 795			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
 796
 797		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 798			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
 799	}
 800
 801	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
 802		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
 803
 804		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
 805			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
 806	}
 
 
 807
 808	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
 809		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
 
 
 810
 811		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
 812			protect = 3 << 5;	/* Disable target PI checking */
 813		else
 814			protect = 1 << 5;	/* Enable target PI checking */
 
 
 
 
 
 
 
 
 
 
 815	}
 816
 817	scsi_set_prot_op(scmd, prot_op);
 818	scsi_set_prot_type(scmd, dif);
 819	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
 820
 821	return protect;
 822}
 823
 824static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
 825{
 826	struct request_queue *q = sdkp->disk->queue;
 827	unsigned int logical_block_size = sdkp->device->sector_size;
 828	unsigned int max_blocks = 0;
 829
 830	q->limits.discard_alignment =
 831		sdkp->unmap_alignment * logical_block_size;
 
 832	q->limits.discard_granularity =
 833		max(sdkp->physical_block_size,
 834		    sdkp->unmap_granularity * logical_block_size);
 
 835	sdkp->provisioning_mode = mode;
 836
 837	switch (mode) {
 838
 839	case SD_LBP_FULL:
 840	case SD_LBP_DISABLE:
 841		blk_queue_max_discard_sectors(q, 0);
 
 842		return;
 843
 844	case SD_LBP_UNMAP:
 845		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
 846					  (u32)SD_MAX_WS16_BLOCKS);
 847		break;
 848
 849	case SD_LBP_WS16:
 850		if (sdkp->device->unmap_limit_for_ws)
 851			max_blocks = sdkp->max_unmap_blocks;
 852		else
 853			max_blocks = sdkp->max_ws_blocks;
 854
 855		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
 856		break;
 857
 858	case SD_LBP_WS10:
 859		if (sdkp->device->unmap_limit_for_ws)
 860			max_blocks = sdkp->max_unmap_blocks;
 861		else
 862			max_blocks = sdkp->max_ws_blocks;
 863
 864		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
 865		break;
 866
 867	case SD_LBP_ZERO:
 868		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 869					  (u32)SD_MAX_WS10_BLOCKS);
 
 870		break;
 871	}
 872
 873	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
 
 874}
 875
 876static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
 
 
 
 
 
 
 
 
 877{
 878	struct page *page;
 879
 880	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
 881	if (!page)
 882		return NULL;
 883	clear_highpage(page);
 884	bvec_set_page(&rq->special_vec, page, data_len, 0);
 885	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
 886	return bvec_virt(&rq->special_vec);
 887}
 888
 889static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
 890{
 891	struct scsi_device *sdp = cmd->device;
 892	struct request *rq = scsi_cmd_to_rq(cmd);
 893	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 894	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 895	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 896	unsigned int data_len = 24;
 897	char *buf;
 
 898
 899	buf = sd_set_special_bvec(rq, data_len);
 900	if (!buf)
 901		return BLK_STS_RESOURCE;
 902
 903	cmd->cmd_len = 10;
 904	cmd->cmnd[0] = UNMAP;
 905	cmd->cmnd[8] = 24;
 906
 907	put_unaligned_be16(6 + 16, &buf[0]);
 908	put_unaligned_be16(16, &buf[2]);
 909	put_unaligned_be64(lba, &buf[8]);
 910	put_unaligned_be32(nr_blocks, &buf[16]);
 911
 912	cmd->allowed = sdkp->max_retries;
 913	cmd->transfersize = data_len;
 914	rq->timeout = SD_TIMEOUT;
 915
 916	return scsi_alloc_sgtables(cmd);
 917}
 918
 919static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
 920		bool unmap)
 921{
 922	struct scsi_device *sdp = cmd->device;
 923	struct request *rq = scsi_cmd_to_rq(cmd);
 924	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 925	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 926	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 927	u32 data_len = sdp->sector_size;
 928
 929	if (!sd_set_special_bvec(rq, data_len))
 930		return BLK_STS_RESOURCE;
 931
 932	cmd->cmd_len = 16;
 933	cmd->cmnd[0] = WRITE_SAME_16;
 934	if (unmap)
 935		cmd->cmnd[1] = 0x8; /* UNMAP */
 936	put_unaligned_be64(lba, &cmd->cmnd[2]);
 937	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
 938
 939	cmd->allowed = sdkp->max_retries;
 940	cmd->transfersize = data_len;
 941	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 942
 943	return scsi_alloc_sgtables(cmd);
 944}
 945
 946static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
 947		bool unmap)
 948{
 949	struct scsi_device *sdp = cmd->device;
 950	struct request *rq = scsi_cmd_to_rq(cmd);
 951	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 952	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 953	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 954	u32 data_len = sdp->sector_size;
 955
 956	if (!sd_set_special_bvec(rq, data_len))
 957		return BLK_STS_RESOURCE;
 
 
 
 
 
 
 958
 959	cmd->cmd_len = 10;
 960	cmd->cmnd[0] = WRITE_SAME;
 961	if (unmap)
 962		cmd->cmnd[1] = 0x8; /* UNMAP */
 963	put_unaligned_be32(lba, &cmd->cmnd[2]);
 964	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
 965
 966	cmd->allowed = sdkp->max_retries;
 967	cmd->transfersize = data_len;
 968	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
 
 
 
 969
 970	return scsi_alloc_sgtables(cmd);
 971}
 972
 973static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
 974{
 975	struct request *rq = scsi_cmd_to_rq(cmd);
 976	struct scsi_device *sdp = cmd->device;
 977	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
 978	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
 979	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
 
 980
 981	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
 982		switch (sdkp->zeroing_mode) {
 983		case SD_ZERO_WS16_UNMAP:
 984			return sd_setup_write_same16_cmnd(cmd, true);
 985		case SD_ZERO_WS10_UNMAP:
 986			return sd_setup_write_same10_cmnd(cmd, true);
 987		}
 988	}
 989
 990	if (sdp->no_write_same) {
 991		rq->rq_flags |= RQF_QUIET;
 992		return BLK_STS_TARGET;
 993	}
 994
 995	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
 996		return sd_setup_write_same16_cmnd(cmd, false);
 
 
 997
 998	return sd_setup_write_same10_cmnd(cmd, false);
 
 
 
 
 
 999}
1000
1001static void sd_config_write_same(struct scsi_disk *sdkp)
1002{
1003	struct request_queue *q = sdkp->disk->queue;
1004	unsigned int logical_block_size = sdkp->device->sector_size;
1005
1006	if (sdkp->device->no_write_same) {
1007		sdkp->max_ws_blocks = 0;
1008		goto out;
1009	}
1010
1011	/* Some devices can not handle block counts above 0xffff despite
1012	 * supporting WRITE SAME(16). Consequently we default to 64k
1013	 * blocks per I/O unless the device explicitly advertises a
1014	 * bigger limit.
1015	 */
1016	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1017		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1018						   (u32)SD_MAX_WS16_BLOCKS);
1019	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1020		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1021						   (u32)SD_MAX_WS10_BLOCKS);
1022	else {
1023		sdkp->device->no_write_same = 1;
1024		sdkp->max_ws_blocks = 0;
1025	}
1026
1027	if (sdkp->lbprz && sdkp->lbpws)
1028		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1029	else if (sdkp->lbprz && sdkp->lbpws10)
1030		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1031	else if (sdkp->max_ws_blocks)
1032		sdkp->zeroing_mode = SD_ZERO_WS;
1033	else
1034		sdkp->zeroing_mode = SD_ZERO_WRITE;
1035
1036	if (sdkp->max_ws_blocks &&
1037	    sdkp->physical_block_size > logical_block_size) {
1038		/*
1039		 * Reporting a maximum number of blocks that is not aligned
1040		 * on the device physical size would cause a large write same
1041		 * request to be split into physically unaligned chunks by
1042		 * __blkdev_issue_write_zeroes() even if the caller of this
1043		 * functions took care to align the large request. So make sure
1044		 * the maximum reported is aligned to the device physical block
1045		 * size. This is only an optional optimization for regular
1046		 * disks, but this is mandatory to avoid failure of large write
1047		 * same requests directed at sequential write required zones of
1048		 * host-managed ZBC disks.
1049		 */
1050		sdkp->max_ws_blocks =
1051			round_down(sdkp->max_ws_blocks,
1052				   bytes_to_logical(sdkp->device,
1053						    sdkp->physical_block_size));
1054	}
1055
1056out:
1057	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1058					 (logical_block_size >> 9));
1059}
1060
1061static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
 
 
 
 
 
 
 
 
1062{
1063	struct request *rq = scsi_cmd_to_rq(cmd);
1064	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1065
1066	/* flush requests don't perform I/O, zero the S/G table */
1067	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 
1068
1069	if (cmd->device->use_16_for_sync) {
1070		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1071		cmd->cmd_len = 16;
1072	} else {
1073		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1074		cmd->cmd_len = 10;
1075	}
1076	cmd->transfersize = 0;
1077	cmd->allowed = sdkp->max_retries;
1078
1079	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1080	return BLK_STS_OK;
1081}
1082
1083static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1084				       sector_t lba, unsigned int nr_blocks,
1085				       unsigned char flags, unsigned int dld)
1086{
1087	cmd->cmd_len = SD_EXT_CDB_SIZE;
1088	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1089	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1090	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1091	cmd->cmnd[10] = flags;
1092	cmd->cmnd[11] = dld & 0x07;
1093	put_unaligned_be64(lba, &cmd->cmnd[12]);
1094	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1095	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1096
1097	return BLK_STS_OK;
1098}
 
 
 
 
 
 
 
 
 
 
 
 
 
1099
1100static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1101				       sector_t lba, unsigned int nr_blocks,
1102				       unsigned char flags, unsigned int dld)
1103{
1104	cmd->cmd_len  = 16;
1105	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1106	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1107	cmd->cmnd[14] = (dld & 0x03) << 6;
1108	cmd->cmnd[15] = 0;
1109	put_unaligned_be64(lba, &cmd->cmnd[2]);
1110	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1111
1112	return BLK_STS_OK;
1113}
1114
1115static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1116				       sector_t lba, unsigned int nr_blocks,
1117				       unsigned char flags)
1118{
1119	cmd->cmd_len = 10;
1120	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1121	cmd->cmnd[1] = flags;
1122	cmd->cmnd[6] = 0;
1123	cmd->cmnd[9] = 0;
1124	put_unaligned_be32(lba, &cmd->cmnd[2]);
1125	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1126
1127	return BLK_STS_OK;
1128}
1129
1130static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1131				      sector_t lba, unsigned int nr_blocks,
1132				      unsigned char flags)
1133{
1134	/* Avoid that 0 blocks gets translated into 256 blocks. */
1135	if (WARN_ON_ONCE(nr_blocks == 0))
1136		return BLK_STS_IOERR;
1137
1138	if (unlikely(flags & 0x8)) {
1139		/*
1140		 * This happens only if this drive failed 10byte rw
1141		 * command with ILLEGAL_REQUEST during operation and
1142		 * thus turned off use_10_for_rw.
1143		 */
1144		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1145		return BLK_STS_IOERR;
1146	}
1147
1148	cmd->cmd_len = 6;
1149	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1150	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1151	cmd->cmnd[2] = (lba >> 8) & 0xff;
1152	cmd->cmnd[3] = lba & 0xff;
1153	cmd->cmnd[4] = nr_blocks;
1154	cmd->cmnd[5] = 0;
1155
1156	return BLK_STS_OK;
1157}
1158
1159/*
1160 * Check if a command has a duration limit set. If it does, and the target
1161 * device supports CDL and the feature is enabled, return the limit
1162 * descriptor index to use. Return 0 (no limit) otherwise.
1163 */
1164static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
 
 
 
1165{
1166	struct scsi_device *sdp = sdkp->device;
1167	int hint;
1168
1169	if (!sdp->cdl_supported || !sdp->cdl_enable)
1170		return 0;
 
 
 
 
1171
1172	/*
1173	 * Use "no limit" if the request ioprio does not specify a duration
1174	 * limit hint.
1175	 */
1176	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1177	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1178	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1179		return 0;
1180
1181	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1182}
1183
1184static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1185{
1186	struct request *rq = scsi_cmd_to_rq(cmd);
1187	struct scsi_device *sdp = cmd->device;
1188	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1189	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1190	sector_t threshold;
1191	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1192	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1193	bool write = rq_data_dir(rq) == WRITE;
1194	unsigned char protect, fua;
1195	unsigned int dld;
1196	blk_status_t ret;
1197	unsigned int dif;
1198	bool dix;
1199
1200	ret = scsi_alloc_sgtables(cmd);
1201	if (ret != BLK_STS_OK)
1202		return ret;
1203
1204	ret = BLK_STS_IOERR;
1205	if (!scsi_device_online(sdp) || sdp->changed) {
1206		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1207		goto fail;
1208	}
 
 
 
 
 
1209
1210	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1211		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1212		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1213	}
1214
1215	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1216		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1217		goto fail;
 
 
 
 
1218	}
1219
1220	/*
1221	 * Some SD card readers can't handle accesses which touch the
1222	 * last one or two logical blocks. Split accesses as needed.
1223	 */
1224	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
 
1225
1226	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1227		if (lba < threshold) {
1228			/* Access up to the threshold but not beyond */
1229			nr_blocks = threshold - lba;
1230		} else {
1231			/* Access only a single logical block */
1232			nr_blocks = 1;
1233		}
1234	}
1235
1236	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1237		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1238		if (ret)
1239			goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240	}
 
 
 
 
 
 
1241
1242	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1243	dix = scsi_prot_sg_count(cmd);
1244	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1245	dld = sd_cdl_dld(sdkp, cmd);
 
 
 
 
 
 
1246
1247	if (dif || dix)
1248		protect = sd_setup_protect_cmnd(cmd, dix, dif);
 
 
 
 
 
 
 
 
1249	else
1250		protect = 0;
1251
1252	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1253		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1254					 protect | fua, dld);
1255	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1256		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1257					 protect | fua, dld);
1258	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1259		   sdp->use_10_for_rw || protect) {
1260		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1261					 protect | fua);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1262	} else {
1263		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1264					protect | fua);
1265	}
 
 
 
 
 
 
 
 
1266
1267	if (unlikely(ret != BLK_STS_OK))
1268		goto fail;
 
 
 
 
 
 
 
 
 
1269
1270	/*
1271	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1272	 * host adapter, it's safe to assume that we can at least transfer
1273	 * this many bytes between each connect / disconnect.
1274	 */
1275	cmd->transfersize = sdp->sector_size;
1276	cmd->underflow = nr_blocks << 9;
1277	cmd->allowed = sdkp->max_retries;
1278	cmd->sdb.length = nr_blocks * sdp->sector_size;
1279
1280	SCSI_LOG_HLQUEUE(1,
1281			 scmd_printk(KERN_INFO, cmd,
1282				     "%s: block=%llu, count=%d\n", __func__,
1283				     (unsigned long long)blk_rq_pos(rq),
1284				     blk_rq_sectors(rq)));
1285	SCSI_LOG_HLQUEUE(2,
1286			 scmd_printk(KERN_INFO, cmd,
1287				     "%s %d/%u 512 byte blocks.\n",
1288				     write ? "writing" : "reading", nr_blocks,
1289				     blk_rq_sectors(rq)));
1290
1291	/*
1292	 * This indicates that the command is ready from our end to be queued.
1293	 */
1294	return BLK_STS_OK;
1295fail:
1296	scsi_free_sgtables(cmd);
1297	return ret;
1298}
1299
1300static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1301{
1302	struct request *rq = scsi_cmd_to_rq(cmd);
1303
1304	switch (req_op(rq)) {
1305	case REQ_OP_DISCARD:
1306		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1307		case SD_LBP_UNMAP:
1308			return sd_setup_unmap_cmnd(cmd);
1309		case SD_LBP_WS16:
1310			return sd_setup_write_same16_cmnd(cmd, true);
1311		case SD_LBP_WS10:
1312			return sd_setup_write_same10_cmnd(cmd, true);
1313		case SD_LBP_ZERO:
1314			return sd_setup_write_same10_cmnd(cmd, false);
1315		default:
1316			return BLK_STS_TARGET;
1317		}
1318	case REQ_OP_WRITE_ZEROES:
1319		return sd_setup_write_zeroes_cmnd(cmd);
1320	case REQ_OP_FLUSH:
1321		return sd_setup_flush_cmnd(cmd);
1322	case REQ_OP_READ:
1323	case REQ_OP_WRITE:
1324	case REQ_OP_ZONE_APPEND:
1325		return sd_setup_read_write_cmnd(cmd);
1326	case REQ_OP_ZONE_RESET:
1327		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1328						   false);
1329	case REQ_OP_ZONE_RESET_ALL:
1330		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1331						   true);
1332	case REQ_OP_ZONE_OPEN:
1333		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1334	case REQ_OP_ZONE_CLOSE:
1335		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1336	case REQ_OP_ZONE_FINISH:
1337		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1338	default:
1339		WARN_ON_ONCE(1);
1340		return BLK_STS_NOTSUPP;
1341	}
1342}
1343
1344static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1345{
1346	struct request *rq = scsi_cmd_to_rq(SCpnt);
1347
1348	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1349		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1350}
1351
1352static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1353{
1354	if (sdkp->device->removable || sdkp->write_prot) {
1355		if (disk_check_media_change(disk))
1356			return true;
1357	}
1358
1359	/*
1360	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1361	 * nothing to do with partitions, BLKRRPART is used to force a full
1362	 * revalidate after things like a format for historical reasons.
1363	 */
1364	return test_bit(GD_NEED_PART_SCAN, &disk->state);
 
 
1365}
1366
1367/**
1368 *	sd_open - open a scsi disk device
1369 *	@disk: disk to open
1370 *	@mode: open mode
1371 *
1372 *	Returns 0 if successful. Returns a negated errno value in case 
1373 *	of error.
1374 *
1375 *	Note: This can be called from a user context (e.g. fsck(1) )
1376 *	or from within the kernel (e.g. as a result of a mount(1) ).
1377 *	In the latter case @inode and @filp carry an abridged amount
1378 *	of information as noted above.
1379 *
1380 *	Locking: called with disk->open_mutex held.
1381 **/
1382static int sd_open(struct gendisk *disk, blk_mode_t mode)
1383{
1384	struct scsi_disk *sdkp = scsi_disk(disk);
1385	struct scsi_device *sdev = sdkp->device;
1386	int retval;
1387
1388	if (scsi_device_get(sdev))
1389		return -ENXIO;
1390
1391	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1392
 
 
1393	/*
1394	 * If the device is in error recovery, wait until it is done.
1395	 * If the device is offline, then disallow any access to it.
1396	 */
1397	retval = -ENXIO;
1398	if (!scsi_block_when_processing_errors(sdev))
1399		goto error_out;
1400
1401	if (sd_need_revalidate(disk, sdkp))
1402		sd_revalidate_disk(disk);
1403
1404	/*
1405	 * If the drive is empty, just let the open fail.
1406	 */
1407	retval = -ENOMEDIUM;
1408	if (sdev->removable && !sdkp->media_present &&
1409	    !(mode & BLK_OPEN_NDELAY))
1410		goto error_out;
1411
1412	/*
1413	 * If the device has the write protect tab set, have the open fail
1414	 * if the user expects to be able to write to the thing.
1415	 */
1416	retval = -EROFS;
1417	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1418		goto error_out;
1419
1420	/*
1421	 * It is possible that the disk changing stuff resulted in
1422	 * the device being taken offline.  If this is the case,
1423	 * report this to the user, and don't pretend that the
1424	 * open actually succeeded.
1425	 */
1426	retval = -ENXIO;
1427	if (!scsi_device_online(sdev))
1428		goto error_out;
1429
1430	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1431		if (scsi_block_when_processing_errors(sdev))
1432			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1433	}
1434
1435	return 0;
1436
1437error_out:
1438	scsi_device_put(sdev);
1439	return retval;	
1440}
1441
1442/**
1443 *	sd_release - invoked when the (last) close(2) is called on this
1444 *	scsi disk.
1445 *	@disk: disk to release
 
1446 *
1447 *	Returns 0. 
1448 *
1449 *	Note: may block (uninterruptible) if error recovery is underway
1450 *	on this disk.
1451 *
1452 *	Locking: called with disk->open_mutex held.
1453 **/
1454static void sd_release(struct gendisk *disk)
1455{
1456	struct scsi_disk *sdkp = scsi_disk(disk);
1457	struct scsi_device *sdev = sdkp->device;
1458
1459	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1460
1461	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1462		if (scsi_block_when_processing_errors(sdev))
1463			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1464	}
1465
1466	scsi_device_put(sdev);
 
 
 
 
 
1467}
1468
1469static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1470{
1471	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1472	struct scsi_device *sdp = sdkp->device;
1473	struct Scsi_Host *host = sdp->host;
1474	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1475	int diskinfo[4];
1476
1477	/* default to most commonly used values */
1478	diskinfo[0] = 0x40;	/* 1 << 6 */
1479	diskinfo[1] = 0x20;	/* 1 << 5 */
1480	diskinfo[2] = capacity >> 11;
1481
1482	/* override with calculated, extended default, or driver values */
1483	if (host->hostt->bios_param)
1484		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1485	else
1486		scsicam_bios_param(bdev, capacity, diskinfo);
1487
1488	geo->heads = diskinfo[0];
1489	geo->sectors = diskinfo[1];
1490	geo->cylinders = diskinfo[2];
1491	return 0;
1492}
1493
1494/**
1495 *	sd_ioctl - process an ioctl
1496 *	@bdev: target block device
1497 *	@mode: open mode
1498 *	@cmd: ioctl command number
1499 *	@arg: this is third argument given to ioctl(2) system call.
1500 *	Often contains a pointer.
1501 *
1502 *	Returns 0 if successful (some ioctls return positive numbers on
1503 *	success as well). Returns a negated errno value in case of error.
1504 *
1505 *	Note: most ioctls are forward onto the block subsystem or further
1506 *	down in the scsi subsystem.
1507 **/
1508static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1509		    unsigned int cmd, unsigned long arg)
1510{
1511	struct gendisk *disk = bdev->bd_disk;
1512	struct scsi_disk *sdkp = scsi_disk(disk);
1513	struct scsi_device *sdp = sdkp->device;
1514	void __user *p = (void __user *)arg;
1515	int error;
1516    
1517	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1518				    "cmd=0x%x\n", disk->disk_name, cmd));
1519
1520	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1521		return -ENOIOCTLCMD;
 
1522
1523	/*
1524	 * If we are in the middle of error recovery, don't let anyone
1525	 * else try and use this device.  Also, if error recovery fails, it
1526	 * may try and take the device offline, in which case all further
1527	 * access to the device is prohibited.
1528	 */
1529	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1530			(mode & BLK_OPEN_NDELAY));
1531	if (error)
1532		return error;
1533
1534	if (is_sed_ioctl(cmd))
1535		return sed_ioctl(sdkp->opal_dev, cmd, p);
1536	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537}
1538
1539static void set_media_not_present(struct scsi_disk *sdkp)
1540{
1541	if (sdkp->media_present)
1542		sdkp->device->changed = 1;
1543
1544	if (sdkp->device->removable) {
1545		sdkp->media_present = 0;
1546		sdkp->capacity = 0;
1547	}
1548}
1549
1550static int media_not_present(struct scsi_disk *sdkp,
1551			     struct scsi_sense_hdr *sshdr)
1552{
1553	if (!scsi_sense_valid(sshdr))
1554		return 0;
1555
1556	/* not invoked for commands that could return deferred errors */
1557	switch (sshdr->sense_key) {
1558	case UNIT_ATTENTION:
1559	case NOT_READY:
1560		/* medium not present */
1561		if (sshdr->asc == 0x3A) {
1562			set_media_not_present(sdkp);
1563			return 1;
1564		}
1565	}
1566	return 0;
1567}
1568
1569/**
1570 *	sd_check_events - check media events
1571 *	@disk: kernel device descriptor
1572 *	@clearing: disk events currently being cleared
1573 *
1574 *	Returns mask of DISK_EVENT_*.
1575 *
1576 *	Note: this function is invoked from the block subsystem.
1577 **/
1578static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1579{
1580	struct scsi_disk *sdkp = disk->private_data;
1581	struct scsi_device *sdp;
 
1582	int retval;
1583	bool disk_changed;
1584
1585	if (!sdkp)
1586		return 0;
1587
1588	sdp = sdkp->device;
1589	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1590
1591	/*
1592	 * If the device is offline, don't send any commands - just pretend as
1593	 * if the command failed.  If the device ever comes back online, we
1594	 * can deal with it then.  It is only because of unrecoverable errors
1595	 * that we would ever take a device offline in the first place.
1596	 */
1597	if (!scsi_device_online(sdp)) {
1598		set_media_not_present(sdkp);
1599		goto out;
1600	}
1601
1602	/*
1603	 * Using TEST_UNIT_READY enables differentiation between drive with
1604	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1605	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1606	 *
1607	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1608	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1609	 * sd_revalidate() is called.
1610	 */
1611	if (scsi_block_when_processing_errors(sdp)) {
1612		struct scsi_sense_hdr sshdr = { 0, };
1613
1614		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1615					      &sshdr);
1616
1617		/* failed to execute TUR, assume media not present */
1618		if (retval < 0 || host_byte(retval)) {
1619			set_media_not_present(sdkp);
1620			goto out;
1621		}
1622
1623		if (media_not_present(sdkp, &sshdr))
1624			goto out;
 
 
1625	}
1626
 
 
 
1627	/*
1628	 * For removable scsi disk we have to recognise the presence
1629	 * of a disk in the drive.
1630	 */
1631	if (!sdkp->media_present)
1632		sdp->changed = 1;
1633	sdkp->media_present = 1;
1634out:
1635	/*
1636	 * sdp->changed is set under the following conditions:
1637	 *
1638	 *	Medium present state has changed in either direction.
1639	 *	Device has indicated UNIT_ATTENTION.
1640	 */
1641	disk_changed = sdp->changed;
 
1642	sdp->changed = 0;
1643	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1644}
1645
1646static int sd_sync_cache(struct scsi_disk *sdkp)
1647{
1648	int retries, res;
1649	struct scsi_device *sdp = sdkp->device;
1650	const int timeout = sdp->request_queue->rq_timeout
1651		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1652	struct scsi_sense_hdr sshdr;
1653	const struct scsi_exec_args exec_args = {
1654		.req_flags = BLK_MQ_REQ_PM,
1655		.sshdr = &sshdr,
1656	};
1657
1658	if (!scsi_device_online(sdp))
1659		return -ENODEV;
1660
1661	for (retries = 3; retries > 0; --retries) {
1662		unsigned char cmd[16] = { 0 };
1663
1664		if (sdp->use_16_for_sync)
1665			cmd[0] = SYNCHRONIZE_CACHE_16;
1666		else
1667			cmd[0] = SYNCHRONIZE_CACHE;
1668		/*
1669		 * Leave the rest of the command zero to indicate
1670		 * flush everything.
1671		 */
1672		res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1673				       timeout, sdkp->max_retries, &exec_args);
 
1674		if (res == 0)
1675			break;
1676	}
1677
1678	if (res) {
1679		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1680
1681		if (res < 0)
1682			return res;
1683
1684		if (scsi_status_is_check_condition(res) &&
1685		    scsi_sense_valid(&sshdr)) {
1686			sd_print_sense_hdr(sdkp, &sshdr);
1687
1688			/* we need to evaluate the error return  */
1689			if (sshdr.asc == 0x3a ||	/* medium not present */
1690			    sshdr.asc == 0x20 ||	/* invalid command */
1691			    (sshdr.asc == 0x74 && sshdr.ascq == 0x71))	/* drive is password locked */
1692				/* this is no error here */
1693				return 0;
1694			/*
1695			 * This drive doesn't support sync and there's not much
1696			 * we can do because this is called during shutdown
1697			 * or suspend so just return success so those operations
1698			 * can proceed.
1699			 */
1700			if (sshdr.sense_key == ILLEGAL_REQUEST)
1701				return 0;
1702		}
1703
1704		switch (host_byte(res)) {
1705		/* ignore errors due to racing a disconnection */
1706		case DID_BAD_TARGET:
1707		case DID_NO_CONNECT:
1708			return 0;
1709		/* signal the upper layer it might try again */
1710		case DID_BUS_BUSY:
1711		case DID_IMM_RETRY:
1712		case DID_REQUEUE:
1713		case DID_SOFT_ERROR:
1714			return -EBUSY;
1715		default:
1716			return -EIO;
1717		}
1718	}
1719	return 0;
1720}
1721
1722static void sd_rescan(struct device *dev)
1723{
1724	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1725
1726	sd_revalidate_disk(sdkp->disk);
1727}
1728
1729static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1730		enum blk_unique_id type)
1731{
1732	struct scsi_device *sdev = scsi_disk(disk)->device;
1733	const struct scsi_vpd *vpd;
1734	const unsigned char *d;
1735	int ret = -ENXIO, len;
1736
1737	rcu_read_lock();
1738	vpd = rcu_dereference(sdev->vpd_pg83);
1739	if (!vpd)
1740		goto out_unlock;
1741
1742	ret = -EINVAL;
1743	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1744		/* we only care about designators with LU association */
1745		if (((d[1] >> 4) & 0x3) != 0x00)
1746			continue;
1747		if ((d[1] & 0xf) != type)
1748			continue;
1749
1750		/*
1751		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1752		 * keep looking as one with more entropy might still show up.
1753		 */
1754		len = d[3];
1755		if (len != 8 && len != 12 && len != 16)
1756			continue;
1757		ret = len;
1758		memcpy(id, d + 4, len);
1759		if (len == 16)
1760			break;
1761	}
1762out_unlock:
1763	rcu_read_unlock();
1764	return ret;
1765}
1766
1767static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1768{
1769	switch (host_byte(result)) {
1770	case DID_TRANSPORT_MARGINAL:
1771	case DID_TRANSPORT_DISRUPTED:
1772	case DID_BUS_BUSY:
1773		return PR_STS_RETRY_PATH_FAILURE;
1774	case DID_NO_CONNECT:
1775		return PR_STS_PATH_FAILED;
1776	case DID_TRANSPORT_FAILFAST:
1777		return PR_STS_PATH_FAST_FAILED;
1778	}
1779
1780	switch (status_byte(result)) {
1781	case SAM_STAT_RESERVATION_CONFLICT:
1782		return PR_STS_RESERVATION_CONFLICT;
1783	case SAM_STAT_CHECK_CONDITION:
1784		if (!scsi_sense_valid(sshdr))
1785			return PR_STS_IOERR;
1786
1787		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1788		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1789			return -EINVAL;
1790
1791		fallthrough;
1792	default:
1793		return PR_STS_IOERR;
1794	}
1795}
1796
1797static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1798			    unsigned char *data, int data_len)
1799{
1800	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1801	struct scsi_device *sdev = sdkp->device;
1802	struct scsi_sense_hdr sshdr;
1803	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1804	const struct scsi_exec_args exec_args = {
1805		.sshdr = &sshdr,
1806	};
1807	int result;
1808
1809	put_unaligned_be16(data_len, &cmd[7]);
1810
1811	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1812				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1813	if (scsi_status_is_check_condition(result) &&
1814	    scsi_sense_valid(&sshdr)) {
1815		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1816		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1817	}
1818
1819	if (result <= 0)
1820		return result;
1821
1822	return sd_scsi_to_pr_err(&sshdr, result);
1823}
1824
1825static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1826{
1827	int result, i, data_offset, num_copy_keys;
1828	u32 num_keys = keys_info->num_keys;
1829	int data_len = num_keys * 8 + 8;
1830	u8 *data;
1831
1832	data = kzalloc(data_len, GFP_KERNEL);
1833	if (!data)
1834		return -ENOMEM;
1835
1836	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1837	if (result)
1838		goto free_data;
1839
1840	keys_info->generation = get_unaligned_be32(&data[0]);
1841	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1842
1843	data_offset = 8;
1844	num_copy_keys = min(num_keys, keys_info->num_keys);
1845
1846	for (i = 0; i < num_copy_keys; i++) {
1847		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1848		data_offset += 8;
1849	}
1850
1851free_data:
1852	kfree(data);
1853	return result;
1854}
1855
1856static int sd_pr_read_reservation(struct block_device *bdev,
1857				  struct pr_held_reservation *rsv)
1858{
1859	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1860	struct scsi_device *sdev = sdkp->device;
1861	u8 data[24] = { };
1862	int result, len;
1863
1864	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1865	if (result)
1866		return result;
1867
1868	len = get_unaligned_be32(&data[4]);
1869	if (!len)
1870		return 0;
1871
1872	/* Make sure we have at least the key and type */
1873	if (len < 14) {
1874		sdev_printk(KERN_INFO, sdev,
1875			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
1876			    len);
1877		return -EINVAL;
1878	}
1879
1880	rsv->generation = get_unaligned_be32(&data[0]);
1881	rsv->key = get_unaligned_be64(&data[8]);
1882	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1883	return 0;
1884}
1885
1886static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1887			     u64 sa_key, enum scsi_pr_type type, u8 flags)
1888{
1889	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1890	struct scsi_device *sdev = sdkp->device;
1891	struct scsi_sense_hdr sshdr;
1892	const struct scsi_exec_args exec_args = {
1893		.sshdr = &sshdr,
1894	};
1895	int result;
1896	u8 cmd[16] = { 0, };
1897	u8 data[24] = { 0, };
1898
1899	cmd[0] = PERSISTENT_RESERVE_OUT;
1900	cmd[1] = sa;
1901	cmd[2] = type;
1902	put_unaligned_be32(sizeof(data), &cmd[5]);
1903
1904	put_unaligned_be64(key, &data[0]);
1905	put_unaligned_be64(sa_key, &data[8]);
1906	data[20] = flags;
1907
1908	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1909				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1910				  &exec_args);
 
 
 
 
 
 
 
 
1911
1912	if (scsi_status_is_check_condition(result) &&
1913	    scsi_sense_valid(&sshdr)) {
1914		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1915		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1916	}
1917
1918	if (result <= 0)
1919		return result;
1920
1921	return sd_scsi_to_pr_err(&sshdr, result);
1922}
1923
1924static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1925		u32 flags)
1926{
1927	if (flags & ~PR_FL_IGNORE_KEY)
1928		return -EOPNOTSUPP;
1929	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1930			old_key, new_key, 0,
1931			(1 << 0) /* APTPL */);
1932}
1933
1934static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1935		u32 flags)
1936{
1937	if (flags)
1938		return -EOPNOTSUPP;
1939	return sd_pr_out_command(bdev, 0x01, key, 0,
1940				 block_pr_type_to_scsi(type), 0);
1941}
1942
1943static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1944{
1945	return sd_pr_out_command(bdev, 0x02, key, 0,
1946				 block_pr_type_to_scsi(type), 0);
1947}
1948
1949static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1950		enum pr_type type, bool abort)
1951{
1952	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1953				 block_pr_type_to_scsi(type), 0);
1954}
1955
1956static int sd_pr_clear(struct block_device *bdev, u64 key)
1957{
1958	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1959}
1960
1961static const struct pr_ops sd_pr_ops = {
1962	.pr_register	= sd_pr_register,
1963	.pr_reserve	= sd_pr_reserve,
1964	.pr_release	= sd_pr_release,
1965	.pr_preempt	= sd_pr_preempt,
1966	.pr_clear	= sd_pr_clear,
1967	.pr_read_keys	= sd_pr_read_keys,
1968	.pr_read_reservation = sd_pr_read_reservation,
1969};
1970
1971static void scsi_disk_free_disk(struct gendisk *disk)
1972{
1973	struct scsi_disk *sdkp = scsi_disk(disk);
1974
1975	put_device(&sdkp->disk_dev);
1976}
 
1977
1978static const struct block_device_operations sd_fops = {
1979	.owner			= THIS_MODULE,
1980	.open			= sd_open,
1981	.release		= sd_release,
1982	.ioctl			= sd_ioctl,
1983	.getgeo			= sd_getgeo,
1984	.compat_ioctl		= blkdev_compat_ptr_ioctl,
 
 
1985	.check_events		= sd_check_events,
 
1986	.unlock_native_capacity	= sd_unlock_native_capacity,
1987	.report_zones		= sd_zbc_report_zones,
1988	.get_unique_id		= sd_get_unique_id,
1989	.free_disk		= scsi_disk_free_disk,
1990	.pr_ops			= &sd_pr_ops,
1991};
1992
1993/**
1994 *	sd_eh_reset - reset error handling callback
1995 *	@scmd:		sd-issued command that has failed
1996 *
1997 *	This function is called by the SCSI midlayer before starting
1998 *	SCSI EH. When counting medium access failures we have to be
1999 *	careful to register it only only once per device and SCSI EH run;
2000 *	there might be several timed out commands which will cause the
2001 *	'max_medium_access_timeouts' counter to trigger after the first
2002 *	SCSI EH run already and set the device to offline.
2003 *	So this function resets the internal counter before starting SCSI EH.
2004 **/
2005static void sd_eh_reset(struct scsi_cmnd *scmd)
2006{
2007	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2008
2009	/* New SCSI EH run, reset gate variable */
2010	sdkp->ignore_medium_access_errors = false;
2011}
2012
2013/**
2014 *	sd_eh_action - error handling callback
2015 *	@scmd:		sd-issued command that has failed
2016 *	@eh_disp:	The recovery disposition suggested by the midlayer
2017 *
2018 *	This function is called by the SCSI midlayer upon completion of an
2019 *	error test command (currently TEST UNIT READY). The result of sending
2020 *	the eh command is passed in eh_disp.  We're looking for devices that
2021 *	fail medium access commands but are OK with non access commands like
2022 *	test unit ready (so wrongly see the device as having a successful
2023 *	recovery)
2024 **/
2025static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2026{
2027	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2028	struct scsi_device *sdev = scmd->device;
2029
2030	if (!scsi_device_online(sdev) ||
2031	    !scsi_medium_access_command(scmd) ||
2032	    host_byte(scmd->result) != DID_TIME_OUT ||
2033	    eh_disp != SUCCESS)
2034		return eh_disp;
2035
2036	/*
2037	 * The device has timed out executing a medium access command.
2038	 * However, the TEST UNIT READY command sent during error
2039	 * handling completed successfully. Either the device is in the
2040	 * process of recovering or has it suffered an internal failure
2041	 * that prevents access to the storage medium.
2042	 */
2043	if (!sdkp->ignore_medium_access_errors) {
2044		sdkp->medium_access_timed_out++;
2045		sdkp->ignore_medium_access_errors = true;
2046	}
2047
2048	/*
2049	 * If the device keeps failing read/write commands but TEST UNIT
2050	 * READY always completes successfully we assume that medium
2051	 * access is no longer possible and take the device offline.
2052	 */
2053	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2054		scmd_printk(KERN_ERR, scmd,
2055			    "Medium access timeout failure. Offlining disk!\n");
2056		mutex_lock(&sdev->state_mutex);
2057		scsi_device_set_state(sdev, SDEV_OFFLINE);
2058		mutex_unlock(&sdev->state_mutex);
2059
2060		return SUCCESS;
2061	}
2062
2063	return eh_disp;
2064}
2065
2066static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2067{
2068	struct request *req = scsi_cmd_to_rq(scmd);
2069	struct scsi_device *sdev = scmd->device;
2070	unsigned int transferred, good_bytes;
2071	u64 start_lba, end_lba, bad_lba;
2072
2073	/*
2074	 * Some commands have a payload smaller than the device logical
2075	 * block size (e.g. INQUIRY on a 4K disk).
2076	 */
2077	if (scsi_bufflen(scmd) <= sdev->sector_size)
 
 
 
2078		return 0;
2079
2080	/* Check if we have a 'bad_lba' information */
2081	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2082				     SCSI_SENSE_BUFFERSIZE,
2083				     &bad_lba))
2084		return 0;
2085
2086	/*
2087	 * If the bad lba was reported incorrectly, we have no idea where
2088	 * the error is.
2089	 */
2090	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2091	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2092	if (bad_lba < start_lba || bad_lba >= end_lba)
2093		return 0;
2094
2095	/*
2096	 * resid is optional but mostly filled in.  When it's unused,
2097	 * its value is zero, so we assume the whole buffer transferred
2098	 */
2099	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
 
 
 
 
 
2100
2101	/* This computation should always be done in terms of the
2102	 * resolution of the device's medium.
2103	 */
2104	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
 
2105
 
 
 
 
2106	return min(good_bytes, transferred);
2107}
2108
2109/**
2110 *	sd_done - bottom half handler: called when the lower level
2111 *	driver has completed (successfully or otherwise) a scsi command.
2112 *	@SCpnt: mid-level's per command structure.
2113 *
2114 *	Note: potentially run from within an ISR. Must not block.
2115 **/
2116static int sd_done(struct scsi_cmnd *SCpnt)
2117{
2118	int result = SCpnt->result;
2119	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2120	unsigned int sector_size = SCpnt->device->sector_size;
2121	unsigned int resid;
2122	struct scsi_sense_hdr sshdr;
2123	struct request *req = scsi_cmd_to_rq(SCpnt);
2124	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2125	int sense_valid = 0;
2126	int sense_deferred = 0;
 
 
2127
2128	switch (req_op(req)) {
2129	case REQ_OP_DISCARD:
2130	case REQ_OP_WRITE_ZEROES:
2131	case REQ_OP_ZONE_RESET:
2132	case REQ_OP_ZONE_RESET_ALL:
2133	case REQ_OP_ZONE_OPEN:
2134	case REQ_OP_ZONE_CLOSE:
2135	case REQ_OP_ZONE_FINISH:
2136		if (!result) {
2137			good_bytes = blk_rq_bytes(req);
2138			scsi_set_resid(SCpnt, 0);
2139		} else {
2140			good_bytes = 0;
2141			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2142		}
2143		break;
2144	default:
2145		/*
2146		 * In case of bogus fw or device, we could end up having
2147		 * an unaligned partial completion. Check this here and force
2148		 * alignment.
2149		 */
2150		resid = scsi_get_resid(SCpnt);
2151		if (resid & (sector_size - 1)) {
2152			sd_printk(KERN_INFO, sdkp,
2153				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2154				resid, sector_size);
2155			scsi_print_command(SCpnt);
2156			resid = min(scsi_bufflen(SCpnt),
2157				    round_up(resid, sector_size));
2158			scsi_set_resid(SCpnt, resid);
2159		}
2160	}
2161
2162	if (result) {
2163		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2164		if (sense_valid)
2165			sense_deferred = scsi_sense_is_deferred(&sshdr);
2166	}
2167	sdkp->medium_access_timed_out = 0;
2168
2169	if (!scsi_status_is_check_condition(result) &&
 
 
 
 
 
 
 
 
 
2170	    (!sense_valid || sense_deferred))
2171		goto out;
2172
 
 
2173	switch (sshdr.sense_key) {
2174	case HARDWARE_ERROR:
2175	case MEDIUM_ERROR:
2176		good_bytes = sd_completed_bytes(SCpnt);
2177		break;
2178	case RECOVERED_ERROR:
2179		good_bytes = scsi_bufflen(SCpnt);
2180		break;
2181	case NO_SENSE:
2182		/* This indicates a false check condition, so ignore it.  An
2183		 * unknown amount of data was transferred so treat it as an
2184		 * error.
2185		 */
 
2186		SCpnt->result = 0;
2187		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2188		break;
2189	case ABORTED_COMMAND:
2190		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2191			good_bytes = sd_completed_bytes(SCpnt);
2192		break;
2193	case ILLEGAL_REQUEST:
2194		switch (sshdr.asc) {
2195		case 0x10:	/* DIX: Host detected corruption */
2196			good_bytes = sd_completed_bytes(SCpnt);
2197			break;
2198		case 0x20:	/* INVALID COMMAND OPCODE */
2199		case 0x24:	/* INVALID FIELD IN CDB */
2200			switch (SCpnt->cmnd[0]) {
2201			case UNMAP:
2202				sd_config_discard(sdkp, SD_LBP_DISABLE);
2203				break;
2204			case WRITE_SAME_16:
2205			case WRITE_SAME:
2206				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2207					sd_config_discard(sdkp, SD_LBP_DISABLE);
2208				} else {
2209					sdkp->device->no_write_same = 1;
2210					sd_config_write_same(sdkp);
2211					req->rq_flags |= RQF_QUIET;
 
 
 
2212				}
2213				break;
2214			}
2215		}
2216		break;
2217	default:
2218		break;
2219	}
2220
2221 out:
2222	if (sd_is_zoned(sdkp))
2223		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2224
2225	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2226					   "sd_done: completed %d of %d bytes\n",
2227					   good_bytes, scsi_bufflen(SCpnt)));
2228
2229	return good_bytes;
2230}
2231
2232/*
2233 * spinup disk - called only in sd_revalidate_disk()
2234 */
2235static void
2236sd_spinup_disk(struct scsi_disk *sdkp)
2237{
2238	unsigned char cmd[10];
2239	unsigned long spintime_expire = 0;
2240	int retries, spintime;
2241	unsigned int the_result;
2242	struct scsi_sense_hdr sshdr;
2243	const struct scsi_exec_args exec_args = {
2244		.sshdr = &sshdr,
2245	};
2246	int sense_valid = 0;
2247
2248	spintime = 0;
2249
2250	/* Spin up drives, as required.  Only do this at boot time */
2251	/* Spinup needs to be done for module loads too. */
2252	do {
2253		retries = 0;
2254
2255		do {
2256			bool media_was_present = sdkp->media_present;
2257
2258			cmd[0] = TEST_UNIT_READY;
2259			memset((void *) &cmd[1], 0, 9);
2260
2261			the_result = scsi_execute_cmd(sdkp->device, cmd,
2262						      REQ_OP_DRV_IN, NULL, 0,
2263						      SD_TIMEOUT,
2264						      sdkp->max_retries,
2265						      &exec_args);
2266
2267			if (the_result > 0) {
2268				/*
2269				 * If the drive has indicated to us that it
2270				 * doesn't have any media in it, don't bother
2271				 * with any more polling.
2272				 */
2273				if (media_not_present(sdkp, &sshdr)) {
2274					if (media_was_present)
2275						sd_printk(KERN_NOTICE, sdkp,
2276							  "Media removed, stopped polling\n");
2277					return;
2278				}
2279
 
 
 
 
 
 
 
 
 
2280				sense_valid = scsi_sense_valid(&sshdr);
2281			}
2282			retries++;
2283		} while (retries < 3 &&
2284			 (!scsi_status_is_good(the_result) ||
2285			  (scsi_status_is_check_condition(the_result) &&
2286			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2287
2288		if (!scsi_status_is_check_condition(the_result)) {
2289			/* no sense, TUR either succeeded or failed
2290			 * with a status error */
2291			if(!spintime && !scsi_status_is_good(the_result)) {
2292				sd_print_result(sdkp, "Test Unit Ready failed",
2293						the_result);
2294			}
2295			break;
2296		}
2297
2298		/*
2299		 * The device does not want the automatic start to be issued.
2300		 */
2301		if (sdkp->device->no_start_on_add)
2302			break;
2303
2304		if (sense_valid && sshdr.sense_key == NOT_READY) {
2305			if (sshdr.asc == 4 && sshdr.ascq == 3)
2306				break;	/* manual intervention required */
2307			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2308				break;	/* standby */
2309			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2310				break;	/* unavailable */
2311			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2312				break;	/* sanitize in progress */
2313			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2314				break;	/* depopulation in progress */
2315			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2316				break;	/* depopulation restoration in progress */
2317			/*
2318			 * Issue command to spin up drive when not ready
2319			 */
2320			if (!spintime) {
2321				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2322				cmd[0] = START_STOP;
2323				cmd[1] = 1;	/* Return immediately */
2324				memset((void *) &cmd[2], 0, 8);
2325				cmd[4] = 1;	/* Start spin cycle */
2326				if (sdkp->device->start_stop_pwr_cond)
2327					cmd[4] |= 1 << 4;
2328				scsi_execute_cmd(sdkp->device, cmd,
2329						 REQ_OP_DRV_IN, NULL, 0,
2330						 SD_TIMEOUT, sdkp->max_retries,
2331						 &exec_args);
2332				spintime_expire = jiffies + 100 * HZ;
2333				spintime = 1;
2334			}
2335			/* Wait 1 second for next try */
2336			msleep(1000);
2337			printk(KERN_CONT ".");
2338
2339		/*
2340		 * Wait for USB flash devices with slow firmware.
2341		 * Yes, this sense key/ASC combination shouldn't
2342		 * occur here.  It's characteristic of these devices.
2343		 */
2344		} else if (sense_valid &&
2345				sshdr.sense_key == UNIT_ATTENTION &&
2346				sshdr.asc == 0x28) {
2347			if (!spintime) {
2348				spintime_expire = jiffies + 5 * HZ;
2349				spintime = 1;
2350			}
2351			/* Wait 1 second for next try */
2352			msleep(1000);
2353		} else {
2354			/* we don't understand the sense code, so it's
2355			 * probably pointless to loop */
2356			if(!spintime) {
2357				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2358				sd_print_sense_hdr(sdkp, &sshdr);
2359			}
2360			break;
2361		}
2362				
2363	} while (spintime && time_before_eq(jiffies, spintime_expire));
2364
2365	if (spintime) {
2366		if (scsi_status_is_good(the_result))
2367			printk(KERN_CONT "ready\n");
2368		else
2369			printk(KERN_CONT "not responding...\n");
2370	}
2371}
2372
 
2373/*
2374 * Determine whether disk supports Data Integrity Field.
2375 */
2376static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2377{
2378	struct scsi_device *sdp = sdkp->device;
2379	u8 type;
 
2380
2381	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2382		sdkp->protection_type = 0;
2383		return 0;
2384	}
2385
2386	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2387
2388	if (type > T10_PI_TYPE3_PROTECTION) {
2389		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2390			  " protection type %u. Disabling disk!\n",
2391			  type);
2392		sdkp->protection_type = 0;
2393		return -ENODEV;
2394	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2395
2396	sdkp->protection_type = type;
2397
2398	return 0;
2399}
2400
2401static void sd_config_protection(struct scsi_disk *sdkp)
2402{
2403	struct scsi_device *sdp = sdkp->device;
2404
2405	sd_dif_config_host(sdkp);
2406
2407	if (!sdkp->protection_type)
2408		return;
2409
2410	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2411		sd_first_printk(KERN_NOTICE, sdkp,
2412				"Disabling DIF Type %u protection\n",
2413				sdkp->protection_type);
2414		sdkp->protection_type = 0;
2415	}
2416
2417	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2418			sdkp->protection_type);
2419}
2420
2421static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2422			struct scsi_sense_hdr *sshdr, int sense_valid,
2423			int the_result)
2424{
2425	if (sense_valid)
 
2426		sd_print_sense_hdr(sdkp, sshdr);
2427	else
2428		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2429
2430	/*
2431	 * Set dirty bit for removable devices if not ready -
2432	 * sometimes drives will not report this properly.
2433	 */
2434	if (sdp->removable &&
2435	    sense_valid && sshdr->sense_key == NOT_READY)
2436		set_media_not_present(sdkp);
2437
2438	/*
2439	 * We used to set media_present to 0 here to indicate no media
2440	 * in the drive, but some drives fail read capacity even with
2441	 * media present, so we can't do that.
2442	 */
2443	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2444}
2445
2446#define RC16_LEN 32
2447#if RC16_LEN > SD_BUF_SIZE
2448#error RC16_LEN must not be more than SD_BUF_SIZE
2449#endif
2450
2451#define READ_CAPACITY_RETRIES_ON_RESET	10
2452
2453static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2454						unsigned char *buffer)
2455{
2456	unsigned char cmd[16];
2457	struct scsi_sense_hdr sshdr;
2458	const struct scsi_exec_args exec_args = {
2459		.sshdr = &sshdr,
2460	};
2461	int sense_valid = 0;
2462	int the_result;
2463	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2464	unsigned int alignment;
2465	unsigned long long lba;
2466	unsigned sector_size;
2467
2468	if (sdp->no_read_capacity_16)
2469		return -EINVAL;
2470
2471	do {
2472		memset(cmd, 0, 16);
2473		cmd[0] = SERVICE_ACTION_IN_16;
2474		cmd[1] = SAI_READ_CAPACITY_16;
2475		cmd[13] = RC16_LEN;
2476		memset(buffer, 0, RC16_LEN);
2477
2478		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2479					      buffer, RC16_LEN, SD_TIMEOUT,
2480					      sdkp->max_retries, &exec_args);
2481		if (the_result > 0) {
2482			if (media_not_present(sdkp, &sshdr))
2483				return -ENODEV;
2484
 
 
 
 
2485			sense_valid = scsi_sense_valid(&sshdr);
2486			if (sense_valid &&
2487			    sshdr.sense_key == ILLEGAL_REQUEST &&
2488			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2489			    sshdr.ascq == 0x00)
2490				/* Invalid Command Operation Code or
2491				 * Invalid Field in CDB, just retry
2492				 * silently with RC10 */
2493				return -EINVAL;
2494			if (sense_valid &&
2495			    sshdr.sense_key == UNIT_ATTENTION &&
2496			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2497				/* Device reset might occur several times,
2498				 * give it one more chance */
2499				if (--reset_retries > 0)
2500					continue;
2501		}
2502		retries--;
2503
2504	} while (the_result && retries);
2505
2506	if (the_result) {
2507		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2508		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2509		return -EINVAL;
2510	}
2511
2512	sector_size = get_unaligned_be32(&buffer[8]);
2513	lba = get_unaligned_be64(&buffer[0]);
2514
2515	if (sd_read_protection_type(sdkp, buffer) < 0) {
2516		sdkp->capacity = 0;
2517		return -ENODEV;
2518	}
2519
 
 
 
 
 
 
 
 
2520	/* Logical blocks per physical block exponent */
2521	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2522
2523	/* RC basis */
2524	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2525
2526	/* Lowest aligned logical block */
2527	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2528	blk_queue_alignment_offset(sdp->request_queue, alignment);
2529	if (alignment && sdkp->first_scan)
2530		sd_printk(KERN_NOTICE, sdkp,
2531			  "physical block alignment offset: %u\n", alignment);
2532
2533	if (buffer[14] & 0x80) { /* LBPME */
2534		sdkp->lbpme = 1;
2535
2536		if (buffer[14] & 0x40) /* LBPRZ */
2537			sdkp->lbprz = 1;
2538
2539		sd_config_discard(sdkp, SD_LBP_WS16);
2540	}
2541
2542	sdkp->capacity = lba + 1;
2543	return sector_size;
2544}
2545
2546static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2547						unsigned char *buffer)
2548{
2549	unsigned char cmd[16];
2550	struct scsi_sense_hdr sshdr;
2551	const struct scsi_exec_args exec_args = {
2552		.sshdr = &sshdr,
2553	};
2554	int sense_valid = 0;
2555	int the_result;
2556	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2557	sector_t lba;
2558	unsigned sector_size;
2559
2560	do {
2561		cmd[0] = READ_CAPACITY;
2562		memset(&cmd[1], 0, 9);
2563		memset(buffer, 0, 8);
2564
2565		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2566					      8, SD_TIMEOUT, sdkp->max_retries,
2567					      &exec_args);
2568
2569		if (media_not_present(sdkp, &sshdr))
2570			return -ENODEV;
2571
2572		if (the_result > 0) {
2573			sense_valid = scsi_sense_valid(&sshdr);
2574			if (sense_valid &&
2575			    sshdr.sense_key == UNIT_ATTENTION &&
2576			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2577				/* Device reset might occur several times,
2578				 * give it one more chance */
2579				if (--reset_retries > 0)
2580					continue;
2581		}
2582		retries--;
2583
2584	} while (the_result && retries);
2585
2586	if (the_result) {
2587		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2588		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2589		return -EINVAL;
2590	}
2591
2592	sector_size = get_unaligned_be32(&buffer[4]);
2593	lba = get_unaligned_be32(&buffer[0]);
2594
2595	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2596		/* Some buggy (usb cardreader) devices return an lba of
2597		   0xffffffff when the want to report a size of 0 (with
2598		   which they really mean no media is present) */
2599		sdkp->capacity = 0;
2600		sdkp->physical_block_size = sector_size;
2601		return sector_size;
2602	}
2603
 
 
 
 
 
 
 
 
2604	sdkp->capacity = lba + 1;
2605	sdkp->physical_block_size = sector_size;
2606	return sector_size;
2607}
2608
2609static int sd_try_rc16_first(struct scsi_device *sdp)
2610{
2611	if (sdp->host->max_cmd_len < 16)
2612		return 0;
2613	if (sdp->try_rc_10_first)
2614		return 0;
2615	if (sdp->scsi_level > SCSI_SPC_2)
2616		return 1;
2617	if (scsi_device_protection(sdp))
2618		return 1;
2619	return 0;
2620}
2621
2622/*
2623 * read disk capacity
2624 */
2625static void
2626sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2627{
2628	int sector_size;
2629	struct scsi_device *sdp = sdkp->device;
 
2630
2631	if (sd_try_rc16_first(sdp)) {
2632		sector_size = read_capacity_16(sdkp, sdp, buffer);
2633		if (sector_size == -EOVERFLOW)
2634			goto got_data;
2635		if (sector_size == -ENODEV)
2636			return;
2637		if (sector_size < 0)
2638			sector_size = read_capacity_10(sdkp, sdp, buffer);
2639		if (sector_size < 0)
2640			return;
2641	} else {
2642		sector_size = read_capacity_10(sdkp, sdp, buffer);
2643		if (sector_size == -EOVERFLOW)
2644			goto got_data;
2645		if (sector_size < 0)
2646			return;
2647		if ((sizeof(sdkp->capacity) > 4) &&
2648		    (sdkp->capacity > 0xffffffffULL)) {
2649			int old_sector_size = sector_size;
2650			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2651					"Trying to use READ CAPACITY(16).\n");
2652			sector_size = read_capacity_16(sdkp, sdp, buffer);
2653			if (sector_size < 0) {
2654				sd_printk(KERN_NOTICE, sdkp,
2655					"Using 0xffffffff as device size\n");
2656				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2657				sector_size = old_sector_size;
2658				goto got_data;
2659			}
2660			/* Remember that READ CAPACITY(16) succeeded */
2661			sdp->try_rc_10_first = 0;
2662		}
2663	}
2664
2665	/* Some devices are known to return the total number of blocks,
2666	 * not the highest block number.  Some devices have versions
2667	 * which do this and others which do not.  Some devices we might
2668	 * suspect of doing this but we don't know for certain.
2669	 *
2670	 * If we know the reported capacity is wrong, decrement it.  If
2671	 * we can only guess, then assume the number of blocks is even
2672	 * (usually true but not always) and err on the side of lowering
2673	 * the capacity.
2674	 */
2675	if (sdp->fix_capacity ||
2676	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2677		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2678				"from its reported value: %llu\n",
2679				(unsigned long long) sdkp->capacity);
2680		--sdkp->capacity;
2681	}
2682
2683got_data:
2684	if (sector_size == 0) {
2685		sector_size = 512;
2686		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2687			  "assuming 512.\n");
2688	}
2689
2690	if (sector_size != 512 &&
2691	    sector_size != 1024 &&
2692	    sector_size != 2048 &&
2693	    sector_size != 4096) {
 
2694		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2695			  sector_size);
2696		/*
2697		 * The user might want to re-format the drive with
2698		 * a supported sectorsize.  Once this happens, it
2699		 * would be relatively trivial to set the thing up.
2700		 * For this reason, we leave the thing in the table.
2701		 */
2702		sdkp->capacity = 0;
2703		/*
2704		 * set a bogus sector size so the normal read/write
2705		 * logic in the block layer will eventually refuse any
2706		 * request on this device without tripping over power
2707		 * of two sector size assumptions
2708		 */
2709		sector_size = 512;
2710	}
2711	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2712	blk_queue_physical_block_size(sdp->request_queue,
2713				      sdkp->physical_block_size);
2714	sdkp->device->sector_size = sector_size;
2715
2716	if (sdkp->capacity > 0xffffffff)
2717		sdp->use_16_for_rw = 1;
 
 
 
 
 
 
2718
2719}
 
 
 
 
2720
2721/*
2722 * Print disk capacity
2723 */
2724static void
2725sd_print_capacity(struct scsi_disk *sdkp,
2726		  sector_t old_capacity)
2727{
2728	int sector_size = sdkp->device->sector_size;
2729	char cap_str_2[10], cap_str_10[10];
2730
2731	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2732		return;
2733
2734	string_get_size(sdkp->capacity, sector_size,
2735			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2736	string_get_size(sdkp->capacity, sector_size,
2737			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2738
2739	sd_printk(KERN_NOTICE, sdkp,
2740		  "%llu %d-byte logical blocks: (%s/%s)\n",
2741		  (unsigned long long)sdkp->capacity,
2742		  sector_size, cap_str_10, cap_str_2);
2743
2744	if (sdkp->physical_block_size != sector_size)
2745		sd_printk(KERN_NOTICE, sdkp,
2746			  "%u-byte physical blocks\n",
2747			  sdkp->physical_block_size);
2748}
2749
2750/* called with buffer of length 512 */
2751static inline int
2752sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2753		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2754		 struct scsi_sense_hdr *sshdr)
2755{
2756	/*
2757	 * If we must use MODE SENSE(10), make sure that the buffer length
2758	 * is at least 8 bytes so that the mode sense header fits.
2759	 */
2760	if (sdkp->device->use_10_for_ms && len < 8)
2761		len = 8;
2762
2763	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2764			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2765}
2766
2767/*
2768 * read write protect setting, if possible - called only in sd_revalidate_disk()
2769 * called with buffer of length SD_BUF_SIZE
2770 */
2771static void
2772sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2773{
2774	int res;
2775	struct scsi_device *sdp = sdkp->device;
2776	struct scsi_mode_data data;
2777	int old_wp = sdkp->write_prot;
2778
2779	set_disk_ro(sdkp->disk, 0);
2780	if (sdp->skip_ms_page_3f) {
2781		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2782		return;
2783	}
2784
2785	if (sdp->use_192_bytes_for_3f) {
2786		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2787	} else {
2788		/*
2789		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2790		 * We have to start carefully: some devices hang if we ask
2791		 * for more than is available.
2792		 */
2793		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2794
2795		/*
2796		 * Second attempt: ask for page 0 When only page 0 is
2797		 * implemented, a request for page 3F may return Sense Key
2798		 * 5: Illegal Request, Sense Code 24: Invalid field in
2799		 * CDB.
2800		 */
2801		if (res < 0)
2802			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2803
2804		/*
2805		 * Third attempt: ask 255 bytes, as we did earlier.
2806		 */
2807		if (res < 0)
2808			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2809					       &data, NULL);
2810	}
2811
2812	if (res < 0) {
2813		sd_first_printk(KERN_WARNING, sdkp,
2814			  "Test WP failed, assume Write Enabled\n");
2815	} else {
2816		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2817		set_disk_ro(sdkp->disk, sdkp->write_prot);
2818		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2819			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2820				  sdkp->write_prot ? "on" : "off");
2821			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
 
 
2822		}
2823	}
2824}
2825
2826/*
2827 * sd_read_cache_type - called only from sd_revalidate_disk()
2828 * called with buffer of length SD_BUF_SIZE
2829 */
2830static void
2831sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2832{
2833	int len = 0, res;
2834	struct scsi_device *sdp = sdkp->device;
2835
2836	int dbd;
2837	int modepage;
2838	int first_len;
2839	struct scsi_mode_data data;
2840	struct scsi_sense_hdr sshdr;
2841	int old_wce = sdkp->WCE;
2842	int old_rcd = sdkp->RCD;
2843	int old_dpofua = sdkp->DPOFUA;
2844
2845
2846	if (sdkp->cache_override)
2847		return;
2848
2849	first_len = 4;
2850	if (sdp->skip_ms_page_8) {
2851		if (sdp->type == TYPE_RBC)
2852			goto defaults;
2853		else {
2854			if (sdp->skip_ms_page_3f)
2855				goto defaults;
2856			modepage = 0x3F;
2857			if (sdp->use_192_bytes_for_3f)
2858				first_len = 192;
2859			dbd = 0;
2860		}
2861	} else if (sdp->type == TYPE_RBC) {
2862		modepage = 6;
2863		dbd = 8;
2864	} else {
2865		modepage = 8;
2866		dbd = 0;
2867	}
2868
2869	/* cautiously ask */
2870	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2871			&data, &sshdr);
2872
2873	if (res < 0)
2874		goto bad_sense;
2875
2876	if (!data.header_length) {
2877		modepage = 6;
2878		first_len = 0;
2879		sd_first_printk(KERN_ERR, sdkp,
2880				"Missing header in MODE_SENSE response\n");
2881	}
2882
2883	/* that went OK, now ask for the proper length */
2884	len = data.length;
2885
2886	/*
2887	 * We're only interested in the first three bytes, actually.
2888	 * But the data cache page is defined for the first 20.
2889	 */
2890	if (len < 3)
2891		goto bad_sense;
2892	else if (len > SD_BUF_SIZE) {
2893		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2894			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2895		len = SD_BUF_SIZE;
2896	}
2897	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2898		len = 192;
2899
2900	/* Get the data */
2901	if (len > first_len)
2902		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2903				&data, &sshdr);
2904
2905	if (!res) {
2906		int offset = data.header_length + data.block_descriptor_length;
2907
2908		while (offset < len) {
2909			u8 page_code = buffer[offset] & 0x3F;
2910			u8 spf       = buffer[offset] & 0x40;
2911
2912			if (page_code == 8 || page_code == 6) {
2913				/* We're interested only in the first 3 bytes.
2914				 */
2915				if (len - offset <= 2) {
2916					sd_first_printk(KERN_ERR, sdkp,
2917						"Incomplete mode parameter "
2918							"data\n");
2919					goto defaults;
2920				} else {
2921					modepage = page_code;
2922					goto Page_found;
2923				}
2924			} else {
2925				/* Go to the next page */
2926				if (spf && len - offset > 3)
2927					offset += 4 + (buffer[offset+2] << 8) +
2928						buffer[offset+3];
2929				else if (!spf && len - offset > 1)
2930					offset += 2 + buffer[offset+1];
2931				else {
2932					sd_first_printk(KERN_ERR, sdkp,
2933							"Incomplete mode "
2934							"parameter data\n");
2935					goto defaults;
2936				}
2937			}
2938		}
2939
2940		sd_first_printk(KERN_WARNING, sdkp,
2941				"No Caching mode page found\n");
2942		goto defaults;
2943
2944	Page_found:
2945		if (modepage == 8) {
2946			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2947			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2948		} else {
2949			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2950			sdkp->RCD = 0;
2951		}
2952
2953		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2954		if (sdp->broken_fua) {
2955			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2956			sdkp->DPOFUA = 0;
2957		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2958			   !sdkp->device->use_16_for_rw) {
2959			sd_first_printk(KERN_NOTICE, sdkp,
2960				  "Uses READ/WRITE(6), disabling FUA\n");
2961			sdkp->DPOFUA = 0;
2962		}
2963
2964		/* No cache flush allowed for write protected devices */
2965		if (sdkp->WCE && sdkp->write_prot)
2966			sdkp->WCE = 0;
2967
2968		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2969		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2970			sd_printk(KERN_NOTICE, sdkp,
2971				  "Write cache: %s, read cache: %s, %s\n",
2972				  sdkp->WCE ? "enabled" : "disabled",
2973				  sdkp->RCD ? "disabled" : "enabled",
2974				  sdkp->DPOFUA ? "supports DPO and FUA"
2975				  : "doesn't support DPO or FUA");
2976
2977		return;
2978	}
2979
2980bad_sense:
2981	if (res == -EIO && scsi_sense_valid(&sshdr) &&
2982	    sshdr.sense_key == ILLEGAL_REQUEST &&
2983	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2984		/* Invalid field in CDB */
2985		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2986	else
2987		sd_first_printk(KERN_ERR, sdkp,
2988				"Asking for cache data failed\n");
2989
2990defaults:
2991	if (sdp->wce_default_on) {
2992		sd_first_printk(KERN_NOTICE, sdkp,
2993				"Assuming drive cache: write back\n");
2994		sdkp->WCE = 1;
2995	} else {
2996		sd_first_printk(KERN_WARNING, sdkp,
2997				"Assuming drive cache: write through\n");
2998		sdkp->WCE = 0;
2999	}
3000	sdkp->RCD = 0;
3001	sdkp->DPOFUA = 0;
3002}
3003
3004/*
3005 * The ATO bit indicates whether the DIF application tag is available
3006 * for use by the operating system.
3007 */
3008static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3009{
3010	int res, offset;
3011	struct scsi_device *sdp = sdkp->device;
3012	struct scsi_mode_data data;
3013	struct scsi_sense_hdr sshdr;
3014
3015	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3016		return;
3017
3018	if (sdkp->protection_type == 0)
3019		return;
3020
3021	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3022			      sdkp->max_retries, &data, &sshdr);
3023
3024	if (res < 0 || !data.header_length ||
3025	    data.length < 6) {
3026		sd_first_printk(KERN_WARNING, sdkp,
3027			  "getting Control mode page failed, assume no ATO\n");
3028
3029		if (res == -EIO && scsi_sense_valid(&sshdr))
3030			sd_print_sense_hdr(sdkp, &sshdr);
3031
3032		return;
3033	}
3034
3035	offset = data.header_length + data.block_descriptor_length;
3036
3037	if ((buffer[offset] & 0x3f) != 0x0a) {
3038		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3039		return;
3040	}
3041
3042	if ((buffer[offset + 5] & 0x80) == 0)
3043		return;
3044
3045	sdkp->ATO = 1;
3046
3047	return;
3048}
3049
3050/**
3051 * sd_read_block_limits - Query disk device for preferred I/O sizes.
3052 * @sdkp: disk to query
3053 */
3054static void sd_read_block_limits(struct scsi_disk *sdkp)
3055{
3056	struct scsi_vpd *vpd;
3057
3058	rcu_read_lock();
3059
3060	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3061	if (!vpd || vpd->len < 16)
 
3062		goto out;
3063
3064	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3065	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3066	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
 
3067
3068	if (vpd->len >= 64) {
3069		unsigned int lba_count, desc_count;
3070
3071		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3072
3073		if (!sdkp->lbpme)
3074			goto out;
3075
3076		lba_count = get_unaligned_be32(&vpd->data[20]);
3077		desc_count = get_unaligned_be32(&vpd->data[24]);
3078
3079		if (lba_count && desc_count)
3080			sdkp->max_unmap_blocks = lba_count;
3081
3082		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3083
3084		if (vpd->data[32] & 0x80)
3085			sdkp->unmap_alignment =
3086				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3087
3088		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3089
3090			if (sdkp->max_unmap_blocks)
3091				sd_config_discard(sdkp, SD_LBP_UNMAP);
3092			else
3093				sd_config_discard(sdkp, SD_LBP_WS16);
3094
3095		} else {	/* LBP VPD page tells us what to use */
 
3096			if (sdkp->lbpu && sdkp->max_unmap_blocks)
3097				sd_config_discard(sdkp, SD_LBP_UNMAP);
3098			else if (sdkp->lbpws)
3099				sd_config_discard(sdkp, SD_LBP_WS16);
3100			else if (sdkp->lbpws10)
3101				sd_config_discard(sdkp, SD_LBP_WS10);
3102			else
3103				sd_config_discard(sdkp, SD_LBP_DISABLE);
3104		}
3105	}
3106
3107 out:
3108	rcu_read_unlock();
3109}
3110
3111/**
3112 * sd_read_block_characteristics - Query block dev. characteristics
3113 * @sdkp: disk to query
3114 */
3115static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3116{
3117	struct request_queue *q = sdkp->disk->queue;
3118	struct scsi_vpd *vpd;
3119	u16 rot;
 
3120
3121	rcu_read_lock();
3122	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3123
3124	if (!vpd || vpd->len < 8) {
3125		rcu_read_unlock();
3126	        return;
3127	}
3128
3129	rot = get_unaligned_be16(&vpd->data[4]);
3130	sdkp->zoned = (vpd->data[8] >> 4) & 3;
3131	rcu_read_unlock();
3132
3133	if (rot == 1) {
3134		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3135		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3136	}
3137
3138
3139#ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */
3140	if (sdkp->device->type == TYPE_ZBC) {
3141		/*
3142		 * Host-managed.
3143		 */
3144		disk_set_zoned(sdkp->disk);
3145
3146		/*
3147		 * Per ZBC and ZAC specifications, writes in sequential write
3148		 * required zones of host-managed devices must be aligned to
3149		 * the device physical block size.
3150		 */
3151		blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3152	} else {
3153		/*
3154		 * Host-aware devices are treated as conventional.
3155		 */
3156		WARN_ON_ONCE(blk_queue_is_zoned(q));
3157	}
3158#endif /* CONFIG_BLK_DEV_ZONED */
3159
3160	if (!sdkp->first_scan)
3161		return;
3162
3163	if (blk_queue_is_zoned(q))
3164		sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3165	else if (sdkp->zoned == 1)
3166		sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3167	else if (sdkp->zoned == 2)
3168		sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3169}
3170
3171/**
3172 * sd_read_block_provisioning - Query provisioning VPD page
3173 * @sdkp: disk to query
3174 */
3175static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3176{
3177	struct scsi_vpd *vpd;
 
3178
3179	if (sdkp->lbpme == 0)
3180		return;
3181
3182	rcu_read_lock();
3183	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3184
3185	if (!vpd || vpd->len < 8) {
3186		rcu_read_unlock();
3187		return;
3188	}
3189
3190	sdkp->lbpvpd	= 1;
3191	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3192	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3193	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3194	rcu_read_unlock();
 
 
3195}
3196
3197static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3198{
3199	struct scsi_device *sdev = sdkp->device;
3200
3201	if (sdev->host->no_write_same) {
3202		sdev->no_write_same = 1;
3203
3204		return;
3205	}
3206
3207	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3208		struct scsi_vpd *vpd;
 
3209
3210		sdev->no_report_opcodes = 1;
3211
3212		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3213		 * CODES is unsupported and the device has an ATA
3214		 * Information VPD page (SAT).
3215		 */
3216		rcu_read_lock();
3217		vpd = rcu_dereference(sdev->vpd_pg89);
3218		if (vpd)
3219			sdev->no_write_same = 1;
3220		rcu_read_unlock();
3221	}
3222
3223	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3224		sdkp->ws16 = 1;
3225
3226	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3227		sdkp->ws10 = 1;
3228}
3229
3230static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3231{
3232	struct scsi_device *sdev = sdkp->device;
3233
3234	if (!sdev->security_supported)
3235		return;
3236
3237	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3238			SECURITY_PROTOCOL_IN, 0) == 1 &&
3239	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3240			SECURITY_PROTOCOL_OUT, 0) == 1)
3241		sdkp->security = 1;
3242}
3243
3244static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3245{
3246	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3247}
3248
3249/**
3250 * sd_read_cpr - Query concurrent positioning ranges
3251 * @sdkp:	disk to query
3252 */
3253static void sd_read_cpr(struct scsi_disk *sdkp)
3254{
3255	struct blk_independent_access_ranges *iars = NULL;
3256	unsigned char *buffer = NULL;
3257	unsigned int nr_cpr = 0;
3258	int i, vpd_len, buf_len = SD_BUF_SIZE;
3259	u8 *desc;
3260
3261	/*
3262	 * We need to have the capacity set first for the block layer to be
3263	 * able to check the ranges.
3264	 */
3265	if (sdkp->first_scan)
3266		return;
3267
3268	if (!sdkp->capacity)
3269		goto out;
3270
3271	/*
3272	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3273	 * leading to a maximum page size of 64 + 256*32 bytes.
 
3274	 */
3275	buf_len = 64 + 256*32;
3276	buffer = kmalloc(buf_len, GFP_KERNEL);
3277	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3278		goto out;
3279
3280	/* We must have at least a 64B header and one 32B range descriptor */
3281	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3282	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3283		sd_printk(KERN_ERR, sdkp,
3284			  "Invalid Concurrent Positioning Ranges VPD page\n");
3285		goto out;
3286	}
3287
3288	nr_cpr = (vpd_len - 64) / 32;
3289	if (nr_cpr == 1) {
3290		nr_cpr = 0;
3291		goto out;
3292	}
3293
3294	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3295	if (!iars) {
3296		nr_cpr = 0;
3297		goto out;
3298	}
3299
3300	desc = &buffer[64];
3301	for (i = 0; i < nr_cpr; i++, desc += 32) {
3302		if (desc[0] != i) {
3303			sd_printk(KERN_ERR, sdkp,
3304				"Invalid Concurrent Positioning Range number\n");
3305			nr_cpr = 0;
3306			break;
3307		}
3308
3309		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3310		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3311	}
3312
3313out:
3314	disk_set_independent_access_ranges(sdkp->disk, iars);
3315	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3316		sd_printk(KERN_NOTICE, sdkp,
3317			  "%u concurrent positioning ranges\n", nr_cpr);
3318		sdkp->nr_actuators = nr_cpr;
3319	}
3320
3321	kfree(buffer);
3322}
3323
3324static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3325{
3326	struct scsi_device *sdp = sdkp->device;
3327	unsigned int min_xfer_bytes =
3328		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3329
3330	if (sdkp->min_xfer_blocks == 0)
3331		return false;
3332
3333	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3334		sd_first_printk(KERN_WARNING, sdkp,
3335				"Preferred minimum I/O size %u bytes not a " \
3336				"multiple of physical block size (%u bytes)\n",
3337				min_xfer_bytes, sdkp->physical_block_size);
3338		sdkp->min_xfer_blocks = 0;
3339		return false;
3340	}
3341
3342	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3343			min_xfer_bytes);
3344	return true;
3345}
3346
3347/*
3348 * Determine the device's preferred I/O size for reads and writes
3349 * unless the reported value is unreasonably small, large, not a
3350 * multiple of the physical block size, or simply garbage.
3351 */
3352static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3353				      unsigned int dev_max)
3354{
3355	struct scsi_device *sdp = sdkp->device;
3356	unsigned int opt_xfer_bytes =
3357		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3358	unsigned int min_xfer_bytes =
3359		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3360
3361	if (sdkp->opt_xfer_blocks == 0)
3362		return false;
3363
3364	if (sdkp->opt_xfer_blocks > dev_max) {
3365		sd_first_printk(KERN_WARNING, sdkp,
3366				"Optimal transfer size %u logical blocks " \
3367				"> dev_max (%u logical blocks)\n",
3368				sdkp->opt_xfer_blocks, dev_max);
3369		return false;
3370	}
3371
3372	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3373		sd_first_printk(KERN_WARNING, sdkp,
3374				"Optimal transfer size %u logical blocks " \
3375				"> sd driver limit (%u logical blocks)\n",
3376				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3377		return false;
3378	}
3379
3380	if (opt_xfer_bytes < PAGE_SIZE) {
3381		sd_first_printk(KERN_WARNING, sdkp,
3382				"Optimal transfer size %u bytes < " \
3383				"PAGE_SIZE (%u bytes)\n",
3384				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3385		return false;
3386	}
3387
3388	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3389		sd_first_printk(KERN_WARNING, sdkp,
3390				"Optimal transfer size %u bytes not a " \
3391				"multiple of preferred minimum block " \
3392				"size (%u bytes)\n",
3393				opt_xfer_bytes, min_xfer_bytes);
3394		return false;
3395	}
3396
3397	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3398		sd_first_printk(KERN_WARNING, sdkp,
3399				"Optimal transfer size %u bytes not a " \
3400				"multiple of physical block size (%u bytes)\n",
3401				opt_xfer_bytes, sdkp->physical_block_size);
3402		return false;
3403	}
3404
3405	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3406			opt_xfer_bytes);
3407	return true;
3408}
3409
3410static void sd_read_block_zero(struct scsi_disk *sdkp)
3411{
3412	unsigned int buf_len = sdkp->device->sector_size;
3413	char *buffer, cmd[10] = { };
3414
3415	buffer = kmalloc(buf_len, GFP_KERNEL);
3416	if (!buffer)
3417		return;
3418
3419	cmd[0] = READ_10;
3420	put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3421	put_unaligned_be16(1, &cmd[7]);	/* Transfer 1 logical block */
3422
3423	scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3424			 SD_TIMEOUT, sdkp->max_retries, NULL);
3425	kfree(buffer);
3426}
3427
3428/**
3429 *	sd_revalidate_disk - called the first time a new disk is seen,
3430 *	performs disk spin up, read_capacity, etc.
3431 *	@disk: struct gendisk we care about
3432 **/
3433static int sd_revalidate_disk(struct gendisk *disk)
3434{
3435	struct scsi_disk *sdkp = scsi_disk(disk);
3436	struct scsi_device *sdp = sdkp->device;
3437	struct request_queue *q = sdkp->disk->queue;
3438	sector_t old_capacity = sdkp->capacity;
3439	unsigned char *buffer;
3440	unsigned int dev_max, rw_max;
3441
3442	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3443				      "sd_revalidate_disk\n"));
3444
3445	/*
3446	 * If the device is offline, don't try and read capacity or any
3447	 * of the other niceties.
3448	 */
3449	if (!scsi_device_online(sdp))
3450		goto out;
3451
3452	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3453	if (!buffer) {
3454		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3455			  "allocation failure.\n");
3456		goto out;
3457	}
3458
3459	sd_spinup_disk(sdkp);
3460
3461	/*
3462	 * Without media there is no reason to ask; moreover, some devices
3463	 * react badly if we do.
3464	 */
3465	if (sdkp->media_present) {
3466		sd_read_capacity(sdkp, buffer);
3467		/*
3468		 * Some USB/UAS devices return generic values for mode pages
3469		 * until the media has been accessed. Trigger a READ operation
3470		 * to force the device to populate mode pages.
3471		 */
3472		if (sdp->read_before_ms)
3473			sd_read_block_zero(sdkp);
3474		/*
3475		 * set the default to rotational.  All non-rotational devices
3476		 * support the block characteristics VPD page, which will
3477		 * cause this to be updated correctly and any device which
3478		 * doesn't support it should be treated as rotational.
3479		 */
3480		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3481		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3482
3483		if (scsi_device_supports_vpd(sdp)) {
3484			sd_read_block_provisioning(sdkp);
3485			sd_read_block_limits(sdkp);
3486			sd_read_block_characteristics(sdkp);
3487			sd_zbc_read_zones(sdkp, buffer);
3488			sd_read_cpr(sdkp);
3489		}
3490
3491		sd_print_capacity(sdkp, old_capacity);
3492
3493		sd_read_write_protect_flag(sdkp, buffer);
3494		sd_read_cache_type(sdkp, buffer);
3495		sd_read_app_tag_own(sdkp, buffer);
3496		sd_read_write_same(sdkp, buffer);
3497		sd_read_security(sdkp, buffer);
3498		sd_config_protection(sdkp);
3499	}
3500
 
 
3501	/*
3502	 * We now have all cache related info, determine how we deal
3503	 * with flush requests.
3504	 */
3505	sd_set_flush_flag(sdkp);
3506
3507	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3508	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3509
3510	/* Some devices report a maximum block count for READ/WRITE requests. */
3511	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3512	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3513
3514	if (sd_validate_min_xfer_size(sdkp))
3515		blk_queue_io_min(sdkp->disk->queue,
3516				 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3517	else
3518		blk_queue_io_min(sdkp->disk->queue, 0);
3519
3520	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3521		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3522		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3523	} else {
3524		q->limits.io_opt = 0;
3525		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3526				      (sector_t)BLK_DEF_MAX_SECTORS_CAP);
3527	}
3528
3529	/*
3530	 * Limit default to SCSI host optimal sector limit if set. There may be
3531	 * an impact on performance for when the size of a request exceeds this
3532	 * host limit.
3533	 */
3534	rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3535
3536	/* Do not exceed controller limit */
3537	rw_max = min(rw_max, queue_max_hw_sectors(q));
3538
3539	/*
3540	 * Only update max_sectors if previously unset or if the current value
3541	 * exceeds the capabilities of the hardware.
3542	 */
3543	if (sdkp->first_scan ||
3544	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3545	    q->limits.max_sectors > q->limits.max_hw_sectors)
3546		q->limits.max_sectors = rw_max;
3547
3548	sdkp->first_scan = 0;
3549
3550	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3551	sd_config_write_same(sdkp);
3552	kfree(buffer);
3553
3554	/*
3555	 * For a zoned drive, revalidating the zones can be done only once
3556	 * the gendisk capacity is set. So if this fails, set back the gendisk
3557	 * capacity to 0.
3558	 */
3559	if (sd_zbc_revalidate_zones(sdkp))
3560		set_capacity_and_notify(disk, 0);
3561
3562 out:
3563	return 0;
3564}
3565
3566/**
3567 *	sd_unlock_native_capacity - unlock native capacity
3568 *	@disk: struct gendisk to set capacity for
3569 *
3570 *	Block layer calls this function if it detects that partitions
3571 *	on @disk reach beyond the end of the device.  If the SCSI host
3572 *	implements ->unlock_native_capacity() method, it's invoked to
3573 *	give it a chance to adjust the device capacity.
3574 *
3575 *	CONTEXT:
3576 *	Defined by block layer.  Might sleep.
3577 */
3578static void sd_unlock_native_capacity(struct gendisk *disk)
3579{
3580	struct scsi_device *sdev = scsi_disk(disk)->device;
3581
3582	if (sdev->host->hostt->unlock_native_capacity)
3583		sdev->host->hostt->unlock_native_capacity(sdev);
3584}
3585
3586/**
3587 *	sd_format_disk_name - format disk name
3588 *	@prefix: name prefix - ie. "sd" for SCSI disks
3589 *	@index: index of the disk to format name for
3590 *	@buf: output buffer
3591 *	@buflen: length of the output buffer
3592 *
3593 *	SCSI disk names starts at sda.  The 26th device is sdz and the
3594 *	27th is sdaa.  The last one for two lettered suffix is sdzz
3595 *	which is followed by sdaaa.
3596 *
3597 *	This is basically 26 base counting with one extra 'nil' entry
3598 *	at the beginning from the second digit on and can be
3599 *	determined using similar method as 26 base conversion with the
3600 *	index shifted -1 after each digit is computed.
3601 *
3602 *	CONTEXT:
3603 *	Don't care.
3604 *
3605 *	RETURNS:
3606 *	0 on success, -errno on failure.
3607 */
3608static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3609{
3610	const int base = 'z' - 'a' + 1;
3611	char *begin = buf + strlen(prefix);
3612	char *end = buf + buflen;
3613	char *p;
3614	int unit;
3615
3616	p = end - 1;
3617	*p = '\0';
3618	unit = base;
3619	do {
3620		if (p == begin)
3621			return -EINVAL;
3622		*--p = 'a' + (index % unit);
3623		index = (index / unit) - 1;
3624	} while (index >= 0);
3625
3626	memmove(begin, p, end - p);
3627	memcpy(buf, prefix, strlen(prefix));
3628
3629	return 0;
3630}
3631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3632/**
3633 *	sd_probe - called during driver initialization and whenever a
3634 *	new scsi device is attached to the system. It is called once
3635 *	for each scsi device (not just disks) present.
3636 *	@dev: pointer to device object
3637 *
3638 *	Returns 0 if successful (or not interested in this scsi device 
3639 *	(e.g. scanner)); 1 when there is an error.
3640 *
3641 *	Note: this function is invoked from the scsi mid-level.
3642 *	This function sets up the mapping between a given 
3643 *	<host,channel,id,lun> (found in sdp) and new device name 
3644 *	(e.g. /dev/sda). More precisely it is the block device major 
3645 *	and minor number that is chosen here.
3646 *
3647 *	Assume sd_probe is not re-entrant (for time being)
3648 *	Also think about sd_probe() and sd_remove() running coincidentally.
3649 **/
3650static int sd_probe(struct device *dev)
3651{
3652	struct scsi_device *sdp = to_scsi_device(dev);
3653	struct scsi_disk *sdkp;
3654	struct gendisk *gd;
3655	int index;
3656	int error;
3657
3658	scsi_autopm_get_device(sdp);
3659	error = -ENODEV;
3660	if (sdp->type != TYPE_DISK &&
3661	    sdp->type != TYPE_ZBC &&
3662	    sdp->type != TYPE_MOD &&
3663	    sdp->type != TYPE_RBC)
3664		goto out;
3665
3666	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3667		sdev_printk(KERN_WARNING, sdp,
3668			    "Unsupported ZBC host-managed device.\n");
3669		goto out;
3670	}
3671
3672	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3673					"sd_probe\n"));
3674
3675	error = -ENOMEM;
3676	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3677	if (!sdkp)
3678		goto out;
3679
3680	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3681					 &sd_bio_compl_lkclass);
3682	if (!gd)
3683		goto out_free;
3684
3685	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3686	if (index < 0) {
 
 
 
 
 
 
 
 
3687		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3688		goto out_put;
3689	}
3690
3691	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3692	if (error) {
3693		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3694		goto out_free_index;
3695	}
3696
3697	sdkp->device = sdp;
 
3698	sdkp->disk = gd;
3699	sdkp->index = index;
3700	sdkp->max_retries = SD_MAX_RETRIES;
3701	atomic_set(&sdkp->openers, 0);
3702	atomic_set(&sdkp->device->ioerr_cnt, 0);
3703
3704	if (!sdp->request_queue->rq_timeout) {
3705		if (sdp->type != TYPE_MOD)
3706			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3707		else
3708			blk_queue_rq_timeout(sdp->request_queue,
3709					     SD_MOD_TIMEOUT);
3710	}
3711
3712	device_initialize(&sdkp->disk_dev);
3713	sdkp->disk_dev.parent = get_device(dev);
3714	sdkp->disk_dev.class = &sd_disk_class;
3715	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3716
3717	error = device_add(&sdkp->disk_dev);
3718	if (error) {
3719		put_device(&sdkp->disk_dev);
3720		goto out;
3721	}
3722
 
3723	dev_set_drvdata(dev, sdkp);
3724
3725	gd->major = sd_major((index & 0xf0) >> 4);
3726	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3727	gd->minors = SD_MINORS;
3728
3729	gd->fops = &sd_fops;
3730	gd->private_data = sdkp;
3731
3732	/* defaults, until the device tells us otherwise */
3733	sdp->sector_size = 512;
3734	sdkp->capacity = 0;
3735	sdkp->media_present = 1;
3736	sdkp->write_prot = 0;
3737	sdkp->cache_override = 0;
3738	sdkp->WCE = 0;
3739	sdkp->RCD = 0;
3740	sdkp->ATO = 0;
3741	sdkp->first_scan = 1;
3742	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3743
3744	sd_revalidate_disk(gd);
3745
3746	if (sdp->removable) {
3747		gd->flags |= GENHD_FL_REMOVABLE;
3748		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3749		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3750	}
3751
3752	blk_pm_runtime_init(sdp->request_queue, dev);
3753	if (sdp->rpm_autosuspend) {
3754		pm_runtime_set_autosuspend_delay(dev,
3755			sdp->host->hostt->rpm_autosuspend_delay);
3756	}
3757
3758	error = device_add_disk(dev, gd, NULL);
3759	if (error) {
3760		put_device(&sdkp->disk_dev);
3761		put_disk(gd);
3762		goto out;
3763	}
3764
3765	if (sdkp->security) {
3766		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3767		if (sdkp->opal_dev)
3768			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3769	}
3770
3771	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3772		  sdp->removable ? "removable " : "");
3773	scsi_autopm_put_device(sdp);
3774
3775	return 0;
3776
3777 out_free_index:
3778	ida_free(&sd_index_ida, index);
 
 
3779 out_put:
3780	put_disk(gd);
3781 out_free:
3782	kfree(sdkp);
3783 out:
3784	scsi_autopm_put_device(sdp);
3785	return error;
3786}
3787
3788/**
3789 *	sd_remove - called whenever a scsi disk (previously recognized by
3790 *	sd_probe) is detached from the system. It is called (potentially
3791 *	multiple times) during sd module unload.
3792 *	@dev: pointer to device object
3793 *
3794 *	Note: this function is invoked from the scsi mid-level.
3795 *	This function potentially frees up a device name (e.g. /dev/sdc)
3796 *	that could be re-used by a subsequent sd_probe().
3797 *	This function is not called when the built-in sd driver is "exit-ed".
3798 **/
3799static int sd_remove(struct device *dev)
3800{
3801	struct scsi_disk *sdkp = dev_get_drvdata(dev);
 
3802
 
 
3803	scsi_autopm_get_device(sdkp->device);
3804
3805	device_del(&sdkp->disk_dev);
 
 
 
 
3806	del_gendisk(sdkp->disk);
3807	if (!sdkp->suspended)
3808		sd_shutdown(dev);
 
 
 
 
 
 
 
3809
3810	put_disk(sdkp->disk);
3811	return 0;
3812}
3813
 
 
 
 
 
 
 
 
 
3814static void scsi_disk_release(struct device *dev)
3815{
3816	struct scsi_disk *sdkp = to_scsi_disk(dev);
 
 
 
 
 
3817
3818	ida_free(&sd_index_ida, sdkp->index);
3819	sd_zbc_free_zone_info(sdkp);
3820	put_device(&sdkp->device->sdev_gendev);
3821	free_opal_dev(sdkp->opal_dev);
3822
3823	kfree(sdkp);
3824}
3825
3826static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3827{
3828	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3829	struct scsi_sense_hdr sshdr;
3830	const struct scsi_exec_args exec_args = {
3831		.sshdr = &sshdr,
3832		.req_flags = BLK_MQ_REQ_PM,
3833	};
3834	struct scsi_device *sdp = sdkp->device;
3835	int res;
3836
3837	if (start)
3838		cmd[4] |= 1;	/* START */
3839
3840	if (sdp->start_stop_pwr_cond)
3841		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3842
3843	if (!scsi_device_online(sdp))
3844		return -ENODEV;
3845
3846	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3847			       sdkp->max_retries, &exec_args);
3848	if (res) {
3849		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3850		if (res > 0 && scsi_sense_valid(&sshdr)) {
 
3851			sd_print_sense_hdr(sdkp, &sshdr);
 
3852			/* 0x3a is medium not present */
3853			if (sshdr.asc == 0x3a)
3854				res = 0;
3855		}
3856	}
3857
3858	/* SCSI error codes must not go to the generic layer */
3859	if (res)
3860		return -EIO;
3861
3862	return 0;
3863}
3864
3865/*
3866 * Send a SYNCHRONIZE CACHE instruction down to the device through
3867 * the normal SCSI command structure.  Wait for the command to
3868 * complete.
3869 */
3870static void sd_shutdown(struct device *dev)
3871{
3872	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3873
3874	if (!sdkp)
3875		return;         /* this can happen */
3876
3877	if (pm_runtime_suspended(dev))
3878		return;
3879
3880	if (sdkp->WCE && sdkp->media_present) {
3881		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3882		sd_sync_cache(sdkp);
3883	}
3884
3885	if ((system_state != SYSTEM_RESTART &&
3886	     sdkp->device->manage_system_start_stop) ||
3887	    (system_state == SYSTEM_POWER_OFF &&
3888	     sdkp->device->manage_shutdown)) {
3889		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3890		sd_start_stop_device(sdkp, 0);
3891	}
3892}
3893
3894static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
3895{
3896	return (sdev->manage_system_start_stop && !runtime) ||
3897		(sdev->manage_runtime_start_stop && runtime);
3898}
3899
3900static int sd_suspend_common(struct device *dev, bool runtime)
3901{
3902	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3903	int ret = 0;
3904
3905	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3906		return 0;
3907
3908	if (sdkp->WCE && sdkp->media_present) {
3909		if (!sdkp->device->silence_suspend)
3910			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3911		ret = sd_sync_cache(sdkp);
3912		/* ignore OFFLINE device */
3913		if (ret == -ENODEV)
3914			return 0;
3915
3916		if (ret)
3917			return ret;
3918	}
3919
3920	if (sd_do_start_stop(sdkp->device, runtime)) {
3921		if (!sdkp->device->silence_suspend)
3922			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3923		/* an error is not worth aborting a system sleep */
3924		ret = sd_start_stop_device(sdkp, 0);
3925		if (!runtime)
3926			ret = 0;
3927	}
3928
3929	if (!ret)
3930		sdkp->suspended = true;
3931
3932	return ret;
3933}
3934
3935static int sd_suspend_system(struct device *dev)
3936{
3937	if (pm_runtime_suspended(dev))
3938		return 0;
3939
3940	return sd_suspend_common(dev, false);
3941}
3942
3943static int sd_suspend_runtime(struct device *dev)
3944{
3945	return sd_suspend_common(dev, true);
3946}
3947
3948static int sd_resume(struct device *dev, bool runtime)
3949{
3950	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3951	int ret;
3952
3953	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3954		return 0;
3955
3956	if (!sd_do_start_stop(sdkp->device, runtime)) {
3957		sdkp->suspended = false;
3958		return 0;
3959	}
3960
3961	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3962	ret = sd_start_stop_device(sdkp, 1);
3963	if (!ret) {
3964		opal_unlock_from_suspend(sdkp->opal_dev);
3965		sdkp->suspended = false;
3966	}
3967
 
 
3968	return ret;
3969}
3970
3971static int sd_resume_system(struct device *dev)
3972{
3973	if (pm_runtime_suspended(dev)) {
3974		struct scsi_disk *sdkp = dev_get_drvdata(dev);
3975		struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
3976
3977		if (sdp && sdp->force_runtime_start_on_system_start)
3978			pm_request_resume(dev);
3979
3980		return 0;
3981	}
3982
3983	return sd_resume(dev, false);
3984}
3985
3986static int sd_resume_runtime(struct device *dev)
3987{
3988	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3989	struct scsi_device *sdp;
3990
3991	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3992		return 0;
3993
3994	sdp = sdkp->device;
3995
3996	if (sdp->ignore_media_change) {
3997		/* clear the device's sense data */
3998		static const u8 cmd[10] = { REQUEST_SENSE };
3999		const struct scsi_exec_args exec_args = {
4000			.req_flags = BLK_MQ_REQ_PM,
4001		};
4002
4003		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4004				     sdp->request_queue->rq_timeout, 1,
4005				     &exec_args))
4006			sd_printk(KERN_NOTICE, sdkp,
4007				  "Failed to clear sense data\n");
4008	}
4009
4010	return sd_resume(dev, true);
4011}
4012
4013static const struct dev_pm_ops sd_pm_ops = {
4014	.suspend		= sd_suspend_system,
4015	.resume			= sd_resume_system,
4016	.poweroff		= sd_suspend_system,
4017	.restore		= sd_resume_system,
4018	.runtime_suspend	= sd_suspend_runtime,
4019	.runtime_resume		= sd_resume_runtime,
4020};
4021
4022static struct scsi_driver sd_template = {
4023	.gendrv = {
4024		.name		= "sd",
4025		.owner		= THIS_MODULE,
4026		.probe		= sd_probe,
4027		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4028		.remove		= sd_remove,
4029		.shutdown	= sd_shutdown,
4030		.pm		= &sd_pm_ops,
4031	},
4032	.rescan			= sd_rescan,
4033	.init_command		= sd_init_command,
4034	.uninit_command		= sd_uninit_command,
4035	.done			= sd_done,
4036	.eh_action		= sd_eh_action,
4037	.eh_reset		= sd_eh_reset,
4038};
4039
4040/**
4041 *	init_sd - entry point for this driver (both when built in or when
4042 *	a module).
4043 *
4044 *	Note: this function registers this driver with the scsi mid-level.
4045 **/
4046static int __init init_sd(void)
4047{
4048	int majors = 0, i, err;
4049
4050	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4051
4052	for (i = 0; i < SD_MAJORS; i++) {
4053		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4054			continue;
4055		majors++;
 
 
4056	}
4057
4058	if (!majors)
4059		return -ENODEV;
4060
4061	err = class_register(&sd_disk_class);
4062	if (err)
4063		goto err_out;
4064
4065	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4066	if (!sd_page_pool) {
4067		printk(KERN_ERR "sd: can't init discard page pool\n");
4068		err = -ENOMEM;
4069		goto err_out_class;
4070	}
4071
 
 
 
 
 
 
4072	err = scsi_register_driver(&sd_template.gendrv);
4073	if (err)
4074		goto err_out_driver;
4075
4076	return 0;
4077
4078err_out_driver:
4079	mempool_destroy(sd_page_pool);
 
 
 
 
4080err_out_class:
4081	class_unregister(&sd_disk_class);
4082err_out:
4083	for (i = 0; i < SD_MAJORS; i++)
4084		unregister_blkdev(sd_major(i), "sd");
4085	return err;
4086}
4087
4088/**
4089 *	exit_sd - exit point for this driver (when it is a module).
4090 *
4091 *	Note: this function unregisters this driver from the scsi mid-level.
4092 **/
4093static void __exit exit_sd(void)
4094{
4095	int i;
4096
4097	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4098
4099	scsi_unregister_driver(&sd_template.gendrv);
4100	mempool_destroy(sd_page_pool);
 
4101
4102	class_unregister(&sd_disk_class);
4103
4104	for (i = 0; i < SD_MAJORS; i++)
 
4105		unregister_blkdev(sd_major(i), "sd");
 
4106}
4107
4108module_init(init_sd);
4109module_exit(exit_sd);
4110
4111void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
 
4112{
4113	scsi_print_sense_hdr(sdkp->device,
4114			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
 
 
4115}
4116
4117void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4118{
4119	const char *hb_string = scsi_hostbyte_string(result);
4120
4121	if (hb_string)
4122		sd_printk(KERN_INFO, sdkp,
4123			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4124			  hb_string ? hb_string : "invalid",
4125			  "DRIVER_OK");
4126	else
4127		sd_printk(KERN_INFO, sdkp,
4128			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4129			  msg, host_byte(result), "DRIVER_OK");
4130}
v3.15
 
   1/*
   2 *      sd.c Copyright (C) 1992 Drew Eckhardt
   3 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
   4 *
   5 *      Linux scsi disk driver
   6 *              Initial versions: Drew Eckhardt
   7 *              Subsequent revisions: Eric Youngdale
   8 *	Modification history:
   9 *       - Drew Eckhardt <drew@colorado.edu> original
  10 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
  11 *         outstanding request, and other enhancements.
  12 *         Support loadable low-level scsi drivers.
  13 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
  14 *         eight major numbers.
  15 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
  16 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
  17 *	   sd_init and cleanups.
  18 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
  19 *	   not being read in sd_open. Fix problem where removable media 
  20 *	   could be ejected after sd_open.
  21 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
  22 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
  23 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
  24 *	   Support 32k/1M disks.
  25 *
  26 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
  27 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
  28 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
  29 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
  30 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
  31 *	Note: when the logging level is set by the user, it must be greater
  32 *	than the level indicated above to trigger output.	
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/fs.h>
  37#include <linux/kernel.h>
  38#include <linux/mm.h>
  39#include <linux/bio.h>
  40#include <linux/genhd.h>
  41#include <linux/hdreg.h>
  42#include <linux/errno.h>
  43#include <linux/idr.h>
  44#include <linux/interrupt.h>
  45#include <linux/init.h>
  46#include <linux/blkdev.h>
  47#include <linux/blkpg.h>
 
  48#include <linux/delay.h>
 
  49#include <linux/mutex.h>
  50#include <linux/string_helpers.h>
  51#include <linux/async.h>
  52#include <linux/slab.h>
 
  53#include <linux/pm_runtime.h>
  54#include <asm/uaccess.h>
 
 
  55#include <asm/unaligned.h>
  56
  57#include <scsi/scsi.h>
  58#include <scsi/scsi_cmnd.h>
  59#include <scsi/scsi_dbg.h>
  60#include <scsi/scsi_device.h>
  61#include <scsi/scsi_driver.h>
  62#include <scsi/scsi_eh.h>
  63#include <scsi/scsi_host.h>
  64#include <scsi/scsi_ioctl.h>
  65#include <scsi/scsicam.h>
 
  66
  67#include "sd.h"
  68#include "scsi_priv.h"
  69#include "scsi_logging.h"
  70
  71MODULE_AUTHOR("Eric Youngdale");
  72MODULE_DESCRIPTION("SCSI disk (sd) driver");
  73MODULE_LICENSE("GPL");
  74
  75MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
  76MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
  77MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
  78MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
  79MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
  80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
  81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
  82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
  83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
  84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
  85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
  86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
  87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
  88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
  89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
  90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
  91MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
  92MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
  93MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
 
  94
  95#if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
  96#define SD_MINORS	16
  97#else
  98#define SD_MINORS	0
  99#endif
 100
 101static void sd_config_discard(struct scsi_disk *, unsigned int);
 102static void sd_config_write_same(struct scsi_disk *);
 103static int  sd_revalidate_disk(struct gendisk *);
 104static void sd_unlock_native_capacity(struct gendisk *disk);
 105static int  sd_probe(struct device *);
 106static int  sd_remove(struct device *);
 107static void sd_shutdown(struct device *);
 108static int sd_suspend_system(struct device *);
 109static int sd_suspend_runtime(struct device *);
 110static int sd_resume(struct device *);
 111static void sd_rescan(struct device *);
 112static int sd_done(struct scsi_cmnd *);
 113static int sd_eh_action(struct scsi_cmnd *, int);
 114static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
 115static void scsi_disk_release(struct device *cdev);
 116static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
 117static void sd_print_result(struct scsi_disk *, int);
 118
 119static DEFINE_SPINLOCK(sd_index_lock);
 120static DEFINE_IDA(sd_index_ida);
 121
 122/* This semaphore is used to mediate the 0->1 reference get in the
 123 * face of object destruction (i.e. we can't allow a get on an
 124 * object after last put) */
 125static DEFINE_MUTEX(sd_ref_mutex);
 126
 127static struct kmem_cache *sd_cdb_cache;
 128static mempool_t *sd_cdb_pool;
 129
 130static const char *sd_cache_types[] = {
 131	"write through", "none", "write back",
 132	"write back, no read (daft)"
 133};
 134
 
 
 
 
 
 
 
 
 
 
 
 
 
 135static ssize_t
 136cache_type_store(struct device *dev, struct device_attribute *attr,
 137		 const char *buf, size_t count)
 138{
 139	int i, ct = -1, rcd, wce, sp;
 140	struct scsi_disk *sdkp = to_scsi_disk(dev);
 141	struct scsi_device *sdp = sdkp->device;
 142	char buffer[64];
 143	char *buffer_data;
 144	struct scsi_mode_data data;
 145	struct scsi_sense_hdr sshdr;
 146	static const char temp[] = "temporary ";
 147	int len;
 148
 149	if (sdp->type != TYPE_DISK)
 150		/* no cache control on RBC devices; theoretically they
 151		 * can do it, but there's probably so many exceptions
 152		 * it's not worth the risk */
 153		return -EINVAL;
 154
 155	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
 156		buf += sizeof(temp) - 1;
 157		sdkp->cache_override = 1;
 158	} else {
 159		sdkp->cache_override = 0;
 160	}
 161
 162	for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
 163		len = strlen(sd_cache_types[i]);
 164		if (strncmp(sd_cache_types[i], buf, len) == 0 &&
 165		    buf[len] == '\n') {
 166			ct = i;
 167			break;
 168		}
 169	}
 170	if (ct < 0)
 171		return -EINVAL;
 
 172	rcd = ct & 0x01 ? 1 : 0;
 173	wce = ct & 0x02 ? 1 : 0;
 174
 175	if (sdkp->cache_override) {
 176		sdkp->WCE = wce;
 177		sdkp->RCD = rcd;
 
 178		return count;
 179	}
 180
 181	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
 182			    SD_MAX_RETRIES, &data, NULL))
 183		return -EINVAL;
 184	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
 185		  data.block_descriptor_length);
 186	buffer_data = buffer + data.header_length +
 187		data.block_descriptor_length;
 188	buffer_data[2] &= ~0x05;
 189	buffer_data[2] |= wce << 2 | rcd;
 190	sp = buffer_data[0] & 0x80 ? 1 : 0;
 
 191
 192	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
 193			     SD_MAX_RETRIES, &data, &sshdr)) {
 194		if (scsi_sense_valid(&sshdr))
 
 
 
 
 
 
 
 195			sd_print_sense_hdr(sdkp, &sshdr);
 196		return -EINVAL;
 197	}
 198	revalidate_disk(sdkp->disk);
 199	return count;
 200}
 201
 202static ssize_t
 203manage_start_stop_show(struct device *dev, struct device_attribute *attr,
 204		       char *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205{
 206	struct scsi_disk *sdkp = to_scsi_disk(dev);
 207	struct scsi_device *sdp = sdkp->device;
 208
 209	return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
 210}
 211
 212static ssize_t
 213manage_start_stop_store(struct device *dev, struct device_attribute *attr,
 214			const char *buf, size_t count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215{
 216	struct scsi_disk *sdkp = to_scsi_disk(dev);
 217	struct scsi_device *sdp = sdkp->device;
 
 218
 219	if (!capable(CAP_SYS_ADMIN))
 220		return -EACCES;
 221
 222	sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
 
 
 
 223
 224	return count;
 225}
 226static DEVICE_ATTR_RW(manage_start_stop);
 227
 228static ssize_t
 229allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
 230{
 231	struct scsi_disk *sdkp = to_scsi_disk(dev);
 232
 233	return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
 234}
 235
 236static ssize_t
 237allow_restart_store(struct device *dev, struct device_attribute *attr,
 238		    const char *buf, size_t count)
 239{
 
 240	struct scsi_disk *sdkp = to_scsi_disk(dev);
 241	struct scsi_device *sdp = sdkp->device;
 242
 243	if (!capable(CAP_SYS_ADMIN))
 244		return -EACCES;
 245
 246	if (sdp->type != TYPE_DISK)
 
 
 
 247		return -EINVAL;
 248
 249	sdp->allow_restart = simple_strtoul(buf, NULL, 10);
 250
 251	return count;
 252}
 253static DEVICE_ATTR_RW(allow_restart);
 254
 255static ssize_t
 256cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
 257{
 258	struct scsi_disk *sdkp = to_scsi_disk(dev);
 259	int ct = sdkp->RCD + 2*sdkp->WCE;
 260
 261	return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
 262}
 263static DEVICE_ATTR_RW(cache_type);
 264
 265static ssize_t
 266FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
 267{
 268	struct scsi_disk *sdkp = to_scsi_disk(dev);
 269
 270	return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
 271}
 272static DEVICE_ATTR_RO(FUA);
 273
 274static ssize_t
 275protection_type_show(struct device *dev, struct device_attribute *attr,
 276		     char *buf)
 277{
 278	struct scsi_disk *sdkp = to_scsi_disk(dev);
 279
 280	return snprintf(buf, 20, "%u\n", sdkp->protection_type);
 281}
 282
 283static ssize_t
 284protection_type_store(struct device *dev, struct device_attribute *attr,
 285		      const char *buf, size_t count)
 286{
 287	struct scsi_disk *sdkp = to_scsi_disk(dev);
 288	unsigned int val;
 289	int err;
 290
 291	if (!capable(CAP_SYS_ADMIN))
 292		return -EACCES;
 293
 294	err = kstrtouint(buf, 10, &val);
 295
 296	if (err)
 297		return err;
 298
 299	if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION)
 300		sdkp->protection_type = val;
 301
 302	return count;
 303}
 304static DEVICE_ATTR_RW(protection_type);
 305
 306static ssize_t
 307protection_mode_show(struct device *dev, struct device_attribute *attr,
 308		     char *buf)
 309{
 310	struct scsi_disk *sdkp = to_scsi_disk(dev);
 311	struct scsi_device *sdp = sdkp->device;
 312	unsigned int dif, dix;
 313
 314	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
 315	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
 316
 317	if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) {
 318		dif = 0;
 319		dix = 1;
 320	}
 321
 322	if (!dif && !dix)
 323		return snprintf(buf, 20, "none\n");
 324
 325	return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
 326}
 327static DEVICE_ATTR_RO(protection_mode);
 328
 329static ssize_t
 330app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
 331{
 332	struct scsi_disk *sdkp = to_scsi_disk(dev);
 333
 334	return snprintf(buf, 20, "%u\n", sdkp->ATO);
 335}
 336static DEVICE_ATTR_RO(app_tag_own);
 337
 338static ssize_t
 339thin_provisioning_show(struct device *dev, struct device_attribute *attr,
 340		       char *buf)
 341{
 342	struct scsi_disk *sdkp = to_scsi_disk(dev);
 343
 344	return snprintf(buf, 20, "%u\n", sdkp->lbpme);
 345}
 346static DEVICE_ATTR_RO(thin_provisioning);
 347
 
 348static const char *lbp_mode[] = {
 349	[SD_LBP_FULL]		= "full",
 350	[SD_LBP_UNMAP]		= "unmap",
 351	[SD_LBP_WS16]		= "writesame_16",
 352	[SD_LBP_WS10]		= "writesame_10",
 353	[SD_LBP_ZERO]		= "writesame_zero",
 354	[SD_LBP_DISABLE]	= "disabled",
 355};
 356
 357static ssize_t
 358provisioning_mode_show(struct device *dev, struct device_attribute *attr,
 359		       char *buf)
 360{
 361	struct scsi_disk *sdkp = to_scsi_disk(dev);
 362
 363	return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
 364}
 365
 366static ssize_t
 367provisioning_mode_store(struct device *dev, struct device_attribute *attr,
 368			const char *buf, size_t count)
 369{
 370	struct scsi_disk *sdkp = to_scsi_disk(dev);
 371	struct scsi_device *sdp = sdkp->device;
 
 372
 373	if (!capable(CAP_SYS_ADMIN))
 374		return -EACCES;
 375
 
 
 
 
 
 376	if (sdp->type != TYPE_DISK)
 377		return -EINVAL;
 378
 379	if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
 380		sd_config_discard(sdkp, SD_LBP_UNMAP);
 381	else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
 382		sd_config_discard(sdkp, SD_LBP_WS16);
 383	else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
 384		sd_config_discard(sdkp, SD_LBP_WS10);
 385	else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
 386		sd_config_discard(sdkp, SD_LBP_ZERO);
 387	else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
 388		sd_config_discard(sdkp, SD_LBP_DISABLE);
 389	else
 390		return -EINVAL;
 391
 
 
 392	return count;
 393}
 394static DEVICE_ATTR_RW(provisioning_mode);
 395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396static ssize_t
 397max_medium_access_timeouts_show(struct device *dev,
 398				struct device_attribute *attr, char *buf)
 399{
 400	struct scsi_disk *sdkp = to_scsi_disk(dev);
 401
 402	return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
 403}
 404
 405static ssize_t
 406max_medium_access_timeouts_store(struct device *dev,
 407				 struct device_attribute *attr, const char *buf,
 408				 size_t count)
 409{
 410	struct scsi_disk *sdkp = to_scsi_disk(dev);
 411	int err;
 412
 413	if (!capable(CAP_SYS_ADMIN))
 414		return -EACCES;
 415
 416	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
 417
 418	return err ? err : count;
 419}
 420static DEVICE_ATTR_RW(max_medium_access_timeouts);
 421
 422static ssize_t
 423max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
 424			   char *buf)
 425{
 426	struct scsi_disk *sdkp = to_scsi_disk(dev);
 427
 428	return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
 429}
 430
 431static ssize_t
 432max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
 433			    const char *buf, size_t count)
 434{
 435	struct scsi_disk *sdkp = to_scsi_disk(dev);
 436	struct scsi_device *sdp = sdkp->device;
 437	unsigned long max;
 438	int err;
 439
 440	if (!capable(CAP_SYS_ADMIN))
 441		return -EACCES;
 442
 443	if (sdp->type != TYPE_DISK)
 444		return -EINVAL;
 445
 446	err = kstrtoul(buf, 10, &max);
 447
 448	if (err)
 449		return err;
 450
 451	if (max == 0)
 452		sdp->no_write_same = 1;
 453	else if (max <= SD_MAX_WS16_BLOCKS) {
 454		sdp->no_write_same = 0;
 455		sdkp->max_ws_blocks = max;
 456	}
 457
 458	sd_config_write_same(sdkp);
 459
 460	return count;
 461}
 462static DEVICE_ATTR_RW(max_write_same_blocks);
 463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464static struct attribute *sd_disk_attrs[] = {
 465	&dev_attr_cache_type.attr,
 466	&dev_attr_FUA.attr,
 467	&dev_attr_allow_restart.attr,
 468	&dev_attr_manage_start_stop.attr,
 
 
 
 469	&dev_attr_protection_type.attr,
 470	&dev_attr_protection_mode.attr,
 471	&dev_attr_app_tag_own.attr,
 472	&dev_attr_thin_provisioning.attr,
 473	&dev_attr_provisioning_mode.attr,
 
 474	&dev_attr_max_write_same_blocks.attr,
 475	&dev_attr_max_medium_access_timeouts.attr,
 
 
 476	NULL,
 477};
 478ATTRIBUTE_GROUPS(sd_disk);
 479
 480static struct class sd_disk_class = {
 481	.name		= "scsi_disk",
 482	.owner		= THIS_MODULE,
 483	.dev_release	= scsi_disk_release,
 484	.dev_groups	= sd_disk_groups,
 485};
 486
 487static const struct dev_pm_ops sd_pm_ops = {
 488	.suspend		= sd_suspend_system,
 489	.resume			= sd_resume,
 490	.poweroff		= sd_suspend_system,
 491	.restore		= sd_resume,
 492	.runtime_suspend	= sd_suspend_runtime,
 493	.runtime_resume		= sd_resume,
 494};
 495
 496static struct scsi_driver sd_template = {
 497	.owner			= THIS_MODULE,
 498	.gendrv = {
 499		.name		= "sd",
 500		.probe		= sd_probe,
 501		.remove		= sd_remove,
 502		.shutdown	= sd_shutdown,
 503		.pm		= &sd_pm_ops,
 504	},
 505	.rescan			= sd_rescan,
 506	.done			= sd_done,
 507	.eh_action		= sd_eh_action,
 508};
 509
 510/*
 511 * Dummy kobj_map->probe function.
 512 * The default ->probe function will call modprobe, which is
 513 * pointless as this module is already loaded.
 514 */
 515static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
 516{
 517	return NULL;
 518}
 519
 520/*
 521 * Device no to disk mapping:
 522 * 
 523 *       major         disc2     disc  p1
 524 *   |............|.............|....|....| <- dev_t
 525 *    31        20 19          8 7  4 3  0
 526 * 
 527 * Inside a major, we have 16k disks, however mapped non-
 528 * contiguously. The first 16 disks are for major0, the next
 529 * ones with major1, ... Disk 256 is for major0 again, disk 272 
 530 * for major1, ... 
 531 * As we stay compatible with our numbering scheme, we can reuse 
 532 * the well-know SCSI majors 8, 65--71, 136--143.
 533 */
 534static int sd_major(int major_idx)
 535{
 536	switch (major_idx) {
 537	case 0:
 538		return SCSI_DISK0_MAJOR;
 539	case 1 ... 7:
 540		return SCSI_DISK1_MAJOR + major_idx - 1;
 541	case 8 ... 15:
 542		return SCSI_DISK8_MAJOR + major_idx - 8;
 543	default:
 544		BUG();
 545		return 0;	/* shut up gcc */
 546	}
 547}
 548
 549static struct scsi_disk *__scsi_disk_get(struct gendisk *disk)
 
 
 550{
 551	struct scsi_disk *sdkp = NULL;
 
 
 
 
 
 
 552
 553	if (disk->private_data) {
 554		sdkp = scsi_disk(disk);
 555		if (scsi_device_get(sdkp->device) == 0)
 556			get_device(&sdkp->dev);
 557		else
 558			sdkp = NULL;
 559	}
 560	return sdkp;
 
 561}
 
 562
 563static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
 
 
 
 
 564{
 565	struct scsi_disk *sdkp;
 
 
 
 
 
 
 
 
 
 
 566
 567	mutex_lock(&sd_ref_mutex);
 568	sdkp = __scsi_disk_get(disk);
 569	mutex_unlock(&sd_ref_mutex);
 570	return sdkp;
 571}
 572
 573static struct scsi_disk *scsi_disk_get_from_dev(struct device *dev)
 
 
 
 
 574{
 575	struct scsi_disk *sdkp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576
 577	mutex_lock(&sd_ref_mutex);
 578	sdkp = dev_get_drvdata(dev);
 579	if (sdkp)
 580		sdkp = __scsi_disk_get(sdkp->disk);
 581	mutex_unlock(&sd_ref_mutex);
 582	return sdkp;
 583}
 584
 585static void scsi_disk_put(struct scsi_disk *sdkp)
 
 586{
 587	struct scsi_device *sdev = sdkp->device;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588
 589	mutex_lock(&sd_ref_mutex);
 590	put_device(&sdkp->dev);
 591	scsi_device_put(sdev);
 592	mutex_unlock(&sd_ref_mutex);
 593}
 594
 595static void sd_prot_op(struct scsi_cmnd *scmd, unsigned int dif)
 596{
 597	unsigned int prot_op = SCSI_PROT_NORMAL;
 598	unsigned int dix = scsi_prot_sg_count(scmd);
 599
 600	if (scmd->sc_data_direction == DMA_FROM_DEVICE) {
 601		if (dif && dix)
 602			prot_op = SCSI_PROT_READ_PASS;
 603		else if (dif && !dix)
 604			prot_op = SCSI_PROT_READ_STRIP;
 605		else if (!dif && dix)
 606			prot_op = SCSI_PROT_READ_INSERT;
 607	} else {
 608		if (dif && dix)
 609			prot_op = SCSI_PROT_WRITE_PASS;
 610		else if (dif && !dix)
 611			prot_op = SCSI_PROT_WRITE_INSERT;
 612		else if (!dif && dix)
 613			prot_op = SCSI_PROT_WRITE_STRIP;
 614	}
 615
 616	scsi_set_prot_op(scmd, prot_op);
 617	scsi_set_prot_type(scmd, dif);
 
 
 
 618}
 619
 620static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
 621{
 622	struct request_queue *q = sdkp->disk->queue;
 623	unsigned int logical_block_size = sdkp->device->sector_size;
 624	unsigned int max_blocks = 0;
 625
 626	q->limits.discard_zeroes_data = sdkp->lbprz;
 627	q->limits.discard_alignment = sdkp->unmap_alignment *
 628		logical_block_size;
 629	q->limits.discard_granularity =
 630		max(sdkp->physical_block_size,
 631		    sdkp->unmap_granularity * logical_block_size);
 632
 633	sdkp->provisioning_mode = mode;
 634
 635	switch (mode) {
 636
 
 637	case SD_LBP_DISABLE:
 638		q->limits.max_discard_sectors = 0;
 639		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
 640		return;
 641
 642	case SD_LBP_UNMAP:
 643		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
 644					  (u32)SD_MAX_WS16_BLOCKS);
 645		break;
 646
 647	case SD_LBP_WS16:
 648		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 649					  (u32)SD_MAX_WS16_BLOCKS);
 
 
 
 
 650		break;
 651
 652	case SD_LBP_WS10:
 653		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 654					  (u32)SD_MAX_WS10_BLOCKS);
 
 
 
 
 655		break;
 656
 657	case SD_LBP_ZERO:
 658		max_blocks = min_not_zero(sdkp->max_ws_blocks,
 659					  (u32)SD_MAX_WS10_BLOCKS);
 660		q->limits.discard_zeroes_data = 1;
 661		break;
 662	}
 663
 664	q->limits.max_discard_sectors = max_blocks * (logical_block_size >> 9);
 665	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
 666}
 667
 668/**
 669 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device
 670 * @sdp: scsi device to operate one
 671 * @rq: Request to prepare
 672 *
 673 * Will issue either UNMAP or WRITE SAME(16) depending on preference
 674 * indicated by target device.
 675 **/
 676static int sd_setup_discard_cmnd(struct scsi_device *sdp, struct request *rq)
 677{
 678	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
 679	sector_t sector = blk_rq_pos(rq);
 680	unsigned int nr_sectors = blk_rq_sectors(rq);
 681	unsigned int nr_bytes = blk_rq_bytes(rq);
 682	unsigned int len;
 683	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 684	char *buf;
 685	struct page *page;
 686
 687	sector >>= ilog2(sdp->sector_size) - 9;
 688	nr_sectors >>= ilog2(sdp->sector_size) - 9;
 
 
 
 
 
 
 
 
 
 
 
 
 
 689	rq->timeout = SD_TIMEOUT;
 690
 691	memset(rq->cmd, 0, rq->cmd_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 692
 693	page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
 694	if (!page)
 695		return BLKPREP_DEFER;
 
 
 
 
 
 
 
 
 
 
 696
 697	switch (sdkp->provisioning_mode) {
 698	case SD_LBP_UNMAP:
 699		buf = page_address(page);
 
 
 
 
 
 
 700
 701		rq->cmd_len = 10;
 702		rq->cmd[0] = UNMAP;
 703		rq->cmd[8] = 24;
 704
 705		put_unaligned_be16(6 + 16, &buf[0]);
 706		put_unaligned_be16(16, &buf[2]);
 707		put_unaligned_be64(sector, &buf[8]);
 708		put_unaligned_be32(nr_sectors, &buf[16]);
 709
 710		len = 24;
 711		break;
 
 
 
 
 712
 713	case SD_LBP_WS16:
 714		rq->cmd_len = 16;
 715		rq->cmd[0] = WRITE_SAME_16;
 716		rq->cmd[1] = 0x8; /* UNMAP */
 717		put_unaligned_be64(sector, &rq->cmd[2]);
 718		put_unaligned_be32(nr_sectors, &rq->cmd[10]);
 719
 720		len = sdkp->device->sector_size;
 721		break;
 722
 723	case SD_LBP_WS10:
 724	case SD_LBP_ZERO:
 725		rq->cmd_len = 10;
 726		rq->cmd[0] = WRITE_SAME;
 727		if (sdkp->provisioning_mode == SD_LBP_WS10)
 728			rq->cmd[1] = 0x8; /* UNMAP */
 729		put_unaligned_be32(sector, &rq->cmd[2]);
 730		put_unaligned_be16(nr_sectors, &rq->cmd[7]);
 731
 732		len = sdkp->device->sector_size;
 733		break;
 
 
 
 
 
 
 734
 735	default:
 736		ret = BLKPREP_KILL;
 737		goto out;
 738	}
 739
 740	blk_add_request_payload(rq, page, len);
 741	ret = scsi_setup_blk_pc_cmnd(sdp, rq);
 742	rq->buffer = page_address(page);
 743	rq->__data_len = nr_bytes;
 744
 745out:
 746	if (ret != BLKPREP_OK) {
 747		__free_page(page);
 748		rq->buffer = NULL;
 749	}
 750	return ret;
 751}
 752
 753static void sd_config_write_same(struct scsi_disk *sdkp)
 754{
 755	struct request_queue *q = sdkp->disk->queue;
 756	unsigned int logical_block_size = sdkp->device->sector_size;
 757
 758	if (sdkp->device->no_write_same) {
 759		sdkp->max_ws_blocks = 0;
 760		goto out;
 761	}
 762
 763	/* Some devices can not handle block counts above 0xffff despite
 764	 * supporting WRITE SAME(16). Consequently we default to 64k
 765	 * blocks per I/O unless the device explicitly advertises a
 766	 * bigger limit.
 767	 */
 768	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
 769		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 770						   (u32)SD_MAX_WS16_BLOCKS);
 771	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
 772		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
 773						   (u32)SD_MAX_WS10_BLOCKS);
 774	else {
 775		sdkp->device->no_write_same = 1;
 776		sdkp->max_ws_blocks = 0;
 777	}
 778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779out:
 780	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
 781					 (logical_block_size >> 9));
 782}
 783
 784/**
 785 * sd_setup_write_same_cmnd - write the same data to multiple blocks
 786 * @sdp: scsi device to operate one
 787 * @rq: Request to prepare
 788 *
 789 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on
 790 * preference indicated by target device.
 791 **/
 792static int sd_setup_write_same_cmnd(struct scsi_device *sdp, struct request *rq)
 793{
 794	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
 795	struct bio *bio = rq->bio;
 796	sector_t sector = blk_rq_pos(rq);
 797	unsigned int nr_sectors = blk_rq_sectors(rq);
 798	unsigned int nr_bytes = blk_rq_bytes(rq);
 799	int ret;
 800
 801	if (sdkp->device->no_write_same)
 802		return BLKPREP_KILL;
 
 
 
 
 
 
 
 803
 804	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
 
 
 805
 806	sector >>= ilog2(sdp->sector_size) - 9;
 807	nr_sectors >>= ilog2(sdp->sector_size) - 9;
 
 
 
 
 
 
 
 
 
 
 
 808
 809	rq->__data_len = sdp->sector_size;
 810	rq->timeout = SD_WRITE_SAME_TIMEOUT;
 811	memset(rq->cmd, 0, rq->cmd_len);
 812
 813	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
 814		rq->cmd_len = 16;
 815		rq->cmd[0] = WRITE_SAME_16;
 816		put_unaligned_be64(sector, &rq->cmd[2]);
 817		put_unaligned_be32(nr_sectors, &rq->cmd[10]);
 818	} else {
 819		rq->cmd_len = 10;
 820		rq->cmd[0] = WRITE_SAME;
 821		put_unaligned_be32(sector, &rq->cmd[2]);
 822		put_unaligned_be16(nr_sectors, &rq->cmd[7]);
 823	}
 824
 825	ret = scsi_setup_blk_pc_cmnd(sdp, rq);
 826	rq->__data_len = nr_bytes;
 
 
 
 
 
 
 
 
 
 827
 828	return ret;
 829}
 830
 831static int scsi_setup_flush_cmnd(struct scsi_device *sdp, struct request *rq)
 
 
 832{
 833	rq->timeout *= SD_FLUSH_TIMEOUT_MULTIPLIER;
 834	rq->retries = SD_MAX_RETRIES;
 835	rq->cmd[0] = SYNCHRONIZE_CACHE;
 836	rq->cmd_len = 10;
 
 
 
 837
 838	return scsi_setup_blk_pc_cmnd(sdp, rq);
 839}
 840
 841static void sd_unprep_fn(struct request_queue *q, struct request *rq)
 
 
 842{
 843	struct scsi_cmnd *SCpnt = rq->special;
 
 
 844
 845	if (rq->cmd_flags & REQ_DISCARD) {
 846		free_page((unsigned long)rq->buffer);
 847		rq->buffer = NULL;
 848	}
 849	if (SCpnt->cmnd != rq->cmd) {
 850		mempool_free(SCpnt->cmnd, sd_cdb_pool);
 851		SCpnt->cmnd = NULL;
 852		SCpnt->cmd_len = 0;
 853	}
 
 
 
 
 
 
 
 
 
 
 854}
 855
 856/**
 857 *	sd_prep_fn - build a scsi (read or write) command from
 858 *	information in the request structure.
 859 *	@SCpnt: pointer to mid-level's per scsi command structure that
 860 *	contains request and into which the scsi command is written
 861 *
 862 *	Returns 1 if successful and 0 if error (or cannot be done now).
 863 **/
 864static int sd_prep_fn(struct request_queue *q, struct request *rq)
 865{
 866	struct scsi_cmnd *SCpnt;
 867	struct scsi_device *sdp = q->queuedata;
 868	struct gendisk *disk = rq->rq_disk;
 869	struct scsi_disk *sdkp;
 870	sector_t block = blk_rq_pos(rq);
 871	sector_t threshold;
 872	unsigned int this_count = blk_rq_sectors(rq);
 873	int ret, host_dif;
 874	unsigned char protect;
 875
 876	/*
 877	 * Discard request come in as REQ_TYPE_FS but we turn them into
 878	 * block PC requests to make life easier.
 879	 */
 880	if (rq->cmd_flags & REQ_DISCARD) {
 881		ret = sd_setup_discard_cmnd(sdp, rq);
 882		goto out;
 883	} else if (rq->cmd_flags & REQ_WRITE_SAME) {
 884		ret = sd_setup_write_same_cmnd(sdp, rq);
 885		goto out;
 886	} else if (rq->cmd_flags & REQ_FLUSH) {
 887		ret = scsi_setup_flush_cmnd(sdp, rq);
 888		goto out;
 889	} else if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 890		ret = scsi_setup_blk_pc_cmnd(sdp, rq);
 891		goto out;
 892	} else if (rq->cmd_type != REQ_TYPE_FS) {
 893		ret = BLKPREP_KILL;
 894		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895	}
 896	ret = scsi_setup_fs_cmnd(sdp, rq);
 897	if (ret != BLKPREP_OK)
 898		goto out;
 899	SCpnt = rq->special;
 900	sdkp = scsi_disk(disk);
 901
 902	/* from here on until we're complete, any goto out
 903	 * is used for a killable error condition */
 904	ret = BLKPREP_KILL;
 905
 906	SCSI_LOG_HLQUEUE(1, scmd_printk(KERN_INFO, SCpnt,
 907					"sd_prep_fn: block=%llu, "
 908					"count=%d\n",
 909					(unsigned long long)block,
 910					this_count));
 911
 912	if (!sdp || !scsi_device_online(sdp) ||
 913	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
 914		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
 915						"Finishing %u sectors\n",
 916						blk_rq_sectors(rq)));
 917		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
 918						"Retry with 0x%p\n", SCpnt));
 919		goto out;
 920	}
 921
 922	if (sdp->changed) {
 923		/*
 924		 * quietly refuse to do anything to a changed disc until 
 925		 * the changed bit has been reset
 926		 */
 927		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
 928		goto out;
 929	}
 930
 931	/*
 932	 * Some SD card readers can't handle multi-sector accesses which touch
 933	 * the last one or two hardware sectors.  Split accesses as needed.
 934	 */
 935	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
 936		(sdp->sector_size / 512);
 937
 938	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
 939		if (block < threshold) {
 940			/* Access up to the threshold but not beyond */
 941			this_count = threshold - block;
 942		} else {
 943			/* Access only a single hardware sector */
 944			this_count = sdp->sector_size / 512;
 945		}
 946	}
 947
 948	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
 949					(unsigned long long)block));
 950
 951	/*
 952	 * If we have a 1K hardware sectorsize, prevent access to single
 953	 * 512 byte sectors.  In theory we could handle this - in fact
 954	 * the scsi cdrom driver must be able to handle this because
 955	 * we typically use 1K blocksizes, and cdroms typically have
 956	 * 2K hardware sectorsizes.  Of course, things are simpler
 957	 * with the cdrom, since it is read-only.  For performance
 958	 * reasons, the filesystems should be able to handle this
 959	 * and not force the scsi disk driver to use bounce buffers
 960	 * for this.
 961	 */
 962	if (sdp->sector_size == 1024) {
 963		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
 964			scmd_printk(KERN_ERR, SCpnt,
 965				    "Bad block number requested\n");
 966			goto out;
 967		} else {
 968			block = block >> 1;
 969			this_count = this_count >> 1;
 970		}
 971	}
 972	if (sdp->sector_size == 2048) {
 973		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
 974			scmd_printk(KERN_ERR, SCpnt,
 975				    "Bad block number requested\n");
 976			goto out;
 977		} else {
 978			block = block >> 2;
 979			this_count = this_count >> 2;
 980		}
 981	}
 982	if (sdp->sector_size == 4096) {
 983		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
 984			scmd_printk(KERN_ERR, SCpnt,
 985				    "Bad block number requested\n");
 986			goto out;
 987		} else {
 988			block = block >> 3;
 989			this_count = this_count >> 3;
 990		}
 991	}
 992	if (rq_data_dir(rq) == WRITE) {
 993		if (!sdp->writeable) {
 994			goto out;
 995		}
 996		SCpnt->cmnd[0] = WRITE_6;
 997		SCpnt->sc_data_direction = DMA_TO_DEVICE;
 998
 999		if (blk_integrity_rq(rq))
1000			sd_dif_prepare(rq, block, sdp->sector_size);
1001
1002	} else if (rq_data_dir(rq) == READ) {
1003		SCpnt->cmnd[0] = READ_6;
1004		SCpnt->sc_data_direction = DMA_FROM_DEVICE;
1005	} else {
1006		scmd_printk(KERN_ERR, SCpnt, "Unknown command %llx\n", (unsigned long long) rq->cmd_flags);
1007		goto out;
1008	}
1009
1010	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1011					"%s %d/%u 512 byte blocks.\n",
1012					(rq_data_dir(rq) == WRITE) ?
1013					"writing" : "reading", this_count,
1014					blk_rq_sectors(rq)));
1015
1016	/* Set RDPROTECT/WRPROTECT if disk is formatted with DIF */
1017	host_dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
1018	if (host_dif)
1019		protect = 1 << 5;
1020	else
1021		protect = 0;
1022
1023	if (host_dif == SD_DIF_TYPE2_PROTECTION) {
1024		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1025
1026		if (unlikely(SCpnt->cmnd == NULL)) {
1027			ret = BLKPREP_DEFER;
1028			goto out;
1029		}
1030
1031		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1032		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1033		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1034		SCpnt->cmnd[7] = 0x18;
1035		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1036		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1037
1038		/* LBA */
1039		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1040		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1041		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1042		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1043		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1044		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1045		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1046		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1047
1048		/* Expected Indirect LBA */
1049		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1050		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1051		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1052		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1053
1054		/* Transfer length */
1055		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1056		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1057		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1058		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1059	} else if (sdp->use_16_for_rw) {
1060		SCpnt->cmnd[0] += READ_16 - READ_6;
1061		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1062		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1063		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1064		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1065		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1066		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1067		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1068		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1069		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1070		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1071		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1072		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1073		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1074		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1075	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1076		   scsi_device_protection(SCpnt->device) ||
1077		   SCpnt->device->use_10_for_rw) {
1078		if (this_count > 0xffff)
1079			this_count = 0xffff;
1080
1081		SCpnt->cmnd[0] += READ_10 - READ_6;
1082		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1083		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1084		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1085		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1086		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1087		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1088		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1089		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1090	} else {
1091		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1092			/*
1093			 * This happens only if this drive failed
1094			 * 10byte rw command with ILLEGAL_REQUEST
1095			 * during operation and thus turned off
1096			 * use_10_for_rw.
1097			 */
1098			scmd_printk(KERN_ERR, SCpnt,
1099				    "FUA write on READ/WRITE(6) drive\n");
1100			goto out;
1101		}
1102
1103		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1104		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1105		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1106		SCpnt->cmnd[4] = (unsigned char) this_count;
1107		SCpnt->cmnd[5] = 0;
1108	}
1109	SCpnt->sdb.length = this_count * sdp->sector_size;
1110
1111	/* If DIF or DIX is enabled, tell HBA how to handle request */
1112	if (host_dif || scsi_prot_sg_count(SCpnt))
1113		sd_prot_op(SCpnt, host_dif);
1114
1115	/*
1116	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1117	 * host adapter, it's safe to assume that we can at least transfer
1118	 * this many bytes between each connect / disconnect.
1119	 */
1120	SCpnt->transfersize = sdp->sector_size;
1121	SCpnt->underflow = this_count << 9;
1122	SCpnt->allowed = SD_MAX_RETRIES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1123
1124	/*
1125	 * This indicates that the command is ready from our end to be
1126	 * queued.
 
1127	 */
1128	ret = BLKPREP_OK;
1129 out:
1130	return scsi_prep_return(q, rq, ret);
1131}
1132
1133/**
1134 *	sd_open - open a scsi disk device
1135 *	@inode: only i_rdev member may be used
1136 *	@filp: only f_mode and f_flags may be used
1137 *
1138 *	Returns 0 if successful. Returns a negated errno value in case 
1139 *	of error.
1140 *
1141 *	Note: This can be called from a user context (e.g. fsck(1) )
1142 *	or from within the kernel (e.g. as a result of a mount(1) ).
1143 *	In the latter case @inode and @filp carry an abridged amount
1144 *	of information as noted above.
1145 *
1146 *	Locking: called with bdev->bd_mutex held.
1147 **/
1148static int sd_open(struct block_device *bdev, fmode_t mode)
1149{
1150	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1151	struct scsi_device *sdev;
1152	int retval;
1153
1154	if (!sdkp)
1155		return -ENXIO;
1156
1157	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1158
1159	sdev = sdkp->device;
1160
1161	/*
1162	 * If the device is in error recovery, wait until it is done.
1163	 * If the device is offline, then disallow any access to it.
1164	 */
1165	retval = -ENXIO;
1166	if (!scsi_block_when_processing_errors(sdev))
1167		goto error_out;
1168
1169	if (sdev->removable || sdkp->write_prot)
1170		check_disk_change(bdev);
1171
1172	/*
1173	 * If the drive is empty, just let the open fail.
1174	 */
1175	retval = -ENOMEDIUM;
1176	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
 
1177		goto error_out;
1178
1179	/*
1180	 * If the device has the write protect tab set, have the open fail
1181	 * if the user expects to be able to write to the thing.
1182	 */
1183	retval = -EROFS;
1184	if (sdkp->write_prot && (mode & FMODE_WRITE))
1185		goto error_out;
1186
1187	/*
1188	 * It is possible that the disk changing stuff resulted in
1189	 * the device being taken offline.  If this is the case,
1190	 * report this to the user, and don't pretend that the
1191	 * open actually succeeded.
1192	 */
1193	retval = -ENXIO;
1194	if (!scsi_device_online(sdev))
1195		goto error_out;
1196
1197	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1198		if (scsi_block_when_processing_errors(sdev))
1199			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1200	}
1201
1202	return 0;
1203
1204error_out:
1205	scsi_disk_put(sdkp);
1206	return retval;	
1207}
1208
1209/**
1210 *	sd_release - invoked when the (last) close(2) is called on this
1211 *	scsi disk.
1212 *	@inode: only i_rdev member may be used
1213 *	@filp: only f_mode and f_flags may be used
1214 *
1215 *	Returns 0. 
1216 *
1217 *	Note: may block (uninterruptible) if error recovery is underway
1218 *	on this disk.
1219 *
1220 *	Locking: called with bdev->bd_mutex held.
1221 **/
1222static void sd_release(struct gendisk *disk, fmode_t mode)
1223{
1224	struct scsi_disk *sdkp = scsi_disk(disk);
1225	struct scsi_device *sdev = sdkp->device;
1226
1227	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1228
1229	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1230		if (scsi_block_when_processing_errors(sdev))
1231			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1232	}
1233
1234	/*
1235	 * XXX and what if there are packets in flight and this close()
1236	 * XXX is followed by a "rmmod sd_mod"?
1237	 */
1238
1239	scsi_disk_put(sdkp);
1240}
1241
1242static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1243{
1244	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1245	struct scsi_device *sdp = sdkp->device;
1246	struct Scsi_Host *host = sdp->host;
 
1247	int diskinfo[4];
1248
1249	/* default to most commonly used values */
1250        diskinfo[0] = 0x40;	/* 1 << 6 */
1251       	diskinfo[1] = 0x20;	/* 1 << 5 */
1252       	diskinfo[2] = sdkp->capacity >> 11;
1253	
1254	/* override with calculated, extended default, or driver values */
1255	if (host->hostt->bios_param)
1256		host->hostt->bios_param(sdp, bdev, sdkp->capacity, diskinfo);
1257	else
1258		scsicam_bios_param(bdev, sdkp->capacity, diskinfo);
1259
1260	geo->heads = diskinfo[0];
1261	geo->sectors = diskinfo[1];
1262	geo->cylinders = diskinfo[2];
1263	return 0;
1264}
1265
1266/**
1267 *	sd_ioctl - process an ioctl
1268 *	@inode: only i_rdev/i_bdev members may be used
1269 *	@filp: only f_mode and f_flags may be used
1270 *	@cmd: ioctl command number
1271 *	@arg: this is third argument given to ioctl(2) system call.
1272 *	Often contains a pointer.
1273 *
1274 *	Returns 0 if successful (some ioctls return positive numbers on
1275 *	success as well). Returns a negated errno value in case of error.
1276 *
1277 *	Note: most ioctls are forward onto the block subsystem or further
1278 *	down in the scsi subsystem.
1279 **/
1280static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1281		    unsigned int cmd, unsigned long arg)
1282{
1283	struct gendisk *disk = bdev->bd_disk;
1284	struct scsi_disk *sdkp = scsi_disk(disk);
1285	struct scsi_device *sdp = sdkp->device;
1286	void __user *p = (void __user *)arg;
1287	int error;
1288    
1289	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1290				    "cmd=0x%x\n", disk->disk_name, cmd));
1291
1292	error = scsi_verify_blk_ioctl(bdev, cmd);
1293	if (error < 0)
1294		return error;
1295
1296	/*
1297	 * If we are in the middle of error recovery, don't let anyone
1298	 * else try and use this device.  Also, if error recovery fails, it
1299	 * may try and take the device offline, in which case all further
1300	 * access to the device is prohibited.
1301	 */
1302	error = scsi_nonblockable_ioctl(sdp, cmd, p,
1303					(mode & FMODE_NDELAY) != 0);
1304	if (!scsi_block_when_processing_errors(sdp) || !error)
1305		goto out;
1306
1307	/*
1308	 * Send SCSI addressing ioctls directly to mid level, send other
1309	 * ioctls to block level and then onto mid level if they can't be
1310	 * resolved.
1311	 */
1312	switch (cmd) {
1313		case SCSI_IOCTL_GET_IDLUN:
1314		case SCSI_IOCTL_GET_BUS_NUMBER:
1315			error = scsi_ioctl(sdp, cmd, p);
1316			break;
1317		default:
1318			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1319			if (error != -ENOTTY)
1320				break;
1321			error = scsi_ioctl(sdp, cmd, p);
1322			break;
1323	}
1324out:
1325	return error;
1326}
1327
1328static void set_media_not_present(struct scsi_disk *sdkp)
1329{
1330	if (sdkp->media_present)
1331		sdkp->device->changed = 1;
1332
1333	if (sdkp->device->removable) {
1334		sdkp->media_present = 0;
1335		sdkp->capacity = 0;
1336	}
1337}
1338
1339static int media_not_present(struct scsi_disk *sdkp,
1340			     struct scsi_sense_hdr *sshdr)
1341{
1342	if (!scsi_sense_valid(sshdr))
1343		return 0;
1344
1345	/* not invoked for commands that could return deferred errors */
1346	switch (sshdr->sense_key) {
1347	case UNIT_ATTENTION:
1348	case NOT_READY:
1349		/* medium not present */
1350		if (sshdr->asc == 0x3A) {
1351			set_media_not_present(sdkp);
1352			return 1;
1353		}
1354	}
1355	return 0;
1356}
1357
1358/**
1359 *	sd_check_events - check media events
1360 *	@disk: kernel device descriptor
1361 *	@clearing: disk events currently being cleared
1362 *
1363 *	Returns mask of DISK_EVENT_*.
1364 *
1365 *	Note: this function is invoked from the block subsystem.
1366 **/
1367static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1368{
1369	struct scsi_disk *sdkp = scsi_disk(disk);
1370	struct scsi_device *sdp = sdkp->device;
1371	struct scsi_sense_hdr *sshdr = NULL;
1372	int retval;
 
1373
 
 
 
 
1374	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1375
1376	/*
1377	 * If the device is offline, don't send any commands - just pretend as
1378	 * if the command failed.  If the device ever comes back online, we
1379	 * can deal with it then.  It is only because of unrecoverable errors
1380	 * that we would ever take a device offline in the first place.
1381	 */
1382	if (!scsi_device_online(sdp)) {
1383		set_media_not_present(sdkp);
1384		goto out;
1385	}
1386
1387	/*
1388	 * Using TEST_UNIT_READY enables differentiation between drive with
1389	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1390	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1391	 *
1392	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1393	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1394	 * sd_revalidate() is called.
1395	 */
1396	retval = -ENODEV;
 
 
 
 
1397
1398	if (scsi_block_when_processing_errors(sdp)) {
1399		sshdr  = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1400		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1401					      sshdr);
1402	}
1403
1404	/* failed to execute TUR, assume media not present */
1405	if (host_byte(retval)) {
1406		set_media_not_present(sdkp);
1407		goto out;
1408	}
1409
1410	if (media_not_present(sdkp, sshdr))
1411		goto out;
1412
1413	/*
1414	 * For removable scsi disk we have to recognise the presence
1415	 * of a disk in the drive.
1416	 */
1417	if (!sdkp->media_present)
1418		sdp->changed = 1;
1419	sdkp->media_present = 1;
1420out:
1421	/*
1422	 * sdp->changed is set under the following conditions:
1423	 *
1424	 *	Medium present state has changed in either direction.
1425	 *	Device has indicated UNIT_ATTENTION.
1426	 */
1427	kfree(sshdr);
1428	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1429	sdp->changed = 0;
1430	return retval;
1431}
1432
1433static int sd_sync_cache(struct scsi_disk *sdkp)
1434{
1435	int retries, res;
1436	struct scsi_device *sdp = sdkp->device;
1437	const int timeout = sdp->request_queue->rq_timeout
1438		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1439	struct scsi_sense_hdr sshdr;
 
 
 
 
1440
1441	if (!scsi_device_online(sdp))
1442		return -ENODEV;
1443
1444	for (retries = 3; retries > 0; --retries) {
1445		unsigned char cmd[10] = { 0 };
1446
1447		cmd[0] = SYNCHRONIZE_CACHE;
 
 
 
1448		/*
1449		 * Leave the rest of the command zero to indicate
1450		 * flush everything.
1451		 */
1452		res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0,
1453					     &sshdr, timeout, SD_MAX_RETRIES,
1454					     NULL, REQ_PM);
1455		if (res == 0)
1456			break;
1457	}
1458
1459	if (res) {
1460		sd_print_result(sdkp, res);
1461
1462		if (driver_byte(res) & DRIVER_SENSE)
 
 
 
 
1463			sd_print_sense_hdr(sdkp, &sshdr);
1464		/* we need to evaluate the error return  */
1465		if (scsi_sense_valid(&sshdr) &&
1466			(sshdr.asc == 0x3a ||	/* medium not present */
1467			 sshdr.asc == 0x20))	/* invalid command */
 
1468				/* this is no error here */
1469				return 0;
 
 
 
 
 
 
 
 
 
1470
1471		switch (host_byte(res)) {
1472		/* ignore errors due to racing a disconnection */
1473		case DID_BAD_TARGET:
1474		case DID_NO_CONNECT:
1475			return 0;
1476		/* signal the upper layer it might try again */
1477		case DID_BUS_BUSY:
1478		case DID_IMM_RETRY:
1479		case DID_REQUEUE:
1480		case DID_SOFT_ERROR:
1481			return -EBUSY;
1482		default:
1483			return -EIO;
1484		}
1485	}
1486	return 0;
1487}
1488
1489static void sd_rescan(struct device *dev)
1490{
1491	struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1492
1493	if (sdkp) {
1494		revalidate_disk(sdkp->disk);
1495		scsi_disk_put(sdkp);
 
 
 
 
 
 
 
 
1496	}
 
 
 
1497}
1498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1499
1500#ifdef CONFIG_COMPAT
1501/* 
1502 * This gets directly called from VFS. When the ioctl 
1503 * is not recognized we go back to the other translation paths. 
1504 */
1505static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1506			   unsigned int cmd, unsigned long arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507{
1508	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1509	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
1510
1511	ret = scsi_verify_blk_ioctl(bdev, cmd);
1512	if (ret < 0)
1513		return ret;
1514
1515	/*
1516	 * If we are in the middle of error recovery, don't let anyone
1517	 * else try and use this device.  Also, if error recovery fails, it
1518	 * may try and take the device offline, in which case all further
1519	 * access to the device is prohibited.
1520	 */
1521	if (!scsi_block_when_processing_errors(sdev))
1522		return -ENODEV;
1523	       
1524	if (sdev->host->hostt->compat_ioctl) {
1525		ret = sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1526
1527		return ret;
 
 
 
1528	}
1529
1530	/* 
1531	 * Let the static ioctl translation table take care of it.
1532	 */
1533	return -ENOIOCTLCMD; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1534}
1535#endif
1536
1537static const struct block_device_operations sd_fops = {
1538	.owner			= THIS_MODULE,
1539	.open			= sd_open,
1540	.release		= sd_release,
1541	.ioctl			= sd_ioctl,
1542	.getgeo			= sd_getgeo,
1543#ifdef CONFIG_COMPAT
1544	.compat_ioctl		= sd_compat_ioctl,
1545#endif
1546	.check_events		= sd_check_events,
1547	.revalidate_disk	= sd_revalidate_disk,
1548	.unlock_native_capacity	= sd_unlock_native_capacity,
 
 
 
 
1549};
1550
1551/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1552 *	sd_eh_action - error handling callback
1553 *	@scmd:		sd-issued command that has failed
1554 *	@eh_disp:	The recovery disposition suggested by the midlayer
1555 *
1556 *	This function is called by the SCSI midlayer upon completion of an
1557 *	error test command (currently TEST UNIT READY). The result of sending
1558 *	the eh command is passed in eh_disp.  We're looking for devices that
1559 *	fail medium access commands but are OK with non access commands like
1560 *	test unit ready (so wrongly see the device as having a successful
1561 *	recovery)
1562 **/
1563static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1564{
1565	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
 
1566
1567	if (!scsi_device_online(scmd->device) ||
1568	    !scsi_medium_access_command(scmd) ||
1569	    host_byte(scmd->result) != DID_TIME_OUT ||
1570	    eh_disp != SUCCESS)
1571		return eh_disp;
1572
1573	/*
1574	 * The device has timed out executing a medium access command.
1575	 * However, the TEST UNIT READY command sent during error
1576	 * handling completed successfully. Either the device is in the
1577	 * process of recovering or has it suffered an internal failure
1578	 * that prevents access to the storage medium.
1579	 */
1580	sdkp->medium_access_timed_out++;
 
 
 
1581
1582	/*
1583	 * If the device keeps failing read/write commands but TEST UNIT
1584	 * READY always completes successfully we assume that medium
1585	 * access is no longer possible and take the device offline.
1586	 */
1587	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1588		scmd_printk(KERN_ERR, scmd,
1589			    "Medium access timeout failure. Offlining disk!\n");
1590		scsi_device_set_state(scmd->device, SDEV_OFFLINE);
 
 
1591
1592		return FAILED;
1593	}
1594
1595	return eh_disp;
1596}
1597
1598static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1599{
1600	u64 start_lba = blk_rq_pos(scmd->request);
1601	u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512);
1602	u64 bad_lba;
1603	int info_valid;
 
1604	/*
1605	 * resid is optional but mostly filled in.  When it's unused,
1606	 * its value is zero, so we assume the whole buffer transferred
1607	 */
1608	unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1609	unsigned int good_bytes;
1610
1611	if (scmd->request->cmd_type != REQ_TYPE_FS)
1612		return 0;
1613
1614	info_valid = scsi_get_sense_info_fld(scmd->sense_buffer,
1615					     SCSI_SENSE_BUFFERSIZE,
1616					     &bad_lba);
1617	if (!info_valid)
1618		return 0;
1619
1620	if (scsi_bufflen(scmd) <= scmd->device->sector_size)
 
 
 
 
 
 
1621		return 0;
1622
1623	if (scmd->device->sector_size < 512) {
1624		/* only legitimate sector_size here is 256 */
1625		start_lba <<= 1;
1626		end_lba <<= 1;
1627	} else {
1628		/* be careful ... don't want any overflows */
1629		unsigned int factor = scmd->device->sector_size / 512;
1630		do_div(start_lba, factor);
1631		do_div(end_lba, factor);
1632	}
1633
1634	/* The bad lba was reported incorrectly, we have no idea where
1635	 * the error is.
1636	 */
1637	if (bad_lba < start_lba  || bad_lba >= end_lba)
1638		return 0;
1639
1640	/* This computation should always be done in terms of
1641	 * the resolution of the device's medium.
1642	 */
1643	good_bytes = (bad_lba - start_lba) * scmd->device->sector_size;
1644	return min(good_bytes, transferred);
1645}
1646
1647/**
1648 *	sd_done - bottom half handler: called when the lower level
1649 *	driver has completed (successfully or otherwise) a scsi command.
1650 *	@SCpnt: mid-level's per command structure.
1651 *
1652 *	Note: potentially run from within an ISR. Must not block.
1653 **/
1654static int sd_done(struct scsi_cmnd *SCpnt)
1655{
1656	int result = SCpnt->result;
1657	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
 
 
1658	struct scsi_sense_hdr sshdr;
1659	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1660	struct request *req = SCpnt->request;
1661	int sense_valid = 0;
1662	int sense_deferred = 0;
1663	unsigned char op = SCpnt->cmnd[0];
1664	unsigned char unmap = SCpnt->cmnd[1] & 8;
1665
1666	if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) {
 
 
 
 
 
 
 
1667		if (!result) {
1668			good_bytes = blk_rq_bytes(req);
1669			scsi_set_resid(SCpnt, 0);
1670		} else {
1671			good_bytes = 0;
1672			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1673		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674	}
1675
1676	if (result) {
1677		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1678		if (sense_valid)
1679			sense_deferred = scsi_sense_is_deferred(&sshdr);
1680	}
1681#ifdef CONFIG_SCSI_LOGGING
1682	SCSI_LOG_HLCOMPLETE(1, scsi_print_result(SCpnt));
1683	if (sense_valid) {
1684		SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
1685						   "sd_done: sb[respc,sk,asc,"
1686						   "ascq]=%x,%x,%x,%x\n",
1687						   sshdr.response_code,
1688						   sshdr.sense_key, sshdr.asc,
1689						   sshdr.ascq));
1690	}
1691#endif
1692	if (driver_byte(result) != DRIVER_SENSE &&
1693	    (!sense_valid || sense_deferred))
1694		goto out;
1695
1696	sdkp->medium_access_timed_out = 0;
1697
1698	switch (sshdr.sense_key) {
1699	case HARDWARE_ERROR:
1700	case MEDIUM_ERROR:
1701		good_bytes = sd_completed_bytes(SCpnt);
1702		break;
1703	case RECOVERED_ERROR:
1704		good_bytes = scsi_bufflen(SCpnt);
1705		break;
1706	case NO_SENSE:
1707		/* This indicates a false check condition, so ignore it.  An
1708		 * unknown amount of data was transferred so treat it as an
1709		 * error.
1710		 */
1711		scsi_print_sense("sd", SCpnt);
1712		SCpnt->result = 0;
1713		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1714		break;
1715	case ABORTED_COMMAND:
1716		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
1717			good_bytes = sd_completed_bytes(SCpnt);
1718		break;
1719	case ILLEGAL_REQUEST:
1720		if (sshdr.asc == 0x10)  /* DIX: Host detected corruption */
 
1721			good_bytes = sd_completed_bytes(SCpnt);
1722		/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
1723		if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
1724			switch (op) {
 
1725			case UNMAP:
1726				sd_config_discard(sdkp, SD_LBP_DISABLE);
1727				break;
1728			case WRITE_SAME_16:
1729			case WRITE_SAME:
1730				if (unmap)
1731					sd_config_discard(sdkp, SD_LBP_DISABLE);
1732				else {
1733					sdkp->device->no_write_same = 1;
1734					sd_config_write_same(sdkp);
1735
1736					good_bytes = 0;
1737					req->__data_len = blk_rq_bytes(req);
1738					req->cmd_flags |= REQ_QUIET;
1739				}
 
1740			}
1741		}
1742		break;
1743	default:
1744		break;
1745	}
 
1746 out:
1747	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
1748		sd_dif_complete(SCpnt, good_bytes);
 
 
 
 
1749
1750	return good_bytes;
1751}
1752
1753/*
1754 * spinup disk - called only in sd_revalidate_disk()
1755 */
1756static void
1757sd_spinup_disk(struct scsi_disk *sdkp)
1758{
1759	unsigned char cmd[10];
1760	unsigned long spintime_expire = 0;
1761	int retries, spintime;
1762	unsigned int the_result;
1763	struct scsi_sense_hdr sshdr;
 
 
 
1764	int sense_valid = 0;
1765
1766	spintime = 0;
1767
1768	/* Spin up drives, as required.  Only do this at boot time */
1769	/* Spinup needs to be done for module loads too. */
1770	do {
1771		retries = 0;
1772
1773		do {
 
 
1774			cmd[0] = TEST_UNIT_READY;
1775			memset((void *) &cmd[1], 0, 9);
1776
1777			the_result = scsi_execute_req(sdkp->device, cmd,
1778						      DMA_NONE, NULL, 0,
1779						      &sshdr, SD_TIMEOUT,
1780						      SD_MAX_RETRIES, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781
1782			/*
1783			 * If the drive has indicated to us that it
1784			 * doesn't have any media in it, don't bother
1785			 * with any more polling.
1786			 */
1787			if (media_not_present(sdkp, &sshdr))
1788				return;
1789
1790			if (the_result)
1791				sense_valid = scsi_sense_valid(&sshdr);
 
1792			retries++;
1793		} while (retries < 3 && 
1794			 (!scsi_status_is_good(the_result) ||
1795			  ((driver_byte(the_result) & DRIVER_SENSE) &&
1796			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
1797
1798		if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
1799			/* no sense, TUR either succeeded or failed
1800			 * with a status error */
1801			if(!spintime && !scsi_status_is_good(the_result)) {
1802				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
1803				sd_print_result(sdkp, the_result);
1804			}
1805			break;
1806		}
1807					
1808		/*
1809		 * The device does not want the automatic start to be issued.
1810		 */
1811		if (sdkp->device->no_start_on_add)
1812			break;
1813
1814		if (sense_valid && sshdr.sense_key == NOT_READY) {
1815			if (sshdr.asc == 4 && sshdr.ascq == 3)
1816				break;	/* manual intervention required */
1817			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
1818				break;	/* standby */
1819			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
1820				break;	/* unavailable */
 
 
 
 
 
 
1821			/*
1822			 * Issue command to spin up drive when not ready
1823			 */
1824			if (!spintime) {
1825				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
1826				cmd[0] = START_STOP;
1827				cmd[1] = 1;	/* Return immediately */
1828				memset((void *) &cmd[2], 0, 8);
1829				cmd[4] = 1;	/* Start spin cycle */
1830				if (sdkp->device->start_stop_pwr_cond)
1831					cmd[4] |= 1 << 4;
1832				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
1833						 NULL, 0, &sshdr,
1834						 SD_TIMEOUT, SD_MAX_RETRIES,
1835						 NULL);
1836				spintime_expire = jiffies + 100 * HZ;
1837				spintime = 1;
1838			}
1839			/* Wait 1 second for next try */
1840			msleep(1000);
1841			printk(".");
1842
1843		/*
1844		 * Wait for USB flash devices with slow firmware.
1845		 * Yes, this sense key/ASC combination shouldn't
1846		 * occur here.  It's characteristic of these devices.
1847		 */
1848		} else if (sense_valid &&
1849				sshdr.sense_key == UNIT_ATTENTION &&
1850				sshdr.asc == 0x28) {
1851			if (!spintime) {
1852				spintime_expire = jiffies + 5 * HZ;
1853				spintime = 1;
1854			}
1855			/* Wait 1 second for next try */
1856			msleep(1000);
1857		} else {
1858			/* we don't understand the sense code, so it's
1859			 * probably pointless to loop */
1860			if(!spintime) {
1861				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
1862				sd_print_sense_hdr(sdkp, &sshdr);
1863			}
1864			break;
1865		}
1866				
1867	} while (spintime && time_before_eq(jiffies, spintime_expire));
1868
1869	if (spintime) {
1870		if (scsi_status_is_good(the_result))
1871			printk("ready\n");
1872		else
1873			printk("not responding...\n");
1874	}
1875}
1876
1877
1878/*
1879 * Determine whether disk supports Data Integrity Field.
1880 */
1881static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
1882{
1883	struct scsi_device *sdp = sdkp->device;
1884	u8 type;
1885	int ret = 0;
1886
1887	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
1888		return ret;
 
 
1889
1890	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
1891
1892	if (type > SD_DIF_TYPE3_PROTECTION)
1893		ret = -ENODEV;
1894	else if (scsi_host_dif_capable(sdp->host, type))
1895		ret = 1;
1896
1897	if (sdkp->first_scan || type != sdkp->protection_type)
1898		switch (ret) {
1899		case -ENODEV:
1900			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
1901				  " protection type %u. Disabling disk!\n",
1902				  type);
1903			break;
1904		case 1:
1905			sd_printk(KERN_NOTICE, sdkp,
1906				  "Enabling DIF Type %u protection\n", type);
1907			break;
1908		case 0:
1909			sd_printk(KERN_NOTICE, sdkp,
1910				  "Disabling DIF Type %u protection\n", type);
1911			break;
1912		}
1913
1914	sdkp->protection_type = type;
1915
1916	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1917}
1918
1919static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
1920			struct scsi_sense_hdr *sshdr, int sense_valid,
1921			int the_result)
1922{
1923	sd_print_result(sdkp, the_result);
1924	if (driver_byte(the_result) & DRIVER_SENSE)
1925		sd_print_sense_hdr(sdkp, sshdr);
1926	else
1927		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
1928
1929	/*
1930	 * Set dirty bit for removable devices if not ready -
1931	 * sometimes drives will not report this properly.
1932	 */
1933	if (sdp->removable &&
1934	    sense_valid && sshdr->sense_key == NOT_READY)
1935		set_media_not_present(sdkp);
1936
1937	/*
1938	 * We used to set media_present to 0 here to indicate no media
1939	 * in the drive, but some drives fail read capacity even with
1940	 * media present, so we can't do that.
1941	 */
1942	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
1943}
1944
1945#define RC16_LEN 32
1946#if RC16_LEN > SD_BUF_SIZE
1947#error RC16_LEN must not be more than SD_BUF_SIZE
1948#endif
1949
1950#define READ_CAPACITY_RETRIES_ON_RESET	10
1951
1952static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
1953						unsigned char *buffer)
1954{
1955	unsigned char cmd[16];
1956	struct scsi_sense_hdr sshdr;
 
 
 
1957	int sense_valid = 0;
1958	int the_result;
1959	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
1960	unsigned int alignment;
1961	unsigned long long lba;
1962	unsigned sector_size;
1963
1964	if (sdp->no_read_capacity_16)
1965		return -EINVAL;
1966
1967	do {
1968		memset(cmd, 0, 16);
1969		cmd[0] = SERVICE_ACTION_IN;
1970		cmd[1] = SAI_READ_CAPACITY_16;
1971		cmd[13] = RC16_LEN;
1972		memset(buffer, 0, RC16_LEN);
1973
1974		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
1975					buffer, RC16_LEN, &sshdr,
1976					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
 
 
 
1977
1978		if (media_not_present(sdkp, &sshdr))
1979			return -ENODEV;
1980
1981		if (the_result) {
1982			sense_valid = scsi_sense_valid(&sshdr);
1983			if (sense_valid &&
1984			    sshdr.sense_key == ILLEGAL_REQUEST &&
1985			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
1986			    sshdr.ascq == 0x00)
1987				/* Invalid Command Operation Code or
1988				 * Invalid Field in CDB, just retry
1989				 * silently with RC10 */
1990				return -EINVAL;
1991			if (sense_valid &&
1992			    sshdr.sense_key == UNIT_ATTENTION &&
1993			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
1994				/* Device reset might occur several times,
1995				 * give it one more chance */
1996				if (--reset_retries > 0)
1997					continue;
1998		}
1999		retries--;
2000
2001	} while (the_result && retries);
2002
2003	if (the_result) {
2004		sd_printk(KERN_NOTICE, sdkp, "READ CAPACITY(16) failed\n");
2005		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2006		return -EINVAL;
2007	}
2008
2009	sector_size = get_unaligned_be32(&buffer[8]);
2010	lba = get_unaligned_be64(&buffer[0]);
2011
2012	if (sd_read_protection_type(sdkp, buffer) < 0) {
2013		sdkp->capacity = 0;
2014		return -ENODEV;
2015	}
2016
2017	if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) {
2018		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2019			"kernel compiled with support for large block "
2020			"devices.\n");
2021		sdkp->capacity = 0;
2022		return -EOVERFLOW;
2023	}
2024
2025	/* Logical blocks per physical block exponent */
2026	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2027
 
 
 
2028	/* Lowest aligned logical block */
2029	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2030	blk_queue_alignment_offset(sdp->request_queue, alignment);
2031	if (alignment && sdkp->first_scan)
2032		sd_printk(KERN_NOTICE, sdkp,
2033			  "physical block alignment offset: %u\n", alignment);
2034
2035	if (buffer[14] & 0x80) { /* LBPME */
2036		sdkp->lbpme = 1;
2037
2038		if (buffer[14] & 0x40) /* LBPRZ */
2039			sdkp->lbprz = 1;
2040
2041		sd_config_discard(sdkp, SD_LBP_WS16);
2042	}
2043
2044	sdkp->capacity = lba + 1;
2045	return sector_size;
2046}
2047
2048static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2049						unsigned char *buffer)
2050{
2051	unsigned char cmd[16];
2052	struct scsi_sense_hdr sshdr;
 
 
 
2053	int sense_valid = 0;
2054	int the_result;
2055	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2056	sector_t lba;
2057	unsigned sector_size;
2058
2059	do {
2060		cmd[0] = READ_CAPACITY;
2061		memset(&cmd[1], 0, 9);
2062		memset(buffer, 0, 8);
2063
2064		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2065					buffer, 8, &sshdr,
2066					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2067
2068		if (media_not_present(sdkp, &sshdr))
2069			return -ENODEV;
2070
2071		if (the_result) {
2072			sense_valid = scsi_sense_valid(&sshdr);
2073			if (sense_valid &&
2074			    sshdr.sense_key == UNIT_ATTENTION &&
2075			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2076				/* Device reset might occur several times,
2077				 * give it one more chance */
2078				if (--reset_retries > 0)
2079					continue;
2080		}
2081		retries--;
2082
2083	} while (the_result && retries);
2084
2085	if (the_result) {
2086		sd_printk(KERN_NOTICE, sdkp, "READ CAPACITY failed\n");
2087		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2088		return -EINVAL;
2089	}
2090
2091	sector_size = get_unaligned_be32(&buffer[4]);
2092	lba = get_unaligned_be32(&buffer[0]);
2093
2094	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2095		/* Some buggy (usb cardreader) devices return an lba of
2096		   0xffffffff when the want to report a size of 0 (with
2097		   which they really mean no media is present) */
2098		sdkp->capacity = 0;
2099		sdkp->physical_block_size = sector_size;
2100		return sector_size;
2101	}
2102
2103	if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) {
2104		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2105			"kernel compiled with support for large block "
2106			"devices.\n");
2107		sdkp->capacity = 0;
2108		return -EOVERFLOW;
2109	}
2110
2111	sdkp->capacity = lba + 1;
2112	sdkp->physical_block_size = sector_size;
2113	return sector_size;
2114}
2115
2116static int sd_try_rc16_first(struct scsi_device *sdp)
2117{
2118	if (sdp->host->max_cmd_len < 16)
2119		return 0;
2120	if (sdp->try_rc_10_first)
2121		return 0;
2122	if (sdp->scsi_level > SCSI_SPC_2)
2123		return 1;
2124	if (scsi_device_protection(sdp))
2125		return 1;
2126	return 0;
2127}
2128
2129/*
2130 * read disk capacity
2131 */
2132static void
2133sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2134{
2135	int sector_size;
2136	struct scsi_device *sdp = sdkp->device;
2137	sector_t old_capacity = sdkp->capacity;
2138
2139	if (sd_try_rc16_first(sdp)) {
2140		sector_size = read_capacity_16(sdkp, sdp, buffer);
2141		if (sector_size == -EOVERFLOW)
2142			goto got_data;
2143		if (sector_size == -ENODEV)
2144			return;
2145		if (sector_size < 0)
2146			sector_size = read_capacity_10(sdkp, sdp, buffer);
2147		if (sector_size < 0)
2148			return;
2149	} else {
2150		sector_size = read_capacity_10(sdkp, sdp, buffer);
2151		if (sector_size == -EOVERFLOW)
2152			goto got_data;
2153		if (sector_size < 0)
2154			return;
2155		if ((sizeof(sdkp->capacity) > 4) &&
2156		    (sdkp->capacity > 0xffffffffULL)) {
2157			int old_sector_size = sector_size;
2158			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2159					"Trying to use READ CAPACITY(16).\n");
2160			sector_size = read_capacity_16(sdkp, sdp, buffer);
2161			if (sector_size < 0) {
2162				sd_printk(KERN_NOTICE, sdkp,
2163					"Using 0xffffffff as device size\n");
2164				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2165				sector_size = old_sector_size;
2166				goto got_data;
2167			}
 
 
2168		}
2169	}
2170
2171	/* Some devices are known to return the total number of blocks,
2172	 * not the highest block number.  Some devices have versions
2173	 * which do this and others which do not.  Some devices we might
2174	 * suspect of doing this but we don't know for certain.
2175	 *
2176	 * If we know the reported capacity is wrong, decrement it.  If
2177	 * we can only guess, then assume the number of blocks is even
2178	 * (usually true but not always) and err on the side of lowering
2179	 * the capacity.
2180	 */
2181	if (sdp->fix_capacity ||
2182	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2183		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2184				"from its reported value: %llu\n",
2185				(unsigned long long) sdkp->capacity);
2186		--sdkp->capacity;
2187	}
2188
2189got_data:
2190	if (sector_size == 0) {
2191		sector_size = 512;
2192		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2193			  "assuming 512.\n");
2194	}
2195
2196	if (sector_size != 512 &&
2197	    sector_size != 1024 &&
2198	    sector_size != 2048 &&
2199	    sector_size != 4096 &&
2200	    sector_size != 256) {
2201		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2202			  sector_size);
2203		/*
2204		 * The user might want to re-format the drive with
2205		 * a supported sectorsize.  Once this happens, it
2206		 * would be relatively trivial to set the thing up.
2207		 * For this reason, we leave the thing in the table.
2208		 */
2209		sdkp->capacity = 0;
2210		/*
2211		 * set a bogus sector size so the normal read/write
2212		 * logic in the block layer will eventually refuse any
2213		 * request on this device without tripping over power
2214		 * of two sector size assumptions
2215		 */
2216		sector_size = 512;
2217	}
2218	blk_queue_logical_block_size(sdp->request_queue, sector_size);
 
 
 
2219
2220	{
2221		char cap_str_2[10], cap_str_10[10];
2222		u64 sz = (u64)sdkp->capacity << ilog2(sector_size);
2223
2224		string_get_size(sz, STRING_UNITS_2, cap_str_2,
2225				sizeof(cap_str_2));
2226		string_get_size(sz, STRING_UNITS_10, cap_str_10,
2227				sizeof(cap_str_10));
2228
2229		if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2230			sd_printk(KERN_NOTICE, sdkp,
2231				  "%llu %d-byte logical blocks: (%s/%s)\n",
2232				  (unsigned long long)sdkp->capacity,
2233				  sector_size, cap_str_10, cap_str_2);
2234
2235			if (sdkp->physical_block_size != sector_size)
2236				sd_printk(KERN_NOTICE, sdkp,
2237					  "%u-byte physical blocks\n",
2238					  sdkp->physical_block_size);
2239		}
2240	}
 
 
 
2241
2242	sdp->use_16_for_rw = (sdkp->capacity > 0xffffffff);
 
2243
2244	/* Rescale capacity to 512-byte units */
2245	if (sector_size == 4096)
2246		sdkp->capacity <<= 3;
2247	else if (sector_size == 2048)
2248		sdkp->capacity <<= 2;
2249	else if (sector_size == 1024)
2250		sdkp->capacity <<= 1;
2251	else if (sector_size == 256)
2252		sdkp->capacity >>= 1;
2253
2254	blk_queue_physical_block_size(sdp->request_queue,
2255				      sdkp->physical_block_size);
2256	sdkp->device->sector_size = sector_size;
 
2257}
2258
2259/* called with buffer of length 512 */
2260static inline int
2261sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2262		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2263		 struct scsi_sense_hdr *sshdr)
2264{
2265	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2266			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2267			       sshdr);
 
 
 
 
 
 
2268}
2269
2270/*
2271 * read write protect setting, if possible - called only in sd_revalidate_disk()
2272 * called with buffer of length SD_BUF_SIZE
2273 */
2274static void
2275sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2276{
2277	int res;
2278	struct scsi_device *sdp = sdkp->device;
2279	struct scsi_mode_data data;
2280	int old_wp = sdkp->write_prot;
2281
2282	set_disk_ro(sdkp->disk, 0);
2283	if (sdp->skip_ms_page_3f) {
2284		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2285		return;
2286	}
2287
2288	if (sdp->use_192_bytes_for_3f) {
2289		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2290	} else {
2291		/*
2292		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2293		 * We have to start carefully: some devices hang if we ask
2294		 * for more than is available.
2295		 */
2296		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2297
2298		/*
2299		 * Second attempt: ask for page 0 When only page 0 is
2300		 * implemented, a request for page 3F may return Sense Key
2301		 * 5: Illegal Request, Sense Code 24: Invalid field in
2302		 * CDB.
2303		 */
2304		if (!scsi_status_is_good(res))
2305			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2306
2307		/*
2308		 * Third attempt: ask 255 bytes, as we did earlier.
2309		 */
2310		if (!scsi_status_is_good(res))
2311			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2312					       &data, NULL);
2313	}
2314
2315	if (!scsi_status_is_good(res)) {
2316		sd_first_printk(KERN_WARNING, sdkp,
2317			  "Test WP failed, assume Write Enabled\n");
2318	} else {
2319		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2320		set_disk_ro(sdkp->disk, sdkp->write_prot);
2321		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2322			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2323				  sdkp->write_prot ? "on" : "off");
2324			sd_printk(KERN_DEBUG, sdkp,
2325				  "Mode Sense: %02x %02x %02x %02x\n",
2326				  buffer[0], buffer[1], buffer[2], buffer[3]);
2327		}
2328	}
2329}
2330
2331/*
2332 * sd_read_cache_type - called only from sd_revalidate_disk()
2333 * called with buffer of length SD_BUF_SIZE
2334 */
2335static void
2336sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2337{
2338	int len = 0, res;
2339	struct scsi_device *sdp = sdkp->device;
2340
2341	int dbd;
2342	int modepage;
2343	int first_len;
2344	struct scsi_mode_data data;
2345	struct scsi_sense_hdr sshdr;
2346	int old_wce = sdkp->WCE;
2347	int old_rcd = sdkp->RCD;
2348	int old_dpofua = sdkp->DPOFUA;
2349
2350
2351	if (sdkp->cache_override)
2352		return;
2353
2354	first_len = 4;
2355	if (sdp->skip_ms_page_8) {
2356		if (sdp->type == TYPE_RBC)
2357			goto defaults;
2358		else {
2359			if (sdp->skip_ms_page_3f)
2360				goto defaults;
2361			modepage = 0x3F;
2362			if (sdp->use_192_bytes_for_3f)
2363				first_len = 192;
2364			dbd = 0;
2365		}
2366	} else if (sdp->type == TYPE_RBC) {
2367		modepage = 6;
2368		dbd = 8;
2369	} else {
2370		modepage = 8;
2371		dbd = 0;
2372	}
2373
2374	/* cautiously ask */
2375	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2376			&data, &sshdr);
2377
2378	if (!scsi_status_is_good(res))
2379		goto bad_sense;
2380
2381	if (!data.header_length) {
2382		modepage = 6;
2383		first_len = 0;
2384		sd_first_printk(KERN_ERR, sdkp,
2385				"Missing header in MODE_SENSE response\n");
2386	}
2387
2388	/* that went OK, now ask for the proper length */
2389	len = data.length;
2390
2391	/*
2392	 * We're only interested in the first three bytes, actually.
2393	 * But the data cache page is defined for the first 20.
2394	 */
2395	if (len < 3)
2396		goto bad_sense;
2397	else if (len > SD_BUF_SIZE) {
2398		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2399			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2400		len = SD_BUF_SIZE;
2401	}
2402	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2403		len = 192;
2404
2405	/* Get the data */
2406	if (len > first_len)
2407		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2408				&data, &sshdr);
2409
2410	if (scsi_status_is_good(res)) {
2411		int offset = data.header_length + data.block_descriptor_length;
2412
2413		while (offset < len) {
2414			u8 page_code = buffer[offset] & 0x3F;
2415			u8 spf       = buffer[offset] & 0x40;
2416
2417			if (page_code == 8 || page_code == 6) {
2418				/* We're interested only in the first 3 bytes.
2419				 */
2420				if (len - offset <= 2) {
2421					sd_first_printk(KERN_ERR, sdkp,
2422						"Incomplete mode parameter "
2423							"data\n");
2424					goto defaults;
2425				} else {
2426					modepage = page_code;
2427					goto Page_found;
2428				}
2429			} else {
2430				/* Go to the next page */
2431				if (spf && len - offset > 3)
2432					offset += 4 + (buffer[offset+2] << 8) +
2433						buffer[offset+3];
2434				else if (!spf && len - offset > 1)
2435					offset += 2 + buffer[offset+1];
2436				else {
2437					sd_first_printk(KERN_ERR, sdkp,
2438							"Incomplete mode "
2439							"parameter data\n");
2440					goto defaults;
2441				}
2442			}
2443		}
2444
2445		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
 
2446		goto defaults;
2447
2448	Page_found:
2449		if (modepage == 8) {
2450			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2451			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2452		} else {
2453			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2454			sdkp->RCD = 0;
2455		}
2456
2457		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2458		if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) {
 
 
 
 
2459			sd_first_printk(KERN_NOTICE, sdkp,
2460				  "Uses READ/WRITE(6), disabling FUA\n");
2461			sdkp->DPOFUA = 0;
2462		}
2463
 
 
 
 
2464		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2465		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2466			sd_printk(KERN_NOTICE, sdkp,
2467				  "Write cache: %s, read cache: %s, %s\n",
2468				  sdkp->WCE ? "enabled" : "disabled",
2469				  sdkp->RCD ? "disabled" : "enabled",
2470				  sdkp->DPOFUA ? "supports DPO and FUA"
2471				  : "doesn't support DPO or FUA");
2472
2473		return;
2474	}
2475
2476bad_sense:
2477	if (scsi_sense_valid(&sshdr) &&
2478	    sshdr.sense_key == ILLEGAL_REQUEST &&
2479	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2480		/* Invalid field in CDB */
2481		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2482	else
2483		sd_first_printk(KERN_ERR, sdkp,
2484				"Asking for cache data failed\n");
2485
2486defaults:
2487	if (sdp->wce_default_on) {
2488		sd_first_printk(KERN_NOTICE, sdkp,
2489				"Assuming drive cache: write back\n");
2490		sdkp->WCE = 1;
2491	} else {
2492		sd_first_printk(KERN_ERR, sdkp,
2493				"Assuming drive cache: write through\n");
2494		sdkp->WCE = 0;
2495	}
2496	sdkp->RCD = 0;
2497	sdkp->DPOFUA = 0;
2498}
2499
2500/*
2501 * The ATO bit indicates whether the DIF application tag is available
2502 * for use by the operating system.
2503 */
2504static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2505{
2506	int res, offset;
2507	struct scsi_device *sdp = sdkp->device;
2508	struct scsi_mode_data data;
2509	struct scsi_sense_hdr sshdr;
2510
2511	if (sdp->type != TYPE_DISK)
2512		return;
2513
2514	if (sdkp->protection_type == 0)
2515		return;
2516
2517	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2518			      SD_MAX_RETRIES, &data, &sshdr);
2519
2520	if (!scsi_status_is_good(res) || !data.header_length ||
2521	    data.length < 6) {
2522		sd_first_printk(KERN_WARNING, sdkp,
2523			  "getting Control mode page failed, assume no ATO\n");
2524
2525		if (scsi_sense_valid(&sshdr))
2526			sd_print_sense_hdr(sdkp, &sshdr);
2527
2528		return;
2529	}
2530
2531	offset = data.header_length + data.block_descriptor_length;
2532
2533	if ((buffer[offset] & 0x3f) != 0x0a) {
2534		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2535		return;
2536	}
2537
2538	if ((buffer[offset + 5] & 0x80) == 0)
2539		return;
2540
2541	sdkp->ATO = 1;
2542
2543	return;
2544}
2545
2546/**
2547 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2548 * @disk: disk to query
2549 */
2550static void sd_read_block_limits(struct scsi_disk *sdkp)
2551{
2552	unsigned int sector_sz = sdkp->device->sector_size;
2553	const int vpd_len = 64;
2554	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2555
2556	if (!buffer ||
2557	    /* Block Limits VPD */
2558	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2559		goto out;
2560
2561	blk_queue_io_min(sdkp->disk->queue,
2562			 get_unaligned_be16(&buffer[6]) * sector_sz);
2563	blk_queue_io_opt(sdkp->disk->queue,
2564			 get_unaligned_be32(&buffer[12]) * sector_sz);
2565
2566	if (buffer[3] == 0x3c) {
2567		unsigned int lba_count, desc_count;
2568
2569		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2570
2571		if (!sdkp->lbpme)
2572			goto out;
2573
2574		lba_count = get_unaligned_be32(&buffer[20]);
2575		desc_count = get_unaligned_be32(&buffer[24]);
2576
2577		if (lba_count && desc_count)
2578			sdkp->max_unmap_blocks = lba_count;
2579
2580		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2581
2582		if (buffer[32] & 0x80)
2583			sdkp->unmap_alignment =
2584				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2585
2586		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2587
2588			if (sdkp->max_unmap_blocks)
2589				sd_config_discard(sdkp, SD_LBP_UNMAP);
2590			else
2591				sd_config_discard(sdkp, SD_LBP_WS16);
2592
2593		} else {	/* LBP VPD page tells us what to use */
2594
2595			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2596				sd_config_discard(sdkp, SD_LBP_UNMAP);
2597			else if (sdkp->lbpws)
2598				sd_config_discard(sdkp, SD_LBP_WS16);
2599			else if (sdkp->lbpws10)
2600				sd_config_discard(sdkp, SD_LBP_WS10);
2601			else
2602				sd_config_discard(sdkp, SD_LBP_DISABLE);
2603		}
2604	}
2605
2606 out:
2607	kfree(buffer);
2608}
2609
2610/**
2611 * sd_read_block_characteristics - Query block dev. characteristics
2612 * @disk: disk to query
2613 */
2614static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2615{
2616	unsigned char *buffer;
 
2617	u16 rot;
2618	const int vpd_len = 64;
2619
2620	buffer = kmalloc(vpd_len, GFP_KERNEL);
 
2621
2622	if (!buffer ||
2623	    /* Block Device Characteristics VPD */
2624	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2625		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2626
2627	rot = get_unaligned_be16(&buffer[4]);
 
 
 
 
 
 
 
 
 
 
 
 
2628
2629	if (rot == 1)
2630		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue);
2631
2632 out:
2633	kfree(buffer);
 
 
 
 
2634}
2635
2636/**
2637 * sd_read_block_provisioning - Query provisioning VPD page
2638 * @disk: disk to query
2639 */
2640static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2641{
2642	unsigned char *buffer;
2643	const int vpd_len = 8;
2644
2645	if (sdkp->lbpme == 0)
2646		return;
2647
2648	buffer = kmalloc(vpd_len, GFP_KERNEL);
 
2649
2650	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2651		goto out;
 
 
2652
2653	sdkp->lbpvpd	= 1;
2654	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
2655	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
2656	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
2657
2658 out:
2659	kfree(buffer);
2660}
2661
2662static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2663{
2664	struct scsi_device *sdev = sdkp->device;
2665
2666	if (sdev->host->no_write_same) {
2667		sdev->no_write_same = 1;
2668
2669		return;
2670	}
2671
2672	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2673		/* too large values might cause issues with arcmsr */
2674		int vpd_buf_len = 64;
2675
2676		sdev->no_report_opcodes = 1;
2677
2678		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2679		 * CODES is unsupported and the device has an ATA
2680		 * Information VPD page (SAT).
2681		 */
2682		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
 
 
2683			sdev->no_write_same = 1;
 
2684	}
2685
2686	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
2687		sdkp->ws16 = 1;
2688
2689	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
2690		sdkp->ws10 = 1;
2691}
2692
2693static int sd_try_extended_inquiry(struct scsi_device *sdp)
2694{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2695	/*
2696	 * Although VPD inquiries can go to SCSI-2 type devices,
2697	 * some USB ones crash on receiving them, and the pages
2698	 * we currently ask for are for SPC-3 and beyond
2699	 */
2700	if (sdp->scsi_level > SCSI_SPC_2 && !sdp->skip_vpd_pages)
2701		return 1;
2702	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2703}
2704
2705/**
2706 *	sd_revalidate_disk - called the first time a new disk is seen,
2707 *	performs disk spin up, read_capacity, etc.
2708 *	@disk: struct gendisk we care about
2709 **/
2710static int sd_revalidate_disk(struct gendisk *disk)
2711{
2712	struct scsi_disk *sdkp = scsi_disk(disk);
2713	struct scsi_device *sdp = sdkp->device;
 
 
2714	unsigned char *buffer;
2715	unsigned flush = 0;
2716
2717	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
2718				      "sd_revalidate_disk\n"));
2719
2720	/*
2721	 * If the device is offline, don't try and read capacity or any
2722	 * of the other niceties.
2723	 */
2724	if (!scsi_device_online(sdp))
2725		goto out;
2726
2727	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
2728	if (!buffer) {
2729		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
2730			  "allocation failure.\n");
2731		goto out;
2732	}
2733
2734	sd_spinup_disk(sdkp);
2735
2736	/*
2737	 * Without media there is no reason to ask; moreover, some devices
2738	 * react badly if we do.
2739	 */
2740	if (sdkp->media_present) {
2741		sd_read_capacity(sdkp, buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2742
2743		if (sd_try_extended_inquiry(sdp)) {
2744			sd_read_block_provisioning(sdkp);
2745			sd_read_block_limits(sdkp);
2746			sd_read_block_characteristics(sdkp);
 
 
2747		}
2748
 
 
2749		sd_read_write_protect_flag(sdkp, buffer);
2750		sd_read_cache_type(sdkp, buffer);
2751		sd_read_app_tag_own(sdkp, buffer);
2752		sd_read_write_same(sdkp, buffer);
 
 
2753	}
2754
2755	sdkp->first_scan = 0;
2756
2757	/*
2758	 * We now have all cache related info, determine how we deal
2759	 * with flush requests.
2760	 */
2761	if (sdkp->WCE) {
2762		flush |= REQ_FLUSH;
2763		if (sdkp->DPOFUA)
2764			flush |= REQ_FUA;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2765	}
2766
2767	blk_queue_flush(sdkp->disk->queue, flush);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2768
2769	set_capacity(disk, sdkp->capacity);
2770	sd_config_write_same(sdkp);
2771	kfree(buffer);
2772
 
 
 
 
 
 
 
 
2773 out:
2774	return 0;
2775}
2776
2777/**
2778 *	sd_unlock_native_capacity - unlock native capacity
2779 *	@disk: struct gendisk to set capacity for
2780 *
2781 *	Block layer calls this function if it detects that partitions
2782 *	on @disk reach beyond the end of the device.  If the SCSI host
2783 *	implements ->unlock_native_capacity() method, it's invoked to
2784 *	give it a chance to adjust the device capacity.
2785 *
2786 *	CONTEXT:
2787 *	Defined by block layer.  Might sleep.
2788 */
2789static void sd_unlock_native_capacity(struct gendisk *disk)
2790{
2791	struct scsi_device *sdev = scsi_disk(disk)->device;
2792
2793	if (sdev->host->hostt->unlock_native_capacity)
2794		sdev->host->hostt->unlock_native_capacity(sdev);
2795}
2796
2797/**
2798 *	sd_format_disk_name - format disk name
2799 *	@prefix: name prefix - ie. "sd" for SCSI disks
2800 *	@index: index of the disk to format name for
2801 *	@buf: output buffer
2802 *	@buflen: length of the output buffer
2803 *
2804 *	SCSI disk names starts at sda.  The 26th device is sdz and the
2805 *	27th is sdaa.  The last one for two lettered suffix is sdzz
2806 *	which is followed by sdaaa.
2807 *
2808 *	This is basically 26 base counting with one extra 'nil' entry
2809 *	at the beginning from the second digit on and can be
2810 *	determined using similar method as 26 base conversion with the
2811 *	index shifted -1 after each digit is computed.
2812 *
2813 *	CONTEXT:
2814 *	Don't care.
2815 *
2816 *	RETURNS:
2817 *	0 on success, -errno on failure.
2818 */
2819static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
2820{
2821	const int base = 'z' - 'a' + 1;
2822	char *begin = buf + strlen(prefix);
2823	char *end = buf + buflen;
2824	char *p;
2825	int unit;
2826
2827	p = end - 1;
2828	*p = '\0';
2829	unit = base;
2830	do {
2831		if (p == begin)
2832			return -EINVAL;
2833		*--p = 'a' + (index % unit);
2834		index = (index / unit) - 1;
2835	} while (index >= 0);
2836
2837	memmove(begin, p, end - p);
2838	memcpy(buf, prefix, strlen(prefix));
2839
2840	return 0;
2841}
2842
2843/*
2844 * The asynchronous part of sd_probe
2845 */
2846static void sd_probe_async(void *data, async_cookie_t cookie)
2847{
2848	struct scsi_disk *sdkp = data;
2849	struct scsi_device *sdp;
2850	struct gendisk *gd;
2851	u32 index;
2852	struct device *dev;
2853
2854	sdp = sdkp->device;
2855	gd = sdkp->disk;
2856	index = sdkp->index;
2857	dev = &sdp->sdev_gendev;
2858
2859	gd->major = sd_major((index & 0xf0) >> 4);
2860	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
2861	gd->minors = SD_MINORS;
2862
2863	gd->fops = &sd_fops;
2864	gd->private_data = &sdkp->driver;
2865	gd->queue = sdkp->device->request_queue;
2866
2867	/* defaults, until the device tells us otherwise */
2868	sdp->sector_size = 512;
2869	sdkp->capacity = 0;
2870	sdkp->media_present = 1;
2871	sdkp->write_prot = 0;
2872	sdkp->cache_override = 0;
2873	sdkp->WCE = 0;
2874	sdkp->RCD = 0;
2875	sdkp->ATO = 0;
2876	sdkp->first_scan = 1;
2877	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
2878
2879	sd_revalidate_disk(gd);
2880
2881	blk_queue_prep_rq(sdp->request_queue, sd_prep_fn);
2882	blk_queue_unprep_rq(sdp->request_queue, sd_unprep_fn);
2883
2884	gd->driverfs_dev = &sdp->sdev_gendev;
2885	gd->flags = GENHD_FL_EXT_DEVT;
2886	if (sdp->removable) {
2887		gd->flags |= GENHD_FL_REMOVABLE;
2888		gd->events |= DISK_EVENT_MEDIA_CHANGE;
2889	}
2890
2891	blk_pm_runtime_init(sdp->request_queue, dev);
2892	add_disk(gd);
2893	if (sdkp->capacity)
2894		sd_dif_config_host(sdkp);
2895
2896	sd_revalidate_disk(gd);
2897
2898	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
2899		  sdp->removable ? "removable " : "");
2900	scsi_autopm_put_device(sdp);
2901	put_device(&sdkp->dev);
2902}
2903
2904/**
2905 *	sd_probe - called during driver initialization and whenever a
2906 *	new scsi device is attached to the system. It is called once
2907 *	for each scsi device (not just disks) present.
2908 *	@dev: pointer to device object
2909 *
2910 *	Returns 0 if successful (or not interested in this scsi device 
2911 *	(e.g. scanner)); 1 when there is an error.
2912 *
2913 *	Note: this function is invoked from the scsi mid-level.
2914 *	This function sets up the mapping between a given 
2915 *	<host,channel,id,lun> (found in sdp) and new device name 
2916 *	(e.g. /dev/sda). More precisely it is the block device major 
2917 *	and minor number that is chosen here.
2918 *
2919 *	Assume sd_probe is not re-entrant (for time being)
2920 *	Also think about sd_probe() and sd_remove() running coincidentally.
2921 **/
2922static int sd_probe(struct device *dev)
2923{
2924	struct scsi_device *sdp = to_scsi_device(dev);
2925	struct scsi_disk *sdkp;
2926	struct gendisk *gd;
2927	int index;
2928	int error;
2929
 
2930	error = -ENODEV;
2931	if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC)
 
 
 
2932		goto out;
2933
 
 
 
 
 
 
2934	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
2935					"sd_probe\n"));
2936
2937	error = -ENOMEM;
2938	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
2939	if (!sdkp)
2940		goto out;
2941
2942	gd = alloc_disk(SD_MINORS);
 
2943	if (!gd)
2944		goto out_free;
2945
2946	do {
2947		if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
2948			goto out_put;
2949
2950		spin_lock(&sd_index_lock);
2951		error = ida_get_new(&sd_index_ida, &index);
2952		spin_unlock(&sd_index_lock);
2953	} while (error == -EAGAIN);
2954
2955	if (error) {
2956		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
2957		goto out_put;
2958	}
2959
2960	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
2961	if (error) {
2962		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
2963		goto out_free_index;
2964	}
2965
2966	sdkp->device = sdp;
2967	sdkp->driver = &sd_template;
2968	sdkp->disk = gd;
2969	sdkp->index = index;
 
2970	atomic_set(&sdkp->openers, 0);
2971	atomic_set(&sdkp->device->ioerr_cnt, 0);
2972
2973	if (!sdp->request_queue->rq_timeout) {
2974		if (sdp->type != TYPE_MOD)
2975			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
2976		else
2977			blk_queue_rq_timeout(sdp->request_queue,
2978					     SD_MOD_TIMEOUT);
2979	}
2980
2981	device_initialize(&sdkp->dev);
2982	sdkp->dev.parent = dev;
2983	sdkp->dev.class = &sd_disk_class;
2984	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
2985
2986	if (device_add(&sdkp->dev))
2987		goto out_free_index;
 
 
 
2988
2989	get_device(dev);
2990	dev_set_drvdata(dev, sdkp);
2991
2992	get_device(&sdkp->dev);	/* prevent release before async_schedule */
2993	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2994
2995	return 0;
2996
2997 out_free_index:
2998	spin_lock(&sd_index_lock);
2999	ida_remove(&sd_index_ida, index);
3000	spin_unlock(&sd_index_lock);
3001 out_put:
3002	put_disk(gd);
3003 out_free:
3004	kfree(sdkp);
3005 out:
 
3006	return error;
3007}
3008
3009/**
3010 *	sd_remove - called whenever a scsi disk (previously recognized by
3011 *	sd_probe) is detached from the system. It is called (potentially
3012 *	multiple times) during sd module unload.
3013 *	@sdp: pointer to mid level scsi device object
3014 *
3015 *	Note: this function is invoked from the scsi mid-level.
3016 *	This function potentially frees up a device name (e.g. /dev/sdc)
3017 *	that could be re-used by a subsequent sd_probe().
3018 *	This function is not called when the built-in sd driver is "exit-ed".
3019 **/
3020static int sd_remove(struct device *dev)
3021{
3022	struct scsi_disk *sdkp;
3023	dev_t devt;
3024
3025	sdkp = dev_get_drvdata(dev);
3026	devt = disk_devt(sdkp->disk);
3027	scsi_autopm_get_device(sdkp->device);
3028
3029	async_synchronize_full_domain(&scsi_sd_pm_domain);
3030	async_synchronize_full_domain(&scsi_sd_probe_domain);
3031	blk_queue_prep_rq(sdkp->device->request_queue, scsi_prep_fn);
3032	blk_queue_unprep_rq(sdkp->device->request_queue, NULL);
3033	device_del(&sdkp->dev);
3034	del_gendisk(sdkp->disk);
3035	sd_shutdown(dev);
3036
3037	blk_register_region(devt, SD_MINORS, NULL,
3038			    sd_default_probe, NULL, NULL);
3039
3040	mutex_lock(&sd_ref_mutex);
3041	dev_set_drvdata(dev, NULL);
3042	put_device(&sdkp->dev);
3043	mutex_unlock(&sd_ref_mutex);
3044
 
3045	return 0;
3046}
3047
3048/**
3049 *	scsi_disk_release - Called to free the scsi_disk structure
3050 *	@dev: pointer to embedded class device
3051 *
3052 *	sd_ref_mutex must be held entering this routine.  Because it is
3053 *	called on last put, you should always use the scsi_disk_get()
3054 *	scsi_disk_put() helpers which manipulate the semaphore directly
3055 *	and never do a direct put_device.
3056 **/
3057static void scsi_disk_release(struct device *dev)
3058{
3059	struct scsi_disk *sdkp = to_scsi_disk(dev);
3060	struct gendisk *disk = sdkp->disk;
3061	
3062	spin_lock(&sd_index_lock);
3063	ida_remove(&sd_index_ida, sdkp->index);
3064	spin_unlock(&sd_index_lock);
3065
3066	disk->private_data = NULL;
3067	put_disk(disk);
3068	put_device(&sdkp->device->sdev_gendev);
 
3069
3070	kfree(sdkp);
3071}
3072
3073static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3074{
3075	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3076	struct scsi_sense_hdr sshdr;
 
 
 
 
3077	struct scsi_device *sdp = sdkp->device;
3078	int res;
3079
3080	if (start)
3081		cmd[4] |= 1;	/* START */
3082
3083	if (sdp->start_stop_pwr_cond)
3084		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3085
3086	if (!scsi_device_online(sdp))
3087		return -ENODEV;
3088
3089	res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr,
3090			       SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM);
3091	if (res) {
3092		sd_printk(KERN_WARNING, sdkp, "START_STOP FAILED\n");
3093		sd_print_result(sdkp, res);
3094		if (driver_byte(res) & DRIVER_SENSE)
3095			sd_print_sense_hdr(sdkp, &sshdr);
3096		if (scsi_sense_valid(&sshdr) &&
3097			/* 0x3a is medium not present */
3098			sshdr.asc == 0x3a)
3099			res = 0;
 
3100	}
3101
3102	/* SCSI error codes must not go to the generic layer */
3103	if (res)
3104		return -EIO;
3105
3106	return 0;
3107}
3108
3109/*
3110 * Send a SYNCHRONIZE CACHE instruction down to the device through
3111 * the normal SCSI command structure.  Wait for the command to
3112 * complete.
3113 */
3114static void sd_shutdown(struct device *dev)
3115{
3116	struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev);
3117
3118	if (!sdkp)
3119		return;         /* this can happen */
3120
3121	if (pm_runtime_suspended(dev))
3122		goto exit;
3123
3124	if (sdkp->WCE && sdkp->media_present) {
3125		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3126		sd_sync_cache(sdkp);
3127	}
3128
3129	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
 
 
 
3130		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3131		sd_start_stop_device(sdkp, 0);
3132	}
 
3133
3134exit:
3135	scsi_disk_put(sdkp);
 
 
3136}
3137
3138static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3139{
3140	struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev);
3141	int ret = 0;
3142
3143	if (!sdkp)
3144		return 0;	/* this can happen */
3145
3146	if (sdkp->WCE && sdkp->media_present) {
3147		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
 
3148		ret = sd_sync_cache(sdkp);
3149		if (ret) {
3150			/* ignore OFFLINE device */
3151			if (ret == -ENODEV)
3152				ret = 0;
3153			goto done;
3154		}
3155	}
3156
3157	if (sdkp->device->manage_start_stop) {
3158		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
 
3159		/* an error is not worth aborting a system sleep */
3160		ret = sd_start_stop_device(sdkp, 0);
3161		if (ignore_stop_errors)
3162			ret = 0;
3163	}
3164
3165done:
3166	scsi_disk_put(sdkp);
 
3167	return ret;
3168}
3169
3170static int sd_suspend_system(struct device *dev)
3171{
3172	return sd_suspend_common(dev, true);
 
 
 
3173}
3174
3175static int sd_suspend_runtime(struct device *dev)
3176{
3177	return sd_suspend_common(dev, false);
3178}
3179
3180static int sd_resume(struct device *dev)
3181{
3182	struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev);
3183	int ret = 0;
3184
3185	if (!sdkp->device->manage_start_stop)
3186		goto done;
 
 
 
 
 
3187
3188	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3189	ret = sd_start_stop_device(sdkp, 1);
 
 
 
 
3190
3191done:
3192	scsi_disk_put(sdkp);
3193	return ret;
3194}
3195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3196/**
3197 *	init_sd - entry point for this driver (both when built in or when
3198 *	a module).
3199 *
3200 *	Note: this function registers this driver with the scsi mid-level.
3201 **/
3202static int __init init_sd(void)
3203{
3204	int majors = 0, i, err;
3205
3206	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3207
3208	for (i = 0; i < SD_MAJORS; i++) {
3209		if (register_blkdev(sd_major(i), "sd") != 0)
3210			continue;
3211		majors++;
3212		blk_register_region(sd_major(i), SD_MINORS, NULL,
3213				    sd_default_probe, NULL, NULL);
3214	}
3215
3216	if (!majors)
3217		return -ENODEV;
3218
3219	err = class_register(&sd_disk_class);
3220	if (err)
3221		goto err_out;
3222
3223	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3224					 0, 0, NULL);
3225	if (!sd_cdb_cache) {
3226		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3227		goto err_out_class;
3228	}
3229
3230	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3231	if (!sd_cdb_pool) {
3232		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3233		goto err_out_cache;
3234	}
3235
3236	err = scsi_register_driver(&sd_template.gendrv);
3237	if (err)
3238		goto err_out_driver;
3239
3240	return 0;
3241
3242err_out_driver:
3243	mempool_destroy(sd_cdb_pool);
3244
3245err_out_cache:
3246	kmem_cache_destroy(sd_cdb_cache);
3247
3248err_out_class:
3249	class_unregister(&sd_disk_class);
3250err_out:
3251	for (i = 0; i < SD_MAJORS; i++)
3252		unregister_blkdev(sd_major(i), "sd");
3253	return err;
3254}
3255
3256/**
3257 *	exit_sd - exit point for this driver (when it is a module).
3258 *
3259 *	Note: this function unregisters this driver from the scsi mid-level.
3260 **/
3261static void __exit exit_sd(void)
3262{
3263	int i;
3264
3265	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3266
3267	scsi_unregister_driver(&sd_template.gendrv);
3268	mempool_destroy(sd_cdb_pool);
3269	kmem_cache_destroy(sd_cdb_cache);
3270
3271	class_unregister(&sd_disk_class);
3272
3273	for (i = 0; i < SD_MAJORS; i++) {
3274		blk_unregister_region(sd_major(i), SD_MINORS);
3275		unregister_blkdev(sd_major(i), "sd");
3276	}
3277}
3278
3279module_init(init_sd);
3280module_exit(exit_sd);
3281
3282static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3283			       struct scsi_sense_hdr *sshdr)
3284{
3285	sd_printk(KERN_INFO, sdkp, " ");
3286	scsi_show_sense_hdr(sshdr);
3287	sd_printk(KERN_INFO, sdkp, " ");
3288	scsi_show_extd_sense(sshdr->asc, sshdr->ascq);
3289}
3290
3291static void sd_print_result(struct scsi_disk *sdkp, int result)
3292{
3293	sd_printk(KERN_INFO, sdkp, " ");
3294	scsi_show_result(result);
 
 
 
 
 
 
 
 
 
3295}
3296